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1 Introduction
1.1 Background and Motivation

Walking is a fundamental aspect of daily life. The wide availability of smart wearable de-vices and smartphones has made it easy and popular to monitor walking patterns, in-cluding the speeds and gait modes. As a result, people are more engaged in tracking theirphysical activities [9]. Over the years, advancements in activity detection technology havesignificantly improved both its affordability and accuracy [91]. Modern smartwatches andsensors enable real-time exercise tracking, which is widely utilized for analyzing profes-sional athletes’ training and technique. Such data-driven insights contribute to perfor-mance optimization and injury prevention [52, 86]. Gait phase detection plays a criticalrole in identifying step initiation and termination, providing essential information on stepcount and phase duration [24]. Additionally, knowing the shape of individual steps aidsin activity recognition and facilitates accurate classification of different gait modes, suchas walking, running, stair ascent, and descent [93]. Gait phase and pattern analysis havepractical applications beyond athletics. For instance, such data can be leveraged to de-velop assistive devices for workers handling heavy equipment, enhancing their safety andefficiency [22]. Additionally, walking patterns are unique to each individual, making themsuitable for biometric identification. Similar to recognizing a person by their gait, person-alized walking patterns can serve as a means of authentication [64].
One of the fast evolving motion and gait analysis technologies is motion capture. Suc-cess from research and wide usage in cinematography have improved the quality and us-ability of technology in medical applications as well [18], i.e. it is used to evaluate gait pa-rameters. Gait parameters changewith age of the person [55]. To understand the changes,musculoskeletal analysis is performed, which can be done with various techniques likemotion capture or inertial sensors [8]. Another significant topic is the study of electricalsignals traveling through the body, their interaction with specific muscles, and the signalpathways. This research can contribute to the development of an effective electrical mapof the human body [65].
Gait, an integral aspect of human life, often goes unnoticed by individuals who canwalk without any problem. However, even minor injuries can significantly diminish qual-ity of life by restricting mobility [95]. While many injuries can heal relatively quickly, age-related changes can lead to a decline in gait quality and overall well-being [36]. In partic-ular neurological diseases are a primary cause of reduced quality of daily living, affectingmillions of individualsworldwide [2]. These diseases range frommigraines to neurodegen-erative conditions such as Multiple Sclerosis (MS), Parkinson’s disease, stroke, epilepsy,and others. These diseases can affect gait patterns and change the locomotion to abnor-mal. Gait patterns can be used for the diagnosis of the diseases, identification of the stageof disability and can help to tailor individual treatment plan for the patient [23]. Changesin gait should be tracked during the treatment process for analysis of the treatment effi-cacy [36].
Gait impairments can be treated in different ways, depending on the type of the dis-ease and its severity. The first common treatment option is to use medication, which canhelp with some of the symptoms of the disease (i.e. anti-inflammatory drugs for arthritisor dopaminergic medications for Parkinson’s disease) [20]. The second common treat-ment option is physical therapy, which aims at strengthening the muscles, can help theperson to adapt to the impairment and regain as much gait stability and balance as pos-sible. This is achieved through specialized exercises, training to maintain balance, andeducation on fall prevention techniques. Another common treatment option involves the
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IMU (Motion Sensors: Accelerometer, 
Gyroscope and Magnetometer)

Feedback Actuator (e.g., 
Impedance-spectroscopy-based 
FES Pulse Stimulator with multiple 
electrodes)

A high-level view of “envisioned” wireless monitoring and 
automated actuation System

Pressure Sensor or IMU

Stand-alone Actuator 
(e.g., FES Pulse Stimulator with one electrode)

A high-level view of existing state-of-art functional electrical 
stimulation (FES) wired system with local control

(a) (b)

Figure 1: Neurodegenerative Disease Monitoring and Actuation for Assistive Living

use of assistive and orthopedic devices, ranging from customized braces or shoe insertsto canes, walkers, or crutches. Some individuals may also benefit from active assistive de-vices, such as exoskeletons [98] and Functional Electrical Stimulation (FES) devices [57].Gait assistive devices can be categorized as either active, such as devices utilizing FES[65] (Fig. 1), active exoskeletons [22], and audio or haptic feedback devices [88], or pas-sive, such as Ankle-Foot Orthoses (AFOs) [97], passive exoskeletons [7], walkers, and canes[48]. The current market trends favor exoskeletons and audio or haptic feedback devices;however, their efficacy and comfort remain inconsistent and often unreliable. These de-vices are typically tested for conditions like Parkinson’s disease in research settings, butthey may not effectively address other motion disorders.The above emphasizes the need for more comprehensive research in gait assistivetechnologies [56]. To summarize, each patient has specific target areas for improvement.The help from professionals combined with regular exercises remains one of the mosteffective approaches for adapting daily activities to new conditions.
1.2 Data and Methods in Gait Analysis
Depending on the research topic in gait analysis, various types of gait data are collectedand analyzed. One common topic is the study of the kinematics of a person’s gait, whichinvolves examining key parameters such as step length, stride duration, swing phase du-ration, stance phase duration, and related metrics [62]. Biomechanical data, on the otherhand, is used to understand how the body functions, by analyzing factors such as themovement of the center of mass, knee angles, ground reaction forces, andmuscular work[60].Data for gait analysis can be collected by various sensors and methods. Some of themost popular sensors are: inertial measurement units (IMUs), which contain accelerom-eter, gyroscope and magnetometer [83], pressure and force sensors [60], electromyogra-phy (EMG) [50], radio frequency sensors [31], cameras which are used with and withoutmarkers (by leveraging image processing) [100], etc.Often, the research involving data collection requires controlled environments. Typ-ically, it is laboratories which are equipped with various systems such as cameras, con-trolled lighting, pressure sensors, and treadmills [37]. The controlled setup ensures re-peatability during the data collection and facilitates the collection of high quality datasetsto derive meaningful insights. However, camera-based systems have limited usabilityoutside the laboratory environment, making them impractical for real-world applications[24].This limitation has contributed to the growing popularity of data collection devices

12



based on IMUs [24]. IMUs arewidely used in gait analysis due to theirminimal operationalrequirements compared to camera-based systems, resulting in significantly lower costs[31]. Additionally, IMUs are compact, commonly found in motion sensors, and integratedinto commercially available gait correction systems. These attributes make IMUs suitablefor use in real life environments. IMU data supports various research topics, including gaitphase analysis [24], gait mode analysis [59], and gait-based identification [64].Another widely used sensor type is pressure sensor, which can also be utilized in un-controlled environments. Pressure sensors are typically embedded in specialized insolesfor footwear but can also be deployed as force pads in laboratory settings [60, 86].Recently, radio frequency (RF) sensors have emerged as a novel addition to gait anal-ysis technologies. These sensors detect changes in radio fields, enabling the detectionof movements and even movement intentions [31]. This can provide meaningful inputto the gait analysis systems by using the modern connectivity possibilities of devices andwidespread use of radio technology in households.In addition to sensor advancements, the progress has been made in data analysis, inparticular, deep learning techniques have been increasingly applied in gait analysis. Whencombined with motion capture or camera systems, these techniques can extract reliableand precise kinematic data without requiring bodymarkers [100]. Using video data along-side pose estimation and Q-learning methods, researchers can extract movement infor-mation and accurately estimate poses [100].Gait data is complex and can be used for many applications, as shown above. Sophisti-cated algorithms andmethods are used in research to find the desired information. Someof the most popular methods used in gait analysis, like in this thesis are: support vectormachines (SVM) (Publication II), convolutional neural networks (CNN), recurrent neuralnetworks (RNN) (Publication III) and heuristic algorithms (Publication V).
1.3 Challenges in Gait Analysis
Gait analysis presents several challenges, primarily driven by the need for technologicaladvancements and a deeper understanding of human gait. This section reviews some ofthe key challenges in the field:

1. The first challenge is data acquisition and feature extraction. Every research ef-fort in gait analysis relies on data collection, with specific topics requiring tailoreddatasets to support their objectives. Data labeling and feature extraction still of-ten requires manual labor. To speed up the data processing, various tools havebeen developed to facilitate the extraction of gait features [106, 6], as discussed inthe previous section, wearable and non-wearable solutions, including vision-based,environment-based, and Radio Frequency (RF)-based technologies, have been pro-posed to address this need. However, further advancements are needed in au-tomatic data labeling techniques for faster deployment of Machine-Learning (ML)methods
2. The second challenge is marker-less analysis. Developing a gait analysis systemcapable of extracting reliable and precise kinematic data in a standard and unob-trusive manner remains an open problem. Most widely used gait analysis systemstoday rely on markers, imposing constraints such as the need for controlled en-vironments and extended processing durations, which limit their practicality andusability [100].
3. The third challenge is achieving high accuracy and robustness. Many areas withingait analysis still face difficulties in meeting these requirements. For example, fall
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detection and fall prevention systems must improve their accuracy and robustnessto noise in the data, to detect falls earlier [40] or prevent them in real-time, asdiscussed in Publication I.
4. The fourth challenge is connected to the complexity of human gait. From the per-spective of analysis, human gait is among one of the most complex phenomena[21]. Gait is the result of combined effort of the brain, nerves, and muscles. Any de-viation from healthy walking ability can significantly reduce the quality of life. Theanalysis of such complex signals as gait patterns is a challenging task [46], due tohigh variability in gait signals and changes of gait modes and speeds.
5. The final reviewed challenge is technological advancement. With technological ad-vancement, human gait analysis can now be done objectively and empirically [43].However, this also brings challenges in terms of handling and analyzing the largeamount of collected data [74].

1.4 Problem statement and Formulation of Research Questions
One of the important topics in gait analysis is fall detection. Falls can be caused by variousgait disorders [92]. Some of the primary reasons of gait disorders are neurodegenerativediseases. Unfortunately, many neurologic conditions cannot be fully treated, resulting invarying degrees of permanent disability. Individuals affected by these conditions are par-ticularly prone to falls and subsequent injuries [58, 27]. Fall detection can help to retrievethe information about how a fall has happened, how severe it is and what help should beprovided [40]. Various methods for detecting falls have been investigated, utilizing mo-tion sensors, including those found in smartphones and wearable devices. Understandingthe manner in which a fall occurs can provide insight into its severity and potential conse-quences.The optimal approach in addressing gait disturbances is to develop methods that pre-vent falls entirely. For example, in conditions like MS, where neuronal and muscular con-nection impairments lead to muscle-specific issues, training and rehabilitation optionsremain limited [19]. Gait disturbances are a major concern, and various solutions aimto improve gait quality. Common approaches include rigidly fixing the leg in the correctposition with devices like AFOs [12] or stimulating muscles using FES [65].However, despite their potential, these methods face several challenges. Fixation de-vices, such as AFOs, may reducemuscle activity and lead tomuscle degradation over time[97]. FES, on the other hand, requires precise and effective stimulation to achieve positiveoutcomes [25]. Current assistive devices often rely on phase detection methods to iden-tify the start and end of a step, which serve as the trigger points for FES activation. Suchdevices are predominantly used during rehabilitation processes [67]. On the other hand,constant electrical stimulation may lead to overstimulation of muscles and skin irritation,with prolonged adaptation periods, which significantly limit their usability and patientcompliance [63]. Addressing these issues is crucial for advancing the development andadoption of effective gait assistive technologies.In the view of the above, current state-of-the-art methods have several gaps. Theseare combined to the problem statement:

1. PS1 Assistive devices used after rehabilitation to maintain gait quality use uncom-fortable predetermined periodic FES, which lack gait deviation detection and per-sonalization, leading to preliminary fatigue.
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2. PS2 The state-of-the-art lack methods and algorithms for detection of in-stepanomalies in real-time.
3. PS3 Available datasets do not combine normal and abnormal steps in one gaitrecording from one person and thus make it challenging to develop integratedanomaly detection algorithms.
Approaching the above problems, lead to the following research questions:
1. RQ1 How to develop a methodology for dataset collection that would be suitablefor the development of the real-time in-step anomaly detection algorithms? (PS3)
2. RQ2 How to adapt benchmark methods and develop new algorithms which are ca-pable of in-step abnormality detection in real-time? (PS2)
3. RQ3 How to compare the benchmark methods and the proposed real-time in-stepanomaly detection algorithms performance? (PS2)
4. RQ4 What are the key elements of personalized and comfortable gait assistivedevice with efficient FES? (PS1, PS2)

1.5 Contributions
This thesis presents the following contributions:

1. A new dataset collected on volunteers, containing normal and abnormal steps inone gait recording, which can be used for different classification purposes, includingin-step anomaly detection (Publications I and III).
2. New benchmark methods and an evaluation framework to estimate the perfor-mance of real-time in-step anomaly detection algorithms (Publication II, III, IV, V

and VI).
3. The new in-step anomaly detection methods for real-time in-step anomaly detec-tion. These methods are 1) real-time tslearn support vector machine anomalydetection (RTtsSVM-AD), 2) one class support vector machine (OCSVM), 3) onedimensional-convolutonal neural network (1D-CNN), 4)long short-term memory(LSTM) and 5) matrix profile (MP) algorithms (Publication II, III, IV and V).
4. A new advanced heuristic method that, overcomes the limitations of the state-of-the-art methods for real-time in-step anomaly detection, which is called signalshape tracking anomaly detection (SST-AD) (Publication V).
5. Evaluation of the resistance to the changes in gait speed for 1D-CNN and SST-AD algorithms. Preliminary efforts for the development of the prototype devicehave been taken, which are considering the real-time in-step anomaly detection(Publication VI and unpublished results, see Appendix 6).

1.6 Thesis organization
Thesis is organized as follows: first the state-of-the-art solutions in gait analysis aredescribed in Chapter 2, which is followed by a summary of the publications in Chapter 3.Finally, the thesis is concluded in Chapter 4. Appendices 1-5 are publications I to V. Ap-pendix 6 presents with preliminary efforts towards the gait assistive device and resistanceof the algorithms to the changes in gait speed.
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2 State-of-the-art
2.1 Research on Gait Analysis
Some of the most widely researched topics in gait analysis are gait phases detection, gaitmodes detection, electrical and musculoskeletal analysis of the body, and gait assistivedevices. Gait phase detection plays a crucial role in identifying the start and end of a step,as well as key events within the step cycle [49]. Similarly, gait mode detection providesinsights into walking activities and transitions between different terrains, such as shiftingfrom overground walking to stair ascent [59].

Each research topic in gait analysis necessitates data collection, which can be achievedusing various methods, including camera systems, IMUs, and force plates. Additionally,electrical and musculoskeletal analyses are used to study how muscle stimulation is pro-cessed by the body. These analyses are instrumental in tracking muscle activities, iden-tifying stimulation points, and determining appropriate stimulation methods, as well asunderstanding joint movements.
Gait assistive devices serve multiple purposes, including treatment, maintaininggait quality, and providing assistance during physically demanding tasks. Collected gaitdatasets not only support the optimization of existing algorithms but also offer opportu-nities to derive new insights, driving advancements in the field of gait analysis.
One of the primary beneficiaries of advancements in gait analysis are medical profes-sionals, physiotherapists, and their patients. State-of-the-art tools enable more efficientanalysis of patients’ gait and provide valuable insights intomusculoskeletal properties andother critical parameters [108]. Traditionally, gait analysis for a single patient can take sev-eral hours or even days. To evaluate gait parameters such as joint angles and ground reac-tion forces, medical professionals use a wide range of tools, including movement analysissystems, posturography, various types of dynamometers, and kinesiologic electromyog-raphy [34].
Gait analysis subtopics are instrumental in detecting gait phases, classifying gait pat-terns, identifying anomalies, and developing tailored treatment plans or advanced assis-tive devices. Currently, most state-of-the-art methods rely on laboratory environmentsfor data collection. Collected data often requires extensive preprocessing to extract fea-tures and label data before insights can be derived. However, there is a pressing need tocondense this process into easy-to-use tools that do not yet exist, although progress isbeing made in this direction.
Such tools would significantly benefit medical professionals by enabling faster dataacquisition, automating gait feature analysis, and aiding in the classification of disabilitylevels and types. Emerging platforms which help to evaluate gait quality and symmetry,such as those mentioned in [28], aim to help personalize rehabilitation programs basedon individual needs.
In parallel, physical assistive devices are increasingly being used to support physiother-apists’ work. Devices such as exoskeletons [89] and FES systems [67] are actively employedin rehabilitation settings. These devices assist in providing physical support and trainingmuscles involved in walking, contributing to improved outcomes for patients.

2.1.1 Data Collection Techniques
Depending on the gait analysis topic, different data collection techniques should be used.In case of tracking the movement of the body, vision based systems (Fig. 2) as well asIMUs (Fig. 3) are the most widely used tools. Vision based systems use cameras to collectimages. The obtained images can be used to extract gait parameters and to track move-
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ment of the persons. Vision based systems are used for detection of freezing of gait [41],identification [42, 26], for fall detection [77, 75], etc. The main limitation of vision basedsystems is that they commonly require a controlled environment. IMUs on the other handcan be used in free living environment. IMUs are used for fall detection [17], for gait phasesand modes detection [109], activity recognition [15], etc. Downsides of the IMUs are thatthey are sensitive to calibration errors and can experience gyroscope drift. Other typesof sensors like pressure sensors and EMG sensors are often used in combination with vi-sion based sensors or IMUs. Pressure sensors are used to detect gait events like step startand end events [60], for fall detection [1], etc. The limitations of the pressure sensors arethat they typically require significant amount of power to operate, are sensitive to tem-perature changes, and require specialized or modified footwear for gait data collection.EMG sensors are used to track muscle activity, to extract gait features [43], to recognizegait phases [50], etc. Limitations of the EMG sensors is noisy signal, requiring extensivefiltration techniques to extract useful information.

Figure 2: Modern gait analysis laboratory. Cameras are located for 3-dimensional capture of kine-
matic and temporal-spatial data. Also uses force plates in walkways.

One of the emerging topics in data collection is using radio frequency sensors, whichare implemented for fall detection [75]. However, they are in the early phases of devel-opment and are sensitive to the signal interference and the detection is limited to oneperson.Finally, depending on the goal of the study, different sensors or combination of sensorscan be used.
2.1.2 Electrical and Musculoskeletal Analysis
Analyzing the electrical paths and musculoskeletal properties can provide significant in-sights about the health of a person. The full body could be analyzed to see how a person iswalking and what is in target range and what should be treated. It is crucial to select cor-
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Figure 3: Some of the most popular placement of IMU

rect placement of the surface EMG (sEMG) sensors and the electrodes for FES to generatethe desiredmuscle contraction [54]. This would provide correction in desiredmanner andprovide necessary assistance. sEMG can be used to study the difference in the electricalsignals between healthy persons and persons with neurological diseases [104] to analyzehow the muscles are reacting after the electrical stimulation. This helps to determine theaffected areas of the body and for instance to adjust the FES parameters to accommodatethe patients needs.
2.1.3 Gait Phases Detection
Phase detection is a central topic in gait analysis, which holds significance across numer-ous applications. This ranges from identifying the initiation of the walking and transitionfrom the stance phase to the swing phase of a step, to the development of assistive de-vices aimed at treating patients and improving their gait quality.

Gait phases can be gathered frommotion data, with IMUs being one of the most pop-ular sensors for this purpose. Variousmethods, i.e. SVM are used for gait phase detection.Suchmethods can achieve a classification accuracy of over 90%, and they can successfullyidentify the heel-strike (HS), toe-off (TO), and stance or swing phases. Such informationcan be applied to determine various forms of locomotion, including running and hopping[107].
Existing real-time algorithms are used for the detection of initial contact and terminalcontact gait events, achieving a sensitivity and precision of 100% using a heuristic algo-rithm in conjunction with IMU and pressure insoles [60]. Furthermore, real-time algo-rithms are utilized for the detection of gait events like heel-strike and toe-off across variousdemographics, including healthy young and elderly individuals, stroke patients, and those
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with Parkinson’s disease [99]. Research delves into the real-time detection of gait phasesduring free-living locomotion, utilizing SVM, reduced support vectormachine (RSVM), andfinite state machine (FSM) algorithms to identify heel-off, toe-off, and heel-strike events[103].
In the context of children with cerebral palsy, gait phase detection in real-time is ex-plored in [49]. Five gait phases, including HS, toe-strike (TS), heel-off (HO), TO, and swingmidpoint, are identified using SVM in real-time [109]. Such detection is required to effec-tively control the assistive devices in the adaptive and tailored manner. This involves theutilization of heuristic algorithms and foot-mounted IMUs for the detection of gait eventssuch as toe-off and heel strike [71].

2.1.4 Gait Modes Detection
Regular everyday walking includes overground walking on a flat terrain and changes in el-evation, which might require to use the stairs, etc. Gait in such situation is different fromregular overground walking, and thus gait phases can deviate in comparison to the over-ground walking. In context of assistive devices, i.e. exoskeletons, it is crucial to know theintended movement for correct assistance. Gait speed can affect the length of the step,and gait mode would affect the form and amount of required assistance. Even walking onthe soft or hard surfaces differ and should be taken into account.

Different gait modes, such as overground walking, stair ascend or descend, walking ontreadmill and stationary, can be detected using various methods. Real-time algorithms,such as convolutional long short-term memory neural network (CNN-LSTM) can classifysuchmodes using time-series data from IMU (Fig. 4) [59]. Other approach is to use heuris-tic algorithms, which use certain gait characteristics visible on IMU signal [90]. Exoskele-tons can achieve better results in mixed gait and reduce delay using real-time gait trajec-tory prediction by multi-head-CNN algorithm [105].

Figure 4: Examples of gait modes like walking on level ground and stair ascend and decent.

2.1.5 Gait Assistive Devices
The most common devices to assist gait are passive devices like canes and crutches. Suchdevices can help people who are experiencing mild balance disorders [48]. Other typeof passive assistive devices is prosthetic devices, which help individuals with limb lossto restore mobility [68]. Exoskeletons are gaining attention and popularity. They can beused for assistance i.e. while handling heavy loads, enhancing stability and reducing loadon joints while walking [22, 3].

There are a number of devices, which are using audio, visual or haptic feedback tocorrect movement patterns. Real-time haptic biofeedback devices are implemented tocorrect toe-in or toe-out during walking [88].
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2.1.6 Available Datasets for Gait Analysis
It is observed in state-of-the-art datasets that they often contain data collected from in-dividuals with normal gait patterns. These datasets are typically used for research topicssuch as gait phase detection, gait mode classification, identification, and similar studies.Examples of such datasets can be found in Table 1. These datasets were collected fromhealthy participants of varying ages, using a range of sensors and methods. For instance,in [11], data was collected using 12 cameras and force plates, while in [37], data was col-lected solely with force plates. In contrast, [53] utilized IMUs and sEMG for data collection.In these studies, the starting gait speedwas either self-selected by the participants [37]or predetermined by the experimenters to target a range of normal, slow, and fast walkingspeeds [11], with some studies incorporating walking on a treadmill at a fixed speed [53].

Table 1: Available datasets with normal walking data from healthy participants

Authors Number
of Partic-
ipants

Data Collection
System

Types of
Walking

Number of
Recordings

Bauer C. et al.[11] 100 3D-high-speedcamera systemwith 12 camerasand two forceplates

Slow and fastwalking speed 1000

Horst F. et al.[37] 350 Force plates forground reactionforce and centerof pressure

Self-selectedwalking speed 8819

Loose H. et al.[53] 108 IMUs and sEMG Treadmill,Slow, normal,and fast walk-ing speed

3479

This subsection described the most popular gait analysis topics and focused on thekey elements, i.e., how the gait data is collected, which are the most popular methods forthis; how the musculoskeletal analysis is performed and what it can give to the medicalprofessionals; how gait phases are detected and how it is used in assistive devices; howgait modes are detected and how they would be beneficial for exoskeletons as well as forassistive devices; and concluded this section with available gait datasets and what datathey contain.
2.2 Anomaly Detection in Human Gait
Neurodegenerative diseases are affecting person’s gait quality, reducing possible move-ment in limbs, as well as limiting the muscles’ responsiveness. This leads to reduced mo-bility and can change the gait pattern to abnormal, which should be treated. During therehabilitation, the severity of gait disability is determined to tailor the rehabilitationmeth-ods for the patient. One of the effective treatment and post-treatment methods is to useactive gait assistive devices [38]. Modern active gait assistive devices use FES and rely ongait phases detection. The other option for gait treatment and post-treatment is to usepassive assistive devices, like AFO [12], which can fix the leg in the desired position, andthus improving gait quality.
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Figure 5: Example of ensemble averaged characteristic step for each gait type, compared to ensem-
ble averaged normal one. The blue lines correspond to a normal step and the red lines correspond
to an abnormal step. On the X-axis there is time in seconds while Y-axis is normalized by maximum
normal step gyroscope vector magnitude.

Abnormality detection in state-of-the-art is focusing on classification between normalgait patterns and abnormal gait patterns in offline classification process. This is used tounderstand the features of the patient’s gait and to determine the severity of the disease.
2.2.1 Abnormal Gait Types
Neurodegenerative diseases can affect gait quality and change its locomotion cycle toabnormal [47]. The most frequent gait abnormalities, which can be treated using FES, areshown in Fig. 5 and are described in the list below.

Ataxic gait – characterized by uncoordinated body movements and impaired balance,resulting from disruptions in the brain-muscle connection [13].
Diplegic gait – a distinct subtype of motion disorders commonly associated with cere-bral palsy [84].
Hemiplegic gait – involves restricted natural swing at the hip and knee, accompaniedby leg circumduction. The pelvis is often elevated on the affected side to enableadequate circumduction [94, 25].
Hyperkinetic gait – associatedwith basal ganglia disorders such as Sydenham’s chorea,Huntington’s disease, and other conditions like chorea, athetosis, or dystonia.It is characterized by irregular, jerky, involuntary movements in all extremities,which may become more pronounced during walking [58, 87, 10].
Parkinsonian gait – a late-stage symptom of Parkinson’s disease, often regarded asmore detrimental to quality of life than other Parkinsonian symptoms. It ismarked by small, shuffling steps [70].
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Slap gait – a gait abnormality involving the heel, identifiable by the distinctive soundproduced during walking. It occurs due to weakness in the foot and ankle dor-siflexors, causing the foot to slap against the floor with each step [44].
Steppage gait – commonly observed in patients with foot drop, caused by weakeneddorsiflexion of the foot. This gait is characterized by exaggerated lifting of theleg to prevent the foot from dragging on the floor. Foot drop assistive devicesare frequently used to address this condition [58, 102].
Trendelenburg (lurch) gait – caused by unilateral weakness of the hip abductors, pri-marily the gluteal muscles. This weakness may result from superior glutealnerve damage or a lesion in the fifth lumbar spine, making it difficult to sup-port body weight on the affected side [69, 73].

2.2.2 Age and Health Related Gait Changes
As individuals age, their gait parameters change over time, which can lead to a reducedquality of life. Common changes in gait include decreased limb mobility, shorter steplengths, and slower walking speeds. Gait features and events can be extracted in a phys-iotherapist’s laboratory. To accelerate the gait evaluation process, a CNN-LSTM algorithmcan be used to extract gait features and events from IMU data in real-time [5]. This ap-proach can provide insights into how gait parameters evolve over time and why walkingbecomes more difficult, as well as how limb movements may become less healthy withage.

Tracking changes in gait is essential for addressing them with interventions such asspecialized footwear and exercises, which can reduce joint stress and prevent potentialminor injuries. Additionally, environment-dependent differences in gait can bemonitored,allowing for context-aware decisions that enhance gait assistance [82].
Neurological disorders have a significant impact on gait quality, often transforming thenormal locomotion cycle into an abnormal one. For instance, diseases like Parkinson’s Dis-ease (PD) can trigger sudden gait changes, such as freezing episodes [108], while others,like MS, may involve prolonged relapse episodes with gradual progression and varying in-dividual impacts [85]. Identifying gait deviations early and understanding their causes canfacilitate rapid decision-making and initiate treatment while the disease is still in its earlystages. This can expedite disease screening and alleviate the workload on physiothera-pists. For example, by recording a short walk using an IMU [4], it is possible to classify aperson’s walking pattern and detect potential risks or the presence of disease [66]. Theserecordings can then be used to classify whether a person exhibits healthy or abnormal gaitpatterns in real-time using CNNs [76]. Tracking disease progression over time is crucial foradjusting treatment strategies. A gait normalcy index, derived from gait parameters ofimpaired gait, can be used for this purpose [101].
Such an approach can also be applied to estimate the severity of Parkinson’s diseaseand identify themost suitable machine learning (ML) algorithm for this task by comparingthe differentiating capabilities of various ML algorithms [108, 14].

2.2.3 Fall Detection
Elderly people have higher chances of falling due to limitedmovement in joints andmuscleweakness. Such falls have higher chances of severe injuries as well, due to brittle bones.This means that in case of fall detection it is crucial to get timely help and hospitalization.Individuals with gait impairments caused by neurological conditions, particularly neuro-muscular diseases, face a significant fall risk due to the high variability and deviations from
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typical gait patterns [1] [46]. Simple mechanical devices such as ankle-foot orthoses canreduce the risk of falling [97]. However, it is needed to develop fall detection techniques.To do so, fall detection algorithms require fall data to be collected. Most often, simulatedfalls data is collected by healthy individuals. One of themost popular approaches is to useIMU as the data collection device, which is used to detect activities of daily life, fall eventsand their directions [77, 17]. Information about daily activities can help to understandwhat can be leading to the falls.
2.2.4 Abnormal Gait Correction Assistive Devices
During the rehabilitation process and post rehabilitation, physiotherapists use gait assis-tive devices for patients treatment. Gait assistive devices are either passive or activedevices. Most of the time, persons needing assistive device rely on passive devices likecrotches and passive knee orthoses. Some devices like ankle foot orthoses can help tocorrect the foot drop, which can happen after a stroke, by fixing the ankle in the desiredposition. Neurological diseases are significantly affecting the quality of life, and even sim-ple devices can improve quality of life significantly. However, to achieve higher comfortlevels more sophisticated approaches are desired. For example, most active devices aredesigned to assist individuals during walking, with exoskeletons being some of the mostpopular. These devices rely on accurate phase detection to reduce stress on joints. Cor-rect phase detection is essential to understand the correlation between actual movementand how sensors perceive it.

Research has shown that FES is an effective gait assistive technique, supporting walk-ing, fall prevention [1, 51], and overall improvement in gait quality [38].
In recent years, wearable motion sensors equipped with multidimensional IMUs havebeen increasingly integrated into gait assistive devices [57, 63, 67]. These wearable de-vices can significantly aid patientswith neurological diseases, assisting them in performingcommon daily activities [72].

2.2.5 Available Datasets for Anomaly or Deviation Detection
To estimate the classification performance of different methods, as was shown in Section2.2.2, in detection of gait deviations it is necessary to collect data. In the early stages of theresearch it is common to collect simulated gait deviation data [61, 33], as seen in Table 2.This helps to develop methods and algorithms to detect gait deviations in advance beforetrials with patients, minimizing their stress.

In [61], each gait recording represents a single gait deviation. One session involvednormal walking, while others involved adding insoles of varying thickness under eitherthe left or right foot. Another session included adding weight to one leg at a time. In [33],the first session recorded normal walking, and the second session involved using knee andankle braces to simulate limited joint flexibility.
On the other hand, it is beneficial to collect data from real patients with neurolog-ical disorders to assess classification and feature extraction performance. In [96], datawas recorded for walking, standing, turning, and stopping from both healthy subjects andsubjects with neurological or orthopedic disorders. This data can be utilized for gait modedetection and classification. In [30], datawas collected fromhealthy young and old adults,as well as older adults with Parkinson’s disease. In the second session, data was collectedfrom patients in age range of 36–70 yr with Parkinson’s disease, Huntington’s disease, andamyotrophic lateral sclerosis. Such datasets are valuable for classification purposes.
Various data collection systems were used starting from Kinect2 camera system withtime of flight estimation and two mirrors while walking on the treadmill [61], moving to
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the 6 infrared cameras motion analysis systems [33] and ending with familiar IMUs [96]and force-sensitive resistors [30].
Table 2: Available datasets for anomaly or deviation detection

Authors Number
of Partici-
pants

Data Collection
System

Number of
Recordings

Disability
Type

Nguyen T.N. et. al.[61]
9 Camera systemwith time of flightestimation andtwo mirrors

81 Insole ofdifferentthicknessor attachedweight to onelegShorter K.A., HelwigN.E. et al.[33]

10 6 camera infraredmotion analysissystem
1800 Unbraced,knee braced,ankle braced

Truong C. etal. [96] 230 Two IMUs 1020 Healthy, neu-rological, andorthopedicdisordersGoldberger,A., et al.[30]
64 Force-sensitive re-sistors 64 Parkinson,Huntingtondiseases,amyotrophiclateral scle-rosis, andhealthy con-trols

2.3 Summary of the State of the art
As could be seen in the state of the art, themost popular data collection devices are IMUs.The benefits of IMUs are possibility to use them outside of the controlled environment,small size, to fit into portable device, high accuracy and high relative comfort.A review of the state of the art revealed that available datasets encompass a widerange of gait recordings. It is common for these datasets to include a control groupof healthy individuals performing normal walking, which can then be compared to gaitrecordings from individuals with disabilities. Other datasets consist of recordings of nor-mal walking as well as simulated gait abnormalities. Gait abnormalities can be simulatedby mimicking abnormal movements or by adding insoles under one foot, adding weight,or using braces to restrict leg movement. Some datasets focus exclusively on recordingsof healthy individuals walking normally.

In terms of the gait assistive devices, the most popular devices are exoskeletons anddevices with FES. Benefits of the FES gait correction devices are small size, ease of useand ability to train muscles. However, existing gait correction devices use uncomfortableperiodic stimulation, irrespective of any gait deviation detection. To enhance the effec-
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tiveness of FES after rehabilitation, an intermittent stimulation approach is preferred tominimize fatigue. Electrical stimulation at the correct time can be controlled fast andreliably. However, real-time anomaly detection during gait, especially in the swing phase,remains unexplored. Devices capable of detecting gait deviations in real-time are idealfor post-treatment support, enabling softer, more patient-friendly interventions.
Long-term analysis of gait deviations and the effective real-time control of FES devicesrely on automated recognition of gait anomalies. In older adults, the average swing phaseof a step lasts between 300 and 400 ms [35]. During this brief window, the incomingsignal must be processed, an appropriate decision made, and the corrective action exe-cuted. Since full muscle contraction via electrical stimulation requires 100 to 200 ms ofcontinuous stimulation [16], gait deviations must be identified within 100 ms. In caseswhere the swing phase is shorter than average, detection must occur within 50 ms tomeet the timing constraints.
According to [83], SVM-based methods are the most commonly used in automatedgait analysis, followed by CNNs and heuristic algorithms. SVM offers notable advantages,including the ability to perform well with relatively small datasets (ranging from tensto hundreds of samples) and high computational efficiency [39, 32]. In contrast, CNNstypically require larger datasets—often with thousands of samples—to achieve strongclassification performance [76, 59]. While the above works have addressed gait phasedetection, gait type classification and fall detection problems, the focus of this thesis ison gait abnormality detection in real-time during the ongoing step. However, limitedresearch exists on evaluating the effectiveness of machine learning methods, particularlySVM, in detecting real-time gait deviations associated with neurodegenerative diseases.
Available datasets can not be used for in-step anomaly detection as they are, due tolack of combination of normal and abnormal steps in them. Thus, to develop real-timein-step anomaly detection algorithms additional dataset should be collected in whichthere are combinations of normal walking patterns with abnormal walking patterns inone gait recording.
In the next chapter, the summary of Publications I- VI is presented, which answers toresearch questions, stated in chapter 1.4.
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3 Summary of the Publications
This section provides an overview of the publications and their contributions to the re-search questions outlined in Section 1.4.The primary goal of this thesis is to developmethods for real-time in-step gait anomalydetection. Human gait is inherently complex, requiring advanced methods for effectiveanalysis. Real-time analysis further intensifies the challenges due to the constraints ofprocessing speed and the need for high-quality anomaly detection. These challenges areaddressed in this thesis and are reported in different publications. Below, we summarizethe central contributions of different publications, additional research which is performedto test the resistance of the algorithms to the changes in gait speed (time-stretching) andpreliminary efforts on developing the device, details of this are provided as an appendixto this thesis.

Publication I. The literature review in the preceding chapter identified that whilegait anomaly detection is a well-researched area, the specific problem of in-step anomalydetection remains underexplored. A significant gap exists in publicly available datasetsthat combine normal and abnormal walking patterns for step-wise classification. To ad-dress RQ1 (data availability), this study initiated the collection of a novel dataset.Data collection, as detailed in Publication I, adhered to a clinical trial protocol ap-proved by the Estonian National Institute for Health Development (Permission No. 818).Using guidance from a professional physiotherapist, abnormal gait patterns (see Section2.2.1) were simulated based on real patient video recordings. Two IMU sensors weretested, placed on the forefoot and below the knee, with forefoot placement selected forfurther analysis. Steps were labeled as normal or abnormal using a semi-automated toolvalidated with video recordings.The collected dataset serves as a proof-of-concept for step-wise classification us-ing classical machine learning algorithms, such as time-series Support Vector Machines(tsSVM). Results demonstrated high F1 scores (over 90%), validating the dataset’s utilityand its potential for real-time algorithm development.
Publication II. Building on the promising results from Publication I, this study ad-dressed RQ2 and partially RQ3 by developing the RTtsSVM-AD algorithm for real-timein-step anomaly detection. The dataset from Publication I was used for proof-of-conceptvalidation. The algorithm uses tsSVM as its classification "core", with optimized hyperpa-rameters and classification step to enable real-time operation.Results show that the RTtsSVM-AD algorithm could classify gait deviations during theongoing step, partially answering RQ2. However, its performance in terms of expensivecomputations and anomaly detection quality (average F1 scores of more than 50%) re-vealed limitations. The study concluded that a more tailored approach and advancedalgorithms are required to achieve optimal real-time detection, providing valuable in-sights for answering RQ3.
Publication III. Publication III aimed to enhance the real-time performance and classi-fication quality of the RTtsSVM-AD algorithm by introducing neural network-based meth-ods, specifically 1D-CNN and LSTM. To validate these algorithms, additional data from 20subjects were collected, expanding the dataset to 155 recordings, thereby extending theanswer to RQ1.The 1D-CNN and LSTM algorithms use a sliding-window approach, independent of gaitphases, allowing for rapid and lightweight real-time anomaly detection. Results show that

26



the 1D-CNN algorithm achieved an average F1 score of 88% and consistent earliness (<0.5seconds), outperforming the LSTM algorithm, which had a moderate F1 score of 70%.While these methods advance real-time detection (RQ2) and demonstrate potential forembedded applications (RQ4), they lack phase awareness, leading to occasional multipledetections within a single step. Further refinement is necessary to address this limitation.
Publication V. This study introduced the SST-AD algorithm, a heuristic method tai-lored for real-time in-step anomaly detection. The SST-AD algorithm prioritized simplicityand computational efficiency, addressing the performance limitations of the RTtsSVM-ADand LSTM algorithms. A unified evaluation framework was developed to compare algo-rithms under identical conditions, enabling fair assessment and answering RQ3.The SST-AD algorithm achieves high average F1 scores (80.7%) and earliness (<0.5seconds), comparable to 1D-CNN, while outperforming neural network-based approachesin computational efficiency. These results solidify its suitability for real-time applications,contributing to the answers for RQ2 and RQ3.
Patent application VI and Publication IV. As a co-author, I contributed to PublicationIV by consulting on the dataset. Evaluation of the MP algorithm for real-time anomalydetection, partly addresses the RQ2. The algorithm achieves average F1 scores of 75%and earliness of 1 second on the dataset from Publications I and II.The patent application VI leverages selected results from Publications II and V. Itoutlined the working principles of the RTtsSVM-AD and SST-AD algorithms and extendsthe potential use-cases of the algorithms. It forms a basis for in-step anomaly detectionmethods and similar signal processing technologies. It also outlines the implementationplan on the single board computer, i.e. Raspberry Pi 2W which extends the answer to the

RQ4.
Appendix 6. Unpublished results indicate that the 1D-CNN and SST-AD algorithmsmaintain robust detection under gait speed variations, with F1 scores decreasing to 83%and 71%, respectively. This resilience addresses practical challenges in real-world applica-tions and contributes to RQ4.Preliminary efforts towards personalized gait-assistive devices explore requirementssuch as optimal electrode placement, integration of sensors with wearable devices, andhardware selection. These findings provide a foundation for developing efficient FES sys-tems, further answering RQ4 by bridging research outcomes with practical deployment.
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4 Conclusion
The research in this PhD thesis revolves around the formulation and investigation of thepersonalized, comfortable gait assistive devices in terms of hardware and the real-timein-step gait anomaly detection algorithms. This chapter concludes the thesis by takinginto account the novel methodologies to advance the real-time anomaly detection in gaitanalysis. The key findings and contributions in the field of the real-time gait deviationdetection are presented through five research papers and a patent application presentedwithin the scope of this thesis. The PhD thesis has contributed to the research projectPRG424 by data collection, development of newmethods, introduction of earlinessmetricand achievement of results. In addition to the above main project, the work presented inthis PhD thesis also provided additional knowledge to the EXCITE project (topics of Sensingand Sensor Signal Processing in DistributedData Acquisition Systems andHumanBiosignalAnalysis for Novel Healthcare Technologies).

Firstly, this chapter presents an overview of the conducted research. Secondly, it ad-dresses the research questions, providing answers and highlighting achievements gainedthrough the research. Lastly, it outlines the future perspectives and potential avenues forfurther advancement in the field of the real-time in-step gait anomaly detection algo-rithms and gait assistive devices. Overall, this chapter consolidates the contributionsmade towards the real-time in-step gait anomaly detection algorithms and personalized,comfortable gait assistive devices.
4.1 Summary
This section provides an overview of this PhD thesis focused on the development of thereal-time in-step anomaly detection algorithms and personalized, comfortable gait assis-tive devices. The thesis explores the algorithms used in gait analysis, adapts the mostpopular ML algorithms used in gait analysis as well as develops new algorithms for gaitanomaly detection. The research consists of five papers and a patent application, thatevaluate and collect gait data, develop the algorithms and benchmark framework for real-time gait anomaly detection algorithms evaluation.

The first research paper presents the data collection procedure and evaluates the col-lected dataset. An evaluation is performed by classifying the data with the time-seriesSVM algorithm. The second research paper consists of the real-time adaptation of thetsSVM algorithm in a form of the RTtsSVM-AD algorithm for real-time anomaly detection,which is proving the concept, that anomaly can be detected during the ongoing step. Thethird paper provides additional data collection and research on the second most popu-lar algorithms in the gait analysis, the neural networks, and presents the results for theLSTM and 1D-CNN algorithms. The fourth paper investigates the MP algorithm for gaitanomaly detection and presents the results of the real-time in-step anomaly detection.The fifth andfinal research paper consists of the framework description for the benchmarkof the real-time gait anomaly detection algorithms and novel SST-AD algorithm, which iscompared to more lightweight SVM based algorithm, the OCSVM algorithm, as well as tothe previously presented 1D-CNN and LSTM algorithms. The SST-AD algorithm achievessimilar performance to the 1D-CNN algorithm, while requiring significantly less computa-tional power.
The significance of the in-step anomaly detection is providing the information aboutpossible gait deviation to the gait assistive devices. The results from the research papersshow that developed algorithms, particularly SST-AD algorithm, provide timely informa-tion about the anomaly occurring in the step. This will lead to the more user-friendly
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gait assistive devices, which would be more comfortable and could be used for prolongedtime.
4.2 Answers to the Research Questions

The research questions from section 1.4 of this PhD thesis are answered below.
RQ1. How to develop amethodology for dataset collection thatwould be suitable for

the development of the real-time in-step anomaly detection algorithms? Existing state-of-the-art gait datasets are not adequately designed for in-step gait anomaly detection inreal-time scenarios. Therefore, a dataset integrating both normal and abnormal walkingpatterns within a single gait recording is necessary. To evaluate algorithm performance,simulated gait deviation data was collected following a clinical trial protocol approved bythe Estonian National Institute for Health Development, permission No.818. A total of155 gait recordings were acquired across 27 sessions involving 22 subjects. This datasetuniquely incorporates both normal and abnormal step patterns within individual record-ings, addressing a gap in current state-of-the-art resources. To the authors’ knowledge,it is the first dataset to comprehensively include eight common gait deviation types in aunified format, enabling more extensive research on gait anomaly detection algorithms.
RQ2. How to adapt benchmark methods and develop new algorithms which are ca-

pable of in-step abnormality detection in real-time? The most popular algorithms fromgait analysis are ML algorithms, such as SVM and NN. Second most popular algorithmsare heuristic algorithms, which are tailored for the specific task. These algorithms wereadopted to the real-time application, resulting in the RTtsSVM-AD, OCSVM, LSTM, 1D-CNN and MP algorithms. The heuristic SST-AD algorithm has similar classification perfor-mance to the 1D-CNN algorithm, while being computationally more effective. Thus, theNN and heuristic SST-AD algorithm performed the best in this application, while beingtested on the PC. Tests on the embedded devices are necessary to confirm these findings.
RQ3. How to compare the benchmark methods and the proposed real-time in-step

anomaly detection algorithms performance? The evaluation framework was designedto facilitate a systematic and controlled comparison of algorithms. To achieve this, datacollection was conducted under controlled conditions. The collected data undergoes pre-processing and is presented to the algorithms in the same manner as during training, en-abling an assessment of real-time anomaly detection performance. The training processand dataset are specific to each algorithm. The trained models are evaluated in a sim-ulated real-time setting, where data is processed sequentially in chunks. This approachallows for the assessment of widely used gait analysis algorithms, establishing a bench-mark for in-step anomaly detection during an ongoing step.
RQ4. What are the key elements of personalized and comfortable gait assistive

device with efficient FES? As it was described in the SOTA, current assistive devices withFES, are using uncomfortable stimulation during every step. To improve the gait assistivedevices, they should provide the intervention only, when the gait deviation is detected.The patients after the rehabilitation are able to walk on their own for a certain periodof time, and only occasionally need gait correction. The robustness of the 1D-CNN andSST-AD algorithms was evaluated against the changes of speed (time-stretching). Pre-sented algorithms and preliminary device development are providing insights to the keyelements, which are needed for personalized and comfortable gait assistive device withefficient FES. The key elements of the next generation of gait assistive devices are real-time anomaly detection algorithms, easy-to-use electrodes for FES and lightweight andaffordable design of the device packaging.
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4.3 Perspectives
The collected dataset and the algorithms can be used as candidates for the next genera-tion of gait assistive devices with gait deviation detection for effective FES. Gait deviationdetection algorithms can be used in the visualization tools for the physicians, to monitorthe patients in real-time and provide valuable feedback. Improvements and optimizationof the algorithms can be expected with additional data collection and evaluation of thealgorithms with the real patients gait data. Inclusion of emerging AI tools can help to gen-eralize findings and accelerate their use as one of the physiotherapist tools. The hardwaredevelopment and deployment of gait deviation detection algorithms on the embeddeddevice and real life experiments would provide valuable insights on how the next gener-ation of the gait assistive devices would benefit the patients. The achievements of thethesis would be used in the ongoing Estonian IT Academy project "Sustainable ArtificialInternet of Things (SAIoT)" to further develop the gait assistive device by cooperationwiththe clinicians.
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Abstract
Development of Methods for Real-time In-step Anomaly Detec-
tion in Gait Analysis
The increasing number of people suffering from neurological diseases has drawn signifi-cant attention to the consequences of neurological diseases and, in particular, to the topic of gait analysis. Neurological diseases can affect gait quality and movement freedom. Con-sequently, the topics of gait assistance, rehabilitation techniques, assistive devices, and anomaly detection are emerging. Some of the most common techniques used after re-habilitation include passive devices or active devices, such as exoskeletons or Functional Electrical Stimulation (FES) devices. These devices rely heavily on gait phase detection for correct actuation or stimulation.

The exoskeletons are mostly bulky heavy weight as a result less applicable for the daily life activities. For most abnormal gait types, the FES approach is more desirable, providing a more lightweight device that maintains the muscles’ ability to operate and maintain their health. However, the stimulation patterns in modern devices lack personalization in terms of gait deviation detection. The gait quality of the patient after rehabilitation can be close to normal, meaning that gait correction is required only occasionally. Thus, a gait assistive device with gait deviation detection should be used, which can detect gait deviation in real-time and stimulate only when required. This will improve user experience and allow prolonged usage of the device, compared to current devices that stimulate every step, which can lead to fatigue and skin irritation. A crucial part of such a device is real-time anomaly detection algorithms, which can detect gait deviation from normal gait patterns and provide a signal that stimulation is required during the ongoing step.
Real-time gait anomaly detection in gait analysis, particularly within the mid-swing phase of a step, remains a challenge due to lack of research of ‘in-step’ gait anomaly detection in existing methods.
This Ph.D. thesis focuses on this gap and presents solutions by evaluating the most popular algorithms and providing a framework and dataset for fair comparison of their performance.
The first contribution of this thesis is the establishment of an evaluation framework accompanied by a novel dataset. To evaluate the performance of gait anomaly detection algorithms, simulated gait deviation data was collected under a clinical trial protocol ap-proved by the Estonian National Institute for Health Development, permission No. 818. A total of 155 gait recordings obtained during 27 sessions involving 22 subjects. This dataset uniquely incorporates both normal and abnormal step patterns within a single recording, a feature previously unavailable in existing resources. To the best of the author’s knowl-edge, it is the first dataset to systematically integrate eight common types of gait devi-ations, facilitating more robust and comprehensive research on gait anomaly detection algorithms.
The second contribution of this thesis is the adaptation of popular gait analysis algo-rithms for real-time operation. The first algorithm, the real-time tslearn support vector machine anomaly detection (RTtsSVM-AD), demonstrated the feasibility of real-time in-step anomaly detection, achieving average accuracy and F1 scores of 64.5% and 49.2%, re-spectively. An improved version of the SVM-based algorithm, the one class support vector machine (OCSVM), yielded enhanced performance with average accuracy and F1 scores of 74% and 54.9%. The MP algorithm achieved average F1 scores of 75% and earliness of 1 second on the dataset presented in the Publication I. Neural network-based algorithms specifically tailored for time-series data were also evaluated. The long short-term mem-
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ory (LSTM) achieved average accuracy and F1 scores of 86.5% and 70.1%, while the onedimensional-convolutonal neural network (1D-CNN) attained superior performance with95% accuracy and an F1 score of 88.2%. However, to address the computational demandsof neural networks, a heuristic algorithm, the signal shape tracking anomaly detection(SST-AD), was developed. This algorithm achieved average accuracy and F1 scores of 91%and 81%, respectively, offering a performance level comparable to the 1D-CNN algorithmbut with significantly lower computational complexity. Furthermore, the SST-AD algo-rithm demonstrated the best average earliness in anomaly detection, achieving results0.4 seconds after the initial-swing phase start. Based on these findings, the SST-AD algo-rithm emerges as the most suitable candidate for real-time gait anomaly detection and isrecommended for deployment in future embedded assistive devices.This thesis introduces a framework for real-time gait deviation detection for futuregait assistive device development. It present algorithms which can detect the gait de-viations in real-time with high F1 scores. It also outlines initial steps and challenges en-countered during the device development. This includes evaluation of the socks with em-bedded electrodes, FES parameters optimization, assessment of potential hardware andcorresponding software for gait deviation detection in-real time. The on-device anomalydetection performance remains to be explored in the future.
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Kokkuvõte
Reaalajaliste meetodite arendus sammusiseste kõrvalkallete
tuvastamiseks kõnnianalüüsis
Neuroloogiliste haiguste all kannatavate inimeste arvu suurenemine on toonud olulist tä-helepanu neuroloogiliste haiguste tagajärgedele ja eelkõige kõnnaku analüüsi teemale.Neuroloogilised haigused võivad mõjutada kõnnaku kvaliteeti ja liikumisvabadust. See-tõttu on esile kerkinud kõnnaku abistamise, rehabilitatsioonitehnikate, abivahendite jaanomaaliate tuvastamise teemad. Levinumad rehabilitatsioonijärgsed tehnikad hõlmavadpassiivseid abivahendeid või aktiivseid seadmeid, nagu eksoskeletid või funktsionaalseelektrilise stimulatsiooni (FES) seadmed. Need seadmed tuginevad tugevalt kõnnakufaasituvastamisele, et tagada korrektne aktiveerimine või stimulatsioon.

Eksoskeletid on enamasti suured ja rasked, mistõttu on nende kasutamine igapäevae-lus piiratud. Enamiku ebanormaalsete kõnnakutüüpide puhul on FES-lähenemine eelista-tum, pakkudes kerge kaaluga seadet, mis säilitab lihaste töövõime ja tervise. Kuid kaas-aegsete seadmete stimulatsioonimustrid ei ole isikupärastatud ega võta arvesse kõnnakukõrvalekaldeid. Pärast rehabilitatsiooni võib patsiendi kõnnaku kvaliteet olla peaaegu nor-maalne, mistõttu on korrektsioon vajalik vaid aeg-ajalt. Seega on vaja kõnnaku abisea-det, mis suudaks reaalajas tuvastada kõnnaku kõrvalekaldeid ja rakendada stimulatsiooniainult siis, kui see on vajalik. See parandaks kasutajakogemust ja võimaldaks seadet pi-kemaajaliselt kasutada, võrreldes praeguste seadmetega, mis stimuleerivad iga sammu,põhjustades väsimust ja nahaärritust. Sellise seadme oluline osa on reaalajas anomaalia-te tuvastamise algoritmid, mis suudavad tuvastada kõrvalekaldeid normaalsest kõnnaku-mustrist ja anda signaali, kui stimulatsioon on käimasoleva sammu ajal vajalik.
Reaalajas kõnnaku anomaaliate tuvastamine, eriti sammu keskkiige faasis, on endiseltväljakutse, kuna olemasolevad meetodid ei ole keskendunud "sammu-siseselt"esinevatekõnnaku anomaaliate tuvastamisele.
Käesolev doktoritöö keskendub sellele probleemile ja pakub lahendusi, hinnates po-pulaarsemaid algoritme ning esitades raamistikku ja andmestikku nende jõudluse võrdle-miseks.
Töö esimene panus on hindamisraamistiku ja uudse andmestiku loomine. Kõnnakuanomaaliate tuvastamise algoritmide jõudluse hindamiseks koguti simuleeritud kõnnakukõrvalekallete andmeid kliinilise uuringu protokolli alusel, mis oli heaks kiidetud Eesti Ter-vise Arengu Instituudi poolt (luba nr 818). Kokku koguti 155 kõnnaku salvestust 27 sessioonijooksul, milles osales 22 katseisikut. See andmestik sisaldab ainulaadselt nii normaalseidkui ka ebanormaalseid sammumustreid ühes salvestuses, mis ei ole varem eksisteerinudandmekogudes olnud kättesaadav. Autori parima teadmise kohaselt on see esimene and-mestik, mis süstemaatiliselt integreerib kaheksa levinumat kõnnaku kõrvalekallet, võimal-dades põhjalikumat ja täpsemat uuringut kõnnaku anomaaliate tuvastamise algoritmideosas.
Töö teine panus on populaarsete kõnnaku analüüsi algoritmide kohandamine reaala-jas toimimiseks. Esimene algoritm, real-time tslearn support vector machine anomaly de-tection (RTtsSVM-AD), demonstreeris reaalajas sammu-sisese anomaaliate tuvastamiseteostatavust, saavutades keskmise täpsuse 64,5% ja F1-skoori 49,2%. Parendatud versioonSVM-põhisest algoritmist, one class support vectormachine (OCSVM), pakkus paremat tu-lemust, saavutades keskmise täpsuse 74% ja F1-skoori 54,9%. MP-algoritm saavutas kesk-mise F1-skoori 75% ja kõrvalekallete tuvastamise kiirusega 1 sekund andmestiku puhul,mis on esitatud Publikatsioonis I. Ajasarjadele kohandatud tehisnärvivõrgu algoritmidsaid samuti hinnatud. long short-term memory (LSTM) saavutas keskmise täpsuse 86,5%
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ja F1-skoori 70,1%, samas kui one dimensional-convolutonal neural network (1D-CNN) pak-kus parimat tulemust 95% täpsuse ja F1-skooriga 88,2%.Kuid arvestades närvivõrkude arvutuslikku keerukust, töötati välja heuristiline algo-ritm signal shape tracking anomaly detection (SST-AD). See algoritm saavutas keskmisetäpsuse 91% ja F1-skoori 81%, pakkudes 1D-CNN algoritmiga võrreldavat jõudlust, kuid olu-liselt madalama arvutusliku keerukusega. Lisaks demonstreeris SST-AD algoritm parimatkeskmist varasemat anomaaliate tuvastust, tuvastades kõrvalekalded 0,4 sekundit pärastalgkiige faasi algust.Nende tulemuste põhjal on SST-AD algoritm kõige sobivam kandidaat reaalajas kõn-naku anomaaliate tuvastamiseks ning seda soovitatakse kasutada tulevastes manustatudabiseadmetes.Käesolev doktoritöö tutvustab reaalajas kõnnaku kõrvalekallete tuvastamise raamistik-ku, mis on suunatud tulevaste kõnnaku abiseadmete arendamiseks. Töö esitleb algoritme,mis suudavad reaalajas tuvastada kõnnaku kõrvalekaldeid kõrgete F1-skooridega. Samutikirjeldatakse seadme arendamise esimesi samme ja väljakutseid, sealhulgas sisseehitatudelektroodidega sokkide hindamist, FES-parameetrite optimeerimist, potentsiaalse riistva-ra ja vastava tarkvara hindamist reaalajas kõnnaku kõrvalekallete tuvastamiseks. Seadme-sisese anomaaliate tuvastamise jõudlus vajab edasist uurimist tulevikus.
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Kuusik[0000−0002−6860−9539], Ulvi Ahmadov[0000−0001−7702−7074], and

Muhammad Mahtab Alam[0000−0002−1055−7959]

TJS Department of Electronics, Tallinn University of Technology, Ehitajate tee 5,
19086 Tallinn, Estonia

jakob.rostovski@taltech.ee

Abstract. Gait analysis is widely used for human disability level as-
sessment, physiotherapeutic and medical treatment efficiency analysis.
Wearable motion sensors are most widely used gait observation devices
today. Automated detection of gait abnormalities, namely incorrect step
patterns, would simplify the long term gait assessment and enable usage
of corrective measures as passive and active physiotherapeutic assistive
devices. Automatic detection of gait abnormalities with wearable de-
vices is a complex task. Support Vector Machines (SVM) driven machine
learning methods are quite widely used for motion signals classification.
However, it is unknown how well actual implementations work for spe-
cific gait deviations of partially disabled people. In this work we evaluate
how well SVM method works for detecting specific incorrect step pat-
terns characteristics for the most frequent neuromuscular impairments.
F1 score from 66% to 100% were achieved, depending on the gait type.
Gait pattern deviations were simulated by the healthy volunteers. An-
gular speed motion data as an input to SVM was collected with a single
Shimmer S3 wearable sensor.

Keywords: Gait analysis, Machine learning, SVM, Wearable sensors, Medical
applications

1 Introduction

According to World Health Organisation (WHO) report about one billion per-
sons are affected by neurological disorders worldwide [2]. Neurological diseases
ranging from migraine to stroke and Alzheimer are the leading cause of Disability
Adjusted Life Years (DALY) loss [8]. For example, there is a high risk of falling
down for patients with gait impairments from neurological disease [24], [20].
Therefore it is important to assess neurological disease patient gait deviations
and, if possible, correct step patterns using certain assistive devices. It is shown
that even simple mechanical devices like ankle-foot orthoses certainly can reduce
the risk of falling [27]. However, it is shown that Functional Electrical Stimula-
tion (FES) devices that activate in proper moments corresponding muscles, are
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more effective for fall prevention [14] and generic gate improvements [16]. Es-
sentially, long term gate deviation analysis and efficient run-time control of FES
devices requires automated recognition of ”incorrect” steps or other gate devia-
tions. According to our previous research [22] we have concluded that Support
Vector Machines (SVM) based methods are most widely used ones for automated
gait analysis, followed by Convolutional Neural Networks (CNN). The benefits of
SVM include capability to operate with relatively small data sets and high com-
putational efficiency [10, 11]. For human activity recognition has been reported
by Almaslukh et al. [1] quite impressive accuracy, close to 97 percent. There
are several other results indicating 90 percent accuracy, listed in [22]. However,
there is a very limited research conducted of analysing how well machine learn-
ing methods, particularly SVM, performs in detecting realistic gait deviations,
caused by actual neural diseases. Current work focuses on describing test results
collected by us in this domain, that are still relying on simulated gait deviations.

Gait of each person is virtually unique. It can be described by a set of pa-
rameters such as: step length, length of individual step phases, muscle force
and etc. [18]. Especially high variability and deviations from the ”normal” gait
pattern can be seen in persons gait, who are suffering from neuromuscular dis-
eases [15]. Therefore it is extremely difficult to analyze patients’ gate patterns.
Certain diseases cause jumpy gait changes - like freezing episodes of Parkinson
Disease (PD) [4], other diseases, like Multiple Sclerosis (MS) may contain long
duration relapse episodes with individual impact and have slow progression [23].
From the perspectives of physiotherapists, each person has own ”normal” (or
target) gate that has to be used as a reference in gate assessment procedure.

Various stationary (3D camera systems), portable (pressure mats) and wear-
able (motion sensors) instrumental solutions are used for gait analysis. However,
wearable motion sensors, containing multidimensional Inertial Motion Units
(IMUs), are the most widely used gait assessment devices in the recent years [25].
IMUs are also used for gait assessment of neurological disease patients [12,19,21].

Main goal of this research work is to detect abnormality in the gait, caused
by some kind of disease, as fast as possible, to prevent person from falling.
Current paper proposes analysis of gait using SVM, to classify the normal and
abnormal steps. Even if such a full step classification does not solve the main goal,
abnormality estimation in the real-time, it will be used as pre-processing stage
to produce reference set of good steps for the real-time abnormality detection
algorithm. Therefore the current paper proposes time series based ”good” and
”bad” steps SVM classifier implementation, which is built on the tslearn Python
library [26] and applied to the time-series gyroscope gait data, which is different
from feature based SVM classification, used in other works. Thus, it is possible
to compare achieved results to the feature based approach, found in other works.

This paper consist of 5 sections: after the introductory state-of-art overview
in section 2 the motion data collection methodology is described; in section 3
proposed application of the SVM based algorithm implementation, applied to
the time-series gait data, is presented; the results are presented in the subsection
4 and discussion and conclusion are in the section 5.
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2 Gait Data Collection

The fundamental part of each instrumented gait analysis is collection of human
walking patterns, which provide relevant information about the gait changes of
the subjects. The human gate contains of seven phases [3] (Fig. 1). The ultimate
long term goal is to detect deviations of each phase separately for fastest gate
corrections. However, current study focuses on classification of whole steps only.

Fig. 1: The seven phases of human gait cycle [3]

During the current study, Shimmer S3 (Dublin, Ireland) wearable sensors
were used for lower limb motion data capture. Sensors were configured to work
with 256Hz sampling rate, measurement data was recorded on device’s memory,
later modulus was calculated from three-dimensional 16-bit gyroscope signal
to reduce the amount of data feed to machine learning algorithm. Two different
sensor placements were initially tested (Fig. 2): right below of the knee that is the
location of foot drop FES devices directly stimulating the most important lower
limb muscles, namely tibialis anterior and fibularis longus, and on forefoot, which
is the most widely used placement of inertial sensors for gate cycle monitoring [9].
According to initial visual analysis of recorded signals, forefoot data was selected
for the further analysis.

During the data collection, correct (”good”) and incorrect (”bad”) steps were
mixed according to following procedure:

1. Normal gait+ one abnormal step
2. Normal gait+ one abnormal step+ normal gait
3. Normal gait + N · abnormal step + normal gait + N · abnormal step,

where N = 0, 1, 2, 3, 4 . . .
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Fig. 2: Sensor placement for data collection

To add more variability to the test data, recording was performed on two
types of surfaces: hard and soft (sand) surface. Each recording contains devi-
ations of one specific disability type that is described below. Recordings were
annotated using a semiautomatic tool: all correct and incorrect steps were la-
beled in the data file.

2.1 Data Collection of Simulated Gait Abnormalities

The ultimate goal of present study is to evaluate how well an actual SVM imple-
mentation can detect gait deviation caused by neurological impairments. Abnor-
malities were simulated by 2 healthy persons of different gender, both 23 years
old. Simulations were replicating actual patients’ videos and instructions of a
professional physiotherapist. The chosen, most frequent, gait abnormalities were
following:

Steppage gait - seen in patients gait with foot drop (weakness of foot dorsi-
flexion). This is caused due to an attempt to lift the leg high enough
during walking, so that the foot does not drag on the floor [3]. This
disability is most widely targeted with foot drop assistive devices.

Hemiplegic gait - includes impaired natural swing at the hip and knee with
leg circumduction. The pelvis is often tilted upward on the involved
side to permit adequate circumduction.
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Diplegic gait - a specific subcategory of the wide spectrum of motion disorders
gathered under the name of cerebral palsy.

Ataxic gait - commonly defined as a lack of coordination in body movements
or a loss of balance, which is not due to muscle weakness.

Parkinsonian gait - is a feature of Parkinsons disease in later stages. Its
often considered to negatively impact the quality of life more than
other Parkinsons symptoms. Parkinsonian gait is usually small, shuf-
fling steps.

Hyperkinetic gait - is seen with certain basal ganglia disorders, including
Sydenham’s chorea, Huntington’s Disease, and other forms of chorea,
athetosis, or dystonia. The patient will display irregular, jerky, invol-
untary movements in all extremities. Walking may accentuate their
baseline movement disorder [3]

Comparative analysis of applying SVM algorithm to data is in the next sec-
tion.

3 SVM Performance Assessment

Considering that the SVM is well known in classification applications and, par-
ticularly, in gait analysis [1,5,13,17,28], this method, however, can not be used
directly with time series (output of IMU motion sensor), where the input vectors
can be of different lengths (feature dimensions). Therefore, time series oriented
implementation (tslearn [26]) of the SVM classifier (call it as tsSVM) was se-
lected for the current research work and applied to the human gait steps ensemble
extracted from the time series data to classify correct and anomaly (incorrect)
steps.

TsSVM implementation uses Global Alignment Kernel (GAK) [6], which
allows to apply the SVM classifier to time-series data with different duration of
samples.

The GAK is related to the soft-Dynamic Time Warping (soft-DTW) [7]
through eq. (1), which is used to align time series samples in time. In ker-
nel equation, x = (x0, . . . ,xn−1) and y = (y0, . . . ,ym−1) are two time series of
respective lengths n and m. Hyper-parameter γ is related to the bandwidth
parameter σ of GAK through γ = 2σ2.

k(x, y) = exp(
softDTWγ(x, y)

γ
) (1)

In eq. (2) soft-DTW could be observed with hyper-parameter γ, that controls
smoothing of the resulting metric (squared DTW corresponds to the limit case
γ → 0), where (a1, . . . ,an) is time series.

soft−minγ(a1, . . . , an) = −γlog
∑

i

e−ai/γ (2)
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The GAK’s smoothing hyper-parameter γ was experimentally chosen de-
pending on the data set to get the best actual performance. Usually it was
between 20 and 150. Tslearn toolbox was used to convert one-dimensional mag-
nitude, calculated from gyroscope data from data set into time series with same
length. Then data set was divided into training and test sets with proportion of
70% to 30% respectively. After that, training was performed and the following
results were achieved.

First some preprocessing was required to be able to use the algorithm. Data
was divided into individual steps, using timestamps in labels. After that they
were combined into required form and normalized in duration by adding Nan’s
to the shorter steps. Then proper hyperparameter γ was chosen by iteration over
potential numbers.

4 Results

In proposed approach 3D gyroscope angular velocity data was used as the ini-
tial input, which then was transformed into the magnitude time series format.
Assuming that gyroscope axes are called gX, gY and gZ, the magnitude is calcu-
lated as in eq. 3, where ti is given moment of time, and normalized by Min-max
feature scaling 4 for every time series instance:

gM(ti) =
√
gX(ti)2 + gY (ti)2 + gZ(ti)2 (3)

gM(t)norm =
gM(t)− gM(t)min

gM(t)max − gM(t)min
(4)

Calculated gyroscope magnitude time series (eq. 3) is used as an input for
the tsSVM algorithm.

To understand the results lets observe support vectors on Fig. 3 for two
classes, they represent common step forms, corresponding to a particular class.
For each class support vectors looks similar, only for class 2 excess vectors could
be observed, what affects results. Ataxic gait test data set had 14 samples: 6
abnormal steps (positive) and 8 normal steps (negative). After training the SVM
on 32 samples, two false positives were detected using test data set (Table 1).

This could have happened due to residual ”abnormality” in normal steps
following abnormal steps. On the Fig. 8c noisier step could be seen than the
step on the Fig. 8a. Similar situation could be observed for steppage gait test 1,
where there is to much deviation for normal steps (Fig. 5a and Fig. 5c), what
could be considered as data collection error. This leads to misclassificaion of
abnormal steps which result in 0% f1 score. On the other hand, if normal steps
are consistent, as for steppage gait test 2 (Fig. 7), classification of abnormal
steps is preformed correctly and f1 score of 100% is achieved.

Lets have closer look at step shapes. For example on Fig. 8a first peak rep-
resents a moment, when toe is starting to move in the end of stance phase
(40%-60% of phase on Fig. 1), then it is start of a swing phase, till the second
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Table 1: Classification quality for data. Where, TP is True Positive, TN is True
Negative, FP is False Positive and FN is False Negative

Gait type, test number TP TN FP FN F1 score

Ataxic, test 2 4 8 2 0 80%
Diplegic, test 1 3 7 0 0 100%
Diplegic, test 3 2 9 0 0 100%
Hemiplegic, test 2 1 9 0 1 67%
Hyperkinetic, test 2 4 8 0 2 80%
Parkinsonian, test 1 7 8 0 1 93%
Parkinsonian, test 2 6 7 1 0 92%
Steppage, test 1 0 10 0 2 ?0%
Steppage, test 2 2 10 0 0 100%

Fig. 3: Support vectors for ataxic gait. X-axis is the time [ms], Y-axis is normal-
ized gyroscope magnitude values (see eq. 4).

peak (60%-100%), which represents toe movement, to prepare for initial contact
and third peak is, when toe lands on the ground flat (0%-20%), after that it is a
stance phase between the toe movement (20%-40%). For abnormal step (Fig. 8b)
clear separation between peaks is lost. According to description of ataxic gait
type, clear swing phase is lost, what could be observed.

As it was mentioned above, on Fig. 8 and Fig. 10 peaks for normal and
abnormal gait steps are located differently and have different amplitudes. F1
score for ataxic gait was 80% and for diplegic gait it was 100%, that shows
SVM capability of classifying steps. Good results could be observed also for
parkinsonian and hyperkinetic gaits, 93% and 80% respectively, because normal
and abnormal steps have very different magnitude and shape. For diplegic gait

? This test has bad data samples, reasons are described in results section.
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Fig. 4: Support vectors for steppage gait. X-axis is the time [ms], Y-axis is nor-
malized gyroscope magnitude values (see eq. 4).

(a) (b)

(c) (d)

Fig. 5: Normal (left) and abnormal (right) steps. X-axis is the time [ms], Y-axis
is normalized gyroscope magnitude values (see eq. 4).
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Fig. 6: Support vectors for steppage gait. X-axis is the time [ms], Y-axis is nor-
malized gyroscope magnitude values (see eq. 4).

(a) (b)

(c) (d)

Fig. 7: Normal (left) and abnormal (right) steps. X-axis is the time [ms], Y-axis
is normalized gyroscope magnitude values (see eq. 4).
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(a) (b)

(c) (d)

Fig. 8: Normal (left) and abnormal (right) steps. X-axis is the time [ms], Y-axis
is normalized gyroscope magnitude values (see eq. 4).

Fig. 9: Support vectors for diplegic gait. X-axis is the time [ms], Y-axis is nor-
malized gyroscope magnitude values (see eq. 4).
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abnormal step (Fig. 10b) it could be seen, that third peak is unclear, that shows
that there is no full contact of toe with ground on that gait type.

(a) (b)

(c) (d)

Fig. 10: Normal (left) and abnormal (right) steps. X-axis is the time [ms], Y-axis
is normalized gyroscope magnitude values (see eq. 4).

Also for diplegic gait type it could be observed, that normal steps have more
common features and abnormal steps have different number of peaks and mag-
nitude. That helps tsSVM to differentiate them better and gives higher score.
Because of the nature of this anomalous gait, several abnormal steps were per-
formed in the row, that means that number of abnormal steps was more than in
some other data sets.

Normal and abnormal steps for hemiplegic gait can be observed in the Fig. 12.
They have similarly placed local maximums but with different amplitudes. This
is due to abnormal movement, mainly affecting upper body, thus sensor have
little impact by that movement. Normal steps have some variation, especially
after abnormal step. This leads to misclassification and f1 score of 67%.
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Fig. 11: Support vectors for hemiplegic gait. X-axis is the time [ms], Y-axis is
normalized gyroscope magnitude values (see eq. 4).

(a) (b)

(c) (d)

Fig. 12: Normal (left) and abnormal (right) steps. X-axis is the time [ms], Y-axis
is normalized gyroscope magnitude values (see eq. 4).
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5 Discussion and Conclusion

Ready made tsSVM could be well used for step classification, even using rather
small amount of training data (tens of steps), as can be seen in results. The
issues still occur, when the dataset is too small, and/or major variability in nor-
mal steps is present. As mentioned before, this situation is quite likely to appear
with actual patient data. Some issues may arise, if gait deviation is happening in
the upper part of the body. That would only lead to small deviations in forefoot
placed sensor data, and could easily lead to misclassification of steps. A straight-
forward solution would be to add more body sensors, but that would increase
systems cost and significantly reduce comfort of usage of this system. Obtained
results could be useful in determining how different gait types abnormalities af-
fect quality of classification of machine learning algorithms. It is clear, that good
reference data presence (correct steps) is crucial for SVM, and, most likely for
the other ML based classification methods as well.

Type of gait deviation has significant affect on quality of chosen algorithm
results. Achieved average step classification accuracy was near to 80 percent,
what is below the numbers published in literature. We assume, that classifica-
tion performance of real patient data would be even worse. However, besides of
performance improvements, with better training data selection and usage, we
would develop an algorithm, that can detect anomalies during the gait phases
instead of the whole steps. That is crucial to be able to correct gait on basis of
needs. In the future we estimate, that applying certain ML techniques, possi-
bly SVM, during the real-time operation of the next generation of FES devices,
would make them less intervening and increase patients’ comfort.

In real life human gait steps can not be modelled by using two class classifiers,
thus multi-class classifier is crucial to distinguish the abnormal steps, related to
some kind of disease, from normal steps. Normal steps could be divided into
several classes as well, e.g. normal walking steps, turning steps and etc.

Thus, the further work will be focused on the construction of the multi-class
classification algorithm for reference step obtaining. That would be used to de-
velop real-time abnormality detection algorithm, that is able to detect abnormal
gait in different contexts.
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Abstract—In this paper, a real-time implementation of Support
Vector Machines (SVM) — Real-Time tsSVM Anomaly Detec-
tion (RTtsSVM-AD) algorithm is proposed.

Here, real-time abnormality detection is referencing to the
ability of the algorithm to detect true gait anomaly occurrence
during the swing phase of ongoing step. Anomaly detection is
presented with ”earliness” measure. For comparative research,
eight different human gait deviations were simulated by two
healthy volunteers. Corresponding gyroscope angular velocities,
from the sensor placed on the forefoot, were recorded. F1 score,
true positive rate (TPR), false positive rate (FPR) and ”earliness”
values were estimated and analyzed.

Real-time classification results, where classification is per-
formed during the ongoing step, are different from regular
classification results, where classification is performed after the
full step. Thus, they can not be compared directly.

Achieved results prove the concept, that it is possible to detect
anomalies in real-time during the swing phase of a step with
RTtsSVM-AD algorithm. Best F1 scores for first person’s gait
recordings were 57%, 53% and 52% for Steppage, Parkinsonian
and Ataxic gait types respectively. For the second person’s gait
recordings, best F1 scores were 65%, 58% and 50% for Slap,
Steppage and Hemiplegic gait types respectively.

RTtsSVM-AD algorithm would be developed further and could
be used as a base method for comparison with other algorithms.

Index Terms—Real-time, Gait analysis, Anomaly detection,
Machine learning, Wearable sensors.

I. INTRODUCTION

ACCORDING to World Health Organisation (WHO) re-
port about one billion persons are affected by neuro-

logical disorders worldwide [1]. Neurological diseases rang-
ing from migraine to stroke, and Alzheimer are the leading
causes of Disability Adjusted Life Years (DALY) loss [2].
For instance, there is a substantial risk of falling for patients
with gait impairments from neurological diseases [3]. It is
especially true for patients suffering from neuromuscular dis-
eases, because high variability and deviations from the optimal
gait pattern can be seen in their gait [4]. Therefore, it is

difficult to analyze patients’ gait patterns in real-time. Certain
diseases cause abrupt gait changes, such as freezing episodes
of Parkinson Disease (PD) [5]. Other diseases, like Multiple
Sclerosis (MS) may contain long duration of relapse episodes,
with individual impact and slow progression [6]. This means,
that neurodegenerative diseases can affect gait quality and
change its locomotion cycle to abnormal. The gait of a person
can be described by a set of parameters such as: step length,
duration of individual step phases, muscle force, etc. [7].
Wearable motion sensors, containing multidimensional Inertial
Measurement Units (IMUs), are the most widely used gait
assessment devices in recent years for supporting daily activ-
ities [8]. IMUs are also used for gait assessment of patients
with neurological diseases. For example, data collected from
IMUs is used to detect initial and final contact events of the
gait cycle of different persons - healthy, stroke and with other
neurological disorders, and select best algorithms and sensor
placements for correct classification between them [9]. Also,
IMUs can be used to detect activities of daily life, fall events
and their directions [10], to determine gait parameters and for
identification of persons [11], [12], [13]. Finally, IMUs can
be used to discover environment dependent differences in gait,
which will help with context-aware decisions [14].

It is shown that Functional Electrical Stimulation (FES)
can be used to assist walking and help with fall prevention
[15] as well as for generic gait improvements [16]. Long term
gait deviation analysis and efficient run-time control of FES
devices requires automated real-time recognition of abnormal
steps or other gait deviations.

Existing real-time algorithms are used for following: iden-
tification by gait [17]; for detecting of gait events like heel-
strike and toe-off for elderly healthy subjects; stroke patients
and patients with Parkinson disease [18], as well as with
other impairments [19], [20]; haptic biofeedback devices are
implemented using inertial measurement units (IMUs), to
correct toe-in or toe-out during walking in real-time [21].
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Notably, none of the previous studies explored real-time
anomaly detection in ongoing step, nor base methods are
proposed for real-time in step anomaly detection.

According to the previous paper [22], it has been concluded
that Support Vector Machines (SVM) based methods are most
widely used ones for automated gait analysis, followed by
Convolutional Neural Networks (CNN). The benefits of SVM
include capability to operate with relatively small datasets and
high computational efficiency [10], [23]. However, there is
limited research conducted of analysing how well machine
learning methods, particularly SVM, performs in detecting
realistic gait deviations in real-time during the ongoing step,
caused by actual neurological diseases. In our previous paper it
was shown, that tslearn SVM algorithm implementation [24]
can classify normal steps from abnormal and achieve high
F1 scores [25] for regular offline full dataset classification.
However it can not be used directly for real-time abnormality
detection. Thus additional framework should be developed to
be able to use tslearn SVM in real-time application.

In the view of above discussion, in this paper we provide
following contributions:

• Collecting volunteers’ walking motion data, with simu-
lated gait deviations, using an industry-standard wearable
motion sensor (Shimmer3 IMUs) according to the clinical
trial protocol approved by Estonian National Institute for
Health Development, permission No.818.

• Proposing novel real-time anomaly detection algorithm,
Real-Time tsSVM Anomaly Detection (RTtsSVM-AD)
algorithm, which can detect gait abnormalities in real-
time during the swing phase of an ongoing step.

This paper consist of five sections: after the introductory
state-of-the-art overview, in section II data acquisition and
gait types are described, as well as metrics used for analysis;
in section III novel RTtsSVM-AD algorithm is described,
including data preparation; parameters of the algorithm, results
and discussion are presented in the section IV and paper is
concluded in section V.

II. METHODS

A. Data Acquisition

Eight types of the human gait abnormalities were selected,
which were simulated by 2 healthy persons of different gender,
both 23 years old, while walking in straight line (Table I).

Collected data was labeled step wise, thus all steps were
annotated as normal or abnormal.

TABLE I: Labeled gait recordings, collected for this study.
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Total 5 11 7 6 6 8 14 6 62

Simulations were recreating actual patients’ gait recordings
on videos and instructions from a professional physiothera-
pist. Detailed data collection process was described in previ-
ous paper [25]. Most frequent gait abnormalities were cho-
sen: Ataxic, Diplegic, Hemiplegic, Hyperkinetic, Parkinonian,
Slap, Steppage and Trendelenburg (lurch) gait types [26].

B. Evaluation metrics

For evaluation, several calculated parameters were used,
which include F1 score, true positive rate (TPR), false positive
rate (FPR) and earliness. Earliness in this paper is defined as
– time between the beginning of a step and moment in time
when step was correctly classified as abnormal. The minimal
achievable earliness naturally depends on the gait deviation
type. Such measure has been introduced, because concrete
moment when anomaly is starting to occur can fluctuate,
depending on a gait type.

III. PROPOSED ALGORITHM

In this paper new algorithm is presented, which is able to
detect anomalies during the ongoing step of human gait. Such,
in-step SVM based anomaly detector was named Real-Time
tsSVM Anomaly Detection Algorithm (RTtsSVM-AD). Dif-
ferences from regular tslearn SVM [24] is added framework,
to be able to classify incoming signal of ongoing step, which
includes automatic hyperparameter optimization and real-time
classification.

Hypothesis of RTtsSVM-AD algorithm is following: if by
cumulatively replacing the model step chunks with new chunks
from ongoing step, collected from IMU placed on a forefoot,
the algorithm can classify ongoing step as normal or abnormal,
then it is possible to detect abnormality during the swing phase
of this step in real-time.

A. Data preparation

Each person datasets are assessed separately. Data is pre-
pared by taking all accessible recordings for current gait
type, except for one gait recording, which would be used
as validation dataset for real-time step anomaly detection
estimation. All other recordings are combined into one dataset
and divided into training and test datasets with ratio of
70%:30% correspondingly. Then each step from these datasets
is resampled to constant length and normalized.

B. Algorithm description

Algorithm has two phases: training and real-time classifi-
cation phases. In the proposed implementation synchronous
time series data is used to train classifier. For every recording
gyroscope vector magnitude is calculated, using the L2 norm
(1) from gyroscope angular velocities around sensor axes.

Mag =
√

X2 +Y2 + Z2 (1)

where X,Y and Z are vectors of gyroscope angular veloc-
ities around sensor axes, X = [x0, x1, . . . , xi, . . . , xn]

T , Y =
[y0, y1, . . . , yi, . . . , yn]

T and Z = [z0, z1, . . . , zi, . . . , zn]
T ,
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sample index n ∈ N. The Mag(X,Y, Z) is the gyroscope
vector magnitude.

RTtsSVM-AD algorithm training phase is following:

• First is training of the classifiers with particular value for
hyper-parameter gamma (γ) on training dataset;

• Second step is to estimate classification quality of these
classifiers on test dataset using F1 score;

• Best classifiers and corresponding model steps for these
classifiers are used in real-time classification of validation
dataset.

Hyper-parameter γ is the main parameter of the proposed
algorithm, which is responsible for smoothing of the resulting
metric for soft-DTW [24]. Quality of classification for this
particular γ value is estimated with test dataset. For this
hyper-parameter optimization from predetermined options is
performed and it stops:

• If F1 score on test dataset for given γ value is 100%;
• If for three different γ values F1 score is the same;
• If all given γ values have been tested.

After training phase, real-time classification performance
is estimated, which is described in more details in next
subsection. For this best classifiers and model steps are used
from the training phase. Several classifiers could be chosen,
if they have similar performance, which should increase ro-
bustness of the algorithm. Model step is calculated as normal
step ensemble average from test dataset, where normal steps
that have been classified correctly were chosen. For correct
operation of algorithm in real-time phase, data used for model
step calculation is not resampled and not normalized.

C. Anomaly prediction

Real-time classification is performed in online-fashion. Val-
idation dataset is fed to the algorithm as streaming data, which
arrives as a series of packages or chunks. Step start and step
end events are detected when incoming streaming gyroscope
vector magnitude is exceeding certain value. The size of each
chunk is selected small enough for real-time operation (for
reasonable latency of anomaly alarming) and large enough
for more efficient processing and data transferring through
communication channels. In the current implementation the
amount of collected data in one chunk is M samples for
each gyroscope vector. Classification is performed on whole
classification step. For this incoming chunks are replacing
corresponding chunks in model step (Fig. 1). Then this classifi-
cation step is resampled and normalized. After that probability
score is obtained, by classification of classification step by
classifier or classifiers. This scores are collected to score
buffer. Resulting anomaly detection Score is value (2), which
will be compared with the selected threshold. If threshold
has been exceeded, alarm is triggered (3), which is finalizing
anomaly detection.

Score =

∑
Scores

Ncl
, (2)

Model step
Step Chunk

{F-1}
Model Chunk

{Mk}
Step Chunk

{F-2}

Ongoing step

Time, s

Current moment in time

Earliness measure

Step start Step end

Step Chunk
{F-2}

Step Chunk
{F-1}

Most Recent
Chunk {F0}

Replacing in model step

Model Chunk
{M0}

Model Chunk
{M1}

Model Chunk
{M2}

New Chunk Resample and
normalize

Output to
Classifier

Fig. 1: Replacing chunks from incoming data to model step
and resulting step for classification. If anomaly is detected in
the current moment of time, earliness is time, shown on figure.

where Ncl is the number of classifiers.

Alarm =

{
1, if S > threshold

0, if S ≤ threshold
(3)

If alarm is triggered, then earliness is time duration from
step start to current moment in time (Fig. 1).

After the end of the current step, model step is restored to
original state and real-time classification is repeated for the
next step.

IV. RESULTS AND DISCUSSION

Results for the RTtsSVM-AD algorithm are presented in
current section.

Parameters used in this work are following: sample rate is
set to 256 Samples/s, one chunk is M = 12 samples long
which is approximately 43ms. Predefined γ values are in the
range from 100 to 1000 with increase of 100 and in the range
from 5 to 100 with increase of 10. Gyroscope angular value
for step detection is 200 ◦/s.

TABLE II: Best thresholds across gait types

Gait type p1 p2 avg.
Ataxic 0,7 - 0,7
Diplegic 0,6 0,6 0,6
Hemiplegic 0,9 0,8 0,85
Hyperkinetic 0,8 0,8 0,8
Parkinsonian 0,9 0,5 0,7
Slap 0,8 0,4 0,6
Steppage 0,8 0,7 0,75
Trendelenburg 0,9 0,1 0,5

Aforementioned threshold is chosen after real-time phase,
where all scores are obtained, because in real world use case
best threshold would be adjusted individually for each person
(Table. II). Lets observe F1 scores for different gait types. In
terms of F1 score (Fig 2) it could be observed, that algorithm
is able to detect abnormalities in real-time for most of the
gait types. Best results for first person was for Steppage,
Parkinsonian and Ataxic gait types, with F1 scores of 57%,
53% and 52% respectively.

For second person best results were for Slap, Steppage
and Hemiplegic gait types with F1 scores of 65%, 58% and
50% respectively. Acceptable results were seen as well for
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Fig. 2: Distribution of F1 scores for all persons for different
gait types. On y-axis is F1 score in percents, on x-axis is
different anomalies. Most frequent results are in the boxes,
and outliers are shown by whiskers and dots.

Fig. 3: Distribution of True Positive Rate for all persons for
different gait types. On y-axis is True Positive Rate in percents,
on x-axis is different anomalies. Most frequent results are in
the boxes, and outliers are shown by whiskers and dots.

Trendelenburg and Diplegic gait types with F1 scores of 51%
and 50% respectively for first person. Steppage gait type have
noticeable difference from the normal step, which makes it
easier to classify for two class classifier. Worst performing gait
types were Hyperkinetic, Hemiplegic and Slap gait types for
first person with F1 scores of 48%, 38% and 49% respectively.
For second person it was Diplegic, Hyperkinetic, Parkinsonian
and Trendelenburg gait types with F1 score of 23%, 38%,
29% and 36% respectively. Hemiplegic gait type is different
from normal gait by swing of a leg to the side, which on
magnitude graph does not have major differences from normal
step. Average F1 scores shows, that algorithm is able to detect
abnormalities in real-time for most gait types, presented in this
paper.

For Slap and Parkinsonian gait recordings of first person
and Trendelenburg, Hemiplegic, Steppage and Diplegic gait

Fig. 4: Distribution of False Positive Rate for all persons
for different gait types. On y-axis is False Positive Rate
in percents, on x-axis is different anomalies. Most frequent
results are in the boxes, and outliers are shown by whiskers
and dots.

recordings of second person low true positive rate (Fig. 3)
could be observed: 70%, 68%, 36%, 50%, 67% and 71%
respectively. For other gait types true positive rate was above
83%, where best results were for Ataxic and Hemiplegic gait
types for first person and Slap gait type for second person with
F1 score of 100%. Average true positive rate remains high.

On the other hand false positive rate (Fig. 4) was high
for most of the gait types, excluding Parkinsonian gait type
for first person and Hemiplegic, Steppage and Trendelenburg
gait types for second person with 22%, 9%, 14% and 15%
respectively, which were the lowest false positive rates in
current results. Highest false positive rates was for Diplegic
and Parkinsonian gait recordings for second person with 57%
and 61% respectively. For first person it was high for Hemi-
plegic, Hyperkinetic and Ataxic gait types with 72%, 49%
and 59% respectively. For all other gait types false positive
rate stayed between 30-40%. High average false positive rate
is main reason for low F1 scores, which shows that two class
classification algorithm can struggle with such task. This is
because abnormal steps can vary in shape, which can confuse
such algorithm and lead to misclassification.

For earliness measure (Fig. 5) it could be observed, that for
most gait types earliness is less than one second. Typical step
duration is usually around 1.2-1.4 seconds for persons in this
paper. For Steppage gait type most common earliness measure
is around 1-1.2 seconds, which is end of a step. However for
Steppage gait faster detection is needed, because anomaly is
happening at the beginning of a step, during swing phase. For
other gait types it could be observed, that detection was mainly
in the middle of a step, which shows, that algorithm can detect
anomaly early, during the swing phase of a step.

As can be seen, RTtsSVM-AD algorithm is capable to detect
abnormalities in a human gait in real-time as achieved earliness
results showed. These detection results are corresponding to
the moments of anomaly occurrence in chosen gait types. For
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Fig. 5: Distribution of Earliness for all persons for different
gait types. On y-axis is earliness in seconds, on x-axis is
different anomalies. Most frequent results are in the boxes,
and outliers are shown by whiskers and dots.

most of the mentioned gait types main anomaly is happening in
forefoot motion, which is captured by IMU placed on forefoot.
Gyroscope angular velocities from this sensor were used in this
work. Even with small training dataset, this algorithm was able
to detect abnormalities in real-time.

This research have following limitations: simulated gait
could have differences from actual patients gait. However it
should not be an issue for the performance of the proposed
algorithm. Data collected from two persons is enough to
prove the concept, that real-time anomaly detection is possible,
however for conclusion more data should be collected.

V. CONCLUSION

Simulated gait deviations data was collected by two healthy
volunteers. RTtsSVM-AD algorithm was developed, by intro-
ducing preprocessing and post-processing of streaming data,
to be able to use it with classical machine learning algorithm
like tslearn SVM.

Real-time classification results, where classification is per-
formed during the ongoing step, are different from regular
classification results, where classification is performed after
the full step. Thus, they can not be compared directly. This
is why proposed algorithm could be used as a base method,
due to lack of such algorithms for real-time in-step gait
abnormality detection.

Best results were observed for Steppage, Parkinsonian and
Ataxic gait types with F1 scores of 57%, 53% and 52% for first
person respectively and for Slap, Steppage and Hemiplegic gait
types with F1 scores of 65%, 58% and 50% for second person
respectively.

In future works it is planned to test presented and other
algorithms, as well as to collect additional data from more
persons, with different age, weight and height.
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Abstract. Anomaly detection and fall prevention represent one of the
key research areas within gait analysis for patients suffering from neu-
rological disorders. Deep Learning has penetrated into healthcare appli-
cations, encompassing disease diagnosis and anomaly prediction. Con-
nected wearable medical sensors are emerging due to computationally
expensive machine learning tasks, which traditionally require use of re-
mote PC or cloud computing. However, to reduce needs for wireless com-
munication channel throughput, for data processing latency, and increase
service reliability and safety, on device machine learning is gaining atten-
tion. This paper presents an innovative approach that leverages one di-
mensional convolutional neural network (1D-CNN) and long-short term
memory (LSTM) neural network for the real-time detection of abnormal
gait patterns during the step. Real-time anomaly detection pertains to
the algorithm’s ability to promptly detect true gait abnormality occur-
rence during the swing phase of an ongoing step.

For the experiments, we have collected eight different common gait anoma-
lies, simulated by 22 persons, using motion sensors containing multidi-
mensional inertial measurement units (IMUs).

Results have demonstrated that the proposed 1D-CNN-AD algorithm
achieves an average accuracy of 95% and an average F1-score of 88% for
all gait types and can run in true real-time. Average earliness for 1D-
CNN-AD algorithm was 0.6 seconds, which is mid-swing phase of the
step. Proposed LSTM-AD algorithm achieved average accuracy of 87%
and average F1-score of 70% for all gait types.

Keywords: Human gait · Anomaly detection · Gait analysis · Machine learning
· Real-time · 1D-CNN · LSTM · Wearable sensors
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1 Introduction

According to the World Health Organisation (WHO) report about one billion
persons are affected by neurological disorders worldwide [3]. Neurological dis-
eases ranging from migraine to stroke, and Alzheimer are the leading causes of
Disability Adjusted Life Years (DALY) loss [7]. For instance, there is a substan-
tial risk of falling for patients with gait impairments from neurological diseases
[23]. It is especially true for patients suffering from neuromuscular diseases, be-
cause high variability and deviations from the optimal gait pattern can be seen
in their gait [13]. Therefore, it is challenging to analyze patients’ gait patterns
in real-time. The gait of a person can be described by a set of parameters such
as: step length, duration of individual step phases, muscle force, etc. [19]. Wear-
able motion sensors, containing multidimensional Inertial Measurement Units
(IMUs), are the most widely used gait assessment devices in recent years for sup-
porting daily activities [25]. For example, motion sensors are used to detect ini-
tial and final contact events of the gait cycle for different persons - healthy, with
stroke, and with other neurological disorders, and select the best algorithms and
sensor placements for correct classification between them [10]. Motion sensors
can be employed to detect activities of daily life, fall events and their directions
[9], to determine rehabilitation progress and analyze gait normalcy index [36,
2]. Also such devices can be used to discover environment dependent differences
in gait, which will help with context-aware decisions [29]. Finally, in combina-
tion with Neural Networks (NNs), identify if person has balance disorder [20],
to track rehabilitation progress for broken limbs [4] etc.

It is shown that Functional Electrical Stimulation (FES) can be used to assist
walking and help with fall prevention [12] as well as for generic gait improvements
[17]. Long-term gait deviation analysis and efficient run-time control of FES
devices require automated real-time recognition of gait deviations. Average swing
phase of a step is 300-400 ms long [8], and the time of full contraction of the
muscle using electrical stimulation is 100-200 ms long [5], thus the detection
time of step pattern deviations should be under 100 ms. Considering that the
incoming signal must be processed, a correct decision made, and stimulation
actuation started, a detection time of 50 ms is required since the gait abnormality
has started.

Connected wearable medical sensors are emerging due to computationally
expensive machine learning tasks, which traditionally require use of remote PC
or cloud computing [14]. Nowadays, it is common to offload such data analysis
from wearable sensors to wirelessly connected smartphones [11]. For example,
data processing unit, sensors and muscle stimulator shall be wireless for gait
correction system, i.e. based on Bluetooth or SmartBAN standard. However, to
reduce needs for wireless communication channel throughput, for data processing
latency, and increase service reliability and safety, on device machine learning
is gaining attention [31]. Existing real-time algorithms are used in gait analysis
for identification by gait [15]; detecting of gait events like heel-strike and toe-off
for elderly healthy subjects; stroke patients and patients with Parkinson disease
[35], as well as with other impairments [37, 24]; haptic biofeedback devices are
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implemented using inertial measurement units (IMUs), to correct toe-in or toe-
out during walking in real-time [32].

Notably, there are not found state-of-the-art solutions in gait analysis for
real-time anomaly detection of realistic gait deviations during the ongoing step,
caused by neurological diseases.

In our prior research work [27, 28] we proposed a base method for real-time
anomaly detection in gait during the ongoing step, with an algorithm based on
Support Vector Machines (SVM), which is one of the most popular algorithms
used in gait analysis. On the other hand, NNs are widely adopted in gait analysis
[30]. They are capable of solving complex tasks in time-series data. Nonetheless,
to the best of our knowledge, there is no research exploiting NNs for real-time
anomaly detection during the ongoing step in gait analysis. In this paper, for the
first time, we leverage Convolutional Neural Network (CNN) and Long Short-
Term Memory NNs for real-time anomaly detection during the ongoing step in
human gait.

The contributions of this work are:

– Estimation of the performance of One Dimensional-Convolutonal Neural
Network-Anomaly Detection algorithm (1D-CNN-AD) and Long Short-Term
Memory Neural Network-Anomaly Detection algorithm (LSTM-AD) on the
collected simulated gait deviation dataset in comparison to the Real-time
tsSVM Anomaly Detection algorithm (RTtsSVM-AD).

– Exploiting hyperparameters for the neural networks to optimize performance
on simulated gait dataset for real-time in-step anomaly detection.

This paper consists of six sections: after the introduction, in section 2 data
acquisition and gait types are described, as well as metrics used for analysis in
addition to presenting the proposed 1D-CNN-AD and LSTM-AD algorithms,
then in section 3 we briefly describe evaluation metrics and the SVM-based
algorithm – RTtsSVM-AD, which is continued with experimental setup in section
4; this is followed by the results and discussion in the section 5 and the paper is
concluded in section 6.

2 Methodology

2.1 Dataset

Data Acquisition The dataset in our experiments is collected from twenty-two
healthy persons of different genders, ages, heights and weights (Table 1), while
walking in a straight line and simulating abnormalities. Simulations are recre-
ating actual patients’ video recordings of gait deviations in collaboration and
guidance from a professional physiotherapist of Tallinn East Central Hospital.
We have included the most frequent human gait abnormalities, regarding ref-
erence [1]: Ataxic, Diplegic, Hemiplegic, Hyperkinetic, Parkinonian, Slap, Step-
page, and Trendelenburg (lurch). Table 2 shows eight under-study gait types and
the number of collected gait recordings per gait type. Collected data is labeled
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step-wise, thus all steps are annotated as normal or abnormal. Fig. 1 illustrates
the patterns of each gait type in comparison with a normal step.

Table 1: Persons’ Information Used in This Study (Mean ± Standard Deviation)
No. of subjects Age (years) Height (cm) Mass (kg)

15 (Male) 32.1±11.1 177.7±5.5 76.8±15.1
7 (Female) 26.3±5.5 169.5±6.2 62.7±8.9

Fig. 1: Example of the typical shape of simulated step of studied gait types in
comparison to normal step shape, from the data used in this study. Blue line is
normal step shape and red line is corresponding typical shape for this gait type.
On X-axis is time in seconds and on Y-axis is normalized magnitude of angular
velocities of gyroscope.

Such dataset to the best of authors knowledge is first to have combination of
normal and abnormal steps in one dataset. Other datasets are focusing on normal
gait patterns; have only abnormal steps in the dataset; compare separate normal
gait datasets and abnormal gait datasets, etc. [26, 18, 33, 6].

Data Preprocessing The collected data is in a form of time-series including a
three-axis gyroscope and their calculated magnitude (1).
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Table 2: Labeled data collected for this study.

Gait type
Total number of
recordings for all
persons

Ataxic 32
Diplegic 25
Hemiplegic 17
Hyperkinetic 6
Parkinsonian 29
Slap 8
Steppage 32
Trendelenburg 6

Mag(X,Y, Z) =
√

X2 +Y2 + Z2, (1)

where X,Y and Z are gyroscope axes data vectors, X = [x0, x1, . . . , xi]
T ,

Y = [y0, y1, . . . , yi]
T and Z = [z0, z1, . . . , zi]

T , sample index i ∈ Z. And the
Mag(X,Y, Z) is the magnitude vector of these axes.

To address future works with embedded devices in regard to data transmis-
sion and data gathering, data is collected into chunks. One chunk contains M
samples for each gyroscope axis. The collected data sample rate is 256Samples/s
in the current study. Collected data is labeled stepwise as ”normal” step or ”ab-
normal” step.

Data preparation for Real-Time Anomaly Detection For 1D-CNN-AD and
LSTM-AD algorithms each person’s data is assessed separately. Data for one
gait type is prepared by separating training and validation datasets. One gait
recording is used as a validation dataset in real-time step anomaly detection
estimation, and all other recordings are combined into one training dataset. The
ratio between the training and validation datasets can change depending on the
person, gait type and available gait recordings for particular gait type.

To enable real-time abnormality detection in the swing phase of the ongoing
step, training dataset is divided into overlapping sliding windows. Fig. 2 depicts
how the windowing of the dataset is designed. As it is shown, each window
contains P chunks (i.e., window factor), and each chunk includes M samples and
the overlap is N chunks.

Labeling of the windows is conducted according to the labels of the steps. In
edge cases, where one step is ending and new step is begging, label is assigned by
the proportion of samples of abnormal steps in the window. If this proportion is
less than abnormality proportion threshold then the window is labeled as normal,
if more, then it is labeled as abnormal.

One of the key advantages of the sliding windows for this study is indepen-
dence of the anomaly detection algorithms from gait phases.
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As a part of hyperparameters optimization, hyperparameters, which affect
sizes, overlaps and labels of the sliding windows are investigated. These hyperpa-
rameters are a) chunk duration – time in milliseconds, where number of samples
M in one chunk is calculated from chunk duration asM = round(Chunk duration∗
Sample rate); b) window factor P – determines window size and is proportional
to P chunks; c) Abnormality proportion threshold – fraction of the window,
which should contain abnormal samples, to consider the label of the window to
be abnormal.

New samples
from the chunk

...

St
ep

 e
nd

Flowing data ...

to "in-step
anomaly
detector"

Collect window  from chunks' data
St

ep
 s

ta
rt

Fig. 2: Windowing of the data for training and for real-time anomaly detection
performance estimation. Ongoing gait data is incoming as flowing data, which
is split into chunks. From these chunks sliding windows are collected and used
in real-time in-step anomaly detector. Step start can be misaligned with sliding
window. Chunks are aligned with the sliding windows If abnormality is detected
during the chunk C0, then earliness is time between step start and end of the
chunk C0.

2.2 Proposed Neural Networks

One Dimensional-Convolutonal Neural Network-Anomaly Detection Al-
gorithm The hypothesis of the 1D-CNN-AD algorithm is following: if real-time
gait data could be collected in the form of sliding windows, and neural network
could be trained on the dataset using same form of sliding windows with known
labels, then it is possible to detect abnormalities in gait during the ongoing step.

The CNN in this study consists of two 1D convolutional layers, max pooling
layer, and two fully-connected (dense) layers to provide a binary classification.
The 1D-CNN-AD algorithm has the following hyperparameters: i) number of
filters; ii) kernel size; iii) batch size; iv) and number of epochs. These hyperpa-
rameters would be optimized in this study to achieve the best performance for
1D-CNN-AD algorithm.
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In the explorations, the CNN is initialized with a fixed seed of parameters
(i.e., weights and bias). The neural network is trained on training dataset with
Adam optimizer and cross-entropy loss function. Moreover, a 20% dropout is
also considered between the convolutional layer and dense layers.

Long Short-Term Memory Neural Network-Anomaly Detection Algo-
rithm Hypothesis of the LSTM-AD algorithm is identical to the hypothesis of
the 1D-CNN-AD algorithm.

The LSTM-AD algorithm in this work consists of one layer of LSTM followed
by two fully-connected (dense) layers to provide a classification probability. The
number of cells in the LSTM layer is equal to the number of neurons in the
first dense layer. The LSTM-AD algorithm has the following hyperparameters:
i) number of LSTM cells; ii) batch size; iii) and number of epochs. These hyper-
parameters would be optimized in this study to achieve the best performance
for LSTM-AD algorithm.

In the explorations, the LSTM is initialized with a fixed seed of parameters
(i.e., weights and bias). The LSTM-AD algorithm is trained on training dataset
with Adam optimizer and cross-entropy loss function.

2.3 Anomaly Detection

To estimate performance of the real-time anomaly detection of the algorithms,
validation dataset is processed in online-fashion. It means, that data is arriving
sample by sample. Each sample is collected into chunks. Chunks are collected
into windows, as was described in the section 2.1. Algorithms return anomalous
class probability for each window, which is collected to the buffer. After the
real-time estimation, collected probabilities are analyzed. Different thresholds for
anomalous class probability are estimated to achieve best results. This results in
the binary classification. These classification results are compared to the labels
of the validation dataset, resulting in confusion matrix. Accuracy and F1 score
are calculated from confusion matrix.

3 Baseline and Evaluation

3.1 Real-time tsSVM Anomaly Detection Algorithm

RTtsSVM-AD algorithm is based on a tslearn [34] Python library. Optimization
of hyperparameters is done by dividing training data into two datasets: training
and testing with ratio of 70%:30%. Trained classifier with best results for test
dataset is used in real-time performance estimation. Model step is calculated as
normal step ensemble average from test dataset, which consist of normal steps
that have been classified correctly.

The hypothesis of the algorithm is following: if full time-series step pattern
could be collected in real-time by combining the average normal step from train-
ing phase with the ongoing step data, then anomaly could be detected during
the swing phase of the ongoing step by the RTtsSVM-AD algorithm.



8 J. Rostovski et al.

We have adopted the RTtsSVM-AD algorithm in our prior work [28] as a
baseline for comparing the results of the proposed 1D-CNN-AD and LSTM-
AD algorithms in this paper.

Brief overview of the algorithm. Data is collected chunk wise, when step
start is detected. Step start and end events are detected if the step detection
threshold crosses 20% of the gyroscope magnitude range. Hyperparameter γ
is optimized on training and testing datasets. This hyperparameter is used by
the global alignment kernel (GAK), where γ is the hyperparameter controlling
soft dynamic time warping (softDTW) smoothness [34]. Multiple classifiers with
different values of γ could have same performance. Average normal step is created
from correctly classified normal steps from training dataset. In real-time in-step
gait anomaly detection performance estimation, if step start is detected, data
is collected into a chunk. This chunk is replacing corresponding chunk in the
model step. Such chunkwise replacement converts regular time-series SVM into
the real-time anomaly detection algorithm.

3.2 Evaluation Metrics

For evaluation, several metrics are exploited: Accuracy, F1-score, earliness, and
real-time factor (RTF). Earliness in this paper is defined as – time between the
beginning of a step and the moment in time when anomaly is detected in this
step. The minimal achievable earliness naturally depends on the gait deviation
type. Such a measure has been introduced, because the concrete moment when
anomaly starts to occur can fluctuate, depending on a gait type.

3.3 Score and Alarm.

For estimation of the performance of the algorithms, anomalous class probabil-
ity is collected from the classifier. Binary decision is performed later in post-
processing of the results. Score is the resulting anomalous class probability. For
RTtsSVM-AD algorithm Score is avarage score from used classifiers in estima-
tion, because multiple classifiers could be used simultaneously. Score is compared
with the selected threshold, giving alarm signal in (2), finalizing the anomaly de-
tection.

Alarm =

{
1, if S > threshold

0, if S ≤ threshold
(2)

If Alarm is triggered, then earliness is the time duration from the beginning
of the step to the current moment in time.

4 Experimental Setup

For 1D-CNN-AD and LSTM-AD algorithms, the considered hyperparameters
are presented in the Table 3 and Table 4.
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Table 3: Global hyperparameters for 1D-CNN-AD and LSTM-AD algorithms
Hyperparameter Values

Window factor (P) 6 to 10. Default 8

Chunk size 25ms to 100ms. Default 50ms

Samples in a chunk (M) 6 to 25. Default 12

Sliding window overlap (N) 1

Abnormality proportion threshold 50% to 90%. Default 70%

Batch size 2n where n is from 3 to 8. Default n is 5

Number of epochs in training 1 to 30. Default 20

Table 4: Algorithm-Specific Hyperparameters
Algorithm Specific Hyperparameters

LSTM-AD Number of LSTM cells: 20, 25, 30. Default: 25

1D-CNN-AD

Number of filters in convolutional layer:
2n where n is from 3 to 8. Default n is 6
Kernel size in convolutional layer: 2, 3, 5, 7, 9, 11. Default 5
Dense layer with 100 neurons

For the RTtsSVM-AD algorithm parameters used in this work are as follows:
a) one chunk is M = 12 samples; b) predefined γ values are in the range from
100 to 1000 with an increase of 100 and in the range from 5 to 100 with an
increase of 10; c) the step detection threshold is 200◦/s.

All training and validation experiments are implemented in Python 3.10.13,
tslearn 0.6.2, and TensorFlow 2.9.1 and performed on a prebuilt HP computer
with Intel Core i7 and 16Gb of DDR4 memory. We conducted CPU experiments
to model the execution on the embedded devices in future works.

5 Experimental Results and Discussion

Results for the 1D-CNN-AD , LSTM-AD and RTtsSVM-AD algorithms are pre-
sented in this section.

5.1 Optimization of 1D-CNN-AD and LSTM-AD Algorithms
Hyperparameters

In this paper, optimization is performed by one parameter at a time, while the
other parameters are set to their default values.

Chunk Length The first hyperparameter to consider is the length of the chunk.
Table 5 shows the best mean F1 scores with corresponding chunk sizes. It is
observed that the best results are achieved with chunk sizes of 75 and 100 ms for
all gait types for LSTM-AD and most of the gait types for 1D-CNN-AD. Chunk
size of 40 and 50 ms performed better for Steppage, and Trendelenburg gait
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types for 1D-CNN-AD algorithm. Despite the better performance with longer
chunks for some gait types, chunk size is set to 50 ms, with consideration of fast
anomaly detection. Larger chunk sizes would lead to slow anomaly detection.

Table 5: Best mean F1 scores for different chunk sizes (CS)
Gait
type

LSTM-AD 1D-CNN-AD
F1 CS, ms F1 CS, ms

Ataxic 62.63% 100 79.28% 75
Diplegic 72.36% 100 87.49% 100
Hemiplegic 81.03% 100 83.52% 75
Hyperkinetic 75.95% 100 96.3% 75
Parkinsonian 75.24% 100 84.65% 100
Slap 57.45% 75 78.7% 75
Steppage 75.09% 100 84.17% 40
Trendelenburg 59.65% 75 81.3% 50

Window Factor and Abnormality Proportion These hyperparameters
should be considered in correlation with each other because both of them change
the number of samples in the window, which can change the final label of the
window. Table 6 presents the best mean F1 scores for combination of window fac-
tor and abnormality proportion. It could be seen, that 1D-CNN-AD algorithm is
performing best with shorter windows for most of the gait types, whereas LSTM-
AD algorithm is performing best with longer windows for most of the gait types.
In terms of abnormality proportion threshold, for most of the gait types for
both 1D-CNN-AD and LSTM-AD algorithms higher threshold is needed. Only
for Hyperkinetic and Steppage gait types it was 70% for LSTM-AD and 60%
for 1D-CNN-AD algorithms respectively. It means, that for Hyperkinetic and
Steppage gait types edge cases are important for correct anomaly detection.
Thus, in general, most of the windows should contain mostly abnormal sam-
ples to be labeled abnormal for best performance. With the default settings for
other parameters, 1D-CNN-AD algorithm achieves mean F1 scores of 96.3% for
Hyperkinetic gait type. On the other hand, LSTM-AD algorithm achieves best
mean F1 score of 73.78% for Hemiplegic gait type.

Diplegic and Hyperkinetic gait types have anomalies in the middle and end
of the step, thus short windows should be best suited for them to detect abnor-
mality early, as can be seen in 1D-CNN-AD algorithm results. Both Ataxic and
Parkinsonian gait types have multiple abnormal steps in a row, which can be
similar to normal steps, thus requiring well defined long abnormal windows dur-
ing the training phase. Slap gait is usually characterized by the sharp short peak
at the end of the step, whereas the rest of the step can be similar to normal, thus
making it more critical to have a correct classification in edge cases. Steppage
gait type have different amplitudes from the normal step for its peaks when the
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knee is raised up to compensate for lack of movement in the forefoot. Hemi-
plegic gait type can be similar to a normal gait, which makes it more difficult to
differentiate from normal steps which require well-defined shorter windows.

Table 6: Best mean F1 scores for different window factor (WF) and abnormality
proportion threshold (AP)

Gait
type

LSTM-AD 1D-CNN-AD
F1 WF AP F1 WF AP

Ataxic 58.16% 9 90% 78% 10 90%
Diplegic 58.31% 8 90% 82.81% 7 80%
Hemiplegic 73.78% 10 90% 84.03% 6 90%
Hyperkinetic 69.05% 10 70% 95.15% 7 90%
Parkinsonian 63.25% 9 90% 84.38% 10 80%
Slap 62.55% 8 80% 86.9% 6 80%
Steppage 64.83% 10 80% 88.39% 6 60%
Trendelenburg 64.75% 10 80% 83.75% 6 90%

Number of filters and kernel size in the Convolutional Layer for 1D-
CNN-AD algorithm and number of LSTM cells for LSTM-AD algo-
rithm As presented in Table 7, the best scores for 1D-CNN-AD algorithm are
generally achieved with a higher number of filters of 128 and 256, except for
Diplegic gait type with 32 filters. This means that extracting more features from
the data improves the performance of the 1D-CNN-AD algorithm demonstrat-
ing the complexity of the human gait. For Diplegic gait type a smaller network
is best suited, meaning that extracting too many features can confuse the 1D-
CNN-AD algorithm, because the shapes of the abnormal steps for them are more
defined than the ones in other gait types.

Best performance is achieved for 1D-CNN-AD algorithm with medium kernel
size of 7 except for Hyperkinetic and Steppage gait types with a kernel size of
11 and for Parkinsonian and Trendelenburg gait types with kernel size of 9.
For Hyperkinetic, Steppage, Parkinsonian and Trendelenburg gait types bigger
kernel size is needed to neglect the variance between individual abnormal steps
in the data.

For LSTM-AD algorithm larger number of LSTM cells results in a better
performance, due to the complexity of the gait signal. For Ataxic, Diplegic and
Slap gait types algorithm performs best with 25 cells showing, that they have
simpler shapes, compared to other gait types. For Parkinsonian gait type the best
performance was with 20 cells, meaning, that this gait type, has more pronoun
shape, compared to other gait types.

Batch Size and Number of Epochs in Training As presented in Table 8,
the best scores are generally achieved with a bigger batch size of 128 and 256,



12 J. Rostovski et al.

Table 7: Best mean F1 scores for different numbers of LSTM cells (#C) and
1D-CNN kernel size (KS) and number of filters (#F)

Gait
type

LSTM-AD 1D-CNN-AD
F1 #C F1 KS F1 #F

Ataxic 52.4% 25 75.31% 7 75.04% 128
Diplegic 56% 25 81.67% 7 80.3% 32
Hemiplegic 61.37% 30 82.3% 7 87.87% 256
Hyperkinetic 69.5% 30 92.45% 11 86.7% 128
Parkinsonian 57.49% 20 85.45% 9 87.74% 128
Slap 56.95% 25 87.1% 7 81.8% 256
Steppage 60.17% 30 85.23% 11 87.43% 256
Trendelenburg 59.85% 30 83.05% 9 81.75% 128

except for Trendelenburg gait type with a size of 32 for 1D-CNN-AD algorithm,
and Slap and Trendelenburg gait types with size of 16 and 64 respectively for
LSTM-AD algorithm. This means, that a more accurate training gradient of the
neural network is needed for these gait types.

Table 8: Best mean F1 scores for different batch size (B) and number of epochs
(#E)

Gait
type

LSTM-AD 1D-CNN-AD
F1 B F1 #E F1 B F1 #E

Ataxic 56.11% 128 55.95% 5 77.52% 256 78.95% 3
Diplegic 68.77% 256 71.06% 5 85.92% 256 89.33% 5
Hemiplegic 77.08% 256 81.32% 2 85.08% 256 85.45% 4
Hyperkinetic 60.7% 256 73.2% 2 92.45% 256 98.1% 5
Parkinsonian 68.43% 256 66.38% 4 86.81% 256 88.36% 2
Slap 59.8% 16 55.8% 10 83.9% 256 90.8% 4
Steppage 64.89% 128 67.8% 5 87.7% 256 88.1% 2
Trendelenburg 55.4% 64 57.05% 10 81.3% 32 81.3% 20

In terms of the amount of training required by the algorithms, it is clear, that
more than 5 epochs could lead to overfitting, thus reducing classification quality
in this study. Only LSTM-AD algorithm performed better with 10 epochs for
Slap and Trendelenburg gait types, and 1D-CNN-AD algorithm performed bet-
ter with 20 epochs for Trendelenburg gait type. This could be due to similarities
between normal step and typical step shape for Trendelenburg gait type, thus
needing more time to properly fit the network. Considering the overall perfor-
mance of 55.8% for Slap gait type for LSTM-AD algorithm in epoch optimiza-
tion, algorithm struggled with this gait type. Training dataset usually contains
around 5000 windows, thus every epoch has around 39 iterations with batch size
of 128. Normal and abnormal steps have mostly consistent shapes in one gait
type. Thus, smaller number of epochs can fit such data better. Larger number
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of epochs could lead to lower performance due to overfitting of the training data
and would trigger anomaly detection while classifying unknown data. Therefore,
better results are generally achieved with 2 to 5 epochs.

Fig. 3: Distribution of accuracy across different chunk sizes for all persons for
different gait types. On y-axis is accuracy in percents or time in seconds, on
x-axis are different gait types.

Comparison of algorithms In Fig. 3 and Fig. 4 could be seen, that both 1D-
CNN-AD and LSTM-AD algorithms are outperforming the RTtsSVM-AD base
comparison algorithm. The best scores for all gait types are achieved by 1D-
CNN-AD algorithm with an average accuracy of 95% and average F1-score of
88%. LSTM-AD algorithm achieved an average accuracy of 87% and average F1-
score of 70%. Best results for 1D-CNN-AD algorithm are for Hyperkinetic and
Slap gait types with F1 scores of 98.1±2.7% and 90.8±9.3% respectively. It could
be observed that for Ataxic, Hemiplegic, Slap, Steppage, and Trendelenburg gait
types there are some deviations in results from person to person, that could be
improved with additional optimization. Best result for LSTM-AD algorithm is
achieved for Hemiplegic gait type with average F1 score of 81.32±9.96%. 1D-
CNN-AD algorithm is achieving accuracies over 92.6% for all gait types and F1
scores of over 83% for all gait types, except for Ataxic gait type with F1 score
of 78.95±15.43%. LSTM-AD algorithm achieved accuracies over 78.3% for all
gait types with F1 scores of 71.06±12.47%, 73.2±22.77% and 79.61±14.92% for
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Fig. 4: Distribution of F1 scores across different chunk sizes for all persons for
different gait types. On y-axis is F1 score in percents, on x-axis are different gait
types.

Diplegic, Hyperkinetic and Steppage gait types respectively. Lowest F1 score of
60.24±18.65% is achieved for Ataxic gait type.

Time of detection is relevant, when classification accuracy is high. Typical
normal step length in this study is ranging from 1 to 1.2 seconds depending on the
person, whereas abnormal step duration ranges from 1 to 1.7 seconds, depending
on the person and gait type. Mid-swing phase of the step is starting at around 0.2-
0.4 seconds from the step beginning. Therefore, for the earliness metric depicted
in Fig. 5, it could be observed that for most gait types the earliness is less than
one second. For Steppage gait type the most common earliness measure is around
0.6 seconds for RTtsSVM-AD and LSTM-AD algorithms and 0.2 seconds for 1D-
CNN-AD algorithm which is in the middle or at the beginning of a step. For
other gait types it could be observed that detection was mainly in the middle
of a step, which shows, that algorithms can detect anomalies early, during the
mid-swing phase of a step. For some gait types RTtsSVM-AD and LSTM-AD are
detecting abnormality earlier than 1D-CNN-AD, but in combination with quality
of prediction, 1D-CNN-AD is outperforming other presented algorithms.

In Table 9, it can be observed that the main issue of RTtsSVM-AD algorithm
is computational real-time factor. It means that for every second of incoming
data, it takes 9.13±6.54 seconds to classify it, which is 3 to 15 times longer than
the amount of collected data in real-time. The main reason for this is the usage of
prediction probability in tslearn classifier, which uses an expensive 5-fold cross-
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Fig. 5: Distribution of Earliness across different chunk sizes for all persons for
different gait types. On y-axis is time in seconds, on x-axis are different gait
types.

Table 9: Average real-time factor for all algorithms
Algorithm RTF

1D-CNN-AD 0.09±0.03
LSTM-AD 1±0.07
RTtsSVM-AD 9.13±6.54

validation method to calculate probability. Using regular class prediction is not
possible due to inaccurate results from the classifier, as it outputs only zero
or one as class identification, drastically reducing classification quality. LSTM-
AD algorithm is performing classification in near real-time but not faster than
it, because recurrent operations of the algorithm are computationally expensive.
Thus, 1D-CNN-AD algorithm is most suitable for real-time applications, for
example, to operate in real-time on a real gait assistive device.

This work have several limitations: a) Simulated gait deviation could differ
from the real patient’s gait with neurological disorders. However, the main goal
in this study is to classify the step as normal or abnormal during the mid-swing
phase of the step. If patient’s normal step pattern after the rehabilitation is suffi-
ciently different from the patient’s abnormal step pattern (i.e. because of fatigue
or other reasons), then algorithms will be able to detect gait abnormalities dur-
ing the mid-swing phase of the step as they are able to detect them in this study
with simulated gait. Also, as it was stated in the section 2.1: simulations are
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recreating actual patients’ video recordings of gait deviations in collaboration
and guidance from a professional physiotherapist of Tallinn East Central Hospi-
tal. Thus, such simulated gait types are representing real gait types as close as
possible. b) Neural networks in this study are not aware of the gait phase, thus
multiple alarms could be triggered during one abnormal step, thus they would be
optimized further. Cross-correlation of different hyperparameters could improve
classification performance and would be studied in future work.

6 Conclusion

Proposed in this study real-time in-step anomaly detection algorithms are at the
very beginning of the research towards context aware assistive devices, which will
help to improve gait quality and reduce falling risk for patients suffering from
neurological disorders.

Results of this study shows that 1D-CNN-AD algorithm is suitable for real-
time anomaly detection in realistic gait deviations during the ongoing step with
average earliness of 0.4 seconds. An average accuracy of 95% and average F1 score
of 88% across different studied gait types is achieved for 1D-CNN-AD algorithm,
with best F1 score of 98.1±2.7% for Hyperkinetic gait type. Benefits of this
algorithm are, that it is not dependent on gait phases, resistant to the non-
optimal hyperparameters and can run in real-time. Second proposed LSTM-
AD algorithm achieved average accuracy of 87% and average F1-score of 70%
across different studied gait types and best result is achieved for Hemiplegic gait
type with F1 score of 81.3±9.96%.

Future gait correction systems and assistive devices will benefit from context
awareness in a form of real-time anomaly detection algorithms, leading to more
tailored approach for patients suffering from neurological disorders. This will help
them to maintain better gait quality, which they obtained after rehabilitation,
giving higher chance to continue daily living activities without major restrictions.
Main benefit of context aware assistive devices compared to regular assistive
devices would be less muscle fatigue from using it. Considering, that FES is used
in current assistive devices [21, 22, 16], where electrical stimulation is given every
step, context aware FES would be used only, when step deviation is detected
and stimulation is necessary.

Future work will be focusing on further optimization of the presented algo-
rithms, in-step abnormality estimation with more persons and real-time in-step
abnormality detection tests with embedded devices running proposed in this
study algorithms.
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13. Kuusik, A., Gross-Paju, K., Maamägi, H., Reilent, E.: Comparative study of four
instrumented mobility analysis tests on neurological disease patients. In: 2014 11th
International Conference on Wearable and Implantable Body Sensor Networks
Workshops. pp. 33–37. IEEE (2014)

14. Lavado, D.M., Vela, E.A.: A wearable device based on imu and
emg sensors for remote monitoring of elbow rehabilitation. In: 2022
E-Health and Bioengineering Conference (EHB). pp. 1–4 (2022).
https://doi.org/10.1109/EHB55594.2022.9991526

15. Li, R., Song, C., Wang, D., Meng, F., Wang, Y., Tang, Q.: A Novel Ap-
proach for Gait Recognition Based on CC-LSTM-CNN Method. In: 2021
13th International Conference on Intelligent Human-Machine Systems and
Cybernetics (IHMSC). pp. 25–28. IEEE, Hangzhou, China (Aug 2021).
https://doi.org/10.1109/IHMSC52134.2021.00014

16. Matsumoto, S., Shimodozono, M., Noma, T., Miyara, K., Onoda, T., Ijichi,
R., Shigematsu, T., Satone, A., Okuma, H., Seto, M., Taketsuna, M.,
Kaneda, H., Matsuo, M., Kojima, S., the RALLY Trial Investigators: Ef-
fect of functional electrical stimulation in convalescent stroke patients: A



18 J. Rostovski et al.

multicenter, randomized controlled trial. Journal of Clinical Medicine 12(7)
(2023). https://doi.org/10.3390/jcm12072638, https://www.mdpi.com/2077-
0383/12/7/2638

17. Miller, L., McFadyen, A., Lord, A.C., Hunter, R., Paul, L., Rafferty, D., Bowers, R.,
Mattison, P.: Functional electrical stimulation for foot drop in multiple sclerosis:
a systematic review and meta-analysis of the effect on gait speed. Archives of
Physical Medicine and Rehabilitation 98(7), 1435–1452 (2017)

18. Moura Coelho, R., Gouveia, J., Botto, M.A., Krebs, H.I., Martins, J.:
Real-time walking gait terrain classification from foot-mounted iner-
tial measurement unit using convolutional long short-term memory neu-
ral network. Expert Systems with Applications 203, 117306 (2022).
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117306

19. Murray, M.: Gait as a total pattern of movement. American journal of physical
medicine 46(1), 290—333 (February 1967)

20. Napieralski, J.A., Tylman, W., Kotas, R., Marciniak, P., Kamiński, M., Janc, M.,
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Abstract—The automatic detection of gait anomalies can lead
to systems that can be used for fall detection and prevention. In
this paper, we present a gait anomaly detection system based on
the Matrix Profile (MP) algorithm. The MP algorithm is exact,
parameter free, simple and efficient, making it a perfect candidate
for on the edge deployment. We propose a gait anomaly detection
system that is able to adapt to an individual’s gait pattern
and successfully detect anomalous steps with short latency. To
evaluate the system we record a small database of enacted
anomalous steps. The results show the system outperforms a
more complex Neural Network baseline.

Index Terms—gait, anomaly, matrix profile, fall detection, edge

I. INTRODUCTION

Certain neurological disorders reflect on an individual’s
ability to maintain stable gait. This can lead to falls and cause
significant physical, emotional and financial setbacks for the
individual and their family, as well as a burden to health-care
providers [1], [2]. Even though 46% of neurological patients
fall at least once a year, potential predictors of falls are poorly
investigated and understood [3].

There are two general approaches to analyzing the causes
of falls: fall risk assessment through clinical investigations
[3]–[6], and computerized gait analysis [1], [2], [7]–[9]. In
[3], the authors distinguish fallers from non-fallers among
neurological patients, based on spatio-temporal, variability and
asymmetry gait parameters. Similarly, [7] make a retrospective
classification between fallers and non-fallers among patients
with Multiple Sclerosis based on accelerometer and gyroscope
data, applying deep learning models. The desire is to develop
early, automatic prediction of missteps that might cause falling
and a way to intervene and prevent it.

The wrong step in one’s gait is an anomaly, or outlier, in
the sequence of normal steps [10]–[12]. Detecting anomalies
in streaming data is a challenging task: (i) the stream is
infinite, which makes storing the entire stream impossible;
(ii) the stream contains mostly normal instances and much
less anomalies; and (iii) streaming data evolves over time,

This work has been supported by Estonian Research Council, grant No
PRG424.

imposing the need for adaptation [11], [13]. When dealing
with anomalies in gait, there’s an additional challenge in that
there is both interpersonal variability, i.e. each person’s gait is
unique, as well as intrapersonal variability as one’s gait is not
set in stone.

Solving the problem requires a robust algorithm that will
work on streaming data, in an unsupervised and automated
fashion, and that will be able to detect the anomaly with
the highest possible accuracy as early as possible, a problem
termed early classification of time series [14]. Many anomaly
detection algorithms exists, supervised and unsupervised, yet
the vast majority of them are unsuitable for real-time streaming
applications [15]. Moreover, algorithms operating on small
data, e.g. shapelets [16], are still in its nascence.

In this paper, we present a gait anomaly detection system
based on the Matrix Profile (MP) algorithm [17]. The MP algo-
rithm is exact, simple and parameter free, with low complexity.
Additionally, it is shaplet-based and thus interpretable [18]. We
first explore the plausibility of using the MP as a basis for a
gait anomaly detection system and then develop it’s design. To
evaluate the system’s performance we record a small database
of enacted anomalous steps. Finally, we compare the proposed
system to a more complex Neural Network baseline.

II. MATRIX PROFILE

The following definitions of the MP are slightly modified
from [17], [19] and [20], in favor of mathematical correctness
and conciseness. A time series T = {tk}nk=1 is a sequence
of n real values. The sub-sequence of m consecutive terms of
T, starting from the position i, where 1 ≤ i ≤ n − m + 1,
will be denoted by Ti,m. Thus, Ti,m = {tk}i+m

k=i . The
sub-sequences will be compared using the z-normalized Eu-
cledian distance. An all-subsequences set AT of a time
series T is an ordered set of all possible sub-sequences of
T obtained by sliding a window of length m across T:
AT = {T1,m,T2,m, . . . ,Tn−m+1,m}. The matrix profile
(MP) is a vector of length n−m+1 corresponding to all-sub-
sequences set, whose i-th location is the distance of the sub-
sequence Ti,m, to its nearest neighbor, under z-normalized
Euclidean Distance.20
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TABLE I
DATASET OF ANOMALOUS STEPS RECORDED FOR THE ANALYSIS.

Pathology recordings ok ab duration [min]
Antalgic 7 156 42 6.61
Ataxic 4 82 27 3.90
Diplegic 6 139 36 6.05
Hemiplegic 5 100 28 6.61
Hyperkinetic 4 95 30 4.04
Parkinsonian 4 100 30 4.07
Slap 5 105 37 4.59
Steppage 9 185 58 7.05
Trendelenburg 4 85 30 4.13
Total 48 1047 318 44.60

Note that trivial matches are avoided, that is the sub-
sequences that overlap at least in the half length with Ti,m

are not taken into account in computing the i-th component
of the matrix profile of T ( [17]). Given a time series T, the
sub-sequence Ti,m is said to be the discord of T if Ti,m has
the largest distance to its nearest (non-trivial) match.

In the whole algorithm there is only one parameter to set –
the length of the sub-sequence. In our application scenario, this
would correspond to the length of a single step. Extracting the
motif, i.e. reoccurring pattern, and discord from our generated
gait data set means extracting the normal and anomalous step,
correspondingly. We used the STAMP (Scalable Time series
Anytime Matrix Profile) [17] and STOMP (Scalable Time
series Ordered-search Matrix Profile) [17], [21] algorithms
for generating the matrix profile and detecting both motif and
discord of particular time series.

III. DATASET

We recorded a small dataset that includes anomalous steps
dispersed amidst normal walking patterns by a single male
subject on a hard surface. The anomalous steps were meant to
mimic pathological step patterns from different disorders. In
total 9 pathological step patterns were included in the dataset
as shown in Table I. The recording protocol comprised of
walking a straight line of around 10 steps and acting out
a pathological step pattern in the middle. Each recording
contains around 4 stretches of 10 steps.

We recorded the data using a Shimmer Inertial Measurement
Unit (IMU) sensor placed on the foot of the subject that
records accelerometer and gyroscope signals in the 3 axes
[23]. All the data was annotated in a two-step process: (i)
steps were automatically segmented, q.v. Sec V-A, and (ii)
the segments were manually corrected and labeled with three
labels: “ok” for a normal step, “ab” for an anomalous step.

IV. PLAUSIBILITY

We first explore the plausibility of using the MP for anoma-
lous gait detection by implementing a naı̈ve algorithm shown
in Fig. 1. In it, signal samples are accumulated in a Frame
buffer, which is updated at a specified hop length analogous
to a sliding window. As new samples are added to the Frame
buffer, the oldest ones are transferred to a larger History buffer.

MP anomaly detection

Buffer + frame
extraction

Frame
buffer

Sensor
signal

History
buffer

Matrix Profile
AB join

Anomaly
alarmComparator

MP discord
threshold

Fig. 1. Architecture of the naı̈ve implementation of a MP-based anomaly
detection algorithm.

Fig. 2. Visualization of the functioning of the naı̈ve algorithm for a sample
acceleration signal from the database (top plot) in which there are 7 normal
steps followed by 2 anomalous steps and then 3 more normal steps. The
contents of the Frame and History buffers are highlighted in violet and green.
The MP discord is calculated for each update of the Frame Buffer (bottom
plot) and is compared to a threshold (green) raising an alarm if it goes above
(red lines).

The contents of these two buffers overlap up to the specified
exclusion zone for the MP algorithm (25%).

For each update of the Frame and History buffers, the MP
is calculated by using the Frame buffer to query the History
buffer. The value for the MP is then compared to a discord
threshold and if larger the system activates an Anomaly alarm.
The Frame buffer size, i.e. the subsequence length m, and the
discord threshold are the two critical system parameters.

Fig. 2 shows a qualitative inspection of the naı̈ve algorithm
for a sample acceleration signal. We can see that the algorithm
does indeed successfully detect the onset of anomalous steps
raising an alarm, thus validating the approach.

V. MP-BASED GAIT ANOMALY DETECTION SYSTEM

In the results from the naı̈ve implementation, we can see that
there is a problem at the start of the signal, where it generates
false alarms. This is because at this point in time the History
Buffer does not contain any step signatures. Based on our
inspection, we designed an improved MP system architecture
in which we integrate step detection, shown in Fig. 3. The
input sensor signals are now forwarded from the Frame buffer
and accumulated in a Current step buffer. The step detection
module analyses the contents of the Current step buffer on
each update, and upon detecting the start of a new step it
moves the contents of the Current step buffer to the History
buffer.
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MP anomalous step detection

Buffer + frame
extraction

Current step
buffer

Sensor
signal

History
buffer

Distance
threshold

Anomaly
alarmComparator

Frame
buffer

Matrix Profile
AB-join

Step
detection

Step
threshold

Fig. 3. Architecture of the MP step based anomaly detection algorithm.

Automatic step segmentation

Buffer + frame
extraction

frame based processing

gyroscope
3D signal

calculate L∞

1D signal

calculate
threshold

find
maximum

find threshold
crossings

step
segments

add offsets

pair
segments

Fig. 4. Block schematic of the step detection algorithm (top), and step
detection results for a sample signal (bottom).

The MP is calculated for each update of the Current step
buffer, but only if the Step detection module has detected a step
has started. In this case, the subsequence length m changes
and is equal to the length of the signal stored in the Current
step buffer.

A. Step detection algorithm

The block schematic of our step detection algorithm is
shown in the top plot of Fig. 4. It is based on an adaptive
threshold that’s used to detect crossings of the maximum
amplitude envelope of the input signal. Offsets are applied to
the crossings to account for the step onset and release below
the threshold. The amplitude envelope is calculated with a
wide 100 ms window that also acts as a low-pass filter. The
threshold is adaptive and is recalculated with each update of
the History buffer from the maximum value of the envelope
signal stored in the History buffer. In fact, setting the step
segmentation threshold high initially, let’s the algorithm adapt
only when actual steps are buffered in the History buffer. The
results from using it on the sample signal are shown in the
bottom plot. In a subset of experiments we determined that
the L∞ 1D projection of the gyroscope signal gives the best
step segmentation results.

VI. EXPERIMENTS

We conducted a set of experiments to optimize and evaluate
the proposed system.

Fig. 5. Visualization of the functioning of the MP-based baseline system for
gait anomaly detection.

Plausibility. As with the naı̈ve implementation, we qualita-
tively evaluated our MP-based gait anomaly detection system
with sample signals from our database.

Sensor signal. We analyzed the performance of the MP
algorithm when the three different axes of the gyroscope and
accelerometer signals are used, and their L1, L2 and L∞
norms.

External signals as reference. We evaluate the possibility
of using preset normal steps from external sources as reference
in the History buffer. This has the potential to ease deployment,
but comes at the cost of curbing adaptation. Here, we make
two subexperiments: 1) extracting the reference from the
diplegic/hemiplegic signals, and 2) using a mix of segments
from all anomalies, 10 s each. For a fair comparison we also
use increased lengths of the History buffer.

Neural Network baseline. To evaluate the comparative
performance of our proposed algorithm we design, train and
optimize a Neural Network baseline system based on recur-
rent LSTM (long short-term memory) layers. The optimized
architecture of the model comprises two layers of bidirectional
LSTMs with a size of 256, followed by a 3-hidden layer
feedforward network, sizes 256, 128, and 64, and a final output
neuron with a linear activation function. All layers in the
network were followed by batch normalization and a dropout
of 0.2. The network was fed 2 s of the Sensor signal.

While for the other experiments we use a smaller subset of
the data for efficiency, here we use a larger proportion to get
a better estimate for in-the-wild performance.

Evaluation metrics. To evaluate the performance of our
proposed system we employed metrics commonly used in bi-
nary classification tasks including the F1 score, ROC (Receiver
Operating Characteristic) and earliness, i.e. the average latency
in seconds needed for the system to raise an alarm upon the
onset of an anomalous step.

VII. RESULTS

Plausibility. Fig. 5 shows the contents of the Current step
and History buffers as well as the calculated MP and detected
alarms for the L1 norm of a sample gyroscope signal. We
can see that indeed the MP algorithm is capable of detecting
anomalous steps, and also and deals efficiently with the start
of the signal.
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Fig. 6. Best case F1 - score for different axes and norms from the
accelerometer (top), gyroscope (middle), and both (bottom) signals.

Sensor signal. The F1 results for the accelerometer and
gyroscope signals, across all anomalies, are shown in Fig. 6.
The relative F1 really varies across the anomalies for the
accelerometer signal. For the gyroscope signal they are more
consistent, with the L∞ norm performing better, while using
or adding multiple axes, degrades performance. In the bottom,
we can see that the gyroscope L∞ norm outperforms the
accelerometer L∞ norm, as well as when both signals are
used.

External signal reference. The results from using different
lengths of the History buffer and different signals used as
reference are shown in Fig. 7. Comparing the mean ROC
curves, we can see that on average, there is benefit of using
a mixed signal reference. Closer inspection however, omitted
here for brevity, shows that the results vary by anomaly.

Neural Network baseline. The F1 results comparing the
Neural Network baseline to the proposed model are shown in
the top of Fig. 8. It can be seen that the MP-based algorithm
outperforms the Neural Network baseline by a wide margin.
The Neural Network does provide faster reaction times than
the MP-based system as can be seen in the bottom plot. We
also measured the real-time factor of the two algorithms and
found that it is 10× higher for the Neural Network baseline.
This might point towards possible deployment issues on edge
devices.

Fig. 7. Mean ROC for the MP-based system for different lengths of the
History buffer and different signals used as reference.

Fig. 8. Mean F1 (top) and earliness (bottom) for the MP-based system
compared to the Neural Network baseline.

VIII. CONCLUSION

We propose a gait anomaly detection system based on the
Matrix Profile algorithm. The system relies on lean digital
signal processing to adapt to an individual’s gait pattern and
to successfully detect outliers with low latency. The system
obtains high F1 scores across anomalies, outperforming a more
complex Neural Network baseline. Its low complexity makes
the MP based gait anomaly detection system a good candidate
for edge deployment.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on February 27,2024 at 12:38:30 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] C. Ni Scanaill, C. Garattini, B. R. Greene, and M. J. McGrath,
“Technology innovation enabling falls risk assessment in a community
setting,” Ageing international, vol. 36, pp. 217–231, 2011.

[2] J. Kim, M.-N. Bae, K. B. Lee, and S. G. Hong, “Gait event detection
algorithm based on smart insoles,” ETRI Journal, vol. 42, no. 1, pp.
46–53, 2020.

[3] A. Ehrhardt, P. Hostettler, L. Widmer, K. Reuter, J. A. Petersen,
D. Straumann, and L. Filli, “Fall-related functional impairments in
patients with neurological gait disorder,” Scientific reports, vol. 10, no. 1,
p. 21120, 2020.

[4] R. Schniepp, A. Huppert, J. Decker, F. Schenkel, C. Schlick, A. Rasoul,
M. Dieterich, T. Brandt, K. Jahn, and M. Wuehr, “Fall prediction
in neurological gait disorders: differential contributions from clinical
assessment, gait analysis, and daily-life mobility monitoring,” Journal
of neurology, vol. 268, pp. 3421–3434, 2021.

[5] A. L. Leddy, B. E. Crowner, and G. M. Earhart, “Functional gait assess-
ment and balance evaluation system test: reliability, validity, sensitivity,
and specificity for identifying individuals with Parkinson disease who
fall,” Physical therapy, vol. 91, no. 1, pp. 102–113, 2011.

[6] R. C. Vance, D. G. Healy, R. Galvin, and H. P. French, “Dual tasking
with the timed “up & go” test improves detection of risk of falls in
people with Parkinson disease,” Physical therapy, vol. 95, no. 1, pp.
95–102, 2015.

[7] B. M. Meyer, L. J. Tulipani, R. D. Gurchiek, D. A. Allen, L. Adamowicz,
D. Larie, A. J. Solomon, N. Cheney, and R. S. McGinnis, “Wearables
and deep learning classify fall risk from gait in multiple sclerosis,” IEEE
journal of biomedical and health informatics, vol. 25, no. 5, pp. 1824–
1831, 2020.

[8] C. Monoli, J. F. Fuentez-Pérez, N. Cau, P. Capodaglio, M. Galli, and
J. A. Tuhtan, “Land and underwater gait analysis using wearable IMU,”
IEEE Sensors Journal, vol. 21, no. 9, pp. 11 192–11 202, 2021.

[9] Y. Gao, Z. Jiang, W. Ni, Z. L. Vasic, M. Cifrek, M. Du, M. I. Vai,
and S. H. Pun, “A novel gait detection algorithm based on wireless
inertial sensors,” in CMBEBIH 2017: Proceedings of the International
Conference on Medical and Biological Engineering 2017. Springer,
2017, pp. 300–304.

[10] F. E. Grubbs, “Procedures for detecting outlying observations in sam-
ples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.

[11] S. Ahmad and S. Purdy, “Real-time anomaly detection for streaming
analytics,” arXiv preprint arXiv:1607.02480, 2016.

[12] M. Munir, S. A. Siddiqui, A. Dengel, and S. Ahmed, “DeepAnT: A deep
learning approach for unsupervised anomaly detection in time series,”
Ieee Access, vol. 7, pp. 1991–2005, 2018.

[13] S. C. Tan, K. M. Ting, and T. F. Liu, “Fast anomaly detection for
streaming data,” in Twenty-second international joint conference on
artificial intelligence IJCAI’11, vol. 2. AAAI Press, 2011, pp. 1511–
1516.
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ABSTRACT Real-time gait anomaly detection in gait analysis is an active area of research. However,
anomaly detection within the swing phase of a step is not being well addressed in existing research. To
address this, we propose a real-time gait deviation detection algorithm called signal shape tracking anomaly
detection (SST-AD) and a framework to estimate the performance of anomaly detection in the proposed and
other state-of-the-art algorithms. The SST-AD algorithm is compared to widely used algorithms, namely
One-Class Support Vector Machine (OCSVM), Long Short-Term Memory (LSTM) and One Dimensional-
Convolutonal Neural Network (1D-CNN). F1 score, recall, precision, real-time factor (RTF), and ”earliness”
measures are estimated and analyzed. The ”earliness” is a new metric which defines the time between the
beginning of a step and the moment in time when the step is classified as abnormal. The results demonstrate
that the SST-AD algorithm can detect gait abnormalities during the mid-swing phase of an ongoing step.
In terms of accuracy and F1 score, the SST-AD algorithm achieves similar performance to that of 1D-
CNN algorithm but with significantly lower computational complexity. SST-AD can process 1 second of
data in 90ms while 1D-CNN requires 550ms. Importantly, the best average earliness is achieved by the
SST-AD algorithm at 0.4s from the initial-swing phase start. Based on the results, SST-AD is found to be
the best suited algorithm for real-time gait anomaly detection and should be considered to be used in future
embedded assistive devices.

INDEX TERMS Anomaly detection, Earliness, Gait assessment, Machine Learning, Real-time system,
Signal Shape Tracking Anomaly Detection algorithm

I. INTRODUCTION

Neurological diseases, ranging from migraine to stroke and
Alzheimer, are the leading causes of Disability Adjusted Life
Years (DALY) loss [1]. Gait quality is one of the primary
aspects of daily life that can be detrimentally affected. To
help address problems with gait quality, different assistive
gait correction devices are used. Simple mechanical devices
such as ankle-foot orthoses can reduce the risk of falling [2],
but do not completely eliminate it. Patients with gait impair-
ments stemming from neurological diseases, especially those

suffering from neuromuscular diseases, are at substantial risk
of falling due to high variability and deviations from the op-
timal gait pattern [3] [4]. For example, certain diseases cause
abrupt gait changes, such as freezing episodes of Parkinson’s
Disease (PD) [5]. Other diseases, such as Multiple Sclerosis
(MS), may contain long durations of relapse episodes with
individual impact and slow progression [6]. Consequently,
neurodegenerative diseases can affect gait quality and change
its locomotion cycle to abnormal [7].

In recent years, wearable motion sensors containing mul-
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tidimensional Inertial Measurement Units (IMUs) have been
widely used in gait assistive devices [8]–[10]. Such devices
are used to support patients with neurological diseases and in
performing regular daily activities [11]. IMUs are also used
as data input devices to detect initial and final contact events
of the gait cycle and select the best algorithms and sensor
placements for correct classification between persons who
are healthy, had a stroke have Alzheiemr or Parkinson’s dis-
ease or with other neurological disorders [12], [13]. Such data
is also used to detect activities of daily life, fall events and
their directions [14], determine gait parameters, identification
of persons [15]–[17], and discover environment-dependent
differences in gait, which can help to make context-aware
decisions [18].

Studies have shown that one of the effective gait assistive
techniques is based on Functional Electrical Stimulation
(FES), which is used to assist walking and help prevent
falls [19], as well as to improve gait quality in general
[20]. Long-term gait deviation analysis and efficient run-
time control of FES devices require automated real-time
recognition of gait deviations. During the normal walking
of older adults the average swing phase of a step lasts 300-
400 ms [21]. Within this time, it is required that the step’s
incoming signal is processed, the correct decision made, and
gait correction executed. Considering that the full contraction
of the muscle using electrical stimulation requires 100-200
ms of continuous muscle stimulation [22], gait deviation
should be detected in less than 100 ms. However, the swing
phase duration can be shorter than the average swing phase
duration, and thus the target detection time should be under
50 ms to meet the time constraint.

Existing real-time algorithms are used to detect gait events
such as heel-strike and toe-off in healthy young and elderly
persons, stroke patients, and patients with Parkinson’s dis-
ease [23]–[25], children with cerebral palsy [26], as well
as patients with other impairments [27], [28], by means of
e.g. recurrent neural networks (RNN), heuristics, thresholds,
support vector machine (SVM), reduced support vector ma-
chine (RSVM), and finite state machine (FSM) algorithms.
Real-time haptic biofeedback devices are implemented to
correct toe-in or toe-out during walking, using foot progres-
sion angle gait algorithm [29]. Real-time algorithms, such
as convolutional long short-term memory neural network
(CLSTM-NN), heuristic and fast complementary filter (FCF)
algorithms are widely studied for classification of gait terrain
and walking modes such as overground walking, stair ascend
or descend, and others [30]–[32]. Lastly, real-time gait tra-
jectory prediction [33] and gait pattern classification for full
steps are implemented using a convolutional neural network
(CNN) [34].

According to the [35], SVM-based methods are the most
widely used for automated gait analysis, followed by CNN.
SVM’s advantages include the capability to operate with
relatively small datasets (10’s to 100’s of samples), and high
computational efficiency [14], [36], whereas CNN tends to
require larger datasets for good classification performance,

for which the datasets have close to or more than 1000’s of
samples [30], [34]. However, there is a lack of research for
analyzing how well machine learning methods, particularly
SVM, perform in detecting real-time typical gait deviations
caused by neurodegenerative diseases.

In the [37], real-time performance of the thereal-
time tslearn support vector machines anomaly detec-
tion (RTtsSVM-AD) algorithm was explored, which was able
to detect abnormalities in the step. The downside of this
algorithm is its computationally expensive five-fold corre-
lation used to calculate probabilities of the abnormal class,
which means it does not process the real-time signal fast
enough. Real-time operation is crucial for the possibility
of the algorithms to be deployed on low-power embedded
devices. Thus, to truly estimate the performance of the SVM
based algorithm, in this paper we propose the one-class
support vector machine (OCSVM) algorithm which does not
have the same limitation as the RTtsSVM-AD algorithm. The
aim of the OCSVM algorithm is to estimate the most popular
machine learning method in gait analysis, i.e. SVM, in real-
time in-step gait deviation detection. The second most popu-
lar algorithms in gait analysis are based on neural networks
and in [38] we investigated the performance of the 1D-CNN
and LSTM based real-time in-step gait deviation detection
algorithms. Neural network based algorithms are promis-
ing and achieve high accuracy, but require time-consuming
hyperparameter adaptation and can be prone to underfit or
overfit the data with sub-optimal parameters. To overcome
this, a heuristic algorithm is proposed in this paper, which
mitigates the need for time-consuming hyperparameter opti-
mization and high computational power need for the model
training and is able to achieve or surpass the performance of
the presented neural-network based algorithms.

In view of the above, in this paper we provide the following
novel contributions:

• In this work, a benchmark framework is presented to
estimate the real-time anomaly detection performance
of different algorithms. This framework provides data
preprocessing tools and allows estimating the data in
a way that allows to perform real-time in-step gait
deviation detection. To estimate the performance of the
algorithms, simulated gait deviation data was collected
according to the clinical trial protocol approved by
Estonian National Institute for Health Development,
permission No.818. In total, approximately, 11625 steps
collected in 155 gait recordings during 27 recording
sessions by 22 subjects. The resulting dataset combines
both normal and abnormal step patterns within a single
gait recording, which was not available in the state of the
art until now. To the best of the authors’ knowledge, it
is the first dataset that incorporates eight common types
of different gait deviations in a unified manner, thereby
providing an opportunity for more comprehensive re-
search on gait anomaly detection algorithms.

• We propose and implement novel real-time in-step gait
deviation detection algorithm - the signal shape tracking
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anomaly detection (SST-AD), which can be used for in-
step anomaly detection. The SST-AD algorithm is com-
pared to state-of-the-art algorithms, namely One-Class
Support Vector Machine, Long Short-Term Memory and
One Dimensional-Convolutonal Neural Network. The
presented algorithms achieve an average accuracy and
F1 scores of 91% and 81% for SST-AD; 86.5% and
70.1% for LSTM; 95% and 88.2% for 1D-CNN; 74%
and 54.9% for OCSVM, respectively. Results for in-step
anomaly detection earliness are on average from 0.4s to
0.5s, which is during mid-swing phase of the step. The
SST-AD algorithm is the best performing over the tested
algorithms, which includes simple hyperparameter opti-
mization and lightweight algorithm structure. The SST-
AD algorithm achieves fast gait deviation detection time
and low latency and is suitable for implementation in
embedded devices.

The rest of the paper is organized as follows: In Section
II we outline the data collection protocol, data preparation,
and classification measures. Section III provides an overview
of the proposed benchmark and framework for evaluating the
real-time in-step anomaly detection algorithms. Sections IV
to VI offer detailed insights into the proposed algorithms.
Section VII begins with the evaluation setup and proceeds
to comprehensively describe results achieved for real-time
in-step classification. These findings are discussed in section
VIII and concluded in section IX.

II. DATA COLLECTION PROTOCOL, GAIT TYPES AND
PERFORMANCE METRICS
To evaluate the performance of the algorithms, we collected
simulated gait deviation data from 22 healthy subjects of
different genders, ages, heights and weights (Table 1). The
healthy subjects simulated gait deviations by recreating video
recordings of gait deviations from actual patients, with the
collaboration and guidance of a professional physiotherapist
of Tallinn East Central Hospital, Estonia.

A. GAIT TYPES
The most frequent eight gait abnormalities which can be
treated or corrected with FES are selected as follows: Ataxic
[39], Diplegic [40], Hemiplegic [41], [42], Hyperkinetic [43],
[44], Parkinsonian [45], Slap [46], Steppage [47] and Tren-
delenburg (lurch) [48] gait types [49]. In the rest of this study
we use the wording "gait type" in terms of a human gait with
an abnormal step pattern.

B. DATA ACQUISITION
During the 27 sessions of the data collection process, normal
and simulated abnormal steps were combined according to
the following procedure depending on the gait type:

1. Normal gait steps + one abnormal step
2. Normal gait steps + one abnormal step +

normal gait steps
3. Normal gait steps + f · abnormal steps +

normal gait steps + f · abnormal steps,

where f ∈ N.
Each motion data recording contains deviations of one

specific gait type. Such procedures were chosen as per the
recommendations of the physiotherapist. In actual patient
gait video recordings, it can be seen that the number of abnor-
mal steps, which is present in their gait type, is dependent on
the gait type itself, fatigue levels and can change over time.
Therefore, imbalanced datasets have been collected to reflect
this. Most of the chosen gait types affect either both sides
of the body or whole body, excluding Hemiplegic, Slap and
Steppage gait types. Thus, procedure 3 was commonly used
for them to mimic real patients gait patterns. Hemiplegic and
Steppage gait types usually affect one side of the body or
one leg, whereas Slap gait can affect either one or both sides.
Thus, the first two procedures were possible for Hemiplegic,
Slap and Steppage gait types. The amount of abnormal steps
in one data recording corresponds to between 20% to 35%
of all steps, depending on the type of gait, reflecting the
proportion of abnormal to normal steps of the actual patients.
Such an imbalance is considered as minor imbalance and
should not have significant effect on the training quality.

TABLE 1: Subjects’ Information Used in This Study (Mean
± Standard Deviation)

No. of subjects and gender Age (years) Height (cm) Mass (kg)
15 Males 32.1±11.1 177.7±5.5 76.8±15.1
7 Females 26.3±5.5 169.5±6.2 62.7±8.9

During the study, one wearable IMU sensor (Shimmer3
IMU (Dublin, Ireland) [50]) was used to capture motion data
from the lower limbs. Accelerometer and gyroscope data
were collected, with accelerometer range set to ±8g and
gyroscope range set to ±1000 ◦/s. Given the recommendation
of the physiotherapist and neurologist, we use a small number
of devices, which should be more comfortable and easy
to use for the end user. The wearable sensor is placed on
the forefoot, i.e. the most widely used placement of inertial
sensors for gait cycle monitoring [51]. The benefits of the
sensor placement on the forefoot are, that IMU can detect the
small movements in the forefoot and have bigger range of
motion. This can be used to detect the gait events in parallel
with the abnormal gait patterns detection. In this work, only
overground walking in straight line was performed.

For the proposed algorithms, the initial 3D vector of the
angular velocities of the gyroscope is extended with 4th

dimension:

G4 = {X,Y,Z,Mag} (1)

where X,Y and Z are vectors representing the gyroscope
angular velocities around the sensor axes (3) and Mag is the
magnitude of this initial 3D vector:

∥Mag∥ =
√

X2 +Y2 + Z2 (2)
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The vectors X,Y and Z, in turn, can be represented as
discrete samples:

X = [x0, x1, . . . , xi, . . . , xn]
T

Y = [y0, y1, . . . , yi, . . . , yn]
T

Z = [z0, z1, . . . , zi, . . . , zn]
T

(3)

where n ∈ N is the sample index.

C. DATA ANNOTATION
Data annotation was carried out semi-automatically: each
recording was segmented into individual steps algorithmi-
cally; then, a label for each step was manually assessed
and adjusted if needed. Each step was annotated either as
a normal or abnormal step. Annotation was performed by
means of definitive differences between step shapes and with
video recordings of simulated gait data collection process for
reference.

TABLE 2: Total number of collected datasets for different
gait types in this study

Gait type
Total number of
recordings across
all subjects

Ataxic 32
Diplegic 25
Hemiplegic 17
Hyperkinetic 6
Parkinsonian 29
Slap 8
Steppage 32
Trendelenburg 6

The total number of gait recordings collected for this
study is presented in Table 2. Each of the gait types was
simulated by different numbers of subjects, resulting in 6 to
32 recordings for each gait type.

D. ANOMALY CLASSIFICATION MEASURE
In this paper, for the algorithms’ evaluation, the following
evaluation metrics are calculated:

• Accuracy;
• F1 score;
• Recall;
• Real-time factor (RTF) – time of processing, which

shows how fast the algorithm can process a signal on
the selected computing platform:

RTF =
processing time [s]

duration of the signal [s]
(4)

• Earliness – In contrast to the RTF, which estimates
the processing speed of an algorithm, the earliness is
defined as the time between the beginning of a step
and the moment in time when the step is classified as
abnormal. The minimal achievable earliness naturally
depends on the gait deviation type. Such a measure has
been introduced because the actual time instant when
an anomaly starts occurring can fluctuate, depending on

the gait type. If multiple abnormal steps are performed
in a row and each step is detected, then earliness is
calculated individually for every step. Earliness can
demonstrate how stable is the anomaly detection and in
what phase of the step the anomaly is detected.

III. PROPOSED FRAMEWORK FOR REAL-TIME GAIT
ANOMALY DETECTION AND REAL-TIME IN-STEP
ANOMALY DETECTION ALGORITHMS
In this section, we first describe how the evaluation of the
algorithms performance is carried out. For this, algorithms
first need to be trained, which we refer to as ’training mode’,
and second real-time performance of the in-step anomaly
detection is evaluated, which we refer to as ’prediction
mode’. Then we present the three complementing tools that
have been developed as parts of the proposed evaluation
framework: i) Step detector, ii) Frames synchronization to
step’s beginning, and iii) Generation of alarm.

A. REAL-TIME IN-STEP ANOMALY DETECTION
EVALUATION
The real-time in-step anomaly detection evaluation has two
operation modes: training mode (Fig. 1a) and prediction
mode (Fig. 1b,c,d). These two modes relate to the repeated
training process and evaluation of in-step anomaly detection
in real-time and are described below.

1) Training mode
The flow diagram of the training mode is shown in Fig. 1a.
At first, the input time series data is divided into individual
labeled steps using the step detector (presented in the section
III-B). Next, the collection of labeled steps is used in the
training method of a given algorithm. The training procedure
is algorithm-specific and is described individually for each
algorithm in Sections IV-C, V-B, and VI-B.

2) Prediction mode
The flow diagram of the prediction mode is shown in Fig. 1b.
Here, input data is arriving continuously in a series of pack-
ages or chunks (in the rest of the paper we use the term
chunks for the sequential pieces of the input data) into the
frame collection unit, where the newest frame is collected
into a buffer in real-time. This procedure, in more detail,
is shown in Fig. 1c and Fig. 1d. The size of each chunk
is selected small enough for real-time operation (to achieve
an anomaly alarm latency within tens of milliseconds) and
large enough for more efficient processing and data transfer
through communication channels.

The collected frames are synchronous with the ongoing
step, which means that the first frame collection procedure
is started only when a step’s beginning is detected by the step
detector. Each freshly collected frame F0 is applied to the
in-step anomaly detector (see the yellow box in Fig. 1b). The
n-step anomaly detector uses algorithm specific model and
threshold value. This in-step anomaly detector returns a pre-
diction score which is compared with the optimal threshold.
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FIGURE 1: Block diagrams of the Training mode (a) and Prediction mode (b,c,d) for the proposed algorithms . a) The yellow
block contents algorithm specific training procedures and is described in the following sections IV-C, VI-B; b) Main diagram.
The yellow block represents algorithm-specific in-step prediction procedures and are described in sections IV-D, VI-C; c) Flow
diagram describing the collection process of a new frame; d) Construction of frames synchronous to steps from asynchronous
chunks. Frames are periodically created as snapshots of a circular buffer, starting from the detection of a step start event, until
the detection of a step end event. Frames, chunks, and intervals between the frames are set individually for each algorithm.

This prediction process is repeated for every collected frame
of every step. More details of the in-step anomaly detector
are presented in sections IV-D, V-C and VI-C.

B. STEP DETECTOR
One of the most important components of all the proposed
algorithms is the step detector, which aims to detect step’s
start and end events. Such a step detector is used in the
main part of all the proposed algorithms, presented in Fig. 1c
(dark green box). The input data for the step detector is each
data sample. To operate, each sample in every input chunk is
assessed separately. This is done for better synchronization of
the step model with the streaming step data. The input for the
step detector is the gyroscope vector magnitude calculated
by (2). The complete algorithm of step detection is shown in
Algorithm 1.

Input samples are collected in the buffer, in the form of
a sliding window, and the maximum value of this buffer is
compared to a threshold value. The selection of the threshold
value for the step detector is based on the settings of the wear-
able motion sensor used for data collection. The threshold
for the step detector and the minimum step duration were
determined empirically. The step detector threshold was set
to 10% of the gyroscope magnitude range, and the minimum
step duration was defined as 90% of the samples within a
one-second interval, based on the selected sampling rate.

The function Detect_Step() from Algorithm 1 is ap-

plied to every sample from the input chunk (Fig. 1b). Output
variables step,step_start,step_end are used for the
construction of the frames (described in Fig. 1d and section
III-C).

C. FRAMES SYNCHRONIZATION TO STEP’S
BEGINNING
This subsection introduces a proposed tool designed to con-
struct synchronous frames to the step beginning. Frame is
constructed as a snapshot of a circular buffer, which contin-
uously updates with incoming data in the form of chunks.
Frames are inline with the step and are proportional in length
to several chunks. This tool corresponds to the block "Collect
frame F0 from chunks’ data" in Fig. 1c.

Thus, if a new step is detected in the "Step Detector"
block, or if the current step continues, then samples (from the
current chunk) are appended to the circular buffer of length P
(Fig. 1d). This is done to synchronize frames with the model
of a normal step. The step model is also synchronous with
the step beginning, to increase the quality of the abnormality
detection. In Fig. 1d, the step start event corresponds to the
time instant when the step beginning is detected.

The circular buffer receives the newest samples available
from the newest chunk C0 available in the detected step.
Snapshots of the circular buffer are named "Frame Fk",
where k ∈ Z (Fig. 1d). Frames are made from the fully filled
circular buffer, by copying its content to the new array, after
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Algorithm 1 Step Detector
Input parameters:
buffer_length← 51
threshold← 100 ▷ value of gyroscope vector magnitude
step_min_length← 256
Variables:
counter← 0
buffer[buffer_length]← array
Outputs:
step← false
step_start← false
step_end← false

function DETECT_STEP(input)
append input to buffer
envelope← max(buffer)

if envelope > threshold then
step← true

else
step← false

end if

if step_end is true then
if counter < step_min_length then

step← true ▷ Step continues, if it is short
step_end← false

end if
end if

if step is true then
counter← counter+ 1 ▷ counting samples in the step

else
counter← 0 ▷ stop counting samples in the step

end if

step_start← true if positive edge of step
step_end← true if negative edge of step

return step,step_start,step_end
end function

every N new samples.
In the proposed solution, the N and P are related as per:

N = (1− α)P

P = βM,
(5)

where:

P − length of the circular buffer and frames [samples]

N − update interval (shift) of the frames [samples]

M − chunk size [samples]

α− algorithm specific parameter, α ∈ R
(frames’ overlapping factor)

β − algorithm specific parameter, β ∈ R

All values for these parameters are presented in section
VII-A. The shortest possible interval L for anomaly detec-
tion, in this case, is

L = max(N,M) (6)

D. GENERATING AN ALARM
In the prediction mode, the score value S is the output of each
anomaly detection algorithm. It is calculated for every frame

of the real-time evaluation dataset and collected to the buffer.
If the S value exceeds the threshold value, an alarm signal
is generated:

Alarm =

{
1, if S > threshold

0, if S ≤ threshold
(7)

The threshold value is configured for the purpose of testing
the algorithms. The selection of the optimal threshold value is
performed in the prediction mode, after all scores have been
obtained. The optimal threshold is selected individually for
every subject and gait type.

In the next sections, the proposed algorithms are described.
For each algorithm, we present a general overview thereof,
then its hypothesis, and then its specific dataset preparation,
which is concluded by the description of the training and
prediction modes.

IV. One-Class Support Vector Machine algorithm
The first proposed algorithm (OCSVM) is based on the
One-Class SVM Python package from the Scikit-learn [52]
which is used as the classification core. In this study, we
added two key elements to the One-Class SVM, i.e. i) a
continuous classification of the streaming data, and ii) a
supervised approach for hyperparameter optimization. The
proposed OCSVM algorithm is faster than the RTtsSVM-
AD algorithm [37], [38] and is able to run in real-time (i.e.
the computation time is faster than the real-time data-flow).

The hypothesis behind the OCSVM algorithm is as fol-
lows: if a full time-series pattern could be collected in real-
time by combining the average normal step from the training
phase with the data of the ongoing step, then anomalies could
be detected during the swing phase of the ongoing step.
This is possible under the assumption that the full combined
pattern is classified as abnormal.

A. PREPARATION OF DATASETS FOR THE
OCSVM ALGORITHM
Real-time in-step anomaly detection is evaluated using each
gait recording individually, which is performed by subject
and by gait type. To evaluate one specific gait recording, all
the other gait recordings are combined into a classification
dataset which is used to train the classifier. The classifica-
tion dataset is divided into training, testing, and validation
datasets, with a ratio of 60:20:20%. The validation dataset is
required to convert the regular unsupervised One-Class SVM
into the supervised OCSVM algorithm.

B. KERNEL DESCRIPTION AND HYPERPARAMETERS
In this study, a linear kernel is used for the OCSVM al-
gorithm because the time series data already represents a
high-dimensional space since each sample is considered as
a feature (one step can have several hundred samples). This
means that the linear kernel should be capable of separating
one class (core) from all the outliers. The main hyperpa-
rameter for this kernel is ν (nu), which is "an upper bound
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on the fraction of training errors and a lower bound of the
fraction of support vectors" [52]. The selection of the best ν
hyperparameter values is described in what follows.

C. THE TRAINING MODE OF THE OCSVM ALGORITHM
The training mode of the OCSVM algorithm is presented in
Fig. 2b. All classifiers C1, . . . , Cn with different values of
corresponding hyperparameter ν1, . . . , νn are estimated. The
main goal of the training mode for the OCSVM algorithm
is to. 1) choose the best classifiers BC1, . . . , BCi, 2) es-
timate the waveform of the reference step (or model step)
MS1, . . . ,MSi, and 3) find the optimal threshold values
for the obtained score values. Multiple classifiers can have
similar performance and can be used simultaneously. Every
classifier has a unique hyperparameter value ν, which can
lead to different classification probabilities. This can result in
better classification performance.

The hyperparameter optimization for the OCSVM al-
gorithm has three parts i.e. i) classifiers optimization
C1, . . . , Cn, ii) model steps creation MS1, . . . ,MSn, and
iii) scaling value calculation d1, . . . , dn. Classifiers opti-
mization is done in three phases (see Fig. 2b), which are
described in what follows.

1) Collection of the performance results for all ν
hyperparameter values
In this phase, all classifiers C1, . . . , Cn with different cor-
responding hyperparameters ν1, . . . , νn are estimated. Here,
the classification is unsupervised, i.e. some steps are clas-
sified as core and the others as outliers. Each classifier is
trained on the training dataset. The obtained offline classi-
fication performance is estimated with the testing dataset.
To estimate real-time performance, a model step is created
from the testing dataset. Model steps MS1, . . . ,MSn for
corresponding classifiers C1, . . . , Cn are created. Each nor-
mal step from the test dataset (that is also classified correctly)
is used to create the model step MS1, . . . ,MSn for each
corresponding classifier. To be able to use this model step
in real-time prediction mode, we use raw steps data before
performing resampling and normalization. The model step
is calculated as an average waveform from an ensemble of
given normal steps’ raw data.

Next, the validation dataset is used to estimate real-time
classification performance. The estimation is performed in an
online fashion, where each step from the validation dataset
is classified frame by frame (Frames F−2, F−1, F0, . . . , Ff

in Fig. 2a). During this phase, the algorithm collects the
frame index corresponding to when an anomaly is detected,
for example, index ”3” if the detection was on the third
frame from the step start, and corresponding hyperparameter
value ν. If the outlier is not detected (for example for a
normal step), then the final frame index f and the corre-
sponding hyperparameter value ν are collected. In summary,
the frame index is collected for every hyperparameter ν and
for every step in the validation dataset when each classifier
detects an anomaly. Thus, the results for every normal step

NR1, . . . , NRz and every abnormal step AR1, . . . , ARk are
obtained.

2) Selection of the subset with best performing classifiers
In this phase, the best performing classifiers BC1, . . . , BCi

are selected. This is done in two stages: a) choosing the best
parameters for normal steps classification, and b) choosing
overlap of these parameters for abnormal steps classification.
BC1, . . . , BCi

a) First, the results for all the normal steps from the vali-
dation dataset NR1, . . . , NRz are estimated. If the anomaly
has been detected during the evaluation for the normal step,
then this is not the desired outcome; thus, the parameters
and classifiers which achieve the largest frame index for
anomaly detection are selected. This results in the best suited
hyperparameters BNν1, . . . , BNνj , for which the corre-
sponding classifiers BNC1, . . . , BNCj do not misclassify
normal steps.

b) The best hyperparameters for the abnormal step clas-
sification results FAR1, . . . , FARy are chosen from these
hyperparameters BNν1, . . . , BNνj , which results in best
hyperparameters Bν1, . . . , Bνi and BC1, . . . , BCi.

Overall, the best hyperparameters and corresponding clas-
sifiers are those for which a) normal steps are not misclassi-
fied as abnormal, and at the same time b) abnormal steps are
detected correctly and as soon as possible.

3) Scaling value calculation
To estimate the performance of the OCSVM algorithm, raw
score values sr1, . . . , sri should be scaled. The obtained raw
scores from the classifier using the linear kernel are values
larger than 1 (i.e. hundreds-thousands). Thus, they should
be scaled into the range from 0 to 1 to meet the criteria of
in-step anomaly detector input values (see Section III-D).
For this, scaling values d1, . . . , dk, . . . , di are chosen for
each classifier as the maximum raw score obtained from the
classification of the testing dataset (8).

dk = max(srk1 , . . . , sr
k
t ), (8)

where srkt is the classification score for each step in the
testing dataset, t is the number of steps in the testing dataset,
and k is the kth classifier.

After the training phase is completed, a set of classifiers
BC1, . . . , BCi, model steps BMS1, . . . , BMSi, and scal-
ing values d1, . . . , di, are used in the prediction mode, as
presented in what follows.

D. PREDICTION MODE OF THE OCSVM ALGORITHM
In the prediction mode of the OCSVM algorithm, real-time
anomaly detection is performed (Fig. 1b). For this, every
ongoing step is evaluated frame by frame by the in-step
anomaly detector, which is described next.

The in-step anomaly detector of the OCSVM algorithm
uses classification step CS1, . . . , CSi to detect anomalies
(Fig. 2a). The classification step is created as follows: if the
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FIGURE 2: OCSVM algorithm classification step construction and supervised training logic . a) Construction of real-time
classification steps from the model step snapshot by replacing its frames by the incoming frames of the ongoing step. A copy
of the real-time classification step, with such replacements, is resampled, normalized and then classified. Frames are described
in section III-C. b) Logic of the supervised part of the OCSVM algorithm. The dotted lines divide the classification dataset into
training, testing, and validation datasets, as well as separate real-time in-step anomaly detection estimation dataset. The logic of
supervised training of the OCSVM algorithm is presented in classification dataset box. On the left is a brief textual description
of the training process, which corresponds to the symbolic description on the right. This symbolic description is used in the
main text explaining this figure. In the real-time estimation dataset box, the OCSVM algorithm specific best classifiers, model
steps, and scaling values are presented, highlighted by the yellow box. This yellow box corresponds to the yellow box in Fig.
1b; the symbolic names are described in the main text.

step detector has detected a step start, then the incoming
frame of the ongoing step (new frame in the figure) is used
to replace the corresponding frame in the model step (the
most recent frame F0 replaces the model frame M0 in the
figure). Then a copy of the classification step is resampled
and normalized in the same way as done for the training and
testing datasets. After that, the classification probability of
the classification step corresponding to the abnormal class is
obtained and scaled as shown in (9).

sh =

∣∣∣∣1−
srh
dh

∣∣∣∣, (9)

where sh is the score for the hth classifier, srh is the raw
score from the hth classifier, and dh is the corresponding
scaling value from (8).

If an anomaly is detected at the time instant when frame
F0 has been collected, then the earliness measure is equal
to the one presented in the figure (earliness, shown by the
vertical red line representing the time from the step start to
the moment of anomaly detection). This continues until the

end of a given step. When a new step is detected, the model
step is returned to its original state, and the procedure is
repeated.

For example, smaller raw scores correspond to outliers,
which is classified as anomaly.

The final score, S, is calculated by averaging scores from
all k classifiers that are used in the evaluation phase.

The score S is compared with the selected threshold value,
which results in an alarm signal (7) if the threshold has been
crossed, finalizing the anomaly detection.

In the next section, the second most popular gait analysis
methods are described. They are aimed at solving the classi-
fication accuracy and misclassification problem.

V. 1D-CNN AND LSTM ALGORITHMS
The second and third algorithms are briefly described in this
section. The neural networks are the second most popular
algorithms in gait analysis. The performance as well as
hyperparameters optimization of the 1D-CNN and LSTM
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based algorithms was estimated in [38]. Neural network-
based algorithms solve the classification performance issue.

The hypothesis of the 1D-CNN and LSTM algorithms is
following: if real-time gait data could be collected in the
form of sliding windows, and neural network could be trained
on the dataset using the same form of sliding windows with
known labels, then it is possible to detect abnormalities in
gait during the ongoing step.

The 1D-CNN algorithm structure is two 1D convolutional
layers, max pooling layer, and two fully-connected (dense)
layers to provide a binary classification. A 20% dropout is
added between the convolutional layer and the dense layers
for 1D-CNN algorithm. The LSTM algorithm structure is one
LSTM layer, followed by two fully-connected (dense) layers
to provide a classification probability. The number of cells in
the LSTM layer is equal to the number of neurons in the first
dense layer. The 1D-CNN algorithm hyperparameters are:
i) number of filters; ii) kernel size; iii) batch size; iv) and
number of epochs. The LSTM algorithm hyperparameters
are: i) number of LSTM cells; ii) batch size; iii) and number
of epochs.

The 1D-CNN and LSTM algorithms are initialized with
a fixed seed of parameters (i.e., weights and bias). The
neural network is trained on the training dataset with Adam
optimizer and cross-entropy loss function.

A. DATA PREPARATION FOR THE NN
Each person’s data is estimated separately for 1D-CNN and
LSTM algorithms. Datasets for one gait type are prepared by
separating training and validation datasets. Validation dataset
for real-time step anomaly detection estimation is one gait
recording excluded from training dataset. Training dataset
combines all the remaining gait recordings for particular
person and gait type. The ratio between the training and
validation datasets can change depending on the person, gait
type and available gait recordings for a particular gait type.

To estimate the performance of the real-time anomaly de-
tection of the algorithms, the validation dataset is processed
in an online-fashion. This means that data arrive sample by
sample and each sample is collected into chunks. Chunks are
collected into windows without synchronization to the step
beginning in similar manner as was described is section III-C.

Windows are labeled according to the label of the step,
where window was obtained from. In edge cases, where
one step is ending and a new step is beginning, the label
is assigned by the proportion of samples of abnormal steps
in the window. If this proportion is less than abnormality
proportion threshold then the window is labeled as normal,
if more, then it is labeled as abnormal.

Hyperparameters, which affect sizes, overlaps and la-
bels of the sliding windows are a) chunk duration –
time in milliseconds, where the number of samples M
in one chunk is calculated from chunk duration as
M = round(Chunk duration∗Sample rate); b) window
factor P – determines window size and is proportional to P
chunks; c) Abnormality proportion threshold – fraction of the

window, which should contain abnormal samples, to consider
the label of the window to be abnormal.

B. TRAINING MODE OF THE 1D-CNN AND
LSTM ALGORITHMS
In contrast to the OCSVM and SST-AD algorithms, the
training mode for the 1D-CNN and LSTM algorithms is
using training data in a form of the collection of the sliding
windows instead of a collection of the individual steps (Fig.
1a). The result of the training mode is optimized neural
network, which is used in the prediction mode as a classifier.

C. PREDICTION MODE OF THE 1D-CNN AND
LSTM ALGORITHMS
In contrast to the OCSVM and SST-AD algorithms, the
prediction mode for the 1D-CNN and LSTM algorithms
does not use the step detector during the frame collection
(Fig. 1b) and instead collects a new window with every new
chunk, independent of the step phases. Fig. 3 depicts how
the windowing of the dataset is designed. As shown, each
window contains P chunks (i.e., window factor), and each
chunk includes M samples and the overlap between windows
is N chunks (see Section III-C).

1D-CNN and LSTM algorithms return anomalous class
probability for each window, which is collected into the
buffer. After the real-time estimation is performed, the col-
lected probabilities are analyzed. Different thresholds for
anomalous class probability are estimated to achieve the best
results. This results in a binary classification. These classi-
fication results are compared to the labels of the validation
dataset, resulting in a confusion matrix. Finally, the accuracy
and F1 score are calculated from confusion matrix.

In order to enhance precision in anomaly detection per-
formance, robustness against noise and training issues, the
lightweight SST-AD algorithm has been developed.

VI. Signal Shape Tracking Anomaly Detection algorithm
The fourth and final proposed algorithm, SST-AD, is based
on the calculation of the continuous distance between the
current step and the model step.

The hypothesis of the proposed algorithm is that if a single
step waveform can be split into sufficiently short frames, such
that cross similarities between all the pairs of these frames
are negligible, then anomaly can be detected during the mid-
swing phase of the ongoing step.

A. PREPARATION OF DATASETS FOR THE
SST-AD ALGORITHM
The training dataset for the SST-AD algorithm uses only
normal steps from the selected datasets. Selection of the
training dataset is conducted as follows: i) one subject data
is selected, ii) the gait type for real-time anomaly detection
performance estimation is chosen, and iii) the training dataset
is created by combining data from all the remaining gait types
datasets for this subject.
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FIGURE 3: Windowed data collection for training and for
real-time anomaly detection performance estimation of the
NN algorithms. Ongoing gait data is incoming as flowing
data, which is split into chunks. Sliding windows are col-
lected from chunks and used in real-time in-step anomaly
detector. Step start can be misaligned with sliding window.
Chunks are aligned with the sliding windows. If abnormality
is detected during the first window W0 containing the chunk
C0, then earliness is time between step start and end of the
chunk C0.

B. TRAINING MODE OF THE SST-AD ALGORITHM
The goal of the training mode for the SST-AD algorithm is
to estimate the model step which is used for the detection of
abnormalities (Fig. 1a).

Data used in the SST-AD algorithm is 4-dimensional (1).
The proposed SST-AD algorithm has three routines to esti-

mate the model step. The first routine is the prefitted routine,
which estimates the model step off-line, before the in-step
anomaly detection is performed. The second routine is the
adaptive routine which estimates the model step during the
real-time operation on the streaming data. The third routine
consists in using these two routines in combination. First, the
model step is prefitted off-line and then continuously updated
in real-time from the streaming data, as a combined routine.

1) Prefitted routine for model estimation
Firstly, the training dataset is divided into individual steps,
using the step detector algorithm (Section III-B and Fig. 1a).
Next, the ensemble of the steps is filtered by an outlier
detector, removing abnormal steps from the collection. This
is done in an unsupervised manner, using the Principal
Component Analysis Based (PCA) outlier detector from the
PyOD python library [53].

After filtering out outliers, the average normal step is cal-
culated from the remaining normal steps ensemble (averages
are calculated separately for every axis of 4-dimentional
dataset (1)).

2) Adaptive routine for model estimation
The model step is constructed similarly to the prefitted rou-
tine. The main difference is that the collection of steps is

implemented as a circular buffer. First, an initial set of steps
is collected (H steps for the current implementation), and an
initial model from this set of steps is constructed like in the
prefitted routine. Next, all newly detected steps are compared
to the steps already collected (history steps collection of
size H) for their outlier status. Each incoming step is fully
collected from the streaming data and filtered by the outlier
detector, as in the prefitted model construction. If the step is
classified by the outlier detector as inlier (i.e. not outlier), it
is appended to the circular buffer. Steps are detected by the
step detector from the incoming data (Section III-B and the
block Step Detector in Fig. 1c). If a new step is classified as
an outlier, then it is discarded.

3) Combined routine for model estimation

Combined routine for the model step construction uses the
outlier detector and model step from the prefitted routine and
the circular buffer from the adaptive routine. The prefitted
model step is used as a history step, and newly collected steps
are filtered by the outlier detector and managed the same way,
as in adaptive routine. For real-time performance estimation,
the combined routine works as the adaptive routine, and
the model step and circular buffer are updated every time a
normal step is obtained.

C. PREDICTION MODE OF THE SST-AD ALGORITHM

In the prediction mode of the SST-AD algorithm, real-time
anomaly detection is performed. For this, every ongoing step
is assessed frame-by-frame by the in-step anomaly detector,
which is described in what follows (Fig. 1b).

The block diagram corresponding to the in-step anomaly
detection algorithm is shown in Fig. 4, where the current
frame is collected from the input streaming data and synchro-
nized with the detected step (Section III-C). Model frames
are the frames from the model step. The length of the current
frame is equal to the length of the model frame.

To obtain the model frames, the model step (1) is sliced
into indexed frames Fmodel

j of length P with shift N (5),
where j = {0, . . . , q} and are indexes of model frames q ∈
Z.

The main in-step anomaly detection procedure starts from
the detection of the beginning of a step. Then, if the first
frame is collected, the current model index is set to zero
(j = 0) and distances between the current frame (first
frame in this case) and three model frames with indexes
{j, j + 1, j + 2} are calculated (10).

For the second frame, the calculation of distances is per-
formed between the current frame and four model frames
with indexes {j − 1, j, j + 1, j + 2}, and starting from the
third frame, distances are calculated for five model frames
with indexes {j − 2, j − 1, j, j + 1, j + 2} (10). A number
of model frames for comparison have been chosen so that
anomaly detection occurs as soon as possible and is enough
for performance estimation.
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FIGURE 4: In-step distance estimation. Here distances be-
tween current frame and several model frames are calculated.
The index with the smallest distance is taken as the result of
the estimation. If the smallest index is not j, the score would
be more than zero (see Eq. 12).

jqmin =





argmin
i=j,...,j+1

Di, j = 0

argmin
i=j−1,...,j+1

Di, j = 1

argmin
i=j−2,...,j+2

Di, j > 1

(10)

where, the final distance Di is calculated as average of indi-
vidual distances to four axes (11). The individual distances
d{X,Y,Z,Mag} to each axis, of four-dimensional model step
(1), are calculated as Euclidean distances between the model
frame and the current streaming frame.

Dj = (dX + dY + dZ + dMag)/4 (11)

Next, the index jqmin with the smallest distance between
the model frame and the current streaming frame (10) is
compared to the index j of the current model frame Fmodel

j

and a score value is calculated as is shown in (12).

S = |j − jqmin|/10 (12)

This S score is compared with the selected threshold value,
which results in alarm signal (7) if the threshold has been
crossed, finalizing the anomaly detection.

VII. PERFORMANCE EVALUATION AND RESULTS
This section presents the performance evaluation results for
the proposed real-time in-step anomaly detection algorithms,

i.e.(OCSVM, 1D-CNN, LSTMand SST-AD) in terms of
earliness, accuracy, F1 score, precision and recall. Firstly,
this section presents the evaluation setup, including all the
parameters used in the performance evaluation, and secondly,
the section presents the results. The results are then discussed
in Section VIII.

A. PERFORMANCE EVALUATION SETUP
All computations are performed on a pre-built HP computer
with an Intel Core i7-9700 CPU and 16 GB of DDR4 mem-
ory, running Ubuntu Cinnamon 4.4.8, Python 3.10.13, scikit-
learn 1.3.1 and TensorFlow 2.9.1. All the parameters used in
the performance evaluation are provided in Table 3.

TABLE 3: Parameters and quantitative values for all vari-
ables and notations

Sensor configuration: 256 Hz sampling rate,
recording on device memory,
gyroscope range ±1000 ◦/s

Chunk size: M = 12, TM ≈ 47ms,

Step detector: buffer_length = 51 samples,
threshold = 100,
step_min_length = 256

OCSVM: ν = [0.1, 0.2, . . . , 0.9]
α = 0, β = 1, P = N = M

SST-AD: PCA (n_comp = 3, n_selected = 1),

α =
2

3
, β = 3, P = 3N = 3M ,

combined mode, M = 10

NN Global Hyperparameters: Window factor (P): 6 to 10.
Default 8
Samples in a chunk (M): 6 to 25.
Default 12
Sliding window overlap (N): 1
Abnormality proportion threshold:
50% to 90%. Default 70%
Batch size: 2n where n is from 3 to 8.
Default n is 5
Number of epochs in training: 1 to 30.
Default 20

LSTM: Number of LSTM cells: 20, 25, 30.
Default: 25

1D-CNN: Number of filters in convolutional layer:
2n where n is from 3 to 8. Default n is 6
Kernel size in convolutional layer:
2, 3, 5, 7, 9, 11. Default 5
Dense layer with 100 neurons

B. RESULTS
1) Earliness
Firstly, the anomaly detection time of the real-time in-step
anomaly detection algorithms should be observed, which is
reflected by the earliness metric. In Fig. 5, it can be seen that
the 1D-CNN and SST-AD algorithms has the most consistent
earliness results for most of the gait types; it can also be
seen that all presented real-time in-step anomaly detection
algorithms have average earliness less than 1 s. On the other
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FIGURE 5: Earliness of the proposed real-time in-step
anomaly detection algorithms for different gait types. The y-
axis represents earliness in seconds, while the x-axis repre-
sents the different anomalies. The most frequent values are
placed in the boxes and outliers are shown by the whiskers
and dots.

hand, high variability in detection time for Ataxic, Diplegic
and Parkinsonian gait types can be seen, which is explained
by multiple abnormal steps in the row.

Moreover, for Slap, Steppage and Trendelenburg gait
types, the SST-AD algorithm has consistent earliness of
less than 0.5 s, while the OCSVM algorithm have variable
earliness ranging between 0.25 and 0.8 s. For Ataxic, Hemi-
plegic, Hyperkinetic, Parkinsonian and Steppage gait types
the 1D-CNN algorithm is achieving earliness less than 0.5 s,
reaching stable earliness of 0.4 s for Hyperkinetic gait type
and 0.2 s for the Steppage gait type. For Diplegic gait type
the LSTM algorithm achieves average earliness of 0.45 s. For
the Slap gait type the OCSVM algorithm achieves average
earliness of 0.4 s.

The earliness measure is affected by the gait type for two
main reasons. The first reason is that for Ataxic, Diplegic,
and Parkinsonian gait types, multiple abnormal steps are
performed in a row during the data collection process. This
is required to achieve the closest representation of the true
abnormal step pattern. Thus, if multiple steps are performed
in a row, the detection time is longer. The second reason is
the length of the step. The typical normal full swing phase in
this study ranges from 1 to 1.2 s depending on the subject,
whereas an abnormal full swing phase ranges from 1 to 1.7
s, depending on the subject and gait type. Because abnormal
steps usually are longer, or because multiple abnormal steps
can be performed in a sequence, the earliness requirement
should be around 600 - 700 ms from the pre-swing phase
for abnormalities with one abnormal step in sequence and
can be longer for the other gait types. This detection time
should be short enough to be able to correct the ongoing

step in real-time. The achieved earliness results show that
all proposed real-time in-step anomaly detection algorithms
detect abnormalities during the mid-swing phase of a step.

2) Accuracy
Secondly, the accuracy presented in Fig. 6a, highlights that
the 1D-CNN and the SST-AD algorithms are the best per-
forming algorithms for all gait types, with average accuracy
calculated across all gait types of 95% and 91% respec-
tively. Moreover, the standard deviation of the accuracy is
4.12% and 4.75% for the 1D-CNN and the SST-AD algo-
rithms respectively, which is smaller compared to that of the
OCSVM and LSTM algorithms with standard deviation of
14.54% and 10%, respectively. The OCSVM and LSTM al-
gorithms achieved average accuracies of 74% and 86.5%
respectively; however, their standard deviations are higher
than for the SST-AD algorithm.

It can be seen that the lowest accuracies overall for all
algorithms are achieved for Slap and Trendelenburg gait
types.

The SST-AD algorithm achieves higher accuracies for the
Ataxic, Diplegic, Hemiplegic, Parkinsonian and Steppage
gait types, with lower or comparable standard deviation to the
1D-CNN algorithm. On the other hand, 1D-CNN algorithm
achieves higher accuracies for the Hyperkinetic, Slap and
Trendelenburg gait types.

However, the OCSVM and LSTM algorithms are suffering
from misclassification, which results in lower accuracy. The
OCSVM and LSTM algorithms classification quality suffers
from a high number of false positives (normal step classified
as abnormal) due to either similarities between normal and
abnormal steps or some inconsistencies in normal steps. This
is amplified by the training errors for the OCSVM algorithm,
because training classification performance is gait type de-
pendent. The accuracy of the classification on the testing
dataset ranges between 76% and 89% for OCSVM. Low
accuracy values are achieved for the Slap and Trendelenburg
gait types because the abnormality of the step is at the end
of the step, whereas in the main body of the step the shape
of abnormal steps are similar to the normal steps. This es-
pecially affects the classification abilities of the OCSVM al-
gorithm. Moreover, because in the Slap and Trendelenburg
gait types the anomaly occurs at the terminal swing phase,
it is affecting the SST-AD algorithm, because of the weak
classification performance at the terminal swing phase. The
LSTM algorithm presented in this paper is struggling with
the training the model on such dataset. This can be due to
the limited size of the available data. The hyperparameters
optimization yielded in lower accuracies overall compared
to the 1D-CNN and SST-AD algorithms. Considering the
computational power demand, the current implementation
of the LSTM algorithm is not suitable for the embedded
devices. Converting to the lighter model would result in better
real-time operation performance, but would further sacrifice
the classification accuracy. More advanced LSTM neural
networks or similar methods should be tested in future works.
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FIGURE 6: Comparison of performance metrics for proposed real-time in-step anomaly detection algorithms for different gait
types. The x-axis represents the different anomalies. The y-axis represents the metric in percent. The most frequent values are
placed in the boxes, and outliers are shown by the whiskers and dots. a) Accuracy. b) F1 score. c) Recall. d) Precision.

3) F1 score
Thirdly, since the dataset in this study is imbalanced, the F1
score should be calculated. In Fig. 6b, the F1 scores can
be observed. Similarly to the observed accuracy, the 1D-
CNN and SST-AD algorithms outperform the OCSVM and
LSTM algorithms consistently with an average F1 score of
88.2% and 80.7% vs. 54.9% and 70.1%, respectively.

The SST-AD algorithm is outperforming other algorithms
in terms of F1 scores for Ataxic, Parkinsonian and Steppage
gait types, achieving higher or comparable to the 1D-CNN al-
gorithm stability in results as can be seen in Table 4.

The 1D-CNN algorithm is clearly outperforming other
algorithms for Slap and Trendelenburg gait types with F1
scores of 90.8±9.3 and 83.8±9.7 respectively. However, the
LSTM, SST-AD and OCSVM algorithms are performing

similarly in terms of the F1 scores for the Slap and Trende-
lenburg gait types. The LSTM algorithm achieves F1 scores
of 62.6±13.4 and 64.8±14.5 for Slap and Trendelenburg gait
types, respectively, whereas SST-AD algorithm achieves F1
scores of 64.9±7.6% and 45.6±9.3%, respectively, which is
closer to the OCSVM algorithm with F1 scores of 52.6±12.2
and 49.3±12.2%, respectively.

4) Recall
The main reason for the achieved F1 scores for the Slap
and Trendelenburg gait types can be found by looking at
the achieved recall values shown in Fig. 6c. The recall is
demonstrating are the anomalous steps classified correctly
or not. Correct abnormal steps classification is crucial for
gait correction systems. For the SST-AD algorithm, the recall
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TABLE 4: Best mean F1 Scores in percent with standard deviation for different algorithms. In bold is best achieved F1 score
over all gait types for every algorithm.

Gait Type SST-A
D

1D
-C

NN

LSTM
OCSVM

Ataxic 84.5±14.9 78.9±15.4 60.2±18.7 59.9±17.7
Diplegic 88.8±13.1 89.3±9.6 71.1±12.5 51.7±13.7
Hemiplegic 85.3±12.5 87.9±9 81.3±10 54.4±14.5
Hyperkinetic 95.8±5.9 98.1±2.7 73.2±22.8 64.5±9.8
Parkinsonian 90.7±11.8 88.4±7.5 68.4±18.8 54.2±19.8
Slap 64.9±7.6 90.8±9.3 62.6±13.4 52.6±12.2
Steppage 90.4±11.2 88.4±7 79.6±14.9 52.6±9.6
Trendelenburg 45.6±9.3 83.8±9.7 64.8±14.5 49.3±12.2

is high for most of the gait types, with a mean recall of
86.5±11.1% and with lowest recall of 73.8±1.6% for the
Trendelenburg gait type. For the 1D-CNN algorithm, the
recall is high for all of the gait types, with mean recall of
98.5±2.7% and with lowest recall of 93.2±13.3% for the
Ataxic gait type. For the LSTM and OCSVM algorithms, the
recall value is on the higher side, but more unstable, with
average recall of 85.5±16.9% and 81.7±16.3% respectively
and lowest recall of 68.2±27.8% for Ataxic gait type for the
LSTM algorithm and 70.8±25.9% for the Hemiplegic gait
type for the OCSVM algorithm.

5) Precision
Moreover, the achieved precision, shown in Fig. 6d is ex-
plaining the achieved F1 scores and accuracy. The SST-
AD and 1D-CNN algorithms clearly have advantage over the
OCSVM and LSTM algorithms for most of the gait types.
Reviewing the precision results for the Slap and Trendelen-
burg gait types it could be seen that the SST-AD algorithm
is struggling to correctly classify at the terminal swing phase
of a step, leading to a large number of false positives, as well
as false negatives, which is seen in the recall results. This
results for the SST-AD algorithm in the lowest precision of
33.4% and 57.5% for the Trendelenburg and Slap gait types
respectively. On the other hand only 1D-CNN algorithm is
able to achieve higher precision values for the Slap and Tren-
delenburg gait types with precision scores of 83.8±15.7%
and 74.8±11.4% respectively, because of the independence
of the gait phases and windows taking into account the end
phase of a step as well. Overall, the SST-AD algorithm’s pre-
cision is highest for all other gait types, with mean value over
78% including the Slap and Trendelenburg gait types and
89.7% excluding them, compared to the 1D-CNN algorithm
with 80.8% including them and 81.3% excluding them. The
LSTM and OCSVM algorithms achieve noticeably lower
and less stable precision with average precision of 63±18.5%
and 44.4±14.7% respectively.

6) Potential sources of misclassification
The SST-AD algorithm for Slap and Trendelenburg gait types
achieve a lower recall than for the other gait types. This
means that abnormal steps are misclassified as normal, thus
anomaly is not detected for gait types with lower recall. One

of the reasons for lower recall results for the OCSVM al-
gorithm is misclassification, which is explained by the test
classification F1 scores that range from 38% to 72%. For the
SST-AD algorithm for Slap and Trendelenburg gait types,
lower precision shows that there is no consistency in the
classification results. For Trendelenburg gait type, the main
anomaly occurs in the upper body at the terminal swing
phase, which influences the classification ability of the al-
gorithms and leads to lower F1 scores. On the other hand,
the OCSVM algorithm have closer performance to the SST-
AD algorithm.

7) Real-time factor

TABLE 5: Average real-time factor for all algorithms

Algorithm RTF
SST-AD 0.09±0.03
OCSVM 0.17±0.06
1D-CNN 0.55±0.27
LSTM 1.2±0.15

Finally, the value of real-time factor (RTF) represents
how much computation time the proposed real-time in-step
anomaly detection algorithms need on the personal computer
platform (described in Section VII-A) to process 1 s of
streaming data. In Table 5 and Figure 7, it can be seen that
the average RTF is 1.2±0.15 for the LSTM algorithm, i.e., to
process 1 s of streaming data, this algorithm requires more
that 1 s of computation time. This is due to the expensive
recurrent nature of the algorithm, which involves sequential
processing and maintenance of multiple states and gates for
each time step. On the other hand, the SST-AD algorithm
only requires distance estimation between limited number
of parameters and achieves RTF of around 0.09. Different
to the LSTM algorithm the 1D-CNN algorithm is using
efficient matrix multiplication routines and have less sequen-
tial dependencies, which results in the RTF of 0.55±0.27.
This is still more computationally expensive compared to
the SST-AD algorithm, but the 1D-CNN algorithm can run
in real-time on the selected PC. Even further, it could be
seen that estimation of the signal for the Hemiplegic gait
type took 1.15±0.54 times longer than real-time. Similarly
to the SST-AD algorithm, the OCSVM algorithm requires
less computations, only requiring transformation of the signal

14 VOLUME 4, 2024



Rostovski et al.: Signal Shape Tracking Algorithm for Real-time In-step Gait Anomaly Detection

FIGURE 7: Real-time factor of the proposed real-time in-step
anomaly detection algorithms for different gait types. Real-
time factor is the proportion of how much time it took for
the algorithm to evaluate 1 s of the flowing data. The y-axis
represents the real-time factor, while the x-axis represents the
different anomalies. The most frequent values are placed in
the boxes, and outliers are shown by the whiskers and dots.

to high dimensional space and distance estimation to the
support vectors, which results in the average RTF of 0.17.

The 1D-CNN algorithm can be optimized further, by re-
ducing the neural network size with minor loss in classi-
fication accuracy, whereas the SST-AD algorithm achieves
similar F1 scores and accuracies with computationally light
model. Thus, the SST-AD, OCSVM and 1D-CNN algorithms
can process incoming streaming data in real-time. Further
optimization of the LSTM algorithm can lead to better per-
formance and should be researched further.

8) Detailed review of the performance of the algorithms
It should also be noted that for some individual subjects,
the OCSVM algorithm is able to achieve a classification
accuracy of 98.9% and F1 score of 96%, which means that
the algorithm is able to detect abnormalities in real-time
operation. The OCSVM algorithm is able to create support
vectors, such that the normal steps and abnormal steps have
significant enough differences to be divided by hyperplane.
However, abnormality detection consistency and how in-
dividual datasets influence classification quality, would be
investigated in future work. This will show how inconsis-
tencies in the gait speed between the steps can influence the
algorithms performance.

Table 4 displays the achieved best F1 scores. Notably, the
SST-AD algorithm attains the highest F1 scores for the Hy-
perkinetic, Parkinsonian, and Steppage gait types, with mean
F1 scores of 95.8±5.9%, 90.7±11.8%, and 90.4±11.2%,
respectively. Conversely, the lowest F1 scores are observed
for the Slap and Trendelenburg gait types, at 64.9±7.6%

and 45.6±9.3%, respectively. F1 scores exceeding 84% are
achieved for all other gait types. Thus, SST-AD algorithm
can detect in-step abnormalities for multiple gait types with
high F1 scores and low computational power requirements.

Furthermore, the 1D-CNN algorithm achieves highest F1
scores for the Hyperkinetic, Slap, Steppage and Parkinsonian
gait types with the F1 scores of 98.1±2.7%, 90.8±9.3%,
88.4±7%, 88.4±7.5% respectively. On the other hand, the
lowest F1 scores is achieved for the Ataxic gait type with
78.9±15.4%. For all other gait types the 1D-CNN algorithm
achieves average F1 scores over 83%. Thus, 1D-CNN algo-
rithm can detect in-step abnormalities for all gait types with
high F1 scores as well.

However, the LSTM algorithm falls behind, with high-
est F1 scores for the Hemiplegic, Steppage and Hyper-
kinetic gait types with scores of 81.3±10%, 79.6±14.9%
and 73.2±22.8% respectively. The lowest F1 score of
60.2±18.7% is achieved for the Ataxic gait type. Classifi-
cation quality issues and average F1 score of 70% shows
that current implementation of the LSTM can detect in-step
abnormalities for some gait types only.

Moreover, the OCSVM algorithm yields its optimal re-
sults for the Hyperkinetic, Ataxic, and Hemiplegic gait
types, with mean F1 scores of 64.5±9.8%, 59.9±17.7%,
and 54.4±14.5%, respectively. The lowest F1 score,
49.3±12.2%, is observed for the Trendelenburg gait type.
Mean F1 scores exceeding 51% are achieved for all other gait
types.

9) Summary of results
In summary, the SST-AD and 1D-CNN algorithms attains the
highest accuracy of 98.4±2.3% and 99.2±1.2% respectively
for the Hyperkinetic gait type, followed by the LSTM and
OCSVM algorithms with highest accuracy of 92.2±4% and
84.9±11.3% respectively for the Hyperkinetic gait type as
well. Similarly to the observed accuracy, the 1D-CNN and
SST-AD algorithms outperform the OCSVM and LSTM al-
gorithms consistently with an average F1 score of 88.2% and
80.7% vs. 54.9% and 70.1% respectively. The 1D-CNN and
SST-AD algorithms has the most consistent earliness results
for most of the gait types, which is detecting the abnormali-
ties at either the initial-swing or mid-swing phases of the step.
Thus, the SST-AD algorithm is capable of timely detecting
in-step abnormalities with high accuracy and F1 scores while
being computationally efficient and easy to train.

VIII. DISCUSSION
This section discusses the results previously presented in
Section VII.

Gait correction devices can benefit from the algorithms
presented in this study. Despite the availability of various
gait correction devices, obtaining a truly effective device
can be challenging because many of them lack a robust
scientific research background. Exoskeletons and mechanical
devices, though popular, pose questions about efficacy and
usability, emphasizing the need for more comprehensive
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research in the field of gait assistive devices [54]. Existing
FES devices have proven to be effective in post-stroke reha-
bilitation, addressing common issues such as foot drop [8]–
[10]. Such device works with a predetermined stimulation
algorithm, which stimulates muscles during the swing phase,
and stops the stimulation in the stance phase. While FES
devices improve gait quality, patients often express concerns
about skin irritation and muscle fatigue. To optimize FES
use, a more intermittent stimulation approach is desirable
post-rehabilitation to reduce fatigue. Smart devices capable
of detecting gait deviations and adapt in real-time would
be preferable for post-treatment assistance, promoting softer
and more patient-friendly interventions.

The main goal of this study is to show that real-time in-step
anomaly detection algorithms can provide information about
gait deviation to the gait assistive devices. Compared to the
SoTA, such algorithms are able to detect gait deviations in
real-time during the swing phase of a step. This will enable
the further steps to be taken for building the next generation
of real-time gait assistive devices.

A. ERROR ANALYSIS

From the results, it could be seen that low classification per-
formance of the real-time implementation of SVM algorithm
in form of OCSVM algorithm is not comparable to the high
offline classification performance of the regular SVM algo-
rithm. The main problem is the introduction of the changing
patterns for the classifier in the form of the classification step,
which is used in the real-time classification phase.

The classification step can have irregularities because of
the combination of the model step and ongoing step. For
example, if the gyroscope values in the incoming frame are
noticeably different from the gyroscope values in the model
frame, then they might not align. Such classification step
would be considered abnormal, even if the incoming step
is normal, but is slightly out of synchronization, i.e. it was
slower or faster and misalignment occurred. Another reason
could be that the abnormal step pattern is not different enough
for the SVM classifier to create hard support vectors. This is
seen from the test dataset F1’s scores of offline classification
where the classifier from the beginning was not performing
at its best.

The achieved F1 scores mirror the accuracy results; how-
ever, the gap in F1 scores between the SST-AD and 1D-
CNN algorithms and the OCSVM and the LSTM algorithms
is greater, thus showing that abnormal steps are misclassified
more often by the latter two algorithms. So, the main chal-
lenge for the OCSVM and LSTM algorithms in classifying
is a high number of false positives. This is clearly more
pronounced for the Slap and Trendelenburg gait types.

The LSTM algorithm is hard to optimize due to time-
consuming hyperparameter optimization, and considering the
high computational power demand it might be very chal-
lenging to improve the performance of this algorithm in the
context of porting to the embedded device.

In terms of errors for the gait assistive devices, it is better
to stimulate the normal step, than to miss the stimulation of
the abnormal step. Thus, high recall is an indication that the
proportion of false negatives should be as low as possible.
The precision of the algorithms should be also high for timely
detection of gait deviations for the gait assistive devices. To
exceed the current SoA gait assistive devices in terms of
lower fatigue levels due to more user-friendly stimulation
intervals by achieving lower proportion of false positives.

B. OCSVM AND SST-AD ALGORITHMS NOVELTY
The novelty in the proposed OCSVM algorithm is the
real-time implementation and the supervised hyperparameter
adaptation of the most popular gait analysis algorithm -
SVM.

Time of abnormality detection, in terms of earliness, shows
that all algorithms performed similarly, but the SST-AD and
1D-CNN algorithms are more stable in detection time and
in combination with high F1 scores and low computational
cost. The 1D-CNN algorithm on one hand is showing ex-
ceptional performance and high F1 scores, but on the other
hand lacks gait phase awareness in this implementation.
Considering that the SST-AD algorithms achieves similar
performance with less computational power demand, the 1D-
CNN algorithm needs further optimization to be feasible
option for the deployment on embedded devices. The SST-
AD algorithm is performing clearly the best for potential
use in embedded devices. Best performance means that the
anomaly is detected correctly and early during the mid-swing
phase of a step. The main reason for that is the working logic
of the algorithm which compares the ongoing step shape to
the target shape. Such an approach has a higher success rate
in finding differences. This algorithm is very fast to train, can
be improved during the real-time operation by incorporating
normal steps into existing model step shape. It is simple and
lightweight and is strong candidate to be tested on embedded
device in real world tests.

C. COLLECTED DATASET NOVELTY
The collected dataset could be used for anomaly detection al-
gorithms development. Such a dataset, to the best of authors’
knowledge, is the first to feature a combination of normal
and abnormal steps in one dataset. It could be expanded in
the future, by additional data collection procedures. Other
existing datasets do not include a combination of normal
and abnormal walking in one single dataset. In such other
datasets, the normal gait pattern and abnormal gait patterns
are collected separately [30]–[32], [34]. Such steps, switch-
ing from normal to abnormal, could be seen in the real-life
scenario, especially in former patients who can experience
undesirable step patterns because of fatigue.

D. LIMITATIONS AND FUTURE RESEARCH GAPS
While the achieved results are substantial, this work has some
limitations. The simulated gait deviations could be different
from the gait deviations of the real patients. However, they
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should represent abnormal gait patterns very closely because
simulations are recreating actual patients’ video recordings
of gait deviations and instructions from a professional phys-
iotherapist. In real-life applications, the anomaly detection
results could be influenced by the different types of terrain
and walking speed. Another limitation is that a direct com-
parison of the new dataset presented in the paper with other
gait datasets is not possible due to the lack of such datasets.

Feature engineering can be used to improve the classifica-
tion results of the algorithms, by adding i.e. the stride length,
gait speed, variability in steps, etc.

The main criterion in well timed gait correction is the
time constraint of 50 ms to detect anomaly; if this constraint
could be relaxed or met, i.e. by the CNN algorithms, then
they should be a good fit for the time-series data analysis.
Applying the best performing algorithms on the embedded
device would give clear results about real-world usage feasi-
bility. If they could run in real-time during the operation on
the embedded devices, then it should be possible to detect
gait anomalies on the fly and consider next steps: real-time
anomaly detection and gait correction using the FES during
the mid-swing of the step on the embedded device.

Real-time in-step anomaly detection algorithms could be
used in visualization tools for real-time monitoring and feed-
back, which will enable physiotherapists and patients to see
the gait deviations as they occur. This will be beneficial
for clinicians and patients to understand and adjust their
movements.

IX. CONCLUSION
In this paper, novel real-time in-step anomaly detection al-
gorithms were proposed for real-time abnormality detection
in human gait step pattern, i.e. OCSVM and SST-AD. The
proposed algorithms were compared with the previously de-
veloped 1D-CNN and LSTM algorithms. All the algorithms
can detect gait abnormalities in real-time during the ongoing
step. Note that the results of the real-time classification,
which is performed during the ongoing step, are different
from results of regular classification, which is performed
after the step. These results show that correct preprocessing
of data and post-processing of classifiers results is enough to
convert classical machine learning algorithms into real-time
classification algorithms. Thus, the OCSVM algorithm is
capable of detecting abnormalities with reliable performance
for some subjects. This means that the proposed benchmark-
ing framework can be used for the performance evaluation
of additional new real-time in-step anomaly detection algo-
rithms.

The presented algorithms achieve an average accuracy and
F1 scores of 91% and 81% (for all gait types including Slap
and Trendelenburg gait types and 89% excluding them) for
SST-AD; 86.5% and 70.1% for LSTM; 95% and 88.2% for
1D-CNN; 74% and 54.9% for OCSVM, respectively. The
best F1 scores for the proposed algorithms are the follow-
ing: OCSVM, SST-AD and 1D-CNN algorithms achieved
64.5±9.8%, 95.8±5.9% and 98.1±2.7%, respectively all for

Hyperkinetic gait type. The LSTM algorithm achieves best
F1 scores of 81.3±10% for Hemiplegic gait type.

As can be seen from RTF results, SST-AD algorithms is
able to detect gait deviation in the ongoing step in real-time.
The SST-AD algorithm is computationally more effective
than the 1D-CNN algorithm, while achieving similar perfor-
mance.

Future work will focus on further algorithms optimization
and experiments with embedded devices. Based on the cur-
rent study, it is possible to develop on-demand FES devices
for less intrusive gait assistance by using the SST-AD algo-
rithm‘.
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and preliminary efforts towards assistive device
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1 Resistance to the time-stretching of the SST-
AD and 1D-CNN algorithms

In this appendix, the influence of time-stretching on gait anomaly detection
algorithms is studied, followed by a description of preliminary efforts to de-
velop a prototype assistive device. These efforts address the RQ4, focusing on
requirements, hardware selection, and challenges.

1.1 Influence of Time-Stretching on Algorithms

To evaluate the real-world performance of the SST-AD and 1D-CNN algorithms,
their resistance to changes in walking pace was assessed. Walking pace can
vary in real-life scenarios. To simulate these changes, the original dataset was
resampled to reflect a range of slowdown or speedup up to 20%. Models trained
on the original dataset were tested under these conditions, following the same
procedures described in Publications III and IV. No testing on training data
was performed. In Fig. 8 and 2

As seen in Fig. 1, the SST-AD algorithm is sensitive to reduced gait speeds,
except for Hyperkinetic, Parkinsonian, and Trendelenburg gait types, where per-
formance remains consistent. Increased speeds negatively impact performance,
particularly for Hyperkinetic, Parkinsonian, and Slap gait types. On average,
speed changes reduced the SST-AD algorithm’s F1 score from 80.1% to 71%
(Table 1).

The 1D-CNN algorithm is less affected by speed variations. As shown in
Fig. 2, speed changes impact all gait types except Hemiplegic and Steppage
gaits. The average F1 score decreases from 88.2% to 83.4%.

Earliness is unaffected by time-stretching for both algorithms (Table 2).
Similarly, real-time operation remains stable (Table 3).

As a conclusion of this section, both of the SST-AD and 1D-CNN algorithms
anomaly detection capabilities are slightly affected by the change of gait speed,
however, the algorithms are still able to detect gait deviations in real-time.
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Figure 1: F1 scores of the SST-AD algorithm depending on the gait speed.
The y-axis represents the F1 scores in percent, while the x-axis represents the
different anomalies. The most frequent values are placed in the boxes, and
outliers are shown by the whiskers and dots.

Table 1: Comparison of average F1 scores by SST-AD and 1D-CNN across time-
stretch percentages

Time-Stretch (%) SST-AD 1D-CNN

-20 71.4±18.6% 85.6±10.0%
-10 79.8±12.1% 86.4±10.8%
-5 80.2±11.4% 87.0±10.4%
0 80.1±9.8% 88.2±8.8%
+5 77.4±10.6% 86.6±10.2%
+10 74.2±11.4% 87.5±9.8%
+20 72.7±14.8% 83.4±12.1%
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Figure 2: F1 scores of the 1D-CNN algorithm depending on the gait speed.
The y-axis represents the F1 scores in percent, while the x-axis represents the
different anomalies. The most frequent values are placed in the boxes, and
outliers are shown by the whiskers and dots.

Table 2: Comparison of average earliness in seconds by SST-AD and 1D-CNN
across time-stretch percentages

Time-Stretch (%) SST-AD 1D-CNN

-20 0.6±0.2 0.3±0.1
-10 0.5±0.2 0.4±0.1
-5 0.6±0.2 0.4±0.1
0 0.6±0.2 0.4±0.1
+5 0.6±0.2 0.4±0.1
+10 0.7±0.2 0.5±0.1
+20 0.7±0.3 0.5±0.2
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Table 3: Comparison of average real-time factor by SST-AD and 1D-CNN across
time-stretch percentages

Time-Stretch (%) SST-AD 1D-CNN

-20 0.3±0.1 0.2±0.1
-10 0.3±0.1 0.2±0.1
-5 0.3±0.1 0.2±0.1
0 0.3±0.1 0.2±0.1
+5 0.3±0.1 0.2±0.1
+10 0.3±0.0 0.2±0.1
+20 0.3±0.1 0.2±0.1

2 Requirements and preliminary efforts on how
to develop comfortable personalized gait as-
sistive device

To deploy comfortable and user-friendly gait assistive device, it should have
personalized gait correction routines, which take into account the gait normalcy
in real-time. The patients, who have successfully finished the rehabilitation
process, can walk without assistance for short periods of time [1]. This means,
that only occasional interventions are necessary to correct the gait of the patient.

Ease of use of the gait assistive device is the second important topic in
development of the device. This includes the placement of the electrodes, which
most often are attached with specialized gel pads. This requires training and
finding the correct points, where to connect the electrodes. Built in electrodes,
i.e. embedded into the sock, might improve the ease of correct alignment of the
electrodes in very short time.

The assistive device should have two main parts: the algorithm and the
stimulation hardware with appropriate stimulation parameters. In this section,
I describe the process of optimization of the FES parameters, used to stimulate
the ankle dorsiflexion. After that, I discuss the possible alternatives to the
commonly used gel pads to conduct the stimulation to the muscles. Next I
describe the preliminary software and hardware development path, requirements
and challenges. I conclude this section with future works, which are out of the
scope of this thesis, regarding further development of the software and hardware,
to create a gait assistive device with real-time gait deviation detection.

2.1 FES parameters evaluation

First the stimulation parameters should be determined, to evaluate the stimu-
lation hardware parameters, which are suitable for the FES of the leg muscles.
The stimulation should start when the anomaly detection algorithm outputs
the alarm signal. To estimate the correct parameters for the stimulation, I had
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Figure 3: Placement of the gel electrodes and configuration process of the San-
itas 43 EMS/TENS stimulation device

consultation with a physiotherapist. The potential logic of the stimulation was
tested by using the off-the-shelf FES device: Sanitas 43 EMS/TENS. Gel pads
were used as the conductors, placed on the appropriate muscles to stimulate the
ankle dorsiflexion (fig. 3). By using the 30mA stimulating current amplitude,
310 microseconds pulse width, and 60 Hz repetition frequency, the ankle dorsi-
flexion was achieved. These parameters will help with the development of the
stimulation part of the device.

One of the potential alternatives to the gel electrodes were tested as well,
which are using so-called ”smart socks” with integrated electrodes (fig. 4).

2.2 Stimulation tests using socks with integrated electrodes

Manufacturing the sock with integrated electrodes is challenging. The developed
prototype of sock with integrated electrodes did not fully fit the physiothera-
pist, which it was supposed to fit (Fig. 5. Thus, the stimulation tests were
performed by resting the electrodes on the correct positions on the leg. During
the experiment with the electrical stimulation, it was found, that the dry elec-
trodes do not provide enough conductivity and cause uncomfortable ”burning”
sensation on the skin. After applying water as a conductor to the electrodes, it
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Figure 4: Example of the developed socks prototype with integrated electrodes
for FES usage.
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Figure 5: Example of the wearable electrodes integrated into the sock

was possible to use electrodes and achieve stimulation of the ankle dorsiflexion.
This is a limitation of the developed sock and should be considered in future
works.

2.3 Evaluation of the embedded devices platforms

As it was stated in Publication II, the gait anomaly should be detected under
50ms. To test the parameters for contraction of the muscles, of the shelf FES
device was used, to evaluate the correct stimulation parameters (section 2.1).

Selected hardware should be capable of: 1) collecting the data from IMU
with sufficient frequency of at least 100Hz; 2) able to preprocess data for the
algorithm; 3) run the algorithm in real-time with timely anomaly detection; 4)
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be energy efficient.
First device, which was evaluated as potential candidate for the deployment

of real-time gait deviation detection was esp32 based development board. The
ESP32 WeMos Lolin32 Lite at the time was one of the boards, which was widely
available, easy to get, relatively cheap, with built-in Wi-Fi and Bluetooth for
testing, I2C interface and dual core processor. It can be programmed with
Micropython and C. Micropython was chosen for fast development and to port
the model from existing python code.

ESP32 devices are widely used and deployed in similar topics, like speech
recognition [2], which uses time-series data and image recognition [3], using
convolutional neural networks.

In the assessment of the devices capability, first the data collection speed and
stability were estimated. This is required to be able to train the algorithm for
the particular person and deploy the trained algorithm on the device afterwards.
Thus such approach should provide personalized gait deviation detection.

Figure 6: ESP32 board with two BNO055 IMU’s

Two IMUs were connected to the ESP32 board to collect the data from the
forefoot and under the knee, mimicing the data collection procedure from pub-
lication I. Bosh BNO055 IMU sensors were chosen initially due to availability,
good performance and low price (Figure 6).
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Figure 7: Raspberry Pi Zero 2W and MPU6050 IMU

During the experiments it was possible to record 20 seconds of continues
time-series data to the flash with frequency of 100Hz and several minutes of data
could be recorded using Bluetooth transmission with frequency of 50Hz. Faster
recording speed was not possible on the selected platform with micropython,
due to instability and data drops.

Regarding the algorithms, it is possible to run simple 1D-CNN models on
the ESP32 running micropython, but there are compatibility issues with bigger
and more complex networks. This limitation does not fulfill the requirements
of data collection samplerate of more than 100Hz and possibility to run the
algorithms in real-time. Thus, the research efforts switched to the Raspberry
Pi Zero 2W.

Raspberry Pi Zero 2W is widely available microcontroller, provides more
computational power to deploy the algorithms on the device, compared to the
ESP32. By switching to the Raspberry Pi Zero 2W and changing IMU to the
MPU6050 due to python library availability, it was possible to collect data with
the frequency of 125Hz (fig. 7).

Raspberry Pi zero still has some limitations, i.e fewer python libraries avail-
able, thus requiring to adapt the in-step anomaly detector code to accommodate
these limitations. Initial tests showed, that it is possible to collect the data and
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Figure 8: Example of chunks collection on the Raspberry Pi and alarm from
the algorithm

to run the SST-AD algorithm on the device (Fig. 8). However, to evaluate the
quality of the anomaly detection is challenging and requires more effort.

As a conclusion to this section, a development of the assistive device is
ongoing, showing how nontrivial the solution can be. From the standpoint of
the patient, the easy-to-use, comfortable device, which provides intervention
only when necessary, would be the answer to the RQ4.

Future work, which is beyond the scope of this thesis, will focus on the devel-
opment of a prototype assistive device that incorporates real-time gait deviation
detection algorithms. Currently, the evaluation of classification performance for
algorithms deployed on the device requires further refinement. Gait data and
classification results should be recorded during the device’s operation to accu-
rately assess the performance of the deployed algorithms. Future efforts will
involve gathering such data to evaluate the classification quality of the device.
Additionally, the prototype assistive device should be assessed by physiothera-
pists and real patients to validate its ability to detect true gait deviations and
determine its potential benefits for patients.
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4. Keelteoskus

Eesti keel emakeelVene keel emakeelInglise keel kõrgtaseSaksa keel kesktase
5. Teenistuskäik

2021–2025 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,Thomas Johann Seebecki elektroonika instituut,Nooremteadur2019–2020 MTS, Juhtiv spetsialist2016–2018 Föderaalne Uurimiskeskus Kristallograafia ja Fotonika,Insener2015–2016 Fotonkeemia Keskus, Insener2014–2015 A.N. Frumkini Füüsikalise Keemia jaElektrokeemia Instituut, Insener
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6. Vabatahtlik töö

2022–2022 Ericsson, Testtoodete juhtimise praktikant
7. Arvutioskus

• Operatsioonisüsteemid: Windows, Linux
• Kontoritarkvara: Microsoft Office, LibreOffice, LaTeX
• Programmeerimiskeeled: C, C++, Python, microPython
• Teadustarkvara paketid: MATLAB, TensorFlow, scikit-learn,tslearn, Keras

8. Kaitstud lõputööd

• 2017, Uuring lenduvate orgaaniliste analüütide mõju kohta värvainete 
spektraalomadustele, mis on kinnitatud silica geelidesse, MSc, juhen- 
daja Dr. Aleksandr Koškin, Moskva Füüsika- ja Tehnoloogiainstituut 
(Riiklik Ülikool), Molekulaar- ja Keemilise Füüsika teaduskond, Supra-
ja nanofotonika süsteemide füüsika.

• 2015, Keemilise informaatika meetodite väljatöötamine, mis on ko-handatud töötamiseks tasakaalustamata andmetega, BSc, juhendaja Dr. Natalia Kirejeva, Moskva Füüsika- ja Tehnoloogiainstituut (Riiklik Ülikool), Molekulaar- ja Keemilise Füüsika teaduskond, Kõrgtempera-tuuriliste protsesside füüsika.
9. Teadustöö põhisuunad

• Kõnnaku analüüs
• Signaalitöötlus
• Elektroonika
• Masinõppemeetodid

10. TeadustegevusTeadusartiklite, konverentsiteeside ja konverentsiettekannete loetelu on toodud ingliskeelse elulookirjelduse juures.
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