

Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Aleksei Lavrov 154884IAPB

OPEN-SOURCE WEB APPLICATION FOR

MANAGING EURO COIN COLLECTION

Bachelor's thesis

Supervisor: Gert Kanter

 PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Aleksei Lavrov 154884IAPB

AVATUD LÄHTEKOODIGA

EUROMÜNTIDE KOLLEKTSIONEERIMISE

VEEBIRAKENDUS

Bakalaureusetöö

Juhendaja: Gert Kanter

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Aleksei Lavrov

25.05.2020

4

Abstract

This thesis is focused on the implementation of the open-source web application for

managing euro coin collection.

There are multiple applications for managing euro coin collection and trading euro coins.

However, as it is described in the thesis, some applications are not open-source, contain

advertisements, limited features for managing coin collection and other drawbacks.

The aim of this thesis is to create such a web application which overcomes listed

drawbacks and makes it possible for a user to trade coins with other users. As a result, the

mentioned application is implemented. Validation results satisfy set goals and

requirements. Future development plans are described.

This thesis is written in English and is 41 pages long, including 7 chapters, 9 figures and

2 tables.

5

Annotatsioon

Avatud lähtekoodiga euromüntide kollektsioneerimise

veebirakendus

Antud lõputöös keskendutakse avatud lähtekoodiga euromüntide kollektsioneerimise

rakenduse arendamisele.

Eksisteerib palju erinevaid lahendusi euro müntide kollektsiooni haldamiseks. Selle töö

käigus analüüsiti olemasolevaid lahendusi ning tuldi järeldusele, et erinevates arendatud

rakendustes on puuduseid. Esiteks, mõned rakendused sisaldavad reklaame, piiratud

funktsionaalsust kollektsiooni haldamiseks, mõned ei ole kättesaadavad erinevates

seadmetes. Samuti olemasolevad rakendused ei ole avatud lähtekoodiga.

Eesmärgiks on arendada sellist euromüntide kollektsioneerimise rakendust, mis oleks

avatud lähtekoodiga, milles on kõrvaldatud teistes rakendustes eelnevalt mainitud

puudujäägid. Rakendus peab rahuldama püstitatud eesmärke ja nõudmisi. Lisaks luuakse

selline funktsionaalsus, mille abil kasutajad saaksid vahetada münte teiste kasutajate

vahel.

Saavutatud tulemus on valideeritud automaattestide ja potentsiaalsete kasutajatega

läbiviidud intervjuu abil. Valideerimine õnnestus. Peale läbiviidud intervjuud jõuti

järeldusele, et tulevikus on võimalik teha muudatusi, et nimetatud veebirakendus

paremini vastaks kasutajate nõudmistele.

Töö käigus on välja arendatud selline veebirakendus, mis rahuldab püstitatud eesmärke

ja nõudmisi. Lõputöö kokkuvõte sisaldab samuti antud veebirakenduse tulevikus

arendamise lisavõimalusi.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 41 leheküljel, 7 peatükki, 9

joonist, 2 tabelit.

6

List of abbreviations and terms

API Application programming interface

Back end Part of an application, for storing and manipulating data

CSS Cascading Style Sheets

EU European Union

Express.js Back-end web app framework for Node.js

Front end Part of an application, for interacting with graphical interface

HTML HyperText Markup Language

I/O Input/output

JavaScript Scripting language

Node.js Back-end JavaScript runtime environment

OS Operating system

PostgreSQL Relational database management system

W3C World Wide Web Consortium

XML Extensible Markup Language

7

Table of contents

1 Introduction ... 10

2 Background .. 12

2.1 Existing Solutions .. 13

3 Analysis ... 16

3.1 Requirements .. 16

3.2 Choice of Technology .. 17

3.2.1 HTML .. 18

3.2.2 CSS ... 18

3.2.3 JavaScript .. 19

3.2.4 Node.js ... 20

3.2.5 PostgreSQL .. 21

3.2.6 Express.js ... 21

4 Implementation .. 23

4.1 Front-End Development ... 23

4.2 Back-End Development .. 26

5 Results ... 30

5.1 Results Validation... 30

5.1.1 Test automation ... 30

5.1.2 User experience ... 31

6 Future Work ... 33

7 Summary .. 34

References .. 35

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 37

Appendix 2 – Application responsive layout in a device with screen size 768 x 1024

pixels ... 38

Appendix 3 – Login page ... 39

Appendix 4 – Application screenshot. Example .. 40

Appendix 5 – Survey results presented in separate charts.. 41

8

List of figures

Figure 1. HTML code example. ... 18

Figure 2. CSS code example... 19

Figure 3. JavaScript code example. .. 20

Figure 4. User authentication flow diagram. .. 24

Figure 5. Logged in environment. .. 24

Figure 6. Example. Responding to coin swap offer. .. 25

Figure 7. Example. Swap tab. Sent swap requests. .. 26

Figure 8. Entity relationship diagram. .. 28

Figure 9. Example. Database insert query. ... 29

file:///C:/Users/chain/Desktop/CrispyEuro/TALLINN%20UNIVERSITY%20OF%20TECHNOLOGY.docx%23_Toc72860257
file:///C:/Users/chain/Desktop/CrispyEuro/TALLINN%20UNIVERSITY%20OF%20TECHNOLOGY.docx%23_Toc72860258
file:///C:/Users/chain/Desktop/CrispyEuro/TALLINN%20UNIVERSITY%20OF%20TECHNOLOGY.docx%23_Toc72860259
file:///C:/Users/chain/Desktop/CrispyEuro/TALLINN%20UNIVERSITY%20OF%20TECHNOLOGY.docx%23_Toc72860265

9

List of tables

Table 1. Coin grading system used in NGC. .. 13

Table 2. Comparison of app features. ... 15

10

1 Introduction

The euro is the official currency of 19 European Union countries which collectively make

up the euro area, also known as the eurozone [1].

As there are many different euro coins in circulation and on sale, coin collecting may

become a hobby for a person. Getting various coins from circulation is easy and relatively

inexpensive. The goal of collecting coins for a hobbyist is usually to make a complete

collection of desired coins according to chosen theme of collection.

The design of different euro coins varies from country to country. Moreover, some

countries change the design of issued euro coins from time to time. Also, various

countries may issue euro coins in different denominations.

Due to the variety of issued euro coins, a coin collection may become big, so collectors

may need a way of managing their collections to have an overview of collected coins.

Moreover, as it is mentioned above, the euro is the currency of multiple countries, so there

may be many potential hobbyists who collect euro coins.

For the reasons described above, the author decided to create a web application for

managing euro coin collection.

The aim of developing a web application is to create such application that fulfils the next

main purposes:

▪ Application is accessible on various devices

▪ Application source code is open

▪ Application has no ad

▪ Possibility to add coins to collection

▪ Possibility to swap coins

Detailed requirements for the application are to be made after reviewing of existing

solutions.

11

The result of implementation of the application is required to be analyzed after conducting

a survey among potential users and performing test automation.

12

2 Background

Coin collecting is the collecting of coins or other forms of minted legal tender. Coin

collecting can be differentiated from numismatics, in that the latter is the systematic study

of currency, though the two disciplines are closely interlinked [2].

A person can collect coins by getting coins from circulation, for example, received a

change for a purchase, bought at a bank or at a coin shop.

The motivations for collecting vary from one person to another [2]. Some collect coins

on occasion when they find some interesting coin. For another it is a hobby, for example,

collecting coins by getting them from circulation and without spending much money to

get some specific coins to make a collection. Some people invest in coins by buying

collector coins which are often made of precious metals, for example, silver or gold.

There are various themes for coin collection. For example, coin collecting by issue date,

by mint marks, by series, by country or region, by nominal or by another specific theme.

As a collectible, a coin value depends on its grading. In numismatics, coins are graded by

specialists or special organizations.

The table below (see Table 1) [3] represents coin grading system by NGC (Numismatic

Guaranty Corporation) [3].

13

Abbreviation Numeric value Grade

MS 60–70 Uncirculated

AU 50, 53, 55, 58 About Uncirculated

XF 40, 45 Extremely Fine

VF 20, 25, 30, 35 Very Fine

F 12, 15 Fine

VG 8, 10 Very Good

G 4, 6 Good

AG 3 About Good

FA 2 Fair

PR 1 Poor

Table 1. Coin grading system used in NGC.

Coin collection can be stored in special albums, boxes, folders or even in a can. If a

collection consists of many coins, it can be useful to add coins to tables or apps to have

overview of collectibles.

2.1 Existing Solutions

While searching for various existing solutions for managing euro coin collection, the main

goal is to find such euro coin collecting apps that are open-source, free and accessible on

numerous devices.

Although there are plenty of such applications on Google Play available for devices with

Android operating system, it is difficult to find an application that is completely free and

contains various collection management solutions. The author chose EURik application

for this comparison because it has more than 10 000 downloads [4].

However, no applications on App Store for storing euro coin collection for devices with

iOS are chosen for this comparison because available applications are not free or are with

limited functionality.

To compare various existing solutions, two more applications were chosen for the

comparison. First, Coincollector.eu is chosen based on the result of searching on Google

with „collect euro coins“ keywords. Second, Euro-muenze.tv is chosen for comparison

because it contains a rich euro coin catalogue.

14

The table below (see Table 2) represents a comparison of coin collecting features in the

applications mentioned before.

 Application

Feature

EURik Coincollector.eu Euro-muenzen.tv

Availability

Browser - + +

Android (OP system) +1 + +

iOS (OP system) - + +

Language

English + + -

Estonian - + -

German + - +

User account

Registration - + +

Google account - + -

Facebook account - +/-2 -

Sorting coins

By countries + + +

By years + + +/-3

By nominals +/-4 +/-4 +/-3

By commemoratives + + +

By precious metals - - +/-3

By missing coins - + -

Adding coin features

Colorized coins - - +/-5

Coin sets - - +

Coin types + +/-6 +

Coin grades + + -

Setting coin value + - +

Managing coin collection

Share collection link - + -

Collected coins overview + + -

15

 Application

Feature

EURik Coincollector.eu Euro-muenzen.tv

Collected coins statistics + + -

Export collection + + -

Added coins timeline - + -

Favourite coins - + -

Wanted coins - - -

Other

Coin swaps - - -

Open-source app - - -

Ad-free - + -

1 Available only as app for Android OP system

2 Can connect a Facebook account after registration

3 Only when country / coin type is chosen

4 Other nominals unavailable, e.g., 3 euro, etc.

5 Officially issued colorized coins

6 Only German mintage coin types available

 Implemented feature

 Partly implemented feature

 Not implemented feature

Table 2. Comparison of app features.

16

3 Analysis

The given chapter represents an analysis of requirements for the application and the

technologies which are chosen to develop the application.

3.1 Requirements

Before implementing the application, it is important to define requirements to understand

what and how the application should do some actions. The requirements are split up to

functional and non-functional requirements.

Functional requirements define the facilities that are available in the system. Functional

requirements for the application mentioned before are presented in the following list:

▪ Authentication of the user when user uses application

▪ While logged in, user can change name, email, or password

▪ On the main page, coins should be displayed by coin categories

▪ Application should have the opportunity to view coins by specific country

▪ Application should have the opportunity to view coins by specific denomination

▪ Application should have the opportunity to view coins by commemorative issues

▪ Application should have the opportunity to view coins by precious metals

▪ Each coin with detailed parameters can be viewed in separate page

▪ User can add a coin to collection with specific coin parameters

▪ Added coin must be differed from other coins when displayed in some coin

category

▪ User can change added coin parameters

▪ User can delete added coin

▪ User can add wanted coin with specific parameters to wanted coins list

▪ User can change wanted coin parameters

▪ User can delete wanted coin

▪ The number of added coins should be displayed in the progress bar

▪ The overview of added coins should be available in the Statistics tab

17

▪ User can respond to another user coin swap request by composing and submitting

desired swap request

▪ User can create swap offers depending on another user’s wanted coins list

▪ User can respond to another user coin swap offer by composing (depending on

another user wanted coins list) and submitting desired swap request

▪ Offered coins in the swap request can be changed

▪ Swap request can be deleted

▪ Application should not include ads

Non-functional requirements define the quality features of the system. Non-functional

requirements for the application are presented in the following list:

▪ Application should be accessible through browser on various devices with

different OS and browsers

▪ Application should have responsive layout on smaller screens

▪ Application should be available in English language

▪ Several users may use application without impacting the performance

▪ Users, except the administrator, should not be allowed to add initial coins to the

database

▪ User data cannot be modified in the application while user is logged out

▪ User data cannot be accessed in the application while user is logged out

▪ Application should have open-source code

3.2 Choice of Technology

Several technologies are chosen to implement an application which meets the

requirements described in the previous subchapter (see chapter 3.1). The implementation

process is split up to front-end and back-end development. The app must have a user

interface which is implemented in the front-end of the app. The user interface is connected

with server and database, which is implemented in the back end of the app.

Technologies which will be used in the front-end development are HTML, JavaScript and

CSS. Technologies which will be used in the back-end development are Node.js,

PostgreSQL and Express.js. The choice and overview of these technologies is described

in the next subchapters (see chapter 3.2.1 HTML – 3.2.6 Express.js).

18

3.2.1 HTML

HTML (HyperText Markup Language) is the most basic building block of the Web. It

defines the meaning and structure of web content [5].

The first version of HTML was written by Tim Berners-Lee in 1993. Since then, there

have been many different versions of HTML. The most widely used version throughout

the 2000's was HTML 4.01, which became an official standard in December 1999 [6].

The code below (see Figure 1) represents a simple HTML document source code.

HTML5, the latest version of HTML, is used in the mentioned web application

development because it is the most common technology which is recognized by every

web browser.

3.2.2 CSS

CSS (Cascading Style Sheets) is a stylesheet language used to describe the presentation

of a document written in HTML or XML. CSS describes how elements should be

rendered on screen, on paper, in speech, or on other media [7].

CSS is among the core languages of the open web and is standardized across Web

browsers according to W3C specifications [7].

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Document title</title>

</head>

<body>

 <h1>Heading</h1>

 Some text

</body>

</html>

Figure 1. HTML code example.

19

The code below (see Figure 2) represents a simple CSS code example.

The latest CSS release, CSS 2.1 : Level 2 Revision 1, is being used while developing

mentioned application.

3.2.3 JavaScript

JavaScript (JS) is a lightweight, interpreted, or just-in-time compiled programming

language with first-class functions. It is most well-known as the scripting language for

Web pages. JavaScript is a prototype-based, multi-paradigm, single-threaded, dynamic

language, supporting object-oriented, imperative, and declarative (e.g., functional

programming) styles [8].

The standards for JavaScript are the ECMAScript Language Specification (ECMA-262)

and the ECMAScript Internationalization API specification (ECMA-402) [8].

As a multi-paradigm language, JavaScript supports event-driven, functional, and

imperative programming styles. It has application programming interfaces (APIs) for

working with text, dates, regular expressions, standard data structures, and the Document

Object Model (DOM) [9].

JavaScript is the dominant client-side scripting language of the Web, with 97% of

websites using it for this purpose. Scripts are embedded in or included from HTML

documents and interact with the DOM. All major web browsers have a built-in JavaScript

engine that executes the code on the user's device [9].

The code example below (see Figure 3) represents an extended example from Figure 1.

p {

 color: blue;

 background-color: grey;

 font-size: 16px;

 font-weight: bold;

}

Figure 2. CSS code example.

20

The latest release of JavaScript, ECMAScript 2020, is being used to develop mentioned

application.

3.2.4 Node.js

Node.js is an open-source, cross-platform, back-end JavaScript runtime environment that

runs on the V8 engine and executes JavaScript code outside a web browser [10].

Node.js can generate dynamic page content, create, modify, and delete files on the server,

collect form data, add, modify, and delete data in a database [11].

Node.js has an event-driven architecture capable of asynchronous I/O. These design

choices aim to optimize throughput and scalability in web applications with many I/O

operations, as well as for real-time Web applications [10].

Node.js was written initially by Ryan Dahl in 2009 [10].

Mentioned technology it is widely used among many companies such as Microsoft,

Netflix, PayPal, and others [10].

For the reasons given above, it is decided to use Node.js in the application back-end

development.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Document title</title>

</head>

<body>

 <p>Page title</p>

 Some text...

 <button type="button" onclick="changeText();">

 Change text</button>

 <script>

 function changeText() {

 document.querySelector(".example").innerHTML = "New text...";

 }

 </script>

</body>

</html>

Figure 3. JavaScript code example.

21

3.2.5 PostgreSQL

PostgreSQL is an enterprise-class open-source database management system. It supports

both SQL and JSON for relational and non-relational queries for extensibility and SQL

compliance [12].

PostgreSQL (initially called Postgres) was created by a computer science professor

Michael Stonebraker and his team in 1986. Today it has become one of the most popular

open-source databases [12].

Some key features [12] and advantages [12] of PostgreSQL:

▪ Compatible with various platforms using all major languages and middleware

▪ Mature Server-Side Programming Functionality

▪ Support for JSON data

▪ Can run dynamic websites and web apps as a LAMP stack option

▪ Easy to use

It is widely used by some major organizations such as Apple, IMDB and Instagram [13].

For the reasons given above, it is decided to use PostgreSQL in the back-end development

to create and manage database for the application.

3.2.6 Express.js

Express.js, or simply Express, is a back-end web application framework for Node.js,

released as free and open-source software under the MIT License. It is designed for

building web applications and APIs [14].

This list [15] below represents some features of Express.js:

▪ Write handlers for requests with different HTTP verbs at different URL paths

(routes)

▪ Integrate with "view" rendering engines to generate responses by inserting data

into templates

▪ Set common web application settings like the port to use for connecting, and the

location of templates that are used for rendering the response

22

▪ Add additional request processing "middleware" at any point within the request

handling pipeline

While Express itself is minimalist, developers have created compatible middleware

packages to address almost any web development problem [15].

Express.js was founded by TJ Holowaychuk. The first release, according to Express.js's

GitHub repository, was on the 22nd of May, 2010 [14].

Express.js is used by some organizations such as Uber [16], IBM [16], Yandex [16] and

others [16].

For the reasons give above, the author decided to use Express.js framework in the

application back-end development.

23

4 Implementation

As it was mentioned in chapter 3.1, the application for managing euro coin collection

should be accessible on various devices. For this reason, it is decided to create a web

application because a web application is supposed to be accessible on various devices

through browser connected to the Internet. So, the application data to be stored in the

database and can be accessed by sending a request from the user interface to the server.

One of the main goals is that the web application should be open-source. So, the author

decided to host the source code in public a GitHub repository [17]. For more simplicity,

it is decided to give the web application a name Crispyeuro.

The given chapter describes the implementation process and features of the application

for managing euro coin collection and includes to two subsections. The first section

describes the front-end development, and the second section describes the back-end

development.

4.1 Front-End Development

Front-end development describes the implementation of the user interface and interaction

with it on the client side.

The first step is to develop user interface by creating HTML documents assisted with CSS

to style them and with JavaScript to make HTML documents dynamic so that user could

interact with them.

When user opens web application in a browser it is required to log in or sign up.

24

Figure 4. User authentication flow diagram.

The diagram above (see Figure 4) describes user authentication process. When login is

successful, user is redirected to logged in environment (see Figure 5).

Figure 5. Logged in environment.

To view a coin, user should open desired coin category from the main page or from the

side menu and choose a country or a year. Then, user can choose and open desired coin.

When coin is opened, user can view detailed information about the chosen coin.

To add coin to the collection, user may click the button Add coin and submit desired

information about the coin, for example, grade, amount of such coins, design etc. To

create a swap offer, users may check the Swap availability checkbox near the added coin

to make the coin visible to other users in the coin page in Swap availability section.

25

To add a coin to the wanted coins list, user may click the button Want this coin in the coin

page and, if desired, create a coin swap request with desired coin details. So, this swap

request becomes visible to other users in the coin page in Swap availability section.

To respond to the coin swap request or offer, user should click on the username in the

coin page the Swap availability section in the end of the opened coin and then choose one

or more coins to offer and/or desired coin or coins.

Figure 6 below represents the process responding to the coin swap request. The first part

from the left (a) represents details of the offered coin, and the second part (b) represents

other user’s wanted coins list and user’s list of coins which can be offered for swap.

Figure 6. Example. Responding to coin swap offer.

To manage sent or received coin swap request, user should click on the Swap button in

the top navigation bar to view coin requests. In the Swap tab (see Figure 7) user can view

offered or requested coins’ details, create a conversation with request receiver, and cancel

or dismiss the coin swap request.

26

Figure 7. Example. Swap tab. Sent swap requests.

User can change offered coins in the Sent swap requests tab in desired swap request and

these changes are visible afterwards in the See previous changes subtab of the swap

request.

If coins are physically swapped, the swap request receiver may push the button Swapped

in the Received swap requests subtab in desired swap request to make the app to perform

the swapping process.

There are also implemented some other features. To change user data, user may click the

button Settings in the top navigation menu to fill in and submit the form with changes. To

see collection statistics in details, user may push the button Statistics in the side navigation

menu to see collection details.

To make the web application responsive on smaller screens, the top and side navigation

menus’ styles were changed with Flexbox layout CSS modules to be responsive

depending on the user screen size. Examples of responsive user interface can be seen in

the Appendix section.

4.2 Back-End Development

Back-end development describes the implementation of the database and server. Database

should store the information about users, coins, and swap requests. Server should interact

with user interface and the database.

27

The first step is to set up database and server environment. To set up database,

PostgreSQL should be installed and run. Then, the database can be created, using

command “CREATE DATABASE crispyeuro;” in the SQL Shell command line.

The second step is to set up server environment. Server environment is to be set up after

installing Node.js. To develop the application, there are also used some Node.js modules.

First, it is required to install node-postgres. Node-postgres is a collection of Node.js

modules for interfacing with PostgreSQL database. [18] It can be installed from the

command line with the next command: “npm istall pg”. Second, Express.js and cookie-

parser should also be installed.

When the environment is set up, the application can run from directory “crispyeuro-

server/” with the command “npm run start”. Then, the application can be accessed in a

browser by entering an address “http://127.0.0.1:8080/”. When address is entered, the file

“server.sh” is run. Mentioned file contains commands to get access to database and the

command to run the server.

To store the data about users, coins, and swap requests it is needed to create database

tables.

The diagram below (Figure 8) shows created PostgreSQL database tables and

relationships.

http://127.0.0.1:8080/

28

Figure 8. Entity relationship diagram.

If new user is added to the database, it is needed to create user session so that user could

log in. User session data is stored in the database. For this purpose, the table

“user_session” is created. When user enters username and password in the user interface

to log in, sent data is validated on the client-side and on the server-side. When validation

29

is successful, new user session is created when unique “access_key” is generated, and

user session expiration date is created, and both are added to database table

“user_session”. User session is deleted from the database after 7 days if user did not log

out. If user logs out, user session expires immediately.

To make it possible for user to view and add new coins to collection, it is needed to add

coins to the database. Coins and coin mintages are added to database by admin user. In

the “coin” table, it is required to insert at least coin country, issue year and denomination.

The code below (see Figure 9) shows the insertion of the coin data into “coin” database

table.

Coin swap requests are stored in the “swap_request” table. Users may have any coins in

any amount in a swap request. It is possible, for example, to create a swap request with

no offered coin, if such coin does not exist in the app database, but user has the coin to

offer. So, in this case, swap offer details may be mentioned in the Comment field.

Coin swap can be initialized in the application by swap request receiver. When such

database query is sent to server, PostgreSQL executes function

“swap_change_added_coins_owner” and changes users’ “user_id” vice versa, empties

comment values and makes coins not available for swap by default.

INSERT INTO coin(country, issue_year, denomination, coin_type,
diameter, thickness, mass, composition, edge)

VALUES ('Estonia', 2011, '0.01', 'ordinary', 16.25, 1.67, 2.3,
'Copper-covered steel', 'Smooth');

Figure 9. Example. Database insert query.

30

5 Results

As a result, the application development process is finished. The application meets the

main goals which were set in the beginning (see chapter 1).

However, to make sure that implemented web application satisfies set requirements (see

chapter 3.1), it is important validate achieved results.

5.1 Results Validation

Results are validated in two steps. First, automation tests are executed to make sure that

application works without mistakes. Second, feedback from potential users should be

received to know how users are satisfied with the application usage experience.

5.1.1 Test automation

To perform test automation, the author decided to use several tools.

First, Selenium. It is an open-source automation testing tool which is used for automating

tests carried out on different web-browsers. Some of the most important advantages of

Selenium are open-source availability, multi-browser support, ease of implementation,

parallel test execution [19].

Second, AVA. It is a test runner for Node.js. This tool has some useful advantages. It

allows to run tests concurrently. It boasts a simple syntax, “no implicit globals,” magic

assertions, promise and async function support, observable support, and enhanced

assertion messages [20].

Third, NYC. It is a npm package for getting statistics about the test coverage. This tool is

needed to get the information about how much of the code is covered with tests. After

execution of this tool, NYC generates the report which shows how many lines of the code

are covered with tests [21].

31

The tests, which were created to test the application, can be executed from the command

line in “crispyeuro-client” directory with the “npm t” command. When the tests are run,

the process of testing through the application graphical interface can be seen in the

browser. After test automation finished, there will be generated NYC test coverage report

which should show how many lines of the code are covered with tests.

As a result, test automation is successful, and this means that the application works as

required.

5.1.2 User experience

The second part is to validate user experience. It is important to get feedback from

potential users to know how users are satisfied with the application and get ideas to

improve the functionality and features.

To get feedback from potential users, the author decided to conduct a survey. The survey

is created by using Google Forms and consists of 6 questions.

As a result, 3 potential users were questioned, and results received. Results are presented

in separate charts in Appendix 5.

Answers to two first questions “Do you collect euro coins?” and “May a web application

be a good option for managing euro coin collection?” are received to make sure that user

is interested in collecting euro coins and managing coin collection in a web application.

The third question “Please create an account for CRISPYEURO app and add 1 coin to

collection. Please describe your experience” is asked to get feedback about viewing and

managing coin collection. Received answers are “Easy” and “Good” which means that

feedback about mentioned functionality is positive.

The fourth question “Please create a coin swap request. Please describe your experience”

is asked to get feedback about the functionality of trading coins. Received answers are

“Easy”, “Good, but swapping coins is a little bit complicated” and “Good”. To make a

conclusion from this feedback, mentioned functionality is mostly good, but it is needed

to simplify the functionality of trading coins and find a way to rearrange coin swap

options to make it more intuitive.

32

The fifth question “How are you satisfied with using CRISPYEURO web application?”

(on the scale of 0 to 10) is asked to get overall feedback about the application. Received

answers are “8”, “9” and “10”. This feedback means that the satisfaction with the

application is good. However, according to previous answers, some improvements are

needed to be made.

The last question is “Do you have any ideas for improving CRISPYEURO web

application?”. Received answers for this question are “No”, “Make swapping coins

easier” and “Watching coin tables is less comfortable on mobile version. Maybe make

smaller tables or another way or viewing coins in a coin category”. In addition to the

suggestion of making the functionality of trading coins simpler, it is suggested to

represent big coin tables in another way to make it easier to view coins on smaller screens.

To draw a conclusion from the mentioned survey results, the feedback about the

application is good, but some changes are to be made in the future. First, it is needed to

make the functionality of trading coins less complicated, make this functionality more

informative and find an opportunity to rearrange coin trading options to make it more

intuitive for users. Second, it would be good to find another way to present big coin tables

in some coin categories, for example, in Denominations coin category.

To sum up achieved validation results, the application satisfies set goals and meets set

requirements.

33

6 Future Work

The main goal of the future work is to put the application on a web hosting platform so

that users could manage their coin collection and trade coins on the server.

In addition to the implemented application, there are some possibilities to continue

application development in the future to satisfy the needs of the users.

First, implementing functionality to export coin collection to device. This possibility may

be needed to store coin collection in a separate place to share collection data with others,

or if the Internet or the application is not available for some reason.

Second, implementing user roles and give chosen users the right to insert new coins to

the database or edit desired coin data. This functionality could make the application

autonomous.

Third, implementing the option to search for a coin by uploading a coin picture. This

functionality might be useful if the user does not know which coin to search for. The coin

uploaded by the user may be found by comparing coin picture with the data in the

application database.

34

7 Summary

The aim of developing a web application was to create such application that should fulfil

the next main purposes:

▪ Application is accessible on various devices

▪ Application source code is open

▪ Application has no ad

▪ Possibility to add coins to collection

▪ Possibility to swap coins

As a result, implemented application satisfies mentioned purposes and requirements

which were listed in previous chapters.

This web application and is ready to be set up on a web hosting platform to be used by

potential users.

The success of effective coin trading relies on having as many users on the platform as

possible, so in that sense it would be best if there would only be one instance of the service

running but development of new features could be crowdsourced since it is open source.

The validation of achieved results was successful. According to the user experience

survey results, the feedback about the usability of the application is mostly good, but

some changes needed to be made.

35

References

[1] “The euro as the official currency of the euro area,” in Official website of the European

Union. [Online]. Available: https://europa.eu/european-union/about-eu/euro/euro-official-

currency-euro-area_en. Accessed on: May 24, 2021.

[2] “Coin collection,” in Wikipedia. [Online]. Available:

https://en.wikipedia.org/wiki/Coin_collecting. Accessed on: May 24, 2021.

[3] “The NGC coin grading system,” in Numismatic Guaranty Corporation. [Online].

Available: https://www.ngccoin.com/coin-grading/grading-process/ngc-grading-

process.aspx. Accessed on: May 24, 2021.

[4] SOM & SOFT, EURik: Euro coins, ver 1.9.8.5. Vitoria-Gasteiz, Spain: SOM & SOFT.

[Computer software]. Available:

https://play.google.com/store/apps/details?id=com.osumsky.eurik. Accessed on: May 24,

2021.

[5] “HTML: HyperText Markup Language,” in MDN Web Docs. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTML. Accessed on: May 24, 2021.

[6] “A Brief History of HTML,” in WebD2. [Online]. Available:

https://www.washington.edu/accesscomputing/webd2/student/unit1/module3/html_history.h

tml. Accessed on: May 24, 2021.

[7] “CSS: Cascading Style Sheets,” in MDN Web Docs. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/CSS. Accessed on: May 24, 2021.

[8] “JavaScript,” in MDN Web Docs. [Online]. Available: https://developer.mozilla.org/en-

US/docs/Web/JavaScript. Accessed on: May 24, 2021.

[9] “JavaScript,” in Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/JavaScript.

Accessed on: May 24, 2021.

[10] “Node.js,” in Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Node.js.

Accessed on: May 24, 2021.

[11] “Node.js Introduction,” in W3Schools. [Online]. Available:

https://www.w3schools.com/nodejs/nodejs_intro.asp. Accessed on: May 24, 2021.

[12] “What is PostgreSQL? Introduction, Advantages & Disadvantages,” in W3Schools.

[Online]. Available: https://www.guru99.com/introduction-postgresql.html. Accessed on:

May 24, 2021.

https://europa.eu/european-union/about-eu/euro/euro-official-currency-euro-area_en
https://europa.eu/european-union/about-eu/euro/euro-official-currency-euro-area_en
https://en.wikipedia.org/wiki/Coin_collecting
https://www.ngccoin.com/coin-grading/grading-process/ngc-grading-process.aspx
https://www.ngccoin.com/coin-grading/grading-process/ngc-grading-process.aspx
https://play.google.com/store/apps/details?id=com.osumsky.eurik
https://developer.mozilla.org/en-US/docs/Web/HTML
https://www.washington.edu/accesscomputing/webd2/student/unit1/module3/html_history.html
https://www.washington.edu/accesscomputing/webd2/student/unit1/module3/html_history.html
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Node.js
https://www.w3schools.com/nodejs/nodejs_intro.asp
https://www.guru99.com/introduction-postgresql.html

36

[13] Jakub Romanowski, “Which Major Companies Use PostgreSQL? What Do They Use It

for?,” May 19, 2020. [Web log post]. Available: https://learnsql.com/blog/companies-that-

use-postgresql-in-business/. Accessed on: May 24, 2021.

[14] “Express.js,” in Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Express.js.

Accessed on: May 24, 2021.

[15] “Express/Node introduction,” in MDN Web Docs. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction.

Accessed on: May 24, 2021.

[16] “Companies using Express in production,” in Express. [Online]. Available:

https://expressjs.com/en/resources/companies-using-express.html. Accessed on: May 24,

2021.

[17] Crispyeuro, Crispyeuro. [Computer software]. Available: https://github.com/crispyeuro.

Accessed on: May 24, 2021.

[18] Node-postgres. [Online]. Available: https://node-postgres.com/. Accessed on: May 24,

2021.

[19] Jaswant Kaur, “11 Reasons To Use Selenium for Automation Testing,” Jan 28, 2019. [Web

log post]. Available: https://dzone.com/articles/11-reasons-why-go-for-automation-testing-

using-sel. Accessed on: May 24, 2021.

[20] Testim, “AVA Testing Tutorial: A Guide to Lightweight Testing, ” Jan 7, 2019. [Web log

post]. Available: https://www.testim.io/blog/ava-testing-tutorial-a-guide-to-lightweight-

testing/. Accessed on: May 24, 2021.

[21] Dany Paredes, “Code coverage in 2 minutes with NYC, ” Aug 13, 2020. [Web log post].

Available: https://dev.to/danywalls/code-coverage-in-2-minutes-with-nyc-130m. Accessed

on: May 24, 2021.

https://learnsql.com/blog/companies-that-use-postgresql-in-business/
https://learnsql.com/blog/companies-that-use-postgresql-in-business/
https://en.wikipedia.org/wiki/Express.js
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://expressjs.com/en/resources/companies-using-express.html
https://github.com/crispyeuro
https://node-postgres.com/
https://dzone.com/articles/11-reasons-why-go-for-automation-testing-using-sel
https://dzone.com/articles/11-reasons-why-go-for-automation-testing-using-sel
https://www.testim.io/blog/ava-testing-tutorial-a-guide-to-lightweight-testing/
https://www.testim.io/blog/ava-testing-tutorial-a-guide-to-lightweight-testing/
https://dev.to/danywalls/code-coverage-in-2-minutes-with-nyc-130m

37

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Aleksei Lavrov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Open-Source Web Application for Managing Euro Coin Collection" ,

supervised by Gert Kanter

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

25.05.2020

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

38

Appendix 2 – Application responsive layout in a device with

screen size 768 x 1024 pixels

39

Appendix 3 – Login page

40

Appendix 4 – Application screenshot. Example

When specific coin category is opened, user can see coins presented in separate tables.

Coins, which are added to collection, are in green colour.

41

Appendix 5 – Survey results presented in separate charts

