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Abstract 

Main subject for this thesis is choosing a scripting engine for TTÜ (Tallinna 

Tehnikaülikool) nanosatellite. The scripting engine must provide functionality, like 

logging, system debugging, determination, and perform certain tasks, like communicating 

with the bus, file writing and reading. The engine’s language must be powerful enough 

to fill our needs, yet small and simple enough to have as small flash and RAM (Random 

Access Memory) footprint as possible. 

The scripting engine should also be implemented on an external board 

(STM32f3discovery). This way the engine’s flash footprint, RAM footprint and 

performance can be tested in our conditions. 

The outcome was that, both Pawn and My-Basic were implemented on the external board. 

The flash and RAM footprint tests along with performance tests were executed and results 

were analysed. 

This thesis is written in English and is 38 pages long, including 5 chapters, 6 figures and 

2 tables. 
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Annotatsioon 

Interpretaator TTÜ nanosatelliidil eksperimentaalsete skriptide 

käivitamiseks 

Töö põhieesmärk oli valida ja implementeerida TTÜ nanosatelliidile interpreetator, et 

oleks võimalik läbi viia eksperimente, siluda süsteemi või logida andmeid, kui satelliit on 

juba õhus. 

Esimene ja teine peatükk kirjeldas missiooni tausta. Seal on välja toodud, miks on üldse 

interpretaatorit vaja ja milleks peab see võimeline olema. 

Kolmas peatükk keskendus erinevate interpretaatorite analüüsimisele internetist leitud 

info põhjal. Iga interpretaatori tunnused ja võimalused olid välja toodud. Samuti oli ära 

märgitud mälu kasutus, kui seda infot oli saadaval. Kolmanda peatüki lõpus valiti välja 

kaks interpretaatorit üheteistkümnest, mida testiti lähemalt. 

Neljandas peatükis analüüsisiti implementeeritud interpretetaatoreid. Samuti kirjeldati 

probleeme, mis tekkisid keskkonna üles seadmisel ning interpretaatori 

implementeerimisel, ja pakuti ka neile lahendus. Interpretaatorid kõrvutati mälukasutuse 

ja jõudluse poolest. Tänu testimisele sai välja valitud lõplik interpretaator, mis antud 

projekti sobib suurepäraselt. Valituks osutus Pawn, mis võttis mälu umbes 6 korda vähem 

ja lõpetas toimingud umbes 7 korda kiiremini, kui My-Basic. 

Esialgse implementatsiooni võib leida TTÜ satelliidi gitlab hoidlast. Lisaks on esitatud 

ka näitekood, et interpretaatori uuendamine ja uute skriptide kirjutamine oleks kiirem ja 

ladusam. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 5 peatükki, 6 

joonist, 2 tabelit. 
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List of abbreviations and terms 
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1 Introduction 

1.1 About TTÜ nanosatellite project  

The project started in March 2014. Goal of TTÜ nanosatellite project is to provide 

students from TTÜ with theoretical and practical experience to work with highly rated 

technology such as a satellite [1]. This experience provides high quality work force for 

both Estonian and International tech companies [1]. 

Scientific/technological goal of this project is to test line-scan camera on a nanosatellite 

[1]. Line-scan camera has not yet been installed on a nanosatellite. 

The satellite is being built and tested in 2016 and 2017 and it is being launched at the end 

of 2017 or in 2018 [1]. 

 

Figure 1. Nanosatellite floating in space [1] 

1.2 Scripting engine 

A scripting engine can be thought of as a vehicle for implementing scripts [2] or an 

interpreter that converts script into machine code immediately [3]. “Like Java Virtual 
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Machine where Java programs run, scripting engine provides the necessary steps for a 

script to run.” [4] 

Communication speed between ground station and satellite is approximately 1 kilobyte 

per second, which is very low speed for transmitting bigger files. Also, as we can only 

establish a connection 4 times a day for 10 minutes (12 minutes, if the satellite flies 

directly over ground station), we cannot transmit files as it comes to our heads. Doing a 

firmware update when some minor changes are needed is too time consuming. 

The scripting engine solves this problem by allowing us to send a small script file, which 

for example chooses only a small fraction of research or log data and sends it down to 

ground station, saving us a lot of upload/download time. 

1.2.1 Tasks 

Our scripting engine has three main tasks: 

Read and write files – Read/write some research data, update software. In case we need 

some previously logged data (or research information) on earth, we need to read some 

previously written files and filter out the data we need. From there, the scripting engine 

can either send it directly to ground station or write the data to another file (which is 

smaller) and send it down to earth later.  

Reading from and sending messages to bus – communicating with other modules 

cannot be done directly. Bus is our satellite’s physical connection, similar to ethernet 

connection. To communicate with another module, a message must be written to the bus 

with HDLC (High-Level Data Link Control) protocol message format. The package 

contains an address, a control sum, message type and the message itself. Every module is 

constantly listening to the bus. If a package addressed to the given module is detected, it 

is received and checked. When the control sum is false, the package is returned. 

The scripting engine can write on or read from the bus through RTOS (Real Time 

Operating System). Only messages via RTOS can be read by the scripting engine. 

Because a lot of messages can be sent to RTOS that do not concern our running script, 

message types and content need to be constantly checked. RTOS does not offer thread 

safe messaging, but it can be developed on it. 
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Logging – In case we need to log some information (for example: from some sensors) for 

a short period of time, we do not want to update our satellite’s firmware. Sending a script 

that will command to do so, will be much quicker and effective. 

1.2.2 Functionality 

A scripting engine must also provide four functionalities: 

Calculations – Mostly when some parameters need to be compared. For example, we 

need the sun sensor’s readings on an exact time. These comparisons need some 

calculation power. 

Determination – This comes in forms of “if” sentences. Since communication between 

ground station and satellite is slow, we cannot send the data back and forth, but the 

scripting engine needs to be able to execute conditional statements based on information 

on other subsystems.  

System debug – on some malfunction, instructions on what to test, will come from 

scripting engine so that a report can be sent to earth. Also, analysing log files to find out 

where some problem first occurred. Depending on that data, maybe some instant fix can 

be made or else, that data can be analysed on Earth for final solution. 

Logging - Logging can only be possible when files can be written and edited. 

1.3 Goals of this work 

Primary goal of this thesis is to choose and implement a proper scripting engine for TTÜ 

satellite, so that we can perform certain actions like taking a picture, debugging system, 

logging data or updating on the fly. Also, scripting engine is responsible for some 

calculations that is necessary for satellite’s life-cycle. As a result, a functional engine with 

example scripts will be running on test board.
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2 Background and requirements 

2.1 CubeSat standard 

TTÜ satellite is built according to CubeSat standard. CubeSat is a cube-shaped satellite, 

with 10 cm sides and with weight below 1.33 kg. This standard was developed in 1999 

by California Polytechnic University and Stanford University with purpose to provide 

access to space for small objects [5]. Those objects (or satellite in our case) are launched 

as secondary payloads on launch vehicles or put in orbit by deployers on the International 

Space Station. TTÜ satellite will be launched as a secondary payload on a larger satellite. 

2.2 Subsystems 

The TTÜ satellite will have these following subsystems on board: 

Communications system – subsystem, that organizes communication between the 

satellite and ground station [6]. 

Power system – subsystem, that is responsible for generating power, distributes it 

between subsystems, charging the battery and handling emergency communications [6]. 

On-board computer – primary control system of the satellite [6], that hosts our scripting 

engine. 

Attitude determination and control system – subsystem for “determining and 

controlling satellite’s attitude (orientation) in space” [6]. 

Optical payload – responsible for handling the camera and taking photographs. 

2.3 Processors 

This chapter introduces the two main processor architecture types. Knowing, which 

processor architecture we have, is important for the development of scripting engine, 

because it may limit datatypes and their lengths. For example the program code for 
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floating point calculations is the same for both architectures in higher-level language (e.g. 

C), but generated machine code differs in memory footprint and speed. 

2.3.1 CISC 

CISC stands for "Complex Instruction Set Computing" and is a type of microprocessor 

design [7]. The CISC architecture is different from RISC (Reduced Instruction Set 

Computer), because a single instruction can execute different low-level instructions or do 

multi-step operations [8]. The logic behind was to have least number of instructions per 

task, so it would be the most efficient [9]. Later it was discovered that instead by using 

only the small, short [7] and most frequent instructions, the task where completed faster 

[9]. This discovery led to the invention of another microprocessor design, called “RISC” 

[7].  

In the early days, most of programming were done in assembly languages or machine 

code [9]. That is why CPU (Central Processing Unit) designers tried to make powerful 

and easy to use instructions, that do as much work as possible [9]. 

Most common characteristics of a CISC processor: 

• Many special purpose registers: Special registers are for interrupt handling, 

stack pointer etc. This makes the instruction set more complex, but simplifies the 

hardware design [9]. 

• Few general-purpose registers: Instruction, that operate directly on memory. 

These registers have limited space on the chip [9]. 

• Complex instruction-decoding logic: It is needed so that a single instruction can 

support numerous addressing modes [9]. 

•  “Condition code” register: The register compares the last result to zero and 

records if some errors occur [9]. 

2.3.2 RISC 

RISC stands for “Reduced Instruction Set Computer”, which is a type of microprocessor 

architecture that is designed to perform a smaller number of types of computer 

instructions [10], which increases its operating speed [11]. Because less instruction types 
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that must be performed require less transistors and circuity, which makes the 

microprocessor less complicated and faster in operation [11].  

Some systems from the 1960s and 1970s have been identified as precursors for RISC [6], 

but the first modern RISC projects came from IBM (International Business Machines), 

Stanford, and UC(University of California)-Berkeley in the late 70s and early 80s [12]. 

Most of RISC processors share these characteristics: 

• Instruction set philosophy: Because RISC processors can usually do one 

instruction per cycle due to good optimization [12], the amount of work any 

instruction requires is reduced [10]. 

• Instruction format: Simple encoding and fixed-length instructions greatly 

simplify fetch, decode and issue logic [10]. 

• Few data types in hardware 

• Identical general purpose registers:  This allows any register to be used in any 

context needed [10], which means that less different registers are needed or more 

can be used for more complex instructions. 

Some advantages that RISC provides: 

• Programming on RISC processors is easier with a smaller set of instructions, thus 

making the progress of programming faster [11]. 

• Because RISC in terms of different hardware (registers etc.) is a lot simpler (than 

CISC), it leaves more space on the microprocessor. More space gives more 

opportunities to place items on the microprocessor [11]. 

• If newly developed microprocessors aim to be less complicated, they can be 

developed and tested faster [11]. 

• Compilers for high-level programming languages compile more efficient code, 

because back when compilers where developed, a smaller instruction set could be 

used [11].  
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• As most of the instructions can be done in one clock cycle, pipelining is possible 

[13]. 

2.3.3 RISC vs CISC 

Searching a number from memory on CISC design board would be: FIND (start address, 

end address, value). This means, that there’s only one instruction. With a RISC design 

board: a cycle has to be created to read values from memory and compare them to the 

searched value. That takes about ten instructions.  

The simpler way to show the differences of a RISC processor and a CISC processor, is to 

show multiplication by both architectures. 

The main goal for CISC is to complete the given task with as few steps as possible [8]. 

Multiplying two numbers the CISC way would be using a specific prepared instruction 

(like “MULT”). As the instruction is executed, it loads the two values to two separate 

registries, multiplies the operands in the execution unit and then stores the answer to one 

of the two registries [14]. This example would only take one line of code.  

The multiplication can be achieved with one instruction:  

• MUL 1:3 4:2 [13]. 

As RISC design dictates, it uses simpler instructions that can usually be done by one clock 

cycle [13]. So for the same multiplication example, the whole task is divided into three 

smaller instructions: Load, which moves data from memory bank to a register, Prod, 

which finds the product of two operands located within the registers, and Store, which 

moves the data back to the memory bank from the register [13]. 

The multiplication on RISC is thus achieved with four instructions: 

• LOAD A, 1:3 

• LOAD B, 4:2 

• PROD A, B 

• STORE 1:3, A 
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Modern RISC processors can be much more complex than CISC processors in terms of 

electronic circuit complexity, number of instructions or the complexity of their encoding 

patterns [8]. The main characteristic, that separates them, is that RISC designs use 

uniform  instruction length for most of their instructions [8]. 

To conclude this chapter, this table is presented: Summary is presented on figure 2 

 

Figure 2. RISC vs. CISC conclusive table [13] 

 

All the testing is on external board, with RISC architecture, to minimize future work on 

porting all the code from computer to board. It must be done anyway. The sooner it is 

done, the less problems have to be faced at once. Some problems that can occur: absence 

of libraries (like stdio.h,), change of instruction set, memory shortage. 

2.4 Our satellite’s hardware architecture 

As previously mentioned, our satellite has 5 subsystems total: attitude determination and 

control system, communication, on-board computer, optics and EPS. 

For memory management, we have: 

• NAND1 flash (2 GB (Gigabyte)) – for file system. 

                                                 

 

 

1 Most suitable technology for writing and erasing data [15] 
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• NOR1 flash (32 MB (Megabyte)) – for our operating system. 

• SD2 RAM (256 MB) – Operating memory. 

Our satellite’s CPU is TMS320C6727 (seen on figure 3), a floating-point digital signal 

processor. It is the next generation of Texas Instruments’ C67x family of high-

performance processors [17]. TMS320C6727 has RISC type of architecture. Next are 

presented some of the features of this processor: 

• On-chip memory: 32KB Program Cache, 256 KB RAM, 384 KB (Kilobyte) ROM 

(Read Only Memory) [17]. 

• Scalable frequency up to 300 MHz [17]. 

 

Figure 3. TMS320C6727 board [18] 

                                                 

 

 

1 Most suitable technology for reading and random accessing data [15] 

2 A lot faster than normal RAM [16] 
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2.5 Expectations for scripting engine 

As we are using bus for communication between modules, it sets us some limitations. 

When a script sends out a message on to the bus, it does not know when or if a message 

will be returned. It must loop for some time to wait and listen to the message and maybe 

time out, if too much time will pass. 

The power usage of the scripting engine should be rather minimal. The performance of 

the scripting engine is important at that part. The more ticks it takes to run a script through, 

the more power the engine uses.  

Since a lot of log files will be created during experiments, other files should take minimal 

space. That also means that our scripting engine flash footprint should be as small as 

possible, but without cutting any functionality. 

When an emergency occurs, a rudimentary boot could be necessary, which leaves us less 

space. For example, if some part of our RAM breaks down, we must write a script to test 

it through, so that we can write a new firmware that would avoid the broken parts.
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3 Evaluation of engines 

This chapter presents 11 scripting engines/interpreters, which could possibly be used on 

our satellite.  

3.1 Pawn 

Pawn uses a C like syntax and has only one data type – the cell. A cell is most used as an 

integer, but it can be treated also as a character, a boolean, or a floating-point value. Pawn 

does not support classes or structures, but the latter can be simulated with named array 

positions [19]. 

Pawn separates its compiler from its virtual machine. The compile time check is also very 

static. Every variable must be declared and all native functions must have forward 

declarations. This makes finding errors much quicker, because you can find them on 

compiling, thus preventing many errors that may or may not appear on run-time [19]. 

Pawn has no garbage collection, which means that all allocated memory should usually 

be removed by code. Pawn is single-threaded; thus, it is not thread safe [20].  

Pawn is not functional, it is procedural, and does not support lambda functions or late 

binding, which makes it a low-level language [20]. 

Pawn’s code must be run through a compiler, which produces a binary. Produced binary 

will work on any platform that the host application uses. Thanks to that, loading time is 

reduced [20]. 

3.2 ELua 

ELua stands for Embedded Lua. Since Lua is a minimal, but very functional language, 

which makes it a very viable candidate for the embedded world. ELua syntax is a mixture 

of both Lua and C [21]. Changing hardware in the future should be no problem, since 

eLua supports many boards, hence minimal to none modifications are needed to make the 

code work [22].  
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Lua is more dynamic than Pawn and has interesting features including easier and better 

control over strings and arrays. It means that no exact size memory has to be allocated 

[23]. Lua also has garbage collection. Since Lua is more popular language, it has better 

documentation and has more problems solved by users [23] [19]. Lua offers tables as a 

complex data type [24]. Tables are associative arrays and since functions can be stored to 

variables, tables are able to imitate classes or objects [19].  

Sample of an associative array in eLua is presented on figure 4. 

a = {}     -- create a table and store its reference in `a' 

k = "x" 

a[k] = 10        -- new entry, with key="x" and value=10 

a[20] = "great"  -- new entry, with key=20 and value="great" 

print(a["x"])    --> 10 

k = 20 

print(a[k])      --> "great" 

a["x"] = a["x"] + 1     -- increments entry "x" 

print(a["x"])    --> 11 

Figure 4. Associative array in Lua language [24] 

3.3 Squirrel 

Squirrel is a dynamically typed language with C like syntax. It is a high-level object 

oriented language with support for classes and inheritance. Another great feature of 

Squirrel is that it has higher order functions [25], meaning that functions can be passed 

as function parameters and/or functions can be returned as its results[26]. This allows 

more complex procedures and gives more opportunities for programmers.  

Squirrel has already good documentation [19]. Some more features that Squirrel offers: 

tail recursion, exception handling, cooperative threads, automatic memory management 

[27]. 

3.4 Amforth 

AmForth is an extendible command interpreter for embedded use [28]. AmForth uses an 

old language called Forth, which is imperative stack-based [29]. It does not need any 

additional hardware besides the controller. It’s core system needs only 8 to 12 KB of flash 

memory, 80 bytes EEPROM (Electrically Erasable Programmable Read-Only Memory) 

and 200 bytes RAM [28].  
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Sadly it cannot be embedded into other programs [28].  

3.5 PyMite 

PyMite is a flyweight Python interpreter to execute on 8-bit and larger microcontrollers 

[30] with low resources (55 KB of flash and 8 KB (recommended) of RAM) [31]. It 

supports some of the Python 2.5 syntax and can even execute some of Python 2.5 

bytecodes. As PyMite is designed to run on 8-bit architectures, it can’t do everything 

Python can [30].  

PyMite supports integers, floats, tuples, lists, dictionaries, functions, modules, classes, 

generators, decorators and closures [31]. It can run multiple stackless green threads and 

has a mark-sweep garbage collector. Mark-sweep garbage collector differs from the 

regular by not freeing memory as it goes out of reference, but when the system starts 

running out of it [32]. PyMite virtual machine does not have a built-in compiler [31].  

The fact, that PyMite’s github doesn’t have active issues [33] is a bit suspicious at first, 

because it can mean that people aren’t using it as actively anymore, resulting worse 

support and/or solution finding. It could also mean the opposite, that most of the problems 

are fixed swiftly. 

3.6 Armpit Scheme 

Armpit Scheme is an interpreter for the Scheme language. It is designed to support 

multitasking and multiprocessing [34]. Another strongpoint for this engine, is that it 

supports many ARM (Acorn RISC Machines) based boards [34]. 

Armpit Scheme’s smallest target is the LPC2103 with flash footprint of 32 KB and RAM 

footprint of 4KB [35]. 

3.6.1 Scheme 

Scheme is a functional programming language, which follows a minimalist design 

philosophy specifying a small standard core with powerful tools for language extension 

[36]. It is similar to other members of the Lisp programming languages. Scheme’s syntax 

is based on s-expressions: “parenthesized lists in which a prefix operator is followed by 

its arguments.” [36] So, it’s programs consist of sequences of nested lists. Personally, it 
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doesn’t seem as comfortable and may be a bit too uncomfortable to learn (comparing to 

languages with more familiar syntaxes) for who-ever needs to write a script for the 

nanosatellite in Scheme.  

Scheme is a dynamically typed language, that supports first class procedures, meaning 

that procedures can be assigned as values to variables or passed as arguments to 

procedures [36]. 

3.7 PicoC 

PicoC is a tiny C interpreter. At first it was written as a script language for a UAV’s 

(Unmanned Aerial Vehicle) on-board flight system, but is also very suitable for other 

embedded applications [37]. Since the core C source code is around 3500 lines of code, 

it doesn’t have a complete implementation of ISO C, but has all the essentials [37]. 

PicoC is promoted to be really small in terms of flash footprint (only a few KB) [37]. It 

is also feature frozen to keep the size as small as possible [37]. PicoC is very well tested, 

even the tinier features (but still important) like comments, variable assignments, etc. are 

tested. 

3.8 Angelscript 

AngelScript is an extremely flexible cross-platform object oriented scripting library [38] 

with a familiar C/C++ like syntax [19]. It has a good native binding and functionality to 

create classes [19]. Good binding means that a class or a function needs to be registered 

with AngelScript virtual machine and later every script can use it [19]. Most other 

scripting engines do not provide that. The down side for this, is that each native function 

needs to be registered before the script can be compiled [19]. This makes sending pre-

compiled scripts harder [31]. 

Instead of pointers, AngelScript uses object handles, which control the lifetime of the 

object they hold [38]. The documentation refers to them as “smart pointers” [38]. 

AngelScript has no support for tables, which is a good thing, since the engine is statically 

typed and it would make using tables uncomfortable [38]. 
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AngelScript’s library is well documented and has an active online forum, which makes 

problem solving for developers a lot easier. 

3.9 TinyTCL 

TinyTCL is a smaller version of the tcl language, which can be embedded in to other 

applications [39]. It compiles to less than 60 KB [39] 

Tcl is a high-level dynamically typed language [40]. It was designed to be simple, yet 

powerful, supporting object-oriented, imperative and functional programming [40]. Tcl 

has simple syntax and is programmable, so programmers can write command procedures 

to provide more powerful commands [39]. 

TinyTCL has a thorough manual focusing on the language, but as a downside, no active 

community nor a proper homepage can be found. 

3.10 Wren 

Wren is class-based scripting language, which is suitable for embedding in applications 

[41]. Wren is small- it has no dependencies, a small library and the virtual machine 

implementation is under 4000 semicolons [41]. The code is well commented [41] and 

rather easy to understand. It is fast, because it has a compact object representation and 

because programs are compiled to bytecode [41]. 

Wren’s syntax is similar to C like languages, but is simpler and more streamlined [41]. 

Values in Wren are immutable – once created, they can’t be changed [41]. Wren has four 

main variable types – numbers, strings and booleans and ranges [41]. 

Wren has fibers, which are like threads, except they are cooperatively scheduled [41]. 

The language guide for wren is very straight-forward and easy to follow, thus making 

construction of scripts easier. Wren is a rather new language/engine, but it already has a 

lively community and a good homepage. 
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3.11 My-Basic 

My-Basic is a lightweight (memory usage less than 128KB) BASIC interpreter written in 

C. It is a dynamic typed programmic language, which supports structured grammar and 

implements prototype-based programming paradigm [42]. My-Basic can be either an 

embeddable scripting language or just a standalone interpreter [42]. Since My-Basic is 

under MIT license, it is free to use [42]. Has one of the easiest to read documentation in 

the list. 

It is said to be compatible with RTOS and MCU’s (Memory Controller Unit) [42], which 

might save much time porting it to the board. The whole interpreter is in one header and 

one source file [42], making the file system a bit cleaner and easier to follow. 

My-Basic has integers, reals, strings, booleans, usertype with array and dictionary support 

[42]. It also offers garbage collection [42]. The language seems to be easy to learn, as it 

resembles C [42]. That makes creating scripts in the future a lot easier.  

3.12 Conclusive table 

In table 1, there are theoretical flash and RAM footprints for each language. Also, there 

is info, if each engine has types, is statically or dynamically typed or whether it has 

garbage collection. 

3.13 Analysis 

Next I am going to choose most promising scripting engines to make a performance test, 

analyse the results and choose the best engine for us. Before that we need to rule out the 

rest of the choices by complexity, footprint, etc. 

The easiest to rule out is AmForth, because it is stated that it cannot be embedded into 

other programs. 
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 Has 

types 

Statically/ 

dynamically 

typed 

Flash 

footprint1 

RAM 

footprint2 

Garbage 

Collector 

Pawn No Dynamically3 10 KB 

[43] 

2 KB [43] No 

eLua Yes Dynamically 128 KB 

[43] 

32 KB Yes 

Squirrel No Dynamically 100 KB 

[43] 

100 KB 

[43] 

Yes 

amforth No - 8–12 KB 200 byte No 

PyMite No Dynamically 55 KB 8 KB Yes 

Armpit 

Scheme 

No Dynamically 32 KB 4 KB Not found 

PicoC Yes Dynamically Few KB Unknown Not found 

Angelscript Yes Statically Not found Not found Yes 

TinyTCL Yes Dynamically 60 KB Not found Not found 

wren Yes Dynamically Not found 4 KB Yes 

My-Basic Yes Dynamically Not found 8 KB Yes 

Table 1. Theoretical info about the scripting engines 

Since Scheme’s syntax is rather rare, it is a bad choice when different people want to 

write scripts for the satellite in the future. Learning an unfamiliar syntax takes 

unnecessary time, when you could write code in some more comfortable language. As 

Scheme does not provide any other great advantages, there is no point in doing a 

performance test on it. 

Because both AngelScript and Squirrel are written in C++, it is a massive work to write 

them over to C and include it in our project. Also, the theoretical flash and RAM footprints 

of Squirrel aren’t too promising. 

                                                 

 

 

1 Flash footprint as advertized on websites 

2 RAM footprint as advertized on websites 

3 Pawn has only one datatype - „cell“ 
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TinyTCL has no active community and finding information may be challenging. Hence 

it can be challenging for future developers, who need to develop scripts and/or modify 

the engine. 

ELua does seem to have a very big and active community, but finding necessary 

information was challenging. While it does support different boards for testing, 

STM32f3discovery was not one of them. For this reason, I would eliminate eLua from 

possible choices as there are still better options left. 

Wren has a good homepage, where info can be find easily, but it’s memory handling 

doesn’t seem to work with our project. Setting up the virtual machine was impossible 

thanks to this reason. 

PicoC and PyMite does seem like good options, but Pawn and My-Basic show more 

promise as they have better support and more active community. Thus, Pawn and My-

Basic were chosen for detailed investigation on satellite’s hardware.
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4 Implementation 

4.1 Environment 

Whole testing is in a makefile project in Eclipse IDE (Integrated Development 

Environment), compiled with GCC, with target ARM, using MinGW toolset. There was 

also a need to install “gdb” for Eclipse. 

4.1.1 Issues fixed during setup 

At the end of installing MinGw compiler, default path from installer was added to the 

system variables. This made compiling the project in Eclipse and in command prompt 

full of errors. The solution was found thanks to the “where” command, which pointed 

out, that the “make” command was searched from a false path.  Author fixed the setup 

and updated documentation. 

After the project was built, OpenOCD was needed to communicate with the board. The 

communication did not work. After intensive debugging the solution was to install new 

USB (Universal Serial Bus) drivers, which fixed the communication protocols. A note 

was added to the satellite project documentation. 

Before debugging, the “gdb” software was needed for eclipse for remote debugging. 

Finally, after configuring “gdb” paths, the debugging could be started. 

4.2 Performance tests on MCU 

To finally choose the engine for our satellite, further testing is needed on MCU. The 

engines will be compared on 3 parameters: 

• Flash footprint 

• Memory footprint 

• Script running speed (similar scripts will be made for all engines) 



30 

The MCU for testing is STM32f3, presented on figure 5. 

 

Figure 5. STM32f3 board [44] 

4.2.1 Technical issues 

Setting up both engines presented their own issues: 

• Absence of libraries – many engines needed syscalls.c. Since these functions 

aren’t necessarily needed in this project, dummy implementations were provided 

to please the compiler. Author used dummy implementation of Joe Ferner [45]. 

• File input/output – Some of the engines only provided the ability to read the script 

from a file. Because the file system is yet to be developed for this project, it was 

impossible. Since the file system is a larger piece of this project, it went out of my 

scope. The solution was to write custom functions to parse script from a string 
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variable instead of an actual file. For this, the binary code had to be converted to 

a string array with bin2header application [46]. 

• Memory handling – As the native functions for the engines were registered, the 

system ran out of memory resulting a hard fault exception. This problem happened 

because FreeRTOS has a bit different memory handling, so using FreeRTOS 

malloc and free functions solved this issue. 

4.2.2 Flash footprint 

Flash footprint for the engines can be obtained by observing the project’s .map file, 

created by the compiler. To separate RAM memory addresses from flash memory 

addresses, we can use the first three characters. From the .map file, the engine’s functions 

memory addresses (not starting with 0x2…) had to be looked, starting with text, rodata, 

ARM attributes. Adding the differences, it gives us the exact flash footprint. 

4.2.2.1 Pawn 

The first memory address in text section for pawn is 0x08000724 and because all of the 

pawn’s addresses are in succession, we have to watch the next address, which is not for 

pawn. This address is 0x08006658. After the subtraction, the result is 24372 B ~ 23.8 KB. 

The next section is rodata, resulting 2648 B ~ 2.6 KB (0x0800dea4 to 0x0800e8fc). ARM 

attributes memory addresses go from 0x00000113 to 0x000001ef resulting to 220 B. 

Total flash footprint is close to 26.6 KB. 

4.2.2.2 My-Basic 

My-Basic’s first text entry is 0x08000702 and the next address not reserved for my-basic 

starts at 0x080297ac. The subtraction and conversion to decimal results 168106 B. The 

rodata section starts from 0x080390ec and ends at 0x0803c3bc resulting 13008 B. ARM 

attributes memory addresses start at 0x0000014a and end at 0x00000181 resulting 37 B. 

My-Basic has a shocking 176.9 KB flash footprint. 

4.2.3 RAM footprint 

RAM footprint can also be obtained by observing the project’s .map file, but this time 

looking at the memory address starting with “0x2…”. Same as before, adding up the 

differences, it gives us the RAM footprint. 
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4.2.3.1 Pawn 

Running the script in the abstract machine took less than 128 B of memory, as this is 

usually the minimum for a task to run, but in our case, it was also the maximum. The 

binary script variable in header file took space from 0x20000138 to 0x20000908 resulting 

in 2000 B. This won’t be counted as RAM footprint, because later the task can read files. 

4.2.3.2 My-Basic 

The bss memory section starts at 0x20002afc and ends at 0x20002b08 resulting 12 B. 

4.2.4 Performance test 

For the performance test, a script should be created for both engines, containing some 

simple calculations (Fibonacci calculations in our case), because calculations must be 

made in every script, and some string manipulation, which is needed for communicating 

with the bus. 

Next the time will be measured in MCU ticks1, obtained from RTOS API (Application 

Programming Interface). The ticks are asked before and after running the script. 

Subtracting the starting tick number from the tick number after the script was ran, the 

performance is retrieved. 

4.2.4.1 Pawn 

Pawn’s abstract machine completed the code in 9 ticks. The code for Pawn’s performance 

test is presented on figure 6. It consists of Fibonacci calculations and simple string 

manipulations, where needed lines are extracted from a bigger string. This would be a 

normal case on the satellite as some lines from the log files interest us more than others. 

                                                 

 

 

1 An unit for measuring internal system time [47] 
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#include <string> 

 

main() 

    { 

    new string[200] 

    string = ''line 1\nline 2\nline 3\nline 4\nline 5\nline 6\nline 7\nline 
8\n'' 

    new wantedLines[3] = [0, 2, 5] 

    new v = 40 

    new wantedLinesLength = strlen(getWantedLines(string, wantedLines, 3)) 

    if (v > 0) 

        return fibonacci(v) 

    else 

        return wantedLinesLength 

    } 

 

fibonacci(n) 

    { 

    assert n > 0 

 

    new a = 0, b = 1 

    for (new i = 2; i < n; i++) 

        { 

        new c = a + b 

        a = b 

        b = c 

        } 

    return a + b 

    } 

 

getWantedLines(str[], neededLines[], numOfNeededLines) 

 { 

 new wantedLines[200], tempStr[200] 

 new currentLine = 0, from = 0, to = 0 

 for (new i = 0; i < numOfNeededLines;) 

 { 

  to = strfind(str, ''\n'', false, from) 

  if(currentLine == neededLines[i]) { 

   strmid(tempStr, str, from, to + 1, sizeof tempStr) 

   strcat(wantedLines, tempStr) 

   i++; 

  } 

  from = to + 1 

  currentLine += 1 

 } 

 return wantedLines 

 } 

Figure 6. Testing script for Pawn 
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4.2.4.2 My-Basic 

My-Basic had a shocking initialization time. Just starting up the engine, loading a script, 

executing it and finally shutting the engine down, took 69 ticks. The loaded script was 

just 8 characters long comment. 

4.2.5 Conclusive table 

To conclude the testing table 2 is presented. 

 Flash footprint RAM footprint Performance 

Pawn 26.6 KB Less than 128 B 9 ticks 

My-Basic 176.9 KB Less than 128 B 69 ticks 

Table 2. Info about tested scripting engines 

4.3 Our choice 

Pawn has much smaller flash footprint, a bit tinier RAM footprint and it performs a lot 

better than My-Basic. It also has been successfully implemented on nanosatellites before 

like ESTCube. My-Basic took much time to be initialised, compared to pawn, which 

almost took no time at all. Time in this case is important, as the more time is consumed, 

the more power is consumed for the purpose.
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5 Summary 

Primary goal of this thesis was to choose and implement a scripting engine for TTÜ 

satellite, so that we could perform certain actions like taking a picture, debugging system, 

logging data or updating on the fly. 

The first and second chapter of the thesis described the background of the mission. It was 

explained why a scripting engine is needed in the first place and what our engine must be 

capable of. In addition, it introduced the CubeSat standard and the satellite’s other 

subsystems.  

The third chapter focused on analysing different engines by the information found on 

web. Features for every language were brought out as well as the theoretical flash and 

RAM footprint.  

The chapter also contained a conclusive table, where the languages were listed with some 

parameters like, whether it has types, if the language is statically or dynamically typed, 

its flash and RAM footprint and whether it has garbage collection. 

At the end of the third chapter, two scripting engines were chosen amongst eleven for 

further testing.   

The fourth chapter of the thesis was about implementing the scripting engines chosen in 

the third chapter. Also, problems faced while setting up the environment and while 

implementing the engine were introduced with solutions.  

Two engines were given a flash footprint, RAM footprint and performance tests to 

compare them and to finally choose the most suitable engine for TTÜ satellite. The chosen 

scripting engine was Pawn, which was roughly 6 times smaller flash footprint and 

performed about 7 times faster than my-basic. 

The implementation can be found on TTÜ satellites gitlab repository. In addition, an 

example script was presented so that upgrading the engine and writing new scripts could 

go faster and smoother. 
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