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Abstract 

In model-based testing (MBT), explicit behavioral models of a system under test (SUT) 

are used to generate abstract test cases (ATCs) – sequences of inputs and expected outputs 

which can be concretized into executable test scripts. The phase of MBT in which ATCs 

are produced is known as test generation. Given an appropriate modeling formalism and 

a language for test purpose specification, this phase can be automated. 

The chosen modeling formalism depends on the nature of the SUT. For systems which 

exhibit time-sensitive behavior, i.e. real-time systems, a suitably flexible formalism 

supported by a mature set of tools is UPPAAL Timed Automata (UTA), wherein 

behavioral models are specified as state-transition graphs annotated with timing 

constraints. However, while the UPPAAL toolkit provides means for test purpose 

specification via its subset of Timed Computation Tree Logic (TCTL), certain syntactic 

limitations prevent the complete automation of ATC generation for UPPAAL models – 

manual modification of the SUT model is required for the implementation of certain 

complex test purposes. 

A solution to this issue was provided by the authors of [1] in the form of a supplementary 

language layer known as the Test Purpose Specification Language (TDLTP). Using 

TDLTP, a test purpose can be declared as a logical expression which encodes an 

augmentation procedure for a UPPAAL SUT model. Once the encoded modifications are 

carried out, the resultant test model can be used in conjunction with UPPAAL TCTL. 

With its expressive, flexible syntax, TDLTP overcomes the limitations of the UPPAAL 

property specification language and can be treated as a major stepping-stone towards 

extending the practical usability of UPPAAL in MBT processes. 

The objective of this thesis was to implement an interpreter which accepts a UPPAAL 

SUT model and a TDLTP expression as input and produces an ATC in the form of a test 

model as output. 
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The author produced the result by gradually implementing and interfacing a collection of 

reusable components. The structure and logic of these components is discussed and 

explained in this thesis. It is expected that the modular structure of the interpreter will 

facilitate future extensions and improvements. 

This thesis is written in English and is 78 pages long, including 6 chapters, 41 figures and 

5 tables. 
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Annotatsioon 

Testimiseesmärkide spetsifitseerimiskeele TDLTP interpretaatori 

implementeerimine 

Mudelipõhises testimises (model-based testing – MBT) kasutatakse testitava süsteemi 

(system under test – SUT) käitumismudeleid, et genereerida testsisendite ja vastavate 

eeldatavate väljundite jadasid ehk abstraktseid testimisjuhte (abstract test case – ATC). 

Viimaseid on võimalik konkretiseerida reaalselt täidetavateks teststsenaariumiteks. 

Eeldades sobivat modelleerimisformalismi ja keelt, millise abil saab spetsifitseerida 

testimiseesmärke, on ATC’de genereerimisfaasi võimalik automatiseerida. 

Formalismi valik sõltub süsteemi üldistest omadustest. Reaalaja süsteemide jaoks, 

milliste käitumine on ajatundlik, on sobivalt paindlik ning laia tööriistavalikuga variant 

UPPAAL Timed Automata (UTA). UTA’s spetsifitseeritakse käitumismudeleid 

ajapiirangutega annoteeritud seisundigraafidena. Kuigi UPPAAL’i tööriistakomplektis 

on olemas vahendid testimiseesmärkide spetsifitseerimiseks Timed Computation Tree 

Logic (TCTL) konkreetse alamhulga näol, seavad teatud süntaktilised piirangud ATC’de 

generatsiooni automatiseerimisele UPPAAL’i raames kitsendusi – mudeleid tuleb käsitsi 

kohendada, et teatud keerulisi testimiseesmärke realiseerida. 

Ülaltoodud probleemile on artikli [1] autorid pakkunud välja lahenduse täiendava 

keelekihi, testimiseesmärkide spetsifitseerimiskeele TDLTP näol. Kasutades mainitud 

keelt, saab eesmärgi deklareerida loogilise avaldisena, mis on sisuliselt SUT mudeli 

modifitseerimisprotseduuri kompaktne esitus. Kui vastavad modifikatsioonid teostada, 

saab resultaadina SUT mudelist tuletatud testmudelit edaspidi TCTL’iga kombinatsioonis 

kasutada. 

TDLTP võimaldab oma paindliku ja väljendusrikka süntaksiga ületada UPPAAL’i 

mudeliomaduste spetsifitseerimiskeele piiranguid. Seda võib pidada suureks sammuks 

UPPAAL’i kasutatavuse laiendamise poole MBT kontekstis. 
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Käesoleva töö eesmärgiks oli implementeerida interpretaator, mille sisendiks on 

UPPAAL’i formalismis esitatud SUT mudel ja TDLTP avaldis. Väljundina loob 

interpretaator testmudeli, mis implementeerib avaldises sisalduvat testimiseesmärki. 

Töö tulemuseni jõudis autor komponendipõhise lähenemisega. Alustati sisendeid 

teisendavatest moodulitest ning vajalikest objektmudelitest ning liidestamise abil liiguti 

järk-järgult kõrgemal abstraktsusastmel asuvate komponentide poole. Selles töös 

tutvustatakse implementeeritud artefakte ja selgitatakse nende interaktsioone testmudeli 

loomisprotsessi jooksul. Autor eeldab, et interpretaatori modulaarne ülesehitus soodustab 

tulevaste rakenduslaienduste lisamist. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 6 peatükki, 41 

joonist, 5 tabelit. 
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List of abbreviations and terms 

ANTLR Another Tool for Language Recognition. A framework for 

generating parsers. 

AST Abstract syntax tree. A tree-based form of intermediate 

representation which emphasizes the conceptual rather than the 

syntactical structure encoded in an input string. 

ATC Abstract test case. Generalization of a collection of concrete 

input-output sequences which can be used to test a system. 

base trapset A trapset where the mapping between the set and the transitions 

in the SUT model has been made explicit – possibly through the 

use of an auxiliary data structure. 

BBT Black-box testing. A verification method where only the inputs 

and outputs of the software under test are under consideration – 

internals are not inspected or accessed. 

BNF Backus-Naur form. A notation for describing computer 

languages. 

CBD Component-Based Design. A development approach which 

emphasizes loose coupling and the use of reusable components. 

CLI Command-line interface. A type of interface where users are 

expected to provide input via text commands. 

DSL Domain-specific language. A language which has a limited 

domain of applicability but allows for more succinct or 

expressive representation within the context of said domain. 

GUI Graphical user interface. A type of interface where the user 

interacts with visual elements in order to provide input and 

receive output from a software system. 

JAXB Java Architecture for XML Binding. Java framework for 

processing XML. 

MBD Model-based design. A design methodology where 

requirements for systems are represented as models. 

MBT Model-based testing. The application of MBD for software 

verification. 

SUT System under test. 
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TA Timed Automata. A modeling formalism where system 

behavior is abstractly represented as a network of state 

transition graphs. 

TCTL Timed Computation Tree Logic. A type of logic where it is 

possible to reason with time-related propositions. 

TDLTP Test Purpose Specification Language. A novel method for 

specifying test purposes designed for inclusion in a UPPAAL 

MBT workflow. 

UI User interface. 

UPPAAL A tool suite based on the TA formalism and intended for system 

verification. Developed by Uppsala University and Aalborg 

University. 

UPPAAL system 

definition language 

The C-like declaration language used in UPPAAL to declare 

variables, define transition and location labels, and specify 

model processes. 

UQL UPPAAL query language. TCTL-based property specification 

language available in the UPPAAL toolkit. 

UTA UPPAAL Timed Automata. The extension of TA made 

available as a modeling formalism in UPPAAL. 

automaton template In UPPAAL, an automaton prototype which defines the 

structure and behavior of model processes which can be 

instantiated from it. 

code generation Conversion from an object structure to a syntactical structure in 

a given language. 

conditional trap A trap which labels a transition whose inclusion in a trapset 

depends on a logical condition. 

directed multigraph A graph where multiple directed edges are permitted between a 

pair of vertices. 

elementary trap A trap which maps to a transition whose inclusion in a trapset in 

unconditional. 

façade A component whose purpose is to simplify another software 

component’s interface in order to facilitate loose coupling. 

guard An annotation that can be added to a model transition in 

UPPAAL for the purpose of specifying the conditions which 

need to be met for the transition to be enabled. 

location A vertex in a UPPAAL automaton. The active location is part of 

the state of an individual automaton. 

model-checking A verification method for models which may involve the 

generation of behavioral traces. 
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normalization The process of replacing negations and recognizer-less nodes in 

a TDLTP abstract syntax tree. 

operator arity The number of operands an operator takes. 

parse tree A tree-based form of intermediate representation which 

contains the complete syntactical structure of an input sentence. 

recognizer A property recognizing automaton which either collects 

information from other recognizers in order to notify its parent 

entity or collects information from the SUT model by 

inspecting trap variables. 

recognizer model The composition of a collection of recognizers and the test 

stopwatch into a tree structure based on the AST of a TDLTP 

expression. 

recognizer tree Used interchangeably with the term recognizer model. 

reduction The process of substituting substructures in a TDLTP 

expression’s AST with the aim of reducing its size. 

s-expression A simplified notation for representing tree structures. 

scenario composition The process of combining a SUT model and a TDLTP 

expression in order to construct a test model. 

synchronization In UPPAAL, a means to specify actions and corresponding 

co-actions. 

template instantiation Either refers to the process of providing parameters for a 

UPPAAL automaton template or to the modified template 

produced as the result of this process. 

test generation The process of generating ATCs using a test purpose and a SUT 

model. 

test model The model produced as the result of combining a TDLTP 

expression with a SUT model. Produces an ATC when 

combined with a suitable UPPAAL TCTL formula. 

test purpose Represents a specific behavioral property that a software tester 

wishes to verify. 

test selection criteria The collection of coverage criterions used in the formulation of 

a test purpose. 

tester In the context of this work, an individual or group of people 

who wish to verify the behavior of a software system or artifact. 

transition A connection between two locations in a UPPAAL automaton. 

trap A member of a trapset which maps to a single transition in a 

UPPAAL SUT model. 

trapset A collection of traps which connects a TDLTP expression to the 

corresponding UPPAAL SUT model. 
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trapset evaluation An umbrella term for trapset extraction, trapset expression 

evaluation, and trapset quantifier evaluation. 

trapset expression A TDLTP subexpression whose root is a trapset operator. 

trapset expression 

evaluation 

The process of deriving a base trapset from a trapset expression, 

thereby determining which transitions the expression maps to in 

the model. 

trapset extraction The process of retrieving the mapping between transitions and 

trapsets from a user-provided SUT model and a TDLTP 

expression. 

trapset quantifier A logical operator in TDLTP whose operand domain is the set of 

possible trapset expressions. 

Universal quantification over a trapset is true if and only if all 

the traps in the set have been visited. 

Existential quantification over a trapset is true if and only if at 

least one of the traps in the set has been visited. 

trapset quantifier 

evaluation 

The process of determining whether a trapset quantifier can be 

replaced with a Boolean literal and the execution of such a 

replacement when applicable. 
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1 Introduction 

In systems design, models find use as representations of structure, data, and behavior. A 

collection of models based on different views of a system can serve as a reusable, shared 

repository of knowledge on the system. This is the essence of model-based design (MBD), 

wherein requirements for systems are represented as models in order to facilitate 

unambiguous collective understanding throughout the development process. 

The abstraction capabilities and reusability offered by models naturally led to their 

utilization in software verification. One approach in this area where model-usage has 

shown success is model-based testing (MBT). MBT is a black-box testing method based 

on MBD which employs models for the behavioral verification of a system under test 

(SUT)1. Figure 1 outlines a possible flow of activities involved in MBT. 

First, in the modelling phase, a SUT model is constructed based on SUT specifications 

and a test plan. This model is a representation of SUT behavior whose level of abstraction 

depends on the scope of the test plan. 

                                                 

 

1 Also referred to as the implementation under test (IUT) in the literature. 

 

Figure 1. Example MBT Workflow. 
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Test purposes defined during the test purpose specification phase represent specific 

behavioral properties that a software tester wishes to verify. An elementary example of a 

test purpose is “Test whether state sa always leads to state sb”. In the test generation 

phase, the SUT model and the test purposes serve as inputs for the construction of abstract 

test cases (ATCs – collectively referred to as the abstract test suite). 

ATCs produced in the test generation phase represent paths in the state-space of the test 

model [2, p. 10]. The construction of these paths is required to fulfil the specified test 

purposes. 

In the deployment phase, ATCs are transformed into executable test scripts1 – sequences 

of input-output pairs that define a concrete testing procedure with respect to the SUT. 

This can be done offline, in which case test scripts are produced before test execution, or 

online, where test stimuli are computed on-the-fly depending on the SUT state and the 

test goal. 

Test scripts serve as the driver for the test execution phase, which is defined as the task 

of feeding the sequence of stimuli specified by a script to the SUT and verifying whether 

the latter responds as expected [3, p. 3]. Verification of SUT behavior according to a test 

script will yield a test verdict (pass, fail, inconclusive) based on whether the witnessed 

SUT behavior conforms to behavior encoded in the model. 

Because the number of steps in a test script derived from a SUT model is generally too 

large for manual runs, test execution requires automation [2, p. 10]. The implication here 

is that the selected modeling formalism needs to be machine-interpretable. In addition to 

enabling automated execution, machine-interpretable modeling formalisms also facilitate 

the automation of ATC generation. 

Manual construction of ATCs is a time-consuming, cognitively tasking endeavor for any 

non-trivial system. This is both due to the potential complexity that SUT models can 

exhibit and the likely redundancy involved in generating several ATCs from the same 

SUT model. Consequently, the benefits of automated test case generation are obvious: 

                                                 

 

1 Often referred to as concrete test cases. 
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elimination of human error and considerable reductions in the cost of testing. For these 

reasons, automated test generation was chosen as the broadly stated focus of this thesis. 

In order to automate test generation, the test purposes which drive the process should be 

presented in a formal manner. The general approach in MBT is the adoption of 

domain-specific languages (DSLs) for test purpose specification. As explained in [1, p. 

1 – 2], this becomes an obstacle when attempting to apply these languages to different 

domains. As a specific example, most existing test purpose specification languages do 

not fully support the expression of timed behavior, which is essential for testing real-time 

systems. 

UPPAAL Timed Automata (UTA), first presented in [4], is a widely known modeling 

formalism used for the specification and debugging of dynamic real-time systems. It is 

based on the theory of Timed Automata (TA), wherein a model is defined as a state 

transition system (automaton) annotated with timing constraints [5, p. 183]. The primary 

benefits of UTA are its support for representing timed system behavior and the existence 

of a mature ecosystem of UTA MBT tools [6]. 

The UPPAAL toolkit1 includes a graphical environment – the UPPAAL graphical 

interface (GUI) – designed for the construction and testing of UTA models. The property 

specification language available in UPPAAL – a variant of Timed Computation Tree 

Logic (TCTL) – can be used for test purpose specification. However, while the language 

has high expressive power, it is syntactically restricted. Namely, UPPAAL only allows 

for the use of un-nested temporal operators, which “makes the TCTL expressions ‘flat’ 

with respect to temporal operators” [1, p. 2]. This restriction prohibits the direct 

specification of certain complicated test purposes in UPPAAL TCTL. Therefore, the full 

exploitation of UPPAAL for MBT is only feasible for expert users who know how to 

augment models with auxiliary property recognizing automata intended for use in 

combination with TCTL expressions. 

A new solution to the limitations of UPPAAL MBT, presented in [1], is an additional 

language layer called the Test Purpose Specification Language (TDLTP). TDLTP is "free 

                                                 

 

1 http://www.uppaal.org 

http://www.uppaal.org/
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from the limitations of flat TCTL" and provides facilities for expressive test purpose 

specification [1, p. 2] when integrated into a UTA MBT workflow. 

The primary goal of this thesis is to implement an interpreter for TDLTP based on 

the theory set forth in [1]. This interpreter will accept as input: 

1. a test purpose specification in TDLTP, and 

2. a SUT model specified in the UTA formalism annotated with information relating 

transitions in the model to ground-level elements of the TDLTP expression1. 

As output, the interpreter will produce a test model which implements the test purpose 

specification implicit in the combination of the expression and the SUT model. 

It is expected that the interpreter will find use in a prototype environment for model-based 

testing of cyber-physical systems, which has been under development at Tallinn 

University of Technology for several years. 

Our approach to implementing the interpreter is a variant of Component-Based 

Development. More specifically, based on an initial analysis of the sub-functionalities 

needed by the interpreter, we gradually build the artifact by introducing new components 

which depend on previously implemented ones. The expectation here is that this 

development method will enforce extensibility in the interpreter’s internal design, and 

therefore facilitate possible future improvements. 

In order to ensure that the interpreter correctly handles user input, a subset of the 

components involved will be validated by automated tests. On the other hand, tests which 

ascertain that the interpreter functions according to the theory it was based on will be 

performed manually. This will allow the project to be completed in a reasonable amount 

of time. 

1.1 Outline 

This thesis is organized as follows. Chapter 2 introduces the theoretical concepts needed 

to understand TDLTP. Chapter 3 presents general requirements for the TDLTP interpreter 

                                                 

 

1 The technical term for these annotations is traps – 2.3.3 provides a definition. 
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produced as the result of this work. Chapter 4 provides an overview of the interpreter’s 

architecture. Chapter 5 focuses on the algorithms embedded in the component at the 

center of the interpreter – the scenario composer. Finally, Chapter 6 summarizes our 

approach to validation. 
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2 Preliminaries 

This chapter presents the requisite background knowledge for understanding the 

deployment context of a TDLTP interpreter. The discussion is opened with the most 

general concept: model-based testing, a black-box testing strategy used for the behavioral 

verification of systems. Thereafter, we describe a concrete formalism for model-based 

testing of real-time systems: UPPAAL Timed Automata. Following this, a brief overview 

of the limitations of UPPAAL TCTL in MBT will lead into an introduction to the focus 

of this thesis – the Test Purpose Specification Language TDLTP. The chapter is concluded 

with a brief discussion on abstract syntax trees, which sets the stage for explaining the 

implementation of the interpreter in Chapter 4. 

2.1 Model-Based Testing 

Software testing is an investigative activity whose aim is to determine the extent to which 

a software entity or system meets predefined expectations. An enumerative definition of 

the term ‘expectation’ here would cover a wide spectrum of properties from usability to 

reliability. In this thesis we use the umbrella concept of correctness as the evaluative 

criterion employed in testing. Additionally, we consider the testing task only within the 

context of systems development. 

A system is considered correct if its response to any feasible input stimulus is admissible 

according to its specification. In black-box testing (BBT), system responses to input 

stimuli are exclusively available in the form of observable outputs – internal 

implementation details are irrelevant and only the externally perceived behavior of the 

system matters. The main benefit of BBT is that it forces the tester to approach the system 

from the perspective of the user as opposed to that of the designer, thus embedding a 

degree of objectivity in the testing process. 

Model-based testing (MBT) is a variant of BBT that relies on models which encode the 

intended behavior of a system under test [7, p. 1]. Here the term ‘model’ denotes a 

simplified, possibly formal representation of an observable phenomenon (in MBT, the 
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behavior of a system). The use of models in MBT is motivated both by their potential for 

facilitating automation and the support they offer for unequivocal, easily communicable 

understanding of system behavior. 

Since testers inevitably build mental models of a SUT in order to test its intended 

behavior, it can be argued that all testing is essentially based on models. MBT is 

exceptional under this treatment in the sense that it requires the use of explicit models. 

Roughly speaking, MBT processes exploit reusable models to generate traces of inputs 

and expected outputs [8, p. 281]. Trace inputs are concretized and passed to a real system, 

the abstracted outputs of which can then be compared to those specified in the trace, 

thereby yielding a test verdict – fail, pass, or inconclusive. 

An MBT workflow involves the following primary activities: SUT modelling, test 

purpose specification, test generation, test deployment, and test execution. An example 

configuration of these activities is depicted in Figure 1. 

During the modelling phase, requirements for the SUT are used to formulate abstract 

behavioral models. The level of abstraction depends on the features of the modeling 

language and the scope of the testing task, generally specified in a test plan. 

The assumption in MBT is that the SUT model is valid, i.e. that it correctly reflects the 

behavioral attributes of the system that are subject to testing. Model validity is a wider 

topic outside the scope of this thesis. Henceforth we assume the validity of SUT models 

in the context of MBT. 

It is important to note here that in practice the SUT will operate in an environment which 

provides the stimuli (inputs) that drive its behavior. Thus, it is often the case that an 

environment model will be produced in addition to the SUT model – possibly in 

composition with the latter. As the test model is “exploited for the generation of test 

cases” [7, p. 4], the corresponding environment model places limits on the set of 

behavioral paths explored in the test proper. By including an environmental context in 

this manner, the tester can select specific aspects of the system’s behavior for testing. 

In the test generation phase, test selection criteria are used to further select a subset of 

SUT behavior paths. Test selection criteria (as captured in a test purpose), represent 

attributes of SUT behavior that the tester aims to verify. A relatively simple example of 
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a test purpose is "state sa is inevitably visited". The range of possible test purposes 

facilitated by a modeling formalism can be used as a measure of the its applicability for 

a given MBT workflow. 

The entities produced as the output of test generation are referred to as abstract test cases 

(ATCs). [7] presents a succinct definition of an ATC as a "finite structure of input and 

expected output" [7, p. 2]. This definition elucidates the role of ATCs in MBT. In simple 

terms, an ATC generalizes a collection of concrete input-output sequences that the SUT’s 

behavior should conform to. The ‘abstract’ qualifier here implies that ATCs reside on the 

abstraction level of the SUT model, so some transformative mechanism is required to 

utilize ATCs in testing. This mechanism is applied in the test deployment phase. 

During test deployment, ATCs are converted into executable test scripts which serve as 

input for test executions against the SUT. The manifest separation between ATCs and 

executable test scripts supports the notion of platform independence in MBT workflows: 

test cases can be specified as ATCs in one language, then converted to test scripts in 

another. 

The conversion process involved in transforming ATCs to executable test scripts defines 

the mode of test generation. Based on whether test generation is performed strictly before 

test execution or interleaved with the latter, MBT is divided into two modes: offline and 

online, respectively. It should be noted that the these modes merely represent the extremes 

on a spectrum of possible approaches [6, p. 78 – 79]. 

In offline MBT, test generation occurs prior to test execution. The relative isolation of the 

two phases in this approach makes it possible to generate tests once and subsequently 

execute them any number of times. Additionally, the time cost related to generating tests 

is minimized – an obvious benefit when the cost is not negligible. 

In online MBT, test generation and test execution are dovetailed. An adapter is provided 

in the deployment phase as the mediator between the test generator and the SUT. Here 

the test generator, which encapsulates a model of the SUT and its environment, receives 

output from the system during the test execution and determines which path the SUT has 

taken in the state-space of the model. This allows the generator to compute the next test 

input for the SUT on-the-fly. The reactive nature of online MBT makes it the preferred 

method for testing systems that exhibit nondeterministic behavior [7, p. 9]. 
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Regardless of the mode of MBT used, the end goal is to produce a test verdict as the result 

of a test execution. An execution passes if expected and actual SUT outputs conform, it 

fails if they do not, and it is inconclusive when the decision cannot be made [7, p. 3 – 4]. 

Assuming model validity with respect to the SUT, a failure verdict is enough to suggest 

the existence of a software bug. Its root cause can subsequently be backtracked and 

resolved. 

In summary, MBT is a testing method where explicit models derived from system 

requirements are used in the process of verifying the behavior of a SUT. The SUT behaves 

correctly if, given a test input, the outputs produced by the SUT and its model conform 

to one another. MBT’s benefits echo those of model usage in general: clarity, reusability 

and potential for automation. 

2.2 UPPAAL Timed Automata 

"UPPAAL is a tool suite for verification of real-time systems, jointly developed by 

Uppsala University and Aalborg University." [9, p. 1] The modeling formalism made 

available in the UPPAL toolkit (known as UPPAAL Timed Automata – UTA) is based 

on the theory of timed automata (TA) set forth by Alur and Dill in [5]. In a nutshell, TA 

is a formal notation for annotating state-transition graphs with timing constraints, thus 

supporting the modeling and analysis of systems whose behavior is time-sensitive. 

UTA extends TA by facilitating the definition of networks of timed automata via its 

graphical user interface. An example of a small UTA network is presented in Figure 2. 

In the following subsections we provide the minimum requisite syntax and semantics for 

understanding how UTA could be utilized in an MBT context. For a tutorial introduction 

to UPPAAL, [9] is suggested. 

 

Figure 2. Example UPPAAL automata network. 
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 Formal Definition of Timed Automata 

In this section we briefly reproduce the basic formal definition of timed automata as 

provided in [9, p. 2 – 3]. It should be noted that the modeling features suggested by this 

definition do not represent the entire set of features available in the UPPAAL tool – the 

interested reader is referred to UPPAAL’s online user manual1 for more details. 

In the definitions below, assume 𝐶 is a set of clocks and 𝐵(𝐶) is a set of conjunctions of 

conditions of the form 𝑥 ⋈ 𝑐 or 𝑥 − 𝑦 ⋈ 𝑐, where 𝑥, 𝑦 ∈ 𝐶, 𝑐 ∈ ℕ, and 

⋈  ∈  {<, ≤, =, ≥, >}. 

"Definition 1 (Timed Automaton (TA)). A timed automaton is a tuple (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼) 

where 𝐿 is a set of locations, 𝑙0 ∈ 𝐿 is the initial location, 𝐶 is the set of clocks, 𝐴 is a set 

of actions, co-actions and the internal τ-action, 𝐸 ⊆ 𝐿 × 𝐴 × 𝐵(𝐶) × 2𝐶 × 𝐿 is a set of 

edges between locations, each with an action, a guard and a set of clocks to be reset, and 

𝐼 : 𝐿 →  𝐵(𝐶) assigns invariants to locations." [9, p. 2] 

To contextualize Definition 1, two examples of UPPAAL automata are presented in 

Figure 3. 

The figure above depicts a UTA network consisting of models for a smartphone (a) and 

a human user (b). The human user automaton has a single location (idle) and a looping 

transition attached to said location. The smartphone automaton has three locations: 

screenOffMode (the initial location), screenOnMode, and cameraMode. 

                                                 

 

1 http://www.it.uu.se/research/group/darts/uppaal/help.php 

 

Figure 3. Example UPPAAL automata: (a) smartphone, (b) user. 

http://www.it.uu.se/research/group/darts/uppaal/help.php
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When the power button for the smartphone is pressed by the user once, the screen turns 

on (screenOnMode). Henceforth, when the power button is pressed again, the screen will 

turn off (screenOffMode). However, when the button is pressed twice in rapid succession, 

the smartphone switches to camera mode instead (cameraMode). 

The assignment clk = 0 attached to the transition screenOffMode → screenOnMode is a 

reset of the clock variable clk. This variable is used to determine whether the screen 

should turn off as the result a subsequent press (guard clk ≥ 2 on transition 

screenOnMode → screenOffMode), or switch to camera mode (guard clk < 2 on 

transition screenOnMode → cameraMode). The labels press! and press? – which are 

synchronizations over the channel press – denote a specific action and its co-action, 

respectively. 

A location invariant (not depicted in Figure 3) can be described as a conditional 

expression that must be true at any time the automaton is in the corresponding location. 

Put simply, the automaton must exit the location prior to the moment the invariant no 

longer holds. A common use case for invariants in UPPAAL is the modeling of progress 

conditions. 

To define the semantics of TA, we use the following assistive notions: let 𝑢 ∶ 𝐶 →  ℝ≥0 

denote a clock valuation and ℝ𝐶  denote the set of all clock valuations. For all 𝑥 ∈ 𝐶, let 

𝑢0(𝑥) = 0 (all clocks start at 0). Guards and invariants are considered sets of clock 

valuations for the purposes of Definition 2 below, e.g. 𝑢 ∈ 𝐼(𝑙) means 𝑢 satisfies the 

invariant of location 𝑙. 

"Definition 2 (Semantics of TA). Let (𝐿, 𝑙0, 𝐶, 𝐴, 𝐸, 𝐼) be a timed automaton. The 

semantics is defined as a labelled transition system 〈𝑆, 𝑠0, →〉, where 𝑆 ⊆ 𝐿 × ℝ𝐶  is the 

set of states, 𝑠0 = (𝑙0, 𝑢0) is the initial state, and → ⊆ 𝑆 × (ℝ≥0  ∪ 𝐴) × 𝑆 is the 

transition relation such that: 

- (𝑙, 𝑢)  
𝑑
→ (𝑙, 𝑢 + 𝑑) if ∀𝑑′: 0 ≤ 𝑑’ ≤ 𝑑 ⟹  𝑢 + 𝑑′ ∈ 𝐼(𝑙), and 

- (𝑙, 𝑢)  
𝑎
→ (𝑙′, 𝑢′) if there exists 𝑒 = (𝑙, 𝑎, 𝑔, 𝑟, 𝑙’) ∈ 𝐸 [such that] 𝑢 ∈ 𝑔, 𝑢′ =

[𝑟 ↦  0]𝑢, and 𝑢′ ∈ 𝐼 (𝑙), 
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where for 𝑑 ∈ ℝ≥0, 𝑢 +  𝑑 maps each clock 𝑥 in 𝐶 to the value 𝑢(𝑥)  +  𝑑, and [𝑟 ↦ 0]𝑢 

denotes the clock valuation which maps each clock in 𝑟 to 0 and agrees with 𝑢 over 𝐶 \ 𝑟" 

[9, p. 3]. 

[9, p. 4] elucidates Definition 2 as follows: "From a given initial state, we can choose to 

take an action or a delay transition […]. Depending [on] the chosen delay, further actions 

may be forbidden." If more than one action is enabled, the choice between them is made 

non-deterministically. 

TA can be composed into networks of timed automata. Such networks consist of 𝑛 > 1 

timed automata 𝑇1, … , 𝑇𝑛 which share a common set of clocks and actions [9, p. 4]. The 

state of a TA network at time 𝑡 is given by the tuple 〈𝑙,̅ 𝑢〉. Here, 𝑙 ̅ =  〈𝑙1, … , 𝑙𝑛〉 is a 

location vector where 𝑙𝑖 is the location of automaton 𝑇𝑖 at time 𝑡, and 𝑢 is a valuation for 

all clocks in the network. In UPPAAL, TA networks share a set of global variables. 

For a full definition of the operational semantics of UTA, the reader is advised to review 

[10]. 
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 UPPAAL Modelling Language 

In this section we briefly present some core UPPAAL language features in the interest of 

self-containment. An exhaustive listing is available in the UPPAAL manual1. 

A UPPAAL model consists of the following basic elements: global declarations, automata 

templates, and system declarations. These elements are illustrated in Figure 4. 

The user can define variables whose scope covers the entire model in the global 

declarations section. Variable types include (but are not limited to): clocks, 

synchronization channels, integers, Booleans, records, and multidimensional arrays of the 

previously listed types. We will refer to the C-like sublanguage UPPAAL uses for these 

declarations as the UPPAAL system definition language. 

UPPAAL automata are defined as named parameterized templates – directed multigraphs 

whose nodes are locations and whose edges are transitions. 

Automata transitions can be supplied with guard, assignment, synchronization, and 

selection labels, while locations can be decorated with an invariant label. These labels 

can access variables from the global scope as well as the local scope of the template. 

                                                 

 

1 http://www.it.uu.se/research/group/darts/uppaal/help.php 

 

Figure 4. Core UPPAAL language features. 

http://www.it.uu.se/research/group/darts/uppaal/help.php
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Variables local to a template are defined in the corresponding template declarations 

section. The local scope of a template also includes its parameters. 

Locations can be marked as initial, urgent, or committed. A template must have exactly 

one initial location (displayed as a double circle) but may optionally have any number of 

either urgent or committed locations (the latter two exclude one another and are marked 

with an uppercase 'U' or 'C', respectively). 

Per [9, p. 6], "time is not allowed to pass when the system is in an urgent location". 

Committed locations further restrict the behavior of the automaton: "A state is committed 

if any of the locations in the state is committed. A committed state cannot [cause a] delay 

and the next transition must involve an outgoing edge of at least one of the committed 

locations" [9, p. 9]. The difference between the two is that urgent locations allow 

interleaving with other automata [6, p. 84]. 

In order to compose a network of automata in UPPAAL, the requisite templates should 

be instantiated inside the system declarations section and listed as part of its system line. 

It should be noted here that a template can be instantiated partially (leaving some 

parameters unbound). This facilitates the compact declaration of automata subtypes. 

Template instantiations enumerated in the system line represent processes that are part of 

the system model. Local template variables for processes instantiated from the same 

template are independent from one another. In other words, a template’s local declarations 

are prototypes for variables belonging to the local scopes of processes spawned from said 

template. 

In summary, UPPAAL timed automata are declared as named parameterized templates. 

The latter are directed multigraphs with transitions as edges and locations as vertices. 

Transitions and locations may be annotated with one or more labels. Labels act as 

behavior specifiers and, as such, can reference state variables from both the model’s 

global scope and the template’s local scope (including the parameters of the template). A 

UPPAAL system model is constructed from UTA templates via composition. The model 

processes that form the system are enumerated as part of the system line in the model’s 

system declarations section. 
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 UPPAAL in Model-Based Testing 

In this section we briefly introduce UPPAAL’s requirement specification language and 

outline an MBT test generation method built on it. For a baseline treatment of UPPAAL 

in MBT, [6] is recommended. Further, [11] describes a provably correct test development 

method for timed systems based on the UTA formalism. 

The UPPAAL toolkit includes a model-checking utility called verifyta. Per [9, p. 7], "the 

main purpose of a model-checker is [to] verify the model [with respect to] a requirement 

specification." In order to facilitate the formalization of such requirements, UPPAAL 

offers a limited version of Timed Computation Tree Logic (TCTL). 

UPPAAL’s flavor of TCTL is referred to as the UPPAAL query language (UQL) in this 

section. Expressions in UQL can be applied to UPPAAL models using the verifyta tool. 

In addition to merely outputting whether the expression is satisfied by the input model, 

verifyta can generate symbolic witness traces demonstrating how the verdict was reached. 

These traces can be exploited subsequently for offline MBT. 

UQL can be used to specify state and path formulae. The former describe individual 

model states and the latter quantify path formulae over model traces. A state formula can 

be as simple as stopwatch.done which asserts that the process stopwatch is in the done 

location. Path formulae, however, are classified into reachability, safety, and liveness 

properties. In what follows, only reachability properties will be considered because of 

their significance for UPPAAL MBT. An introduction to safety and liveness properties is 

provided in [9, p. 8 – 9]. 

Reachability properties ask whether a given state formula, p, can possibly be satisfied by 

the model. The UQL syntax for expressing the proposition that some state satisfying p 

can be reached by the model is E<>p. Figure 5 depicts an example state-space search where 

the marked node represents the state where reachability property p has been satisfied, and 

the bold arrows specify a path towards this state. 
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[6, p. 91 – 94] describes a procedure for generating MBT test cases using reachability 

properties derived from test purposes1. In broad terms, either the test purpose is directly 

convertible to a simple reachability property, or the model needs to be decorated with 

utility constructs (e.g. globally scoped Boolean flag variables) in order to facilitate the 

expression of the test purpose. By generating a symbolic trace affirming that the property 

holds for the model (using verifyta), an abstract test case has essentially been constructed. 

The latter will be subject to adjustment before it can be used to test the modelled system. 

While UQL is a powerful tool, it is not entirely without limitations in terms of ease-of-use. 

The language is limited in that path formulae do not allow nesting (for example, 

E<>(x imply E<>y) is incorrect UQL syntax). This makes it difficult to express certain 

complex test purposes, requiring testers to substantially modify their models in order to 

fully exploit UTA for MBT. A more powerful alternative for test purpose specification 

suited for both offline and online UTA MBT is introduced in 2.3. 

In summary, test generation can be formulated as a model-checking task in UPPAAL. 

Namely, test purposes are formalizable as reachability properties in UPPAAL’s property 

specification language. A reachability property asks whether a given state configuration 

can possibly be reached by the model. When provided with a SUT model and a 

reachability property, UPPAAL’s model-checking tool verifyta can generate a witness 

trace that represents an ATC for the SUT. However, due to the manifest limitations of the 

                                                 

 

1 Test purposes are introduced in Section 2.1. 

 

Figure 5. Example state-space search for reachability property E<>p [9, p. 8]. 



33 

 

abovementioned query language (lack of support for nested properties), an alternative 

approach is needed. 

2.3 Test Purpose Specification Language (TDLTP) 

As explained in 2.2.3, UPPAAL has usability limitations when applied in an MBT 

context. UPPAAL’s property specification language, while relatively expressive, does 

not support nested reachability properties and is thus unsuited for the direct specification 

of certain complex test purposes. In this section we introduce a solution to the problem – 

the Test Purpose Specification Language (TDLTP), an abstract notation language relevant 

for constructing UPPAAL test models that encode advanced test purposes. The following 

subsections are based on the theory presented in [1]. 

 Test Purpose Specification via TDLTP Expressions 

Using TDLTP, a test purpose is specified as an expression. When applied to a SUT model 

annotated with trap variables1 according to the logic laid out in [1, pp. 4 - 11], an 

interpretation of the test purpose expression can be used to transform the SUT model into 

a test model. The latter is simply the composition of the original SUT model, a test 

stopwatch, and a collection of property recognizing automata (henceforth recognizers). 

The behavior of the test model is identical to that of the original SUT model. However, 

the supplementary recognizers can be exploited in order to generate symbolic traces 

representing test purpose conformant ATCs. 

The recognizers in a test model are implicitly organized into a tree whose structure 

mirrors that of the corresponding TDLTP expression’s abstract syntax tree (AST)2. More 

precisely, each recognizer uniquely maps to a subexpression of the TDLTP expression. An 

individual recognizer thus has a single parent recognizer3 and zero or more child 

recognizers, analogously to the AST node it represents. This structuring is achieved via 

globally scoped synchronization channels that function as dedicated means of 

                                                 

 

1 Explained in Section 2.3.3. 

2 The notion of an AST is explained in Section 2.4. 

3 Except the root recognizer, which has the test stopwatch as its parent. 
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communication between recognizers. An example mapping between a test purpose 

expression and its recognizer tree is depicted in Figure 6. 

The test stopwatch (described in Section 8 of [1]) has two terminal locations – one 

representing test success and the other failure. It is attached to the root node of the 

recognizer tree. When UPPAAL’s model-checker is invoked with the goal of affirming 

that the success location of the stopwatch can be reached in some model state, the 

stopwatch sends an initializing signal down to its child (the root recognizer). This signal 

is subsequently propagated to the leaves of the recognizer tree in a depth-first manner. As 

the result of this process, all the recognizers in the test model enter their recognizing 

states. Essentially this means that they begin to wait for their corresponding TDLTP 

subexpressions to be satisfied. 

When a subexpression has been satisfied at some step in the model-checker’s state-space 

search, the corresponding recognizer resets itself and notifies its parent with a success 

signal. This signal is subsequently propagated up the recognizer tree (according to the 

logic encoded in each recognizer along the path), until it can reach the test stopwatch. 

When the stopwatch receives a success signal from its child, the state-space search can 

be terminated. The resultant symbolic trace generated by UPPAAL’s model-checker 

 

Figure 6. Comparison of TDLTP AST (a) and corresponding recognizer tree (b). 
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represents an abstract test case which, when concretized for the SUT, can be used for 

testing1. 

In what follows we will not consider the details of integrating TDLTP into a UPPAAL 

MBT workflow. Instead we treat the theory of the language as the specification of a tool 

which accepts as input a trapset annotated SUT model and a TDLTP test purpose 

expression. As output, the tool produces a test model per the logic described in [1]. 

Subsections 2.3.2 – 2.3.5, give a concise description of the syntax and semantics of 

TDLTP. 

 Expression Syntax 

The syntax for TDLTP expressions is presented in Backus-Naur form (BNF) in Figure 7. 

<Expression> ::= '(' <Expression> ')' 
  | 'A' '('<TrapsetExpression>')' 
  | 'E' '('<TrapsetExpression>')' 
  | <UnaryOp> <Expression> 
  | <Expression> <BinaryOp> <Expression> 
  | <Expression> ~> <Expression> 
  | <Expression> ~> '['<RelOp><NUM>']' <Expression> 
  | '#'<Expression><RelOp><NUM> 
 
<TrapsetExpression> ::=!'<ID> 
   | <ID> '\' <ID> 
   | <ID> ';' <ID> 
   | <ID> 
s 
<UnaryOp> ::= 'not' 
<BinaryOp> ::= '&' | 'or' | '=>' | '<=>' 
<RelOp> ::= '<' | '=' | '>' | '<=' | '>=' 
<ID>  ::= ('TS')<NUM> 
<NUM>  ::= ('0'...'9')+ 

Figure 7. TDLTP expression grammar in BNF form [1, p. 4]. 

 

The leaf nodes of a TDLTP expression are references to trapsets (denoted TS1, TS2, …). 

Trapset references can appear as leaves on their own or as the operands of a trapset 

expression – the former is just an edge case of the latter. 

A trapset expression always appears as the immediate child of a trapset quantifier, of 

which there are two types: universal (A) and existential (E). These, in turn, are the operands 

                                                 

 

1 In this thesis the test model is referred to as an abstract test case instead as it contains the information 

needed to generate symbolic traces. 
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for TDLTP logical operators, which are classified as either connectives or temporal 

operators. In the following subsections we introduce the basic semantics for each type of 

TDLTP expression node. 

 Semantics of Trapsets 

A trapset in TDLTP is defined as a set of assignments to Boolean trap variables (traps) 

[1, p. 4]. Each trap is mapped to a single transition in the SUT model via an assignment 

label1. If the right-hand side of a trap assignment is syntactically reducible to a Boolean 

literal, the corresponding trap is classified as elementary, otherwise the trap is classified 

as conditional. An example of two trapsets in a UPPAAL model fragment is depicted in 

Figure 8, Section 2.3.4. 

During a simulation run of the model, the value of a specific trap variable at any given 

instant denotes whether the corresponding transition has been taken2. According to this 

interpretation, trapsets are an extension of the model transition coverage criterion 

described in [6, p. 93]. Roughly put, trapsets allow higher-level TDLTP expression 

operators to reason with groupings of transitions instead of individual transitions. 

 Semantics of Trapset Expressions and Trapset Quantifiers 

Per the BNF grammar in Figure 7, trapsets can appear as simple references or as the 

operands of trapset expressions in a test purpose expression. Trapset expressions 

represent trapsets that can be derived from their operands based on Mappings M1 – M3 

provided in Section 5.1 of [1]. We use the term base trapset to distinguish explicitly 

mapped trapsets from trapset expressions. 

Trapset expressions are divided into three types based on their root operators: absolute 

complement, relative complement, and linked pair. In what follows, each type of trapset 

expression is briefly introduced. For contextualization, an example model fragment 

containing two trapsets is provided in Figure 8. 

                                                 

 

1 UPPAAL assignment labels are introduced in 2.2.2. 

2 Since the last time the trap variable was reset. For conditional traps, the condition simply restricts the 

notion of taken for the transition in question. 
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The relative complement of trapsets TS1 and TS2 (denoted TS1\TS2) maps to all transitions 

that are included in TS1 and excluded from TS2. A formal definition is provided in Section 

4.2 (2) of [1]. Mapping M1 in Section 5.1 of [1] describes how the relative complement 

of two trapsets can be used to derive an equivalent base trapset. The figure below depicts 

the result of applying a relative complement operator on the two trapsets from Figure 8. 

The absolute complement of a trapset TS (denoted !TS), maps to all transitions that are 

excluded from TS. A formal definition is provided in Section 4.2 (3) of [1]. Mapping M2 

in Section 5.1 of [1] describes how the absolute complement of a given trapset can be 

used to derive an equivalent base trapset. The figure below depicts the result of applying 

the absolute complement operator on trapset TS1 from Figure 8. 

 

Figure 8. Example model fragment with two trapsets: TS1 & TS2. 

 

Figure 9. Relative complement of trapsets TS1 & TS2 from Figure 8. 

 

Figure 10. Absolute complement of trapset TS1 from Figure 8. 
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The linked pairs trapset of trapsets TS1 and TS2 (denoted TS1; TS2) maps to all transitions 

of TS2 whose starting location is a terminal location for some transition in TS1. Such 

transition pairs are known as linked pairs. A formal definition is provided in Section 4.2 

(4) of [1]. Mapping M3 in Section 5.1 of [1] describes how an equivalent base trapset can 

be produced for this trapset expression type. Figure 11 depicts a linked pairs trapset 

generated from the trapsets shown in Figure 8. 

In order to succinctly state whether all or some traps must be true or false at once, TDLTP 

introduces trapset quantifiers of two types: existential (E) and universal (A). These 

operators only admit trapset expressions as operands. 

Given a trapset expression TS, E(TS) states that some trap of the set TS must be true and 

A(TS) states that all traps of the set TS must be true. In terms of the recognizer tree concept 

introduced in 2.3.1, trapset quantifiers correspond to leaf recognizers. Mappings 

M4 – M5 in Section 5.2 of [1] describe how trapset quantifiers map to recognizing 

automata. It should be noted that trapset quantifiers can appear with a negation modifier 

in a test purpose expression. In this case the semantics from equivalences (14) – (15) in 

Section 4.3 of [1] apply. 

 Semantics of Logical Connectives and Temporal Operators 

TDLTP supports the following logical operators: disjunction, conjunction, implication, 

equivalence, leads to, timed leads to, and bounded repetition. A TDLTP logical operator 

can have either a trapset quantifier or another logical operator as an operand. In broad 

terms, these operators represent propositions about the SUT model’s current trace during 

a simulation or state-space search. Logical operators are considered separate from trapset 

quantifiers here because their operand domains do not overlap, even though they are 

similar in terms of recognizer output. 

 

Figure 11. Linked pairs trapset of trapsets TS1 & TS2 from Figure 8. 
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Logical operators are further classified into connectives and temporal operators. This 

distinction is immaterial in the context of this thesis. Put simply, the recognizer 

architecture for logical connectives is based on their counterparts in classical logic, while 

recognizers for temporal operators facilitate the expression of conditions applying to 

entire traces or subsequences of traces. 

The negation modifier known from standard logic is made available for all logical 

operators. Per [1, p. 7], negation will not map to a separate recognizer and should instead 

be eliminated from top level expression nodes by the negation rules defined by 

equivalences (14) – (22) in Section 6 of [1]. Essentially, when a negation applies to a 

logical operator in a TDLTP expression, it should be removed by the application of 

reduction rules so that the resultant expression only has negations at the level of trapset 

quantifiers. 

Items (7) – (13) in Section 4.3 of [1] supply formal definitions for each logical operator 

type. Recognizer generation for these operators is described in Mappings M6 – M10 in 

Section 5.2 of [1]. It should be noted that such mappings do not currently exist for 

implication and equivalence since they can be replaced by lower level operators [1, p. 7]. 

Section 6 of [1] provides some reduction rules whose application to a TDLTP expression 

prior to recognizer generation could result in a smaller recognizer tree, and, consequently, 

a smaller test model. A reduction in the size of a test model which preserves the model’s 

input-output behavior, will lead to a reduction in its state-space. Model-checking 

algorithms (as a category of state-space search algorithms) are faster for smaller 

state-spaces, as evidenced by the fact that UPPAAL’s model-checker computes results 

faster for reduced models. 

2.4 Abstract Syntax Trees 

To provide some context for the sections of this thesis which discuss the implementation 

of the TDLTP interpreter, we will briefly introduce the terms parse tree and abstract 

syntax tree in this section. 

[12, p. 20 – 21] describes a typical language application as a pipeline of interrelated 

components. A simplified version of this pipeline is provided in Figure 12. 
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The interpreter subcomponent in Figure 12 contains a reader and a semantic analyzer. 

The reader builds a data structure called an intermediate representation (IR) according 

the input it receives from the user. The input for a language application could be anything 

from a text file to binary data. 

After the reader parses the input, the resultant IR is forwarded to the semantic analyzer. 

This component examines and collects information from the IR according to the 

semantics of the language. Put simply, the semantic analyzer will assign a meaning to the 

input [12, p. 21]. 

After a meaning has been assigned (possibly through the use of an auxiliary data 

structure), the IR is used to drive the execution performed by the interpreter. As the result 

of execution, information will be produced in some output format. The format depends 

on the application – it can range from simple terminal output to program code. 

In the process described above – after the input is parsed by the reader into an intermediate 

form – components in the pipeline will examine the IR instead of reparsing the input. To 

facilitate this, the IR should [12, p. 92]: 

1. Contain no unnecessary information; 

2. Be easily traversable; 

3. Emphasize the relationship between the abstract constructs of the language rather than 

the tokens of its grammar. 

Abstract syntax trees (ASTs) are a commonly used form of IR which satisfies the three 

requirements presented above. For a given input, the corresponding AST is a tree structure 

which reduces the input to its essential elements. A possible AST for the UPPAAL 

assignment statement ‘flag = true;’ is depicted in Figure 13. 

 

Figure 12. Language application pipeline (adapted from Figure 1.1 in [12, p. 21]). 
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A parse tree (also known as a syntax tree) is another form of tree-based IR. Parse trees 

represent the complete syntactical structure of an input sentence. An example parse tree 

for ‘flag = true;’ is presented Figure 14. 

As can be seen in the figure above, a parse tree is far less compact and contains 

unnecessary information compared to the corresponding AST. Abstract syntax trees 

generalize the notion of parse trees and represent the input conceptually rather than 

structurally. 

As will be shown in Chapters 4 and 5, ASTs are involved in many phases of the test model 

construction algorithm implemented by the TDLTP interpreter. 

 

 

Figure 13. Example AST for the assignment statement ‘flag = true;’. 

 

Figure 14. Example parse tree for the assignment statement ‘flag = true;’. 
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3 Requirements 

This chapter provides informal requirements for the interpreter implementation produced 

as the result of this thesis. 

Figure 15 illustrates how a human user (a software tester) interacts with the interpreter, 

and how the interpreter responds. 

In the interaction, the software tester provides the interpreter with a UPPAAL SUT model 

and a TDLTP expression. At the time of writing, the latest version of UPPAAL provides 

facilities for storing models as XML files – this is the format in which the interpreter shall 

accept models as input. As for the TDLTP expression, the interpreter should be able to 

receive it as a simple string or plain text file. 

 

Figure 15. Interaction with the TDLTP interpreter. 
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As described in [1, p. 4], the SUT model should be linked to the TDLTP expression via 

trapset labels1. It is the responsibility of the tester to ensure that this labeling is available 

in the SUT model provided for the interpreter. 

Having received the requisite inputs, the interpreter shall use them to generate an XML 

file that represents a test model. The logic used for the generation of this test model should 

be equivalent to the theoretical derivation procedure described in [1]. The user should be 

able to open the output XML file which encodes the test model in UPPAAL, i.e. the 

format of the XML file should match the format used by UPPAAL for model storage. 

We note here that no explicit restriction shall be placed on the lower bound of the 

performance of the interpreter. Obviously, it should produce the output XML in a sensible 

amount of time, but the term ‘sensible’ will not be attached to a concrete metric here. This 

concession will allow for more time to be spent on ensuring the correctness of the 

implementation. 

To conclude this chapter, we present some capabilities that the interpreter should be 

instrumented with so that it could fulfil the requirements presented above. Since the 

generation of a test model involves processing UPPAAL models and TDLTP expressions, 

an implementation of the interpreter needs to be able to (at minimum): 

1. parse TDLTP expressions; 

2. parse and generate UPPAAL XML files; 

3. parse and generate code in UPPAAL’s system definition language2. 

All of the capabilities listed above were integrated into the interpreter produced as the 

result of this thesis. Our approach to implementing them is described in Chapter 4 below. 

Chapter 5, on the other hand, focuses specifically on the algorithm we developed for 

composing a test model based on a SUT model and a TDLTP expression. 

 

                                                 

 

1 Trapsets are explained in Section 2.3.3. 

2 The UPPAAL system definition language is described in Section 2.2.2.  
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4 Implementation 

In this chapter we provide a high-level description of the implementation of the TDLTP 

interpreter. 

We begin in Section 4.1 by introducing the development approach used to produce the 

artifact – Component-Based Development. Following this, the artifact’s component 

structure is outlined in Section 4.2. Then, after listing the most relevant technological 

decisions in Section 4.3, Section 4.4 will present overviews for a selection of crucial 

components. A user guide for the interpreter is available in Appendix 9. 

4.1 Approach 

The development approach used for implementing the interpreter is a customized variant 

of Component-Based Development (CBD). In this thesis we define a component as a 

software entity (module) that either: 

a. aggregates and provides access to a collection of domain-specific or general-purpose 

object templates (classes), or 

b. encapsulates complex logic that operates on facilities provided by lower-level 

components and provides a simplified reusable interface to top-level dependent 

components or users. 

Based on this definition, we define CBD as an approach to software development where 

the resultant artifact is a composition of relatively isolated components which 

communicate via software interfaces. 

We include a managerial dimension to this definition – in our version of CBD, 

development is organized per component in a bottom-up manner starting with the 

components whose dependencies are only external. This allows for revisions of the 

original component structure during later stages of development. Emergent common logic 

can be extracted to shared components, thus reducing duplication and simplifying future 

refactoring efforts. 
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The basis of our approach was an initial component structure subject to repeated 

modification during the development process. In Section 4.2 we describe the finalized 

component structure of the TDLTP interpreter. 

4.2 Component Structure 

A component diagram for the TDLTP interpreter is provided in Figure 16. 

 

The components depicted above do not encompass the entire set of artifacts produced as 

the result of this thesis. Omissions include shared utility components, test-specific 

 

Figure 16. TDLTP interpreter component diagram. 
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supplementary components, and interface simplifying façade modules1. Where 

applicable, the omitted components will be mentioned in Section 4.4. 

In Table 1, we describe the internal2 components displayed in Figure 16. 

Table 1. Core TDLTP interpreter components and their purposes. 

Component name Purpose 

TDLTP expression object model Define classes for representing TDLTP 

expressions as object structures. 

UPPAAL object model Define classes for representing UPPAAL 

models as object structures. 

TDLTP expression grammar implementation Provide a parser and a code generator3 for 

TDLTP based on its grammar. 

UPPAAL system definition language 

grammar implementation 

Provide a parser and a code generator for the 

UPPAAL system definition language. 

TDLTP parser Simplify the interface provided by the TDLTP 

grammar implementation and transform the 

latter’s parse results into the internal TDLTP 

expression object model. 

UPPAAL parser Provide a simplified interface for the 

UPPAAL grammar implementation and 

transform the latter’s parse results into the 

internally used object model. Provide logic 

for parsing UPPAAL XML. 

Scenario composer Encapsulate logic for applying a TDLTP 

expression to a UPPAAL model according to 

the rules described in [1]. 

TDLTP interpreter UI (user interface) core Provide a basis for implementing user 

interfaces for the interpreter. 

TDLTP interpreter CLI (command-line 

interface) 

Provide a concrete user interface 

implementation based on the UI core. 

                                                 

 

1 In this thesis we define a façade as an abstraction component which simplifies the interface of some 

lower-level component and hides the latter’s implementation details from higher-level dependent 

components. 

2 Put simply, internal components are those presented inside the larger TDL interpreter component shown 

in Figure 16. Components displayed outside of the boundaries of the interpreter component are 

considered external. 

3 We define a code generator (or, more exactly, a source code generator) as a software entity which 

accepts object structures as input and produces code in some predetermined language as output. 
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In accordance with the development approach outlined in Section 4.1, the interpreter was 

implemented in a bottom-up manner starting with the components that only have external 

dependencies (or no dependencies at all). In this respect, Figure 16 serves as a historic 

roadmap for the development effort when visually traversed beginning from the 

bottom-most independent components. Section 4.4 provides information on the 

implementations of the components discussed above. 

4.3 Technological Choices 

This section presents major technological choices made during the development of the 

components introduced in the previous section. We define a technological choice as the 

decision to use a specific programming language, library or software framework to 

facilitate some required functionality. Here, the term required functionality refers to the 

facilities an individual component needs in order to fulfil its purpose, rather than 

something a user could expect from the interpreter. Subsections 4.3.1 – 4.3.6 present 

technological choices in order of scope, with more impactful items occurring first. 

 Programming Language: Java 

Because of the diversity of concepts involved1, an object-oriented general-purpose 

language with a wide collection of supporting libraries is best-suited to implement the 

interpreter. In order to save time, the main contenders were restricted to three languages 

whose popularity has at least stayed consistent since their inception – Python2, Java3 and 

C++4. For any given issue, assistive libraries are simply more likely to exist for 

mainstream languages such as these. 

The primary considerations used for evaluating each language were ease-of-use and 

platform-independence. As stated in Section 3, performance is not a significant concern 

for the interpreter. 

                                                 

 

1 XML, domain-specific languages, and object manipulation to name a few. 

2 https://www.python.org. 

3 https://www.java.com. 

4 https://isocpp.org. 

https://www.python.org/
https://www.java.com/
https://isocpp.org/
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Of the languages in question, Python is arguably the easiest to learn and use. As it is an 

interpreted language, platform-independence is also not an issue. However, since a 

component-oriented approach has been chosen (per Section 4.1), the language is not a 

definite front-runner. More specifically, while Python’s high-level syntax and dynamic 

typing allow for faster development, these features do not facilitate rigorous structuring 

and clear component interfaces without manual boiler-plate constructs such as type hints1. 

With performance not under consideration, C++ offers little to tip the scales in its favor. 

The low-level constructs and operations made available in the language are redundant for 

the task at hand and serve more as cognitive overhead. Another detriment is the fact that 

C++ is not platform-independent – an artifact written in the language will be compiled 

for a specific target environment. 

Java is an object-oriented general-purpose programming language. According to 

StackOverflow’s 2018 developer survey2, Java was ranked as the fifth most popular 

programming language in the developer community. Considering the language’s 

relatively robust syntax, its built-in organizational facilities (packages, modules) and its 

platform-independence, Java was chosen as the programming language in which to write 

the interpreter. 

 Dependency Management: Maven 

When a software artifact is expected to rely on several externally provisioned components 

(dependencies) and especially when the artifact itself is a composition of reusable 

modules, dependency management becomes a necessity. Dependency management is 

defined as an automated means of declaring and retrieving dependencies for use in a 

component. 

For the interpreter project, Apache Maven3 was chosen as the dependency management 

tool. This decision was informed by the relative ease with which Maven allows the user 

to manage, aggregate and build components. Compared to its newer alternative, Gradle4, 

                                                 

 

1 https://docs.python.org/3/library/typing.html. 

2 https://insights.stackoverflow.com/survey/2018, accessed May 2019. 

3 https://maven.apache.org. 

4 https://gradle.org. 

https://docs.python.org/3/library/typing.html
https://insights.stackoverflow.com/survey/2018
https://maven.apache.org/
https://gradle.org/
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Maven also provides helpful structuring conventions. The latter could be considered 

restrictive when flexibility is a necessity but in the context of this thesis, they serve more 

as an assistive measure which speeds up development. An added benefit is the wide array 

of build plugins available for Maven. 

 Parser Generator: ANTLR 

The TDLTP interpreter needs to be able to parse both TDLTP expressions and UPPAAL 

project XML files. The latter contain embedded code snippets in UPPAAL’s system 

definition language. Both TDLTP and the UPPAAL system definition language are 

examples of domain-specific languages (DSLs) – languages that only have a limited 

domain of applicability but allow for more succinct or expressive representation within 

the context of said domain. 

The decision here is whether to implement parsers for these DSLs from the ground up, or 

to use some existing tool capable of generating the required parsers – a parser generator. 

Since efficiency is not a concern in the context of this thesis, there is little reason to 

undertake the effort of constructing bespoke DSL parsers. Time saved on account of this 

can be spent on refinement of higher-level components which depend on the parsers. 

ANTLR (ANother Tool for Language Recognition)1 is the generator chosen for 

implementing the parser components described in Sections 4.4.3 and 4.4.4. ANTLR is a 

Java library which can easily be incorporated into a Maven build process. Additionally, 

the parsers it generates represent parse results in the form of parse trees2 composed of 

Java objects. This means that once a parser has been generated, dependent components 

can ignore the parsing logic and remain in the object-oriented domain of Java. 

 Code Generation: StringTemplate 

The output of the TDLTP interpreter is a UPPAAL project file. As mentioned in the section 

above, this file may contain embedded code written in UPPAAL’s system definition 

language. Since the UPPAAL parser component, described in Section 4.4.6, needs to 

support both parsing and serialization of such embedded code, some technological 

                                                 

 

1 https://www.antlr.org. 

2 Parse trees are introduced in section 2.4. 

https://www.antlr.org/
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solution is needed to support code generation – conversion from an object structure to a 

code string according to some predetermined syntax. 

In the realm of web development, a common approach to transforming data models into 

HTML code is the employment of a templating engine. A templating engine accepts as 

input an object structure and a fixed template. Then, according to the rules encoded in the 

template, the engine transforms the object structure into an output string which can be 

processed further. It is self-evident how a templating engine could be used to generate 

code in UPPAAL’s system definition language. 

Of the various templating engines available on the market, StringTemplate1 proved to be 

an expedient choice. Due to the strict model-view separation enforced by this templating 

engine, the generator templates written as part of this thesis are devoid of complex logic 

and are thus relatively easy to both understand, modify, and reuse. 

 XML Processing: JAXB 

As both the output and part of the input for the TDLTP interpreter is encoded in XML, a 

means for parsing (unmarshalling) and serializing (marshalling) XML files is needed. 

JAXB (Java Architecture for XML Binding)2 is a Java framework specialized to this end. 

Based purely on the programming language of choice (as explained in Section 4.3.1), 

JAXB was chosen as the XML marshalling tool for the UPPAAL XML parser component 

outlined in Section 4.4.5. 

It should be noted that as of Java 11, JAXB is no longer part of the Java standard edition 

platform (Java SE)3. However, at the time of writing, earlier versions of Java with JAXB 

included are still available. Additionally, the JAXB project is currently continued under 

the Jakarta EE4 effort. 

                                                 

 

1 https://www.stringtemplate.org. 

2 https://github.com/javaee/jaxb-v2. 

3 http://openjdk.java.net/jeps/320. 

4 https://jakarta.ee. 

https://www.stringtemplate.org/
https://github.com/javaee/jaxb-v2
http://openjdk.java.net/jeps/320
https://jakarta.ee/
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 Command-Line Option Parser: args4j 

The top-level component of the TDLTP interpreter is a command-line interface (CLI). The 

implementation of this component is outlined in Section 4.4.9 and a user guide is provided 

in Appendix 9. 

The TDLTP CLI is a Java application. The entry point for a Java application is its main 

method. If the application is executed from the command-line, any options appended to 

the initializing call are forwarded to the main method in the from of an array of strings. 

This is the way the CLI component shall receive input, i.e. options, from users. 

Processing string arrays is not a particularly difficult task, but since specialized libraries 

exist for transforming Java main option arrays into more useful object representations, 

there is no reason to undertake the additional burden of writing a bespoke option parser. 

To reduce time spent on implementation, it was decided that a supplementary Java option 

parser was needed. 

The parser of choice is args4j1. Using args4j, the set of possible options made available 

for the user can be defined as a simple Java class whose fields are decorated with 

annotations. Each field maps to an option and a wide variety of field types is supported. 

Using a single utility class provided by the library, the array of strings provided to the 

main method can be transformed into an instance of this option-encapsulating class. The 

simplicity and customizability inherent in this approach are the reasons args4j was 

chosen. 

4.4 Component Overviews 

This section provides implementation overviews for the components listed in Table 1 

(Section 4.2). Given that this thesis is not intended to be a highly detailed technical 

document, the presentations in Sections 4.4.1 – 4.4.9 are kept relatively succinct. 

 TDLTP Expression Object Model 

The ANTLR-generated parser described in Section 4.4.3 contains classes for representing 

TDLTP expressions as parse trees. While it would be possible to exploit these classes 

                                                 

 

1 https://github.com/kohsuke/args4j. 

https://github.com/kohsuke/args4j
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directly in higher-level components, there are some limitations. The instantiation logic 

for ANTLR-generated parse tree classes is tightly coupled to ANTLR’s logic. Put simply, 

it is cumbersome to create new object instances using classes generated by ANTLR – 

they are meant to be internally instantiated during the parsing process. 

To overcome the issues described above, it was decided to apply a layer of abstraction 

over the ANTLR parser in the form of the TDLTP parser façade (described in Section 

4.4.5). The latter encapsulates and provides a simplified API for the ANTLR-based 

TDLTP parser, converting the latter’s parse results into ASTs which do not depend on 

ANTLR. The component discussed in this section – the TDLTP expression object model 

– contains the classes used in these independent ASTs. 

Due to the nature of ASTs, the object model discussed here naturally manifests tree 

properties such as parent-child relationships. Such relationships can be modeled by a 

recursively defined class with reference variables pointing to a single parent instance and 

zero or more child instances. Figure 17 presents an informal class diagram for the abstract 

tree-based class structure at the center of the object model for TDLTP expressions. 

 

As illustrated in Figure 17, the AST representation of a TDLTP expression instance is 

wrapped in an object (of type TdlExpression) that points to a root AbsInternalNode 

instance (unless the AST is empty). AbsInternalNode is one of two top level 

 

Figure 17. Class diagram for the base classes in the TDLTP expression model. 
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concretizations1 of the base AbsExpressionNode type with the other being AbsLeafNode. 

AbsInternalNode and AbsLeafNode respectively model internal expression tree nodes 

(AST nodes that can only occur with child nodes) and leaf nodes. 

The abstract node classes mentioned above are concretized further into classes that 

represent distinct operator and leaf nodes present in the BNF grammar for the TDLTP 

language. For example, logical connectives and trapset expressions are modeled as 

descendant classes of AbsInternalNode. To reduce the scope of this discussion, the 

aforementioned concretizations are not individually introduced here. Instead, we will 

conclude this section by listing some more salient implementation details for the object 

model. 

Child containers. When inspecting the class diagram presented in Figure 17, the obvious 

question to ask is: “Why are child nodes of an AbsInternalNode instance encapsulated in 

a ChildContainer instance instead of being included as aggregated members of the 

AbsInternalNode class?” 

Delegation of child node containment to ChildContainer was required to enforce 

interface consistency with respect to operator arity. The arity of an AbsInternalNode 

inheritor is defined as the number of child nodes the represented operator node is expected 

to have. To provide a simple interface for dependent components, one would naturally 

encode the arity of a concrete AbsInternalNode inheritor in its class contract. For 

example, a class representing the binary disjunction operator would have methods 

setLeftChild and setRightChild instead of an abstruse setChild method that accepts an 

ordinal argument. This reduces cognitive overhead when developing dependent 

components. 

Since the AbsInternalNode class is extended further with abstract classes that generalize 

logical operators, trapset operators, and trapset quantifiers, encoding the arity contract 

                                                 

 

1 These two classes are still abstract, so the term ‘concretization’ here refers to the fact that they are 

extensions of the abstract AbsExpressionNode class. 
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into the AbsInternalNode class causes the class structure to become too large1. The 

solution is to encapsulate the arity contract into a generic container class 

(ChildContainer) whose concrete implementations (UnaryChildContainer, 

BinaryChildContainer) can subsequently be used throughout the class layout of the 

object model via Java’s parameterized typing feature. 

Subtree hashing. As evident from Sections 5 and 6 of [1], TDLTP expression nodes are 

subject to normalization and reduction prior to the construction of the UPPAAL test 

model. This is explained further in Chapter 5, where an algorithm is outlined for these 

two operations. Here we simply note that normalization requires the ability to replace the 

child subtrees of an AbsInternalNode instance. 

The mechanism which facilitates child subtree replacement is made available for each 

AbsInternalNode concrete inheritor class via the replaceChildNode method provided by 

the encapsulated ChildContainer object. This method accepts two AbsExpressionNode 

instances as arguments and replaces the child subtree that matches the first argument with 

the subtree represented by the second argument. The term matching here can refer to both 

referential identity2 and object equivalence3 between two AbsExpressionNode instances. 

The path of least resistance would lead one to simply rely on referential identity in the 

replaceChildNode method. However, considering possible future applications, it is better 

to include object equivalence, which is an extension of referential identity. For this 

reason, AbsExpressionNode classes in the object model were supplied with facilities for 

determining equivalence. This is exploited in the replaceChildNode method of 

                                                 

 

1 Since we concretize AbsInternalNode into a generalizing class for logical operator nodes 

(AbsLogicalOperatorNode), if we, for example, define arity extensions AbsBinaryInternalNode and 

AbsUnaryInternalNode from AbsInternalNode, then we would have to define two abstract 

AbsLogicalOperatorNode arity classes which inherit from them: AbsBinaryLogicalOperatorNode and 

AbsUnaryOperatorNode. This also applies for other general operator types such as trapset expression 

operators. Since Java does not support multiple inheritance, an alternative would be to use interfaces (for 

example, IBinaryNode, IUnaryNode), but this would result in code duplication. 

2 Referential identity is defined here in terms of object variables. Two object variables are referentially 

identical if they point to the exact same object in memory. An example of Java code utilizing referential 

identity is objectA == objectB.  

3 Roughly put, object equivalence allows two objects to be considered identical for some purpose if they 

contain the same data – even if they occupy non-overlapping sections of memory. An example of Java 

code utilizing object equivalence is objectA.equals(objectB). 
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ChildContainer. In a nutshell, replaceChildNode iterates the child nodes of the container 

and compares each child to the node provided as its first argument (using the Java equals 

method). When a match is found, the replacement is performed. This is depicted in Figure 

18. 

public void replaceChildNode( 

  ChildType prevChild, ChildType newChild 

) { 

  for (int i = 0; i < arity; i++) { 

    ChildType childCandidate = getChildNode(i); 

    if (prevChild.equals(childCandidate)) { 

      setChildNode(i, newChild); 

      break; 

    } 

  } 

} 

 

Figure 18. Basic child replacement procedure for the TDLTP child container class. 

Assertion of subtree equivalence (represented by prevChild.equals(childCandidate) in 

the figure above) is computationally expensive (all the nodes of the subtrees need to be 

traversed to ensure equivalence), so hashing is required to speed up the process. 

Providing a simple hashing mechanism that itself relies on subtree traversal is not much 

of an improvement. To save time on traversals, ChildContainer has been equipped with 

encapsulated hash caching logic. Whenever a ChildContainer instance is modified (a 

child node instance is attached or detached), the container flips on an internal 

modification semaphore. The next time a hash is requested from the ChildContainer, if 

the modification semaphore is set, it will recompute the hash of the subtree it represents 

and cache the result internally; otherwise the container will simply return the previously 

cached hash. The benefit here is that repeated hash calculations for an expression subtree 

that has not mutated are avoided. This hashing feature is subsequently exploited in the 

improved replaceChildNode method depicted in Figure 19. 
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public void replaceChildNode( 

 ChildType prevChild, ChildType newChild 

) { 

  for (int i = 0; i < arity; i++) { 

    ChildType childCandidate = getChildNode(i); 

    if (childCandidate == null 

        || (prevChild.hashCode() != childCandidate.hashCode())) 

      continue; 

 

    if (prevChild.equals(childCandidate)) { 

      setChildNode(i, newChild); 

      break; 

    } 

  } 

} 

 

Figure 19. Better child replacement procedure for the TDLTP child container class. 

Facilities for subtree inspection. Since TDLTP expression tree objects are expected to 

be inspected via traversal for a multitude of reasons, and the number of classes present in 

the corresponding object model is relatively large, some means for generalizing traversal 

for these objects was needed. To achieve this, the Visitor design pattern introduced in [13, 

p. 331 – 344] was used throughout the class structure in question. This design pattern 

supports the implementation of new operations on TDLTP expression trees without 

changing the classes involved. 

 UPPAAL Object Model 

The TDLTP interpreter needs to be able to parse and generate UPPAAL XML files. An 

individual file defines the structure of a UPPAAL model. The structural elements (e.g. 

template declarations, transition labels) of such a model may contain embedded code in 

UPPAAL’s system definition language. The component discussed in this section defines 

classes for representing both the structural and language features of a UPPAAL model. 

The justification for providing an object model for UPPAAL’s system definition language 

(separate from the one generated by ANTLR as described in Section 4.4.4), is analogous 

to the reasoning presented in Section 4.4.1 for the TDLTP expression model. Because of 

the similarities between the implementations of the two models and owing to the sheer 

size of the model implemented for the system definition language1, a description of the 

                                                 

 

1 More than 100 classes at the time of writing. 
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language part of the UPPAAL object model is omitted. The rest of this section is devoted 

to the classes used for representing the structural aspects of a UPPAAL model. 

Figure 20 informally depicts the core classes for the UPPAAL structural model 

implemented in the component. 

 

Notable omissions in Figure 20 include linguistic and purely graphical elements such as 

nails, colors, and coordinates – these UPPAAL features are of course facilitated by classes 

in the model, but there is little reason to dissect all of them in this section. Additionally, 

the two label classes depicted in the figure (LocationLabels and TransitionLabels) are 

essentially containers for UPPAAL system definition language ASTs. Due to the 

simplicity of these container classes, they are also excluded from the discussion that 

follows. 

The object representation of the structure of a UPPAAL model is rooted in the UtaSystem 

class. Objects instantiated from this class can reference zero or more instances of the 

Template class. A template represents the prototype for a UPPAAL timed automaton. As 

such, it must contain some substructure for encoding Locations and the Transitions 

between them. 

 

Figure 20. Class diagram for structural classes in the UPPAAL object model. 
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The abovementioned substructure was implemented via the generic DirectedMultiGraph 

class. As evident from the name of the employed class, the relationship between 

transitions and locations in a timed automaton can be modeled as a directed multigraph. 

A directed multigraph is a graph in which multiple directed edges are permitted between 

a pair of vertices. In this case the vertices are locations and the edges are transitions. The 

DirectedMultiGraph class facilitates the definition of directed multigraphs for arbitrary 

classes based on object equivalence. It is defined in a shared utility module that will not 

be detailed in this thesis in the interest of brevity. 

 TDLTP Grammar Implementation 

As mentioned in Section 4.3.3, the approach taken for implementing language parsers in 

this thesis was to use the ANTLR parser generator. The component this section is devoted 

to – the TDLTP grammar implementation – houses an ANTLR-generated parser for TDLTP 

together with the static specification file used as input for the generator. 

Parsers generated by ANTLR include object models for representing language inputs as 

parse trees. Such object models are tightly coupled to ANTLR’s general parsing logic. As 

this is also the case for the ANTLR TDLTP parser, a façade component was written on top 

of the base TDLTP grammar implementation described here (Section 4.4.5). This façade 

component utilizes the AST object model for TDLTP expressions introduced in Section 

4.4.1. 

In addition to the base TDLTP parser, the component at hand also contains the 

implementation of a code generator for the language. This generator relies on the 

StringTemplate engine introduced in Section 4.3.4. The engine, a small collection of 

transformer classes, and a single template file was needed to compose the generator. The 

reason it was included as part of the TDLTP grammar component rather than the TDLTP 

parser façade which higher-level dependent modules are expected to use, is that this 

avoids having information on the grammar of TDLTP duplicated across multiple 

components (given that the generator template and the ANTLR parser specification file 

essentially present the same information). 

Regarding TDLTP’s grammar, there are a few key differences between the grammar 

supported by the generated parser and the grammar presented in Figure 7. These are listed 

and justified in Table 2. 
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Table 2. Differences between TDLTP BNF and ANTLR grammars. 

Difference Justification 

Negation operation is recognized as ‘~’ 

instead of ‘not’. 

This adjustment allows for more compact 

presentation of expressions. 

Additionally, most of the other operators in 

the grammar are represented using symbols 

rather than words. 

Disjunction operation is recognized as ‘|’ 

instead of ‘or’. 

Similar to the justification for using a 

different symbol for negation. 

The condition part of a conditional repetition 

subexpression is expected to be wrapped in 

square brackets. For example: ‘#[>10]A(TS1)’ 

is valid instead of ‘#>10A(TS1)’. 

This is the way conditions are represented for 

the time-bounded leads to operator. 

The adjustment makes the resultant grammar 

more consistent. 

Trapset quantifiers ‘A’ and ‘E’ can be 

presented in lower-case. 

User convenience. 

Trapset identifiers are still expected to have 

the ‘TS’-prefix, but letter case is immaterial, 

so that ‘ts1’ is also recognized as a trapset 

identifier. 

User convenience. 

 

The adjustments enumerated in Table 2 were applied primarily in order to enforce 

consistency in the grammar supported by the interpreter. When the grammar for a 

language is consistent, users will have an easier time memorizing its syntax. 

 UPPAAL System Language Grammar Implementation 

As mentioned in Section 4.4.2, UPPAAL XML contains structural and linguistic 

elements. The linguistic elements are snippets of code written in UPPAAL’s system 

definition language. The TDLTP interpreter needs to be able to parse and generate code in 

this language. The component under consideration in this section provides the basic 

facilities that support these requirements. 

As is the case for the TDLTP grammar implementation described in Section 4.4.3, the 

UPPAAL grammar implementation houses an ANTLR-generated parser and a 

StringTemplate-reliant code generator. There are no significant differences between the 

two components in terms of general implementation approach. 
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Of note is the fact that the UPPAAL ANTLR parser discards source code comments1. As 

these comments are not removed from the input SUT model for the TDLTP interpreter, 

there was no reason to exert additional effort in order to retain them in the corresponding 

test model produced by the interpreter. 

The question could be raised as to why the official UPPAAL language parser – libutap2 

– wasn’t used in the interpreter. The answer is that libutap is written in C++, and while 

there are ways to use C++ libraries in Java, it was simply more expedient to implement a 

custom parser with a more limited domain of application. 

Additionally, the official site for the libutap parser lists an outdated version3 of the artifact 

at the time of writing. A newer version was uploaded to a public repository4 after the 

implementation effort had begun. The timing of the upload was unfortunate – the custom 

UPPAAL parser discussed here had already been implemented at the time of upload. 

Because of the modular structure of the TDLTP interpreter, it is not outside the realm of 

possibility for future iterations of the artifact to rely on libutap. 

 TDLTP Parser 

ANTLR-generated parsers contain a class structure for representing parse results as trees. 

These structures are tightly coupled with ANTLR runtime libraries and parsing logic. 

This is at odds with the component-oriented development approach chosen for this thesis 

(Section 4.1). If the chosen parser solution is to be replaced at some point in time, and the 

ANTLR-generated classes are in use throughout the component structure that comprises 

the TDLTP interpreter, a lot more work needs to be done in order to facilitate such a 

replacement. 

For the reasons outlined above, a façade was implemented on top of the parser component 

described in Section 4.4.3 and the object model described in Section 4.4.1. This façade is 

                                                 

 

1 Of the form ‘//single line comment’ or ‘/* multi-line comment */’. 

2 http://people.cs.aau.dk/~adavid/utap. 

3 Released 2007 while the newest version of UPPAAL was released in 2014. 

4 https://github.com/mikucionisaau/utap. 

https://github.com/mikucionisaau/utap
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called the TDLTP parser because higher-level components will use it for parsing TDLTP 

expressions instead employing the ANTLR parser implementation directly. 

The main objective of the TDLTP parser is to accept a TDLTP expression as a string or 

stream, pass this input to the TDLTP grammar implementation, and convert the resultant 

ANTLR parse tree into an AST built from instances of the classes introduced in Section 

4.4.1. Because analogous logic was needed for parsing UPPAAL’s system definition 

language, a generic ANTLR façade component was extracted and utilized for both the 

TDLTP parser under consideration here and the UPPAAL parser described in the 

following section. 

 UPPAAL Parser 

The UPPAAL parser component contains a façade for the UPPAAL grammar 

implementation detailed in Section 4.4.4. In this respect the UPPAAL parser’s goal is 

similar to that of the TDLTP parser – abstract away ANTLR-related implementation 

details. The main difference between the two components is that the UPPAAL parser 

façade needs to support deserialization and serialization between UPPAAL XML and the 

UPPAAL structural model outlined in Section 4.4.2. As the ANTLR-encapsulating logic 

in the UPPAAL parser does not differ in any significant manner from the logic 

implemented for the TDLTP expression language, we focus the discussion in this section 

on processing UPPAAL XML1. 

A high-level specification of the structure of a UPPAAL XML file was available at the 

time of writing in a publicly accessible definition file2. As the XML processor of choice 

in this thesis is JAXB (Section 4.3.5), which is capable of generating Java classes from 

XML schema definition3 (XSD) files, the previously mentioned definition file had to be 

manually converted into an XSD file. Then, using JAXB’s xjc4 tool via Maven, this XSD 

                                                 

 

1 As the UPPAAL parser component both deserializes XML into object structures and serializes object 

structures into XML, it could be argued that the name of the component (‘parser’) is inaccurate. However, 

it was deemed simpler to follow the same naming conventions between the TDLTP parser and the 

UPPAAL serializer/deserializer. 

2 http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd. 

3 https://www.w3.org/TR/xmlschema11-1. 

4 https://docs.oracle.com/javase/tutorial/jaxb/intro/custom.html. 

http://www.it.uu.se/research/group/darts/uppaal/flat-1_1.dtd
https://www.w3.org/TR/xmlschema11-1
https://docs.oracle.com/javase/tutorial/jaxb/intro/custom.html


62 

 

file was used produce a set of classes whose instances the JAXB framework can both 

serialize into XML and deserialize from XML. 

To conceal irrelevant JAXB-related details from higher-level components, the UPPAAL 

parser converts object structures instantiated from xjc-generated classes via the JAXB 

parser into the UPPAAL object model described in Section 4.4.2. When a UPPAAL 

object model is to be serialized into XML, the converse of the previously described 

operation is executed – general-purpose UPPAAL objects are converted into 

JAXB-specific objects and subsequently serialized into XML. 

Special steps were taken to keep code parsing/generation relatively isolated from 

structural conversion in the component. When a UPPAAL XML file is parsed, JAXB is 

used to generate the corresponding intermediate object structure where UPPAAL system 

definition language snippets are nested in simple string fields. During the conversion 

process from the JAXB-specific UPPAAL object structure to the general-purpose 

UPPAAL object structure, when a code snippet is encountered, a parse operation is added 

to an operation queue. An example is depicted in Figure 21. 

TransitionLabels labels = new TransitionLabels(); 

... 

AssignmentsLabel assignmentsLabel; 

label = (assignmentsLabel = new AssignmentsLabel()); 

 

getParseQueue().enqueue( 

  transitionLabelXml.getValue(), 

  getParserFactory().assignmentsParser(), 

  assignmentsLabel::setContent 

); 

 

labels.setAssignmentsLabel(assignmentsLabel); 

... 

transition.setLabels(labels); 

Figure 21. Example of parse deferral during UPPAAL structural conversion. 

 

As parse operations are deferred when converting from the JAXB UPPAAL model to the 

object model intended for use in higher-level components, the conversion logic is kept 

relatively clean – the details of language parsing can be ignored to an extent when 

converting between object models. Conversely, parsing logic can remain isolated from 

conversion logic. 
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A high-level view of UPPAAL parsing logic is depicted in Figure 22. 

public UtaSystem parse(InputStream in) 

    throws MarshallingException, 

       InvalidSystemStructureException, 

       EmbeddedCodeSyntaxException { 

  UtaNode utaNode = unmarshal(in); 

  validateStructure(utaNode); 

 

  ParseQueue parseQueue = new ParseQueue(); 

  UtaSystem utaSystem = convert(utaNode, parseQueue); 

  parseQueue.executeRemaining(); 

 

  return utaSystem; 

} 

Figure 22. High-level view of parsing logic used in the UPPAAL parser. 

The approach to deserializing UPPAAL XML outlined above is also applicable for the 

serialization process. The operations involved – conversion between object structures, 

execution of deferred code processing operations – are simply reordered. 

 Scenario Composer 

At the heart of the TDLTP interpreter is the scenario composer. This component accepts 

as input: 

a. a TDLTP expression represented by an AST consisting of instances of the classes 

defined in the TDLTP object model (Section 4.4.1), and 

b. a UPPAAL model represented by an object structure consisting of instances of the 

classes defined in the UPPAAL object model (Section 4.4.2). 

Having received its inputs, the component then applies the mapping rules described in [1, 

p. 6 – 11] to produce a resultant test model in the form of an object structure. This structure 

can then be serialized into UPPAAL XML. It should be noted that the component has 

been kept isolated from parsing and generation logic. This enforces simplicity and reuse. 

Due to the significance of the scenario composer, Chapter 5 is devoted entirely to its inner 

workings. 

 User Interface Core 

The TDLTP component structure is relatively difficult to use unless supplemented with a 

user interface (UI). To support the production of such interfaces, the UI core component 
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was implemented. This component binds the functionalities provided by the UPPAAL 

parser (Section 4.4.6), the TDLTP parser (Section 4.4.5), and the scenario composer 

(Section 4.4.7) into a single class called the TdlInterpreterUI. 

TdlInterpreterUI is meant to be used as the scaffolding for graphical and command-line 

UIs for the interpreter. It provides means for reporting errors and hooking into the state 

of the interpretation via basic listener interfaces. Because of the component’s relatively 

simple structure, we exclude the presentation of its internals here. 

 Command-Line Interface 

The only user interface implemented for the TDLTP interpreter is a simple Java-based 

command-line interface (CLI). This component extends the UI core introduced in Section 

4.4.8. Its implementation was simplified by the exploitation of the args4j library for Java 

(discussed in Section 4.3.6). 

A basic user guide for the TDLTP CLI, including a description of the inputs it can accept, 

is provided in Appendix 9. Because of the relative triviality of the CLI component with 

respect to the complexity of the other modules introduced in this section, discussion of its 

implementation is omitted. 
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5 Scenario Composition 

The scenario composer module introduced in Section 4.4.7 contains the core logic for 

applying a TDLTP expression to a UPPAAL model. The composer accepts these two 

inputs in the form of object structures instantiated from classes defined in the TDLTP 

expression object model (Section 4.4.1) and the UPPAAL object model (Section 4.4.2). 

The output of the composer is an object structure which represents a test model. This 

chapter describes the logic embedded in the implementation of the composer. The theory 

behind the implementation is introduced in Section 2.3 and is based on the information 

provided in [1]. 

Section 5.1 presents an overview of the composition procedure developed for the scenario 

composer. Characteristics of the most significant steps in the procedure – trapset 

evaluation, normalization, reduction, and construction of a recognizer model – are 

discussed in Sections 5.2 – 5.5. 

5.1 Overview 

Section 8 in [1, p. 10 – 11] lists the steps needed to construct a test model based on a 

TDLTP expression and a UPPAAL SUT model as follows: 

1. The test purpose is specified as a TDLTP expression. 

2. Trapsets1 TS1 – TSn which occur in the expression are defined in the UPPAAL SUT 

model via assignment labels (traps) attached to automata transitions. 

3. The AST of the TDLTP expression is traversed. Each of its operator sub-nodes is 

mapped to an independent recognizer template using Mappings M4 – M10 from 

Section 5.2 of [1]. 

                                                 

 

1 Trapsets are introduced in Section 2.3.3. 
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4. The labeling of the SUT model is simplified by applying the rules for trapset 

expressions described in Mappings M1 – M3 from Section 5.1 of [1]. Recognizer 

templates are linked together via broadcast signaling channels. 

5. The root recognizer is linked to the stopwatch automaton. 

The summary presented above omits normalization and reduction. These steps are 

described in Sections 5.3 and 5.4, respectively. Additionally, steps 1 and 2 are outside the 

scope of this thesis in that they are performed by the user. 

In order to simplify the discussion in this chapter, we concretize the general logic encoded 

in steps 3 – 5 into a sequence of operations which includes normalization and reduction. 

These operations are implemented in the interpreter produced as the result of this thesis. 

Given an input TDLTP expression ε and a UPPAAL SUT model M, a resultant test model 

MTEST is derived as follows: 

(1) Base trapset extraction. Leaf trapset nodes present in ε’s AST are collected into the 

set STS and mapped to transitions in M. 

(2) Trapset expression evaluation. Trapset expression nodes that occur as parents of the 

nodes in STS are collected into the dictionary structure mEVAL which maps trapset 

expressions to object representations of the corresponding base trapsets1. These 

representations are constructed according to the information in STS, the entire 

collection of transitions in M, and the rules for trapset operators defined in Mappings 

M1 – M3 of [1]. 

(3) Trapset quantifier evaluation. Trapset quantifiers in ε are iterated. Each trapset 

quantifier maps to a trapset expression contained in the keys of mEVAL. If the trapset 

expression child of a quantifier node maps to an empty base trapset, the quantifier can 

be replaced with a Boolean literal in ε’s AST2. 

                                                 

 

1 The notion of a base trapset is defined in Section 2.3.4. 

2 This is not fully explained in [1]. More information is provided in Section 5.2. 
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(4) Normalization. ε’s AST is traversed top-down starting from its root in order to 

eliminate top-level negations1 and operators that do not have a recognizer mapping2. 

(5) Reduction. After normalization, ε is traversed bottom-up starting from the injected 

Boolean literal leaves, if they exist. An individual literal is pulled up the tree by 

application of the reduction rules defined in equivalence listing (14) from [1]. This is 

done to reduce the size of ε’s AST. Steps are taken to avoid traversing subtrees that 

become detached during the reduction process. 

(6) Construction of a recognizer model and injection of trapsets into the SUT model. 

After reduction, the possibly modified version of ε’s AST is traversed top-down yet 

again. This time each remaining logical operator is mapped to a UPPAAL recognizer 

template and a corresponding template instantiation3. These artifacts are inserted into 

an initially empty4 UPPAAL model MWRAP, i.e. the recognizer model. Additionally, 

each trapset expression that is still referred to in ε’s AST is injected into M as a base 

trapset according to previously stored information in mEVAL. This results in a modified 

model, M’. The test stopwatch, trapset label collection, and recognizers involved here 

are implicitly connected via channel references by the end of the step. 

(7) Test model composition. M’ and the recognizer model MWRAP are merged into the 

test model MTEST. The latter is therefore an extension of M with a modified 

configuration of trapset variables and an injected recognizer structure. 

In steps (1) – (7) above, four core sub-procedures can be distinguished: trapset 

evaluation, normalization, reduction, and construction of the recognizer model. 

These are discussed in Sections 5.2 – 5.5, respectively. In the remainder of this section 

we provide a sequence of diagrams (Figure 23 – Figure 28) which illustrate steps 

(1) – (7). 

                                                 

 

1 Negation is only supported for trapset quantifiers. 

2 Recognizers are introduced in Section 2.3.1. The relation between TDLTP operators and recognizers is a 

partial function. Some TDLTP operators do not map to a recognizer. This is permissible since the 

unmapped operators can be represented by equivalent combinations of other operators which do have 

recognizer mappings. 

3 UPPAAL templates and template instantiations are defined in Section 2.2.3. 

4 MWRAP is empty only in the sense that it does not initially contain any operator recognizer templates or 

instantiations when constructed. It will, however, contain the stopwatch automaton template and some 

globally declared variables. 
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Figure 23 presents an example TDLTP expression (E(TS1; TS2) & A(!TS3)) | E(TS1)) 

using the version of TDLTP syntax accepted by the interpreter1 and a simple UPPAAL 

SUT model annotated with traps linking the model to the expression. 

The expression refers to three trapsets: TS1, TS2, and TS3. TS1 and TS2 are both mapped 

to a single transition in the model (1 and 2 respectively), while TS3 is mapped to every 

transition (1 – 6). 

 

                                                 

 

1 Differences between the BNF for TDLTP provided in Section 3 of [1] and the grammar the TDLTP 

interpreter accepts are listed in Table 2, Section 4.4.3. 

 

Figure 23. Example TDLTP expression (a) and a model annotated with trapsets (b). 
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The first step of the composition procedure involves collecting trapset information from 

the expression and the SUT model into the set STS. This is depicted in Figure 24. 

The second step of the composition procedure involves the evaluation and storage of 

trapset expressions in the mEVAL map. This is illustrated in Figure 25. 

The three trapset expressions present in the AST in Figure 23 map to three entries in the 

mEVAL table as shown in the figure above. They are marked in the latter figure with Roman 

numerals I – III. Trapset expression II (!TS3) is mapped to the empty set because it is the 

absolute complement of a trapset which covers the entire model. 

The third step of test model construction involves iteration of the trapset quantifier nodes 

in the AST. Each quantifier is mapped to a trapset expression, which mEVAL 

correspondingly maps to an evaluation (a base trapset). If the transitively retrieved base 

trapset for a quantifier is empty (it contains no traps), a reduction rule is applied. This is 

called trapset quantifier evaluation. A depiction is provided in Figure 26. 

 

Figure 24. First step of composition: base trapset extraction. 

 

Figure 25. Second step of composition: evaluation of trapset expressions. 
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According to Figure 26, the subexpression A(!TS3) was replaced with a Boolean true 

literal. This is because the absolute complement of trapset TS3 is empty and in our 

interpretation of the TDLTP language, universal trapset quantification over an empty 

trapset maps to a true literal. An explanation is provided in Section 5.2.2. 

The fourth step of composition (normalization) involves the application of logical 

equivalences in order to push negation to the level of trapset quantifiers and eliminate 

operators that do not have a recognizer mapping. As the example at hand contains neither 

negation nor recognizer-less operators, a depiction of this step is omitted. We continue 

the example with the fifth step – reduction of the AST via elimination of Boolean literal 

nodes. This step is illustrated in Figure 27. 

The modified AST produced as the result of reduction is smaller in size and represents 

the TDLTP expression E(TS1; TS2) | E(TS1). It should be noted that [1] also defines 

reduction rules that do not involve Boolean literals. These rules were excluded from the 

 

Figure 26. Third step of composition: evaluation of trapset quantifiers. 

 

Figure 27. Fifth step of composition: elimination of Boolean literals. 
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implementation of the TDLTP interpreter in order to limit the scope of the project. 

Reduction is explained in Section 5.4. 

The sixth step of test model composition involves the generation of a recognizer model 

MWRAP, and the application of trapset expressions to M. This is illustrated in Figure 28. 

Compared to the original UPPAAL model M in Figure 23, the modified model M’ in the 

figure above does not contain any traps for TS3. This is because the expression subtree 

which contained a reference to this trapset was eliminated (Figure 24 – Figure 27). 

Additionally, the remaining trapset-marked transitions have been extended with auxiliary 

transitions labeled with channels that link model M to the leaf trapset quantifier 

recognizers realized in MWRAP. Step six is explained in Section 5.5. 

The last step required to produce a test model is the merging of MWRAP and M’. Because 

the merging process is relatively straightforward (essentially a sequence of setter method 

calls initiated by sutModel.merge(recognizerTreeModel)), a separate figure is not 

provided. The rest of this chapter is devoted to the most significant steps involved in test 

model composition – trapset evaluation, normalization, reduction, and the construction of 

a recognizer model. 

 

Figure 28. Sixth step of composition: constructing MWRAP and M’. 



72 

 

5.2 Trapset Evaluation 

Trapsets are the means by which the user maps the input SUT model to the input TDLTP 

expression. The semantics of trapsets is introduced in Section 2.3.3. This section focuses 

on the segment of the scenario composer that implements base trapset extraction, trapset 

expression evaluation and trapset quantifier evaluation – collectively referred to as trapset 

evaluation. 

Trapset extraction is the process of determining which transitions in the SUT model are 

mapped to trapsets and trapset expressions. A brief explanation is given in Section 5.2.1. 

The process corresponds to step (1) and step (2) described in Section 5.1. 

Quantifier evaluation corresponds to step (3) in Section 5.1. It involves replacing trapset 

quantifier nodes in the TDLTP expression’s AST with Boolean literals based on a small 

set of rules. Quantifier evaluation is explained in Section 5.2.2. 

 Trapset Extraction 

In this section we describe the process of extracting trapset related data from a SUT model 

based on a TDLTP expression’s AST and the set of transitions in the SUT model. The 

notion of trapset extraction includes the evaluation of trapset expressions. 

At this point it is pertinent to point out a difference between the TDLTP interpreter and 

the theory outlined in [1]. Namely, a decision was made to allow for the use of simple 

UPPAAL Boolean variables as trapset labels in the input SUT model instead of the array 

variables suggested by the presentation in [1]. Essentially this means that when a user 

wishes to include a transition in trapset TS1, they should use the variable declaration 

bool TS1 and the transition assignment TS1 = true|<condition> instead of the variable 

declaration bool TS1[<array size>] and the assignment TS1[<array index>] = 

true|<condition>. 

This decision was made for two reasons: 

1. It is more convenient for the user to annotate their input model with simple Boolean 

variable assignments instead of array variable assignments. If the user is required to 

use arrays, they also need to keep track of array indices and size restrictions. This 
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manual effort is unnecessary as the interpreter does not need the additional 

information encoded in array indices and would discard it. 

2. The algorithm for finding trapset annotated transitions in the UPPAAL model 

becomes simpler. Only basic Boolean variable declarations1 and grouped Boolean 

variable declarations2 need to be considered. 

As a trapset should only be mapped to a specific transition in the SUT model once 

(according to Section 4.2 in [1]), the trapset labeling formalism accepted by the TDLTP 

interpreter is equivalent to the array-based input format described in [1]. 

We present simplified pseudocode for the base trapset extraction algorithm implemented 

in the interpreter in Figure 29. 

trapsetNodes ← leaf trapset nodes in TDLTP expression; 

trapsetMap ← empty map; 

 

for globalDeclaration in system: 

  if globalDeclaration declares a Boolean variable: 

    variableDeclaration ← globalDeclaration 

    variableName ← variableDeclaration.name 

    if trapsetNodes contains a trapset with name variableName: 

      trapsetMap[variableName] ← { 

        trapsetNode, 

        variableDeclaration, 

        traps: [] 

    } 

 

for template in system: 

  for transition in template: 

    if transition has no assignment labels: 

      NEXT 

    for assignment label attached to transition: 

      variableName ← assignment.variableName 

      if variableName in baseTrapsetMap: 

        add (transition, assignment) to 
          trapsetMap[variableName].traps 

 

Figure 29. Pseudocode for base trapset extraction. 

                                                 

 

1 For example: ‘bool TS1;’, which declares the Boolean variable TS1. 

2 For example: ‘bool TS1, TS2, TS3, flags[10];’, which declares the Boolean variables TS1, TS2, TS3, 

and the Boolean array flags. 
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The most time-consuming part of the algorithm depicted in Figure 29 is the iteration of 

all transitions in the SUT model in the second loop. As the number of assignment labels 

per transition and the number of templates per model is generally smaller than the total 

number of transitions, the time complexity of the algorithm is roughly O(e) where e is the 

total number of transitions in the model. Iteration of all transitions is unavoidable – the 

interpreter needs to ensure that trapsets specified by the user are collected appropriately. 

Having determined which transitions each trapset in the TDLTP expression maps to, the 

composer can compute similar data for trapset expression nodes – this is what is meant 

by evaluation of trapset expressions. The evaluation process is performed according to 

Mappings M1 – M3 in [1, p. 6 – 7]. We present the pseudocode for evaluating an instance 

of the absolute complement operator in Figure 30. 

trapset ← operand of absolute complement 

absoluteComplement ← empty map 

 

for template in system: 

  for transition in template: 

    if transition not in trapset: 

      add (transition, NIL) to absoluteComplement 

    else: 

      trap ← trap data for transition in trapset 

      if trap is conditional: 

        condition ← negation of trap.condition 

        add (transition, condition) 
          to absoluteComplement 

 

Figure 30. Pseudocode for evaluating absolute complement. 

In the algorithm depicted above, all the transitions in the system are iterated. If a transition 

is not mapped to the trapset to which absolute complement was applied, this transition is 

added to the resultant mapping. Otherwise, if the transition does map to a trap in the 

operand trapset, then the corresponding trap label is checked for conditionality. 

A conditional trap in the operand trapset is mapped to a trap in the absolute complement 

whose condition is negated. Trap conditionality is explained in Section 2.3.3. In the 

interest of conciseness, we simply mention that the interpreter was built with facilities for 

supporting it. 

Of the three trapset operators, absolute complement has the most time-consuming trapset 

expression evaluation procedure. Assuming there are n distinct absolute complement 
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nodes in the TDLTP expression tree, the time complexity of repeatedly applying the 

procedure in Figure 30 is roughly O(ne). Though there are probably faster alternatives, 

performance was not a critical requirement for the interpreter. 

Pseudocode for the other two trapset operators – linked pairs and relative complement – 

will not be provided. Logic for their evaluation algorithms is similar to the logic 

embedded in the absolute complement algorithm. 

 Quantifier Evaluation 

As mentioned in the introduction to Section 5.2, quantifier evaluation is the mapping of 

trapset quantifiers to Boolean literals. 

The reduction formulae presented in Section 6 of [1] provide rules for eliminating 

Boolean literals from a TDLTP expression. However, the article itself does not exactly 

describe how these literals could come up during the evaluation of an expression1. 

Boolean literals are also not included in the grammar of TDLTP. 

It was decided after consultation with the authors of [1] that under certain limited 

conditions, trapset quantifiers can be replaced with either true or false in a TDLTP AST. 

The semantics behind these literals is rudimentary in anticipation of future theoretical 

improvements. True maps to a recognizer that immediately returns a success signal to its 

parent recognizer after activation. False maps to a recognizer that never returns a success 

signal to its parent recognizer – it will immediately reset itself after receiving an activating 

signal. 

 

                                                 

 

1 On page 8 of [1], the following equivalence is provided: trapset 𝑇𝑆 ≡ 𝑓𝑎𝑙𝑠𝑒 if 𝑇𝑆 = ∅. However, as 

trapsets are not directly mapped to Boolean values themselves (they are containers for variables which 

map to Boolean values), the equivalence is not implementable in its present form. 
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The rules for replacing a trapset quantifier with a Boolean literal are listed in Table 3. 

Table 3. Trapset quantifier replacement rules. 

Trapset quantifier Operand trapset Replacement literal Justification 

Universal (A) Empty trapset (does 

not map to 

transitions in the 

model). 

True By analogy with 

∀𝑡 ∈  𝑇(𝑃(𝑡)) where 

𝑇 =   ∅ from 

predicate logic. 

Existential (E) Empty trapset (does 

not map to 

transitions in the 

model).  

False By analogy with 

∃𝑡 ∈  𝑇(𝑃(𝑡)) where 

𝑇 =   ∅ from 

predicate logic. 

 

The algorithm for replacing trapset quantifiers in a TDLTP AST is relatively simple: for 

each trapset quantifier in the tree, find the corresponding trapset expression and check 

whether the latter’s trap count is equal to zero, then apply one of the rules listed in Table 

3. 

5.3 Normalization 

Normalization is performed after the quantifiers in the TDLTP AST have been checked 

for immediate evaluability, as described in the section above. Roughly put, normalization 

is the process of replacing substructures in the AST for which no recognizer mappings 

exist. The mappings are not needed since the corresponding substructures can be 

simplified. Normalization corresponds to step (4) from Section 5.1. 

Per Section 2.3.5, some logical operators in TDLTP are defined via equivalence. For 

example, the implication α => β can be replaced with the equivalent disjunction, ~α | β 

(as is the case in classical logic). Since no recognizer mappings exist for the TDLTP 

equivalence (‘<=>’) and implication (‘=>’) operators, such replacements are mandatory. 

Additionally, TDLTP also provides a version of the negation operator (‘~’). A recognizer 

mapping exists for this operator only in the sense that recognizers for trapset quantifiers 

support a negated mode. When negation is applied to any other logical operator in a 

TDLTP expression, a substitution needs to be performed. 
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Rules for the removal of negation exist for most operators in TDLTP. For example, the 

negation of a disjunction can be replaced with a conjunction of the negations of the 

disjuncts: ~(α | β) ≡ ~α & ~β. A removal rule generally moves a negation applied to an 

operator to its child operands. By repeated application of the negation rules provided in 

Section 6 of [1], top-level negations in the AST can be pushed down towards the leaves 

until only trapset quantifiers are negated. 

Application of the substitution rules described above is what is meant by normalization 

in the context of this thesis. The corresponding algorithm is relatively simple: traverse the 

AST depth first, replacing the current node whenever a substitution rule is applicable. 

The only problem is that there are some operators such as leads to (‘~>’) whose negation 

rule maps to a construct which is not suitable for the recognizer architecture described in 

TDLTP theory. This was discovered after the implementation effort for the TDLTP 

interpreter was nearing completion1. We list these operators in Table 4. 

Table 4. Unimplementable negation rules. 

Unimplementable negation rule Justification 

Negation of leads to: ~(A ~> B). ~(A ~> B) maps to a theoretical construct 

whose direct recognizer implementation 

needs to wait until the end of a test run and 

verify that B did not occur during said run. 

This is not supported in the recognizer 

architecture laid out in [1]. 

Negation of timed bounded leads to: 

~(A ~> [* n] B) where * is in 

{<, <=, =, >=, >}. 

The justification is identical to the one 

provided for negation of the leads to 

operator. 

 

The items in Table 4 are subject to exploration in future work. As they are problems which 

exist in the theoretical domain of TDLTP, we will not attempt to provide a solution here. 

                                                 

 

1 As per Section 4.2, the scenario composer was one of the last components implemented. 
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5.4 Reduction 

Two factors necessitate the existence of reduction rules for TDLTP expressions: the need 

to reduce the state space of the test model produced by the composer, and the need to 

eliminate the Boolean literals introduced in Section 5.2.2. The latter factor is subsumed 

by the former. Application of the reduction rules provided in Section 6 of [1] corresponds 

to composition step (5) described Section 5.1 and is the topic of this section. 

In order to decrease the effort needed to implement the TDLTP interpreter, several 

reduction rules provided in the theory were not implemented. In fact, only the rules 

needed to eliminate Boolean literals were encoded in the scenario composer. Future 

iterations of the interpreter can incorporate more reduction rules after a minimal 

refactoring effort. 

Pseudocode for the literal reduction algorithm employed by the scenario composer is 

presented in Figure 31. 

Procedure eliminateLiterals(expression): 

  booleanLeaves <- extractBooleanLeaves(expression) 

  literalStack <- empty stack 

 

  initialize literalStack with booleanLeaves 

  while literalStack isn't empty: 

    currentLiteral <- pop first item from literalStack 

    if currentLiteral is root of expression: 

      EXIT 

 

    if currentLiteral is no longer attached to expression: 

      NEXT 

 

    eliminateLiteral(expression, currentLiteral, literalStack) 

Figure 31. Pseudocode for literal reduction. 

 

The algorithm encodes a bottom-up traversal of the AST starting from its Boolean leaves 

and moving towards the root. References to leaves that need to be dealt with are kept in 

a stack. If this stack isn’t empty, its first entry is removed for inspection. If the entry is in 

fact the root of the tree, then this means the entire TDLTP AST has been reduced to a 

Boolean literal – this is an edge-case that will be reported to the user by the interpreter. 

When the reduction algorithm is executed, it may occur that a literal present in 

literalStack becomes detached from the AST. This is depicted in Figure 32. 
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In order to solve the issue, the eliminateLiterals procedure in Figure 31 checks whether 

each literal it tries to remove is still attached. This can be achieved by walking up the 

parent branch for the literal until either the root is reached, or it is discovered that the 

literal no longer exists in the TDLTP AST. 

eliminateLiterals in Figure 31 calls the eliminateLiteral procedure for applicable 

nodes. Simplified pseudocode for the elimination rule for disjunction nested in this 

procedure is provided in Figure 33. 

Procedure eliminateLiteral(expression, literal, literalStack): 

  parent <- literal.parent 

  // ... 

  If parent is disjunction: 

    If literal is TRUE: 

      newLiteral <- TRUE literal 

      push newLiteral to literalStack 

      replace parentNode in expression with newLiteral 

    Else If literal is expression.leftChild: 

      replace parent in expression with expression.rightChild 

    Else: 

      replace parent in expression with expression.leftChild 

Figure 33. Pseudocode for eliminating the Boolean child node of a disjunction. 

Reduction algorithms for other TDLTP operators are omitted here due to the space 

limitations of the thesis. 

 

Figure 32. TDLTP AST reduction edge case. 
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5.5 Construction of a Recognizer Model 

In step (6) of the composition procedure presented in Section 5.1, the TDLTP AST that 

remains after normalization and reduction is traversed depth-first and mapped to a 

recognizer tree1. Additionally, trapset expression evaluations are applied to the input SUT 

model, producing a modified model capable of communication with the tree. 

Since the data for trapset evaluations is available from the results collected in step (1) and 

step (2) (discussed in Section 5.2), application of trapset expression evaluations to the 

SUT model is fairly straightforward. The traps in each evaluation are iterated and 

supplementary assignment labels are appended to applicable edges in the model. For each 

new trap attached to an edge, the edge is split into two with an output channel present on 

the additional transition (this channel provides the SUT model output which the 

recognizer tree will consume). The initial trapset annotations provided by the user are 

stripped from the SUT model because their purpose was simply to define base trapsets 

for the interpreter. 

Due of the simplicity of injecting trapset evaluations into the SUT model, we devote the 

final section on scenario composition to the construction of a recognizer model. Section 

5.5.1 discusses our approach to implementing the recognizer templates included in the 

model and Section 5.5.2 focuses on the construction algorithm that employs these 

templates. 

 Approach to Implementing Recognizer Templates 

Mappings M4 – M10 in Section 5.2 of [1] describe recognizers for operators in the TDLTP 

language. Section 7 of [1] describes how these recognizer templates are extended with 

wrapping constructs in order to support communication both within the recognizer tree 

and between the tree and the SUT model. 

Though [1] presents recognizer template mappings and the communication wrapping 

mechanism separately, it was decided that the implementation of the scenario composer 

                                                 

 

1 Recognizer trees are introduced in Section 2.3.1. We use the terms recognizer tree and recognizer model 

interchangeably in this section. 
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will not include this distinction. Communication facilities were integrated into 

recognizers. 

Two alternate approaches were initially considered for implementing recognizer 

templates in the scenario composer. Both are listed in Table 5. 

Table 5. Recognizer template implementation approaches. 

Approach Advantages Disadvantages 

Implement in Java code 

using the UPPAAL object 

model1. 

The scenario composer does 

not have to know anything 

about parsing UPPAAL 

XML – it can remain at its 

abstraction level. 

It is easier to implement 

configurability for the 

recognizers. 

It would take too long to 

implement all mappings 

manually. 

Additionally, it will be 

difficult to make changes to 

the templates due to the 

amount of code involved. 

Implement in one or more 

UPPAAL XML files using 

the UPPAAL GUI 

application. 

Both the easiest and the most 

obvious way to implement 

recognizer templates. 

GUI facilitates visual 

‘beautification’ of templates. 

For the scenario composer to 

be able to use these XML 

files, it must be supplied with 

access to the UPPAAL 

parser. This is an abstraction 

leak. 

Additionally, wrapper classes 

in Java would still be needed 

in order to keep code that 

uses the templates relatively 

readable. This results in 

partial duplication between 

the XML and the Java 

implementation. 

 

The chosen implementation approach is a compromise between the two alternatives 

presented in the table above. A supplementary Maven plugin – the UPPAAL pickler – 

was developed. The pickler accepts a UPPAAL model in XML format as input and 

                                                 

 

1 Described in Section 4.4.2. 
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generates Java factory classes that can be used to instantiate object structures equivalent 

to the input model1. These factories employ classes from the UPPAAL object model. 

This approach made it possible to design recognizer automata using UPPAAL’s GUI 

application while remaining at the appropriate level of abstraction in the scenario 

composer’s source code. This is illustrated in Figure 34. 

                                                 

 

1 As a side note, the term ‘pickler’ was used due to superficial similarity between the function of the 

plugin and the well-known food preservation technique. 

 

Figure 34. Implementing recognizer templates using the UPPAAL pickler. 
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The factory classes produced by the UPPAAL pickler are designed to be extensible. This 

extensibility was utilized in the scenario composer. Consequently, the implementation of 

the construction algorithm for recognizer models discussed in Section 5.5.2 was kept at 

under 400 lines of code. 

The UPPAAL pickler itself required a little over 1000 lines of code (including a relatively 

small StringTemplate1 file). At the time of writing the generated recognizer factory 

classes together consist of over 4000 lines of code. The large amount of generated code 

coupled with the fact that the recognizer templates were refactored several times during 

the development process implies that the chosen approach saved a considerable amount 

of time. 

In summary, recognizers were implemented as automata templates in a single XML file 

using UPPAAL’s GUI. This file was transformed into Java code via the UPPAAL pickler 

tool developed as part of this thesis. The resultant generated code is used by the scenario 

composer to construct recognizer trees as explained in the following section. 

In the interest of brevity, a discussion on the recognizer template implementations 

embedded in the UPPAAL file mentioned above is omitted here. The interested reader 

can review the implementations in Appendices 1 – 8. 

 Construction Algorithm 

In this section we present the algorithm used by the scenario composer to construct a 

recognizer tree (MWRAP) according to a normalized and reduced TDLTP AST. The 

algorithm maps to step (6) in Section 5.1 

Two phases are needed in order to construct a recognizer model: 

1. Each (non-trapset) operator node in the AST of the TDLTP expression is mapped to a 

unique index. 

2. Each (non-trapset) operator node in the AST of the TDLTP expression is mapped to a 

recognizer template. 

                                                 

 

1 StringTemplate is introduced in Section 4.3.4. 
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 The indices from phase 1 are used for communication by recognizer processes 

instantiated from the corresponding templates1. Indices can be supplied during either a 

depth-first traversal or a breadth-first traversal of the AST. Simplified pseudocode for the 

indexing algorithm is depicted in Figure 35. 

mode ← either depth-first or breadth-first 

expression ← TDLTP abstract syntax tree 

 

currentIndex ← 0 

indexMap ← empty map 

 

deque ← empty deque 

add expression.root to front 

 

while deque isn’t empty: 

  node ← NIL 

  if mode is depth-first: 

    node ← deque.RemoveFirst() 

  else: 

    node ← deque.RemoveLast() 

 

  indexMap[node] ← currentIndex 

  currentIndex ← currentIndex + 1 

 

  for child of node: 

    deque.AddFirst(child) 

Figure 35. Pseudocode for TDLTP AST indexing algorithm. 

 

The second step of the construction of MWRAP requires another traversal of the AST. As 

was the case for the indexing algorithm, the traversal can be depth-first or breadth-first. 

The scenario composer implementation uses depth-first traversal. 

For each node in the AST that does not represent a trapset expression, a recognizer 

template instantiation is added to MWRAP. Additionally, if the recognizer template does 

not already exist in model MWRAP, it will be added to it. Simplified pseudocode for this 

algorithm is presented in Figure 36. 

                                                 

 

1 Each index maps to an ordinal for a globally declared broadcast channel array. Recognizer processes 

communicate by synchronizing over these shared channels. The UPPAAL manual provides more 

information on synchronizations: http://www.it.uu.se/research/group/darts/uppaal/help.php. 

http://www.it.uu.se/research/group/darts/uppaal/help.php
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expression ← AST of TDLTP expression 

indexMap ← map from nodes in expression 

  to unique indices 

templateManager ← recognizer template manager 

MWRAP ← basic scaffolding for recognizer model 

 

queue ← { expression.root } 

while queue isn't empty: 

  node ← queue.Dequeue() 

  nodeIndex ← indexMap[node] 

  parentIndex ← indexMap[node.parent] 

  childIndices ← {} 

 

  for child of node: 

    childIndices.Append(indexMap[child]) 

    queue.Enqueue(child) 

 

  type ← node.type 

  recognizerTemplate ← templateManager.TemplateFor(type) 

  instantiation ← templateManager 

   .CreateInstantiation( 

      recognizerTemplate, 

      nodeIndex, 

      parentIndex, 

      childIndices, 

      node 

    ) 

 

  add instantiation to MWRAP 

  if recognizerTemplate not in MWRAP: 

    add recognizerTemplate to MWRAP 

Figure 36. Pseudocode for recognizer model construction algorithm. 

 

In the algorithm above, the results of the previously described indexing phase are 

available in the indexMap variable. These indices are used to produce instantiations of 

recognizer templates. The templateManager object is simply a placeholder for logic in the 

scenario composer which hooks into the recognizer template factory classes described in 

Section 5.5.1. 

There are subtle differences between the pseudocode presented in this section and the 

actual implementation of the scenario composer. Since these minor divergences are 

technical in nature, separate discussion is not needed here. 
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6 Validation 

The following chapter presents our approach to validating the artifact produced as the 

result of this thesis. 

As evident from Chapters 4 and 5, multiple relatively complex component interactions 

are involved in producing a test model based on user input. Thus, the need for 

automatically executed tests which verify the operation of these components is 

self-evident. However, due to time restrictions, only a limited set of fully automated tests 

was produced for the interpreter. Section 6.1 discusses this subject further. 

In order to ensure the correct operation of the interpreter regardless of the lack of 

automated tests, manual integration testing was performed both during the development 

of individual components, and on the resultant artifact. Section 6.2 provides a summary 

of the results gathered from manual tests executed via the UI of the interpreter. 

6.1 Automated Tests for Language Parsers 

While there are several components in the architecture of the TDLTP interpreter that can 

be considered candidates for automated testing, a selection had to be made. As parsers for 

the TDLTP expression language (Section 4.4.6) and the UPPAAL system definition 

language (Section 4.4.5) play a major role in guaranteeing that the scenario composer 

receives data provided by the user accurately, they were chosen as targets for automated 

tests. 

Verifying language parsers is not a trivial task. There are three immediate issues to 

resolve: 

1. Test input selection. Since the length of an input string for the languages involved is 

only restricted by the memory limitations of the host system, and the set of valid 

character sequences alone is countably infinite, a subclass of inputs needs to be 

selected for testing the parser. The broad question here is which class of inputs to 

choose – valid, invalid, or some combination from both categories? Once this has 
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been decided, further specification of a finite set of concrete test inputs belonging to 

the class is needed. 

2. Testing strategy. Simply selecting a set of input strings is not enough. A strategy for 

verifying that the parser handles them correctly is required. For example, would it be 

enough to check that the parser merely rejects invalid inputs? 

3. Approach for automation. When both the inputs and the testing strategy have been 

selected, a method is needed for automating the execution of the corresponding test 

cases. 

To resolve the first issue, it was decided to restrict the class of test inputs to syntactically 

valid strings. For the corresponding tests to be implementable in a realistic amount of 

time, this class was further reduced to a set of strings representing essential language 

constructs1. By verifying that the parsers can handle these basic constructs, we at least 

have some guarantee that the composed artifact will not produce an invalid test model 

due to misinterpretation of user input. 

After selecting test inputs, a strategy for applying them had to be formulated. The trivial 

approach of checking whether the parser consumes a test input without error is not 

sufficiently informative, thus it was not chosen. A more suitable option is to inspect the 

AST generated by the parser as the result of processing an input string. The AST’s 

structure will not vary for the same input over multiple test runs and accurately encodes 

the information that the parser is capable of gathering. 

The term “inspection” used above implies the need for some representation of expected 

output. The classes discussed in Sections 4.4.1 and 4.4.2 – which the parsers in question 

employ to produce their output ASTs – could be used for this end. A test case would 

therefore be an input string combined with a procedure which constructs the 

corresponding expected AST. A test passes if the AST produced by the parser and the 

AST generated by the test procedure are equivalent. However, the overhead of having to 

write AST constructor code for each test input eliminates this option. 

                                                 

 

1 An example of an essential language construct for TDLTP is a subexpression containing the absolute 

complement operation: !TS1. For the UPPAAL system definition language, a basic construct could be 

selection from a bounded type: ‘t : int[5, 10]’. However, there are some more elaborate constructs 

subject to testing such single-line declarations of multiple variables: ‘int var1, var2, array[10];’. 
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The solution was to implement another language parser – this time for a variant of the 

symbolic expression (s-expression) notation. 

S-expressions were invented for the Lisp programming language and are used for 

representing tree structures in a simplified manner. A compressed ANTLR grammar for 

the extended version of s-expressions developed for this thesis is depicted in Figure 37. 

sExpr : sequence ; 

 

sequence : '(' item ('.' item)* ')' 

         | '()' 

         ; 

 

item    : sequence 

        | string 

        ; 

 

string  : DELIMITED_STRING 

        | NON_DELIMITED_STRING 

        ; 

 

DELIMITED_STRING        : '"' (ALPHANUMERIC | SPECIAL 
                                |ESCAPED_RESERVED_TOK)* '"' ; 

NON_DELIMITED_STRING    : (ALPHANUMERIC | SPECIAL 
                                |ESCAPED_RESERVED_TOK)+ ; 

ALPHANUMERIC            : [A-Za-z0-9] ; 

SPECIAL                 : [#~!@$%^&*_\-?`=<>|{}[\]/:;,+] ; 

ESCAPED_RESERVED_TOK    : '\\.' | '\\(' | '\\)' | '\\"' ; 

Figure 37. ANTLR grammar for s-expressions. 

A sentence in the language specified above is a list of items which allows for recursive 

nesting. For example: (“x” . (“y” . “z”)). When an s-expression is parsed, the output 

object structure is a tree whose nodes can either be lists of other nodes or simple strings. 

The similarity between the language parser components implemented as part of the 

TDLTP interpreter and the s-expression parser supplied for testing is obvious: both 

produce tree structures as output. 

In our testing strategy, the tree structure of ASTs is exploited. An expected output for an 

input string is specified as an s-expression. Additionally, mapping utilities are provided 

in order to convert the output AST of a parser under test into an equivalent s-expression’s 

AST. Testing becomes the simple task of comparing whether the tree parsed from the 

expectation s-expression is equivalent to the s-expression derived from the targeted 

parser’s output. 
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The chosen approach has three major flaws: 

1. Whoever writes the test needs to know how a test input string maps to the meta-tokens 

encoded in the AST-to-s-expression transformer classes used in the approach. 

2. It is arduous to manually specify large s-expressions as expected outputs. 

3. A code defect in a transformer class may lead to the detection of errors that do not 

exist. 

Despite these shortcomings, a major argument for using the s-expression strategy is that 

it facilitates simple and reliable automation. An example test case specification from a 

configuration file produced as part of this work is depicted in Figure 38. 

Using the s-expression strategy discussed in this section, a total of 109 automated test 

cases were implemented for the TDLTP interpreter. 39 of those are for the TDLTP 

expression parser, and 70 for the UPPAAL system language parser. Additionally, 39 code 

generation tests1 were supplied for the TDLTP grammar implementation described in 

Section 4.4.3. This led to the discovery of a handful of programming defects, which were 

subsequently resolved. 

                                                 

 

1 For code generation, the test input is specified as an s-expression. General transformer utilities were 

developed to convert s-expressions into a TDLTP ASTs. The expected output is provided as a TDLTP 

expression, so the verification step in the test is essentially a string comparison. 

 

Figure 38. Example s-expression-based language parser test case. 
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In summary, while automated tests are necessary for verifying TDLTP interpreter 

functionality, time limitations had to be taken into account. To ensure that the interpreter 

handles at least part of the user’s input correctly, a collection of tests for the language 

components involved were implemented. These tests are automatically executed during 

the build process of the artifact. 

6.2 Manual Integration Tests 

It is not enough to simply follow a set of good programming guidelines and assume that 

this will lead to the correct operation of the resultant software artifact. The 

implementation needs to be verified by tests. As mentioned in previous sections, there 

was no time for complete test automation, so a set of manual integration tests was 

specified and executed against the interpreter’s user interface. The total number of these 

test cases is 95. All of them are tabulated in Appendix 10. 

In general, a manual integration test for the interpreter consists of an input model, a TDLTP 

expression, and a generally stated output expectation. To illustrate this, we introduce test 

case TC-TSExpr-LP-6 from Appendix 10. 

The first test input in TC-TSExpr-LP-6 is an artificial UPPAAL SUT model annotated 

with two trapsets: TS1 and TS2. This model is depicted in Figure 39. 

 

 

Figure 39. Example manual test case model input. 
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The trapsets in the input model each contain conditional and non-conditional traps. Trap 

conditionality is explained in Section 2.3.3. 

The TDLTP expression input used in conjunction with the model is provided in Figure 40. 

A(TS1 ; TS2) 

Figure 40. Example manual test case TDLTP expression input. 

The expression contains a universal trapset quantification operation (A) applied to the 

linked trapset of TS1 and TS2 (TS1 ; TS2). 

As output, we expect the interpreter to produce a test model where the linked trapset 

expression has been applied to the input model according to Mapping M3 from Section 5 

of [1] with conditional traps handled appropriately. Figure 41 presents the output of a 

manual test run executed using the inputs for TC-TSExpr-LP-6. 

The model depicted above has been slightly edited in UPPAAL’s GUI to make the 

auxiliary variable assignments and channel synchronizations injected by the interpreter 

more discernible. 

To determine the result of a manual test execution, the output model is inspected both 

visually and, if applicable, using the UPPAAL model-checker (discussed in Section 

2.2.3). If the auxiliary test constructs in the model match expectations, and the test 

 

Figure 41. Example manual test run output model. 



92 

 

stopwatch automaton can reach its pass location during model-checking, then we know 

that the interpreter can handle conditional traps for the linked trapset operation correctly1. 

In conclusion, several manual test cases were documented and executed against the 

TDLTP interpreter. A single user-friendliness issue, at least 4 significant logical errors, 

and a handful of code defects were discovered as the result of these executions. Problems 

discovered during testing were subsequently resolved. 

 

                                                 

 

1 To an extent. There may of course be unforeseen configurations of inputs for which the interpreter will 

produce an erroneous test model. At least the basic use case for the linked trapset operator has been 

verified in the example test case. 
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7 Summary 

The goal of this thesis was to implement an interpreter for the Test Purpose Specification 

Language TDLTP. To achieve this, a collection of modules was assembled and composed 

into a software artifact which can accept TDLTP expressions combined with UPPAAL 

SUT models as input and produce test models as output. The artifact was supplemented 

with a simple command-line interface in order to facilitate its inclusion in an MBT 

workflow. 

The functionality of the interpreter was validated with a set of automated component tests 

and manually executed integration tests. Through these means it was verified to a degree 

that the interpreter functions according to the theory of TDLTP. 

During development, a number of ambiguities in the theory surfaced and were 

documented in this thesis1. These open questions represent opportunities for future 

theoretical work in the field of model-based testing in general and UPPAAL MBT 

specifically. The internals of the artifact were designed with this in mind – thanks to 

modularity and the use of intuitive software interfaces, improvements and extensions can 

be included with a relatively minimal development effort. 

On the topic of future work, three primary dimensions for enhancement deserve to be 

mentioned: user-friendliness, internal design, and test coverage. We discuss them below. 

User-friendliness. SUT models provided as input to the interpreter are annotated with 

trap variables which connect them to corresponding TDLTP test purpose specifications. 

At this point the annotations are supplied by the user via UPPAAL’s graphical interface, 

which means that the input definition process is somewhat repetitive. Since a custom 

parser for UPPAAL models was implemented as part of this thesis, it would be possible 

to implement a supplementary front-end tool for the interpreter which is specifically 

                                                 

 

1 Section 5.3 and 5.2.2. Appendices 5 – 6. 
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designed for annotating a SUT model with traps. The inclusion of such a tool would make 

the interpreter more appealing to use. 

Internal design. Though the components in the interpreter were refactored several times 

with the goal of improving their design and reusability, improvements are still possible. 

For example, the grammar parser for TDLTP is housed in the same component as the code 

generator for the language. The input for the former is the output for the latter, and 

vice-versa. However, due to technical reasons, their logic is isolated within the 

component, which leads to partial duplication. Some generally applicable approach could 

be developed which would bridge code generation and grammar parsing for the 

interpreter in order to eliminate this duplication. 

Test Coverage. Due to time limitations, most of the validation effort was manual in 

nature. Fully automated test coverage is a welcome addition to the project and basic 

scaffolding which could facilitate this has already been implemented. 

In conclusion, we believe the objective of this thesis has been successfully executed. The 

final implementation is extensible and fulfils its purpose. The result was validated as 

adequately as possible and entry points for improvement were supplied. 
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Appendix 1 – Trapset Quantifier Recognizer Template 

Mapping M4 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP 

universal trapset quantification operator (‘A’). Figure 5 in [1], which depicts this 

automaton, is reproduced below. 

Mapping M5 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP 

existential trapset quantification operator (‘E’). Figure 6 in [1], which depicts this 

automaton, is reproduced below. 

The trapset quantifier recognizer template developed as part of this thesis based on 

Mappings M4 – M5 is presented below. 

As evident from the figure above, existential and universal quantification were composed 

into a single parameterized template. The parameters for this template are presented in 

the table below. 

 

 

Recognizer automaton for universal trapset quantification [1, p. 7]. 

 

Recognizer automaton for existential trapset quantification [1, p. 7]. 

 

Trapset quantifier recognizer template. 
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Trapset quantifier template parameters. 

Parameter Type Description 

const bool universal Constant Boolean. Whether the recognizer 

should quantify universally 

or existentially. 

const bool negated Constant Boolean. Whether the quantifier is 

negated. 

const TdlTreeIndex 

treeIndex 
Constant integer. The index of the quantifier in 

the AST of the TDLTP 

expression. 

const TrapsetIndex 

trapsetIndex 
Constant integer. The index of the trapset 

operand of the quantifier in 

the AST of the TDLTP 

expression. 

const int trapsetSize Constant integer. The size of the trapset over 

which the recognizer 

quantifies. 

bool &trapset[0] Reference to Boolean array. A reference to an array of 

flags where each flag 

represents a distinct trap in 

the test model. 

The size of this array is 

specified as 0 in the template, 

which is not a valid array 

size in UPPAAL. 

The size value will be 

corrected by the scenario 

composer before the template 

is added to the test model. 

 

The treeIndex parameter is used to attach instances of the quantifier recognizer to the 

recognizer tree. The emission synchronization TdlActivatorChannels[treeIndex]? and 

the reception synchronization TdlTerminatorChannels[treeIndex]! instrument the 

quantifier template with input and output facilities, respectively. The parent recognizer of 

the quantifier in the tree will use these synchronizations to activate the quantifier 

recognizer and retrieve input from it. 

The trapsetIndex parameter is used to index into an array of broadcast channels reserved 

for trapsets – TrapsetActivatorChannels. Whenever a trap from a given trapset is visited, 
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a synchronization signal will be broadcast on the corresponding trapset activator channel. 

The recognizer assigned to the trapset in question will receive this signal (via the 

reception synchronization TrapsetActivatorChannels[trapsetIndex]?) and 

subsequently test whether the quantification condition has been fulfilled. If it has, the 

quantifier will return an output signal to its parent recognizer. 

Some of the transition labels in the template contain references to variables and functions 

declared in the declarations section for the recognizer template. These are presented 

below. 

Trapset quantifier template local declarations. 

Declaration Type Description 

const bool 

negatedUniversalQuantification 

= universal && negated; 

Constant 

Boolean. 

Whether the recognizer should 

check for negated universal 

quantification. 

const bool 

negatedExistentialQuantification 

= !universal && negated; 

Constant 

Boolean. 

Whether the recognizer should 

check for negated existential 

quantification. 

const bool 

universalQuantification 

= universal && !negated; 

Constant 

Boolean. 

Whether the recognizer should 

check for universal quantification. 

const bool 

existentialQuantification 

= !universal && !negated; 

Constant 

Boolean. 

Whether the recognizer should 

check for existential 

quantification. 

typedef int[0, trapsetSize - 1] 

index; 
Custom bounded 

integer type. 

Used for iteration in 

resetTrapset. 

void resetTrapset() { 

  for (i : index) { 

    trapset[i] = false; 

  } 

} 

Void function. Resets the state of the trapset flag 

array assigned to the recognizer 

after output has been returned to 

the parent recognizer. 

 

The const modifier used in the declarations above helps UPPAAL reduce the state space 

of the test model during trace generation. For example, if the variable 

universalQuantification is constantly false, it will not be possible to take a transition 

whose guard conjunction refers to this variable. Therefore, the transition does not need to 

be considered when calculating possible state paths for the recognizer. 
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One issue with the trapset quantifier template provided in this appendix is that is not 

completely parameterized – the trapset array parameter needs to be modified by the 

scenario composer. Consequently, a test model may contain more than one quantifier 

template under different names. This is due to the syntax limitations of UPPAAL – there 

is no way to declare a reference to an array variable of unspecified size as the parameter 

of a template. 
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Appendix 2 – Disjunction Recognizer Template 

Mapping M7 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP 

disjunction operator (‘|’). Figure 8 in [1], which depicts this automaton, is reproduced 

below. 

The recognizer template developed as part of this thesis based on Mapping M7 is 

presented below. 

Parameters for the template are presented in the table below. 

Disjunction recognizer template parameters. 

Parameter Type Description 

const TdlTreeIndex 

treeIndex 
Constant integer. The index of the operator in 

the AST of the TDLTP 

expression. 

const TdlTreeIndex 

leftOpIndex 
Constant integer. The index of the left child of 

the operator in the AST of 

the TDLTP expression. 

const TdlTreeIndex 

rightOpIndex 
Constant integer. The index of the right child 

of the operator in the AST of 

the TDLTP expression. 

 

 

Recognizer automaton for disjunction [1, p. 7]. 

 

Disjunction recognizer template. 
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The treeIndex parameter used in the template is analogous to the one used for the 

quantifier template described in Appendix 1. 

Parameters leftOpIndex and rightOpIndex are used to communicate with the child 

recognizers of the disjunction recognizer. 
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Appendix 3 – Conjunction Recognizer Template 

Mapping M6 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP 

conjunction operator (‘&’). Figure 8 in [1], which depicts this automaton, is reproduced 

below. 

The recognizer template developed as part of this thesis based on Mapping M7 is 

presented below. 

Template parameters for conjunction are identical to the parameters declared for the 

disjunction recognizer in Appendix 2. 

 

 

Recognizer for conjunction [1, p. 7]. 

 

Conjunction recognizer template. 
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Appendix 4 – Leads To Recognizer Template 

Mapping M8 in Section 5.2 of [1] specifies a recognizer automaton for the TDLTP leads 

to operator (‘~>’). Figure 9 in [1], which depicts this automaton, is reproduced below. 

The recognizer template developed as part of this thesis based on Mapping M8 is provided 

below. 

Template parameters for leads to are identical to the parameters declared for the 

disjunction recognizer in Appendix 2. 

 

 

Recognizer automaton for leads to [1, p. 7]. 

 

Leads to recognizer template. 
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Appendix 5 – Time-Bounded Leads To Recognizer Template 

Mapping M9 in Section 5.2 of [1] specifies an automaton for the TDLTP time-bounded 

leads to operator (‘~> [(<|<=|=|>=|>) N]’). Figures 10a and 10b in [1], which depict 

bounded leads to with conditions ‘<= N’ and ‘> N’ respectively, are reproduced below. 

The recognizer template developed as part of this thesis based on Mapping M9 is provided 

below. 

Parameters for this template are a superset of the parameters defined for the disjunction 

recognizer template in Appendix 2. Additional parameters for time-bounded leads to are 

provided in the following table. 

 

Recognizers for time-bounded leads to with time constraint <= N (a), and time constraint > N (b) [1, p. 7]. 

 

Time-bounded leads to recognizer template. 
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Additional parameters for the time-bounded leads to recognizer template. 

Parameter Type Description 

const BoundType boundType Constant integer. BoundType is a custom bounded integer 

type whose values range from 1 – 5. As 

shown below, each value maps to an 

inequality operator. 

Constant Value Inequality 

BOUND_EQ 1 Equals. 

BOUND_GT 2 Greater than. 

BOUND_GTE 3 Greater than or 

equal to. 

BOUND_LT 4 Less than. 

BOUND_LTE 5 Less than or 

equal to. 

const BoundValue 

boundValue 
Constant integer. The value part of the constraint specified 

by the combination of boundType and 

boundValue. Example: 5 in ‘< 5’. 

 

Some of the transition labels in the template contain references to variables declared in 

the declarations section for the recognizer template. The corresponding declarations are 

presented in the table below. 

Time-bounded leads to template local declarations. 

Declaration Type Description 

const bool lessThanBound 

= (boundType == BOUND_LT); 
Constant Boolean. Whether the bound inequality is ‘less 

than’. 

const bool 

lessThanOrEqBound 

= (boundType == BOUND_LTE); 

Constant Boolean. Whether the bound inequality is ‘less 

than or equal to’. 

const bool greaterThanBound 

= (boundType == BOUND_GT); 
Constant Boolean. Whether the bound inequality is 

‘greater than’. 

const bool 

greaterThanOrEqBound 

= (boundType == BOUND_GTE); 

Constant Boolean. Whether the bound inequality is 

‘greater than or equal to’. 

const bool equalityBound 

= (boundType == BOUND_EQ); 
Constant Boolean. Whether the bound inequality is 

‘equal to’. 

clock localClock; Clock. Used for determining whether the time 

bound has been satisfied. 
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The const modifier used in some of the declarations above helps UPPAAL reduce the 

state space of the test model during trace generation. For example, if the variable 

equalityBound is constantly false, all transitions which use this variable in their guard 

conjunction can be ignored when calculating available transitions from the recognizer’s 

current location. 

It was discovered during the implementation of the interpreter that the bounded leads to 

recognizer specified in [1, p. 7] does not function according to the semantics of bounded 

leads to provided in Definition 12 of [1]. This definition is reproduced below. 

‘Time-bounded leads to’ ⟦𝑆𝐸1 ↝[⨂ 𝑛]  𝑆𝐸2⟧ means that 𝑆𝐸2 must occur after 𝑆𝐸1 and the 

time instance of the occurrence of 𝑆𝐸2 (measured relative to the occurrence of 𝑆𝐸1) 

satisfies the constraint ⊗ 𝑛 where ⊗  ∈ {<, ≤, =, ≥, >} and 𝑛 ∈ ℕ: 

⟦𝑆𝐸1 ↝[⨂ 𝑛]  𝑆𝐸2⟧ if and only if ∀𝜎∃𝑘, 𝑙 ≥ 𝑘 ∈ ℕ : ⟦𝑆𝐸1⟧𝜎𝑘 ⟹⨂ 𝑛 ⟦𝑆𝐸2⟧𝜎𝑙  [1, p. 5]. 

According to this definition, the bounded leads to recognizer should return a success 

signal to its parent when the occurrence instances of its operands satisfy the specified 

time constraint. 

Let us assume a test model Τ generated from a SUT model 𝑀 according to the TDLTP 

expression 𝜖 =  𝐴(𝑇𝑆1) ↝[< 𝐵]  𝐸(𝑇𝑆2), where the constraint value 𝐵 >  0. Let 𝜎 be a 

trace in the state space of 𝑀. At time step 𝛼, let us assume subexpression 𝑎 =  𝐴(𝑇𝑆1) is 

satisfied in 𝜎. At time step 𝛽 = 𝛼 + Δ, where Δ > 𝐵, let us assume subexpression 

𝑏 =  𝐸(𝑇𝑆2) is satisfied in 𝜎. According to the logic of TDLTP, the recognizer 𝑅 assigned 

to the bounded leads to expression in 𝜖 is activated at time 𝜃 = 0. 

𝑅 will start measuring the time distance between subexpressions 𝑎 and 𝑏 at time step 𝛼. 

Since the measured time distance (Δ = β − α) is greater than 𝐵, the recognizer will not 

return a success signal. At this point the definition of bounded leads to is satisfied by the 

recognizer. 

Now let us assume subexpression 𝑎 is also satisfied in 𝜎 at time step 𝛼′  = 𝛽 − Δ′ so that 

𝛼′ >  𝛼 and Δ′ > 0. Additionally, assume that the time difference Δ′ = 𝛽 − 𝛼′ < 𝐵. This 

is depicted below. 
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If the recognizer assigned to the leads to operator in 𝜖 would start measuring the time 

distance between subexpressions 𝑎 and 𝑏 at time step 𝛼′, it would in fact return a success 

signal at time step 𝛽 since the measured time Δ′ satisfies the bound Δ′ <  𝐵. 

The problem here is that 𝑅 will inevitably begin to measure time starting at time step 𝛼 

because that is the moment when the child recognizer for 𝑎 first returns a success signal. 

Therefore, the implementation guidelines for bounded leads to specified in [1] do not 

match the definition of the operator. 

One solution would be to reset the clock in 𝑅 used for measuring the time distance 

between subexpressions 𝑎 and 𝑏 every time subexpression 𝑎 is satisfied 

(localClock = 0). This would require the recognizer process to reactivate the 

corresponding operand recognizer after every occurrence of 𝑎 in the trace. 

The proposed solution has a major defect. Whenever 𝑅 returns a success signal for 𝜖, the 

operand recognizer for 𝑎 (𝑅𝑎) may still be in its recognizing mode (since the last time it 

was reactivated by 𝑅). 𝑅𝑎’s recognizing mode may therefore continue beyond the next 

activation of 𝑅. If 𝑎 were a more complex subexpression whose corresponding recognizer 

subtree contained processes with clocks or counters, the next time 𝑅 is activated, it may 

occur that the recognizer for 𝑎 signals success to 𝑅 prematurely. This is depicted in the 

following figure. 

 

Trace example for 𝜎. 
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In the figure above, a time-bounded leads to subtree rooted at recognizer 𝑅 sends an 

activating signal to its first operand recognizer, 𝑅𝑎, which enters its recognizing mode 

(1). After 𝑅𝑎 returns a success signal, 𝑅 activates its second operand recognizer, 𝑅𝑏, and 

immediately moves 𝑅𝑎 back to its recognizing mode (2) (so that it could reset its clock 

when applicable). When 𝑅𝑏 returns a success signal, 𝑅 exits its recognizing mode and 

similarly returns a success signal to its parent. 𝑅𝑎, however, continues recognizing, which 

means it will ignore any subsequent activation signals, and returns results collected since 

its previous activation. 

To solve the issue described above, an option would be to implement a recursive reset 

mechanism for recognizers. Namely, when 𝑅 receives a success signal from 𝑅𝑏, it should 

send a reset signal to 𝑅𝑎, thus forcing the corresponding recognizer subtree to exit its 

recognizing mode and become available for future activations. However, this would 

require us to add externally accessible reset transitions to almost every location pair in 

every recognizer. Not only would this increase the state space of the test model, it would 

also be difficult to ensure that the recognizer functions correctly due to the amount of 

transitions involved. 

The problems mentioned here imply the need for future revisions of the theory of TDLTP. 

Solving these issues is outside of the scope of this thesis. Therefore, the bounded leads to 

recognizer template implementation described at the beginning of this appendix 

corresponds to the original guidelines provided in [1]. 

 

Corner-case for bounded leads to recognizer R with operand recognizers Ra and Rb. 
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Appendix 6 – Conditional Repetition Recognizer Template 

Mapping M10 in Section 5.2 of [1] specifies an automaton for the TDLTP conditional 

repetition operator (‘#[(<|<=|=|>=|>) N]’). Figure 11 in [1], which depicts this 

automaton, is reproduced below. 

The recognizer template developed as part of this thesis based on Mapping M10 is 

provided below. 

The set of template parameters specified for the conditional repetition recognizer are 

similar to the ones specified for the time-bounded leads to recognizer template discussed 

in Appendix 5. The only difference is that the bound parameters define a constraint on 

the number of repetitions of state configurations satisfying the subexpression represented 

by the recognizer’s operand. Repetitions are counted using the integer variable 

repetitions declared in the template’s local declarations section. 

 

Recognizer for leads to [1, p. 8] 

 

Conditional repetition recognizer template implementation. 
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It was discovered during the implementation of the interpreter that the conditional 

repetition recognizer specified in [1, p. 7] does not function according to the semantics 

provided in Definition 13 of [1]. This definition is reproduced below. 

“'Conditional repetition'. Let k enumerate the occurrences of ⟦𝑆𝐸⟧, then  

⟦#𝑆𝐸 ⊛ 𝑛⟧ if and only if  ↝ ⋯ ↝  ⟦𝑆𝐸⟧𝑘 [1, p. 5]. 

where index variable k satisfies constraint ⊛ 𝑛, ⊛ ∈ {<, ≤, =, ≥, >} and 𝑛 ∈ ℕ” [1, p. 5]. 

While the presentation of the definition is relatively opaque, per inspection of the 

recognizer automaton in Figure 14 from Section 7 of [1], it became apparent that a 

recognizer for conditional repetition should emit a success signal when the number of 

success signals received from its operand satisfies the constraint in the expression. 

There are several issues with the recognizer automaton specified in Figure 14 of [1] in 

relation to Definition 13. We describe some of them below. 

Greater than or equal to repetition constraints implicitly reduce to equality 

constraints. For example, if the constraint is specified as ‘>= 5’, then since the recognizer 

returns immediately when the condition is satisfied (i.e. repetitions is equal to 5), it is 

essentially implementing the repetition constraint ‘= 5’. 

Greater than repetition constraints implicitly reduce to equality constraints. For 

example, if the constraint is specified as ‘> 5’, then since the recognizer returns 

immediately when the condition is satisfied (i.e. repetitions is equal to 6), it is 

essentially implementing the repetition constraint ‘= 6’. 

Less than & less than or equal to constraints are either trivially satisfied or not 

supported by the architecture of the recognizer tree. When determining whether some 

state configuration occurs less than 𝑁 times, the most obvious course of action for the 

recognizer is to return immediately. This is because the repetition count at the time of 

activation is 0, so the condition is trivially satisfied. Otherwise, if we alter the recognizer 

for ‘less than’-constraints so that a success signal is returned if and only if the repetition 

count occurs less than N times during the entire test run, then because of the timeout 

encoded in the test stopwatch, a failure result is inevitable. 
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The issues described above should be solved in future work on the theory of TDLTP. As 

the topic of this thesis is constrained to implementing the logic detailed in the current 

state of the theory, resolving these issues is out of scope. The recognizer template 

introduced at the beginning of this appendix is structured in a manner that allows for 

future extensions. 
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Appendix 7 – Test Stopwatch Template 

The test stopwatch automaton is attached to the automaton at the root of the recognizer 

tree in the test model via broadcast channels. Figure 15 in Section 8 of [1] presents a 

depiction of this automaton: 

The stopwatch template injected into the test models produced by the TDLTP interpreter 

is presented below. 

 

Because the two templates are practically identical, further discussion is not needed. 

 

 

Test stopwatch automaton [1, p. 10] 

 

Test stopwatch template implementation. 
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Appendix 8 – Boolean Literal Recognizer Templates 

As described in Section 5.2.2, trapset quantifiers can be replaced with Boolean literals 

under certain conditions. In order to support future expansions of the TDLTP interpreter, 

basic recognizers were implemented for these literals. They are presented in the figure 

below. 

 

The semantics embodied by these recognizers is intuitive but trivial. A recognizer for the 

Boolean true literal returns a success signal immediately after activation. On the other 

hand, a recognizer for the Boolean false literal never returns a success signal. 

 

 

Boolean literal recognizer templates: (a) recognizer for true; (b) recognizer for false. 
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Appendix 9 – User Guide 

In this appendix we provide instructions for using the TDLTP interpreter. 

Prerequisites:  

▪ (optional) UPPAAL Academic version 4.0.14; 

▪ Java version 8 runtime. 

Installation. The latest release is available in the Releases subfolder found in the project’s 

development repository. Links to this repository are provided in Appendix 11. 

Execution. The artifact is a Java-based command-line interface. In order to invoke it, the 

user must provide the root Java binary with a path to the artifact as follows: 

java –jar <path to interpreter> <options>. 

The options which the interpreter is capable of accepting are presented below. 

Interpreter options. 

Short Option Long Option Description 

-e --expression Required. Test purpose 

specification as a TDLTP 

expression. 

Can be provided as a simple 

string or as a path to a plain 

text file. 

-m --model Required. Path to the input 

UPPAAL XML model file. 

-o --output Required. Path where the 

resultant model is to be 

stored. 

If omitted, results will be 

sent to standard output. 

-t --traces Optional. Enables the 

printing of error traces. 
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Interpreter options (cont’d). 

Short Option Long Option Description 

-u --uppaal Optional. Path to UPPAAL’s 

JAR file. 

If provided in conjunction 

with the -o option, the 

resultant model will be 

opened in UPPAAL after 

interpretation. 

-v --verbose Optional. Enables the 

printing of simple progress 

messages unless -o is 

omitted. 

-h --help Prints instructions. 

 

At the time of writing, the interpreter can parse model files for the latest academic version 

of UPPAAL (4.0.14) – older versions are not supported. 
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Appendix 10 – Manual Integration Tests 

In this appendix we tabulate the manual integration tests discussed in Section 6.2. The 

input files for these tests are available in the repository for this project (a link is available 

in Appendix 11). 

The table below lists test cases for the absolute complement trapset operator. 

Absolute complement test cases. 

Identifier Input expression Input model Output expectation 

TC-TSExpr-AC-1 A(!TS) Trapset TS not 

mapped to any 

transitions. 

Resultant trapset 

maps to every 

transition in test 

model. 

TC-TSExpr-AC-2 A(!TS) Trapset TS mapped 

to every transition. 

Expression reduces 

to true. 

User receives 

warning message. 

TC-TSExpr-AC-3 A(!TS) Trapset TS mapped to 

at least one 

transition. 

Resultant trapset 

follows definition of 

absolute 

complement. 

TC-TSExpr-AC-4 A(!TS) At least one trap in 

TS is conditional. 

Resultant trapset 

contains transitions 

marked with 

conditional traps 

(negated). 

TC-TSExpr-AC-5 A(!TS1) & A(!TS2) TS1 and TS2 overlap 

completely. 

No error. Rules 

applied according to 

subexpressions in 

conjunction. 
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The table below lists test cases for the linked pairs trapset operator. 

Linked pairs test cases. 

Identifier Input expression Input model Output expectation 

TC-TSExpr-LP-1 A(TS1; TS2) TS1 maps to no 

transitions. TS2 maps 

to at least one 

transition. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-TSExpr-LP-2 A(TS1; TS2) TS1 maps to at least 

one transition. TS2 

maps to no 

transitions. 

TC-TSExpr-LP-3 A(TS1; TS2) TS1 maps to entire 

model. TS2 maps to 

some transitions. 

Resultant trapset 

follows definition of 

linked pairs. 

TC-TSExpr-LP-4 A(TS1; TS2) TS1 maps to some 

transitions. TS2 maps 

to entire model. 

TC-TSExpr-LP-5 A(TS1; TS2) TS1 and TS2 map to 

some transitions but 

not all. 

Trapset produced in 

resultant model 

follows the definition 

of the linked pairs 

operation. 

TC-TSExpr-LP-6 A(TS1; TS2) TS1 and TS2 map to 

some transitions 

conditionally. 

Conditions are 

present in test model 

for both ingress 

transitions and egress 

transitions. 

TC-TSExpr-LP-7 A(TS1; TS2) TS1 and TS2 both map 

to entire model. 

No error. 

Resultant trapset 

follows definition of 

linked pairs. 

TC-TSExpr-LP-8 A(TS1; TS2) Duplicate labels exist 

in model for TS1 or 

TS2. 

An error is reported 

to the user. 

TC-TSExpr-LP-9 A(TS1; TS2) TS1 and TS2 map to 

looping transitions. 

Flags are set/reset 

appropriately on 

loops. 
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The following table lists test cases for the relative complement operator. 

Relative complement test cases. 

Identifier Input expression Input model Output expectation 

TC-TSExpr-RC-1 A(TS1 \ TS2) TS1 maps to no 

transitions. TS2 maps 

to at least one 

transition. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-TSExpr-RC-2 A(TS1 \ TS2) TS1 maps to at least 

one transition. TS2 

maps to no 

transitions. 

Output model trapset 

equivalent to A(TS1). 

TC-TSExpr-RC-3 A(TS1 \ TS2) TS1 maps to entire 

model. TS2 maps to 

some transitions. 

Output model trapset 

equivalent to 

A(!TS2). 

TC-TSExpr-RC-4 A(TS1 \ TS2) TS1 maps to some 

transitions. TS2 maps 

to entire model. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-TSExpr-RC-5 A(TS1 \ TS2) TS1 and TS2 map to 

some transitions but 

not all. 

Resultant trapset 

follows definition of 

relative complement. 

TC-TSExpr-RC-6 A(TS1 \ TS2) TS1 and TS2 map to 

some transitions 

conditionally. 

Conditional traps are 

present in test model 

(negated). 

TC-TSExpr-RC-7 A(TS1 \ TS2) TS1 and TS2 both map 

to entire model. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-TSExpr-RC-8 A(TS1 \ TS2) Duplicate labels exist 

in model for TS1 or 

TS2. 

Error is reported to 

user. 
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The following table lists test cases for trapset quantifiers. 

Trapset quantifier test cases. 

Identifier Input expression Input model Output expectation 

TC-TSQuant-UN-1 A(TS) Trapset TS not 

mapped to any 

transitions. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-TSQuant-UN-2 A(TS) Trapset TS mapped 

to every transition. 

Resultant trapset is 

mapped to every 

transition. 

TC-TSQuant-UN-3 A(TS) Trapset TS mapped to 

at least one 

transition. 

Resultant trapset is 

equivalent to trapset 

defined in input 

model. 

TC-TSQuant-EX-1 E(TS) Trapset TS not 

mapped to any 

transitions. 

Reduction to 

Boolean false. 

User receives 

warning message. 

TC-TSQuant-EX-2 E(TS) Trapset TS mapped 

to every transition. 

Resultant trapset is 

mapped to every 

transition. 

TC-TSQuant-EX-3 E(TS) Trapset TS mapped to 

at least one 

transition. 

Resultant trapset is 

equivalent to trapset 

defined in input 

model. 
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The table below lists test cases for the conjunction operator. 

Conjunction test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-C-1 E(TS1) & E(TS2) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to 

Boolean false. 

User receives 

warning message. 

TC-LogOp-C-2 E(TS2) & E(TS1) 

TC-LogOp-C-3 A(TS1) & E(TS2) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to E(TS2). 

Trapset TS1 not 

present in model. 
TC-LogOp-C-4 E(TS2) & A(TS1) 

TC-LogOp-C-5 ~(E(TS2) & E(TS1)) TS1 maps to some 

transitions. TS2 maps 

to some transitions. 

Normalized to 
~E(TS2) | ~E(TS1) 

per negation 

replacement rule for 

conjunction. 

Applied to test model 

according to 

definition of 

disjunction. 

TC-LogOp-C-6 ~(E(TS1) & E(TS2)) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-LogOp-C-7 ~(E(TS2) & E(TS1)) 

TC-LogOp-C-8 ~(A(TS1) & E(TS2)) TS1 maps to no 

transitions, TS2 maps 

to some transitions. 

Reduction to 

~E(TS2). 

Trapset TS1 not 

present in model. 

TC-LogOp-C-9 ~(E(TS2) & A(TS1)) 
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The table below lists test cases for the conditional repetition operator. 

Conditional repetition test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-CR-1 #[>=100] E(TS) Trapset TS is not 

mapped to any 

transitions. 

Reduction to 

Boolean false. 

User receives 

warning message. 

TC-LogOp-CR-2 #[>=100] A(TS) Reduction to 

Boolean true. 

User receives 

warning message. 

TC-LogOp-CR-3 ~#[>=100] A(TS) Trapset TS is mapped 

to some transitions. 

Reduction to 

Boolean true 

(because bound 

condition is negated). 

User receives 

warning message. 

TC-LogOp-CR-4 ~#[>=100] E(TS) Trapset TS not 

mapped to any 

transitions. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-LogOp-CR-5 ~#[>=100] A(TS) Reduction to 

Boolean false. 

User receives 

warning message. 

TC-LogOp-CR-6 #[>=100] A(TS) Trapset TS is mapped 

to some transitions. 

No error. 

Test model matches 

definition of 

conditional 

repetition. 
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The table below lists test cases for the disjunction operator. 

Disjunction test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-D-1 E(TS1) | E(TS2) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to E(TS2). 

Trapset TS1 not 

present in model. 
TC-LogOp-D-2 E(TS2) | E(TS1) 

TC-LogOp-D-3 A(TS1) | E(TS2) Reduction to 

Boolean true. 

User receives 

warning message. 

TC-LogOp-D-4 E(TS2) | A(TS1) 

TC-LogOp-D-5 ~(E(TS2) | E(TS1)) TS1 maps to some 

transitions. TS2 maps 

to some transitions. 

Normalized to 
~E(TS2) & ~E(TS1) 

per negation 

replacement rule for 

conjunction. 

Applied to test model 

according to 

definition of 

conjunction. 

TC-LogOp-D-6 ~(E(TS1) | E(TS2)) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to ~E(TS2) 

and TS1 trapset not 

present in model. 
TC-LogOp-D-7 ~(E(TS2) | E(TS1)) 

TC-LogOp-D-8 ~(A(TS1) | E(TS2)) Reduction to 

Boolean false. 

User receives 

warning message. 
TC-LogOp-D-9 ~(E(TS2) | A(TS1)) 

TC-LogOp-D-10 E(TS2) | E(TS1) TS1 and TS2 map to 

some transitions. 

No error. 

Test model matches 

definition of 

disjunction. 
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The following table lists test cases for the equivalence operator. 

Equivalence test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-E-1 E(TS1) <=> E(TS2) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to ~E(TS2) 

and trapset TS1 not 

present in model. 
TC-LogOp-E-2 E(TS2) <=> E(TS1) 

TC-LogOp-E-3 A(TS1) <=> E(TS2) Reduction to E(TS2) 

and TS1 trapset not 

present in model. 
TC-LogOp-E-4 E(TS2) <=> A(TS1) 

TC-LogOp-E-5 ~(E(TS2) <=> 

E(TS1)) 
TS1 maps to some 

transitions. TS2 maps 

to some transitions. 

 

Reduction to (E(TS2) 
& ~E(TS1)) | 

(E(TS1) & ~E(TS2)) 

and application 

according to the 

definitions of 

disjunction and 

conjunction. 

TC-LogOp-E-6 ~(E(TS1) <=> 

E(TS2)) 
TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to E(TS2) 

and TS1 trapset not 

present in model. TC-LogOp-E-7 ~(E(TS2) <=> 

E(TS1)) 

TC-LogOp-E-8 ~(A(TS1) <=> 

E(TS2)) 
Reduction to ~E(TS2) 

and trapset TS1 not 

present in model. TC-LogOp-E-9 ~(E(TS2) <=> 

A(TS1)) 

TC-LogOp-E-10 E(TS2) <=> E(TS1) TS1 and TS2 map to 

some transitions. 

Reduction to 
(~E(TS2) | E(TS1)) 

& (~E(TS1) | 

E(TS2)) and 

application to input 

model according to 

definitions of 

disjunction and 

conjunction. 
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The following table lists test cases for the implication operator. 

Implication test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-I-1 E(TS1) => E(TS2) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to 

Boolean true. 

User receives 

warning message. 

TC-LogOp-I-2 E(TS2) => E(TS1) Reduction to ~E(TS2) 

and trapset TS1 not 

present in model. 

TC-LogOp-I-3 A(TS1) => E(TS2) Reduction to E(TS2) 

and trapset TS1 not 

present in model. 

TC-LogOp-I-4 E(TS2) => A(TS1) Reduction to 

Boolean true. 

User receives 

warning message. 

TC-LogOp-I-5 ~(E(TS2) => E(TS1)) TS1 maps to some 

transitions. TS2 maps 

to some transitions. 

Reduction to E(TS2) 

& ~E(TS1). Result 

applied to input 

model according to 

definition of 

conjunction. 

TC-LogOp-I-6 ~(E(TS1) => E(TS2)) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to 

Boolean false. 

User receives 

warning message. 

TC-LogOp-I-7 ~(E(TS2) => E(TS1)) Reduction to E(TS2) 

and trapset TS1 not 

present in model. 

TC-LogOp-I-8 ~(A(TS1) => E(TS2)) Reduction to ~E(TS2) 

and trapset TS1 not 

present in model. 

TC-LogOp-I-9 ~(E(TS2) => A(TS1)) Reduction to 

Boolean false. 

User receives 

warning message. 

TC-LogOp-I-10 E(TS2) => E(TS1) TS1 and TS2 map to 

some transitions. 

Reduction to ~E(TS2) 

| E(TS1). Applied 

appropriately. 
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The following table lists test cases for the leads to operator. 

Leads to test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-LT-1 E(TS1) ~> E(TS2) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to 

Boolean false. 

User receives 

warning message. 
TC-LogOp-LT-2 E(TS2) ~> E(TS1) 

TC-LogOp-LT-3 A(TS1) ~> E(TS2) Reduction to E(TS2) 

and trapset TS1 not 

present in model. TC-LogOp-LT-4 E(TS2) ~> A(TS1) 

TC-LogOp-LT-5 ~(E(TS2) ~> E(TS1)) TS1 maps to some 

transitions. TS2 maps 

to some transitions. 

Negation of 

time-bounded leads 

to is not supported. 

User receives error 

message.  
TC-LogOp-LT-6 ~(E(TS1) ~> E(TS2)) TS1 maps to no 

transitions. TS2 maps 

to some transitions. 
TC-LogOp-LT-7 ~(E(TS2) ~> E(TS1)) 

TC-LogOp-LT-8 ~(A(TS1) ~> E(TS2)) 

TC-LogOp-LT-9 ~(E(TS2) ~> A(TS1)) 

TC-LogOp-LT-10 E(TS2) ~> E(TS1) TS1 and TS2 map to 

some transitions. 

Applied to input 

model according to 

definition of leads to. 
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The following table lists test cases for the bounded leads to operator. 

Time-bounded leads to test cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-TBLT-1 E(TS1) ~>[>=100] 

E(TS2) 
TS1 maps to no 

transitions. TS2 maps 

to some transitions. 

Reduction to 

Boolean false. 

User receives 

warning message. 

TC-LogOp-TBLT-2 E(TS2) ~>[>=100] 

E(TS1) 

TC-LogOp-TBLT-3 A(TS1) ~>[>=100] 

E(TS2) 
Reduction to True 

~>[>= 100] E(TS2). 

Applied to model 

according to 

definition of bounded 

leads to. 

TC-LogOp-TBLT-4 E(TS2) ~>[>=100] 

A(TS1) 
Reduction to E(TS2) 

~>[>= 100] True. 

Applied to model 

according to 

definition of bounded 

leads to. 

TC-LogOp-TBLT-5 ~(E(TS2) ~>[>=100] 

E(TS1)) 
TS1 maps to some 

transitions. TS2 maps 

to some transitions. 

Negation of 

time-bounded leads 

to is not supported. 

User receives error 

message.  
TC-LogOp-TBLT-6 ~(E(TS1) ~>[>=100] 

E(TS2)) 
TS1 maps to no 

transitions. TS2 maps 

to some transitions. TC-LogOp-TBLT-7 ~(E(TS2) ~>[>=100] 

E(TS1)) 

TC-LogOp-TBLT-8 ~(A(TS1) ~>[>=100] 

E(TS2)) 

TC-LogOp-TBLT-9 ~(E(TS2) ~>[>=100] 

A(TS1)) 

TC-LogOp-TBLT-10 E(TS2) ~>[>=100] 

E(TS1) 
TS1 and TS2 map to 

some transitions. 

Applied to input 

model according to 

definition of 

time-bounded leads 

to. 
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The following table lists symmetrical test cases produced for the discarded subtree 

corner-case discussed in Section 5.4. 

Reduction corner cases. 

Identifier Input expression Input model Output expectation 

TC-LogOp-X-1 E(TS2) & ((E(TS1) | 

E(TS2)) | (E(TS1) & 

E(TS2))) 

TS1 is not mapped to 

any transitions. TS2 

is mapped to some 

transitions. 

Reduction to E(TS2) 

& E(TS2). 

Application 

according to rules for 

conjunction. TC-LogOp-X-2 E(TS2) & ((E(TS1) & 

E(TS2) | (E(TS1) | 

E(TS2)))) 

TS1 is not mapped to 

any transitions. TS2 

is mapped to some 

transitions. 

 

As mentioned in Section 6.2, all of these tests were executed against the TDLTP 

interpreter, thereby verifying a significant portion of its functionality. 
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Appendix 11 – Repository Links 

Source code for the interpreter (and the issue tracking system used during development) 

is located on Tallinn University of Technology’s GitLab instance: 

https://gitlab.cs.ttu.ee/Tanel.Prikk/iapb. 

In case the link above has expired, the repository has been mirrored to GitHub: 

https://github.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter. 

For redundancy, the repository has also been mirrored to gitlab.com: 

https://gitlab.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter. 

 

https://gitlab.cs.ttu.ee/Tanel.Prikk/iapb
https://github.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter
https://gitlab.com/tanelprikk/ee.taltech.cs.mbt.tdl.interpreter
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