
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technology
Department of Computer Control

Tobechukwu Onyedi 172954IASM

FOMCONPY: A PYTHON LIBRARY FOR

FRACTIONAL-ORDER MODELLING AND CONTROL

WITH APPLICATIONS TO DISTRIBUTED CONTROL

SYSTEMS

Master Thesis

Supervisor
Aleksei Tepljakov

PhD

Tallinn 2020

Declaration/ Deklaratsioon

I hereby certify that I am the sole author of this master’s thesis. Investigations and
achievements submitted for the master’s degree at Tallinn University of Technology has
not been submitted anywhere else for a degree. All materials and references used have
been referred.

Käesolevaga kinnitan, et esitatud töö FOMCONpy: Pythoni teek murruliste modelleer-

imise ja juhtimise jaoks koos hajutatud juhtimissüsteemide rakendusega on minu isikliku
töö tulemus. Kõik töö koostamisel kasutatud teiste autorite tööd, olulised seisukohad,
kirjandusallikatest ja mujalt pärinevad andmed on viidatud. Käesolevat tööd ei ole varem
esitatud kusagil mujal.

Author/Autor: Tobechukwu Onyedi ..
(Signature/Allkiri)

Date/Kuupäev: May 10, 2020

i

Abstract

FOMCONpy: A Python library for Fractional-order Modelling and Control with
Applications to Distributed Control Systems

This thesis is devoted to the application of fractional-order calculus to modelling, identifica-
tion and control of dynamic systems in the domain of Internet of Things (IoT) specifically
targeting distributed control systems (DCS). The first part of the thesis introduces the
reader to the concepts of fractional-order modelling and control. In the second part, the
FOMCONpy (“Fractional-order Modelling and Control for Python”) developed by the
author is presented in the form of an expository manual with demo examples showcasing
the functionality of the toolbox.

All mathematical calculations and simulations in this thesis are done using JetBrains’ Py-
Charm IDE and Anaconda’s IDE Python 3.7.4 interpreter on Windows 10 operating system.
To facilitate real-world use of the introduced methods and algorithms, the functionality of
the toolbox is verified on embedded platforms – represented by the popular Raspberry PI
3B and 4 devices – using Thonny Python IDE to meet the needs of IoT domain.

As a result of this work, a Python library for fractional-order modelling and control is
introduced which is also capable of operating on low-cost IoT hardware. The biggest
advantage of this implementation of FOMCONpy library is its inclusion into the ever
growing Python software ecosystem. It is envisioned that this will allow a more rapid
dissemination of relevant results across related industrial domains stemming from reported
successful applications of fractional calculus to real-life problems.

It is assumed that the reader has previous knowledge in the field of control system theory.

ii

Acknowledgements

This work is dedicated to my dad, late Mr. Ephraim Iheanacho Onyedi who motivated me
to begin the journey towards earning a Master’s degree. I wish you were here to see your
son’s achievement, but I know you’re celebrating my successes, where you are.

I will like to appreciate my supervisor, Dr. Aleksei Tepljakov, for his supervision, advice,
support and technical explanations throughout the course of this work. It was an absolute
pleasure working with you.

A very big thank you to my mum, Mrs. Juliana Uzoyibo Onyedi for her love, care and
continual words of blessing. To my siblings for their continual words of encouragement.
Ifeoma Onyedi, Dr. Chukwuemeka Emmanuel Onyedi, Ifeyinwa Janet Onyedi, Chidimma
Emuh, Rotanna Onyedi and Chukwuma Innocent Onyedi.

Sincere appreciation to Peter Osuere for his words, guidance and advice about the field of
Robotics, Control and Process automation.

This work is partially based upon works from COST Action CA15225, a network supported
by COST (European Cooperation in Science and Technology) and the Estonian Research
Council grant PRG658. The research was also partly supported by a teaching grant
awarded to Dr. Aleksei Tepljakov in 2019 by the School of Information Technologies,
Tallinn University of Technology.

iii

List of abbreviations and terms

OS Operating System
GUI Graphical User Interface
FOMCON Fractional Order Modelling and Control
FOMCONpy Fractional Order Modelling and Control for Python
IoT Internet of Things
DCS Distributed Control System
PID Proportional Integral Differential
FO-FOPDT Fractional-order First Order Plus Dead Time
FOPID Fractional-order Proportional Integral and Differential
LM Levenberg Marquardt
TRR Trust Region Reflective
RFID Radio Frequency Identification
FRFT Fractional Fourier Transform
VST Variable Speed Turbine
LTI Linear Time Invariant
BESS Battery Energy Storage System
RBF Radial Basis Function
AI Artificial Intelligence
NN Neural Networks
APF Active Power Filter
CAS Computer Algebra Systems
CT Computational Tools
IDE Integrated Development Environment
IIR Infinite Impulse Response
FIR Finite Impulse Response
MIMO Multiple Input, Multiple Output
SISO Single Input, Single Output
FOSAM Fractional-order System Analysis Module
FOSIM Fractional-order System Identification Module
FOSCOM Fractional-order System Control Module
WLAN Wireless Local Area Network

iv

Table of Contents

List of Figures viii

List of Tables x

List of Listings xi

1 Introduction 1
1.1 Literature Survey . 1
1.2 Problem Statement . 2
1.3 Purpose . 3
1.4 Outline of the Thesis . 4

2 Introduction to Fractional calculus 5
2.1 Basis of Fractional-Order Calculus . 5

2.1.1 Fractional Calculus Definitions 6
2.1.2 Properties of Fractional-Order operator 7

2.2 Laplace Transform of Fractional-Order Calculus 8
2.3 Fractional Order System Model . 9
2.4 Fractional System Analysis . 11

2.4.1 Stability . 11
2.4.2 Time Domain Analysis . 12
2.4.3 Frequency Domain Analysis . 13

2.5 Fractional-Order Approximation . 14
2.6 Fractional System Discretization . 15

2.6.1 Forward difference or Euler’s Method 15
2.6.2 Backward Difference . 16
2.6.3 Tustin or Trapezoidal or bilinear method 16

2.7 Optimization Methods . 16
2.7.1 Nonlinear Least-Squares Method 17
2.7.2 Trust Region Reflective . 17
2.7.3 Levenberg-Marquardt . 18

3 Fractional-order Identification Methods and Algorithms 19
3.1 Basics of Model Identification . 19

3.1.1 System Identification stages . 20
3.2 Time-domain Identification . 21

v

3.2.1 Time Domain Data Generation 21
3.2.2 Initial Guess Model . 22
3.2.3 Parameter Optimization . 23

3.3 Validation of Identified Model . 24

4 Fractional-order Control 26
4.1 Basics of Proportional, Integral and Differential Control 26

4.1.1 Proportional Action . 26
4.1.2 Integral Action . 27
4.1.3 Derivative Action . 28
4.1.4 PID Control . 28

4.2 Fractional-order Proportional, Integral and Differential Controller 29
4.3 Tuning of Fractional-order Proportional, Integral and Differential Controllers 31

5 User Manual for FOMCONpy 35
5.1 Overview . 35
5.2 Setting-up FOMCONpy: A Quick Tutorial 36

5.2.1 Setup guide for Windows . 36
5.2.2 Setup guide for Linux . 37

5.3 Fractional-order System Analysis Module 37
5.3.1 class FOTransFunc() . 37
5.3.2 def newfotf() . 39
5.3.3 FOTransFunc Interconnection 41
5.3.4 Stability Analysis: FOTransFunc.isstable() 42
5.3.5 Time Domain Analysis: FOTransFunc.step() 43
5.3.6 Frequency Domain Analysis: FOTransFunc.freqresp() . . 44
5.3.7 Oustaloop Approximation: FOTransFunc.oustaloop() . . 45
5.3.8 Fractional-order System Analysis Module GUI 47

5.4 Fractional-order System Identification 51
5.4.1 Identification and Validation Data 51
5.4.2 def fid() . 51
5.4.3 def opt() . 53
5.4.4 Fractional-order System Identification Example Using Command

Line . 54
5.4.5 Identified System Comparison 56
5.4.6 FOMCONpy on Windows PC vs Raspberry PI-4 vs Raspberry PI-3B 57
5.4.7 Fractional-order System Identification GUI 59
5.4.8 Fractional-order System Identification Example Using GUI 59

5.5 Fractional-order System Control Using Command Line 64
5.5.1 def mainFOFOPIDOPT() . 64

vi

5.6 Fractional-order Tuner and Controller GUI 66
5.6.1 Application to Distributed Control system 69
5.6.2 FOSCOM Application to IOT + Distributed Control 69
5.6.3 FOSCOM Application to IOT 72

6 Conclusions 75
6.1 Fractional-order System Analysis Module 75

6.1.1 Advantages . 75
6.1.2 Drawbacks . 76

6.2 Fractional-order System Identification Module 76
6.2.1 Advantages . 76
6.2.2 Drawbacks . 76

6.3 Fractional-order Control module . 77
6.3.1 Advantages . 77
6.3.2 Drawbacks . 77

6.4 Research perspectives . 78
6.5 Concluding comments . 78

Bibliography 79

Appendix 86

1 FOMCON vs FOMCONpy 86
1.1 Identification using Levenberg Marquardt method 88

1.1.1 Both – Coefficients + Exponents 88
1.1.2 Exponents only . 89
1.1.3 Coefficients only . 90

1.2 Identification using Trust Region Reflective method 90
1.2.1 Both – Coefficients + Exponents 91
1.2.2 Exponents only . 91
1.2.3 Coefficients only . 92

1.3 Remarks . 92

vii

List of Figures

1 Classification of LTI Systems [21] . 9
2 Stability region of LTI fractional-order system for range: 0 < q < 1 [21] . 11

3 System with input u, output y, measured disturbance d and unknown noise w 19
4 System Identification Procedure . 20

5 Block Diagram of a Controller . 26
6 classical PID vs Fractional-order PID [9] 30
7 Integral control action for a square error signal and µ ∈ [−1,0] [9] 31
8 Differential control action for a trapezoidal error signal and µ ∈ [0,1] [9] . 32

9 Example for system block interconnection 41
10 Fractional-order System Analysis Module GUI 47
11 FOTransFunc Viewer Window . 48
12 Adding system g4 and its Stability check plots 49
13 Step response of system g4: The system is unstable in accordance with

the stability analysis result. 50
14 Frequency response of g4 . 50
15 Structure of identification/validation data with headings y, u and t 51
16 Identification Data vs Identified Model (5.3) 55
17 Validation Data vs Identified Model (5.3) 55
18 Fractional-order Time Identification GUI 58
19 Multi-tank System . 60
20 Adding Identification and Validation Data using GUI 61
21 Plot Identification and Validation Data using GUI 61
22 Trimming Identification and Validation Data using GUI 61
23 Trimming Identification and Validation Data using GUI 63
24 Validating Identified Model using GUI 64
25 Fractional-order Controller and Tuner GUI 67
26 Simulink desktop real time model designed for testing purposes 68
27 Using same settings including the sampling time 70
28 Real time control outputs MATLAB vs Python 70
29 UDP IP and Port Settings . 71
30 FOSCOM’s DCS node with PIλ Dµ parameters implemented on Raspberry

Pi 4 . 71

viii

31 Simulink model connecting the DCS node with the FOPID controller
implemented on Raspberry Pi with the laboratory model of the multi-tank
system . 71

32 Multi-Tank output with single setpoint 72
33 Multi-Tank output with multiple set-points 73
34 Multi-Tank output with on the spot Controller changed 74

ix

List of Tables

1 FOTransFunc block interconnection operators 42
2 Table comparing FOMCONpy vs FOMCON 57
3 Computational Properties of Devices . 57
4 Identification time on Windows PC vs Raspberry PI-4vs Raspberry PI-3B 58

x

Listings
5.1 Creating a FOTransfunc object . 38
5.2 Creating a FOTransfunc object using the newfotf function 40
5.3 FOTransFunc block interconnection example 41
5.4 FOTransFunc Oustaloop approximation example 46
5.5 Fractional-order Identification example using Command prompt 54
5.6 FO-FOPDT tuning example using command prompt 66
1.1 Using the fid() function to generate identification models and plots for

comparison with MATLAB . 86

xi

1. Introduction

In this chapter, the reader is introduced briefly to fractional calculus, its applications and

the potential opportunity in the IoT domain which is the main motivation and contribution

of the writer.

1.1 Literature Survey

The fractional-order calculus concept has been known since the development of classical

(integer-order) calculus with reference being associated with L’Hospital and Leibniz in

1695 where half-order derivative was mentioned [1]. Since then, fractional-order calculus

has been a subject of subtly active discussion [2] though the concept still tingle in the ears

of many scholars perhaps because it could be mathematically more complex compared to

its integer-order counterpart.

In the last three centuries, the mathematical theory has been established [3]–[9]. Three

hundred years will be quite a lot of time for a concept to be based on theory alone as

fractional-order calculus has been used in complex mathematical and physical challenges

[10]. It has been used in signal processing and semiconductor manufacturing [11]. RFID

tag anti-collision algorithm based on Fractional Fourier Transform (FRFT) to support

high-efficiency reading of multiple chipless tags [12]. Meghni et al proposed a robust

adaptive fractional-order controller could serve as a generic supervisory control scheme

for a variable speed turbine (VST) and battery energy storage system (BESS) to increase

efficiency and solve instability and intermittent problems of wind power turbines. In

other-words, fractional-order controller was used as a controller for other controllers [13].

In all the above references, fractional-order systems have been found to be more efficient

and robust than classical-order systems [14], however it is seldomly used in the industries

1

because of higher computational complexity and financial cost compared to integer-order

[15]. it is the authors goal to proffer a solution to minimizing the possible computational

and financial cost in this thesis work.

These days, researchers already combined fractional-calculus with other control algorithm

to proffer alternative solutions to challenges [16]. in artificial intelligence (AI) domain,

fractional-order calculus is combined with dual radial basis function (RBF) neural net-

works (NNs) to enhance the performance of a three-phase shunt active power filter (APF)

themed Adaptive Fractional Sliding Mode Control [17]. Genetic algorithm combined with

fractional-order calculus was used to tune a Fractional-order PID controller in [18].

It is almost very obvious, that the interest of researchers in fractional-calculus was greatly

promoted by the availability of more efficient computer algebra systems (CAS) and

computational tools (CT) like MATLAB, LabView, and in recent time, Python. Several

toolboxes for fractional-order systems exist in MATLAB. For example, the FOTF toolbox

[19], the NINTEGER toolbox [20], The CRONE toolbox and the FOMCON toolbox [14],

[21].

1.2 Problem Statement

Developing with or using MATLAB toolboxes like those mentioned in Sec. 1.1 require

multiple licenses. The user must have at least a Control Toolbox license and Optimization

Toolbox licence [14] excluding other licenses. These licenses cost a premium and without

a campus-wide subscription, it is costly to use these facilities.

Internet of Things (IoT) is one of the next big thing in technology with various types

of commercial devices: trackers, wearables, controllers, meters and sensors in different

industries, including utilities, automotive, transport, logistics, agriculture, manufacturing,

healthcare, warehousing and mining all connected to the cloud [22]. Blue chip companies

like Microsoft and Ericsson invested and forecast respectively, that IoT will be worth

2

trillions of dollars by 2025 [23], [24]. These facts and forecasts prompted the develop-

ment of this library and to the best of the author’s knowledge, there is no toolbox that

provides fractional calculus modelling and control tools for the Python ecosystem and IoT

community that targets novel implementations of Distributed Control Systems (DCS).

With each new releases of MATLAB versions, there is the tendency that function in

previous version becomes obsolete in newer version [14], thus the problem of continuous

re-scrutiny and refactoring of previously written MATLAB functions and codes to be

compatible with each new release of MATLAB software that happens twice a year. In

contrast, the Python ecosystem has been proven to be more robust and stable.

1.3 Purpose

As mentioned in Section 1.1, Python programming language has a contributed control

systems package available. It is easier to learn compared to other programming languages.

Its more generic than MATLAB which from the onset was a matrix manipulation package

that was modified later by adding programming language to it [25]. Unlike MATLAB,

one amazing features of Python, is the object oriented programming availability and it is

open-source thus its greatly increase in popularity.

Based on these considerations, the author is strongly convinced that having a fractional-

order system identification, modelling and control tool in Python will facilitate the usage

of fractional-order systems in the industries. Thus this thesis is devoted to the study of

possibilities provided by fractional-order calculus in system theory, modelling, identifi-

cation and control. It discusses a new library FOMCONpy that analyzes, identifies and

controls fractional-order dynamic systems. FOMCONpy is written in Python programming

language (which to the best of the authors knowledge is the first of its kind with support

for IoT devices). The library contains various utilities and a graphical user interface (GUI)

for quick adaptation to both new users and those already using its MATLAB counterpart

FOMCON.

3

1.4 Outline of the Thesis

It is suggested to the reader to go through this thesis the way it has been written without

skipping a chapter as the theory of fractional-order calculus can be somewhat complex

especially if this is the first time to encounter the subject. The thesis has the following

structure:

In Chapter 2, the reader is presented with an overview of the theoretical concepts of

fractional-order calculus, its approximations to classical-order and application to system

theory.

In Chapter 3, methods and algorithms used in FOMCONpy for time domain identification

of fractional-order model are discussed.

Chapter 4 introduces the reader to fractional-order control.

In Chapter 5, the reader is presented a setup and manual guide for the FOMCONpy library,

its relation to other Python libraries and recommended integrated development environment

(IDE) for both Windows and Linux (IoT) users. Major functions of the library and multiple

demos are given as examples with command line and GUI scenarios.

Lastly, in Chapter 6, conclusions are drawn and prospects for further development of the

library are stated.

4

2. Introduction to Fractional calculus

In this chapter we shall discuss the basics of fractional-order calculus, its applications in

system theory and approximation to classical-order calculus. The chapter outline is as

follows. In Section 2.1 definitions of fractional-order operators are given along with their

properties and some examples. In Section 2.2 the Laplace transform for fractional-order

operators is defined. In Section 2.3 fractional system model representations are given. In

Section 2.4 basics of time-domain and frequency-domain analysis of fractional systems

are presented. In Section 2.5 the reader is introduced to a method for approximating

fractional-order model to integer-order model which was proposed by Oustaloop [26].

Section 2.6 presents some aspects of discrete fractional system. Finally, in Section 2.7 we

discuss some optimization algorithms used in this work for the reader to understand the

theory in the identification process.

2.1 Basis of Fractional-Order Calculus

The non-integer derivative and integral function can be represented with the symbol aDα
t ,

is often used as a mathematical operator for fractional order calculus, where a and t

represents the start and stop limits of the operation respectively. if α > 0, D is a derivative

operator. if α < 0, D is an integral operator.

aD
α
t =


dα

dtα ℜ(α)> 0

1 ℜ(α) = 0∫ t
a(dt)−α ℜ(α)< 0

(2.1)

5

α is assumed to be a real number, but it can also be a complex number [1] however, in this

thesis, only α ∈ R is considered.

2.1.1 Fractional Calculus Definitions

There are 3 definitions of fractional-order derivative discussed in this work. They are

defined by Riemann-Liouville, Caputo and Grinwald-Lenikov [9]. They are summarized

below:

Definition 2.1.1.1 Riemann-Liouville’s Definition

aD
−α
t f (t) =

1
Γ(m−α)

(
d
dt

)m ∫ t

a

f (τ)
(t− τ)α−m+1 dτ, (2.2)

where m−1 < α < m, m ∈ N, α ∈ R+ and Γ(.) is Euler’s gamma function.

Definition 2.1.1.2 Grünwald-Letnikov’s Derivative Definition

aD
α
t f (t) = lim

h→0

1
hα

| t−a
h |

∑
k=0

(−1)α

α

k

 f (t− kh), (2.3)

where α

k

=
n(n−1)(n−2) . . .(n− k+1)

k!
(2.4)

and | t−a
h | is the integer part.

Grundwald-Letnikov definition is suggested to be very useful in fractional-order sys-

tem application [9].

Definition 2.1.1.3 Caputo’s Definition

aD
−α
t f (t) =

1
Γ(m−α)

∫ t

a

f (τ)
(t− τ)α−m+1 dτ, (2.5)

6

where m−1 < α < m, m ∈ N, Γ(.) is Euler’s gamma function.

Caputo’s definition is considered to be useful if assigning initial conditions [27].

2.1.2 Properties of Fractional-Order operator

Properties of fractional-order operator aDα
t f (x) can be found in [1], [9], [28] and are as

follows for a = 0:

� If f (x) is an analytic function of variable x, then aDα
t f (x) is also an analytical

function of x and α .

� The fractional operator aDα
t and the classical derivative operator a

dn

dxn , n ∈ Z+ are

equivalent if α = n.

� The fractional operator aDα
t and the classical integral of order n ∈ Z− are equivalent

if α =−n.

� For the fractional-order operator aDα
t f (x) = f (x), when α = 0. This is called the

identity operator.

� aDα
t f (x) and its first (n−1)th-order derivatives must vanish to zero at t = x.

� The fractional-order operator is linear:

U ·a Dα
t f (x)+V ·a Dα

t g(x) =a Dα
t

[
U · f (x)+V ·g(x)

]
. (2.6)

� Fractional-order operators with R(α) > 0, R(β) > 0, holds the additive law of

exponents with the following condition:

aD
α
t aD

β

t f (x) =a D
(α+β)
t f (x). (2.7)

7

2.2 Laplace Transform of Fractional-Order Calculus

A fundamental mathematical entity in system and control engineering is the Laplace

integral transform. A function f (t) can be transformed to the function F(s) of a complex

variable s. It is defined as:

F(s) = L [f (t)] =
∫

∞

0
e−st f (t)dt. (2.8)

The Laplace transform F(s) can be reversed to its initial function f (t) by applying the

reverse Laplace transform defined as:

f (t) = L −1[F(s)] =
1

j2π

∫ c+ j∞

c− j∞
F(s)ds. (2.9)

Let us define the Laplace transform for fractional calculus definitions in Section 2.1.1

Definition 2.2.1 Laplace transform of Riemann-Liouville’s fractional operator

L [Dα f (t)] = sαF(s)−
m=1

∑
k=0

sk
[
D−k−1

]
t=0

, where (m−16 α < m). (2.10)

Definition 2.2.2 Laplace transform of Grundwald-Letnikov’s fractional operator

L [Dα f (t)] = sαF(s). (2.11)

Definition 2.2.3 Laplace transform of Caputo’s fractional operator

L [Dα f (t)] = sαF(s)−
m=1

∑
k=0

sα−k−1 f k(0), where (m−16 α < m). (2.12)

8

Figure 1. Classification of LTI Systems [21]

The Laplace transform is popularly used in system modelling and control and same was

used in this thesis.

2.3 Fractional Order System Model

A dynamic continuous-time system can be explicitly represented using a fractional differ-

ential equation as below [1], [9].

anDαny(t)+an−1D
αn−1y(t)+ · · ·+a1D

α1y(t)+a0D
α0y(t) =

bmDβmu(t)+bm−1D
βm−1u(t)+ · · ·+b1D

β1u(t)+b0D
β0u(t)

(2.13)

A scenario where an integer base order γ ∈R+ exist, such that αk, βk = k ·γ . The system

is said to be of commensurate order. An expression of a commensurate order system is

equation (2.14)
n

∑
k=0

akD
γ·ky(t) =

m

∑
k=0

bkD
γ·ky(t). (2.14)

The system (2.14) will be of rational order if γ = 1
q , q ∈ Z+. See Figure 1 for hierarchical

classification of rational order in Linear Time Invariant (LTI) systems. Applying the

Grundwald-letnikov’s Laplace transform formula stated in equation (2.11) to (2.13) we

9

obtain the following,

ansαnY (s)+an−1sαn−1Y (s)+ · · ·+a1sα1Y (s)+a0sα0Y (s) =

bmsβmU(s)+bn−1sβn−1U(s)+ · · ·+b1sβU(s)+b0sβ0U(s)
(2.15)

applying the commutative property of the fractional derivative operator discussed in

Section 2.1.2,

Y (s)
[

ansαn +an−1sαn−1 + · · ·+a1sα1 +a0sα0

]
=

U(s)
[

bmsβm +bn−1sβn−1 + · · ·+b1sβ +b0sβ0

] (2.16)

from equation (2.16), a transfer function for fractional-order system can be generated.

G(s) =
Y (s)
U(s)

=
bmsβm +bm−1sβm−1 + · · ·+b1sβ +b0sβ0

ansαn +an−1sαn−1 + · · ·+a1sα1 +a0sα0
(2.17)

Recall the commensurate order γ fractional-order system, discussed in equation (2.14), it

can also be expressed as:

G(s) =
Y (s)
U(s)

=
∑

m
k=0 bk(sγ)k

∑
n
k=0 ak(sγ)k (2.18)

Taking Λ = sγ the function (2.18) can be viewed as a pseudo-rational transfer function

H(Λ):

H(Λ) =
∑

m
k=0 bkΛk

∑
n
k=0 akΛk (2.19)

Based on this pseudo-rational function concept, a state-space representation can be formed

which allows the representation of multiple input, multiple output (MIMO) fractional-order

systems [21] but the state-space model is beyond the scope of this work. In fact, with

the transfer function representation of system dynamics we can still achieve meaningful

results even when modelling multivariate systems since we can also use arrays of transfer

functions in that case.

10

Figure 2. Stability region of LTI fractional-order system for range: 0 < q < 1 [21]

2.4 Fractional System Analysis

In this section we shall discuss some key concepts used in the analysis of a fractional

system. These are in no way different from convectional analysis of classical systems,

however the approach is more complex. We shall discuss concepts like Stability, time

response and frequency response.

2.4.1 Stability

Stability has always been a key-point in the analysis of classical-order systems. So for a

fractional-order system given by the fractional-order transfer function (2.14), we also do

same stability analysis. Let us review the following theorem found in [1], [9].

Theorem 2.4.1 Matignon’s Stability Theorem According to Matignon, a fractional-order

transfer function G(s) = Z(s)/P(s) is stable only if:

|arg(σ)|> q
π

2
,∀ σ ∈C, P(σ) = 0, where σ := sq (2.20)

11

When σ = 0, it indicates a single root of P(s), thus the system cannot be stable. When

q = 1, this is same as the classical case (that says pole roots should not be at the right-half

plane of the Riemann sheet). The algorithm for checking the stability of the system in

(2.17) can be summarized in the following steps:

1. Find the commensurate order q of P(s), i.e find coefficients a1, a2, a3, . . .an in

(2.19).

2. Solve for the roots: Dqw = f (w), where 0 < q < 1 and w ∈ Rn, the roots are

calculated by solving f (w) = 0

3. The roots are asymptotically stable if all the eigenvalues λk of the Jacobian matrix

J = ∂ f
∂ω

, evaluated at the roots satisfy the condition given in equation (2.21).

‖arg(eig(J)‖= ‖arg(λk)‖> q
π

2
, k = 1,2, . . . , n. (2.21)

Stability condition can also be evaluated from the state-space representation of the system

but will not be considered in this work. Figure 2, shows the stability region of a fractional-

order system.

2.4.2 Time Domain Analysis

Be it a classical-order system or a fractional-order system, the objective of analysis in time

domain is to obtain the transient response of the system. For the fractional-order system,

the Mittag-Leffler function could be used as proposed by Podlubny [6], but this could be

over-lengthy and difficult to implement. Another option is the numerical computation of

fractional derivative using a revised Grundwald-Lenitkov definition in 2.1.1.2.

It is rewritten as follows:

aD
α
t f (t) = lim

h→0

1
hα

[t−a
h]

∑
j=0

(ω j)
α f (t− jh), (2.22)

12

where h is the step-size of the computation and ωα
j = (−1) j.

(
α

j

)
is calculated recur-

sively from

ω
α
0 = 1, ω

α
j =

(
1− α+1

j

)
ω

α
j−1, j = 1, 2, 3, (2.23)

For the fractional-order system expressed in equation (2.13), one can obtain its time-

domain analysis (step response) by first getting the numeric computation of signal û(t)

given as

û(t) = bmDβmu(t)+bm−1D
βm−1u(t)+ · · ·+b1D

β1u(t)+b0Dβ0u(t). (2.24)

then using the following equation:

y(t) =
1

∑
n
t=0

ai
hαi

[
u(t)−

t−a
h

∑
j=1

ω
α
j y(t− jh)

]
. (2.25)

2.4.3 Frequency Domain Analysis

Frequency domain analysis is simply getting the frequency response of a system. In

other words, getting how the properties of the input signal change with frequency as it is

transferred to the output. The frequency response may be computed by substituting jω

for s in equation (2.17). The complex response for a frequency ω ∈ (0, . . . , ∞) can be

computed using below:

B(jω) =
P(jω)

Z(jω)
=

bm(jω)βm +bn−1(jω)βn−1 + · · ·+b1(jω)β +b0(jω)β0

an(jω)αn +an−1(jω)αn−1 + · · ·+a1(jω)α1 +a0(jω)α0
(2.26)

where j is the imaginary unit. There is also a useful relation for the noniteger power α ∈R

of the imaginary unit. Consider the following

jα = cos
(

απ

2

)
+ j sin

(
απ

2

)
. (2.27)

13

2.5 Fractional-Order Approximation

Integer-order systems are often used in industries perhaps because there are variety of tools

for its analysis, thus the approximations of fractional-order models by an integer-order

one will be valuable to compare or verify the accuracy of fractional-order with integer-

order systems that is already well-established. In [29], many approximation methods are

discussed but in work, the Oustaloup recursive filter proposed in [30], was used because it

has a very high approximation fitness for a specified frequency range [31].

Assume that the expected fitting range is (ωb,ωh) and of order N, the filter for an operator

sγ , 0 < γ < 1, is given as

G f (s) = K
N

∏
k=−N

s+ω ′k
s+ωk

(2.28)

where the poles, zeros and gain of the filter can be computed from (2.31).

ω
′
k = ωb ·ω

(2k−1−α)/N
u

ωk = ωb ·ω
(2k−1+α)/N
u

K = ω
α
h , ωu =

√
ωh/ωb

(2.29)

In [9], [31] a refined Oustaloup filter was proposed.it is given as

sα ≈
(

dωh

b

)
α

(
ds2 +bωhs

d(1−α)s2 +bωhs+α

) N

∏
k=−N

s+ω ′k
s+ωk

(2.30)

where the zeros and poles of rank k is written as

ω
′
k =

(bωh

d

) α−2k
2N+1 , ωk =

(bωh

d

) α+2k
2N+1 , K = ω

γ

h . (2.31)

It is expected that optimal approximation of (2.30) is obtained when b = 10, and d = 9,

confirmed from experiments and theoretical analysis.

14

Note 2.5.1 For a fractional-order α ≥ 1, it holds that sα = sn · sγ

2.6 Fractional System Discretization

In the implementation of controllers, discretization is essential. Several discretization

methods have been developed for fractional-order models[28]. These include infinite

response filter (IIR) and finite response filter (FIR) realizations, the former being preferred

to the latter due to the lower order of this type of filter[9]. Taking into account continuous-

time rational-order approximations discussed in Section 2.5, the following method for

obtaining a discrete-time model can be proposed.

1. Approximate the continuous-time fractional model by a rational-order transfer func-

tion Gc(s) using an Oustaloup filter.

2. Use a discrete transformation with a sample period T and obtain a discrete-order

approximation Gd(z) of the fractional model.

Continuous-time controllers are usually specified as a transfer function C(s), with the world

going digital, it is natural to look for methods that will transform the continuous transfer

function C(s) to a pulse transfer function Cd(z) so that the corresponding behaviours

of the two system are approximately same. When it comes to discrete-time fractional

differ-integrator implementation, it is not a simple task [28]. Some methods used to relate

the s and z domain mathematically as follows:

2.6.1 Forward difference or Euler’s Method

The forward difference method is defined by the following equation:

s≈ z−1
T

(2.32)

15

One challenge with this approximation is that it is possible that a stable continuous system

is mapped to an unstable discrete-time system.

2.6.2 Backward Difference

The backward difference method is defined by the following equation:

s≈ z−1
zT

(2.33)

A stable continuous-time system using (2.33) will always give a stable discrete-time

system.

2.6.3 Tustin or Trapezoidal or bilinear method

It relates the s and z domains with the following substitution formula:

s≈ 2z−1
T z+1

(2.34)

This method has the most advantage because the left-half s-plane is transformed into

the unit disc in the z-plane (i.e. it maps points s = 0 and s = ∞ to the points z = 1 and

z =−1, respectively. It is easy to implement, well known in finite dimensions, preserves

conservativity (i.e, frequency response are equal after discretization) and theoretically

simple.

2.7 Optimization Methods

Application of numerical optimization methods form an important part of the work espe-

cially in the identification of fractional-order system. Thus the need to provide methods

applied in this section. The employed algorithm methods are based on the available

methods in Python’s scipy.optimize.leastsquares library [32].

16

2.7.1 Nonlinear Least-Squares Method

The basic concept in this method is to obtain a model of an initially guessed system by

means of minimization of the sum of squares of the error.

F =
n

∑
i=1

ε
2
i = ‖ε‖2, (2.35)

where εi = yi− ŷi is the simulation error (residual), yi is the true system output and ŷi is

the predicted output for collected samples i = 1,2, . . . , N.

Two minimization algorithm can be applied in conjunction with 2.7.1 to always minimize

the error with every iteration. Consider the following:

2.7.2 Trust Region Reflective

This is a minimization method for handling large-scale bounded problems [33], [34]. Given

a trust region ∆k at every kth iteration the following steps are carried out [35]:

1. Compute Fk , gk (gradient of Fk), Dk (positive diagonal matrix), Hk and Ck (scaling

matrices), define the quadratic model

ψk(s) = gT
k s+

1
2

sT (Hk +Ck)s. (2.36)

2. Compute a step sk, with xk+sk ∈ int(F), where F is the feasible region for searched

variable values, by solving the sub-problem

min
s
{ψk(s) : ‖Dks‖< ∆k,s ∈ Sk} (2.37)

where Sk is a small-dimensional subspace in Rn.

3. If F(xk + sk)< F(xk), then xk+1 = xk + sk , otherwise xk remains unchanged for the

17

next iteration.

4. Adjusting the trust region ∆k. In case of the least-squares problem the subspace Sk

may be determined by taking into account.

min
s

{
Js +F

∥∥2
2
∥∥} (2.38)

where J is the Jacobian of F .

2.7.3 Levenberg-Marquardt

The search direction pk of this method is defined by the solution of equations at iteration

step k [36], [37]

(JT
k · Jk +λk · I)pk = JT

k ·Fk, (2.39)

where Jk is the Jacobian matrix, λk is a non-negative scalar, and I is the identify matrix. It

is important to note that this search algorithm is boundless.

18

3. Fractional-order Identification Methods and

Algorithms

This chapter is devoted to research of methods of identification using fractional-order

model. It is organized as follows. In Section 3.1, a general view on system identification

is provided. Section 3.2 discusses, methods of model identification from experimental

time-domain data using methods and algorithm discussed in Chapter 3. Lastly in Section

3.3, we discuss the analysis of the identified model.

3.1 Basics of Model Identification

In this work, we mostly considered the black modelling approach [27] as no assumptions

were made on the internal features of the studied system. Our target is to infer a dynamic

system model based on data set measured during an experiment. In the identification

process, its mandatory to obtain a relationship between set of system inputs and system

output under external stimuli (e.g. input signals, noise, vibrations etc). This relationship

helps predict and determine the system behaviour very accurately as its based on data and

optimization algorithms.

Figure 3. System with input u, output y, measured disturbance d and unknown noise w

19

Prior
Knowledge

is pre-processing
needed?

Obtain
Datasets

Design
Experiment

Choose model

Filter Noise, delay,
etc

Choose fitting
criterion

Calculate Model Validate Model

is Model SatisfactoryModel Obtained

Start

End
Yes

No

No

Yes

Figure 4. System Identification Procedure

Consider Figure 3, it shows a general form of a single input-single output system with

disturbance.The stages of system identification is discussed in the Section 3.1.1. A flow

diagram is provided in Figure 4 for the readers’ perusal.

3.1.1 System Identification stages

1. Design the experiment. For dynamic systems, a suitable approach is to collect

transient response data in the time-domain by applying a set of known inputs signals.

In the frequency domain, frequency response (phase and magnitude) data can also

be collected by doing a frequency sweep.

2. Collate the data-sets based on the designed experiment. It is paramount that data is

as informative as possible while subject to whatever present constrains.

20

3. Select the model structure and the criterion to fit.

4. Calculate the model using a cost function and suitable algorithm. (e.g, nonlinear

least squares).

5. Validate the obtained model. It is advisable to use different data-set for identification

and validation.

6. Is model accuracy satisfactory? If it is, use your model as you desire. if not, revamp

modelling and/or identification strategy then repeat steps 1 to 5.

Note 3.1.1 In the identification process, there could be the need to pre-process data-set to

filter-off none useful components (like contributing noise, delays) before actually using it

in the identification algorithms.

3.2 Time-domain Identification

G(s) =
Y (s)
U(s)

=
bmsβm +bm−1sβm−1 + · · ·+b0sβ0

ansαn +an−1sαn−1 + · · ·+a0sα0
e−Ls (3.1)

The objective of time-domain identification is to use experimental data from a single

input single output non linear system to obtain a obtain a mathematical fractional-order

representation (model) of the system in the form (3.1).

3.2.1 Time Domain Data Generation

Suppose that experimental data is collected from a general single input, single output

(SISO) nonlinear system ψ : I→ O, where (I,O) ⊂ R2 denote the measured input and

output signals, respectively, such that

z(t) = ψ(v(t))+D (3.2)

where z(t), v(t) and N denotes the system output, input and noise respectively. Thus (3.2)

represents a data set holding multiple samples from the system output yk = z(kts)+N and

21

system input uk = v(kts), under a uniform sample rate ts = tk+1− tk.

Zn = {u0,y0,u1,y1, . . . ,un,yn, ts} , k = 0,1, . . . ,n.

If z(0) = y0 6= 0, then an offset y0 can be removed from each of the collected output

samples since zero initial condition was assumed.It is represented mathematically as

yk = yk− y0, k = 0,1, . . . ,N

3.2.2 Initial Guess Model

Several methods of identification are described in [27] and more specifically for fractional-

order system and this work in [37]–[39] where equation error, output error approaches

and least-squares were discussed. The approach postulates that a commensurate-order γ

transfer function G(s) is BIBO (bounded input-bounded output) stable if

0 < γ < 2 (3.3)

where it holds that for every sγ pole, sk ∈C of G(s) it holds the stability criterion discussed

in 2.4.1:

|arg(sk)|> γ
π

2

Thus the initial guess model to be used in the identification process can be chosen by

selecting a commensurate-order γ that is in accordance with (3.3). It is strongly advised

to used a commensurate order initial guess because the success of the identification

process could depend mainly on the initial conditions set, of which the initial guess is

one of them [9]. For example a fractional-order polynomial with order n, will have the

highest differential order as n× γ . A fractional order polynomial (s) with order n = 4 and

22

commensurate-order γ = 0.25 is as below

G(s) = 15s1.0 +10s0.75 +5s0.5 + s0.25 +20.

3.2.3 Parameter Optimization

One of the reasons we discussed optimization in Section (2.7) is because the system

identification problem is synonymous to the problem of optimizing a set of parameters θ

of the model (3.1) given by

ap =

[
an an−1 · · · a0

]
, αp =

[
αn αn−1 · · · α0

]
bz =

[
bm bm−1 · · · b0

]
, βz =

[
βn βn−1 · · · β0

] (3.4)

ap and bz denote pole and zero polynomial differential operator coefficients, αp and βz

denote their corresponding exponents (orders of differentiation), respectively; if α0 = β0 =

0, then the system static gain is identified as K = b0/a0.

There are 9 possible parameter optimization sets θm depending on the users choice:

1. Optimize zero and pole polynomial

� Full parameter identification, θm = [ap, αp, bz, βz]

� Static exponents, optimize coefficients only, θm = [ap, bz]

� Static coefficients, optimize exponents only, θm = [αp, βz]

2. Zero polynomial static, optimize pole polynomial only:

� Identify pole polynomial coefficient and exponents, θm = [ap, αp]

� Static exponents, optimize pole polynomial coefficients only, θm = ap

� Static coefficients, optimize pole exponents only, θm = αp

3. Pole polynomial static, optimize zero polynomial only:

� Identify zero polynomial coefficient and exponents, θm = [bz, βz]

� Static exponents, optimize zero polynomial coefficients only, θm = bz

23

� Static coefficients, optimize zero exponents only, θm = βz

It is important to note that the order of the generated pole polynomial m and zero polynomial

n in the initial guess model discussed in Section 3.2.2 should satisfy the condition:

αp = [γ ·n γ · (n−1) · · · 0]

βz = [γ ·m γ · (m−1) · · · 0]

such that
{
(n,m) ∈ Z2

+ : n> m
} (3.5)

In simple words, the order of pole polynomial, should be greater than or equal to the order

of zero polynomial. The identification process is iterative and could sometimes be slow.

The optimization criterion is the output mean squared nominal error ‖ε(t)‖2
2 given by

ε(t) = y(t)− ŷ(t), (3.6)

where y(t) is the experimental output and ŷ(t) is the output obtained by simulation of the

identification model using an experimental input u(t).

3.3 Validation of Identified Model

After the identification process, a system model is identified. It is important to assess how

accurate the identified model is in comparison with same or another experimental plant

output data to certify the model.

Let us denote the second experimental plant output yv and the identified model output ym

for a single input, single output case, so both yv and ym should be vectors of size [N × 1].

The residuals are given as a vector containing the model output error given as

ε = yv− ym (3.7)

24

The percentage fitness of the model may be expressed as

Fit =
(

1− ‖ε‖
‖yv− ȳv‖

)
·100% (3.8)

where ‖ · ‖ means the euclidean norm and ȳv denotes the mean of yv. In the FOMCONpy

library that will be introduced in Chapter 5, the percentage fitness of the identified model,

is always computed after the identification process in command-line mode or when the

Validate button is pressed in GUI mode . The user is left to make the choice if satisfied

with the identified model.

25

4. Fractional-order Control

In this chapter we focus on fractional-order system control. It applies the fractional

calculus concept to extend the classical integer-order control. The chapter is organised as

follows. Section 4.1 introduces the conventional Proportional, Integral and Differential

(PID) controller. Section 4.2 presents a summary of the Fractional-order PID (FOPID)

controller and a summary of the fractional integral and differential control action. Section

4.3 discusses the FOPID tuning method used in the fomconpy with reason for using such

tuning method.

4.1 Basics of Proportional, Integral and Differential Control

To better understand fractional-order control which is an extension of integer order control,

the author thought it beneficial to first provide the reader with a summary of the foundation

of proportional, integral and differential control.

4.1.1 Proportional Action

let us consider a controller in Fig. 5. It is to control a system with present output y, set-

point/set-value/desired output r, manipulated or control variable u and the error e = r− y.

Figure 5. Block Diagram of a Controller

26

For a setup like in Fig. 5, the initial data for the controller are the y, r, and information

about itself. The most common of industrial control action is the proportional (P) control

action which simply compares the y to r to determine if an error exist. if an error exist, the

controller will adjust its output u according to the parameter that have been set in itself.

The control law u will be as in (4.1) for a proportional controller.

u = Kc · e+u0. (4.1)

proportional control action responds to change in the magnitude of the error. However

the proportional action alone will not ensure the system output y converges to the desired

output r. In fact, there will always be an offset (also known as bias) so that r 6= y thus the

u0 in (4.1).

4.1.2 Integral Action

Due to this offset u0, there is the introduction of the Integral error to eliminate the offset,

Unlike proportional action which simply moves an amount proportional to a change in y or

r, integral action is continually applied until error has been eliminated. The integral action

simply tells the output how fast to move. It is mathematically expressed as

u = Ki

∫
e dt =

1
Ti

∫
e dt (4.2)

where Ki is the integral gain (repeats per minutes), Ti is the integral time constant (minutes

per repeat). Integration of error means the continual sum of controller error up to present

time. Some effects of integral action are stated in the following bullets:

� Decreases the rise time (that is, faster rate to get to set-point).

� Increase settling time and overshoot.

� Causes the displacement of the root locus of the system towards the right-half plane

(that is, fosters instability of the system).

27

However there occurs a scenario where the controller output is driven from a desired

output level caused by large difference between the set-point (desired level) and the process

variable (system output) this scenario is called "integral wind-up" (see [40] for more

information).

4.1.3 Derivative Action

The derivative action causes the output signal to be offset by an amount proportional to

the rate at which the input is changing. While proportional action tells how much changes

based on error, derivative action tells how far to go when input ramps thus it has a futuristic

behaviour.

u = Kc · e+Kd
de
dt

= Kc

(
e+Td

de
dt

)
(4.3)

Td is the rate time and characterizes the derivative action. Adjusting Td varies the amount

of the derivative action, setting it to zero turns off the derivative action. Some effects on

derivative action are stated in the following bullets:

� Causes the displacement of the root locus of the system towards the left half plane

(that is fosters the stability of the system).

� Tends to emphasize the effects of noise at high frequencies.

� Decreases settling time and overshoot.

4.1.4 PID Control

A combination of the three control actions described above is referred to as PID control

action u. This action is represented as

u = Kp · e+Ki

∫
e dt +Kd

de
dt

(4.4)

28

and the transfer function is represented as

C(s) = Kp +
Ki

s
+Td · s (4.5)

or

C(s) = k
(s/ωc)

2 +2δcs/ωc +1
s

(4.6)

with ωc =
√

Ki/Kd, δ = K/(2
√

Ki ·Kp, k = Ki

For more details of integer order control can be found in [9], [40]

4.2 Fractional-order Proportional, Integral and Differential Con-

troller

Podlubny [9], [41] introduced the generalised representation of the fractional-order PID

(FOPID) controller called the PIλ Dµ controller, where the integral has an order λ , the

differential an order µ and unless λ = µ = 1 cannot be same like the classical PID controller

summarised in Section 4.1.4. In same [41], he demonstrated that FOPID controller has

better response compared to PID which was also agreed to e.g, by Cech in [42]. Just as we

did for PID controller, let us defined the control action for an FOPID controller in the time

domain.

u(t) = Kpe(t)+KiD
−λ e(t)+KdD

µe(t), (4.7)

where e(t) is the error signal.

In the frequency domain,

Gc(s) = Kp +
Ki

sλ
+Kdsµ , (4.8)

Fig. 6 shows the transformation effect from a PID of four-points only to a PID plane.

Further, let us summarize the effects of the extended integral and the extended differential

29

(a) Integer-order (4 points only) (b) Fractional-order (4 points + Plane)

Figure 6. classical PID vs Fractional-order PID [9]

control action. Consider a basic control action of type K · sµ for µ ∈ [−1,1]. The basic

control actions that will be considered are integral and differential:

Integral Action

For an integral action, µ ∈ [−1,0] with K = 1, varying orders of µ and a square error

signal. In the time domain, the control action u(t) will have the form depicted in Fig. 7,

but in the frequency domain, the effect of varying µ between −1 and 0 is as follows:

� There is a constant increment in the slope of the magnitude curve varying between

−20 dB/dec and 0 dB/dec.

� There is also be a constant delay in the phase plot, varying between -π/2 rad and 0

rad.

Differential Action

The differential action is investigated with µ ∈ [0,1], varying orders of µ and and a

trapezoidal error signal. In the time domain, the effects of the derivative action is as shown

in Fig. 8 while in the frequency domain, the effect of varying µ between 0 and 1 is as

follows:

30

Figure 7. Integral control action for a square error signal and µ ∈ [−1,0] [9]

� There is a constant increment in the slope of the magnitude curve varying between 0

dB/dec and 20 dB/dec.

� There is also be a constant delay in the phase plot, varying between 0 rad and π/2

rad.

It is quite obvious that extending the integrator and differentiator of PID to support

fractional-order has potential benefits and hopefully, will replace the classical control in

the industrial control application. The author anticipates this with the development of a

tool like fomconpy which supports dynamic system modelling and distributed control.

4.3 Tuning of Fractional-order Proportional, Integral and Differen-

tial Controllers

In the industry, there are various processes and systems that need to be controlled. However,

it is practically impossible and inefficient to make an out-of-the-box/plug-n-play controller

for each and every process/system. Instead, a controller parameters (proportional, integral

and differential) can be adjusted to suit the particular system or process that it will control.

The process of adjusting the parameters of the controller to suit the particular case is

31

Figure 8. Differential control action for a trapezoidal error signal and µ ∈ [0,1] [9]

referred to as tuning.

Over the years, several tuning methods have been proposed by different researchers [9],

[18], [43], [44] using different optimization techniques in the tuning problem depending

on the design specification of the intended fractional-order PID controller. Most frequently

used design specifications are derived from the frequency domain evaluation of the open

loop C(jω) ·G(jω), where C(jω) is the controller and G(jω) is the plant. In terms of

noise and disturbance rejection, the following measures can be used:

� Sensitivity function S(jω):

S(jω) =
1

1+C(jω)G(jω)
(4.9)

� Complementary sensitivity function T (jω):

T (jω) =
C(jω)G(jω)

1+C(jω)G(jω)
(4.10)

32

For this work, we focused on the tuning algorithm in [44], [45] which is a hybrid of the

F-MIGO Tuning algorithm discussed in chapter 5 of [9]. Which says that for a fractional-

order first order plus dead time (FO-FOPDT) model given as (4.14), the appropriate integral

order λ of the controller can be obtained by considering basic system dynamics through

the relative dead time parameter τc given as:

τc =
Lc

Lc +Tc
(4.11)

Then applying the approximate rule given in 4.12

λ =



1.1, τc > 0.6

1.0, 0.46 τc < 0.6

0.9, 0.16 τc < 0.4

0.7, τc < 0.1

(4.12)

For deciding the difffernetial order µ , knowledge of the FO-FOPDT plant order α is

necessary and they should have the relation in (4.13).

µ 6 α (4.13)

The reasons for choosing this tuning method is because the tuning method is fast, takes

less computation power (FOMCONpy library was developed with a focus to run smoothly

on a miniature IOT devices) and it’s suitable for a FO-FOPDT model given in (4.14).

G(s) =
K

Tc · sα +1
e−Lcs (4.14)

we considered the following tuning specifications:

� Exact phase margin ϕm and corresponding crossover frequency ωc,

� Gain variation robustness, that is there exist a requirement such that

ψ
′
g (ωc) = 0 (4.15)

33

where

ψg(ω) = arg(C(jω))+ arg(G(jω))+π +2πn. (4.16)

� Minimum gain margin Gm.

The following functions may be defined, based on the specifications above:

κ1 (Kp,Ki,Kd) = |C(jω)| · |G(jω)|−1, (4.17)

κ2 (Kp,Ki,Kd) = arg(C(jω))+ arg(G(jω))+π−ϕm−2πn, (4.18)

κ3 (Kp,Ki,Kd) = ψ
′
gm(ω), (4.19)

where ω = ωc.

Note 4.3.1 Eqns. (4.17), (4.18) and (4.19) do not include the gain margin specification.

However, the solution is only considered feasible, if the minimal gain margin is satisfied.

To find the gains g = [Kp, Ki, Kd]
T of the FOPID controller according to the specifi-

cations given above, we solve a system of nonlinear equations comprised of the design

specification functions.

Fs =

[
κ1(·) κ2(·) κ3(·)

]T

= 0 (4.20)

Newton’s method in several dimensions may be employed here. Starting from the initial

estimate g0, the iterative process begins until a particular stop condition is satisfied. On

every step, a linear system Jδg =−Fs must be solved then the new controller gain vector

g+ = g+δg. Detailed algorithm and mathematical equation can be found in [44].

34

5. User Manual for FOMCONpy

In this chapter, we introduce the reader to the FOMCONpy library for python in which the

author implemented major features already discussed in previous chapters. The chapter is

organised as follows. In Section 5.1, the reader is presented an overview of the library and

dependencies on other libraries. In Section 5.2 installation guide in presented for Windows

and Linux user (catering for the IOT community). In Section 5.3, we present the fractional

system analysis module with examples on command line and with GUI. Section 5.4, have

illustrative examples about the fractional system Identification module in time domain

using command line and using GUI. Section 5.5 shows the application of FOPID controller

tuning using command line and finally, Section 5.6 presents the FOPID controller and

tuner GUI with application to IOT and distributed control system.

5.1 Overview

FOMCONpy stand for "Fractional-Order Modelling and Control for Python". It is a Python

library extended from it counterpart, FOMCON for MATLAB [46] but with features for

IoT community and devices especially with the reality of 5G.

In recent years, there has been an enormous exchange of data as we try to “smarten”

automated processes, this has prompted manufacturing industries to use wireless network

communication for industrial automation [47] because cabling often hinders scaling and

often suffers from wear and tear thereby increasing maintenance costs [48]. We anticipate

that the development of a fractional calculus library in Python will facilitate and simplify the

use of advanced fractional-order modelling, identification and control in the development

of real industrial stand-alone applications in Industry 4.0 revolution.

35

The FOMCONpy library, provides graphical user interfaces (GUIs) and appropriate back-

end functions that can be used to model, identify, design and optimize fractional-order

systems, including fractional controllers. The goal is to develop a multi operating-system

library for a wide range of users. Beginners enjoy the availability of complete GUIs plus

added command-line features for more experienced users.

The library has 3 distinct modules namely:

1. Fractional-order System Analysis Module (FOSAM).

2. Fractional-order System Identification Module (FOSIM).

3. Fractional-order System Control Module (FOSCOM).

These modules shall be discussed in coming sections with command line and GUI examples.

FOMCONpy was developed and tested using Python 3.7.4 interpreter which makes this

version of Python the minimal supported version.

5.2 Setting-up FOMCONpy: A Quick Tutorial

FOMCONpy makes use of the following Python packages and their dependencies: numpy,

scipy, control, maplotlib, pandas, xlrd, select, addict and PyQt5 (for GUI).

Setup will be discussed for Windows OS and Linux OS (similar for Raspberry PI IoT

device).

5.2.1 Setup guide for Windows

1. Install Anaconda.

2. Install Git.

3. Navigate using the command prompt to any desired directory of choice.

4. Clone FOMCONpy from its repository:

git clone https://github.com/outstandn/fomcon.git.

36

5. Change current working directory to fomcon: cd fomcon

6. Create fomcon environment: conda env create -f environment.yml

7. Activate fomcon environment: conda activate fomcon

5.2.2 Setup guide for Linux

Open a terminal and enter the following commands:

1. sudo apt-get install git python3-pyqt5 python3-numpy

python3-scipy python3-pandas python3-xlrd python3-matplotlib

python3-pip python3-select

2. pip3 install control addict

3. Continue with steps 3 to 5 in Section 5.2.1

5.3 Fractional-order System Analysis Module

The main module of the FOMCONpy library is the system analysis module. It is the

foundation module for the fractional-order transfer function class called FOTransFunc.

it can be found in the fotf module.

5.3.1 class FOTransFunc()

Before using the FOTransFunc class, you need to first import the fotf module

Syntax

� G = FOTransFunc(num, nnum, den, nden, dt)

� G = FOTransFunc(Zero_s, Pole_s, dt)

� G = FOTransFunc([num, nnum], [den, nden] , dt)

� G = FOTransFunc(”s”)

� G = FOTransFunc(k)

37

Arguments

� num, nnum, den, nden[, dt]

num – vector coefficients of the zero polynomial.

nnum – vector exponents of the zero polynomial.

den – vector coefficient of the pole polynomial.

nden – vector exponents of the pole polynomial.

dt – delay (optional float or int).

� [num, nnum], [den, nden].

[num, nnum] – matrix having 2 vectors, for coefficients and exponents of the

zero polynomial.

[den, nden] – matrix having 2 vectors, for coefficients and exponents of the

pole polynomial.

� Zero_s, Pole_s.

Zero_s – fractional zero polynomial string.

Pole_s – fractional pole polynomial string.

� ”s” – if ’s’ is the only argument, it returns FOTransFunc(1,1,1,0).

� k – a float or int only and returns FOTransFunc(k,0,1,0).

Returns

� G – the resulting FOTransFunc class object, represents the LTI system given by

fractional-order transfer function.

Examples

To create a fractional-order transfer function G(s) = −2s0.63+4
2.6s1.8+2.5s1.31+1.5e−5s in Python, the

following command can be used:

1 import fotf

38

2 G=FOTransFunc([[-2,4],[0.63,0]],[[2.6,2.5,1.5],[1.8,1.31,0]],5)

3 #a second way to fill in arguments

4 G1=FOTransFunc([-2,4],[0.63,0],[2.5,1.5],[1.8,1.31,0],5)

5 #a third way to fill in arguments

6 G2=FOTransFunc("-2s^{0.63}+4","2.6s^{1.8}+2.5s^{1.31}+1.5",5)

7 #let us check if the three are equal

8 if G==G1==G2:

9 print("G == G1 == G2")

10 print(G)

Listing 5.1. Creating a FOTransfunc object

The output from the Python interpreter is as below:

G == G1 == G2

-2s^{0.63} + 4

------------------------------exp(-5s)

2.6s^{1.8} + 2.5s^{1.31} + 1.5

Remarks

To support ease of use for FOMCON users, the function fotf and newfotf also exist in

FOMCONpy to ease switching from MATLAB to Python and vice-versa. Both functions

still return a FOTransFunc object. The function fotf can be used interchangeably with

class FOTransFunc to create a new instances but newfotf can only be used to create

new FOTransFunc object as specified in Section 5.3.2.

5.3.2 def newfotf()

This function is used to create FOTransFunc object but must always take 2 or 3 argument.

Syntax

� G = newfotf([num nnum], [den nden], dt)

39

� G = newfotf(Zero_s, Pole_s, dt)

� G = newfotf([num nnum], Pole_s, dt)

� G = newfotf(Zero_s, [den, nden], dt)

Arguments

� Zero_s – fractional zero polynomial string.

� Pole_s – fractional pole polynomial string.

� dt – optional delay (int or float).

� [num nnum] – zero polynomial co-efficient and exponent vector.

� [den nden] – pole polynomial co-efficient and exponent vector.

Returns

� G – the resulting FOTransFunc class object.

Example

Using same example as in 5.3.1, G(s) = −2s0.63+4
2.6s1.8+2.5s1.31+1.5e−5s, the following command

can be used.

1 import fotf

2 G=newfotf([-2,4,0.63,0],[2.6,2.5,1.5,1.8,1.31,0],5)

3 #a second way to fill in arguments

4 G1=newfotf("-2s^0.63+4","2.6s^1.8+2.5s^1.31+1.5",5)

5 #a third way to fill in arguments

6 G2=newfotf([[-2,4],[0.63,0]],"2.6s^1.8+2.5s^1.31+1.5",5)

7 #a fourth way to fill in arguments

8 G3=newfotf("-2s^0.63+4",[[2.6,2.5,1.5],[1.8,1.31,0]],5)

9 #let us check if the four are equal

10 if G==G1==G2==G3:

11 print("G == G1 == G2 == G3")

12 print(G)

Listing 5.2. Creating a FOTransfunc object using the newfotf function

40

IN G1

G2

G3

OUT

G4

Figure 9. Example for system block interconnection

The output from the Python interpreter is as below which is same output as in Example of

Section 5.3.1.

G == G1 == G2 == G3

-2s^{0.63} + 4

------------------------------exp(-5s)

2.6s^{1.8} + 2.5s^{1.31} + 1.5

5.3.3 FOTransFunc Interconnection

These are operators and properties implemented in the FOTransFunc class that supports

block interconnection. Table 1 has the details of these block interconnection operators.

Example

Consider a fractional system given by the block diagram in Fig. 9, where:

G1(s) =
1

s0.5 +1
, G2(s) =

s0.3 +1
s2.5 + s+1

G3(s) =
2

s0.1 +1
, G4(s) =

1
15s+1

The full model can be obtained using the following commands:

1 import fotf

2 G1 = newfotf([1, 0],[1, 1, 0.5, 0]) #Create system G1

3 G2 = newfotf([1, 1, 0.3, 0], [1, 1, 1, 2.5, 1, 0]) #Create system G2

41

4 G3 = newfotf([2, 0], [1, 1, 0.1, 0]) #Create system G3

5 G4 = newfotf([1, 0], [15, 1, 1, 0]) #Create system G4

6 G = (G1*(G2 - G3)).feedback(G4) #Form the interconnections

7 print(G)

Listing 5.3. FOTransFunc block interconnection example

The output from the Python interpreter is as below:

-30s^{3.5}-2s^{2.5}-30s^{2}+15s^{1.4}

+15s^{1.3}+15s^{1.1}-17s+s^{0.4}+s^{0.3}+s^{0.1}-1

15s^{4.1}+15s^{4}+15s^{3.6}+15s^{3.5}+s^{3.1}+s^{3}+16s^{2}

+14s^{2.5}+15s^{2.1}+15s^{2}+16s^{1.6}+16s^{1.5}+16s^{1.1}

+14s+s^{0.6}+s^{0.5}+s^{0.4}+s^{0.3}+2s^{0.1}

Table 1. FOTransFunc block interconnection operators

OPERATOR DESCRIPTION SYNTAX
feedback() System negative feedback G.feedback(G2)

1/G System inverse 1
G G−1

– System subtraction G−G2
** Power of given system (n ∈ Z) G**n
/ System division (series connection) G / G2
* System multiplication (series connection) G * G2
+ System addition (parallel connection) G + G2
– Unary minus −G

5.3.4 Stability Analysis: FOTransFunc.isstable()

With an instance of the FOTransFunc class, the user can perform stability analysis (dis-

cussed in Section 2.4.1) using the .isstable() method. Consider a FOTransFunc

class instance G in Syntax below.

42

Syntax

[Stable,q,err,apol] = G.isstable(doPlot)

or

[Stable,q,err,apol] = G.isstable()

Arguments

� doPlot – True or False. The user can specify if they wants a plotted Riemann

sheet or not. Default value is True, if doPlot is not specified.

Return

� Stable – bool, it is set to True if system is stable, else False.

� q – Pole polynomial commensurate order, The minimum allowed commensurate-

order is q = 0.01, if the commensurate order for the system is lower than q =

0.01, the stability analysis is done with this order.

� err – error norm.

� apol – minimum stability criterion.

5.3.5 Time Domain Analysis: FOTransFunc.step()

With an instance of the FOTransFunc class, the user can perform time domain analysis

(discussed in Section 2.4.2) using the .step() method to calculate the step response

of the instance. It uses the Grünwald-Letnikov definition computing algorithm described

earlier in Definition 2.1.1.2. Consider an instance G of the FOTransFunc class in Syntax

below.

Syntax

[t, y] = G.step(t=None, u=None, output=True, plot=True)

or

y = G.step(t, u=None, output=True, plot=True)

43

Arguments

� t – time vector t (optional) consisting of regularly spaced time samples such that

t= [0, t f inal] with constant step δ t. if not specified, method generate a time vector

automatically.

� u – input signal vector u(t) (optional). if not specified, the method also generates

an input vector of 1s’ same length with that of the time vector.

� output – bool, set to True if you want a the computed output and False if

computed outputs are not needed.

� plot – bool, set to True if you want a plot and False if plots are not needed.

Note 5.3.1 Using this method means you either want a computed step output or a plot,

Therefore, the user must set one of these to be True. The methods throws an error if these

criteria is not met.

Return

� y – vector of computed outputs. This is returned only if the arguments output is

True.

� t – automatically computed time vector. This is returned only if the arguments

output is True and input signal vector u(t) was automatically generated by the

method.

5.3.6 Frequency Domain Analysis: FOTransFunc.freqresp()

With an instance of the FOTransFunc class, the user can perform Frequency domain

analysis (discussed in 2.4.3) using the .freqresp() method to calculate the frequency

response of the instance. It uses the Grünwald-Letnikov definition computing algorithm

described earlier in Definition 2.1.1.2. Consider an instance G of the FOTransFunc class

44

in Syntax below.

Syntax

� [magnitude, phase, w] = G.freqresp(minExp, maxExp, numPts)

� [magnitude, phase, w] = G.freqresp()

� G.freqresp(minExp, maxExp, numPts)

� G.freqresp()

Arguments

� minExp – an int < 0. The minimum exponent of Frequency to compute. The

actual computed frequency is 10minExp rad/s.

� maxExp – an int > 0. The maximum exponent of Frequency to compute. The

actual computed frequency is 10maxExp rad/s.

� numPts – an int > 0. Number of points between the minimum frequency and

maximum frequency.

Note 5.3.2 The frequency vector ω used in the frequency response plot is obtained by

using the numpy.logspace() function. If no arguments are supplied by the user, the

method uses its defaults.

Return

� magnitude – vector of computed magnitudes in decibel [dB].

� phase – vector of phase in degree [◦].

� w – vector of the frequencies [rad/s].

5.3.7 Oustaloop Approximation: FOTransFunc.oustaloop()

With an instance of the FOTransFunc class, the user can compute the oustaloop filter ap-

proximation (discussed in 2.5) using the .oustaloop() method. The approximation is

45

only valid in the specified frequency range. Consider an instance G of the FOTransFunc

class in Syntax below.

Syntax

� TransferFunction = G.oustaloop(wb, wh, Order)

� G.oustaloop()

Arguments

� wb – an int < 0. The minimum exponent of Frequency to compute. The actual

computed frequency is 10wb rad/s. Default value = −4.

� wh – an int > 0. The maximum exponent of Frequency to compute. The actual

computed frequency is 10wh rad/s. Default value = 4.

� Order – an int > 0. Approximation Order.

Return

� TransferFunction - An integer order transfer function of type control.xferfcn.TransferFunction

based on the Python control library.

Example

Consider a fractional-order transfer function G(s) = s0.5. Let’s approximate it using

oustaloop filter within the frequency range ω = [0.01,100] with an order N = 2. The

following command can be entered:

1 import fotf

2 g=newfotf("s^0.5","1")

3 print(g.oustaloop(-2,2,2))

Listing 5.4. FOTransFunc Oustaloop approximation example

The output on the Python interpreter is as follows:

46

Figure 10. Fractional-order System Analysis Module GUI

10s^{5}+298.5s^{4}+1218s^{3}+768.5s^{2}+74.97s+1

s^{5}+74.97s^{4}+768.5s^{3}+1218s^{2}+298.5s+10

5.3.8 Fractional-order System Analysis Module GUI

The system analysis GUI is equipped with functions to analyse fractional-order system in

one click. We can call it a user friendly "FOTransFunc" class. To get started in the same

command prompt or terminal from Section 5.2, run the command:

python pyfomcon.py

The FOSAM GUI, as shown in Fig.10 has 2 group panels:

� FO Transfer Function Panel: This panel provides buttons that add/create, edit,

delete, view the model in Python interpreter, check stability and convert the fractional-

47

Figure 11. FOTransFunc Viewer Window

order system selected in the drop-down list. Fractional-order transfer functions may

be added to the drop-down list by clicking the Add button. A new dialog, Fig. 11

allows the user to enter a unique name, zero polynomial, pole polynomial and

delay for the intended fractional-order system. Multiple fractional-order systems

can be added to the drop-down list. The selected system can be edited, deleted,

oustaloop filtered, stability checked and further analysed using features available in

the System Analysis panel.

� System Analysis Panel: This Section of the library offers function for both fre-

quency and time domain analysis.

– Frequency Domain Analysis: The Bode Plot button is used for this analy-

sis. It is important to note that only integer exponent can be used to specify

upper and lower frequency bounds. It calculates the frequency response of the

system. The frequency response carries information about how the amplitude

and phase of the signal passing through the system changes with frequency

and can be computed by substituting jω for s. This was already discussed in

Section 2.4.3.

– Time Domain Analysis: The Simulate button is used for this analysis.

It is common sense that the start time tstart and the stop time tstop must be

positive integers and tstart < tstop. The objective of analysis in time domain

is to obtain the transient response of the system. For the fractional-order

system, the numerical computation of fractional derivative using a revised

48

(a) Adding a FOTransFunc (b) System g4 is unstable

Figure 12. Adding system g4 and its Stability check plots

Grünwald-Letnikov definition was used. We already discussed this in Section

2.4.2.

Example

Consider the system given by:

G(s) =
s+1

s2.5 +0.5s1.5 +100
(5.1)

To add this system as g4, one would fill in the systems details after clicking the Add

button as shown in Fig. 12a. The user should note that the OK button will not be available

until all text are filled. We can check the stability of the system as illustrated in Fig. 12b. It

can be seen that two poles are inside the red shaded region, thus the system is unstable

because the condition in equation (2.21) is not satisfied. In the plot we can see the legend

that shows the commensurate order and says system is unstable.

The step response in time range t = [0, . . . , 30] with a step of h = 0.1 is obtained using

the computation described in Section 2.4.2. The step response plot is depicted in Fig. 13.

The Bode plot within frequency range [0.00001,100000] rad/s is shown in Fig. 14.

49

Figure 13. Step response of system g4: The system is unstable in accordance with the
stability analysis result.

Figure 14. Frequency response of g4

50

Figure 15. Structure of identification/validation data with headings y, u and t

5.4 Fractional-order System Identification

The system identification module provides means for time-domain system identification.

Using the identification module in the Python interpreter command line, user needs to

import the fomconoptimize using the command:

• from fomconoptimize import *

5.4.1 Identification and Validation Data

Identification and validation data that can be used in the identification tool have specific

data structure. To ease usage, Microsoft Excel file format (.xlsx and .xls) was selected.

Data files are expected to have 3 columns with headings u, y, and t. Figure 15 shows an

example data structure and as discussed in 3.2.1, Column t has a uniform sample rate of

0.05s.

Note 5.4.1 Ensure that the length of y = length of u = length of t in Data

5.4.2 def fid()

This is the main Identification function. It tries to identify a fractional-order transfer

function as described in Section 3.1.1. Non-linear least-square method discussed in Section

51

2.7.1 is employed, minimizing the squared error. The error is obtained by simulating the

identified system in the time domain. The simulation type is determined by the opt class

instance discussed in Section 5.4.3.

Syntax

result = fid(idData_s, valData_s, optiset, limits, plot, plotid,

cleanDelay)

Arguments

� idData_s – String path to identification data. Best to put file in fomcon main

directory.

� valData_s – String path to validation data. Best to put file in fomcon main

directory.

� optiset - An opt class object and will be discussed in subsection 5.4.3.

� limits – A cell array with two vectors containing polynomial coefficient and ex-

ponent limits in the form [[CMIN, CMAX], [EMIN, EMAX]]. Default: None

(that is, no limits are imposed).

� plot – An array of type bool with length=2. Example [True,True] where

position 0 is to plot idData_s and position 1 is to plot ValData_s. Default:

[False, False].

� plotid – An array of type bool with length=2. Example given, [True,True]

where position 0 is to plot identified model’s output against idData_s and

position 1 is to plot identified model’s output against valData_s. Default is

[True,True].

� cleanDelay - Used to clean identification data with delays before identification.

2.5 is delay in seconds. Default: [True,2.5].

Returns

� result - fidOutput() class object with 7 properties

52

– result.G - Identified system (A FOTransFunc object)

– result.y - output of result.G using input data result.u

– result.u - idData.xlsxs input column u

– result.t - idData.xlsxs input column t

– result.vy - output of result.G using input data result.vu

– result.vu - ValData.xlsxs input column u

– result.vt - ValData.xlsxs input column t

5.4.3 def opt()

This is an option class. It contains the user specified identification option settings that will

be used by the fid() function already discussed in Section 5.4.2.

Syntax

options = opt(initialGuess, simType, optiAlg, optiFix, polyFix,

optidelay = False)

Arguments

� initialGuess - initial guessed fractional-order system, that is, a FOTransfunc

instance.

� simType - The method used in simulating the output of the identified system. User

is to select 1 of 2 options namely:

– simMethod.grunwaldLetnikov discussed in definition (2.1.1.2).

– simMethod.oustaloop discussed in Section 2.5.

� optiAlg - The optimization algorithm to use. User is to select 1 of 4 options.

– optAlgo.LevenbergMarquardt discussed in Section 2.7.3.

– optAlgo.TrustRegionReflective discussed in Section 2.7.2.

– optAlgo.Softl1 An extension of trust region reflective. See ’Notes’ in [32].

– optAlgo.RobustLoss An extension of trust region reflective. See ’Notes’ in

53

[32].

� optiFix - User should select which parameter to optimize Coefficients or Expo-

nents or both. See Section 3.2.3.

– optFix.Free - Optimize both coefficients and exponents.

– optFix.Exp- Static exponents, optimize coefficients.

– optFix.Coeff - Static coefficients, optimize exponents.

� polyFix - a vector with two int values: [FIXZERO, FIXPOLE]. Position 0 is for

Zero polynomial, postition 1 is for Pole polynomial. where FIXZERO or FIXPOLE

can be 1, in which case the corresponding polynomial is static during identification,

or 0 for unstatic. Note that in case FIXZERO = FIXPOLE = 1 the initial guess

model will be immediately returned with no identification conducted. Default: [0; 0]

� optidelay - bool, Should the delay be optimized? True or False

5.4.4 Fractional-order System Identification Example Using Com-

mand Line

G(s) =
−2s0.63 +4

2s3.501 +3.8s2.42 +2.6s1.798 +2.5s1.31 +1.5
. (5.2)

Consider the system identification data idenData.xlsx and validation data valiData.xlsx

in the dataFiles directory. To identify and validate a fractional model from this data in the

Python interpreter, using (5.2) as initial guess, the command used is as follows:

1 from fomconoptimize import *

2 #create initial guess model

3 guess=newfotf("-2s^0.63+4","2s^3.501+3.8s^2.42+2.6s^1.798+2.5s^1.31+1.5

",0)

4 polyfixset = [0, 0] #optimize both zero and pole

5 simType = simMethod.grunwaldLetnikov #simulation method

6 algo = optAlgo.LevenbergMarquardt #optimization Algorithm

7 free = optFix.Free #optimize both coefficents and exponents

8 bounds = [[0, 20], [0, 10]]}

9 #create opt() class with optimization options and settings

54

Figure 16. Identification Data vs Identified Model (5.3)

Figure 17. Validation Data vs Identified Model (5.3)

55

10 settings = opt(guess, simType, algo, free, polyfixset)

11 res=fid("dataFiles\idenData.xlsx", "dataFiles\ValiData.xlsx", settings,

bounds, plot=[False,False], plotid=[True,True], cleanDelay=[True

,2.5])

12 print(res.G)

Listing 5.5. Fractional-order Identification example using Command prompt

The output on the python interpreter looks like this:

Please wait, System Identification in progress...

Bounds will not be applied with Levenberg Marquardts

optimization algorithm

Time: 0:01:33.120218

−1.72s0.54 +3.92s0.67

0.84s2.29 +3.64s1.34 +2.03s2.22 +1.72s1.35 +4.01s1.33 (5.3)

Because the user specified to plot identified system against identification and validation

data using option plotid=[True, True], the plots are shown in Figure (16) and

(17). Note that a preliminary analysis of the identification data was done, the option

cleanDelay = [True,2.5] cleaned the first 2.5s of the identification data. Which

is visible when Fig. 16 and Fig. 17 are compared. Then the question arises, what if we

want to clean the last 2.5s of the data? This option is available in the fractional-order

system identification GUI discussed in Section 5.4.7.

5.4.5 Identified System Comparison

Using same identification data from Section. 5.4.4 and initial guess (5.3) on FOMCONpy

and FOMCON, system identification results were compared. with different identification

parameter options (Exponents only, Coefficients only and Exponents + Coefficients) and

two algorithms (LM and TRR). The performance criteria used was percentage fitness (3.8)

discussed in Section 3.3. The validation plots and their identified systems can be found in

56

Table 2. Table comparing FOMCONpy vs FOMCON

Levenberg Marquardt
Exponents only Coefficients only Exponents + Coefficients

FOMCONpy 74.07 94.48% 91.87%
FOMCON 74.08% 93.97% 94.22%

Trust Region Reflective
FOMCONpy 25.06% 94.08% 94.29%
FOMCON 25.00% -74.44% 74.85%

Table 3. Computational Properties of Devices

Properties Windows PC Pi 4 Pi 3B
CPU (GHz) 2.7 1.5 1.2

CPU (No of Cores) 8 4 4
Memory (GB) 16 4 1
Memory (GHz) 2.4 2.4 0.9

appendix 1. From Table 2, we can see that FOMCONpy performs slightly better in more

cases.

5.4.6 FOMCONpy on Windows PC vs Raspberry PI-4 vs Raspberry

PI-3B

In Sec. 5.1, we indicated that FOMCONpy supports command-line for more advanced users.

To demonstrate this, we compared the performance of FOMCONpy, running on Windows

platform and on two IoT devices (Raspberry Pi 3B and Pi 4). The computational properties

of the test devices are given in Tab. 3 for the readers perusal. Table 4 shows the time it

takes to complete the identification process using initial guess (5.2) and idenData.xlsx

stated in Sec. 5.4.4. Three parameter identification options were used in the comparison

(Exponents only, coefficients only and both(Exponents + Coefficients)) along with two

optimization algorithms: Leveberg Marquardt and Trust Region Reflective. In Table 4

considering the Exponents + Coefficients column, we can see that Windows PC is about 4

times faster than Pi 4 which is almost 3 times faster than Pi 3B.

57

Table 4. Identification time on Windows PC vs Raspberry PI-4vs Raspberry PI-3B

Levenberg Marquardt
Exponents only Coefficients only Exponents + Coefficients

Windows PC 22.671s 18.526s 25.813s
Raspberry Pi 4 42.628s 74.787s 115.669s

Raspberry Pi 3B 112.843s 196.648s 304.285s
Trust Region Reflective

Windows PC 9.971s 8.526s 133.671s
Raspberry Pi 4 75.487s 29.124s 561.919s

Raspberry Pi 3B 200.454s 182.884s 1442.884s

Figure 18. Fractional-order Time Identification GUI

58

5.4.7 Fractional-order System Identification GUI

The system identification GUI (see Fig. 18) is equipped with functions to obtain a fractional

model in the form (2.17). It can be accessed by starting a command prompt, navigate

to the directory of your downloaded FOMCONpy source code, then run the following

commands:

python pyfotfid.py

It is important to do some preliminary analysis of the data to exclude perhaps some delays.

The Source Data group box, provide tools to Add, Delete, Plot and Trim

data. Example is given in Section 5.4.8.

The user can generate an initial-guess model from a commensurate order q and the order

k of the model of choice using the Generate Initial Guess Model group-box.

Before starting the identification process, the user can specify what to optimize, only

exponents, only coefficients or both (exponents + coefficients). When using LM algorithm,

bounds are not used, but with Trust Region Reflective algorithm the user can specify

bounds. Bound range for exponents must be positive while bounds for coefficients may

be from negative to positive. FOMCONpy has checks to ensure these bounds are adhered

to by the user. Best identification results are expected when the user already knows some

properties of the system to be identified. If the properties of the system are unknown, the

user could get a good result by trial and error when selecting the initial model guess. While

the optimization process is running, so the user should wait for it to complete.

5.4.8 Fractional-order System Identification Example Using GUI

In FOMCONpy’s source code directory, there exist a dataFiles directory which contains

the identification and validation data of the multi-tank system shown in Fig. 19 named:

iddataMultiTankNew.xlsx and validataMultiTankNew.xlsx respectively.

To identify and validate a fractional model from these data using the GUI we use the

59

Figure 19. Multi-tank System

60

(a) iddataMultiTankNew.xlsx (b) validataMultiTankNew.xlsx

Figure 20. Adding Identification and Validation Data using GUI

(a) multiTankId Plot (b) multiTankVali Plot

Figure 21. Plot Identification and Validation Data using GUI

following steps:

1. Click the Add button to add both data. A Load Data window pops out for the

user to give a unique name and location of .xlsx file. In our case we use the names

"multiTankId" and "multiTankVali". (See Fig. 20)

2. Click the Plot button to view the data maybe there is need to do some preliminary

(a) Identification Trim
Settings

(b) Validation Trim Set-
tings

Figure 22. Trimming Identification and Validation Data using GUI

61

analysis. From Fig. 21a we can see that after 250s, we have some irregularities for

the Identification data. Likewise in Fig. 21b, we can see that from 300s, we have

some irregularities. Thus there is need to trim the data.

3. To eliminate these irregularities from the data, we click the Trim button. A Trim

Data dialog is loaded for the user to specify a new name, new start-time and new

stop-time. In our case, "multiTankId" was trimmed to "multiTankIdTrim" with start

and stop time set to 0s and 250s respectively (See Fig. 22a) while "multiTankVali"

was trimmed to "multiTankValiTrim" with start and stop time set to 0s and 300s

respectively (See Fig. 22b).

4. To View what the trimmed data looks like, select the appropriate data you want

to view in the DATA Objects combo-box then click the Plot button. Fig. 23a

shows what the data looks like after trimming.

5. We can use the Delete button to delete unused data from the DATA Objects

combo-box.

6. Selete multiTankIdTrim as data to be used for identification from the DATA

Objects combo-box.

7. Select the Grunwald Letnikov as the simulation method from the Method

combo-box.

8. Select Trust Region Reflection as algorithm from the Algorithm

combo-box.

9. We would like to use 1
s0.5+1.0 as an initial guess model. We can either use the

Generate Initial Guess Model group box for this or we enter it manually

in the Zero and Pole text-box.

10. Select Free Identification to optimise both coefficients and exponents

11. Click the Identify button to start the identification process. After identification,

equation (5.4) was printed in the Python interpreter as the identified system. However

in the system identification tool, the identified system is equation (5.5) because the

62

(a) multiTankIdTrim Plot (b) multiTankValiTrim Plot

Figure 23. Trimming Identification and Validation Data using GUI
.

user specified 3 in the No. of decimal text-box.

0.01310152
3.495759s1.05779334 +0.07815751s1e−08 . (5.4)

0.013
3.496s1.058 +0.078

. (5.5)

12. If the identified model can be represented in a FO-FOPDT model (4.14) the Get

FO-FOPDT button is automatically enabled. On clicked, the FO-FOPDT model is

printed in the Python interpreter as shown in equation (5.6).

0.168
44.727s1.058 +1.0

. (5.6)

13. The identified system can be validate with the validate button. Validation plots

are show in Fig. (24). It should be noted that the lower accuracy in the validation data

is because identification data multiTankIdTrim has a set point of 0.125m while

validation data multiTankValiTrim has a set point of 0.15m. Also the simulation is

done with system inputs not error as we have in controllers.

63

(a) Eqn. (5.5) vs multiTankIdTrim (b) Eqn. (5.5) vs multiTankValiTrim

Figure 24. Validating Identified Model using GUI

5.5 Fractional-order System Control Using Command Line

This module provides user with functions to design a fractional-order controller given a

FO-FOPDT model. It contains method for tuning PIλ Dµ controller with application to

distributed system control.

5.5.1 def mainFOFOPIDOPT()

This function is used to tune the gain parameters of a given PIλ Dµ controller using the

method discussed in Section 4.3.

Syntax

tunedFOPID = mainFOFOPIDOPT(fofopdtModel, fopidGuess,

oustaloopOpt, designSpecs)

Argument

� fofopdtModel – The FO-FOPDT given by (4.14).

– fofopdtModel.K – Gain.

– fofopdtModel.L – Delay.

64

– fofopdtModel.T – Time constant.

– fofopdtModel.alpha – Order.

� fopidGuess - The FOPID initial guess parameters.

– fopidGuess.Kp – Proportional Gain.

– fopidGuess.Ki – Integral Gain.

– fopidGuess.Kd – Differential Gain.

– fopidGuess.lam – Order of the integral.

– fopidGuess.mu – Order of the differential.

� oustaloopOpt – The oustaloop options

– oustaloopOpt.wb – lower frequency bound (rad/s)

– oustaloopOpt.wh – higher frequency bound (rad/s)

– oustaloopOpt.N – Order (int)

– oustaloopOpt.Ts – Sampling interval (s)

� designSpecs – The design specification

– designSpecs.wc – critical frequency (rad/s)

– designSpecs.pm – phase magine (rad/s)

– designSpecs.optnorm – termination criteria (float)

Note 5.5.1 The object type Dict() found in the Python library addict [49] is used to

form unique dictionary object used in this function.

Returns

� tunedFOPID - The tuned FOPID controller

Command Line Example

Consider the FO-FOPDT model G(s) used in [44] given as:

G(s) =
66.16e−1.93s

12.72s0.5 +1
(5.7)

65

To get a tuned FOPID controller based we this, we enter the following command

1 from fopidcontrol import fofopdtpidTuner as Tuner

2 #create oustaloop model

3 oustalModel=Dict(dict(wb=0.0001, wh=10000, N= 5, Ts= 0.01))

4 fopidGuessModel=Dict(dict(Kp=1, Ki=1, Kd=1, lam=0.9, mu=0.5))

5 #Design Specification

6 designSpec=Dict(dict(wc=0.1, pm=60, optnorm=0.001))

7 #FO-FOPDT Model

8 fofopdtModel=Dict(dict(K = 66.16, L = 1.93, T = 12.72, alpha = 0.5))

9 Tuner.ACTIVATETUNING=True #enable Tuning before starting the tuner

10 #Start the tuning process

11 tunedFOPID = Tuner.mainFOFOPIDOPT(fofopdtModel, fopidGuessModel,

oustalModel, designSpec)

12 Tuner.ACTIVATETUNING = False #disable Tuner after tuning is finished

Listing 5.6. FO-FOPDT tuning example using command prompt

The tuned PIλ Dµ parameters obtained from FOMCONpy is the same as in [44]. The print

out on the Python interpreter is as below:

Controller Tuning Started

The FOFOPDT Model:’K’:66.16,’L’:1.93,’T’:12.72,’alpha’:0.5

The Initial FOPID Guess:’Kp’:1, ’Ki’:1, ’Kd’:1, ’lam’:0.9,

’mu’:0.5

The Tuned FOPID: ’Kp’:-0.00293400435, ’Ki’:0.01030466077,

’Kd’:0.05335520401, ’lam’:0.9, ’mu’:0.5

Controller Tuninng Finished

5.6 Fractional-order Tuner and Controller GUI

This module provides user with functions to design a fractional-order controller given

a FO-FOPDT model. It contains method for tuning PIλ Dµ controller with application

to distributed system control. To run the GUI client, start two command prompt in your

downloaded FOMCONpy source code, then run the command 1 in the first command

66

Figure 25. Fractional-order Controller and Tuner GUI

67

Figure 26. Simulink desktop real time model designed for testing purposes

prompt, then run command 2 in the second command prompt to start the server.

1. python pyfopidopt.py

2. python fopidcontrol/controlServer.py

The GUI is shown in Fig. 25. There are 5 group-boxes Plant Model, Fractional

PID Controller Parameter, Simulation Parameter,

Critical Frequency and Phase Margin and Distributed Control.

The Plant Model group-box provides buttons for the user to add, edit, delete and tune

FO-FOPDT plant models. it also provides text-boxes to fill in appropriate frequency ranges

and order for oustaloop approximations.

The Fractional PID Controller Parameter provides text-boxes where the

user can fill in initial PIλ Dµ guess parameters before tuning. After tuning, these parameters

are updated. There are other text-boxes to check if values obtained after tuning are within

desired ranges. if there are not within ranges, the Tune button is automatically disabled.

The initial guess of λ is automatically updated whenever the user selects or adds a new

FO-FOPDT model.

The Simulation Parameter and Critical Frequency and Phase

Margin group-boxes are used in the tuning process. the user can play play with their

values especially the phase margin. The Distributed Control group-box is an

important aspect of the GUI especially as control can only be done using the GUI (not

68

possible on command line). The user must click the Test Controller button to ensure

communication between server and client is successful. Once its successful, the Test

Controller button is disable and the Update FOPID params button is enabled.

This button is used to send controller parameters to the control server.

5.6.1 Application to Distributed Control system

Consider a realtime simulink model in Fig. 26. We will attempt to control a system

1
s+1 using MATLAB’s PIλ Dµ and compare with results using FOMCONpy’s PIλ Dµ .

FOMCONpy receives UDP packets, computes the control law and sends back a UDP

pocket.From Fig. 27 and 26 we can see that there is a similar UDP port 5005 which Python

uses to communicate with the simulink model. The same tuned controller output from

Section 5.5.1 example is setup in FOMCONpy and MATLAB PIλ Dµ controller as shown

in Fig. 27. The simulation was run for 300s and the output is shown in Fig. 28. We can see

that the outputs are similar.

5.6.2 FOSCOM Application to IOT + Distributed Control

Recall the multi-tank system identification example in sec. 5.4.8. The identified FO-

FOPDT system given by equation (5.6) was added and a tuned FOPID controller with the

parameters below were loaded to the control server.

K p :−3.38322, Ki : 5.36875, λ : 0.7, Kd : 21.73804, µ : 0.5

The simulink model of the multi-tank system is show in Fig. 31. The packet output settings

of the simulink model was as in Fig. 29a which is also highlighted yellow in Fig. 30. The

packet input settings of the simulink model was as in Fig. 29b which is highlighted green

in Fig. 30. The reference value was set to 0.13 and the process was run for 300s. From

Fig. 32, it can be seen that raspberry Pi4 FOPID server controlled the system correctly

with a settling time of 39.22s at 95% accuracy.

69

(a) FOMCONpy controller (b) MATLAB controller

Figure 27. Using same settings including the sampling time
.

Figure 28. Real time control outputs MATLAB vs Python

70

(a) packet output setting (b) packet input setting

Figure 29. UDP IP and Port Settings

Figure 30. FOSCOM’s DCS node with PIλ Dµ parameters implemented on Raspberry Pi 4

Figure 31. Simulink model connecting the DCS node with the FOPID controller imple-
mented on Raspberry Pi with the laboratory model of the multi-tank system

71

Figure 32. Multi-Tank output with single setpoint

5.6.3 FOSCOM Application to IOT

The author also conducted experiment using FOMCONpy running on a raspberry pi 4

device with disturbance using same multi-tank system in Fig. 19 over a wireless local area

network (WLAN). Two experiments types were conducted:

1. multiple set-points

2. single set-point + on the spot controller parameter change:

It is observed that the system was able to settle within 100s after the induced disturbance

for all scenarios.

Multiple set-points

Controller parameters were set as follows:

K p :−3.38322, Ki : 5.36875, λ : 0.7, Kd : 21.73804, µ : 0.5.

The signal builder in 31 was used to generate the input signal with 3 reference points

(0.13m, 0.05m, 0.1m). The reference point is changed after 100s. From Fig. 33, we can

72

Figure 33. Multi-Tank output with multiple set-points

see that the settling time for the first reference 0.13m was 39.78s. Decreasing the reference

to 0.05m had a 26.46% undershoot but settled after 85.36s. Increasing the reference to

0.1m settled after 16.93s.

Single setpoint + on the spot controller parameter change

The first controller parameters were set as follows:

K p :−3.38322, Ki : 5.36875, λ : 0.7, Kd : 21.73804, µ : 0.5.

The set point was set to 0.13m using the manual switch in Fig. 31. The process was started

and after 39.29s, the set-point was reached as shown in Fig. 34.

When the process had ran for 76s, a second controller parameters as below

K p :−9.04369, Ki : 6.11986, λ : 0.7, Kd : 31.72628, µ : 0.5

was loaded. It is noticed in 31 that the system set-point was achieved after 68.36s.

73

Figure 34. Multi-Tank output with on the spot Controller changed

When the process had run for 190s, a third controller parameter as shown below

K p :−16.11473, Ki : 7.04386, λ : 0.7, Kd : 45.85597, µ : 0.5

was loaded and the set-point was reached again after 70.7s. In Fig .34, it was observed

that the control law was more noisy when the third controller was set which is because

the differential components increased, thus emphasizes the noise. It can also be seen

in the control law that the emphasis on noise increased progressively as the derivative

components of the controllers increased from the first to third controller.

74

6. Conclusions

In this chapter, the studied problems, achieved results and further topic development

perspectives is presented by the author.

The reader was introduced to system modelling, identification and control methods within

the fractional-order calculus context. FOMCONpy, a new Python fractional-order system

toolbox, in which these discussed methods have been implemented, was presented and

example were given on how to use the library. The examples in this thesis can be said to be

limited to relatively simple models. However, it is believed that the proposed methods will

be effective for much more complicated cases if the processing speed of such complicated

case is not paramount. Some advantages and drawbacks of each module is provided.

6.1 Fractional-order System Analysis Module

6.1.1 Advantages

� Provides sophisticated methods for fractional-order system modelling.

� Fully-featured for fractional-order transfer function analysis.

� Provides convenience methods, e.g. a graphical user interface for effective workflow.

� Integrated with the numpy, scipy and pandas which means highly effective algorithms

are used for data processing.

� Block modules can be constructed using common operators (+,**,-,*)

� It is open source, so no need for premium licenses.

� Compatible with IOT devices and

� Supports object oriented programming

75

6.1.2 Drawbacks

� Limited to the single input-single output (SISO) linear time-invariant dynamic

system case

� Currently has no support for direct fractional-order state-space system analysis

� There is little support for fractional-order system initial conditions (Using the

commensurate generator button)

� Time-domain simulation may require a lot of computational resources depending on

data size.

� No proper discretization method is implemented.

� Stability analysis has a fixed minimum precision 0.01 to solve the associated compu-

tational effort problem.

6.2 Fractional-order System Identification Module

6.2.1 Advantages

� Offers more accurate identification than the integer-order identification.

� Encompasses time-domain methods.

� Provides GUIs for all identification tools facilitating the initial guess model design,

identification process and effective workflow.

� Provides 9 options to achieve the best possible results with the proposed methods.

� It is open source, so no need for premium licenses.

� Compatible with IOT devices

6.2.2 Drawbacks

� No frequency-domain identification methods.

� Time-domain identification may be slow and require a lot of computational resources

depending on selected identification options.

76

� No automatic signal filtering feature is currently available, signal pre-filtering should

be done or specified by the user.

� Time-domain simulation may require a lot of computational resources depending on

data size.

� setting bounds usinf Levenberg Marquardt algorithm is not available

� Stability analysis has a fixed minimum precision 0.01 to solve the associated compu-

tational effort problem.

6.3 Fractional-order Control module

6.3.1 Advantages

� Offers methods for fractional-order PID controller design, tuning and optimization

according to given specifications.

� Fast analytic tuning method for the fractional PID controller based on F-MIGO and

the approach in Tepljakov et al., 2015 [44].

� Provides GUIs for Tuning, simulation and Distributed control for effective workflow.

� Tuned controller can handle fractional-order and integer-order systems.

� Controller tuning does not require additional Python library.

6.3.2 Drawbacks

� Controller optimization has limited support for all performance specifications.

� Security vulnerabilities between the server and client communication wasn’t con-

sider.

� Control system library for Python is not so robust like that of MATLAB as it is still

in its alpha development phase

77

6.4 Research perspectives

With the above considerations, further research directions, involving the development of

the FOMCONpy library, can be outlined:

� Possibility for fractional-order MIMO system modelling and control.

� Implement a tool for working with fractional-order state-space models.

� Search for a way to effectively implement the initial conditions problem.

� Investigate the implementation of security in real time control.

� Implement more time-domain analysis methods, especially considering the need for

an effective simulation method suitable for obtaining accurate responses on a larger

time interval.

� Improve stability analysis precision for systems with a very low commensurate order

0.001. (FOMCONpy already can, but computation time is longer).

� Research the contribution of noise and disturbances to the identified model.

� Research on fractional-order PID tuning methods that takes less time.

� Porting the FOMCON toolbox to native C++ computing platform should also be

considered for processing speed

6.5 Concluding comments

This thesis has illustrated the use of fractional-order calculus in dynamic system mod-

elling,identification and control with application to distributed systems. The benefits of

applying fractional-order calculus to the problems of automatic control were made evident.

It can be concluded, that fractional-order calculus is a necessary generalization. Although

our current mathematical tools in this field are somewhat limited, and even obtaining a

numerical solution for the fractional-order derivatives may be tedious. It is expected that

fractional-order calculus will continue to gain more attention in the coming years, thus

more efficient computational and analytical methods will be developed and the use of

non-integer calculus will become standard practice in the industry come Industry 4.0.

78

Bibliography

[1] Y. Chen, I. Petras, and D. Xue, “Fractional order control - a tutorial”, in 2009

American Control Conference, IEEE, 2009.

[2] A. Tepljakov, “Fractional-order modeling and control of dynamic systems”, PhD

thesis, 2017.

[3] F. Padula and A. Visioli, Advances in Robust Fractional Control. Springer Interna-

tional Publishing, 2015.

[4] “Chapter 3 ordinary fractional differential equations. existence and uniqueness

theorems”, in Theory and Applications of Fractional Differential Equations,

ser. North-Holland Mathematics Studies, A. A. Kilbas, H. M. Srivastava, and

J. J. Trujillo, Eds., vol. 204, North-Holland, 2006, pp. 135–219. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/pii/

S0304020806800046.

[5] F. Liu, O. P. Agrawal, S. Momani, N. N. Leonenko, and W. Chen, “Fractional differ-

ential equations 2012”, International Journal of Differential Equations, vol. 2013,

pp. 1–2, 2013.

[6] I. Podlubny, Fractional Differential Equations. Elsevier Science Publishing Co Inc,

Oct. 27, 1998, 340 pp., ISBN: 0125588402. [Online]. Available: https://www.

ebook.de/de/product/3646779/igor_technical_university_

of_kosice_slovak_republic_podlubny_fractional_differential_

equations.html.

[7] “Chapter 2 fractional integrals and fractional derivatives”, in Theory and Applica-

tions of Fractional Differential Equations, ser. North-Holland Mathematics Studies,

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Eds., vol. 204, North-Holland,

79

http://www.sciencedirect.com/science/article/pii/S0304020806800046
http://www.sciencedirect.com/science/article/pii/S0304020806800046
https://www.ebook.de/de/product/3646779/igor_technical_university_of_kosice_slovak_republic_podlubny_fractional_differential_equations.html
https://www.ebook.de/de/product/3646779/igor_technical_university_of_kosice_slovak_republic_podlubny_fractional_differential_equations.html
https://www.ebook.de/de/product/3646779/igor_technical_university_of_kosice_slovak_republic_podlubny_fractional_differential_equations.html
https://www.ebook.de/de/product/3646779/igor_technical_university_of_kosice_slovak_republic_podlubny_fractional_differential_equations.html

2006, pp. 69–133. [Online]. Available: http://www.sciencedirect.com/

science/article/pii/S0304020806800034.

[8] M. D. Ortigueira, Fractional Calculus for Scientists and Engineers. Springer Nether-

lands, 2011.

[9] C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu, Fractional-order

Systems and Controls. Springer London, 2010.

[10] “Chapter 4 methods for explicitly solving fractional differential equations”,

in Theory and Applications of Fractional Differential Equations, ser. North-

Holland Mathematics Studies, A. A. Kilbas, H. M. Srivastava, and J. J. Tru-

jillo, Eds., vol. 204, North-Holland, 2006, pp. 221–277. [Online]. Available:

http : / / www . sciencedirect . com / science / article / pii /

S0304020806800058.

[11] K. Liu, Y. Chen, P. Domański, and X. Zhang, “A novel method for control per-

formance assessment with fractional order signal processing and its application to

semiconductor manufacturing”, Algorithms, vol. 11, no. 7, p. 90, Jun. 2018.

[12] Z. Li, Y. Lan, G. He, S. He, and S. Wang, “Chipless RFID tag anti-collision algorithm

based on FRactional fourier transform”, in 2018 Chinese Automation Congress

(CAC), IEEE, Nov. 2018.

[13] B. Meghni, D. Dib, A. T. Azar, S. Ghoudelbourk, and A. Saadoun, “Robust adaptive

supervisory fractional order controller for optimal energy management in wind

turbine with battery storage”, in Fractional Order Control and Synchronization of

Chaotic Systems, Springer International Publishing, 2017, pp. 165–202.

[14] A. Tepljakov, E. Petlenkov, and J. Belikov, “A flexible MATLAB tool for optimal

fractional-order PID controller design subject to specifications”, Proceedings of the

31st Chinese Control Conference, pp. 4698–4703, 2012.

[15] B. B. Alagoz, A. Tepljakov, C. Yeroglu, E. Gonzalez, S. H. HosseinNia, and

E. Petlenkov, “A numerical study for plant-independent evaluation of fractional-

order pid controller performance11this study is based upon works from cost action

80

http://www.sciencedirect.com/science/article/pii/S0304020806800034
http://www.sciencedirect.com/science/article/pii/S0304020806800034
http://www.sciencedirect.com/science/article/pii/S0304020806800058
http://www.sciencedirect.com/science/article/pii/S0304020806800058

ca15225, a network supported by cost (european cooperation in science and technol-

ogy).”, IFAC-PapersOnLine, vol. 51, no. 4, pp. 539–544, 2018, 3rd IFAC Conference

on Advances in Proportional-Integral-Derivative Control PID 2018, ISSN: 2405-

8963. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S2405896318304488.

[16] Q. Zou, J. Zhang, R. Lu, and R. Zhang, “Design of fractional order control using

predictive functional control structure”, in 2016 35th Chinese Control Conference

(CCC), IEEE, Jul. 2016.

[17] N. Liu and J. Fei, “Adaptive fractional sliding mode control of active power filter

based on dual RBF neural networks”, IEEE Access, vol. 5, pp. 27 590–27 598, 2017.

[18] Y. Zhang and J. Li, “Fractional-order PID controller tuning based on genetic algo-

rithm”, in 2011 International Conference on Business Management and Electronic

Information, IEEE, May 2011.

[19] X. Dingyü, Fractional-Order Control Systems: Fundamentals and Numerical Im-

plementations, ser. Fractional Calculus in Applied Sciences and Engineering. De

Gruyter, 2017, ISBN: 9783110497977.

[20] D. Valerio. (Sep. 2005). Ninteger toolbox for matlab, [Online]. Available: http:

//web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm.

[21] A. Tepljakov, “Fractional-order calculus based identification and control of linear

dynamic systems”, Master’s thesis, Tallinn University of Technology, 2011.

[22] C. Kuhlins, B. Rathonyi, A. Zaidi, and M. Hogan, “Cellular networks for mas-

sive iot”, Ericsson, Tech. Rep., Jan. 2020. [Online]. Available: https : / /

www.ericsson.com/en/reports-and-papers/white-papers/

cellular-networks-for-massive-iot--enabling-low-power-

wide-area-applications.

[23] J. White. (Apr. 2019). One year in: How our $5b investment in iot and intelligent

edge is accelerating customer, partner and solution innovation. Last accessed:10-

Feb-2020, [Online]. Available: https://blogs.microsoft.com/blog/

81

http://www.sciencedirect.com/science/article/pii/S2405896318304488
http://www.sciencedirect.com/science/article/pii/S2405896318304488
http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
http://web.ist.utl.pt/duarte.valerio/ninteger/ninteger.htm
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://www.ericsson.com/en/reports-and-papers/white-papers/cellular-networks-for-massive-iot--enabling-low-power-wide-area-applications
https://blogs.microsoft.com/blog/2019/04/04/one-year-in-how-our-5b-investment-in-iot-and-intelligent-edge-is-accelerating-customer-partner-and-solution-innovation/
https://blogs.microsoft.com/blog/2019/04/04/one-year-in-how-our-5b-investment-in-iot-and-intelligent-edge-is-accelerating-customer-partner-and-solution-innovation/

2019/04/04/one-year-in-how-our-5b-investment-in-iot-

and-intelligent-edge-is-accelerating-customer-partner-

and-solution-innovation/.

[24] Avnet. (Mar. 2017). Study: Digital intelligence driving massive business transforma-

tion. Last accessed: 09-Feb-2020, [Online]. Available: https://www.avnet.

com / wps / portal / us / resources / article / study - digital -

intelligence-driving-massive-business-transformation/.

[25] C. Ozgur, T. Colliau, G. Rogers, Z. Hughes, and B. Myer-Tyson, “C. ozgur, t. colliau,

g. rogers, z.hughes & b. myer-tyson ”matlab vs. python vs. r” journal of data science

vol. 15 no. 3 pp. 355-372”, Journal of data science: JDS, vol. Vol 15, pp. 355–372,

Jul. 2017.

[26] A. Oustaloup, P. Melchior, P. Lanusse, O. Cois, and F. Dancla, “The CRONE toolbox

for Matlab”, in CACSD. Conference Proceedings. IEEE International Symposium

on Computer-Aided Control System Design (Cat. No.00TH8537), IEEE, Sep. 2000,

pp. 190–195.

[27] L. Ljung, System Identification: Theory for the User, 2nd Edition. Prentice Hall PTR,

Upper Saddle River, NJ 07458, USA, Sep. 1, 1999, 658 pp., ISBN: 0136566952.

[Online]. Available: https://www.ebook.de/de/product/3240787/

lennart_ljung_system_identification.html.

[28] R. Magin, M. D. Ortigueira, I. Podlubny, and J. Trujillo, “On the fractional signals

and systems”, Signal Processing, vol. 91, no. 3, pp. 350–371, Mar. 2011.

[29] B. Vinagre, I. Podlubny, A. Hernández, and V. Feliu, “Some approximations of

fractional order operators used in control theory”, Fractional Calculus Applied

Analysis (FCAA), vol. 3, Jan. 2000.

[30] A. Oustaloup, F. Levron, B. Mathieu, and F. Nanot, “Frequency-band complex

noninteger differentiator: Characterization and synthesis”, IEEE Transactions on

Circuits and Systems I: Fundamental Theory and Applications, vol. 47, no. 1, pp. 25–

39, 2000.

82

https://blogs.microsoft.com/blog/2019/04/04/one-year-in-how-our-5b-investment-in-iot-and-intelligent-edge-is-accelerating-customer-partner-and-solution-innovation/
https://blogs.microsoft.com/blog/2019/04/04/one-year-in-how-our-5b-investment-in-iot-and-intelligent-edge-is-accelerating-customer-partner-and-solution-innovation/
https://blogs.microsoft.com/blog/2019/04/04/one-year-in-how-our-5b-investment-in-iot-and-intelligent-edge-is-accelerating-customer-partner-and-solution-innovation/
https://blogs.microsoft.com/blog/2019/04/04/one-year-in-how-our-5b-investment-in-iot-and-intelligent-edge-is-accelerating-customer-partner-and-solution-innovation/
https://www.avnet.com/wps/portal/us/resources/article/study-digital-intelligence-driving-massive-business-transformation/
https://www.avnet.com/wps/portal/us/resources/article/study-digital-intelligence-driving-massive-business-transformation/
https://www.avnet.com/wps/portal/us/resources/article/study-digital-intelligence-driving-massive-business-transformation/
https://www.ebook.de/de/product/3240787/lennart_ljung_system_identification.html
https://www.ebook.de/de/product/3240787/lennart_ljung_system_identification.html

[31] D. Xue, Y. Chen, and D. P. Atherton, Linear Feedback Control-Analysis and Design,

Ch 8. Society for Industrial and Applied Mathematics, Jan. 2007.

[32] S. Library. (Apr. 2020). Scipy.optimize.least_squares. LeastSquares function in

scipy library, [Online]. Available: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.optimize.least_squares.html.

[33] J. J. Moré and D. C. Sorensen, “Computing a trust region step”, SIAM Journal on

Scientific and Statistical Computing, vol. 4, no. 3, pp. 553–572, Sep. 1983.

[34] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear minimiza-

tion subject to bounds”, SIAM Journal on Optimization, vol. 6, no. 2, pp. 418–445,

May 1996.

[35] M. A. Branch, T. F. Coleman, and Y. Li, “A subspace, interior, and conjugate

gradient method for large-scale bound-constrained minimization problems”, SIAM

Journal on Scientific Computing, vol. 21, no. 1, pp. 1–23, Jan. 1999.

[36] J. J. Moré, “The levenberg-marquardt algorithm: Implementation and theory”, in

Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1978, pp. 105–116.

[37] D. W. Marquardt, “An algorithm for least-squares estimation of nonlinear parame-

ters”, Journal of the Society for Industrial and Applied Mathematics, vol. 11, no. 2,

pp. 431–441, 1963, ISSN: 03684245. [Online]. Available: http://www.jstor.

org/stable/2098941.

[38] R. Malti, S. Victor, and A. Oustaloup, “Advances in system identification using

fractional models”, Journal of Computational and Nonlinear Dynamics, vol. 3, no. 2,

Jan. 2008.

[39] A. Khadhraoui, K. Jelassi, J.-C. Trigeassou, and P. Melchior, “Identification of

fractional model by least-squares method and instrumental variable”, Journal of

Computational and Nonlinear Dynamics, vol. 10, no. 5, Sep. 2015.

[40] N. S. Nise, Control System Engineering, 7th Edition. John Wiley Sons, 2015, ISBN:

978-1-118-80063-8.

83

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html
http://www.jstor.org/stable/2098941
http://www.jstor.org/stable/2098941

[41] I. Podlubny, “Fractional-order systems and PI/sup /spl lambda//d/sup /spl mu//-

controllers”, IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208–214,

Jan. 1999.

[42] M. Čech and M. Schlegel, “The fractional-order pid controller outperforms the

classical one”, Pardubice: Technical University, 2006, pp. 1–6, ISBN: 80-7194-860-

8. [Online]. Available: http://www.kky.zcu.cz/en/publications/

CechM_2006_Thefractional-order.

[43] S. Zheng, X. Tang, and B. Song, “A graphical tuning method of fractional order pro-

portional integral derivative controllers for interval fractional order plant”, Journal

of Process Control, vol. 24, no. 11, pp. 1691–1709, Nov. 2014.

[44] A. Tepljakov, E. Petlenkov, and J. Belikov, “FOPID controller tuning for fractional

FOPDT plants subject to design specifications in the frequency domain”, in 2015

European Control Conference (ECC), IEEE, Jul. 2015, pp. 3502–3507.

[45] A. Tepljakov, E. Petlenkov, and J. Belikov, “Robust fopi and fopid controller design

for ffopdt plants in embedded control applications using frequency-domain analysis”,

in 2015 American Control Conference (ACC), 2015, pp. 3868–3873.

[46] A. Tepljakov, E. Petlenkov, and J. Belikov, “FOMCON: Fractional-order model-

ing and control toolbox for MATLAB”, in Proceedings of the 18th International

Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2011, Jun.

2011, pp. 684–689.

[47] H. van der Bent, “Wireless technology in industrial automation”, Yokogawa Europe

BV, Tech. Rep., 2015. [Online]. Available: https://www.yokogawa.com/

eu/library/resources/white-papers/wireless-technology-

in-industrial-automation/.

[48] B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke, I. Aktas, and

J. Ansari, “Wireless communication for factory automation: An opportunity for LTE

and 5g systems”, IEEE Communications Magazine, vol. 54, no. 6, pp. 36–43, Jun.

2016.

84

http://www.kky.zcu.cz/en/publications/CechM_2006_Thefractional-order
http://www.kky.zcu.cz/en/publications/CechM_2006_Thefractional-order
https://www.yokogawa.com/eu/library/resources/white-papers/wireless-technology-in-industrial-automation/
https://www.yokogawa.com/eu/library/resources/white-papers/wireless-technology-in-industrial-automation/
https://www.yokogawa.com/eu/library/resources/white-papers/wireless-technology-in-industrial-automation/

[49] M. J. Olsen. (). Addict repository. addict python library, used for ease creation

of dictionary in FOPID Tuning, [Online]. Available: https://github.com/

mewwts/addict.

85

https://github.com/mewwts/addict
https://github.com/mewwts/addict

Appendix

1. FOMCON vs FOMCONpy

To certify that FOMCONpy performance is as good as its counterpart FOMCON, The

author did performance tests with time domain identification. Using same data as used in

section 5.3. The performance criteria was percentage fitness (3.8) discussed in section 3.3.

Using Grunwald Letnikov simulation ,comparison was done for Levenberg Marquardt and

Trust Region Reflective optimization method. For each method we compared the outputs

percentage fitness for different optimized parameter: Coefficients only, Exponents only

and Both (Coefficients + Exponents).

To obtain the FOMCONpy identification results and plots, the user can run the test()

function in the fomconoptimize module which has the following commands:

1 def test():

2 result, counter = [], 1

3 guessset = newfotf(’-2s^{0.63}+4’, ’2s^{3.501}+3.8s^{2.42}+2.6s

^{1.798}+2.5s^{1.31}+1.5’, 0)

4 guessset.numberOfDecimal = 5

5 for j in [optAlgo.LevenbergMarquardt]:

6 for k in [optFix.Free, optFix.Coeff,optFix.Exp]:

7 for l in [simMethod.grunwaldLetnikov]:

8 polyfixset = [0, 0]

9 optiset = opt(guessset, l, j, k, polyfixset)

10 print(’\n{0}: Computing settings: {1}, {4}, {2}, {3}\n’

.format(counter, j, k, polyfixset,l))

86

11 res = fid(’dataFiles\idenData.xlsx’, ’dataFiles\

ValiData.xlsx’, optiset, plot=[False, False], plotid=[False, True],

cleanDelay=[True,2.5])

12 res.G.numberOfDecimal = 5

13 result.append(res)

14 print(res.G, "\n\n")

15 counter+=1

16

17 guessset = newfotf(’2s^{0.63}+4’, ’2s^{3.501}+3.8s^{2.42}+2.6s

^{1.798}+2.5s^{1.31}+1.5’, 0)

18 guessset.numberOfDecimal = 5

19 for j in [optAlgo.TrustRegionReflective]:

20 for k in [optFix.Free, optFix.Coeff,optFix.Exp]:

21 for l in [simMethod.grunwaldLetnikov]:

22 polyfixset = [0, 0]

23 optiset = opt(guessset, simMethod.grunwaldLetnikov, j,

k, polyfixset)

24 print(’\n{0}: Computing settings: {1}, {4}, {2}, {3}\n’

.format(counter, j, k, polyfixset,l))

25 res = fid(’dataFiles\idenData.xlsx’, ’dataFiles\

ValiData.xlsx’, optiset, plot=[False, False], plotid=[False, True],

cleanDelay=[True,2.5])

26 res.G.numberOfDecimal = 5

27 result.append(res)

28 print(res.G, "\n\n")

29 counter+=1

30

31 return result

Listing 1.1. Using the fid() function to generate identification models and plots for

comparison with MATLAB

87

(a) Matlab LM Both: 94.22% fitness (better). (b) Python LM Both: 91.87% fitness.

1.1 Identification using Levenberg Marquardt method

Initial Guess used for bench-marking purpose:

G(s) =
−2s0.63 +4

2s3.501 +3.8s2.42 +2.6s1.798 +2.5s1.31 +1.5

1.1.1 Both – Coefficients + Exponents

1. Matlab LM Both: 94.22% fitness (better).

4.1559s0.050734−2.0996s1.2942×10−07

2.256s1.6514 +2.3271s0.8797 +3.7516s0.6457 +2.8353s0.6421 +0.22734s5.2447×10−10

2. Python LM Both: 91.87% fitness.

−2.91799s−0.04681 +5.35592
1.15126s2.5615 +4.74487s1.59725 +3.97537s0.62262 +5.76595s0.61868 +0.30441

88

(a) Matlab LM Exponents only: 74.08% fitness
(better).

(b) Python LM Exponents only: 74.07% fitness.

(a) Matlab LM Coefficients only: 93.97% fitness. (b) Python LM Coefficients only: 94.48% fitness
(better).

1.1.2 Exponents only

1. Matlab LM Exponents only: 74.08% fitness better.

2s0.24299 +4s6.2041×10−17

2s2.4914 +3.8s0.63126 +2.5s0.63125 +2.6s0.63123 +1.5

2. Python LM Exponents only: 74.07% fitness.

−2.0s0.24309 +4.0
2.0s2.49852 +3.8s0.63103 +2.6s0.63134 +2.5s0.63131 +1.5

89

(a) Matlab TRR Both: 73.85% fitness. (b) Python TRR Both: 94.29% fitness (better).

1.1.3 Coefficients only

1. Matlab LM Coefficients only: 93.97% fitness.

1.0406s0.63−0.080038
−0.024459s3.501 +1.3468s2.42−0.90976s1.798 +5.0451s1.31−0.024465

2. Python LM Coefficients only: 94.48% fitness (better).

206.27943s0.63−16.53132
−2.95129s3.501 +159.90228s2.42−107.60438s1.798 +972.42517s1.31−5.20082

1.2 Identification using Trust Region Reflective method

Initial Guess used for bench-marking purpose:

G(s) =
2s0.63 +4

2s3.501 +3.8s2.42 +2.6s1.798 +2.5s1.31 +1.5

90

(a) Matlab TRR Exponent only: 25.00% fitness. (b) Python TRR Exponents only: 25.06% fitness
(better).

1.2.1 Both – Coefficients + Exponents

1. Matlab: 73.85% fitness (but does not have a steady state, because the last exponent

of s that is, α0 6= β0 6= 0).

8.4326s1.0176 +2.2713s0.43631

7.9863s2.6433 +30.791s1.1911−2.3643s0.5283 +1.5097s0.35477−0.027909s0.25957

2. Python: 94.29% fitness (better).

−0.53277s0.4587 +2.58579
5e−05s3.71577−0.13814s2.40318 +1.25029s1.76607 +9.66293s0.59257 +0.63314

1.2.2 Exponents only

1. Matlab: 25.00% fitness.

2s1.9976 +4s2.4281×10−14

3.8s2.4129 +2.5s0.44366 +2.6s0.44362 +2s0.4436 +1.5s9.9998×10−10

2. Python: 25.06% fitness (better).

2.0s1.99175 +4.0
2.0s0.44364 +3.8s2.41274 +2.6s0.44364 +2.5s0.44364 +1.5

91

(a) MATLAB TRR Coefficients only: -74.44%
fitness.

(b) Python TRR Coefficients only: 94.08% fitness
(better).

1.2.3 Coefficients only

1. Matlab: −74.4% fitness.

−6.6881s0.63 +3.3329
−0.029477s3.501 +1.2118s2.42 +3.4482s1.798 +3.0363s1.31 +3.1005

2. Python: 94.08% fitness (better).

2.70797s0.63−0.21049
−0.05962s3.501 +3.26931s2.42−2.17784s1.798 +13.04912s1.31−0.0649

1.3 Remarks

From the comparison, similar results are obtained from Python as compared to MATLAB

with variance in some cases possible dues to allowed number of iterations and no bound

restriction was applied.

92

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Literature Survey
	Problem Statement
	Purpose
	Outline of the Thesis

	Introduction to Fractional calculus
	Basis of Fractional-Order Calculus
	Fractional Calculus Definitions
	Properties of Fractional-Order operator

	Laplace Transform of Fractional-Order Calculus
	Fractional Order System Model
	Fractional System Analysis
	Stability
	Time Domain Analysis
	Frequency Domain Analysis

	Fractional-Order Approximation
	Fractional System Discretization
	Forward difference or Euler's Method
	Backward Difference
	Tustin or Trapezoidal or bilinear method

	Optimization Methods
	Nonlinear Least-Squares Method
	Trust Region Reflective
	Levenberg-Marquardt

	Fractional-order Identification Methods and Algorithms
	Basics of Model Identification
	System Identification stages

	Time-domain Identification
	Time Domain Data Generation
	Initial Guess Model
	Parameter Optimization

	Validation of Identified Model

	Fractional-order Control
	Basics of Proportional, Integral and Differential Control
	Proportional Action
	Integral Action
	Derivative Action
	PID Control

	Fractional-order Proportional, Integral and Differential Controller
	Tuning of Fractional-order Proportional, Integral and Differential Controllers

	User Manual for FOMCONpy
	Overview
	Setting-up FOMCONpy: A Quick Tutorial
	Setup guide for Windows
	Setup guide for Linux

	Fractional-order System Analysis Module
	class FOTransFunc()
	def newfotf()
	FOTransFunc Interconnection
	Stability Analysis: FOTransFunc.isstable()
	Time Domain Analysis: FOTransFunc.step()
	Frequency Domain Analysis: FOTransFunc.freqresp()
	Oustaloop Approximation: FOTransFunc.oustaloop()
	Fractional-order System Analysis Module GUI

	Fractional-order System Identification
	Identification and Validation Data
	def fid()
	def opt()
	Fractional-order System Identification Example Using Command Line
	Identified System Comparison
	FOMCONpy on Windows PC vs Raspberry PI-4 vs Raspberry PI-3B
	Fractional-order System Identification GUI
	Fractional-order System Identification Example Using GUI

	Fractional-order System Control Using Command Line
	def mainFOFOPIDOPT()

	Fractional-order Tuner and Controller GUI
	Application to Distributed Control system
	FOSCOM Application to IOT + Distributed Control
	FOSCOM Application to IOT

	Conclusions
	Fractional-order System Analysis Module
	Advantages
	Drawbacks

	Fractional-order System Identification Module
	Advantages
	Drawbacks

	Fractional-order Control module
	Advantages
	Drawbacks

	Research perspectives
	Concluding comments

	Bibliography
	Appendix
	FOMCON vs FOMCONpy
	Identification using Levenberg Marquardt method
	Both – Coefficients + Exponents
	Exponents only
	Coefficients only

	Identification using Trust Region Reflective method
	Both – Coefficients + Exponents
	Exponents only
	Coefficients only

	Remarks

