
Self-Diagnosis in Digital Systems

SERGEI KOSTIN

P R E S SP R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C71

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

This dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Computer and Systems Engineering on February 14, 2012.

Supervisor: Prof. Raimund-Johannes Ubar
 Department of Computer Engineering, TUT

Opponents: Prof. Einar Aas

Norwegian University of Science and Technology, Norway

Prof. Vladimir Hahanov
Kharkov National University of Radioelectronics, Ukraine

Defence of the thesis: March 28, 2012

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and
achievement, submitted for the doctoral degree at Tallinn University of Technology
has not been submitted for any academic degree.

/Sergei Kostin/

Copyright: Sergei Kostin, 2012
ISSN 1406-4731
ISBN 978-9949-23-250-5 (publication)
ISBN 978-9949-23-251-2 (PDF)

INFORMAATIKA JA SÜSTEEMITEHNIKA C71

Isediagnoosivad digitaalsüsteemid

SERGEI KOSTIN

To my family

7

Abstract

This thesis addresses issues in the field of combinational logic diagnosis. The
presented work is focused on accelerating diagnostic procedure and improving
accuracy of identifying possible defect locations in digital systems that employ
built-in self-test (BIST) facilities. Embedded diagnosis mechanisms inherent in
very-large-scale integration (VLSI) devices have become extremely important in
ensuring reasonable quality and reliability as well as enabling to perform accurate
diagnosis within feasible time in these constantly increasing in complexity devices.
Continuous decreasing dimensions of the transistors and interconnecting wires
followed by more sophisticated fabrication techniques of manufacturing integrated
circuits (ICs) has expanded the variety of possible defects causing a circuit to fail.
To address the difficulties of handling these newly introduced defects, a fault
model free approach to fault diagnosis has been proposed in the thesis.

The main contributions of the thesis are: new methods for optimized fault
diagnosis applicable in BIST environments, and hierarchical approach of fault
diagnosis in combinational networks based on the fault model free diagnosis
concept.

A novel bisection procedure for fault location is developed in which the
diagnostic weight of test patterns is taken into account. Another novelty is the
sequential nature of the procedure which allows pruning the search space and also
to stop when applicable diagnostic accuracy is achieved. Moreover, methods for
partitioning a single signature analyzer into a set of multiple signature analyzers to
improve the diagnostic resolution are developed. The ultimate goal of the proposed
techniques is to optimize diagnostic procedure by minimizing diagnosis application
time at the accepted diagnostic resolution.

The proposed hierarchical approach for fault diagnosis combines two opposite
and conflicting trends: high-level modeling and defect-orientation. The new
approach integrates cause-effect and effect-cause reasoning techniques that help to
cope with the growing complexities of digital circuits and to diagnose a failing
circuit accurately without using fault models.

8

As a result of the research, a multifunctional e-learning environment to support
CAD master courses for learning, getting hands-on experience, and carrying out
laboratory research in developing optimized procedures for locating faults in
complex electronic systems has been developed.

9

Kokkuvõte

Käesolev väitekiri on pühendatud digitaalsüsteemide diagnoosi probleemide
uurimisele. Töö on fokusseeritud diagnoosi kiiruse tõstmisele ja täpsuse
parandamisele defektide lokaliseerimisel isetestivates digitaalsüsteemides.
Süsteemide sisse ehitatud diagnoosivahendid on muutunud äärmiselt oluliseks
komponentideks süsteemide töökindluse ja usaldatavuse tagamisel, mille puhul
põhikriteeriumiks on rikete avastamine ja diagnoosimine võimalikult täpselt ja
kiiresti üha kasvava süsteemide keerukuse tingimustes. Transistorskeemide ja
nendevaheliste ühenduste dimensioonide pidev kahanemine ning kiipide
valmistamistehnoloogiate üha keerukamaks muutumine on kaasa toonud
füüsikaliste defektide põhjuste ja iseloomu mitmekesisuse kasvu, mis omakorda
teeb üha raskemaks adekvaatselt defekte ja rikkeid modelleerida. Nimetatud
põhjusel ja tehnoloogia poolt püstitatud väljakutsega hakkama saamiseks on
käesolevas töös rakendatud uut paradigmat – täpset rikkemudelit mitte vajavat
rikete diagnoosi.

Väitekirja põhitulemusteks on: uued meetodid rikete diagnoosi optimeerimiseks
isetestivates süsteemides ja hierarhiline rikete diagnoosi kontseptsioon, mis ei vaja
rikete mudelite kasutamist.

Töötati välja uudne testide bisektsioneerimismeetod rikete diagnoosimiseks,
mis põhineb rikete „kaalude“ mõiste sisseviimisel ja kasutamisel. Uut tüüpi
sekventsiaalse diagnoosiprotseduuri põhimõte võimaldab efektiivselt juhtida
diagnostikaprotsesse, saavutamaks parimat diagnoositäpsust etteantud ajaliste
piirangute juures. Diagnoosi resolutsiooni tõstmiseks on välja töötatud mitme
signatuuranalüsaatori kasutamisel põhinev aparatuurne meetod ja algoritmiline
lahendus. Uudsete lahenduste üldeesmärgiks on tagada võimalus optimeerida
diagnostikaprotseduure, kus kriteeriumiteks on ühelt poolt diagnoosiks kulutatav
aeg ja teiselt poolt diagnoosi täpsus.

Uus hierarhiline diagnoosikontseptsioon ühendab kaks teineteisele
vasturääkivat trendi: kõrgtasemel modelleerimist ja defektidele orienteeritust. See
põhineb kahe klassikalise strateegia – põhjus-tagajärg ja tagajärg-põhjus
integreerimisel, mis võimaldab ületada keerukusest tingitud raskusi ja realiseerida
veamudeli vaba diagnoosi põhimõtet.

10

Töö käigus loodud prototüüplahenduste baasil on rajatud e-õppe keskkond
digitaaldisaini kursuste toetamiseks ja eksperimenteerimisvõimaluste andmiseks
tudengitele keerukate süsteemide rikete diagnoosimisel ja kõrvaldamisel.

11

Acknowledgements

I would like to appreciate everyone who has supported and advised me during
my Ph.D. studies.

First of all, I would like to express sincere gratitude to my supervisor
Prof. Raimund-Johannes Ubar for bringing me to the world of science and
research. Thanks to his comprehensive guidance and great inspiration during my
Ph.D. studies I have been encouraged to complete this thesis. I am also grateful to
Dr. Jaan Raik for giving valuable advices and comments during the research work
behind this thesis.

Special thanks go to Dr. Margus Kruus, the head of the Department of
Computer Engineering for creating favorable conditions for productive work and
for his readiness to help with any administrative issues.

Furthermore, I would like to thank Anton Tsertov, Anton Tsepurov and
Igor Aleksejev for being together in these eventful student years and for creating
friendly working atmosphere in the room IT-231. I would like also to express my
appreciation to Dr. Artur Jutman, Dr. Sergei Devadze, Dr. Maksim Jenihhin and all
other colleagues from the Department of Computer Engineering not mentioned
here.

Moreover, I would like to acknowledge the organizations that have supported
my Ph.D. studies: Tallinn University of Technology, Centre of Research
Excellence in Dependable Embedded Systems (CREDES), Centre for Integrated
Electronic Systems and Biomedical Engineering (CEBE), National Graduate
School in Information and Communication Technologies (IKTDK) and Estonian
IT Foundation (EITSA).

Finally, I would like to express my gratitude to my family and especially to my
mother who was supporting and motivating me all these years.

Thank you all!

Sergei Kostin

Tallinn, January 2012

12

13

List of Publications

Optimized fault diagnosis in the BIST environment

• R. Ubar, S. Kostin, J. Raik, ”Embedded fault diagnosis in digital systems
with BIST”. Embedded Hardware Design (Microprocessors and
Microsystems), 2008, 32(5 - 6), pp. 279 - 287.

• R. Ubar, S. Kostin, J. Raik, ”Embedded Diagnosis in Digital Systems”,
Proc. of 26th International Conference on Microelectronics (MIEL’ 2008),
Nis, Serbia, May, 2008, pp. 421 - 424.

• R. Ubar, S. Kostin, J. Raik, “Built-In Self Diagnosis with Multiple
Signature Analyzers in Digital Systems”, Proc. of 9th IEEE Latin American
Test Workshop (LATW’ 2008), Puebla, Mexico, February, 2008,
pp. 29 - 34.

• S. Kostin, “Fault Diagnosis in the BIST Environment Based on Bisection
of Detected Faults”, M. Sc. thesis, Tallinn University of Technology, 2007

• R. Ubar, S. Kostin, J. Raik, M. Kruus, “Experimental Comparison of
Different Diagnosis Algorithms in the BIST Environment”. IASTED
Conference on Applied Simulation and Modelling (ASM’ 2007).

• R. Ubar, S. Kostin, J. Raik, “Experimental Comparison of Different
Diagnosis Algorithms in the BIST Environment”, Proc. of 8th IEEE Latin-
American Test Workshop (LATW’ 2007) (1 - 6). IEEE Computer Society

• R. Ubar, S. Kostin, J. Raik, T. Evartson, H. Lensen, “Fault Diagnosis in
Integrated Circuits with BIST”, Proc. of 10th EUROMICRO Conference on
Digital System Design (DSD’ 2007), IEEE Computer Society Press,
pp. 604 - 610

Fault model free fault diagnosis

• R. Ubar, S. Kostin, J. Raik, “Investigations of the Diagnosibility of Digital
Networks with BIST”, Proc. of 10th IEEE Latin-American Test Workshop
(LATW’ 2009) (1 - 6), Rio de Janeiro, Brazil, 2009

14

• R. Ubar, S. Kostin, J. Raik, “Block-Level Model-Free Debug and Fault
Diagnosis in Digital Systems”, Proc. of 12th EUROMICRO Conference on
Digital System Design (DSD’ 2009), Patras, Greece, August 27 - 29, 2009,
pp. 229-232.

• R. Ubar, S. Kostin, J. Raik, “Combined Fault-Model Free Cause-Effect and
Effect-Cause Fault Diagnosis in Block-Level Digital Networks”, Proc. of
1st Asia Symposium on Quality Electronic Design (ASQED’09), Kuala
Lumpur, Malaysia, July 15 - 16, 2009, pp. 385 - 390.

• R. Ubar, S. Kostin, J. Raik, “Calculation of the Diagnosibility of Digital
Circuits without Using Fault Models”, Proc. of the 11th Biennial Baltic
Electronic Conference (BEC’ 2008), Tallinn, Estonia, October 6-8, 2008,
pp. 159-162

Hierarchical fault diagnosis

• S. Kostin, “Macro Level Defect-Oriented Diagnosability of Digital
Circuits”, PhD forum at Conference Design, Automation and Test in
Europe (DATE’ 2011), Grenoble, France, 2011

• S. Kostin, R. Ubar, J. Raik, M. Brik, “Hierarchical physical defect
reasoning in digital circuits”, Estonian Journal of Engineering, 2011,
17(3), pp. 1-15

• R. Ubar, S. Kostin, J. Raik, “Defect-Oriented Module-Level Fault
Diagnosis in Digital Circuits”, Proc. of 14th IEEE Symposium on Design
and Diagnostics of Electronic Circuits and Systems (DDECS’ 2011),
Cottbus, Germany, April 13 - 15, 2011, pp. 81 - 86.

• S. Kostin, R. Ubar, J. Raik, “Macro Level Defect-Oriented Diagnosability
of Digital Circuits”, Proc. of the 12th Biennial Baltic Electronic Conference
(BEC’ 2010), Tallinn, Estonia, October 4-6, 2010, pp. 149 - 152.

Laboratory environment for education and research of test and fault diagnosis

• S. Kostin, A. Tsertov, A. Tsepurov, I. Aleksejev, R. Ubar, A. Jutman, J.
Raik, S. Devadze, “BIST Analyzer and Diagnozer”, In University Booth
section of Design, Automation and Test in Europe (DATE’ 2010), Dresden,
Germany, March, 2010.

• R. Ubar, A. Jutman, J. Raik, S. Devadze, I. Aleksejev, A. Chepurov, A.
Chertov, S. Kostin, E. Orasson, H.-D. Wuttke, “E-Learning Environment
for WEB-Based Study of Testing”, Proc. of the 8th European Workshop on
Microelectronics Education (EWME’ 2010), Germany, Darmstadt, 2010,
pp. 47 - 52.

15

• R. Ubar, S. Kostin, A. Jutman, J. Raik, H.-D. Wuttke, “DIAGNOZER: A
Laboratory Tool for Teaching Research in Diagnosis of Electronic
Systems”, Proc. of International Conference on Microelectronic Systems
Education, San Francisco, USA, July 25-26, 2009, pp. 12 - 15.

• S. Kostin, R. Ubar, J. Raik, M. Aarna, M. Brik, H.-D. Wuttke, “Teaching
Research in the Laboratory Using Diagnosis Environment for Digital
Systems”, Proc. of 20th EAEEIE Annual Conference on Innovation in
Education for Electrical and Information Engineering, Valencia, Spain,
June 22-24, 2009, 1 - 4.

16

17

List of Abbreviations

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generator

BIST Built-In Self-Test

BISTA BIST Analyzer

BISD Built-In Self-Diagnosis

CAD Computer-Aided Design

CMOS Complementary Metal-Oxide-Semiconductor

CUT Circuit Under Test

CUD Circuit Under Diagnosis

DFR Design For Reliability

DFT Design For Testability

DM Diagnostic Matrix

DP Diagnostic Point

DPM Defects Per Million

DT Diagnostic Tree

EDA Electronic Design Automation

EDIF Electronic Design Interchange Format

FFR Fanout-Free Region

HD Hamming Distance

HDL Hardware-Description Language

HTTF Hard-To-Test Faults

IC Integrated Circuit

18

I/O Input/Output

LFSR Linear Feedback Shift Register

LSI Large-Scale Integration

LSSD Level-Sensitive Scan Design

MISR Multiple Input Signature Register

ORA Output Response Analyzer

PCB Printed Circuit Board

PI Primary Input

PO Primary Output

PPM Parts Per Million

PRPG Pseudo-Random Pattern Generator

RTL Register-Transfer Level

SA Signature Analyzer

SA0 Stuck-At-0

SA1 Stuck-At-1

SAF Stuck-At Fault

SSF Single Stuck-At Fault

SSBDD Structurally Synthesized Binary Decision Diagram

TPG Test Pattern Generator

VHDL VHSIC Hardware Description Language

VHSIC Very-High-Speed Integrated Circuits

VLSI Very-Large-Scale Integration

XOR Exclusive OR

19

Contents

CHAPTER 1 INTRODUCTION ... 23
1.1 Motivation ...23
1.2 Problem formulation ..24
1.3 Thesis contribution ..25
1.4 Thesis structure ..26

CHAPTER 2 BACKGROUND ... 29
2.1 Introduction to digital test and diagnosis ...29
2.2 Approaches to digital logic testing ..31
2.3 Logical fault models ..33

2.3.1 Stuck-at fault model ..34
2.4 Design for testability ...35
2.5 Logic built-in self-test ...37

2.5.1 General architecture of BIST ...38
2.5.2 Linear Feedback Shift Register ...39
2.5.3 LFSRs used as pseudorandom test pattern generators41
2.5.4 LFSRs used as signature analyzers ..42

2.6 Logic diagnosis ..44
2.6.1 Cause-effect analysis ...45
2.6.2 Effect-cause analysis ...47

2.7 State-of-the-art ...50
2.7.1 BIST environment challenges for fault diagnosis50
2.7.2 The strategies for diagnosis ...51
2.7.3 Fault models ..52
2.7.4 Fault simulation ...53
2.7.5 A hierarchical approach to fault diagnosis53
2.7.6 E-learning in digital fault diagnosis ...54
2.7.7 Conclusions ...55

CHAPTER 3 FAULT DIAGNOSIS IN THE BIST ENVIRONMENT 57
3.1 Search procedures for diagnosis ..57

3.1.1 Binary Search ..58

20

3.1.2 Digging ..59
3.1.3 Doubling and Jumping ..59
3.1.4 Summary ...60

3.2 Diagnosis with bisection by fault coverage ...60
3.2.1 Built-in self-diagnosis environment ..60
3.2.2 Algorithm description ..61
3.2.3 Example of bisection detected faults ...63

3.2.3.1 Primary diagnostic tree ...64
3.2.3.2 Secondary diagnostic tree ...66

3.2.4 Logical operations needed to support the proposed method68
3.2.4.1 Calculation of total fault vectors ...68
3.2.4.2 Updating list of suspected faults ...69

3.2.5 A modification to implementation of the proposed method
in BIST environment ...70

3.3 Experimental data ..72
3.3.1 Analysis of results obtained during comparison between the

initial method and the modified method72
3.3.2 Comparison of searching algorithms ...74

3.4 Conclusions ...76
CHAPTER 4 METHODS FOR INCREASING DIAGNOSTIC

RESOLUTION ... 77
4.1 Fault diagnosis challenges in BIST environment77
4.2 BIST with multiple signature analyzers ..78
4.3 Design of the interface between CUT and SAs80

4.3.1 Algorithm “Equal Subsets” ...80
4.3.2 Algorithm “Unique Faults” ...83

4.4 Fault diagnosis with a set of SAs ..85
4.5 Experimental data ..86

4.5.1 Algorithms of designing the interface between CUT and SAs86
4.5.2 Comparison of different fault diagnosis methods88
4.5.3 Trade-off between time cost and accuracy of the fault

diagnosis ..90
4.6 Conclusions ...93

CHAPTER 5 FAULT MODEL FREE HIGH-LEVEL FAULT
DIAGNOSIS ... 95
5.1 Block-level fault-model free diagnosis ..95
5.2 Diagnostic matrix of a network ...96
5.3 Lower bound of average block-level diagnosability99
5.4 Diagnosis with adjusting the test responses100

21

5.5 Probabilistic diagnosability measure ...102
5.6 Improving the diagnosability ...103
5.7 Experimental data ..105
5.8 Conclusions ...108

CHAPTER 6 HIERARCHICAL FAULT DIAGNOSIS 111
6.1 General description of the method ..111
6.2 Cause-effect high-level fault diagnosis ...113
6.3 Defect reasoning in modules by using the conditional stuck-at fault

model ...115
6.4 Effect-cause high-level fault reasoning ...117
6.5 Low-level fault diagnosis ..119
6.6 Experimental data ..120
6.7 Conclusions ...123

CHAPTER 7 IMPLEMENTATION OF THE RESEARCH RESULTS
IN THE TEACHING ENVIRONMENT ... 125
7.1 Overview of fault diagnosis problems ...125
7.2 Description of the environment ...126
7.3 Laboratory research scenarios ...129

7.3.1 Research Scenario 1: Diagnostic Circuitry130
7.3.2 Research Scenario 2: Diagnostic Algorithms132
7.3.3 Research Scenario 3: Object of Diagnosis135

7.4 Conclusions ...137
CHAPTER 8 CONCLUSIONS ... 139

8.1 Main results ...139
8.2 Future work ...141

REFERENCES ... 143

22

23

Chapter 1

INTRODUCTION

This introductory chapter gives an overview of the area addressed by current
thesis. At first, the motivation for the work is given followed by the formulation of
the problem and the outline of main contributions. The last part of the chapter
describes the organization of the thesis.

1.1 Motivation

The impact of the semiconductor integrated circuit (IC) on modern life has been
so profound that it is now often taken for granted. Nowadays, we entrust heavily
our lives to electronic appliances and we are being assured in the reliability and
safety of these devices. Furthermore, we have come to expect increasingly
sophisticated electronics products at ever lower prices, whereas the business world
has come to expect greater productivity through improved information technology
[1].

The IC industry’s desire to reduce chip area in order to realize higher yields and
more circuits sites per wafer has been the primary motivation for transistor scaling
over last decades. That is why Moore’s law continues to drive the scaling of
complementary metal-oxide-semiconductor (CMOS) technology [2]. The feature
size of the transistor now has been shrunk well into nanoscale region [3]. Today a
single very-large-scale integration (VLSI) device can contain over one billion
transistors. The ever-increasing level of integration has enabled higher performance
and richer feature sets on a single chip. However, continuous transistor
miniaturization requires more advanced design techniques to cope with the
increased process variation, interconnect processing difficulties, and other newly

24

emerging physical effects [4] in order to assure reasonable quality and reliability
for future products of microelectronics.

During the IC design and manufacturing cycle, a manufacturing test screens out
the bad chips. Fault diagnosis is used to find out why the bad chips have failed,
which is especially important when the yield is low or when a customer returns a
failed chip. Understanding how integrated circuits fail helps to identify and
eliminate the causes of failures. Unlike board-level diagnosis, the main objective in
diagnosing ICs is to understand the failures (to specify the fault or erroneous state)
and to prevent them from recurring, not to repair the failures. Locating faults in
chips and analyzing failure trends can lead to corrective design rule changes.
Failure trends also help to reveal process and manufacturing problems.

Diagnosis can identify reliability trouble spots in a design and lead to special
design for reliability (DFR) actions, and in such a way it can have an impact on
future designs. Diagnosing customer rejects often results in an improved test
program, which reduces defects per million (DPM) [5].

1.2 Problem formulation

The need for debug/diagnosis capability is essential since it usually occurs
during three phases in the lifetime of a chip. After the design is fabricated on
silicon for first time, popularly known as the “first silicon”, a substantial amount of
effort is put on debugging the first silicon. Such debug efforts usually weed out
problems in the design, including design errors and design marginality.

Due to the growing intricacy of the manufacturing process, device complexity,
and random variations in the manufacturing process, all fabricated chips do not
meet targeted specifications. The integrated circuit manufacturers need
debug/diagnosis capability to identify any persistent anomaly in the manufacturing
process to achieve better yield and reliability of their products.

Field diagnosis is the last phase where diagnosis capability is required. Such
field diagnosis can provide valuable information about the reliability of the device
and might point out possible weaknesses in the design and/or production process
for that device [6].

Development and manufacturing failures are unfortunately an inherent part of
the microelectronics. The impact of such failures, whether anticipated or sudden,
ranges from consequential to catastrophic. Because narrow market opportunities
often drive shortened product cycles, there is need to understand failures and take
corrective actions quickly. Electrical characterization, statistical analysis, signature
analysis, and process experiments can provide important clues that allow inferring
the cause of failure. But only full root-cause physical failure analysis can provide
the incriminating evidence necessary to correct problems with confidence. When
rapid corrective actions can be accomplished confidently, yield and reliability

25

learning, time-to-market, and end-customer satisfaction improvements are direct
benefits of the process.

The crucial element of failure analysis is fault localization, a task for which both
hardware and software techniques exist. Trends toward denser circuits and more
sophisticated packaging, however, are limiting physical access to internal chip
circuitry and, thus, decreasing the effectiveness of hardware-based diagnostics.
Therefore, efficient software diagnostics require an aggressive design-for-test and
diagnostic strategy. However, such a strategy is threatened by the microelectronics
industry’s strong focus on cost reduction in the design and test phases of product
development [7]. Therefore, new approaches for efficient, accurate and low-cost
failure analysis are still emerging.

1.3 Thesis contribution

The presented work is focused on accelerating diagnostic procedures and
improving accuracy of identifying possible defect locations in digital systems that
employ built-in self-test (BIST) facilities. To overcome the difficulties of handling
continuously growing variability and complexity of physical defects in today’s
nanoelectronics technologies, a fault model free approach to fault diagnosis is
proposed and elaborated in the thesis.

The main contributions of the current thesis can be divided into two groups: (1)
optimization of fault diagnosis in digital circuits with BIST, and (2) fault model
free hierarchical approach to fault diagnosis.

(1) Optimization of fault diagnosis:

• A novel optimized fault diagnosis procedure for built-in self-test (BIST)
environments has been developed. Instead of the classical bisectioning of
patterns in pseudorandom test sequences by simply counting them, a novel
bisectioning procedure which takes into account the diagnostic
information inherent in test patterns is proposed.

• Another novelty is the sequential approach to diagnosis which allows
pruning the search space. Opposite to the classical approach which targets
all failing patterns, in the proposed method not all failing patterns are
necessarily needed to be fixed for diagnosis. This allows to make a trade-off
between the speed of diagnosis and diagnostic resolution. The superiority of
the new method is demonstrated by comparison with three known fault
diagnosis methods: classical Binary Search, Doubling and Jumping.

• To improve the accuracy of fault diagnosis in digital systems with BIST
facilities, a new concept of test response processing with multiple
signature analyzers is proposed. The concept is based on partitioning of a
single signature analyzer into a set of multiple independent analyzers, and

26

on optimization of the interface between the circuit under test and the
analyzer block.

(2) Fault model free hierarchical fault diagnosis:

• A conception for diagnosis of digital circuits which does not use fault
models is introduced. The conception allows to cope with the complexity of
circuits, with the multiplicity of faults and with the problems of
continuously increasing variety of physical defects in today’s
nanoelectronics circuits.

• A novel hierarchical approach for fault diagnosis in digital circuits has
been developed. To cope with the complexity of problem, two opposite and
conflicting trends, high-level modeling and defect-orientation are
integrated. The key solutions are cause-effect analysis using high-level
faulty module dictionary, combined with effect-cause diagnosis based on
the fault model free error reasoning.

• For calculating the diagnosability of the given circuit, a novel fault model
free measure of diagnosability has been elaborated which can be used for
redesign of the circuit to improve the exactness of locating the faults or
faulty regions in digital circuits.

As a result of the research, a multifunctional e-learning environment to support
CAD master courses for learning, getting hands-on experience, and carrying out
laboratory research in developing optimized procedures for locating faults in
complex electronic systems has been developed. It is a combination of software
tools to simulate a system under diagnosis, to emulate a pool of different strategies,
methods, and algorithms of diagnostic reasoning and fault location, and to
experiment with different embedded self-diagnosing architectures. Hands-on
experiments target research teaching issues. The interactive character of the
environment makes experiments attractive and helps to raise the students' curiosity.

1.4 Thesis structure

The presented thesis is organized into 8 chapters.

Chapter 2 provides background information on digital test and fault diagnosis,
and makes a review of the state-of-the-art in the area addressed by the thesis.

Chapter 3 presents an optimized fault diagnosing procedure applicable in
built-in self-test (BIST) environments and compares it with other known fault
diagnosis methods.

Chapter 4 presents a method to improve fault diagnosis accuracy in digital
systems using BIST facilities. The diagnostic resolution improvement is attained
by partitioning a single signature analyzer into a set of multiple independent

27

analyzers. The algorithms are given to synthesize an optimal interface between the
outputs of the circuit under test and the signature analyzers.

Chapter 5 introduces a concept of fault model free diagnosis combined with
cause-effect analysis in digital systems represented as networks of functional
blocks. A measure is proposed for evaluating the block-level diagnosability of a
given network which can be used for redesign of the circuit to improve the
exactness of locating the faults regions in digital circuits.

Chapter 6 presents a hierarchical approach for fault diagnosis in combinational
digital circuits represented as a network of modules. The new approach integrates
cause-effect and effect-cause reasoning techniques that help to cope with the
growing complexities of digital circuits and to diagnose a failing circuit accurately
without using fault models.

Chapter 7 presents a multifunctional e-learning environment with remote access
for learning, getting hands-on experience, and carrying out laboratory research in
developing optimized procedures for locating faults in complex electronic systems.

Chapter 8 draws conclusions for this thesis and discusses possible perspectives
for future work.

28

29

Chapter 2

BACKGROUND

This chapter presents background information on the topics related to current
research. The chapter begins with the brief introduction to digital test and fault
diagnosis followed by the review of the approaches to digital logic testing. The
stuck-at fault model is described since it mostly used for fault diagnosis by
methods proposed in the thesis. Then the brief overview of design for testability
(DFT), built-in self-test (BIST) and fault analysis techniques is presented, and
finally, the review of the state-of-the-art in this area is given.

2.1 Introduction to digital test and diagnosis

The introduction of integrated circuits (ICs), commonly referred to as
microchips or simply chips, was followed by the need to test these devices. Testing
of devices that contained only hundreds of transistors was relatively simple.
However, in the 1970s, large-scale integration (LSI) devices with thousands and
tens of thousands of transistors complicated testing considerably [8]. Nowadays,
very-large-scale integration (VLSI) devices with many millions of transistors are
widely spread in common computers and electronic appliances. This is a direct
result of the continuous decreasing dimensions of the transistors and
interconnecting wires from micron- to nanoscale. The reduction in feature size has
also resulted in increased operating frequencies and clock speeds, but introduces
many new testing challenges.

Recent advances in physics, chemistry, and materials science have allowed
production of nanoscale structures using sophisticated fabrication techniques. It is
well known that nanoscale devices have much higher manufacturing defect rates

30

compared to conventional complementary metal-oxide semiconductor (CMOS)
devices [8]. Nanoscale devices have much lower current drive capabilities and are
much more sensitive to noise-induced errors such as crosstalk. These devices are
more susceptible to failures of transistors and wires due to soft (cosmic) errors,
process variations, electromigration, and material aging. As the integration scale
increases, more transistors can be fabricated on a single chip, thus reducing the cost
per transistor. However, the difficulty of testing each transistor grows due to the
increased complexity of the VLSI device and increased potential for defects, as
well as the difficulty of detecting the faults produced by those defects.

Continuous increase in size and complexity of circuits on a chip, often with
little or no increase in the number of I/O (input/output) pins, produces a testing
bottleneck [9]. Much more logic must be controlled and observed while the number
of I/O pins remains the same that makes testing of chip a real challenge. Moreover,
the need for testing continues to grow in importance since just one single faulty
transistor or wire can make the entire chip fail to function properly or at the
required operating frequency. Furthermore, manufacturing defects are unavoidable
in producing nanoscale devices. As a result, a number of ICs are expected to be
faulty and, therefore, testing is required to guarantee fault-free products. It is also
necessary to test components of VLSI devices at various stages during the
manufacturing process. For example, in order to produce an electronic system,
first, ICs must be produced and used to assemble printed circuit boards (PCBs),
and then the PCBs are used to assemble the system. The cost of detecting a faulty
IC increases by an order of magnitude when moving through each stage of
manufacturing, from device level to board level to system level and finally to
system operation in the field [8]. Random defects in individual components may
not have significant impact on a product success, but a defective manufacturing
process for a complex VLSI device, or a design error in some obscure function,
could escape detection until first product returns that may result a very expensive
product recall [9].

Due to advances in semiconductor technologies new electronic design
automation (EDA) tools allow to design and fabricate chips of greater complexity
at lower cost. As a result, testing consumes a greater percentage of total production
cost. It requires also more effort to create a test program as well as more stimuli to
exercise the chip. Both, the cost of developing tests and the cost of applying test to
individual units must be considered. In some cases, it becomes necessary to invest
more effort into initially creating a test in order to reduce the cost of applying it to
individual units. The difficulty in creating test programs for new designs also
contributes to delays in getting products to the market. Therefore, new test
strategies are emerging in response to test problems arising from these increasingly
complex devices, and greater emphasis is placed on finding defects as early as
possible in the manufacturing cycle. New algorithms are being devised to create
tests for logic circuits, and more attention is being given to design for testability

31

(DFT) techniques that require participations by logic designers, who are being
asked to adhere to design rules that facilitate design of more testable circuits [9].

2.2 Approaches to digital logic testing

Testing typically consists of applying a set of test stimuli to the inputs of the
circuit under test (CUT) while analyzing the output responses [8]. The stimuli are
called test patterns or test vectors. Each bit of the vector is applied to a specific
input pin of the CUT. The expected or predicted outcome is usually observed at
output pins of the device, although some test configurations permit monitoring of
test points within the circuit that are not normally accessible during operation. A
tester captures the response at the output pins and compares that response to the
expected response determined by applying the stimuli to a known good device and
recording the response, or by creating a model of the circuit (i.e. a representation or
abstraction of the selected features of the system) and simulating the input stimuli
by means of that model [9].

Circuits that produce the correct output responses for all input stimuli pass the
test and are considered to be fault-free. If the CUT response differs from the
expected response at any point during the test sequence, then an error is said to
have occurred. The error results from a defect in the circuit and this CUT is
assumed to be faulty. A fault is a representation of defect reflecting a physical
condition that causes a circuit to fail to perform correctly. A failure is a deviation
in the performance of a circuit or system from its specified behavior and represents
an irreversible state of a component. A circuit defect may lead to a fault, a fault can
cause a circuit error, and a circuit error can result in a system failure [8].

Generation of effective test patterns is an important part of the test. The patterns
(input stimuli) can be created in the following ways:

• generate all possible combinations of input stimuli
• develop test sequences targeted the functionality of the design (functional

testing)
• create test sequences targeted at specific faults (structural testing)
• generate pseudorandom sequences

Early approaches to test generation involved the application of all possible
binary combinations to device inputs to perform a complete functional verification
of the device. This approach is referred to as exhaustive testing. Application of 2n
test vectors to a device with n inputs was effective when n was small and there
were no sequential circuits on the board. Since the number of tests grows
exponentially with n, this approach quickly became infeasible due to prohibitively
huge number of patterns to be applied.

Another approach consists in testing the functionality of a circuit by generating
sequences of input stimuli intended to drive the circuit through all different internal

32

states, while varying the conditions on the data-flow inputs. This approach is
referred to as functional testing. If the circuit responds correctly to all applied input
patterns, it can be concluded that the circuit is defect free. However, it is incorrect
conclusion since it may occur that one or more defects presented in the circuit were
not detected by the applied stimuli. Thus, the major problem with this approach is
an inability to evaluate the effectiveness of the test stimuli. Effectiveness can be
estimated by observing the number of defective products returned by the customer,
so-called “test escapes”, but this is a costly solution.

In 1959, R.D. Eldred suggested to test hardware rather than function [9]. This
proposed approach relied on generating tests for specific faults. The most
commonly occurring faults would be modeled and input stimuli created to test for
the presence or absence of each of these faults. Thus, this approach that employed
circuit structural information and a set of fault models to generate test vectors was
referred to as structural testing.

Structural testing saves test application time and improves test efficiency, as the
total number of test patterns applied is decreased, because the test vectors target
only specific faults that would result from defects in the manufactured circuit. On
the other hand, structural testing cannot guarantee detection of all possible
manufacturing defects, as the test vectors are generated based on specific fault
models. However, the use of fault models does provide a quantitative measure of
the fault-detection capabilities of a given set of test vectors for a targeted fault
model. The quality, or the effectiveness, of a test is measured by the ratio between
the number of faults it detects and the total number of faults in the assumed fault
universe; the ratio is referred to as the fault coverage.

It may be impossible to obtain 100% fault coverage because of the existence of
undetectable faults. An undetectable fault means there is no test to distinguish the
fault-free circuit from a faulty circuit containing that fault. As a result, the test
evaluation, i.e. fault coverage, can be modified and expressed as the fault detection
efficiency, also referred to as the effective fault coverage, which is defined as ratio
between the number of detected faults by given test and the number of detectable
faults [8]. In order to calculate fault detection efficiency, all undetectable faults in
the circuit must be correctly identified, which is usually a difficult task.

Fault coverage is related to the yield and the defect level by the following
expression [10]:

Defect level = 1 − yield (1 − fault coverage)

From this equation results that both, yield and fault coverage, have direct impact on
a reject rate of total number of manufactured devices. Nevertheless, improving
fault coverage can be easier and less expensive than improving manufacturing
yield because making yield enhancements can be costly. Therefore, generating test
patterns with high fault coverage is very important. Of course, if there is a yield
crash, i.e. a sudden, significant drop in the number of devices that pass a test,

33

diagnosis must be performed to identify the possible causes. To aid investigations,
it may be necessary to generate additional test vectors specifically for the purpose
of isolating the source of the crash. Yield problems commonly arise in the early
stages of the production, when manufacturing processes are new and unfamiliar to
employees [9]. As a result, there are likely to be more occasions when it is
necessary to investigate problems in order to diagnose causes. For mature products
yield is frequently quite high, and testing may consist of sampling by randomly
selecting parts for test.

If the CUT responds correctly to all applied stimuli, confidence in the CUT
increases. However, it cannot be concluded that the circuit is fault-free. It can be
only concluded that the CUT does not contain any of the faults for which it was
tested, but it could contain other faults for which an effective test was not applied.
Therefore, the goal of test generation is to find an efficient set of test vectors that
detects all faults considered for that circuit. Because a given set of test vectors is
usually capable of detecting many faults in a circuit, fault simulation is typically
used to evaluate the fault coverage obtained by that set of test vectors. As a result,
fault models are needed for fault simulation as well as for test generation [8].

2.3 Logical fault models

The diversity of possible physical defects inside VLSI device makes generation
of test patterns extremely difficult. Modeling physical defects as logical faults,
which represent the effect of physical defects on the behavior of the modeled
system, helps to facilitate the problem of fault analysis, since it becomes a logical
rather a physical problem. Thus, the complexity of the problem is reduced
considerably since many different physical defects may be modeled by a single
logical fault.

Fault models are necessary mainly for generating and evaluating a set of test
vectors. Typically, a good fault model should satisfy two criteria: (1) it should
accurately reflect the behavior of defects, and (2) it should be computationally
efficient in terms of fault simulation and test pattern generation. Many fault models
have been proposed [8]: stuck-at fault, switch-level fault (transistor stuck-open or
stuck-short), delay fault (gate-delay, transition, path-delay), parametric fault,
bridging fault (wired-AND/wired-OR, dominant, dominant-AND/dominant-OR),
crosstalk effects defining fault models, etc. Unfortunately, no single fault model
accurately reflects the behavior of all possible defects that can occur. As a result, a
combination of different fault models is often used in the generation and evaluation
of test vectors and testing approaches developed for VLSI devices.

Further, more detailed overview of stuck-at fault model is presented, since it has
been widely employed in the experimental part of the thesis for fault injection, fault
simulation and fault diagnosis with the goal to prove efficiency of the proposed
fault diagnosis methods.

34

2.3.1 Stuck-at fault model

The single stuck-at fault (SSF) is a logical fault model that is also referred to as
the classical fault model because it has been the first and the most widely studied
and used [11]. A stuck-at fault affects the state of logic signals on lines in a logic
circuit, including primary inputs (PIs), primary outputs (POs), internal gate inputs
and outputs, fanout stems (sources), and fanout branches. A stuck-at fault
transforms the correct value on the faulty signal line to appear to be stuck at a
constant logic value, either logic 0 or logic 1, referred to as stuck-at-0 (SA0) or
stuck-at-1 (SA1), respectively [8]. Although stuck-at fault model validity is not
universal, it has following useful attributes [11]:

• represents many different physical faults [12]

• technology-independent since it can be applied to any structural model

• experience has shown that tests that target SSFs detect also many
non-classical faults

• the number of SSFs in a circuit is quite small compared to other fault
models; moreover, the number of faults can be reduced by fault collapsing
techniques and, therefore, simulation of SSFs is computationally very
efficient

• SSFs can be used to model other types of faults

In case of single-fault assumption, the number of possible faults is equal to 2n,
where n – number of signal lines in the CUT. In reality, several lines can be
simultaneously stuck-at that result in multiple-fault assumption. Thus, 3n − 1
various combinations of multiple stuck-at faults may occur in a CUT, where each
line n can have one of three possible states: SA0, SA1 or fault-free. Of these
possibilities is excluded a combination where all lines are fault-free, which
corresponds to completely fault-free circuit.

When considering multiple stuck-at faults, even relatively small number of
signal lines n in a CUT leads to problem of “combinatorial explosion”, i.e. the
number of problems to be solved explodes. Therefore, the attempt to test for every
multiple stuck-at fault combination is clearly impractical and it has led to adoption
of the single-fault assumption. When creating a test, it is assumed that a single fault
exists. Most frequently, it is assumed that an input or output of a gate is SA1 or
SA0. Many years of experience with stuck-at fault model by many digital
electronics companies has demonstrated that it is effective [9]. A good stuck-at test
which detects all or nearly all single stuck-at faults in a circuit will also detect all or
nearly all multiple stuck-at faults and short faults. There are technology dependent
faults for which the stuck-at fault model must be modified or augmented.

The single stuck-at fault model can also be applied to sequential circuits.
However, high fault coverage test generation for sequential circuits is much more

35

difficult than for combinational ones, since for most faults in a sequential logic
circuit is needed to generate sequences of test vectors. Therefore, DFT techniques
are frequently used to ease test generation for sequential circuit [8]. Although it is
physically possible for a line to be SA0 or SA1, many other defects within a circuit
can also be detected with test vectors developed to detect stuck-at faults. The idea
of N-detect single stuck-at fault test vectors was proposed to detect more defects
not covered by the stuck-at fault model [13]. In N-detect set of test vectors, each
single stuck-at fault is detected by at least N different test vectors. However, test
vectors generated using the stuck-at fault model do not necessarily guarantee the
detection of all possible defects, so other fault models are needed.

Under the single-fault assumption, two or more faults may result in identical
faulty behavior for all possible input patterns. These faults are called equivalent
faults and can be represented by any single fault from the set of equivalent faults
[8]. The reduction of the entire set of single faults by removing equivalent faults is
referred to as fault collapsing. Stuck-at fault collapsing typically reduces the total
number of faults by 50 to 60% [14]. Fault collapsing for stuck-at faults is based on
the fact that a SA0 at the input of an AND (NAND) gate is equivalent to the SA0
(SA1) at the output of the gate. Similarly, a SA1 at the input to an OR (NOR) gate
is equivalent to the SA1 (SA0) at the output of the gate. For an inverter, a SA0
(SA1) at the input is equivalent to the SA1 (SA0) at the output of the inverter.
Furthermore, a stuck-at fault at the source (output of the driving gate) of a fanout-
free net is equivalent to the same stuck-at fault at the destination (gate input being
driven). Thus, fault collapsing helps to reduce both test generation and fault
simulation times.

2.4 Design for testability

During the early stages of IC production history design and test were performed
by separate and unrelated groups of engineers since they were considered as
separate tasks [8]. A design engineer implemented the required functionality based
on design specifications without imaging how the manufactured chip had to be
tested. Once the functionality was implemented, the design information was
transferred to test engineers. A test engineer determined the efficient way of testing
each manufactured device within a reasonable time, in order to screen out devices
containing manufacturing defects and ship all defect-free devices to customers. The
final quality of the test was determined by the number of defective devices shipped
to the customers, based on customer returns, and was measured in terms of
defective parts per million (PPM) shipped.

This approach worked well for small-scale integrated circuits that mainly
consisted of combinational logic or simple finite-state machines. However, it
became infeasible when complexity of designs had moved to very-large-scale
integration (VLSI). During the 1980s testing of these VLSI devices was primarily

36

relied on fault simulation to measure the fault coverage of the supplied functional
patterns. The goal of functional patterns was to navigate through the long
sequential depths of a design accessing all internal states and detecting all possible
manufacturing defects. A fault simulation tool was employed to evaluate the
effectiveness of the functional patterns in terms of quantity. If the available
functional patterns did not achieve the target fault coverage, additional patterns
were generated and applied. However, this approach usually did not achieve the
circuit’s fault coverage beyond 80%, and the quality of the shipped products
continued to suffer [8].

It became gradually clear that designing devices without paying much attention
to test resulted in increased test cost and decreased test quality. Some designs that
were best in class, concerning their functionality and performance, failed
commercially due to extremely high test cost or poor product quality [8]. Thus, the
cost of testing a system has become a major component in the cost of designing,
manufacturing, and maintaining a system. The cost of testing reflects many factors
[11] such as the cost of test pattern generation, the cost of fault simulation and
generation of fault location information, the cost of test equipment and the cost of
test application time. Because these costs can be high and may even exceed design
costs, it is important that they are kept within reasonable bounds. Test cost limits
have led to the development and deployment of DFT engineering in the industry.
DFT techniques are usually divided into three categories [8]: (1) ad hoc DFT
techniques, (2) level-sensitive scan design (LSSD) or scan design, or (3) built-in
self-test (BIST).

The first DFT techniques introduced in the 1970s were ad hoc methods that
targeted only those parts of the circuit that would be difficult to test and added
extra circuitry to improve the controllability or observability [11]. Controllability
means the ability to establish a specific signal value at each node (line) in a circuit
by setting values on the primary inputs of a circuit. Observability means the ability
to determine the signal value at any node (line) in a circuit by controlling the inputs
and observing the outputs of a circuit. Ad hoc techniques typically employed test
point insertion to access internal nodes directly. Substantially, ad hoc methods
have managed to improve the testability of a design and to simplify sequential
automatic test pattern generation. However, it was still a challenge to obtain more
than 90% fault coverage for large designs [8]. The reason was that deriving
functional patterns by hand or generating test patterns for a sequential circuit is a
much more difficult problem compared to test patterns generation for a
combinational circuit [15] [14] [16].

The next and the most important DFT technique proposed was level-sensitive
scan design, also referred to as scan design [17]. In a flip-flop-based scan design,
testability is improved by adding extra logic to each flip-flop in the circuit to form
a shift register, or scan chain. During the scan mode, the scan chain is used to shift
in (or scan in) a test vector to be applied to the combinational logic. During one
clock cycle in the system mode of operation, the test vector is applied to the

37

combinational logic and the output responses are captured into the flip-flops. Then
the circuit is switched back to scan mode, so as to shift out (or scan out) the
combinational logic output response while shifting in the next test vector to be
applied [8]. As the result, scan based design technique reduces the problem of
testing sequential logic to the problem of testing combinational logic.

Built-in self-test (BIST) was introduced around 1980 [18] [19] to integrate a test
pattern generator (TPG) and an output response analyzer (ORA) in the VLSI
device to perform testing internal to the IC. Since the tester functions reside with
the CUT, BIST can be applied at all levels of testing, from wafer through system-
level testing.

2.5 Logic built-in self-test

Recent advances in semiconductor manufacturing technology have produced
various testing challenges in the production and usage of VLSI circuits during
wafer probe, wafer sort, pre-ship screening, incoming test of chips and boards, test
of assembled boards, system test, periodic maintenance, repair test, etc. Traditional
test techniques that employ ATPG software have become quite expensive and can
no longer achieve optimal fault coverage for deep nanometer designs from the chip
level to the board and system levels [8].

One way to overcome these testing problems is to incorporate built-in self-test
(BIST) features into a digital circuit at the design stage [20] [11] [14] [21] [19]
[22]. Logic BIST is a design for testability (DFT) technique, in which circuits that
generate test patterns and analyze the output responses of the functional circuitry
are embedded in the chip or elsewhere on the same board where the chip resides.
Logic BIST is crucial for many applications, especially concerning life-critical and
mission-critical ones. These applications commonly found in the automotive,
aerospace/defense, telecommunications, banking, computer, healthcare and
networking industries require on-chip, on-board, or in-system self-test to improve
the reliability of the entire system, as well as the ability to perform remote
diagnosis [8].

BIST techniques can be classified into two categories [11], namely, on-line
BIST, which includes concurrent and non-concurrent techniques, and off-line
BIST, which includes functional and structural approaches.

In on-line BIST, testing is carried out during normal operational mode; i.e. the
circuit under test (CUT) is not placed into a test mode where normal functional
operation is locked out. Concurrent on-line BIST is performed simultaneously with
normal functional operation of the CUT and is usually accomplished using coding
techniques or duplication and comparison. When an intermittent or transient error
is detected, the system will correct the error on the spot, rollback to its previously
stored system states, and repeat the operation, or generate an interrupt signal for

38

repeated failures [8]. In non-concurrent on-line BIST, testing is carried out while a
system is in an idle state. This is often completed by executing diagnostic software
routines (macrocode) or diagnostic firmware routines (microcode) [11]. The
process of testing can be interrupted at any time so that normal operation can
resume.

Off-line BIST tests the functional circuitry in not operational mode. This
approach does not detect any real-time errors but is widely used in the industry to
perform functional testing at the system, board, or chip level so as to ensure
product quality.

Functional off-line BIST tests the functionality of the circuitry based on a
functional specification and usually employs functional or high-level fault model.
Typically, such a test is performed using diagnostic software or firmware.

Structural off-line BIST tests the structure of the CUT. An explicit structural
fault model may be used. Fault coverage is based on detecting structural faults.

2.5.1 General architecture of BIST

Basic components of a typical logic BIST scheme [11] using the structural
off-line BIST technique are illustrated in Figure 2.1.

A test pattern generator (TPG) feeding a large number of scan chains is usually
built using a linear feedback shift register (LFSR). Similarly, an output response
analyzer (ORA), which generates final signatures, is also built using a LFSR. A
BIST control unit controls testing. It initializes the TPG and the ORA, counts
generated patterns and sets up end of testing signal. When the TPG is initialized it
generates sequences of bits (test patterns) that are shifted into inputs of the CUT.

Figure 2.1 Basic BIST scheme

Test Pattern Generator
(TPG)

Output Response
Analyzer (ORA)

Circuit Under Test

(CUT)

BIST
Control Unit

39

Then the output response of the CUT is shifted out of the scan chains and captured
by the ORA. The ORA generates the signature that includes compressed output
responses of the CUT during the BIST session. When output responses for all test
patterns are got the final signature is compared against a fault-free signature to
ascertain pass/fail for the CUT. More detailed review of methods for generating
test patterns and signatures using LFSR are considered in the next section. An
understanding of the TPG and the ORA concepts is essential, since because of
using LFSR techniques the BIST has its benefits as well as drawbacks.

There are a number of advantages of using the structural off-line BIST
technique rather than conventional scan [8]:

• BIST can effectively detect defects on the board or system and provide
diagnostic information as required; it can run a test at any time and does
not need an external tester to be present.

• Capability to perform at-speed testing, which is inherent in BIST and can
be used to detect many delay faults. Applying BIST, the origin of errors
can be easily traced back to the chip; some defects are detected without
being modeled by software.

• Low-cost test solution since test application time, tester memory
requirements and tester investment costs are reduced, because most of the
tester functions reside on-chip itself.

However, there are also disadvantages associated with this approach since the
CUT must comply with additional stringent BIST-specific design rules [11].

2.5.2 Linear Feedback Shift Register

A linear feedback shift register (LFSR) is a shift register whose input bit is a
linear function of its previous state. There are two ways to implement LFSRs [11]:
external feedback (Figure 2.2) and internal feedback (Figure 2.3).

 1r 1−nr

i

…

 …
2S

nr

1SnS
o

Figure 2.2 Type 1 (external-XOR) LFSR

40

The cells in Figure 2.2 and Figure 2.3 are clocked D flip-flop triggers, where Sn
is a current state of an n trigger (can be ‘0’ or ‘1’). Moreover, rn is a binary
constant, and rn = 1 implies that a connection exists, while rn = 0 implies that no
connection exists. When rn = 0 the corresponding XOR (Exclusive OR) gate can be
replaced by a direct connection from its input to its output. In order to better
understand how to compute the output and the states of flip-flops, necessary
formulas are presented below:

External feedback: Internal feedback:

n

nn

nn

So

SS

SS

iSrSrSrS

=
=′

=′
⊕⋅⊕⊕⋅⊕⋅=′

−1

12

22111

............

...

 n

nnn

nn

nn

So

SSrS

SSrS

iSrS

=
⊕⋅=′

⊕⋅=′
⊕⋅=′

−

−

11

112

1

.........................

where S – a current state of a register (‘0’ or ‘1’); S′ – the next state of a register;
i – input (note: usually input is omitted, i.e. ‘0’); o – output; ⊕ – XOR.

Analyzing these formulas is not difficult to come to a conclusion that all outputs
and states of flip-flops of LFSR are determined by feedback coefficients (the
values of r) and the initial state that is called the seed of flip-flops. The polynomial
of feedback coefficients is also known as the characteristic polynomial (Px) of the
LFSR and is presented below:

n
n xrxrxrxP ⋅++⋅+⋅+= ...1)(2

21

where n – the degree of the characteristic polynomial which equals to a number of
bits in a n-bit LFSR pattern. If the input of a LFSR is omitted (i = 0) then an all
zeroes state is invalid for the LFSR as the state would never change if all bits are
‘0’. Therefore the maximum number of unique patterns that an n-bit LFSR can
generate equals to 2n − 1. The characteristic polynomials of an n-bit LFSR which
results in the generation of maximum possible unique patterns 2n − 1 are known as

1S 2S
o i

 …

 …

1−nr nr

nS

1r

Figure 2.3 Type 2 (internal-XOR) LFSR

41

primitive polynomials. The primitive polynomials are valid for both types of
LFSRs. The reciprocal polynomial P*(x) of a primitive polynomial is also
primitive. P*(x) is defined by the following equation:

)/1()(xPxxP n=∗ i.e.
n

nnn xxrxrrxP ++⋅+⋅+= −−
∗ ...)(2

21

2.5.3 LFSRs used as pseudorandom test pattern generators

Sequences generated by LFSRs that apply primitive polynomials are called
pseudorandom sequences [11], since they have many identical properties of
random sequences. However, they are pseudorandom, not random, since they are
periodic and deterministic. Some of these properties are listed below, where the
sequence of maximum length 2n − 1 produced by n-bit LFSR using a primitive
polynomial is referred to as an n-sequence:

• in n-sequence the number of 1s differs from the number of 0s by one

• n-sequence produces an equal number of runs of 1s and 0s

• in every n-sequence, one half the runs have length 1, one fourth have
length 2, one eight have length 3, etc., until the fractions are integral
number of runs

These properties of randomness make feasible the use of LFSRs as test
sequence generators. Although, LFSRs represent the simplest and most commonly
used pseudorandom TPG hardware, the efficiency of LFSR is far from optimum in
terms of fault coverage and testing runtimes [23]. LFSR based test is usually up to
several orders of magnitude longer than the test generated externally by a model-
based ATPG. In general, pseudo-random pattern generator (PRPG) fault coverage
has such properties like fast initial growth and too long time to complete. This is
mostly caused by existence of random-pattern resistant faults, i.e. hard-to-test
faults (HTTF), which can be tested only by a small number of test patterns. For
example, consider a 5-input AND gate. So as to test inputs for SA0 a single pattern
exists. The probability of generating the test pattern that contains all 1s will be
equal to 1 / 25 = 1 / 32 = 0.03125 since standard LFSR produces 1 or 0 on each
output line with equal probabilities that is 1/2. Thus, there is a need to generate test
patterns that have different distributions of 0s and 1s. As the result, there are many
approaches proposed that target improvement of PRPG efficiency.

A lot of research was devoted to study of alternative PRPG types that have
better fulfilling criteria of randomness compared to LFSR. These are, for example,
Cellular Automata [24] and GLFSR [25]. However, the randomness has been only
empirically proven to improve the quality of testing. On the contrary, larger
designs, especially those that contain HTTF, need special treatment. As the result,
methods based on the idea of generating weighted pseudorandom patterns that
target HTTF were proposed [26]. The essence of this technique consists in adding

42

extra circuitry to PRPG outputs in such a way that the probability of generating 0s
and 1s would be misbalanced on selected outputs to achieve fault coverage
improvement.

The efficiency could be even more considerable when combining directly PRPG
and ATPG patterns together, which is done, for instance, in bit-flipping BIST
approach. Similarly to the previous technique, it uses a special circuitry that
modifies specified bits of selected PRPG patterns in such a way that these patterns
become equivalent to ATPG patterns that target HTTFs [27]. Another approach,
called reseeding, allows generating several PRPG sequences where each one is
optimized to detect a certain number of HTTFs [28] [29]. The final test session
then consists of several subsequences, where each one starts with a special
preselected seed loaded from memory. Some approaches replace also the LFSR
polynomial as well as the seed [28].

The simplest way of mixed-mode BIST is represented by Hybrid BIST
technique [30] where the whole test sequence is split into two parts – PRPG and
ATPG. First, PRPG is set to run for a limited time, and then ATPG patterns are
loaded from memory with the goal to cover remaining HTTFs. Hence, the less
memory resources can be allocated, the longer sequence of pseudorandom patterns
must be generated. From the hardware requirements aspect, it is low-cost solution
since the patterns sources must be switched over only once. However, when
memory resources are strictly limited, this method becomes impractical.

2.5.4 LFSRs used as signature analyzers

The advantage of using LFSR for signature analysis is based on the theory of
polynomial division, where the “remainder” left in the register after completion of
the test process corresponds to the final signature [11].

Consider the internal-XOR LFSR shown in Figure 2.4a, where the input
sequence is represented by the polynomial G(x) and the output sequence by Q(x).
The highest degree of the polynomials G(x) and Q(x) correspond, respectively, to
the first input bit to enter the LFSR and the first output bit produced after n clock
cycles, where n denotes the degree of the LFSR. If the seed of the LFSR contains
all 0s, then the final state of the LFSR can be presented by the polynomial R(x).
Thus, all above-mentioned polynomials are related by the following equation:

)(

)(
)(

)(

)(

xP

xR
xQ

xP

xG
∗∗ +=

where P*(x) is the reciprocal characteristic polynomial of the LFSR. The P*(x) is
used because the input sequence corresponds to the first bit of the input stream
rather than the last bit. Hence, LFSR performs polynomial division on the input
stream by the characteristic polynomial, producing an output stream that
corresponds to a quotient Q(x) and a remainder R(x).

43

Figure 2.4 Polynomial division

Figure 2.4 illustrates polynomial division, where a single-input signature
analyzer (Figure 2.4a) has the reciprocal polynomial P*(x) = 1 + x + x3 and the
input sequence is 1110001 (the data are entered in the order shown). The input
sequence and its corresponding polynomial are shown in Figure 2.4b. In
Figure 2.4c a simulation of the polynomial division of the input by the LFSR is
illustrated. The first three bits of the output response are ignored since they are
independent of the input sequence. It is seen that R(x) = 1 + x2 and Q(x) = x2 + x3.

To check correctness of the result corresponding calculations must be performed:
P*(x) × Q(x) = (x3 + x + 1) × (x3 + x2) = x6+x5+x4+x3+x3+x2 = x6+x5+x4+x2 and
P*(x) × Q(x) + R(x) = (x6+x5+x4+x2) + (1+ x2) = x6 + x5 + x4 + 1 = G(x).

Signature analysis is the most popular method employed for test data
compression because it compresses the data significantly and at the same time
produces a small degree of masking [11]. If initial data is m bits and degree of a
LFSR is n bits then compression coefficient is m/n; so if m >> n, then the
compression is very efficient. At the same time, the number of data streams that
produce a specific signature is 2m / 2n = 2m−n . For a particular fault-free response,
there are potential 2m−n − 1 erroneous data streams that could produce the same

Q(x) Input sequence: 1110001(7 bits)

 G(x) = x6 + x5 + x4 + 1

G(x)
S3

(a) (b)

S2 S1

Time Input stream Register contents Output stream
 S1 S2 S3
0 1000111 0 0 0 Initial state
1 100011 1 0 0
2 10001 1 1 0
3 1000 1 1 1
4 100 1 0 1 1
5 10 1 0 0 1 1
6 1 0 1 0 0 1 1
 Remainder 1 0 1 0 0 1 1 Quotient

 R(x) = 1 + x2 Q(x) = x2 + x3

(c)

44

signature. Since there are 2m − 1 possible erroneous response streams, the masking
error streams probability is the following: ܲ ൌ 2௠ି௡ െ 12௠ െ 1 ؆ 2ି௡

where approximation is valid for m >> n .Thus, the probability of no masking is
1 − 2−n , and a 16-bit signature analyzer may detect (1 − 2−16)×100 = 99.9984% of
the erroneous responses.

On the other hand, the final signature generated at the end of BIST cannot
reveal failing patterns since it contains only sum of remainders of the CUT
responses to a sequence of test patterns. In order to identify a failing pattern it is
necessary to find two equal sequences of test patterns, one of which has one extra
test pattern at the end of sequence. Additionally, the first sequence must pass a test
and the second one must fail. Then, it can be concluded that the last pattern from
the second sequence is the failing one. This approach requires a lot of tests to be
run that increase diagnostic procedure application time significantly. Hence, the
optimal search algorithm should be employed.

2.6 Logic diagnosis

Logic diagnosis is the process of narrowing down the possible locations of the
defect if a logic circuit fails a test. When the candidate locations can be reduced
down to possibly only a few, subsequent physical defect analysis becomes more
facilitated when the search for the root causes of failure is performed. For
integrated circuit (IC) products, logic diagnosis is crucial since it can ramp up the
manufacturing yield and in some cases can reduce the product debug time as well.
Typically, a successful IC product goes through two manufacturing stages [8]: (1)
prototype stage and (2) high-volume manufacturing stage.

In the prototype stage, a small number of samples are produced to validate the
functionality of a design on the tester and on prototype boards. During this stage,
the prototype samples could fail badly due to design bugs or unstable
manufacturing processes. Some of the reasons are outlined below [8]:

• Misunderstandings about the functionality. Since a complex product is
generally defined or built by multiple engineers, there can be ambiguities,
inconsistencies, and contradictions in the specifications. This can result
that the actual gate-level netlist or hardware-description language (HDL)
model may not conform to the desired specification under certain scenarios
or the specification may simply have been misinterpreted.

• Circuit marginality and timing failure issues. Fabricated silicon may not
operate properly at certain supply voltages and temperatures, or may not
execute as fast as expected based on timing simulations.

45

• Inappropriate layout design. For today’s nanometer technologies, the
actual geometries of the devices and interconnecting wires fabricated on
silicon deviate from the drawn layout due to light diffraction effects in the
lithography process, since the light used has a much longer wavelength
than the geometries that have to be printed.

After a design has passed the prototype stage, design bugs and circuit
marginality issues are mostly resolved and the product can ramp up to high-volume
production. At the early stage of manufacturing the yield could be low or
fluctuating. Therefore yield improvement is essential and it can be accomplished
by tuning the fabrication process. At this stage, the chip failures are mainly due to
manufacturing imperfections. Some of these failures are permanent and therefore
catastrophic, and some are parametric due to process variations.

The problem of diagnosis consists in locating physical fault(s) using a structural
model of a failing chip. The chip fails if its observed behavior differs from the
expected behavior of a fault-free model (which is a gate-level circuit or a transistor
schematic). The fault-free model is referred to as the circuit under diagnosis
(CUD). Further, some essential definitions applied in fault diagnosis are presented
[11]. Diagnostic resolution refers to the degree of accuracy to which faults can be
located, i.e. it refers to the number of faults that are listed as fault location
candidates as a result of diagnosis. If the list of candidate faults contains only
functionally equivalent faults, then no external testing experiment can distinguish
among these faults. The partition of all the possible faults into distinct sets of
functionally equivalent faults defines the maximal fault resolution which
characterizes an inherent diagnosability of the system. The faults resolution of a
test sequence reflects its capability to distinguish among faults and is bounded by
the maximal fault resolution. A test (sequence) that achieves the maximal fault
resolution is said to be a complete fault location test. A test vector (pattern) is
referred to as a failing test vector if it creates a mismatch at any output of CUD and
a failing chip.

In logic diagnosis, the failing chip is like a black box that cannot be analyzed.
The best can be done is to reason upon the CUD. Further, it is assumed that the
CUD has been implemented with full-scan and its functionality is represented as a
combinational gate-level circuit. In combinational logic diagnosis is assumed that
the faults to be identified are located within the combinational logic. Hence, the
flip-flops and the scan chains are assumed to be fault free. Thus, fault diagnosis can
be approached in two different ways: cause-effect analysis and effect-cause
analysis [11].

2.6.1 Cause-effect analysis

The cause-effect technique begins by mapping the causes of failure to a specific
fault type, e.g. stuck-at fault (SAF) model. By intensive fault simulation fault
tables or fault dictionaries are built. Once the fault dictionary is available, the

46

CUD

 (a) Circuit under diagnosis

x1

x2

x3

 y

f1 , f2 , f3 , f4 , f5

f1 , f2 , f4 f3 , f5

t1

t2

f3 f5

t3

f1 f2 , f4

f2 f4

t4

 (c) Diagnostic tree

 (b) Full output response dictionary

output = 0 output = 1

0 1 0 1

0 1

effect (or syndrome) of the failing chip is analyzed using dictionary look-up. If this
look-up process is successful, the dictionary indicates the corresponding fault(s) in
the CUD. Thus, cause-effect fault diagnosis is based on fault dictionaries and can
be characterized as an analysis that starts with possible causes (faults) and
determines their corresponding effects (responses).

Consider a CUD that has three inputs { x1 , x2 , x3} and one output y, as shown in
Figure 2.5a. Assume that four test vectors are generated in advance {t1, t2, t3, t4}.
Based on the single stuck-at fault assumption, the fault universe will be
{f1, f2, f3, f4, f5} after equivalent fault collapsing. Figure 2.5b shows the full
response table of output signal y obtained by complete fault simulation of the fault-
free circuit and the five faulty circuits. Each row corresponds to either fault-free or
faulty circuit, whereas each column depicts the responses to the corresponding test
vector. From the simulation results is concluded that the test set has 100% fault
coverage. Further, a simple fault dictionary will be build, to assist the cause-effect
diagnosis process.

A possible fault dictionary is shown in Figure 2.5c (this type of dictionary is
called a diagnostic tree), which aids to refine the fault candidates iteratively [8].
The initial candidate set contains all faults. After examining the response of the
failing chip to the first test vector t1, the candidate set can be narrowed down to
either {f1, f2, f4} or { f3, f5} candidate sets. The refinement continues until the
cardinality of each candidate set has been reduced to 1 or the responses of all test
vectors have been examined. The overall diagnosis process consists in passing the
path from the root of this tree to one of its leaf nodes that represent the final fault
candidates. For example, if the response of a failing chip at output signal y under

Circuits
Input test patterns

(x1, x2, x3)
t1 t2 t3 t4

Fault-free 0 1 0 0
f1 1 1 0 1
f2 1 0 1 0
f3 0 0 0 1
f4 1 0 1 1
f5 0 1 1 0

Figure 2.5 Example of cause-effect diagnosis

47

the four test vectors {t1, t2, t3, t4} is {1, 0, 1, 1}, by traversing the diagnosis tree can
be immediately deduced that the only fault f4 could be the cause of the failing
circuit.

It may take a lot of time and memory to construct the fault dictionary. However,
once the dictionary is built, fault analysis is usually fast. Because the fault
dictionary is built only once and in the pre-diagnosis phase, the overall diagnosis
process is computationally efficient. However, in practice this approach could be
limited by a number of problems.

One problem is the large computational effort involved in building fault
dictionaries for large circuits tested with long test sequences. To reduce
computational effort, in fault simulation is employed fault dropping, i.e. the
detected faults are dropped from the set of simulated faults (typically on first
detection). Hence, all the faults detected for the first time by the same vector at the
same output will produce the same signature and will be included in the same
equivalence class. Thus, early fault dropping usually results in lower diagnostic
resolution. Therefore, a trade-off between computation time and diagnostic
resolution can be achieved by dropping faults after n > 1 detections. Moreover,
initially a fault dictionary records every output response of each modeled fault at
each clock cycle. Without proper compaction, the size of a fault dictionary is
proportional to the product of three factors F·T·O, where F is the number of
modeled faults, T is the number of test vectors, and O is the number of outputs,
which can lead to extremely large storage requirement, so-called dictionary size
problem [8]. The entire dictionary also has to be regenerated even if a small logic
change is made. To reduce the amount of data used for fault location, a modern
fault dictionary does not store the entire response caused by the fault, but only a
signature usually consisting of list of errors contained in response. Moreover, with
proper compression techniques, this problem can be relieved to some extent [31]
[32] [33]. However, the excessive storage requirement and the inability to scale to
ever-larger circuits still pose a serious limitation to fault dictionary based approach.

Another problem is that a fault dictionary is constructed only for a specific fault
universe. If the CUD truly contains only modeled faults, then the diagnostic result
is highly accurate. A fault that is not equivalent under the applied test sequence to
any of the simulated faults cannot be located via the fault dictionary, because its
corresponding response does not match any response computed by fault simulation.
Moreover, realistic defects may not behave as modeled faults and can easily lead to
misleading results.

2.6.2 Effect-cause analysis

Unlike the fault-dictionary-based paradigm, effect-cause analysis directly
examines the responses (effects) of the failing chip to derive the fault candidates
(causes) through Boolean reasoning on the CUD [8].

48

Structural pruning techniques are often used as the first-step process in effect-
cause analysis that can narrow down the potential fault candidate area in the CUD
[8]. Firstly, the approach identifies mismatched outputs in the CUD for given
sequence of test vectors. The primary output in the CUD is called a mismatched
output whereas the corresponding primary output in the failing chip is called a
failing output, if there exists a test vector t which when applied to both the CUD
and the failing chip produces different binary values at corresponding outputs.
Secondly, the fanin cones of mismatched outputs are estimated that define the fault
candidate area in the CUD. The fanin cone of an output in the CUD refers to the
collection of the logic gates that can reach this output structurally.

Depending on the number of faults in the failing chip, there can be employed
cone intersection or cone union to prune out those logic gates that could not
possibly produce the faulty behavior [34], as illustrated in Figure 2.6. If there is
only one fault, then the intersection of the fanin cones of the mismatched outputs is
taken and the resulting area of gates is the fault candidate area (Figure 2.6a). On
the other hand, if there is more than one fault in the failing chip, then cone union
should be accomplished instead (Figure 2.6b). The reason is that every gate in the
fanin cone of any mismatched output could now be responsible for the observed
error partially, if not completely. The pruning capability of cone intersection is
much more effective than that of cone union. However, the number of faults, that
force the chip to fail, is unknown in advance before the diagnosis process. So, cone
union is a conservative and safer technique, whereas cone intersection could lead
to an empty fault candidate area if there are multiple faults.

Figure 2.6 Structural pruning techniques

 CUD

primary
inputs

 CUD

Fault candidate set

(a) Cone intersection in case of a single fault

primary
inputs

Fault candidate set

(b) Cone union in case of multiple faults

y1

y2

y2

y3

y1

y1

y2

y2

y3

y1

49

When structural pruning is completed and fault candidate area determined, a
more accurate procedure to pinpoint the fault locations is applied. Backtrace is one
such procedure which corresponds to functional pruning technique. Functional
pruning disqualifies candidates from the fault candidate area by examining the
signal values inside the CUD with simulation [8]. Backtrace is similar to critical
path tracing, which was originally proposed by [35] for fast fault simulation and
then subsequently applied to logic diagnosis [36]. The backtrace algorithm iterates
through each failing test vector performing, first, a fault-free simulation on the
CUD and then checking the mismatched outputs one at a time. From each
mismatched output, it traces the CUD backward to identify the signals that can
cause the output mismatch.

Figure 2.7 demonstrates the backtrace algorithm on a simple circuit. Here is
made no distinction between a logic gate and its output signal. The figure shows a
trace starting from mismatched output signal e where the fault candidate area is
marked by bold lines. At the end of the backtrace algorithm there will be one fault
candidate set for each mismatched output under a specific failing test vector. There
will be an issue in combining these fault candidate sets into a final set. In case of a
single fault assumption, the intersection of all of these fault candidate sets will
indicate the final fault candidate set. If the final set occurs to be empty, then
multiple faults should be implied to present in the failing chip.

The backtrace algorithm is generally efficient, but in some cases it may not be
accurate enough. To address this issue, [37] pioneered an alternative method,
referred to as the inject-and-evaluate paradigm. Computationally, it performs a
sequence of fault injections and evaluations to diagnose a failing circuit.

Figure 2.7 The backtrace algorithm demonstration

b

a

c

d

e

f

0

1 1

1

1

0

0

1

0

1

1

mismatched
output

50

2.7 State-of-the-art

2.7.1 BIST environment challenges for fault diagnosis

As process technologies shrink and designs become more complex, built-in self-
test (BIST) is gaining increasing acceptance as an industry-wide test solution [14],
because it provides a low-cost solution to both test generation and test application
[38], offers the promise of low hardware overhead with the clear advantage of
at-speed testing (delay testing) [39], enables testing at the operation frequency of
circuits under test (CUT) and reduces test application time in comparison with
automatic test equipment (ATE).

Despite such benefits, the BIST approach has not been adopted as the primary
test methodology, because of weak diagnostic capabilities [38]. A problem with it
is that the signature provided by output response analyzer (ORA) at the end of the
test session does not contain enough diagnostic information, either to identify
failing vectors or to precisely identify error-capturing scan cells. The pass/fail
information obtained from ORA is usually insufficient to diagnose the failure via
effect-cause analysis [40]. Thus debug in BIST environment is complicated.

To ensure its overall success, a BIST environment must be able to provide
similar diagnostic capability as a conventional scan-based external testing
environment. Any new method proposed to eliminate this drawback of BIST
technique is faced with following challenges in the diagnosis process to be solved
[39]:

• achieving full diagnostic information, i.e. detecting all faulty items
(whether scan cells, test vectors or logic blocks)

• minimizing diagnostic time, since this translates to reduction in total
testing time

• minimizing hardware overhead, i.e. the amount of hardware needed to
support built-in self-diagnosis (BISD)

Early works on BISD have focused on extracting diagnostic information hidden
in the BIST signature based on identification of fault-detecting test vectors [41]
[42] [43]. However, if there are faults that are detected by a number of vectors,
aliasing problems make it impossible to place an accurate diagnosis [42].
Therefore, the researchers have attempted to collect more information by repeating
the same test [doubling, jumping], by adjusting signature analyzer (SA) parameters
or observation outputs or by increasing signature register size [44] [45] [46] [47].
However, the previous attempts based on the analysis of a single signature have
failed to provide effective methods for current designs [48]. On the other hand, SA
partitioning based diagnosis schemes [45] [46] [47] [49] have been introduced that
have proven highly effective for large industrial circuits.

51

Research on identification of fault-embedding scan cells in scan-based BIST
design has concentrated on increasing the diagnostic information through multiple
applications of the same test, each time modifying the way that the test responses
are compacted. Observation of the test responses can be modified by either
changing the outputs to be observed through partitioning schemes [48] [49], or
changing the signature compactor [47]. The approaches based on multiple
repeating of full test sequences lead to long diagnosis procedures, and the control
circuits needed for repeated partitioning or repeated changing of signature
analyzers lead to higher area overhead.

Another approach is to organize the diagnostic procedure as a sequence of
selected test sequences with the goal to identify failed test patterns. These
approaches are using cause-effect strategy and are implemented as a classical
search procedure which can be optimized to reduce the total diagnosis time. The
drawback of this type of known approaches is the high amount of memory space
needed to store the pre-computed fault tables.

As logic BIST is increasingly being adopted to improve test quality and reduce
test costs for rapidly growing designs, the search for efficient methods for BISD
that provide the same benefits as BIST is relevant. Although many methods have
been offered [38] [39] [40] [6], there is still a potential to improve them. Thus the
problem of looking for efficient fault diagnosis methods remains.

2.7.2 The strategies for diagnosis

Diagnostic analysis is based on two main principles: cause-effect or effect-cause
approaches [8]. Cause-effect analysis [31] is based on pre-computed fault
dictionaries whereas effect-cause analysis [50] [51] is based on processing the test
responses of a circuit (effect) in order to locate the fault (cause).

Cause-effect analysis is also called a fault-dictionary based paradigm or
combinational diagnosis approach [52]. As designs grow in complexity, dictionary-
based diagnosis becomes infeasible due to prohibitively large dictionary sizes. The
disadvantage of the cause-effect approach lies also in the need of fault models or
fault lists, and in the inability to handle multiple faults.

Effect-cause analysis, while not using expensive fault dictionaries, requires,
however, significantly higher computational power during diagnosis, compared to
the cause-effect approach. For every failing circuit, an expensive diagnostic
simulation of the circuit has to be processed. The test responses have to be
analyzed by using fault simulation and backtracking to identify the causes
[50] [53] [54] [55]. Because of sequential character of reasoning this approach is
called also sequential fault diagnosis. Effect-cause analysis is superior to the fault-
dictionary-based paradigm at least in the following aspects [8]: a) it does not
assume a fault model and thus is more suitable for handling non-stuck-at-faults; b)
it can be easily adapted to cases where there are multiple faults in the failing chip.

52

Effect-cause algorithms are simple when the single fault assumption is adopted. In
this case intersections of input cones of failing outputs are calculated [56], or
backtrace critical paths from failing outputs are processed [57].

Computational and storage requirements for fault dictionaries are high due to
the large number of faults, outputs and test patterns. Reduction in size is possible
by storing only subsets of the dictionary, at the expense of reduced diagnostic
resolution [58] [33]. Also, a combination of the two approaches, cause-effect and
effect-cause analysis, can have a synergy to overcome the pre-diagnosis and
post-diagnosis simulation costs.

2.7.3 Fault models

Traditional approaches to the cause-effect fault diagnosis lay on the stuck-at-
fault (SAF) model. Due to the advances in manufacturing technologies, more and
more defects lead to failures that can no longer be modeled by classical stuck-at
faults. Numerous actual failures exhibit timing or parametric behaviors that are not
represented by stuck-at faults. Therefore, many researchers have focused on
developing new fault models for particular types of failure mechanisms like signal
line bridges [59] [60], transistor stuck-opens [61] [62] or failures due to changes in
circuit delays [63].

However, the variety of possible physical defects or error causes in an
electronic circuit is practically infinite, and therefore all the possible faults are not
countable. On the other hand, the know-how about realistic physical defects in
microelectronic circuits is quickly getting obsolete. New semiconductor processes
introduce new types of defects and fault effects. New failure mechanisms are
emerging that are not fully understood. This makes defect model based fault
diagnosis extremely difficult, and the traditional diagnosis methods based on using
different error or fault models are becoming outdated. To overcome the difficulty
of counting the physical defects in microelectronic circuits and bugs in designs,
new fault model free approaches to debug and diagnosis are emerging.

Consequently, another trend has been to develop general fault modeling
mechanisms and corresponding test tools that can effectively analyze arbitrary fault
types like in [64] where D-cubes are used to model any arbitrary change in the
logic function of a circuit block. A generalization of this approach has been found
in the input pattern fault model [65] and in the pattern fault model [66] which can
model any arbitrary change in the logic function of a circuit block, where a block is
defined to be any combinational subcircuit described at any level of the design
hierarchy.

A similar pattern related fault modeling approach called functional fault model
was proposed earlier in [67] for the module-level fault diagnosis in combinational
circuits based on solving systems of Boolean differential equations. The functional
or pattern fault model allows an arbitrary set of signal lines to be grouped into

53

activation conditions for a single fault site, allowing a variety of fault types to be
modeled. The functional faults can be either static or dynamic [68].

In [69], a similar model called conditional fault was proposed for test
generation purposes, and in [70] for diagnosis purposes. A conditional fault allows
additional signal line objectives to be combined with the detection requirements of
a particular fault or physical defect.

The single location at a time (SLAT) technique [71] [72] [73] relaxes the single
fault assumption, and is a fault model independent approach which uses the SAF
model only to localize the suspected area of the circuit. The drawback of the SLAT
paradigm based on the conditional SAF model is the fact that only patterns with
SLAT property are used, all the other patterns are not taken into account. An
adaptive diagnosis approach as an extension of the SLAT technique is proposed in
[74] [75]. It combines a novel effect-cause pattern analysis with high-resolution
ATPG.

2.7.4 Fault simulation

Fault models are used in test generation and fault diagnosis whereas the
efficiency of both relies heavily on the efficiency of the fault simulation. For some
of the advanced fault models dedicated fault simulation methods has been
developed, e.g. symbolic X-fault simulation [76], simulation of resistive bridging
faults based on resistance intervals [77] etc.

For most of the proposed fault models it is possible to divide the fault
simulation into two phases:

• traditional SAF simulation to determine which nodes in the circuit are
“active”, i.e. observable via fault propagation to primary outputs at the
given test pattern

• dedicated defect analysis according to the selected advanced fault model to
determine which realistic defects can influence the signals at observable
(active) nodes

The final efficiency of the fault simulation is highly depending on the speed of
the first phase – SAF simulation.

2.7.5 A hierarchical approach to fault diagnosis

Rapid advances in the areas of nanoscale electron technology and design
automation tools enabled engineers to design larger and more complex integrated
circuits. On the other hand, the increasing integration densities pose severe
problems with respect to the quality assurance. The quality and reliability of
microelectronic circuits depend essentially from the efficiency of debug and
diagnosis of failures in circuits. Traditional approaches to automate the diagnostic

54

processes focus on gate-level designs [78] [79] [80] [74] [57]. However, due to the
continuous increasing of the gate count in circuits under diagnosis, the gate-level
methods are becoming less efficient. This phenomenon, on one hand, and the fact
that the conversion of a register-transfer level (RTL) design into gate level is fully
automated, on the other, results in the efficiency of gate-level based methods [81].
Also, as most errors are designer-introduced [82], the ability of directly pinpoint
the errors in hardware-description language (HDL) designs can provide the design
engineer with a better understanding of the nature of the design failure.

Two main trends can be observed when searching solutions for the problems of
testing and diagnosis: defect-orientation, and high-level modeling [8]. The trend
towards high-level modeling helps to cope with the complexity, but moves even
more away from the real life of physical defects and, hence, from accuracy of
diagnosis. To handle adequately defects in nanoscale technologies, new fault
models and defect-oriented diagnosis methods should be used. But, the defect-
orientation is increasing again the complexity. To get out from the deadlock, these
two opposite trends – high-level modeling and defect-orientation – should be
combined into hierarchical approaches.

2.7.6 E-learning in digital fault diagnosis

The importance of testing and fault diagnosis in technical systems as a teaching
objective is often underestimated in engineering education. The more complex
electronic systems are getting the more important it becomes to solve the problems
of testing and fault diagnosis because of the complexity of these problems and high
cost of solutions. Today, design and test are no longer separate issues. Entering into
the system-on-chip and network-on-chip era means that test and diagnostics must
become an integral part of the electronic system design courses. However, fault
diagnosis is not only an electronic systems related issue, it has an important
didactic role for engineering education in general: (1) it is a method to learn how to
ask right questions, (2) it develops abilities to analyze cause-effect or effect-cause
relationships, (3) it forces to look for answers to the questions like what is the
reason of what has happened.

The electronics world because of its inherent logic complexity could be the best
objective for learning the concepts of diagnostic reasoning for any technical
systems in general. It is not only a system design or manufacturing issue, it is a
problem to be solved every day in the field when a system stops working because
of a fault.

A student is not coming to university to be taught, he is coming to learn how the
professor thinks. Students should not be asked to press simply on buttons in
laboratories to get results which only confirm what they have heard in classes or
what they know already. The real targets of education are: creativity, critical
thinking, and problem solving skills. Therefore, teaching and learning at a
university should be research oriented.

55

2.7.7 Conclusions

• Despite the benefits of the BIST approach as test methodology, it has weak
diagnostic capabilities. Methods are needed which allow to develop
embedded fault diagnosis methods on the basis of standard BIST solution,
and which would provide cost-effective, fast diagnosis procedures and high
diagnostic resolution.

• Broadly spread fault dictionary based cause-effect diagnosis is a fast and
efficient approach; however it is not scaling, and cannot be used for
complex digital systems. High-level or hierarchical methods are needed to
cope with the growing complexities of fault dictionaries to make the cause-
effect approach scalable.

• The drawback of effect-cause analysis is significantly higher
computational power needed for diagnosis, compared to the cause-effect
approach. A combination of both, cause-effect and effect-cause paradigms
coupled with hierarchical approaches could be a way to develop cost-
effective and fast diagnosis procedures and high diagnostic resolution.

• Two main trends in testing and diagnosis – defect-orientation, and high-
level modeling – are conflicting with each other. High-level modeling
helps to cope with the complexity inherent in physical defect level
modeling, but provides poor accuracy of diagnosis. To cope with the
difficulties of handling defects in nanoscale technologies fault model free
diagnosis should be taken as a new paradigm of fault diagnosis in today's
digital systems. Two opposite and conflicting trends - high-level modeling
and defect-orientation - should be combined into hierarchical approaches.

• The importance of fault diagnosis in technical systems as a teaching
objective is often underestimated in engineering education. Entering into
the system-on-chip and network-on-chip era means that test and diagnosis
must become an integral part of electronic system design courses. There is
a need for low-cost and simple tools for hands-on training in system
diagnosis, to support these courses and to foster in students creativity,
critical thinking, and problem solving skills.

56

57

Chapter 3

FAULT DIAGNOSIS IN THE BIST

ENVIRONMENT

This chapter presents an optimized fault diagnosing procedure applicable in
built-in self-test (BIST) environments. Instead of the known approach based on a
simple bisection of patterns in pseudorandom test sequences, a novel bisection
procedure is proposed where the diagnostic weight of test patterns is taken into
account. Another novelty is the sequential nature of the procedure which allows
pruning the search space. Opposite to the classical approach which targets all
failing patterns, in the proposed method not all failing patterns are necessarily
needed to be fixed for diagnosis. This allows to make a trade-off between the speed
of diagnosis and diagnostic resolution. The proposed method is compared with
three known fault diagnosis methods: classical Binary Search, Doubling and
Jumping. Experimental results demonstrate the feasibility and efficiency of the
approach.

3.1 Search procedures for diagnosis

In the following an overview of diagnostic algorithms in the connection of
using in BIST is given. Consider the BIST environment consisting of
pseudorandom test pattern generator (TPG) and multiple input signature register
(MISR) as an output response analyzer (ORA) for circuit under test (CUT) as
depicted in Figure 2.1.

Denote by N the length of the pseudorandom test sequence T generated by TPG,
by F the set of possible faults in the CUT, by F(t) ⊂ F the set of faults detected by

58

the test pattern t ∈ T, and by T(f) ⊆ T the set of test patterns failed because of the
fault f ∈ F. Denote by a test session (query) the procedure where a part of test
sequence T is applied with the subsequent comparison of the signature in MISR
with the expected one.

The diagnosis problem can be formulated as follows: Given a set F of faults,
identify the subset of faults F* ⊂ F, where in general case, the number of faults to
be localized d = |F*| is unknown, using the minimum number of queries. The
number of queries is directly proportional to the amount of time needed to diagnose
the BIST system.

Below four algorithms are discussed: Binary Search, Digging, Doubling and
Jumping that attempt to solve the diagnosis problem.

3.1.1 Binary Search

The classical Binary Search algorithm is based on bisection of patterns, and a
large variation of this approach has been published [83] [84] [85] [86]. Consider
here the case d = 1 where the circuit contains a single fault f*∈ F. The following
procedure describes how to find all the failing patterns T(f*) ⊆ T within the
pseudorandom sequence [1, N] of test vectors T generated by BIST, if after N
patterns the signature is corrupted [87]:

Algorithm 3.1: (see Figure 3.1)

1. Perform BIST for all patterns within [1, N/2]
2. IF the signature after N/2 patterns is correct:

 Find all the failing patterns within [N/2+1, N]
ELSE
 Find all the failing patterns within [1, N/2]
 Load the correct seeds for the pattern N/2+1 into the TPG and MISR
 Find all the failing patterns within [N/2+1, N]

Figure 3.1 Binary search algorithm description

N/2

N

1 1. test 2. test

3. test

3. test

Faulty
Signature

Correct
Signature

Faulty Signature

59

After the set of all failing test patterns T(f*) is determined the set of faults can
be calculated as follows:


)()(

)()(*)(
fTTtfTt

tFtFfF
−∈∈

−=

containing the suspected faults which cannot be distinguished from f*.

3.1.2 Digging

The Digging algorithm can be considered as an improvement to the Binary
Search. Digging reduces the number of queries, especially for low values of d
(number of faults in the CUT) [88] [89]. Observe that if there are two sets of
suspected faults F1 and F2, with F1 ⊂ F2, then the result of the query F1 renders the
result of the query on F2 useless. Hence, with Binary Search there is a potential for
many queries to produce no additional information for the diagnosis process. This
suggests that once a suspected set of faults F (f*) is found, the searchable fault f*
should be identified from this particular set F (f*). This process is referred to as
Digging [89].

In general case with d > 1, once a fault f* is identified, f* is removed from F*,
and digging is resumed on the remaining items. Digging requires d × log2n queries.

3.1.3 Doubling and Jumping

Given that the value of d is unknown, the Doubling algorithm attempts to
estimate the value of d. If d is small then the algorithm finds large fault-free sets;
otherwise, the algorithm finds small suspected fault sets. To deliver this
functionality, the algorithm tests disjoint sets sizes 1, 2, 4, …, 2i, where i = 0, 1,…,

until a suspected fault set is found. At this point, the algorithm has used 2i − 1 test
patterns with positive results and has identified a fault by using a set of test patterns
of size 2i, using i + 1 queries. The algorithm then identifies the fault within a
sequence of 2i test patterns using binary search, which requires i queries.

Consequently, in a general case, the algorithm uses 2i + 1 queries and detects 2i
items (2i − 1 fault free and 1 faulty). This Doubling algorithm is presented in [39]
[90].

An interesting modification to Doubling is Jumping [91]. Here the test sets of
sizes 1+2, 4+8, ..., 2i + 2i+1 are used until a faulty set is found. Using these “jumps”
in the ordered test sequence, the algorithm identifies fault-free subsequences with
i/2 tests instead of i tests. However, a faulty test subsequence is of size 3 × 2i,
rather than of size 2i as in Doubling; it therefore requires more than one query on a
subset of size 2i to reduce the faulty set to either 2i or to size 2i+1 with 2i fault-
free items. More detailed analysis of Jumping algorithm is presented in [39] [91].

60

3.1.4 Summary

In this section four most effective algorithms for finding failing patterns in a
sequence of test patterns have been discussed. The effectiveness of the presented
methods mainly depends on the number of failing patterns and their location in the
sequence of test patterns. Thus in some cases one algorithm is better than other and
conversely.

The algorithms of Binary Search, Doubling and Jumping to be used in the BIST
environment were implemented to make a comparison with the proposed searching
algorithm described in the next section. Since in the thesis was considered only the
case d = 1 (assumption of a single fault), the Digging algorithm was not
implemented. In fact, indirectly the main idea of the Digging algorithm about
successively concentrating the search on current sets of suspected faults is covered
by the proposed algorithm.

3.2 Diagnosis with bisection by fault coverage

3.2.1 Built-in self-diagnosis environment

In Figure 3.2 a BIST based architecture is presented which is used to conduct
the embedded fault diagnosis. The environment consists of pseudorandom TPG,
ORA for fixing output responses, memory for storing diagnostic data, and BIST
control unit.

Figure 3.2 BIST for fault diagnosis

The proposed method is based on sequential bisection of the pseudorandom test
sequence controlled by diagnostic data in the BIST memory. In other words, the

Memory

Test patterns

Number Signature Faults

Test Pattern Generator
(TPG)

Output Response
Analyzer (ORA)

Circuit Under Test

(CUT)

BIST
Control Unit

61

idea of bisection of faults instead of bisection patterns as used in former methods is
employed. Selected patterns in the test sequence are serving as diagnostic points
(DPs). The number of DPs is determined by trade-off between the cost of memory
and diagnostic resolution. Generally, patterns which detect new faults not yet tested
by previous patterns are selected as DPs.

Diagnostic data (DPs) in the memory (see Figure 3.2) consist of:

• the numbers j of selected test patterns tj

• signatures s(tj) corresponding to the content of ORA if the test pattern tj
would be the final pattern of the test session

• the sets of faults F(tj) detected by the test patterns tj

For each test pattern tj can be calculated the set of faults F(Tj) detected by the
test sequence Tj with final pattern tj as:


jj Tt

jj tFTF
∈

=)()(

and the fault coverage FCj reached by the test sequence Tj with final pattern tj as:

FCj = | F(Tj) | / | F |

where F is the set of all possible faults detected by the test sequence.

Besides using static tables of the numbers, the signatures and the sets of faults
of test patterns, there is also a need to keep in memory a dynamic table of set of
faults F(T Bj B), a list of suspected faults and numbers of the first and the last patterns
of current test sequence, to be able to run the diagnostic procedure. Moreover, extra
hardware is needed to perform basic logical operations to support the proposed
method (necessary logical operations will be discussed further).

3.2.2 Algorithm description

In Algorithm 3.2, step – 0...100% defines the interval of patterns used for the
diagnostic test session (query) where % means percentage of fault coverage, i.e.
step = 100% (Fs) means that a test sequence T = [tstart , tstep] must test all suspected
faults Fs . Initially, all faults in F are being suspected and therefore step = N (index
of the last test pattern in initial test sequence). Notations start and end represent the
index of a pattern in the test sequence.

Firstly, a test containing all the test patterns is applied to the CUT. In case, the
test fails, i.e. the signature s(tend) does not correspond to the expected one, a
subsequence of the initial test is selected in such way that the new test sequence
T = [tstart , tend] detect tend = step/2 = 50% of faults in Fs . The calculation of the
index tend is completed employing information from total fault table {F(Tj)}. If the
new test detecting 50% of faults in Fs passes, i.e. the signature s(tend) corresponds
to the expected one, the list of suspected faults is updated Fs = Fs − F(T [tstart , tend]).

62

The bisection procedure of searching the failing pattern tf is continued until a
failing test sequence that contains only a single test pattern (tstart = tend) is found.
Then the list of suspected faults Fs = Fs ∩ F(tf) as well as fault tables {F(tj)} and
{F(Tj)} are updated. Further, a decision is made either to continue the searching
procedure or to finish the diagnosis if applicable diagnostic resolution is achieved.

Algorithm 3.2:

Initial states:
 1. Initial fault table {F(tj)} and total fault table {F(Tj)}
 2. Suspected faults Fs = all faults in F
 3. T = [tstart , tend] initial test sequence, where tstart = 1 and tend = N

 4. step = 100%(Fs)

 Do
 5. Load correct seeds for tstart into the TPG and the ORA
 6. Perform BIST for all patterns within T = [tstart , tend]

 // (1) diagnose, update Fs
 7. If (s(tend) is correct) // test passed
 8. Fs = Fs − F(T [tstart , tend])
 9. Else // test failed

 10. If (start = end) // single tf is found
 11. Fs = Fs ∩ F(tf)

 12. If (Fs updated)
 13. start = end + 1

 // (2) update {F(tj)} and {F(Tj)}, where j א [start, N]
 14. {F(tj)}[j] = initial {F(tj)}[j] ∩ Fs

 15. {F(Tj)}[j] = {F(tj)}[j] ∪ {F(Tj)}[j-1]

 16. If (tf is found)
 17. step = 100%(Fs)
 18. Else // test passed
 19. step = step/2 // (3) calculate step
 20. Else // test failed, but the failing pattern cannot be extracted yet
 21. start = start
 22. step = step/2 // (3) calculate step

 23. end = step

 While (tstart ≤ N)

By Algorithm 3.2 a diagnostic tree (DT) can be created where the nodes
represent test sessions (Figure 3.4 and Figure 3.5). Each path in DT represents a
diagnostic procedure as a sequence of test sessions.

For fault diagnosis, in fact, the explicit full diagnostic tree is not needed. For the
fault location, only a single path of such a tree should be created and carried out
according to Algorithm 3.2. The last node of the path corresponds to a failing

63

pattern tj which allows to determine the set of suspected faults as the result of fault
diagnosis:

D = F(tj) − F(Tj − tj)

If the diagnostic resolution | D | is acceptable the procedure can be finished,
otherwise the fault diagnosis will be continued. Now it will take into account the
knowledge of D in deciding the tstart and tend patterns for further test sessions. In this
procedure the same bisection algorithm will be used where the fault coverage of
the patterns involved in test sessions will be updated by using D.

The search for new failing patterns to improve the current diagnosis D (to
reduce the number of suspected faults in D) proceeds until either all failing patterns
are found or acceptable diagnosis resolution is achieved. The maximum number of
iterations equals to the number of all failing patters in the given sequence of test
patterns. The main difference of the proposed method compared to [87] is in
searching and processing only a part of all failing patterns to reach still acceptable
resolution.

3.2.3 Example of bisection detected faults

In the following example, the problem of diagnosis will be described as a set of
possible diagnostic procedures in a form of diagnostic tree. If the full diagnostic
tree is given then the average length of the diagnostic procedure (the number of test
sessions or queries) can be calculated. On this small example is also demonstrated
how the average length of the diagnostic procedure can be reduced by the proposed
method of bisection faults compared to the former method of bisection test
patterns.

Consider as an example the small circuit c17 from the ISCAS’85 benchmark
family [92] [93] depicted in Figure 3.3.

Figure 3.3 A schematic of circuit c17

 &

 &

 &

 &

 &

 &

y1 x1

 x4
y2

 x5

 x2
 x3

64

In Table 3.1 the diagnostic data for circuit c17 generated during stuck-at fault
(SAF) simulation of the pseudorandom test sequence are presented, where |F(tj)|
denotes number of stuck-at faults tested by the test pattern tj , |F(Tj)| − |F(Tj-1)| –
number of new faults, not jet tested by previous patterns, |F(Tj)| – cumulative
number of tested faults, and FCj % – cumulative fault coverage in percentage. In
this example all the test patterns are considered as DPs since each test pattern
detects new faults.

Table 3.1 Fault simulation data for circuit c17

Input

Patterns
|F(tj)|

faults
|F(Tj)| − |F(Tj-1)|

new faults
|F(Tj)|

cumulative faults
FCj %

1 11001 5 5 5 16.7

2 10010 10 10 15 50.0
3 00100 9 1 16 53.3
4 01000 6 1 17 56.7
5 10001 10 3 20 66.7
6 00011 10 1 21 70.0
7 00111 11 4 25 83.3
8 01111 12 1 26 86.7
9 11110 11 3 29 96.7

10 11100 6 1 30 100.0

3.2.3.1 Primary diagnostic tree

Based on information about new faults detected by test patterns and cumulative
fault coverage FCj% given in Table 3.1, the proposed algorithm builds up the
primary diagnostic tree to perform diagnostic procedure (fault diagnosis).
According to the Table 3.1, the sequence of two first patterns testing 50% of faults
should be carried out as the first test. The collected signature is compared to the
expected one. If the test fails then a fault has been detected and the second test
session will now consists of only the first pattern. In the opposite case, if the test
passes, the new test session must test 50% / 2 = 25% of not yet tested faults. The
new test will contain patterns from 3 to 6 since cumulative fault coverage of
pattern 6: FC6 = 70% − 50% = 20% is closer to 25% of faults than of pattern 7:
FC7 = 83.3% − 50% = 33.3% . The diagnostic procedure is continued until a failing
test containing a single pattern is found.

In Figure 3.4 the diagnostic trees for comparing the classical binary search with
bisection of patterns (Figure 3.4a) and the proposed algorithm with bisection of
detected faults (Figure 3.4b) are presented. From each node in the trees the
algorithm proceeds to the left if a fault is detected by the corresponding test
session, and to the right in the opposite case. The numbers at the outputs of the
leaves on trees correspond to the diagnostic resolution achieved by this particular
procedure. The trees allow calculating the length of the diagnostic procedure.

65

For example, in Figure 3.4b the path to faults detected by pattern 3 lies through
nodes 2, 6, 5, 4, 3 and corresponds to 5 tests with the length of 2 + (6−2) + (5−2) +
+ (4−2) + (3−2) = 12 clocks (test patterns). From nodes 6, 5, 4, 3 is subtracted 2
since the first test containing two first patterns (node 2) passes and therefore the
following test sessions starts from pattern 3, not from pattern 1. Similarly, in
classical binary search tree (Figure 3.4a) the path to node 3 lies through nodes 5, 2,
3 that corresponds to 3 test sessions and 5 + 2 + (3−2) = 8 clocks.

For this particular case, the classical binary search approach outperforms the
proposed method. However, if to carry out deeper analysis of the diagnostic tree, it
is evident that the tree based on bisection of faults is not height-balanced (shifted to
the right). Considering the numbers at the outputs of the leaves on the tree that
correspond to the diagnostic resolution, the path through nodes 2 and 1 detects 50%
of all faults ((5 + 10) / 30 × 100% = 50%) only by 2 tests. Whereas, the classical
binary search tree uses 3 tests – a path through nodes 5, 2 and 1. As a result, the
average lengths of test sessions and clocks, that are needed to identify a failing
pattern over all stuck-at faults, for the proposed method are 3.06 and 6.43, whereas
for the classical binary search are 3.33 and 8.67, respectively.

For complex circuits, where a lot of test patterns needed for test and diagnosis
since a large number of stuck-at faults are possible in CUT, the values of
|F(Tj)| − |F(Tj-1)| will progressively decrease with growing j. This is the reason why
for more complex circuits the algorithm using bisection by fault coverage will
produce the diagnostic trees even more shifted to the right. This means that 50% of
faults can be always analyzed by a small number of test sessions. The difference is
significant when for fault diagnosis is applied a sequence of pseudorandom test
patterns.

Because of the right-shifted primary diagnostic tree, the proposed method on
average finds out the first failing pattern more effectively than the classical binary
search tree. Although in the given example the difference between primary trees is

b) bisection by faults

5

2

1 3

4

6

8

9

10
75 10 1

1 3

1

4 1

3

1

5

2

1

3

4

6

8

9

10

7

10

1 1

3

1

4 1 3

1

5

a) bisection by patterns

Figure 3.4 Primary diagnostic trees for c17

66

not evident, i.e. the average lengths of test sessions and clocks differ slightly; the
superiority of the proposed method becomes obvious when examining secondary
diagnostic trees, a case when the first failed pattern is already found.

3.2.3.2 Secondary diagnostic tree

Consider the case when pattern 2 fails. From the Table 3.1, the number of faults
to be suspected as a result of fault diagnosis is equal to 10 (new faults detected by
pattern 2), since from the number of cumulative faults |F(T2)| is subtracted faults
|F(T1)| detected by pattern 1. The diagnostic resolution is weak since
10 / 30 × 100% ≈ 33.33% of all possible stuck-at faults are suspected to present.
The fault diagnosis can be continued to improve the resolution. A secondary
diagnostic tree should be built up to perform a search of other failing pattern. So as
to support the generation of the secondary tree, initial fault table {F(tj)} and total
fault table {F(Tj)} must be updated according to the proposed algorithm.

Table 3.2 Updated fault table for circuit c17

Table 3.2 provides more detailed diagnostic information for circuit c17, where
columns correspond to faults and the rows to test patterns whereas the following
notation is used: X – no faults, 0 (1) – stuck-at-0 (1) fault detected by the test
pattern. Moreover, Table 3.2 contains updated information of tables {F(tj)} and
{F(Tj)} after pattern 2 has been found as failed.

In the case of bisection of patterns (Figure 3.5a) a secondary diagnostic tree DT
is built up by bisection of the reminder set of DPs (from 3 to 10), and starts with
the test that contains patterns from 3 to 6. For the proposed method, the rows from
3 to 10 in Table 3.2 are updated. Pattern 3 detects 8 faults (marked in light grey)
from the suspected list (marked in dark grey). Pattern 4 and 10 are not needed for
building up a secondary DT since they do not detect any suspected fault. Pattern 5
detects 2 suspected faults not yet tested by pattern 3. Patterns 6-9 also not used for
a secondary DT since they detect suspected faults that are already covered by
patterns 3 and 5. Therefore, according to the proposed algorithm, a secondary
search tree DT (Figure 3.5b) consists of only two nodes: 3 and 5, since patterns 3

 F(tj) F(Tj) F(Tj) − F(Tj-1) FCj %

1 X X X X X 0 0 X X 1 X X X 0 0
2 1 1 X X X X 1 1 X 0 0 0 0 1 1
3 X X 1 X X X 1 1 X 0 0 0 0 1 1 8 8 8 80
4 X X X X X 0 0 X X 1 X X 1 0 0 0 8 0 80
5 1 1 X X X X 1 0 0 0 0 1 X 0 1 6 10 2 100
6 1 X X X 1 X 1 0 0 0 0 1 X 0 1 5 10 0 100
7 0 X 1 0 0 X X X 1 0 0 0 0 1 1 6 10 0 100
8 0 X 1 0 0 1 X X 1 0 0 0 0 1 1 6 10 0 100
9 0 0 0 0 0 1 X X X X 1 0 0 1 0 3 10 0 100

10 X X X 1 X 0 0 X X X X X 1 0 0 0 10 0 100

67

and 5 together test all the suspected faults and one of them will definitely fail
during next test session.

If now to make a comparison between secondary diagnostic trees of the
proposed algorithm and the classical binary search, the difference becomes evident.
The tree in Figure 3.5b contains only nodes (test patterns) that are really suspected
to fail, while the classical binary search tree contains all nodes. As a consequence,
for the secondary tree of the proposed method average number of test sessions is
(8×1 + 2×2) / 10 = 1.2 and average number of clocks equals to (3−2)×8 + ((3−2) +
+ (5−3))×2 = 1.4 compared to classical binary search (3×8 + 3×2) / 10 = 3 and
(((6−2) + (4−2) + (3−2))×8 + ((6−2) + (4−2) + (5−4))×2) / 10 = 7, respectively.
The superiority of the proposed method consists in supposition that the more failed
patterns are found, the less faults are under suspect and as a result secondary trees
will contain less nodes and less test sessions will be needed to identify a new
failing pattern.

To conclude the description of the proposed algorithm main features are listed
below to draw attention to it main concepts.

Main features of the proposed method:

• The diagnostic information inherent in test patterns is taken into account:

o fast search of the first failing pattern (search tree shifted to the right)

o allows pruning the search space (patterns that do not detect suspected
faults are omitted, not used for building up a search tree)

o not all failing patterns are necessarily needed to be fixed for diagnosis,
i.e. diagnosis is finished when an appropriate diagnostic resolution is
achieved

6

4

3 5 7

8

9

108 2

3

8

2

5

a) bisection by patterns b) bisection by faults

Figure 3.5 Secondary diagnostic trees for c17

68

3.2.4 Logical operations needed to support the proposed method

Support of the proposed method in BIST environment can be complicated since
there is a need for extra memory to keep dynamically updated fault tables. There is
also a need for extra hardware to perform some calculations with fault tables, so as
to define new tests and to update a list of suspected faults. However, these
calculations are simple logical operations and can be easily implemented in
hardware. According to the proposed algorithm, described in section 3.2.2, there
are two basic operations employed to perform effective search of failing patterns:

• calculation of total fault vectors

• updating list of suspected faults with failed or passed patterns

3.2.4.1 Calculation of total fault vectors

Calculation of total fault vectors F(Tj) for total fault table {F(Tj)} generation is
essential since the end pattern tend of a new test is defined by total fault coverage
FCj derived from {F(Tj)}. The formula for total fault table {F(Tj)} generation is
presented in the description of the proposed algorithm:

{F(Tj)}[j] = {F(tj)}[j] ∪ {F(Tj)}[j-1]

where j denotes the number of test pattern (DP) in the table. Thus, a new total fault
vector F(Tj) for a test pattern tj is calculated by adding the new faults detected by
pattern F(tj) to the faults detected with preceding patterns F(Tj-1).

In each cell of a fault table is stored only one of four different values: “X” – no
faults, “0” – stuck-at-0, “1” – stuck-at-1 and “&” – both stuck-at faults detected.
These values can be coded using 2 bit-code as shown in Table 3.3. Then the
required calculation can be performed using simple logical bitwise OR operator.
The correctness of results obtained with bitwise OR operator can be checked
against values in Table 3.4, where all possible combinations of operands and
results are presented. Indeed, if symbols “X”, “0”, “1” and “&” in operands F(tj)
and F(Tj-1) substitute with corresponding codes “00”, “01”, “10” and “11” and
apply bitwise OR operator, then the same sequence of symbols as in F(Tj) comes
out after decoding.

Table 3.3 Coding the data of fault table by 2-bit code

Fault Code
X 00
0 01
1 10
& 11

69

Table 3.4 Calculation of total fault vectors by bitwise OR operator

F(tj) X X X X 0 0 0 1 1 & ࢇ
 F(Tj-1) X 0 1 & 0 1 & 1 & & ࢈

F(Tj) X 0 1 & 0 & & 1 & & ࢇ ׫ ࢈

Moreover, before total fault table generation, when the first failed pattern is
already found, the initial fault table {F(tj)} has to be updated by the list of suspected
faults Fs :

{F(tj)}[j] = initial {F(tj)}[j] ∩ Fs

This operation is identical to updating the list of suspected faults Fs by a failed
pattern and will be considered in the next section.

3.2.4.2 Updating list of suspected faults

Initially, before diagnosing a failed CUT, all possible SAFs in the CUT are
considered as suspected. When diagnostic procedure has started and the first failed
pattern has been found (i.e. a leaf of the primary diagnostic tree has been reached),
the list of suspected faults is reduced to the number of new faults detected by the
failed pattern. If an acceptable diagnostic resolution is not reached, the procedure
of searching failing patterns proceeds. Two different outcomes can occur: either a
new failed pattern is found or the end of test sequence is reached without
identifying a new failing pattern.

Considering the first case, an intersection of suspected faults Fs and faults
detected by the new failed pattern F(tf) has to be found in order to obtain an
updated list of suspected faults:

Fs = Fs ∩ F(tf)

If apply the same coding as for calculation of total fault vectors, then the update
of a list of suspected faults with a failing pattern can be accomplished using bitwise
AND operator as shown in Table 3.5.

Table 3.5 Updating a list of suspected faults with a failed pattern

Fs X X X 0 1 1 & & & & ࢇ
F(tf) X 0 1 0 1 0 X 0 1 & ࢈

Fs X X X 0 1 X X 0 1 & ࢇ ת ࢈

Considering the second case, where tests were applied, but a fault was not
detected. It means that faults tested by passed patterns F(Tp) = F(T [tstart , tend]) do
not cause the circuit to fail. These faults must be removed from the list of suspected
faults:

Fs = Fs − F(T [tstart , tend])

70

Moreover, when a new failed pattern is found, there could be a number of
passed patterns between two failed patterns. The faults detected by these passed
patterns must be also removed from the list of suspected faults. The subtraction can
be also performed by bitwise AND operator, where inverted values of F(Tp) are
employed as shown in Table 3.6.

 Table 3.6 Updating a list of suspected faults with passed pattern(s)

In conclusion, it must be mentioned that the operations needed to support the
proposed method in BIST environment, are simply implemented in hardware and
also very fast to perform in parallel. All required computations are carried out each
time when a failed pattern is found and it is needed to perform the same number of
operations as the number of remaining patterns in a test sequence. Due to a
probable significant number of iterations needed to perform fault diagnosis for a
large circuit using the proposed method, the diagnostic procedure can slow down
compared to others algorithms that do not use additional computations. On the
other hand, the proposed method may save more time running less number of tests
and achieving acceptable diagnostic resolution without identifying all failed
patterns.

3.2.5 A modification to implementation of the proposed method in
BIST environment

While performing fault diagnosis in BIST environment based on the proposed
method, test patterns are being selected from a pseudorandom test sequence and are
serving as diagnostic points (DPs). Diagnostic data of DPs are stored in BIST
memory due to significant importance for the diagnostic procedure.

Initially, when a development of the proposed method had started, by default
was decided that a test pattern is selected as DP only if it detects new faults, not yet
detected by preceding patterns. As a result, the diagnostic data provided by most
patterns of the pseudorandom test sequence was unused and the initial sequence of
test patterns transformed to significantly smaller one, since only a small number of
test patterns were DPs compared to the number of all patterns. Diagnostic data
provided only by DPs speeded up the diagnostic procedure since a search tree
contained a small number of nodes. Also, when a leaf of the tree was reached (a
failed pattern was found), only faults detected by this failed pattern were being
suspected. This number of faults was usually quite small since a single pattern
could not test a lot of them. Advantages of such selection of DPs were evident, but
unfortunately this approach did not meet the demands of the BIST environment.

Fs X X X 0 1 1 & & & & ࢇ

F(Tp) X 0 1 0 1 0 X 0 1 & ࢈

 Fs X X X X X 1 & 1 0 X ࢇ ת ഥ࢈
b a

71

Consider, as an example, a test sequence of 10 patterns where as DPs are
selected patterns 1, 2, 5, 7 and 10 (see Figure 3.6a). Assume that during fault
diagnosis of a CUT the first pattern to fail was pattern 2. Since patterns that detect
new faults are selected as DPs, then as a first result of diagnosis, all new faults
tested by pattern 2 are suspected. According to the proposed algorithm, the
procedure of searching new failing patterns must be continued from pattern 5, since
it is the next DP. Thus, diagnostic data of patterns 3 and 4 are omitted. For
instance, if the new test session contains two DPs, patterns 5 and 7, then its
execution in the BIST environment will be complicated. First, pattern 5 has to be
loaded into TPG and then applied to inputs of the CUT. After that, TPG must be
stopped and pattern 7 should be loaded into TPG and applied as input stimuli. Then
a signature obtained with ORA is compared to the fault-free signature stored in
BIST memory to ascertain pass/fail of the CUT. Thus, this approach is not taking
into account diagnostic data of pattern 6 as well as it needs loading patterns in TPG
twice (or simply shifting the values of pattern 6 in TPG registers without loading
them into the inputs of the CUT).

So as to avoid the loss of diagnostic data and simplify the diagnostic procedure
in the BIST environment, a following modification is introduced. In diagnostic data
of DPs must be stored not only faults detected by the corresponding DP as was
before, but also faults detected by a set of patterns located between given DP and
the preceding DP as shown in Figure 3.6b. Let go back to the test that contains the
same DPs, pattern 5 and 7, as before. Now, when pattern 5 is loaded into TPG the
generation of pattern 6 and 7 is done automatically by shifting values in LFSR
registers. Moreover, if pattern 7 denoted as DP fails then now faults detected by
patterns 6 and 7 are being suspected.

Experimental comparison and analysis of the results between the initial and the
modified methods are presented in the next section.

Figure 3.6 Transformation of initial sequence of fault vectors (a) to a sequence of DPs (b)

 DP

 DP

 DP

 DP
 DP Total Fault vectors

3
4

6

8
9

 Fault vectors

1
2

5

7

10

 DP
 DP
 DP
 DP
 DP

1
2
5
7

10

 a) b)

72

3.3 Experimental data

Experiments were carried out on the ISCAS’85 benchmark circuits [92] [93]
using Turbo Tester toolset [94] for generating pseudorandom test patterns and for
stuck-at fault simulation.

The general data of the circuits and test sequences are presented in Table 3.7.
“All” means the full length of the pseudorandom test sequence, “Eff” stands for the
number of “efficient” patterns which detect new faults not yet tested by previous
patterns (only these patterns as DPs are involved in the diagnostic analysis),
“Tested Faults” means the number of tested stuck-at faults by given test sequence,
and “All Faults” – all possible stuck-at faults in the circuit. The average and worse
diagnostic resolutions (the numbers of suspected faults at the end of diagnostic
procedure) are calculated over all possible diagnosis results (over all tested faults in
the circuits) that can be achieved for the given circuits by the given pseudorandom
test sequences. The best diagnostic resolution for all circuits was 1. For instance, if
circuit c432 has failed during the test then as a result of fault diagnosis on average
3.2 faults will be suspected, and 10 faults in the worst case, to be the cause of an
error. Also, 616 − 573 = 43 faults in circuit c432 cannot be diagnosed since they
are not tested by given test sequence. The main goal of experiments was to
compare different algorithms for searching failing patterns and not to generate
optimal pseudorandom test sequences that detect all possible stuck-at faults in
minimal test sequence length.

Table 3.7 Diagnostic data for ISCAS’85 circuits

Circuit
Patterns # Faults

Diagnostic
resolution

All Eff Tested All Average Worse
c432 223 65 573 616 3.2 10
c499 1373 100 1194 1202 2.3 5
c880 2692 108 994 994 1.9 10

c1355 1438 113 1610 1618 3.1 5
c1908 4420 175 1723 1732 3.3 16
c2670 22862 116 2328 2626 4.1 45
c3540 9631 249 3149 3296 2.4 28
c5315 1793 214 5364 5424 2.3 20
c6288 42 28 7693 7744 3.3 11
c7552 24337 309 6684 7104 2.7 13

3.3.1 Analysis of results obtained during comparison between the
initial method and the modified method

As was mentioned in section 3.2.5, a modification to the diagnostic data of DPs
stored in memory must be performed to meet demands of the BIST environment.

73

Therefore experiments were carried out with the same ISCAS’85 benchmark
circuits to find out consequences of the introduced modification.

The obtained results of the comparison are shown in Table 3.8, where best,
average and worse diagnostic resolutions achieved as a result of fault diagnosis, as
well as minimal, average and maximal number of test sessions needed to find out
all failing patterns for both methods are presented. The ratio of average results of
the modified method relatively to average results of the initial method is calculated
and presented at the bottom of Table 3.8. According to it, the average number of
test sessions has been increased by 1.84 times while the average diagnostic
resolution has been improved by 1 / 0.95 = 1.05 times. The main reasons for that
consist in a fact that in the modified approach diagnostic data of all test patterns are
taken into account, not only from effective patterns (DPs) as in the initial approach.

Table 3.8 Comparison of results between the initial and the modified methods

Circuit Method
Diagnostic resolution Test sessions

Best Average Worse Min Average Max

c432
Initial 1 3.2 10 6 12.0 45

Modified 1 2.6 10 6 15.4 54

c499
Initial 1 2.3 5 6 26.2 65

Modified 1 2.3 5 6 44.0 92

c880
Initial 1 1.9 10 7 17.0 51

Modified 1 1.8 6 7 27.1 71

c1355
Initial 1 3.1 5 7 27.5 76

Modified 1 3.1 6 7 43.9 100

c1908
Initial 1 3.3 16 7 31.2 124

Modified 1 2.9 16 7 62.8 168

c2670
Initial 1 4.1 45 5 20.6 120

Modified 1 4.1 45 5 37.2 120

c3540
Initial 1 2.4 28 6 27.0 148

Modified 1 2.2 28 6 53.9 203

c5315
Initial 1 2.3 20 8 25.9 129

Modified 1 2.2 13 8 45.4 170

c6288
Initial 1 3.3 11 9 15.9 25

Modified 1 3.3 8 9 17.4 26

c7552
Initial 1 2.7 13 8 42.8 214

Modified 1 2.6 14 8 105.3 260

Ratio
Initial 1 1 1 1 1 1

Modified 1.00 0.95 0.93 1.00 1.84 1.27

For instance, assume that in Figure 3.6 only patterns 5 and 6 can detect a fault,
where pattern 5 is selected as DP. Both methods will find out that pattern 5 fails.
But the initial approach will suspect only faults detected by pattern 5, while the
modified method will also suspect faults detected by patterns 3 and 4.

74

In the initial approach the result of diagnosis DI will be following: ܦூ ൌ ହ݂ െ ሺ ଵ݂ ׫ ଶ݂ ׫ ଻݂ ׫ ଵ݂଴ሻ
where fj means faults tested by pattern j. In the modified approach a test session
containing the DP 7 (patterns 6 and 7) will also fail because of pattern 6 and a
result of diagnosis DM will be different: ܦெ ൌ ሺ ଷ݂ ׫ ସ݂ ׫ ହ݂ሻ ת ሺ ଺݂ ׫ ଻݂ሻ െ ሺ ଵ݂ ׫ ଶ݂ ׫ ଼݂ ׫ ଽ݂ ׫ ଵ݂଴ሻ

For the modified method additional test session is needed to identify DP 7 as
failing. Therefore average number of test sessions in the modified method is
higher. On the other hand, the diagnostic resolution has been slightly improved,
because tests patterns that are not selected as DPs now assist in reducing the list of
suspected faults.

3.3.2 Comparison of searching algorithms

Comparison of the four algorithms: classical Binary Search, Doubling, Jumping
and the proposed algorithm in numbers of test sessions needed for fault diagnosis is
presented in Table 3.9. Minimum, average and maximum numbers of test sessions
over all possible diagnosis results for the given circuits at the given pseudorandom
test sequences are presented, where a search of failing patterns was carried out only
among the set of effective patterns selected as DPs (see Table 3.7).

Table 3.9 Comparison of fault diagnosis methods

Circuit
Binary Doubling Jumping Proposed

min avrg max min avrg max min avrg max min avrg max

c432 6 29.0 201 5 26.3 80 7 24.1 120 6 12.0 45

c499 7 106.0 342 7 66.3 121 7 70.7 181 6 26.2 65

c880 6 56.9 289 6 42.3 117 7 41.1 143 7 17.0 51

c1355 7 113.4 419 10 72.2 140 9 76.2 214 7 27.5 76

c1908 7 149.5 757 8 84.9 208 6 89.6 351 7 31.2 124

c2670 6 76.0 686 7 52.3 146 6 52.4 345 5 20.6 120

c3540 7 126.3 990 8 80.1 293 7 78.8 436 6 27.0 148

c5315 7 109.8 819 6 79.0 252 7 75.6 368 8 25.9 129

c6288 5 33.9 69 7 26.2 38 7 28.1 54 9 15.9 25

c7552 8 243.6 1497 7 138.9 368 8 141.9 616 8 42.8 214

Average 6.60 104.44 606.90 7.10 66.85 176.30 7.10 67.85 282.80 6.90 24.61 99.70

The proposed method outperforms all other methods. According to Table 3.10
which is based on results presented in Table 3.9, the average length of test sessions,
for the proposed method is 4.24 times shorter than for the classical Binary Search,
2.72 times shorter than for the Doubling and 2.76 times shorter than for Jumping

75

algorithms. Regarding the worst (longest) test session, the proposed method
outperforms the Binary Search by 6.09 times, Doubling by 1.77 times and Jumping
by 2.84 times. All the algorithms give rather similar results when comparing the
shortest test sessions.

Table 3.10 Comparison of average test lengths

Algorithms
Ratio of test sessions

MIN AVRG MAX
Proposed 1 1 1

Binary 0.96 4.24 6.09
Doubling 1.03 2.72 1.77
Jumping 1.03 2.76 2.84

Since the goal of all the algorithms in given experiments was to find out all the
failing patterns then the achieved diagnostic resolutions for all the algorithms are
the same as presented in Table 3.7. In Figure 3.7 the diagnostic resolutions for
circuit c2670 over all stuck-at faults that were possible to diagnose by given test
sequence are depicted. The figure helps easily to identify large blocks of
indistinguishable faults. For given case, there are blocks of size 25, 29 and 45
faults whereas for most faults the diagnostic resolution is between 1 and 5. For
instance, for 664 of faults the diagnostic resolution is 2 according to Figure 3.7. If
the achieved diagnostic resolution is not acceptable for all the faults, then either
additional DPs have to be selected from the test sequence or extra test patterns have
to be generated in order to split large blocks of indistinguishable faults into smaller
ones.

Figure 3.7 Diagnostic resolutions for c2670

76

3.4 Conclusions

 A new method is proposed for embedded fault diagnosis in digital systems with
BIST environments. Compared to the classical bisection of test pattern sets, in this
thesis two novelties have been introduced:

• instead of test patterns as in the classical Binary Search, the detected
fault sets are the objectives of bisection which allows to reduce the
average length of the diagnostic procedure

• due to the sequential character of the new method the set of suspected
faults during the diagnostic procedure is continuously updated in a way
which allows to prune the search space and to exclude the need of
finding all the failed test patterns as in the case of the classical Binary
Search, which additionally increases the speed of diagnosis

The proposed method is compared with three known fault diagnosis methods:
classical Binary Search, Doubling and Jumping. Experimental results demonstrate
that the new method outperforms considerably the others methods. The average
length of test sessions for the proposed method is 4.2 times shorter than for the
classical Binary Search, and about 2.7 times shorter than for the Doubling and
Jumping algorithms.

77

Chapter 4

METHODS FOR INCREASING

DIAGNOSTIC RESOLUTION

In this chapter a method to improve fault diagnosis accuracy in terms of fault
resolution in digital systems using built-in self-test (BIST) facilities is proposed.
The diagnostic resolution improvement is attained by partitioning a single signature
analyzer into a set of multiple independent analyzers. The algorithms are given to
synthesize an optimal interface between the outputs of the circuit under test and the
signature analyzers. Experimental results demonstrate the feasibility and efficiency
of the approach.

4.1 Fault diagnosis challenges in BIST environment

In Chapter 3 a modification of the Binary Search driven by bisection of fault
coverage instead of the classical bisection of patterns [83] [84] [85] [86] has been
proposed. It has been already shown that the new method outperforms the known
algorithms in the average length of the diagnostic procedure. However, there is still
a motivation for further investigations because the pseudorandom essence of BIST
is not providing high diagnostic resolutions.

Three directions in development of the proposed approach can be considered:

• improvement of diagnostic resolution
• decrease in number of used diagnostic points (DPs)
• decrease in number of test sessions needed for diagnosis

78

In Table 3.7, the last column “worse diagnostic resolution” shows the largest
blocks of indistinguishable faults, as the result of fault diagnosis. The largest sizes
of blocks are obtained for circuits c2670 and c3540. The achieved diagnostic
resolution 45 and 28 faults, respectively, is not acceptable and must be improved. It
may be attained by selecting additional DPs that split large blocks of
indistinguishable faults into smaller ones. It is easy to find them out by looking up
the fault table where diagnostic data for all test patterns are stored. Thus, the
number of DPs needed for fault diagnosis will grow with diagnostic resolution
improvement.

On the other hand, solving the first challenge aggravates the second one,
decrease in number of used DPs. Hence, there is need for an efficient algorithm
that will be able to select minimal number of DPs to achieve highest diagnostic
resolution. Selecting minimal number of DPs is essential for embedded fault
diagnosis since it saves the memory needed to store diagnostic data of DPs and also
speeds up diagnostic application time since fewer nodes are used in building up a
search tree. Considering complex circuits, where long sequences of pseudorandom
test patterns are applied to test a huge number of possible stuck-at faults in a circuit
under test (CUT), the selection of the optimal DPs will be extremely time-
consuming. The selected DPs will be very efficient only for given test sequences.

The third challenge consists in decreasing a number of test sessions in order to
augment the superiority of the proposed method compared to others methods
considered in Chapter 3. It could be attained by searching and processing only a
part of all failed patterns to reach still acceptable resolution, as was mentioned
earlier.

In this chapter a further improvement of the diagnostic procedure by using
multiple signature analyzers will be presented. The approach attempts to solve both
fault diagnosis challenges in BIST environment: improvement of diagnostic
resolution and decrease in number of test sessions.

4.2 BIST with multiple signature analyzers

Assume a CUT with a set of faults F has n outputs where each output i may be
influenced by a subset of faults Fi ⊆ F. Introduce m, 1 < m ≤ n, signature analyzers
(SA) which should be connected to the outputs of the CUT. An example of such a
BIST for fault diagnosis with three SAs is shown in Figure 4.1.

Denote by Ij the set of outputs of the CUT connected to the signature analyzer
SAj . Depending on the faults detected by the outputs Ij , each SAj may be influenced
by the following subset of faults:

௝ܵ ൌ ራ ூೕא௜௜ܨ

79

In other words, if there is a fault f ∈ F in the CUT, this fault will be detected by
all signature analyzers SAj where f ∈ Sj . As an example, the fault in the CUT
highlighted in Figure 4.1 can be detected via two output lines by SA1 and SA2 .

Figure 4.1 BIST with multiple signature analyzers

Introduce for a set of m signature analyzers a codeword Ck as a sequence of bits
Ck = (cm , cm-1 , ... , c1), so that the index k represents the decimal value of the binary
codeword Ck . Represent by Ck the result of testing, so that cj = 1 when the
signature analyzer SAj has detected a fault, and otherwise, cj = 0 when no faults has
been detected by SAj .

The case when no faults has been detected by a set of signature analyzers
{SAm , SAm-1 , ..., SA1} corresponds to the codeword C0 . For any other codeword Ck ,
k ≠ 0, a diagnosis can be stated as a subset of suspected faults: ܦ௞ ൌ ଵܨ െ ଴ܨ ൌ ሩ ௝ܵ െ௝:௖ೕୀଵ ራ ௝ܵ ؿ ௝:௖ೕୀ଴ܨ

where ܨଵ is the intersection of subsets Sj of faults tested by SAs with erroneous
signatures (cj = 1), and ܨ଴ is the union of subsets Sj of faults tested by SAs with
correct signatures (cj = 0). It is evident that for all l ≠ k , 1 ≤ l,k ≤ 2m − 1,
Dl ∩ Dk = ∅, and ራ ௞ܦ ൌ ௞ୀଵ,ଶ,…,ଶ೘ିଵܨ

In Figure 4.2, seven intersections of fault sets are shown to illustrate the fault
diagnosis by three signature analyzers. For example, if a fault is detected by
analyzers SA1 and SA2 , the codeword C3 = (011) will be produced, which
corresponds to the subset of suspected faults: ܦଷ ൌ ଵܵ ת ܵଶ െ ܵଷ

as the result of diagnosis.

Test pattern generator

CUT

SA1 SA2 SA3

Fault

80

Figure 4.2 Diagnosis by the set of three signature analyzers

It is evident that the best diagnostic resolution will be achieved when the
suspected subset of faults for any result of diagnosis, i.e. for any codeword Ck , will
be minimal. From this statement the following task can be formulated to find the
best interface between the outputs of CUT and the set of signature analyzers by
connecting the SAs to CUT in such a way that: ݇׊, ݇ ൌ 1, 2, … , 2௠ െ 1: ቂ |ி|ଶ೘ିଵቃ ൑ |௞ܦ| ൏ ቂ |ி|ଶ೘ିଵቃ ൅ 1 (4.1)

Here ሾݔሿ denotes the largest integer that is less than or equal x. In the ideal case,

provided that
|ி|ଶ೘ିଵ is integer, the situation should be reached where ܦଵ ൌ ଶܦ ൌ … ൌ ଶ೘ିଵܦ ൌ 2௠|ܨ| െ 1

4.3 Design of the interface between CUT and SAs

Algorithms of designing the best interface between CUT and the set of SAs has
been developed so that the condition (4.1) is as closely as possible satisfied.

4.3.1 Algorithm “Equal Subsets”

In the “Equal Subsets” algorithm an interface is constructed as a procedure
where the outputs of a CUT are assigned to SAs step by step in such a way that in
each step the condition (4.1) is satisfied as closely as possible.

To give the words “as closely as possible” a countable meaning, the following
notions are introduced:

• ideal size of the set Dk measured as ܦ௜ௗ௘௔௟ ൌ |ி|ଶ೘ିଵ

• distance of Dk from the ideal size measured as ∆௞ൌ ௜ௗ௘௔௟ܦ െ |௞ܦ|

 SA1

SA2

SA3

D1 D2

D3

D4

D5 D6

D7

81

In the ideal case the fault resolution, i.e. the number of suspected faults is for all
faults equal and minimal. Practically, the situation should be strived where the
average number of suspected faults for all faults will be minimal, i.e. the average of
Δk should be minimized.

The whole procedure of designing the interface consists of two parts. In the first
part (Algorithm 4.1), to each SA an initial output of CUT is assigned. In the second
part (Algorithm 4.2), on each step an arbitrary output of CUT is selected, and a SA
is found as the best solution to be connected to the selected output of CUT.
Consider only the practical situations where the number of outputs n of CUT is
much greater than the number m of SAs, m << n and n >> 2. In the extreme case of
m = n, each output of CUT is separately observable, and no SAs is needed.

Algorithm 4.1:

1. Order the set of outputs OUT of CUT so that ⏐Fi⏐≥⏐Fi+1⏐≥⏐Fi+2⏐≥ …,
i ∈ [1, n]. Take all Sj = ∅. Take j = 1.

2. Take the first | Fi |, i =1.
3. Assign i to SAj , Sj = Sj ∪ Fi . Remove i from OUT.
4. Modify j = j + 1.Take the next SAj .
5. Calculate for all i ∈ OUT :

BEGIN ܨሺ݅ሻ ൌ ௜ܨ ׫ ራ ௟ܵ௝
௟ୀଵ , ௜,௜ௗ௘௔௟ܦ ൌ ሺ݅ሻ|2௝ܨ| െ 1

 Calculate for all Ck , k = 1, 2, ..., 2 j − 1: ܦ௞ ൌ ሩ ௝ܵ െ௝:௖ೕא஼ೖ, ௖ೕୀଵ ራ ௝ܵ௝:௖ೕא஼ೖ, ௖ೕୀ଴ ; ݇ߜ ൌ ݈ܽ݁݀݅,݅ܦ െ |݇ܦ|
 ∆௜ ൌ ෍ ௞ଶೕିଵߜ

௞ୀଵ

END

6. Find i*, so that Δi* = min Δi , where i ∈ OUT.
7. Assign i* to SAj , Sj = Sj ∪ Fi* . Remove i* from OUT.
8. If j < m, go to 4, otherwise END.

To engage right in the beginning into the intersection procedure as many fault
as possible, it is reasonable to start the Algorithm 4.1 with assigning to the first SA
the output of CUT with the largest set of detected faults (Steps 1-3). In Step 4, as a
current solution j outputs have been assigned to j different SAs, so that the average
distance Δk from the ideal diagnostic resolution is minimal. In Steps 5-7 the next
output to be assigned to the next SA is chosen, so that the average distance Δk from
the ideal diagnostic resolution will be minimal. The algorithm is finished when to
all SAs a single output of CUT is assigned (connected).

82

The goal of the Algorithm 4.2 is to assign the remaining outputs to SAs in the
way that the average distance Δk from the ideal resolution will be minimal to reach
the best resolution for all of faults in CUT.

Algorithm 4.2:

1. Take the next i from OUT.

2. Calculate: ܨሺ݅ሻ ൌ ௜ܨ ׫ ڂ ௝ܵ௠௝ୀଵ ; ௜,௜ௗ௘௔௟ܦ ൌ |ிሺ௜ሻ|ଶ೘ିଵ

3. Calculate for all Sj :
BEGIN

Sj = Sj ∪ Fi

Calculate for all Ck , k = 1, 2, ..., 2m − 1: ܦ௞ ൌ ሩ ௝ܵ െ௝:௖ೕא஼ೖ, ௖ೕୀଵ ራ ௝ܵ௝:௖ೕא஼ೖ, ௖ೕୀ଴ ; ݇ߜ ൌ ݈ܽ݁݀݅,݅ܦ െ |݇ܦ|
∆௝ ൌ ෍ ௞ଶ೘ିଵߜ

௞ୀଵ
Restore initial Sj

END

4. Find j*, so that Δj* = min Δj , j = 1, 2, ..., m
5. Assign i to SAj* , Sj* = Sj* ∪ Fi
6. Remove i from OUT.
7. If OUT ≠ ∅, go to 1, otherwise END.

Differently from Algorithm 4.1 where a selection of an item was made from the
set of outputs of CUT for a given SA, in Algorithm 4.2, a selection is made from
the set of SAs for a given output of CUT. In Step 2, a set of all faults F(i) ⊆ F will
be calculated which are detected by the outputs already connected to SAs and by
the output selected in Step 1 for connection. In Step 3, the average distance Δj from
the ideal diagnostic resolution for all the SAs is calculated with assumption that the
selected output i is already connected to SAj . In Steps 4-6 the best connection
between the output i and the SAs is decided. The Algorithm 4.2 is finished when all
the outputs of CUT are connected to SAs.

The Algorithms 4.1 and 4.2 are targeting the optimum interface to achieve the
highest diagnostic resolution when diagnosing a failing circuit. The algorithms are
based on the greedy technique.

A number of experiments were performed to approve effectiveness of the
algorithm “Equal Subsets”. The obtained results (see section 4.5.1) and also deeper
analysis of circuits in Table 4.1 give an understanding that the ideal case when ܦଵ ൌ ଶܦ ൌ … ൌ ଶ೘ିଵܦ ൌ 2௠|ܨ| െ 1

83

is practically impossible to achieve when constantly increasing the number of
signature analyzers. The cause of it is that most faults can be detected only by
single or several outputs. In Table 4.1 faults detection statistics by outputs for
ISCAS’85 circuits [92] [93] are presented. “# faults” means number of possible
stuck-at faults, “# outs” – number of outputs for given circuits. Columns “1-10”
contain percentage of stuck-at faults that can be detected with given number of
outputs. For instance, in circuit c1908 46.3% of faults are detected only by a single
output. “sum %” denotes the sum of values from columns “1-10”. For circuit
c1908, each of 100% − 57.7% = 42.3% of all faults can be detected by more than
10 outputs whereas the circuit has only 25 outputs.

Table 4.1 Faults detection statistics for ISCAS’85 circuits

circuit # faults # outs
faults detected by given number of outputs (%)

sum %
1 2 3 4 5 6 7 8 9 10

c432 616 7 13.3 4.2 4.6 10.1 23.7 29.6 14.6 0 0 0 100

c499 1202 32 32.0 0 0 6.7 0 0 0 0 0 0 38.6

c880 994 26 55.7 6.6 3.0 3.0 5.0 5.0 2.8 5.0 9.1 2.4 97.8

c1355 1618 32 31.6 0 0 4.9 0 0 0 0 0 0 36.6

c1908 1732 25 46.3 0 0 0 0 0.4 1.9 9.2 0 0 57.7

c2670 2626 140 15.0 15.8 31.6 15.0 1.8 4.4 4.7 2.7 0 2.8 93.8

c3540 3296 22 12.9 1.9 2.6 0 32.3 6.3 3.3 2.4 2.3 10.0 74.0

c5315 5424 123 28.8 9.7 0.2 0.7 30.6 16.3 2.4 0.2 0.9 0.3 90.2

c6288 7744 32 3.2 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.3 3.7 21.3

c7552 7104 108 39.3 17.5 6.7 7.7 6.0 6.8 0.2 0.2 0.5 0.5 85.4

Average 27.80 5.61 4.95 4.93 10.11 7.08 3.23 2.26 1.61 1.97

According to Table 4.1 a reasonable decision can be taken about the number of
SAs to be used in fault diagnosis, so as to get the most efficient improvement in
average diagnostic resolution that could be up to 2m − 1 times better than initial
one, where m denotes the number of employed SAs.

4.3.2 Algorithm “Unique Faults”

Based on information obtained in Table 4.1 and also on an assumption that
quite large amount of faults are detected by a single output, the algorithm “Unique
Faults” has been introduced that attempts to assign outputs of circuits to SAs in a
different way than the “Equal Subsets” algorithm.

84

Algorithm 4.3:

1. Order the set of outputs OUT of CUT so that ⏐F*
i⏐≥⏐F*

i+1⏐≥⏐F*
i+2⏐,

i ∈ [1, n], where ⏐F*
i⏐– number of “unique” faults

2. Take all Sj = ∅.
3. Assign single i to each SAj from ordered set of outputs OUT.

Sj = Sj ∪ F*
i . Remove i from OUT.

4. Take the next i from OUT

5. Calculate: כܨሺ݅ሻ ൌ כ௜ܨ ׫ ڂ ௝ܵ௠௝ୀଵ כ௜,௜ௗ௘௔௟ܦ ; ൌ |ிכሺ௜ሻ|௠

6. Calculate for all Sj :
BEGIN

Sj = Sj ∪ F*
i

Calculate for all Sj : ݆ߜ ൌ כ௜,௜ௗ௘௔௟ܦ െ ௝ ൌ∆ |כ݆ܦ| ෍ ௝௠ߜ
௝ୀଵ

 Restore initial Sj

END

7. Find j*, so that Δj* = min Δj , j = 1, 2, ..., m
8. Assign i to SAj* , Sj* = Sj* ∪ F*

i
9. Remove i from OUT.
10. If OUT ≠ ∅, go to 4, otherwise END.

Firstly, in Step 1 the Algorithm 4.3 finds out “unique” set of faults F*
i for each

output i , i.e. faults detected only by given output, and sorts them in decreasing
order. In Steps 2 and 3, a single output i is assigned to each SAj from the ordered
set of outputs OUT. Then, in Steps 4-9, the next output from the sorted set is taken
and assigned to an analyzer in such way that the number of “unique” faults would
be equally distributed between analyzers. The Algorithm 4.3 is finished when all
outputs have been assigned to SAs. It takes less time to run, since most
computations are made at each iteration of assigning a new output to SA, and the
algorithm “Unique Faults” calculates only m times the deviation δ from the ideal
case compared to 2m − 1 times as for the algorithm “Equal Subsets”, where m –
number of SAs. The difference is slight when employing only a few SAs, but with
a large number of SAs it becomes significant. For m equal to 10, the algorithm
“Unique Faults” runs approximately (210 − 1) / 10 = 102.3 times faster than the
“Equal Subsets” algorithm. The effectiveness of the considered algorithms is
compared in the section 4.5.1.

85

4.4 Fault diagnosis with a set of SAs

The fault diagnosis algorithm is a generalization of the algorithm proposed in
previous chapter that is based on bisection by fault coverage, but for the case of a
set of m signature analyzers. To implement the algorithm in BIST environment a
table of diagnostic data is created that consists of:

• the numbers j of test patterns tj selected as DPs
• signatures sk(tj) corresponding to the contents of SAk , k = 1, 2, ..., m, if

the test pattern tj would be the final pattern of the current diagnostic test
session

• the sets of faults Fk(tj) detected by SAk after the test patterns tj

For each test pattern tj the set of faults Fk(Tj) detected in SAk by the test
sequence Tj with the final pattern tj is calculated: ܨ௞൫ ௝ܶ൯ ൌ ራ ೕ்א௝ሻ௧ೕݐ௞ሺܨ

The cumulative fault coverage reached by the test sequence Tj with final pattern
tj is also calculated: ܥܨ௝ ൌ ራ ௞൫ܨ ௝ܶ൯ / |ܨ|௠

௞ୀଵ

where F is the set of all possible faults detected by all the SAs and the whole
pseudorandom test sequence.

Consider as an example in Figure 4.3 a table where the rows correspond to the
test patterns selected as DPs from pseudorandom test sequence, and the contents of
rows illustrate the codewords as the results of testing for the case of m = 3. The
column “No” refers to the number of the test pattern, and the column “Diagnosis”
refers to the sets of suspected faults found at the given test pattern.

In the first step the whole test sequence is carried out with the last test pattern v.
In this step according to the codeword C7 = 111 as the result of test all the SAs fail
and the following diagnosis can be made D1 = R1’ ∩ R2’ ∩ R3’. To improve the
diagnostic resolution according to the bisection algorithm, the partial test sequence
up to the test pattern k is carried out. A possibly improved diagnostic resolution
results: D2 = R1’’ ∩ R2’’ − R3’’ , where |D2| ≤ |D1|. Further diagnostic resolution by
reducing can be achieved by continuing the bisection algorithm using the results of
only SA3. The best resolution will be obtained at the test pattern l where the SA3
fails for the first time. The result of fault diagnosis will be: |R3| ≤ |R3’’| ≤ |R3’|.

86

Now the fault diagnosis is continued by bisection algorithm based on the results
of SA1 and SA2. A test sequence with the final pattern i is carried out. Since SA2
does not fail, the test is continued until the pattern j is found where SA2 the first
time fails. As the result, the subset of suspected faults |R2| ≤ |R2’’| is obtained. Then
the algorithm is continued based on the results of SA1 only, until the pattern h is
found where SA1 the first time fails. The final diagnosis will be D3 = R1 ∩ R2 ∩ R3
where |D3| ≤ |D2| ≤ |D1|.

4.5 Experimental data

Experiments were carried out on the same ISCAS’85 benchmark circuits [92]
[93], applying the same sequences of pseudorandom test patterns and simulating
the same number of stuck-at faults as in Chapter 3 (see Table 3.7). The goal of
experiments was to prove efficiency of exploiting multiple signature analyzers for
diagnostic resolution improvement and also to reduce diagnosis application time by
preventing the search of remaining failing patterns when applicable diagnostic
resolution has been achieved.

4.5.1 Algorithms of designing the interface between CUT and SAs

In Table 4.2 the results of two different algorithms that design the interface
between the CUT and the SAs are presented. In column 3, “ES” means the “Equal
Subsets” algorithm and “UF” stands for the “Unique Faults” algorithm. Further, the
average diagnostic resolutions over all possible diagnosis results are presented
where different number of SAs (1-5) was applied for test responses analysis, and
the diagnostic procedure was stopped when either only the first failing pattern

No
Codeword

Diagnosis
SA3 SA2 SA1

h 0 0 1 R1

i 0 0 1 R1’’’

j 0 1 1 R2

k 0 1 1 R1’’ , R2’’

l 1 1 1 R3

v 1 1 1 R1’ , R2’ , R3’

v

k

i

l

h

j

R1

R2

R3

R1’ , R2’ , R3’
R1’’’

R1’’ , R2’’

P

F/111

F/111

F/011

F/001

F/011

Diagnostic tree

F/001

Figure 4.3 An example of fault diagnosis with a set of three signature analyzers

87

(“1 tf”) had been found or all failing patterns (“all tf”) had been detected. In given
experiments for the fault diagnosis only effective patterns selected as DPs were
used, in which the diagnostic data of remaining patterns were also stored, as
described in section 3.2.5. Thus, the average diagnostic resolution for single SA as
a result of fault diagnosis, where all the failing patterns were detected, corresponds
to the data in Table 3.8 for the modified method.

Table 4.2 Comparison of algorithms designing the interface between CUT and SAs

circuit # outs Algo-
rithms

Average diagnostic resolution at given number of SAs (1-5)
1 2 3 4 5

1tf all tf 1tf all tf 1tf all tf 1tf all tf 1tf all tf

c432 7
ES

21.3 2.6
10.6 2.1 7.8 2.0 6.1 2.0 5.8 2.0

UF 10.8 2.0 8.0 2.0 7.0 2.0 5.8 2.0

c499 32
ES

80.2 2.3
71.6 2.0 72.8 2.0 71.2 2.0 62.3 2.0

UF 54.3 2.0 46.0 2.0 44.6 2.0 41.7 2.0

c880 26
ES

51.7 1.8
24.2 1.7 17.6 1.7 12.7 1.7 11.6 1.7

UF 22.7 1.7 16.3 1.7 12.8 1.7 10.4 1.7

c1355 32
ES

50.9 3.1
46.7 2.9 47.6 2.9 46.5 2.9 45.6 2.9

UF 34.2 2.9 29.4 2.9 27.3 2.9 26.3 2.9

c1908 25
ES

99.0 2.9
47.1 2.4 29.2 2.4 20.7 2.4 41.0 2.5

UF 45.9 2.3 36.1 2.3 22.6 2.3 17.6 2.3

c2670 140
ES

151.5 4.1
73.6 4.0 43.9 3.4 34.9 3.3 27.3 3.3

UF 65.2 3.9 39.9 3.3 30.9 3.3 27.5 3.3

c3540 22
ES

104.6 2.2
45.1 2.2 24.3 2.1 21.3 2.1 15.6 2.0

UF 43.3 2.1 27.8 2.1 17.5 2.0 17.6 2.0

c5315 123
ES

232.8 2.2
92.0 2.0 55.7 2.0 41.0 2.0 40.7 1.9

UF 87.1 2.0 54.2 2.0 36.5 1.9 28.8 1.9

c6288 32
ES

1206.1 3.3
475.5 2.6 295.5 2.2 162.7 1.9 101.1 1.8

UF 414.5 1.9 214.5 1.8 137.0 1.8 97.9 1.8

c7552 108
ES

262.4 2.6
106.8 2.2 95.2 2.1 65.6 2.1 47.9 2.1

UF 103.4 2.2 66.9 2.1 53.4 2.1 45.1 2.0

Average
ES

226.1 2.7
99.3 2.4 69.0 2.3 48.3 2.2 39.9 2.2

UF 88.1 2.3 53.9 2.2 39.0 2.2 31.9 2.2

If analyze results in columns “all tf”, then it is obvious that in most cases either
both algorithms give the same results or the “UF” is slightly better. Since all the
failing patterns are used for fault diagnosis and average diagnostic resolution for
single SA is very high and varies only from 1.8 to 4.1 for all considered circuits,
then an employment of multiple SAs is unreasonable. The improvement of the
average diagnostic resolution is insignificant. For circuit c2670, exploiting of two
SAs instead of single enhances the average diagnostic resolution from 4.1 only to
3.9 for the “UF” algorithm.

The number of used SAs becomes relevant for fault diagnosis when the
diagnostic procedure is stopped after the first failed pattern is found. The best
average diagnostic resolution improvement is gained for circuit c6288 by 12.3
times, from 1206.1 for single SA to 97.9 for the set of 5 SAs applying the “UF”

88

algorithm. The obtained result is due to more or less equal distribution of faults
between different numbers of outputs as shown in Table 4.1. However, in the ideal
case the improvement could be by 25 − 1 = 31 times when exploiting 5 SAs. One of
the worst results is obtained for circuit c1355, where the resolution is improved
only by 50.9 / 26.3 = 1.9 times when using 5 SAs. This is also caused by structure
of the circuit since 31.6% of faults are detected by single output and almost each of
remaining ones can be detected by more than 10 outputs as shown in Table 4.1.
This makes the distribution of 32 outputs between 5 SAs inefficient since there is a
high probability that for most faults all the 5 SAs will fail and there will be no
possibility to distinguish faults.

The results for all the considered circuits and numbers of SAs presented in row
“Average” show that the “UF” algorithm outperforms the “ES” algorithm. In some
certain cases, when analyzing results in columns “1 tf”, the “ES” algorithm
achieves better resolution. For instance, results for circuit c1908 when were used 2
SAs are 29.2 for the “ES” and 36.1 for the “UF” algorithms. However, sometimes
the “ES” makes the resolution even worse when increasing the number of SAs. For
example, considering the same circuit c1908 the resolution for 4 SAs was 20.7
whereas for 5 SAs it became 41.0. Thus, the preference is given to the “UF”
algorithm since it designs the interface between CUT and SAs more efficiently,
and it is less time-consuming than the “ES” algorithm.

4.5.2 Comparison of different fault diagnosis methods

In this section following algorithms are compared: classical Binary search (6)
[83] [84] [85] [86], doubling (4) [90], jumping (5) [91], the proposed method (3) of
bisection detected faults, the proposed method (2) based on multiple SAs
(Mult_SA) where five analyzers were used, and the proposed method (1) where
after detecting 5 failed patterns the procedure stopped (Mult_SA_short). For the
methods (2)-(6) all failed patterns were used for diagnosis. For experiments were
taken the ISCAS’85 circuits c2670, c5315 and c7552 since they have large number
of outputs and faults are quite equally distributed between different numbers of
outputs which must enhance the efficiency of using multiple SAs. The average
results for these three circuits over all faults are depicted in Table 4.3.

A considerable improvement in the speed of diagnosis can be observed for the
proposed method of bisection faults (3) compared to the previous methods (4), (5)
and (6). The methods (2)-(6) made the diagnosis on the basis of all failing patterns.
This is the reason why the diagnostic resolution is equal for all of the methods.
Using multiple signature analyzers (2) did not reduce much the test length 53
compared to the proposed method (3) of bisection faults with test length 63. The
reason was that all the failed test patterns were targeted. Also the multiple SAs did
not have any impact on the diagnostic resolution because of finding all the failing
patterns already provided all the needed information which was enough to achieve
the best fault resolution at the given test sequence.

89

Table 4.3 Comparison of different methods

Method
Number of

test sessions
Diagnostic
resolution

Average Max Average Worse

(1) Mult_SA_short 12 18 2.7 22

(2) Mult_SA 53 182 2.4 22

(3) Bisect_faults 63 183 2.4 22

(4) Doubling 90 255 2.4 22

(5) Jumping 90 443 2.4 22

(6) Bisect_patterns 143 1001 2.4 22

The real dramatic impact of the multiple SAs emerged when was allowed to
stop the procedure at the reduced number of failed test patterns (Mult_SA_short).
In the experiment the procedure was stopped after finding 5 failed patterns. The
average test length 12 of the diagnostic procedure decreased now in average by 5
times compared to the method (3) with test length 63 while the diagnostic
resolution achieved was almost the same as for other methods. The strategy of
Mult_SA_short is efficient because it exploits the improved resolution effect of
multiple SAs already at the beginning stage of the procedure, which allows to stop
it after detecting only a small fraction of failing patterns (Figure 4.4). As the result,
a dramatic decrease of the test length as shown in Table 4.3 was achieved.

Figure 4.4 Dependency of the resolution on the test length

How quickly the resolution will be improved already by the second failing test
pattern for the analyzed circuits in the case of using 5 SAs can be seen in
Figure 4.4. After the second failing pattern the improvement in diagnostic
resolution slows down significantly since the accuracy of fault location is reaching
its limits.

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

1 2 3 4 5 6 7 8

Failed patterns

A
v

e
ra

g
e

 r
e

s
o

lu
ti

o
n

c2670 c5315 c7552

90

4.5.3 Trade-off between time cost and accuracy of the fault diagnosis

Table 4.4 shows how the diagnostic resolution (Res) in the case of 5 SAs can be
improved by increasing the number of failed patterns to be found, i.e. by increasing
the test length (Length). The data in Table 4.4 and in Figure 4.4 are averages over
all the stuck-at faults in the circuits compared.

Table 4.4 Influence of the test length on the resolution

Failed
patterns

c2670 c5315 c7552
Res Length Res Length Res Length

1 27.5 5.3 28.8 5.8 45.1 6.1
2 7.1 7.7 4.2 8.9 7.4 9.1
3 4.4 9.1 2.4 10.2 3.4 10.6
4 3.9 9.9 2.1 10.9 2.7 11.5
5 3.7 10.6 2.0 11.6 2.4 12.4
6 3.7 11.2 2.0 12.2 2.3 13.1
7 3.5 11.7 2.0 12.8 2.2 13.8
8 3.5 12.3 2.0 13.4 2.2 14.6

All 3.3 29.5 1.9 38.9 2.0 88.0

In Table 4.5 the impact of the number of SAs on the diagnostic resolution is
shown. Three ISCAS circuits are compared and only the average and worse
resolutions are calculated over all possible faulty cases. The best resolution for all
circuits was 1. Since the influence of the multiple SAs is high especially in the
beginning of diagnosis, the diagnostic procedure was stopped at the first failing
pattern to determine more exactly the sensitivity of the resolution on the number of
SAs. The short test sequence (diagnosis on the basis of a single failed pattern) is
the reason why the resolution values (numbers of suspected faults) in Table 4.5 are
rather high.

Table 4.5 Influence of the number of SAs on the resolution

#SA
c2670 c5315 c7552

Av Worse Av Worse Av Worse
1 151.5 379 232.8 676 262.4 806
2 73.6 190 92.0 342 106.8 364
3 43.9 146 55.7 228 95.2 433
4 34.9 113 41.0 165 65.6 333
5 27.3 87 40.7 220 47.9 217
6 25.4 120 27.6 117 45.7 214
7 24.8 130 23.7 141 41.4 195
8 21.5 108 23.8 156 34.6 158
9 21.7 112 21.3 97 34.4 169

10 21.4 115 19.9 83 33.7 154

In Table 4.6 the impact of the selected number of DPs on the diagnostic
resolution as well as on the test length for circuit c2670 is shown. Experimental

91

results are presented for the cases when were used 1, 5 and 10 SAs (column
“# SA”), the diagnostic procedure was stopped after the 1, 2, 3, 10 and all failing
patterns were detected, and for diagnosis were used initial set of effective test
patterns selected as DPs (1x). The notations 2x, 4x and 8x mean which DPs were
used for fault diagnosis from the initial set of DPs (2x – each second, 4x – each
fourth, 8x – each eighth), i.e. how many times less DPs were used compared to the
initial number of DPs. Circuit c2670 is tested by the pseudorandom sequence of
length 22862 where only 116 patterns are effective, i.e. selected as initial DPs.
Thus, in the case of 8x for diagnosis are used only 116 / 8 = 14.5  15 patterns
that saves the BIST memory since less diagnostic data must be stored and also
reduces the length of test since searching tree becomes much smaller, however, it
has a negative impact on the diagnostic resolution.

Table 4.6 Influence of the number of DPs on resolution and test length for c2670

SA # DP
Diagnostic resolution Test length

failed patterns # failed patterns
1 2 3 10 All 1 2 3 10 All

1

1x 151.5 24.3 8.2 4.4 4.1 5.3 8.7 10.7 16.4 37.2
2x 295.7 64.6 29.2 5.2 4.3 4.3 7.4 9.3 15.6 28.3
4x 519.5 204.1 114.0 46.7 39.0 3.5 5.9 7.7 14.0 21.8
8x 831.6 473.5 346.8 201.0 201.0 2.6 4.3 5.7 11.9 14.2

5

1x 27.5 7.1 4.4 3.4 3.3 5.3 7.7 9.1 13.3 29.5
2x 47.2 12.1 7.4 3.7 3.5 4.3 6.7 8.0 12.6 22.5
4x 72.7 26.5 15.5 9.4 8.7 3.5 5.5 6.8 11.7 17.8
8x 99.9 43.1 32.0 16.7 14.7 2.6 4.2 5.3 10.2 12.1

10

1x 18.2 5.9 4.2 3.4 3.3 5.3 7.5 8.7 12.8 29.0
2x 27.8 9.0 6.0 3.6 3.5 4.3 6.4 7.6 12.1 22.0
4x 43.0 18.4 12.1 8.3 7.8 3.5 5.4 6.6 11.4 17.4
8x 57.4 27.6 21.4 12.1 11.4 2.6 4.1 5.2 10.0 11.9

The main message of the Table 4.4, Table 4.5 and Table 4.6 is to show how the
proposed method allows to make a trade-off between the time cost (test length), the
accuracy (resolution) of the fault diagnosis, and also the hardware cost (DPs stored
in memory, implementation of a set of SAs). For example, in the case of the circuit
c2670 and using a single SA the diagnostic resolution is 4.1 at the test length 37.2
(Table 4.6). In this case all the failing patterns will be found which means that the
average diagnostic resolution 4.1 is the best possible, however the test length is
rather high. When using 5 SAs (Table 4.4) even better resolution 3.7 will be
achieved at the cost of test length only 10.6 which is 3.5 times better than using a
single SA. The resolution can be further improved up to 3.3, however at the cost of
increasing test length up to 29.5. According to Table 4.6, one of the best solutions
for fault diagnosis of circuit c2670 is to exploit 5 SAs, 2x DPs and to stop the
diagnostic procedure when 10 failed patterns are found which results the average
diagnostic resolution 3.7 and the test length 12.6.

92

Figure 4.5 illustrates the trade-off between number of SAs, average diagnostic
resolutions and test lengths for three circuits c2670, c5315 and c7552. The figure is
based on data presented in Table 4.4 and Table 4.5, where additionally average
resolutions and test lengths for three circuits were calculated. Figure 4.5
demonstrates that initial diagnostic procedure application time, which is
proportional to the number of test sessions that was equal to 62.6, where was used
a single SA and all failing patterns were targeted during fault diagnosis, could be
speed up approximately by 5.4 times. To achieve it, a set of 5 SAs must be
introduced and not more than 5 failing patterns must be used for fault diagnosis.
This approach guaranties the average test length of 11.5 while the average
diagnostic resolution is even improved from initial 3.0 to 2.7. Thus, presented
tables and figures in this section give an overview of possible strategies for
implementing efficient fault diagnosis for ISCAS’85 circuits.

Figure 4.5 Trade-off between resolution, test length and number of SAs

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

55,0

60,0

65,0

0,0

20,0

40,0

60,0

80,0

100,0

120,0

140,0

160,0

180,0

200,0

220,0

240,0

1 2 3 4 5 6 7 8 9 10 ALL

A
v

e
ra

g
e

 t
e

s
t

le
n

g
th

A
v

e
ra

g
e

 r
e

s
o

lu
ti

o
n

Failed patterns

1 SA Resolution 5 SA Resolution 10 SA Resolution

1 SA Test length 5 SA Test length 10 SA Test length

Optimal number of
failed patterns

Gain in speed of
diagnosis by ~ 5.4

93

4.6 Conclusions

A method is proposed for embedded fault diagnosis in digital systems with
BIST environments:

• the proposed approach employs compressed fault tables to minimize the
amount of memory space needed to store essential diagnostic data
derived from a long sequence of pseudorandom test patterns

• a method for optimized partitioning of a single signature analyzer into a
set of analyzers has been developed to improve the fault resolution
when using the information only from small sets of failed patterns

• algorithms are proposed to design an optimal interface between the
circuit under test and the set of signature analyzers to achieve the best
diagnostic resolution for given test set; the partition is done only once in
a single way for the whole diagnosis procedure and in this way it does
not bring any additional increase in the area overhead compared to the
case of a single signature analyzer

• an overview of possible strategies for fault diagnosis is presented where
a trade-off analysis between the time cost (test length) and the accuracy
(resolution) is carried out

Experimental results demonstrate that the proposed method for increasing the
diagnostic resolution and optimizing diagnosis application time is feasible and
efficient.

94

95

Chapter 5

FAULT MODEL FREE HIGH-LEVEL

FAULT DIAGNOSIS

This chapter introduces a concept of fault model free diagnosis combined with
cause-effect analysis in digital systems represented as networks of functional
blocks. The diagnosis is considered as a task to locate a faulty block in the network
by using concise block-level topological fault dictionary. The dictionary does not
need fault simulation and represents only the connectivity of blocks to observable
checkpoints. The distances between the entries (codewords) in the dictionary are
defined, and they are used to match the observed test responses to the entries of the
dictionary. A measure is proposed for evaluating the block-level diagnosability of a
given network which can be used for redesign of the circuit to improve the
exactness of locating the faults or faults regions in digital circuits. Experimental
results provide the data which characterize the proposed measure and show the
efficiency of using topological fault dictionaries for the ISCAS benchmark family.

5.1 Block-level fault-model free diagnosis

Consider a combinational circuit C with a set of observable outputs (e.g.
primary outputs) OUT, a set of controllable by test inputs IN, and a set of internal
fanout nodes FN. Denote by FB ⊂ FN a subset of nodes on fanout branches from
the internal nodes of FN. Consider the circuit C as a topological network of blocks
(subcircuits) where each block si ∈ S represents a fanout-free region (FFR) with an
single output node yi ∈ OUT ∪ FN and with a set of input nodes Xi ⊂ IN ∪ FB. In
particular case the block si ∈ S may consist of a single node of a primary input if it

96

has fanout branches. The connections between blocks may be logic signal lines or
buses. The functionalities of blocks may be represented by logical and arithmetical
expressions or by procedures. The objective of the diagnosis is to locate the faulty
block s ∈ S in a set of all networked blocks of S by applying a test T and analyzing
the test response R(T) on the primary outputs of the circuit.

Represent the network C as a directed graph G = (S, Γ) where the nodes
represent the blocks s ∈ S and Γ is a mapping from S to S. Here Γ (s) ⊂ S denotes
the set of successor nodes (blocks) of s, and Γ -1(s) ⊂ S denotes the predecessor
nodes (blocks) of s. By Γ *(s) ⊂ S and Γ -1*(s) ⊂ S the transitive closures of
Γ (s) ⊂ S and Γ -1(s) ⊂ S are denoted respectively. For all the nodes sj ∈ S which
represent the output blocks of the network, j: yj ∈OUT, is valid Γ (sj) = ∅. For all
the nodes sj ∈ S which represent the blocks with only primary inputs of the
network, j: Xj ⊂ IN, is valid Γ -1(sj) = ∅.

An example of such a graph is presented in Figure 5.1, where each node
represents a FFR of the circuit. The task of the fault diagnosis, instead of locating
predefined faults (e.g. stuck-at faults) inside FFRs, will be to locate the faulty FFR
if the circuit has failed during test. There will be no restrictions to the fault types
inside the FFRs. The only restriction for sake of the ease of calculating the measure
of diagnosability will be the assumption of a single faulty block. However, the
measure can be used also for estimating the diagnosability of a system in a general
case of multiple faulty blocks.

5.2 Diagnostic matrix of a network

The block-level topological fault dictionary for the given combinational circuit
C is represented as a diagnostic matrix DM = | | dij | | where i denotes a node si ∈ S
(a block in the network) and j denotes an observable output node sj ∈ S where
Γ (sj) = ∅ . The notation dij = 1 is used, if there is a path from si throughout the

Figure 5.1 A graph representing a network of blocks

S11

 S1 S2 S3 S4

 S5 S6 S7

 S8 S9 S10

97

graph G to the output node sj, otherwise dij = 0. The notation dij = 1 means that the
erroneous value on the output of the block si ∈ S can be propagated to the
observable primary output yj ∈ OUT of the network. The subset of all observable
nodes reachable from the output of the block si can be calculated as
OUT(si) = Γ *(si).

Let call the row vectors CWi = (di1 , di2 , ... , din) of the matrix DM as diagnostic
codewords. Here n = | OUT | is the number of observable nodes (primary outputs)
of the network. Each block si has its own binary codeword where dij = 1 means that
a fault in the block si is able to change the value of the observable output yj if a
signal path from the output of the block si up to yj ∈ OUT is activated. Several
blocks may have identical diagnostic codewords.

The procedure for generating the diagnostic matrix from the graph G which
describes the structure of the circuit is as follows.

Algorithm 5.1:

For all j: Γ (sj) = ∅
BEGIN

djj = 1
For all k: dkj ∈ Γ -1*(sj) set dkj = 1

END

An example of the diagnostic matrix DM created from the graph G in Figure 5.1
according to the Algorithm 5.1 is shown in Table 5.1.

Table 5.1 Diagnostic matrix of the circuit in Figure 5.1

 y1 y2 y3 y4

s1 1
s2 1
s3 1
s4 1
s5 1 1
s6 1
s7 1
s8 1 1
s9 1
s10 1 1
s11 1 1 1

In this approach is assumed that all the outputs of the network can be observed
independently, in other words, it is assumed that each primary output has its own
signature analyzer (SA). Because of the redundancy of pseudorandom test
sequences in the sense of repeated detection of faults, it may be expected that if
there is a fault in a block si of the network, this fault will show it as an erroneous

98

output signal at least once on each primary output of the network, corresponding to
the diagnostic codeword CWi of the block.

In the case of embedded diagnosis when not all primary outputs are separately
observable, and the groups of outputs are merged to joint SAs the diagnostic matrix
should be respectively modified. To represent the diagnostic model of such a case
of a multi-SA structure (see Chapter 4) where the number of SAs is less than the
number of primary outputs of the network, a new diagnostic matrix
DM m = | |d m

ik | | must be constructed, where k = 1, 2, ..., m, and m is the number
of SAs. The matrix DM m will be generated from DM by merging the columns for
the outputs connected to the same SA. Suppose that the subset of outputs
OUTk ⊂ OUT is connected to the signature analyzer SAk. Then the entries of the
column k in DM m are calculated as logic sums: ݅׊: ݀௠௜௞ ൌ ሧ ݀௜௝௝אை௎்ೖ

where OUTk is the subset of columns in DM to be merged in DM m .

The diagnostic matrix DM can be used for fault diagnosis in a similar way as
traditional fault tables or fault dictionaries by looking for matches between the
diagnostic results and the codewords in DM. However, without special
manipulations to be explained later the diagnosis may remain inaccurate or even
impossible.

Denote by R(T) = (r1, r2, ... , rn) the test response where rj = 1 when a fault has
caused an error during the test on the output node yj ∈ OUT at least once, and rj = 0
otherwise. Introduce the following diagnostic property of the test which is used for
fault diagnosis.

Property 5.1. All the possible faults in the block si in the network C are
activated during the test at least once to all observable nodes OUT(si) reachable
from si .

Assume first, that the Property 5.1 is valid. In this ideal case, the faults in a
block si will always produce a match R(T) = CWi in the fault dictionary.
Property 5.1 may be valid also partially, for a subset of all faults.

In general case, it may happen that R(T) ≠ CWi . However, it is not difficult to
realize that in general case always R(T) ≤ CWi , i.e. ∀j, j = 1, 2, ... , n: rj ≤ dj . This
statement follows from the assumption of a single faulty block in the network.

As an example, consider the network in Figure 5.1, and the diagnostic matrix in
Table 5.1. The response for a test experiment T will be represented as a 4-bit
codeword R(T). The rows of the matrix DM will correspond to the expected
codewords for different faulty cases as responses to the test experiment (in the case
when the Property 5.1 of the test is valid). For example, if R(T) = 0011, then from
DM can be concluded that the block s10 should be faulty. On the other hand, in the

99

case of the codeword 0010 the diagnosis will be ambiguous, since there are three
rows in the table with such codeword. The subset of suspected faulty blocks in this
case is: {s3, s6, s9}.

The general case, when the Property 5.1 is not valid, will be considered in
section 5.4.

5.3 Lower bound of average block-level diagnosability

Consider the ideal case when according to Property 5.1 all the possible faults in
a block si will be propagated during the test to all nodes of OUT(si). This property
may be used as a criterion to be considered during test generation for block-level
diagnostics purposes. For example, in the case of embedded diagnosis based on
pseudorandom sequences produced by BIST, the probability of propagating faults
to all reachable outputs will be the higher the longer is the test sequence. The test
generation problem itself is not discussed here.

Lemma 5.1. If the two codewords CWk and CWm in the matrix DM are different
CWk ≠ CWm , then the faults in the corresponding blocks sk and sm are
distinguishable.

Proof. Since CWk ≠ CWm , there exists at least one column j in DM where
dkj ≠ dmj which means that only one of these two blocks is able to influence the
value of yj ∈ OUT. Consequently, in the case when a faulty behaviour is detected
with either R(T) = CWk or R(T) = CWm , then the faulty or non-faulty behaviour of
yj ∈ OUT will exactly explain which of these two blocks is faulty and which is not.

From the Lemma the following Corollary results.

Corollary. If the two codewords CWk and CWm in the matrix DM are equal then
the faults in the corresponding blocks sk and sm are indistinguishable with the given
method.

From the Corollary and the Property 5.1 it follows that in order to improve the
diagnostic resolution it is needed either to improve the test (when Property 5.1 is
not valid), or to redesign the circuit e.g. by adding observable checkpoints in such a
way that in the new diagnostic matrix the codewords CWk and CWm become
different.

Theorem 5.1. If all the codewords in the matrix DM are different from each
other, then all the faults in the network C are distinguishable with accuracy of
block locations.

The proof of the Theorem 5.1 follows from the Lemma 5.1.

Let | S | be the number of rows in DM of a network C where S is the set of all
blocks to be determined as faulty or not faulty. Partition all the blocks in S into a
set of groups M = {Mk}, so that the codewords of the blocks in a particular group

100

Mk ∈ M are the same. Let Mk be the number of blocks with the same codeword
CWk in Mk . Obviously, M  ≤  S , and M  =  S  only in the case when all
the rows in DM are different.

Taking into account the indistinguishability of faults in Mk ∈ M, redefine now
the task of diagnosis.

The objective of the diagnosis is to locate the faulty group of blocks Mk ∈ M by
reasoning the test response R(T).

Now the average block-level diagnosability of the given network C can be
calculated as follows: ܦ ൌ ∑ |ெೖ||ಾ|ೖసభ|ெ| (5.1)

As an example, for the diagnostic matrix DM in Table 5.1 the following
partition is obtained:

M = {{s1}, {s2}, {s3, s6, s9}, {s4, s7}, {s5, s8}, {s10}, {s11}}

In this partition, there are three groups of indistinguishable faulty blocks:
M3 = {s3, s6, s9}, M4 = {s4, s7}, and M5 = {s5, s8}. The average diagnosability of the
network according to (5.1) is D = 1.57.

The value of D refers to the block-level diagnostic resolution achievable by the
diagnostic test with Property 5.1. In other words, the value of D means the average
number of suspected blocks as the result of fault diagnosis.

For the general case when the Property 5.1 is not valid, two possibilities may
take place during diagnosis: (1) no match will be found for R(T) in DM, or (2) the
match will be „wrong“, in other words, the resolution of the diagnosis will be
worse. The both cases will be discussed in the next section.

As can be seen further, in the general case when Property 5.1 is not valid, the
block-level diagnostic resolution may be worse, and the number of suspected
blocks may be higher than D calculated by (5.1). Therefore, the value of the
formula (5.1) can be interpreted as the lower bound of average block-level
diagnosability.

5.4 Diagnosis with adjusting the test responses

Consider now the general case where the Property 5.1 is not valid for the given
test, i.e. the case where a fault located in the circuit during the test sequence will
influence not all the primary outputs dictated by the diagnostic codeword of the
block containing the fault.

101

Denote by E(CWi) the number of ones in the codeword CWi. Then the codeword
CWi is called reducible to CWj if E(CWi) > E(CWj) and CWj can be produced from
CWi by only changing ones to zeroes. The codewords are called comparable if one
of them is reducible to another. The notation CWi > CWj is used when CWi is
reducible to CWj .

 Denote by L(i,j) the Hamming distance between two comparable codes CWj
and CWi calculated as L(i,j) = E(CWi) − E(CWj). Introduce a codeword distance
graph Ω = (CW, Δ) where CW is the set of all codewords in DM, and Δ represents
a mapping from CW to CW. Denote by Δ(CWi) ⊂ CW the subset of the closest
smaller codewords for CWi ∈ CW. The nodes CWj ∈ Δ(CWi), CWi > CWj , are
successors of CWi , and the nodes CWj ∈ Δ-1(CWi) , CWi < CWj , are predecessors
of CWi in Ω. Denote by Δ*(CWi) and Δ-1*(CWi) the transitive closures of Δ(CWi)
and Δ-1(CWi), respectively. Note that there exists a connection between two nodes
CWi and CWj in Ω only if the codewords CWi and CWj are comparable.

An example of the codeword distance graph Ω for the network in Figure 5.1 is
represented in Figure 5.2. The notation in the nodes is: i: CWi /Mi .

During the fault diagnosis with a test T in case of a faulty block s ∈ Mi , the
following cases may happen:

(1) R(T) = CWi

(2) R(T) does not match with any of the codewords in Ω

(3) R(T) matches with another codeword CWj which does not correspond to Mi

(1) The first case corresponds to the correct diagnosis, the other cases mean a
distortion of the diagnosis because of not detecting the fault on all outputs
OUT(Mi) dictated by the codeword due to the fault no propagated to all outputs it
may affect, or due to aliasing taking place in SAs.

(2) Suppose that R(T) ≠ CWi , and there is no match between R(T) and any other
CWj in Ω. Assume, also that there is no CWj in Ω , such that R ≤ CWj < CWi . Then,

Figure 5.2 The codeword graph of the network in Figure 5.1

1: 1110 / (s11) 2: 0011 / (s10)

3: 1100 / (s5, s8) 4: 0010 / (s3, s6, s9) 5: 0001 / (s4, s7)

6: 1000 / (s1) 7: 0100 / (s2)

102

R(T) can be corrected to match with CWi , and produce the correct diagnosis
according to the following theorem.

Theorem 5.2. If there exists no codeword CWk , so that CWj < CWk < CWi . Then
all test responses R(T) , where CWj < R(T) < CWi , can be corrected to CWi referring
exactly to the suspected set of faulty blocks Mi .

Proof. Suppose by a contradiction that there is another faulty set of blocks Mk ,
k ≠ j, able to produce the same test response R(T). Then two cases are possible,
either CWk = CWi , if Property 5.1 is valid for the given fault, or R(T) = CWk < CWi
which both are in contradiction with the presumption of the Theorem 5.2.

 (3) Assume now that E(CWi) − E(R(T)) ≥ k, and there is a node CWj in Ω , so
that R(T) = CWj . In this case the faulty block may locate in a subset of blocks
represented by a subset of codewords Δ*(CWi) ∩ Δ-1*(CWj). This means a decrease
of the diagnostic resolution.

As an example, consider in Figure 5.2 the case when there is a fault in s11 and
R(T) = 0110. There is no such codeword in the graph. However, R(T) can be
adjusted to 1110, and the correct diagnosis s11 will be achieved. As a second
example, let R(T) = 1100. There is a match now with {s5, s8}. If can be proven that
s5 and s8 are correct, the diagnostic procedure should continue in the blocks
represented by Δ*(CWi) ∩ Δ-1*(CWj) = Δ*(1110, 1100, 0010) ∩ Δ-1*(1100, 1110)=
= (1110), i.e. in the block s11 . Because of the test with less diagnostic capability the
diagnostic resolution was also less – instead of only s11 , three blocks {s5, s8, s11}
are suspected as fault candidates.

5.5 Probabilistic diagnosability measure

Let return to the case (3) in the previous section, where because of the distortion
R(T) matches with another codeword CWj in Ω which does not correspond to Mi .
Then following assumptions are valid, E(CWi) − E(R(T)) ≥ k and R(T) = CWj .
Regarding the diagnosability, this means that the suspected candidate set of faulty
blocks should be increased:

 Mi
*

 = Δ*(CWi) ∩ Δ-1*(CWj) (5.2)

In such a way, by using formula (5.2) to each possible faulty situation, a set of
blocks can be determined as candidates for being faulty at a given response R(T).
From the discussion above, a measure follows for a probabilistic diagnosability:

ܦ ൌ ଵ௡ ∑ ሺ݌௜ · ሻ|כ௜ܯ| ൌ ଵ௡௡௜ୀଵ ∑ ቀ|ி೔||ி| · ቁ௡௜ୀଵ|כ௜ܯ| (5.3)

where n is the number of nodes in the codeword graph Ω , Mi
*

 is the set of blocks
suspected as candidates for being faulty with probability pi . For a particular case,
when the possible faults can be enumerated, and the faults have equal probabilities,

103

the probabilities in (5.3) can be calculated as pi = |Fi| / |F|, where F is the set of all
faults, and Fi is the set of faults in Mi .

In case a set of faults is enumerable the following algorithm can be used for
calculating the probabilistic diagnosability.

Algorithm 5.1:

 1. Calculate the reference R for the given test sequence T

 2. For all nodes CWi of the graph Ω

 3. Set up Cluster (CWi) of blocks consisting of a node CWi

 4. For all blocks Mi of the node CWi

 5. For all faults f in the block Mi

 6. Calculate output response R(f)
 7. Find the closest codeword CWj to R(f)
 8. Update Cluster (CWi) = Cluster (CWi) ∪ (Δ*(CWi) ∩ Δ-1*(CWj))

END_for_all_faults

 9. Calculate the number of blocks in Cluster (CWi): Mi
*
 = |Cluster (CWi)|

10. Calculate the number of faults Fi in block Mi
11. Calculate the probability pi = Fi / F

 END_for_all_blocks

 END_for_all_nodes

12. Calculate the average diagnosability according to (5.3)

 END_of_Algorithm

5.6 Improving the diagnosability

To improve the diagnostic resolution, the original network can be redesigned for
better diagnosability by inserting additional observable checkpoints in such way
that in the final diagnostic matrix all the rows will be different.

If an error is detected by the test response R(T), and a match R(T) = CWi is
found, then a fault is expected to be in the subnetwork represented by the subset of
blocks Mi ∈ M. If | Mi | is too big, the diagnostic resolution may not be satisfactory.

Consider a network C as a graph G = (S, Γ), and the subnetworks of blocks Mi

with same codewords CWi as subgraphs Gi = (Mi , Γ) where Mi ⊆ S. Denote
ni = | Mi |, N = | S |, and r = | M | is the number of subsets of blocks with the same
codeword.

All the blocks s ∈ Mi in any Mi may be the candidates to become a checkpoint
to improve the diagnostic resolution (diagnosability) of the system. By choosing
s ∈ Mi as a checkpoint then a partitioning of Mi = Mi,1 ∪ Mi,2 is obtained so that
Mi,1 ∩ Mi,2

 = ∅. Denote Mi,1 = Γ * (s) ∩ Mi and Mi,2
 = Γ -1* (s) ∩ Mi , where

104

s ∈ Mi,2 . Because of adding a new checkpoint (observable node) the length of all
codewords will increase by 1, and the subsets of blocks Mi,1 and Mi,2 will have now
different codewords. As the result, the faulty blocks in Mi,1 and Mi,2 become
distinguishable. An example of the impact of adding a checkpoint to the node s6 in
Figure 5.1 is shown in Table 5.2.

Table 5.2 Diagnostic matrix after adding a checkpoint

si
Codeword bits Partitions

1 2 3 4 5 Mi M3,e
s1 1 0 0 0 M1
s2 0 1 0 0 M2
s3 0 0 1 0 0

M3
M3,1

s6 0 0 1 0 1
M3,2s9 0 0 1 0 1

s4 0 0 0 0
M4

s7 0 0 0 0
s5 1 1 0 0

M5

s8 1 1 0 0
s10 0 0 1 1 M6
s11 1 1 1 0 M7

Assume the probabilities that a block is faulty are equal for all blocks in the
network. Then, pi = ni / N, is the conditional probability that in case of detecting a
fault the cause of the fault is in Mi . Denote the number of blocks in the partitioned
subnetwork Mi,2 with checkpoint by mi =

 |Γ -1* (s) ∩ Mi |.

To select sequentially depending on the test responses the optimized set of
checkpoints to achieve as maximum improvement of diagnosability as possible by
minimum inserted checkpoints the following Theorem can be used.

Theorem 5.3. To achieve the maximum improvement in diagnosability of the
network G = (S, Γ) with subnetworks Gi = (Mi , Γ), i = 1, 2, ..., r, where Mi ⊆ S,
the checkpoint should be inserted to the block s∈Mi where mi(ni − mi) is maximum.

Proof. Consider the initial diagnosability of a system as:

D = p1 n1 + p2 n2 + ... + pi ni + ... + pr nr (5.4)

After insertion of the checkpoint to a block s∈Mi the diagnosability will be
changed:

D’ = p1n1+ p2 n2 + ...+pi [p(s)mi + (1 − p(s))(ni − mi)] +...+ pr nr (5.5)

where p(s) = mi / ni is the conditional probability that in case of faulty subnetwork
Mi the fault will be located in Mi,2 ∈ Mi .

105

To have D − D’ = max, the following must be valid:

 pi ni − pi [p(s)mi + (1 − p(s))(ni − mi)] = max (5.6)

After substituting the probabilities and dropping for simplicity the subscripts: ௡మே െ ௡ே ቀ௠మାሺ௡ି௠ሻమ௡ ቁ ൌ ௡మି௠మିሺ௡ି௠ሻమே ൌ ଶ௠ሺ௡ି௠ሻே ൌ (5.7) ݔܽ݉

From that it follows that to achieve the maximum improvement in
diagnosability at each step the checkpoint should be inserted to the node s∈Mi
where mi(ni − mi) is maximum.

As an example, consider the network in Figure 5.1 which according to (5.4) has
D = 1.9. The value of mi(ni − mi) will be 2 (maximum) for the blocks s6 and s9,
1 for the blocks s7 and s8, and 0 for other blocks. If choosing either s6 or s9 for the
checkpoint then D’ = 1.54 which is the maximum increase in diagnosability by a
single additional checkpoint. If choosing either s7 or s8 a worse result will be
obtained D’ = 1.73.

5.7 Experimental data

The goal of the experimental research was to evaluate the conception of fault
model free diagnosability by using the ISCAS’85 [92] [93] and ISCAS’89 [95]
benchmark circuits. The reason of choosing these circuits was twofold: (1) since
the objectives of this research are the networks of components where only the
topology of connections is of importance and not the functionality of components,
these benchmark circuits provide rather complex topologies; (2) second, the
circuits allowed to demonstrate the feasibility of using the proposed approach also
at the logic level. In the experiments, the fan-out free regions (FFRs) of the circuits
were considered as blocks to be diagnosed as faulty or fault-free.

In Table 5.3 the following data are shown: #Out – number of outputs, #Blocks –
number of blocks, #Groups – number of groups with the same codeword, D_B –
average block-level diagnosability calculated according to formula (5.1), i.e. the
lower bound of average block-level diagnosability, D_P – average block-level
diagnosability calculated according to formula (5.3), i.e. the probabilistic
diagnosability with assumption that all blocks have equal probabilities to fail and
Property 5.1 is valid, Max – maximal number of suspected blocks with the same
codeword (the minimal number for all circuits was 1), and HD – average Hamming
distance between the codewords. The lower bound of average block-level
diagnosability D_B of all the circuits except c6288 is 2.6 which indicates a rather
high inherent diagnosability of ISCAS benchmark circuits. The circuit c6288
representing a 32-bit multiplier is an exceptional case, where despite the huge
number of possible codewords (232 = 4294967296) there is only 63 different
codewords (groups) compared to a large number of blocks 1488. Thus, the most
blocks influence on the same outputs of the circuit (a large number of blocks with

106

the same codeword), causing in this way very low block-level diagnostic
resolution. Column Max and D_P (probabilistic diagnosability) indicate the
circuits which contain large groups of indistinguishable blocks and where the
achieving high block-level diagnostic resolution during fault diagnosis will be
complicated without redesigning the circuit for better diagnosability. For instance,
in circuit c1355 the largest group consists of 185 indistinguishable blocks whereas
there are 291 blocks in all. If all blocks have equal probabilities to fail then in
(185 / 291) × 100% = 63.5% of cases the block-level diagnostic resolution will be
equal to 185. However, practically all blocks have different sizes, i.e. contain
different number of gates and, consequently, different number of possible defects.
Thus, all blocks do not have equal probabilities to fail and the real probabilistic
diagnosability can be considerably better (or even worse). On the other hand, the
ISCAS’89 circuits demonstrate very high inherent diagnosability, where the worst
probabilistic diagnosability D_P = 7.3 is obtained for circuit s5378 and the best
D_P = 1.7 is for circuit s832.

Table 5.3 Block-level diagnosability

Circ. #Out #Blocks #Groups D_B D_P Max HD
c499 32 187 43 4.3 69.0 113 15.1
c880 26 151 68 2.2 5.2 15 3.0

c1355 32 291 43 6.8 118.6 185 15.4
c1908 25 248 48 5.2 69.1 129 7.6
c2670 140 430 206 2.1 12.3 41 2.3

 c3540 22 378 111 3.4 11.5 33 2.4
c5315 123 633 350 1.8 14.9 64 5.2
c6288 32 1488 63 23.6 60.9 91 8.3
c7552 108 920 315 2.9 20.2 48 4.2

s832 24 63 50 1.3 1.7 4 4.6
s1196 32 187 138 1.4 2.1 8 3.2
s1423 79 259 181 1.4 2.5 12 11.2
s3271 130 555 377 1.5 5.4 42 3.3
s5378 228 1083 662 1.6 7.3 28 4.2

s15850 684 2202 1477 1.5 4.8 42 16.4
s13207 790 2014 1424 1.4 4.2 60 5.1

Average 3.9 25.6 57.2 7.0

Investigations were carried out to evaluate the efficiency of correcting test
responses using the Hamming distances between diagnostic codewords of network
blocks. The results are depicted in Table 5.4, where as the test were used sequences
of pseudorandom patterns with length in column 2 and stuck-at fault coverage in
column 3. If the fault coverage did not increase any more, the sequence was
interrupted. The pseudorandom test was chosen for two reasons: to get easily a test
with a feature of N-detection [8] to make the Property 5.1 valid for as many as
possible faults and to investigate the feasibility of the approach for BIST based

107

embedded diagnosis. The test response for each stuck-at fault (SAF) has been
calculated and compared with the codeword of the block where the fault was
located. Here was assumed that each primary output is independently observable,
i.e. it has its own SA. The columns 4 and 5 show the percentages of match and
mismatch of test responses R(T) with correct entries CWi in fault dictionaries
(diagnostic matrices DM) before correction, and the columns 6 and 7, respectively,
after correction.

Table 5.4 Test response correction data for the case of stuck-at faults

Circuit
Test Properties

Response before
correction, %

Corrected
response, %

#Patterns FC % Correct Wrong Correct Wrong
c499 1373 99.33 51.91 47.42 99.33 0.00
c880 2694 100.00 91.85 8.15 98.79 1.21

c1355 1438 99.51 54.20 45.30 99.51 0.00
c1908 4420 99.48 51.67 47.81 98.73 0.75
c2670 22682 88.65 68.28 20.37 85.38 3.27
c3540 9631 95.54 57.43 38.11 79.67 15.87
c5315 1793 98.89 79.09 19.80 89.86 9.03
c6288 42 99.34 6.66 92.68 97.82 1.52
c7552 24337 94.09 48.80 45.28 69.01 25.08

s832 11974 98.53 98.53 0.00 98.53 0.00
s1196 29248 99.70 71.06 28.64 92.58 7.12
s1423 29848 98.76 69.26 29.50 96.61 2.15
s3271 28577 100.00 89.14 10.86 95.30 4.70
s5378 47270 98.95 76.11 22.83 98.02 0.93

s15850 78460 92.19 69.05 23.14 90.06 2.13
s13207 71017 98.07 69.63 28.44 91.15 6.92

Average 97.56 65.79 31.77 92.52 5.04

For example, for c1908 first only 51.67% correct matches were obtained. After
correcting the test response R(T) using Hamming distance, the percentage of match
was raised to 98.73% whereas only 0.75% of all faults were matched to a “wrong”
codeword. However, the term “wrong” means here not a wrong diagnosis, rather
that only the diagnostic resolution for these faults will be worse than the lower
bound given in the column D_B in Table 5.3. The percentages in the column 7 give
the idea how far the current diagnosability remains from the lower bound of
diagnosability. The “wrong” matches which reduce the diagnosability are
explained by the hard-to-test faults (HTTF) for which the Property 5.1 is not valid.
To reduce the percentage of HTTF, the test quality should be improved to meet the
Property 5.1.

From Table 5.3 and Table 5.4 can be seen that in general, the bigger is the
average Hamming distance between the codewords, the more exact can be the
diagnosis (the less is the number of mismatches). Rather big average Hamming

108

distance between the codewords shows that there is rather high potential to correct
the „distorted” test responses to match the correct block codewords, and to reach in
such a way high diagnostic resolution.

In Figure 5.3, the curves for ISCAS’85 and ISCAS’89 circuits show for every
value of x on the horizontal axis the probability P(x) that the Hamming distance
HD between the real fault codewords and faulty block codewords is less or equal to
x. The curve AVERAGE shows the average probabilities for the whole family of
circuits. The relationships in Figure 5.3 illustrate only rough general trends of the
discrepancies between the real fault codewords and faulty block codewords, and do
not represent the real probabilities of diagnosis inaccuracy. The reason is that a
majority of fault codewords can be rectified due to the unidirectional distortions as
shown in Table 5.4. For example, in Figure 5.3 for circuit c6288 only
approximately 40% of test responses that mismatch the expected codewords are
distorted by 10 or less bits. However, according to Table 5.4 the procedure of
adjusting test responses can reduce considerably the number of “wrong” codewords
from 92.68% to 1.52% whereas the average HD is 8.3 and the number of outputs
equals to 32 as shown in Table 5.3.

Figure 5.3 Integrated percentages of distances between fault responses and faulty block
codewords for ISCAS’85 and ISCAS’89 benchmarks

5.8 Conclusions

In this chapter a conception was discussed to carry out block-level fault
diagnosis in digital networks without using fault models. Instead of traditional SAF
model based diagnosis, a method is proposed for locating faulty areas in the circuit
with accuracy of FFR blocks as network components. Since no fault model is used,
the method is applicable for both, debugging design errors and locating the
manufacturing defects. Any type of defect, single or multiple, is allowed to take
place in a block. The size of the block-level fault dictionary depends linearly on the

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

p
er

ce
n

ta
g

e

bit distance

c1908

c3540
c1355

AVERAGE

c6288

c5315

c880 c499

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4 5 6 7 8 9 10

p
er

ce
n

ta
g

e

bit distance

s1196mm

s1423mm

s3271mm

s5378mm

s13207mm

s15850mm

AVERAGE

109

number of blocks to be determined as faulty or not faulty. The size of the blocks,
however, will be the trade-off between the complexity of the fault dictionary and
the diagnostic resolution.

A measure for characterizing the lower bound of block-level diagnosability of a
given network was proposed, and was shown how this measure can be used for
improving the diagnosability of networks by inserting additional observable
checkpoints.

A measure of Hamming distance between the codewords of entries in the fault
dictionary was introduced, and a fault diagnosis method was presented which uses
these distances to adjust the not matching test response to match the correct entry
in the dictionary to locate the faulty block. This adjustment of test responses is
similar to using Hamming distances for correcting errors in signal transmission.

By experiments the feasibility of the block oriented fault diagnosis for a
subclass of SAF model was analyzed. The results were promising: the lower bound
of average block-level diagnosability was 3.9, rather high average Hamming
distance 7.0 between codewords allowed quite efficiently to correct “wrong” test
response codewords to match the available codewords in the fault dictionary.

110

111

Chapter 6

HIERARCHICAL FAULT DIAGNOSIS

This chapter introduces a hierarchical approach for fault diagnosis in
combinational digital circuits represented as a network of modules. As modules
either library components (e.g. complex gates) of digital circuits or arbitrary
subcircuits are considered. The higher level fault diagnosis is carried out in two
phases. In the first phase, faulty modules are located by cause-effect analysis using
high-level fault dictionary. The size of the dictionary depends linearly on the
number of modules in the circuit. In the second phase, the set of suspected faulty
modules is pruned by reasoning of the defective behavior. At the lower level, the
physical defects are directly located in suspected faulty modules using defect
libraries of the modules or by effect-cause reasoning inside the module. The
proposed approach to fault diagnosis helps to cope with the growing complexities
of digital circuits. The experimental results show high module-level diagnostic
resolution of the proposed approach.

6.1 General description of the method

The main objective of the proposed method is to combine the cause-effect fault
diagnosis in combinational circuits with the physical defect oriented approach
based on the general conditional fault model [65] [66] [67] [68] [69] [70]. The
approach is hierarchical and is carried out at two levels (Figure 6.1).

At the high-level, the model of a circuit is presented as a network of modules.
Each module represents a fanout-free region (FFR) of the circuit with a different
number of gates. The modules may be library components (complex gates) and/or
arbitrary single output logic subcircuits. Thus, instead of enumerating all the
possible fault cases (or defects), in the high-level fault dictionary are listed only the

112

modules as potential faulty items in the circuit. This helps to cope with the
complexity of the fault dictionaries. Initial modules can be grouped even into larger
modules to reduce the size of fault dictionary. In general, there are no restrictions
set to the fault types inside the modules. The task of the high-level diagnosis is to
locate the candidate faulty module or a subset of candidate faulty modules.

dijti

mjModules
Global

test
patterns

Δijti

ΔjDefects
Local
test

patterns

Modules
dictionary

Defects
dictionary

Located
faulty

module

Located
defect

Figure 6.1 Illustration of the hierarchical approach to fault diagnosis

First, by cause-effect diagnosis approach based on using the high-level fault
dictionary, an initial set of candidate faulty modules is determined. On the next
step, by using effect-cause high-level module reasoning, the initial subset of
candidate faulty modules will be suppressed (Figure 6.2). The high-level module
reasoning is defect oriented; however, the direct defect analysis is avoided. The
defects are modeled indirectly by using the functional fault model which is
represented by pairs of stuck-at faults (SAFs) and defect conditions [67] [70]. In
the process of reasoning, only the defect conditions are considered, which allow to
avoid dealing directly with the whole huge list of defects in the circuit.

At the low-level, the fault diagnosis is carried out in the modules determined
during the high-level reasoning as faulty. For low-level diagnosis purposes, the
modules are represented by the sets of local test patterns which are treated as
conditions for activating physical defects in modules (Figure 6.1). This diagnostic
information is captured in the form of defect dictionaries and is stored in the
component libraries. Using pre-generated defect dictionaries, low-level cause-
effect reasoning is carried out to locate the defects in the modules. If the defect

113

location with the help of defect dictionaries is not possible, or if no dictionaries for
given modules are available, effect-cause low-level defect reasoning should be
carried out to locate the defects in suspected modules (Figure 6.2).

6.2 Cause-effect high-level fault diagnosis

Consider a combinational circuit C synthesized as a network of modules with a
single output (library complex gates or arbitrary subcircuits) with a set of primary
outputs OUT, a set of primary inputs IN, and a set of internal nodes INT. The
network C consists of a set of modules M where each module mj ∈ M has an output
node yj ∈ OUT ∪ INT and a set of input nodes Xj ∈ IN ∪ INT.

The circuit represents a graph C = (M, Γ), where the nodes correspond to the
modules m ∈ M, and Γ is a relation on M, where Γ (m) ⊂ M denotes the successor
nodes of m and Γ -1(m) ⊂ M is the set of the predecessor nodes of m. For all the
output nodes mj ∈ M, j: yj ∈ OUT, is valid Γ (mj) = ∅. For all the input nodes
mj ∈ M which represent the modules with only primary inputs j: Xj ⊂ IN is valid
Γ -1(mj) = ∅.

Example 1. An example of a combinational network C is presented in
Figure 6.3 where to each network component (functional block F) a module
corresponds. The topological graph C = (M, Γ) of the network is depicted in
Figure 6.4, where are shown modules that correspond to respective functional
blocks (e.g. F11) and the connections between the modules (e.g. F1 is connected
to F4 and F7). The task of the high-level fault diagnosis is to locate the faulty
module if the testing of the circuit has failed.

Cause-effect
high-level

faulty module
diagnosis

Effect-cause
high-level

defective module
reasoning

Cause-effect
low-level

defect location
in modules

Effect-cause
low-level

defect reasoning

Diagnosis
finished

Set of
candidate

faulty
modules

Reduced
set of

candidate
modules

All defects
are located?

No

Yes

Figure 6.2 The hierarchical fault diagnosis flow

114

In general case, there will be no restrictions to the fault types inside the modules
(some restrictions considered later may be introduced to simplify the fault
diagnosis at the cost of worse diagnostic resolution).

Figure 6.3 A combinational circuit

The first phase of the high-level fault diagnosis is carried out in the network of
modules according to the cause-effect approach by using its pre-generated fault
dictionary. The module-level fault dictionary is represented as the matrix
D = dijwhere i denotes the number of test pattern, and j denotes the module
mj ∈ M (a subcircuit or a library component in the network). The notation dij = 1 is
used if the test pattern ti may detect a faulty signal on the output yj of the module
mj .

Figure 6.4 A graph representing the combinational circuit in Figure 6.3

Let Mi
 = {mj} ⊂ M be the subset of modules corresponding to the i-th row of

the matrix D, so that mj ∈ Mi if dij = 1.

Consider a test set T to be used for fault diagnosis. Partition the set T in
accordance with the results of test experiment into two subsets: T = TF ∪ TP where
TF ∩ TP = ∅, TF is the subset of test patterns which failed during the test, and TP is
the subset of test patterns which passed. Denote by the vector: ܯி ൌ ራ ಷ்א௜௜:௧೔ܯ

the subset of all modules suspected as faulty on the basis of failing subset of test
patterns TF, and by the vector: ܯ௉ ൌ ራ ು்א௜௜:௧೔ܯ

F1

F2
F3

F4

F5

F6

F7

F8

1

2 3

4 5

6

7

8

115

the subset of tested modules which have shown correct behavior on the basis of the
subset of passed test patterns TP.

Consider now the subset of modules M * = MF − MP . It is easy to understand
that if M * ≠ ∅ then the modules in M * should be suspected as faulty to explain the
failing of test patterns TF .

Consider another subset of modules determined as M 1
cond = MF ∩ MP . All these

modules in M 1
cond should be treated as ambiguous, because they may explain the

failing of test patterns TF , however, not necessarily. Let call this subset as
conditionally suspected modules after the first phase of high-level fault diagnosis.
The total subset of modules suspected as faulty after the first phase of high-level
diagnosis is determined as M 1 = M * ∪ M 1cond .

Example 2. Table 6.1 represents an example of the module-level (high-level)
fault dictionary D.

Table 6.1 Module-level fault dictionary

Test
Modules

m1 m2 m3 m4 m5 m6 m7 m8
t1 1 1 1 1 1
t2 1 1 1
t3 1 1 1 1
t4 1 1 1 1 1
t5 1 1 1 1

Assume the test patterns t1 and t2 failed during the test, e.g. TF = {t1, t2}, and
other three test patterns TP = {t3, t4, t5} passed. Hence, MF = {m1, m3, m6, m7, m8},
and MP = {m2, m3, m4, m5, m6, m7, m8}. On this basis, the result of the first phase of
high-level fault diagnosis is following: M * = {m1} and M 1

cond = {m3, m6, m7, m8}.
The modules m3, m6, m7 and m8 remain conditionally suspected as faulty.

In this phase of high-level diagnosis the information from the passed patterns
TP = {t3, t4, t5} cannot be used to reduce the subset of suspected faulty modules in
M 1

cond , because there is no data in module-level fault dictionary which defects
have been tested in modules M 1cond during the test sets TF and TP .

6.3 Defect reasoning in modules by using the conditional
stuck-at fault model

This section describes how the functional fault model consisting of pairs of SAF
and defect conditions can be used for high-level defect reasoning in suspected
faulty modules.

116

Consider a module m ∈M which is represented by a Boolean function y = f (X),
X = (x1, x2, ..., xn). Introduce a symbolic Boolean variable Δ for representing a
given defect in the module, which converts the fault free function f into another
faulty function f Δ . Construct for this defect a generic parametric function:

ΔΔ∨Δ=Δ= ffxxxfy n),,...,,(** 21

to model the defect of the module m as a function of the defect variable Δ , which
describes jointly the behavior of the module for both, fault-free and faulty cases.
For the faulty case, Δ = 1, and for the fault-free case, Δ = 0, i.e. y* = f Δ if Δ = 1,
and y* = f if Δ = 0. The solutions Wy(Δ) of the Boolean differential equation

1
* =

Δ∂
∂f (6.1)

describe the set of conditions (input signals of the module) which activate the
defect Δ to produce an error on the output line y of the module. To find the
conditions Wy(Δ) for a given defect Δ , the corresponding logic expression for the
faulty function f Δ has to be created, either by logical reasoning or by carrying out
defect simulation directly, or by carrying out real experiments to learn the physical
behavior of different defects. The described method represents a general approach
to map an arbitrary transistor level physical defect inside the module m to the
higher logic (or module) level.

Example 3. As an example, assume there is a short inside the transistor circuit
in Figure 6.5 described by the function:

54321)(xxxxxXfy ∨==

The short changes the function of the circuit as follows:

))(()(53241 xxxxxXfy ∨∨== Δ

Figure 6.5 Transistor circuit with a short

Short
x1

x2

x3

x4

x5

y

Short
x1

x2

x3

x4

x5

y

117

Using the defect variable Δ for the short, a generic Boolean differential equation
is created and solved as follows:

=
Δ∂

Δ∨∨∨Δ∨∂
=

Δ∂
∂)))(()((* 5324154321 xxxxxxxxxxy

15432154315421 =∨∨= xxxxxxxxxxxxx

From the equation three possible solutions follow: 10x01, 1x001, 01110 where
x is do not care value. Each of them can be used as a test pattern for the given
short, or used as the defect condition for SAF at the output y. According to the
definition of the functional fault model for the defect Δ , the input conditions are
Wy(Δ) = {10x01, 1x001, 01110}.

The full set of conditions Wy = {Wy(Δ)} is called as the functional fault model
to represent all the physical defects through functional deviations in the behavior of
the module m: a physical level defect Δ produces a higher logic level erroneous
signal on the module output y if Wy(Δ) = 1 [69] [70].

By using the set of conditions Wy it is possible to map the defects from lower
physical level to higher logic level for fault simulation purposes or vice versa, to
map the faulty logic signals from the module-level to physical defects for fault
diagnosis purposes. If the modules of the circuit represent standard library
components (e.g. complex gates) the described analysis for finding conditions
should be made once for all library components, and the sets of calculated
conditions Wy will be included in the form of defect dictionaries into the library of
components.

6.4 Effect-cause high-level fault reasoning

The effect-cause high-level fault reasoning as the second phase of high-level
fault diagnosis is defined as follows. The set of all conditional candidate faulty
modules M 1

cond = MF ∩ MP found in the first high-level diagnosis phase is taken,
and the sets of fault conditions XF,j for all modules mj ∈ M 1

cond suspected
conditionally are created. The set M 1

cond can be interpreted as the effects evoked
locally by the possible defects in the modules mj ∈ MF ∩ MP . In these suspected
modules indirect defect reasoning has to be carried out either to determine the
possible defect causes or to remove the not faulty modules from suspicion. The
task of the second phase of high-level fault diagnosis is to locate the faulty module
or to reduce the set of suspected faulty modules as much as possible.

Denote by Xij the local input condition of the module mj at the test pattern ti .
Then group all these input conditions for all the modules in such a way that XF,j
contains all the local input conditions of the module mj during the test patterns,

118

which tested the module and failed, and XP,j contains all the local input conditions
of the module mj during the test patterns, which tested the module and passed.

Each condition wF ∈ XF,j , so that wF ∈ Wj(Δ), refers to a defect Δ which may
have been detected by the test patterns in TF , and therefore should be suspected
because all the test patterns in TF failed. On the other hand, each input condition
wP ∈ XP,j , so that wP ∈ Wj(Δ), refers to a defect Δ which should have been detected
by the test patterns in TP. However, since all the test patterns in TP passed, the
defect Δ cannot be any more suspected.

From the above reasoning it results that only these defects in the module mj

which are activated by the conditions w ∈ (XF,j − XP,j) ∩ Wy may be suspected.
Hence, a module mj ∈ M 1cond can be suspected as faulty only if

(XF,j − XP,j) ∩ Wy ≠ ∅ (6.2)

The reasoning proceeds in the following way. From all conditions XF,j where
mj ∈ M 1

cond are deleted the conditions XP,j trying to suppress the set M 1
cond . The

result of the second phase of high-level fault diagnosis will be the reduced set of
candidate faulty modules M 2 = M* ∪ M 2

cond , where M 2
cond ⊆ M 1

cond , and for all
mj ∈ M 2cond the condition (6.2) is valid.

Example 4. Consider again the example in Table 6.1 where the first two test
patterns failed during the test experiment, and the other three passed. Let the
module m3 had the local input vector X11 = (1011) during the test pattern t1 which
tests the module, according to Table 6.1. Assume here that the module has 4 input
lines. Since t1 failed, it means that in the module m3 , a defect Δ , activated by the
conditions wF = (1011) ∈ W3(Δ) on the inputs of the module, should be suspected.
On the other hand, let the same module had on its inputs the same condition
wP = wF = (1011) during the test pattern t4 which tested the module m3 as well, but
passed. Since the test pattern t4 activated the same defect Δ which was under
suspicion after the test pattern t1 , there is a contradiction, and the defect Δ cannot
be present. So, the module m3 can be removed from the set of suspected modules
M 1

cond = {m3, m6, m7, m8}. After such a procedure of the indirect effect-cause
reasoning of defects on the module-level, in the ideal case M 2

cond = ∅ may be
obtained. In this case, the result of the high-level fault diagnosis shows that a single
module, M 2 = M * = {m1}, should be suspected as faulty.

In the case of multiple faulty modules, fault masking may lead to equivalent
conditions on modules in the passing and failing cases. As the consequence, too
many suspected modules may be pruned. To avoid such mistakes, several methods
for ranking suspected modules in M 1

cond can be proposed. For example, the more
contradictions will be used for deleting the conditions from XF,j of a module mj ,
the less is the probability that all of the deletions were mistakes because of fault
masking, and consequently, the less is the probability that the module removed
from M 1cond is still faulty.

119

6.5 Low-level fault diagnosis

Low-level fault diagnosis is carried out in the modules determined during the
high-level reasoning as faulty. It may be carried out either by cause-effect
diagnosis based on the defect dictionaries pre-computed for the library
components, or by effect-cause diagnosis inside the modules if the defect libraries
are not available.

Consider as an example the fault dictionary in Table 6.2 for a library complex
gate AND2,2/NOR2 [96] regarded as a module in the circuit under diagnosis. In
the table, 25 different defects (shorts between inputs or internal nodes of the
module) are considered with corresponding names in column 2 and erroneous
functions in column 3. Other columns form the defect dictionary and correspond to
the input patterns of the 4-input module (given with decimal numbers). The entries
“1” in columns show which defects are tested by which patterns.

Table 6.2 Defect library for a gate AND2,2/NOR2 [96]

Assume that as the result of the test experiment, for this particular module mj
has been found that XF,j = {w3, w12}, and XP,j = {w0, w5, w8, w10, w13, w15}. The input
patterns not exercised during the test are highlighted by grey colour. It is easy to
see that the defects Δ2 and Δ8 should be suspected as present. For better diagnostic
resolution, to distinguish these defects, additional input patterns should be used for
testing, e.g. w7 or w11 .

 k Fault Δk

Erroneous

function f Δk

Local input test patterns wj

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1 A/C not((A*C)*(B+D)) 1 1 1 1
2 A/D not((A*D)*(B+C)) 1 1 1 1

3 A/N1 not(B*(not(A)+C+D)+C*D) 1 1 1 1
4 A/Q A*(not(C*D)) 1 1 1 1 1 1 1 1 1
5 A/gnd not(C*D) 1 1 1
6 A/vdd not(B+(C*D)) 1 1 1
7 B/C not((B*C)*(A+D)) 1 1 1 1
8 B/D not((B*D)*(A+C)) 1 1 1 1
9 B/N1 not(A+C*D) 1 1 1
10 B/Q B*(not(C*D)) 1 1 1 1 1 1 1 1 1
11 B/gnd not(C*D) 1 1 1
12 B/vdd not(A+(C*D)) 1 1 1

13 C/N1 Not((A+B+D)*(A*B+not(C)+D)) 1 1 1 1 1
14 C/Q C*(not(A*B)) 1 1 1 1 1 1 1 1 1
15 C/gnd not(A*B) 1 1 1
16 C/vdd not(D+A*B) 1 1 1

17 D/N1 not(A*(B+C+notD)+B*notD+not((A+B)*D) 1 1 1 1 1
18 D/Q D*(not(A*B)) 1 1 1 1 1 1 1 1 1
19 D/gnd not(A*B) 1 1 1
20 D/vdd not(C+A*B) 1 1 1
21 N1/Q not(A*B*C*D) 1 1 1
22 N1/gnd sa-0 for Q 1 1 1 1 1 1 1 1 1
23 N1/vdd not(C*D) 1 1 1
24 Q/gnd sa-0 at Q 1 1 1 1 1 1 1 1 1
25 Q/vdd sa-1 at Q 1 1 1 1 1 1 1

120

If no diagnosis is possible with using the defect dictionary, for example when
the real existing defect is not covered by the dictionary, or in the case when the
defect dictionary for a module is missing, the low-level effect-cause defect
reasoning inside the module is needed. This can proceed for example by the
method of critical path tracing.

6.6 Experimental data

The goal of the experimental research was to evaluate the achievable high-level
module-based diagnostic resolution (Table 6.4) and to compare it with traditional
stuck-at fault (SAF) based diagnostic resolution (Table 6.5). Experiments were
carried out with ISCAS’85 [92] [93], ISCAS’89 [95] and ITC’99 [97] [98]
benchmark circuits (Table 6.3). All the circuits were presented as networks of
modules where as modules the fanout-free regions (FFR) were selected. Three
different types of tests were used for evaluating the diagnostic resolution
(Table 6.4): long pseudorandom test sequences, short deterministic test sequences,
and combination of both sequences. The pseudorandom test sequences were
generated by LFSR based test generator and optimized by selecting proper seeds
and polynomials. The LFSR was stopped when no useful test patterns were found
in a reasonable time. The pseudorandom test was selected to have more test
patterns for detecting the same fault with the goal to improve the distinguishability
of the faults. The deterministic test patterns were synthesized by a genetic test
generator. The quality of test patterns, i.e. the maximum possible test coverage was
not the target. The goal was not to generate the best test sequences, rather to
evaluate and compare the diagnosability, i.e. diagnostic resolutions for two
methods and for a given test sequence. To generate diagnostic tests with as good as
possible diagnostic resolution is the task not considered in this section.

Table 6.3 Characteristic data of benchmark circuits

Circuits Inputs Outputs
Nodes
(lines)

Modules
Complexity
reduction

c1908 33 25 1394 248 11.2
c2670 233 140 2075 430 9.7
c3540 50 22 2784 378 14.7
c5315 178 123 4319 633 13.6
c7552 207 108 5795 920 12.6
s9234 247 250 5597 1263 8.9

s13207 700 790 12441 2014 12.4
s15850 611 684 14841 2202 13.5
s35932 1763 2048 32624 7343 8.9
b12_C 126 127 1000 512 3.9
b14_C 277 299 19491 2708 14.4
b15_C 485 519 18248 2872 12.7

Average 11.4

121

In Table 6.3, the characteristic data of the benchmark circuits are presented. In
columns 2 - 4, the numbers of inputs, outputs and nodes (lines) are presented,
respectively. The number of lines indicates the number of possible stuck-at faults
in the circuit. Column 5 lists the number of modules, and in column 6 the
complexity reduction in the module-level network is shown compared to the gate-
level network. The complexity reduction is calculated as follows: number of lines
is multiplied by 2, since SA0 and SA1 fault per line can present, and divided by
number of modules where for each module is used 1-bit notation: faulty or fault
free. The reduction in average 11.4 times reflects the decrease of the complexity in
fault dictionaries in case of using FFR-modules instead of gates and SAF lists. If
the obtained complexity reduction is not satisfied, which is especially actual for
very-large-scale integration (VLSI) designs, the initial FFR-modules can be
grouped into larger modules to reduce the size of high-level fault dictionary at the
cost of diagnostic resolution.

In Table 6.4, the results of diagnostic resolution for three different test types are
presented. In each section, the characteristics of tests are given: test length and
stuck-at fault coverage (SAF %), and the average diagnostic resolutions (the
number of suspected modules) after the first and the second phases of high-level
diagnosis are depicted.

Table 6.4 Diagnostic resolution for high-level module-based diagnosis

Circuits

Pseudorandom test Deterministic test Both tests

Test
length

SAF
 %

Average
resolution Test

length
SAF

%

Average
resolution Test

length
SAF

%

Average
resolution

Phase1 Phase2 Phase1 Phase2 Phase1 Phase2
c1908 4420 99.48 86.6 1.42 121 99.48 110.6 2.08 4541 99.48 86.1 1.41
c2670 22682 88.65 223.9 3.45 72 88.46 235.8 4.39 22754 90.36 221.0 3.24
c3540 9631 95.54 69.6 2.53 155 95.54 85.7 3.89 9786 95.54 69.6 2.51
c5315 1793 98.89 213.2 1.85 119 98.89 238.4 3.45 1912 98.89 212.0 1.84
c7552 24337 94.08 287.5 2.60 188 95.18 304.0 2.90 24525 95.52 285.7 2.58
s9234 29873 86.21 271.3 6.32 365 92.19 398.0 6.75 30238 92.23 205.0 4.50

s13207 29694 96.81 781.3 10.53 434 98.19 1035.5 9.98 30128 98.19 701.6 7.60
s15850 29360 90.99 669.4 10.50 370 94.19 886.0 10.45 29730 94.22 557.3 4.12
s35932 168 90.81 3748.4 63.85 55 88.49 4391.1 17.87 223 90.81 3554.5 6.45
b12_C 27205 98.33 151.4 4.15 155 99.77 239.6 5.05 27360 99.83 126.8 2.83
b14_C 29388 88.86 249.8 18.29 848 92.76 655.7 6.15 30236 95.69 531.7 2.69
b15_C 39198 86.56 756.5 14.06 498 88.77 1069.1 17.67 39696 94.74 929.1 11.08

Average 625.7 11.6 804.1 7.55 623.3 4.2

Due to large circuits (number of possible stuck-at faults) and long
pseudorandom test sequences only one randomly selected stuck-at fault per each
module was injected and simulated. Thus, the number of simulated SAFs equals to
the number of modules (Table 6.3). The pseudorandom test was selected to have
more test patterns for detecting the same fault with the goal to improve the
distinguishability of the faults and also to meet demands of embedded fault
diagnosis. However, the desired effect of applying pseudorandom test sequences
for distinguishing the faults has not been achieved when comparing the final

122

diagnostic resolutions of pseudorandom and deterministic test sequences. The
difference of results after the Phase 2 is not significant although the test lengths of
pseudorandom sequences for some circuits are hundred times longer. The average
diagnostic resolution has been improved when the combined test sequences
consisting of pseudorandom and deterministic patterns were applied. For example,
for large circuit b14_C the diagnostic resolution after Phase 2 was 18.29 and 6.15
for pseudorandom and deterministic tests, respectively. The combined test
enhanced the accuracy of diagnosis to 2.69.

According to Table 6.4 the Phase 2 has reduced the average number of
suspected modules in a case of SAF considerably compared to Phase 1. Thus, the
diagnostic data of passed patterns are playing an important role when suppressing
candidate faulty modules by the procedure of deleting failed conditions by passed
conditions. For the combined test and over all circuits the average number of
suspected modules 4.2 is quite low. Taking into account the structural locations of
suspected modules, and generating tests dedicated for diagnostic purposes, the
diagnostic resolution can be further reduced.

Table 6.5 shows the comparison results of the proposed module-level based
diagnosis with traditional SAF-based diagnosis obtained from experiments
performed on ISCAS’85 benchmark circuits using the same pseudorandom tests.
The values in column 4 depict the average number of suspected SAFs as a result of
fault diagnosis over all tested SAF by given test sequences, whereas column 5
shows the average number of modules where these suspected SAFs were located.
The values in column 6 depict the results of module-based approach that in average
are 2.4 / 1.4 = 1.7 times worse compared to SAF-based approach. The difference in
diagnostic resolution is due to that SAF-based method directly targets SAFs while
the proposed approach identifies candidate faults with accuracy of module
locations. On the other hand, the module-based approach reduces fault dictionary
complexity significantly, in average by 12.3 times; although the obtained
diagnostic resolution 2.4 remains quite high that indicates the feasibility of the
proposed module-based approach.

Table 6.5 Comparison of SAF-based and module-based diagnosis

Circuits

Test characteristics Diagnostic resolution Fault dictionary
complexity
reduction Length SAF %

SAF-based Module-based

saf modules modules

c1908 4420 99.48 2.9 1.2 1.4 11.2

c2670 22682 88.65 4.1 2.0 3.5 9.7

c3540 9631 95.54 2.2 1.2 2.5 14.7

c5315 1793 98.89 2.2 1.1 1.9 13.6

c7552 24337 94.08 2.6 1.5 2.6 12.6

Average 2.8 1.4 2.4 12.3

123

6.7 Conclusions

• The main drawbacks of the traditional cause-effect diagnosis methods are
the dependency on the fault model and poor scalability of fault
dictionaries.

• A novel method for high-level fault diagnosis based on module-level fault
dictionaries is developed. No fault models are used, and the objective of
diagnosis is faulty module in a given network of modules. As modules,
either library components (e.g. complex gates) of digital circuits or
arbitrary subcircuits are considered. The method combines cause-effect
and effect-cause strategies. The approach is scalable, and helps to cope
with the growing complexities of digital circuits. No restrictions to fault or
defect multiplicity inside the modules are set.

• In addition, a novel hierarchical approach is developed, which combines
the high-level module-oriented and low-level defect-oriented reasoning to
improve the diagnostic resolution in the case when information about
possible defects in modules is available. Two methods are proposed for
locating defects in candidate faulty modules: cause-effect reasoning based
on defect libraries of modules, and effect-cause reasoning inside the
modules.

• The complexity of the proposed method compared to the flat logic level
and fault model based diagnosis is reduced. The size of the high-level fault
dictionary for the whole circuit depends linearly only on the number of
modules to be determined as faulty or not faulty, and not on the number of
possible faults or defects as traditionally. The size of the modules,
however, will be the trade-off between the complexity of the high-level
dictionary and the diagnostic resolution.

• The complexity of the diagnosis problem is reduced in average 11.4 times
for the case of FFR-based modules compared to gate-level diagnosis. The
diagnostic resolution in the module-based diagnosis is slightly worse than
in the case of SAF-based fault diagnosis due to significant reduction of
diagnostic data stored in module-based dictionary.

• The high diagnostic resolution at the module-level was achieved by
implementing a novel high-level effect-cause reasoning based on the
concept of functional fault model (conditional SAF model). This concept is
based on indirect mapping of physical defects from transistor level to
module-level, so as to carry out indirect defect based fault reasoning at
higher module-level.

124

125

Chapter 7

IMPLEMENTATION OF THE

RESEARCH RESULTS IN THE

TEACHING ENVIRONMENT

This chapter presents a multifunctional e-learning environment with remote
access for learning, getting hands-on experience, and carrying out laboratory
research in developing optimized procedures for locating faults in complex
electronic systems. It is a combination of a collection of software tools which
simulate a system under diagnosis, emulate a pool of different strategies, methods,
and algorithms of diagnostic reasoning and fault location, and allow to experiment
with different embedded self-diagnosing architectures. Hands-on experiments
target research teaching issues. The interactive character of the environment makes
experiments attractive and helps to raise the students' curiosity.

7.1 Overview of fault diagnosis problems

There are two basic problems related to the engineering fields of verification
and testing of technical systems: test program generation and failure diagnosis
[8] [99]. Diagnosis is the most time-consuming process in the digital hardware
design cycle. The causes of failures may be design errors or physical defects called
also faults. Design error diagnosis is necessary when the design description fails
testing due to bugs introduced either by designers or by design tools. Fault
diagnosis is used after a fabricated chip fails testing due to defects in the

126

manufacturing process. The objective of fault diagnosis is to determine the cause of
failure in a system, circuit or chip.

There are two general approaches to fault diagnosis: fault model based
diagnosis and model-free fault diagnosis. The first one is a traditional approach.
Modern diagnosis approaches are model-free processes that identify the faulty or
erroneous areas in a circuit or system without assuming any specified fault lists or
error models.

Diagnosis techniques are usually classified into cause-effect and effect-cause
techniques. Cause-effect diagnosis, also known as dictionary-based diagnosis,
usually pre-compiles the failing responses of all modeled faults for a design and
stores them in a dictionary. Effect-cause diagnosis identifies initial candidates by
simulating failing input vectors followed by a reasoning process.

As process technologies shrink and designs become more complex, built-in self-
test (BIST) is gaining increasing acceptance as an industry-wide test solution,
because it provides a low-cost solution to both test generation and test application.

Both, model based and model-free approaches as well as cause-effect and
effect-cause techniques are supported in the presented environment. Also different
embedded BIST and self-diagnosis architectures are emulated to evaluate the
efficiency of diagnosis.

7.2 Description of the environment

In the following a new laboratory tool Diagnozer for investigation, modeling
and simulation of diagnostic processes for locating faults in complex electronic
systems is presented. Diagnozer is a part of the tool set called BIST Analyzer &
Diagnozer [100].

BIST Analyzer (BISTA) [101] is a training and research tool for learning basic
and advanced issues related to PRPG-based test pattern generation. Linear
feedback shift registers (LFSR) and other pseudo-random pattern generators
(PRPG) have become one of the central elements used in test and self-test of
contemporary complex electronic systems like processors, controllers, and high-
performance integrated circuits. Unlike other similar systems, this tool facilitates
study of various test optimization problems, allows fault coverage analysis for
different circuits and with different LFSR parameters. The main didactic aim of the
tool is presenting complicated concepts in a comprehensive graphical and
analytical way. The multi-platform JAVA runtime environment allows for easy
access and usage of the tool both in a classroom and at home. The BISTA
represents an integrated simulation, training, and research environment that
supports both analytic and synthetic way of learning.

127

The Diagnozer environment consists of the following three components:

(1) object under investigation (the model of a system to be diagnosed)

(2) diagnostic environment (a software for modeling the behavior of diagnostic
hardware/software tools to be used for fault location in the system)

(3) set of strategies, methods and algorithms to control the fault location
procedures with available diagnostic tools

The user interface of the system is illustrated in Figure 7.1. Different test
generators can be chosen, different stored models of systems under diagnosis can
be imported, the interface between system and diagnostic analysis block is the
objective of research, design and optimization.

Figure 7.1 User interface of the diagnosis environment

The model of the system (object under investigation) can be imported from the
electronic design interchange format (EDIF) or VHSIC hardware description
language (VHDL) formats and can be represented either in gate-level or module-
level. The tools for diagnostic modeling of the given system support two different
approaches for fault diagnosis:

Test
genera-

tors

System
under

diagnosis

Inter-
face

Block of
Diagnostic
Analysis

 Network

DM

128

• the classical stuck-at-fault (SAF) model based diagnosis

• a novel fault model free diagnosis approach where the goal of diagnosis is
to locate the faulty module

To investigate the embedded self-diagnosis architectures and to analyze their
properties and efficiencies, the following methodical approaches and means are
addressed: methods for generating the set (or sequence) of test patterns and
methods for observing and processing the response data.

The test generation tools include [101]:

• deterministic, genetic or random test generators for producing test
sequences to be stored in the tester memory

• pseudorandom test generators for producing on-line test sequences

• hybrid BIST architectures implementing the store-and-generate concept

Test response analysis possibilities. The test response can be fixed:

• by direct capturing and storing of all the responses

• by processing the responses with single signature analyzer (SA)

• by processing the responses with multiple SAs

The following architectures for signature analysis can be used (Figure 7.2):

• Multiple Input SAs (MISR) where all the outputs of circuit under test
(CUT) are connected to a single multiple input signature register (MISR)

• a set of MISR-s where each MISR is connected to a different subset of
outputs of CUT

• single output SAs where for each output of the CUT a dedicated SA is
available

Figure 7.2 Architectures for signature analysis

Test pattern generator

CUT

Signature Analyzer (SA)

Fault

Test pattern generator

CUT

SA 1 SA 2 SA 3

Fault

Test pattern generator

CUT

Fault

SA SA SA SA SA SA SA SA SA

1 2 3 4 5 6 7 8 9

129

There are tools to design and optimize the interface between the outputs of the
system and the block of multiple signature analyzers with the goal to achieve the
best possible diagnostic resolution.

The structure of the system under diagnosis will be analyzed, and the diagnostic
model as a network of components will be created and represented as a diagnostic
matrix to be used in fault diagnosis, evaluation of the diagnosability, and redesign
of the system for better diagnosability.

Four strategies of fault diagnosis are implemented: binary bisection of test
patterns, binary bisection of detected fault sets, doubling and jumping algorithms.
The diagnostic environment includes different possibilities for selecting diagnostic
points (DP) in test sequences, different possibilities to define the breakpoint for
diagnostic procedure and different options to identify a set of suspected faults
among failing patterns.

Using this environment the following problems of diagnosis can be addressed in
the laboratory:

• methods and strategies of organizing diagnostic experiments

• methods for optimization of diagnostic procedures

• methods for improving the diagnostic resolution

• methods for finding trade-offs between the time cost of fault diagnosis
(length of the diagnostic procedure) and the diagnostic resolution

• methods for evaluating the diagnosability of systems

• methods for improving the diagnosability of digital systems by redesigning

7.3 Laboratory research scenarios

In the following a series of three laboratory research scenarios are described
which are based on the presented diagnostic environment:

1. Diagnostic circuitry: design and optimization of the built-in response
analyzing circuitry

2. Diagnostic algorithms: investigation of the properties of different
diagnostic strategies

3. Object of diagnosis: evaluation and design for diagnosability of digital
systems

Inputs files for Analyzers, Diagnosability and Diagnosis tools are the following:

• Structurally Synthesized Binary Decision Diagram (SSBDD) model format
(.agm) – model of a circuit

130

• test vectors format (.tst) – sequence of test patterns with corresponding
fault table for given circuit

Output data (results) of the tool are presented either graphically or in the form
of tables that can be saved in .csv format (text delimiter is semicolon “;”) for
comfort and easy reading using Microsoft Excel or OpenOffice.

The presented scenarios are adapted for both analytic and synthetic study, where
the students first learn the subject by observation (using prepared examples) and
then generate and/or solve their own specific exercises. The scenarios cover
various strategies and methods of organizing and optimizing test generation and
fault diagnosis.

7.3.1 Research Scenario 1: Diagnostic Circuitry

Goals of the work:

Investigations of the properties of the response analyzing circuitry based on
partitioning a single signature analyzer into a set of analyzers. Examples of the
architecture of the response analyzing circuitry are shown in Figure 7.2,
representing the circuit under test with a fault, and a block of response analyzers
implemented as multiple input signature analyzers (see Chapter 4).

Description of the research environment and the functionality of tools:

Functions of the tool:
• The main function of the tools used in this research is to assign in an

optimal way the selected number of signature analyzers to the outputs
of the circuit under diagnosis, using different optimization algorithms

Workflow for the research scenario is depicted in Figure 7.3:

Options (ANALYZERS panel in Figure 7.1):

• Analyzers:

o 1…10 – number of applied signature analyzers

Figure 7.3 Workflow for research scenarios 1 and 2

Select an
object of
diagnosis

Select architecture for
signature analysis

Select an algorithm
for searching failing

patterns in a sequence
of test patterns

Select breakpoint for
diagnostic procedure

Perform diagnosis of circuit
applying selected adjustments

and compare results graphically

Select a
sequence of
test patterns

131

• Assigning algorithm:

o Unique Faults. First, finds a unique set of faults for each
output (faults detected only by this single output) and sorts
them in decreasing order. Second, takes the output from the
sorted set and assigns it to an analyzer in such way that unique
faults would be equally distributed between analyzers.

o Equal Subsets. First, to each SA an initial output of CUT is
assigned. Second, on each step an arbitrary output of CUT is
selected, and a SA is found as the best solution to be connected
to the selected output of CUT in a such way that the diagnostic
resolution would be equal for all subsets Dj . Ideally,
Dj = | F | / (2m − 1) where | F | – number of possible faults and
m – number of SAs.

Output data of the tool (Analyzers tab in Figure 7.1):

• a table “Analyzers” where is shown which outputs are assigned to
which analyzers if the number of analyzers is selected greater than 1

Tasks of the work:

1. Compare the dependency of the diagnostic resolution on the number of
analyzers for the given method of fault diagnosis and for the single first
failed test pattern. Create the curves or diagrams of this dependency. An
example of such diagram is depicted in Figure 7.4 where circuits c2670,
c5315 and c7552 are considered and the diagnostic resolution, obtained
after the first failing patterns has been found, is compared for different
number of SAs.

Figure 7.4 Dependency of the resolution on the number of SAs for Task 1

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 re
so

lu
ti

on

Analyzers

c2670 c5315 c7552

132

2. Compare the dependency of the diagnostic resolution on the number of
analyzers for the given method of fault diagnosis and for the full diagnostic
procedure, i.e. for all failed test patterns. Create the curves or diagrams of
this dependency. An example of such diagram is depicted in Figure 7.5.

Figure 7.5 Dependency of the resolution on the number of SAs for Task 2

3. Compare the effectiveness of assigning algorithms based on the results
obtained in previous tasks.

7.3.2 Research Scenario 2: Diagnostic Algorithms

Goals of the work:

Investigations of the properties of different methods and strategies of fault
diagnosis: binary bisection of patterns, binary bisection of faults, jumping and
doubling (see Chapter 3).

Description of the research environment and the functionality of tools:

Functions of the tool:

• The tool simulates injection of each stuck-at fault tested by given
sequence of test patterns and performs fault diagnosis using following
options

Workflow for the research scenario is depicted in Figure 7.3.

Options (DIAGNOSIS panel in Figure 7.1):

• Diagnosis application time (number of test sessions):

o Searching Algorithm:

 Binary bisection of faults

0

1

2

3

4

5

1 5 10

A
ve

ra
ge

 re
so

lu
ti

on

Analyzers

c2670 c5315 c7552

133

 Binary bisection of test patterns

 Doubling

 Jumping

• Diagnosis Accuracy (diagnostic resolution):

o Diagnostic points – test patterns that are used for fault
diagnosis from a test sequence

 All patterns – time-consuming when a very long
sequence of pseudorandom test patterns

 Effective – patterns that detect new faults compared to
previous patterns in a given sequence of test patterns

 Effective/2 – each second of effective patterns is used

 Effective/4 – each fourth of effective patterns is used

 Effective/8 – each eighth effective patterns is used

o Fault intersection. For instance, if there are two failed patterns
t1 and t2 that detect faults F(t1) and F(t2), and two signature
analyzers SA1 and SA2 , where SA1(t1) fails and SA2(t1) passes,
whereas SA1(t2) and SA2(t2) both fail. Following equations
F(t1) = SA1(t1) ∪ SA2(t1) and F(t2) = SA1(t2) ∪ SA2(t2) are valid.

 Yes (single fault assumption) – the set of suspected
faults equals D = (SA1(t1) ∩ SA1(t2) ∩ SA2(t2)) − SA2(t1)

 No (multiple fault assumption) – D = SA1(t1) ∪ F(t2)

 Half (multiple fault assumption) –
 D = SA1(t1) ∪ (SA1(t2) ∩ SA2(t2))

o Test sessions – number of failed patterns found and used for
fault diagnosis:

 1…10 – diagnostic procedure is finished when given
number of failed patterns is found or the end of test
sequence is reached

 All – diagnostic procedure proceeds until all failing
patterns are found

o Resolution:

 1…10 – diagnostic procedure proceeds until selected
diagnostic resolution is achieved or all failing patterns
are found

134

From two options “Test sessions” and “Resolution” only one can be chosen at
a time.

Output data of the tool (Diagnosis tab in Figure 7.1):

• tables “Tests” and “Resolution” where for each stuck-at fault is
presented the number of tests used for diagnosis and the achieved
diagnostic resolution, respectively

• a curve “Tests” where is illustrated how many SAFs are tested by
given or less number of tests, and a curve “Resolution” where is shown
how many SAFs have been diagnosed by given or better diagnostic
resolution

• a table “Diagnosis” where minimum, average and maximum number of
tests and diagnostic resolution over all tested SAFs is presented

• a histogram “Frequency” where is illustrated frequencies of detections
different SAFs by given sequence of test patterns

Tasks of the work:

1. Calculate the cumulative numbers of all faults F diagnosed by N or less test
sessions for different methods of diagnosis. Create the curves of these
dependencies for all the investigated methods. Compare the efficiency of
the methods. An example of such curve is depicted in Figure 7.6.

Figure 7.6 Comparison of different diagnosis methods for circuit c2670

doubling bisection
of faults bisection of patterns jumping

135

2. Calculate the diagnostic resolution as the function of test length that is
proportional to the number of failing patterns detected during the fault
diagnosis. An example is depicted in Figure 4.4.

3. Compare the dependency of the diagnostic resolution and test length on the
number of selected DPs for given method. Create the curves or diagrams of
this dependency.

4. Perform a number of experiments with different adjustments so as to find
out an optimal trade-off between the number of SAs, the time cost (test
length) and the accuracy (resolution) of the fault diagnosis. An example is
depicted in Figure 4.5.

7.3.3 Research Scenario 3: Object of Diagnosis

Goals of the work:

Investigations of the potentials of the fault model free diagnosis by comparing it
with classical stuck-at fault model diagnosis. Getting acquainted with conceptions
of the diagnostic matrix of the circuit network, the graph of codeword distances,
the method of rectification of diagnostic responses, and optimized redesign of the
circuit for better diagnosability (see Chapter 5).

Description of the research environment and the functionality of tools:

Functions of the tool (DIAGNOSABILITY panel in Figure 7.1):

• The tool builds up the Diagnostic Matrix (DM) and the Codeword
Graph. Then evaluates the diagnosability of given circuit and performs
redesigning of the circuit for better diagnosability according to selected
criteria.

Workflow for the research scenario is depicted in Figure 7.7.

Select an
object of

diagnosability

Build up codeword
graph

Evaluate block-level
diagnosability

Select criteria for
redesigning the object

Perform redesign
according to selected

criteria

Build up
diagnostic

matrix

Figure 7.7 Workflow for research scenario 3

136

Options:

• Graphs

o Build DM and Codeword Graph

• Redesign for Diagnosability

o Check Points

 1...10 – number of check points to be inserted into a
circuit for better diagnosability

o Diagnosability

 1…10 – the diagnostic resolution to be achieved as a
result of redesigning the circuit

From two options “Check Points” and “Diagnosability” only one can be
chosen at a time.

Output data of the tool (Diagnosability tab in Figure 7.1):

• a table “DM outs” (or “DM SAs”) where is presented diagnostic matrix
DM that shows the blocks (modules) connections to the outputs (or
SAs)

• a table “Codewords outs” (or “Codewords SAs”) where is presented a
graph of codewords in case of observing outputs directly (or via SAs)

• a table “DM Groups outs” (or “DM Groups SAs”) where is presented
number of different codewords (groups) and average diagnosability
with accuracy of the block (module) locations in case of observing
outputs directly (or via SAs)

• a table “Diagnosability” where is presented average bit distance
between codewords and diagnosability measures for stuck-at faults as a
result of diagnosis with accuracy of block locations and adjusting the
test responses

• a table “Distortions” which presents bit distance probabilities between
the real test response (codeword) and the expected codeword over all
stuck-at faults tested in the circuit

• a table “Redesigned DM” which presents the updated diagnostic matrix
where selected number of checkpoints is inserted into the circuit for
better diagnosability

Tasks of the work:

1. Calculate the values of diagnosability measures for the given set of
circuits.

137

2. Redesign the circuit by inserting optimal diagnostic check points into given
circuit. Create two curves of average diagnosability as the function of the
number of inserted check points: (1) for the case of randomly inserted
check points, and (2) for the case of the optimal insertion of check points.
In Figure 7.8 “worst case” and “best case” scenarios of average block-level
diagnosability improvement are represented for circuit c1355.

Figure 7.8 Diagnosability improvement range for circuit c1355

7.4 Conclusions

The presented conception of the environment for carrying out different research
scenarios to get hands-on experience in the field of fault diagnosis of complex
digital systems allows students to inspect the taught subjects by individual research
experiments. The proposed diagnostic environment is mainly dedicated for
investigating digital systems but it may be used also for learning diagnostic
problems for a wide class of electrical or even mechanical systems represented in a
topological way as a network of components (or sub-functions) in a form of “black
boxes”. The proposed environment supports distance learning as well as a
web-based computer-aided teaching. The interactive modules are focused on easy
action and reaction, and learning by doing, encourage students for critical thinking,
and educate students to be in the future creative engineers.

The described environment is introduced into the teaching process at the Tallinn
University of Technology in Estonia in the programs of master study.

0

20

40

60

80

100

120

140

0 5 10 15 20

B
lo

c
k

-l
e

ve
l

D
ia

g
n

o
s

a
b

il
it

y

Checkpoints

Best case

Worst case

138

139

Chapter 8

CONCLUSIONS

The current thesis is focused on embedded fault diagnosis in digital circuits and
addresses the following challenges: diagnostic resolution improvement and
diagnostic application time optimization to cope with continuously growing
complexities of digital circuits. To address the difficulties of handling the large
variety of physical defects in nanoscale technologies caused by transistor ultimate
scaling, a fault model free approach to fault diagnosis is proposed.

8.1 Main results

The contributions of the thesis are summarized as follows.

 New methods for optimized fault diagnosis in BIST environments:

• A new concept for bisectioning of test patterns for fault diagnosis is
developed where instead of counting the test patterns as in the classical
Binary Search, the diagnostic capability of patterns is selected as the criteria
for bisectioning. The new bisection algorithm allows considerable reduction
in the average length of diagnostic procedures.

• A sequential algorithm is developed to allow a trade-off between the speed of
diagnosis and diagnostic resolution. Opposite to the classical approach which
targets all failing patterns, in the proposed method not all failing patterns are
necessarily needed to be fixed for diagnosis. The set of suspected faults is
continuously updated during the diagnostic procedure, which allows to prune
the search space and to additionally increase the speed of diagnosis.

140

• The proposed approach employs compressed fault tables to minimize the
amount of memory space needed to store essential diagnostic data derived
from a long sequence of pseudorandom test patterns.

• A new concept of test response processing to improve the accuracy of fault
diagnosis in digital systems with BIST facilities is proposed. The concept is
based on partitioning of a single signature analyzer into a set of multiple
independent analyzers. Algorithms are proposed to design an optimal
interface between the circuit under test and the set of signature analyzers to
achieve the best diagnostic resolution for given test set without causing any
increase in the area overhead.

In this way, simultaneously many techniques are combined together to reach the
best synergy. Because of using the fault table, the proposed method classifies as a
cause-effect approach, and because of organizing the diagnosis as a sequential
search based on intermediate fault analysis during the adaptive search, the method
has also elements of effect-cause strategy. The ultimate goal of the proposed
method is to optimize diagnostic procedure by minimizing the number of
diagnostic test sessions (queries) at the accepted diagnostic resolution.
Experimental results demonstrate that the proposed method for increasing the
diagnostic resolution and optimizing application time is feasible and efficient.

 Novel hierarchical approach to fault diagnosis without using fault models:

• A novel method for high-level fault diagnosis based on module-level fault
dictionaries is developed. No fault models are used, and the objective of
diagnosis is faulty module in a given network of modules. As modules, either
library components (e.g. complex gates) of digital circuits or arbitrary
subcircuits are considered. The method combines cause-effect and effect-
cause strategies. The approach is scalable, and helps to cope with the
growing complexities of digital circuits. No restrictions to fault or defect
multiplicity inside the modules are set.

• A measure for characterizing the lower bound of block-level diagnosability
of a given network is proposed which is based on topological fault dictionary
that does not need fault simulation and represents only the connectivity of
blocks to observable checkpoints. The measure can be used for redesign of
the circuit to improve the exactness of locating the faults or faults regions in
digital circuits by inserting additional observable checkpoints.

• In addition, a novel hierarchical approach is developed, which combines the
high-level module-oriented and low-level defect-oriented reasoning to
improve the diagnostic resolution in the case when information about
possible defects in modules is available. Two methods are proposed for
locating defects in candidate faulty modules: cause-effect reasoning based on
defect libraries of modules, and effect-cause reasoning inside the modules.

141

• The high diagnostic resolution at the module-level was achieved by
implementing a novel high-level effect-cause reasoning based on the concept
of functional fault model (conditional SAF model). This concept is based on
indirect mapping of physical defects from transistor level to module-level, so
as to carry out indirect defect based fault reasoning at higher module-level.

The complexity of the proposed method compared to the flat logic level and
fault model based diagnosis is reduced. The size of the high-level fault dictionary
for the whole circuit depends linearly only on the number of modules to be
determined as faulty or not faulty, and not on the number of possible faults or
defects as traditionally. The size of the modules, however, will be the trade-off
between the complexity of the high-level dictionary and the diagnostic resolution.

To perform experiments and to prove efficiency and feasibility of the fault
diagnosis approaches proposed in the current thesis, a multifunctional e-learning
environment with remote access for learning, getting hands-on experience, and
carrying out laboratory research in developing optimized procedures for locating
faults in complex electronic systems has been developed. It is a combination of a
collection of software tools which simulate a system under diagnosis, emulate a
pool of different strategies, methods, and algorithms of diagnostic reasoning and
fault location, and allow to experiment with different embedded self-diagnosing
architectures.

8.2 Future work

In the thesis the method for high-level fault diagnosis that employs no fault
models has been proposed. This is a new paradigm for fault diagnosis, which as
shown in the thesis has good potentials to localize physical defects not covered by
existing fault models. The objective of diagnosis is to identify candidate faulty
modules in a given network of modules without knowing which defects were
causing the erroneous behavior of the module. Fault diagnosis by the algorithm
developed in the thesis is performed accurately when a single faulty module is
present at a time. No restrictions to fault or defect multiplicity inside the faulty
modules are set. The method can also target multiple faults in different modules.
However, in this case fault masking may sometimes occur, which can lead to the
possible decrease of diagnostic accuracy.

Hence, further improvements of the proposed high-level fault diagnosis
approach might increase the diagnostic accuracy of handling multiple faulty
modules, and can be considered as one of the possible directions for future
research. As one way to cope with fault masking in case of multiple faulty modules
could be a method of ranking candidate faulty modules according to fault masking
probabilities that could be taken into account, when pruning the sets of candidate
faulty modules.

142

A related problem to the same multiple fault diagnosis issue is the question how
to generate test patterns for detecting and diagnosing multiple faults. In case of
multiple stuck-at fault assumption, an n-line circuit may have 3n − 1 faulty
situations, which makes it impossible to generate tests on the basis of counting
multiple faults. Therefore, it is more reasonable to attempt to verify the correctness
of selected part of a circuit instead of targeting the faults themselves as objectives
of testing. In this case, for such selected parts of a circuit, dedicated subsets or
groups of test patterns should be generated, which would be able to identify or
prove the correctness of the related parts of the circuit regardless the effects of all
possible faults, which might be present in other places of the circuit. In this way, it
would be possible to continuously narrow down the potential faulty area in the
process of diagnosis. Investigations in such directions have already begun [102].

143

References

[1] Chris A. Mack. "Fifty Years of Moore's Law". – Semiconductor
Manufacturing, IEEE Transactions on, Vol. 24, Issue 2, May 2011,
pp. 202-207.

[2] G. Moore. "Cramming more components onto integrated circuit". –
Electronics, Vol. 38, no. 8, April 1965, pp. 114-117.

[3] M. Bohr. "Nanotechnology goals and challenges for electronic
applications”. – IEEE Transaction on Nanotechnology, Vol. 1, no. 1,
March 2002, p. 56.

[4] Ban Wong, Anurag Mittal, Yu Cao, Greg W. Starr. "Nano-CMOS
Circuit and Physical Design". – , December 2004.

[5] P. G. Ryan, S. Rawat, W. K. Fuchs. "Automated Diagnosis of VLSI
Failures". – IEEE VLSI Test Symposium, Atlantic City, NJ, USA, 1991,
pp. 187-192.

[6] J. Ghosh-Dastidar, N. A. Touba. "A Rapid and Scalable Diagnosis
Scheme for BIST Environments with a Large Number of Scan Chains". –
VLSI Test Symposium, 2000.

[7] D. P. Vallett. "IC Failure Analysis: The Importance of Test and
Diagnostics". – IEEE Design and Test of Computers, Vol. 13, no. 3, 1998,
pp. 76-82.

[8] L.-T. Wang, C.-W. Wu, X. Wen. "VLSI Test Principles and
Architectures". Elsevier. 2006.

[9] A. Miczo. "Digital Logic Testing and Simulation". Wiley Interscience.
2003.

[10] T. Williams, N. Brown. "Defect Level as a Function of Fault Coverage". –
IEEE Trans. Comput., C-30(12), 1981, pp. 987-988.

144

[11] M. Abramovici, M. A. Breuer, A. D. Friedman. "Digital systems testing
and testable design". IEEE Press. 1990.

[12] C. Timoc, M. Buehler, T. Griswold, C. Pina, F. Scott, L. Hess. "Logical
Models of Physical Failures". – Proc. Intn’l Test Conf., 1983, pp. 546-553.

[13] S. C. Ma, P. Franco, E. J. McCluskey. "An experimental chip to evaluate
test techniques: Experimental results". – in Proc. Int. Test. Conf., October
1995, pp. 663-672.

[14] M. L. Bushnell, V. D. Agrawal. "Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits". Springer Science, New
York. 2000.

[15] H. Fujiwara, S. Toida. "The complexity of fault detection problems for
combinational circuits". – IEEE Trans. Comput., C-31(6), 1982,
pp. 555–560.

[16] N. K. Jha, S. K. Gupta. "Testing of Digital Systems". Cambridge
University Press, London. 2002.

[17] E. B. Eichelberger, T. W. Williams. "A logic design structure for LSI
testability". – in Proc. Des. Automat. Conf., June 1977, pp. 462–468.

[18] P. H. Bardell, W. H. McAnney. "Self-testing of multiple logic modules".
– in Proc. Int. Test Conf., October 1982, pp. 200-204.

[19] C. E. Stroud. "A Designer’s Guide to Built-In Self-Test". Kluwer
Academic, Norwell, MA. 2002.

[20] E. J. McCluskey. "Logic Design Principles: With Emphasis on Testable
Semiconductor Circuits". Prentice Hall, Englewood Cliffs, NJ. 1986.

[21] S. Mourad, Y. Zorian. "Principles of Testing Electronic Systems". John
Wiley & Sons, Somerset, NJ. 2000.

[22] N. K. Jha, S. K. Gupta. "Testing of Digital Systems". Cambridge
University Press, Cambridge, U.K. 2003.

[23] A. Jutman, A. Tsertov, R. Ubar. "Calculation of LFSR Seed and
Polynomial Pair for BIST Applications". – 11th IEEE Workshop on Design
and Diagnostics of Electronic Systems, April 2008, pp. 275-278.

[24] G. Mrugalski, J. Rajski, J. Tyszer. "Cellular Automata-Based Test
Pattern Generators with Phase Shifters". – in IEEE Trans. On CAD/ICAS,
Vol. 19, no. 8, 2000, pp. 878-893.

[25] S. Chidambaram, D. Kagaris, D. K. Pradhan. "A Comparative Study of
CA with Phase Shifters and GLFSRs". – in Proc. IEEE International Test
Conference (ITC), 2005, pp. 926-935.

145

[26] P. Fiser. "Pseudo-Random Pattern Generator Design for Column-Matching
BIST". – in Proc. 10th Euromicro Conference on Digital System Design
(DSD), 2007, pp. 657-663.

[27] H. Wunderlich, G. Kiefer. "Bit-Flipping BIST". – in Proc. Int. Conf. On
Computer-Aided Design, 1996, pp. 337-343.

[28] S. Hellebrand et al. "Built-in Test for Circuits with Scan Based on
Reseeding of Multi-Polynomial LFSR". – IEEE Trans. On Computers, Vol.
44, 1995, pp. 223-233.

[29] A. A. Al-Yamani, S. Mitra, E. J. McCluskey. "BIST reseeding with very
few seeds". – in Proc. 21st IEEE VLSI Test Symposium (VTS), 2003, pp.
69-74.

[30] G. Jervan, P. Eles, Z. Peng, R. Ubar, M. Jenihhin. "Test Time
Minimization for Hybrid BIST of Core-Based Systems". – Journal of
Computer Science and Technology, 2006, pp. 907-912.

[31] J. Richman, K. R. Bowden. "The Modern Fault Dictionary". – in Proc.
IEEE Int’l Test Conf., 1985, pp. 696-702.

[32] I. Pomeranz, S. M. Reddy. "On the generation of small dictionaries for
fault location". – in Proc. IEEE Int. Conf. on Comput.-Aided Des., 1992,
pp. 272-279.

[33] B. Chess, T. Larrabee. "Creating Small Fault Dictionaries". – IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, Vol. 18, no. 3,
1999, pp. 346-356.

[34] J. A. Waicukauski, E. Lindbloom. "Failure diagnosis of structured
VLSI". – IEEE Des. Test Comput., 6(4), 1989, pp. 49-60.

[35] M. Abramovici, P. R. Menon, D. T. Miller. "Critical path tracing: An
alternative to fault simulation". – IEEE Design Test Comput., 1(1), 1984,
pp. 83-93.

[36] A. Kuehlmann, D. I. Cheng, A. Srinivasan, D. P. Lapotin. "Error
diagnosis for transistor-level verification". – in Proc. Design Automation
Conf., 1994, pp. 218-223.

[37] I. Pomeranz, S. M. Reddy. "On correction of multiple design errors". –
IEEE Trans. Comput.-Aided Des., 14(2), 1995, pp. 255-264.

[38] I.Bayraktaroglu, A.Orailoglu. "Gate Level Fault Diagnosis in Scan-Based
BIST". – in Proc. DATE, 2002, pp. 376-381.

[39] A. B. Khang, S. Reda. "Combinatorial group testing methods for the BIST
diagnosis problem". – in Proc. of the ASP-DAC, 2004, pp. 113–116.

146

[40] C.Liu, K.Chakrabarty, M. Goessel. "An Interval-based Diagnosis
Scheme for Identifying Failing Vectors in a Scan-BIST Environment". – in
Proc. DATE, 2002.

[41] R. C. Aitken, V. K. Agarwal. "A Diagnosis Method Using Pseudorandom
Vectors without Intermediate Signatures". – Proc. Int’l Conf. Computer-
Aided Design (ICCAD), 1989, pp. 574-580.

[42] W. H. McAnney, J. Savir. "There Is Information in Faulty Signatures". –
Proc. Int’l Test Conf. (ITC), 1987, pp. 630-636.

[43] C. E. Stroud, T. R. Damarla. "Improving the Efficiency of Error
Identification via Signature Analysis". – in Proc. 13th IEEE VLSI Test
Symp. (VTS), 1995, pp. 244-249.

[44] J. Ghosh-Dastidar, D. Das, N. A. Touba. "Fault Diagnosis in Scan-Based
BIST Using Both Time and Space Information". – in Proc. Int’l Test Conf.
(ITC), 1999, pp. 95-102.

[45] J. Rajski, J. Tyszer. "Diagnosis of Scan Cells in BIST Environment". –
IEEE Trans. Computers, Vol. 48, no. 7, 1999, pp. 724-731.

[46] J. Savir, W. H. McAnney. "Identification of Failing Tests with Cycling
Registers". – in Proc. Int’l Test Conf. (ITC), 1988, pp. 322-328.

[47] Y. Wu, S. M. I. Adham. "Scan-Based BIST Fault Diagnosis". – IEEE
Trans. Computer-Aided Design, Vol. 18, no. 2, 1999, pp. 203-211.

[48] I. Bayraktaroglu, A. Orailoglu. "The Construction of Optimal
Deterministic Partitionings in Scan-Based BIST Fault Diagnosis:
Mathematical Foundations and Cost-Effective Implementations". – IEEE
Transactions on Computers, Vol. 54, no.1, January 2005, pp. 61-75.

[49] I. Bayraktaroglu, A. Orailoglu. "Cost-Effective Deterministic Partitioning
for Rapid Diagnosis in Scan-Based BIST". – IEEE D&TC, 2002, pp. 42-53.

[50] M. Abramovici, M. A. Breuer. "Fault Diagnosis in Synchronous
Sequential Circuits Based on an Effect-Cause Analysis". – IEEE Trans.
Computers, Vol. 21, no. 12, 1982, pp. 1165-1172.

[51] J. M. Solana, J. A. Michell, S. Bracho. "Elimination Algorithm: A
Method for Fault Diagnosis in Combinational Circuits Based on an Effect-
Cause Analysis". – IEEE Proc. Computers and Digital Techniques, Vol.
133, no. 1, 1986, pp. 31-44.

[52] C. Liu. "Compact Dictionaries for Fault Diagnosis". – IEEE Trans. On
Computers, Vol. 53, no. 6, 2004.

[53] H. Cox, J. Rajski. "A Method of Fault Analysis for Test Generation and
Fault Diagnosis". – IEEE Trans. Computer-Aided Design of Integrated
Circuits and Systems, Vol. 7, no. 7, 1988, pp. 813-833.

147

[54] S. J. Sangwine. "Fault Diagnosis in Combinational Digital Circuits Using a
Backtrack Algorithm to Generate Fault Location Hypotheses". – IEEE
Proc. Electronic Circuits and Systems, Vol. 135, no. 6, IEE Proc. G
(Electronic Circuits and Systems), pp. 247-252.

[55] S. Venkataraman, I. Hartanto, W. K. Fuchs. "Dynamic Diagnosis of
Sequential Circuits Based on Stuck-At Faults". – in Proc. IEEE VLSI Test
Symp., 1996, pp. 198-203.

[56] S. Venkataraman, S. B. Drummonds. "Poirot: a logic fault diagnosis tool
and its application". – in Proc. IEEE ITC, 2000, pp. 253-262.

[57] A. Rousset, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch, A.
Virazel. "Derric: A tool for unified logic diagnosis". – in Proc. ETS, 2007,
pp. 13-20.

[58] V. Boppana, W. K. Fuchs. "Fault Dictionary Compaction by Output
Sequence Removal". – in Proc. IEEE Int’l Conf. Computer-Aided Design,
1994, pp. 576-579.

[59] J. M. Acken, S. D. Millman. "Accurate Modeling and Simulating of
Bridge Faults". – Custom Integrated Circuits Conf., 1991,
pp. 17.4.1-17.4.4.

[60] L. Zhuo, X. Lu, W. Qiu, W. Shi, D. M. H. Walker. "A Circuit Level
Fault Model for Resistive Opens and Bridges". – in Proc. VLSI Test Symp.,
2003, pp. 379-384.

[61] S. K. Jain, V. D. Agrawal. "Modeling and Test Generation Algorithms for
MOS Circuits". – IEEE Trans. Comput., Vols. C-34, no. 5, 1985, pp. 426-
433.

[62] H. K. Lee, D. S. Ha. "An Efficient Automatic Test Pattern Generator for
Stuck-Open Faults in CMOS Combinational Circuits". – in Proc. Design
Automation Conference, 1990, pp. 660-666.

[63] A. Kristic, K. T. Cheng. "Delay Fault Testing for VLSI Circuits". Kluwer
Academic Publishers. 1998.

[64] J. P. Roth. "Diagnosis of Automata Failures: A Calculus and a method". –
IBM J. Res. Develop., Vol. 10, no. 4, 1966, pp. 278-291.

[65] R. D. Blanton, J. P. Hayes. "On the Properties of the Input Pattern Fault
Model". – ACM Trans. Des. Automat. Electron. Syst., Vol. 8, no. 1, 2003,
pp. 108-124.

[66] Keller, K. B. "Hierarchical Pattern Faults for Describing Logic Circuit
Failures". US Patent 5546408, August 13, 1994.

148

[67] R. Ubar. "Detection of Suspected Faults in Combinational Circuits by
Solving Boolean Diff. Equations". – Automation and Remote Control, Vol.
40, no. 11, 1980, pp. 1693-1703.

[68] R. Ubar, S.Devadze, J. Raik, A. Jutman. "Fast Fault Simulation for
Extended Class of Faults in Scan-Path Circuits". – in Proc. 5th IEEE Int.
Symposium DELTA, 2010, pp. 14-19.

[69] U. Mahlstedt, J. Alt, I. Hollenbeck. "Deterministic Test Generation for
Non-Classical Faults on the Gate Level". – in Proc. 4th Asian Test Symp.,
1995, pp. 244-251.

[70] S. Holst, H. -J. Wunderlich. "Adaptive Debug and Diagnosis Without
Fault Dictionaries". – in Proc. of 13th ETS, 2008, pp. 199-204.

[71] T. Bartenstein, D. Heaberlin, L. M. Huisman, D. Sliwinski. "Diagnosing
combinational logic designs using the single location at-a-time (SLAT)
paradigm". – in Proc. IEEE ITC, 2001, pp. 287-296.

[72] X. Wen, S. Kajihara, K. Miyase, Y. Yamato, K. K. Saluja, L.-T. Wang,
K. Kinoshita. "A Per-Test Fault Diagnosis Method Based on X-Fault
Model". – IEICE Trans. on Inf. and Systems, Vols. E89-D, no. 11, 2006,
pp. 2756–2765.

[73] R. Desineni, R. Blanton. "Diagnosis of Arbitrary Defects Using
Neighbourhood Function Extraction". – Proc. in VLSI Test Symposium,
2005, pp. 366–373.

[74] S. Holst, H. -J. Wunderlich. "Adaptive Debug and Diagnosis without
Fault Dictionaries". – in Proc. 12th European Test Symposium, 2007,
pp. 7-12.

[75] H. -J. Wunderlich, M. Elm, S. Holst. "Debug and Diagnosis: Mastering
the Life Cycle of Nano-Scale Systems on Chip". – in Proc. 43rd Int. Conf.
MIDEM, 2007, pp. 27-36.

[76] X. Wen, T. Miyoshi, S. Kajihara, L. -T. Wang, K. Saluja, K. Kinoshita.
"On Per-Test Fault Diagnosis Using the X-Fault Model". – in Proc.
ICCAD, 2004, pp. 633-640.

[77] P. Engelke, I. Polian, M. Renovell, B. Becker. "Simulating resistive
bridging and stuck-at faults". – IEEE TRans. on CAD of Integrated Circuits
and Systems, Vol. 25, no. 10, 2006, pp. 2181-2192.

[78] S. Venkataraman, S. B. Drummonds. "Poirot: Applications of a Logic
Fault Diagnosis Tool". – IEEE Trans. Design & Test of Computers, 2001,
pp. 19-29.

[79] Z. Wang, K. -H. Tsai, M. Marek-Sadowska, J. Rajski. "An Efficient and
Effective Methodology on the Multiple Fault Diagnosis". – in Proc. Int.
Test Conference, 2003, pp. 329-338.

149

[80] L. M. Huisman. "Diagnosing Arbitrary Defects in Logic Designs Using
Single Location at a Time (SLAT)". – IEEE Trans. on CAD of IC and
Systems, Vol. 23, no. 1, 2004, pp. 91-101.

[81] S. Mirzaeian, F. Zheng, K-T. Tim Cheng. "RTL Error Diagnosis Using a
Word-Level SAT-Solver". – Int. Test Conference, 2008, pp. 1-8.

[82] A. Veneris, I. N. Hajj. "Design Error Diagnosis and Correction via Test
Vector Generation". – IEEE Trans. CAD, Vol. 18, no. 12, 1998,
pp. 1803-1816.

[83] C. Liu, K. Chakrabarty. "Failing Vector Identification Based on
Overlapping Intervals of Test Vectors in a Scan-BIST Environment". –
IEEE Trans on CAD of IC and Systems, Vol. 22, no. 4, 2003, pp. 593-604.

[84] S. Pateras. "Embedded Diagnosis IP". – in Proc. DATE, 2002,
pp. 242-244.

[85] P. Wohl et al. "Effective Diagnostics through Interval Unloads in a BIST
Environment". – in Proc. IEEE/ACM DAC, 2002, pp. 249-254.

[86] T. Clouqueur et al. "Efficient Signature-Based Fault Diagnosis Using
Variable Size Windows". – in Proc. VLSI Design Conference, 2001, pp.
387-392.

[87] H. -J. Wunderlich. "From Embedded Test to Embedded Diagnosis". – in
Proc. IEEE 10th European Test Conference, 2005, pp. 22-25.

[88] F. K. Hwang. "A Method for Detecting All Defective Members in a
Population by Group Testing". – J. Amer. Statist. Assoc, 1972, pp. 605-608.

[89] D. -Z. Du, F. K. Wang. "Combinatorial Group Testing and its
Applications". – World Scientific, 1994.

[90] Bar-Noy, F. Hwang, H. Kessler, S. Kutten. "A New Competitive
Algorithm for Group Testing". – Discrete Applied Mathematics, 1994, pp.
29-38.

[91] D. -Z. Du et al. "Modifications of Competitive Group Testing". – SIAM J.
on Computing, 1994, pp. 82-96.

[92] F. Brglez, H. Fujiwara. "A Neutral Netlist of 10 Combinational
Benchmark Circuits and a Target Translator in Fortran". – Proc. of the
International Test Conference, 1985, pp. 785-794.

[93] ISCAS85 Combinational Benchmark Circuits in ‘Bench’ Format.
Department of Computer Engineering, University of Illinois. [Online]
[Cited: January 27, 2012.]
http://courses.ece.illinois.edu/ece543/iscas85.html

[94] Turbo Tester toolset. [Online] [Cited: January 2, 2012.]
http://www.pld.ttu.ee/tt

150

[95] F. Brglez, D. Bryan, K. Kominski. "Combinational Profiles of Sequential
Benchmark Circuits". – Proc. Int. Symposium on Circuits and Systems,
1989, pp. 1929-1934.

[96] R. Ubar, W. Kuzmicz, W. Pleskacz, J. Raik. "Defect-Oriented Fault
Simulation and Test Generation in Digital Circuits". – in Proc. 2nd Int.
Symp. on Quality of Electronic Design, 2001, pp. 365-371.

[97] F. Corno, M.S. Reorda, G. Squillero. "RT-level ITC'99 benchmarks and
first ATPG results". – IEEE Design & Test of Computers, Vol. 17, No. 3,
2000, pp. 44-53.

[98] ITC99 Benchmarks, Combinational Gate-Level Versions. CAD Group,
Politecnico di Torino. [Online] [Cited: January 27, 2012.]
http://www.cad.polito.it/tools/itc99.html

[99] O. Novak, E. Gramatova, R. Ubar. "Handbook of Testing Electronic
Systems". Czech TU Publishing House. 2005. p. 395.

[100] BIST Analyzer and Diagnozer webpage. [Online] [Cited: January 3, 2012.]
http://www.pld.ttu.ee/applets/bista.

[101] A. Jutman, A. Tsertov, A. Tsepurov, I. Aleksejev, R. Ubar, H. -D.
Wuttke. "Teaching Digital Test with BIST Analyzer". – in Proc. 19th
EAEEIE Annual Conference, 2008, pp. 123-128.

[102] R. Ubar, S. Kostin, J. Raik. "About Robustness of Test Patterns
Regarding Multiple Faults". – 13th IEEE Latin American Test Workshop,
Quito, Ecuador, 2012 (accepted paper).

151

Curriculum Vitae

Personal Data

Name Sergei Kostin

 Date of birth 28.05.1984

 Place of birth Tartu, Estonia

 Citizenship Estonian

Contact Data

 Address Raja 15, Tallinn, 12618

 Phone +372 6202264

 E-mail skostin@ati.ttu.ee

Education

 2007 - … Ph.D. studies in Information and Communication
Technology, Tallinn University of Technology (TUT)

2006 - 2007 M.Sc. in Computer and Systems Engineering, TUT

2003 - 2006 B.Sc. in Computer and Systems Engineering, TUT

2001 - 2003 Secondary Education from Maardu High school

1991 - 2001 Secondary Education from Tartu Annelinna High school

152

Carrier

2011 - … Engineer at Department of Computer Engineering, TUT

2007 - 2011 Researcher at Department of Computer Engineering, TUT

2008 - 2009 R&D Engineer, Testonica Lab

2005 - 2007 R&D Engineer, ELIKO Competence Centre in
 Electronics-, Info- and Communication Technologies

Academic Degree

Master of Science in Engineering, Computer and Systems Engineering,
TUT, “Fault Diagnosis in the BIST Environment Based on Bisection of
Detected Faults”

Awards

2007 - 2010 Scholarship of Estonian Information Technology
Foundation (EITSA)

Research topics

digital logic testing and diagnosis, built-in self-test technique,
embedded fault diagnosis optimization, fault model free diagnosis

153

Elulookirjeldus

Isikuandmed

 Nimi Sergei Kostin

 Sünniaeg 28.05.1984

 Sünnikoht Tartu, Eesti

 Kodakondsus Eesti

Kontaktandmed

 Aadress Raja 15, Tallinn, 12618

 Telefon +372 6202264

 E-post skostin@ati.ttu.ee

Hariduskäik

2007 - … doktoriõpe, info- ja kommunikatsioonitehnoloogia
 õppekava, Tallinna Tehnikaülikool (TTÜ)

2006 - 2007 tehnikateaduse magistri kraad, arvuti- ja süsteemitehnika
 õppekava, TTÜ

2003 - 2006 tehnikateaduse bakalaureuse kraad, arvuti- ja
süsteemitehnika õppekava, TTÜ

2001 - 2003 keskharidus, Maardu Gümnaasium

1991 - 2001 keskharidus, Tartu Annelinna Gümnaasium

154

Teenistuskäik

2011 - … insener, Arvutitehnika instituut, TTÜ

2007 - 2011 teadur, Arvutitehnika instituut, TTÜ

2008 - 2009 arendusinsener, OÜ Testonica Lab

2005 - 2007 arendusinsener, OÜ ELIKO Tehnoloogia Arenduskeskus

Teaduskraad

tehnikateaduse magistri kraad, arvuti- ja süsteemitehnika õppekava, TTÜ,
“Poolitusmeetodil põhinev rikete diagnoos isetestivates süsteemides”

Teaduspreemiad

 2007 - 2010 Eesti Infotehnoloogia Sihtasutuse (EITSA) stipendium

Teadustegevus

digitaal loogika testimine ja diagnoosimine, sisseehitatud isetestimine,
rikete diagnoosi optimeerimine isetestivates süsteemides, rikkemudelita
rikete diagnoos

155

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-Business.
1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of Cost
Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods for
Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis and
Reproduction of Periodic Components of Band-Limited Discrete-Time Signals.
2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops: Behavioral
Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with Relational
Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

156

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to Semiconductor
Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-Aware,
UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete ja
elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum Clique
Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой фазы
эпитаксиальных структур арсенида галлия с высоковольтным p-n переходом
и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech Recognition.
2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired Underwater
Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

157

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case Studies
of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit State
Model Checking. 2007.

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering: A
Unified View, Extensions and an Application to Inventory Management. 2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit Based
on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands Environments.
2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-Level
Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and Synthesis
for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of Attack
Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User Interfaces.
2010.

158

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages. 2010.

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger Integrated
Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-Silicon
Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models. 2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting Algorithms
Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

