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Introduction

Motives and aims of the thesis

The theory of quantum groups is a relatively new, but powerful and quickly
developing branch of mathematics, that has many applications in modern
physics. These objects are conventionally constructed via deformations (e.g
[3]). But it is also interesting to consider other quantization methods of the al-
gebraic systems, in particular e.g the canonical and path integral quantizations
of the Lie groups. Then one has to construct the Lagrangian and Hamiltonian
of a Lie group under consideration. The crucial idea of such an approach is
that the Lie equations of the Lie (transformation) group are represented as
the Euler-Lagrange and the Hamilton canonical equations. In operad theory,
for introducing dynamics in algebraic systems one can consider the operadic
Lax equation.

The main task of the present thesis is to present these two alternative novel
ways of introducing dynamics in algebraic systems. Concisely speaking, these
can be realized through the Lagrange and Hamiltonian formalisms in the Lie
theory and constructing the operadic Lax representations for the harmonic
oscillator.

Outline of the thesis

This thesis consists of two parts. The first part (Chapters 1 to 3) deals with
a Lie transformation group in terms known from the classical mechanics. It
contains the short description of the basic topics of the Lie theory (Chapter 1),
that covers the notions of a Lie group, Lie algebra, Lie transformation group,
the Lie and Maurer-Cartan equations. Then the group SO(2) is taken as the
main model. It turns out that SO(2) is a constrained mechanical system in
the sense of P. Dirac. The Lagrangian and Hamiltonian are defined for SO(2)
both in real and complex representation. The Lagrange and Hamiltonian
equations turn out to be Lie equations for SO(2). The canonical formalism is
developed and the physical interpretation of the Lagrangian and Hamiltonian
are given (Chapter 2). It is shown that the constraints satisfy the canonical
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commutation relations. The consistency of the constraints is checked.

In Chapter 3, a general method for constructing Lagrangians for the Lie
transformation groups is presented. It turns out that one has to use vector
Lagrangians. Two examples are provided.

Motivated by the results of the first part of the thesis, in the second part
a similar task is formulated by using operads. In classical mechanics the
dynamics of a system with the Hamiltonian H (g%, p;) can be given either by
the Hamiltonian system

dq’ _OH dp;  OH
dt — 9p;’ dt  9q¢
or by the equivalent Lax equation

L
%:[M,L} = ML— LM

Thus, from the algebraic point of view, mechanical systems can be described
by linear operators, i.e by linear maps V. — V of a vector space V. As a
generalization of this the following question can be posed: how can the time
evolution of the linear operations (multiplications) V®" — V be described?

The second part (Chapters 4 to 6) starts with the overview of the Gersten-
haber theory (Chapter 4) and explaining basic concepts of the operadic dy-
namics. The main idea of the operadic dynamics is as follows. If L : V" — V
is an n-ary operation, then we can modify the Lax equation by replacing the
commutator bracketing on the r.h.s. of it by the Gerstenhaber brackets. Us-
ing the Gerstenhaber brackets is natural, because these brackets satisfy the
graded Jacobi identity and if n = 1, then the Gerstenhaber brackets coincide
with the ordinary commutator bracketing. Thus, the time evolution of the
operadic variables may be given by the operadic Lax equation. The concept
of the operadic (Lax representation for) harmonic oscillator is explained as
well.

As examples, in Chapter 5, the low-dimensional (dimV = 2,3) operadic
Lax representations for the harmonic oscillator are constructed.

In Chapter 6, by using the operadic Lax representations for the harmonic
oscillator, the dynamical deformations of the 3-dimensional real Lie algebras
in the Bianchi classification are constructed. Then the Jacobi identities of
these algebras are studied. Finally, quantum counterparts of 3-dimensional
real Lie algebras are defined and studied.

There are three appendices in the thesis. Appendix A includes detailed
proofs of Theorems 6.12-6.13. Appendix B has a discussion on operadic quan-
tization over the harmonic oscillator, containing the conjecture about the cor-
responding quantum conditions. Appendix C covers some additional topics
on dynamical deformations of 2-dimensional binary real algebras.

9
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In Chapters 5-6 and Appendices A—C, the mathematical computer program
MAPLE™ 13 was used to check most of calculation.

Main novelties of the thesis

1. The Lagrange and canonical formalisms for SO(2) are developed and
their physical interpretation is given.

2. A general method for constructing Lagrangians for the Lie transforma-
tion groups is presented. The method is illustrated with two examples.

3. Examples of the low-dimensional (dim V' = 2,3) operadic Lax represen-
tations for the harmonic oscillator are constructed.

4. The dynamical deformations of the 3-dimensional real Lie algebras in the
Bianchi classification over the harmonic oscillator are constructed. It is
shown that the energy conservation of the harmonic oscillator is related
to the Jacobi and associativity identities of the dynamically deformed
algebras. Based on this observation, it is proved that the dynamical de-
formations of 3-dimensional real Lie algebras in the Bianchi classification
over the harmonic oscillator are Lie algebras.

5. Quantum counterparts of 2- and 3-dimensional real Lie algebras are de-
fined and their Jacobi operators are calculated. It is discussed how the
operadic dynamics in 3-dimensional real Lie algebras over the harmonic
oscillator leads to quantization of a 3-dimensional space.

List of preprints and other publications

The results of the thesis have, for the most part, been published in the papers
given in List of Publications on page 78. The other part is presented as the
following preprint and publication:

1. E. Paal and J. Virkepu. Operadic quantization of VII,, IIl,—1, VI,
over harmonic oscillator. Preprint ArXiv: 0903.3702 (2009).

2. J. Virkepu. On Lie theory. Annual Book 2005, Estonian Mathematical
Society, 2006, 30-51 (in Estonian).

The research of the author has been an essential part of the above.

Conference reports

The results of the thesis have been presented on the following conferences and
seminars:
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1. The 5th Baltic-Nordic Workshop on Algebra, Geometry, and Mathe-
matical Physics, Bedlewo (Poland), October 12-16, 2009. ” Dynamical
deformations and quantum counterparts of three-dimensional real Lie
algebras over harmonic oscillator.”

2. The 4th Baltic-Nordic Workshop on Algebra, Geometry, and Mathemat-
ical Physics, Tartu (Estonia), October 9-11, 2008. ” Operadic harmonic
oscillator in low dimensions.”

3. Noncommutative Structures in Mathematics and Physics (Satellite Con-
ference to the 5th European Congress of Mathematics), Brussels (Bel-
gium), July 22-26, 2008. ” Operadic harmonic oscillator.”
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mala, Tallinn (Estonia), March 10, 2008. ”Some results on operadic
harmonic oscillator.”
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matical Physics, Goteborg (Sweden), October 11-13, 2007. ” Operadic
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ical Physics, Lund (Sweden), October 12-14, 2006. ” How to construct
Lagrangian?”
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CHAPTER

1

Topics on Lie theory

For the convenience of the reader, in this chapter some basic notions and topics
of the Lie theory are concisely presented. There are several presentations of the
Lie theory. Here we follow L. Pontryagin in his classical book on continuous
groups [32]. The differential calculus of functions of several variables and some
basic results of theory of differential equations are used.

1.1 Introduction

Sophus Lie (1842-1899) was an outstanding mathematician of the 19th cen-
tury. His works on continuous transformation groups influenced the whole
development of mathematics. Methods of algebra, geometry and mathemati-
cal analysis are simultaneously used in the Lie theory. The Lie theory is widely
used in contemporary mathematics, theoretical and mathematical physics.

1.2 Lie group

The main subject of the Lie theory is the correspondence between the local
Lie groups and Lie algebras. A Lie group is a group G having the structure
of an analytical manifold such that the mapping p : (g,h) — gh™! of the
direct product G x G into G is analytic. In other words, a Lie group is a set
which has compatible structures of a group and an analytical manifold. The
dimension of G will be denoted by r. By considering a neighbourhood of the
unit e in G, one can formalize the notion of a local Lie group (see e.g [32] for
the detailed definition).

Let G be a local Lie group. Since G is a differentiable manifold, one can fix
a local coordinate system (U, ) with the coordinate neighbourhood U C G of



1.3 Lie and Maurer-Cartan equations. Lie algebra

the unit element e of G and a homeomorphism
0:U—=R", ¢le)=0

also called the local coordinate mapping. Denote the local coordinates of the
point g € U by ¢g',4%,...,¢". Let g,h € U be such that gh € U. For such ele-
ments g, h in U their product gh := u(g, h) can be presented in the coordinate
form by

(gh)! = (g, h) == pi(g*, ..., 9" hY, ... B7), i=1,...,r (1.1)

The functions ' are called the multiplication functions. From ge = g = eg
one gets

gt .. 97,0,...,0) =¢" = p*0,...,0,g%,...,9") (1.2)
The Lie theory explores the multiplication functions (1.1).

Expand the functions (1.1) into the Taylor series in a neighbourhood of the
point ¢ =h' =0 (i=1,...,7):
(gh)' = g' +uj(g)h’ + -+
=g +h +di g hF+- (1.3)
Here, one has to note that det u; (9) # 0 and u; (e) = 5; The coefficients
C;"k = (I;k — (IZ/.J
are called the structure constants of G. In the Lie theory, it is shown how the
structure constants of G are related to the multiplication functions (1.2).

1.3 Lie and Maurer-Cartan equations. Lie algebra

The Lie theory can be seen as a differential-integral calculus on groups. Via
the Lie theorems one can assign a tangent Lie algebra to a local Lie group and
study relation between the tangent algebra and the local Lie group. It turns
out that a local Lie group is determined by its structure constants.

Let G be a local Lie group with the coordinate system given in Section 1.2,
e be the unit element of G. Then the multiplication functions (1.1) satisfy the
Lie equations (the first Lie theorem)

u?(gh) :ué(g) ,j=1,...,7 (1.4)

with initial conditions (1.2). To integrate (1.4) one has to know the auxiliary
functions uz By using the integrability conditions of (1.4), i.e
a(gh)' _ d(gh)’
dgidgh — Bgkogl’

i k=1,...,r

18



1.3 Lie and Maurer-Cartan equations. Lie algebra

one can prove that the auxiliary functions satisfy the Maurer-Cartan equations
(the second Lie theorem)

Ik L LT (15)

with the initial conditions u}(e) = d5. The integration of (1.5) is explained
in [32]. In T,(G), let us use the basis

PR — a
;- agi .

e T.(G)

Thus e.g T.(G) > =z = 2'b;. Let x and y be the tangent vectors from the
tangent space T, (G) of G at e. Their product [z,y] € T.(G) can be defined in
the component form by

k

[:C?y]l = c;kxjy :_[yax]ia i,j,kzl,...,T

The tangent space T.(G) equipped with the anti-commutative multiplication
[,:] : Te(G) X T.(G) — Te(G) is called the tangent algebra of G.
For x in T¢(G) define the infinitisemal translations
- 0
Ly = a:JUQ?(g)(Tgk € Ty(G)

One can see that L, = 0 implies that £ = 0. The Maurer-Cartan equations
(1.5) can be rewritten as

[szLy] = _L[:t:,y]a T,y € TQ(G)
It follows from the Jacobi identity
[[sz Ly]a Lz} + [[LzhLz]v Lm] + [[Lz7Lac]v Ly] =0
that the Jacobi identity in the tangent algebra holds as well:
[z, 9}, 2] + [y, 2], 2] + [[2, 2], 9] =0, Va,y,z € T(G) (1.6)

Nowadays the anti-commutative algebras that satisfy the Jacobi identity (1.6)
are called the Lie algebras. Thus, the tangent algebra {T.(G),[,]} of a local
Lie group is a Lie algebra (the third Lie theorem).

It turns out that by using the structure constants of a real finite-dimensional
Lie algebra one can (locally) find the multiplication gh of a local Lie group
(the third inverse Lie theorem).

The inverse Lie theorems give an algorithm for constructing local Lie groups
by its structure constants: first integrate the Maurer-Cartan equations to
find the auxiliary functions and then integrate the Lie equations to find the
multiplication p. This is the essence of the inverse Lie theorems.

19



1.4 Lie transformation group

1.4 Lie transformation group

Let X be a set and let T(X') denote the transformation group of X, i.e. the
group of bijective maps X — X. Elements of T(X) are called the trans-
formations of X. Multiplication in T(X') is defined as the composition of
transformations, and the unit element of T(X) coincides with the identity
transformation id of &'
A map
S:G—-%(X), g— S

of a Lie group G into the group ¥(X) is said to be an action of G on X if
Se =id, S¢Sh = Sgn
The map S is also called a representation of G in T(X). The transformations
Sy € T(X) (g € G) are called G-transformations of X. One can easily see that
-1
Sy =S5

g~

Vge G

It seems quite natural to make G-transformations continuous as well. So, let
G be a Lie group and let X denote a real, analytic manifold. The dimensions
of G and X will be denoted as r and n, respectively.

The action S of G on X is said to be differentiable if the local coordinates of
the point Sy X are differentiable functions of the points g € G and X € X. In
this case, the representation is said to be differentiable as well. The group (X))
is said to be a Lie transformation group if G-transformations are continuous.
In what follows, we shall consider continuous transformations only locally, and
by ”continuity” we mean differentiability as many times as needed. The action
of g (from the vicinity of the unit e € G) on X € X we can write in local
coordinates as

(SgX ) =85"(X",..., X" g ..., g") = 5"(X;g)
As in the case of the Lie group (see (1.3)), the Taylor expansion
(SgX)* = X+ + 55(X)g’ + O(g)

can be used to introduce the auxiliary functions S;-‘ of S. The functions (S, X)*
satisfy the Lie equations (the first Lie theorem, see (1.4))

A(S,X)»
() 25" aggk) — §(8,X) (1.7)
The integrability conditions of (1.7) read

O(SgX ) _ O(SgX)"
dgi0gk  0gkogl ’

=1,...,n, jk=1,...,r

20



1.4 Lie transformation group

and imply the Lie-Cartan equations (the second Lie theorem, see (1.5))

05, (X)

osh(x)
— X

S0 -8,

= &S5 (X) (1)

p

By introducing the infinitisemal operators of S as

0

Sy i=a18; = :L‘jS;‘(X)m,

x € T(G)

the Lie-Cartan equations (1.8) read
[Sma Sy] = _S[:t7y]7 T,y € TB(G)

Thus, the vector space spanned by all infinitisemal operators of the Lie trans-
formation group is a Lie algebra as well. It turns out that the infinitisemal
operators locally determine the Lie transformation group (the inverse Lie theo-
rem for Lie transformation groups) [32]. In a sense, the infinitisemal operators
of S represent the tangent Lie algebra of G.

21



CHAPTER

2

Group SO(2) and Hamilton-Dirac mechanics

In this chapter, the canonical formalism for the group SO(2) is developed. The
Lagrangian and Hamiltonian are constructed and their physical interpretation
is given. It is shown that the constraints satisfy the canonical commutation
relations and their consistency holds. The material of this chapter is based
on [2,30].

2.1 Introduction

The Lie group multiplication can be locally given as an integral of the first
order partial differential equations called the Lie equations. One may ask for
such a Lagrangian recapitulation of the Lie theory that the Euler-Lagrange
equations coincide with the Lie equations. Based on the Lagrangian one can
try to elaborate the corresponding canonical formalism for a Lie group.

In this chapter, the canonical formalism for real plane rotations is devel-
oped. It is shown that the one-parametric real plane rotation group SO(2)
can be seen as a toy model of the Hamilton-Dirac mechanics with constraints
[4]. The Lagrangian and Hamiltonian are explicitly constructed. The Euler-
Lagrange and the Hamilton equations coincide with the Lie equations. Con-
sistency of the constraints is checked. It is also shown that the constraints
satisfy the canonical commutation relations (CCR).

2.2 Real representation

The material presented in this section has been published in [30].



2.2 Real representation

2.2.1 Lie equations and Lagrangian

Let SO(2) be the rotation group of the real two-plane R2. Rotation of the
plane R? by an angle o € R is given by the transformation

¥ = f(z,y,a) == xcosa — ysina
Yy =g(x,y,a) :=xsina+ycosa

We consider the rotation angle o as a dynamical variable and the functions f
and g as field variables for SO(2). Denote

f = 8afa g:= 8049

The infinitesimal coefficients of the transformation are

{é(m,y) = f(z,y,0) = —y
n(x,y) = g(x,y,0) =z

and the Lie equations read

{fzf(f,g)z—g
g=n(f,9)=rf

Our first aim is to find such a Lagrangian L(f, g, 1, g) that the Euler-Lagrange
equations

oc 0oL oL 0 9oL

of dapf  dg 0adg

correspondingly coincide with the Lie equations.

Definition 2.1 (Lagrangian). The Lagrangian £ for SO(2) can be defined by

L(f g, f.q) = %(fé/ — fg) - % (P + 4%

Theorem 2.2. The Euler-Lagrange equations of SO(2) coincide with its Lie
equations.

Proof. Calculate

oL 9
of — of
oL 9
of  of

Ui d0 -3 (P4 )] =i 1

1 . . 1 1 0 oL 1.
[2(f9—f9)_2(f2+92)] =59 - 8715 =759
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2.2 Real representation

from which it follows

1, 1, .
§g—f+§g—0 — g=f

990L 1y
da 0§ 2

or oor_
of  dagof
Analogously calculate
oc o 1, ,. . 1, . N
ag—ag[Q(fg f9) §(f +g)]— 5/ =9
oc o (1 .. . 1, ., | 1
from which it follows
oL 0 0L 1. 1. .

2.2.2 Physical interpretation
It follows from the Lie equations that
f+f=0=gj+g

The Lagrangian of the latter is

N =

ﬁ(fvg?fag) =
The quantity
1 /.
T.— = ( 24 gz>
2
is the kinetic energy of a point (f,g) € R?, meanwhile

l:=fg—gf

is its kinetic momentum with respect to origin (0,0) € R?. By using the Lie

equations one can easily check that

P+t =ro—af

This relation has a simple explanation in the kinematics of a rigid body [10].
The kinetic energy of a point can be represented via its kinetic momentum as

follows:

1 ) .9 l 1 . M

— = T _ - = — —

5 (f +4 ) 5 = 5(f9—9f)
This relation explains the equivalence of the Lagrangians. Both Lagrangians
give rise to the same extremals. Thus we can conclude, that for the given Lie

equations (that is, on the extremals) of SO(2) the Lagrangian £ gives rise to
a Lagrangian of the 2-dimensional harmonic oscillator.
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2.2 Real representation

2.2.3 Hamiltonian and Hamilton equations

Our aim is to develop canonical formalism for SO(2) with the Lagrangian
given by Definition 2.1. According to canonical formalism, define the canonical
momenta as

_oL oLl oo 1 Q]Z_g

Pi=F 8f-[2(fg f9) 2(f +9°) 5
oL a1, .. . 1

51:89269[2(]09—]’9)—2(1724-92)]=+£

Note that the canonical momenta do not depend on velocities and so we are
confronted with a constrained system [4] with two constraints

f

S A—
2

(101(fagapvs) :p+§:0’ 302(fagapas) =S

Definition 2.3 (Hamiltonian). According to Dirac [4], the Hamiltonian H
for SO(2) can be defined by
H/
——
H:=pf +sg— L+hpi(f, 9,0, 8) + Xawa(f, 9,0, 8)

=pf +55— L+ N\ (p—i—g)—i—)\g <s—£>

where A1 and A9 are the Lagrange multipliers.

Lemma 2.4. The Hamiltonian of SO(2) can be presented as

H:%(f2+gz)+A1 (p+g)+>\2 (s—J;)

Proof. 1t is sufficient to calculate

H :=pf+si—L

=pf+sg—%(fg—f'g)+%(f2+92)
:f(p—f—g)—i-g(s—“;)—l-;(fz—i- 2)
=5 P+ =

Theorem 2.5 (Hamilton equations). If the Lagrange multipliers
)\1 =9, )\2 = f
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2.2 Real representation

then the Hamilton equations

joof _oH . OH . OH
o YT s PT T U7 gy

coincide with the Lie equations of SO(2).
Proof. Really, first calculate

j=2_2 [1(f2+92)—g<p+g)+f<s—f>} =g

_a—p—% 5 2 2
. _OH 01
S I

Similarly calculate

b=t = 2 [s e -aprd) +s (s~ )]

2 2
=—f—-s+f=-s
. 0H 01 g f
1 R R S R Gt ]
=—g+p+tg=p

Now use here the constraints p = —g/2 and s = f/2 to obtain

. 1- 1 .
p=-—s —59=—3 g=1r
$=p +5f=—359 f=-g

O]

Remark 2.6. One must remember that on the constraints must be applied

after the calculations of the partial derivatives of H.

Corollary 2.7. The Hamiltonian of SO(2) can be presented in the form

H=fs—gp

Then the Hamilton equations coincide with the Lie equations of SO(2).

Remark 2.8. Note that our Hamiltonian H is the angular momentum of the
point (f,g) € R2. This is natural, because we consider plane rotations and
the angular momentum is the generator of the rotations. The Hamiltonian
obtained from the conventional Lagrangian (see Subsection 2.2.2) will be the

total energy

1 1
E=o (" +5")+5 (F+97)

= %(fs — gp) + % (2 +4°)
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2.2 Real representation

2.2.4 Poisson brackets and constraint algebra

Definition 2.9 (observables and Poisson brackets). Sufficiently smooth func-
tions of the canonical variables are called observables. The Poisson brackets
of the observables A and B are defined by

(). PAOB_9ADB 0408 040
T 92 0p Op 0z 0z Op  Op 0%

Example 2.10. In particular, one can easily check that
{fipt =1={g,s}
and all other Poisson brackets between canonical variables vanish.
Example 2.11. In particular,
B oH' 10H" 10

2, oy _
of T2as ~ 2op e =S

no_ 9 iy _
{@laH}* {p+ 27H}
and similarly

10H" 0OH' 10

Definition 2.12 (weak equality). The observables A and B are called weakly
equal, if

=0

(A-B)
p1=0=p2

In this case we write A ~ B.

Theorem 2.13. The Lie equations read

Theorem 2.14. The Lie equations of SO(2) can be presented in the Poisson-
Hamilton form

f={fH}, g~{9.H}), p=~{pH}, 3={sH}
Proof. As an example, check the third equation. We have

_OpoH OpoH OpO0H OpoH  OH _

Hy:= P72 PO IPCT POT T~y
W HY = s, “apar Tog0s osag -~ of P =

Theorem 2.15. The equation of motion of an observable F' reads

F~{F H}
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2.2 Real representation

Proof. By using the Hamilton equations, calculate

=0 OF, 0F, OF,
of Op dg 0s
_OFOH OFO0H  O0FOH OFOH
Y ofap  opof g 0s  0s og
={F,H} O

Theorem 2.16 (constraint algebra). The constraints of SO(2) satisfy the
canonical commutation relations (CCR)

{o, 01} =0={p2, 92}, {o1,p2} =1

Proof. First two relations are evident. To check the third one, calculate

Heor, 2} ={2p+9,25 - f}
02p+g)0(2s—f) 9(2p+g)02s—f)

of Jp dp of
L O02p+9) 025~ f)  0(2p+9)0(2s — f)
dg 0s 0s dg
_ ,0@2s—f)  0(@2s— )
= Yo
=2+2=4 O

2.2.5 Consistency

Now consider the dynamical behaviour of the constraints. Note that
p1=0=p2 = ¢1=0=¢
To be consistent with equations of motion we must prove
Theorem 2.17 (consistency). The constraints of SO(2) satisfy equations
{e1,H} = $1=0, {p2,H} = p2=0
Proof. Really, first calculate

{p1, H} := {o1, H + M1 + Xaga}
~ {1, H'Y 4+ Mi{en, o1} + Ae{e1, o2}
=—f4+A-0+A-1
— S
=0
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2.3 Complex representation

= 1
Similarly,

{8027 H} = {S027 H/ + )\1801 + )\2@2}
~ {S027 H,} + AI{SOQ; SOI} + )\2{8027 @2}
:—g—)\l'l—i-/\Q'O
=—g+yg
=0
= Y9 OJ
Concluding remark 2.18. Once the canonical structure of SO(2) estab-

lished, one can perform the canonical quantization of SO(2) as well. Physically
this actually means the quantization of the angular momentum.

2.3 Complex representation

The material presented in this section has been published in [2].

2.3.1 Lie equations and Lagrangian

Consider the rotation group SO(2) of the real two-plane R?. Rotation of R?
by an angle o € R is given by the transformation

¥’ = zcosa— ysina
Yy = rsina + ycosa

In matrix notations

'\ _ [cosa —sina) (x

y' )  \sina cosa y
By denoting 7 = ((1) _01), a generic element z € SO(2) reads as a complex
number

<cos a —sina

. =cosa +isina = '@
sina  cos«

We consider the rotation angle « as a dynamical variable and z as a field
variable for SO(2). The Lie equations read

2:=042z =1z, Z:=042z=—1Z
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2.3 Complex representation

Definition 2.19 (Lagrangian). The Lagrangian £ for SO(2) can be defined
by
. 1 .
L(z,2,2,Z) = —(2Z2 — 2Z) — 2Z
29
Remark 2.20. The Lie equations can be seen as an analogue of the Dirac
equations. The corresponding Lagrangian is then a Dirac Lagrangian in 1-

dimensional case.

Theorem 2.21. The Euler-Lagrange equations of SO(2) coincide with its Lie
equations.

Proof. Calculate
oc 0 {1 = ] 1

il Q—Z_(zz—zz)—zz =i
oc o |1, ._ . _ 1 0 oL 1.
— == |=(z—22)—2Z| = —==2 ——=—-=%
0z 0z |2 2i Oa 0z 2i
from which it follows
oL 0 oL 1 1
= _ = —Z— —z = > =1 O]
5z 90 s 0 <= 9 ° z+ e 0 <= z=1z

2.3.2 Hamiltonian and Hamilton equations

Our aim is to develop canonical formalism for SO(2) in complex represen-
tation. We have already constructed such a Lagrangian £ that the Euler-
Lagrange equations coincides with the Lie equations. According to canonical
prescription, define the canonical momenta as

oc o1, . _ Z
p:zazzaé[%(zz—zz)—zz]=+2i,
o o1, . - A
5.—(%—62[%(22—22)—22]——%—]7

Note that the canonical momenta do not depend on velocities and so we are
confronted with a constrained system with two constraints

z

Spl(zvzapvﬁ) =p—==0, @2(2,?,]9’79) =P+

=0
21

z
23
Definition 2.22 (Hamiltonian). According to Dirac theory [4] of constrained
systems, the Hamiltonian H for SO(2) can be defined by

H/
- . N
H = pPZ+pz— E+)\1<,01(Z,§,p,;5) + )\2802(2727197]3)
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2.3 Complex representation

. z Z
21 21
where A1 and A9 are the Lagrange multipliers.

Lemma 2.23. The Hamiltonian of SO(2) can be presented as

H=2zz+ X\ —i +/\2<ﬁ+i>
27 27
Proof. 1t is sufficient to calculate
H =p;+pz—L

. —_ = 1 oy i —
:pz—l—pz—ﬁ(zz—zz)—i-zz

= <p— ;Z) +§(To+2%) + 2z
= 27 ]
Theorem 2.24 (Hamilton equations). If the Lagrange multipliers
M =iz, Io=—iZ=M\,
then the Hamilton equations

_om . om
~ op’ P="%,
coincide with the Lie equations of SO(2).

z

Proof. Really, calculate

oH o0 [ _ . z (- %
a]?:(%)[zz—l—zz(p—%)—zz(+2Z)}:zz:z,
oH 0| _ . Z (=, Z
az‘az[““Z(p‘zi)—”(“m)}
z 1z z
:z+z<p—2i>—zzzi2+zp—2—zp

@) - :

Remark 2.25. One must remember that the constraints must be applied
after the calculations of the partial derivatives of H.

Corollary 2.26. The Hamiltonian of SO(2) can be presented in the form
H =i(zp —ZD)
Then the Hamilton equations coincide with the Lie equations of SO(2).
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2.3 Complex representation

2.3.3 Poisson brackets and constraint algebra
By analogy with Definiton 2.9, propose

Definition 2.27 (Poisson brackets). The Poisson brackets of the observables
A and B are defined by

() PADB 0408 0A0B 0408
9z 0p Op oz 0z Op  Op 0%

Example 2.28 (well known). In particular, one can easily check that
{Z,p} =1l= {E,ﬁ}
and all other Poisson brackets between canonical variables identically vanish.

Example 2.29. In particular,

"o z ,__aH’ iaH’__g o =
{W’H}_{IH%’H}_ 22 2 op g; ) =72

and similarly

z 10H  OH' 0
H/ = {7 —_— HI} = — — e
{o2 T} =P+ 55 2% op 0z 0z
Using the notion of a weak equality one can propose
Theorem 2.30. The Lie equations of SO(2) read

Theorem 2.31. Lie equations of SO(2) can be presented in the Poisson-
Hamilton form

Proof. As an example, check the second equation. We have

OpOH OpOH OpdH OpdH  OH _

pHy= 2 - LR R

9. 0p opoz  ozop opoz 9z P =

Theorem 2.32. The equation of motion of an observable F' reads

F~{F H}
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2.3 Complex representation

Proof. By using the Hamilton equations, calculate

T 0 T P T et T ap?

L OFOH _OFOH  OF0H 0FOH
T 02 0p Op oz 0z Op Op Oz
={F,H} O

Theorem 2.33 (constraint algebra). Constraints of SO(2) satisfy the com-
mutation relations

{101} =0={p2, 02}, {o1,92} =1

Proof. First two relations are evident. To check the third one, calculate

4i%{ @1, 2} = {2ip — %, 2ip + 2}
d(2ip— %) 0(2ip+z) O(2ip—%) 9(2ip + 2)

0z dp Op 0z
0(2ip—2)02ip+2) O(2ip—7%)0(2ip+ z)
T oz op  0Op oz
__,0Cip+z) _ 92ip+2)
0z op
=—-21—21=—41 ]

2.3.4 Consistency

Now consider the dynamical behaviour of the constraints. Note that
p1=0=p2 = ¢1=0=¢
To be consistent with equations of motion we must prove
Theorem 2.34 (consistency). The constraints of SO(2) satisfy equations
{e1, H} = $1=0, {p2,H} = p2=0
Proof. Really, first calculate

{p1, H} := {1, H + M1 + Xaga}
~ {1, H'} 4+ M{en, o1} + Ae{e1, o2}
=—Z4+M-04+X-4
=—z+7z
=0
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2.3 Complex representation

= 1
Similarly,

{p2, H} := {2, H + M\1p1 + Xaa}
~ {p2, H'} + M{p2, 01} + Ao{ 2, 2}
=—2z—XM-1+X-0
=—z+z
=0
=2
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CHAPTER

3

Constructing a vector Lagrangian

A method for constructing Lagrangians for the Lie transformation groups is
explained. As an example, the Lagrangians for real plane rotations and affine
transformations for the real line are constructed. The material presented in
this chapter has been published in [26].

3.1 Main idea

It is a well-known problem in physics and mechanics how to construct La-
grangians for mechanical systems via their equations of motion. This inverse
variational problem has been investigated for some types of equations of mo-
tion in [18].

In Chapter 2, the plane rotation group SO(2) was considered as a toy
model of the Hamilton-Dirac mechanics with constraints. By introducing a
Lagrangian in a particular form, canonical formalism for SO(2) was developed.
The crucial idea of this approach is that the Fuler-Lagrange and the Hamilton
canonical equations must in a sense coincide with the Lie equations of the Lie
transformation group.

In this chapter, the method for constructing such a Lagrangian is proposed.
It is shown, how it is possible to find a Lagrangian, based on the Lie equations
of the Lie transformation group.

By composing a Lagrangian, it is possible to describe the given Lie trans-
formation group as a mechanical system and to develop the corresponding
Lagrange and Hamilton formalisms for the Lie transformation group.



3.2 General method for constructing Lagrangians

3.2 General method for constructing Lagrangians

Let G be a real r-parametric Lie group with unit e € G and let ¢* (i = 1,...,7)
denote the local coordinates of an element g € G from the vicinity of e. Let X
be a real analytic n-dimensional manifold and denote the local coordinates of
X € X by XY a=1,...,n (see Section 1.4). Consider a (left) differentiable
action of G on X given by

X'=5X ex
Let gh denote the multiplication of G. Then
S¢Sn = Sgn, Vg,heG

By introducing the auxiliary functions u; and 53 by

(gh)* = hi+ u?(h)gj +...,

(SyX)* = X*+8%(X)g/ +...

the Lie equations read
o N G O
0 (X5 9) = u;(g) 3993 — S%(S,X) =0
Then we search for such a vector Lagrangian L := (Lq,..., L,) with compo-
nents -
L = ZZ)\Z(X@?, k=1,2,...,r

a=1[=1

and such Lagrange multipliers )\ﬁm that the Euler-Lagrange equations in a
sense coincide with the Lie equations.
The notion of a vector Lagrangian was introduced and developed in [6,36].
By analogy with Definition 2.12, we generalize the notion of weak equality
to the case of n - r constraints:

Definition 3.1 (weak equality). The functions A and B are called weakly
equal, if

(A—B) =0, j=12,....,r, a=1,2....n
;=0

In this case we write A ~ B.

By denoting




3.3 Lagrangian for the group SO(2)

the conditions for the Lagrange multipliers read as the weak Euler-Lagrange
equations

Lka =

0Ly  ~~ O 0L, _
oX ' Z dgi X/~

Finally, one must check by direct calculatlons that the Euler-Lagrange equa-
tions Ly, = 0 imply the Lie equations of the Lie transformation group.

3.3 Lagrangian for the group SO(2)

Consider the 1-parameter Lie transformation group SO(2), the rotation group
of the real two-plane R2. In this case n = 2 and r = 1. Rotation of the plane
R? by an angle g € R is given by the transformation

(S X)) = X" = XX X2, g) == X' cosg — X?sing
(S, X)?2 = X" =X"?(X' X?g):=X'sing+ X?cosg

We consider the rotation angle g as a dynamical variable and the functions
X" and X'? as field variables for the plane rotation group SO(2).

Denote
8X/a

dg

The infinitesimal coefficients of the transformation are

X' =

SHXL X%) = XX, X2 e) = —X?
SHXL, X?) = X?(X1, X2, e) = X!

and the Lie equations read

X/l Sl (Xll X/2) X/2
{ X/2 52 (Xll X/Z) X/l

Rewrite the Lie equations in implicit form as follows:

pli=X"14+ X% =0
:XIQ_XIIZO

We search a Lagrangian of SO(2) in the form

2 1
= Z Z Lol = M1 + Mo
a=1 [=1

It is more convenient to rewrite it as follows:
L:= )\1(,01 + )\QQDQ
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3.3 Lagrangian for the group SO(2)

where the Lagrange multipliers A; and Ay are to be found from the weak
Euler-Lagrange equations

oL g oL oL 0 oL

axll_aigaXnN ’ 8X’2_67g8X/2%

Calculate

a(z?,l = 8)8(,1 [Al(X’l + X)) A (X2 - X’l)]

ai'f'l - a)(?(/l [Al(X’l X)) 4 Mg (X? - X’l)] ~ A,
from which it follows

% - gg;ﬁl N0 = o+ aa)?}lX’Q - 66)?}2)(’1 ~ 0
Analogously calculate

= (;));\,}2@1 + ;;?2902 + A1~ AL,
;;.52 = 02/2 [Al(X’l +X) 4 A (X - X’l)] ~ s,
S e X R X

from which it follows

%7~ ggai'f@ ~ M X X =0

So the calculations imply the following system of differential equations for the
Lagrange multipliers:

X1 X'

[22) o\
6X’21X,2 + 8x?2X/1 ~ )\1

{ _ 2281 X/2+ 2281 Xll %_)\2

We are not searching for the general solution for this system of partial dif-
ferential equations, but the Lagrange multipliers are supposed to be a linear
combination of the field variables X’' and X',
{ )\1 = ()41)(/1 + ()tz)(/2
Ay i= B X+ 5o X?, o100, 61,02 €R
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3.3 Lagrangian for the group SO(2)

By using these expressions, one has

—a1 X? + X"~ =1 X" — B X" — (a2 + B1) X"+ (B2 —a1)X? =0
—B1 X2+ o X o X+ X7? (B2 — 1) X"t — (@ + B1)X? =0

This is a homogeneous system of two linear equations of four unknowns ay, as,
01, B2. The system is satisfied, if

az+ 31 =0 01 = —as
{52—04120 N {/82:041

The parameters aq, ag are free. Thus

)\1 = Oélel + O[2Xl2
Ay = —042)(/1 + 051)(/2

and the desired Lagrangian for SO(2) reads
£ _ al(XllX,l 4 X/QX/Q) 4 as |:X/2X/1 4 (X/2)2 _ X/lX/2 4 (X/1)2 (31)
with free real parameters a1, as # 0. Now we can propose

Theorem 3.2. Let as # 0. The Euler-Lagrange equations for the Lagrangian
(8.1) coincide with the Lie equations of SO(2).

Proof. Calculate

8?)?/1 _ 8)8(/1 [al(Xllel +X/2XI2) T o (X/2X/1 + (X/Z)Q XX 4 (X/1)2>}
= Oélel — OLQXIQ + 20{2X’1 s
;}él _ 3;?(/1 [oq(X’lX'l FX2X?) 4 an <X'2X’1 FX?) - XXy (X’1)2)}
0 oL . .
_ 1 2 9 _ n 2
=1 X+ aX — B9 o a1 X"+ aX

from which it follows

oL 9 oL
0X"N  dgoxn

=0 <= 20X"T-20,X?%?=0 <— X?=x"

Analogously calculate

= o [ (X" XPX?) oy (XX (X2 - XX (x|

= OdQXll + 20{2X’2 + OélX,2 s
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3.4 Lagrangian for the group of affine transformations

oL 0 : : : ,
%7 = oxn [al(X’IX” + X?X") + o (X’2X’1 +(X?)P - XX+ (X’1)2>}
0 oL : :
_ 1 2 _ 11 2
=—a X + a1 X = 78g S X'+ o X

from which it follows

oL 9 oL
0X"? 0g9Xx2

=0 <= 20X"+20:,X?=0 = X'=-X?0

Remark 3.3. While the Lagrangian £ of SO(2) contains two free parameters
a1, ag, particular forms of it can be found taking into account physical con-
siderations. In particular, if @; = 0 and ag = —1/2, then the Lagrangian of
SO(2) reads

. . 1 . . 1
r X/]_ X/2 X/]_ X/2 — X/]_X/2 _ X/]_XIQ = X/]. 2 X/2 2
(X, X2, X7 X7 = ) 5 (X2 + (02
By using the Lie equations one can easily check that
X/1X12 _ XllX/2 — (XII)Q + (X/2)2
The interpretation of this result was given in Subsection 2.2.2.

Remark 3.4. Thus, one has explained how it is possible to derive the La-
grangian postulated in Definition 2.1.

3.4 Lagrangian for the group of affine transforma-
tions

Now consider the affine transformations of the real line. The latter may be
represented by

Xll — XII(XI,X2,QI,Q2) = ngl +g2
X?=X%X'X%g"9") =1, 0#g'.g°€R

Thus r = 2 and n = 2. Denote
-1 1 2
€= (170)7 g = T(la -9 )
g
First, find the multiplication rule
(X" = (X)) = Sgn X" = Sy(hX"') = S,(h' X' + h?)
=g (W' X'+ 1) +¢* = (¢'W) X' + (¢'h* + ¢°)
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3.4 Lagrangian for the group of affine transformations

Calculate the infinitesimal coefficients

Si(X1X?) = X7 _ =Xy,
Sy(XH X% = X3 _ =1,
S%(XlaXZ) = X? g=e =Y,
S3XTX?) = X7 _ =0
and the auxiliary functions
A(SynX)! 1
ui(g) = 89 1 - 1o
g h:g_l g
A(SynX)!
1 g
U2(g) : =0 )
892 h=g—!
8 S hX 2 g2
u%(g): (51) :_717
g h=g—! g
A(SgnX)?
2 g
up(g) == —— 5 =1
892 h2971
Next, write Lie equations and find constraints
2 2
)qlzgil)(/l_%1 ‘P%::Xil_g%Xll_gT
Xy =1 — o3 :=X5 —1
XP =0 7= X7
X2 =0 3 = X5
We search for a vector Lagrangian L = (Lj, L) as follows:
2 2
L = D3 Mol = Mol + A0 + Mat? + \awh
a=1 =1
2
= My ( - ;X’l — g) + N (X = 1) + M XP 4+ ALXE, k=12

By substituting the Lagrange multipliers Aj  into the weak Euler-Lagrange

equations
2

oLy 8 0Ly _
dX ' Z dgt X1

we get the following PDE system

oML o\
{ (Xll - )QXIC/% + 18X/1 +)\k1 ~ 0

(Xll_ )3/\k2+ 19 lczNO’ ]{3:1,2

ox'1 ox't ~
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3.4 Lagrangian for the group of affine transformations

We find some particular solutions for this system. For example,

)\il B 02 2 )\%l - ¢%}1{§1X/2) 2
_ ATy = ¢11(X/ ) _ 5. A3 = — 21(X/ )
S N o I T VN
Ay = PPy (X") A =0

with i, (X72), 93 (X'?), 91, (X"?),9?,(X"?) as arbitrary real-valued functions
of X"
Thus we can define the Lagrangian L = (Lj, Ly) with

L= vHOCNXE 1)+ oh(XIXP b OOXE
2 .
Ly = v (X?) (X[ = S X" 4 )
and propose

Theorem 3.5. The Fuler-Lagrange equations for the vector Lagrangian L =
(L1, L2) with components (3.2) coincide with the Lie equations of the affine
transformations of the real line.

Proof. Calculate

oL )

o = g RO — 1)+ e (X)X + vh(X)XF] =0,
8 0L B
agtox g ag10 =0
9 0Ly OH(X")  9UH(X)
99 OX4! dg? oxr 2
from which it follows

2
0Ly 0 0Ly (X)) 2
X1 Zag X~ = SX7 Xy’=0 = X5=0

Analogously calculate

OL 0
Sxn = gym WA - 1)+ uh(XP)XP + vh(X?) X7
aw2 X/2 81/11 X/2 8¢2 X/2
= o -y PR e P
0 0L 9Yl(X?)  9vh(X?)
o ox? —  agl  ~ ax?
0 OLi  _ 0Yfp(X?) _ 091X 1o
dg?axe — a2 ax7? P
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3.4 Lagrangian for the group of affine transformations

from which it follows

2

0Ly 0 0L o2 (X'?)
X" Z@g ioxz . X"

(X-1)=0 = X)-1=0

Now we differentiate the second component of the Lagrangian L. Calculate

0Ly 9 1 (yr2 v lon ¢ Lvn 1y 1
e = g |vh 0D (X = X ) - X (e - )

1 1 1 1
= —g*ﬁ/él(X/Q) - Eib%l(X&)Xél + gﬁwél(X/Q) = —971/’%1<X/2)X§1 )
0 0Ly  0yy(X?) 0y (X"?)

2
agtoxt —  agt 09X~ X
0 0Ly 9 Lo 2 1 1 2\ y/1 1031 (X?)
s = o (X ) = (s xS
from which it follows
2
0Ly 0 0Ly Wn(X?) (v 1 onyr
= —= L X" - =X"X¥)=0
oxn Z dg' 8X'1 — OX'2 1 gl 2
1
= XP-SX"'X7=0
g
Analogously calculate
OLy ) 1 g° 1
S = g | Ph ) (X1 - St D) L (e - )
8¢%1(X’2> 1 L on g 1 8¢%1(X/2) 1n (5l
= —oxe N g X ) oy X (X 1)
0 0L 0
2= 20=0,
dg' 90X gt
0 0L 0
= 2 0=0
092 0X?  0g¢?
from which it follows
2
0Ly 0 0Ly Wn(X?) (on 1 ongn 9
= —= X - =X"X =] =0
X" Z dg' OX? = X" Logt 2 T
1 2
—  x-=x'xp+%L -0
g' g
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3.4 Lagrangian for the group of affine transformations

Thus the Euler-Lagrange equations read

X2=0
X3 —1=0

XP - LX1XPZ =0
g 2

/1 1 11 yvr1 g° _
X = XX+ g =

It can be easily verified, that the latter is equivalent to the system of the Lie
equations. 0

Remark 3.6. In the proof it is assumed that

0ty (X?)

8X’2 7& 0

Remark 3.7. While the Lagrangian L contains four arbitrary functions, par-
ticular forms of it can be fixed by taking into account physical considerations.
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Part 11

Operadic dynamics and
harmonic oscillator






CHAPTER

4

Operadic dynamics

Based on the Gerstenhaber theory, it is explained how the operadic dynamics
may be introduced. Operadic observables satisfy the Gerstenhaber algebra
identities and their time evolution is governed by operadic evolution equation.
The notion of an operadic Lax pair is also introduced. As an example, an
operadic (representation of) harmonic oscillator is proposed.

Sections 4.1-4.7 are mostly based on the material from [22]. The material
of Sections 4.8-4.10 has been published in [28].

4.1 Introduction

In 1963, Gerstenhaber invented [7] an operad calculus in the Hochschild com-
plex of an associative algebra; operads were introduced under the name of
pre-Lie systems. In the same year, Stasheff constructed [35] (see also [33])
quite an original geometrical operad, which nowadays is called an associahe-
dra. The notion of an operad was further formalised by May [21] as a tool
for iterated loop spaces. Examples of operads are algebraic operations and
co-operations, rooted trees, little squares and Feynman diagrams.

The main principles of the operad calculus (brace algebra) were presented
by Gerstenhaber and Voronov [9,37]. Some quite remarkable research activity
in the operad theory and its applications can be observed in the last decade
(eg. [17,20,34]). It may be said that operads are also becoming an important
tool for quantum field theory and deformation quantization [14].

Today, much attention is given to static operadic constructions. For dy-
namical operations one has to prescribe their time evolution. In this section,
based on the Gerstenhaber theory, clarification is given on how operadic dy-
namics may be introduced.



4.2 Operad

We start from simple algebraic axioms. Basic algebraic constructions as-
sociated with linear operads are introduced. Their properties and the first
derivation deviations for the coboundary operator are presented explicitly.
Under certain conditions (a formal associativity constraint), the Gerstenhaber
algebra structure appears in the associated cohomology of an operad.

The operadic dynamics may be introduced by simple and natural analogy
with the Hamiltonian version. Operadic observables satisfy the Gerstenhaber
algebra identities and their time evolution is governed by the operadic ana-
logue of the Hamilton equations, the operadic evolution equation. The latter
describes the time evolution of operations. In particular, the notion of an
operadic Lax pair may be introduced as well.

4.2 Operad

Let K be a unital associative commutative ring, and let C™ (n € N) be unital

K-modules. For f € C", we refer to n as the degree of f and often write (when

it does not cause confusion) f instead of deg f. For example, (—1)/ := (—1)7,

cf .= C" and of := on. Also, it is convenient to use the reduced degree
|f| :==n — 1. Throughout this paper, we assume that ® = Q.

Definition 4.1 (operad (e.g [7,8])). A linear (non-symmetric) operad (i.e
pre-operad) with coefficients in K is a sequence C := {C"},en of unital K-
modules (an N-graded K-module), such that the following conditions are held
to be true:

(1) For 0 <1i < m — 1 there exist partial compositions

0; € Hom(Cm & Cn, Cm+n71)’ | 0; ’ =0

(2) Forall h@ f@g € C"®@CT @09, the composition (associativity) relations
hold,

(_1)|f||9|(hoj 9) Oi+|g|f ifo<j<i-1,
(hoif)ojg: hOi(ij—ig) ifi <j<i+|fl],
(D)Wl (ho; ;1 g)0i fif i+ f<j<|hl+]|fl.

(3) There exists the unit I € C! such that
Logf =f=foil, 0<i<|f|

In the second item, the first and third parts of the defining relations turn
out to be equivalent.
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4.3 Cup and braces

Example 4.2 (endomorphism operad [7]). Let V' be a unital K-module and
EY = Endy, := Hom(V®™, V). Define the partial compositions for f ® g €
E‘J; ® &Y as

foigi=(~1)19f o (id¥ og 0 i) e gptnt, 0 <i<|f]

The sequence &y = {&] }nen, equipped with the partial compositions o;, is
an operad (with the unit idy € 5‘1/) called the endomorphism operad of V.

Therefore, algebraic operations can be seen as elements of the endomor-
phism operad.

Example 4.3 (coendomorphism operad). Let R be a K-space and
&% = CoEnd}, := Hom(R, R®™)
Define the partial compositions for f ® g € gé ® &% as
foigi=(—1)19(1d¥ 09 @id2 "N of o0<i<|f

Then Eg := {Ex Y nen is an operad (with the unit idp € ?}3) called the coendo-
morphism operad of R. Thus, algebraic co-operations can be seen as elements
of a coendomorphism operad.

Just as elements of a vector space are called wvectors, it is natural to call
elements of an abstract operad operations. The endomorphism operads can
be seen as the most suitable objects for modelling operadic systems.

4.3 Cup and braces

Throughout this section, fix a binary operation y € C? in an operad C.
Definition 4.4. The cup-multiplication —: CT @ C9 — C/*9 is defined by
f—g:=D) (oo floyge ™, |—|=1
The pair CupC := {C,—} is called a —-algebra (cup-algebra) of C.
Example 4.5. For the endomorphism operad (Example 4.2) £ one has
feg=(D%0(fog), neofogeciac,oty
Definition 4.6. The total composition e : Cf © C9 — CI*19l is defined by

/]
feg:=) foige Wl Je|=0
=0

The pair ComC := {C, ¢} is called the composition algebra of C.
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4.4 Associated graded Lie algebra

Definition 4.7 (tribraces). Define the Gerstenhaber tribraces {-,-,-} as a
double sum

[A|=1|F|+Ih|

{h, fgy =Y > (hoif)ojge CPIHIL {3 =0

=0 itf
Definition 4.8 (tetrabraces). The tetrabraces {-,-,-,-} are defined by

[Rl=2 [R[+|f|=1 [B]+|f|+]gl

thfgor =3 S S ((hoif)o;g)opve ChHIHalH

i=0 j=i+f  k=j+g
with [{-,-,-,-}] = 0.
It turns out that
f—g=00)Hu g}

In general, CupC is a non-associative algebra. By denoting p? := u e j, it
turns out that the associator in CupC reads

(f—9)—h—f—(9—h)={u’ [ g n}

Therefore the formal associator (micro-associator) p? is an obstruction to the
associativity of Cup C. For an endomorphism operad £g, the ternary operation
u? also reads as an associator:

P2 =po(p@idg —idgp®pu), e p

4.4 Associated graded Lie algebra

In an operad C, the Getzler identity
(hf.g):=(hef)eg—he(feg)={hfg}+ (1) ng,f}
holds, which easily implies the Gerstenhaber identity

<h7 f: g> = (_1)|f||g|(h7ga f)

The Gerstenhaber brackets [, -] are defined in Com C as a graded commutator
by

[f.gl=fog—(-1)/Wlge f=—(—1)Wlg, f1. |[, ][ =0 (G1)

The commutator algebra of Com C is denoted as Com™C := {C, |-, -]}. By using
the Gerstenhaber identity, one can prove that Com™C is a graded Lie algebra.
The Jacobi identity reads

(—1)HIMLf, ], 1) + (1) g, ), f]+ (=1)"19)[[R, fl,9 =0 (G2)
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4.5 Coboundary operator

4.5 Coboundary operator

In an operad C, by using the Gerstenhaber brackets, a (pre-)coboundary op-
erator d := 0, may be defined by

Of :=adi®™ fo=[f,u] :=fopu—(~)/lpef
=f—T+fep+ (- T —f degd=+1=19|

It follows from the Jacobi identity in Com™C that 0 is a (right) derivation of
Com~C,

and one has the commutation relation
[8fv gl == 0f0q — (_1)|f“g|agaf = a[g,f]

Therefore, since |u| = +1 is odd, then

1 1
aﬁ = 5[8ﬂ7 au] — 58[#’#] - au.u - aMQ

Here we assumed that 2 # 0, the proof for an arbitrary characteristic may

be found from [13]. But d need not be a derivation of CupC, and u? again
appears as an obstruction:

Of—g)—f—09—(=1)90f — g = (-1)9{u*, f, g}

4.6 Derivation deviations
The derivation deviation of O over e is defined by
(deve D)(f @ 9) == 0(f o9) = f o dg— (—1)0f o g
Theorem 4.9. In an operad C, one has
(~1)(deved)(f @ 9) = f — g~ (~1)!%9 — |
Proof. The full proof is presented in [12]. O

The derivation deviation of d over {-,-,-} is defined by

(devi.10)(h® f @ g):=0{h, f,g} —{h, f,0g}
— (=1, 0f, 9} — (=1)*V{on, f,9}
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4.7 Gerstenhaber theory

Theorem 4.10. In an operad C, one has
(—1)?(devy.,. 1 0)(h® f@g) = (hef)— g+ (-1)"V f — (heg)—he(f —g)
Proof. The full proof is presented in [13]. O

Therefore the left translations in ComC are not derivations of CupC, the
corresponding deviations are related to devy.. } 0. It turns out that the right
translations in Com C are derivations of CupC,

(f—g)eh=F—(geh)+ (D" (fen) —yg
By combining this formula with the one from Theorem 4.10 we obtain

Theorem 4.11. In an operad C, one has

(—1)9(devy.,. , O)h® f®g) =[h f] — g+ (=) f — [h,g] — [h, f — g]

4.7 Gerstenhaber theory

Now, clarification can be supplied to show how the Gerstenhaber algebra can
be associated with a linear operad. If (formal associativity) u? = 0 holds, then
0% = 0, which in turn implies Im0 C Kerd. Then one can form an associ-
ated cohomology (N-graded module) H(C) := Ker 9/ Im 0 with homogeneous
components

H"(C) := Ker(C" % ™)/ Im(C"* % o™)

where, by convention, Im(C ! LA CY) := 0. Also, in this (u? = 0) case, CupC
is associative,

(f—9)—h=f—(9—h) (G3)
and 0 is a derivation of CupC. Remember from previously that Com™C is
a graded Lie algebra and 0 is a derivation of Com™C. Due to the derivation
properties of 0, the multiplications [-,-] and — induce corresponding (fac-
tor) multiplications on H(C), which we denote by the same symbols. Then
{H(C),[-,"]} is a graded Lie algebra. It follows from Theorem 4.9 that the
induced —-multiplication on H(C) is graded commutative,

feg=(Dltg—f (G4)

for all f ® g € HY(C) ® HI(C), hence {H(C),—} is an associative graded
commutative algebra. It follows from Theorem 4.11 that the graded Leibniz
rule holds,

[h.f — gl =[h, f] — g+ (=1)"F f — [h,g] (G5)
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4.8 Operadic mechanics

forall h®@ f®g € HMC)® H/(C) ® HI(C). At last, it is also relevant to note
that
0=l ]l#I—1=1 (G6)

In this way, the triple {H(C), —, [, -]} turns out to be a Gerstenhaber algebra
[8]. The defining relations of a Gerstenhaber algebra are (G1)-(G6).

In the case of an endomorphism operad, the Gerstenhaber algebra structure
appears on the Hochschild cohomology of an associative algebra [7]. This is
the essence of the Gerstenhaber theory.

In particular, in the case of a coendomorphism operad, the Gerstenhaber
algebra structure appears on the Cartier cohomology of a coassociative coal-
gebra.

Remark 4.12. The unique properties (G1)-(G6) show that the Gerstenhaber
brackets can be seen as a graded analogue of the Poisson brackets in clas-
sical mechanics. Thus, these brackets can be used as a tool for defining a
graded analogue of mechanics in algebra, called the operadic dynamics (see
next section).

4.8 Operadic mechanics

In Hamiltonian formalism, a mechanical system is described by canonical vari-
ables ¢*, p; and their time evolution is prescribed by the Hamiltonian equations
dqt _OH dp;  OH

dt ~ 9p;’ dt  9q¢ (4.1)

By a Lax representation [1,16] of a mechanical system one means such a pair
(L, M) of matrices (linear operators) L, M that the above Hamiltonian system
may be represented as the Lax equation
%:[M,L} =ML —-LM (4.2)

Thus, from the algebraic point of view, mechanical systems can be described
by linear operators, i.e by linear maps V — V of a vector space V. As
a generalization of this one can pose the following question [22]: how can
the time evolution of the linear operations (multiplications) V®" — V be
described?

Assume that K := R or K := C. It is known that the Poisson algebras
can be seen as an algebraic abstraction of mechanics. Consider the following
figurative commutative diagram:
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4.8 Operadic mechanics

algebra
Phimcihull

Poisson algebras mechanics

l !

algebra . .
Gerstenhaber algebras «———— operadic mechanics

Concisely speaking, operadic observables are elements of a Gerstenhaber al-
gebra. If an operadic system depends on time, one can speak about operadic
dynamics. The latter may be introduced by simple and natural analogy with
the Hamiltonian dynamics by using the Gerstenhaber brackets instead of the
commutator bracketing in the Lax equation (4.2).

The time evolution of an operadic observable f is then governed by the
operadic evolution equation

illi; =[H fl==Hef—(—1)Iflfen

with the (model-dependent) operadic Hamiltonian H. The most simple as-
sumption for its degree is

’jt:m:o — [Hf]=Hef—feH

In particular,
|Hl =|fl]=0 = [H,fl][=Hof—foH
and in this case one finds the well-known evolution equation

d
G fl=Hof-foH
dt
In this way one can describe the time evolution of operations as they can
be seen as an example of the operadic variables [7]. In particular, one can

propose

Definition 4.13 (operadic Lax pair). Allow a classical dynamical system to
be described by the Hamiltonian system (4.1) An operadic Lax pair is a pair
(L, M) of operations L, M € &y, such that the Hamiltonian system (4.1) may
be represented as the operadic Lax equation

dL

=M L:=MeL- (=)Mo M1
The pair (L, M) is also called an operadic Lax representations of /for the Hamil-
tonian system (4.1).
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4.9 Evolution of binary algebras

Evidently, the degree constraints |M| = |L| = 0 give rise to the ordinary
Lax equation (4.2). If only one of the operations M, L turns out to be unary,
i.e either |M| # 0 or |L| # 0, then the Gerstenhaber brackets do not coincide
with the ordinary commutator.

Endomorphism and co-endomorphism operads are the most natural objects
for modelling operadic dynamical systems.

Surprisingly, examples are at hand. By using the Lax pairs one may extend
these to operadic area via the operadic Lax equation.

4.9 Evolution of binary algebras

Let A :={V,u} be a binary algebra with a (linear) operation zy := u(x ® y).
For simplicity assume that |M| = 0. We require that x = u(q, p) so that (u, M)
is an operadic Lax pair, i.e the Hamiltonian system (4.1) of the harmonic
oscillator may be written as the operadic Lax equation

fo=[M.pl:==Mep—peM, |u=1 [M[=0

Note that under conditions || = 1, |M| = 0 the Gerstenhaber brackets of
and M do not coincide with the ordinary commutator bracketing that is used
in the case of the ordinary Lax representations.

Let x,y € V. Assuming that |[M| =0 and |u| = 1, one has

0
Mou:Z(—l)““'MOz‘M:MOOM:MON
i=0

1
MQM:Z(—l)ilM‘MOiM:MOOM‘FMOlM
=0

=po(M®idy)+ po (idy @M)

Therefore,
d
5 (@y) = M(zy) — (Mz)y — =(My)

Let dimV = n. In a basis {e1,...,e,} of V, the structure constants Né’k of A
are defined by

ple; ® er) = M§k€i7 L k=1,....n
In particular,

< eje) = Mleser) — (Mes)ex — e5(Mer)

By denoting Me; := M/es, it follows that

M;k = ijMg - M;/‘Zk - Mlj,“;‘sv by k=1,...,n
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4.10 Operadic harmonic oscillator

4.10 Operadic harmonic oscillator

Consider the Lax pair for the harmonic oscillator:

L:pwq’M:g()fl
wq —p 2\1 0

Since the Hamiltonian of the harmonic oscillator is

1
H(g,p) = 5(1)2 + w?q?)

it is easy to check that the Lax equation

L=[M,L:=ML—-LM
is equivalent to the Hamiltonian system of the harmonic oscillator

dg OH dp  OH ,
_— = - = _— = —— = — 4.
dt  Op P 0q v (43)

If 4 is a linear algebraic operation one can use the above Hamilton equations
to obtain

du _ Oudy | ondp _ ou
dt — 9qdt = Op dt _paq
=[Mpul=Mepu—peM

o

2
w

Therefore, we get the following linear partial differential equation for u(q,p):

O 5 Ou
—_— —Ww _ = M — M [ ) —_ [ ] M 44
P9 T9p (M, 1] = (4.4)
By integrating (4.4) one can get collections of operations called the operadic
(Lax representations for/of the) harmonic oscillator. Since the general solu-
tion of a partial differential equation depends on arbitrary functions, these
representations are not uniquely determined.
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CHAPTER

5

Operadic Lax representations for harmonic oscillator in
low dimensions

Operadic Lax representations for the harmonic oscillator in certain types of 2-
and 3-dimensional binary real algebras are found. The material of this chapter
is based on [23,24,27,28].

5.1 Operadic Lax representations for harmonic os-
cillator in a 2d real Lie algebra

Operadic Lax representations for harmonic oscillator in a 2-dimensional real
Lie algebra are found. The material of this section has been published in [28].

Lemma 5.1. Let dimV = 2 and M := (M]’) = 2 (%), Then the 2-

21 0
dimensional binary operadic Lax equations read

iy = =% (43, + M12 + ), iy =% (el N%2 1151)
frio = =% (1o — pi1 + 132) R0 = % (12 + Nn )
fisy = =% (131 — piy + 132) s i3y = % (2 + M11 )
fihy = —% (39 — i — 1b1) s F3y = % (1o + piy + 1i3))

In what follows, consider only anti-commutative algebras. Then one has
Corollary 5.2. Let A be a 2-dimensional anti-commutative real algebra, i.e
1 1 2 2 1 1 2 2
Pi1 = Mg = P11 = Mo =0, p1g = —Hg1, Pl = —Hd

Then the operadic Lax equations read

-1 w,,2
Hi2 = —3H12
2 w,,1
K12 = 3 H12



5.1 Operadic Lax representations for harmonic oscillator in a 2d
real Lie algebra

Thus, one has to specify ul, and u?, as functions of the canonical variables
q and p. Define

Ky :=1\/Vv2H +p
K_:=1\/Vv2H —p

and

By ::K++K_:\/\/ﬁ+p+\/\/ﬁ—p
B_ ::K+7K,:\/\/ﬁ+pf\/\/ﬁfp

Then one has

Theorem 5.3. The formulae

M =

Mh = M%2 = M%l = M%2 =0
w0 -1 1 1
9\1 o)’ pig = —pg = B-

/J%2 = —Mgl = By

represent a 2-dimensional binary operadic Laz pair of the harmonic oscillator.
The algebra given by the above structure functions Wi, 1S @ 2-dimensional real
Lie algebra.

Proof. The operadic Lax equations read

{B — 2B,

By= YB_

That is
s (st ) = o (= 1))t (o — o) ] = -9
ok (1) + ok (=)o (o ) 23] = 98-

Multiplying both equations by 2K K_ one gets
. 2 .
[K, (ﬁ + 1) K. (ﬁ - 1)} p— "= —wB K K-

K (2 +1)+K, (-2 —1)]p+98r4= wB K, K_
Var Vor VoH

Now use the Cramer formulae. By using the relations

B? - B2 =4K,K_, (K{K_)*=q%”*

first calculate the determinants

p _quB_

A:K_(\/%+1>_K+(\/ﬁ_l) VoH _4q2w
K- (fg+1)+Ke (g 1) 22| VoA

w

Q
-

o &
g



5.2 Operadic Lax representations for harmonic oscillator in a
general 2d binary real algebra

N —wB K, K_ —qj}% g%
wB K K e V2H
K_ (\/% - 1) + K. (ﬁ - 1) wB_K,K_| V2H

Thus one obtains the Hamiltonian system of the harmonic oscillator

. o ._Ap_ 2
Q—X—P, p= A qw

and the latter is equivalent to the above operadic Lax system of the harmonic
oscillator.
The Jacobi identity for uék can be checked by direct calculation. ]

Remark 5.4. The real Lie algebra A := {V,u} found in Theorem 5.3 is
isomorphic to the real Lie algebra A := {V, 1} given by

—1 —1 —2 —2
fiig = —Hgy =1, Tijg = —fi5; =0
The isomorphism A — A can be represented by the linear map

eg =—B_e; — Byes
e2 = —Bie; + B_ e

The multiplication @ does not depend on the canonical variables.

5.2 Operadic Lax representations for harmonic os-
cillator in a general 2d binary real algebra

The operadic Lax representations for the harmonic oscillator are constructed
in a 2-dimensional real algebra. The material of this section has been partially
published in [27]. For the proof of the main theorem see [23].

Definition 5.5 (Quasi-canonical coordinates). For the harmonic oscillator,
define its quasi-canonical coordinates Ay by

A2 - A2 =2p, ALA_=uwq (5.1)

and the auxiliary functions Dy by

1
Dy =4 Ay (A1 —342)
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5.2 Operadic Lax representations for harmonic oscillator in a
general 2d binary real algebra

Remark 5.6. Note that Ay can not be simultaneously zero. The Hamiltonian
of the harmonic oscillator H = 3 (p? + w?q¢?) together with (5.1) imply via the
bi-quadratic equation the equality

A% 4+ A2 =2V2H (5.2)

By differentiating defining relations (5.1) of A1 and (5.2) with respect to ¢
one gets

ALAL+A_A_ = ﬁ(pﬁ + w?qq)
A+A+ - A_A_ == p (53)
A_A+ + A+A_ = wcj

Propose the following

Theorem 5.7. Let C, € R (v
not simultaneously zero, M =

., 8) be arbitrary real-valued parameters,

1,..
(Y7) and

€ I

-~

i (q,p) = CsA_ + CeAy + C7D_ + CsDy
ply(q,p) = Ci1Ay +CoA_ —CyDy +CsD_
pd(q,p) = —C1Ay — CoA_ — C3A, — C4A_ — C5A4 + CsA_ — C7 D4 + CsD_
pds(q,p) = —C3A_ + C4Ay — CvD_ — CsDy
131(¢,p) = Cs3A4 +CyA_ — C7rDy + CsD_
pwiy(q,p) = C1A_ — CoAy + C3A_ — C4AL + C5A_ + CgAy — C7D_ — Cs D
13,(q,p) = —C1A_ + CoAy — C7D_ — CgD,
| 132(q.p) = —C5A4 + CgA_ + CrDy — CsD

be the structure constants of the multiplication p : V@V — V in a 2-
dimensional real vector space V.. Then (u, M) is a 2-dimensional binary op-
eradic Lazx pair of the harmonic oscillator.

Proof. Denote
G = AL+ gAL
Giw/Q =Dy + 3Dy

Define the matrix I' = (Fg) by
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5.2 Operadic Lax representations for harmonic oscillator in a
general 2d binary real algebra

0 e e /e | 0 Ger o _ge?

0 Ger o _ge? 0 -G¥* G 0

0 ¢ ¢ Y ¢ s € s 0

b | oo e ¢ U el | 0
e 00— o 0 ¢t 0 —gun
¢ G0 0 a0 G/
GRP Gl gl g g g gt gl
G G g Gl g g Gt g

Then, by using Lemma 5.1, it follows that the 2-dimensional binary operadic

Lax equations read
Ol =0, a=1,...,8

Since the parameters Cpg are arbitrary, the latter constraints imply I' = 0.
Thus one has to consider the following differential equations

2 3w/2
a?=0=a6%/

We show that

S 2

p=rwra D ey L g2y

q=p

First prove (I). =: Assume that the Hamilton equations (4.3) for the

harmonic oscillator hold. Then it follows from (5.3) that

ALA, +A_ A =0 PA,A, = W
AyAL —A_A_ = - — 24, AL = —wq
AA, + AL A =wp A A, + AL A =uwp
= (A =Fi=FY-=-%4_
Ai — A2 =2

= Gimzo

and the latter system is the required system for AL.
<=: Assume that the system of differential equations Gi/ > = 0 holds. Then
it follows from (5.3) that

+w?qg . .
A_AL —ALA = w%/ﬁqq) pp+w?qq =0
AfA-+AAL = -2p — AA =-1p
A2 — A? =24 A3 — A2 =24
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5.2 Operadic Lax representations for harmonic oscillator in a
general 2d binary real algebra

pp+w?qg =0
= p=-—wA A = —w?q
—j2 a2 =

where the first relation easily follows from the Hamiltonian system (4.3).
Now prove (IT1). Differentiate the auxiliary functions Dy to get

D+ = %A+(A3_ - 3142_) + A+(A+A+ - 3A_A_)
D_=14 (342 - A%2)+A_(3A;A; —A_A.)

=—: Assume that the functions A4 satisfy the system of differential equations
Gi/ 2 = 0. Then

Dy=—%A_(A2 - 342) - M2 (AL A +34_A,)
YAL(3A2 — A%) — Y (BALA £ A_AY)

and

{D+ = A (347 — A2)=-%D_ Gl _

D= 32442 —34%)= 3vp,

<=: Assume that the functions DL satisfy the system of differential equations
Ggw/2 = 0. Then

-%D_= 7+(A2 3A2)+ A (ALAL —3A_A)
{ Sop, = A-(342 —A2) 4+ A (3A, A, —A_A)
{A+(3A3 —3A42)+ A_(—6A_A,) = —3wD_
AL (6ALA)+ A_(3A2 —3A2%) =3wD,

pA+ —wgd_ = —$D_
qu+ + pA, = wD+

To use the Cramer formulae, calculate

p —wq 2 2 2
A= =p°+w =2H

wq p ’ p q
_|=5D- —wq
Ay, =1 2 5. p ‘ 2(D —p— Diwq)
o _|p —3D-
Bi = wg  $Di|

(D+p + D_wq)
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5.3 Operadic Lax representations for harmonic oscillator in a 3d
binary anti-commutative real algebra

Note that

A A
D_p—-Diwqg= 710(3143r —A2) - TJFWQ(A%,- —342%)

A1l A
= 75(& — A2)(342 — A2%) - %A+A_(A3 —34%)
A
= T(,42+ +A%2)?=24_H
Dip+ D_wq= Ter(AQ+ —3A%) + wq(343 — A%)
Al A
= %5(141 - AL)(AL - 3A2) + —-ALA (341 - AL
A
= SR A2 —2aH
Thus,
. A
A, = Ay _ _ w?2HA_ - YA »
o AS 22135 2 — =0 O
A-=-—%x= S5 = 24+

Further study of 2-dimensional binary real algebras can be found in Ap-
pendix C.

5.3 Operadic Lax representations for harmonic os-
cillator in a 3d binary anti-commutative real al-
gebra

The material of this section is based on [24].

Lemma 5.8. Matrices

p wq 0 w 0 -1 0
L:=lwg —p 0|, M:= 5 1 0 O
0 0 1 0 0 O

give a 3-dimensional Lax representation for the harmonic oscillator.

Lemma 5.9. Let dimV = 3 and M be defined as in Lemma 5.8. Then the
3-dimensional binary operadic Laz equations read
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5.3 Operadic Lax representations for harmonic oscillator in a 3d
binary anti-commutative real algebra

(g1 = =% (151 + e+ i), g3 = =% (Bis +pa3) s fi33 = 4§33
fiio = =% (1o — pi1 + 132) » fo3 = —% (M35 — 1), 33 = Sy
fihy = =% (H5y — piy + pho)  f3y = =% (31 + 13a) , i3y = — 3y
/}%2 =-% (N%2 fig — N%l) ) N:%Q =-3 (N§2 - M:lﬂ) » Moz = %“:153
=% (i —ply = p31), i3 =—% (5 — 113), e = % (Hs + )
/}%2 = & (1o +pi — 130) s N%a = (s +ufs), A3 = % (uf —pd)
5y = % (o1 + 1T — p5e) 31 = =% (32 — 131) » 31 = —% (431 + 1)
fiso = %5 (hap +uia+431), f3o= 5 (naa+udi). ffa= 5 (0 —nd)
llg:a =0, ﬂgz = %:Ugl? ﬂ%l = _%M§2

In what follows, consider only anti-commutative real algebras. Then one
has

Corollary 5.10. Let A be a 3-dimensional anti-commutative real algebra, i.e
/’L‘ljk‘:_p“;lc‘j’ i)j)k:]-aza?)
Then the operadic Lax equations for the harmonic oscillator read
/‘@2 = _%:U'%Ql? ) ﬂiz = %N%Qﬁ . ﬂzQ =0 X
Hig = -5 (N%s + lgs) ) H13 = -5 (N%:a - N%s) e _%Mgs
fiss = % (1l — H33) s A3z = 5 (Wis+pds), i35 = Suis
Theorem 5.11. Let C, € R (v =1,...,9) be arbitrary real-valued parame-

ters, such that
Co4+C3+C2+C2+C2+C2+40 (5.4)

Let M be defined as in Lemma 5.8, and

i1 = Hyp = p33 = Hiy = 3y = 3z = piy = 3y = pi3 =0
M%s = _H:Iaz = Cop — C3wq — Cy

(i3 = —p3; = Cop — Cswq + Cy

p3 = —piz = Cowq + C3p — C4

li53 = —p3y = Cowq + C3p + C

ply = —pdy = CsA, + CoA_

pig = —p3 = CsA- — CeAy

iy = —pg = CrA4 + CsA_

piy = —piy = CrA_ — CgAy

\M:{b = —p3; = Co

(5.5)

be the structure constants of the multiplication p : V@V — V in a 3-
dimensional real vector space V.. Then (p, M) is a 3-dimensional anti-commutative
binary operadic Lax pair for the harmonic oscillator.
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5.3 Operadic Lax representations for harmonic oscillator in a 3d
binary anti-commutative real algebra

Proof. Denote

GY == p+w?q, Giﬂ = A, + LA
G¥ = w(q—p), G = A - AL

Define the matrix

0 0 0 0 0 0 0 0 0
GY  GY GY GY 0 0 0 0 0

—G¥ —G¥ G GY 0 0 0 0 0

0 0 0 0 0 0 0 0 0

P— (=] 0 0 0 0 GY* G* o 0 0
0 0 0 0 G ¢V o 0 0

0 0 0 0 0 0 G @ o

0 0 0 0 0 0o & —av* o

0 0 0 0 0 0 0 0 0

Then it follows from Corollary 5.10 that the 3-dimensional anti-commutative
binary operadic Lax equations read

Cpl% = Col'2 + C3T3 + O5T2 + C6TS + CiT7 + G =0, a=1,...,9

Since the parameters Cg (8 = 2,3,5,6,7,8) are arbitrary, not simultaneously
zero, the latter constraints imply I' = 0.
Thus we have to consider the following differential equations

w w/2

We show that
.:_2
ae =0 & {? R CE1 S
q=2>p

First note that (I) immediately follows from the definition of G¥.
For the proof of (IT) see Section 5.2 on page 61. O
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CHAPTER

6

Dynamical deformations and quantum counterparts of
3d real Lie algebras in Bianchi classification over
harmonic oscillator

In this chapter, operadic Lax representations for the harmonic oscillator are
used to construct the dynamical deformations of 3-dimensional real Lie alge-
bras in the Bianchi classification. It is shown how the energy conservation of
the harmonic oscillator is related to the Jacobi identities of the dynamically
deformed algebras. Based on this observation, it is proved that the dynamical
deformations of 3-dimensional real Lie algebras in the Bianchi classification
over the harmonic oscillator are Lie algebras. Operadic Lax representations
for the harmonic oscillator are used to construct the quantum counterparts
of 3-dimensional real Lie algebras in the Bianchi classification. The Jacobi
operators of the quantum algebras are calculated. This material has been
presented in [24,25, 31].

6.1 Initial conditions and dynamical deformations

The material of this section has been published in [24, 25].
It seems attractive to specify the coefficients C, in Theorem 5.11 by the
initial conditions

pli—o = H>  Pli—g=p0#0, dlimg=0
The latter together with (5.1) yield the initial conditions for A:
(A% +42)|,_, = 2pol po >0 po <0

(43 —A%)|,_,=2p0 <= {Ailo=%tV20 V { Ailo=0
Ay A ] =0 Afio=0 Afi—o = v —2p0



6.1 Initial conditions and dynamical deformations

In what follows assume that pg > 0 and Ay|,_, > 0. Other cases can be
treated similarly. Note that pg = v/2E, where E > 0 is the total energy of the
harmonic oscillator, H = H|;—o = E.

From (5.5) we get the following linear system:

[y = Capy — Cu, phy = Cspo — C1, fily = C5/2pg
'u%‘g = Capo + Ci, M%2 = —Cs+/2po, M%g = C3py + Cy (6.1)
3. = Ciy/2po, by = —Cs\/2p0, i3y = Cy

One can easily check that the unique solution of the latter system with respect
toC, (v=1,...,9) is

o

1(°2 _ ©° 1 (°2 . °1 1 (°2 . °1
Cl:ﬁ(“zs_/i:sl)a C2:%(#13+/~‘23)7 CS:%(M23+/~L31)

1 o (o] 1 [} 1 o
Ci=3 (M%s - M%s) , Cs = =iy, Co = — 51
1 o 1 o o

Cr = \/%/L??)v Cs = _\/T%:u%& Cy = /L:{’2

Remark 6.1. Note that the parameters C,, have to satisfy condition (5.4) to
get the operadic Lax representations.

Definition 6.2. If u # ﬁ, then the multiplication p is called a dynamical
deformation of [i (over the harmonic oscillator). If u = L, then the multipli-
cation ,Z, is called dynamically rigid.

Example 6.3 (s0(3)). As an example consider the Lie algebra so(3) with the
structure equations

[617 62] = €3, [627 63] = €1, [637 61] = €2
Thus, the nonzero structure constants are
01 _02 _03_ 01 _ 02 _ 03 o
Moz = H31 = M2 = —H3p = —Hi3 = —py; = 1

Using the above initial conditions (6.1), we get

[y =Copo—Cy =1, = Capo—C1 =0, ply=Csv/2po =0
piy = Copy + Cy = —1, ply=—Cev/2po =0, p33=Cspo+Cr=0
pis = Orv/2pg = 0, piyy = —Cs\/2po = 0, iy =Cy =1

From this linear system it is easy to see that the only nontrivial constants are
C9 = —Cy = 1. Replacing these constants into (5.5) we get

i = B i k=19 = il =0
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6.1 Initial conditions and dynamical deformations

Thus we can see that the present selection of the parameters C, (v =1,...9)
via the structure constants of so(3) does not give rise to the operadic Lax
representation for the harmonic oscillator. In a sense, we can also say that the
algebra s0(3) is dynamically rigid over the harmonic oscillator. This happens
because condition (5.4) is not satisfied.

Example 6.4 (Heisenberg algebra). As another example, consider the 3-
dimensional Heisenberg algebra h; with the structure equations

le1,e2] =e3, [e1,e3] = [e2,e3] =0

We can see that the only nonzero structure constant is /Or;’Q = 1. System (6.1)
reads

[hy = Capo — Cy =0, k= Cspp—Cy =0, ity =C5y/2po =0
133 =Copo+Cy =0, p3y=—Csy/2p0 =0, p33=Cspo+Ci1=0
piis = Cry/2pg = 0, 33 =—CsV2p0 =0, pjy=Co=1

Thus, the only nontrivial constant is Cg = 1. We conclude that
Mzk:#;k? iajak:17"'79 = :U“|h1:0

and the algebra by turns out to be dynamically rigid over the harmonic oscil-
lator as well. Again we can see that condition (5.4) is not satisfied.

Example 6.5 (s[(2)). Finally consider the Lie algebra s[(2) with the structure
equations
[e1,e2] = €3, [es,e1] =2e1, ez, e3] = 2e2

We can see that the nonzero structure constants are
o1 09 o3
P31 = Hiag = 2ft79 = 2
System (6.1) reads
°1 °1 o1
pigg = Capo — Cy =0, pzy = C3pg — C1 =2, pyp = C5¢/2po =0

iy = Copo+ C1 =0, jify = —Coy/2pg =0, ji3y = Capo + C1 = 2
[y = Cry/2po =0,  pds = —Csy/2po =0, pfy=Co=1
from which it follows that the only nontrivial constants are C5 = p%, Cy=1.

From (5.5) we get the operadic Lax system

2w

M%QZ/L%QZM??,::U%?):N%Q_l:O
2
Hy3 = iz = oo D [y = p3s = P
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6.2 Bianchi classification of 3d real Lie algebras

It turns out that the algebra {V,u} is also a Lie algebra and isomorphic to
s[(2) = {V, i}. The isomorphism

15k(a,P) Ay = Hi AG AR
is realized by the matrix

| | [(Zep+V2H) 2 0
0 0 2V2H

6.2 Bianchi classification of 3d real Lie algebras

The material of Sections 6.2-6.4 has been published in [25].
We use the Bianchi classification of the 3-dimensional real Lie algebras given
n [15]. The structure equations of the latter can be presented as follows:

[e1,ea] = —aeg + n363, [e2, €3] = nleq, les, e1] = n2es + aes

2

The values of the parameters a,n!,n? n? and the corresponding structure

constants are presented in Table 6.1.

Type o (n',n*n) iy 3y pdy by f3s pds mh 43 pd
I 0 (0,0,0) 0 0 0 0 0 0 0 0 0
11 0 (1,0,0) 0 0 0 1 0 0 0 0 0

VII 0 (1,1,0) 0 0 0 1 0 0 0 1 0
VI 0 (1,—1,0) 0 0 0 1 0 0 0 —1 0
X 0 (L,1,1) o0 o0 1 1 0 0 0 1 0

vir o (,1,-1) 0 0 -1 1 0 0 0 1 0
A% 1 (0,0,0) 0 -1 0 0 0 0 0 0 1
v 1 (©o1) o0 -1 1 0 0 0 0 0 1

VI, ¢ (0,1,1) 0 -a 1 0 0 0 0 1 a

m,,1 (1,-1) 0 -1 -1 0 0 0 0 1 1

Vigsra (0,1,-1) 0 —a -1 0 0 0 0 1 a

Table 6.1: 3d real Lie algebras in Bianchi classification. Here a > 0

The Bianchi classification is for instance used in cosmology to describe
spatially homogeneous spacetimes of dimension 3+1. In particular, the Lie
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6.3 Dynamical deformations of 3d real Lie algebras

algebra VII, is very interesting for cosmological applications, because it is
related to the Friedmann-Robertson-Walker metric. One can find more details
in [5,11,38].

6.3 Dynamical deformations of 3d real Lie algebras

By using the structure constants of the 3-dimensional real Lie algebras in the
Bianchi classification, Theorem 5.11 and relations (6.1) one can propose that
evolution of the 3-dimensional algebras real Lie algebras can be prescribed as
given in Table 6.2.

Type Mb H%z /iif2 H%s M%3 Hgs H31 M?ﬂ M%l
It 0 0 0 0 0 0 0
t ptp wq wq pP—p
Il 0 0 0 Too 2po 0 2po —2p8 0
VII 0 0 0 1 0 0 0 1 0
t P wq wq _P
VI 0 0 0 Do Po 0 Do Po 0
IX? 0 0 1 1 0 0 0 1 0
VIII 0 0 -1 1 0 0 0 1 0
" A_ —AL —A_ Ay
v v2po 2po 0 0 0 v2po 0 0 2po
t A_ —AL —A_ Ay
v o o 1 0 0 o 0 0 o
VIT! aA_ —aAy 1 P—po wg —aA_ wg P+po aAy
a V'2po 2po —2po —2po V2p0 —2po 2po V2po0
It A AL pm wa AL wq pipo Ay
a=1 2ps  2po —2po —2po V2po  —2po 2po 2po
VIt aA_ —aAy 1 P—po wq —aA_ wq p+po aA
a7l \/2po V2po —2po —2po v2po —2po 2po V2po

Table 6.2: Evolution of 3d real Lie algebras. Here pg = v2F

From this table one can see that the real Lie algebras I, VII, VIII, IX do not
give rise to the operadic Lax representation for the harmonic oscillator, because
condition (5.4) is not satisfied. In a sense, these Lie algebras are dynamically
rigid over the harmonic oscillator in the Bianchi classification. However, for
some other particular basis one can get (see Example 6.5) an operadic Lax
representation for s((2) as well (type VIII in the Bianchi classification).
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6.4 Jacobi identities and energy conservation

6.4 Jacobi identities and energy conservation

Theorem 6.6 (dynamically rigid algebras). The algebras I, VII, VIII, and
IX are dynamically rigid over the harmonic oscillator.

Proof. This is evident from Tables 6.1 and 6.2. O
Denoting u := [, |;, define the Jacobiator of the algebra elements x, y, z by

Jt(l‘; Y; Z) = [xv [y7 Z]t]t + [yv [Z, l‘]t}t + [Z, ['7;7 y]t]t
= JH (@ ys 2)er + JE (w395 2)ea + TP (x5 y; 2)es

Theorem 6.7 (dynamical Lie algebras). The algebras II*, IV, Vt VIt
Iy, VI, and VII; are Lie algebras.

a=1>
Proof. 1t follows from Theorems 6.11-6.12 in the classical case that the al-
gebras ITt, IVY, V¢ and VI? are Lie algebras. From Theorem 6.13 in the
classical case one gets that the Jacobiator coordinates for the algebras VI! 215
and VII} read

T (w59 2) = “CLEL 1AL (pg — p) — A_wq]

\/2pg
J’2 . — a(x»yrz) A_ _A 62
F(xy; 2) N [A_(po +p) — Aywq] (6.2)
J(@;y;2) =0

and for the algebra III!_, one has the same formulae with a = 1. We use
notation (z,y, z) for the scalar triple product of elements x, y, z (see page 88).
Now, by using relations (5.1) calculate:

Ay(po—p) — A_wg=Ar(po —p) — AL A%
= Ay(po—p— A2)

1 1
= A, (po - §A3 + §A% - A2>

2 2
= Ay (po — V2H)
= Ay (po — V2E)
— 4,0
=0

Here we used the fact that the Hamiltonian H is a conserved observable, i.e
2

H=Hjo=FE= % (6.3)
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6.4 Jacobi identities and energy conservation

Thus, we have proved that J! = 0. In the same way one can check that
J2=0. O

When proving Theorem 6.7 we observed how the conservation of energy
H = E implies the Jacobi identities J! = J? = 0 of the dynamically deformed
algebras. Now let us expose wice versa, i.e

Theorem 6.8. The Jacobi identities J! = J? = 0 imply conservation of
energy H = F.

Proof. By setting in (6.2) J}! = J? = 0, we obtain the following system:
A_wq+ Ayp=Aipo
Atwg—A_p=A_po

Now use defining relations (5.1) of Ay and the Cramer formulae to express
the canonical variables ¢, p via A4. First calculate

A Av ] 2
A=l = A - at = Ve £0
A Po A
Ayg = AJ_rpo _X_ = —2ALA_py = —2wqpg
A- Aipo
Sl VR A% py — A% py = —2ppo = —2wqpo
Thus we have
AV 2wqpo Po 2
wg=—2 = — o —1 = H=p2=E
1A —oV2H NGY: P/
A, 2ppo ppo o

=P _ _ = = =1 = H=p/2=E
P=A —ov2H 2H V2H Po/
Actually, the last implications are possible only at the time moments when
q # 0 and p # 0, respectively. But ¢ and p can not be simultaneously zero,
thus really H = F for all ¢. O

Thus the evolution of these algebras are generated by the harmonic oscilla-
tor, because their multiplications depend on the canonical and quasi-canonical
coordinates of the harmonic oscillator.

Remark 6.9. It is interesting to note that if we use in formulae (5.1) the
conservation of energy H = F, then Theorems 5.11 and 6.7 remain true but
we miss Theorem 6.8. Thus, the operadic Lax representations and dynamical
deformations of algebras may be useful when searching for the first integrals
of the dynamical systems.
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6.5 Quantum algebras from Bianchi classification

6.5 Quantum algebras from Bianchi classification

The material of this section has been published in [31].

By using the structure constants of the 3-dimensional real Lie algebras in
the Bianchi classification (Table 6.1), operadic Lax representations (Theorem
5.11) for the harmonic oscillator and relations (6.1) we found evolution (dy-
namical deformations) of these algebras generated by the harmonic oscillator
(see Table 6.2).

In the dynamically deformed Bianchi classification (Table 6.2) the struc-
ture functions ,ué.k depend on the canonical and quasi-canonical coordinates
of the harmonic oscillator. The quasi-canonical coordinates were defined by
constraints (5.1).

Now, by using Table 6.2, we can propose the canonically quantized counter-
parts of the 3-dimensional real Lie algebras in the Bianchi classification (Table
6.3).

Type 1 %2 A%z A:b ﬂ%g ﬂ%?) 3’3 ﬂél /12231 A%l
" 0 0 0 0 0 0 0 0 0
h ptp wq wq P—p
11 0 0 0 Too 2po 0 2po —2p8 0
VII® 0 0 0 1 0 0 0 1 0
h D wq wg _ b
VI 0 0 0 -~ 70 0 20 2 0
X" 0 0 1 1 0 0 0 1 0
VI 0 0 -1 1 0 0 0 1 0
no AL —A, A Ay
N v2po 2po 0 0 0 V'2po 0 0 2po
ho AL —A, A Ay
V" T e ! 0 0 & 0 0
VIIE, aA, —aA+ 1 P—Dpo wq —aA, wq p+po a/l+
a v2po 2po —2po —2po v2po —2po 2po 2p0
IIITL A_ —A+ -1 P—po wq —A_ wq D+po A+
a=1""/2py  2po —2p0  —2p0  \/Zpy  —2po 2po V2po
VIFL aA_ —aA+ -1 p—po wq —aA_ wq p+po aA+
a#l " /apg vV2po —2po —2po V2P0 —2po 2po V2P0

Table 6.3: Quantum algebras over the harmonic oscillator. Here py = v2E

Let us study the Jacobi identities for the quantum algebras from Table 6.3.
Denoting fi := [-,]s, define the quantum analogue of the Jacobiator — the
Jacobi operator by

Jn(@3y;2) o= [z, [y, 2laln + ¥, [z, 2]6]n + [2, (2, ylnls (6.4)
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6.5 Quantum algebras from Bianchi classification

with components j,?l(x, y;2),1=1,2,3.

Theorem 6.10 (rigid algebras). The algebras I, VII, VIII, and IX are rigid
over the quantum harmonic oscillator.

Proof. This is evident from Tables 6.1 and 6.3. O

Theorem 6.11 (quantum Lie algebras). The algebras II" and VI™ are Lie
algebras.

Proof. By direct calculations one can show that
Th(w; s 2) = Ji (w93 2) = Ji (w5952) = 0 O

Theorem 6.12 (anomalous quantum algebras of the first type). The algebras
IV and V" are non-Lie algebras.

Proof. By direct calculations (see Appendix A) one can see that

Jh(zyy:2) = 0= JE (233 2)

T (x5 2) = (z,y,2) AL, A_] O
Po
Theorem 6.13 (anomalous quantum algebras of the second type). The alge-
bras Hfle, Vlf#, and V.Uf are non-Lie algebras.

Proof. Denote R

§x = wqAsz £ (pF po)As
Then, by direct calculations (see Appendix A) one can check that for the
algebras VIC? 1 and VIIf the Jacobi operator coordinates are

_al@y2), ey 2) ¢

In(w;y;2) = s Jiwiyiz) = - -
h( ) \/ﬁ + h( ) \/ﬁ

T CL2 x,Y,z 1 1
Rtz = B0, 4
Do
and for the algebra ITI"_; one has the same formulae with a = 1. O

Thus, the quantum algebras IV " V" III" VIf#, VIIf are anomalous

a=1>
in the sense that their Jacobi identities are violated.
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Abstract

In the present thesis, some novel opportunities for introducing dynamics in
certain algebraic systems are given.

The main notions and results of the Lie theory are given. The Lie theorems,
the Lie and Maurer-Cartan equations are presented.

The canonical formalism for the Lie transformation group SO(2) is devel-
oped both in real and complex representation. This group can be seen as a
toy model of the Hamilton-Dirac mechanics with constraints. The Lagrangian
and Hamiltonian are explicitly constructed and their physical interpretation
are given. The crucial observation is that the Euler-Lagrange and Hamilton
canonical equations of SO(2) coincide with the Lie equations. It is shown
that the constraints satisfy canonical commutation relations. Consistency of
the constraints is checked.

A general method for constructing Lagrangians for the Lie transformation
groups is explained. As examples the vector Lagrangians for real plane rota-
tions and affine transformations for the real line are constructed.

The second part of the thesis deals with an operadic generalization of the
Lax differential equation, modelling the evolution of dynamical systems.

One starts with the notion of an operad and the overview of the Gersten-
haber theory. An operad is an abstract algebraic formulation of composable
functions of several variables. Operadic variables satisfy the generalized asso-
ciativity identities and their time evolution is governed by operadic evolution
equation. Based on the Gerstenhaber theory, it is explained how the operadic
dynamics may be introduced. The notion of an operadic Lax pair is given.
As an example, an operadic (representation for the) harmonic oscillator is
proposed.

Operadic Lax representations for the harmonic oscillator are constructed
in the following binary real algebras:

e general 2-dimensional algebras,
e 3-dimensional anti-commutative algebras.

Introducing operadic Lax representations can be seen as generating inte-



Abstract

grable dynamics in algebras. Thus, the results of the thesis give in addition
another connection between Hamiltonian and Lax formalisms.

Using the operadic Lax representations for the harmonic oscillator, dynam-
ical deformations are constructed for

e all 3-dimensional real Lie algebras,
e 2-dimensional real associative unital and Lie algebras.

It is shown how the energy conservation of the harmonic oscillator is related
to

e the Jacobi identities of the dynamically deformed 3-dimensional real Lie
algebras,

e the associativity identities of the dynamically deformed 2-dimensional
real associative unital algebras.

Based on this observation, it is proved that the dynamical deformations of
3-dimensional real Lie algebras in the Bianchi classification over the harmonic
oscillator are Lie algebras.

Quantum counterparts over the harmonic oscillator are constructed for all
2- and 3-dimensional real Lie algebras. Their Jacobi operators are calculated
and studied.

It is discussed how the operadic dynamics in 3-dimensional real Lie algebras
over the harmonic oscillator is related to quantization of a 3-dimensional space.
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Kokkuvote

Kéesolevas viitekirjas on esitatud moned uudsed voimalused diinaamika sis-
setoomiseks teatud tiilipi algebralistes siisteemides, mida realiseeritakse Lie ja
operaadide teooria abil.

To66 koosneb kahest osast: peatiikid 1-3 ja peatiikid 4-6. Esimene peatiikk
sisaldab Lie teooria pohimoisteid ja -tulemusi. Defineeritakse Lie rithm, Lie
algebra ja Lie teisendusrithm. Esitatakse Lie teoreemid, Lie ja Maurer-Cartani
vorrandid.

Kanooniline formalism Lie teisendusrithma SO(2) jaoks on arendatud reaal-
ses ja kompleksses esituses. Seda rithma vaadeldakse Hamilton-Diraci seos-
tega mehaanika mudelina. Ilmutatud kujul on konstrueeritud lagranziaan ja
hamiltoniaan ning on antud nende fiiiisikaline tolgendus. Osutub, et Euler-
Lagrange’i ja Hamiltoni kanoonilised vorrandid langevad Lie vorranditega
kokku. Niidatakse, et seosed rahuldavad kanoonilisi kommutatsiooniseoseid.
Kontrollitud on seoste kooskola.

Kolmandas peatiikis on selgitatud lagranziaanide konstrueerimise iildist
meetodit Lie teisendusrithmadele. Néidetena on leitud lagranziaanid tasandi
pOorete ning sirge afiinsete teisenduste rithmale.

Viitekirja teises osas tegeldakse diinaamiliste siisteemide evolutsiooni mo-
delleeriva Laxi diferentsiaalvorrandi operaadiildistusega. Seda iilesannet vaa-
deldakse esmakordselt. Klassikalises mehaanikas on teatavasti voimalik kirjel-
dada diinaamilist siisteemi Hamiltoniaaniga H = H (q, p) Hamiltoni vorrandite

dg _9H dp _ oM
dt  Op’ dt g
voi nendega ekvivalentse Laxi vorrandiga

dL
— =M, L
dt [ ?]

Seega saab mehaanilist siisteemi algebraliselt kirjeldada vektorruumi V' li-
neaarteisenduste, s.t lineaarkujutustega V' — V. Viitekirja teise osa pdhi-
ideeks on laiendada Laxi meetodit (lineaarsetele) algebralistele operatsiooni-
dele V& — V.



Kokkuvote

Alustatakse operaadi moiste sissetoomise ja iilevaatega Gerstenhaberi teoo-
riast. Operaad on kompositsioonide suhtes kinnine operatsioonide siisteem.
Operaadmuutujad rahuldavad {ildistatud assotsiatiivsustingimusi ning nende
evolutsiooni ajas kirjeldavad Laxi vorrandi operaadiildistused. Defineeritakse
Laxi operaadpaari méiste. Néitena konstrueeritakse harmoonilise ostsillaatori
operaadesitused, kus tavalise kommutaatori asemel kasutatakse Gerstenhaberi
sulgusid.

Peatiikis 5 on leitud harmoonilise ostsillaatori Laxi operaadesitused mada-
lates dimensioonides. Naidetena konstrueeritakse harmooniline operaadostsil-
laator jargmistes reaalsetes algebrates:

e kolmemd&otmelises antikommutatiivses algebras,
e iildises kahemootmelises algebras.

On ndidatud, et kahemdotmelised binaarsed reaalsed assotsiatiivsed iihikuga
algebrad siilitavad diinaamilisel deformeerimisel assotsiatiivsuse omaduse.

Kasutades harmoonilise ostsillaatori Laxi operaadesitusi, leitakse peatiikis 6
kolmemodstmeliste reaalsete Lie algebrate diinaamilised deformatsioonid. Néida-
takse, kuidas on seotud harmoonilise ostsillaatori energia jadvus diinaamiliselt
deformeeritud algebrate Jacobi identsustega. Sellest téhelepanekust lahtudes
toestatakse, et kolmemdootmeliste reaalsete Lie algebrate diinaamilised defor-
matsioonid iile harmoonilise ostsillaatori Bianchi klassifikatsioonis on Lie al-
gebrad. Kasutades Bianchi tabeli diinaamilist deformatsiooni, defineeritakse
kahe- ja kolmemootmeliste reaalsete Lie algebrate kvantanaloogid ning leitak-
se nende Jacobi operaatorid.

Selgitatakse, kuidas operaadidiinaamika kolmemd&otmelistes reaalsetes Lie
algebrates iile harmoonilise ostsillaatori on seotud kolmemodtmelise ruumi
kvantimisega.

Laxi operaadesituste sissetoomist saab vaadelda diinaamika genereerimise-
na algebrates. Kédesoleva viitekirja tulemused avavad uue aspekti Laxi forma-
lismi iildistamiseks algebralistele siisteemidele.

T66 tulemuste aprobeerimine

Imunud on 9 artiklit (vt. lk. 78). Koik need on avaldatud rahvusvahelise levi-
kuga eelretsenseeritavates teadusajakirjades (7) ja teaduskogumikes (2), mil-
lest enamik (6) on nn. ISI viljaanded, ja refereeritakse Ameerika Matemaa-
tikaithingu andmebaasides (MathScinet, Math. Rev) ning Zentralblatt Math
poolt. Umbes pooled artiklid on avaldatud fiiiisikaajakirjades. Lisaks on tule-
musi avaldatud iihe preprindina Preprint ArXiv’is ning iilevaateartiklina Eesti
Matemaatika Seltsi aastaraamatus (vt. lk. 10).

Viitekirja tulemusi on ette kantud mitmetel rahvusvahelistel erialastel kon-
verentsidel ja seminaridel (vt. k. 10-11).
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APPENDIX

A

Calculation of the Jacobi operators

In this appendix, we prove Theorems 6.12 and 6.13.
Consider a quantum algebra A" with the quantum multiplication [-, ]y,
defined by the anti-commutative structure constants (operators)

aA_

Nl o N2 . —aA+ 03, = b
Hi2 "= apss H1g - Bpo > M2 =0
Al . _ . P=pP0 2 . _gwi ~3 . —aA
H23 = =V 5pe » H23 = ﬂgpo, Hag = 200
Gl _pwd N2 = ~Ptpo a3 . ady
fiz) = —Bgp0, A3 =500 M3 = 200

with parameters 3,v,a,b € R.

Giving specific values to the real-valued parameters 3,~, a, b, one gets some
special cases of this algebra. Note that for the particular choice, the result is
five quantum algebras (see Table A.1) from Table 6.3.

Quantum algebra 16} y a b
VII? 1 1 a 1

VIE 1 1 a#1 —1
murr_, 1 1 1 1

I 0 0 1 1

v 0 0 1 0

Table A.1: Special cases of the algebra A"

These quantum algebras are used in Theorems 6.12-6.13. Let us find the
Jacobi operator (6.4) for the algebra A"



A Calculation of the Jacobi operators

First, we find the products [z, y], [y, 2]n, [2, z]n in A", Calculate

[z, yln = [z, ylhe: = fpa’y"e;

= (il (29 — 2%y") + i (2'y® — 2%y") + gz (2°9° — 2%%)) en
+ (A (='y® — 2%y") + ads (2 — 2%y") + 35 (2y® — 2°9%)) €2
+ (4, (2P — 2Pyh) + iy (21 — 2PyY) + iy (2% — 2%9?)) e

A 7 -
— ( a2p0 (z'y? — 2%y') + ﬁ;—pqo (z'y® — 2y') — 7p72p§0 (2% — z3y2)) el
+—afl+ Ly? g2yl P+po, 13 3y1) BL@(23 3,2
%o (z'y” — 2%y o (z'y’ —2’y') — 2pg Y —2%y?) | ex
A A_
+ (ﬂ?g (x1y2 _ m2y1) . \a/ﬁ (xlyii . x3y1) _ j% (x2y3 . x3y2)> €3
In the same way, one can check that
[y, 2]n = [y, 2lhei = iy’ e
A _
— ( a2p0 (y'2? —y2t) + ﬁ27q (y'2? —y2t) — 7p2pf (y?2* — y322)> el
n (‘C;;;r (yle? — y22t) — VPQ—Z)(Z:O (y'2® — yP2!) — /3;‘; (22 - y3z2)> e
A A_
+ <A§2 (y122 _y2z1) _ 02;0 (yIZS —y3zl) _ a2p0 (y2z3 —y322)) e3
and

[z, x]p = [2, :L‘]%ei = ﬂ;kzjmjei

= (\a/% (zlx2 - zle) + ﬂ;—;} (213:3 - z3x1) - 7% (zzx?’ — 23162)) e1

~

+ (‘“ﬁ% (a2 — 22at) — o 2EE0 (113 _ 31y g2 (243 z3x2)> e

2po 2po

+ (ﬂ%z (211‘2 — z2$1) _ oAy (zlac3 — z3x1) _ oA (z2x3 — 23332)> es

Now we find the first Jacobi operator coordinate:

j%(x;y; z) = [z, [y, Z]ﬁ]ili+ v, [Z?ﬂﬁ]}i_‘_ [z, [%y]ﬁ]%‘t
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A Calculation of the Jacobi operators

+ — 2y, 2]} )+u23( *ly, 2lh — 2°[y, 213)
+ [idy (yl[z,m + ﬂ%g (yl[% ]h Y3z, 2l}) + fig (y *[z, 2]} —
+ i (2 y + 2l yln) + fias (2, vl —

n h—
aA_ —aA D+ po wq
_ 2 < + (ylz2 _ y221) . : (yle _ y321) _ ﬂfpo (y223 — 322

;rc.o
N@
o
F
8,

;roa

_ .3 (‘C;fi;r (122 — y22h) _,Ypé;fo (y'2? — y32h) —ﬁ;— (yzzs_y322)>}
aA_ [ | [—aA, 1.2 2.1y . PFpo 3 3.1y AWl 23 39

—l—\/%{y( 500 (zac zac) 500 (z:c z:c) ﬁzpo(zx zx)

_y? (\572% zlxg—z2x1)+ﬁ;—m(zlx3—z3xl) ,sz—pfo (23 Z3x2)>}

P (%% Aa? = 22t) 4+ 920 (1 - 2Pat) o P T (328 239;2)) }
’52;5’0{@,2 (,ﬁ? (21a? — 221) — j% (21a? — 23a1) — \“/’;% (225 — z3x2)>
P (‘aﬂ% (1% = 22ot) =g ER (21 - st - g;p; (2% - szQ)) }
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A Calculation of the Jacobi operators

_ 2 (aA_ (w1y2 . $2y1) —I—ﬁwq (xlyfi . x3y1) . 7p — Do (a:2y3 _ x3y2)> }

V2po 2po 2po

Wi (s (1o a1y @Ay 4 g @Al 4 oy
+08—<z | i}y (' y” —z%y") — 'y —xiy) — 7y’ — Y

s d (i ) o )- o )

36“21— 1,2 2.1 wqg ;1 3 3,1 P—D0, 2 3 3,2
-z Ty —z7y )+ rYy —rY )=V \TY —TY

(%( T )= o )>}

P—Po) 2( -3 (12 2.1 af‘Lr 1,3 3,1 ad_ 2,3 3,2
=% | A (Yt —2tyT) — Ty’ —xty’) — ry” — vy

7 { (12( T T )>

s(—aAy 15 o P+Po, 13 31 Wq ;53 39
-z vy -2ty ) —y—— (vy’ -2ty ) — B (7Y — 2%y

(% ( )" | ) =030 | ))}
By parentheses removal and collecting terms, one gets
~ a 2 A A A
Jn(@;y;2) = —Q\fg ( — Bwz'y?2PGA_ — yaPy' PpA L + yatyPal pAL

Dy

— 2yt po Ay +v2?y' PpoAy + Bwaly?BGAL — Bwry'ZPGA_
+ ﬁwxzygzlrjfl_ — ﬁwx?’y?zl(jfl_ + ’yxgylz?’ﬁfhr — 'yxlyngﬁfLr
+ Pt po Ay — yatylPpo Ay — yatyP pAL + Buatyt22GA
— vy P po Ay +yaly P pAL + ’ywlygzzpofu)

Denote the scalar triple product of algebra elements x,y, z by

fL'l 132 1'3

R 1 2 3

(,y,2) =|y" ¥ y
Zl 22 23

Then
a(z,y,z)

Jh(xsy;2) = oY
0

In the same way it is possible to show, that

(Bwdd- + (5 - po) Ay )

- a(x,y,z a . -
Ji(xsy;2) = _donp2) - ) (ﬁqu+ —(P +p0)A—>
2p;

T a/2 Z,Y,z A A A A CL2 T, Y,z) 2 1
F TP W KV W S B W L R T W

Po Po
We have got the Jacobi operator coordinates jg(x;y;z), 1 = 1,2,3, for the
algebra A". Note, that the latter do not depend on the choice of b.

Thus, by definition of the algebra A" Theorems 6.12-6.13 are proved.
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APPENDIX

B

Discussion: operadic quantization of algebras VIlI,,
Il,—:, Vl,+1 over harmonic oscillator

In Section 6.5, the operadic Lax representations for the harmonic oscillator
were used to construct the quantum counterparts of 3-dimensional real Lie al-
gebras in the Bianchi classification, and the Jacobi operators of these quantum
algebras were calculated.

In this appendix, it is conjectured that the derivative algebras of the quan-
tum algebras VIL?, 11", VI! 4,1 are the Heisenberg algebra. From this
it follows that the volume element in R® has discrete values: |(z,y,2)| =
4/22n+1), (n=0,1,2,...).

The material of this appendix is presented in the preprint [29].

B.1 Quasi-canonical quantum conditions

Theorem B.1 (Poisson brackets of quasi-canonical coordinates). The quasi-
canonical coordinates A+ satisfy the relations

w

2V2H

Proof. While the first two relations in (B.1) are evident, we have only to check
the third one. Using several times the Leibniz rule for the Poisson brackets,
calculate:

{AJraAJr}:O:{Af,Af}, {A+,A,}:5;:

(B.1)

2w =2w{p,q} = {A% - A2, A, A}
={A2 A A }—{A% AL A}
= A {A% A} - {A% AA
= A {A AL A Y —{A A JAVAL



B.2 Recapitulation

=2(A% + A%){A;, A}
= 4V2H{A, A} O

In what follows, we will use the Schrédinger picture, i.e the operators ¢, p, H
and A, acting on a Hilbert space of quantum states, do not depend on time.
Denote by [-, -] the ordinary commutator bracketing. Following the canoni-
cal quantization prescription, the quantum canonical coordinates satisfy the
canonical commutation relations

while the quantum quasi-canonical coordinates would satisfy (cf. (5.1)) the
constraints

A2 + A2 =oViol, A% - A% =2p, A A +A AL =205 (B2)
and the quasi-canonical commutation relations (quasi-CCR) as follows:

P A a A A h . h w
A1, A4l =0=[A_ A ], [A4 A ]=-¢:

v ool

Remark B.2. Recall that in the classical case constraint (5.2) follows from
constraints (5.1), thus the system of these constraints is consistent. In the
quantum case the consistency of (B.2) is not yet clear. In what follows, we
assume all constraints (B.2) hold (see also Final Remark B.10).

(B.3)

B.2 Recapitulation
Theorem B.3. Let constraints (B.2) hold. Then we have:
Th(wiy;2) = alev:2) [A+ <V2E V2 ) ha
\/2p 1
Raiyiz) = “SL2 4 (Ve - Vait) + L4,
\/2p8 l
ha?(z,y,2) . 0

Jh(fc Yz ) ZT

1\3\(‘% 1\3\(‘%
[T

Proof. Using relations (B.2) and (B.3) first calculate:

€y = w@f‘i +(p— po) A
(A+A +A_ADA+ 5 (A2 A2)AL —poAy
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B.3 Operadic quantum conditions

= SR+ A AGA 4 AL - B2 Ay) - pod,
| i A AO(A2 o A2 i
= 5 { _(A+A_ — A_A+) + A_A,_(A, + A+)] _p0A+
1. -~ = 1. - A A
= 5A_ [A, A+ 7A+(Ai +A2) —poA,
? i g v A V2l - V2EA,
_ ? S+ A, (Ve - VaE)

Next calculate

1 A A 1 .
= 5(AA-+ A ANA, - 5(A?+ — A%2)A_ —pyA_
1 ~ ~ . IR JUREDN R
= S(AL A Ay + A AT —ATA + A7) — poA_
Lrs A A A A A 2 2
=3 [ +(A-Ay —ALA )+ A (AL + A )] — poA
1. o0 = 1. .
= —5A4[Ap, A]+ §A—(A2 +A%) —poA
:_EA+§+A \/ \/QEA_
1
L (\/ ~ V2E) O
1 2

Corollary B.4. Using the energy conservation law H = F we obtain

A ha(acyz) W,
Tz y; 2) = —= ——2 A_
n(T3y;2) 20 2V2E

A ha(:ny z) w s
Tawiy; 2) = +5— 2=

) = (2p0)® 2v2E

. ha*(z,y,2) w
Ty 2) = = 2
A N T5

B.3 Operadic quantum conditions

Theorem B.5. The Jacobi operator coordinates j%,j%,j% of the algebras
ViIh, IH;i 15 fo;él satisfy the commutation relations

[Jno IR = 0= [J5, Jil, s, Ji] = CJ; (B.4)
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B.3 Operadic quantum conditions

where

_ (wyr) ()’
¢i= 32 2F

Proof. Use Corollary B.4. O

Definition B.6 (derivative algebra). The anti-commutative algebra given by
structure relations (B.4) is called the derivative algebra of the algebras I11"_,
VI, VIIL.

Corollary B.7. Define the new generators in the derivative algebra:

€1 = —(x,y,z)j;?{, €2 = _(ﬁ,y, Z)j%ﬂ €3 = _(‘Tvyuz)j%

Then
[e1,e2] =0 =[e1,e3], [ea,e3] = B2e
where
]
2E 42
Proof. Calculate:
le2, €3] = (2,9, 2) (2, y, 2)[Jh, i) = =Cl@,y,2) (2,9, 2) T}, = B*er O

Conjecture B.8 (operadic quantum conditions over HO). The derivative
algebra of the algebras VII, IHle, VILZH 1s the 3-dimensional real Heisenberg
algebra.

Idea of proof. By elementary calculus one can see that the Jacobi operator of
the derivative algebra vanishes. As the only non-vanishing structure constant
is %3, one can easily see from the Bianchi classification [15] (see Table 6.1)
that 8 = 1 perfectly suits. O

Corollary B.9. For the algebras III(:LZI, VICZAU VHf we have

(z,y,2)| = 4V2(2n+1), n=0,1,2,... (B.5)

Proof. Fix the value of the free parameter £ to be the energy eigenvalue of
the quantum harmonic oscillator, i.e £ := iw(n +1/2) (n=0,1,2,...). O

Corollary B.9 implies the hypothesis that the harmonic oscillator in the
quantum Lie algebras IIIC’?:l, VI f 1 VII” induces discrete spatial coordinates.

Final remark B.10. If system of constraints (B.2) turns out to be incon-
sistent, it is believed that there may exist some other quantum constraint,
which together with two of other constraints (B.2) generates a consistent sys-
tem. With help of the latter one can try to prove, that instead of (B.5) more
sophisticated quantization of spatial coordinates will take place.
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On dynamical deformations of some 2d real algebras

In this appendix we briefly study dynamical deformations of 2-dimensional
binary real associative unital algebras and Lie algebras. The quantum coun-
terpart of the non-Abelian 2-dimensional real Lie algebra is constructed.

C.1 2-dimensional real associative unital algebras

According to the Malyshev classification [19] of the 2-dimensional algebras,
there are only two non-isomorphic 2-dimensional associative unital algebras.
Denote them by FTj 5 and 'F5° 5. Define

01 01 02 02

o u u o u 0 .

(/’L;k‘) : (Oil oi2> ) (/"L?k) = (o;l O§2) 5 75 k = 1, 2
Moy Hag Koy H2g

The structure constants of these algebras are introduced in Table C.1.

Algebra ﬁ]lk ﬁ?k
. 30
FI,O,Q <0 1)
. 0 -3 0 0
s (% 7) (0 %)

Table C.1: Structure constants of FTg , and F5°

Define a parameter




C.1 2-dimensional real associative unital algebras

Using the Lax representations of the 2-dimensional algebras given in Section
5.2 and following the procedure of dynamical deformation with initial condi-
tions described in Section 6.1, we can find the parameters C, (v =1,2,...,8)
and present these in Table C.2.

Algebra 01 CQ 03 04 05 06 07 Cg
F0.0 0 —oT 0 3T 0 —7T 0 873
'Fge, —97/2 0 37/2 0 1572 0 1273 0

Table C.2: Values of the parameters C,, for FT), and 'F§°

Now use Theorem 5.7 to get the dynamical deformations of the multiplica-
tion p of these two algebras (see Table C.3).

1o, FPHa. F5 o4

1 —7rA; + 873D, (157/2)A_ +1273D_
45 —57A_ +873D_ (—97/2)A4 —1273Dy
13y —57A_ +8713D_ (—97/2)A+ —1273D4
3o 3rA; — 873D, (=37/2)A_ —1273D_
u3 3TA_+873D_ (37/2)Ay —1273D,
12, —57A, — 873D, (97/2)A_ —1273D_
13, —57A, — 873D, (97/2)A_ —1273D_
3, ~7rA_ —873D_ (—157/2)A, +1273D

Table C.3: Dynamical deformations of FYg , and F5°

For every two algebra elements x,y define their product xy by

(zy)’ = plpaly
Associator is defined by

A(z;y;2) =x-yz—zy - 2
= Al(z;y; 2)er + A% (z;y; 2)en (C.1)

Define also five auxiliary functions 6;(po, A+) (i =1,...,5):

01:= 16(A1D_py— A_Dypo—2A{A_pj)
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C.1 2-dimensional real associative unital algebras

0o := 4(D% + D? +3A%p% — 5A%p3 — 4A_D_py — 4A; Dipyo)
03 := —A(D? + D? — 5A% p§ + 3A% p§ + 4A_D_po +4A, D po)
04 := —4(D3 + D> — 3A%pj + A% p§ +2A_D_po + 2A, Dy po)
05 := 4(D? + D? + A% p3 —3A%p§ —2A_D_py — 2A1 D po)

Lemma C.1. One can express the functions 0; (i =1,...,5) only in terms of
quasi-canonical coordinates Ay of the harmonic oscillator as follows:

01 =16A% A_py + 164, A% py — 324, A_p}§

0o = A5 + AS —8A%Ypy +8A%py + 342 A% +3A% A% + 1242 p3 — 2042 p}
03 = —A% — AS — 8A%py +8A%py — 3AZ A% — 3A% A% 4+ 20A% pf — 12A% p}
0y = —A® A6 — 4Aip0 +4A% py — 342 A4 —3A% A2 + 12A+p0 4A2_p(2)
05 = A% + AS —4A%py + 4A%py + 3A% AL + 3AT A% +4A%pE — 1242 pF
Proof. Use definition of the auxiliary functions Dy (see page 59). O

Lemma C.2. For the algebra FT( 4, one has

1
Al(zyy;2) = 658 (01 (way121 — 21Y122) + O2(@2y221 — T1Y222))
0
1
A (zyy;2) = T168 (O1(w2y221 — 21Y222) + O3(21Y122 — T2Y121))
0

and for the algebra 'F5° 5, one has

0
Al(zyy;2) = — (1 Toy121 — T1Y122) + Oa(22y221 — $1y22’2)>

64p8 2 (

9 [0
A*(zy;2) = 64p2 ( L (2oy221 — T1y222) + O5(21y122 — $2ylz1)>
Proof. Direct calculations using defining formula (C.1) in the form
Al(x5y;2) = il @y 2™ — phppd 2ly™F, i=1,2
and Lemma C.1. O

Lemma C.3. One has 0; =0 (i=1,...,5).

Proof. We use definition of quasi-canonical coordinates (5.1) of the harmonic
oscillator and the energy conservation law (6.3). First, calculate

1 1 1 1
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C.1 2-dimensional real associative unital algebras

and
1 1 1 1
po+p—Ai:§A2++5A%+§A3—5A3—A3:0

Thus,
poEp— Ai =0

Now, consider the function 64:

01 =16A% A_po + 1641 A3 py — 324, A_p?
=164, A_po (A% + A% —2pg) =
= 16A1A_po (2po — 2po)
=0
Next, calculate 65:
0o = A% + AS — 20A% p} + 8A% py + 3A% AL + 34T A% + 1242 pf — 8A%po
= (A2 + A%)° 4 4p? (342 —5A2) + 8p, (A — A%)
= (2p0)® + 4p3 (3 (A2 — A%) —242) 4+ 8py (A% — A2) (A2 + A%)
= 8pj + 4pj (6p — 2A4%) + 8po(—2p) (2po)
= 8pg (po —p — A%)
=0
Now we find 653:
05 = —AS — A5 +20A% p§ + 8A%py — 3A% AL — 3AT A2 — 12A% p§ — 8A% py
= — (A2 4+ A%)° — 4p? (342 — 5A2) +8pg (A* — A%)
= —(2po)® — 4pf (3 (A% — A%) — 24%) + 8pg (A% — A2) (A2 + A%)
= —8pj — 4pg (—6p — 24%) + 8po(—2p) (2p0)
= —8p¢ (po +p— A%)
=—8p3-0
=0
Analogously calculate 64 and 65:

—0; = A% + AS +4A% p§ — 1A% py + 3A2 AL + 3AT A% — 124% pj + 4A" po
=0y + 12pg (AL — AL +2py (A% — A%))
=0+0)
= 12pp (A2 + A2) (A2 — A2) —2py (A2 — A2))
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C.2 2-dimensional real Lie algebras

= 12po ((2p0)(2p) — 2po(2p))
= 12]00 -0
=0
Finally,
05 = AS + A% + 443 p5 — 4A po + 3AZ AL +3AL AT — 1242 pf + 4A% pg
= —03 + 12py (AT — A% +2p, (47 — A?))
=0— 12pg (A} — AL +2py (A2 — A%))
=0
=0 OJ
Theorem C.4. The dynamical deformations of I 5 and ’F§°_2 are associa-

tive algebras as well.

Proof. Lemmas C.2 and C.3. O

C.2 2-dimensional real Lie algebras

According to the Malyshev classification [19] of the 2-dimensional algebras,
there are only two non-isomorphic 2-dimensional Lie algebras, denoted by F°
and F'. The structure constants of the algebra F' are identically zero, and this
algebra is evidently dynamically rigid. So we consider only the algebra F°
(also see Section 5.1 for details on this algebra) with the structure constants

o (0 1 oy (0 O\ .

Using the Lax representations of the 2-dimensional algebras given in Section
5.2 and the procedure of dynamical deformation with initial conditions de-
scribed in Section 6.1, we can find

c ﬁ ifv=1,
Tl 0 ifre{23,...,8),

that implies the dynamical deformation F of the algebra FY:

A 0 1 A_ 0 1
(:u’jk) - /Tp() (_1 O) ’ (:u’]k) /Tpo (_1 O) y D k 17 2

Now introduce the quantum counterpart Fy of the algebra F} (see also Sec-
tion 6.5 for details):

A (0 1 A_ (0 1
1y A A2\ S
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C.2 2-dimensional real Lie algebras

Theorem C.5. The quantum counterpart F,EL) of the 2-dimensional real Lie
algebra FO is a Lie algebra.

Proof. For z,y, z in F,g , define two functions

1
(1= O T R R M e
V2po
1
Gy = (22 — aly?at oyl — ety g ety - a?ylal)
V2po

that turn out to be identically zero. By definition (6.4) of the Jacobi operator
Jr(x;y; z) and direct calculations one gets

Jh(@sy;2) = QAL + QAL AL
=0-A2 +0-A, A
— O’
Jh(zsys2) = QA2 + GA_A,
=0-A2 +0-A_A,
=0 ]
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