
Tallinn 2019

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Pavel Tšikul 163324IVCM

ENCRYPTED DATA IDENTIFICATION BY
INFORMATION ENTROPY

FINGERPRINTING

Master’s Thesis

Supervisor: Pavel Laptev

 BSc

Tallinn 2019

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Pavel Tšikul 163324IVCM

KRÜPTEERITUD ANDMETE
IDENTIFITSEERIMINE INFORMATSIOONI
ENTROOPIA SÕRMEJÄLJESTAMISE TEEL

Magistritöö

Juhendaja: Pavel Laptev

 BSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Pavel Tšikul

07.01.2019

4

Abstract

The aim of this thesis is to develop a way of encrypted data identification by means of

entropy features analysis with reliable mechanism of distinguishing it from extremely

compressed information. The outcome of this work is a solid method to confidently

recognize encryption patterns and a set of tools that provides the user with the

developed functionality. To achieve this goal a thorough analysis of information

randomness and its features will be performed. A series of experiments will identify

some interesting entropy feature correlations. These results will later become a base for

a machine learning approach to identify underlying principles. Finally, a forensic tool

will be developed utilizing previously developed methods. A series of validation

experiments conclude the work with proper evaluation and notes for future research.

This thesis is written in English and is 78 pages long, including 7 chapters, 25 figures

and 7 tables.

5

Annontatsioon

Krüpteeritud andmete identifitseerimine informatsiooni entroopia

sõrmejäljestamise teel

Selle töö eesmärgiks on luua viis krüpteeritud andmete identifitseerimiseks entroopia

analüüsiga kasutades usaldusväärset meetodit selle tuvastamiseks äärmiselt

kokkupakitud informatsioonist. Selle töö tulemuseks on usaldusväärne meetod

tuvastamaks entroopiamustreid ning tööriistad, mis võimaldavad kasutada loodud

funktsionaalsust. Selle eesmärgi saavutamiseks sooritatakse põhjalik analüüs

informatsiooni juhuslikkusest ja selle omadustest. Mitmed eksperimendid

identifitseerivad märkimisväärseid korrelatsioone entroopia omadustes. Nende

eksperimentide tulemused saavad aluseks masinõpet kasutavale meetodile tuvastamaks

fundamentaalseid printsiipe. Lõpetuseks luuakse ekspertiisvahend kasutades varemalt

loodud meetodeid. Mitmed valideerivad eksperimendid võtavad töö kokku järelduste

ning märkustega edasiste uuringute läbiviimiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 78 leheküljel, 7 peatükki, 25

joonist, 7 tabelit.

6

List of abbreviations and terms

AES Advanced Encryption Standard

API Application Programming Interface

CNN Convolutional neural network

CS Chi-Square test

DT Decision tree

DES Data Encryption Standard

GPG GNU Privacy Guard

KNN K-nearest neighbors

LZ Lempel-Ziv

LZMA Lempel–Ziv–Markov chain algorithm

LZSS Lempel–Ziv–Storer–Szymanski

ML Machine learning

PGP Pretty Good Privacy

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

Annontatsioon ... 5

List of abbreviations and terms .. 6

Table of contents .. 7

List of figures ... 10

List of tables ... 12

1 Introduction ... 13

1.1 Problem ... 13

1.2 Purpose ... 16

1.3 Thesis Overview ... 18

2 Current Works Evaluation ... 19

2.1 Entropy-based Encryption Classification Works Overview 19

2.2 Craig Heffner’s Solution Analysis ... 20

2.3 Seunghun Cha and Hyoungshick Kim’s Solution Analysis 22

2.4 Conclusion .. 23

3 Entropy and Randomness Tests ... 24

3.1 Information Entropy and Randomness ... 24

3.2 Randomness Tests Overview .. 26

3.2.1 Shannon Entropy ... 26

3.2.2 Monte Carlo Pi Approximation ... 27

3.2.3 Chi-Square Test ... 28

3.2.4 Arithmetic Mean .. 29

3.3 Methodology ... 30

3.4 Results .. 31

3.5 Conclusion .. 33

4 Encrypted and Compressed Data Entropy Features Research 34

4.1 Encryption Formats Overview .. 34

4.1.1 Block Ciphers .. 34

8

4.1.2 Cipher Text Indistinguishability from Random Noise 35

4.2 Basics of Data Compression and Modern Day Applications 37

4.2.1 Early Works ... 37

4.2.2 Huffman Coding .. 38

4.2.3 Lempel-Ziv Compression .. 39

4.3 Test Data Overview .. 41

4.4 Tools Selection ... 45

4.4.1 Entro.py Library and Tool ... 45

4.5 Methodology ... 47

4.6 Results .. 51

4.7 Conclusion .. 53

5 Machine Learning Model Training ... 54

5.1 Tools Selection ... 54

5.1.1 NumPy ... 54

5.1.2 Pandas .. 54

5.1.3 Scikit-Learn ... 55

5.2 Methodology ... 56

5.2.1 Data Selection and Preparation ... 57

5.2.2 Used ML Models Overview .. 59

5.2.3 Preliminary Experiments ... 60

5.2.4 Other Models and Model Fine Tuning .. 60

5.3 Decision Tree Analysis and Results ... 61

5.4 Conclusion .. 63

6 Sleuth Kit Autopsy Module Development .. 64

6.1 Autopsy Python Eco-System .. 64

6.2 Existing Encryption Detection Module Analysis ... 66

6.3 Ingest Module Functional Specification ... 67

6.4 Implementation Details ... 68

6.5 Results .. 70

6.5.1 Synthetic Test .. 70

6.5.2 Realistic Test ... 72

6.6 Conclusion .. 74

7 Summary and Conclusions .. 75

7.1 Conclusion and Future Work .. 75

9

References .. 77

Appendix 1 – Entro.py Library Source Code ... 80

Appendix 2 – Software and command line commands used to generate test data 83

Appendix 3 – Full Decision Tree structure .. 84

Appendix 4 – Machine Learning Tests Source Code (cropped) 85

Appendix 5 – Autopsy Module Source Code (cropped) .. 88

10

List of figures

Figure 1. Information entropy of encrypted and unencrypted data. 14

Figure 2. Information entropy of encrypted and highly compressed data. 15

Figure 3. Shannon’s Entropy equation. .. 26

Figure 4. Monte Carlo Pi approximation. ... 27

Figure 5. Probability of a point being placed inside a circle. ... 27

Figure 6. π dependency on the probability of a point placed inside a circle. 27

Figure 7. Monte Carlo estimated π. .. 28

Figure 8. Chi-Square equation. ... 28

Figure 9. Calculating Chi Square for random byte distribution. 29

Figure 10. Arithmetic mean equation. .. 29

Figure 11. Comparison of Shannon’s entropy and Chi-Square sensitivity. 31

Figure 12. AES encryption pipeline. .. 35

Figure 13. Huffman binary tree. ... 39

Figure 14. Entropy rate equation. ... 40

Figure 15. Example chi square graph for a binary blob of 600 x 32B pieces. 47

Figure 16. Maximum chi square values for CAST5 and AES file sets. 48

Figure 17. Occasional oscillation in encrypted data entropy.. 48

Figure 18. LZSS sample chi square distribution. ... 49

Figure 19. LZMA sample chi square distribution. ... 50

Figure 20. Confidence Graph. Initial idea (dropped out). .. 52

Figure 21. Classification of ML tasks and algorithms. .. 56

Figure 22. k-fold cross-validation with k = 4. .. 58

Figure23. Trained Decision Tree structure (cropped). ... 62

Figure 24. Autopsy Encryption Detection module decision logic.................................. 66

Figure 25. Decision Tree extracted as Python code. .. 68

Figure 26. Autopsy module logic flowchart. .. 69

Figure 27. Entro.py ingest module results in Autopsy blackboard. 71

11

12

List of tables

Table 1. Example of fixed-size ASCII coding. .. 38

Table 2. Example of VLC. ... 39

Table 3. Tested formats cut-off values. .. 44

Table 4. Example of entropy features data spreadsheet. .. 58

Table 5. Prediction precision by model. ... 61

Table 6. Encryption and compression detection results. .. 71

Table 7. Realistic test results. ... 73

13

1 Introduction

This chapter gives a brief introduction to the project, describes the problem, proposes a

solution for it, and identifies possible application areas.

1.1 Problem

Identification of unfamiliar data chunks poses a serious challenge in digital forensics.

When signature- or hash-based approaches fail researchers are only left with

assumptions originating from different file characteristics and information entropy is

one of the most important of them.

The term entropy was first used in statistical thermodynamics and refers to the amount

of uncertainty or disorder. In Information Theory however, entropy of data is an average

measure of some stochastic system which defines how much information it produces.

This definition was proposed by Claude Shannon in his 1948 work “A Mathematical

Theory of Communication” [1]. What that effectively means is that entropy defines the

minimum number of bits on average needed to represent an arbitrary data stream.

Consider a stream consisting of only 2 symbols with equal probability of occurring.

Calculated entropy value (entropy rate) will be equal 1 that is 1 bit per symbol is needed

on average to encode this type of data. However if we shift the probability of occurrence

as 70/30 the entropy will lower down to 0.88 bits/symbol. Continuing to shift the

probability to 99/1 will transform entropy to 0.08 bits per symbol on average is

required. Practically this means that encoding a 100-symbol string will require only 8

bits. This is due to the fact that 99% of the data will be represented by the first symbol

(refer to Chapter 3 for more details on entropy).

For typical 8-bit bytes Shannon’s entropy lays in range [0, 8]. Depending on the type of

the data is possible to do quite accurate assumptions on the origin and/or state of the

data based on its entropy value. For example English plain text file will usually have

entropy value around 4, whereas a binary executable module is likely to be around 6.

14

The entropy distribution inside files is most of the time uneven and can be presented as

a line graph or a chart (see Figure 1).

There are three cases however which present a very challenging, yet very interesting

problem. Highly compressed, encrypted, and truly random data will produce almost a

flat line of evenly distributed high entropy tending to maximum value of 8 (see Figure

2) making it fairly impossible to distinguish using only graph visualization.

In this work the author tried to tackle this problem in regards to encrypted data

identification and successful distinguishing it from any other types of data basing on the

anomalies in entropy graphs. Since compressed data is often presented without proper

headers or trailing checksums the signature-based recognition becomes useless.

Examples of header-less compression are:

 Hardware firmware images, which sometimes manage compression by utilizing

external functions which store compressed data sizes and checksums externally

[5].

 It is estimated that 80 to 90 percent of malware samples contain some form of

either encrypted or compressed data to hide its internal text or binary

instructions [3].

Figure 1. Information entropy of encrypted and unencrypted data.

15

 Any compressed data produced with “no-header”-options by tools like

libzip/gzip or lzma. This approach is often used for internal software resources

compression.

 HTTP traffic packets (gzip compression).

Currently the number of studies related to distinguishing between highly compressed

and encrypted data is very limited. Some preliminary studies found were performed

some time ago [5][2][25][26], but they lack serious test-sample volume and their results

were limited and sometimes speculative.

The idea of this work is to carefully evaluate different methods of information

randomness measurement to provide a solid method of differentiation of encrypted data.

Figure 2. Information entropy of encrypted and highly compressed data.

16

1.2 Purpose

The resulting method proposed in this work can be applied in a wide range of areas:

 Digital forensics. This area was a primary target at the moment of writing this

work and mostly assumes post-mortem or offline analysis.

o “Ransomwared” files identification. Nowadays ransomware is on the

rise. It is now a mature major threat with millions of victims all over the

world every year. Using the proposed method it is very easy to identify

files encrypted by the malware and isolate the ones intact.

o Hidden encrypted storage disclosure. Sometimes hidden encrypted

volumes such as Hidden Volumes, RIPA, or TrueCrypt can be stored as

files or as part of files and entropy tests can reveal such storages pretty

easily.

o Detection of encrypted malware. Entropy probing especially with the

graph view can be successfully used to detect executables which content

was purposely encrypted to be later decrypted in memory. This approach

is often used by malware creators to bypass antivirus engines’ signature

comparison.

 Intrusion Detection Systems (IDS). With some effort put into the overall

performance of the proposed method it can be potentially used for real time

traffic samples analysis.

 Antivirus applications. The concept proposed for “post-mortem” digital

forensics ransomwared file detection can be applied to real-time ransomware

attack detection. Another AV-related field is real time sample analysis (e.g.

conclusion on whether an executable in question contains any encrypted parts).

The method described in this work can be applied to all of the above-mentioned

areas; however some additional work will need to be done in order for the

performance to improve, as current state of the prototype does not allow efficient

real-time processing due to extensive IO operations and CPU-heavy mathematical

17

computations. The author is currently looking for ways to bypass some of the

algorithmic “bottlenecks” (see Chapter 7 for more details).

18

1.3 Thesis Overview

Presented thesis is divided into following chapters:

 Chapter 2 is covering currently available works on the topic.

 Chapter 3 focuses on the selection of appropriate randomness test for proposed

solution.

 Chapter 4 covers the case study of data encryption and compression in regards

to this study, as well as practical approach to research of entropy features in

encrypted and compressed data streams.

 Chapter 5 is about utilizing the research results from Chapter 4 to build an

encryption detection mechanism based on machine learning algorithms.

 Chapter 6 describes development and testing of a sample application based on

the results acquired in previous chapters.

 Chapter 7 concludes achieved results and proposes future work directions.

19

2 Current Works Evaluation

Although many of the sources state that it is either very hard or even impossible to

determine whether the binary blob was either compressed or encrypted [4][24], the

author managed to find some works trying to approach this task. This chapter covers

currently available works on the topic and their analysis.

2.1 Entropy-based Encryption Classification Works Overview

Encryption classification based on entropy is the most common method used in many

different areas and numerous papers exist on the topic. The most significant of those

will be covered in this section.

Dorfinger and Panholzer in their work “Entropy Estimation for Real-time Encrypted

Traffic Identification” tried to approach this problem by performing an entropy

comparison of a packet with the estimated entropy of an evenly distributed random

block of the same size [24]. In case the total difference is above some given threshold

the packet is treated as unencrypted. The numbers reported in the paper are very

promising; however the tests proposed are quite unrealistic and do not account

compressed traffic.

Two works that appeared after Dorfinger’s are “Clear and Present Data: Opaque Traffic

and its Security Implications for the Future” by White et al. [25] and “Detecting

encrypted botnet traffic” by Zhang et al. [26]. They both tried to tackle the problem and

did account for compressed data as well. Although compression was included in the

experimental data both works indicate that effective distinguishing between two data

types is not possible by their means and mark it as a limitation since both can have a

very similar entropy estimation.

There are however two works that tried to approach the problem from different angles

and they will be covered in more detail in upcoming sections.

20

2.2 Craig Heffner’s Solution Analysis

Craig Heffner is a well-known security specialist, vulnerability researcher, and hacker

presenting at such events as Black Hat and DEF CON. His series of articles named

“Differentiate Encryption From Compression Using Math” [5][6] was the initial trigger

for this work to appear.

The main idea stated in these articles is that while encrypted data is more stably

distributed by entropy, compressed data tends to have some deviations. He then presents

a research trying to prove this statement.

He researched two randomness tests which are Chi-Square and Monte Carlo Pi in order

to identify the claimed deviations. As a result he identified Chi-Square value of 512 as a

threshold for encryption entropy, i.e. files that have spikes over that value should be

considered compressed.

Major flaws in Heffner’s theory found by the author are:

 Feeding the whole file, including any signature, header and/or footer data, leads

to inaccurate results, since those chunks usually have more predictable data,

hence their entropy will be obviously less than of the data in question itself

creating a disturbance in the graph.

 Heffner’s test set was comprised of relatively small group of files (380 files in

total) of sizes from 300KB to 15MB. All of the files were either compressed or

encrypted firmware packages.

 The ranking system introduced by Craig Heffner seems to be too basic and over-

simplistic. It accounts only total number of deviations occurring in a file

completely ignoring other factors, such as file size and entropy distribution

levels.

Already some preliminary tests on some different sizes of encrypted files showed that

the “range of encryption” (Chi-Square value less than 512) is inaccurate since many of

tested samples occasionally showed higher Chi-Square values. But, what is more

important, compressed files can often fall under the features identified by Heffner to be

encryption-only, i.e. they don’t show any deviations at all, especially when the decrease

21

in data size. Thus, Heffner’s claim of “…98% of the compressed files tested were

correctly identified as compressed, and 100% of the encrypted files were identified as

not compressed (i.e., encrypted)” is at least not accurate.

22

2.3 Seunghun Cha and Hyoungshick Kim’s Solution Analysis

This fairly new work named “Detecting Encrypted Traffic: A Machine Learning

Approach” was published in March 2017 [2]. It covers an effective method of encrypted

network traffic separation in Intrusion Detection Systems. Since real time conventional

deep packet inspection techniques are ineffective applied to encrypted traffic they

propose to do the encryption classification on the fly and perform the analysis only on

the regular unencrypted data, leaving the encrypted one for offline research. To achieve

this goal they introduced several randomness tests to estimate the randomness of a

packet and a machine learning classifier. The three randomness tests used are:

 Shannon entropy.

 Chi-Square test.

 Arithmetic mean.

Results of these tests run on a single packet are then used as a training data for ML

classifiers of four different types.

In general this work thoroughly examines the topic with the only downside been the

narrow application to traffic analysis and not accounting the small fluctuations of

entropy inside the data stream. The latter is obviously due to the overall small size of

the samples used in the experiments (the absolute maximum for a TCP packet is 64KB).

So the method could potentially work well for the network analysis, but render very

limited in a more general way.

23

2.4 Conclusion

In this chapter a thorough analysis of available solutions was conducted. Many

interesting ideas to be used in this work were identified alongside the weak points and

misconceptions in them. Main ideas that were highlighted include:

 There are potentially patterns that could help distinguish highly-compressed data

from encrypted.

 Machine learning approaches may be very helpful when dealing with large

amounts of complex data.

Now that the downsides of current solutions were identified the pathway to improve and

widen the approach became more clear.

24

3 Entropy and Randomness Tests

This chapter contains a case study on entropy, gives an overview of evaluated

randomness tests, and collected results.

3.1 Information Entropy and Randomness

Due to the nature of encryption processes (see Chapter 4 for more details) the data

produced by them tends to be as random as it can theoretically be. This is done on

purpose so that the produced data is indistinguishable from random noise. On the other

hand compression algorithms tend to find the most optimal ways to store the data in the

minimum number of bits as possible striving for the Shannon’s entropy limit or the

maximum compression possible according to Information Theory.

Thus, the main idea utilized throughout this work is: we account for encrypted data to

be equal in entropy to truly random one and for compressed data to be striving towards

the same state but having some minor flaws or inaccuracies in randomness distribution

due to imperfections of general-purpose compression algorithms in an attempt to reach

maximum entropy. With that in mind we need to check how truly random a presented

data blob is and if the data tends to be not random enough treat it as compression. It

should be considered encrypted or truly random otherwise.

Aside of Shannon’s equation a number of other randomness tests exist. This list

includes, but not limited to:

 Shannon’s entropy

 Maurer's universal statistical

 Cumulative sums (cusum)

 Random Excursions

25

 Overlapping Permutations

 Monte Carlo Pi Approximation

 Reverse arrangements

 Chi-Square test

 Frequency test within a block

 Arithmetic Mean

 Parking lot

 Binary rank test for 32x32 matrices

 Discrete Fourier transform (spectral)

This list can be continued on and on. During the course of evaluation more than 40

algorithms were considered for the best randomness estimation.

26

3.2 Randomness Tests Overview

Through the years many practical ways to measure data randomness were invented and

evaluated. Most of the currently used randomness tests are parts of test collections such

as George Marsaglia’s Diehard Battery of Tests, NIST, and ENT.

A work “Random Number Generators: An Evaluation and Comparison of Random.org

and Some Commonly Used Generators” by Kenny was found very useful while

selecting candidates as it provided a comprehensive analysis of the whole range of

randomness tests currently available [27].

Other works in this field ([5][6][2]) provided additional information on the best

algorithms and practices currently used in digital forensics and reverse engineering.

3.2.1 Shannon Entropy

Shannon Entropy equation was an obvious candidate for the proposed solution since it

is a traditional method for randomness estimation. It is defined by the classic Shannon’s

equation:

𝐻 = − 𝑝 𝑙𝑜𝑔 (𝑝)

Applied to 8-bit bytes it practically means:

 Calculate every byte’s occurrence count.

 Divide those occurrence counts by the data blob length.

 Multiply every resulting item by its logarithm.

 Sum up all of the results.

This will output a value in range [0, 8] with the higher values meaning higher entropy.

Figure 3. Shannon’s Entropy equation.

27

3.2.2 Monte Carlo Pi Approximation

The idea of approximating Pi using Monte Carlo method is pretty simple. Consider a

circle of radius r inside a square with a side of 2r (see Figure 4). With this defined the

area of the circle is 𝑆 = 𝜋𝑟 and the area of the square is 𝑆 = 4𝑟 .

Figure 4. Monte Carlo Pi approximation.

Now if you start generating random pairs of numbers in the range [0, r] and treat them

as (x, y) point coordinates inside the square then the probability of a point to be placed

inside the circle is:

𝑃 =
𝜋𝑟

4𝑟

Simplifying this equation will result in:

𝜋 = 4𝑃

Figure 6. π dependency on the probability of a point placed inside a circle.

At this point Pi simulation now takes pairs of bytes from the stream and checks whether

or not they are inside the circle area and increment a corresponding counter Nc. The

check is done with a simple comparison of whether 𝑥 + 𝑦 ≤ 𝑟 . At the same time the

square area counter Ns is incremented every time (since all of the points are inside the

square). The final equation is then as follows:

Figure 5. Probability of a point being placed inside a circle.

28

𝜋 =
4𝑁

𝑁

The result is a Monte Carlo estimated value of Pi. And the main consequence in regards

to randomness is the closer the estimated value to canonic π the more randomly the data

is distributed in a data set. This deviation can be calculated as an absolute percentage of

difference between estimated and canonic values.

One concern regarding this method that was identified on the early stage is that to get

good precision the number of samples should be significant. Although the Pi simulation

stops being stochastic after about 3000 samples the desired precision is acquired only

around 100000-500000 samples. So even if MC Pi approximation is to be used in the

future the sample count should be taken into account and the results adjusted

accordingly.

3.2.3 Chi-Square Test

Chi-Square test is a universal method to check if some variation in the collected data

follows a proposed theoretical prediction. The general equation for chi square is

presented in Figure 8.

𝑥 =
(𝑂 − 𝐸)

𝐸

The meaning of the equation can be described as follows: E is a range of expected

values and O is a range of practically observed values; so the sum of all the
()

division results of corresponding expected and observed values will give the 𝑥 or the

Chi Square value.

Figure 7. Monte Carlo estimated π.

Figure 8. Chi-Square equation.

29

In our concrete case the null-hypothesis is that in truly random data all 256 byte values

will be equally distributed and are expected to have equal probabilities of appearing in

the data stream. Thus the probability for every value is the same and equals Pe =

data_length / 256. To apply Chi Square for this occasion we need to collect the real

distribution of all 256 byte values and calculate chi square as shown in Figure 9.

𝑥 =
(O[0] − P)

P
+

(O[1] − P)

P
+ ⋯ +

(O[255] − P)

P

General interpretation of the chi square results for this exact case is that truly random

data will usually have an average chi square value of 224 with oscillations in range 170

– 490 depending on data size and histogram step. Everything above this range may be

questioned for randomness.

3.2.4 Arithmetic Mean

Arithmetic mean is calculated by summing up all byte values of the data source and

then dividing them by the total length of the data.

𝐴 =
1

𝑛
𝑥

In a truly random (i.e. uniformly distributed) data blob the result of arithmetic mean

should lay around value of 127.5.

Figure 9. Calculating Chi Square for random byte distribution.

Figure 10. Arithmetic mean equation.

30

3.3 Methodology

The process of selection a randomness test for this particular case consisted of 3 main

steps:

 Running randomness graph generation for every algorithm on a relatively small

file set of 50 items of different size. File set was comprised of AES encrypted

and LZMA compressed files with 50/50 distribution.

 Careful analysis of graphs side by side in order to identify a method with more

sensitivity to small fluctuations in randomness.

 Iteratively decreasing graph step from 512B to 32B and re-evaluating results.

This process generated a lot of interesting results, some of which were not utilized in

this work, but could potentially be used in a later research.

31

3.4 Results

All four algorithms in question provided more or less equal results on average and then

were ranked by two criteria:

 Stability of the histogram provided.

 Sensitivity to small deviations in randomness distribution.

For the stability test a set of truly random data samples different in sizes was generated

using random.org service, which uses atmospheric noise as randomness seed. As a

result it was observed that Monte Carlo Pi method is not stable enough on samples less

than 4KB. So it was discarded from future evaluation at this stage.

For the deviation sensitivity a procedure described in section 3.3 was used. To make the

results a bit more predictable an additional series of tests were run on a subset where

random noise was artificially altered with some less random data at specific locations.

The results of these tests have revealed all remaining three methods are quite similar in

performance, yet Chi-Square test is most of the time better in identification of tiny

fluctuations in randomness. This confirms hypothesis done by Craig Heffner in [5][6].

Figure 11. Comparison of Shannon’s entropy and Chi-Square sensitivity.

32

In regards to the histogram step size although it was clears that to get a more reliable

symbol distribution for 8-bit byte the average size of a sample should be at least 2.5KB

this size tends to hide important fluctuations in randomness. Parallel tests run for three

algorithms showed that lowering the size of the sample all the way down to 32B does

not affect the overall precision, but only the magnitude of the readings.

33

3.5 Conclusion

In this chapter a study on different randomness tests was conducted in an attempt to

identify the most precise way to detect anomalous behaviour of entropy inside a data

stream. As a result a Chi Square test was selected as the most promising as well as some

practical aspects of its application (histogram step size). At this point the results seem to

be promising; however there is a large field for future investigation in regards to

randomness tests comparison.

34

4 Encrypted and Compressed Data Entropy Features

Research

This chapter describes a case study on popular compression encryption formats, the

iterative approach to entropy features research and tools improvement, as well as

experimental data collection.

4.1 Encryption Formats Overview

This section covers some of the modern encryption algorithms and explains how the

data transformation happens, how that affects the entropy of a resulting data stream, and

what specific features these algorithms incorporate.

4.1.1 Block Ciphers

All of the algorithms used in this work, except for ENIGMA, are parts of block cipher

family. The main feature of this family is that the cryptographic key and algorithm are

applied to a fixed-size block of data, rather than to one bit a time as in stream ciphers.

To better understand how exactly the data inside encrypted files is composed the

encryption mechanism on the example of AES or Advanced Encryption Standard will

be covered. The concept of AES internal operation utilizes ideas common to the

majority of modern block ciphers.

The AES main operation cycle is depicted in Figure 12. The original plain data is

chopped into blocks of 128 bits each. Every such block is then transformed into 128 bits

of cipher data on the output so that the final encrypted data is exactly the same size as

the original. Inside the AES system there lays a series of basic cryptographic primitives:

substitution, transposition, and bitwise operations [16]. Every next operation in the

chain takes the result of previous one and applies transformation on top of it. A special

sub-key generator takes the original cryptographic key to produce a different sub-key

for every operation in the pipeline. The very first step (sometimes called “whitening”) is

35

a simple bitwise XOR performed on the original block data with the dedicated sub-key

from the generator.

XOR-step is then followed by a series of so called rounds which minimum count is 10

and can be infinitely increased to gain better security, but sacrificing the performance.

Inside every round the following series of operations occur:

 Static Substitution – byte-wise fixed table replacement.

 Transposition – byte-wise repositioning of bytes.

 Dynamic Substitution – 4-byte-wise formula-based replacement.

 XOR – simple bitwise XOR with the sub-key.

So every round performs these operations with its dedicated sub-key making it a

challenging task to roll back all the bits permutations in a brute-force attempt to crack

the cipher.

4.1.2 Cipher Text Indistinguishability from Random Noise

Some ciphers intentionally try to make the cipher text to be indistinguishable from

random noise bits. This is done for various purposes:

Figure 12. AES encryption pipeline.

36

 Deniable encryption. This means that the existence of the message can be denied

if the adversary cannot prove otherwise.

 To conceal encrypted data better as a random noise on hard drive. These

techniques are often used by volume encryption software like TrueCrypt to hide

the data as some binary garbage on a disk.

 To complicate traffic analysis.

However to achieve indistinguishability from random noise in general case it is enough

to perform a XOR-operation with some pseudorandom stream of the same length as the

original data. Most modern block ciphers do this in the “whitening” stage (DES, 3DES,

AES, BLOWFISH, etc.) using the modified key from the sub-key generator as a random

stream. The numerous bits permutations result in data effectively looking as random

noise with the highest entropy possible. The fact that a secure block cipher can act as a

cryptographically secure pseudorandom number generator (CSPRNG) approves this

opinion [28].

37

4.2 Basics of Data Compression and Modern Day Applications

This subsection covers the fundamentals of the lossless data compression and some

popular algorithms used in modern archiving solutions.

4.2.1 Early Works

Even starting from the Morse code there were attempts to minimise the size of a

message to reduce the time needed for sending it. To achieve this goal the statistical

probabilities of English letters appearing in the text were taken into account when

assigning the dot-dash combinations to letters, so that the more likely it is for the letter

to appear in text the shorter combination was assigned to it. That is why letters E and T

were assigned the shortest combinations of single dot and single dash respectively.

What Claude Shannon developed with the concept of entropy was a mean of content

measurement in a data stream. This basically means the entropy is the minimum amount

of bits needed in average per symbol to represent the given data stream. So, according

to Information Theory, the entropy multiplied by the length of the stream gives the

minimum expected size of this stream in a compressed state. So data compression tends

to minimize data size by maximizing the amount of information per bit in the data and

increasing its entropy rate.

Regular approach to coding a symbol is to have a fixed-size block for each symbol and

to have a mapping table for every symbol to decode it back. A good example of such

approach is ASCII table. It utilizes 7 bits to encode each character, which gives a

maximum of 128 symbols to be coded (see Table 1). This approach is very convenient

for real-time manipulation of the data; however it is not very efficient in terms of

information capacity as seen from Shannon’s equation. This comes from the excessive

bits needed to be stored for every character. So the idea of variable-length codes or

VLC’s appeared. The main idea is pretty straight-forward: every unique symbol is

mapped to a code comprised of a variable number of bits with tendency to minimize the

size of each symbol.

38

Letter Binary Code

A 0100 0001

B 0100 0010

C 0100 0011

D 0100 0100

Table 1. Example of fixed-size ASCII coding.

To make use of VLC’s and effectively eliminate any discrepancies during data decoding

they have to possess a feature known as “prefix property” [13]. The idea is that

whenever a code is assigned to a symbol, no other code may start with the same pattern.

For example if letters (A, B, C) are coded with the following bit patterns (0, 10, 101),

the bit stream [1010] can be interpreted dually as (BB) or (CA), which breaks the

decoding process.

Peter Elias introduced a series of designs for variable-length codes [12] following the

prefix property rule. The very first method, called Unary coding represents any given

integer n as a n – 1 ones followed by a zero, so that 1 will be coded as “0” and 3 will

become “110”. For obvious reasons this code is not very optimal for large integer

values. He went on with development of different VLC’s (namely Gamma, Delta, and

Omega codes) targeting at different probabilities of the data set sizes, so that the user

could estimate it and pick an optimal encoding for the specific case.

4.2.2 Huffman Coding

Many other works aside of Elias’ were related to optimal VLC assignment (Stout

Codes, Boldi–Vigna Codes, Taboo Codes, etc. [14]). But one work became a

breakthrough, so that Donald Knuth referred to it as “one of the fundamental ideas that

people in computer science and data communications are using all the time” [15].

In 1952 David Huffman in his work “A Method for the Construction of Minimum-

Redundancy Codes” described a mechanism of effectively minimising the number of

bits needed to code an arbitrary message [11] following the prefix property rule.

The main idea is to build a binary tree from down to top basing on the probability of

symbol occurring. To quickly demonstrate the method we’ll take an array of letters with

corresponding probabilities (A: 50%, B: 12,5%, C: 12,5%, D: 25%) and sort all the

symbols by their probability of occurrence from highest to lowest. We then take the

39

least probable symbols and combine them into a node. Iteratively repeating this process

we reach the root of the tree (see Fugure 13).

Branches of the tree are then assigned with either 1 or 0. To get a symbol code from the

binary tree it is needed to collect branch values all the way from to top to the symbol in

question. For our case the codes will look as follows:

Symbol Huffman Code

A 0

B 100

C 101

D 11

Table 2. Example of VLC.

Thus the most seldom occurring symbols are coded with the longest code, effectively

minimising the size of the message.

Despite the fact that Huffman has developed his method almost 70 years ago it is still

widely used in modern applications, but often as auxiliary compression mechanism.

One example is DEFLATE algorithm which will be tested in scope of this work. It is a

combination of LZ77 (refer to next section for more details) and Huffman coding.

4.2.3 Lempel-Ziv Compression

Many different compression algorithms were developed during the last century, but one

compression family really stands off. Its name is Lempel-Ziv. All of the compression

Figure 13. Huffman binary tree.

40

methods used in this work are part of the LZ-family and in this section we’ll take a

closer look at the methods it utilizes and the reasons it is dominating data compression

for over 30 year.

The basic idea of any LZ-compressor is that it goes over the plain text looking for the

sequences of characters that repeat throughout the text and then try to reuse them in the

most optimal way [18]. Instead of coding separate characters LZ concentrates on

dynamic grouping of adjacent symbols, trying to find the perfect balance between the

longest tokens and the smallest entropy rate.

Entropy rate of a stochastic process is the average time density of information produced

by the process. Shannon’s entropy described in Chapter 3 provides a good method for

measuring the randomness in a stand-alone or a series of independent events. However

events in real systems are often not that independent and historical data often affects the

behaviour of the system at present. Consider the following example: the i.i.d.

(independent and identically distributed) probability of letter “U” appearing in English

text is 2.76%, whereas in practice if the preceding letter was “Q” the probability of “U”

following is around 80%. Shannon’s entropy cannot be used directly to calculate cases

like this, so the equation was modified as follows:

𝐻(𝑋) = lim
→

𝐻(𝑋 , 𝑋 , … , 𝑋 ,)

𝑛

This means that the entropy rate of a process is the limit of joint entropy of all members

of a process X divided by the number of members [29]. The very first versions of the

algorithm named LZ77 and LZ78 still comprise the very backbone of modern data

compression because they addressed entropy rate recursively finding the best

combinations of tokens. As a fairly simplified example consider a string “randomness is

so chaotic and random” to be a compressed subject. LZ will identify that the word

“random” at the end of the string has already been encountered 29 characters before. So

it will replace the 6 character entry in the word “randomness” with a 2-byte combination

of a relative jump and a length of a token: “[29,6]ness is so chaotic and random”.

Going into more detail what LZ actually does it parses the original sequence into

distinct phrases or tokens. The further it goes the more distinct tokens it finds, but the

Figure 14. Entropy rate equation.

41

thing is the shortest tokens tend to be found first and they are used as bricks for the

longer ones [18].

There are currently more than 20 actively used variations of Lempel-Ziv algorithm, but

one of them really stands off. LZMA or Lempel–Ziv–Markov chain algorithm is the

only one of them that takes advantage of entropy encoding using Markov-chains. It uses

a variable size dictionary of up to 4GB in length for the regular LZ duplicate string

elimination, but after that it tries to optimize the achieved result utilizing a Markov-

chain-based range coder in conjunction with binary trees [19]. This approach tends to

raise the entropy level to theoretical maximum making it the hardest algorithm in terms

of distinguishing it from true random noise or encryption.

4.3 Test Data Overview

This section describes the process of experimental test data preparation. To avoid

mistakes done by predecessors the author decided to gather a very diverse set of test

samples that would differ by the following criteria:

 Size. The files should ideally represent life-like user data so it should include

very small, as well as quite large files.

 File type. Since compression algorithms often work differently with different

input data it was decided to include as many commonly used file formats as

possible.

Original test data is comprised of four main groups with 591 files in total:

 Random operating system files. These include executable binaries, settings files,

release notes, PDF manuals, etc.

 User data. This set is comprised of carefully balanced files of different groups

like images, text documents (plain text and text-processor created), spreadsheets,

and binary modules.

 Images. Special set including only image and 3D data files.

 Plain text only. This set includes only large plain text files.

42

File sizes lie in range from 53B to 100MB.

All of the files from the above-mentioned sets were processed with different algorithms

and either encrypted or compressed. The final selection of algorithms is as follows.

Encryption:

 AES – stands for Advanced Encryption Standard. A modern widely used

symmetric-key algorithm developed by Vincent Rijmen. It is adopted by many

countries, including US, on a governmental level. It was designed as a

replacement for DES algorithm and shares many common features with the

latter.

 BLOWFISH – another symmetric key encryption algorithm capable of using a

key up to 448 bits. It was designed as a quicker and better alternative to DES

algorithm and got a lot of attention in early 1990’s. At the moment AES slowly

supersedes Blowfish. Interestingly Blowfish is placed in the public domain and

can be used by anyone without any licensing.

 CAST5 – another widely used symmetric-key block cipher. It is a default

encryption mechanism in a number of software products, namely PGP and GPG.

At some point it was considered as a candidate for AES standard, but was later

rejected in favour of Rijmen’s solution.

 DES – stands for Data Encryption Standard. It is a traditional block cipher

algorithm designed in 1970’s by IBM in partnership with US NSA. It utilizes

keys of 56bit length, which is considered to be insecure taking into account

modern computation powers.

 ENIGMA (UNIX Crypt) – a very simple cipher that represents a one-rotor

machine designed along the lines of Enigma, but considerably trivialized. This

algorithm is used in UNIX crypt(1) utility used for encryption. It is now strongly

advised to avoid using it due to the ease of brute force attack.

43

Compression:

 DEFLATE – one of the most widely-used compression algorithms to date which

is utilized in huge amount of software. Uses a combination of LZ77 for duplicate

strings elimination and Huffman coding for bit reduction (see section 4.2.2).

 LZSS – stands for Lempel–Ziv–Storer–Szymanski. Another advanced

compression algorithm based on LZ77 standard. In original LZ77 the dictionary

reference could sometimes be longer than the string to be replaced. LZSS omits

any dictionary references if they are found to be inefficient. It is a default

compression algorithm for many popular archivers (PKZip, ARJ, WinRAR,

ZOO, etc.).

 LZMA – stands for Lempel–Ziv–Markov chain algorithm. This is another young

algorithm from Limpel-Ziv family. It is one of the best general-purpose

compression algorithms to date [23][7]. It uses a variation of LZ77 algorithm for

dictionary encoding followed by a complex model predicting every bit

probability based on Markov-chains [19].

In order to raise the entropy level and make archived data as indistinguishable from

encrypted or truly random data as possible, compression algorithms were used with

their maximum compressing settings turned on (refer to Appendix 2 for complete

software and settings listing).

Total number of files used during experiments is 4728 (~20GB).

For the purpose of experiment purity, data in question (encrypted and compressed) was

cleaned out of any accompanying interfering data, such as file signatures and headers to

the extent it made sense.

Algorithm Software Skipped
from start

Skipped
from end

Comments

AES AESCrypt 192B 0 AESCrypt header is dynamic, but
usually less than 160B.

BLOWFISH mcrypt 32B 0 Standard mcrypt short header
containing “BLOWFISH” signature.
Skipping.

44

CAST5 Gpg4Win 0 0 Header is 11 bytes, but they seem to not
interfere with results.

DEFLATE zip 64B 128B Zip files have both header and footer.

DES mcrypt 0 0 Standard mcrypt short header is
present, but it does not interfere with
results.

ENIGMA mcrypt 32B 0 Standard mcrypt short header
containing “ENIGMA” signature.
Skipping.

LZMA 7Zip 32B 4% 7Zip entry table is at the back of the file
with only signature and offset in the
header.

LZSS WinRAR 5% 0 WinRAR header is of a variable length,
usually not going over 1-2% in total
size of the package.

Table 3. Tested formats cut-off values.

Since different software was used to generate test data sets, their formats were carefully

examined and a list of cut-off values was composed [19][20][21][22]. The resulting

values are presented in Table 3. Note that only separate single files were compressed or

encrypted meaning that there are no file-entry headers in between the compressed data.

45

4.4 Tools Selection

For quick and easy execution of different types of randomness tests as well as recursive

directory operations the author decided to create a simple dedicated set of tools. The

following software products and technologies were selected as technology stack for this

research phase:

 Python – as a main programming language, because of its variety of internal

tools and speed of development.

 Entro.py – my own library and tool written in Python to perform all the

calculations.

 Microsoft Excel – a powerful spreadsheet processor capable of many analytical

operations as well as advanced graph visualization.

4.4.1 Entro.py Library and Tool

This library and its accompanying command line tool were designed by the author

solely for this thesis work. They are distributed as open-source under MIT license and

are available on Github. The library provides the following functionality:

 Shannon entropy calculation.

 Monte Carlo Pi calculation.

 Chi-Square test.

 Arithmetic mean test.

 Working with the whole file or just part of a binary blob.

 Calculation of randomness graph with a given step.

 Export of results to CSV spreadsheets.

 Recursive directory operations on many files.

Thus, this software is capable of conducting most of the needed functionality required at

this stage; however there is a plan to continue with the development by adding more

46

useful features for entropy-related research and practical applications, including more

randomness tests, extracted machine learning models for data source analysis (see

Chapter 5).

47

4.5 Methodology

To observe entropy oscillations inside a binary blob an entropy graph is built. This

means that data is split into equal parts of a given size (step) and entropy is calculated

for every one of them to comprise a continuous flow of values representing internal

entropy fluctuations. The selection of a step size was a result of a series of experiments

in Chapter 3 during which steps in range of 512B to 16B were observed. Forensic tools

on the market such as IBM QRadar Security Intelligence Platform use a step of 512 or

256 bytes to display Shannon entropy graph. In my case however this precision turned

out to be not enough as a lot of smallest entropy deviations tend to remain unnoticed. So

it was identified that a step of size 32B is the most suitable for this particular task and it

was used throughout all of the experiments described in this chapter.

To check the assumption that encrypted data may not go over some threshold chi square

value, the author decided to check the maximum chi square values for two encrypted

sets as a first iteration. The selected sets were CAST5 and AES (Experiment 1 and 2

respectively). As a result it was identified that maximum chi square lies in range from

272 and 560. This maximum threshold value of 560 will be called a “Compression

Marker” later in this work. Some interesting observation at that time was also the fact

that for smaller files (less than 1MB) it is never above 430 (in this particular data set,

see items 370-470 in Figure 15), and is never above 400 for small (less than 500KB)

text files (item 325-370 on Figure 15). Comparison of maximum chi square graphs for

both algorithms revealed a very similar pattern (see Figure 15).

Figure 15. Example chi square graph for a binary blob of 600 x 32B pieces.

48

To eliminate probability of content-entropy relation it was decided to check a set of

differently sized encrypted plain text files (Experiment 3). In this case complete chi

square graphs were carefully examined for peak values. Resulting data clearly showed

that for the large data blobs occasional peaks up to 560 can occur, with normal chi

square distribution in range 224 to 400. Thus it became clear that content does not affect

entropy of encrypted data, but large encrypted data is more likely to have occasional

oscillations.

After previous test data collection it was decided that the examined feature list should

be extended to include the following:

 Minimum chi square value.

 Maximum chi square value.

Figure 16. Maximum chi square values for CAST5 and AES file sets.

Figure 17. Occasional oscillation in encrypted data entropy.

49

 Average chi square value.

 Relative location inside the file and intensity of peak values.

 Total number of peak values.

 Data size.

Next iteration included entropy features collection for two of the archiving algorithms,

namely LZMA and LZSS (Experiments 4 and 5), as they provide the best compression

available and should be the closest ones to encryption or true randomness in terms of

entropy distribution. Note that test samples were cleared of any header-footer data to

provide clear results, as described in Chapter 4.1. The aim of these tests was to identify

if the chi square values above the previously identified threshold of 560 appear

commonly in compressed data and if yes is there any pattern.

The number of outstanding chi square peaks in LZSS data turned out to be pretty high

on average and gave some confidence in using this feature for distinguishing at least this

type of compression from encryption (see Figure 17). However results for LZMA

algorithm were not that obvious and convincing. LZMA provides a much better

compression level [7], hence closer entropy to pure random data.

Figure 18. LZSS sample chi square distribution.

50

More than half of the samples did not have any Compression Markers, yet again another

half showed some occasional oscillations far above 560 randomly appearing in the

middle of uniformly distributed entropy (see Figure 18).

As a conclusive test (Experiment 6) for this chapter the above-described procedure was

run on the full test set of 4728 files and the outcomes were carefully evaluated. Results

of first two experiments were extended with missing data.

Figure 19. LZMA sample chi square distribution.

51

4.6 Results

Analysis of the data collected in Experiment 6 revealed some patterns as well as some

expected abnormalities. Encrypted file sets were tested to fall into previously identified

chi-square-range of 224 to 560:

 DES-encrypted samples had two files with single anomalies of chi square 576

and 608 randomly in the middle of the data.

 BLOWFISH-encrypted set had one file with a spike of 592.

 CAST5, ENIGMA, and AES samples’ chi square values all lied in the expected

range.

For compression sets the total count of Compression Markers and any additional

features that could help to identify compression were looked for:

 DEFLATE-compressed set had 115 items (19.46% of total count) with no

Compression Markers; 92 of them were less than 400KB in size.

 LZSS set had 72 items (12.18% of total count) with no Compression Markers.

 LZMA set had 330 items (55.84% of total count) of different sizes were missing

Compression Markers.

Preliminary results identified no single-dependency on any of the selected features;

however there is clearly a correlation between the size of the data and the number of

compression markers in the compressed data and the results were very stable for

encrypted data sets.

The initial assumption was that there is probably a linear statistical dependency between

the compressed data size and the number of compression markers appearing in it. So the

idea was to create a so-called confidence graph where the precision of data content

prediction would rise along the data size axis as shown on the Figure 19.

52

However, after careful analysis of the collected data it became obvious that manual

recognition of features and their mutual interconnections that affect the decision will

take enormous time and effort, considering that the number of affecting features was

more than two. Thus some sort of machine processing must be introduced.

Figure 20. Confidence Graph. Initial idea (dropped out).

53

4.7 Conclusion

In this chapter a deep case study on the underlying principles of encrypted and

compressed data formation was conducted and some popular algorithms in both

domains were covered. A series of experiments was then run on a severely large dataset

in an attempt to identify patterns that could theoretically help in distinguishing

compressed and encrypted data. Although some patterns were found their nature and

exact measurements were hard to extract due to the size of the result set and the absence

of an obvious linear feature correlation. This chapter concludes major sample data

collection and precedes the upcoming statistical analysis stage with machine learning

approach.

54

5 Machine Learning Model Training

Now that a severely large collection of resulting data was collected a method to

effectively process it and conclude the relationships needed to be selected. Modern

frameworks for machine learning (ML) provide algorithms with this functionality:

provided some data with known outcomes (“training data”) they are capable of building

a mathematical model that can predict the outcomes of new data with certain amount of

precision [8].

5.1 Tools Selection

Since the previously selected programming language was Python it was natural to

continue with it. Another deciding fact was that Python is a de-facto industry standard

for machine learning and data science, because of its speed of development and a wide

range of tools for almost any applied science area imaginable. According to Igor

Bobriakov’s research [9], SciPy (and its subsidiary Scikit-learn), Pandas, and NumPy

are the top data science libraries based on the functionality provided, development

activity, size of supporting community, and some other metrics.

5.1.1 NumPy

NumPy stands for Numerical Python and is a collection of useful classes and functions

for convenient operations on n-arrays and matrices, linear algebra transformations, and

random number manipulations. It is considered a fundamental library for scientific

computing [10]. Its code is optimized for high performance scientific computing and

data analysis.

5.1.2 Pandas

Pandas is a very powerful Python package, which provides easy functionality for

structured data manipulation, aggregation and visualization. chi square features from

Chapter 4 experiments were stored as CSV spreadsheets and those can be conveniently

55

fed to Pandas for later manipulations, such as columns addition-deletion, data grouping,

etc.

5.1.3 Scikit-Learn

Scikit-Learn is an additional package of SciPy-family with the aim of providing easy-to-

use, yet very powerful tools for machine learning and data science. The library covers

most of the main ML algorithms for classification, regression, and clustering. Since it is

production-ready library it was built with performance in mind, utilizing C and C++

programming languages in efficiency-critical areas.

56

5.2 Methodology

Machine learning is a very broad area of algorithms and mathematical models. Selecting

the right algorithm requires some background knowledge on the topic and careful

analysis of the data as well as the desired outcome.

There are two main areas in machine learning: the supervised and unsupervised ML.

The main difference in them is that for supervised ML the data should be properly

labelled in advance before the training starts. That means that the target feature is

defined and set in the training set and the algorithm knowing the correct answer from

the beginning iteratively tries to build a mathematical model that predicts any future

inputs. Unsupervised models are fed unlabelled raw data. They are then left with no- or

limited supervision to discover the underlying structure of the data.

Supervised ML is in turns divided into two main areas: classification and regression.

Classification is a type of a problem when an entity in question needs to be categorized

into a finite number of classes (e.g. “red” / “green” / “blue”, “trustful customer” /

“untrustful customer”, or “true” / “false”). Regression on the other hand outputs a real

Figure 21. Classification of ML tasks and algorithms.

57

number in some finite range. Most of the supervised ML algorithms can be used for

both classification and regression.

5.2.1 Data Selection and Preparation

After experiments performed in Chapter 4 two resulting data sets very different by

nature were collected:

 Chi-square graphs for every file in the test set. This data was stored as binary

dumped NumPy arrays of chi square values. This data falls under the category of

unstructured labelled data. Unstructured data like images, text, audio streams,

etc. is impossible to process as is using traditional methods due to its non-

uniform structure and ambiguities caused by it. Usually the pre-processing stage

requires some special steps (e.g. feature extraction, clustering, etc.) before

actually training a model.

 Extracted chi square features for every file in the test set. This is a more

traditional structured data model stored in regular CSV spreadsheets (see Table

4). This type of data is most of the time ready for machine processing with

minimal preparations.

Since a structured and carefully labelled data was in possession, it was decided to first

experiment with it and only in case of failure to try the unstructured data set and a deep

learning approach, which would require significantly more time and effort.

My structured results data set was labelled so supervised learning was an obvious path.

The number of outputs is strictly limited to 2 values: encryption or compression. That

means this task is of a Classification type. There are plenty of classification algorithms

available and in general there are no strict rules in regards to what algorithm behaves

better under what circumstances and it is often upon the researcher to identify it

empirically.

File Name
Max
Chi

Avrg.
Chi

Min
Chi

Peak
Count

Peak
IDs

Peak
Positions

Block
Count

Data
Size

Encryp-

tion

testset_002.pdf.rar 1488 260.2897 224 3

2299-
2553-
3655 62-69-99 3659 117088 0

58

testset_003.pdf.rar 560 258.8228 224 0 7233 231456 0

testset_005.pdf.rar 832 258.846 224 1 6882 99 6886 220352 0

testset_010.pdf.rar 848 256.5971 224 5
23052-
23053 14-14 160998 5151936 0

testset_011.jpg.rar 544 255.8226 224 0 6138 196416 0

testset_012.jpg.rar 624 256.2706 224 1 28711 99 28715 918880 0

testset_013.jpg.rar 480 255.4601 224 0 4684 149888 0

Table 4. Example of entropy features data spreadsheet.

There are standardized ways of how to prepare the data for correct model training and

validation. All results of Experiment 6 from Chapter 4 were carefully reshuffled to

create an even distribution of items in the set. They were then split 70/30, with 70% of

results used for training a model (training data) and 30% (so called “holdout”) for later

model validation. A method called stratified k-fold cross-validation was applied to the

training data. The idea of this method is to split the data set into k chunks (folds) and

iteratively treat every next chunk as validation set and all the remaining (k – 1) chunks

as training data. In case the model is good, results of all iterations should be more or

less close to each other. If the results differ greatly there is a big chance of data being

unevenly shuffled or corrupted. Mean value of those k-iteration results can be

considered a model prediction precision. For this exact case the author decided to go

with a common value of k=5.

The following features were selected to be used in training:

 Max Chi-Squared value.

Figure 22. k-fold cross-validation with k = 4.

59

 Average Chi-Squared value.

 Min Chi-Squared value.

 Total count of compression markers.

 Total block count (i.e. file size = block count * 32B).

 Encrypted (True/False).

At least for now relative positions of compression markers were dropped out of the

training data as they seem to be quite random and should not affect the decision.

5.2.2 Used ML Models Overview

There are numerous classification models available in Scikit-Learn package. Five of

them were selected for this task, going from the very simplest to some more complex

ones.

Decision Tree – one of the simplest ML models. It is represented by a binary tree with

“branches” representing target function attributes and “leafs” holding target function

values. All other nodes hold attributes that define different cases. To get a classification

prediction the input value should be passed from the root through decision nodes until a

leaf is reached and that will be the prediction value.

KNN – stands for k-nearest neighbours. When used for classification this algorithm

assigns a class to the element basing on the most prevalent among k neighbours of that

element which classes are already identified.

Random Forest – this is an ensemble learning method, which operates by constructing

a multitude of decision trees. In case of classification it outputs the class that is a mode

of the individual trees.

AdaBoost – stands for Adaptive Boosting. This algorithm amplifies weak classifiers by

combining them into a weighted sum (boosted classifier).

Logistic Regression – this is a statistics based model that tries to predict the probability

of event by fitting it to the logistic regression curve.

60

Since this is still a work in progress some other classification models being evaluated

and probably will provide better results in the future.

5.2.3 Preliminary Experiments

As a first iteration Decision Tree and KNN classifier models were picked. These

simplest models were selected to see if the approach is at all viable and it makes sense

to continue work in this direction. No additional fine-tuning was done on them and they

were used with their default settings left intact. Surprisingly even the very first results

for Decision Tree and KNN gave 88.8% and 82.7% of success respectively. The

mentioned success rate is for cross-validation; no holdout-validation was done on that

stage.

5.2.4 Other Models and Model Fine Tuning

With pretty remarkable results of the first iteration some fine-tuning of the models was

performed. A standard way of doing this is by creating special matrix of permuted

settings (model hyper-parameters) for the model and iteratively observing which set

outputs best results. This approach is called Grid Search and performed with a

GridSearchCV tool from Scikit-Learn.

 Grid Search identified optimal hyper-parameters which are:

 Decision Tree – maximum depth 4.

 KNN – N-neighbors 1.

With these parameters set precision of tree rose up to 91.4% and for KNN to 85.6%.

A series of experiments was run using other models and the prediction precision rose

even higher. Full table of results and interpretation can be found in Chapter 5.3.

61

5.3 Decision Tree Analysis and Results

In this section an overview of ML models performance is given as well as the attempt to

interpret the gathered results. Interpreting ML models is usually a tough challenge due

to the amount of interconnecting relations and minimal decision conditions. However

the author believes that the provided analysis is quite thorough and gives the idea of

underlying principles.

Below is the full results table collected during evaluation of different models. As seen

from Table 5, Decision Tree, Random Forest, and AdaBoost showed the most

impressive results. Most of the models performed slightly better on the real data than on

cross-validation. At this stage it was decided that the achieved precision is enough for a

prototype, but it is definitely a question for future research if any other model can give

even better prediction.

Model Name Cross-Validation
Prediction Precision

Holdout Validation
Prediction Precision

Model Settings

Decision Tree 0.91419 0.91655 max_depth = 4

KNN 0.85597 0.86704 n_neighbors = 1

Random Forest 0.92086 0.92716 max_depth = 8

n_estimators = 15

AdaBoost 0.92177 0.92150 n_estimators = 46

Logistic Regression 0.89176 0.89604 default

Table 5. Prediction precision by model.

Despite the good performance of the approach the question “Why does it behave like

this?” remained. Most machine learning models are quite hard to visualize, i.e. it is not

easy to say why a certain algorithm made a specific decision for a given input. The only

one of them which stands out is Decision Tree (and Random Forest as it is a derivate of

the former). This is why it was decided to visualize it in order to understand what

features and values were used for prediction making.

As seen from the Figure 22, the primary divisive feature is Max Chi. Initial set consists

of 3298 items, of which 1253 are compressed and 2045 are encrypted. The first split is

based on the condition of Max Chi being lower or equal to 520 and it breaks the

selection into parts of 2353 and 945 samples.

62

Lower level splits continue breaking the selection by Average Chi, Maximum Chi, and

Block Count (i.e. data size). That means that only these three features actually do affect

the decision making. The colour codes on the graph mean the following: the more blue

the box is the more encrypted items in the sub-group, the more it is orange the more

compressed items the given sub-group contains.

Apparently small differences in the average chi square value play a big role alongside

obviously affecting data size and maximum chi square value. Nature of this relation is

not very clear since the fragmentation of the decision most of the time tends to be in

range (255, 256) and a deeper research of this pattern is needed. The maximum chi

square parameter and the data size were expected to be the “key players” in decision

making.

Figure23. Trained Decision Tree structure (cropped).

63

5.4 Conclusion

In this chapter a case study on machine learning techniques was conducted, followed by

a series of experiments, which resulted in an effective machine learning method of

encrypted data identification. The mentioned method was tested on a severely large data

set and allows for a pretty high precision prediction with some limitations. Analysis of

the trained ML model showed some interesting patterns inside highly compressed and

encrypted data that helped with the classification. However it is still a matter of future

research to recognize the true nature of these patterns.

64

6 Sleuth Kit Autopsy Module Development

The results of Chapter 5 needed some practical application. There are numerous areas

where the method could be applied, but it was decided to implement an experimental

plug-in for Sleuth Kit Autopsy platform which purpose would be to identify encrypted

files. The platform selection is based on the following reasons:

 It is widely used in the digital forensics society.

 It is open source with a wide contribution community.

 Autopsy provides two extensibility API’s for Python and Java programming

languages.

 The eco-system of Autopsy makes the origin of file data transparent. This means

that it is up to platform to provide the data whether it is originating from a local

file system, a disk image, extracted from an archive, or was carved from slack

space.

 Autopsy provides convenient rich UI capabilities like artefacts blackboard and

report engine.

 Sleuth Kit Autopsy is distributed with a pretty wide range of different analytics

modules, with many more available for installation from third parties. The

results of these modules can be used inside your own plug-in, which allows you

to aggregate data from them and build additional functionality on top of the

other.

 This chapter describes development process and testing of the Autopsy ingest module

using results of previous chapters.

6.1 Autopsy Python Eco-System

Since all implementation in previous chapters was done using Python and Autopsy

providing API for that, it was obvious to continue with this programming language.

65

However some not very convenient facts were discovered during the course of this

work.

Autopsy is written in Java and it uses Jython, which is a Java-based python interpreter

that compiles python-like source code to Java bytecode. The latest Jython-supported

version of Python is 2.7, which imposes some restrictions on the modern Python code

used in previous chapters (in fact some of the constructs required restructuring to

comply with both 2.7 and 3+ versions of Python). Another unpleasant fact about Jython

is that it is currently not very well supported with the latest release been done in May

2015. This made it almost hopeless to wait for some bugs found by the author during

the development process to be fixed, which led to some workarounds to bypass this

“bottleneck”.

Since Jython is not a real Python environment it has a limitation of not being able to run

native components written in C, thus Scikit-Learn dependency of the code developed in

Chapter 5 was not an option. However the author found a way to bypass this limitation

with minimal impact to logic and prediction precision (see Chapter 6.4).

66

6.2 Existing Encryption Detection Module Analysis

There is an existing encryption detection module in Autopsy. Its behaviour and source

code were carefully analysed with different types of data including corner cases

identified in previous chapters. The results clearly showed that this module is very basic

and does not provide flexibility and robustness needed for this task. Some of the

weaknesses found during examination include:

 Compressed files with no headers were all identified as encrypted due to high

Shannon value (false positives).

 All encrypted files smaller than 1MB were omitted from results due to

unreasonable minimum file size requirement (false negatives).

 Encrypted files that had their original file extensions preserved simulating

“ransomwared” data (false negatives).

After going through the source code it became clear that internal Autopsy module relies

on the MIME type acquired from file extension and it only parses files that are set to

have MIME type of “application/octet-stream”.

The encryption detection function then simply calculates Shannon entropy value for the

whole data source and if the result is larger than the minimum set (default is 7.5)

decides that it is encrypted. This in no way can be treated as trustful as the previous

chapters clearly showed.

Figure 24. Autopsy Encryption Detection module decision logic.

67

6.3 Ingest Module Functional Specification

Autopsy ingest module is a type of a plug-in that analyzes the data in the data source,

regardless of its origin. This can be a single logical file or folder, a local storage device,

or a disc image (i.e. byte-for-byte copy of a hard drive or other storage media). These

modules perform the entire analysis and data source parsing routines. As soon as a new

data source is added the user is presented with a dialog to enable and configure ingest

modules. When configuration is done selected ingest modules immediately start parsing

and providing the findings in real time.

My idea was to develop a simple ingest module with the aim on proving the previously

identified method in real life situations. The list of required features included:

 Identification of high entropy files.

 Making assumption whether the file is encrypted.

 Making assumption whether the file is highly compressed.

 Displaying Shannon entropy, chi square value, Monte Carlo Pi, and other

randomness stats for suspicious files.

It was decided not to develop any specific GUI elements for this realisation of plug-in,

since Python modules are not very suitable for user elements development (however it

is definitely a target for second version). Instead the standard blackboard controls from

Autopsy were used for displaying of identified files and their statistics.

68

6.4 Implementation Details

The Autopsy module is developed and distributed as part of Entro.py library (see

Chapter 4.2.1), since it utilizes most of its core features.

Since it was not a possibility to utilize Scikit-Learn library and any pre-trained models

from Chapter 5, due to Jython limitations, it was decided to extract prediction rules from

pre-trained Decision Tree. Its prediction precision was a bit less than of the Random

Forest, yet acceptably close (0.91655 and 0.92716 respectively). The resulting code is a

series of nested IF-statements, representing the decision making logic (see Figure 24).

It is possible to extract Random Forest in the same manner, but since it did not make a

significant difference in precision it was decided to continue with Decision Tree.

Module’s main logic flow is as follows: whole file’s entropy is computed and if it

exceeds 7.9 the file is checked for encryption and moved to the “Potentially Encrypted”

results, if positive, or to “Potentially highly compressed” otherwise (see Figure 25).

Figure 25. Decision Tree extracted as Python code.

69

Autopsy analyses different types of data so for this module anything that is not a file or

is unused or unallocated block set is filtered out, to avoid confusion. However it is

planned for future versions to have functionality that is able to analyze arbitrary binary

blobs.

Figure 26. Autopsy module logic flowchart.

70

6.5 Results

This section covers two severely large tests conducted to identify limitations of current

solution.

6.5.1 Synthetic Test

As a first test for the created ingest module it was decided to conduct a special synthetic

test in an attempt to identify any edge cases that may occur. To achieve this goal a very

diverse mix of real user data with highly compressed header-less and encrypted files

was comprised.

A set of real business data consisting of 1502 documents was selected. File set is mostly

comprised of MS Word documents, MS Excel spreadsheets, PDF documents, packed

archives (ZIP and RAR), and digitally signed packages (BDOC and ASICE). To

simulate ransomware attack some of the files were encrypted with CAST5 algorithm

(405 items), but their filenames and extensions were left intact. To make the test more

advanced another subset of files (100 items) was compressed with xz tool with “raw”

and “maximum compression” options set, i.e. the files were turned into highly

compressed binary streams with no identifying information, such as headers, footers, or

signatures. Another subset consisting of 110 items was compressed using libzip (again

raw compressed stream and maximum compression were used).

71

A full scale simulation was then run on the whole file set. As a result every single

encrypted file was identified as such. Vast majority of compressed files were

successfully distinguished from encrypted ones. Note that hardest conditions were used

for this test since no signature data was stored. Compressed items that were not

qualified as compression automatically ended up as encryption suspects (false

positives).

Test Parameter Name Result

Number of encrypted files identified 405 (100%)

Number of LZMA compressed files identified 58 (58%)

Number of GZIP compressed files identified 116 (97%)

Encryption detection false positive count 46

Encryption detection false negative count 0

Table 6. Encryption and compression detection results.

Thorough analysis of false positive results for Entro.py module showed that 73% of

them were relatively small files (less than 1MB), which was expected from experiments

in Chapter 4.

Some of the user data, namely PDF documents and ASICE/BDOC containers, that was

neither compressed, nor encrypted also ended up in high compression suspects result

set, but the author does not consider it a false positive, as those file formats utilize

Figure 27. Entro.py ingest module results in Autopsy blackboard.

72

different compression algorithms. BDOC’s are essentially a ZIP-containers taking

advantage of DEFLATE algorithm, whereas PDF employs the whole series of different

compressions for different data types (LZW, DEFLATE, JPEG, RLE, etc.).

Plug-in module works very reliably and showed some impressive results which gave

some additional proof to experiment results in previous chapters.

6.5.2 Realistic Test

For the more lifelike test special software replicating the behaviour of typical

ransomware was created. The developed application “attacks” a user system and

performs the following actions:

 Identifies user files with DOC, DOCX, XLS, XLSX, JPEG, and TXT

extensions.

 Original files are then encrypted with Gpg4Win (CAST5 algorithm) and file

headers are cut down. The encrypted versions are put instead of the originals

with the filenames left intact.

 Statistics on what exact files were encrypted is collected for the verification

purposes.

A test Windows 10 Home user system with a set of real user documents and images was

then infected with this test virus. Disk image of the system state was taken for

preparation in Autopsy. Since system files were out of interest in this situation ingest

module was appointed to only parse “C:\Users” directory.

 Total Infected
Count

Identified as
Encrypted

Comments

Images 12539 12452 87 clipart and really
small images (less
than 2KB) were
missed due to small
size. They were
identified as extreme
compression suspects.

MS Word Document 75 71 3 temporary MS
Word files were
missed due to small
size. They were

73

identified as extreme
compression suspects.

1 Empty (0 byte)
document was not
even encrypted.

MS Excel
Spreadsheets

24 24

Text Files 881 776 A total of 105 files
were not identified.
These files (in
encrypted state) were
all less than 1KB in
size. None of them
represented real user
data, but some system
or software files
instead (logs,
CMakeLists,
README’s, etc.).

Table 7. Realistic test results.

The results of the realistic test seemed not very satisfying at first with around 200 files

missed, but after thorough analysis it turned out that the missed items did not represent

valuable user data, but system/software helper files and/or temporary data. With that in

mind the test can be accounted as successful; however the issue with small files

identification must be addressed in the future. Another action point for upcoming

improvements is the algorithm used: for the sake of quick validation Decision Tree

model was used, but as seen in Chapter 5, this was not the top performing algorithm.

74

6.6 Conclusion

In this chapter a robust digital forensics tool was developed utilizing the findings and

knowledge of previous experiments. The machine learning model trained in Chapter 5

was successfully converted to a source code structure to be used as a stand-alone

programming module. The development process was followed by two comprehensive

tests targeted at corner case situations detection and lifelike environment behaviour

simulation. Both tests showed that the tool’s precision is very high and it gracefully

handles most edge cases. At this point a full scale field test is needed and there’s a plan

to work in that regard in cooperation with Sleuth Kit Autopsy community and Estonian

Forensic Science Institute.

75

7 Summary and Conclusions

In this chapter a brief summary of conducted work as well as the results and future

proposals are given.

7.1 Conclusion and Future Work

In the very beginning of this work it was intended to come up with a robust and flexible

solution for effective distinguishing of encrypted data. During the course of the work

hardest conditions for the algorithm were identified: extreme levels of compression tend

to have very similar patterns as encryption. Deep subject exploration as well as

significant experimental mass helped in identification of a method capable of achieving

the desired functionality by means of combining randomness tests result data and

machine learning techniques. As a result of these efforts a theoretical model and a set of

practically usable tools were developed. Concluding validation tests showed big

potential in the proposed solution: method works well in very hard conditions with an

acceptable success rate and has a lot of points to improve on in the future.

The practical outcome of this work is a long awaited comprehensive tool for work with

entropy targeted at open source digital forensics community. It is still in its prototype

stage; however there are currently no analogues with the same functionality available.

Still there are some limitations and improvement points to work on:

 Low precision on extremely compressed small data.

 Non-binary encryption (e.g. ASCII PGP) is not accounted.

 Overall performance is pretty poor and for now can only be applied to offline

detection.

With that said a range of improvements and future activities was specified:

76

 During the experiments in Chapter 4 a severely big amount of unstructured

entropy data was collected. This can be used in an attempt to train an

unsupervised ML model such as CNN. This potentially could improve the work

with small data samples.

 ML classifiers can be replaced with regressors to output the chances of some

binary blob being encrypted instead of outputting a binary decision.

 Probably it is a good idea to try and combine the results of different randomness

tests as proposed in [2], but calculate histograms instead of a single value. This

could also potentially increase the precision of prediction.

 The Autopsy plug-in should be migrated to Java, to benefit from rich GUI

capabilities provided by Autopsy Java API.

 The proposed method needs a better field testing. For that there is a plan to

provide the module to the open source society and some governmental

organizations.

This project was started out as a basic entropy research, but ended up as a thorough

exploration of the subject with some interesting practical discoveries. The author sees a

great potential in the ML approach proposed, but most probably a far larger sample set

needs to be comprised to improve the success rate.

77

References

[1] C. Shannon, “A Mathematical Theory of Communication”, 1948.

[2] S. Cha, H. Kim, “Detecting encrypted traffic: a machine learning approach”,

Department of Software, Sungkyunkwan University, Republic of Korea, 2017.

[3] T. Brosch, M. Morgenstern, “Runtime Packers: The Hidden Problem,” Proc.

Black Hat USA, Black Hat, 2006 [Online] Available:

www.blackhat.com/presentations/bh-usa-06/BH-US-06-Morgenstern.pdf

[Accessed: 07.12.2018].

[4] R. Lyda, J. Hamrock, “Using entropy analysis to find encrypted and packed

malware”, IEEE Security & Privacy, Volume: 5, Issue: 2, March-April 2007, pp.

40-45, 2007.

[5] C. Heffner, “Differentiate Encryption From Compression Using Math” [Online]

Available: http://www.devttys0.com/2013/06/differentiate-encryption-from-

compression-using-math/ [Accessed: 07.01.2018].

[6] C. Heffner, “Encryption vs Compression, Part 2” [Online] Available:

http://www.devttys0.com/2013/06/encryption-vs-compression-part-2/

[Accessed: 07.01.2018].

[7] L. Collin, “A Quick Benchmark: Gzip vs. Bzip2 vs. LZMA” [Online] Available:

https://tukaani.org/lzma/benchmarks.html [Accessed: 07.01.2018].

[8] C. M. Bishop, “Pattern Recognition and Machine Learning”, Springer, 2006.

[9] I. Bobriakov, “Top 15 Python Libraries for Data Science in 2017” [Online]

Available: https://medium.com/activewizards-machine-learning-company/top-

15-python-libraries-for-data-science-in-in-2017-ab61b4f9b4a7 [Accessed:

07.01.2018].

78

[10] W. McKinney, “Python for Data Analysis, 2nd Edition, Chapter 4. NumPy

Basics: Arrays and Vectorized Computation”, O'Reilly Media, 2017.

[11] D. Huffman, “A Method for the Construction of Minimum-Redundancy Codes”,

1952.

[12] P. Elias, “Universal codeword sets and representations of the integers.", IEEE

Transactions on Information Theory, vol. 21, no. 2, pp. 194-203, 1975.

[13] A. Haecky, C. McAnlis, “Understanding Compression”, O’Reily Media, 2016.

[14] D. Salomon, G. Motta, “Handbook of Data Compression, 5th Edition”, 2010.

[15] G. Stix, “Profile: David A. Huffman”, Scientific American issue September

1991, pp. 54-58, 1991.

[16] National Institute of Standard and Technology, “Advanced Encryption Standard

(AES) Specification”, 2001.

[17] P. Rogaway, “Nonce-Based Symmetric Encryption”, 2003.

[18] P. Shor, “Lempel-Ziv notes” [Online] Available: http://www-

math.mit.edu/~djk/18.310/Lecture-Notes/LZ-worst-case.pdf [Accessed:

07.01.2018].

[19] R. Gordon, “Understanding 7z Compression File Format” [Online] Available:

http://www.romvault.com/Understanding7z.pdf [Accessed: 07.01.2018].

[20] ForensicsWiki, “RAR version 4.11 - Technical information” [Online] Available:

http://www.forensicswiki.org/w/images/5/5b/RARFileStructure.txt [Accessed:

07.01.2018].

[21] PKWARE Inc., “APPNOTE.TXT – .ZIP File Format Specification, version

6.3.4” [Online] Available:

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT [Accessed:

07.01.2018].

[22] Packetizer, Inc., “AES File Format” [Online] Available:

https://www.aescrypt.com/aes_file_format.html [Accessed: 07.01.2018].

79

[23] T. Klausmann, “Gzip, Bzip2 and Lzma compared” [Online] Available:

https://web.archive.org/web/20130106193958/http://blog.i-

no.de/archives/2008/05/08/index.html [Accessed: 07.01.2018].

[24] P. Dorfinger, G. Panholzer, W. John, “Entropy Estimation for Real-time

Encrypted Traffic Identification”, In Proceedings of the 3rd International

Conference on Traffic Monitoring and Analysis, 2011.

[25] A. M. White, S. Krishnan, M. Bailey, F. Monrose, and P. Porras, “Clear and

Present Data: Opaque Traffic and its Security Implications for the Future”, In

Proceedinds of the Network and Distributed Systems Security Symposium, The

Internet Society, 2013.

[26] H. Zhang, C. Papadopoulos, D. Massey, “Detecting encrypted botnet traffic”, In

Conference on Computer Communications Workshops, 2013.

[27] S. Kenny, “Random Number Generators: An Evaluation and Comparison of

Random.org and Some Commonly Used Generators”, 2005.

[28] C. Petit, F. Standaert, O. Pereira, T. G. Malkin, M. Yung, “A Block Cipher

based PRNG Secure Against Side-Channel Key Recovery”, UCL Crypto Group,

Universite catholique de Louvain. Dept. of Computer Science, Columbia

University., Google Inc., 2009.

[29] T. Mulder, J. Peters, “Entropy Rate of Stochastic Processes”, pp 6-7, 2015.

80

Appendix 1 – Entro.py Library Source Code

import math
"""
entrolib.py: Function library for different data entropy tests.
"""
__author__ = "Pavel Chikul"
__copyright__ = "Copyright 2018, REGLabs"

def compute_shannon(data):
 """
 Calculate Shannon entropy value for a given byte array.

 Keyword arguments:
 data -- data bytes
 """
 entropy = 0
 for x in range(256):
 it = float(data.count(x))/len(data)
 if it > 0:
 entropy += - it * math.log(it, 2)

 return entropy

def compute_entropy_graph(data, step, shannon=True, chi=True):
 """
 Calculates entropy graph values with different with different
algorithms and step.

 Keyword arguments:
 data -- data bytes
 step -- step in bytes
 shannon -- indicates whether Shannon entropy should be calculated
 chi -- indicates whether Chi-Squared should be calculated
 """
 shannons = []
 chis = []
 current_position = 0

 while current_position < len(data):

81

 if shannon:

shannons.append(compute_shannon(data[current_position:current_position +
step]))

 if chi:

chis.append(compute_chi_squared(data[current_position:current_position +
step]))

 current_position += step # Note: We skip the last chunk if it's
less than step.

 return (shannons, chis)

def compute_monte_carlo_pi(data):
 """
 Calculate Monte Carlo Pi approximation for a given byte array.

 Keyword arguments:
 data -- data bytes
 """
 set_length = int(len(data) / 2) # All of the set values are inside
square.
 r_square = 128 * 128
 circle_surface = 0

 for i in range(set_length):
 if ((data[i*2] - 128) ** 2 + (data[i*2+1] - 128) ** 2) <=
r_square:
 circle_surface += 1

 return 4 * circle_surface / set_length

def get_pi_deviation(pi_value):
 """
 Returns an absolute percentage of difference between the provided Pi
value and canonic.

 Keyword arguments:
 pi_value -- Pi value to be tested for difference
 """
 return abs(100 - (pi_value * 100 / math.pi))

def compute_chi_squared(data):
 """

82

 Calculate Chi-Squared value for a given byte array.

 Keyword arguments:
 data -- data bytes
 """
 expected = len(data) / 256
 observed = [0] * 256
 for b in data:
 observed[b] += 1

 chi_squared = 0
 for o in observed:
 chi_squared += (o - expected) ** 2 / expected

 return chi_squared

83

Appendix 2 – Software and command line commands used to

generate test data

Algorithm Software OS Command Line

AES AESCrypt 3.1 Windows aescrypt.exe -e -p <password> -o <out_file>
<in_file>

BLOWFISH mcrypt Linux mcrypt <in_file> -a blowfish -k <password>

CAST5 Gpg4Win 3.1 Windows gpg -r <key> -o <out_file> -e <in_file>

DEFLATE zip Linux zip -9 -j <out_file> <in_file>

DES mcrypt Linux mcrypt <in_file> -a des -k <password>

ENIGMA mcrypt Linux mcrypt <in_file> -a enigma -k <password>

LZMA 7Zip 18.05 Windows 7z.exe a -mx9 -t7z <out_file> <in_file>

LZSS WinRAR 5.60 Windows Rar.exe a -m5 -s <out_file> <in_file>

84

Appendix 3 – Full Decision Tree structure

85

Appendix 4 – Machine Learning Tests Source Code (cropped)

#!/usr/bin/python3
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split, cross_val_score,
GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier, export_graphviz
import numpy as np
import pydot

import warnings
with warnings.catch_warnings():
 warnings.filterwarnings("ignore",category=DeprecationWarning)
 from sklearn.ensemble import RandomForestClassifier,
AdaBoostClassifier

from sklearn.tree import _tree

if __name__ == '__main__':
 # Load data and drop unnecessary features.
 data = pd.read_csv("test06_unified.csv", sep=';')
 data.drop(["File Name", "Peak IDs", "Peak Positions", "Data Size"],
axis=1, inplace=True)

 # Separate features from target class.
 y = data["Encrypted"]
 x = data.drop("Encrypted", axis=1)

 # Split items 70/30 for training/validation.
 x_train, x_valid, y_train, y_valid = train_test_split(x, y,
test_size=0.3, random_state=17) # random seed 17 guarantees the
split/shuffle will be the same every time

 # Default decision tree.
 first_tree = DecisionTreeClassifier(random_state=17)
 print(f"Decision Tree {np.mean(cross_val_score(first_tree,
x_train, y_train, cv=5))}") # k-fold k = 5

 # Default KNN.
 first_knn = KNeighborsClassifier()
 print(f"KNN {np.mean(cross_val_score(first_knn,
x_train, y_train, cv=5))}")

86

 # Decision tree tweaking.
 tree_params = { "max_depth": np.arange(1, 11) } # Look for best
max_depth param in range 1-10.
 tree_grid = GridSearchCV(first_tree, tree_params, cv=5, n_jobs=-1)
 tree_grid.fit(x_train, y_train) # Train all variations and find best
score/estimator.
 print(f"Grid Decision Tree {tree_grid.best_score_} Params:
{tree_grid.best_params_}")

 # KNN tweaking.
 knn_params = { "n_neighbors": np.arange(1, 100) } # Look for best
neighbor count in range 1-100.
 knn_grid = GridSearchCV(first_knn, knn_params, cv=5, n_jobs=-1)
 knn_grid.fit(x_train, y_train) # Train all variations and find best
score/estimator.
 print(f"Grid KNN {knn_grid.best_score_} Params:
{knn_grid.best_params_}")

 # Default random forest.
 first_forest = RandomForestClassifier(random_state=17)
 print(f"Random Forest {np.mean(cross_val_score(first_forest,
x_train, y_train, cv=5))}")

 # Tweaked random forest.
 forest_params = { "max_depth": np.arange(1, 11), "n_estimators":
np.arange(10, 21)}
 forest_grid = GridSearchCV(first_forest, forest_params, cv=5,
n_jobs=-1)
 forest_grid.fit(x_train, y_train)
 print(f"Grid Forest {forest_grid.best_score_} Params:
{forest_grid.best_params_}")

 # Default Ada Boost.
 first_ada = AdaBoostClassifier(random_state=17)
 print(f"Ada Boost {np.mean(cross_val_score(first_ada,
x_train, y_train, cv=5))}")
 #first_ada.fit(x_train, y_train)

 # Tweaked Ada Boost.
 ada_params = { "n_estimators": np.arange(10, 70) }
 ada_grid = GridSearchCV(first_ada, ada_params, cv=5, n_jobs=-1)
 ada_grid.fit(x_train, y_train)
 print(f"Grid Ada {ada_grid.best_score_} Params:
{ada_grid.best_params_}")

 # Logistic Regression.
 first_lr = LogisticRegression()
 print(f"Logistic Regression {np.mean(cross_val_score(first_lr,
x_train, y_train, cv=5))}")

87

 first_lr.fit(x_train, y_train)

 print()
 print("VALIDATION")
 print(f"Tree {accuracy_score(y_valid,
tree_grid.predict(x_valid))}")
 print(f"KNN {accuracy_score(y_valid, knn_grid.predict(x_valid))}")
 print(f"Forest {accuracy_score(y_valid,
forest_grid.predict(x_valid))}")
 print(f"Ada {accuracy_score(y_valid, ada_grid.predict(x_valid))}")
 print(f"LReg {accuracy_score(y_valid, first_lr.predict(x_valid))}")

 # Export tree as a .dot file for later visualization.
 export_graphviz(tree_grid.best_estimator_, out_file="tree_graph.dot",
feature_names=x.columns, filled=True, max_depth=3)

 # Print out tree as code snippet.
 tree_to_code(tree_grid.best_estimator_, list(x.columns))

88

Appendix 5 – Autopsy Module Source Code (cropped)

def is_encrypted(max_chi, average_chi, block_count):
 if max_chi <= 520.0:
 if average_chi <= 255.75341796875:
 if block_count <= 72382.5:
 if block_count <= 3213.5:
 return 1
 else: # if block_count > 3213.5
 return 1
 else: # if block_count > 72382.5
 if average_chi <= 255.1233673095703:
 return 1
 else: # if average_chi > 255.1233673095703
 return 1
 else: # if average_chi > 255.75341796875
 if block_count <= 647.0:
 if average_chi <= 262.5716857910156:
 return 1
 else: # if average_chi > 262.5716857910156
 return 0
 else: # if block_count > 647.0
 if average_chi <= 255.80758666992188:
 return 1
 else: # if average_chi > 255.80758666992188
 return 0
 else: # if max_chi > 520.0
 if average_chi <= 255.04031372070312:
 if max_chi <= 600.0:
 if block_count <= 255453.0:
 return 1
 else: # if block_count > 255453.0
 return 1
 else: # if max_chi > 600.0
 return 0
 else: # if average_chi > 255.04031372070312
 if max_chi <= 568.0:
 if average_chi <= 255.22213745117188:
 return 1
 else: # if average_chi > 255.22213745117188
 return 0
 else: # if max_chi > 568.0
 return 0

class EntropyIngestModuleFactory(IngestModuleFactoryAdapter):
 moduleName = "Entro.py Ingest Module"

 def getModuleDisplayName(self):
 return self.moduleName

 def getModuleDescription(self):
 return "Ingest module that provides information on file entropy and gives
the assumption if the file is encrypted."

89

…

 def process(self, file):
 # Skip non-files
 if ((file.getType() == TskData.TSK_DB_FILES_TYPE_ENUM.UNALLOC_BLOCKS) or
 (file.getType() == TskData.TSK_DB_FILES_TYPE_ENUM.UNUSED_BLOCKS) or
 (file.isFile() == False)):
 return IngestModule.ProcessResult.OK

 temp_file = os.path.join(Case.getCurrentCase().getTempDirectory(),
str(file.getId()) + ".tmp")
 ContentUtils.writeToFile(file, File(temp_file))
 data = []
 with open(temp_file, "rb") as binary_file:
 data = binary_file.read()

 # This is apparently needed for Python 2.7.
 data = [ord(e) for e in data]

 shannon = compute_shannon(data)

 if shannon > 7.85:
 _, chis = compute_entropy_graph(data, 32, shannon=False)
 max_chi = max(chis)
 avg_chi = float(sum(chis)) / len(chis)
 encrypted = is_encrypted(max_chi, avg_chi, len(chis))

 self.log(Level.INFO, file.getName() + " Max Chi: " + str(max_chi) +
", Avg Chi: " + str(avg_chi) + ", Blocks: " + str(len(chis)) + ", Encrypted: " +
str(encrypted))

 chi_square = compute_chi_squared(data)
 pi_deviation = get_pi_deviation(compute_monte_carlo_pi(data))

 if encrypted:
 self.potentially_encrypted_files_found += 1
 artifact =
file.newArtifact(BlackboardArtifact.ARTIFACT_TYPE.TSK_ENCRYPTION_SUSPECTED)
 attribute =
BlackboardAttribute(BlackboardAttribute.ATTRIBUTE_TYPE.TSK_COMMENT,
 EntropyIngestModuleFactory.moduleName, "Encryption suspected.
\nEntropy: " + str(shannon) +
 "\nChi-Squared: " + str(chi_square) +
 "\nMax Chi-Squared in graph: " + str(max_chi) +
 "\nAverag Chi-Squared in graph: " + str(avg_chi) +
 "\nMonte Carlo Pi Deviation: " + str(pi_deviation))
 artifact.addAttribute(attribute)

 # Fire an event to notify the UI and others that there is a new
artifact
 IngestServices.getInstance().fireModuleDataEvent(
 ModuleDataEvent(EntropyIngestModuleFactory.moduleName,
 BlackboardArtifact.ARTIFACT_TYPE.TSK_ENCRYPTION_SUSPECTED
, None))

90

 else:
 self.potentially_compressed_files_found += 1
 artifact =
file.newArtifact(BlackboardArtifact.ARTIFACT_TYPE.TSK_INTERESTING_FILE_HIT)
 attribute =
BlackboardAttribute(BlackboardAttribute.ATTRIBUTE_TYPE.TSK_SET_NAME,
 EntropyIngestModuleFactory.moduleName, "Extreme Compression
Suspected")
 artifact.addAttribute(attribute)
 attribute =
BlackboardAttribute(BlackboardAttribute.ATTRIBUTE_TYPE.TSK_COMMENT,
 EntropyIngestModuleFactory.moduleName, "Extreme compression
suspected. \nEntropy: " + str(shannon) +
 "\nChi-Squared: " + str(chi_square) +
 "\nMax Chi-Squared in graph: " + str(max_chi) +
 "\nAverag Chi-Squared in graph: " + str(avg_chi) +
 "\nMonte Carlo Pi Deviation: " + str(pi_deviation))
 artifact.addAttribute(attribute)

 # Fire an event to notify the UI and others that there is a new
artifact
 IngestServices.getInstance().fireModuleDataEvent(
 ModuleDataEvent(EntropyIngestModuleFactory.moduleName,
 BlackboardArtifact.ARTIFACT_TYPE.TSK_INTERESTING_FILE_HIT
, None))

 # Fire an event to notify the UI and others that there is a new
artifact
 IngestServices.getInstance().fireModuleDataEvent(
 ModuleDataEvent(EntropyIngestModuleFactory.moduleName,
 BlackboardArtifact.ARTIFACT_TYPE.TSK_INTERESTING_FILE_HIT,
None))

 return IngestModule.ProcessResult.OK

