

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Tanel Prikk 134526IAPB

IMPLEMENTATION OF AN INTERPRETER

FOR THE TEST PURPOSE SPECIFICATION

LANGUAGE TDLTP

Bachelor’s thesis

Supervisors: Jüri Vain

 PhD

 Evelin Halling

 PhD

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Tanel Prikk 134526

TESTIMISEESMÄRKIDE

SPETSIFITSEERIMISKEELE TDLTP

INTERPRETAATORI

IMPLEMENTEERIMINE

bakalaureusetöö

Juhendajad: Jüri Vain

 PhD

 Evelin Halling

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Tanel Prikk

21.05.2019

4

Abstract

In model-based testing (MBT), explicit behavioral models of a system under test (SUT)

are used to generate abstract test cases (ATCs) – sequences of inputs and expected outputs

which can be concretized into executable test scripts. The phase of MBT in which ATCs

are produced is known as test generation. Given an appropriate modeling formalism and

a language for test purpose specification, this phase can be automated.

The chosen modeling formalism depends on the nature of the SUT. For systems which

exhibit time-sensitive behavior, i.e. real-time systems, a suitably flexible formalism

supported by a mature set of tools is UPPAAL Timed Automata (UTA), wherein

behavioral models are specified as state-transition graphs annotated with timing

constraints. However, while the UPPAAL toolkit provides means for test purpose

specification via its subset of Timed Computation Tree Logic (TCTL), certain syntactic

limitations prevent the complete automation of ATC generation for UPPAAL models –

manual modification of the SUT model is required for the implementation of certain

complex test purposes.

A solution to this issue was provided by the authors of [1] in the form of a supplementary

language layer known as the Test Purpose Specification Language (TDLTP). Using

TDLTP, a test purpose can be declared as a logical expression which encodes an

augmentation procedure for a UPPAAL SUT model. Once the encoded modifications are

carried out, the resultant test model can be used in conjunction with UPPAAL TCTL.

With its expressive, flexible syntax, TDLTP overcomes the limitations of the UPPAAL

property specification language and can be treated as a major stepping-stone towards

extending the practical usability of UPPAAL in MBT processes.

The objective of this thesis was to implement an interpreter which accepts a UPPAAL

SUT model and a TDLTP expression as input and produces an ATC in the form of a test

model as output.

5

The author produced the result by gradually implementing and interfacing a collection of

reusable components. The structure and logic of these components is discussed and

explained in this thesis. It is expected that the modular structure of the interpreter will

facilitate future extensions and improvements.

This thesis is written in English and is 78 pages long, including 6 chapters, 41 figures and

5 tables.

6

Annotatsioon

Testimiseesmärkide spetsifitseerimiskeele TDLTP interpretaatori

implementeerimine

Mudelipõhises testimises (model-based testing – MBT) kasutatakse testitava süsteemi

(system under test – SUT) käitumismudeleid, et genereerida testsisendite ja vastavate

eeldatavate väljundite jadasid ehk abstraktseid testimisjuhte (abstract test case – ATC).

Viimaseid on võimalik konkretiseerida reaalselt täidetavateks teststsenaariumiteks.

Eeldades sobivat modelleerimisformalismi ja keelt, millise abil saab spetsifitseerida

testimiseesmärke, on ATC’de genereerimisfaasi võimalik automatiseerida.

Formalismi valik sõltub süsteemi üldistest omadustest. Reaalaja süsteemide jaoks,

milliste käitumine on ajatundlik, on sobivalt paindlik ning laia tööriistavalikuga variant

UPPAAL Timed Automata (UTA). UTA’s spetsifitseeritakse käitumismudeleid

ajapiirangutega annoteeritud seisundigraafidena. Kuigi UPPAAL’i tööriistakomplektis

on olemas vahendid testimiseesmärkide spetsifitseerimiseks Timed Computation Tree

Logic (TCTL) konkreetse alamhulga näol, seavad teatud süntaktilised piirangud ATC’de

generatsiooni automatiseerimisele UPPAAL’i raames kitsendusi – mudeleid tuleb käsitsi

kohendada, et teatud keerulisi testimiseesmärke realiseerida.

Ülaltoodud probleemile on artikli [1] autorid pakkunud välja lahenduse täiendava

keelekihi, testimiseesmärkide spetsifitseerimiskeele TDLTP näol. Kasutades mainitud

keelt, saab eesmärgi deklareerida loogilise avaldisena, mis on sisuliselt SUT mudeli

modifitseerimisprotseduuri kompaktne esitus. Kui vastavad modifikatsioonid teostada,

saab resultaadina SUT mudelist tuletatud testmudelit edaspidi TCTL’iga kombinatsioonis

kasutada.

TDLTP võimaldab oma paindliku ja väljendusrikka süntaksiga ületada UPPAAL’i

mudeliomaduste spetsifitseerimiskeele piiranguid. Seda võib pidada suureks sammuks

UPPAAL’i kasutatavuse laiendamise poole MBT kontekstis.

7

Käesoleva töö eesmärgiks oli implementeerida interpretaator, mille sisendiks on

UPPAAL’i formalismis esitatud SUT mudel ja TDLTP avaldis. Väljundina loob

interpretaator testmudeli, mis implementeerib avaldises sisalduvat testimiseesmärki.

Töö tulemuseni jõudis autor komponendipõhise lähenemisega. Alustati sisendeid

teisendavatest moodulitest ning vajalikest objektmudelitest ning liidestamise abil liiguti

järk-järgult kõrgemal abstraktsusastmel asuvate komponentide poole. Selles töös

tutvustatakse implementeeritud artefakte ja selgitatakse nende interaktsioone testmudeli

loomisprotsessi jooksul. Autor eeldab, et interpretaatori modulaarne ülesehitus soodustab

tulevaste rakenduslaienduste lisamist.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 6 peatükki, 41

joonist, 5 tabelit.

8

List of abbreviations and terms

ANTLR Another Tool for Language Recognition. A framework for

generating parsers.

AST Abstract syntax tree. A tree-based form of intermediate

representation which emphasizes the conceptual rather than the

syntactical structure encoded in an input string.

ATC Abstract test case. Generalization of a collection of concrete

input-output sequences which can be used to test a system.

base trapset A trapset where the mapping between the set and the transitions

in the SUT model has been made explicit – possibly through the

use of an auxiliary data structure.

BBT Black-box testing. A verification method where only the inputs

and outputs of the software under test are under consideration –

internals are not inspected or accessed.

BNF Backus-Naur form. A notation for describing computer

languages.

CBD Component-Based Design. A development approach which

emphasizes loose coupling and the use of reusable components.

CLI Command-line interface. A type of interface where users are

expected to provide input via text commands.

DSL Domain-specific language. A language which has a limited

domain of applicability but allows for more succinct or

expressive representation within the context of said domain.

GUI Graphical user interface. A type of interface where the user

interacts with visual elements in order to provide input and

receive output from a software system.

JAXB Java Architecture for XML Binding. Java framework for

processing XML.

MBD Model-based design. A design methodology where

requirements for systems are represented as models.

MBT Model-based testing. The application of MBD for software

verification.

SUT System under test.

9

TA Timed Automata. A modeling formalism where system

behavior is abstractly represented as a network of state

transition graphs.

TCTL Timed Computation Tree Logic. A type of logic where it is

possible to reason with time-related propositions.

TDLTP Test Purpose Specification Language. A novel method for

specifying test purposes designed for inclusion in a UPPAAL

MBT workflow.

UI User interface.

UPPAAL A tool suite based on the TA formalism and intended for system

verification. Developed by Uppsala University and Aalborg

University.

UPPAAL system

definition language

The C-like declaration language used in UPPAAL to declare

variables, define transition and location labels, and specify

model processes.

UQL UPPAAL query language. TCTL-based property specification

language available in the UPPAAL toolkit.

UTA UPPAAL Timed Automata. The extension of TA made

available as a modeling formalism in UPPAAL.

automaton template In UPPAAL, an automaton prototype which defines the

structure and behavior of model processes which can be

instantiated from it.

code generation Conversion from an object structure to a syntactical structure in

a given language.

conditional trap A trap which labels a transition whose inclusion in a trapset

depends on a logical condition.

directed multigraph A graph where multiple directed edges are permitted between a

pair of vertices.

elementary trap A trap which maps to a transition whose inclusion in a trapset in

unconditional.

façade A component whose purpose is to simplify another software

component’s interface in order to facilitate loose coupling.

guard An annotation that can be added to a model transition in

UPPAAL for the purpose of specifying the conditions which

need to be met for the transition to be enabled.

location A vertex in a UPPAAL automaton. The active location is part of

the state of an individual automaton.

model-checking A verification method for models which may involve the

generation of behavioral traces.

10

normalization The process of replacing negations and recognizer-less nodes in

a TDLTP abstract syntax tree.

operator arity The number of operands an operator takes.

parse tree A tree-based form of intermediate representation which

contains the complete syntactical structure of an input sentence.

recognizer A property recognizing automaton which either collects

information from other recognizers in order to notify its parent

entity or collects information from the SUT model by

inspecting trap variables.

recognizer model The composition of a collection of recognizers and the test

stopwatch into a tree structure based on the AST of a TDLTP

expression.

recognizer tree Used interchangeably with the term recognizer model.

reduction The process of substituting substructures in a TDLTP

expression’s AST with the aim of reducing its size.

s-expression A simplified notation for representing tree structures.

scenario composition The process of combining a SUT model and a TDLTP

expression in order to construct a test model.

synchronization In UPPAAL, a means to specify actions and corresponding

co-actions.

template instantiation Either refers to the process of providing parameters for a

UPPAAL automaton template or to the modified template

produced as the result of this process.

test generation The process of generating ATCs using a test purpose and a SUT

model.

test model The model produced as the result of combining a TDLTP

expression with a SUT model. Produces an ATC when

combined with a suitable UPPAAL TCTL formula.

test purpose Represents a specific behavioral property that a software tester

wishes to verify.

test selection criteria The collection of coverage criterions used in the formulation of

a test purpose.

tester In the context of this work, an individual or group of people

who wish to verify the behavior of a software system or artifact.

transition A connection between two locations in a UPPAAL automaton.

trap A member of a trapset which maps to a single transition in a

UPPAAL SUT model.

trapset A collection of traps which connects a TDLTP expression to the

corresponding UPPAAL SUT model.

11

trapset evaluation An umbrella term for trapset extraction, trapset expression

evaluation, and trapset quantifier evaluation.

trapset expression A TDLTP subexpression whose root is a trapset operator.

trapset expression

evaluation

The process of deriving a base trapset from a trapset expression,

thereby determining which transitions the expression maps to in

the model.

trapset extraction The process of retrieving the mapping between transitions and

trapsets from a user-provided SUT model and a TDLTP

expression.

trapset quantifier A logical operator in TDLTP whose operand domain is the set of

possible trapset expressions.

Universal quantification over a trapset is true if and only if all

the traps in the set have been visited.

Existential quantification over a trapset is true if and only if at

least one of the traps in the set has been visited.

trapset quantifier

evaluation

The process of determining whether a trapset quantifier can be

replaced with a Boolean literal and the execution of such a

replacement when applicable.

12

Table of contents

1 Introduction ... 17

1.1 Outline .. 20

2 Preliminaries .. 22

2.1 Model-Based Testing .. 22

2.2 UPPAAL Timed Automata .. 25

 Formal Definition of Timed Automata .. 26

 UPPAAL Modelling Language ... 29

 UPPAAL in Model-Based Testing .. 31

2.3 Test Purpose Specification Language (TDLTP) .. 33

 Test Purpose Specification via TDLTP Expressions 33

 Expression Syntax ... 35

 Semantics of Trapsets .. 36

 Semantics of Trapset Expressions and Trapset Quantifiers 36

 Semantics of Logical Connectives and Temporal Operators 38

2.4 Abstract Syntax Trees ... 39

3 Requirements ... 42

4 Implementation .. 44

4.1 Approach .. 44

4.2 Component Structure .. 45

4.3 Technological Choices ... 47

 Programming Language: Java ... 47

 Dependency Management: Maven .. 48

 Parser Generator: ANTLR ... 49

 Code Generation: StringTemplate ... 49

 XML Processing: JAXB .. 50

 Command-Line Option Parser: args4j ... 51

4.4 Component Overviews ... 51

 TDLTP Expression Object Model .. 51

 UPPAAL Object Model .. 56

13

 TDLTP Grammar Implementation .. 58

 UPPAAL System Language Grammar Implementation 59

 TDLTP Parser ... 60

 UPPAAL Parser ... 61

 Scenario Composer .. 63

 User Interface Core .. 63

 Command-Line Interface ... 64

5 Scenario Composition ... 65

5.1 Overview .. 65

5.2 Trapset Evaluation .. 72

 Trapset Extraction ... 72

 Quantifier Evaluation .. 75

5.3 Normalization ... 76

5.4 Reduction .. 78

5.5 Construction of a Recognizer Model .. 80

 Approach to Implementing Recognizer Templates 80

 Construction Algorithm ... 83

6 Validation .. 86

6.1 Automated Tests for Language Parsers .. 86

6.2 Manual Integration Tests .. 90

7 Summary .. 93

References .. 95

Appendix 1 – Trapset Quantifier Recognizer Template ... 96

Appendix 2 – Disjunction Recognizer Template ... 100

Appendix 3 – Conjunction Recognizer Template .. 102

Appendix 4 – Leads To Recognizer Template ... 103

Appendix 5 – Time-Bounded Leads To Recognizer Template 104

Appendix 6 – Conditional Repetition Recognizer Template 109

Appendix 7 – Test Stopwatch Template... 112

Appendix 8 – Boolean Literal Recognizer Templates.. 113

Appendix 9 – User Guide ... 114

Appendix 10 – Manual Integration Tests ... 116

Appendix 11 – Repository Links .. 128

14

List of figures

Figure 1. Example MBT Workflow. .. 17

Figure 2. Example UPPAAL automata network. ... 25

Figure 3. Example UPPAAL automata: (a) smartphone, (b) user. 26

Figure 4. Core UPPAAL language features. .. 29

Figure 5. Example state-space search for reachability property E<>p [9, p. 8]. 32

Figure 6. Comparison of TDLTP AST (a) and corresponding recognizer tree (b). 34

Figure 7. TDLTP expression grammar in BNF form [1, p. 4]. .. 35

Figure 8. Example model fragment with two trapsets: TS1 & TS2. 37

Figure 9. Relative complement of trapsets TS1 & TS2 from Figure 8. 37

Figure 10. Absolute complement of trapset TS1 from Figure 8. 37

Figure 11. Linked pairs trapset of trapsets TS1 & TS2 from Figure 8. 38

Figure 12. Language application pipeline (adapted from Figure 1.1 in [12, p. 21]). 40

Figure 13. Example AST for the assignment statement ‘flag = true;’. 41

Figure 14. Example parse tree for the assignment statement ‘flag = true;’. 41

Figure 15. Interaction with the TDLTP interpreter. ... 42

Figure 16. TDLTP interpreter component diagram. .. 45

Figure 17. Class diagram for the base classes in the TDLTP expression model. 52

Figure 18. Basic child replacement procedure for the TDLTP child container class. 55

Figure 19. Better child replacement procedure for the TDLTP child container class. 56

Figure 20. Class diagram for structural classes in the UPPAAL object model. 57

Figure 21. Example of parse deferral during UPPAAL structural conversion. 62

Figure 22. High-level view of parsing logic used in the UPPAAL parser. 63

Figure 23. Example TDLTP expression (a) and a model annotated with trapsets (b). 68

Figure 24. First step of composition: base trapset extraction. .. 69

Figure 25. Second step of composition: evaluation of trapset expressions. 69

Figure 26. Third step of composition: evaluation of trapset quantifiers. 70

Figure 27. Fifth step of composition: elimination of Boolean literals............................ 70

Figure 28. Sixth step of composition: constructing MWRAP and M’. 71

Figure 29. Pseudocode for base trapset extraction. .. 73

15

Figure 30. Pseudocode for evaluating absolute complement. .. 74

Figure 31. Pseudocode for literal reduction.. 78

Figure 32. TDLTP AST reduction edge case. .. 79

Figure 33. Pseudocode for eliminating the Boolean child node of a disjunction. 79

Figure 34. Implementing recognizer templates using the UPPAAL pickler. 82

Figure 35. Pseudocode for TDLTP AST indexing algorithm. ... 84

Figure 36. Pseudocode for recognizer model construction algorithm. 85

Figure 37. ANTLR grammar for s-expressions. ... 88

Figure 38. Example s-expression-based language parser test case. 89

Figure 39. Example manual test case model input. .. 90

Figure 40. Example manual test case TDLTP expression input. 91

Figure 41. Example manual test run output model. .. 91

16

List of tables

Table 1. Core TDLTP interpreter components and their purposes. 46

Table 2. Differences between TDLTP BNF and ANTLR grammars. 59

Table 3. Trapset quantifier replacement rules. ... 76

Table 4. Unimplementable negation rules. ... 77

Table 5. Recognizer template implementation approaches. ... 81

17

1 Introduction

In systems design, models find use as representations of structure, data, and behavior. A

collection of models based on different views of a system can serve as a reusable, shared

repository of knowledge on the system. This is the essence of model-based design (MBD),

wherein requirements for systems are represented as models in order to facilitate

unambiguous collective understanding throughout the development process.

The abstraction capabilities and reusability offered by models naturally led to their

utilization in software verification. One approach in this area where model-usage has

shown success is model-based testing (MBT). MBT is a black-box testing method based

on MBD which employs models for the behavioral verification of a system under test

(SUT)1. Figure 1 outlines a possible flow of activities involved in MBT.

First, in the modelling phase, a SUT model is constructed based on SUT specifications

and a test plan. This model is a representation of SUT behavior whose level of abstraction

depends on the scope of the test plan.

1 Also referred to as the implementation under test (IUT) in the literature.

Figure 1. Example MBT Workflow.

18

Test purposes defined during the test purpose specification phase represent specific

behavioral properties that a software tester wishes to verify. An elementary example of a

test purpose is “Test whether state sa always leads to state sb”. In the test generation

phase, the SUT model and the test purposes serve as inputs for the construction of abstract

test cases (ATCs – collectively referred to as the abstract test suite).

ATCs produced in the test generation phase represent paths in the state-space of the test

model [2, p. 10]. The construction of these paths is required to fulfil the specified test

purposes.

In the deployment phase, ATCs are transformed into executable test scripts1 – sequences

of input-output pairs that define a concrete testing procedure with respect to the SUT.

This can be done offline, in which case test scripts are produced before test execution, or

online, where test stimuli are computed on-the-fly depending on the SUT state and the

test goal.

Test scripts serve as the driver for the test execution phase, which is defined as the task

of feeding the sequence of stimuli specified by a script to the SUT and verifying whether

the latter responds as expected [3, p. 3]. Verification of SUT behavior according to a test

script will yield a test verdict (pass, fail, inconclusive) based on whether the witnessed

SUT behavior conforms to behavior encoded in the model.

Because the number of steps in a test script derived from a SUT model is generally too

large for manual runs, test execution requires automation [2, p. 10]. The implication here

is that the selected modeling formalism needs to be machine-interpretable. In addition to

enabling automated execution, machine-interpretable modeling formalisms also facilitate

the automation of ATC generation.

Manual construction of ATCs is a time-consuming, cognitively tasking endeavor for any

non-trivial system. This is both due to the potential complexity that SUT models can

exhibit and the likely redundancy involved in generating several ATCs from the same

SUT model. Consequently, the benefits of automated test case generation are obvious:

1 Often referred to as concrete test cases.

19

elimination of human error and considerable reductions in the cost of testing. For these

reasons, automated test generation was chosen as the broadly stated focus of this thesis.

In order to automate test generation, the test purposes which drive the process should be

presented in a formal manner. The general approach in MBT is the adoption of

domain-specific languages (DSLs) for test purpose specification. As explained in [1, p.

1 – 2], this becomes an obstacle when attempting to apply these languages to different

domains. As a specific example, most existing test purpose specification languages do

not fully support the expression of timed behavior, which is essential for testing real-time

systems.

UPPAAL Timed Automata (UTA), first presented in [4], is a widely known modeling

formalism used for the specification and debugging of dynamic real-time systems. It is

based on the theory of Timed Automata (TA), wherein a model is defined as a state

transition system (automaton) annotated with timing constraints [5, p. 183]. The primary

benefits of UTA are its support for representing timed system behavior and the existence

of a mature ecosystem of UTA MBT tools [6].

The UPPAAL toolkit1 includes a graphical environment – the UPPAAL graphical

interface (GUI) – designed for the construction and testing of UTA models. The property

specification language available in UPPAAL – a variant of Timed Computation Tree

Logic (TCTL) – can be used for test purpose specification. However, while the language

has high expressive power, it is syntactically restricted. Namely, UPPAAL only allows

for the use of un-nested temporal operators, which “makes the TCTL expressions ‘flat’

with respect to temporal operators” [1, p. 2]. This restriction prohibits the direct

specification of certain complicated test purposes in UPPAAL TCTL. Therefore, the full

exploitation of UPPAAL for MBT is only feasible for expert users who know how to

augment models with auxiliary property recognizing automata intended for use in

combination with TCTL expressions.

A new solution to the limitations of UPPAAL MBT, presented in [1], is an additional

language layer called the Test Purpose Specification Language (TDLTP). TDLTP is "free

1 http://www.uppaal.org

http://www.uppaal.org/

20

from the limitations of flat TCTL" and provides facilities for expressive test purpose

specification [1, p. 2] when integrated into a UTA MBT workflow.

The primary goal of this thesis is to implement an interpreter for TDLTP based on

the theory set forth in [1]. This interpreter will accept as input:

1. a test purpose specification in TDLTP, and

2. a SUT model specified in the UTA formalism annotated with information relating

transitions in the model to ground-level elements of the TDLTP expression1.

As output, the interpreter will produce a test model which implements the test purpose

specification implicit in the combination of the expression and the SUT model.

It is expected that the interpreter will find use in a prototype environment for model-based

testing of cyber-physical systems, which has been under development at Tallinn

University of Technology for several years.

Our approach to implementing the interpreter is a variant of Component-Based

Development. More specifically, based on an initial analysis of the sub-functionalities

needed by the interpreter, we gradually build the artifact by introducing new components

which depend on previously implemented ones. The expectation here is that this

development method will enforce extensibility in the interpreter’s internal design, and

therefore facilitate possible future improvements.

In order to ensure that the interpreter correctly handles user input, a subset of the

components involved will be validated by automated tests. On the other hand, tests which

ascertain that the interpreter functions according to the theory it was based on will be

performed manually. This will allow the project to be completed in a reasonable amount

of time.

1.1 Outline

This thesis is organized as follows. Chapter 2 introduces the theoretical concepts needed

to understand TDLTP. Chapter 3 presents general requirements for the TDLTP interpreter

1 The technical term for these annotations is traps – 2.3.3 provides a definition.

21

produced as the result of this work. Chapter 4 provides an overview of the interpreter’s

architecture. Chapter 5 focuses on the algorithms embedded in the component at the

center of the interpreter – the scenario composer. Finally, Chapter 6 summarizes our

approach to validation.

22

2 Preliminaries

This chapter presents the requisite background knowledge for understanding the

deployment context of a TDLTP interpreter. The discussion is opened with the most

general concept: model-based testing, a black-box testing strategy used for the behavioral

verification of systems. Thereafter, we describe a concrete formalism for model-based

testing of real-time systems: UPPAAL Timed Automata. Following this, a brief overview

of the limitations of UPPAAL TCTL in MBT will lead into an introduction to the focus

of this thesis – the Test Purpose Specification Language TDLTP. The chapter is concluded

with a brief discussion on abstract syntax trees, which sets the stage for explaining the

implementation of the interpreter in Chapter 4.

2.1 Model-Based Testing

Software testing is an investigative activity whose aim is to determine the extent to which

a software entity or system meets predefined expectations. An enumerative definition of

the term ‘expectation’ here would cover a wide spectrum of properties from usability to

reliability. In this thesis we use the umbrella concept of correctness as the evaluative

criterion employed in testing. Additionally, we consider the testing task only within the

context of systems development.

A system is considered correct if its response to any feasible input stimulus is admissible

according to its specification. In black-box testing (BBT), system responses to input

stimuli are exclusively available in the form of observable outputs – internal

implementation details are irrelevant and only the externally perceived behavior of the

system matters. The main benefit of BBT is that it forces the tester to approach the system

from the perspective of the user as opposed to that of the designer, thus embedding a

degree of objectivity in the testing process.

Model-based testing (MBT) is a variant of BBT that relies on models which encode the

intended behavior of a system under test [7, p. 1]. Here the term ‘model’ denotes a

simplified, possibly formal representation of an observable phenomenon (in MBT, the

23

behavior of a system). The use of models in MBT is motivated both by their potential for

facilitating automation and the support they offer for unequivocal, easily communicable

understanding of system behavior.

Since testers inevitably build mental models of a SUT in order to test its intended

behavior, it can be argued that all testing is essentially based on models. MBT is

exceptional under this treatment in the sense that it requires the use of explicit models.

Roughly speaking, MBT processes exploit reusable models to generate traces of inputs

and expected outputs [8, p. 281]. Trace inputs are concretized and passed to a real system,

the abstracted outputs of which can then be compared to those specified in the trace,

thereby yielding a test verdict – fail, pass, or inconclusive.

An MBT workflow involves the following primary activities: SUT modelling, test

purpose specification, test generation, test deployment, and test execution. An example

configuration of these activities is depicted in Figure 1.

During the modelling phase, requirements for the SUT are used to formulate abstract

behavioral models. The level of abstraction depends on the features of the modeling

language and the scope of the testing task, generally specified in a test plan.

The assumption in MBT is that the SUT model is valid, i.e. that it correctly reflects the

behavioral attributes of the system that are subject to testing. Model validity is a wider

topic outside the scope of this thesis. Henceforth we assume the validity of SUT models

in the context of MBT.

It is important to note here that in practice the SUT will operate in an environment which

provides the stimuli (inputs) that drive its behavior. Thus, it is often the case that an

environment model will be produced in addition to the SUT model – possibly in

composition with the latter. As the test model is “exploited for the generation of test

cases” [7, p. 4], the corresponding environment model places limits on the set of

behavioral paths explored in the test proper. By including an environmental context in

this manner, the tester can select specific aspects of the system’s behavior for testing.

In the test generation phase, test selection criteria are used to further select a subset of

SUT behavior paths. Test selection criteria (as captured in a test purpose), represent

attributes of SUT behavior that the tester aims to verify. A relatively simple example of

24

a test purpose is "state sa is inevitably visited". The range of possible test purposes

facilitated by a modeling formalism can be used as a measure of the its applicability for

a given MBT workflow.

The entities produced as the output of test generation are referred to as abstract test cases

(ATCs). [7] presents a succinct definition of an ATC as a "finite structure of input and

expected output" [7, p. 2]. This definition elucidates the role of ATCs in MBT. In simple

terms, an ATC generalizes a collection of concrete input-output sequences that the SUT’s

behavior should conform to. The ‘abstract’ qualifier here implies that ATCs reside on the

abstraction level of the SUT model, so some transformative mechanism is required to

utilize ATCs in testing. This mechanism is applied in the test deployment phase.

During test deployment, ATCs are converted into executable test scripts which serve as

input for test executions against the SUT. The manifest separation between ATCs and

executable test scripts supports the notion of platform independence in MBT workflows:

test cases can be specified as ATCs in one language, then converted to test scripts in

another.

The conversion process involved in transforming ATCs to executable test scripts defines

the mode of test generation. Based on whether test generation is performed strictly before

test execution or interleaved with the latter, MBT is divided into two modes: offline and

online, respectively. It should be noted that the these modes merely represent the extremes

on a spectrum of possible approaches [6, p. 78 – 79].

In offline MBT, test generation occurs prior to test execution. The relative isolation of the

two phases in this approach makes it possible to generate tests once and subsequently

execute them any number of times. Additionally, the time cost related to generating tests

is minimized – an obvious benefit when the cost is not negligible.

In online MBT, test generation and test execution are dovetailed. An adapter is provided

in the deployment phase as the mediator between the test generator and the SUT. Here

the test generator, which encapsulates a model of the SUT and its environment, receives

output from the system during the test execution and determines which path the SUT has

taken in the state-space of the model. This allows the generator to compute the next test

input for the SUT on-the-fly. The reactive nature of online MBT makes it the preferred

method for testing systems that exhibit nondeterministic behavior [7, p. 9].

25

Regardless of the mode of MBT used, the end goal is to produce a test verdict as the result

of a test execution. An execution passes if expected and actual SUT outputs conform, it

fails if they do not, and it is inconclusive when the decision cannot be made [7, p. 3 – 4].

Assuming model validity with respect to the SUT, a failure verdict is enough to suggest

the existence of a software bug. Its root cause can subsequently be backtracked and

resolved.

In summary, MBT is a testing method where explicit models derived from system

requirements are used in the process of verifying the behavior of a SUT. The SUT behaves

correctly if, given a test input, the outputs produced by the SUT and its model conform

to one another. MBT’s benefits echo those of model usage in general: clarity, reusability

and potential for automation.

2.2 UPPAAL Timed Automata

"UPPAAL is a tool suite for verification of real-time systems, jointly developed by

Uppsala University and Aalborg University." [9, p. 1] The modeling formalism made

available in the UPPAL toolkit (known as UPPAAL Timed Automata – UTA) is based

on the theory of timed automata (TA) set forth by Alur and Dill in [5]. In a nutshell, TA

is a formal notation for annotating state-transition graphs with timing constraints, thus

supporting the modeling and analysis of systems whose behavior is time-sensitive.

UTA extends TA by facilitating the definition of networks of timed automata via its

graphical user interface. An example of a small UTA network is presented in Figure 2.

In the following subsections we provide the minimum requisite syntax and semantics for

understanding how UTA could be utilized in an MBT context. For a tutorial introduction

to UPPAAL, [9] is suggested.

Figure 2. Example UPPAAL automata network.

26

 Formal Definition of Timed Automata

In this section we briefly reproduce the basic formal definition of timed automata as

provided in [9, p. 2 – 3]. It should be noted that the modeling features suggested by this

definition do not represent the entire set of features available in the UPPAAL tool – the

interested reader is referred to UPPAAL’s online user manual1 for more details.

In the definitions below, assume 𝐶 is a set of clocks and 𝐵(𝐶) is a set of conjunctions of

conditions of the form 𝑥 ⋈ 𝑐 or 𝑥 − 𝑦 ⋈ 𝑐, where 𝑥, 𝑦 ∈ 𝐶, 𝑐 ∈ ℕ, and

⋈ ∈ {<, ≤, =, ≥, >}.

"Definition 1 (Timed Automaton (TA)). A timed automaton is a tuple (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼)

where 𝐿 is a set of locations, 𝑙0 ∈ 𝐿 is the initial location, 𝐶 is the set of clocks, 𝐴 is a set

of actions, co-actions and the internal τ-action, 𝐸 ⊆ 𝐿 × 𝐴 × 𝐵(𝐶) × 2𝐶 × 𝐿 is a set of

edges between locations, each with an action, a guard and a set of clocks to be reset, and

𝐼 : 𝐿 → 𝐵(𝐶) assigns invariants to locations." [9, p. 2]

To contextualize Definition 1, two examples of UPPAAL automata are presented in

Figure 3.

The figure above depicts a UTA network consisting of models for a smartphone (a) and

a human user (b). The human user automaton has a single location (idle) and a looping

transition attached to said location. The smartphone automaton has three locations:

screenOffMode (the initial location), screenOnMode, and cameraMode.

1 http://www.it.uu.se/research/group/darts/uppaal/help.php

Figure 3. Example UPPAAL automata: (a) smartphone, (b) user.

http://www.it.uu.se/research/group/darts/uppaal/help.php

27

When the power button for the smartphone is pressed by the user once, the screen turns

on (screenOnMode). Henceforth, when the power button is pressed again, the screen will

turn off (screenOffMode). However, when the button is pressed twice in rapid succession,

the smartphone switches to camera mode instead (cameraMode).

The assignment clk = 0 attached to the transition screenOffMode → screenOnMode is a

reset of the clock variable clk. This variable is used to determine whether the screen

should turn off as the result a subsequent press (guard clk ≥ 2 on transition

screenOnMode → screenOffMode), or switch to camera mode (guard clk < 2 on

transition screenOnMode → cameraMode). The labels press! and press? – which are

synchronizations over the channel press – denote a specific action and its co-action,

respectively.

A location invariant (not depicted in Figure 3) can be described as a conditional

expression that must be true at any time the automaton is in the corresponding location.

Put simply, the automaton must exit the location prior to the moment the invariant no

longer holds. A common use case for invariants in UPPAAL is the modeling of progress

conditions.

To define the semantics of TA, we use the following assistive notions: let 𝑢 ∶ 𝐶 → ℝ≥0

denote a clock valuation and ℝ𝐶 denote the set of all clock valuations. For all 𝑥 ∈ 𝐶, let

𝑢0(𝑥) = 0 (all clocks start at 0). Guards and invariants are considered sets of clock

valuations for the purposes of Definition 2 below, e.g. 𝑢 ∈ 𝐼(𝑙) means 𝑢 satisfies the

invariant of location 𝑙.

"Definition 2 (Semantics of TA). Let (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼) be a timed automaton. The

semantics is defined as a labelled transition system 〈𝑆, 𝑠0, →〉, where 𝑆 ⊆ 𝐿 × ℝ𝐶 is the

set of states, 𝑠0 = (𝑙0, 𝑢0) is the initial state, and → ⊆ 𝑆 × (ℝ≥0 ∪ 𝐴) × 𝑆 is the

transition relation such that:

- (𝑙, 𝑢)
𝑑
→ (𝑙, 𝑢 + 𝑑) if ∀𝑑′: 0 ≤ 𝑑’ ≤ 𝑑 ⟹ 𝑢 + 𝑑′ ∈ 𝐼(𝑙), and

- (𝑙, 𝑢)
𝑎
→ (𝑙′, 𝑢′) if there exists 𝑒 = (𝑙, 𝑎, 𝑔, 𝑟, 𝑙’) ∈ 𝐸 [such that] 𝑢 ∈ 𝑔, 𝑢′ =

[𝑟 ↦ 0]𝑢, and 𝑢′ ∈ 𝐼 (𝑙),

28

where for 𝑑 ∈ ℝ≥0, 𝑢 + 𝑑 maps each clock 𝑥 in 𝐶 to the value 𝑢(𝑥) + 𝑑, and [𝑟 ↦ 0]𝑢

denotes the clock valuation which maps each clock in 𝑟 to 0 and agrees with 𝑢 over 𝐶 \ 𝑟"

[9, p. 3].

[9, p. 4] elucidates Definition 2 as follows: "From a given initial state, we can choose to

take an action or a delay transition […]. Depending [on] the chosen delay, further actions

may be forbidden." If more than one action is enabled, the choice between them is made

non-deterministically.

TA can be composed into networks of timed automata. Such networks consist of 𝑛 > 1

timed automata 𝑇1, … , 𝑇𝑛 which share a common set of clocks and actions [9, p. 4]. The

state of a TA network at time 𝑡 is given by the tuple 〈𝑙,̅ 𝑢〉. Here, 𝑙 ̅ = 〈𝑙1, … , 𝑙𝑛〉 is a

location vector where 𝑙𝑖 is the location of automaton 𝑇𝑖 at time 𝑡, and 𝑢 is a valuation for

all clocks in the network. In UPPAAL, TA networks share a set of global variables.

For a full definition of the operational semantics of UTA, the reader is advised to review

[10].

29

 UPPAAL Modelling Language

In this section we briefly present some core UPPAAL language features in the interest of

self-containment. An exhaustive listing is available in the UPPAAL manual1.

A UPPAAL model consists of the following basic elements: global declarations, automata

templates, and system declarations. These elements are illustrated in Figure 4.

The user can define variables whose scope covers the entire model in the global

declarations section. Variable types include (but are not limited to): clocks,

synchronization channels, integers, Booleans, records, and multidimensional arrays of the

previously listed types. We will refer to the C-like sublanguage UPPAAL uses for these

declarations as the UPPAAL system definition language.

UPPAAL automata are defined as named parameterized templates – directed multigraphs

whose nodes are locations and whose edges are transitions.

Automata transitions can be supplied with guard, assignment, synchronization, and

selection labels, while locations can be decorated with an invariant label. These labels

can access variables from the global scope as well as the local scope of the template.

1 http://www.it.uu.se/research/group/darts/uppaal/help.php

Figure 4. Core UPPAAL language features.

http://www.it.uu.se/research/group/darts/uppaal/help.php

30

Variables local to a template are defined in the corresponding template declarations

section. The local scope of a template also includes its parameters.

Locations can be marked as initial, urgent, or committed. A template must have exactly

one initial location (displayed as a double circle) but may optionally have any number of

either urgent or committed locations (the latter two exclude one another and are marked

with an uppercase 'U' or 'C', respectively).

Per [9, p. 6], "time is not allowed to pass when the system is in an urgent location".

Committed locations further restrict the behavior of the automaton: "A state is committed

if any of the locations in the state is committed. A committed state cannot [cause a] delay

and the next transition must involve an outgoing edge of at least one of the committed

locations" [9, p. 9]. The difference between the two is that urgent locations allow

interleaving with other automata [6, p. 84].

In order to compose a network of automata in UPPAAL, the requisite templates should

be instantiated inside the system declarations section and listed as part of its system line.

It should be noted here that a template can be instantiated partially (leaving some

parameters unbound). This facilitates the compact declaration of automata subtypes.

Template instantiations enumerated in the system line represent processes that are part of

the system model. Local template variables for processes instantiated from the same

template are independent from one another. In other words, a template’s local declarations

are prototypes for variables belonging to the local scopes of processes spawned from said

template.

In summary, UPPAAL timed automata are declared as named parameterized templates.

The latter are directed multigraphs with transitions as edges and locations as vertices.

Transitions and locations may be annotated with one or more labels. Labels act as

behavior specifiers and, as such, can reference state variables from both the model’s

global scope and the template’s local scope (including the parameters of the template). A

UPPAAL system model is constructed from UTA templates via composition. The model

processes that form the system are enumerated as part of the system line in the model’s

system declarations section.

31

 UPPAAL in Model-Based Testing

In this section we briefly introduce UPPAAL’s requirement specification language and

outline an MBT test generation method built on it. For a baseline treatment of UPPAAL

in MBT, [6] is recommended. Further, [11] describes a provably correct test development

method for timed systems based on the UTA formalism.

The UPPAAL toolkit includes a model-checking utility called verifyta. Per [9, p. 7], "the

main purpose of a model-checker is [to] verify the model [with respect to] a requirement

specification." In order to facilitate the formalization of such requirements, UPPAAL

offers a limited version of Timed Computation Tree Logic (TCTL).

UPPAAL’s flavor of TCTL is referred to as the UPPAAL query language (UQL) in this

section. Expressions in UQL can be applied to UPPAAL models using the verifyta tool.

In addition to merely outputting whether the expression is satisfied by the input model,

verifyta can generate symbolic witness traces demonstrating how the verdict was reached.

These traces can be exploited subsequently for offline MBT.

UQL can be used to specify state and path formulae. The former describe individual

model states and the latter quantify path formulae over model traces. A state formula can

be as simple as stopwatch.done which asserts that the process stopwatch is in the done

location. Path formulae, however, are classified into reachability, safety, and liveness

properties. In what follows, only reachability properties will be considered because of

their significance for UPPAAL MBT. An introduction to safety and liveness properties is

provided in [9, p. 8 – 9].

Reachability properties ask whether a given state formula, p, can possibly be satisfied by

the model. The UQL syntax for expressing the proposition that some state satisfying p

can be reached by the model is E<>p. Figure 5 depicts an example state-space search where

the marked node represents the state where reachability property p has been satisfied, and

the bold arrows specify a path towards this state.

32

[6, p. 91 – 94] describes a procedure for generating MBT test cases using reachability

properties derived from test purposes1. In broad terms, either the test purpose is directly

convertible to a simple reachability property, or the model needs to be decorated with

utility constructs (e.g. globally scoped Boolean flag variables) in order to facilitate the

expression of the test purpose. By generating a symbolic trace affirming that the property

holds for the model (using verifyta), an abstract test case has essentially been constructed.

The latter will be subject to adjustment before it can be used to test the modelled system.

While UQL is a powerful tool, it is not entirely without limitations in terms of ease-of-use.

The language is limited in that path formulae do not allow nesting (for example,

E<>(x imply E<>y) is incorrect UQL syntax). This makes it difficult to express certain

complex test purposes, requiring testers to substantially modify their models in order to

fully exploit UTA for MBT. A more powerful alternative for test purpose specification

suited for both offline and online UTA MBT is introduced in 2.3.

In summary, test generation can be formulated as a model-checking task in UPPAAL.

Namely, test purposes are formalizable as reachability properties in UPPAAL’s property

specification language. A reachability property asks whether a given state configuration

can possibly be reached by the model. When provided with a SUT model and a

reachability property, UPPAAL’s model-checking tool verifyta can generate a witness

trace that represents an ATC for the SUT. However, due to the manifest limitations of the

1 Test purposes are introduced in Section 2.1.

Figure 5. Example state-space search for reachability property E<>p [9, p. 8].

33

abovementioned query language (lack of support for nested properties), an alternative

approach is needed.

2.3 Test Purpose Specification Language (TDLTP)

As explained in 2.2.3, UPPAAL has usability limitations when applied in an MBT

context. UPPAAL’s property specification language, while relatively expressive, does

not support nested reachability properties and is thus unsuited for the direct specification

of certain complex test purposes. In this section we introduce a solution to the problem –

the Test Purpose Specification Language (TDLTP), an abstract notation language relevant

for constructing UPPAAL test models that encode advanced test purposes. The following

subsections are based on the theory presented in [1].

 Test Purpose Specification via TDLTP Expressions

Using TDLTP, a test purpose is specified as an expression. When applied to a SUT model

annotated with trap variables1 according to the logic laid out in [1, pp. 4 - 11], an

interpretation of the test purpose expression can be used to transform the SUT model into

a test model. The latter is simply the composition of the original SUT model, a test

stopwatch, and a collection of property recognizing automata (henceforth recognizers).

The behavior of the test model is identical to that of the original SUT model. However,

the supplementary recognizers can be exploited in order to generate symbolic traces

representing test purpose conformant ATCs.

The recognizers in a test model are implicitly organized into a tree whose structure

mirrors that of the corresponding TDLTP expression’s abstract syntax tree (AST)2. More

precisely, each recognizer uniquely maps to a subexpression of the TDLTP expression. An

individual recognizer thus has a single parent recognizer3 and zero or more child

recognizers, analogously to the AST node it represents. This structuring is achieved via

globally scoped synchronization channels that function as dedicated means of

1 Explained in Section 2.3.3.

2 The notion of an AST is explained in Section 2.4.

3 Except the root recognizer, which has the test stopwatch as its parent.

34

communication between recognizers. An example mapping between a test purpose

expression and its recognizer tree is depicted in Figure 6.

The test stopwatch (described in Section 8 of [1]) has two terminal locations – one

representing test success and the other failure. It is attached to the root node of the

recognizer tree. When UPPAAL’s model-checker is invoked with the goal of affirming

that the success location of the stopwatch can be reached in some model state, the

stopwatch sends an initializing signal down to its child (the root recognizer). This signal

is subsequently propagated to the leaves of the recognizer tree in a depth-first manner. As

the result of this process, all the recognizers in the test model enter their recognizing

states. Essentially this means that they begin to wait for their corresponding TDLTP

subexpressions to be satisfied.

When a subexpression has been satisfied at some step in the model-checker’s state-space

search, the corresponding recognizer resets itself and notifies its parent with a success

signal. This signal is subsequently propagated up the recognizer tree (according to the

logic encoded in each recognizer along the path), until it can reach the test stopwatch.

When the stopwatch receives a success signal from its child, the state-space search can

be terminated. The resultant symbolic trace generated by UPPAAL’s model-checker

Figure 6. Comparison of TDLTP AST (a) and corresponding recognizer tree (b).

35

represents an abstract test case which, when concretized for the SUT, can be used for

testing1.

In what follows we will not consider the details of integrating TDLTP into a UPPAAL

MBT workflow. Instead we treat the theory of the language as the specification of a tool

which accepts as input a trapset annotated SUT model and a TDLTP test purpose

expression. As output, the tool produces a test model per the logic described in [1].

Subsections 2.3.2 – 2.3.5, give a concise description of the syntax and semantics of

TDLTP.

 Expression Syntax

The syntax for TDLTP expressions is presented in Backus-Naur form (BNF) in Figure 7.

<Expression> ::= '(' <Expression> ')'
 | 'A' '('<TrapsetExpression>')'
 | 'E' '('<TrapsetExpression>')'
 | <UnaryOp> <Expression>
 | <Expression> <BinaryOp> <Expression>
 | <Expression> ~> <Expression>
 | <Expression> ~> '['<RelOp><NUM>']' <Expression>
 | '#'<Expression><RelOp><NUM>

<TrapsetExpression> ::=!'<ID>
 | <ID> '\' <ID>
 | <ID> ';' <ID>
 | <ID>
s
<UnaryOp> ::= 'not'
<BinaryOp> ::= '&' | 'or' | '=>' | '<=>'
<RelOp> ::= '<' | '=' | '>' | '<=' | '>='
<ID> ::= ('TS')<NUM>
<NUM> ::= ('0'...'9')+

Figure 7. TDLTP expression grammar in BNF form [1, p. 4].

The leaf nodes of a TDLTP expression are references to trapsets (denoted TS1, TS2, …).

Trapset references can appear as leaves on their own or as the operands of a trapset

expression – the former is just an edge case of the latter.

A trapset expression always appears as the immediate child of a trapset quantifier, of

which there are two types: universal (A) and existential (E). These, in turn, are the operands

1 In this thesis the test model is referred to as an abstract test case instead as it contains the information

needed to generate symbolic traces.

36

for TDLTP logical operators, which are classified as either connectives or temporal

operators. In the following subsections we introduce the basic semantics for each type of

TDLTP expression node.

 Semantics of Trapsets

A trapset in TDLTP is defined as a set of assignments to Boolean trap variables (traps)

[1, p. 4]. Each trap is mapped to a single transition in the SUT model via an assignment

label1. If the right-hand side of a trap assignment is syntactically reducible to a Boolean

literal, the corresponding trap is classified as elementary, otherwise the trap is classified

as conditional. An example of two trapsets in a UPPAAL model fragment is depicted in

Figure 8, Section 2.3.4.

During a simulation run of the model, the value of a specific trap variable at any given

instant denotes whether the corresponding transition has been taken2. According to this

interpretation, trapsets are an extension of the model transition coverage criterion

described in [6, p. 93]. Roughly put, trapsets allow higher-level TDLTP expression

operators to reason with groupings of transitions instead of individual transitions.

 Semantics of Trapset Expressions and Trapset Quantifiers

Per the BNF grammar in Figure 7, trapsets can appear as simple references or as the

operands of trapset expressions in a test purpose expression. Trapset expressions

represent trapsets that can be derived from their operands based on Mappings M1 – M3

provided in Section 5.1 of [1]. We use the term base trapset to distinguish explicitly

mapped trapsets from trapset expressions.

Trapset expressions are divided into three types based on their root operators: absolute

complement, relative complement, and linked pair. In what follows, each type of trapset

expression is briefly introduced. For contextualization, an example model fragment

containing two trapsets is provided in Figure 8.

1 UPPAAL assignment labels are introduced in 2.2.2.

2 Since the last time the trap variable was reset. For conditional traps, the condition simply restricts the

notion of taken for the transition in question.

37

The relative complement of trapsets TS1 and TS2 (denoted TS1\TS2) maps to all transitions

that are included in TS1 and excluded from TS2. A formal definition is provided in Section

4.2 (2) of [1]. Mapping M1 in Section 5.1 of [1] describes how the relative complement

of two trapsets can be used to derive an equivalent base trapset. The figure below depicts

the result of applying a relative complement operator on the two trapsets from Figure 8.

The absolute complement of a trapset TS (denoted !TS), maps to all transitions that are

excluded from TS. A formal definition is provided in Section 4.2 (3) of [1]. Mapping M2

in Section 5.1 of [1] describes how the absolute complement of a given trapset can be

used to derive an equivalent base trapset. The figure below depicts the result of applying

the absolute complement operator on trapset TS1 from Figure 8.

Figure 8. Example model fragment with two trapsets: TS1 & TS2.

Figure 9. Relative complement of trapsets TS1 & TS2 from Figure 8.

Figure 10. Absolute complement of trapset TS1 from Figure 8.

38

The linked pairs trapset of trapsets TS1 and TS2 (denoted TS1; TS2) maps to all transitions

of TS2 whose starting location is a terminal location for some transition in TS1. Such

transition pairs are known as linked pairs. A formal definition is provided in Section 4.2

(4) of [1]. Mapping M3 in Section 5.1 of [1] describes how an equivalent base trapset can

be produced for this trapset expression type. Figure 11 depicts a linked pairs trapset

generated from the trapsets shown in Figure 8.

In order to succinctly state whether all or some traps must be true or false at once, TDLTP

introduces trapset quantifiers of two types: existential (E) and universal (A). These

operators only admit trapset expressions as operands.

Given a trapset expression TS, E(TS) states that some trap of the set TS must be true and

A(TS) states that all traps of the set TS must be true. In terms of the recognizer tree concept

introduced in 2.3.1, trapset quantifiers correspond to leaf recognizers. Mappings

M4 – M5 in Section 5.2 of [1] describe how trapset quantifiers map to recognizing

automata. It should be noted that trapset quantifiers can appear with a negation modifier

in a test purpose expression. In this case the semantics from equivalences (14) – (15) in

Section 4.3 of [1] apply.

 Semantics of Logical Connectives and Temporal Operators

TDLTP supports the following logical operators: disjunction, conjunction, implication,

equivalence, leads to, timed leads to, and bounded repetition. A TDLTP logical operator

can have either a trapset quantifier or another logical operator as an operand. In broad

terms, these operators represent propositions about the SUT model’s current trace during

a simulation or state-space search. Logical operators are considered separate from trapset

quantifiers here because their operand domains do not overlap, even though they are

similar in terms of recognizer output.

Figure 11. Linked pairs trapset of trapsets TS1 & TS2 from Figure 8.

39

Logical operators are further classified into connectives and temporal operators. This

distinction is immaterial in the context of this thesis. Put simply, the recognizer

architecture for logical connectives is based on their counterparts in classical logic, while

recognizers for temporal operators facilitate the expression of conditions applying to

entire traces or subsequences of traces.

The negation modifier known from standard logic is made available for all logical

operators. Per [1, p. 7], negation will not map to a separate recognizer and should instead

be eliminated from top level expression nodes by the negation rules defined by

equivalences (14) – (22) in Section 6 of [1]. Essentially, when a negation applies to a

logical operator in a TDLTP expression, it should be removed by the application of

reduction rules so that the resultant expression only has negations at the level of trapset

quantifiers.

Items (7) – (13) in Section 4.3 of [1] supply formal definitions for each logical operator

type. Recognizer generation for these operators is described in Mappings M6 – M10 in

Section 5.2 of [1]. It should be noted that such mappings do not currently exist for

implication and equivalence since they can be replaced by lower level operators [1, p. 7].

Section 6 of [1] provides some reduction rules whose application to a TDLTP expression

prior to recognizer generation could result in a smaller recognizer tree, and, consequently,

a smaller test model. A reduction in the size of a test model which preserves the model’s

input-output behavior, will lead to a reduction in its state-space. Model-checking

algorithms (as a category of state-space search algorithms) are faster for smaller

state-spaces, as evidenced by the fact that UPPAAL’s model-checker computes results

faster for reduced models.

2.4 Abstract Syntax Trees

To provide some context for the sections of this thesis which discuss the implementation

of the TDLTP interpreter, we will briefly introduce the terms parse tree and abstract

syntax tree in this section.

[12, p. 20 – 21] describes a typical language application as a pipeline of interrelated

components. A simplified version of this pipeline is provided in Figure 12.

40

The interpreter subcomponent in Figure 12 contains a reader and a semantic analyzer.

The reader builds a data structure called an intermediate representation (IR) according

the input it receives from the user. The input for a language application could be anything

from a text file to binary data.

After the reader parses the input, the resultant IR is forwarded to the semantic analyzer.

This component examines and collects information from the IR according to the

semantics of the language. Put simply, the semantic analyzer will assign a meaning to the

input [12, p. 21].

After a meaning has been assigned (possibly through the use of an auxiliary data

structure), the IR is used to drive the execution performed by the interpreter. As the result

of execution, information will be produced in some output format. The format depends

on the application – it can range from simple terminal output to program code.

In the process described above – after the input is parsed by the reader into an intermediate

form – components in the pipeline will examine the IR instead of reparsing the input. To

facilitate this, the IR should [12, p. 92]:

1. Contain no unnecessary information;

2. Be easily traversable;

3. Emphasize the relationship between the abstract constructs of the language rather than

the tokens of its grammar.

Abstract syntax trees (ASTs) are a commonly used form of IR which satisfies the three

requirements presented above. For a given input, the corresponding AST is a tree structure

which reduces the input to its essential elements. A possible AST for the UPPAAL

assignment statement ‘flag = true;’ is depicted in Figure 13.

Figure 12. Language application pipeline (adapted from Figure 1.1 in [12, p. 21]).

41

A parse tree (also known as a syntax tree) is another form of tree-based IR. Parse trees

represent the complete syntactical structure of an input sentence. An example parse tree

for ‘flag = true;’ is presented Figure 14.

As can be seen in the figure above, a parse tree is far less compact and contains

unnecessary information compared to the corresponding AST. Abstract syntax trees

generalize the notion of parse trees and represent the input conceptually rather than

structurally.

As will be shown in Chapters 4 and 5, ASTs are involved in many phases of the test model

construction algorithm implemented by the TDLTP interpreter.

Figure 13. Example AST for the assignment statement ‘flag = true;’.

Figure 14. Example parse tree for the assignment statement ‘flag = true;’.

42

3 Requirements

This chapter provides informal requirements for the interpreter implementation produced

as the result of this thesis.

Figure 15 illustrates how a human user (a software tester) interacts with the interpreter,

and how the interpreter responds.

In the interaction, the software tester provides the interpreter with a UPPAAL SUT model

and a TDLTP expression. At the time of writing, the latest version of UPPAAL provides

facilities for storing models as XML files – this is the format in which the interpreter shall

accept models as input. As for the TDLTP expression, the interpreter should be able to

receive it as a simple string or plain text file.

Figure 15. Interaction with the TDLTP interpreter.

43

As described in [1, p. 4], the SUT model should be linked to the TDLTP expression via

trapset labels1. It is the responsibility of the tester to ensure that this labeling is available

in the SUT model provided for the interpreter.

Having received the requisite inputs, the interpreter shall use them to generate an XML

file that represents a test model. The logic used for the generation of this test model should

be equivalent to the theoretical derivation procedure described in [1]. The user should be

able to open the output XML file which encodes the test model in UPPAAL, i.e. the

format of the XML file should match the format used by UPPAAL for model storage.

We note here that no explicit restriction shall be placed on the lower bound of the

performance of the interpreter. Obviously, it should produce the output XML in a sensible

amount of time, but the term ‘sensible’ will not be attached to a concrete metric here. This

concession will allow for more time to be spent on ensuring the correctness of the

implementation.

To conclude this chapter, we present some capabilities that the interpreter should be

instrumented with so that it could fulfil the requirements presented above. Since the

generation of a test model involves processing UPPAAL models and TDLTP expressions,

an implementation of the interpreter needs to be able to (at minimum):

1. parse TDLTP expressions;

2. parse and generate UPPAAL XML files;

3. parse and generate code in UPPAAL’s system definition language2.

All of the capabilities listed above were integrated into the interpreter produced as the

result of this thesis. Our approach to implementing them is described in Chapter 4 below.

Chapter 5, on the other hand, focuses specifically on the algorithm we developed for

composing a test model based on a SUT model and a TDLTP expression.

1 Trapsets are explained in Section 2.3.3.

2 The UPPAAL system definition language is described in Section 2.2.2.

44

4 Implementation

In this chapter we provide a high-level description of the implementation of the TDLTP

interpreter.

We begin in Section 4.1 by introducing the development approach used to produce the

artifact – Component-Based Development. Following this, the artifact’s component

structure is outlined in Section 4.2. Then, after listing the most relevant technological

decisions in Section 4.3, Section 4.4 will present overviews for a selection of crucial

components. A user guide for the interpreter is available in Appendix 9.

4.1 Approach

The development approach used for implementing the interpreter is a customized variant

of Component-Based Development (CBD). In this thesis we define a component as a

software entity (module) that either:

a. aggregates and provides access to a collection of domain-specific or general-purpose

object templates (classes), or

b. encapsulates complex logic that operates on facilities provided by lower-level

components and provides a simplified reusable interface to top-level dependent

components or users.

Based on this definition, we define CBD as an approach to software development where

the resultant artifact is a composition of relatively isolated components which

communicate via software interfaces.

We include a managerial dimension to this definition – in our version of CBD,

development is organized per component in a bottom-up manner starting with the

components whose dependencies are only external. This allows for revisions of the

original component structure during later stages of development. Emergent common logic

can be extracted to shared components, thus reducing duplication and simplifying future

refactoring efforts.

45

The basis of our approach was an initial component structure subject to repeated

modification during the development process. In Section 4.2 we describe the finalized

component structure of the TDLTP interpreter.

4.2 Component Structure

A component diagram for the TDLTP interpreter is provided in Figure 16.

The components depicted above do not encompass the entire set of artifacts produced as

the result of this thesis. Omissions include shared utility components, test-specific

Figure 16. TDLTP interpreter component diagram.

46

supplementary components, and interface simplifying façade modules1. Where

applicable, the omitted components will be mentioned in Section 4.4.

In Table 1, we describe the internal2 components displayed in Figure 16.

Table 1. Core TDLTP interpreter components and their purposes.

Component name Purpose

TDLTP expression object model Define classes for representing TDLTP

expressions as object structures.

UPPAAL object model Define classes for representing UPPAAL

models as object structures.

TDLTP expression grammar implementation Provide a parser and a code generator3 for

TDLTP based on its grammar.

UPPAAL system definition language

grammar implementation

Provide a parser and a code generator for the

UPPAAL system definition language.

TDLTP parser Simplify the interface provided by the TDLTP

grammar implementation and transform the

latter’s parse results into the internal TDLTP

expression object model.

UPPAAL parser Provide a simplified interface for the

UPPAAL grammar implementation and

transform the latter’s parse results into the

internally used object model. Provide logic

for parsing UPPAAL XML.

Scenario composer Encapsulate logic for applying a TDLTP

expression to a UPPAAL model according to

the rules described in [1].

TDLTP interpreter UI (user interface) core Provide a basis for implementing user

interfaces for the interpreter.

TDLTP interpreter CLI (command-line

interface)

Provide a concrete user interface

implementation based on the UI core.

1 In this thesis we define a façade as an abstraction component which simplifies the interface of some

lower-level component and hides the latter’s implementation details from higher-level dependent

components.

2 Put simply, internal components are those presented inside the larger TDL interpreter component shown

in Figure 16. Components displayed outside of the boundaries of the interpreter component are

considered external.

3 We define a code generator (or, more exactly, a source code generator) as a software entity which

accepts object structures as input and produces code in some predetermined language as output.

47

In accordance with the development approach outlined in Section 4.1, the interpreter was

implemented in a bottom-up manner starting with the components that only have external

dependencies (or no dependencies at all). In this respect, Figure 16 serves as a historic

roadmap for the development effort when visually traversed beginning from the

bottom-most independent components. Section 4.4 provides information on the

implementations of the components discussed above.

4.3 Technological Choices

This section presents major technological choices made during the development of the

components introduced in the previous section. We define a technological choice as the

decision to use a specific programming language, library or software framework to

facilitate some required functionality. Here, the term required functionality refers to the

facilities an individual component needs in order to fulfil its purpose, rather than

something a user could expect from the interpreter. Subsections 4.3.1 – 4.3.6 present

technological choices in order of scope, with more impactful items occurring first.

 Programming Language: Java

Because of the diversity of concepts involved1, an object-oriented general-purpose

language with a wide collection of supporting libraries is best-suited to implement the

interpreter. In order to save time, the main contenders were restricted to three languages

whose popularity has at least stayed consistent since their inception – Python2, Java3 and

C++4. For any given issue, assistive libraries are simply more likely to exist for

mainstream languages such as these.

The primary considerations used for evaluating each language were ease-of-use and

platform-independence. As stated in Section 3, performance is not a significant concern

for the interpreter.

1 XML, domain-specific languages, and object manipulation to name a few.

2 https://www.python.org.

3 https://www.java.com.

4 https://isocpp.org.

https://www.python.org/
https://www.java.com/
https://isocpp.org/

48

Of the languages in question, Python is arguably the easiest to learn and use. As it is an

interpreted language, platform-independence is also not an issue. However, since a

component-oriented approach has been chosen (per Section 4.1), the language is not a

definite front-runner. More specifically, while Python’s high-level syntax and dynamic

typing allow for faster development, these features do not facilitate rigorous structuring

and clear component interfaces without manual boiler-plate constructs such as type hints1.

With performance not under consideration, C++ offers little to tip the scales in its favor.

The low-level constructs and operations made available in the language are redundant for

the task at hand and serve more as cognitive overhead. Another detriment is the fact that

C++ is not platform-independent – an artifact written in the language will be compiled

for a specific target environment.

Java is an object-oriented general-purpose programming language. According to

StackOverflow’s 2018 developer survey2, Java was ranked as the fifth most popular

programming language in the developer community. Considering the language’s

relatively robust syntax, its built-in organizational facilities (packages, modules) and its

platform-independence, Java was chosen as the programming language in which to write

the interpreter.

 Dependency Management: Maven

When a software artifact is expected to rely on several externally provisioned components

(dependencies) and especially when the artifact itself is a composition of reusable

modules, dependency management becomes a necessity. Dependency management is

defined as an automated means of declaring and retrieving dependencies for use in a

component.

For the interpreter project, Apache Maven3 was chosen as the dependency management

tool. This decision was informed by the relative ease with which Maven allows the user

to manage, aggregate and build components. Compared to its newer alternative, Gradle4,

1 https://docs.python.org/3/library/typing.html.

2 https://insights.stackoverflow.com/survey/2018, accessed May 2019.

3 https://maven.apache.org.

4 https://gradle.org.

https://docs.python.org/3/library/typing.html
https://insights.stackoverflow.com/survey/2018
https://maven.apache.org/
https://gradle.org/

49

Maven also provides helpful structuring conventions. The latter could be considered

restrictive when flexibility is a necessity but in the context of this thesis, they serve more

as an assistive measure which speeds up development. An added benefit is the wide array

of build plugins available for Maven.

 Parser Generator: ANTLR

The TDLTP interpreter needs to be able to parse both TDLTP expressions and UPPAAL

project XML files. The latter contain embedded code snippets in UPPAAL’s system

definition language. Both TDLTP and the UPPAAL system definition language are

examples of domain-specific languages (DSLs) – languages that only have a limited

domain of applicability but allow for more succinct or expressive representation within

the context of said domain.

The decision here is whether to implement parsers for these DSLs from the ground up, or

to use some existing tool capable of generating the required parsers – a parser generator.

Since efficiency is not a concern in the context of this thesis, there is little reason to

undertake the effort of constructing bespoke DSL parsers. Time saved on account of this

can be spent on refinement of higher-level components which depend on the parsers.

ANTLR (ANother Tool for Language Recognition)1 is the generator chosen for

implementing the parser components described in Sections 4.4.3 and 4.4.4. ANTLR is a

Java library which can easily be incorporated into a Maven build process. Additionally,

the parsers it generates represent parse results in the form of parse trees2 composed of

Java objects. This means that once a parser has been generated, dependent components

can ignore the parsing logic and remain in the object-oriented domain of Java.

 Code Generation: StringTemplate

The output of the TDLTP interpreter is a UPPAAL project file. As mentioned in the section

above, this file may contain embedded code written in UPPAAL’s system definition

language. Since the UPPAAL parser component, described in Section 4.4.6, needs to

support both parsing and serialization of such embedded code, some technological

1 https://www.antlr.org.

2 Parse trees are introduced in section 2.4.

https://www.antlr.org/

50

solution is needed to support code generation – conversion from an object structure to a

code string according to some predetermined syntax.

In the realm of web development, a common approach to transforming data models into

HTML code is the employment of a templating engine. A templating engine accepts as

input an object structure and a fixed template. Then, according to the rules encoded in the

template, the engine transforms the object structure into an output string which can be

processed further. It is self-evident how a templating engine could be used to generate

code in UPPAAL’s system definition language.

Of the various templating engines available on the market, StringTemplate1 proved to be

an expedient choice. Due to the strict model-view separation enforced by this templating

engine, the generator templates written as part of this thesis are devoid of complex logic

and are thus relatively easy to both understand, modify, and reuse.

 XML Processing: JAXB

As both the output and part of the input for the TDLTP interpreter is encoded in XML, a

means for parsing (unmarshalling) and serializing (marshalling) XML files is needed.

JAXB (Java Architecture for XML Binding)2 is a Java framework specialized to this end.

Based purely on the programming language of choice (as explained in Section 4.3.1),

JAXB was chosen as the XML marshalling tool for the UPPAAL XML parser component

outlined in Section 4.4.5.

It should be noted that as of Java 11, JAXB is no longer part of the Java standard edition

platform (Java SE)3. However, at the time of writing, earlier versions of Java with JAXB

included are still available. Additionally, the JAXB project is currently continued under

the Jakarta EE4 effort.

1 https://www.stringtemplate.org.

2 https://github.com/javaee/jaxb-v2.

3 http://openjdk.java.net/jeps/320.

4 https://jakarta.ee.

https://www.stringtemplate.org/
https://github.com/javaee/jaxb-v2
http://openjdk.java.net/jeps/320
https://jakarta.ee/

51

 Command-Line Option Parser: args4j

The top-level component of the TDLTP interpreter is a command-line interface (CLI). The

implementation of this component is outlined in Section 4.4.9 and a user guide is provided

in Appendix 9.

The TDLTP CLI is a Java application. The entry point for a Java application is its main

method. If the application is executed from the command-line, any options appended to

the initializing call are forwarded to the main method in the from of an array of strings.

This is the way the CLI component shall receive input, i.e. options, from users.

Processing string arrays is not a particularly difficult task, but since specialized libraries

exist for transforming Java main option arrays into more useful object representations,

there is no reason to undertake the additional burden of writing a bespoke option parser.

To reduce time spent on implementation, it was decided that a supplementary Java option

parser was needed.

The parser of choice is args4j1. Using args4j, the set of possible options made available

for the user can be defined as a simple Java class whose fields are decorated with

annotations. Each field maps to an option and a wide variety of field types is supported.

Using a single utility class provided by the library, the array of strings provided to the

main method can be transformed into an instance of this option-encapsulating class. The

simplicity and customizability inherent in this approach are the reasons args4j was

chosen.

4.4 Component Overviews

This section provides implementation overviews for the components listed in Table 1

(Section 4.2). Given that this thesis is not intended to be a highly detailed technical

document, the presentations in Sections 4.4.1 – 4.4.9 are kept relatively succinct.

 TDLTP Expression Object Model

The ANTLR-generated parser described in Section 4.4.3 contains classes for representing

TDLTP expressions as parse trees. While it would be possible to exploit these classes

1 https://github.com/kohsuke/args4j.

https://github.com/kohsuke/args4j

52

directly in higher-level components, there are some limitations. The instantiation logic

for ANTLR-generated parse tree classes is tightly coupled to ANTLR’s logic. Put simply,

it is cumbersome to create new object instances using classes generated by ANTLR –

they are meant to be internally instantiated during the parsing process.

To overcome the issues described above, it was decided to apply a layer of abstraction

over the ANTLR parser in the form of the TDLTP parser façade (described in Section

4.4.5). The latter encapsulates and provides a simplified API for the ANTLR-based

TDLTP parser, converting the latter’s parse results into ASTs which do not depend on

ANTLR. The component discussed in this section – the TDLTP expression object model

– contains the classes used in these independent ASTs.

Due to the nature of ASTs, the object model discussed here naturally manifests tree

properties such as parent-child relationships. Such relationships can be modeled by a

recursively defined class with reference variables pointing to a single parent instance and

zero or more child instances. Figure 17 presents an informal class diagram for the abstract

tree-based class structure at the center of the object model for TDLTP expressions.

As illustrated in Figure 17, the AST representation of a TDLTP expression instance is

wrapped in an object (of type TdlExpression) that points to a root AbsInternalNode

instance (unless the AST is empty). AbsInternalNode is one of two top level

Figure 17. Class diagram for the base classes in the TDLTP expression model.

53

concretizations1 of the base AbsExpressionNode type with the other being AbsLeafNode.

AbsInternalNode and AbsLeafNode respectively model internal expression tree nodes

(AST nodes that can only occur with child nodes) and leaf nodes.

The abstract node classes mentioned above are concretized further into classes that

represent distinct operator and leaf nodes present in the BNF grammar for the TDLTP

language. For example, logical connectives and trapset expressions are modeled as

descendant classes of AbsInternalNode. To reduce the scope of this discussion, the

aforementioned concretizations are not individually introduced here. Instead, we will

conclude this section by listing some more salient implementation details for the object

model.

Child containers. When inspecting the class diagram presented in Figure 17, the obvious

question to ask is: “Why are child nodes of an AbsInternalNode instance encapsulated in

a ChildContainer instance instead of being included as aggregated members of the

AbsInternalNode class?”

Delegation of child node containment to ChildContainer was required to enforce

interface consistency with respect to operator arity. The arity of an AbsInternalNode

inheritor is defined as the number of child nodes the represented operator node is expected

to have. To provide a simple interface for dependent components, one would naturally

encode the arity of a concrete AbsInternalNode inheritor in its class contract. For

example, a class representing the binary disjunction operator would have methods

setLeftChild and setRightChild instead of an abstruse setChild method that accepts an

ordinal argument. This reduces cognitive overhead when developing dependent

components.

Since the AbsInternalNode class is extended further with abstract classes that generalize

logical operators, trapset operators, and trapset quantifiers, encoding the arity contract

1 These two classes are still abstract, so the term ‘concretization’ here refers to the fact that they are

extensions of the abstract AbsExpressionNode class.

54

into the AbsInternalNode class causes the class structure to become too large1. The

solution is to encapsulate the arity contract into a generic container class

(ChildContainer) whose concrete implementations (UnaryChildContainer,

BinaryChildContainer) can subsequently be used throughout the class layout of the

object model via Java’s parameterized typing feature.

Subtree hashing. As evident from Sections 5 and 6 of [1], TDLTP expression nodes are

subject to normalization and reduction prior to the construction of the UPPAAL test

model. This is explained further in Chapter 5, where an algorithm is outlined for these

two operations. Here we simply note that normalization requires the ability to replace the

child subtrees of an AbsInternalNode instance.

The mechanism which facilitates child subtree replacement is made available for each

AbsInternalNode concrete inheritor class via the replaceChildNode method provided by

the encapsulated ChildContainer object. This method accepts two AbsExpressionNode

instances as arguments and replaces the child subtree that matches the first argument with

the subtree represented by the second argument. The term matching here can refer to both

referential identity2 and object equivalence3 between two AbsExpressionNode instances.

The path of least resistance would lead one to simply rely on referential identity in the

replaceChildNode method. However, considering possible future applications, it is better

to include object equivalence, which is an extension of referential identity. For this

reason, AbsExpressionNode classes in the object model were supplied with facilities for

determining equivalence. This is exploited in the replaceChildNode method of

1 Since we concretize AbsInternalNode into a generalizing class for logical operator nodes

(AbsLogicalOperatorNode), if we, for example, define arity extensions AbsBinaryInternalNode and

AbsUnaryInternalNode from AbsInternalNode, then we would have to define two abstract

AbsLogicalOperatorNode arity classes which inherit from them: AbsBinaryLogicalOperatorNode and

AbsUnaryOperatorNode. This also applies for other general operator types such as trapset expression

operators. Since Java does not support multiple inheritance, an alternative would be to use interfaces (for

example, IBinaryNode, IUnaryNode), but this would result in code duplication.

2 Referential identity is defined here in terms of object variables. Two object variables are referentially

identical if they point to the exact same object in memory. An example of Java code utilizing referential

identity is objectA == objectB.

3 Roughly put, object equivalence allows two objects to be considered identical for some purpose if they

contain the same data – even if they occupy non-overlapping sections of memory. An example of Java

code utilizing object equivalence is objectA.equals(objectB).

55

ChildContainer. In a nutshell, replaceChildNode iterates the child nodes of the container

and compares each child to the node provided as its first argument (using the Java equals

method). When a match is found, the replacement is performed. This is depicted in Figure

18.

public void replaceChildNode(

 ChildType prevChild, ChildType newChild

) {

 for (int i = 0; i < arity; i++) {

 ChildType childCandidate = getChildNode(i);

 if (prevChild.equals(childCandidate)) {

 setChildNode(i, newChild);

 break;

 }

 }

}

Figure 18. Basic child replacement procedure for the TDLTP child container class.

Assertion of subtree equivalence (represented by prevChild.equals(childCandidate) in

the figure above) is computationally expensive (all the nodes of the subtrees need to be

traversed to ensure equivalence), so hashing is required to speed up the process.

Providing a simple hashing mechanism that itself relies on subtree traversal is not much

of an improvement. To save time on traversals, ChildContainer has been equipped with

encapsulated hash caching logic. Whenever a ChildContainer instance is modified (a

child node instance is attached or detached), the container flips on an internal

modification semaphore. The next time a hash is requested from the ChildContainer, if

the modification semaphore is set, it will recompute the hash of the subtree it represents

and cache the result internally; otherwise the container will simply return the previously

cached hash. The benefit here is that repeated hash calculations for an expression subtree

that has not mutated are avoided. This hashing feature is subsequently exploited in the

improved replaceChildNode method depicted in Figure 19.

56

public void replaceChildNode(

 ChildType prevChild, ChildType newChild

) {

 for (int i = 0; i < arity; i++) {

 ChildType childCandidate = getChildNode(i);

 if (childCandidate == null

 || (prevChild.hashCode() != childCandidate.hashCode()))

 continue;

 if (prevChild.equals(childCandidate)) {

 setChildNode(i, newChild);

 break;

 }

 }

}

Figure 19. Better child replacement procedure for the TDLTP child container class.

Facilities for subtree inspection. Since TDLTP expression tree objects are expected to

be inspected via traversal for a multitude of reasons, and the number of classes present in

the corresponding object model is relatively large, some means for generalizing traversal

for these objects was needed. To achieve this, the Visitor design pattern introduced in [13,

p. 331 – 344] was used throughout the class structure in question. This design pattern

supports the implementation of new operations on TDLTP expression trees without

changing the classes involved.

 UPPAAL Object Model

The TDLTP interpreter needs to be able to parse and generate UPPAAL XML files. An

individual file defines the structure of a UPPAAL model. The structural elements (e.g.

template declarations, transition labels) of such a model may contain embedded code in

UPPAAL’s system definition language. The component discussed in this section defines

classes for representing both the structural and language features of a UPPAAL model.

The justification for providing an object model for UPPAAL’s system definition language

(separate from the one generated by ANTLR as described in Section 4.4.4), is analogous

to the reasoning presented in Section 4.4.1 for the TDLTP expression model. Because of

the similarities between the implementations of the two models and owing to the sheer

size of the model implemented for the system definition language1, a description of the

1 More than 100 classes at the time of writing.

57

language part of the UPPAAL object model is omitted. The rest of this section is devoted

to the classes used for representing the structural aspects of a UPPAAL model.

Figure 20 informally depicts the core classes for the UPPAAL structural model

implemented in the component.

Notable omissions in Figure 20 include linguistic and purely graphical elements such as

nails, colors, and coordinates – these UPPAAL features are of course facilitated by classes

in the model, but there is little reason to dissect all of them in this section. Additionally,

the two label classes depicted in the figure (LocationLabels and TransitionLabels) are

essentially containers for UPPAAL system definition language ASTs. Due to the

simplicity of these container classes, they are also excluded from the discussion that

follows.

The object representation of the structure of a UPPAAL model is rooted in the UtaSystem

class. Objects instantiated from this class can reference zero or more instances of the

Template class. A template represents the prototype for a UPPAAL timed automaton. As

such, it must contain some substructure for encoding Locations and the Transitions

between them.

Figure 20. Class diagram for structural classes in the UPPAAL object model.

58

The abovementioned substructure was implemented via the generic DirectedMultiGraph

class. As evident from the name of the employed class, the relationship between

transitions and locations in a timed automaton can be modeled as a directed multigraph.

A directed multigraph is a graph in which multiple directed edges are permitted between

a pair of vertices. In this case the vertices are locations and the edges are transitions. The

DirectedMultiGraph class facilitates the definition of directed multigraphs for arbitrary

classes based on object equivalence. It is defined in a shared utility module that will not

be detailed in this thesis in the interest of brevity.

 TDLTP Grammar Implementation

As mentioned in Section 4.3.3, the approach taken for implementing language parsers in

this thesis was to use the ANTLR parser generator. The component this section is devoted

to – the TDLTP grammar implementation – houses an ANTLR-generated parser for TDLTP

together with the static specification file used as input for the generator.

Parsers generated by ANTLR include object models for representing language inputs as

parse trees. Such object models are tightly coupled to ANTLR’s general parsing logic. As

this is also the case for the ANTLR TDLTP parser, a façade component was written on top

of the base TDLTP grammar implementation described here (Section 4.4.5). This façade

component utilizes the AST object model for TDLTP expressions introduced in Section

4.4.1.

In addition to the base TDLTP parser, the component at hand also contains the

implementation of a code generator for the language. This generator relies on the

StringTemplate engine introduced in Section 4.3.4. The engine, a small collection of

transformer classes, and a single template file was needed to compose the generator. The

reason it was included as part of the TDLTP grammar component rather than the TDLTP

parser façade which higher-level dependent modules are expected to use, is that this

avoids having information on the grammar of TDLTP duplicated across multiple

components (given that the generator template and the ANTLR parser specification file

essentially present the same information).

Regarding TDLTP’s grammar, there are a few key differences between the grammar

supported by the generated parser and the grammar presented in Figure 7. These are listed

and justified in Table 2.

59

Table 2. Differences between TDLTP BNF and ANTLR grammars.

Difference Justification

Negation operation is recognized as ‘~’

instead of ‘not’.

This adjustment allows for more compact

presentation of expressions.

Additionally, most of the other operators in

the grammar are represented using symbols

rather than words.

Disjunction operation is recognized as ‘|’

instead of ‘or’.

Similar to the justification for using a

different symbol for negation.

The condition part of a conditional repetition

subexpression is expected to be wrapped in

square brackets. For example: ‘#[>10]A(TS1)’

is valid instead of ‘#>10A(TS1)’.

This is the way conditions are represented for

the time-bounded leads to operator.

The adjustment makes the resultant grammar

more consistent.

Trapset quantifiers ‘A’ and ‘E’ can be

presented in lower-case.

User convenience.

Trapset identifiers are still expected to have

the ‘TS’-prefix, but letter case is immaterial,

so that ‘ts1’ is also recognized as a trapset

identifier.

User convenience.

The adjustments enumerated in Table 2 were applied primarily in order to enforce

consistency in the grammar supported by the interpreter. When the grammar for a

language is consistent, users will have an easier time memorizing its syntax.

 UPPAAL System Language Grammar Implementation

As mentioned in Section 4.4.2, UPPAAL XML contains structural and linguistic

elements. The linguistic elements are snippets of code written in UPPAAL’s system

definition language. The TDLTP interpreter needs to be able to parse and generate code in

this language. The component under consideration in this section provides the basic

facilities that support these requirements.

As is the case for the TDLTP grammar implementation described in Section 4.4.3, the

UPPAAL grammar implementation houses an ANTLR-generated parser and a

StringTemplate-reliant code generator. There are no significant differences between the

two components in terms of general implementation approach.

60

Of note is the fact that the UPPAAL ANTLR parser discards source code comments1. As

these comments are not removed from the input SUT model for the TDLTP interpreter,

there was no reason to exert additional effort in order to retain them in the corresponding

test model produced by the interpreter.

The question could be raised as to why the official UPPAAL language parser – libutap2

– wasn’t used in the interpreter. The answer is that libutap is written in C++, and while

there are ways to use C++ libraries in Java, it was simply more expedient to implement a

custom parser with a more limited domain of application.

Additionally, the official site for the libutap parser lists an outdated version3 of the artifact

at the time of writing. A newer version was uploaded to a public repository4 after the

implementation effort had begun. The timing of the upload was unfortunate – the custom

UPPAAL parser discussed here had already been implemented at the time of upload.

Because of the modular structure of the TDLTP interpreter, it is not outside the realm of

possibility for future iterations of the artifact to rely on libutap.

 TDLTP Parser

ANTLR-generated parsers contain a class structure for representing parse results as trees.

These structures are tightly coupled with ANTLR runtime libraries and parsing logic.

This is at odds with the component-oriented development approach chosen for this thesis

(Section 4.1). If the chosen parser solution is to be replaced at some point in time, and the

ANTLR-generated classes are in use throughout the component structure that comprises

the TDLTP interpreter, a lot more work needs to be done in order to facilitate such a

replacement.

For the reasons outlined above, a façade was implemented on top of the parser component

described in Section 4.4.3 and the object model described in Section 4.4.1. This façade is

1 Of the form ‘//single line comment’ or ‘/* multi-line comment */’.

2 http://people.cs.aau.dk/~adavid/utap.

3 Released 2007 while the newest version of UPPAAL was released in 2014.

4 https://github.com/mikucionisaau/utap.

https://github.com/mikucionisaau/utap

61

called the TDLTP parser because higher-level components will use it for parsing TDLTP

expressions instead employing the ANTLR parser implementation directly.

The main objective of the TDLTP parser is to accept a TDLTP expression as a string or

stream, pass this input to the TDLTP grammar implementation, and convert the resultant

ANTLR parse tree into an AST built from instances of the classes introduced in Section

4.4.1. Because analogous logic was needed for parsing UPPAAL’s system definition

language, a generic ANTLR façade component was extracted and utilized for both the

TDLTP parser under consideration here and the UPPAAL parser described in the

following section.

 UPPAAL Parser

The UPPAAL parser component contains a façade for the UPPAAL grammar

implementation detailed in Section 4.4.4. In this respect the UPPAAL parser’s goal is

similar to that of the TDLTP parser – abstract away ANTLR-related implementation

details. The main difference between the two components is that the UPPAAL parser

façade needs to support deserialization and serialization between UPPAAL XML and the

UPPAAL structural model outlined in Section 4.4.2. As the ANTLR-encapsulating logic

in the UPPAAL parser does not differ in any significant manner from the logic

implemented for the TDLTP expression language, we focus the discussion in this section

on processing UPPAAL XML1.

A high-level specification of the structure of a UPPAAL XML file was available at the

time of writing in a publicly accessible definition file2. As the XML processor of choice

in this thesis is JAXB (Section 4.3.5), which is capable of generating Java classes from

XML schema definition3 (XSD) files, the previously mentioned definition file had to be

manually converted into an XSD file. Then, using JAXB’s xjc4 tool via Maven, this XSD

1 As the UPPAAL parser component both deserializes XML into object structures and serializes object

structures into XML, it could be argued that the name of the component (‘parser’) is inaccurate. However,

it was deemed simpler to follow the same naming conventions between the TDLTP parser and the

UPPAAL serializer/deserializer.

2 http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd.

3 https://www.w3.org/TR/xmlschema11-1.

4 https://docs.oracle.com/javase/tutorial/jaxb/intro/custom.html.

http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd
https://www.w3.org/TR/xmlschema11-1
https://docs.oracle.com/javase/tutorial/jaxb/intro/custom.html

62

file was used produce a set of classes whose instances the JAXB framework can both

serialize into XML and deserialize from XML.

To conceal irrelevant JAXB-related details from higher-level components, the UPPAAL

parser converts object structures instantiated from xjc-generated classes via the JAXB

parser into the UPPAAL object model described in Section 4.4.2. When a UPPAAL

object model is to be serialized into XML, the converse of the previously described

operation is executed – general-purpose UPPAAL objects are converted into

JAXB-specific objects and subsequently serialized into XML.

Special steps were taken to keep code parsing/generation relatively isolated from

structural conversion in the component. When a UPPAAL XML file is parsed, JAXB is

used to generate the corresponding intermediate object structure where UPPAAL system

definition language snippets are nested in simple string fields. During the conversion

process from the JAXB-specific UPPAAL object structure to the general-purpose

UPPAAL object structure, when a code snippet is encountered, a parse operation is added

to an operation queue. An example is depicted in Figure 21.

TransitionLabels labels = new TransitionLabels();

...

AssignmentsLabel assignmentsLabel;

label = (assignmentsLabel = new AssignmentsLabel());

getParseQueue().enqueue(

 transitionLabelXml.getValue(),

 getParserFactory().assignmentsParser(),

 assignmentsLabel::setContent

);

labels.setAssignmentsLabel(assignmentsLabel);

...

transition.setLabels(labels);

Figure 21. Example of parse deferral during UPPAAL structural conversion.

As parse operations are deferred when converting from the JAXB UPPAAL model to the

object model intended for use in higher-level components, the conversion logic is kept

relatively clean – the details of language parsing can be ignored to an extent when

converting between object models. Conversely, parsing logic can remain isolated from

conversion logic.

63

A high-level view of UPPAAL parsing logic is depicted in Figure 22.

public UtaSystem parse(InputStream in)

 throws MarshallingException,

 InvalidSystemStructureException,

 EmbeddedCodeSyntaxException {

 UtaNode utaNode = unmarshal(in);

 validateStructure(utaNode);

 ParseQueue parseQueue = new ParseQueue();

 UtaSystem utaSystem = convert(utaNode, parseQueue);

 parseQueue.executeRemaining();

 return utaSystem;

}

Figure 22. High-level view of parsing logic used in the UPPAAL parser.

The approach to deserializing UPPAAL XML outlined above is also applicable for the

serialization process. The operations involved – conversion between object structures,

execution of deferred code processing operations – are simply reordered.

 Scenario Composer

At the heart of the TDLTP interpreter is the scenario composer. This component accepts

as input:

a. a TDLTP expression represented by an AST consisting of instances of the classes

defined in the TDLTP object model (Section 4.4.1), and

b. a UPPAAL model represented by an object structure consisting of instances of the

classes defined in the UPPAAL object model (Section 4.4.2).

Having received its inputs, the component then applies the mapping rules described in [1,

p. 6 – 11] to produce a resultant test model in the form of an object structure. This structure

can then be serialized into UPPAAL XML. It should be noted that the component has

been kept isolated from parsing and generation logic. This enforces simplicity and reuse.

Due to the significance of the scenario composer, Chapter 5 is devoted entirely to its inner

workings.

 User Interface Core

The TDLTP component structure is relatively difficult to use unless supplemented with a

user interface (UI). To support the production of such interfaces, the UI core component

64

was implemented. This component binds the functionalities provided by the UPPAAL

parser (Section 4.4.6), the TDLTP parser (Section 4.4.5), and the scenario composer

(Section 4.4.7) into a single class called the TdlInterpreterUI.

TdlInterpreterUI is meant to be used as the scaffolding for graphical and command-line

UIs for the interpreter. It provides means for reporting errors and hooking into the state

of the interpretation via basic listener interfaces. Because of the component’s relatively

simple structure, we exclude the presentation of its internals here.

 Command-Line Interface

The only user interface implemented for the TDLTP interpreter is a simple Java-based

command-line interface (CLI). This component extends the UI core introduced in Section

4.4.8. Its implementation was simplified by the exploitation of the args4j library for Java

(discussed in Section 4.3.6).

A basic user guide for the TDLTP CLI, including a description of the inputs it can accept,

is provided in Appendix 9. Because of the relative triviality of the CLI component with

respect to the complexity of the other modules introduced in this section, discussion of its

implementation is omitted.

65

5 Scenario Composition

The scenario composer module introduced in Section 4.4.7 contains the core logic for

applying a TDLTP expression to a UPPAAL model. The composer accepts these two

inputs in the form of object structures instantiated from classes defined in the TDLTP

expression object model (Section 4.4.1) and the UPPAAL object model (Section 4.4.2).

The output of the composer is an object structure which represents a test model. This

chapter describes the logic embedded in the implementation of the composer. The theory

behind the implementation is introduced in Section 2.3 and is based on the information

provided in [1].

Section 5.1 presents an overview of the composition procedure developed for the scenario

composer. Characteristics of the most significant steps in the procedure – trapset

evaluation, normalization, reduction, and construction of a recognizer model – are

discussed in Sections 5.2 – 5.5.

5.1 Overview

Section 8 in [1, p. 10 – 11] lists the steps needed to construct a test model based on a

TDLTP expression and a UPPAAL SUT model as follows:

1. The test purpose is specified as a TDLTP expression.

2. Trapsets1 TS1 – TSn which occur in the expression are defined in the UPPAAL SUT

model via assignment labels (traps) attached to automata transitions.

3. The AST of the TDLTP expression is traversed. Each of its operator sub-nodes is

mapped to an independent recognizer template using Mappings M4 – M10 from

Section 5.2 of [1].

1 Trapsets are introduced in Section 2.3.3.

66

4. The labeling of the SUT model is simplified by applying the rules for trapset

expressions described in Mappings M1 – M3 from Section 5.1 of [1]. Recognizer

templates are linked together via broadcast signaling channels.

5. The root recognizer is linked to the stopwatch automaton.

The summary presented above omits normalization and reduction. These steps are

described in Sections 5.3 and 5.4, respectively. Additionally, steps 1 and 2 are outside the

scope of this thesis in that they are performed by the user.

In order to simplify the discussion in this chapter, we concretize the general logic encoded

in steps 3 – 5 into a sequence of operations which includes normalization and reduction.

These operations are implemented in the interpreter produced as the result of this thesis.

Given an input TDLTP expression ε and a UPPAAL SUT model M, a resultant test model

MTEST is derived as follows:

(1) Base trapset extraction. Leaf trapset nodes present in ε’s AST are collected into the

set STS and mapped to transitions in M.

(2) Trapset expression evaluation. Trapset expression nodes that occur as parents of the

nodes in STS are collected into the dictionary structure mEVAL which maps trapset

expressions to object representations of the corresponding base trapsets1. These

representations are constructed according to the information in STS, the entire

collection of transitions in M, and the rules for trapset operators defined in Mappings

M1 – M3 of [1].

(3) Trapset quantifier evaluation. Trapset quantifiers in ε are iterated. Each trapset

quantifier maps to a trapset expression contained in the keys of mEVAL. If the trapset

expression child of a quantifier node maps to an empty base trapset, the quantifier can

be replaced with a Boolean literal in ε’s AST2.

1 The notion of a base trapset is defined in Section 2.3.4.

2 This is not fully explained in [1]. More information is provided in Section 5.2.

67

(4) Normalization. ε’s AST is traversed top-down starting from its root in order to

eliminate top-level negations1 and operators that do not have a recognizer mapping2.

(5) Reduction. After normalization, ε is traversed bottom-up starting from the injected

Boolean literal leaves, if they exist. An individual literal is pulled up the tree by

application of the reduction rules defined in equivalence listing (14) from [1]. This is

done to reduce the size of ε’s AST. Steps are taken to avoid traversing subtrees that

become detached during the reduction process.

(6) Construction of a recognizer model and injection of trapsets into the SUT model.

After reduction, the possibly modified version of ε’s AST is traversed top-down yet

again. This time each remaining logical operator is mapped to a UPPAAL recognizer

template and a corresponding template instantiation3. These artifacts are inserted into

an initially empty4 UPPAAL model MWRAP, i.e. the recognizer model. Additionally,

each trapset expression that is still referred to in ε’s AST is injected into M as a base

trapset according to previously stored information in mEVAL. This results in a modified

model, M’. The test stopwatch, trapset label collection, and recognizers involved here

are implicitly connected via channel references by the end of the step.

(7) Test model composition. M’ and the recognizer model MWRAP are merged into the

test model MTEST. The latter is therefore an extension of M with a modified

configuration of trapset variables and an injected recognizer structure.

In steps (1) – (7) above, four core sub-procedures can be distinguished: trapset

evaluation, normalization, reduction, and construction of the recognizer model.

These are discussed in Sections 5.2 – 5.5, respectively. In the remainder of this section

we provide a sequence of diagrams (Figure 23 – Figure 28) which illustrate steps

(1) – (7).

1 Negation is only supported for trapset quantifiers.

2 Recognizers are introduced in Section 2.3.1. The relation between TDLTP operators and recognizers is a

partial function. Some TDLTP operators do not map to a recognizer. This is permissible since the

unmapped operators can be represented by equivalent combinations of other operators which do have

recognizer mappings.

3 UPPAAL templates and template instantiations are defined in Section 2.2.3.

4 MWRAP is empty only in the sense that it does not initially contain any operator recognizer templates or

instantiations when constructed. It will, however, contain the stopwatch automaton template and some

globally declared variables.

68

Figure 23 presents an example TDLTP expression (E(TS1; TS2) & A(!TS3)) | E(TS1))

using the version of TDLTP syntax accepted by the interpreter1 and a simple UPPAAL

SUT model annotated with traps linking the model to the expression.

The expression refers to three trapsets: TS1, TS2, and TS3. TS1 and TS2 are both mapped

to a single transition in the model (1 and 2 respectively), while TS3 is mapped to every

transition (1 – 6).

1 Differences between the BNF for TDLTP provided in Section 3 of [1] and the grammar the TDLTP

interpreter accepts are listed in Table 2, Section 4.4.3.

Figure 23. Example TDLTP expression (a) and a model annotated with trapsets (b).

69

The first step of the composition procedure involves collecting trapset information from

the expression and the SUT model into the set STS. This is depicted in Figure 24.

The second step of the composition procedure involves the evaluation and storage of

trapset expressions in the mEVAL map. This is illustrated in Figure 25.

The three trapset expressions present in the AST in Figure 23 map to three entries in the

mEVAL table as shown in the figure above. They are marked in the latter figure with Roman

numerals I – III. Trapset expression II (!TS3) is mapped to the empty set because it is the

absolute complement of a trapset which covers the entire model.

The third step of test model construction involves iteration of the trapset quantifier nodes

in the AST. Each quantifier is mapped to a trapset expression, which mEVAL

correspondingly maps to an evaluation (a base trapset). If the transitively retrieved base

trapset for a quantifier is empty (it contains no traps), a reduction rule is applied. This is

called trapset quantifier evaluation. A depiction is provided in Figure 26.

Figure 24. First step of composition: base trapset extraction.

Figure 25. Second step of composition: evaluation of trapset expressions.

70

According to Figure 26, the subexpression A(!TS3) was replaced with a Boolean true

literal. This is because the absolute complement of trapset TS3 is empty and in our

interpretation of the TDLTP language, universal trapset quantification over an empty

trapset maps to a true literal. An explanation is provided in Section 5.2.2.

The fourth step of composition (normalization) involves the application of logical

equivalences in order to push negation to the level of trapset quantifiers and eliminate

operators that do not have a recognizer mapping. As the example at hand contains neither

negation nor recognizer-less operators, a depiction of this step is omitted. We continue

the example with the fifth step – reduction of the AST via elimination of Boolean literal

nodes. This step is illustrated in Figure 27.

The modified AST produced as the result of reduction is smaller in size and represents

the TDLTP expression E(TS1; TS2) | E(TS1). It should be noted that [1] also defines

reduction rules that do not involve Boolean literals. These rules were excluded from the

Figure 26. Third step of composition: evaluation of trapset quantifiers.

Figure 27. Fifth step of composition: elimination of Boolean literals.

71

implementation of the TDLTP interpreter in order to limit the scope of the project.

Reduction is explained in Section 5.4.

The sixth step of test model composition involves the generation of a recognizer model

MWRAP, and the application of trapset expressions to M. This is illustrated in Figure 28.

Compared to the original UPPAAL model M in Figure 23, the modified model M’ in the

figure above does not contain any traps for TS3. This is because the expression subtree

which contained a reference to this trapset was eliminated (Figure 24 – Figure 27).

Additionally, the remaining trapset-marked transitions have been extended with auxiliary

transitions labeled with channels that link model M to the leaf trapset quantifier

recognizers realized in MWRAP. Step six is explained in Section 5.5.

The last step required to produce a test model is the merging of MWRAP and M’. Because

the merging process is relatively straightforward (essentially a sequence of setter method

calls initiated by sutModel.merge(recognizerTreeModel)), a separate figure is not

provided. The rest of this chapter is devoted to the most significant steps involved in test

model composition – trapset evaluation, normalization, reduction, and the construction of

a recognizer model.

Figure 28. Sixth step of composition: constructing MWRAP and M’.

72

5.2 Trapset Evaluation

Trapsets are the means by which the user maps the input SUT model to the input TDLTP

expression. The semantics of trapsets is introduced in Section 2.3.3. This section focuses

on the segment of the scenario composer that implements base trapset extraction, trapset

expression evaluation and trapset quantifier evaluation – collectively referred to as trapset

evaluation.

Trapset extraction is the process of determining which transitions in the SUT model are

mapped to trapsets and trapset expressions. A brief explanation is given in Section 5.2.1.

The process corresponds to step (1) and step (2) described in Section 5.1.

Quantifier evaluation corresponds to step (3) in Section 5.1. It involves replacing trapset

quantifier nodes in the TDLTP expression’s AST with Boolean literals based on a small

set of rules. Quantifier evaluation is explained in Section 5.2.2.

 Trapset Extraction

In this section we describe the process of extracting trapset related data from a SUT model

based on a TDLTP expression’s AST and the set of transitions in the SUT model. The

notion of trapset extraction includes the evaluation of trapset expressions.

At this point it is pertinent to point out a difference between the TDLTP interpreter and

the theory outlined in [1]. Namely, a decision was made to allow for the use of simple

UPPAAL Boolean variables as trapset labels in the input SUT model instead of the array

variables suggested by the presentation in [1]. Essentially this means that when a user

wishes to include a transition in trapset TS1, they should use the variable declaration

bool TS1 and the transition assignment TS1 = true|<condition> instead of the variable

declaration bool TS1[<array size>] and the assignment TS1[<array index>] =

true|<condition>.

This decision was made for two reasons:

1. It is more convenient for the user to annotate their input model with simple Boolean

variable assignments instead of array variable assignments. If the user is required to

use arrays, they also need to keep track of array indices and size restrictions. This

73

manual effort is unnecessary as the interpreter does not need the additional

information encoded in array indices and would discard it.

2. The algorithm for finding trapset annotated transitions in the UPPAAL model

becomes simpler. Only basic Boolean variable declarations1 and grouped Boolean

variable declarations2 need to be considered.

As a trapset should only be mapped to a specific transition in the SUT model once

(according to Section 4.2 in [1]), the trapset labeling formalism accepted by the TDLTP

interpreter is equivalent to the array-based input format described in [1].

We present simplified pseudocode for the base trapset extraction algorithm implemented

in the interpreter in Figure 29.

trapsetNodes ← leaf trapset nodes in TDLTP expression;

trapsetMap ← empty map;

for globalDeclaration in system:

 if globalDeclaration declares a Boolean variable:

 variableDeclaration ← globalDeclaration

 variableName ← variableDeclaration.name

 if trapsetNodes contains a trapset with name variableName:

 trapsetMap[variableName] ← {

 trapsetNode,

 variableDeclaration,

 traps: []

 }

for template in system:

 for transition in template:

 if transition has no assignment labels:

 NEXT

 for assignment label attached to transition:

 variableName ← assignment.variableName

 if variableName in baseTrapsetMap:

 add (transition, assignment) to
 trapsetMap[variableName].traps

Figure 29. Pseudocode for base trapset extraction.

1 For example: ‘bool TS1;’, which declares the Boolean variable TS1.

2 For example: ‘bool TS1, TS2, TS3, flags[10];’, which declares the Boolean variables TS1, TS2, TS3,

and the Boolean array flags.

74

The most time-consuming part of the algorithm depicted in Figure 29 is the iteration of

all transitions in the SUT model in the second loop. As the number of assignment labels

per transition and the number of templates per model is generally smaller than the total

number of transitions, the time complexity of the algorithm is roughly O(e) where e is the

total number of transitions in the model. Iteration of all transitions is unavoidable – the

interpreter needs to ensure that trapsets specified by the user are collected appropriately.

Having determined which transitions each trapset in the TDLTP expression maps to, the

composer can compute similar data for trapset expression nodes – this is what is meant

by evaluation of trapset expressions. The evaluation process is performed according to

Mappings M1 – M3 in [1, p. 6 – 7]. We present the pseudocode for evaluating an instance

of the absolute complement operator in Figure 30.

trapset ← operand of absolute complement

absoluteComplement ← empty map

for template in system:

 for transition in template:

 if transition not in trapset:

 add (transition, NIL) to absoluteComplement

 else:

 trap ← trap data for transition in trapset

 if trap is conditional:

 condition ← negation of trap.condition

 add (transition, condition)
 to absoluteComplement

Figure 30. Pseudocode for evaluating absolute complement.

In the algorithm depicted above, all the transitions in the system are iterated. If a transition

is not mapped to the trapset to which absolute complement was applied, this transition is

added to the resultant mapping. Otherwise, if the transition does map to a trap in the

operand trapset, then the corresponding trap label is checked for conditionality.

A conditional trap in the operand trapset is mapped to a trap in the absolute complement

whose condition is negated. Trap conditionality is explained in Section 2.3.3. In the

interest of conciseness, we simply mention that the interpreter was built with facilities for

supporting it.

Of the three trapset operators, absolute complement has the most time-consuming trapset

expression evaluation procedure. Assuming there are n distinct absolute complement

75

nodes in the TDLTP expression tree, the time complexity of repeatedly applying the

procedure in Figure 30 is roughly O(ne). Though there are probably faster alternatives,

performance was not a critical requirement for the interpreter.

Pseudocode for the other two trapset operators – linked pairs and relative complement –

will not be provided. Logic for their evaluation algorithms is similar to the logic

embedded in the absolute complement algorithm.

 Quantifier Evaluation

As mentioned in the introduction to Section 5.2, quantifier evaluation is the mapping of

trapset quantifiers to Boolean literals.

The reduction formulae presented in Section 6 of [1] provide rules for eliminating

Boolean literals from a TDLTP expression. However, the article itself does not exactly

describe how these literals could come up during the evaluation of an expression1.

Boolean literals are also not included in the grammar of TDLTP.

It was decided after consultation with the authors of [1] that under certain limited

conditions, trapset quantifiers can be replaced with either true or false in a TDLTP AST.

The semantics behind these literals is rudimentary in anticipation of future theoretical

improvements. True maps to a recognizer that immediately returns a success signal to its

parent recognizer after activation. False maps to a recognizer that never returns a success

signal to its parent recognizer – it will immediately reset itself after receiving an activating

signal.

1 On page 8 of [1], the following equivalence is provided: trapset 𝑇𝑆 ≡ 𝑓𝑎𝑙𝑠𝑒 if 𝑇𝑆 = ∅. However, as

trapsets are not directly mapped to Boolean values themselves (they are containers for variables which

map to Boolean values), the equivalence is not implementable in its present form.

76

The rules for replacing a trapset quantifier with a Boolean literal are listed in Table 3.

Table 3. Trapset quantifier replacement rules.

Trapset quantifier Operand trapset Replacement literal Justification

Universal (A) Empty trapset (does

not map to

transitions in the

model).

True By analogy with

∀𝑡 ∈ 𝑇(𝑃(𝑡)) where

𝑇 = ∅ from

predicate logic.

Existential (E) Empty trapset (does

not map to

transitions in the

model).

False By analogy with

∃𝑡 ∈ 𝑇(𝑃(𝑡)) where

𝑇 = ∅ from

predicate logic.

The algorithm for replacing trapset quantifiers in a TDLTP AST is relatively simple: for

each trapset quantifier in the tree, find the corresponding trapset expression and check

whether the latter’s trap count is equal to zero, then apply one of the rules listed in Table

3.

5.3 Normalization

Normalization is performed after the quantifiers in the TDLTP AST have been checked

for immediate evaluability, as described in the section above. Roughly put, normalization

is the process of replacing substructures in the AST for which no recognizer mappings

exist. The mappings are not needed since the corresponding substructures can be

simplified. Normalization corresponds to step (4) from Section 5.1.

Per Section 2.3.5, some logical operators in TDLTP are defined via equivalence. For

example, the implication α => β can be replaced with the equivalent disjunction, ~α | β

(as is the case in classical logic). Since no recognizer mappings exist for the TDLTP

equivalence (‘<=>’) and implication (‘=>’) operators, such replacements are mandatory.

Additionally, TDLTP also provides a version of the negation operator (‘~’). A recognizer

mapping exists for this operator only in the sense that recognizers for trapset quantifiers

support a negated mode. When negation is applied to any other logical operator in a

TDLTP expression, a substitution needs to be performed.

77

Rules for the removal of negation exist for most operators in TDLTP. For example, the

negation of a disjunction can be replaced with a conjunction of the negations of the

disjuncts: ~(α | β) ≡ ~α & ~β. A removal rule generally moves a negation applied to an

operator to its child operands. By repeated application of the negation rules provided in

Section 6 of [1], top-level negations in the AST can be pushed down towards the leaves

until only trapset quantifiers are negated.

Application of the substitution rules described above is what is meant by normalization

in the context of this thesis. The corresponding algorithm is relatively simple: traverse the

AST depth first, replacing the current node whenever a substitution rule is applicable.

The only problem is that there are some operators such as leads to (‘~>’) whose negation

rule maps to a construct which is not suitable for the recognizer architecture described in

TDLTP theory. This was discovered after the implementation effort for the TDLTP

interpreter was nearing completion1. We list these operators in Table 4.

Table 4. Unimplementable negation rules.

Unimplementable negation rule Justification

Negation of leads to: ~(A ~> B). ~(A ~> B) maps to a theoretical construct

whose direct recognizer implementation

needs to wait until the end of a test run and

verify that B did not occur during said run.

This is not supported in the recognizer

architecture laid out in [1].

Negation of timed bounded leads to:

~(A ~> [* n] B) where * is in

{<, <=, =, >=, >}.

The justification is identical to the one

provided for negation of the leads to

operator.

The items in Table 4 are subject to exploration in future work. As they are problems which

exist in the theoretical domain of TDLTP, we will not attempt to provide a solution here.

1 As per Section 4.2, the scenario composer was one of the last components implemented.

78

5.4 Reduction

Two factors necessitate the existence of reduction rules for TDLTP expressions: the need

to reduce the state space of the test model produced by the composer, and the need to

eliminate the Boolean literals introduced in Section 5.2.2. The latter factor is subsumed

by the former. Application of the reduction rules provided in Section 6 of [1] corresponds

to composition step (5) described Section 5.1 and is the topic of this section.

In order to decrease the effort needed to implement the TDLTP interpreter, several

reduction rules provided in the theory were not implemented. In fact, only the rules

needed to eliminate Boolean literals were encoded in the scenario composer. Future

iterations of the interpreter can incorporate more reduction rules after a minimal

refactoring effort.

Pseudocode for the literal reduction algorithm employed by the scenario composer is

presented in Figure 31.

Procedure eliminateLiterals(expression):

 booleanLeaves <- extractBooleanLeaves(expression)

 literalStack <- empty stack

 initialize literalStack with booleanLeaves

 while literalStack isn't empty:

 currentLiteral <- pop first item from literalStack

 if currentLiteral is root of expression:

 EXIT

 if currentLiteral is no longer attached to expression:

 NEXT

 eliminateLiteral(expression, currentLiteral, literalStack)

Figure 31. Pseudocode for literal reduction.

The algorithm encodes a bottom-up traversal of the AST starting from its Boolean leaves

and moving towards the root. References to leaves that need to be dealt with are kept in

a stack. If this stack isn’t empty, its first entry is removed for inspection. If the entry is in

fact the root of the tree, then this means the entire TDLTP AST has been reduced to a

Boolean literal – this is an edge-case that will be reported to the user by the interpreter.

When the reduction algorithm is executed, it may occur that a literal present in

literalStack becomes detached from the AST. This is depicted in Figure 32.

79

In order to solve the issue, the eliminateLiterals procedure in Figure 31 checks whether

each literal it tries to remove is still attached. This can be achieved by walking up the

parent branch for the literal until either the root is reached, or it is discovered that the

literal no longer exists in the TDLTP AST.

eliminateLiterals in Figure 31 calls the eliminateLiteral procedure for applicable

nodes. Simplified pseudocode for the elimination rule for disjunction nested in this

procedure is provided in Figure 33.

Procedure eliminateLiteral(expression, literal, literalStack):

 parent <- literal.parent

 // ...

 If parent is disjunction:

 If literal is TRUE:

 newLiteral <- TRUE literal

 push newLiteral to literalStack

 replace parentNode in expression with newLiteral

 Else If literal is expression.leftChild:

 replace parent in expression with expression.rightChild

 Else:

 replace parent in expression with expression.leftChild

Figure 33. Pseudocode for eliminating the Boolean child node of a disjunction.

Reduction algorithms for other TDLTP operators are omitted here due to the space

limitations of the thesis.

Figure 32. TDLTP AST reduction edge case.

80

5.5 Construction of a Recognizer Model

In step (6) of the composition procedure presented in Section 5.1, the TDLTP AST that

remains after normalization and reduction is traversed depth-first and mapped to a

recognizer tree1. Additionally, trapset expression evaluations are applied to the input SUT

model, producing a modified model capable of communication with the tree.

Since the data for trapset evaluations is available from the results collected in step (1) and

step (2) (discussed in Section 5.2), application of trapset expression evaluations to the

SUT model is fairly straightforward. The traps in each evaluation are iterated and

supplementary assignment labels are appended to applicable edges in the model. For each

new trap attached to an edge, the edge is split into two with an output channel present on

the additional transition (this channel provides the SUT model output which the

recognizer tree will consume). The initial trapset annotations provided by the user are

stripped from the SUT model because their purpose was simply to define base trapsets

for the interpreter.

Due of the simplicity of injecting trapset evaluations into the SUT model, we devote the

final section on scenario composition to the construction of a recognizer model. Section

5.5.1 discusses our approach to implementing the recognizer templates included in the

model and Section 5.5.2 focuses on the construction algorithm that employs these

templates.

 Approach to Implementing Recognizer Templates

Mappings M4 – M10 in Section 5.2 of [1] describe recognizers for operators in the TDLTP

language. Section 7 of [1] describes how these recognizer templates are extended with

wrapping constructs in order to support communication both within the recognizer tree

and between the tree and the SUT model.

Though [1] presents recognizer template mappings and the communication wrapping

mechanism separately, it was decided that the implementation of the scenario composer

1 Recognizer trees are introduced in Section 2.3.1. We use the terms recognizer tree and recognizer model

interchangeably in this section.

81

will not include this distinction. Communication facilities were integrated into

recognizers.

Two alternate approaches were initially considered for implementing recognizer

templates in the scenario composer. Both are listed in Table 5.

Table 5. Recognizer template implementation approaches.

Approach Advantages Disadvantages

Implement in Java code

using the UPPAAL object

model1.

The scenario composer does

not have to know anything

about parsing UPPAAL

XML – it can remain at its

abstraction level.

It is easier to implement

configurability for the

recognizers.

It would take too long to

implement all mappings

manually.

Additionally, it will be

difficult to make changes to

the templates due to the

amount of code involved.

Implement in one or more

UPPAAL XML files using

the UPPAAL GUI

application.

Both the easiest and the most

obvious way to implement

recognizer templates.

GUI facilitates visual

‘beautification’ of templates.

For the scenario composer to

be able to use these XML

files, it must be supplied with

access to the UPPAAL

parser. This is an abstraction

leak.

Additionally, wrapper classes

in Java would still be needed

in order to keep code that

uses the templates relatively

readable. This results in

partial duplication between

the XML and the Java

implementation.

The chosen implementation approach is a compromise between the two alternatives

presented in the table above. A supplementary Maven plugin – the UPPAAL pickler –

was developed. The pickler accepts a UPPAAL model in XML format as input and

1 Described in Section 4.4.2.

82

generates Java factory classes that can be used to instantiate object structures equivalent

to the input model1. These factories employ classes from the UPPAAL object model.

This approach made it possible to design recognizer automata using UPPAAL’s GUI

application while remaining at the appropriate level of abstraction in the scenario

composer’s source code. This is illustrated in Figure 34.

1 As a side note, the term ‘pickler’ was used due to superficial similarity between the function of the

plugin and the well-known food preservation technique.

Figure 34. Implementing recognizer templates using the UPPAAL pickler.

83

The factory classes produced by the UPPAAL pickler are designed to be extensible. This

extensibility was utilized in the scenario composer. Consequently, the implementation of

the construction algorithm for recognizer models discussed in Section 5.5.2 was kept at

under 400 lines of code.

The UPPAAL pickler itself required a little over 1000 lines of code (including a relatively

small StringTemplate1 file). At the time of writing the generated recognizer factory

classes together consist of over 4000 lines of code. The large amount of generated code

coupled with the fact that the recognizer templates were refactored several times during

the development process implies that the chosen approach saved a considerable amount

of time.

In summary, recognizers were implemented as automata templates in a single XML file

using UPPAAL’s GUI. This file was transformed into Java code via the UPPAAL pickler

tool developed as part of this thesis. The resultant generated code is used by the scenario

composer to construct recognizer trees as explained in the following section.

In the interest of brevity, a discussion on the recognizer template implementations

embedded in the UPPAAL file mentioned above is omitted here. The interested reader

can review the implementations in Appendices 1 – 8.

 Construction Algorithm

In this section we present the algorithm used by the scenario composer to construct a

recognizer tree (MWRAP) according to a normalized and reduced TDLTP AST. The

algorithm maps to step (6) in Section 5.1

Two phases are needed in order to construct a recognizer model:

1. Each (non-trapset) operator node in the AST of the TDLTP expression is mapped to a

unique index.

2. Each (non-trapset) operator node in the AST of the TDLTP expression is mapped to a

recognizer template.

1 StringTemplate is introduced in Section 4.3.4.

84

 The indices from phase 1 are used for communication by recognizer processes

instantiated from the corresponding templates1. Indices can be supplied during either a

depth-first traversal or a breadth-first traversal of the AST. Simplified pseudocode for the

indexing algorithm is depicted in Figure 35.

mode ← either depth-first or breadth-first

expression ← TDLTP abstract syntax tree

currentIndex ← 0

indexMap ← empty map

deque ← empty deque

add expression.root to front

while deque isn’t empty:

 node ← NIL

 if mode is depth-first:

 node ← deque.RemoveFirst()

 else:

 node ← deque.RemoveLast()

 indexMap[node] ← currentIndex

 currentIndex ← currentIndex + 1

 for child of node:

 deque.AddFirst(child)

Figure 35. Pseudocode for TDLTP AST indexing algorithm.

The second step of the construction of MWRAP requires another traversal of the AST. As

was the case for the indexing algorithm, the traversal can be depth-first or breadth-first.

The scenario composer implementation uses depth-first traversal.

For each node in the AST that does not represent a trapset expression, a recognizer

template instantiation is added to MWRAP. Additionally, if the recognizer template does

not already exist in model MWRAP, it will be added to it. Simplified pseudocode for this

algorithm is presented in Figure 36.

1 Each index maps to an ordinal for a globally declared broadcast channel array. Recognizer processes

communicate by synchronizing over these shared channels. The UPPAAL manual provides more

information on synchronizations: http://www.it.uu.se/research/group/darts/uppaal/help.php.

http://www.it.uu.se/research/group/darts/uppaal/help.php

85

expression ← AST of TDLTP expression

indexMap ← map from nodes in expression

 to unique indices

templateManager ← recognizer template manager

MWRAP ← basic scaffolding for recognizer model

queue ← { expression.root }

while queue isn't empty:

 node ← queue.Dequeue()

 nodeIndex ← indexMap[node]

 parentIndex ← indexMap[node.parent]

 childIndices ← {}

 for child of node:

 childIndices.Append(indexMap[child])

 queue.Enqueue(child)

 type ← node.type

 recognizerTemplate ← templateManager.TemplateFor(type)

 instantiation ← templateManager

 .CreateInstantiation(

 recognizerTemplate,

 nodeIndex,

 parentIndex,

 childIndices,

 node

)

 add instantiation to MWRAP

 if recognizerTemplate not in MWRAP:

 add recognizerTemplate to MWRAP

Figure 36. Pseudocode for recognizer model construction algorithm.

In the algorithm above, the results of the previously described indexing phase are

available in the indexMap variable. These indices are used to produce instantiations of

recognizer templates. The templateManager object is simply a placeholder for logic in the

scenario composer which hooks into the recognizer template factory classes described in

Section 5.5.1.

There are subtle differences between the pseudocode presented in this section and the

actual implementation of the scenario composer. Since these minor divergences are

technical in nature, separate discussion is not needed here.

86

6 Validation

The following chapter presents our approach to validating the artifact produced as the

result of this thesis.

As evident from Chapters 4 and 5, multiple relatively complex component interactions

are involved in producing a test model based on user input. Thus, the need for

automatically executed tests which verify the operation of these components is

self-evident. However, due to time restrictions, only a limited set of fully automated tests

was produced for the interpreter. Section 6.1 discusses this subject further.

In order to ensure the correct operation of the interpreter regardless of the lack of

automated tests, manual integration testing was performed both during the development

of individual components, and on the resultant artifact. Section 6.2 provides a summary

of the results gathered from manual tests executed via the UI of the interpreter.

6.1 Automated Tests for Language Parsers

While there are several components in the architecture of the TDLTP interpreter that can

be considered candidates for automated testing, a selection had to be made. As parsers for

the TDLTP expression language (Section 4.4.6) and the UPPAAL system definition

language (Section 4.4.5) play a major role in guaranteeing that the scenario composer

receives data provided by the user accurately, they were chosen as targets for automated

tests.

Verifying language parsers is not a trivial task. There are three immediate issues to

resolve:

1. Test input selection. Since the length of an input string for the languages involved is

only restricted by the memory limitations of the host system, and the set of valid

character sequences alone is countably infinite, a subclass of inputs needs to be

selected for testing the parser. The broad question here is which class of inputs to

choose – valid, invalid, or some combination from both categories? Once this has

87

been decided, further specification of a finite set of concrete test inputs belonging to

the class is needed.

2. Testing strategy. Simply selecting a set of input strings is not enough. A strategy for

verifying that the parser handles them correctly is required. For example, would it be

enough to check that the parser merely rejects invalid inputs?

3. Approach for automation. When both the inputs and the testing strategy have been

selected, a method is needed for automating the execution of the corresponding test

cases.

To resolve the first issue, it was decided to restrict the class of test inputs to syntactically

valid strings. For the corresponding tests to be implementable in a realistic amount of

time, this class was further reduced to a set of strings representing essential language

constructs1. By verifying that the parsers can handle these basic constructs, we at least

have some guarantee that the composed artifact will not produce an invalid test model

due to misinterpretation of user input.

After selecting test inputs, a strategy for applying them had to be formulated. The trivial

approach of checking whether the parser consumes a test input without error is not

sufficiently informative, thus it was not chosen. A more suitable option is to inspect the

AST generated by the parser as the result of processing an input string. The AST’s

structure will not vary for the same input over multiple test runs and accurately encodes

the information that the parser is capable of gathering.

The term “inspection” used above implies the need for some representation of expected

output. The classes discussed in Sections 4.4.1 and 4.4.2 – which the parsers in question

employ to produce their output ASTs – could be used for this end. A test case would

therefore be an input string combined with a procedure which constructs the

corresponding expected AST. A test passes if the AST produced by the parser and the

AST generated by the test procedure are equivalent. However, the overhead of having to

write AST constructor code for each test input eliminates this option.

1 An example of an essential language construct for TDLTP is a subexpression containing the absolute

complement operation: !TS1. For the UPPAAL system definition language, a basic construct could be

selection from a bounded type: ‘t : int[5, 10]’. However, there are some more elaborate constructs

subject to testing such single-line declarations of multiple variables: ‘int var1, var2, array[10];’.

88

The solution was to implement another language parser – this time for a variant of the

symbolic expression (s-expression) notation.

S-expressions were invented for the Lisp programming language and are used for

representing tree structures in a simplified manner. A compressed ANTLR grammar for

the extended version of s-expressions developed for this thesis is depicted in Figure 37.

sExpr : sequence ;

sequence : '(' item ('.' item)* ')'

 | '()'

 ;

item : sequence

 | string

 ;

string : DELIMITED_STRING

 | NON_DELIMITED_STRING

 ;

DELIMITED_STRING : '"' (ALPHANUMERIC | SPECIAL
 |ESCAPED_RESERVED_TOK)* '"' ;

NON_DELIMITED_STRING : (ALPHANUMERIC | SPECIAL
 |ESCAPED_RESERVED_TOK)+ ;

ALPHANUMERIC : [A-Za-z0-9] ;

SPECIAL : [#~!@$%^&*_\-?`=<>|{}[\]/:;,+] ;

ESCAPED_RESERVED_TOK : '\\.' | '\\(' | '\\)' | '\\"' ;

Figure 37. ANTLR grammar for s-expressions.

A sentence in the language specified above is a list of items which allows for recursive

nesting. For example: (“x” . (“y” . “z”)). When an s-expression is parsed, the output

object structure is a tree whose nodes can either be lists of other nodes or simple strings.

The similarity between the language parser components implemented as part of the

TDLTP interpreter and the s-expression parser supplied for testing is obvious: both

produce tree structures as output.

In our testing strategy, the tree structure of ASTs is exploited. An expected output for an

input string is specified as an s-expression. Additionally, mapping utilities are provided

in order to convert the output AST of a parser under test into an equivalent s-expression’s

AST. Testing becomes the simple task of comparing whether the tree parsed from the

expectation s-expression is equivalent to the s-expression derived from the targeted

parser’s output.

89

The chosen approach has three major flaws:

1. Whoever writes the test needs to know how a test input string maps to the meta-tokens

encoded in the AST-to-s-expression transformer classes used in the approach.

2. It is arduous to manually specify large s-expressions as expected outputs.

3. A code defect in a transformer class may lead to the detection of errors that do not

exist.

Despite these shortcomings, a major argument for using the s-expression strategy is that

it facilitates simple and reliable automation. An example test case specification from a

configuration file produced as part of this work is depicted in Figure 38.

Using the s-expression strategy discussed in this section, a total of 109 automated test

cases were implemented for the TDLTP interpreter. 39 of those are for the TDLTP

expression parser, and 70 for the UPPAAL system language parser. Additionally, 39 code

generation tests1 were supplied for the TDLTP grammar implementation described in

Section 4.4.3. This led to the discovery of a handful of programming defects, which were

subsequently resolved.

1 For code generation, the test input is specified as an s-expression. General transformer utilities were

developed to convert s-expressions into a TDLTP ASTs. The expected output is provided as a TDLTP

expression, so the verification step in the test is essentially a string comparison.

Figure 38. Example s-expression-based language parser test case.

90

In summary, while automated tests are necessary for verifying TDLTP interpreter

functionality, time limitations had to be taken into account. To ensure that the interpreter

handles at least part of the user’s input correctly, a collection of tests for the language

components involved were implemented. These tests are automatically executed during

the build process of the artifact.

6.2 Manual Integration Tests

It is not enough to simply follow a set of good programming guidelines and assume that

this will lead to the correct operation of the resultant software artifact. The

implementation needs to be verified by tests. As mentioned in previous sections, there

was no time for complete test automation, so a set of manual integration tests was

specified and executed against the interpreter’s user interface. The total number of these

test cases is 95. All of them are tabulated in Appendix 10.

In general, a manual integration test for the interpreter consists of an input model, a TDLTP

expression, and a generally stated output expectation. To illustrate this, we introduce test

case TC-TSExpr-LP-6 from Appendix 10.

The first test input in TC-TSExpr-LP-6 is an artificial UPPAAL SUT model annotated

with two trapsets: TS1 and TS2. This model is depicted in Figure 39.

Figure 39. Example manual test case model input.

91

The trapsets in the input model each contain conditional and non-conditional traps. Trap

conditionality is explained in Section 2.3.3.

The TDLTP expression input used in conjunction with the model is provided in Figure 40.

A(TS1 ; TS2)

Figure 40. Example manual test case TDLTP expression input.

The expression contains a universal trapset quantification operation (A) applied to the

linked trapset of TS1 and TS2 (TS1 ; TS2).

As output, we expect the interpreter to produce a test model where the linked trapset

expression has been applied to the input model according to Mapping M3 from Section 5

of [1] with conditional traps handled appropriately. Figure 41 presents the output of a

manual test run executed using the inputs for TC-TSExpr-LP-6.

The model depicted above has been slightly edited in UPPAAL’s GUI to make the

auxiliary variable assignments and channel synchronizations injected by the interpreter

more discernible.

To determine the result of a manual test execution, the output model is inspected both

visually and, if applicable, using the UPPAAL model-checker (discussed in Section

2.2.3). If the auxiliary test constructs in the model match expectations, and the test

Figure 41. Example manual test run output model.

92

stopwatch automaton can reach its pass location during model-checking, then we know

that the interpreter can handle conditional traps for the linked trapset operation correctly1.

In conclusion, several manual test cases were documented and executed against the

TDLTP interpreter. A single user-friendliness issue, at least 4 significant logical errors,

and a handful of code defects were discovered as the result of these executions. Problems

discovered during testing were subsequently resolved.

1 To an extent. There may of course be unforeseen configurations of inputs for which the interpreter will

produce an erroneous test model. At least the basic use case for the linked trapset operator has been

verified in the example test case.

93

7 Summary

The goal of this thesis was to implement an interpreter for the Test Purpose Specification

Language TDLTP. To achieve this, a collection of modules was assembled and composed

into a software artifact which can accept TDLTP expressions combined with UPPAAL

SUT models as input and produce test models as output. The artifact was supplemented

with a simple command-line interface in order to facilitate its inclusion in an MBT

workflow.

The functionality of the interpreter was validated with a set of automated component tests

and manually executed integration tests. Through these means it was verified to a degree

that the interpreter functions according to the theory of TDLTP.

During development, a number of ambiguities in the theory surfaced and were

documented in this thesis1. These open questions represent opportunities for future

theoretical work in the field of model-based testing in general and UPPAAL MBT

specifically. The internals of the artifact were designed with this in mind – thanks to

modularity and the use of intuitive software interfaces, improvements and extensions can

be included with a relatively minimal development effort.

On the topic of future work, three primary dimensions for enhancement deserve to be

mentioned: user-friendliness, internal design, and test coverage. We discuss them below.

User-friendliness. SUT models provided as input to the interpreter are annotated with

trap variables which connect them to corresponding TDLTP test purpose specifications.

At this point the annotations are supplied by the user via UPPAAL’s graphical interface,

which means that the input definition process is somewhat repetitive. Since a custom

parser for UPPAAL models was implemented as part of this thesis, it would be possible

to implement a supplementary front-end tool for the interpreter which is specifically

1 Section 5.3 and 5.2.2. Appendices 5 – 6.

94

designed for annotating a SUT model with traps. The inclusion of such a tool would make

the interpreter more appealing to use.

Internal design. Though the components in the interpreter were refactored several times

with the goal of improving their design and reusability, improvements are still possible.

For example, the grammar parser for TDLTP is housed in the same component as the code

generator for the language. The input for the former is the output for the latter, and

vice-versa. However, due to technical reasons, their logic is isolated within the

component, which leads to partial duplication. Some generally applicable approach could

be developed which would bridge code generation and grammar parsing for the

interpreter in order to eliminate this duplication.

Test Coverage. Due to time limitations, most of the validation effort was manual in

nature. Fully automated test coverage is a welcome addition to the project and basic

scaffolding which could facilitate this has already been implemented.

In conclusion, we believe the objective of this thesis has been successfully executed. The

final implementation is extensible and fulfils its purpose. The result was validated as

adequately as possible and entry points for improvement were supplied.

95

References

[1] J. Vain, E. Halling, A. Boyarchuk and O. Illiashenko, "Test Scenario Specification

Language for Model-based Testing," International Journal of Computing, p. 1 –

14, 2019.

[2] J. Lindholm, "Model-Based Testing," University of Helsinki, 2006.

[3] L. Apfelbaum and J. Doyle, "Model Based Testing," in Software Quality Week

Conference, 1997.

[4] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson and W. Yi, "UPPAAL – a Tool

Suite for Automatic Verification of Real-time Systems," in Proceedings of the

DIMACS/SYCON Workshop on Hybrid Systems III : Verification and Control:

Verification and Control, New Jersey, 1996.

[5] R. Alur and D. L. Dill, "A Theory of Timed Automata," Theoretical Computer

Science, vol. 126, no. 2, p. 185 – 235, 1994.

[6] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson and A. Skou,

"Testing Real-time Systems Using UPPAAL," in Formal methods and testing,

Springer-Verlag, 2008, p. 77 – 117.

[7] M. Utting, A. Pretschner and B. Legeard, "A Taxonomy of Model-Based Testing

Approaches," Software Testing, Verification & Reliability, vol. 22, no. 5, p. 297 –

312, 2012.

[8] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker and A. Pretschner, Model-Based

Testing of Reactive Systems: Advanced Lectures (Lecture Notes in Computer

Science(, Springer-Verlag, 2005.

[9] A. David, K. G. Larsen and G. Behrmann, A Tutorial on UPPAAL 4.0,

Department of Computer Science, Aalborg University, 2006.

[10] J. Bengtsson and W. Yi, "Timed Automata: Semantics, Algorithms and Tools,"

Lecture Notes in Computer Science, vol. 3089, p. 87 – 124, 2004.

[11] J. Vain, A. Anier and E. Halling, "Provably Correct Test Development for Timed

Systems," in Databases and Information Systems VIII : Selected Papers from the

Eleventh International Baltic Conference, Baltic DB&IS , vol. 270, Amsterdam,

IOS Press, 2014, p. 289 – 302.

[12] T. Parr, Language Implementation Patterns: Create Your Own Domain-Specific

and General Programming Languages, Pragmatic Bookshelf, 2009.

[13] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Longman Publishing Co.,

Inc., 1995.

96

Appendix 1 – Trapset Quantifier Recognizer Template

Mapping M4 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP

universal trapset quantification operator (‘A’). Figure 5 in [1], which depicts this

automaton, is reproduced below.

Mapping M5 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP

existential trapset quantification operator (‘E’). Figure 6 in [1], which depicts this

automaton, is reproduced below.

The trapset quantifier recognizer template developed as part of this thesis based on

Mappings M4 – M5 is presented below.

As evident from the figure above, existential and universal quantification were composed

into a single parameterized template. The parameters for this template are presented in

the table below.

Recognizer automaton for universal trapset quantification [1, p. 7].

Recognizer automaton for existential trapset quantification [1, p. 7].

Trapset quantifier recognizer template.

97

Trapset quantifier template parameters.

Parameter Type Description

const bool universal Constant Boolean. Whether the recognizer

should quantify universally

or existentially.

const bool negated Constant Boolean. Whether the quantifier is

negated.

const TdlTreeIndex

treeIndex
Constant integer. The index of the quantifier in

the AST of the TDLTP

expression.

const TrapsetIndex

trapsetIndex
Constant integer. The index of the trapset

operand of the quantifier in

the AST of the TDLTP

expression.

const int trapsetSize Constant integer. The size of the trapset over

which the recognizer

quantifies.

bool &trapset[0] Reference to Boolean array. A reference to an array of

flags where each flag

represents a distinct trap in

the test model.

The size of this array is

specified as 0 in the template,

which is not a valid array

size in UPPAAL.

The size value will be

corrected by the scenario

composer before the template

is added to the test model.

The treeIndex parameter is used to attach instances of the quantifier recognizer to the

recognizer tree. The emission synchronization TdlActivatorChannels[treeIndex]? and

the reception synchronization TdlTerminatorChannels[treeIndex]! instrument the

quantifier template with input and output facilities, respectively. The parent recognizer of

the quantifier in the tree will use these synchronizations to activate the quantifier

recognizer and retrieve input from it.

The trapsetIndex parameter is used to index into an array of broadcast channels reserved

for trapsets – TrapsetActivatorChannels. Whenever a trap from a given trapset is visited,

98

a synchronization signal will be broadcast on the corresponding trapset activator channel.

The recognizer assigned to the trapset in question will receive this signal (via the

reception synchronization TrapsetActivatorChannels[trapsetIndex]?) and

subsequently test whether the quantification condition has been fulfilled. If it has, the

quantifier will return an output signal to its parent recognizer.

Some of the transition labels in the template contain references to variables and functions

declared in the declarations section for the recognizer template. These are presented

below.

Trapset quantifier template local declarations.

Declaration Type Description

const bool

negatedUniversalQuantification

= universal && negated;

Constant

Boolean.

Whether the recognizer should

check for negated universal

quantification.

const bool

negatedExistentialQuantification

= !universal && negated;

Constant

Boolean.

Whether the recognizer should

check for negated existential

quantification.

const bool

universalQuantification

= universal && !negated;

Constant

Boolean.

Whether the recognizer should

check for universal quantification.

const bool

existentialQuantification

= !universal && !negated;

Constant

Boolean.

Whether the recognizer should

check for existential

quantification.

typedef int[0, trapsetSize - 1]

index;
Custom bounded

integer type.

Used for iteration in

resetTrapset.

void resetTrapset() {

 for (i : index) {

 trapset[i] = false;

 }

}

Void function. Resets the state of the trapset flag

array assigned to the recognizer

after output has been returned to

the parent recognizer.

The const modifier used in the declarations above helps UPPAAL reduce the state space

of the test model during trace generation. For example, if the variable

universalQuantification is constantly false, it will not be possible to take a transition

whose guard conjunction refers to this variable. Therefore, the transition does not need to

be considered when calculating possible state paths for the recognizer.

99

One issue with the trapset quantifier template provided in this appendix is that is not

completely parameterized – the trapset array parameter needs to be modified by the

scenario composer. Consequently, a test model may contain more than one quantifier

template under different names. This is due to the syntax limitations of UPPAAL – there

is no way to declare a reference to an array variable of unspecified size as the parameter

of a template.

100

Appendix 2 – Disjunction Recognizer Template

Mapping M7 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP

disjunction operator (‘|’). Figure 8 in [1], which depicts this automaton, is reproduced

below.

The recognizer template developed as part of this thesis based on Mapping M7 is

presented below.

Parameters for the template are presented in the table below.

Disjunction recognizer template parameters.

Parameter Type Description

const TdlTreeIndex

treeIndex
Constant integer. The index of the operator in

the AST of the TDLTP

expression.

const TdlTreeIndex

leftOpIndex
Constant integer. The index of the left child of

the operator in the AST of

the TDLTP expression.

const TdlTreeIndex

rightOpIndex
Constant integer. The index of the right child

of the operator in the AST of

the TDLTP expression.

Recognizer automaton for disjunction [1, p. 7].

Disjunction recognizer template.

101

The treeIndex parameter used in the template is analogous to the one used for the

quantifier template described in Appendix 1.

Parameters leftOpIndex and rightOpIndex are used to communicate with the child

recognizers of the disjunction recognizer.

102

Appendix 3 – Conjunction Recognizer Template

Mapping M6 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP

conjunction operator (‘&’). Figure 8 in [1], which depicts this automaton, is reproduced

below.

The recognizer template developed as part of this thesis based on Mapping M7 is

presented below.

Template parameters for conjunction are identical to the parameters declared for the

disjunction recognizer in Appendix 2.

Recognizer for conjunction [1, p. 7].

Conjunction recognizer template.

103

Appendix 4 – Leads To Recognizer Template

Mapping M8 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP leads

to operator (‘~>’). Figure 9 in [1], which depicts this automaton, is reproduced below.

The recognizer template developed as part of this thesis based on Mapping M8 is provided

below.

Template parameters for leads to are identical to the parameters declared for the

disjunction recognizer in Appendix 2.

Recognizer automaton for leads to [1, p. 7].

Leads to recognizer template.

104

Appendix 5 – Time-Bounded Leads To Recognizer Template

Mapping M9 in Section 5.2 of [1] specifies an automaton for the TDLTP time-bounded

leads to operator (‘~> [(<|<=|=|>=|>) N]’). Figures 10a and 10b in [1], which depict

bounded leads to with conditions ‘<= N’ and ‘> N’ respectively, are reproduced below.

The recognizer template developed as part of this thesis based on Mapping M9 is provided

below.

Parameters for this template are a superset of the parameters defined for the disjunction

recognizer template in Appendix 2. Additional parameters for time-bounded leads to are

provided in the following table.

Recognizers for time-bounded leads to with time constraint <= N (a), and time constraint > N (b) [1, p. 7].

Time-bounded leads to recognizer template.

105

Additional parameters for the time-bounded leads to recognizer template.

Parameter Type Description

const BoundType boundType Constant integer. BoundType is a custom bounded integer

type whose values range from 1 – 5. As

shown below, each value maps to an

inequality operator.

Constant Value Inequality

BOUND_EQ 1 Equals.

BOUND_GT 2 Greater than.

BOUND_GTE 3 Greater than or

equal to.

BOUND_LT 4 Less than.

BOUND_LTE 5 Less than or

equal to.

const BoundValue

boundValue
Constant integer. The value part of the constraint specified

by the combination of boundType and

boundValue. Example: 5 in ‘< 5’.

Some of the transition labels in the template contain references to variables declared in

the declarations section for the recognizer template. The corresponding declarations are

presented in the table below.

Time-bounded leads to template local declarations.

Declaration Type Description

const bool lessThanBound

= (boundType == BOUND_LT);
Constant Boolean. Whether the bound inequality is ‘less

than’.

const bool

lessThanOrEqBound

= (boundType == BOUND_LTE);

Constant Boolean. Whether the bound inequality is ‘less

than or equal to’.

const bool greaterThanBound

= (boundType == BOUND_GT);
Constant Boolean. Whether the bound inequality is

‘greater than’.

const bool

greaterThanOrEqBound

= (boundType == BOUND_GTE);

Constant Boolean. Whether the bound inequality is

‘greater than or equal to’.

const bool equalityBound

= (boundType == BOUND_EQ);
Constant Boolean. Whether the bound inequality is

‘equal to’.

clock localClock; Clock. Used for determining whether the time

bound has been satisfied.

106

The const modifier used in some of the declarations above helps UPPAAL reduce the

state space of the test model during trace generation. For example, if the variable

equalityBound is constantly false, all transitions which use this variable in their guard

conjunction can be ignored when calculating available transitions from the recognizer’s

current location.

It was discovered during the implementation of the interpreter that the bounded leads to

recognizer specified in [1, p. 7] does not function according to the semantics of bounded

leads to provided in Definition 12 of [1]. This definition is reproduced below.

‘Time-bounded leads to’ ⟦𝑆𝐸1 ↝[⨂ 𝑛] 𝑆𝐸2⟧ means that 𝑆𝐸2 must occur after 𝑆𝐸1 and the

time instance of the occurrence of 𝑆𝐸2 (measured relative to the occurrence of 𝑆𝐸1)

satisfies the constraint ⊗ 𝑛 where ⊗ ∈ {<, ≤, =, ≥, >} and 𝑛 ∈ ℕ:

⟦𝑆𝐸1 ↝[⨂ 𝑛] 𝑆𝐸2⟧ if and only if ∀𝜎∃𝑘, 𝑙 ≥ 𝑘 ∈ ℕ : ⟦𝑆𝐸1⟧𝜎𝑘 ⟹⨂ 𝑛 ⟦𝑆𝐸2⟧𝜎𝑙 [1, p. 5].

According to this definition, the bounded leads to recognizer should return a success

signal to its parent when the occurrence instances of its operands satisfy the specified

time constraint.

Let us assume a test model Τ generated from a SUT model 𝑀 according to the TDLTP

expression 𝜖 = 𝐴(𝑇𝑆1) ↝[< 𝐵] 𝐸(𝑇𝑆2), where the constraint value 𝐵 > 0. Let 𝜎 be a

trace in the state space of 𝑀. At time step 𝛼, let us assume subexpression 𝑎 = 𝐴(𝑇𝑆1) is

satisfied in 𝜎. At time step 𝛽 = 𝛼 + Δ, where Δ > 𝐵, let us assume subexpression

𝑏 = 𝐸(𝑇𝑆2) is satisfied in 𝜎. According to the logic of TDLTP, the recognizer 𝑅 assigned

to the bounded leads to expression in 𝜖 is activated at time 𝜃 = 0.

𝑅 will start measuring the time distance between subexpressions 𝑎 and 𝑏 at time step 𝛼.

Since the measured time distance (Δ = β − α) is greater than 𝐵, the recognizer will not

return a success signal. At this point the definition of bounded leads to is satisfied by the

recognizer.

Now let us assume subexpression 𝑎 is also satisfied in 𝜎 at time step 𝛼′ = 𝛽 − Δ′ so that

𝛼′ > 𝛼 and Δ′ > 0. Additionally, assume that the time difference Δ′ = 𝛽 − 𝛼′ < 𝐵. This

is depicted below.

107

If the recognizer assigned to the leads to operator in 𝜖 would start measuring the time

distance between subexpressions 𝑎 and 𝑏 at time step 𝛼′, it would in fact return a success

signal at time step 𝛽 since the measured time Δ′ satisfies the bound Δ′ < 𝐵.

The problem here is that 𝑅 will inevitably begin to measure time starting at time step 𝛼

because that is the moment when the child recognizer for 𝑎 first returns a success signal.

Therefore, the implementation guidelines for bounded leads to specified in [1] do not

match the definition of the operator.

One solution would be to reset the clock in 𝑅 used for measuring the time distance

between subexpressions 𝑎 and 𝑏 every time subexpression 𝑎 is satisfied

(localClock = 0). This would require the recognizer process to reactivate the

corresponding operand recognizer after every occurrence of 𝑎 in the trace.

The proposed solution has a major defect. Whenever 𝑅 returns a success signal for 𝜖, the

operand recognizer for 𝑎 (𝑅𝑎) may still be in its recognizing mode (since the last time it

was reactivated by 𝑅). 𝑅𝑎’s recognizing mode may therefore continue beyond the next

activation of 𝑅. If 𝑎 were a more complex subexpression whose corresponding recognizer

subtree contained processes with clocks or counters, the next time 𝑅 is activated, it may

occur that the recognizer for 𝑎 signals success to 𝑅 prematurely. This is depicted in the

following figure.

Trace example for 𝜎.

108

In the figure above, a time-bounded leads to subtree rooted at recognizer 𝑅 sends an

activating signal to its first operand recognizer, 𝑅𝑎, which enters its recognizing mode

(1). After 𝑅𝑎 returns a success signal, 𝑅 activates its second operand recognizer, 𝑅𝑏, and

immediately moves 𝑅𝑎 back to its recognizing mode (2) (so that it could reset its clock

when applicable). When 𝑅𝑏 returns a success signal, 𝑅 exits its recognizing mode and

similarly returns a success signal to its parent. 𝑅𝑎, however, continues recognizing, which

means it will ignore any subsequent activation signals, and returns results collected since

its previous activation.

To solve the issue described above, an option would be to implement a recursive reset

mechanism for recognizers. Namely, when 𝑅 receives a success signal from 𝑅𝑏, it should

send a reset signal to 𝑅𝑎, thus forcing the corresponding recognizer subtree to exit its

recognizing mode and become available for future activations. However, this would

require us to add externally accessible reset transitions to almost every location pair in

every recognizer. Not only would this increase the state space of the test model, it would

also be difficult to ensure that the recognizer functions correctly due to the amount of

transitions involved.

The problems mentioned here imply the need for future revisions of the theory of TDLTP.

Solving these issues is outside of the scope of this thesis. Therefore, the bounded leads to

recognizer template implementation described at the beginning of this appendix

corresponds to the original guidelines provided in [1].

Corner-case for bounded leads to recognizer R with operand recognizers Ra and Rb.

109

Appendix 6 – Conditional Repetition Recognizer Template

Mapping M10 in Section 5.2 of [1] specifies an automaton for the TDLTP conditional

repetition operator (‘#[(<|<=|=|>=|>) N]’). Figure 11 in [1], which depicts this

automaton, is reproduced below.

The recognizer template developed as part of this thesis based on Mapping M10 is

provided below.

The set of template parameters specified for the conditional repetition recognizer are

similar to the ones specified for the time-bounded leads to recognizer template discussed

in Appendix 5. The only difference is that the bound parameters define a constraint on

the number of repetitions of state configurations satisfying the subexpression represented

by the recognizer’s operand. Repetitions are counted using the integer variable

repetitions declared in the template’s local declarations section.

Recognizer for leads to [1, p. 8]

Conditional repetition recognizer template implementation.

110

It was discovered during the implementation of the interpreter that the conditional

repetition recognizer specified in [1, p. 7] does not function according to the semantics

provided in Definition 13 of [1]. This definition is reproduced below.

“'Conditional repetition'. Let k enumerate the occurrences of ⟦𝑆𝐸⟧, then

⟦#𝑆𝐸 ⊛ 𝑛⟧ if and only if ↝ ⋯ ↝ ⟦𝑆𝐸⟧𝑘 [1, p. 5].

where index variable k satisfies constraint ⊛ 𝑛, ⊛ ∈ {<, ≤, =, ≥, >} and 𝑛 ∈ ℕ” [1, p. 5].

While the presentation of the definition is relatively opaque, per inspection of the

recognizer automaton in Figure 14 from Section 7 of [1], it became apparent that a

recognizer for conditional repetition should emit a success signal when the number of

success signals received from its operand satisfies the constraint in the expression.

There are several issues with the recognizer automaton specified in Figure 14 of [1] in

relation to Definition 13. We describe some of them below.

Greater than or equal to repetition constraints implicitly reduce to equality

constraints. For example, if the constraint is specified as ‘>= 5’, then since the recognizer

returns immediately when the condition is satisfied (i.e. repetitions is equal to 5), it is

essentially implementing the repetition constraint ‘= 5’.

Greater than repetition constraints implicitly reduce to equality constraints. For

example, if the constraint is specified as ‘> 5’, then since the recognizer returns

immediately when the condition is satisfied (i.e. repetitions is equal to 6), it is

essentially implementing the repetition constraint ‘= 6’.

Less than & less than or equal to constraints are either trivially satisfied or not

supported by the architecture of the recognizer tree. When determining whether some

state configuration occurs less than 𝑁 times, the most obvious course of action for the

recognizer is to return immediately. This is because the repetition count at the time of

activation is 0, so the condition is trivially satisfied. Otherwise, if we alter the recognizer

for ‘less than’-constraints so that a success signal is returned if and only if the repetition

count occurs less than N times during the entire test run, then because of the timeout

encoded in the test stopwatch, a failure result is inevitable.

111

The issues described above should be solved in future work on the theory of TDLTP. As

the topic of this thesis is constrained to implementing the logic detailed in the current

state of the theory, resolving these issues is out of scope. The recognizer template

introduced at the beginning of this appendix is structured in a manner that allows for

future extensions.

112

Appendix 7 – Test Stopwatch Template

The test stopwatch automaton is attached to the automaton at the root of the recognizer

tree in the test model via broadcast channels. Figure 15 in Section 8 of [1] presents a

depiction of this automaton:

The stopwatch template injected into the test models produced by the TDLTP interpreter

is presented below.

Because the two templates are practically identical, further discussion is not needed.

Test stopwatch automaton [1, p. 10]

Test stopwatch template implementation.

113

Appendix 8 – Boolean Literal Recognizer Templates

As described in Section 5.2.2, trapset quantifiers can be replaced with Boolean literals

under certain conditions. In order to support future expansions of the TDLTP interpreter,

basic recognizers were implemented for these literals. They are presented in the figure

below.

The semantics embodied by these recognizers is intuitive but trivial. A recognizer for the

Boolean true literal returns a success signal immediately after activation. On the other

hand, a recognizer for the Boolean false literal never returns a success signal.

Boolean literal recognizer templates: (a) recognizer for true; (b) recognizer for false.

114

Appendix 9 – User Guide

In this appendix we provide instructions for using the TDLTP interpreter.

Prerequisites:

▪ (optional) UPPAAL Academic version 4.0.14;

▪ Java version 8 runtime.

Installation. The latest release is available in the Releases subfolder found in the project’s

development repository. Links to this repository are provided in Appendix 11.

Execution. The artifact is a Java-based command-line interface. In order to invoke it, the

user must provide the root Java binary with a path to the artifact as follows:

java –jar <path to interpreter> <options>.

The options which the interpreter is capable of accepting are presented below.

Interpreter options.

Short Option Long Option Description

-e --expression Required. Test purpose

specification as a TDLTP

expression.

Can be provided as a simple

string or as a path to a plain

text file.

-m --model Required. Path to the input

UPPAAL XML model file.

-o --output Required. Path where the

resultant model is to be

stored.

If omitted, results will be

sent to standard output.

-t --traces Optional. Enables the

printing of error traces.

115

Interpreter options (cont’d).

Short Option Long Option Description

-u --uppaal Optional. Path to UPPAAL’s

JAR file.

If provided in conjunction

with the -o option, the

resultant model will be

opened in UPPAAL after

interpretation.

-v --verbose Optional. Enables the

printing of simple progress

messages unless -o is

omitted.

-h --help Prints instructions.

At the time of writing, the interpreter can parse model files for the latest academic version

of UPPAAL (4.0.14) – older versions are not supported.

116

Appendix 10 – Manual Integration Tests

In this appendix we tabulate the manual integration tests discussed in Section 6.2. The

input files for these tests are available in the repository for this project (a link is available

in Appendix 11).

The table below lists test cases for the absolute complement trapset operator.

Absolute complement test cases.

Identifier Input expression Input model Output expectation

TC-TSExpr-AC-1 A(!TS) Trapset TS not

mapped to any

transitions.

Resultant trapset

maps to every

transition in test

model.

TC-TSExpr-AC-2 A(!TS) Trapset TS mapped

to every transition.

Expression reduces

to true.

User receives

warning message.

TC-TSExpr-AC-3 A(!TS) Trapset TS mapped to

at least one

transition.

Resultant trapset

follows definition of

absolute

complement.

TC-TSExpr-AC-4 A(!TS) At least one trap in

TS is conditional.

Resultant trapset

contains transitions

marked with

conditional traps

(negated).

TC-TSExpr-AC-5 A(!TS1) & A(!TS2) TS1 and TS2 overlap

completely.

No error. Rules

applied according to

subexpressions in

conjunction.

117

The table below lists test cases for the linked pairs trapset operator.

Linked pairs test cases.

Identifier Input expression Input model Output expectation

TC-TSExpr-LP-1 A(TS1; TS2) TS1 maps to no

transitions. TS2 maps

to at least one

transition.

Reduction to

Boolean true.

User receives

warning message.

TC-TSExpr-LP-2 A(TS1; TS2) TS1 maps to at least

one transition. TS2

maps to no

transitions.

TC-TSExpr-LP-3 A(TS1; TS2) TS1 maps to entire

model. TS2 maps to

some transitions.

Resultant trapset

follows definition of

linked pairs.

TC-TSExpr-LP-4 A(TS1; TS2) TS1 maps to some

transitions. TS2 maps

to entire model.

TC-TSExpr-LP-5 A(TS1; TS2) TS1 and TS2 map to

some transitions but

not all.

Trapset produced in

resultant model

follows the definition

of the linked pairs

operation.

TC-TSExpr-LP-6 A(TS1; TS2) TS1 and TS2 map to

some transitions

conditionally.

Conditions are

present in test model

for both ingress

transitions and egress

transitions.

TC-TSExpr-LP-7 A(TS1; TS2) TS1 and TS2 both map

to entire model.

No error.

Resultant trapset

follows definition of

linked pairs.

TC-TSExpr-LP-8 A(TS1; TS2) Duplicate labels exist

in model for TS1 or

TS2.

An error is reported

to the user.

TC-TSExpr-LP-9 A(TS1; TS2) TS1 and TS2 map to

looping transitions.

Flags are set/reset

appropriately on

loops.

118

The following table lists test cases for the relative complement operator.

Relative complement test cases.

Identifier Input expression Input model Output expectation

TC-TSExpr-RC-1 A(TS1 \ TS2) TS1 maps to no

transitions. TS2 maps

to at least one

transition.

Reduction to

Boolean true.

User receives

warning message.

TC-TSExpr-RC-2 A(TS1 \ TS2) TS1 maps to at least

one transition. TS2

maps to no

transitions.

Output model trapset

equivalent to A(TS1).

TC-TSExpr-RC-3 A(TS1 \ TS2) TS1 maps to entire

model. TS2 maps to

some transitions.

Output model trapset

equivalent to

A(!TS2).

TC-TSExpr-RC-4 A(TS1 \ TS2) TS1 maps to some

transitions. TS2 maps

to entire model.

Reduction to

Boolean true.

User receives

warning message.

TC-TSExpr-RC-5 A(TS1 \ TS2) TS1 and TS2 map to

some transitions but

not all.

Resultant trapset

follows definition of

relative complement.

TC-TSExpr-RC-6 A(TS1 \ TS2) TS1 and TS2 map to

some transitions

conditionally.

Conditional traps are

present in test model

(negated).

TC-TSExpr-RC-7 A(TS1 \ TS2) TS1 and TS2 both map

to entire model.

Reduction to

Boolean true.

User receives

warning message.

TC-TSExpr-RC-8 A(TS1 \ TS2) Duplicate labels exist

in model for TS1 or

TS2.

Error is reported to

user.

119

The following table lists test cases for trapset quantifiers.

Trapset quantifier test cases.

Identifier Input expression Input model Output expectation

TC-TSQuant-UN-1 A(TS) Trapset TS not

mapped to any

transitions.

Reduction to

Boolean true.

User receives

warning message.

TC-TSQuant-UN-2 A(TS) Trapset TS mapped

to every transition.

Resultant trapset is

mapped to every

transition.

TC-TSQuant-UN-3 A(TS) Trapset TS mapped to

at least one

transition.

Resultant trapset is

equivalent to trapset

defined in input

model.

TC-TSQuant-EX-1 E(TS) Trapset TS not

mapped to any

transitions.

Reduction to

Boolean false.

User receives

warning message.

TC-TSQuant-EX-2 E(TS) Trapset TS mapped

to every transition.

Resultant trapset is

mapped to every

transition.

TC-TSQuant-EX-3 E(TS) Trapset TS mapped to

at least one

transition.

Resultant trapset is

equivalent to trapset

defined in input

model.

120

The table below lists test cases for the conjunction operator.

Conjunction test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-C-1 E(TS1) & E(TS2) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to

Boolean false.

User receives

warning message.

TC-LogOp-C-2 E(TS2) & E(TS1)

TC-LogOp-C-3 A(TS1) & E(TS2) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to E(TS2).

Trapset TS1 not

present in model.
TC-LogOp-C-4 E(TS2) & A(TS1)

TC-LogOp-C-5 ~(E(TS2) & E(TS1)) TS1 maps to some

transitions. TS2 maps

to some transitions.

Normalized to
~E(TS2) | ~E(TS1)

per negation

replacement rule for

conjunction.

Applied to test model

according to

definition of

disjunction.

TC-LogOp-C-6 ~(E(TS1) & E(TS2)) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to

Boolean true.

User receives

warning message.

TC-LogOp-C-7 ~(E(TS2) & E(TS1))

TC-LogOp-C-8 ~(A(TS1) & E(TS2)) TS1 maps to no

transitions, TS2 maps

to some transitions.

Reduction to

~E(TS2).

Trapset TS1 not

present in model.

TC-LogOp-C-9 ~(E(TS2) & A(TS1))

121

The table below lists test cases for the conditional repetition operator.

Conditional repetition test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-CR-1 #[>=100] E(TS) Trapset TS is not

mapped to any

transitions.

Reduction to

Boolean false.

User receives

warning message.

TC-LogOp-CR-2 #[>=100] A(TS) Reduction to

Boolean true.

User receives

warning message.

TC-LogOp-CR-3 ~#[>=100] A(TS) Trapset TS is mapped

to some transitions.

Reduction to

Boolean true

(because bound

condition is negated).

User receives

warning message.

TC-LogOp-CR-4 ~#[>=100] E(TS) Trapset TS not

mapped to any

transitions.

Reduction to

Boolean true.

User receives

warning message.

TC-LogOp-CR-5 ~#[>=100] A(TS) Reduction to

Boolean false.

User receives

warning message.

TC-LogOp-CR-6 #[>=100] A(TS) Trapset TS is mapped

to some transitions.

No error.

Test model matches

definition of

conditional

repetition.

122

The table below lists test cases for the disjunction operator.

Disjunction test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-D-1 E(TS1) | E(TS2) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to E(TS2).

Trapset TS1 not

present in model.
TC-LogOp-D-2 E(TS2) | E(TS1)

TC-LogOp-D-3 A(TS1) | E(TS2) Reduction to

Boolean true.

User receives

warning message.

TC-LogOp-D-4 E(TS2) | A(TS1)

TC-LogOp-D-5 ~(E(TS2) | E(TS1)) TS1 maps to some

transitions. TS2 maps

to some transitions.

Normalized to
~E(TS2) & ~E(TS1)

per negation

replacement rule for

conjunction.

Applied to test model

according to

definition of

conjunction.

TC-LogOp-D-6 ~(E(TS1) | E(TS2)) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to ~E(TS2)

and TS1 trapset not

present in model.
TC-LogOp-D-7 ~(E(TS2) | E(TS1))

TC-LogOp-D-8 ~(A(TS1) | E(TS2)) Reduction to

Boolean false.

User receives

warning message.
TC-LogOp-D-9 ~(E(TS2) | A(TS1))

TC-LogOp-D-10 E(TS2) | E(TS1) TS1 and TS2 map to

some transitions.

No error.

Test model matches

definition of

disjunction.

123

The following table lists test cases for the equivalence operator.

Equivalence test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-E-1 E(TS1) <=> E(TS2) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to ~E(TS2)

and trapset TS1 not

present in model.
TC-LogOp-E-2 E(TS2) <=> E(TS1)

TC-LogOp-E-3 A(TS1) <=> E(TS2) Reduction to E(TS2)

and TS1 trapset not

present in model.
TC-LogOp-E-4 E(TS2) <=> A(TS1)

TC-LogOp-E-5 ~(E(TS2) <=>

E(TS1))
TS1 maps to some

transitions. TS2 maps

to some transitions.

Reduction to (E(TS2)
& ~E(TS1)) |

(E(TS1) & ~E(TS2))

and application

according to the

definitions of

disjunction and

conjunction.

TC-LogOp-E-6 ~(E(TS1) <=>

E(TS2))
TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to E(TS2)

and TS1 trapset not

present in model. TC-LogOp-E-7 ~(E(TS2) <=>

E(TS1))

TC-LogOp-E-8 ~(A(TS1) <=>

E(TS2))
Reduction to ~E(TS2)

and trapset TS1 not

present in model. TC-LogOp-E-9 ~(E(TS2) <=>

A(TS1))

TC-LogOp-E-10 E(TS2) <=> E(TS1) TS1 and TS2 map to

some transitions.

Reduction to
(~E(TS2) | E(TS1))

& (~E(TS1) |

E(TS2)) and

application to input

model according to

definitions of

disjunction and

conjunction.

124

The following table lists test cases for the implication operator.

Implication test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-I-1 E(TS1) => E(TS2) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to

Boolean true.

User receives

warning message.

TC-LogOp-I-2 E(TS2) => E(TS1) Reduction to ~E(TS2)

and trapset TS1 not

present in model.

TC-LogOp-I-3 A(TS1) => E(TS2) Reduction to E(TS2)

and trapset TS1 not

present in model.

TC-LogOp-I-4 E(TS2) => A(TS1) Reduction to

Boolean true.

User receives

warning message.

TC-LogOp-I-5 ~(E(TS2) => E(TS1)) TS1 maps to some

transitions. TS2 maps

to some transitions.

Reduction to E(TS2)

& ~E(TS1). Result

applied to input

model according to

definition of

conjunction.

TC-LogOp-I-6 ~(E(TS1) => E(TS2)) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to

Boolean false.

User receives

warning message.

TC-LogOp-I-7 ~(E(TS2) => E(TS1)) Reduction to E(TS2)

and trapset TS1 not

present in model.

TC-LogOp-I-8 ~(A(TS1) => E(TS2)) Reduction to ~E(TS2)

and trapset TS1 not

present in model.

TC-LogOp-I-9 ~(E(TS2) => A(TS1)) Reduction to

Boolean false.

User receives

warning message.

TC-LogOp-I-10 E(TS2) => E(TS1) TS1 and TS2 map to

some transitions.

Reduction to ~E(TS2)

| E(TS1). Applied

appropriately.

125

The following table lists test cases for the leads to operator.

Leads to test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-LT-1 E(TS1) ~> E(TS2) TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to

Boolean false.

User receives

warning message.
TC-LogOp-LT-2 E(TS2) ~> E(TS1)

TC-LogOp-LT-3 A(TS1) ~> E(TS2) Reduction to E(TS2)

and trapset TS1 not

present in model. TC-LogOp-LT-4 E(TS2) ~> A(TS1)

TC-LogOp-LT-5 ~(E(TS2) ~> E(TS1)) TS1 maps to some

transitions. TS2 maps

to some transitions.

Negation of

time-bounded leads

to is not supported.

User receives error

message.
TC-LogOp-LT-6 ~(E(TS1) ~> E(TS2)) TS1 maps to no

transitions. TS2 maps

to some transitions.
TC-LogOp-LT-7 ~(E(TS2) ~> E(TS1))

TC-LogOp-LT-8 ~(A(TS1) ~> E(TS2))

TC-LogOp-LT-9 ~(E(TS2) ~> A(TS1))

TC-LogOp-LT-10 E(TS2) ~> E(TS1) TS1 and TS2 map to

some transitions.

Applied to input

model according to

definition of leads to.

126

The following table lists test cases for the bounded leads to operator.

Time-bounded leads to test cases.

Identifier Input expression Input model Output expectation

TC-LogOp-TBLT-1 E(TS1) ~>[>=100]

E(TS2)
TS1 maps to no

transitions. TS2 maps

to some transitions.

Reduction to

Boolean false.

User receives

warning message.

TC-LogOp-TBLT-2 E(TS2) ~>[>=100]

E(TS1)

TC-LogOp-TBLT-3 A(TS1) ~>[>=100]

E(TS2)
Reduction to True

~>[>= 100] E(TS2).

Applied to model

according to

definition of bounded

leads to.

TC-LogOp-TBLT-4 E(TS2) ~>[>=100]

A(TS1)
Reduction to E(TS2)

~>[>= 100] True.

Applied to model

according to

definition of bounded

leads to.

TC-LogOp-TBLT-5 ~(E(TS2) ~>[>=100]

E(TS1))
TS1 maps to some

transitions. TS2 maps

to some transitions.

Negation of

time-bounded leads

to is not supported.

User receives error

message.
TC-LogOp-TBLT-6 ~(E(TS1) ~>[>=100]

E(TS2))
TS1 maps to no

transitions. TS2 maps

to some transitions. TC-LogOp-TBLT-7 ~(E(TS2) ~>[>=100]

E(TS1))

TC-LogOp-TBLT-8 ~(A(TS1) ~>[>=100]

E(TS2))

TC-LogOp-TBLT-9 ~(E(TS2) ~>[>=100]

A(TS1))

TC-LogOp-TBLT-10 E(TS2) ~>[>=100]

E(TS1)
TS1 and TS2 map to

some transitions.

Applied to input

model according to

definition of

time-bounded leads

to.

127

The following table lists symmetrical test cases produced for the discarded subtree

corner-case discussed in Section 5.4.

Reduction corner cases.

Identifier Input expression Input model Output expectation

TC-LogOp-X-1 E(TS2) & ((E(TS1) |

E(TS2)) | (E(TS1) &

E(TS2)))

TS1 is not mapped to

any transitions. TS2

is mapped to some

transitions.

Reduction to E(TS2)

& E(TS2).

Application

according to rules for

conjunction. TC-LogOp-X-2 E(TS2) & ((E(TS1) &

E(TS2) | (E(TS1) |

E(TS2))))

TS1 is not mapped to

any transitions. TS2

is mapped to some

transitions.

As mentioned in Section 6.2, all of these tests were executed against the TDLTP

interpreter, thereby verifying a significant portion of its functionality.

128

Appendix 11 – Repository Links

Source code for the interpreter (and the issue tracking system used during development)

is located on Tallinn University of Technology’s GitLab instance:

https://gitlab.cs.ttu.ee/Tanel.Prikk/iapb.

In case the link above has expired, the repository has been mirrored to GitHub:

https://github.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter.

For redundancy, the repository has also been mirrored to gitlab.com:

https://gitlab.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter.

https://gitlab.cs.ttu.ee/Tanel.Prikk/iapb
https://github.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter
https://gitlab.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter

	Author’s declaration of originality
	Abstract
	Annotatsioon Testimiseesmärkide spetsifitseerimiskeele TDLTP interpretaatori implementeerimine
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Outline

	2 Preliminaries
	2.1 Model-Based Testing
	2.2 UPPAAL Timed Automata
	2.2.1 Formal Definition of Timed Automata
	2.2.2 UPPAAL Modelling Language
	2.2.3 UPPAAL in Model-Based Testing

	2.3 Test Purpose Specification Language (TDLTP)
	2.3.1 Test Purpose Specification via TDLTP Expressions
	2.3.2 Expression Syntax
	2.3.3 Semantics of Trapsets
	2.3.4 Semantics of Trapset Expressions and Trapset Quantifiers
	2.3.5 Semantics of Logical Connectives and Temporal Operators

	2.4 Abstract Syntax Trees

	3 Requirements
	4 Implementation
	4.1 Approach
	4.2 Component Structure
	4.3 Technological Choices
	4.3.1 Programming Language: Java
	4.3.2 Dependency Management: Maven
	4.3.3 Parser Generator: ANTLR
	4.3.4 Code Generation: StringTemplate
	4.3.5 XML Processing: JAXB
	4.3.6 Command-Line Option Parser: args4j

	4.4 Component Overviews
	4.4.1 TDLTP Expression Object Model
	4.4.2 UPPAAL Object Model
	4.4.3 TDLTP Grammar Implementation
	4.4.4 UPPAAL System Language Grammar Implementation
	4.4.5 TDLTP Parser
	4.4.6 UPPAAL Parser
	4.4.7 Scenario Composer
	4.4.8 User Interface Core
	4.4.9 Command-Line Interface

	5 Scenario Composition
	5.1 Overview
	5.2 Trapset Evaluation
	5.2.1 Trapset Extraction
	5.2.2 Quantifier Evaluation

	5.3 Normalization
	5.4 Reduction
	5.5 Construction of a Recognizer Model
	5.5.1 Approach to Implementing Recognizer Templates
	5.5.2 Construction Algorithm

	6 Validation
	6.1 Automated Tests for Language Parsers
	6.2 Manual Integration Tests

	7 Summary
	References
	Appendix 1 – Trapset Quantifier Recognizer Template
	Appendix 2 – Disjunction Recognizer Template
	Appendix 3 – Conjunction Recognizer Template
	Appendix 4 – Leads To Recognizer Template
	Appendix 5 – Time-Bounded Leads To Recognizer Template
	Appendix 6 – Conditional Repetition Recognizer Template
	Appendix 7 – Test Stopwatch Template
	Appendix 8 – Boolean Literal Recognizer Templates
	Appendix 9 – User Guide
	Appendix 10 – Manual Integration Tests
	Appendix 11 – Repository Links

