

705 ALUSTATUD 1937

TALLINNA TEHNIKAÜLIKOOLI
TOIMETISED

TRANSACTIONS OF TALLINN
TECHNICAL UNIVERSITY

ТРУДЫ ТАЛЛИННСКОГО
ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

UDK 681. 3. 06

DATA PROCESSING,
COMPILER WRITING,

PROBLEMS OF PROGRAMMING

Transactions of the

Faculty of Economics LXXII

TALLINN 1989

Contents

L, Vyhandu, Fast Methods In Exploratory Data Analysis 3
L. Vyhandu, How to Generate Statements from Examples .. 14
J, Tepandi, S, Trausan-Matu. Testing of Object-oriented

Programs 20

J, Tepandi, P, Parmakson. Choosing an Expert System
Shell 28

J, Henno, Algebraic Foundations of Belief Systems 33
E. õunapuu. Principles for Software Development 44
H, Kuusik. Application of Theory of Monotonie Systems

for Decision Trees Generation 47
P, Vyhandu, K, Regi, A Generating GAI System 59
T. Lumberg. On Organizational "Status Quo" in Informa-

tion System Design 65
L. Elmik, Office Workstation Modelling in the Whole In-

formation System у 72
T. Vapper, Information Flow Matrices 77
M, Roost, Organization of Distributed Data Resources in

lnformation Systems 84

ТАЛЛИННСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ТРУДЫ ТТУ № 705
Обработка данных. Построение трансляторов. Вопросы программирования.
Экономика LXXII
На английском языке.

Vastutav toimetaja I. Amitan.
Kinnitanud TTÜ Toimetiste kolleegium 15.12.89
Trükkida antud 15,12.89. Formaat 60x90/16, Trükipg. 5, 5,+0.25
Arvestuspg. 4.89. Trükiarv 350. Tellimus nr. 443/90. Hind 1 rbl
Tallinna Tehnikaülikool, Tallinn 200 108, Ehitajate tee 5,
TTÜ rotaprint, Tallinn 200 006. Koskla 2/9,

(C) Tallinna Tehnikaülikool, 1989

3

L. Vyhandu

FAST METHODS IN EXPLORATORY DATA ANALYSIS

Abstract

Two hard tasks of combinatorial optimization are
bandied using the theory of monotonic systems, in-
cluding the problems of finding cliques of a
graph and the best tournament ranking,

1, Introduction

This paper presents some ideas of theory and practice
which have been useful for the author and his colleagues
at Tallinn TU already for many years. Our concern was to
create a system of effective exploratory data analysis
methods. We hope in a sense we have been able to reach
our goal.

We have found that to build up for a given and com-
paratively badly known object system a suitable inner order-
ing of objects two powerful tools can be used:

- frequency transformations of data,
- theory of monotonic systems developed by our group.
First we describe in a simple way the actions needed

to use those tools. After that we demonstrate the effec-
tiveness of our new methods for some well-known hard tasks,

2, Frequency transformations of nominal data
Let us have a N*M data table A with nominal data. We

define a frequency transformation for A as follows. For
every variable we take its histogram and change every value
aij s h to its frequency fhj in the histogram. The row sums
of those frequencies describe the conformity of objects in
the data system.

The new matrix Z is called the frequency matrix of a

No 705
TALLINNA TEHNIKAULIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDC 681,3

4

data matrix. If the numbers of categories for variables
differ, we have to multiply frequencies by the number of
categories aij -> lj*zij, We get an equalization of sums of
squares of frequencies for all columns of Z, (In practice
we keep the original data naturally unchanged and use his-
tograms of all variables directly in computations).

After that kind of simple transformation one way to
get interesting results is to use the scale of conformity.

define a measure of conformity for an object Oi
as a sum

The larger the sum Si the more conformity to that
group's general behaviour is there for object i.

Instead of that very simple transformation one can
use also more complicated transformations, e,g, the squares
of frequencies, the so-called influence transformations (1),
but it is adequate to explain our ideas.

5, Monotonie systems in data clustering

Classical clustering methods are fairly slow and
some difficulties occur in the interpretation of cluster-
ing results. For the last 15 years our team has successfully
used the monotonic systems theory for multidimensional
data structuring. Here are some general ideas of this
method.

Let us suppose that there is a system W with a finite
number of elements. Each element has a numerical measure
of its weight (influence) in the system. Further let us
suppose that for every element q € W there is a feasible
discrete operation which changes as well as the weight of
q and the weights of any other element г of the system. If
the elements in W are independent, then it is natural to
suppose that there is no change in the values of other
elements r.

System W is called monotonic, if the operation of
weight change of any element q e W brings about changes in
the weight levels of other elements only in the direction
in which q itself changed.

To use the method of monotonic systems we have to
meet three conditions.

Si alzij

5

1, There has to be a function P which givea a measure
(weight) P(w) of influence for every element w of the
monotonic system W,

2, There have to be rules f to recompute the influence
of the elements of the system in case there is a change in
the weight of one element.

3, The rules for influence recomputing have to be

commutative.
These conditions leave a lot of freedom to the re-

searcher to chooae the influence functions and rules of
influence change in the system. The only constraint we have
to keep in mind is that the functions f and P have to be
compatible in the sense that after eliminating all elements
w of the system W the final weights of w e W must be equal
to zero.

We study all subsets of the set W, Let q e H W
and P+H(q) or P-H(q) be the value of function P on the el-
ement q. We define a kernel H+ (or H-) of a system Was a
subset of W on which there is global maximum of function F
of subsets H

or global minimum of function F (H) = max P H(q.),
+ H

"

The main theorem (4) guarantees the existence of the
so-called determining sequence which defines the extremal
subset of W,

We will demonstrate how to use this theory on data
matrices,

Let us have a N*M nominal data matrix A, If we take
the influence function for a data element aij as Pij = zij,
then we can define different monotonic systems on our data
matrix. We can choose the elements of the raonotonic systems
as follows:

objects (rows of the data matrix).
objects and variables (rows and columns of the data

matrix),
elements of the data matrix.

For simplicity a very brief description is given here
without any programming shortcuts for the first case (object

P (H) = min P H(q)
H

“

6

clustering), using plus-influence.
M

Al, Find the sums P(i) = Y Pile
d=i

A 2. Find R = max P(i) with index k,
i

A3. Copy object к as a new object into the system.

A4, Label object к as taken and calculate new influ-
ences P(i),

A3. Find R* = max P(i) with index k',
i О к

Ab. If R 1 > = R then go to A3.

A'/. All the objects from step A3 belong to the kennel.

AS. If there are more objects, eliminate the first
kernel and go to a2.

Our practice has shown that for the interpretation it
is best to use both objects and variables as elements of
the monctonic system.

If the data are real numbers, we shall use as an in-
fluence function for a data element

g(aij) = aij + Pi + Gj,

where Ri is the sura of the i-th row and Cj - sum of the
j-th column. For the i-th row we have an influence function

M N
G(i) = Y_ g(aij) and for the j-th column G(j) =]T g(aij).

j*l i=l

For a multiplicative case one can take as an influence
function

g'(aij) = aij (Ri-aij) (Cj-aij),

Other influence functions will be described in the
following sections.

7

4, Graphs and raonotonic systems

As a somewhat unusual example we shall demonstrate
how to use the theory of monotonic systems to study the

structure of graphs. One can represent any graph as a data
table, using graphs adjacency matrix, e,g.

12345678

1‘ 10101011
2101011001
31 10101001
4» 01010110
5» 11101110
6; 0000001 1
71 10011110
8* 11100101

We have taken the adjacency matrix of an undirected
symmetrical graph out of (2). As a first step we find the
frequency counts for all variables:

О* 3 /1442333
1* 54446555

Aa a measure of the influence of a given object (row)
one can simply täte the sum of frequencies of every variable
(column) value (e c g. 31 5+4+4+4+6+3+5+5=36), After the
calculation of all respective sums we get the following
easy-to-use schema:

1J 36 35 32 28 24 19 15 8
2» 32 28 -

31 34 34 30 2? 24 20 15
4i 30 - -- -- --

51 3b 32 30 2? 22 -

61 36 31 26
7I 3b 31 28 22
8i 32 29 26 24 22 1?

We will take the weakest object in the first column
with the minimal sum and tnrow it out of the system (in our
case row 4 with the sum equal to 30). It is easy to check

8

that for the given influence function the elimination of one
object brings with it the diminishing of the influence
values of other objects by the amount of equal variable
values with the object we are just eliminating, e.g. object
#1 has only one value equal to the values of object # 4
therefore by conformity values diminish by 1 etc. Throwing
the weakest object out on every step we get the elimination
order of the rows 4,2,6,7,5,8,3,1• Using the symmetricity of
the given data table we can reorder rows and columns as
follows

42675831
4» 11110000
21 11001100
6* 10111100
7* 10111001
5» 01111011
8* 01100111
3I 00001111
1* 00011111

It is easy to see that the clique structure of the
graph is nicely opened.

To find the maximal independent sets of the same graph
we make only one change, namely in the adjacency matrix we
take all main diagonal elements equal to zero. Taking into
account the changes in 0/1 frequencies and using minusin-
fluence instead of plus-direction one gets the following:

1» 34 39 44 50
2» 34 40 - - -

3» 36 - - -

4» 32 34 36 59 42 45
5* 30 32 32 33 56 39 45 -

6: 34 39 46 -

72 34 59 44 48 50 -

8* 30 39 34 34 36 40 45 52.

If we have two or more equal values for a choice we
take the one which has had the biggest change at the last
step (e.g, rows 5 and 8 in the last schema).

9

After rearranging the rows and columns of the original
matrix in the order given by the elimination process we get
the following:

32617458

5» 0001 001 1
2* 000001 1 1
6* 000011 11
I*l 0001 01 1
7J 0011 0110
4J 0 1 1 01 ООО
5: 11111000
8* 1111 000 0.

As we can see the structure of the maximal indepen-
dence sets is nicely brought out.

5, Tournament ranking problem

Seeking the best tournament ranking is a good start-
ing point for more general analysis of directed graphs. If
you take a chess tournament table

12 3 4-5

1» * 0 1 1 1 3
2I 1 * 0 .5 1 2.5
3i 0 1 * 0 .5 1.5
4» 0 .51 * 0 1,5
5i 0 0 .5 1 • 1.5,

all chessplayers do agree that the given ranking is the
best one (using the so-called Berger system where all
equal results are weighted by the amount of his/hers oppo-
nent’s points). Closer analysis raises some doubts. First,
all players lost to the next weaker player, second, the
amount of wins by better and weaker players is equal (4
wins over and 4 wins under the main diagonal).

Kendall and Wei suggested another principle (5),
namely to use that ranking which minimizes the number of
violations where a weaker player defeats a stronger one.

10

Mathematicalfproblem of renumbering the nodes of a
given graph to minimize the number of the ones under the
main diagonal is well-known and belongs to the class of
exponentially complex tasks. We will propose a quick method
to solve the problem by a combination of monotonic systems
method with divide-and-conquer principle.

First we demonstrate the idea on our small tournament
table. After that we represent the full algorithm.

We collect the tournament data into a simple table:

Player To whom he lost # of wins

12 3
2 3 2
3 14 1
4 13 1
5 12 1

If there would be a player who had no wins we could
exclude him as the weakest. In our case there are no such
players. Therefore we divide all players into two groups -

weaker and stronger ones. We define a weaker player as the
one having at least so many losses as wins (players 3» 4,
5), For those weakerxplayers we put together a new schema

3 4 *0
4j5 ; 1
5:- : 1

which has already a zero in it. So we can eliminate player
3, after that player 4 loses his/her only win and we get
an order 3, 4, 5 (the weakest comes first) for weaker pLayerq

For better players we get

I’2 * 0
2 1 - 11

That gives us a sequence 3» 4,5, 1, 2 from the
weakest to the strongest player.

\our new chess table would be as follows

2 1543
2l * 1 1 .5 0

11 0 * 1 1 1

31 о о * 1 .5
4* ,5 0 0 *1

з: i о ,5 о *

In that order we have only one (irreducible) violation.

6, A minimum violation ranking algorithm for a
tournament

A tournament can be described as a non-symmetrical
graph with N nodes as players and an edge (i,j) represent-
ing a win of the player i over the player j, An adjacency
matrix for a tournament A = (aij) is defined as aij = 1 if i
defeated j, otherwise it equals 0,

Ranking of players in a tournament is defined as bhe
next task on a graph (3),

A non-symmetrical graph is given. Renumber the nodes
of that graph во that in the graph’s adjacency matrix
A(K,N) the number of the ones under the main diagonal will
be minimal.

An algorithm for the requested renumbering works as
follows:

Al, (Elimination of nonessential elements),

a) Make all A(I,I) = 0, 1=1,,,,,N,
b) For all pairs of subscripts (I,J) where A(I,I)=

=A(J,I) change A(I,J) and A(J,I) to zero (those elementary
cycles cannot be eliminated and in bhe reordered matrix all
those ones will be there).

A2, For every node I calculate the number of incoming
and outgoing edges (resp. C(I) and R(I)),

A3. If there are nodes with C(l)=0 go to step A4-,
otherwise to step A5,

A4, Take any node with C(I)=0 and put that node into
the new sequence of nodes. For every outgoing edge (I,K)
calculate G(K)=C(K) - 1. Go to step A3.

A3. Divide the nodes not yet included into the new
sequence into two parts. To the first active part belong
all those nodes I for which Z(I)=R(I)-C(I) > =O, Put to-
gether a new adjacency matrix for that subgraph. Go to step

11

12

Аб, 1) If there are isolated nodes in that subgraph
for which R(I)=C(I)=0 then those nodes are not yet included
into the new sequence of nodes.

2) If all Z(I)=0, but R(I) and C(I) <> 0, then
for that subgraph one can use any subsequence of nodes
touring all its nodes as in the Hamilton cycle. The problem
of including the subgraph into the new sequence of nodes
is solved aa follows. If that subgraph is at the very end
of the graph, i,e,, if after including those nodes into the
sequence there are no free nodes, one can exclude at random
a node from the subgraph and go on as in the main algorithm.
That ends the recordering procedure.

In the case where that subgraph's cycle does not ex-
clude all nodes of the whole graph, one puts together a
new subgraph from all free nodes and goes to step A2,

3) If not all Z(I) for a subgraph equal to zero
one has to act as in step A3 using it recursively up to the
moment when the subgraph is eliminated. For all free nodes
put together a new subgraph. Go to step A2, If all nodes of
the graph are included into the new sequence end the pro-
cedure,

A7. For that list of nodes count how many violations
there are in that nodes ranking. You get the number of sig-
nificant ones under the main diagonal in the newly ordered
adjacency matrix, (Naturally one has to include all the
elements excluded in step A 1 into the final list),

AB, Repeat the same procedure from step A3 on, chang-
ing everywhere the roles of R(I) and C(I), The new list of
nodes is taken in reverse order,

A9. We take the order of nodes which has the minimal
number of ones under the main diagonal as the solution of
our task.

References

1, Vyhandu L, Express methods of data analysis //

Transactions of Tallinn TU. 1979. No 4-64-, P, 21-35 (in
Russian),

2, Loukakis E, A new backtracking algorithm for gen-
erating the family of maximal independent sets of a graph//
Comp, end Math, with Appls. 1983. Vol. 9. No 4. P. 583-589.

13

3, Ali I, a, о. On the minimum violations ranting of
a tournament // Management Science. 1986, Vol, 32. No 6,
P. 660-672,

4, Mullat J. , Vyhandu L, Monotonie systems in scene
analysis // Symposium, Mathematical Processing of Cartogra-
phic Data, Tallinn, 1979» P. 63-66.

5, Kendall M,G, a,o. On the method of paired compari-
sons // Biometrika, 1940, No 31. P, 324-345,

L, Võhandu

Kiirmeetod uurimuslikus andmeanalüüsis

Kokkuvõte

Artiklis käsitletakse kahte rasket probleemi kombina-
toorse optimeerimise vallast - graafide avamist ,1a turnii-
ride parema Järjestuse leidmist.

14

L. Vyhandu

HOW TO GENERATE STATEMENTS FROM EXAMPLES

Abstract
The problems of inductive learning are handled using
the theory of monotonic systems. An easy to use and
quick schema is developed to generate statements from
examples,

1, Introduction

This paper handles some problems of the descriptive
generalization in conceptual inductive learning. As demon-
strated by R.S, Michalski C 33 this area includes such topics
as automated theory formation, discovery of relationships
in data or an automated construction of taxonomies. We de-
scribe very shortly some simplest applications of the theory
of monotonic systems to statement generation,

2, Frequency transformations of nominal data

Let us have a N*M data table A with nominal data. We
define a frequency transformation for A as follows. For
every variable we take its histogram and change every value

к h to its frequency in the histogram. The row sums
of those frequencies describe the conformity of objects in
the data system Cl].,

The new matrix Z is called the frequency matrix of a
data matrix. If the number of categories for variables dif-
fers, we have to multiply frequencies by the number of cat-
egories a^j—> l-j*Zi_., We get an equalization of sums of
squares of frequencies for all columns of Z # (In practice
we keep the original data naturally unchanged and use
histograms of all variables directly in computations).

After that kind of simple transformation one way to
get Interesting results is to use the scale of influence.

No 705
tallinna tehnikaülikooli toimetised
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UÜC 681.3.06

15

We define a measure of conformity for an object CK as
sum

The larger the sum the more conformity object i shows
to the general behaviour of that group.

Instead of that very simple transformation one can
also use more complicated transformations, e,g, the squares
of frequencies, the so-called influence transformations ПИ,
but it is good enough for explanatory purposes.

3, Monotonie systems on data matrices
Using the frequency transformation one can build up

very simply monotonic systems on data matrices and open
the inner structure of those matrices [l, 2], To use that
technique for inductive learning we do not need anything
special. We just take all given examples and describe them
with a system of variables so that all important properties
would be specified well enough. Having built up a data
matrix we can use the frequency transformation with a chosen
influence function. As a next step we use a computationally
very simple algorithm to organize data structurally.

For simplicity we describe here very briefly but
without any programming shortcuts only how to cluster the
object system into kernels (clusters),

M
Al, Find the sums P(i) = 'll ~P..

j=l ii] *

A2, Find R = max P(i) with index k,
i

A3, Copy object к as a new object into the system.

A4, Label object fc as taken and calculate new influences
P(i).

A5. Find R’ a max P(i) with index k',
i<>k

A6, If R* > * R then go to A3,

A7, All the objects from step A3 belong to the kernel,

AB, If there are more objects, eliminate the first kernel
and go to A2,

si =£ zid*

16

All kernels have to be interpreted as structural
unities we are looking for. In the case of many-object
examples one has to be careful so that all interpretable
kernels would include all examples.

Ц-, Monotonie systems in learning

To demonstrate how the method works we shall take a
short and well-known example by F, Hayes-Roth and J, Mc-
Dermott, They introduced in a method for inducing knowl-
edge by abstraction from a sequence of training examples.
Their examples are:

E 1;

{{TRIANGLE: a, SQUARE: b, CIRCLE: c } ,

{ LARGE: a, SMALL; b, SMALL: c),
{ INI'! ER: b, OUTER: a},
{ ABOVE: a, ABOVE: b, BELOW:}c ,

{ SAMESIZE: b. SAMESIZE; c}}

E2:
{{SQUARE: d, TRIANGLE; e, CIRCLE; f},
{ SMALL; d, LARGE; e, SMALL: f},
{ INNER? f, OUTER: e},
{ ABOVE; d, BELOW: e, BELOW: f},
{ SAMESIZE: d, SAMESIZE: f }]

E3:
({SQUARE; g, CIRCLE: h, CIRCLE: i},
{ SMALL: g, LARGE; h, SMALL: I},
{ INNER; i, OUTER; h},
{ ABOVE; g, BELOW; h, BELOW;}i

.

{ SAMESHAPE: h, SAMESHaPE: i},
{ SAMESIZE; g, SAMESIZE; i}}

Their abstractions are t4];

There are three objects, including a small circle and
a small square. The square is above the circle. The third
object is large. To use the method of monotonic systems we
represent the examples as a data table:

1 2 3 4 5 6 7
a 1 1 22200
Ь1211210
c 1 3 1 011 0
d 2 2 1 021 0
e 2 1 221 00
f231 1 1 1 0
g 3 2 1 021 0
h 3 3 2 2 1 01
13311111

The values of the variables are as followss
1 - the number of the example;
2 - type (I«trlangle, 2 * square, 3 * circle);
3 - size (1 m small, 2 ж large);
4 - in/out (1 a inner, 2 ■ outer, 0 * none of them);
5 - 1 = below, 2 ш above;
6 - sameaizenesa (1 ж yes, 0 ж no);
7 - aameahapeneaa (1 ж yea, О ж no)*

As a first step we create the frequency table of values for
the examplea

o’ 0003037
1J326 3 5 6 2
2' 3333400
3J 34ООООО

As the next step we find the weights for all objects talcing
the sums of the frequencies of values of objects. These sums
are given in the second column of the following schema

a 25 22 17 ------

b 32 32 31 28 25 21 17
c 34 32 ЗО 28 24 I? - - -

d 32 32 ЗО 28 26 22 18 13 -

e 26 22 --
- - - - -

f 54 32 29 28 23 - - - -

g 32 31 ЗО 28 25 22 18 13 7
h 23- - -- - -- -

i 29 25 24 24 - - -

17

18

We choose the object with the minimal weight (in our
сазе object h with the weight 23). After that we exclude
that object out of the system. It is easy to prove that the
weights of all other objects change by the amount of equal
values with the exluded object (e,g, object i has four
equal values of variables with object h, therefore the ex-
clusion of the object h diminishes the weight of object i
from 29 to 25), Correcting all weights we choose again an
object with minimal weight. In our case we have twice the
value 22 (objects a and e). As a minimum we choose that
object which was more alike to the excluded one (object e).
After having excluded all objects we rearrange the data
matrix in the order of exclusion

h 3322101 23
e 2122100 22
a 1122200 17
i 3311111 24
f 2311110 23
c 1310110 19
b 1211210 17
d 2210210 13
g 3210210 7

\

Interpretation of that rearrangement is easy to get.
The data are through their determining sequence monotonic
parts automatically structured into two groups {h, e, a }

and {i, f, c, b, d, g}. It is important to remember that
we can generalize only those statements which are true for
all examples. Our first group {h,e,a} has as a first variable
all 3 different example numbers. Therefore we can collect
a conjunctive statement out of three first lines:
there exists a large object which is outside and does not
have another object of the same size.
\ The second group creates a statement: there are two

small objects which are of the same size; the small square
is always above and the small circle is always below.

Those two statements are most important ones which
do cover all data rows about examples. To analyze the bigger
group more carefully one can eliminate two constant variables
(+t3 and#G) for that group and then two more statements are
obtained.

19

Inner objects are always small and are either circles
or squares (group { i,f,b }),

There are always objects which are not inner or out-
side and which are small, of the same size and do not have
an object of the same shape (group {c,d,g}).

The last statement is especially interesting, because
negative patterns are often more conclusive than the positive
ones. However, no mention was made of that statement in
С4Ц.

References

1, Vyhandu L. Express methods of data analysis //

Trans, of Tallinn TU. 1979. No 464. P, 21-35 (in Russian).
2, Mullat J., Vyhandu L, Monotonie systems in scene

analysis//Symposium. Mathematical Processing of Cartographic
Data. Tallinn, 1979. P, 63-66.

3, Michalaki R.S, A theory and methodology of in-
ductive learning // Artificial Intelligence. 1983. 20,

P. 111-161.
4, H.ayes-Roth P,, McDermott J, An interference match-

ing technique for inducing abstractions // ОДОМ, 1978. 21,

P. 401-411.

L, Võhandu

Näidetest väidete genereerimine

Kokkuvõte

Artiklis käsitletakse monotoonsete süsteemide teooria
rakendamist induktiivsel õppimisel. Esitatakse lihtne ja
kiire arvutiskeem näidetest väidete genereerimiseks.

20

J. Tepandi
S. Trausan-Matu

TESTING OP OBJECT-ORIENTED PROGRAMS

Abstract
The main features and typical applications of
object-oriented programs (OOP) are discussed. The
statement and branch adequacy testing criteria for
OOP are proposed. The problems associated with the
specification-based testing of OOP are considered,

1, Introduction

Object-oriented programming (OOP) is widely discussed
and applications with high reliability requirements [ll, 19]
are becoming to benefit from it. Nevertheless, testing of
object-oriented programs has not received sufficient atten-
tion, At the same time, there exists a large amount of ex-
pertise in the area of conventional testing of software
systems [9, 10, 18], The goal of the paper is to apply this
expertise to the testing of object-oriented programs.

To do this, we shall first consider briefly the main
features and some typical applications of OOP, OOP can be
characterized as a combination of abstract data types and
inheritance [B], An object may have a number of components
(we shall call them slots) and can respond to a number of
messages. For each message an object has associated a method,
which is the code to be executed as a result of the message.
The main features of OOP are [11:

- encapsulation of specific knowledge concerning the
implementation of objects’ behaviour;

inheritance of slots and methods;
- message passing;
- dynamic binding;

No 705

tallinna tehnikaülikooli toimetised
TRANSACTIONS OP TALLINN TECHNICAL UNIVERSITY

UDC 681.3.06

21

- dynamic storage management.
Typical application areas of OOP, determining the

object-oriented program life cycle, are*
- artificial intelligence (especially expert systems)

[2, 3, 14, 16, 19, 233;
- graphics Cl, 19, 211;
- flexible simulation [191;
- scheduling [191;
- planning [191;
- monitoring [l2, 191;
- software engineering [3, 11, 131»
- data base semantic models [l5l.

Historically, the first language, comprising object-
oriented features, was SIMULA, with its class construct.
One of the first and best known object-oriented languages
is SMALLTALK Lll which intensively uses the object concept
for implementing a powerful environment. In SMALLTALK every-
thing is an object, starting from numbers and finishing
with graphic concepts like windows. All processing is ful-
filled by sending messages to objects,

A very important class of OOP languages was designed
for artificial intelligence applications. We can mention
LOOPS Г53, КBE (provided by Intellicorp) [l2, 13, 14, 193,
Knowledge Craft (provided by Cärpegie Group) [l9l, Flavors,
XRL [4l, They are generally writteb.vin LISP and offer a
powerful development environment. All of them (except
Flavors) combine OOP with other knowledge representation
paradigms like production rules, logic programming, active
values. They allow also using LISP functions.

2. Program-based testing methods

There exist several program text based testing
adequacy criteria [lßl* statement adequacy (all the program
statements must be executed), branch adequacy (all the edges
in the program flow diagram must be traversed), path ad-

equacy (all the possible paths through the program must be

executed), etc. We may reformulate them for OOP as
follows. According to the statement adequacy criter-
ion, all statements in each method and In each

22

demon must be executed, all slots, defined in each object,
must be accessed, each declaration of inheritance must be
used at least once. Due to the code sharing by inheritance,
the amount of tests corresponding to the statement adequacy
criterion, may be significantly reduced with respect to the
testing of the same application, implemented in a conven-
tional programming language.

To consider the branch adequacy criterion, we accept
here its analogy for the OOP, stating that all the different
possibilities of code activation (i,e, branches) must be
considered. Therefore, all the statement adequacy tests
should be performed. In addition, the following specific teat?
should be included;

- for the code of methods and demons, branch adequacy
testing should be performed as in conventional programs?

- all the possible different types of messages to an
object should be sent;

- the same message should be sent to all the objects
to which it can respond;

- all the inheritance links must be used, including
implicit transitive links;

if the language allows multiple inheritance and
method combination, then all possible exits from the composed
methods (obtained by applying the combination function to
the conflict set of inherited methods) must be exercised;

- all the different inheritance modes must be ex-
ecuted (e,g, replacing or overriding a value of a slot).

In addition, there exist several new problems, asso-
ciated with testing artificial intelligence applications,
comprising dynamic modification of programs (e,g, develop-
ment of a new system, starting from a generic application,
the process of knowledge acquisition or refinement). These
modifications may differ in persistency (from the modifica-
tions kept during one run of the program to the "modifica-
tions”, serving as a user-defined new application), extent
(from minor modifications to new systems), and regularity
(from well-defined additions to making any kind of program
modificationa). Thus the complexity scale of the modifica-
tions starts with short-term, minor and well-defined ones
(e,g, adding a new slot which inherits methods and eventually

23

uses a combination of methods, or adding a clause for a
person into Prolog database), that can be handled as usual
data structure testing. On the other side, there are long-
term and complex new systems (e.g, dynamically generated,
starting from a generic application) that must be tested
on their own. The situation between these two extremes seems
to be an interesting area of research.

3* Specification-based testing of object-oriented
programs

know that the OOP is often characterized by an
evolutionary life-cycle. In such a case there may be no
specifications at all; and, if there are any, they follow
the same evolutionary pattern. In view of this, is there a
need for specification-based testing of object-oriented pro-
grams? We will argue that there is such a need - for the
following reasons*

1, The argument, given above, was not quite correct.
Some form of specification (e.g, determining the application
area, the allowed response times, the coat and realibility
requirements, ease of operation, and many others) always
exists. Besides, recent results [ll3 indicate that specifi-
cation methods, developed for conventional programming C24),
may also be useful developing object-oriented programs. In
fact, modularity and encapsulation of OOP facilitate the
implementation phase which starts from such a specification.

2, It is useful to have specifications for generic
tasks E6, 7, 23] or generic application shells L 193, thus
simplifying the implementation of a whole class of applica-
tions, Combining generic specifications with specifications
of peculiar features, one may tune the generic program to
obtain a specific application.

3, There exist fundamental differences between what
the program does and how it is accomplished. However declara-
tive the current high-level languages (including OOP) are,
the specification, written, for example, in natural language
or high-level logics, allows more flexibility Г2O).

4, Many problems can be easily expressed in the logic
languages, mentioned in the previous point, but their im-
plementation is inefficient or even untractable. Thus, these

24

languages may be used for specification and testing, but not
for incrementation.

5, Two descriptions of one task (i,e, through
specification and a program) can improve reliability and

testing.
6, The specification may be not complete to obtain

the results (for example, the input/output specifications,
given on Jackson formalism). For this reason, it cannot be
identified with the program. Nevertheless, this kind of
specification may be easy to extract and useful for program
development and testing.

7, There exist methods peculiar to specification based
testing (e,g, testing, based on equivalence classes, boundary
values, etc.) This experience is useful for programs with
high reliability requirements. However, it is possible only
when a specification exists.

In the previous discussion we referred to some poss-
ible specification languages. There are several approaches
to test generation using these languages (algebra, Prolog,
predicate calculus) Г22], So now let us ask whether OOP
languages can be used for specification. In Cl 7, 20] the
following criteria are stated. It must be possible to: say
that something has a certain property without saying what
thing has this property (existential quantification)j say
that everything in a certain class has a certain property
without saying what everything in that class is (universal
quantification) ». say that at least one of two statements
is true without saying which is true (OR); explicitly say
that something is false (NOT); either settle or leave open
to doubt whether two non-identical expressions name the same
object (equality), OOP allows to satisfy the first two re-
quirements entirely and supports partially the satisfaction
of the following two requirements. Also, it is essential,
that OOP provides many features that make it attractive as
a specification language (encapsulation as a form of abstrac
tion objects as conceptual units, inheritance and object
hierarchies as means for representing interconcept rela-
tions, etc).

The next important question is: if the specification
and implementation are given in the same language, 1s there

25

a difference between specification-based and program-baaed
testing? Namely, in such a case the specification tends to
be a part of the program. The program itself is more conpitex
and includes also procedural (e,g, bodies of methods, writ-
ten in a procedural language) or declarative-procedural (e,
g, rules or logic programming) components. So, the spec-
ification-based testing seems to be included into the
program-based testing. This question deserves further elab-
oration, but the points 1-7 from the previous discussion
seem to indicate that the specification may be necessary,
and actually used to improve testing.

In particular (cf, point 1) there exist requirements
that cannot be readily expressed in logic, OOP or any other
currently used formalism. The situation seems similar to
the incompleteness of the first-order theories. Also (cf,
point 7), specifications enable development of knowledge-
based systems that make use of the testing experience cur-
rently available.

Acknowledgement

The authors would like to thank the Basic Laboratory
of AI of the Institute of Technical Cybernetics, Slovak
Academy of Sciences, for support and pleasant working envi-
ronment.

References

1, Anderson B, Object-oriented programming //

Microprocessors and Microsystems, Oct, 1988, Vol, 12, No
8, P. 433-442,

2, Barbuceanu M, An object centered framework for
expert systems in CAD // J,S, Gero (ed,). Knowledge engin-
eering in CAD, North Holland,l9Bs. P. 223-253.

3, Barbuceanu M,, Trausan-Matu S,, Molnar B,
Integrating declarative knowledge programming styles and
tools in a structured object AI environment // Proceedings.
Tenth International Joint Conference on Artificial Intel-
ligence, Milan, Italy, 1987. P. 563-568,

26

4, Barbuceanu M,, Trausan-Matu S,, Molnar B, The
ZRL2 manual. Institute for Computer and Information Sciences.
Bucharest. Romania, 1988,

5, Bobrow D,G,, Stefik M, The LOOPS manual, T,R,
KB-VLSI-81-13, Xerok Palo Alto Research Center, 1981,

6, Chandrasekaran B. Generic tasks in knowledge based
reasonings Mgh level building blocks for expert systems
design, lEEE Expert, Fall, 1986, P, 23-30.

7, Chandraaekaran B, Towards a functional architectune
for intelligence baaed on generic information processing
tasks // Proceedings. Tenth International Joint Conference
on Artificial Intelligence, Milan, Italy, 1987, P. 1183-
>1193.

8, Danforth S,, Tomlinson C, Type theories and
object-oriented programming // ACM Computing Surveys. March
1988. Vol, 20. No 1, P. 29-72,

9, EWICS, Guideline for verification and validation
of safety related software - a report of a TC7 systems re-

liability, safety and security committee. Computers* Stan-
dards 3. 1984. P, 91-99.

10, EWICS, Techniques for verification and validation
of software-related software. Computers & Standards 4,
1985. P, 101-112,

11, Falk H, CASE tools emerge to handle real-time
systems // Computer Design, Jan, 1988, P, 53-74,

12, Pikes R,, Kehler T, The role of frame-based re-
presentation in reasoning // Communications of the ACM,
Sept. 1985. Vol, 28. No 9. P. 904-920.

13, Filmen R, Retrofitting objects//Proceedings
OOPSLA’B7.

14, Pilman R, Reasoning with worlds and truth main-
tenance in a knowledge-based programming environment //

Communications of the ACM, Apr, 1988, Vol, 31, No 4, P, 383-
-401.

15, Hull R,, King R, Semantic database modeling:

survey, applications and research issues // ACM Computing
Surveys, Sept, 87. Vol, 19, No, 3. P. 201-260,

16, Motta E., Eisenstadt U, , Pitman K,, West M
Support for knowledge acquisition in the Knowledge En-
gineer's Assistant (KEATS) // Expert Systems, Feb, 1988,
Vol. 5. No 1. P, 6-27.

27

17, Moore R, Reasoning About Knowledge and Action //

Technical Note 191, Artificial Intelligence Center, SRI
International, Menlo Park, CA, 1980,

18, Myers G,J, The Art of Software Testing, New York:
Wiley, 1979.

19, Richer M, An evaluation of expert system develop-
ment tools, report KSL 85-19, Stanford June 1986*

20, Reiter R, Foundations for knowledge-based
Information Processing 86, H,-J, Kugler (ed,), Elsevier
Science Publishers В, V,, North-Holland, 1986, P, 663-668,

21, Stefik M,, Bobrow D, Object-oriented programming»
themes and variations // AI Magazine, Winter, 1986, 6 (4).
P. 40-62.

22, Tepandi J, J, A knowledge-based approach to tne
specification-based program testing // Computers and Arti-
ficial Intelligence, Jan, 1988, Tol, 7, No 1, P, 39-48,

23, Trausan-Matu S,, Barbuceanu M, Generic knowledge
processing architectures for CAD in civil engineering //

Proceedings of INFOTEC’BB, Bucharest, Romania, Sept, 1988
(in Romanian),

24, Yau S,S, , Tsai J, J,-P, A survey of software
design techniques // lEEE Trans, Software Eng, June 1986,
Vol, SB-12. No 6. P, 71 3-721.

J, Tepandi, S, Trausan-Matu

Ob.iektorienteeritud programmide testimine

Kokkuvõte
Artiklis esitatakse objektorienteeritud programmide

testimise põhimõtted. Käsitletakse testimist programmi
teksti alusel (kõikide lausete katmise meetod, kõikide la-
henduskäikude katmise meetod) ning testimist programmi
spetsifikatsiooni alusel.

28

J. Tepandi P. Parmak son

CHOOSING AN EXPERT SYSTEM SHELL

Abstract

The principles for choosing an expert system shell for
a specific application are proposed, A description of
an expert system for such a selection is given.

At present many expert system shells (ESS) are access-
ible, Some of them are described in Cl-43, Often it is not
so easy to choose the moat suitable one. Meanwhile, the
correct choice of ESS can substantially simplify the con-
struction of expert system (ES), while an erroneous one
would prolong ES development considerably or produce an
unsuitable system. Below we will present the principles for
choosing ESS as well as describe ES for choosing ESS, de-
veloped consistent with those principles.

It should be noticed that the use of special expert-
system development tools, although very time-saving, is not
crucial. Highly usable expert systems for small-sized prob-
lems can be developed in any high-level language. These lan-
guages may be capable of performing arithmetic calculations
and drawing graphics, not always available even in quite
costly ESS, Artificial intelligence languages such as Prolog
or Lisp are widely regarded as particularly appropriate for
expert-system development. To perform a given task, a suit-
able high-level language tends to be easier to use than a

low-level language; however, low-level languages are more
adaptable and powerful when mastered.

?EiS2iEi®s_2£_Sboosing_ESS, When working out the prin-
ciples of choosing ESS we were guided by previous experience
in the field of ES and program system construction. We also
took into account some results in C53 concerning the evalu-

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDC 681,5.06

29

ation of the usefulness of various E 3 development tools
and in C63 concerning the classification and the selection
of a database query language.

To choose ESS, it is necessary to take into consider-
ation several groups of factors, We will discuss them one
at a time. The order of discussion is due to practical rea-
sons - we believe that such an order allows to reduce the
expenses for ESS selection.

First of all, nature of the task is to be considered
in order to find out if the task is altogether solvable by
means of ESS, The following criteria can be suggested herej

- if there is an exact algorithm for solving the task
then ES will not be needed as ordinary programming language
is sufficient;

- if the human expert solves the task in leas than
half an hour then the task is probably too simple to be
solved by means of SS (although for educational purposes it
can also-be useful);

- if a man spends more than an hour solving the task,
then it is probably too complex for modern computers;

- ES can only be created in case there is no expert
for the given task.

Analysis of the task can prove the use of ESS un-
necessary already at the start, thus avoiding further waste
of time. If the task obviously suits ES or if the object of
interest is not so much the product itself than the prin-
ciples of ES development, then the next significant factor
in the real situation is the accessibility of ESS and the
information concerning it. It might turn out, that only one
system is accessible - in that case the problem is almost
solved and' one will only have to check the consistency of the
ESS available with the remaining requirements. Other signifi-
cant criteria of this type ax*e; (1) the kind of strategy
the firm is carrying out in the field of computer hard-
and software purchasing, (2) the price of the system or
knowledge,.. (3) the existence of system documentation, (4)
the availability of experts who have been working with the
system, (5) any possible relations to some ESS development
team.

The next important factor is the preparation level of

30

the person working out the S 3 and of its future user. For
example, it is important to have information about the lan-
guage the developer knows and about the interface languages
acceptable to the user. If the developer has no experience
working with ESS he may begin with more simple ESS of prefer
ESS with powerful knowledge base editors. <

It is- also essential if the system will be operated
by a regular staff or - will be used in the mode of ad
hoc queries asked by casual users.

In addition it is necessary to deal with the problem
that is to be solved in more detail from the standpoint of
implementation. The choice of ESS can be due to the follow-
ing considerations: necessity to perform arithmetic calcu-
lations (not all ESS are offering such an opportunity),
necessity to have a link with external files, necessity to
use external (sub)prögrams (e.g, when there are program li-
braries and it is expedient to manage the processing using
ESS), necessity to work with fuzzy knowledge, necessity of
computer graphics in the interface, necessity to work in
real-time, necessity to work with distributed data bases,
necessity of high work efficiency, supposed dimension of
knowledge base, model of the computer used, etc.гVery important is the assumed future use of the ES
to be created, including its purpose, i.e either for -e-
-search or for company use, the countries where it is to be
used, the assumed frequency of updating knowledge base, etc;

gxpert_sys.tem BSVES for choosing an ESS. In the Basic
Laboratory of Artificial Intelligence, Institute of Technical
Cybernetics, Slovak Academy of Sciences in Bratislava sev-
eral different ESS are accessible. They differ in poss-
ibilities, types of tasks to be solved and the knowledge
level required by the expert system developer. The majority
of research workers in ITC are insufficiently informed of
types of tasks where these ESS can be used. The system called
ESVES, developed on the above-stated principles, is intended
to make up for that deficiency. It gives answers to the
following questions.

- What ESS can be found in Basic Laboratory?
- Which ESS can one use to become acquainted with the

problems of expert systems?

31

-Is my task: suitable tobe solved with the help of
an expert system?

.Vhich ESS serve best for solving my tasks?
If there are any suitable ESS, then the conclusion

from system ESVES is given in the form of a list of rec-
ommended ESS, in the order of confidence values of rec-
ommendations. But if the task is not suitable for accessible
ESS, then the relevant information is given. In that way a
research worker at ITC who is interested in building expert
systems, can choose the ESS suitable for one's own task.

System ESVES can be used in various projects of Basic
Laboratory as well as in other development activities con-
nected with expert systems.

One of the authors, J, Tepandi, would like to express
his gratitude to the leadership of ITC and Basic Laboratory
for offering computing resources and favourable working con-
ditions.

References

1. Koov M,J,, Haav H.-M. H, Expert system and data
bases for MicroPRIZ system// Personal Computers and their
Applications, Tallinn; Valgus, 1986, P, 35-36,

2. GESMI - an expert system generator. User’s manual.
Sofia, 1987.

3. Ho Tu Bao, On the design and implementation of an
expert aysbem using the inference engine GOTO // Computers
and Artificial Intelligence. 1987, Vol. 5, No 4, P. 297-31°.

4-, Tepandi J, A knowledge-based approach to the speci-
fication-based program testing // Computers and Artificial
Intelligence. 1988. Vol. 7. No 1. P. 39-4-8.

5, Grafton C,, Permaloff A. Microcomputer expert
systems // Social Science Microcomputer Review. 1987. Vol.
5. No 4. P. 547-557.

6, Järke M., Vaasilicu Y. A framework for choosing a

database query language // ACM Computing Surveys, 1985.
Vol. 17. Ho 5. P. 315-34-0.

32

J. Tepandi, P, Parmakson

Instrumentaalse ekspertsüsteemi valik

Kokkuvõte

Artiklis esitatakse instrumentaalsete ekspertsüstee-
mide valiku põhimõtted, la*htudes rakenduste iseloomust,
Arvessevõetavate tegurite hulka kuuluvad lahendatava üles-
ande tunnusjooned, organisatsiooni riist- ja tarkvarastra-
teegia, süsteemi vaijaarendaja ning kasutaja ettevalmistuse
tase jm. Instrumentaalse ekspertsüsteemi valikuks on koos-
tatud ekspertsusteem.

33

J. Henno

ALGEBRAIC FOUNDATIONS OP BELIEF SYSTEMS

Abstract

The main problem of logical programming is inference-
characterizing logical consequences of formulas using
the properties (and structure) of those of formulas
only, A new, algebraic inference procedure is in-
troduced here, which does not depend on the structure
of formulas. The new principle is based on properties
of logical operations on formulas only and is there-
fore very suitable for generalizations. The soundness
and completeness of the new procedure are proved,

1, Introduction

A, Informal

The first step in formalization of our knowledge
about some universe of discourse is conceptualization -

definition of objects and their interrelationships. We re-
present our knowledge in a special language, called predi-
cate calculus.

The moat simple, unstructured (known) objects are
represented as constants of our language, unknown objects -

as variables. Relationships between objects are represented
by relations. Since our knowledge about relations between
objects is always somewhat uncertain, we will connect with
every instance of a relation the degree of belief - a value
which expresses how strongly we believe this particular
instance of the relation to hold. Therefore we have to
use predicates instead of relations, which differ from
relations just in having this belief value.

Constants can also be viewed as values of attributes,
represented by variables. Since attributes express prop-

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDO 681,3

34

ertles, predicates express now properties of properties,
i.e, a new kind of objects. This interpretation is often
used in connection with databases and expert systems.

As a special kind of interrelationships we have to
consider also functions, which map tuples of objects into
other objects. The result of applying a function is rep-
resented in our language by a term and can be viewed as
generating a new, structured object.

Predicate instances form moat simple, atomic sentences
of our word representation. Often we want to connect various
facts using logical operations, which in our everyday lan-
guage appear in the expressions like ",,, and or
4*4” , "I strongly believe that ~,", "I don't think that
~,", "maybe Logical operations act on the set of
belief values. They are not independent - "I think that
neither A nor В holds is usually interpreted as "I
don't think that either A or В holds". Thus instead of
(possibly infinite) set of all possible logical operations
it is sufficient to consider only some small subset of them.
However, this subset should be complete, i.e, it should be
possible to express every logical operation (from the class
of operations, we are interested in) using operations from
this class only. Here we will consider operations, which
correspond to our use of "and" (denoted by a), "or" (de-
noted by v) and unary operation of negation (inversion).
This set of operations is complete in ordinary (two-valued)
and in multiple-valued logic, thus these basic logical op-
erations could be used to express other ones, such as
implies" (denoted by -*).

In our everyday use of logical operations we also
always assume them to satisfy certain conditions. For
instance, "either A or В" is always the same (has the
same belief value) as "either В or A " (commutativity of
or-operation), "either A or then, either Вor C" is the
same as "either A or В,or O" (associativity of or-
operation), " A or A " is the same as "A" (idempotency
or). The same properties hold for and-operation.

The basic problem of logic is logical inference -

how to determine, which sentences follow from some given
set of sentences, which we assume to be believable (up to

35

a certain extent). Various inference procedures have been
introduced in classical logic, e,g, resolution procedure
C2]

, Usually these procedures use the syntactical structure
of formulas and therefore could be used for formulas of a
certain class only (e.g, resolution principle can be used
only for formulas in the clause form). This makes them
also difficult to use in generalizations, such as belief
systems (essentially an infinite-valued logic). However, a
very natural inference procedure can be introduced, baaed
on algebraic property of and (conjunction) operation:

-if we believe the sentence " A and В"to be true,
than we believe also both A and В to be true,

B, Formal
Let us denote by ->

F={f,g, h , .. -an alphabet of function symbols,
P = {p,cy, Г, •••} - an alphabet of predicate symbols.

For every fe F and peP is uniquely defined a
positive integer n(f) (n(p|) - its arlty, which indicates
the number of arguments it is expected to take, Arity of
predicate symbols is always greater than zero, Nullary
function symbols are constants of our language. The set of
all constants is denoted by C ,

Terms are inductively defined as follows:
- variables and constants are terms 5
- if t., , t^,...,tn are terms, then-f.,t„) is a

term for every feF,
Let T (X) be the set of all terms, T = <T(X)

? F> -

the free algebra, generated by the set X U C ,

A term is called ground if it does not contain vari-
ables, i,e, is composed of constant and function symbols
only; the set of all ground-terms is denoted by T ,

Let T = C0,13 be the unit interval of belief values.
On this set we assume that two binary operations - dis-
junction (v) and conjunction (л) exist. It is assumed that
there exists also inversion (negation) operation on T .

The result of applying negation operation to xe T ie de-
noted by x , We do not determine any formulas to calculate
their value (usually v = max, л = min, X = 1 - X , but there

36

exist many other possibilities to determine these oper-
ations).

The disjunction and the conjunction operations are
supposed to be commutative, associative, idempotent and
satisfy the following properties:

and be mutually distributative:

The invei’sion operation ia supposed to enjoy the
following properties:

for every x,p cT . Notice that it ia not asked if
identities Tvt=l,XM=o hold.

Formulas are defined inductively by

- 0,1 are constant formulas;

-
•. . tn) is an atomic formula for any terms

predicate symbol p and X e {O,l } ; here

tn) denotes p(t<) ...tn), - pUi—tn) J

call them the negative and positive atoms, respectively)

-if ф 15,ф п are formulas, then ф,| v ф^ .. ,v^ n ,

ф1 Афг л...лф п are also formulas,

A formula is called ground if it does not contain
variables.

Operations are supposed to satisfy the ident-
ities, derived from (1)-(4), e.g, disjunction and con-
junction are commutative, associative, idempotent, etc,,
also ф =ф,Фao=o ,фvl = 1 j флl=ф for every formula
Ф.

Let F(X,C) be the set of all formulas, F(C) - the
subset of all ground formulas. Let Ф = < FC*,C),{v,a,o.l}>
be the factor-algebra of the free algebra of formulas, sat-
isfying the above laws (commutativity, associativity and
idempotency for the disjunction and conjunction, derived
from (1)-(4) laws, etc). The term and the formula algebras
together with the set of truth values form a heterogeneous

(1)
XAp«X, (2)

(Г, V Х г) AP = (T 1 Лp) V (T 2 ЛP) ,

(t1 ATl)vp=(t,vp)A(T 2 vp) (3)

Cr)~ -Z, (tvp) =Tлp ,
(Г a p)~ v p (4)

37

two-carrier algebra, which we will denote <T, F >
, The oper-

ations of this algebra are:
- operations from the set f: T ->T ;

- logical operations v, л,“'. F -> F.
In the following we will deal with representations

and congruences of that algebra,
An interpretation I determines for every formula its

belief value. Since the belief value of a result of apply-
ing a logical operation should follow from the belief values
of component formulas, it is sufficient to determine the
belief values for positive (or negative) atoms only. Al-
gebraically this means that an interpretation lis a rep-
resentation of the heterogeneous algebra <T, F> , Thus it
consists of two components:

- an algebra (D,F) of the same type as our term
algebra; usually the denotations of constants and oper-
ations of this algebra will be the same as in the term al-
gebra, but when it is necessary to distinguish between them
we will use notations 01,O

1
, f 1 *

- a mapping I: {p (t 1 .. -tn) }-> T , which determines for
every positive atom p(t.,...tn) its belief value I(p .

... i n)) (or s equivalently, a fuzzy relation on the set D, D
is also called the domain of the interpretation 1),

This mapping is in a natural way continued into a
homomorphism of the corresponding algebras of ground for-
mulas :

Thus we can speate about truth value I of any
ground formula ф under the interpretation I ,

A variable assignment (with respect to the inter-
pretation I) is an assignment to each variable in X of an
element in the domain D , A variable assignment A: X -> D
can be in a natural we,у continued into a homomorphism

Kpltv-tn)) = P
x (l (to •

• -I(trO) V W
1 (pT

(tr . л n)) = (pVd (to ••• I (trO) ; (5)

I (ф 1 V = КфО V I(y) , Кф Лv) - I C<p) A I(vp) . .
(6)

A ; Ф -> T by
А (С) = I СсЛ for every ceC J

38

that makes it poaaible to apeak about truth value A (0) of

an arbitrary formula ф under the assignment A and inter-
pretation Г,

In the following we assume all the variables in all
formulas to be universally quantified. The truth value of
such a closed formula does not depend any more on assign-
ment, since we can take

Thus we can /speak about the truth value I (ф) of an
arbitrary formula ф under the interpretation I .

A subset Г £ T is called directed'if ТеГ, T S“K
always implies ЗГ e Г .

A set of formulas Д is called directed if for every
formula 0, 5 from 5$ ф , 5€ A follows фe A .

Let Г be a directed subset of the set of truth values
T. Interpretation I 1s called Г-model for a formula ф if
1(0) € Г .

Interpretation I is а Г -model for a set S of
formulas if it is а Г -model for every formula o>e3.

A formula 0 is a logical Г-consequence of a set of
formulas Д (denote Дi- ф) if every interpretation I ,

which is a Г-model for Д
, is also а Г -model for <p , i.e,

from 1(A)E Г follows 1(01 e Г for any interpretation I ,

Denote the set of all Г -consequences of a set A of formulas
by ПД)

,
Clearly

A substitution fj is a mapping

/j : X -> T (X).
If yUC*) = t, then the term t ia alao called a binding

of the variable X. under the substitution jj , We are inter-
ested only in non-identical bindings, therefore usually
even under the term binding only a non-identical one is
assumed. Again, a suostitution /и can be in a natural way
continued into an endomorphism fj : T-> T by

A (pT(t,.. .%„)) =(pI
)
r (AU 1) ... A(t n« ,

А(0 v « А (s)v А(кр), А(ф л if') = А(ф л нО,

KVXO(X)) = л АСфС*)) (= а ГСOСс)))
А сеС

Г(Д) = П Г1 (Г(Л))
I(S)sr

р(с) = с,

39

Every endomorphism of terms also induces an
endomorphism of formulas, thus we can consider p to be an
endomorphism of the whole two-carrier algebra <T,F >

.

On the set Sub(F)of all substitutions (actually,
induced endomorphisms) a semigroup structure is induced by
multiplication (superposition) of substitutions (i.e, map-
pings) ;

7P<t) = 7(/j(t)).
Since the operation of multiplication is idempotent

(p*p = p for any substitution p), this set of all sub-
stitutions (endomorphisms) also has a natural partial order;

p$ 7 if there exists a substitution "V auch that

It is convenient to consider also the empty substitution
О , which maps all variables and terms into the empty set

0. Clearly the empty substitution is the minimal element
of the semigroup Sub(F)

.

A formula ф is called Г -tautology if Кф)€Г for every
interpretation I ,

The main problems of logical programming are:
d) for a set of formulas A and directed subset Г ,

characterize all the formulas from the set Г (Д);
2) for a formula ф , directed subset Г of truth values

and a set of formulas (logical program) A find the maximal
substitution p such that A t-p p(f)-

The following answers are proposed to those questions;
- Г (A'' is the minimal directed subset of the set

FWof all formulas, containing all Г -tautologies and the
set U(A) of units of A ;

- pis the substitution, which generates the maximal
endomorphism of the algebra <T, F> , such that the formula ф
is a unit of the set A .

A formula is called unit for formulas 0n if
0-,a ...лф п лу = </)., а ...л ф п .

For instance, the resolvent C23 av Ь is a unit for
clauses av *

, bvx , since from (d)-(4) it follows,
that

40

The set of units U(A.) of a set Д of formulas consists
of all units for some finite subset of formulas from A ,

2, Some properties of Г -consequences

In the following let Дbe any set of formulas, Г - a
directed subset of truth values. Denote by Г(Д) the set of
all formulas, which are Г -consequences of the set Д ,

Proposition 1, Рог any formula феД, ф £ Г (Д).

Proof, Let I be any interpretation, which is a model
for Д

, i,e, I (ifj) € Г for any гр € Д
, But then also I'(ф)€Г

,

thus Д к ф .

Proposition 2, For any Д, Г(ГСД))= Г(Д).
Proof, Suppose i.e, if I(Г(Д)}£Г

, then
also I(if»)eP for any interpretation I ,

By the previous
proposition Д = Г(Д) , thus also 1(Д) £ f , On the other
hand, for any interpretation I such that I(Д)ЕГ by the defi-
nitions also I(Г(Д})£Г, This means that ГС Г (Д)) S Г(Д)

, but
from the previous proposition Г(Д) £ Г(Г(Д)).

Proposition 3, If Д п SД 2 , then ГСД.,) £ Г(Д •

Proof. Suppose OеГ(Д.,) , i.e, 1(0") e Г whenever
- Г . If I is a model for Д~ , i.e. 1(Д2)

£ Г ,

then also I(A 1) £ Г , thus also I ((JOE Г and so o€Г(Д2}‘
I set of formulas is called contradictory, if it does

not have any models. Non-contradictory sets of formulas are
called satisfiable.

Proposition 4, For any satisfiable set Д of formulas
and for any Г -tautology 0, Г(Д и {0» =Г(Д}.

From the definition of directed subset it follows that
€ Г for any directed subset Г , thus all the models for

'the set of formulas AU{O) are also models for the set A ,

From here the claim follows.
Proposition 5. For any aatisfiable set Д and for any

Г-tautology ф, феГ(Д)*
Proof, By propositions 1 and 4, = Г(Д)-
Proposition 6, The set Г(А) is closed under the

logical operations of disjunction and conjunction.
Proof, Suppose and interpretation I is

(a v х) л(Ь v х') л(а v b) = (a v x) a (bvx).

41

model for the set A . Then I (0), I (ф) еГ , From (1) it
follows, that 1(Ф v
the directed subset 1(ov цУ) €. Г , i.e, ovqj e Г(Д) . Similar-
ly,

Corollary* ГСА) is closed under the operations v
,

a subset of the set of all formulas F , which contains
the set Д and all the Г -tautologies.

Denote by CA],r the set of minimal consequences from

Д
,

i.e, the set of all formulas Oe ГСА -) , which could
not be represented as 0 = уv т , ye ГЧД) >

Theorem 1 (Soundness) IКй)ЕГ(Д).
Proof. Let OeU(S) , i.e. гп a• •. AVftA o=if 1л .

•••л vp n for some ~.., ipn
€ A . Let Ibe any model for

A , then from the properties of the conjunction operation
it follows, that

1(фI)Л...Аl(фп)лl(o)=l(х+> лД...ЛгрпАO) =l(tfl)A...Al(ipn)e Г,
thus by (2) also l(0)ef , since Г was directed. Thus
every model for A is a model also for 0 , i.e. ф is a
Г -consequence of A ,

It is easy to see that even stronger claim holds, name-
ly U (A) 9 CA3 r *

Theorem 2 (Ground completeness). Suppose A consists
of ground formulas only, then CAl r =U(A).

Proof, The proof is by induction on the number of
excess literals in A . The number of excess literals is
the number of occurrences of atomic formulas in all formulas
from A minus the number of formulas in A .

If the number of excess literals is zero, then all
the formulas from Д are atomic and all the minimal con-
sequences of A are atomic formulas from A . Since every
formula is a unit for itself (the idempotency of conjunction
operation), the claim follows.

Suppose the number of excess literals in A is greater
than zero and the claim holds for all sets of formulas with
smaller number of excess literals. Suppose, for instance,

v e CA] r , where ia an atomic formula (the

proof is quite similar for formulas of a different structure,
e.g, for лO2 e Г (A))

, For the sake of simplicity let

42

Д be finite', the proof can be easily reformulated for an
infinite A ,

Let Д 7
= A(y2=o) , i.e, A’ is obtained from Д tak-

ing all the atoms if~ equal to 0 , all the atoms <p equal

to one and simplifying the results.
From if.,

thus by induction A’A A 1 . In the same way we obtain,

that л" л u», -A" , where Д"=Д(<Д=o). Thus

A A (if., v if2) =(A a if,) v(А л if 2) = (Д”л if,)v(A1 af2) =

A”v A' = A ,

i.e, vf,v V 2 a for A •

Fox' the general (non-ground) case we need a variant
of the well-known

Lifting theorem. If A 1 is a set of ground instances
of clauses in A and <p e Г(А'), then there is a clause if <=

r(A)such that if 1 is a ground variant of if .

This theorem can be proved along the similar lines
as in the classical (two-valued logic) case, see e,g, Цl].

From these theorems it followsj
Theorem 2, For an arbitrary set of formulas U(A)=[A]f
Corollary. Г(А) is ehe minimal directed set of for-

mulas, containing the set U(A) and the set of all tautol-
ogies.

References

1, Genesereth M.R,, Nilsson N.J, Logical foundations of
artificial intelligence, Morgan Kaufman Publishers, 1988,

2, Robinson J.A. A machine oriented logic based on
the resolution principle// Journal of the ACM. 1985. 12(1).
P. 23-41.

43

J, Henno

Uskumussüsteemide algebralised alused

Kokkuvõte

Loogilise programmeerimise põhiprobleemiks on
loogiline inferents - loogilistest valemitest järelduste
tuletamine, kasutades ainult valemite süntaktilisi oma-
dusi ja struktuuri. Esitatakse uus algebraline inferentsi-
printsiip, mis põhineb ainult loogiliste operatsioonide
omadustel ja on seetõttu väga sobiv üldistusteks., Tõesta-
takse printsiibi mittevasturääkivus ja täielikkus.

44

E. Õunapuu

PRINCIPLES FOR SOFTWARE DEVELOPMENT

Abstract

Software systems can be divided into two categories.
The life-cycle of the first category usually ends in
the programming stage while other systems are
ing user’s trust, A successful software system needs
continuous modification and development. This paper
discusses some principles of software development and
describes the practical experience gained. System
GENSI is one of the most successful software systems,
developed at the Department of Data Processing, Tal-
linn Technical University,

1, Development principles

The following major principles serve as guidelines for
creating software systems,

1. Portability, possibility to use a software system
on various computers, under different operation systems.
Usually portability implies software portability, less often
infoware portability. In fact, both are important, but not
these alone. In software system development the user cannot
be neglected. Every user has his/her own habits, portability
of working style and working habits is very welcome from the
user’s point of view. This holds only when the user is
satisfied with the software system, A new version can in-
clude new possibilities and usually does, but it is seldom
necessary to change user interface entirely. Consistency is
more important for the user than minor improvements in a
software system at the cost of overall redesign of user
interface.

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDC 681,5

45

2, Modularity means using functionally independent
components when building a software system. Two levels of
modularity are distinguished - that of the software" (pro-
gram modules) and that of the whole system. Software modu-
larity means the following modular programming principles
during software developmentj system modularity gives free-
dom to choose independent parts of a software system and
to use them separately or jointly with other software sys-
tems, A combined modular software system allows more flexi-
bility.

5, Interfaces with other software systems (this prin-
ciple is closely connected with modularity). It is quite
widely accepted that a software system must ensure a direct
data exchange with the most popular software systems. The
more direct the interfaces are, the better. However, a basic
interface applicable to most software systems and program-
fcin.g languages must be available. A text file, containing
minimal data description in the standard form as well as
data, is a good example of a basic interface.

4, Multi-level user interface. In other words, a set
of instruments must be provided for standard, easy and
typical activities, whereas another must be saved for com-
plicated ones.The end-user has an easy-to-learn, easy-to-use
interface with the system, all his/her work is accomplished
with this one. Creating an end-user interface is the function
of an administration of a software system or a maintenance
programmer, He/she uses instruments of lower level. When
the universality of the software system is designer’s con-
cern, he/she will foresee changeable parts in software.
Using the modular approach, program modules can be changed
or added into the existing software. The lowest level in-
terface is the programmer’s one.

2. A software generation system for information system

The software generation system GENSI serves as an
example of using the software development principles in
real life.

The first version of GEMSI was realized on PDP-11 com-
puters using the operation system RSX. Presently a version
of GENSI is realized for the IBM pc-compatible computers
using MS DOS.

46

To generate the information systems software by means
of GENSI high level description languages are used by the
application programmers.

To create an information system the application pro-
grammer can use

- data processing procedures of GENSI;
the procedures of the operation system of a host

machine;
- the program realized by the application programmer.
In GENSI the following list of data processing pro-

cedures is available:
- creating, updating and printing of database;
- sorting of records in dataOase?
- union or merging of files;
- data transfer from one file to another;
- verifying of data;
- report generation;
- menu generation.
To describe a data processing function a user must

describe many aspects. For example, the description of a
report includes the descriptions of overall logic, of layout,
of arithemetic operations, etc.

GENSI is used as a basic system for creating informa-
tion system software by five organizations in Estonia and
by three in Perm (Russian Federation),

E, õunapuu

Tarkvara loomise põhimõtted

Kokkuvõte
Artiklis tuuakse ara TTÜ infotöötluse kateedris valja-

töo*tatud tarkvara loomise põhimõtted. Nende kasutamise na*ite‘
na esitatakse generaatorausteem GENSI,

47

R. Kuusik

APPLICATION Ob' THEORY OP MONOTONIC SYSTEMS
FOR DECISION TREES GENERATION

Abstract

In this paper a new way for generation of the decision
trees immediately from initial data matrix X(N,M) is
proposed. The use of the features extracted in con-
junction with the theory of monotonic systems is de-
scribed, The corresponding algorithms are estimated.

1. Formulation of the problem

Formation and use of the so-called decision trees
(DT) deserves deep attention. The problem involves the
following.

Let us assume chat X(H,M) is a final data matrix, whar-e
H is the number of objects and 111 is the number of quantities
Fj in X, in which each element Xij can have value from
interval Cj = 1,,,.,Ej,

The decision tree <T,Fx> is defined as a rooted tree
T with a root Fx so that all subtrees Ti of the tree T have
exactly the same successors as they had in the tree <T,Fx> .

The best decision tree is called a tree<T,Fx> , to
which the greatest value corresponds according to the pre-

viously determined criterion of "goodness".

2. The present situation

To solve the above-mentioned problem the algorithms
for formation of a decision tree, the criterion of "good-
ness" and an algorithm of extraction the best DT are pro-
posed in L 1 3.

Ic is supposed that from data matrix X(H,M) by the
GUHA method C23 elementary conjunctions Kl, 1 = 1,,,,,L,

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDC 681,?

48

were previously generated which are the nodes of a decision
tree, and the corresponding output results Dg, g=1,,,,,G,
i.e. elementary implications K 1 —> Dg are determined. For
each Dg its own best decision tree is generated. Value V=
=A/B,where A is the number of objects in X(H,M), for which
Kl--> Dg is true on X, В is the number of objects in X,
containing Kl, serves as a criterion of "goodness" of a
decision tree.

It is assumed that the best decision tree is the one
to which the greatest value of criterion V corresponds.

General algorithm for generation of the best DT, ac-
cording to L i3, is the following:

1) form a tree for Fx according to Dt from {Kl};
2) determine the existence of one whole branch from

a root (Cj)Fx to a leaf (i.e, that it contains all quan-
tities j=1,,,,,M in the branch as nodes) on < T,Fx > ;

3) calculate the measure of a DT goodness. If Vx >

> Vmax, then Vmax:= Vx and elementary conjunctions, cor-
responding to nodes j€<T,Px >

, j=1,,,.,R, R6M, being
excluded from {Kl};

4) if there are no more trees, then the best DT is
found, or else determine the next root quantity and pass
to 1,

For Dt formation a table is constructed which measure-
ments

M 1
P = Ex * M 1 * Ej, where M 1 - the number of input

o=l
quantities, M Ml.

If, for example, Ml=lo and Ex=Ej=js» then P=9oo cells.
Example 1
Let {Kl} be a set of elementary conjunctions, gener-

ated by the GUHA method from X, 1=1,...,11, Let Fl, F 2, FJ
be input quantities and F 4 an output quantity. For each Kl
it is determined, what result Dg=F4 it comes to (see example
in C11).

Let us introduce elementary implications Kl—> Dg by
table X(11,4)!

49

SFj P 1 P 2 F3 F4

11 1
2 3 2
3 2 1
4 2 1 1
5 2 2 2
6 2 3 2
7 2 2 2
8 2 11
9 2 112

10 2 12 1
11 3 2 12

For example, to the eleventh row of X corresponds the
elementary implication (3)FI & (2)F2 8s (1)F1 —* (2)F4.

If you neglect; the resulting quantity F 4, then at the
existence of elementary conjunction Kl2= (2)FI from the
root P 1 by the data of ehe table X, a DT is generated

F 1 —t> (1)F1
—> (2)FI -■> (2)F2

—> (1)F2 —> (I)P3
—> (2)P3

—> (3)P2
—> (3)FI

The node (3)FI is a list because an elementary con-
junction in {Kl> equal to (3)FI 8c (2)F2 does not exist,

3, A new solution

Solution of the problem suggested inCH has some
faults.

First, the set of elementary conjunction {Kl}, gen-
erated from X by the GUHA method and the corresponding
elementary implications are the initial for DT generation
algorithm, not the initial data matrix X(H,M),

The application of the GUAH method is a polynominal
process, GUHA does not guarantee coverage of elements of the

50

initial data matrix X with generated by it elementary im-
plications Kl—>Dg because of existence of

a) subjective restrictions. The researcher determines
previously the maximum length of the elementary conjunctions.
It is assumed that the short conjunctions are "more interest-
ing" than long ones,

b) algorithmical restrictions. They do not have quick
algorithms for determination of all elementary conjunctions

in X,
Secondly, the algorithm suggested for generation of

the best DT is quite work-consuming:
1) the usage of the GUHA method,
2) constructing a table for each Fx
3) determination of existence of the whole branch from

a root Fj to a leaf (do there exist all quantities j=1,,,,
...,M as nodes). If it is so, we have to determine whether
this branch is the best one.

Further we suggest a new approach for realization of
the described problem using the theory of monotonic systems.
The algorithms suggested can be used for generation of all
DT on the initial data matrix X(H,M), or the best DT on X,
or the corresponding DT also on the matrix of elementary im-
plications, generated by the GUHA method or by its analogues
(see example 1),

3,h, Description of the algorithm

A decision tree (DT) is defined in [l3 as follows:

1) in one tree with a root Fx all values Fx: 1,,.,,Ex
are the nodes of the root;

2) the sequence of quantities in DT for all branches
with a root Fx is the same.

Using the criterion given in [l3
, the best Dt is the

one which has the greatest number of leaves.
In C53 the combinatorial algorithm for generating the

best DT by the definition above directly from the initial
data matrix is suggested. In [33 it is shown that the best
DT is the tree which has the greatest coverage of elements
of rhe initial data matrix, i,e. the best DT is the tree
with the greatest number of leaves.

51

Below we will introduce a new solution of the
problem, specify a DT, describe the algorithms and criteria
of "goodness" for generating the best DT.

In C 1 3it is suggested that from the examined data
matrix by the GUHA method Dtree nodes are previously gen-
erated. From these nodes various DT are formed and on the
basis of the criterion, suggested by the authors, the best
one is defined. From this point of view the suggested cri-
terion satisfies the goals.

In reality it is more complicated. For example, dur-
ing the expert interrogations a certain part of the experts
may give similar answers. It means that the choice of cri-
teria of the best DT may be put some other way too, tak-
ing as a principle also frequency of suggestions of certain
answers or its combinations. For example, if we have two
decision branches

1) K9= (2)FI & (2)F2 & (I)F3 given by different ex-
perts 10 times and 2) Klo= (2)PI & (2)F2 & (2)F3 accordingly
6 times, then at the equal criterion value by Cll they can
be equal, but K 9 is preferable by the expert evaluation.

Concluding the above described discussion, we will
suggest a new criterion and a new algorithm generation of
the best DT direct from the initial data matrix X(H,M).
According to this, to generate from X one node of the tree
less than 2HM operations are needed.

Further, under the best DT we shall assume a whole
branch of DT (from root to leaf), to which the greatest
criterion value T (will be determined further) corresponds.

The algorithm for DT formation suggested below is based
upon the theory of monotonic systems [-1,53. To create a
monotonic system on X the so-called frequency conversion
described in Cs] is used.

Let X(H,M) be a final matrix of nominal data, where
each element Xij may have a value from the interval Cj=l,2,.

»EJ.
In algorithm A we use ehe following denotations:

X 1 - the subset cf X, Xl cX, X]+lC:Xl
, X° = X(N,M),

max 1 $ Ы;

, - the table of frequencies of the subset A'*' +^

c A .

52

algorithm A

Al, Find frequencies for every quantity j=1,.,,,M
values Cj=l,,,,Ej from X° (they form table A°) and find
the greatest of thems MAX:=maxlCj|. P:=j; Y;=Cj; l:-0; t;=0;
Kt:=(Y)P,

A2. Pind from X objects which contain a Kt, They form
data matrix X^+^

,

A3. Pind frequencies for every quantity j=1,,,.,M
values Cj=1,,,,, 13j from X’*' (we form table A‘*" ts=t+l.
The values of quantities, whose frequencies are equal to
the value of MAX, form an elementary conjunction Kt=g(Yu)Pu
with a frequency MAX,

A4. l!ssl+1. If all quantities are described in Kt,
then DO A 1“ 1 1“-1

- A l , 1«*1-1. If I=o then go to A3, END,
Go to A2,

A3, The end of the algorithm

The frequency of the elementary conjunction is a
monotonic function of weight. Elementary conjunctions Kt,
separated by the algorithm A, are kernels according to the
theory of monotonic systems Г4], The corresponding theorems
are proved in C 33,

Let us represent the elements of the set <Kl> (see
example 1) in the form of a data matrix and assuming that
zero corresponds to "is not determined", we obtain the data
matrix X(11,4):

1 2 3 4
Ns
110 0 1
2 3 0 0 2
3 0 2 0 1
4 2 10 1
3 2 2 0 2
6 2 3 0 2
7 2 0 2 2
8 0 2 1 1
9 2 11 2

10 2 1 2 1
11 3 2 1 2

53

Table of frequencies for quantities in X is as follows:

F 1 F 2 F 3 P 4°K
0 2 3 6 0
11 3 3 6
2 6 4 2 5
3 2 10 0

Example 2
Using X as the initial for the algorithm A and assum-

ing that
a) zero value is not considered in the analysis,
b) the quantity F 4 is not considered in formation of

DT,
c) sequence of quantities in the DT is not defined

previously, then in answer to the algorithm A usage, we
acquire the following DT:

6 3 1
1) (2)FI —> (1)F2 —> (I)F3 (=10)

1
(2)F3 (=10)

2 1
—> (2)F3 —> (I)F2 (=9)

1
—> (I)F3 & (I)F2 (=8)

1
—> (2)F2 (=7)

1
—> (3)F2 (=7)

4 2 1

2) —> (2)F2 —> (I)F3 —> (3)FI (=7)
1

—> (2)PI (=5)
1
—> (3)PI & O)F3 (=6)

54

3 1
3) —> (I)P2 & (2)PI —> (I)F3 (»7)

—> (2)P3 (»7)
3 2 1

4) —> (I)pj —> (2)F2 —-> (3)FI (»6)
Л

—> (I)F2 & (2)FI (=5)

2 1

5) —> (2)P3 & (2)PI —> (I)P2 (=5)

2 1

6) —> (3)FI —> (2)P2 & (I)F3 (=4)
1

7) —> (3)F2 & (2)PI (=2)

1
8) ~> (1)F1 (=1)

In the represented trees the numbers above the pointers
indicate frequency of a conjunction corresponding to the
node j (it is an elementary conjunction which contains all
antecedent to the node j elements ()Px of the tree), Por
example, in the DT No. 1 I(2)P1 I =6, I(2)P1&(1)P21=3, etc.

M
We suggested the measure T = T Sj, where Sj is

j^
weight of the node j, as a criterion of the DT branch "good-
ness".

The combination of values of quantities (see example
2, the fourth branch of DT No, 1) may serve as a node. Ac-
cording to CID it means that there is no branch from the
root node ()Px which contains all quantities as the nodes
of DT, On the basis of our suggestions and the criterion of
the DT "goodness", quantities, which belong to the node j,
are not separated in relations to the node j-1, i,e, we do
not prefer any of them.

If in the node j there are several elements (aa a
combination of values several quantities), the weight of
the node is calculated as Sj= Qj • Zj, where Qj is the number
of elements ()Px in the node j and Zj is an elementary conjunc
tion frequency in X corresponding to the node j.

55

The corresponding values of the criterion T are given
in the brackets through the label ”=" at the end of each
branch of the DT, The measurement T of each node of aDT
is calculated immediately in generation of DT.

Let us assume that the initial value of the measure-
ment T=o and after generation of the first branch Tmax:=Tl,
Then for each following branch b we may immediately say
whether it is better or not: if Tb>Tmax then Tmax=Tb,

Forming a DT with the help of the algorithm A, for-
mation of a new branch does not begin from the root Px, but
from the antecedent node b-1, If there are no more paths
from this branch, then it is from b-2, etc. For each node
the corresponding measurements equal to a sum of weights of
the previous nodes are recorded. If in the formation of a
new branch from a node b a value U (зо-called forecast)

+ (M-b) * Sb <Tmax (where is the measurement of
the previous node to b, M-b is the number of this branch
quantities not yet described), then we may finish formation
of all branches from this node, because the measure T will
always be less than Tmax, This is determined by monotonous
of the weight function.

If for the succedent root of DT its forecast U<Tmax,
then we finish work of the algorithm A, because we cannot
find a new branch on X whose measure T> Tmax,

Therefore in our example we have to form only three
completed branches:

6 3 1

—> (2)FI —> (i)F2 —> (I)P3 (=10)
1
—> (2)F3 (=10)

2 1
—> (2)F3 —> (I)F2 (= 9)

U=6+2*2=lo <=Tmax=lo
For

6 1
—> (2)FI —> (1)F2 & (I)F3 —and we go to
U=3*6*lB>Tmax U=6+2*l Tmax form a new DT

from root (2)F2,

56

For the next branch

4 2
2) —> (2}F2 —> (1)F3,., we finish the formation

of branches from the
U=3*4>Tmax U=4+2«2< Tmax node (2)F2 and go to a

new root.
3

3) —> O)F2 & (2)FI —>
...

U=3*3=9< Tmax

Since already for the root of the tree 3) the forecast
U<Tmax t the beat DT is found and there is no reason to
proceed.

Now let us concentrate our attention upon a peculiarity
of measure T suggested by us. You may have noticed that Its
value can change if the sequence of quantities in the branch
changes. It means that the algorithm A determines also
the sequence of steps F1,,,,,Fm in making decisions, i.e,
what is the beat sequence of leading to the required result.
The best sequence is the one to which the greatest value of
a function T corresponds.

Taking into account also the resulting quantity F 4 in
choosing the best DT, the shape of the generated DT strongly
changes, because depending on the value F4, we obtain two
beat DT, one for the data matrix X 1 and the other for X2:

1) X1(5,3) and 2) X2(6,3):
1254 1234

I*lool 1*3002
2* 0 2 0 1 2* 2 2 0 2
3*2101 3: 2302
4* 0211 4» 2022
51 2121 51 2112

6 * 3 2 1 2

4, Conclusion

In conclusion, we will present the final algorithm of
extracting the beat DT,

57

ALGORITHM В
/

81, T=o, J=l, Y=l (contents of У is No, of a branch
=a).

82, By the algorithm A we generate one node j of Dt,
Let us compute the forecast U=Tj-1 + (M-j)*Sj,

If Ü <Tmax, then If j=l (the node is a root), then
go to 83, otherwise and go to 82,

If the node j is a leaf, then Tmax=Tj, T=j, d=j+l and
go to 82.

83. The end of algorithm.

This algorithm ensures a fairly rapid process of
generation of the beat DT from the initial data matrix
X(H,M), because there is no need for preliminary formation
and tracing of all DT, By the suggested criterion Twe can
preliminary to value "goodness" of DT, i,e, if it can serve

as the beat DT, or not. If the value of the forecast for a
root node is not greater than Tmax, then according to the
suggested algorithm, the best DT is found.

If we take into account that the search for the com-

bination, corresponding to the node of DT, differs from
the combinatorial algorithms and needs no more than 2HM
operations, then the generation process of the best tree
is very fast.

The algorithm suggested enables us to generate also
К of the best DT, or even the worst one. Adding to the algo-

rithm В the requirement that in a generated tree the sequence
of quantities related to a root should be equal for all
branches of the DT, then it is possible to generate also
DT according to definition [l],

The algorithms described above are realized on PC

IBM/AT.

References

1, Rene Z,, Setikova L, Decision trees: a contribution
to automatic interpretation of GUHA results // Int, J, Man-
Machine Studies, 1985# No 22, P, 193-207,

2, Hajek P,, Havranek T. Mechanizing hypothesis forma-

tion. Berlin-Hagelbergs Springer-Verlag, 1978,
3, Kuusik R, Generator hypotheses for qualitative

data // Trans, of Tallinn Tech. Univ, 1987. No, 645. P. 141-
-148.

58

4-, Mullat I, Sxtremal monotonic ayatema // Automation
and Remote Control, 1976, No 5* P. 130-139» No 8« P. 169-
-178.

5. Vyhandu L,, Mullat I, Monotonie ayatem in scene
analyaia, Sympoaium "Mathemathical processing methods for
data analysis and processing of cartographical data", Tal-
linn, 1979. P. 63-66.

6, Vyhandu- L, Paat methods for data analysis and
processing// Trana, of Tallinn Tech, Univ, 1986. No 614,
P. 15-23.

R, Kuusik

Monotoonsete süsteemide teooria rakendusest
otsusepuude formeerimisel

Kokkuvõte
Käesolevas artiklis esitatakse uus la*henemine nn, ot-

suaepuude formeerimiseks, neist parima leidmiseks vahetult
nominaalsete algandmete maatriksist X(N,M) ilma kõiki ot-
ausepuid labimata. Kirjeldatud lahenemine põhineb monotoon-
sete süsteemide teoorial, esitatakse vastavad algoritmid.

59

Р. Vyhandu K. Regi

A GENERATING CAI SYSTEM

Abstract

The paper presents a CAI system for teaching list
processing. The system takes an algorithm, written
in a pseudocode for input and with the help of
graphical output, step by step, demonstrates all the
actions of the algorithm.
The purpose of such a system is twofold: on one
hand, it is a tool for representing a new material,
and, on the other hand, the students can check the
correctness of their own algorithms.

Introduction

Recently computer aided instruction (CAI) has become

very popular, for its instructiveness and illustrativeness.
It involves the computer use for direct contact with the
learner. Many subjects, that are difficult to explain to
the students, become quite clear, when properly demon-
strated on a computer.

At the Department of Data Processing of Tallinn
Technical University list-processing and sorting and
searching are taught to the students within one term. It
is done on the logical level based on the approach of
D, Knuth£l], The purpose of such a course is twofold.
First, the students should be acquainted with classics.
Second, acquiring the technique of list-processing on this
level helps them in their studies of other disciplines
such aa programming in C, data base design, etc.

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OP TALLINN TECHNICAL UNIVERSITY

UDG 681.-

60

Data structures in an information system must reflect
some part of the reality. As this reality varies in the
real time, these changes must also be revealed in the in-
formation system. On the level of list-processing it means
updating the lists. So the main objective of teaching is
to train students to understand processes occurring in the
real time and to express them in the formality of list-
processing algorithms.

As the experience has shown, the students are not
used to such kind of thinking. Furthermore, the usage of
linked lists instead of simple arrays is also quite un-
known to them. Resulting from this they get a little con-
fused and tend to mix up elements of lists, fields of
elements and values written into fields. To overcome this
confusion a lot of explaining has to be done. Explaining
processes on the lists is quite a laborious and compli-
cated work with the help of chalk and blackboard only»
or occasionally with overhead. So there is a certain need
for some kind of a CAI system.

This paper introduces a prototype CAI system for teach-
ing list-processing with the help of algorithm animation.
Algorithm animation, which means that the execution of the
algorithm is illustrated with pictures, has proved to be
a very useful technique in studying the operation of al-
gorithms, Animations have turned out to be especially valu-
able in the analysis of algorithms and teaching algorithms.
The present system can be used for prepai'ing materials for
a lecturer as well as for students to test their own al-
gorithms, The system works on YAMAHA and the program is
written in MSX-BASIC,

What should the system do?

The CAI system for teaching list-processing must
illustrate graphically all the operations performed on
lists. The system will take an algorithm for input and then
it will show on each line of the algorithm the change on
the list caused by this line. Furthermore, the system must
do it for any algorithm for two reasons.

1, It requires too much work to make deterministic
programs for each lecture. According to unpublished informa-
tion obtained from Th. Ottmann, a professor at the University

61

of Freiburg, it takes qbout 30 hours for a professor to de-
sign a lesson and about 150 hours for a student to write the
realisation programs. There is always a possibility that the
example will fail and will not work for students. Then the
work has been done all in vain.

2, A general system can also be used by students in
order to watch the work of their own algorithms and dis-
cover their mistakes.

To meet these requirements the system must provide
the user with the following:
- input, maintenance and updating of user's algorithm;
- representing the work of an algorithm with the help of
animated illustrations.

The first requirement is quite obvious, but the con-
tents of the second one should be cleared.

For presenting animated illustrations, the system
must generate a program to do this Job, For this task the
mere text of input algorithm is not enough because the
algorithm analysis does not determine its contents. It
means that in addition to the text of algorithm the user
must describe some parameters, i,e, he must assign names
to the fields and variables used. Naturally, the algorithms
must be written in a language with strict syntax rules. The
system reads the algorithm and checks its syntax. If the
algorithm contains no syntax errors the system, using both
the text of the algorithm and the description of list-
structure, generates a program. The generated program per-
forms the work of the algorithm with animated illustrations.

Using the CAI system

Before the user can run the algorithm, the text of
the algorithm is to be entered and the list-structure de-
scribed, While running the algorithm mistakes can occur.
To get rid of the mistakes the user can correct the de-
scription of the lisfe-etructure or the text of the algorithm.
So the usage of the CAI system may be divided into three
parts:
(1) describing the list-structure;

(2) input and correcting the text of the algorithm!
(3) running the algorithm.

62

These actions make up the main menu and the user can choose
between the parts of the system.

Describing the list-structure

The user describes the list-structure with the help
of a dialogue. The dialogue consists of a menu and a

series of questions. In the menu the user can choose between
different types of lists (list with one lint, list with
two links, table, haahtable), Questions of a dialogue de-
pend on a chosen list type and they determine the number of
fields being used, the names and the values of the fields,
pointers and variables. Additional questions concern the
state and the properties of the list, for example "Is the
list empty?", "Is the list sorted?", etc.

After describing the list the picture of the list is
being displayed on the screen. The user can now check the
list description and make corrections if necessary. If he
is satisfied, he can save and/or exit to the main menu.

The algorithm-writing language

The language in which the algorithm is written must
enable the use of the main features of programming lan-

guages and special constructions for list-processing. The
language resembles the pseudo-code of D. Knuth w. Two
types of variables can be used: simple variables and addres-
ses, With the help of the language both four arithmetic
operations and the operation MOD can be performed. The
language allows to use such logical operations as
The main three programming constructions sequence, se-
lection and loop are used for writing the algorithm. The
language also recognizes some words which describe situ-
ations arising in executing the algorithm. Such names are
OVERFLOW, UNDERFLOW, SUCCESSFUL END, UNSUCCESSFUL END. In
addition, special names OUTPUT and AVAIL are used.

Running the algorithm

The user can run his/her algorithm only after describ-
ing the list-structure and input of the algorithm text.
First, the syntax of the algorithm is checked. When there
are syntax errors, the user can choose whether to correct
the mistakes or run the algorithm in spite of them (with-
out wrong instructions).

63

When running the algorithm, the described picture of
the list and the first line of the algorithm appear on the
screen. To activate the command any key can be pressed.
After the keystroke the changes caused by the executed com-
mand are shown on the screen and the next line appears. In
such a way the user can step by step go through the entire
algorithm. If the user wishes the algorithm can be ter-
minated and it is possible to enter other parts of the
system or to repeat the algorithm animation from the be-
ginning.

The CAT system has many fine points

By Taylor C2] the computer acta in education
tutor, as a tool, and as a tutee. The present CAI system
for list processing can be used in all these roles. The
system interacts as a tutor, when it shows to the student
mistakes made by him, for example syntax errors. The system
discovers not only typing errors but also conflicts
between list description and algorithm, where the student
may have mixed up different types of variables. The system
can be used as a tool for checking an algorithm for another

kind of list-processing application. For a teacher the system
is a very useful tool for preparing lessons. It takes little
time to describe some lists and write algorithms for the
following lesson. To use the system as a tutee is to tutor
the computer how to perform the task in the way the user
wants. The user must give an exact description of his
algorithm, specifying what he wants, otherwise the result
would not satisfy him. It is very difficult to teach some-
body without knowing the subject himself. So the student
himself has to learn and then teach the computer. The
computer shows with the help of animation what he Just did
not "understand" and the student has to improve the instruc-
tions, This interactive process would have high teaching
effect.

Uost of the CAT lessons are made using either direct
programming or authoring systems. Both ways have their
drawbacks - programming is too tiresome, authoring
systems do not provide much flexibility. The presented CAI

64

ayatem, which generatea programa for algorithm animation,
avoids theae drawbacks, Deacribing the liat-atructure
through the dialogue and writing the algorithm in the aimple
code takea little time. Theae toola alao give the ayatem a
great deal of flexibility, the only limitation being that
the given algorithm haa to consider liata.

The uaer-friendlineaa of the ayatem allowa to uae it
not only for preparing leaaonaj atudenta themaelvea can
check their own algorithma, Ina truetivenesa ia guaranteed
with illuatrationa, which clearly ahow the correctneaa or
incorrectness of the result, while animation makea it poss-
ible to watch the process caused by the algorithm. Stu-
dents can check the outcome at each stage of the work and
choose whether to proceed or redo something. And what ia
also important, they can proceed with the tempo which ia
moat suitable for them.

References

1, Knuth D, The art of computer programming, Vol, 1,
General algorithma, Stanford University, 1970,

2, Taylor R, The computer on the school: Tutor, tool,
tutee. New York: Teacher's College Preaa, 1980,

P, Võhandu, К, Regi

Genereeriv raalõpetuaauateem

Kokkuvõte
Artiklis kirjeldatakse genereerivat raalõpetuaauatee-

mi nimistute töötlemise õpetamiseks. Süsteemi sisendiks on
paeudokoodis kirjutatud algoritm, mille tööd aeeja*rel samm-
sammult graafilise väljundi abil demonstreeritakse.

Süsteemi võib kasutada uue materjali esitamiseks,
kuid ka õppurid saavad selle abil kontrollida isekoostatud
algoritmide töö õigsust.

65

T. Lumberg

ON ORGANIZATIONAL "STATUS QUO" IN INFORMATION
SYSTEM DESIGN

Any automation without a good —

‘

understanding of the human work
may cause a disaster,

Hiroyuki Yoshikawa
University of Tokyo, Japan

Abstract S,.

In our paper we describe some problems of modelling
of the data processing on an enterprise. The contra-
dictions between the traditional infological approach
and actual needs of the enterprise for functional
improvements lead to the creation of a method for
criterial analysis and design on the informational/
functional basis.
To offer practical suggestions a functional approach
to information production and dissemination is dis-
cussed.

Practical informatics and widely spread consultations
for enterprises have resulted in the following. For in-
stance, an enterprise orders a strategic design of an in-
formation system, or consultations for computer-aided im-
plementations and gets a science-based qualified result re-
flecting the enterprise from the informational aspect. But
then it occurs that the result does not correspond on a
large scale to the specific needs of this enterprise. To be
exact, the enterprise is willing to make some organizational
changes based on these results. The changes may involve
different management activities, including work, handling

No 705
1 I 1 1 I

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY *

UDC 681.3.016

66

of resources, etc. The enterprise has strong intentions to
get here a sound foundation for these changes.

And the first contradiction emerges.
To have knowledge of the enterprise as a system,
a design based on a wider and optimum foundation
rather than being simply an aspect of the system
is required, though, in fact, the aspect serves
as a source.

In some respect this contradiction appears due to the
specifics of the infological analysis (see the infological
approach [l,2]), because it embraces organizational, in-
formational and activity levels of the mentioned enterprise,
A whole, manyleveled analysis brings forward functional
disharmony, lack of information and organizational disorder
in the investigated system. To construct the automated in-
foaystem on such a basis, according to all regulations,
means fixing and enlarging these faults.

The problem is that, by dealing with the development
of information system, the enterprise actually undertakes
substantial improvements in its work. At the same time, the
structure of computing is just one aspect of the structure
of an organization [s],

Strict specific informational analysis represents an
informational dimension. In some respect it is an objective
dimension, because it exhaustively reflects the reality. But
the question is, how to change this reality. Owing to its
specifics, the informational analysis may serve as a means
for the estimation of an alienation [4], but not for over-
coming it. For example, when we investigate informational
needs of an enterprise worker, we do not know, whether his
subjective informational needs rest on the objective grounds,
in terms of the enterprise.

The second contradiction comes in here
The informational analysis cannot give an objective
motivation to overcome alienation, until it stays
on all three levels within the existing framework
bf the enterprise.

The experience [5 »&,?]
, related to our objective, in-

dicates that we need a broad approach, including many aspects
and many parts of the industrial organization, in order to

67

fully utilize modern technology. We must verify auch an
experience in our economic environment, which is not similar
to other ones.

Since we are concerned with quite different environ-
ments from the experience mentioned, the functioning mode of

the enterprise structure is also different. Let us name con-
ditionally the enterprise in our environment as No, 2 and
the enterprise in the environment of the authors’ experience,
mentioned above, as No, 1,

The enterprise No. 1 is bound for efficient work. The
structure and the functioning mode of the enterprise are
formed accordingly. The analysis of the existing information
system on that enterprise and the design of automated data
processing guarantee the future results. The information
system is described as a whole unit in its current status
and the set of suggestions is restricted by technological
suggestions rather than by inner ones.

The analysis of the informational aspect analysis
enables to illuminate redundancy and faults of information
processing, though even after the sorting, the structure of
information processing remains mainly consistent with the
structure of the enterprise activities, as it had been be-
fore, Since the enterprise No, 1 is an efficient system (i,e,
had been optimized before), then the information system natu-
rally develops into it and strengthens its efficiency.

The enterprise No, 2 functions in the framework of
alienation [4] and is not an optimized system. That is why,
the mechanical use of the methodology that suits the enter-
prise No, 1, may prevent in the case of the enterprise No, 2
compatibility of the system with reality, and the alienation
may strengthen, Infological analysis reveals a lot of un-
certainty the sorting of which, on the basis of the tradi-
tional methodology, will still be optional. Even after the
sorting, as was mentioned above, the consistency with the
current structure of the enterprise and with its functioning
model involving all its faults is followed.

Let us approach the problem from another angle. Up to
now, we did it assuming that information is an objective di-
mension, There is a need for a more objective dimension to
call on the level of changes for projecting it on an enter-
prise.

68

Circulating information on the enterprise reflects
its material processes, the principal function of which is
production. For a functioning enterprise it is necessary to
support*
1) technological processes in the production;
2) production as a whole.
All the activities of the enterprise should be oriented on
the above-mentioned tasks. That makes it possible to show
the activities and functional units which are necessary for
an operative enterprise. So we intend to answer the ques-
tion: HOW DOES IT WORK? It has a physical context, a data
processing context and also an organizational context. It
is not solely the concern of data processing. The problem
belongs to the area of enterprise analysis.

Thus is shaping the second dimension - the functional.
Application of that dimension in the enterprise analysis
permits us to model the enterprise operating system. The
term 'operating system’means that the model involves related
activities which are oriented on performing or supporting
the major function of the enterprise. In the process are the
physical and organisational contexts (for example, it is
obvious that certain resources are needed for production,
consequently, resource handling too, etc.) are also in-
volved.

Informational aspect of the operating system can be
involved to show, proceeding from the defined activities,
based on the functional grounds, what kind of information is
needed on a certain level to carry out a certain activity
(what and about what), what information flows are outlining
in the operating enterprise. Actually it means the design of
informational environments for the objective activities. In
other words, it is possible to describe the information base
which is determined by the major function of the enterprise.
This relation determines the informational base [8] objec-
tivity, To describe this informational base we need methods,
which provide a more in-depth description by focusing on the
structure of information in support of what is being per-
formed, 3y that we attempt to overcome the fact that data
processing activities are determined by the outlined ac-

69

tivities of the enterprise, which are not necessarily objec-
tive, especially outside of production.

After the infological analysis, as an ideal version,
the structures to be (re)designed,/should be torn apart*
from the analyzed structures, i,e, they ought to be opti-
mized, On the grounds of the model proposed it is possible
to give some specific advice and suggestions on how to in-
troduce internal changes into the enterprise, i,e, to over-
come alienation.

Thus, the question is, what can serve as a foundation
for optimizing.

The model of the operating enterprise (including in-
formation processing) should approach an objective " basis.
Here appears the need to analyse functions and activities
of the enterprise, on the account that production is essen-
tial, and design on this basis (i,e, on operating system)
the information work, taking into account, that information
and communication on each level should form an information
environment of objective activities. We do not design an
information system with its activities as a separate unit
within the existing framework of management, office routines
and documents. We intend to create an overall design from
the related environmental modules on the functional ground.

It leads us to create a method for criterial analysis
and design, in order to describe and to formalize the cur-
rent systems as well as to optimize it. The method is usable
only if it does not reduce the complexity of the enterprise
system, but enables to understand the complexity, in order
to use it better. Its application should be performed, tak-
ing into account iteratively the various levels of abstrac-
tion and by increasing progressively the level of detail.
So, from a global viewpoint through a top-down approach
(because it is an organizational system with several aspects)
and in details through a bottom-up approach (in order to
obtain an accurate running).

Considering the above mentioned, it is possible to
assume that such a method should have the following steps.
I Enterprise analysis: the study of the current structures

and processes, identification of the characteristics and
criteria.

70

II Development of the "optimized" enterprise model: data
processing on several levels is determined by and
linked with functions in the operating system of the
enterprise«

111 Verification and validation of the optimized model:
determination of the model consistency with the charac-
teristics and, criteria, detection and characterization
of the conformities/unconformities with the real system.

In creation of the methodology according to specific
needs of our economic environment (as mentioned above) we

can use "IGAM Definition" Method (IDEF)£s], the idea of
which is to work out a description of manufacturing from a
completely functional viewpoint, irrespective of organiz-
ational lines and interfaces. Also M* [7] methodology, which
tends to integrate enterprise analysis methods with logical
database design methods.

Conclusion Remark

In this manner we shall redesign the operating system
of the enterprise, (It is assumed that the operating system
is consistent with the lowest level of decisions.) We get
a global view of the current status of the enterprise, on
the functional as well as on the informational dimensions, so
that problems can be identified, and the effects of their
solutions on the existing system can be evaluated. Thus, we
can carry out the enterprise alteration program on the func-
tional/informational basis.

References
1, Laast-Laas J, Data base infological design in prac-

tice // Trans, of Tallinn Tech. Univ, 1986. No 614. P. 107-
-112.

2, Vapper T., Laast-Laas J,, Urvak A,, Elmik L. Prac-
tice aspects of information system design // Trans, of Tal-
linn Tech, Univ, 1987, No 645, P, 118-125,

3. Gray J, An approach to decentralized computer sys-
tems // lEEE Transactions on Software Engineering, 1986, Vol
SE-12. No 6, P, 684-692,

4, Lumberg T, Information and alienation // In: Seminar
on Social Synergetics and Informatics, Tallinn, 1989 (in
Estonian),

71

5. Burbidge J,L,, Falster P.P. , Riis J. 0,, Svendsen
O.M, Integration in manufacturing // Computers in Industry.
1987, No 9. P. 297-ЗОS.

6, Bravoco R.R., Surya B.Y. Requirement definition
architecture - an overview // Computers in Industry, 1985,
No б. P. 237-277.

7. DiLeva Al, Vernadat F,, Bizier D, Information
system analysis and conceptual database design in production
environments with M* // Computers in Industry, 1987. No 9.
P. 183-217.

8. Vapper T, On strategy of strategic design // Com-
puter Technics & Data Processing, 1988. No, 5, P. 1-8
(in Estonian).

T. Lumberg

Ettevõtte optimeeritud infosüsteemi väljatöötamine

Kokkuvõte
Artiklis käsitletakse ettevõtte infosüsteemi projek-

teerimise kusimusi. Lahtudes funktsionaalsel alusel kir-
jeldatavast ettevõtte nn. operatsioonisüsteemist, kirjel-
datakse täiendavaid kriteeriume pro jekteerimismetoodika
täiustamiseks.

72

L. Elmik

OFFICE WORKSTATION MODELLING IN THE WHOLE
INFORMATION SYSTEM

Abstract

An approach, is given representing a model of an office
workstation as a main functional block of information
system in an office. The main idea of the model cre-
ation is to describe the data conversion in regular
communicative situation on three levels.

Creation of a large software system is a complex pro-
cess, which appears to be an endless source of making mis-
takes. In practice there are no faultless systems.

In ШM. Leppart and B. Stork summarized the par-
ameters of mistakes made by different authors which can be
represented by the following schemes

NO 70S

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OP TALLINN TECHNICAL UNIVERSITY

UDC 681,3

73

As seen from the scheme, all the authors reached the same
conclusion - mistakes of modelling are dominating over the

coding mistakes. Apparently, methods for modelling an in-
formation system on the whole are insufficient.

The majority of modelling approaches provide a limited
means, being designed only for a part of the information
system Г2], and these can model only some processes within
the whole of management activities £5,4-]. Here we shall
propose an approach for representing a model of an office

workstation, which acts as a main functional block of
an office information system. The modelling process is based
on the office works brought out by M. Mizuno £53, which in-
clude the following.

1, Creative human activities (thinking, decision mak-
ing, planning, negotiating, directing).

2. Information input (readingj hearing).
5. Document creation (writing, making clean and nest

copies)
4, Data processing (calculating, sorbing, classifying,

comparing, editing).
5. Information storage and retrieval (filing, search-

ing).
6, Communication and information distribution (talking

inter- and intraoffice mailing).
7. Disposal of unnecessary documents (scrapping).
8. Conferences and meetings (communicating, recording)
Those activities can be classified into the following

groups s
management works (1);
data processing and transmission works for management
(2, 3,4, 5,6, 7);
communication works (2, 6,8),

It follows from this, that an office has three kinds
of functions: management, data transmission and processing,
communication. But it is unclear what the object is for the
management and between which objects the communication is
held. Therefore rhe object of management and the relations
between the objects in a communication process should be
specified. As a result, we should know ehe final role of
the office.

74

To bring out the role of an office, we shall not dis-
cuss how data processing is designed but rather why
it is needed.

To answer the latter question, we must answer the
following questions.

Which processes/activities are data sources?
Why is the data needed?
Which process/activity will need this data?
'What is the meaning of this data?

It means that we are interested in the part of com-
munication process which is covered by the data processed
in the office activities.

In our previous article СSД the model of information
streams was presented:
- data from a production process;
- data for planning a new product;
- marketing.

In this model inside and outside streams are distin-
guished and the structure of the inside streams is given.
Anyway this inner structure is not sufficient for under-
standing the role of the office. Therefore we must inves-
tigate the real data streams in more detail. It; appears that
these data streams contain:

data about the real production process;
data about the real marketing process;

- data about planning resources/production.
In general, we may say that this data covers all pro-

cesses in the life-cycle of the product. From this it
follows that an office environment, which involves communi-
cative and management processes, influences all processes
in the life-cycle of the product. Consequently it follows
that the object of management is to influence processes of
the life-cycle of the product. The communications between
those processes are imperative to get information for in-
fluencing them.

Now let us look at the role of the workstation in an
office. Is it just a data processing tool or beyond that?
Do we need data processing as such at any cost or do
we need exact and operative information on the processes of
the life-cycle of the product?

75

If the latter case is our goal, then an office work-
station must be a tool, which creates an active communicat-
ive context (united knowledge, united information, united
data) for influencing the life-cycle of the product and
also supports the office work with the software tools for
updating and using that context.

Now let us proceed how to model the office workstation.
The main idea of the model creation is to describe the

data conversion in every regular communicative situation
C6], The description of this conversion is given on three
different levels!
- communicative level;
- information system level;
- programming level.

Level 1:
- specifying the activity of a management enterprise - the

activity which needs the data (the receiver activity);
- specifying the activity of a management enterprise - the

activity which creates the data (the sender activity);
- specifying the essence of the data - the message - why the

receiver activity needs the data from the sender activity.

Level 2:
- specifying the activating communication process in the

computer information system;
- specifying data representation for the user;
- specifying data storage structures.

Level j!
- specifying the program.

Distinguishing those levels appears to be the basics of of-
fice workstation modelling. It ensures the independence of

results from the office clerks' manners and documentation
circulation which are commonplace up to now. Instead of this
the model will depend only on communicative needs.

In conclusion, we achieved the model which allows to
integrate the work of several office clerks and results in
a better circulation of data streams. Due to that a great
deal of unnecessary work and mistakes, caused by them, can
be avoided.

76

References

1. Leppert M., Stork B, Entwicklungsumgebungen -

Status quo und Perspektiven // Informatik - Fachberichte , Gl.
Programmierumgebungen; Entwicklungswerkzeuge und Programmier-
sprachen, Berlin-Heidelberg-New York-Tokyos Springer-Verlag,
1984, S, 205-2^4,

2. Software engineering: methods and techniques. N,Y._

Ghichester-Brisbane-Toronbo-Singapore: John Wiley & Sons,
1983.

3. Masayoshi Mizuno, Office automation // Journal of

Asia Electronics Union, AEU. October 1986, No. 129.P. 89-94.
4. Weston Ch.D., Stewart G,A, Byte,

February 1987, P. 85-97.
5. Лааст-Лаас Ю.Г., Эльмик Л.Н., Диго C.M. Проекти-

рование информационной системы на прох®ш ленном предприятии.
Вопросы проектирования СМОД. Москва: МЭСМ, 1988. С. 53-59.

6. Якобсон Р. Лингвистика и поэтика. Структурализм
"за" и "против". Москва, 1975. С. 198-202.

L, Elmik

Konfaoriböökoha modelleerimise põhimõtteist

Kokkuvõte

Artiklis käsitletakse kontori infosüsteemi modellee-
rimise protsessi Ja kriteeriume. Vastavalt modelleerimis-
protsessile töötatakse valja kommunikatsiooninõudeid ka-
jastavad põhimõtted.

77

T. Vapper

INFORMATION FLOW MATRICES

Abstract

The design process of information systems consists of
several phases. Every phase is based on the results
of the previous one. So the initial stages of in-
formation system’s life-cycle build the foundation
for the realization of the system. The representation
and results of specification of a company’s information
work, its structure and information requirements are
especially important for the later phases. The suc-
cess of transition from one phase to another depends
on the success of fusing the different methods into
an integral model. Information flow matrix is one of
the possible complex models for different stages of
the design process.

Introduction

The aim of this paper is to introduce the information
flow matrix (IFM) as a relational model of an information
system design methodology called Complex Methodology of In-
formation Systems Design & Strategic Planning (CM), as well
as several applications of IFM.

CM is a data-oriented methodology, where methods fol-
low the corresponding concept. So, information flew matrices
principally differ from information flow diagrams, widely
used as a technique of process-oriented methodologies. How-
ever, they are both primarily used at the same phase of in-
formation system design process. The life cycle model for
the information system development represented by P.G, Locke-
mann and H.G, Mayr Cl l will be discussed further.

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OF TALLINN TECHNICAL UNIVERSITY

UDC 681.3

78

As 3. Ceri distinguishes "social" and "socio-technical"
approach to the initial phase of the life cycle of an in-
formation system ("requirements collection and analysis")
[2], IFM belongs to the first one. Optimization of informa-
tion work, organizational development and managerial im-
provements have been considered essential in the circum-
stances of an unaccomplished socio-economic system.

The term "real system" is used in the sense of pre-
cisely determined subject of design activities (the whole
or a part of a company, organization, office, etc.) with
its defined functions and complicated structure, "Object
system" is an integrated component of the real system em-
bracing events, occurrences, acts and other material or
non-material related objects of which information is re-
quired.

Figure 1 represents a generalized model of a real
system’s information work (a "cube"), acting as a source-
/ision of IPM application [3, 4-3.

The components of IFM

Information flow matrix is a method primarily used
for i7he first phase of information systems design - re-
quirements analysis and specification. However, it can be
used for the later phases as well.

Figure 1, Generalized model of information work

Principally, IFM is an evaluated model of the "cube"
(Fig, 1) and represents information work on the actual real
system.

IFM consists of the following components (Fig. 2)
information 5
organizational structure (actors);
actions,

Information can be formal, informal or unformal. No

matter what the mode of transmission is anyone is described
by IFM, Description of information contains the name, rep-
resenting the semantics, time periods and the form of trans-
mission (a document, phone-call, etc,).

Organizational structure is represented on the main
diagonal of IFM by departments (divisions), persons or
organizations. Every department is characterized by its
name, location, telephone numbers and the number of work-
places. The definition of the department depends on ehe func-

tion and information flows, e.g. the chief engineer can be a
member of administration of one real system and a separate
department of another.

Figure 2. The structure of IFM
Actions of information work are described correspond-

ing to the departments (actors) at the lower part of IFM,
Actions and information are connected with the corre-

sponding indices.
Figure 3 represents the direction of information flows

on IFM.

79

Figure 3. The direction of information flows

The mode of representation

To cooperate with end-users IFM is represented accord-
ing to the principles of the wall technique [53, So, large
surfaces (walls) and papers as well as different colours
are required. Colours play an important role for end-users
in understanding the contents of IFM. We have used the
following colours to identify the components of IFM:

- yellow indicates information (documents, reports,
phonecalls, etc,);

- blue indicates divisions (departments, persons, etc.)
of the real system;

- green indicates actions;
- red indicates material flows and money (if necessaiy).

Any information, defining the value of the matrix
element, is written on a coloured paper-label. They are
glued to the greater form of paper. So, it is easy to make
changes.

IFM as a description technique

One of the beat features of IFM is its complexity, A
real system can be described with one or several IFM, It is
often useful to compose an IFM of the whole organization as
well as an IFM of the divisions. Figure 4 represents a sample
extract of a building company's IFM (without actions).

Instead of departments it is possible to describe any
other kind of divisions. For instance if we use the main
diagonal for the specification of technological devices

80

81

(divisions), we could analyse the informational interrela-
tions between CAM and information systems.

IFM as a testing tool

Due to the complexity and simplicity IFM can be
checked by the end-users of the future information system.
IFM can be used as an interface between designers and end-
users. It gives a perfectness guarantee to the results of
the first design phase.

IFM aa a mechanism of reorganization

IFM gives the possibility to identify the anomalies of
information work, including informational "bottlenecks I,*

duplication of data and actions, disproportions of division
of work, etc. As IFM is an integral model it is not difficult
to find out the reasons for disconnections of information
flows (inadequate specification or organizational defect).

Figure 4. An extract of a company* s IFM (example)

Any changes of the IFM values affect other components.
If we are abolishing a document, sent from one division to
another, the corresponding action cannot be executed, Abolisb-

82

ing the actions, the corresponding information will not be
obtained. Any modification affects the whole organization.
The future information work structure will be modelled be-
fore the future information system is realized.

IFM is a tool for optimizing information work pro-

cesses and information flo-ws.
IFM plays an important role at all design phases,

since every state of the design process will be modelled
in advance. But, of cource, it is possible only with the
help of special automated tools [4].

References

1. Lockemann P.G., Mayr H.G. Information systems de-
sign ; techniques and software support// IFIP 86. North-
Holland Publ, Co., 1986. P. 617-631,

2. Geri S, Requirements collection and analyses in
information systems design// IFIP 36, North-Holland Publ.
Co, 1936. P, 205-215.

3. Ваппер Т.Э., Дааот-Даао Ю.Г., Распель П.У. Про-
блемы стратегического проектирования информационных систем
// Тр. Таллинск. политехи, института. 1988. Я 671. С.83-94.

4. Ваппер Т. Требования к автоматизированной системе
проектирования информационных систем // Infotehnoloogia ja

täppismajandusteadus I. (Infotechnology Exact Eco-

nomics). Eil, 1938. P. 81-86.

5. Saaren-Seppa’la K, Seinatekniikka. Helsinki, IVSDY;
1983.

83

T. Vapper

Infovoogude maatriksid

Kokkuvõte

Infosüsteemi projekteerimine ca mitmejärguline prot-
sess. Igal järgneval etapil kasutatakse eelmisel Saavutatud
tulemusi. Projekteerimise algfaasis rajatakse bulsvsusteemi
"vundament", mistõttu kasutatavad meetodid peavad tagama
tulemuste ülima korrektsuse ja täpsuse.

Projekteerimise edukus sõltub nii meetodite sujuvast
üleminekust ühelt elutsükli etapilt teisele kui ka sellest,
kui efektiivselt suudetakse luua küntaktpinda lõpptarbija-
tega, Esitusviis ei ole tähtsusetum analüüsimeetuditest,
kuivõrd ainult süsteemi lõppkasutajaga koos toos 6h võimalik
testida ja kontrollida tulemusi.

Kirjeldus-, analüüsi-, eel;; -

. meetodid peavad
moodustama teatud mudeli, mis te. seosed projekteerimis-
protsosai eri faaside ja etappide vahel. Üheks võimalikuks
mudeliks on ka infosüsteemide projekteerimise ja strateegi-
lise planeerimise konpleksmetoodikesse kuuluv infovoogude
maatriks.

84

M. Roost

ORGANIZATION OF DISTRIBUTED DATA RESOURCES
IN JUST-IN-TIME INFORMATION SYSTEMS

Abstract
The problems of data organization in an enterprise
information system on the level of automated work-
stations of information work are examined.
To raise the efficiency of information work in an
enterprise correspondent interactive informational
environments on workstations in the local network are
to be created. With this aim in view an approach to
data organization on the basis of dynamic and distri-
buted data models has been elaborated.
The creation and redesign of information systems for

enterprise are a current concern in the context of economic
restructuring. It is ensured by the appearance of cheap
personal computers and local area networks (LAN) to our
markets. The local area networks of personal computers with
the corresponding user-oriented software enable to create
an information processing system [4J which immediately
follows and affects the information work technology of an
enterprise (current information system). We call this kind
of information- system a just-in-time system [4O,

The information system is a complicated distributed
system [l] which requires multilevelled approach from dif-
ferent aspects on several levels. That is why a great
variety of information system definitions exist. In the
main these treatments split into two approaches, one spe-
cifying an information system as a tool for information
work or as a data processing system (data approach to in-
fosystera) El,3]. The information system there is separated

No 705

TALLINNA TEHNIKAÜLIKOOLI TOIMETISED
TRANSACTIONS OP TALLINN TECHNICAL UNIVERSITY

UDC 681.3

85

from information work (as it is the case in the real world).
Main emphasis is placed on the data organization (process-
ing) in a computer system.

The other approach [2, regards the information
system as the environment of information work (without any
direct reference to that). Further, we assume it to he an
environmental approach to information systems. The informa-
tion work and its subjects (performers) are viewed here in-
volved in the information system,that must guarantee favour-
able conditions to achieve their goals. Thus the information
system must create an informational environment.

The different approaches, mentioned above, are not
contradicting, however, they disagree. There is a necessity
to integrate the approaches,Such Integrity should be guaran-
teed by modeling the information system/inforraation work
using a new way. The model should Integrate at a sufficient-
ly high level the human and technical aspects of information
work, the informational environment and its technological
basis. The present paper attempts to formulate this approach
in a corresponding model and thus to fill in the gap bet-
ween the two approaches, 'He will try to propose the basics
for data treatment in the information system which are com-
patible with the environmental approach and result from the
latter.

Therefore we are dealing with the components of in-
formation work and focus on the relation of every component
to data organization. Thus we are treating a distributed
data organization, which is oriented to support an informa-
tional environment, to be more exact, the environment of

information work.

2. Information work and data models

Any work or action at an enterprise is related to the
information generation and use, and is thus assumed as in-
formation work. The enterprise would respectively be viewed
as the information system which generates the environment
for information work (for its components, finally for workers).
The components of information work (and also its environment.)
are: subjects, objects and actions. Informational require-
ments call out the information work, which is performed by

86

units of an enterprise/inforiaation system (which have the
active role of the subject/agent of information work), sat-
isfying immediately their own actual needs for information
and realizing their information work abilities. During the
information work the information of these units is generated
(produced and consumed).

We observe these units from the informational aspect
in the given relation (role) as passive infoobjects which
form the object of information work, i,e, information. An
object is characterized by certain utility (or inforraation-
containability) to meet the requirements of a subject
and realize its abilities. Through the common objects the
common informational requirements and a common information
resource will form. The above mentioned units (the objects
and subjects of information work) as the components of in-
formation work are related to each other and formed by the
activities of information work (with the means, realizing
the latter activities). We treat the latter activities and
means separately from the subjects - activity carriers, as
the independent components of information work.

From the observed components of information work fun-
damental levels in the treatment of enterprise infosystem
will also result. The organizational level of information
work must be the startpoint where the goals of information
work and the appropriate conditions for their realization
will be formed.

The organizational units perform certain functions in
information work, which are treated independently on the
functional level of information work - separately from or-
ganizational units, supporting it. The separation of that
level enables to optimize the information system of a
subject according to the goals of information work and main
functions, determined with these goals [SD.

The functions of information work (actually the sub-
ject, performing these) need appropriate informational envi-
ronment rej for functioning. Such mutually related, inter-
twined informational environments generate the information
level of a system, where the information units are viewed in
the framework of their mutual relations and dynamics. The
separation of this level is a necessary condition to improve

87

information work: on both functional and organizational
levels by forming the respective Informational environments.

Information work proceeds in fact through the data
medium. The data have their own organization (the structure
and relations with information work organization), dynamics
and content, that must be compatible with the information
work organization, functions and objects. So, the data level
as a 'physical' level on information work will be differen-
tiated as a foundation for the infosystem (see Fig, 1) .Its
characteristics should arise from the organizational, func-

tional and informational levels of information work. This
foundation must also guarantee the harmony between the
levels, mentioned last. It gives a basis to view the data
as an aspect of informational environment, that must in a
sense embrace (model and realize) this environment.

Fig. 1, Role of data models in the information work environ
ment

So, the informational .environment design/generation is
the common goal for both the information work and the data
organization. Thus the concept of informational environment
can be concerned as an interface between above mentioned two
approaches (Fig, 2). Data organization by environmental ap-
proach must be oriented to generation of informational en-
vironment for subjects of information work.

Fig. 2, The relation between information work and data orga
nization in information system

Data as an aspect of such environment form the data
environment C4-], Data environment is organized on the basis

88

of data models. We can look at the data model as an inter-
face between the computer as a formalized information pro-
cessing means and the nonformalized information processing
that proceed in the external environment. The importance of
that function arises immediately whenever information envi-
ronment is needed.

Conclusion, The key concepts and features of the
distributed data model are to be discussed. We hope to con-
tinue the discussion in the nearest issue of transactions

References

1, Gray J. лп approach fco decentralized computer
systems // lEEE Transactions on Software Engineering. 1986,
Vol, SE-12, Ho 6. P, 684-692,

2, DiLeva A., Vernadat F., Bizier D, Information sys-
tem analysis and conceptual database design in production
environments with Ы* // Computers in Industry, 1987.
No 9. P. 183-217.

3, Martin D. Advanced database techniques. The MIT
Press. London, England. 1986, P, 370,

4, Roost M. Data environment of user's interface
for just-in-time systems // Trans, of Tallinn Technical
University, 1988, P. 116-129 (in Russian),

3, Lunberg T, On organizational "status quo" in in-
formation system design // Trans, of Tallinn Technical Uni-
versity. In current issue P. 65-71»

6. Roost M.,Lumberg T, Information marketing and an
economic unit environment // Information and Marketing,
Proceedings of the Republican Scientific Seminar, 1989.
P, 21-26 (in Estonian),

M, Roost

Andmeorganisats loon ist a.lastus inf osusteemides

Kokkuvõte
Artiklis käsitletakse andmeorganisatsiooni modelleeri-

mist toekoha tasemel. Esitatakse lokaalse arvutivõrgu loo-
miseks sobiv lahenemine infokeskkonnale,

№ 705

TALLINEA TEHNIKAÜLIKOOLI TOIMETISED

ТРУДЫ ТАЛЛИННСКОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА

ОБРАБОТКА ДАННЫХ, ПОСТРОЕНИЕ ТРАНСЛЯТОРОВ.
ВОПРОСЫ ПРОГРАММИРОВАНИЯ

Труды пс экономике LXXII

УДК 681.3
Быстрые методы разведывательного анализа данных.
Выханду Л.К. - Труды Таллиннского технического
университета. 1989. № 705. С. 3-13.
В статье демонстрируется методика применения монотон-

ных систем к двум трудным задачам комбинаторной оптимиза-
ции - рассмотрение кликовой структуры графа и ранжирование
турниров.

Библ. наименований - 5.
УДК 681.3.06.

Генерирование предложений из совокупности примеров.
Выханду Л.К. - Труды Таллиннского технического
университета.l9B9. № 705. С. 14-19.
В статье демонстрируется методика применения теории мо

нотошшх систем к индуктивному обучению. Представляется бы
страя и простая схема генерирования предложений из совокуп-
ности примеров.

Библ. наименований - 4

УДК 681.3.06
Тестирование объектно-ориентированных программ.
Тепанди Я.Я., Троушан-Мату С. - Труды Таллиннского
технического университета. 1989. № 705. С. 20-27.
В статье предлагаются принципы тестирования объектно-

ориентирсванных программ. Рассматривается тестирование на
основе текста программы (на основе критериев покрытия опе-
раторов и покрытия решений) и на основе спецификации.

Библ. наименований - 24.

I

УДК 681.3.06
Выбор инструментальной экспертной системы.
Тепанди Я.Я., Пармаксон П.М. - Труды Таллиннского
технического университета. 1969. № 705. С. 28-32.
В статье предлагаются принципы выбора инструментальных

экспертных систем (ИЭС), а также описывается экспертная си-
стема для выбора ИЭС, разработанная с учетом этих принципов

Бкбл. наименований - 6.

УДК 681.3
Алгебраические основы систем доверия. Хенно Я.А. -

Труды Таллиннского технического университета. 1989.
№ 705. С. 33-43.
Основной проблемой логического программирования явля-

ется вывод, характеризующий логические следствия формул
только на основе свойств и структур этих формул. В статье
приводится новая алгебраическая процедура вывода, которая
не зависит от структуры формул. Эти новые принципы основы-
ваются на свойствах логических операций и следовательно,
удобны для обобщения. Доказывается корректность и полнота
предложенной процедуры.

Бкбл. наименований - 2.
УДК 681.3

Принципы создания математического обеспечения.
Цунапуу Э. - Труды Таллиннского технического
университета. 1989. № 705. С. 44-46.
В статье представлены принципы создания программного

обеспечения, разработанные на кафедре обработки информации,
на основе многолетнего опыта создания информационных систем.
В качестве примера использования названных принципов при-
водится система генерации программного обеспечения инфор-
мационных систем ГЕНСИ.

УДК 681.3
Применение теории монотонных систем при генерации
деревьев решений. Куузик Р.Э. - Труды Таллиннского
технического университета. 1989. Л 705. С. 47-58.
ß данной статье описан новый подход генерации деревь-

ев решений прямо из исходной матрицы номинальных данных
Х(Н,М) и вьщеления лучшего из них по определенному крк-

-2

терию без формирования всех деревьев решений. Работа пред-
ложенных алгоритмов основывается на теории монотонных систем

Библ. наименований - 6.

УДК 681
Генерирующая автоматизированная учебная система.
Выханду П., Реги К. - Труды Таллиннского
технического университета. 1989. № 705. С. 59-64.
В статье дается описание генерирующей автоматизирован-

ной учебной системы для обучения обработки списков. Для
ввода системы существует написанный псевдокодом алгоритм,
работу которого затем показывают шаг за шагом с помощью
графического вывода.

Систему можно использовать как при представлении но-
вого материала, так и при проверке правильности работы ал-
горитма, составленного самими обучающимися.

Библ. наименований - 2.

УДК 681.3.016
Проблемы проектирования оптимизационной
информационной системы на предприятии. Лумберг Т.А.—
Труды Таллиннского технического университета. 1989.
№ 705. С. 65-71.
В статье рассматриваются цроблемы проектирования ин-

формационной системы на предприятии.
Затрагиваются некоторые вопросы соответствия сущест-

вующей информационной системы с объективными нуждами про-
изводственной системы.

Обсуждается проблема функциональной обоснованности
процессов обработки информации.

Исходя из этого предлагается идея дополнить методики
проектирования информационной системы средствами информа-
ционного анализа на основе функционального критерия.

Библ. наименований - 8.
УДК 681.3

Принципы моделирования АРМ конторского типа.
Эльмик Л. - Труды Таллиннского технического
университета. 1989. № 705. С. 72-76.
3 данной статье представлен основной принцип подхо-

-3

да к моделированию автоматизированного рабочего места.ис-
ходящего из потребностей коммуникационного процесса.

Фигур - I, библ. наименований - 6.

УДК 681.3
Матрицы информационных потоков. Ваппер Т.Э. -

Труды Таллиннского технического университета.
1969. № 705. С. 77-63.

Проектирование информационных систем является процес-
сом, где на каждом последующем этапе используют результаты
предыдущих. На первоначальных этапах проектирования строят
фундамена будущей системы. Успех зависит от того, как раз-
ные методы, использованные на соответствующих этапах жиз-
ненного цикла проектирования информационной системы, обра-
зуют единую модель. Например, кроме эффективных средств
проектирования нужны и способы представления результатов
и тестирования, т.е. нужно иметь возможность контакта с
конечными пользователями.

Одной такой моделью является и матрица информационных
потоков, как часть созданной комплексной методики проек-
тирования и стратегического планирования информационных
систем.

Фигур -4, библ. наименований - 5.
УДК 661.3

Организация данных в информационных системах.
Роост М.Х. - Труды Таллиннского технического
университета. 1969. № 705. С. 84-88.
В статье рассматриваются проблемы организации данных

в инфосистеме предприятия на уровне рабочих мест инфор-
мационной работы.

Для повшения эффективности информационной работы и
всей деятельности предприятия необходимо создать соответ-
ствующие взаимосвязанные информационные среды на рабочих
местах в локальной сети предприятия. Для этого в статье
разработан подход к организации данных на основе динамич-
ных и децентрализованных моделей данных.

Библ. наименований - 6.

4

	Data processing, compiler writing, problems of programming�ഊ㌠呲ഊ㰰〱㐰〱㌾⁔樍名ੑഊ焍ੂ名ਹ⸹㔠〮〰‰⸰〠ㄱ⸶㈠㐸⸰〠㔰㤮㔵⁔洍ਲ਼⁔爍਼〰㌰〰㐴〰㔷〰㑢〰㐸〰㔰〰㐴〰㔷〰㑣〰㐶〰㐴〰㑦〰㐹〰㔳〰㔵〰㔲〰㐵〰㑦〰㐸〰㔰㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ⸵㠠〮〰‰⸰〠㜮㤴‱㔲⸲㠠㔰㠮㈸⁔洍ਲ਼⁔爍਼〰㔲〰㐹㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㔷‰⸰〠〮〰‷⸳㜠ㄶ㔮㜲‵〸⸷〠呭ഊ㌠呲ഊ㰰〵㔰〴㠰〵〵㠰〵〰〴㔰〴㠰〵㔰〴挰〵〴愾⁔樍名ੑഊ焍ੂ名ਹ⸱㌠〮〰‰⸰〠㜮㤴′㈶⸲㠠㔰㠮㈸⁔洍ਲ਼⁔爍਼〰㔷〰㑢〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮〴‰⸰〠〮〰‶⸸〠㈴㐮㜲‵〹⸲㠠呭ഊ㌠呲ഊ㰰〵〵㈰〴㜰〴㠰〵㘾⁔樍名ੑഊj÷❪ヷ❪䃷❪큠㑪嬅휀��삿㍪傷㍪����큛䄒Ā���
	DATA PROCESSING, COMPILER WRITING, PROBLEMS OF PROGRAMMING��ഊ㌠呲ഊ㰰〱㐰〱㌾⁔樍名ੑഊ焍ੂ名ਹ⸹㔠〮〰‰⸰〠ㄱ⸶㈠㐸⸰〠㔰㤮㔵⁔洍ਲ਼⁔爍਼〰㌰〰㐴〰㔷〰㑢〰㐸〰㔰〰㐴〰㔷〰㑣〰㐶〰㐴〰㑦〰㐹〰㔳〰㔵〰㔲〰㐵〰㑦〰㐸〰㔰㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ⸵㠠〮〰‰⸰〠㜮㤴‱㔲⸲㠠㔰㠮㈸⁔洍ਲ਼⁔爍਼〰㔲〰㐹㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㔷‰⸰〠〮〰‷⸳㜠ㄶ㔮㜲‵〸⸷〠呭ഊ㌠呲ഊ㰰〵㔰〴㠰〵〵㠰〵〰〴㔰〴㠰〵㔰〴挰〵〴愾⁔樍名ੑഊ焍ੂ名ਹ⸱㌠〮〰‰⸰〠㜮㤴′㈶⸲㠠㔰㠮㈸⁔洍ਲ਼⁔爍਼〰㔷〰㑢〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮〴‰⸰〠〮〰‶⸸〠㈴㐮㜲‵〹⸲㠠呭ഊ㌠呲ഊ㰰〵〵㈰〴㜰〴㠰〵㘾⁔樍名ੑഊj÷❪ヷ❪䃷❪큠㑪嬅휀��삿㍪傷㍪����큛䄒Ā��
	Contents�〴㌸屵〴㍤屵〴㐴屵〴㍥屵〴㐰屵〴㍣屵〴㌰屵〴㐶屵〴㌸屵〴㍥屵〴㍤屵〴㍤屵〴㑢屵
	FAST METHODS IN EXPLORATORY DATA ANALYSIS���
	HOW TO GENERATE STATEMENTS FROM EXAMPLES��
	TESTING OP OBJECT-ORIENTED PROGRAMS���
	CHOOSING AN EXPERT SYSTEM SHELL���
	ALGEBRAIC FOUNDATIONS OP BELIEF SYSTEMS�呪ഊ䕔ഊ儍ੱഊ䉔ഊ㜮㤰‰⸰〠〮〰‱〮㜷‸〮㐳″㤷⸴㈠呭ഊ㌠呲ഊ㰰㉦戰㉦㉦㜰㉦㔰㉦昰㉦搾⁔樍名ੑഊ焍ੂ名ਸ⸲㔠〮〰‰⸰〠㤮㌵‱ㄵ⸰〠㌹㜮㤸⁔洍ਲ਼⁔爍਼〳〰〲晦〳〲〲晣〲昶〲昵〳〴〳て〳ち〲昶〲晤㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㤷‰⸰〠〮〰‹⸰㜠ㄷ㐮〰″㤹⸲㠠呭ഊ㌠呲ഊ㰰㌰攰㌰㌰㉦㌰〰㉦㘾⁔樍名ੑഊ焍ੂ名ਸ⸶㐠〮〰‰⸰〠㤮㌵′〳⸲㠠㌹㠮㤸⁔洍ਲ਼⁔爍਼〲昹〳〲〳〰〲晦〲晣〳つ〲昸〳〴〳て〳〳㸠
	PRINCIPLES FOR SOFTWARE DEVELOPMENT���
	APPLICATION Ob' THEORY OP MONOTONIC SYSTEMS FOR DECISION TREES GENERATION�〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㜮ㄹ‰⸰〠〮〰‸⸲㈠ㄱㄮ〰″㜶⸲㠠呭ഊ㌠呲ഊ㰰〱㘰〱ㄾ⁔樍名ੑഊ焍ੂ名ਸ⸱㌠〮〰‰⸰〠㘮㠰‱㈲⸲㠠㌷㜮㈸⁔洍ਲ਼⁔爍਼〰㌷〰㑢〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮ㄲ‰⸰〠〮〰‷⸹㐠ㄴ〮㈸″㜷⸲㠠呭ഊ㌠呲ഊ㰰〴㜰〴挰〵㔰〴㠰〴㘰〵㜰〴挰〵㈰〵ㄾ⁔樍名ੑഊ焍ੂ名ਸ⸵〠〮〰‰⸰〠㘮㠰‱㜹⸰〠㌷㠮㈸⁔洍ਲ਼⁔爍਼〰㔲〰㐹㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮〱‰⸰〠〮〰‷⸹㐠ㄸ㤮〰″㜷⸲㠠呭ഊ㌠呲ഊ㰰〴挰〵〴㤰〵㈰〵㔰〵〰〴㐰〵㜰〴挰〵㈰〵ㄾ⁔樍名ੑഊ焍ੂ名ਸ⸹㐠〮〰‰⸰〠㘮㠰′㌸⸲㠠㌷㠮㈸⁔洍ਲ਼⁔爍਼〰㐹〰㑦〰㔲〰㕡〰㔶㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㜮㤴‰⸰〠〮〰‷⸹㐠㐷⸷㈠㌴㔮㈸⁔洍ਲ਼⁔爍਼〰㌷〰㑢〰㐸㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㜮㌸‰⸰〠〮〰‶⸸〠㘷⸰〠㌴㘮㈸⁔洍ਲ਼⁔爍਼〰㔰〰㔲〰㐷〰㐸㸠呪ഊ䕔ഊ儍Ԁ���堗ࠒ��⢶��Ԁ���젙ࠒ
	A GENERATING CAI SYSTEM�䌫켾b鉪㡛鉪��������✇䘅츅䐇ꔃĀず鉪�ऀ�ऀ���䬫윾c鉪㡛鉪��������茅ꐅﬆ픂Āず鉪Ȁ�Ԁ���㌫뼾d鉪㡛鉪��������✇☆䘇찃Āず鉪킩Ѐ�Ԁ���㬫뜾e鉪㡛鉪��������䤇
	ON ORGANIZATIONAL "STATUS QUO" IN INFORMATION SYSTEM DESIGN�⸱㘮㌱⸱〰層坓桡牥屃潮晩杜呌唭摯捗潲歳ⵇ䱂䰮楮椊䱯捡汐慴栺䌺屐牯杲慭⁆楬敳 砸㘩層潣坏剋卜扩湜摷卲癜䑗卲瘴硥数潲瑥摓瑡瑥㨱瑡瑵猺偲潣敳獩湧畮湩湧䅰灳㨊䩯戺䕸灯牴塍䰊䑯捉䐺㈹㈳㘊䙩汴敲ㄺ䵯湯杲慰栊䙩汴敲㈺呌唭䵯湯杲慰栭千䅎屢ㄲㄱ㌶㜶楬瑥爳㩔䱕ⵍ潮潧牡灨ੁ捴楯渱㩐牯捥獳楮朊䅣瑩潮㈺卡癩湧⁐䑆⸮牴偲潧牥獳㨰੍慸偲潧牥獳㨱ੌ慳瑓瑡瑵獍潤楦楣慴楯湔業敕呃㨱㐷ㄹ㠰ㄲ㠊剥灯牴敤呩浥㨱㐷ㄹ㠰㘱㤊佃剅湧楮敓瑡瑵猺䙩湥剥慤敲‱ㄮぼ⁒畮湩湧渠汯捡氠浡捨楮攠簠畮汩浩瑥搠捨慲慣瑥牳敦琮簠佃删扩湡物敳⁶敲獩潮㨠㘮㤮ㄮ㈳瑡牴呩浥㨱㐷ㄹ㠰ㄲ㠊✠坈䕒䔠卥牶楣敎慭攠㴠❟偒佄㍟䑗卲瘴当牶彐剏䐳硴✀
	OFFICE WORKSTATION MODELLING IN THE WHOLE INFORMATION SYSTEM�㘮㌱⸱〰層坓桡牥屃潮晩杜呌唭摯捗潲歳ⵇ䱂䰮楮椊䱯捡汐慴栺䌺屐牯杲慭⁆楬敳 砸㘩層潣坏剋卜扩湜摷卲癜䑗卲瘴硥数潲瑥摓瑡瑥㨱瑡瑵猺偲潣敳獩湧畮湩湧䅰灳㨊䩯戺䕸灯牴塍䰊䑯捉䐺㈹㈳㘊䙩汴敲ㄺ䵯湯杲慰栊䙩汴敲㈺呌唭䵯湯杲慰栭千䅎屢ㄲㄱ㌶㜶楬瑥爳㩔䱕ⵍ潮潧牡灨ੁ捴楯渱㩐牯捥獳楮朊䅣瑩潮㈺卡癩湧⁐䑆⸮牴偲潧牥獳㨰੍慸偲潧牥獳㨱ੌ慳瑓瑡瑵獍潤楦楣慴楯湔業敕呃㨱㐷ㄹ㠰ㄲ㠊剥灯牴敤呩浥㨱㐷ㄹ㠰㔵㤊佃剅湧楮敓瑡瑵猺䙩湥剥慤敲‱ㄮぼ⁒畮湩湧渠汯捡氠浡捨楮攠簠畮汩浩瑥搠捨慲慣瑥牳敦琮簠佃删扩湡物敳⁶敲獩潮㨠㘮㤮ㄮ㈳瑡牴呩浥㨱㐷ㄹ㠰ㄲ㠊✠坈䕒䔠卥牶楣敎慭攠㴠❟偒佄㍟䑗卲瘴当牶彐剏䐳硴✀牶彐剏䐳硴
	Untitled�〴㌸屵〴㍤屵〴㐴屵〴㍥屵〴㐰屵〴㍣屵〴㌰屵〴㐶屵〴㌸屵〴㍥屵〴㍤屵〴㍤屵〴㑢屵
	INFORMATION FLOW MATRICES�〳〳〲〳㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㠮㠲‰⸰〠〮〰‹⸰㜠ㄱ㔮㈸‴⸲㠠呭ഊ㌠呲ഊ㰰㉦昰㌰〰㉦㤰㌰㈰㉦㉦攰㉦㤰㉦㘾⁔樍名ੑഊ焍ੂ名ਸ⸴㜠〮〰‰⸰〠㤮㤲‱㔹⸰〠㐰㤮㈷⁔洍ਲ਼⁔爍਼〲昴〲昶〲晥〲昶〳〱〲昹〳〱〳〴〳て〳ち〲昶〲晡㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮〲‰⸰
	Figure 1, Generalized model of information work�〰‹⸶㐠ㄵ㌮㜲‱㐮㈸⁔洍ਲ਼⁔爍਼〰ㅡ〰ㄹ㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㈵‰⸰〠〮〰‷⸹㐠㐵⸴㌠㔰㘮㈸⁔洍ਲ਼⁔爍਼〰㌵〰㐸〰㐹〰㐸〰㔵〰㐸〰㔱〰㐶〰㐸〰㔶㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ㤮㔸‰⸰〠〮〰‹⸹㈠㐶⸸㔠㐹〮〰⁔洍ਲ਼⁔爍਼〰ㄴ〰ㄱ㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ⸲㠠〮〰‰⸰〠㜮㌷‶〮㐳‴㤱⸷〠呭ഊ㌠呲ഊ㰰〲昰〴㠰〵㌰〵㌰〴㠰〵㔰〵㜾⁔樍名ੑഊ焍ੂ名ਹ⸴㔠〮〰‰⸰〠㠮㈲‱〰⸰〠㐹〮ㄳ⁔洍ਲ਼⁔爍਼〰㌰〰ㄱ〰て㸠呪ഊ䕔ഊ儍塨戍ᡩ戍戍顦戍顥戍��㡦戍㡨戍ᡦ戍硪戍롪戍㡪戍㡬戍�ᡫ戍㡩戍
	Figure 2. The structure of IFM�㜲〰㘱〰㙣〰㘹〰㝡〰㘵〰㘴〰㈰〰㙤〰㙦〰㘴〰㘵〰㙣〰㈰〰㙦〰㘶〰㈰〰㘹〰㙥〰㘶〰㙦〰㜲〰㙤〰㘱〰㜴〰㘹〰㙦〰㙥〰㈰〰㜷〰㙦〰㜲〰㙢〰〰㌰㌰㈰㌹㉥㌶㌴㈰㌱㌵㌳㉥㌷㌲㈰㌱㌴㉥㌲㌸㈰㔴㙤つち㌳㈰㔴㜲つち㍣㌰㌰㌱㘱㌰㌰㌱㌹㍥㈰㔴㙡つち㐵㔴つち㔱つち㜱つち㐲㔴つち㌹㉥㌲㌵㈰㌰㉥㌰㌰㈰㌰㉥㌰㌰㈰㌷㉥㌹�唀瀀搀
	Figure 3. The direction of information flows�㐴〰㐵〰㑣〰㑣〰㐹〰㑥〰㐷〰㈰〰㐹〰㑥〰㈰〰㔴〰㐸〰㐵〰㈰〰㔷〰㐸〰㑦〰㑣〰㐵〰㈰〰㐹〰㑥〰㐶〰㑦〰㔲〰㑤〰㐱〰㔴〰㐹〰㑦〰㑥〰㈰〰㔳〰㔹〰㔳〰㔴〰㐵〰㑤〰〰㌶㉥㌳㌱㉥㌱㌰㌰㕣㘴㔷㔳㘸㘱㜲㘵㕣㐳㙦㙥㘶㘹㘷㕣㔴㑣㔵㉤㘴㙦㘳㔷㙦㜲㙢㜳㉤㐷㑣㐲㑣㉥㘹㙥㘹ち㑣㙦㘳㘱㙣㔰㘱㜴㘸㍡㐳㍡㕣㔰㜲㙦㘷㜲㘱㙤㈰㐶㘹㙣㘵㜳㈰㈸㜸㌸㌶㈹㕣㘴㙦㘳㔷㑦㔲㑢㔳㕣㘲㘹㙥㕣㘴㜷㔳㜲㜶㕣㐴㔷㔳㜲㜶㌴㉥㘵㜸㘵ち㔲㘵㜰㙦㜲㜴㘵㘴㔳㜴㘱㜴㘵㍡㌱ち㔳㜴㘱㜴㜵㜳㍡㔰㜲㙦㘳㘵㜳㜳㘹
	Figure 4. An extract of a company* s IFM (example)�㘵‱㈴⸰〠㔰㜮㈸⁔洍ਲ਼⁔爍਼〰㈶〰㔲〰㔱〰㔷〰㐸〰㔱〰㔷〰㔶㸠呪ഊ䕔ഊ儍ੱഊ䉔ഊ⸸㤠〮〰‰⸰〠㘮㠰‱㘮㐳‴㠷⸱㌠呭ഊ㌠呲ഊ㰰〲昰〰显⁔樍名ੑഊ焍ੂ名ਹ⸲㌠〮〰‰⸰〠㜮㌷″ㄮ㜲‴㠶⸷〠呭ഊ㌠呲ഊ㰰〳㤰〵挰〴戰〴㐰〵〴㜰〵㠰〰显⁔樍名ੑഊ焍ੂ名ਹ⸶㜠〮〰‰⸰〠㜮㤴‷㔮㐳‴㠶⸲㠠呭ഊ㌠呲ഊ㰰〲㤰〴㐰〵㘰〵㜾⁔樍名ੑഊ焍ੂ名ਸ⸴㔠〮〰‰⸰〠㜮㤴‱〱⸰〠㐸㘮㈸⁔洍ਲ਼⁔爍਼〰㌰〰㐸〰㔷〰㑢〰㔲〰㐷〰㔶㸠呪ഊ䕔ഊ儍�頩剪방剪剪Ъ剪⠪剪䰪剪瀪剪鐪剪렪剪㐧剪�剪+剪剪䠫剪氫剪逫剪됫剪�ﰫ剪剪

	ORGANIZATION OF DISTRIBUTED DATA RESOURCES IN JUST-IN-TIME INFORMATION SYSTEMS��������������䌀��䌀��
	Fig. 1, Role of data models in the information work environ ment�㌲㌰㌰㌶㌱㌰㌰㌶㘳㌰㌰㌶㌹㌰㌰㌷㘱㌰㌰㌶㌵㌰㌰㌶㌴㌰㌰㌲㌰㌰㌰㌶㘴㌰㌰㌶㘶㌰㌰㌶㌴㌰㌰㌶㌵㌰㌰㌶㘳㌰㌰㌲㌰㌰㌰㌶㘶㌰㌰㌶㌶㌰㌰㌲㌰㌰㌰㌶㌹㌰㌰㌶㘵㌰㌰㌶㌶㌰㌰㌶㘶㌰㌰㌷㌲㌰㌰㌶㘴㌰㌰㌶㌱㌰㌰㌷㌴㌰㌰㌶㌹㌰㌰㌶㘶㌰㌰㌶㘵㌰㌰㌲㌰㌰㌰㌷㌷㌰㌰㌶㘶㌰㌰㌷㌲㌰㌰㌶㘲㌰㌰㌰㌰㌳㌰㌳㌰㌲㌰㌳㌹㌲㘵㌳㌶㌳㌴㌲㌰㌳㌱㌳㌵㌳㌳㌲㘵㌳㌷㌳㌲㌲㌰㌳㌱㌳㌴㌲㘵㌳㌲㌳㌸㌲㌰㌵㌴㌶㘴㌰㘴㌰㘱㌳㌳㌲㌰㌵㌴㌷㌲㌰㘴㌰㘱㌳㘳㌳㌰㌳㌰㌳㌱㌶㌱㌳㌰㌳㌰㌳㌱㌳㌹㌳㘵㌲㌰㌵㌴㌶㘱㌰㘴㌰㘱㌴㌵㌵㌴㌰㘴㌰㘱㌵㌱㌰㘴㌰㘱㌷㌱㌰㘴㌰㘱㌴㌲㌵㌴㌰㘴㌰㘱㌳㌹㌲㘵㌳㌲㌳㌵㌲㌰㌳㌰㌲㘵㌳㌰㌳㌰㌲㌰㌳㌰㌲㘵㌳㌰㌳㌰㌲㌰㌳㌷㌲㘵㌳㌹〰〰㔵〰㜰〰㘴〰6㍥㈰㔴㙡つち㐵㔴つち㔱つち㜱つち㐲㔴つち㌸
	Fig. 2, The relation between information work and data orga nization in information system��

	Illustrations���0㑦0㐳��������䀌휓䔓삲윒㡕䔓İ㐳İ㑦耒휓䔓肳윒⡓䔓��������0㔲0㐹쀓휓ꁖ䔓µ윒롖䔓��������0㑦
	Untitled�洀Ā÷愀Ā÷琀Ā÷攀Ā˷爀Ā߷樀Ā÷愀Ā氀Ā˷椀Ā÷搀Ā߷攀Ā˷搀Ā÷洀Ā߷
	Figure 1, Generalized model of information work�㠀㤀㈀　㤀㠀㜀ⴀ　㔀开䌀氀愀猀猀攀猀尀吀礀瀀攀䰀椀戀尀笀　　㘀䐀㌀䘀㜀䈀ⴀ㐀㈀䌀㘀ⴀ㐀䔀䌀㔀ⴀ䄀㈀䌀䈀ⴀ䐀㌀㈀䈀㠀㜀　䌀䄀㐀㠀㔀紀尀⸀　尀　尀眀椀渀㌀㈀�紀尀吀礀瀀攀䰀椀戀�㌀㈀��n쁰쁳⁵聴ꁴꁱs쁱t䁴䁱恱䁳쁲rꁳ恷ꁲ쁵恵v聸䁸y䁵w職쁷䁷⁶ꂆ₇䂇�䂈悈ꂇ삋肈삉�ꂉ₊䂉肋�悋₍肊₌삊䂋悊삏肍�ₐₑ삐悏
	Figure 2. The structure of IFM�㜳〰㜴〰㜲〰㜵〰㘳〰㜴〰㜵〰㜲〰㘵〰㈰〰㙦〰㘶〰㈰〰㐹〰㐶〰㑤〰〰㌷㌲㌰㌰㌶㌱㌰㌰㌶㘳㌰㌰㌶㌹㌰㌰㌷㘱㌰㌰㌶㌵㌰㌰㌶㌴㌰㌰㌲㌰㌰㌰㌶㘴㌰㌰㌶㘶㌰㌰㌶㌴㌰㌰㌶㌵㌰㌰㌶㘳㌰㌰㌲㌰㌰㌰㌶㘶㌰㌰㌶㌶㌰㌰㌲㌰㌰㌰㌶㌹㌰㌰㌶㘵㌰㌰㌶㌶㌰㌰㌶㘶㌰㌰㌷㌲㌰㌰㌶㘴㌰㌰㌶㌱㌰㌰㌷㌴㌰㌰㌶㌹㌰㌰㌶㘶㌰㌰㌶㘵㌰㌰����
	Figure 3. The direction of information flows�㐹〰㐲〰㔵〰㔴〰㐵〰㐴〰㈰〰㐴〰㐱〰㔴〰㐱〰㈰〰㔲〰㐵〰㔳〰㑦〰㔵〰㔲〰㐳〰㐵〰㔳〰㈰〰㐹〰㑥〰㈰〰㑡〰㔵〰㔳〰㔴〰㉤〰㐹〰㑥〰㉤〰㔴〰㐹〰㑤〰㐵〰㈰〰㐹〰㑥〰㐶〰㑦〰㔲〰㑤〰㐱〰㔴〰㐹〰㑦〰㑥〰㈰〰㔳〰㔹〰㔳〰㔴〰㐵〰㑤〰㔳〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰〰㐳〰〰〰
	Figure 4. An extract of a company* s IFM (example)�㈀　㤀㠀㜀ⴀ　㔀开䌀氀愀猀猀攀猀尀圀漀眀㘀㐀㌀㈀一漀搀攀尀䤀渀琀攀爀昀愀挀攀尀笀䈀䈀㔀㘀㔀䄀㐀䐀ⴀ㘀㜀㐀㠀ⴀ㐀㌀䔀㜀ⴀ䄀㘀䐀　ⴀ䐀　䘀䈀㘀㤀䘀䘀䄀㤀㠀䐀紀尀倀爀漀砀礀匀琀甀戀䌀氀猀椀搀㌀㈀��剪갭剪"剪␢剪䠢剪氢剪逢剪됢剪�ﰢ剪‣剪䐣剪栣剪谣剪뀣剪퐣剪剪ᰤ剪䀤剪퀭剪搤剪蠤剪갤剪퀤剪剪ᠥ剪㰥剪急剪营剪ꠥ剪찥剪剪ᐦ剪㠦剪尦剪耦剪ꐦ剪젦剪剪ဧ剪堧剪簧剪ꀧ剪쐧剪剪న剪〨剪吨剪砨剪鰨剪쀨剪剪ࠩ剪Ⱙ剪倩剪琩剪頩剪방剪剪Ъ剪⠪剪䰪剪瀪剪鐪剪렪剪㐧剪�剪+剪剪䠫剪氫剪逫剪됫剪�ﰫ剪剪
	Fig. 1, Role of data models in the information work environ ment�㙥〰㜹〰㉡〰㈰〰㜳〰㈰〰㐹〰㐶〰㑤〰㈰〰㈸〰㘵〰㜸〰㘱〰㙤〰㜰〰㙣〰㘵〰㈹〰〰㌶㌵㈰㌱㌲㌴㉥㌰㌰㈰㌵㌰㌷㉥㌲㌸㈰㔴㙤つち㌳㈰㔴㜲つち㍣㌰㌰㌲㌶㌰㌰㌵㌲㌰㌰㌵㌱㌰㌰㌵㌷㌰㌰㌴㌸㌰㌰㌵㌱㌰㌰㌵㌷㌰㌰㌵㌶㍥㈰㔴㙡つち㐵㔴つち㔱つち㜱つち㐲㔴つち㌱㌰㉥㌸㌹㈰㌰㉥㌰㌰㈰㌰㉥㌰㌰㈰㌶㉥㌸㌰㈰㌱㌶㉥㌴㌳㈰㌴㌸㌷㉥㌱㌳㈰㔴㙤つち㌳㈰㔴㜲つち㍣㌰㌰㌲㘶㌰㌰㌰㘶㍥㈰㔴㙡つち㐵㔴つち㔱つち㜱つち㐲㔴つち㌹㉥㌲㌳㈰㌰㉥㌰㌰㈰㌰㉥㌰㌰㈰㌷㉥㌳㌷㈰㌳㌱㉥㌷㌲㈰㌴㌸㌶㉥㌷㌰㈰㔴㙤つち㌳㈰㔴㜲つち㍣㌰㌰㌳㌹㌰㌰㌵㘳㌰㌰㌴㘲㌰㌰㌴㌴㌰㌰㌵㌱㌰㌰㌴㌷㌰㌰㌵㌸㌰㌰㌰㘶㍥㈰㔴㙡つち㐵㔴つち㔱つち㜱つち㐲㔴つち㌹㉥㌶㌷㈰㌰㉥㌰㌰㈰㌰㉥㌰㌰㈰㌷㉥㌹㌴㈰㌷㌵㉥㌴㌳㈰㌴㌸㌶㉥㌲
	Fig. 2, The relation between information work and data orga nization in information system��

