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 Abstract  

Developments in wireless sensor networks have helped healthcare medical systems to be 

advanced with many new opportunities in sports training, smart hospitals and nursing 

homes, medical surveillance for aged people and many more. The application considered 

in this MSc thesis is a wireless heart rate monitoring system. The focus is on the 

evaluation of the power consumption of various architectural design implemented on an 

FPGA platform. 

Firstly, this thesis introduces an existing system for such an application. An analysis is 

performed, including 1) algorithmic aspects, i.e. QRS detection on the electrocardiogram 

signal and compressed sensing that allows reducing the amount of data to be transmitted 

wirelessly ( to reduce radio activity and thus energy consumption), and 2) architectural 

aspects, i.e. different structures with various parallelism levels for the compressed sensing 

block. 

Then, this thesis discusses elements of power consumption on FPGA as well as a method 

for estimating the power consumption of the existing architectures on a Cyclone IV FPGA 

platform by means of Altera Quartus and ModelSim tools. 

Subsequently, various architectures are synthesized for the Cyclone IV FPGA and the 

synthesis results are presented. Finally, power estimation is performed for three different 

example architectures (full_para_N4_M2, para_4_2_wo_pipe, and Generic_semi_para). 

The power estimates are then compared; the results show that one of the architectures has 

a lower power consumption than the others but requires many more resources. The results 

also show that pipelining allows higher maximum frequencies but requires more 

resources and at the same time does not affect power consumption significantly. 

This thesis is written in English and is 56 pages long, including 6 chapters, 16 figures and 

4 tables. 
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Annotatsioon 

FPGA arhitektuuride võimsustarbe hindamine hõredal seirel põhineva 

südamelöögisageduse juhtmevaba seiresüsteemi jaoks 

Arengud traadita andurite võrkude osas on aidanud tervishoiu meditsiinilise süsteemide 

arendamist ja pakkunud palju uusi võimalusi sportliku treeningu, tarkade haiglate ja 

hooldekodude, eakate  meditsiinilise järelevalve jne osas. Käesolev magistritöö on 

juhtmeta südame löögisageduse seiresüsteemist.Keskendutakse erinevate FPGA-

põhaliste arhitektuuride hindamisele energiatarbe järgi. 

Töö alguses tutvustakse ühte olemasolevat süsteemi. Analüüsitud on muuhulgas:1) 

algoritmilisi aspekte, st QRS avastamise elektrokardiogrammi signaali ja tihendatud 

sensori-signaale, mis lubab vähendada juhtmevabalt edastatavate andmete hulka 

(vähendada raadio aktiivsust ja seega energiakulu) ja 2) arhitektuurilisi aspekte, st 

erinevate struktuuride erinevaid parallelismi tasemeid kokkusurutud kaugseire 

blokeerimiseks. 

See väitekiri käsitleb ka FPGA elementide voolutarbimist,  samuti energiatarbe hindamist 

olemasolevate struktuuride kohta Cyclone IV FPGA platvormi abil Altera Quartus ja 

Modelsim tööriistu kasutades. Seejärel sünteesitakse erinevate arhitektuuride jaoks 

Cyclone IV FPGA. Sünteesi tulemused on esitatud. Lõpuks võimsustarbe hindamine 

viiakse läbi kolmes erinevas näiids arhitektuurile (full_para_N4_M2, para_4_2_wo_pipe 

ja Generic_semi_para).Võimsus hinnanguid on võrreldud. Tulemused näitavad, et 

ühtedel arhitektuuridel on väiksem energiatarve kui teistel,  kuid nõuavad palju rohkem 

ressursse. Tulemused näitavad ka, et konveier lubab kõrgemat maksimaalset sagedust, 

kuid nõuab rohkem ressursse ja samal ajal ei mõjuta energiatarve oluliselt. 

Lõputöö on kirjutatud Eesti keeles ning sisaldab teksti 56 leheküljel, 6 peatükki, 16 

joonist, 4 tabelit. 
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1 Introduction 

Over the past 20 years, the development of heart rate monitors (HRMs) has evolved 

rapidly. Heart rate monitoring has wide range of application, i.e. sports, biomedical, self-

monitored health and fitness for common people, emergency condition monitoring on 

hospitals, health monitoring for elderly peoples at home and many more. The 

development of new HRMs makes that they are increasingly used in sports as a training 

tool for the players to monitor and increase their strength, stamina and intensity of 

exercise.  In addition with the increasing demands on sports, HRM research has recently 

focused on heart rate variability (HRV).  HRV is actually evaluated by examining beat-

to-beat variations in normal R-R intervals [1]. Increases in HRV is directly dependent 

with lower morality rate and thus affects human regardless of age and sex. HRM is also 

being used by medical experts in hospitals to diagnosis the patient mainly for the cardiac 

diseases which are dependent on HRV and which can be diagnosed from heart rate (HR) 

measurements [2]. 

 

In sports, to obtain the maximum benefit from training and to restrict the over training, it 

is needed to measure the intensity that an individual puts in during their exercise. In 

racing, only speed is not the accurate factor of exercise intensity so there should be some 

alternative to find the intensity in training or competition. The power output generated 

during exercise may be the direct factor but instead of calculating the consumption of 

power output, heart rate is easier to monitor and measure comparatively [26].  

 

It is noticed that during graded exercise, the studies [1] and [27] show that the HRV 

decreases constantly till reasonable intensities and after that it stabilises, which shows 

that the trained individuals have higher HRV. So the HR sensing is employed on 

professional sport players, especially athletes, to determine their exercise and workout 

intensity. Thus the heart rate monitors are used for maximum utilization of their training 

session for the proper preparation of professional and maximum benefits is achieved [1]. 

In these days heart rate monitors are mainly referred by the medical professionals to 
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monitors their patients so that the person knows they are within their target heart rate 

zone. 

 

Because of the high expansion of the use of heart rate monitors, several products (e.g. 

wearable smart shirt, AMON: a wearable multiparameter medical monitoring and alert 

system)  are available on the market using wireless technology for the transmission of 

data collected by sensors on the human body and to analyses the data. However, this kind 

of system is generally limited to one-to-one monitoring. This means a single 

communication channel system at a time i.e. one person at a time is connected to one 

computing device which can be on a PC or a smartphones. And in the case of multiple 

persons (e.g. a group of people in a team) that need simultaneous supervision of a heart 

rate at a time, a wireless sensor network (WSN) approach can be deployed. The data 

transmitted from the persons can be collected through the series of sensor nodes which 

can be acquired and further processed through means of transmission protocol. The data 

can be analysed at real-time and monitored on PC screens.  

 

An illustration of the concept can be seen in Figure 1[3].The data is collected from the 

series of sensor nodes (each sensor nodes is related with a specific person profile) and 

further processed into the signal processing block and for this case it is assumed to be 

black box. After that the collected data is transmitted to the centralized server which is 

connected to WSN- nodes through the means of transmission protocol. Then, the real time 

monitoring of HR can be received on a monitoring screen [1]. 
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Figure 1. System overview of many-to-one HRM [3]. 

 

 

1.1 Starting Point of this MSc Thesis  

One such above-mentioned WSN-based, multi-user HRM system has been previously 

designed and explored in the project “Architectural Design Space Exploration of an 

FPGA-based Compressed Sampling Engine: Application to Wireless Heart-Rate 

Monitoring”- by Mohammad EI-Sayed and Soren Lund [3] under the supervision of Peter 

Koch (Department of Electronics Systems, Aalborg University, Denmark) and Yannick 

Le Moullec, T.J. Seebeck Department of Electronics, Tallinn University of Technology. 

In [3], two important blocks in the WSN- node i.e., the so-called QRS detection in the 

electrocardiogram (ECG) and compressed sensing (CS) encoder and its corresponding 

reconstruction decoder have been designed and simulated for the Altera Cyclone III 

FPGA platform using the-Quartus design tool. Furthermore, various hardware 

architectures for the CS engine have been developed at the register transfer level (RTL). 
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The main aim in [3] was to explore the design and show how parallelism affects execution 

time at RTL level. As a result, a prototyping solution (partial and full-parallel 

architectures) has been simulated onto the above-mentioned FPGA platform. 

 

1.2 Problem Statement 

Gathering the information from [3] and the preliminary literature survey, a topic is put 

forward in order to guide the direction of this project. 

 

In particular, it is worth noting that whereas minimizing power consumption has been 

taken care of during the design of the architectures proposed in [3], no evaluation 

regarding the power consumption on the FPGA implementation has been reported. Given 

that power consumption is critical in wearable WSNs (that are typically battery-powered), 

this MSc thesis can be seen as a continuation of the above work, the overall purpose being 

to estimate and analyse the power consumption of the existing architectures. 

The problem statement for this MSc thesis is two-fold and is formulated as follows: 

 

                 “How to estimate the power consumption of FPGA-based HRM nodes and 

what are those estimates for the full parallel, full parallel without pipeline and generic 

semi parallel architectures proposed in [3]?”. 

 

To address this problem, I have performed the following tasks: 

 

 Analysed the proposed overall system, including gaining a basic understanding of 

how an HR signal can be pre-processed and how to reduce the amount of data to 

be transmitted by means of CS; 

 Analysed the existing architectures, including gaining an understanding of how 

parallelism affects execution time; 

 Prepared a method for estimating the power consumption, including performing 

high-level synthesis, implementing a method for power estimation (configuration 

of the needed tools, test-bench creation, etc.); 
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 Performed the experiments to obtain power consumption estimates of the HRM 

for full parallel, full parallel without pipeline and generic semi parallel 

architectures on the Cyclone IV; 

 

The rest of this MSc thesis is organized as follows: Chapter 2 presents some background 

information about the electrocardiogram (ECG) and the need for compressing the ECG 

signal. Chapter 3 analyses the existing system and architectures. Chapter 4 presents the 

method used to estimate the power consumption of the architectures on the Cyclone IV 

FPGA. Chapter 5 presents the result and their analysis. The final chapter concludes the 

work. 
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2 Background 

2.1 Electrocardiogram 

ECG is the most commonly used process for heart rate monitoring. ECG records the 

electrical activity of the heart through electrodes that are placed on the skin over a period 

of time, and from it the contraction (depolarization) and relaxation (repolarization) of the 

heart can be seen and measured in the form of waves [6]. ECG is widely used in the field 

of medical industry around the world for identifying and continues monitoring of the 

several heart diseases and disorders.  

 

The overall objective of ECG is to obtain information about the function, structure and 

condition of the heart. It helps in the detection of several diseases such as myocardial 

infarction (heart attack), suspected pulmonary embolism, a cardiac murmur, cardiac stress 

testing and so on. The normal ECG signal reading can be observed in Figure 2[7]. The 

ECG is explained in terms of five intervals; P, Q, R, S and T. These intervals describes a 

deflection which means heart rate, rhythm and morphology. A normal ECG wave of 

general heart beat consists of P wave, a QRS complex and T wave. P wave describes the 

sequential depolarization of the left and right atria. The QRS reflects to depolarization of 

left and right ventricles. It lasts till 70- 110 milliseconds in general; the heartbeat has the 

largest amplitude of the ECG waveform which can be clearly noticed in Figure 2. The T 

wave represents the ventricular repolarization and about 300 milliseconds extension after 

QRS wave complex. The positioning of T wave is mainly dependent on the heart rate [8]. 
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Figure 2. A healthy ECG and its characteristics [7]. 

In the project that this MSc thesis expands, the main task was to measure the heart rate of 

an individual but not to detect the different irregularities within the ECG itself. As 

explained in [3], this means that the detection of the heart rate is possible without cardiac 

arrhythmias and others different conditions which causes an irregular heartbeat. Few 

examples of irregularities are variation(s) in the beat-to-beat interval, where beats are 

completely bypassed, small or great morphing of the P, Q, R, S and T intervals or heart 

beats where one or more of intervals are not present [6][9]. 

 

As also explained in [3], the major task was to measure the heart rate (HR). Reading 

several articles and relevant literature which study about the methods of measuring HR, 

it is noticed that QRS complex interval of the ECG is mostly used [10] [4] [11]. This is 

because, QRS has a unique appearance and is easily differentiated from other intervals in 

the ECG because of its high amplitude. Others intervals have generally low amplitude. 

Generally the overall amplitude of the QRS interval will not change drastically when 

compared to the rest of the ECG intervals, even in case of heart disease is detected or 

present. This characteristic of QRS intervals is a suitable selection for tracking the HR, 
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because of its higher amplitude to the remaining peaks, which is easier to detect and the 

rate of depolarization is also a direct measure of the HR. When the QRS intervals are 

detected, from here R waves can be extracted, and the rate between them can be directly 

calculated into the measure of HR, normally represented in Beats-per-minute (BPM) [1]. 

 

2.2 The Need for Compressing the ECG Signal 

Designing a system such as shown in Figure 1 is a difficult task to perform efficiently and 

emphasis on the inter-related parameters of energy consumption and bandwidth is 

required. Power (and energy) consumption is a main aspect in such a system because the 

sensor nodes are mainly operated by batteries and if they consume a lot of energy, the 

batteries need to be recharged on regular basis by the user or network provider.  

 

The Wireless technologies such as Wi-Fi support high data-rates but are quite energy-

hungry, so it is preferable to rely on lower power, low-data-rate technologies such as 

6LoWPAN or Bluetooth [28]. Because of this low data-rate, it is needed to consider the 

different ways of reducing the amount of data to be transmitted. Therefore, it has been 

proposed to create a sparse representation of the sampled HR signal and further process 

the data with a compression technique which can result in creating a low energy system. 

 

Compressing the data which are transmitted into the system could help to deal with the 

above-mentioned issue which results in less radio activity on the sensors and the traffic 

gets decreased in the network. 

 

To achieve this, it has been proposed to use CS, as mentioned in Section 1.1. CS is used 

for data reduction which makes it possible to under sample signals at frequencies below 

the Nyquist-Shannon rate [3]. For heart rate monitoring, the QRS interval (normally high 

in amplitude) is mainly extracted during the processing because this interval helps to 

identify the heart rate and because its nature makes it differ from the other and is easily 

recognisable. Firstly, the QRS detection algorithm is used for the detection of the R 

waves. These R waves can be represented as sparse which can be further applied for 

compressed sensing.  Secondly, CS helps to reduce the number of samples that are needed 

to represent the signal. The amount of the data is reduced by this process which helps in 
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reduction of power consumption during the transmission of data [1]. The principle of CS 

is explained in Section 3.2.4. 

 

Pan and Tompkins QRS detection algorithm (introduced in Section 3.2.1) can be applied 

to FPGA based hardware implementation. This algorithm is widely used in biomedical 

system. There are several uses for a dependable QRS recognition algorithm among which 

computer interpretation of the 12-lead ECG is the most accepted technique. Coronary 

care units use arrhythmia monitors which are currently under development for ambulatory 

patients which analyses the ECG in real time [31]. The other widely used one is Holter 

tape recording which need a Holter scanning instrument that includes a QRS detector to 

analyse the tapes more efficiently than real time. In case of false detection, it results in 

unnecessarily transmission of data or requires extremely large memory to store all ECG 

segments which are captured unnecessarily [4]. 

 

So, an accurate QRS detector is the vital function of ECG devices. QRS detection is a 

difficult task to perform because of the physiological variability of the QRS complexes 

and also because of the different noises which are present in ECG signals. An algorithm 

for the detection of QRS is illustrated and explained in Sections 3.2.1 and 3.2.3. This 

processing uses different blocks; i.e., filtering, integration, differentiation and intelligent 

thresholding. This algorithm’s input is the ECG signal and it results in a sparse 

representation of the ECG indicating the position of the R waves which is also explained  

briefly in Section 3.2.5[4][5]. 
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3 Analysis of the Existing System 

The purpose of this chapter is to analyse and understand the algorithmic and architectural 

design proposed in [3] for the real time wireless heart rate monitoring system which 

compresses the heart rate signal by means of Pan and Tompkins QRS detection and CS. 

For this, an understanding of how to create a sparse representation of the sampled HR 

signal is needed as well as an understanding of the CS for further compression, which can 

result in creating a low energy system. 

3.1 System Overview 

In this section an overview of the HR monitoring system proposed in [3] is presented in 

Figure 3. The analysis of the system is performed in order to get a better understanding 

of what kind of pre-processing is required, depending on the various kind of noise that 

occur in the ECG. In addition, the QRS detection technique is used for the extraction of 

the R wave’s location, which is discussed afterwards on the introduction to CS section. 

 

Figure 3. Overview of transmitter and receiver end of the HR monitoring [2]. 
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The input in this case is the ECG signal which is as shown in Figure 2. The input ECG 

signal is passed through the signal processing block, where the extraction of R waves is 

performed. In this system, the signal processing block of a WSN- node consists of two 

major blocks; R-wave extraction and CS; its target is to facilitate the system with energy-

efficient hardware realization.  

 

The main concepts of extraction of R waves is to extract the location of the R waves, so 

that the extracted R waves can be represented as a sparse signal. This enables the sparse 

signal to be later-on subject to CS, which is the next task [2]; the functionality of CS is 

described Section 3.2.4. 

 

The CS block uses the extracted R waves signal as an input and decreases the number of 

samples needed to represent the signal. It is performed for decreasing the amount of signal 

data which should be transferred wireless in order to reduce the consumption of power 

during the process of transmission. 

3.2 Analysis of the Transmitting Side 

 

Figure 4. Overview of the inputs, outputs and contents of the digital signal processing 

part of the transmitting side [3]. 
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In this section the analysis of the system is carried out with the understanding of pre-

processing needed into the system based on the noises types which may occurs with the 

ECG. The major concept of QRS detection algorithm to extract the location of the R 

waves is discussed. Afterwards the concept of CS is explained, including a discussion of 

how CS relies on the given signal which is represented as sparse.  

 

3.2.1 Pan and Tompkins QRS Detection Algorithm 

Pan and Tompkins QRS Detection Algorithm is used for the detection of the QRS interval 

of an ECG signal. This algorithm is suitable for all kind of ECG signals without the use 

of manual algorithm measurement. This is possible because of the adaptive behaviour of 

the detection algorithm. It uses a dual-threshold technique, search-back technique which 

is used for finding missing peaks and a working RR-interval estimation for the detection 

of the irregularities [32]. 

 

This detection method uses the functionalities of filtering, differentiation, integration and 

thresholding. The procedure of the steps within the algorithm can be seen in Figure 5. 

 

Preprocessing is done in order to make the processing on QRS complexes detection easier 

and acknowledged. The blocks used in the Preprocessing of the ECG are contained within 

the striped box as in Figure 5. 
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Figure 5. Steps within the R waves extraction algorithm [3]. 

 

The main reason for using the band pass-filter is to attenuate the noise that is imposed 

onthe ECG; it helps to improve the signal-to-noise ratio, and so make it easier to detect 

the QRS complexes within the signal. The band-pass filter consists of a high-pass filter 

and low-pass filter in form of cascade. The differential equation of the filters are explained 

in [11]. 

The final steps in the preprocessing is integration which results in obtaining the waveform 

information and the slope of the R waves.. Its mathematical final results can be seen in 

Equation (1).  

          nsqrsqrsqr XNnXNnX
N

nX  21
1

int                    (1)                               

where X is the input signal and N is the size of the sliding window (selected on basis of 

the sampling rate). 
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3.2.2 Noises Types 

In this section, and also discussed in [3], the different types of noises that occurs during 

the processing of ECG are studied. This study is mainly based on [13]. Several of the 

existing ECG analysis system requires noise-free digitized ECG. The data that are 

corrupted by the relative noise should be filtered or discarded. For the detection of noise, 

ECG quality assurance not only requires the software noise detection technique or human, 

but it can result into the major loss of significant data as well. Filtering the data itself can 

alter the signal and can require considerable computational overhead. These problems are 

vital for the design study of real-time HRM monitoring applications.  

ECG signals can be corrupted by different types on noise. These are: 

 Power Lines Interference; 

 Electrode Contact Noise; 

 Motion Artifacts; 

 Muscle Contractions [EMG]; 

 Baseline Drift and ECG Amplitude Modulation with Respiration; 

 Electrosurgical Noise; 

 Noise Generated by Electronic Devices Used in Signal Processing;  

Three examples diagrams of different types of noise and how they differ from original 

ECG signal are shown in Figure 6. 

  Figure 5(a):Power Lines Interference                     Figure5 (b): Electrode Contact Noise 

   Figure5(c): Muscle Contractions 

Figure 6. Three examples of noises on the ECG signal [13]. 
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3.2.1 Detection of the QRS 

In this section, the extraction of location of the R waves, as proposed in [3] is discussed. 

A double thresholding technique is implemented for the extraction of R waves. These 

different two threshold used for pre-processing are further applied to bandpass filter the 

ECG signal and the integrations waveform which are performed as shown in Figure 4. 

The QRS complex peaks should exceed the thresholds in both signals. And in case the 

peaks are not detected by the thresholds, then it is the noise peak in the given signal. 

For maximizing the chance of detection of QRS, the algorithm involves applying two 

thresholds to both the signals. It includes a low and a high threshold and automatically 

adjust the level of threshold based on amplitudes of QRS and noise peaks. The higher 

threshold is used for the analysis of the system and lower threshold for no QRS complexes 

is detected in certain time interval. And then it goes back in time using a search-back 

algorithm and search for peaks within that time interval using the lower threshold. 

For the case of irregular heart rate detection, the slow adjustment of the threshold is 

performed when it operates on normal heart rates, but if the heart rates becomes irregular, 

the algorithm should be able to control that as well. And this can be performed by 

reducing the thresholds by half and this is done to increase the chance of detection 

sensitivity and avoid missing beats [3]. 

 

3.2.2 Compressed Sensing 

CS plays a vital role in the signal processing due to its ability to reconstruct signals from 

data sampled at sub-Nyquist rate. It has been already applied in medical imaging, 

communication, MRI, radar imaging, remote sensing, machine learning and so on. 

Usually the Shannon Nyquist sampling theorem is strongly followed in system signal 

processing. As per the theorem, “the sampling frequency of a signal should be at least 

twice the bandwidth of the signal to avoid aliasing. Signal bandwidth is defined as the 

difference between highest and lowest frequencies of a signal”. Mathematically, the 

Nyquist sampling theorem can is expressed as per (2). 
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                          sf  > 2 maxf ;                                                                         (2) 

 Where fs is the sampling frequency and fmax is the highest frequency occurring in the 

signal. 

With the Shannon-Nyquist sample theorem, aliasing happens when signals are sampled 

at sub-Nyquist rate or when the desired condition is violated. Because of aliasing, higher 

frequencies appears as lower frequencies in the sampled signal. As a result, reconstruction 

of signal cannot be done from the aliased samples. 

In this project, this is one of the critical case since one of the main aims is to achieve a 

compressed representation of the signal to reduce the power consumption of the wireless 

transfer of the data. So, this method for compressing the signal is important and in this 

section the CS is explored as a tool for that task [14]. 

 

3.2.3 Sparsity and Compressible Signals 

“CS relies on the given signal being represented as sparse in a given 

basis, and its purpose is to reduce the amount of measurements used to represent the 

signal. It is possible to find such a basis, if it is assumed that natural signals are sparse 

or compressible in the sense that they have concise representations when expressed in the 

proper basis” [3]. After all, the physical signals are typically non-sparse by nature. So, it 

is possible to construct the signal to transform domain in which a sparse representation 

can be extracted. In this concern, the introduction to the pre-processing stage is imported 

where a sparse signal representation is derived using the above mentioned Pan and 

Tompkins QRS detection algorithm. Specially, this algorithm is designed in such a way 

that it is suitable for any type of ECG signals without the need of manual algorithm 

calibration. This is basically carried out because of the robust nature of the detection 

algorithm, which utilizes a dual-threshold technique, search-back for missing peaks, and 

a running RR-interval estimation for detecting irregularities. Initially, the sparsified ECG 

signal is compressed and then it is transmitted over a wireless channel or medium. And 

at the receiver-end the original signal is recovered from the CS samples by solving a 

convex optimization problem that detects the sparsest solution out of infinitely many 

possible. As this is often prove to be the correct solution [15]. Applying a sufficient 
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amount of CS samples to the system, this type of algorithm enables (almost) exact signal 

recovery. 

 

Figure 7.Graphical representation of the CS [3]. 

CS theory depends first and foremost on the signal of . The theory behind CS is outside 

the scope of this thesis; the interested reader can refer to [14, 29, 30 from the report] for 

more information. To summarise, and as illustrated in Figure 7; 

The dense signal f had a sparse representation x. 

,
1

,



n

i

ixxfxf  ||x|| 0 ˂ n                                                                               (3) 

And to compress the signal a sensing matrix is applied. 

1,  mTT RyHxxfy                                                                                        (4) 

  where,  TH   
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3.3 Heart-Rate Monitoring Examples for Reconstruction of Sparsified 

ECG Test Signals 

Figure 7[3] shows the uncompressed, compressed and reconstructed forms of the 

sparsified ECG signal for three instances of test signals by performing the CS simulation. 

These three test signals are very similar in their pulse streams and the only changed 

parameters is the intervals between the consecutive R peaks. And such variation is mainly 

due to the arrhythmic behaviour of the ECG signal. 

 

Figure 8. Uncompressed, compressed and reconstructed version of the sparsified ECG 

test signals [3]. 
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The peaks of the reconstructed signals are observed clearly in Figure 8.Similarly, the 

amplitude of the reconstructed signals are also preserved. The estimation results given 

based on visual inspection with calculated error metrics i.e. mean squared error (MSE) 

value between the original R wave and the reconstructed extracted ECG for above Signal 

1, Signal 4 and Signal 6 from Figure 7 are 3.1028·10-19, 1.3395·10-18 and 7.6325 · 10-22, 

respectively [3]. Therefore, its concluded that the reconstruction of the ECG have been 

performed and achieved in all three cases. 

 

3.4 Analysis of the Existing Architectural Design 

The kernel operation in CS is a matrix-vector multiplication which is shown in Equation 

(5) and Equation (6). 

       𝑦 = 𝐻𝑥                                                                                                                    (5) 
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From (5), it can be seen that all the operations can be executed in sequential order. Initially 

one possible sequence is calculated as y1 and then y2 and so on; this means all the 

operation in the successive matrix rows are executed before any other operations. So, one 

logical procedure is to reorganize the individual operations in time onto the available 

hardware units in order to reduce the total execution time. 

In [3], the Altera Quartus II design suite has been used [17]. Here, the adders and 

multipliers are synthesized on the hardware platform FPGA and the information and 

results collected from the synthesis are presented in Table 1. In this MSc thesis, such 

synthesis is also conducted (on a different FPGA model) and reported in Section 5. 
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Table 1: Synthesis results for different types of functional units [3]. 

Component Type Number of LEs fmax [MHz] Tmin [ns] 

Adder 16 312.79 3.197 

Multiplier 

(combinatorial) 

188 85.37 11.714 

Multiplier 

(embedded) 

9 225.33 4.438 

 

           

Figure 9. Total execution time for the different schedules as a function of N [3]. 

Figure 9 [3] describes the total execution time that is estimated as a function N for the 

multiplier (combinatorial) and embedded multiplier. The different degrees of parallelism 

are plotted with their respective execution time. From Figure 9, it is observed that the 

semi-parallel schedule has linear growth in the number of clock cycles as a function of N 

and for the case of full-parallel scheme, the clock cycles grows logarithmically with N, 

whereas the full sequential schedule has a non-linear growth with N. The speed-up 

element is mainly dependent on the type of schedule chosen and the amount of hardware 

resources. 
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The full parallel approach is more beneficial with respect to execution time and large 

number of N values. And for the case of reduction of the usage of hardware resource, 

semi parallel and the full-sequential can be used. So, this can be a possible trade-off for 

the designer to consider.      

 

3.5 RTL Implementation Results 

In [3], the RTL implementation of the modified semi and full parallel solution are 

presented. They are explained according to a finite state machine with data path (FSMD) 

which supports the matrix H ∈ R2x4 and a vector x ∈ R4. 

In the case of the modified semi-parallel architecture (which is illustrated in Figure 10), 

the multiplication are performed in parallel and a single addition is executed in every 

control step. The FSM helps to delete the temporary results that are stored in intermediate 

registers and updates the output. It also reset every time with the internal counter when 

the latter approaches to N. Moreover, the “clock enables” signal has to be controlled in 

every state in order to minimize the energy consumption. The input registers and matrix 

are in registers Xi and Hji, respectively and its temporary results are stored in Ri and the 

main results in register Yi. Increasing the numbers of rows and columns in the matrix 

simultaneously will increase the numbers of FUs in both the cases matching numbers of 

rows and columns in the respective matrix [12]. 

And in the case of full-parallel architecture (which is shown in Figure 11), multipliers and 

adders are also allocated for each operation in the matrix-vector multiplication. The FSM 

remains the same as for the case of modified semi-parallel architecture. These two 

architectures are coded in VHDL and further synthesized on the Cyclone III 

P3C25F324C8 FPGA.  
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Figure 10.The RTL implementation of the modified semi-parallel architecture [3].    
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Figure 11. The RTL implementation for the full-parallel architecture [3].    

This concludes the analysis of the existing system. The next chapter present the method 

used to estimate the power consumption of the above architectures on an FPGA platform. 
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4 Method for Estimating the power Consumption on FPGA 

The previous chapter has introduced the essential elements of the existing WSN-based 

HRM system proposed in [3]. In particular, the signal processing chain (QRS detection 

and CS) has been presented; furthermore, the corresponding architectures and their FPGA 

implementation results have been highlighted.  

 

As mentioned in the problem statement (see Section 1), the next natural step (and the 

main goal of this thesis) is to evaluate the power consumption of these architectures for 

an FPGA based implementation. This chapter presents the method used to estimate the 

power consumption of the architectures on the Cyclone IV FPGA. Then, Section 5 

presents the corresponding results. 

 

Please note the FPGA used in this thesis is not exactly the same as used in [3]; this is due 

to the end of support for the Cyclone III by Altera. Also note that this chapter is based on 

some work that I have carried out during a traineeship at T.J. Seebeck Department of 

Electronics. Thus, the main body of this chapter is based on material developed during 

that traineeship with the purpose of supporting the experimental phase of this thesis.  

 

Also note that following the acquisition of Altera by Intel, the tools and supported devices 

have again been revised; the method described here specifically applies to the versions 

mentioned later on. 

 

This chapter demonstrates how to prepare a design so that its power consumption can be 

estimated using Altera Tools. It describes the specified design in VHDL which is to be 

studied for the power consumption and its estimation using Altera Quartus and ModelSim 

10.4b for the Cyclone IVE FPGA. 

  

The method presented is based on following version of software: 

 

 Quartus Prime 15.1 Lite_Edition 

 ModelSim 10.4b 
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There are several possible ways for estimating the power of designs mapped onto FPGA; 

with all information delivered, estimation becomes easier, understandable and accurate 

too. The method presented in this chapter is one of the accurate ways of performing power 

estimation without executing the analog (i.e. hardware-based) simulation. The major 

steps are explained in the flow chart shown in Figure 12. I have composed it by compiling 

information from Altera documents [20][21][22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r 

Figure 12. Method for FPGA power estimation with Altera tools. 

 

 

 

Next, synthesis of the design is performed. After successful running, Quartus generates 

synthesis description of the design in VHDL and SDF files which has the information on 

delays of the circuit and it generates additional script to store all signal performances in 

post synthesis simulation. 

Initially we begin with the simulation of the design at the register transfer (RT) level. 

This step does not play significant role in power estimation but help to understand the 

test bench and that the design performs as assumed. 

After the post synthesis simulation is successful, the VHDL, SDF and also script are 

now automatically simulated on ModelSim. (VHDL, SDF and Script). This results in a 

VCD file (Value change Dump) which stores all toggles of all signals that occurred 

during simulation 

Quartus reads the VCD files. The switching occurrence for the individual signal is 

generated from the VCD file. Finally, power consumption and estimation report is 

generated after processing the information and combining it with models on the FPGA. 

used. 
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The following background information has been composed by studying Altera documents 

[22][23]. 

4.1  Power Overview 

External energy is obtained from external power supplies which is required for operation 

both internally and externally for the FPGA. Designers should have knowledge of the 

power needed while implementing power supplies solutions which are called “rail 

power”. In addition, the designers should acknowledge the amount of power actually to 

be dissipated by the device which means “Thermal power or dissipated power” as 

compared with the total amount of power dissipated outside the device such as capacitive 

external loads and different resistors networks in circuit. 

 

The actual power consumed by an FPGA device, external networks and output consists 

of three main components: 

 Dynamic 

 Standby 

 I/O 

 

The device in standby mode generates standby power from ICCINT current in the device. 

Internal switching in the device generates dynamic power through charging and 

discharging of internal nodes on capacitance which is connected to the device pins, 

input/output drivers and external network termination. Thermal power is constituent of 

total power that is dissipated actually occurring inside the device package and others 

dissipated externally. The real thermal power dissipated inside the device is a major 

concern for designers when determining if the device intrinsic heat transfer ability is 

sufficient to sustain internal die-junction temperatures within normal operating 

specification. For thermal dissipation, it requires a solution such as aluminium heat sinks 

which are needed for better heat transfer performance. In common, standby power, 

dynamic power and a section of I/O power will consist of actual thermal power 

constituent of total power.  
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4.2 Standby Power 

Because of leakage currents the device consumes power in standby mode. The amount of 

power consumption varies by size, temperature and process variations.   

In what follows, optimization of power and performance of a Stratix II device built on a 

90 nm technology is used as an example. Comparing with other process technology 

devices, the 90 nm device dissipates more power because of leakage which is a major 

constituent of the overall power. Junction temperature is a major focus of designers to 

keep it to minimum temperature for lowering the standby constituent of overall power. 

Figure 13 illustrates the relation between junction temperature and standby power. 

 

 

 

 

 

Figure 13. Relationship between junction temperature and standby power [6]. 
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4.3 Dynamic Power 

Dynamic power is consumed by internal nodes changing logic levels. The power is 

required to charge and discharge internal capacitances in the logic array and interconnect 

networks.  Core dynamic power contains routing power and logic element power (LE) for 

the Stratix II example. Logic element power is absorbed from charging and discharging 

of internal node capacitance and internal resistive elements. Routing power is generated 

from charge and discharge of external routing capacitance operated by each logic element. 

Dynamic power includes architectural resources such as: 

 

 RAM blocks (M512, M4K, and M-RAM) 

 DSP-multiplier blocks 

 Phase locked loops (PLLs) 

 Clock tree networks 

 High-speed differential interface (HSDI) transceivers 

 

4.4 I/O Power 

VCCIO power is called I/O power, it is absorbed due to charging and discharging of load 

capacitor. It is connected to the output pins. The output driver circuit is operated mainly 

in resistive mode and external termination networks (if available). 

Devices I/O power is calculated as per Equation (7): 

 

I/O power = (number of active output drivers × power dissipation coefficient) +0.5 × 

(Sum of die-pad, package trace, pin, and output load cap) ×I/O standard voltage-swing× 

fMAX × (toggle-factor/100) × VCCIO                                                                                                                         (7) 
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4.5 PowerPlay Early Power Estimator Overview 

The PowerPlay Early Power Estimator (EPE) [5] supports the Arria II, Arria V, Cyclone 

III, Cyclone IV, Cyclone V and MAX 10 device families. The user guideline provided by 

Altera to estimate the power consumption on FPGA design, supports FPGA design at all 

stage and it also provides detailed features about thermal analysis and the factors that 

contribute to FPGA power consumption. We can calculate the FPGA power with the 

Microsoft Excel-based PowerPlay EPE spreadsheet too. For a more accurate power 

estimation, we should use the PowerPlay Power Analyzer in the Quartus II software. 

4.6 Estimating Power Consumption 

We can use the PowerPlay EPE spreadsheet to estimate the consumption of power of the 

design at any stages of design cycle. Even if the design is not started or is incomplete, 

estimation of power consumption can be performed. The PowerPlay EPE spreadsheet 

helps to estimates the full design but Altera recommends PowerPlay Power Analyzer in 

the Quartus II software for accurate information of the design. 

 

4.6.1 Pros and Cons of Power Estimation before Design of FPGA 

We can calculate the power estimation before the full FPGA design or even at complete 

stage which is the positive side.  

 

The disadvantage is precision of the design depends on the inputs and the estimation of 

the device resources and this may be changed before or after the design is completed. In 

this case the accuracy of power estimation differs and are less precise. The PowerPlay 

EPE spreadsheet uses the mean or average but not the real design details implementations. 

For accessing of the full design details, Altera recommends the PowerPlay power 

analyser. 
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4.6.2 Estimating Power Consumption While Creating the FPGA 

Design 

When the FPGA design is completed to a limited extend, we can import the PowerPlay 

EPE file (early_pwr.csv) which is generated on Quartus software to EPE spreadsheet. We 

can edit the PowerPlay EPE spreadsheet to demonstrate the resource of device for the 

final estimation of design. 

 

 

4.6.3 Pros and Cons of Power Estimation if the Design of FPGA is 

partially complete 

We can perform power estimation in the early stage of FPGA design cycle. It gives the 

adaptability to consequently fill in the PowerPlay Early Power Estimator spreadsheet 

taking into account the Quartus II programming aggregation results. 

The disadvantage in this case is similar with the previous case. 

 

4.6.4 Estimating Power Consumption after Completing the FPGA 

Design 

When the design of FPGA is fully completed, Altera highly suggest using PowerPlay 

Power Analyser in the Quartus II software. EPE provides highly accurate result for the 

device power consumption. In this case EPE uses simulation, user mode or default toggle 

rate and routing information for the determination of actual power consumption of the 

complete FPGA design of device. 
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4.7 Thermal Power 

Thermal power is the power scattered in the device. Total thermal power is defined as the 

total of the thermal power of all the support used in device which includes the maximum 

power from dynamic power and standby mode. It includes the thermal resources for the 

I/O parts but it does not include the external power dissipation. Static power (PSTATIC) 

is the thermal power dissipation on the chip which is independent of user clocks. 

PSTATIC incorporates the radiation power from the FPGA functional blocks, excluding 

for I/O DC bias power and transceiver DC bias power and which are considered for the 

I/O and transceiver section. PSTATIC is the thermal power integral which differs with 

junction temperature; determine device and characteristics of power processing. 
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5 Result and analysis 

5.1 High level synthesis results of different architecture (with the 

various levels of parallelism) and their comparisons 

The high level synthesis and analysis is performed using Altera Quartus Prime 15.1 Lite 

Edition for different parallelisms of architectures which are as follows. 

 

 Full parallel 

 Full parallel without pipeline 

 Generic semi parallel 

 Semi parallel with clock enable. 

In this thesis, the different architectures (mentioned above) RTL implementations are 

examined through tests. The VHDL code is synthesized in Altera Quartus IV and tested 

through simulations. Based on these simulation performed in the program ModelSim-

Altera Edition 10.4b, the code is validated with respect of its specifications and 

requirements. The results are summarised in Table 2. 

The different architectural designs were compiled and further, estimation of the power 

consumption for design full para_4_2, full parallel without pipeline and generic semi 

parallel was performed. The corresponding power estimation results are shown in Table 

3 and Table 4 with two different optimization mode, i.e. Balanced mode and Power 

(Aggressive) mode, respectively. The RTL implementation of full parallel architecture is 

shown if Figure 16. 

Regarding resource usage, one of the main aspects is the number of embedded multiplier 

on the FPGA and the reason is the operations within the algorithm which are computed 

in parallel, so the number of multipliers might be the limiting factor. Furthermore, the 

logic elements (LEs) are used to implement logics along the multipliers. They can also be 

used to implement additional multipliers when all embedded multipliers are already used 

(not the case here). 
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Table 2: FPGA synthesis results and comparison of different degrees of parallelism. 

 

Architecture Full 

parallel 

Full Parallel 

without 

Pipeline 

Semi 

Parallel_clk 

Generic Semi 

Parallel 

Top-level Entity Name para_4_2 Para_4_2_wo

_pipe 

Seq_8_clken Mult_Add_examp

le_1 

Family Cyclone 

IV E 

Cyclone IV E Cyclone IV E Cyclone IV E 

Total Logic elements 100  96 103 384 

Total combinational 

functions 

98 96 98 384 

Dedicated logic 

registers 

100 32 101 384 

Total registers 100 32 101 384 

Total I/O pins 130 129 180 92 

Embedded multipliers 

9-bit elements 

8 8 8 25 

Fmax  clk frequency 

(MHz) 

299.04  116.9 281.85 282.81 
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From the synthesis results of the different architectures shown in Table 2, it is observed 

that the numbers of total logic elements are not much difference (ca 100), except for the 

generic semi parallel architecture which is 384. This is explained by the fact that the 

generic semi parallel architecture requires many more blocks than the three other types, 

as can be observed in Figure 14 (see Figure 14 for some of the details). 

 

 

 

Figure 14. Overview of the RTL generic semi parallel architecture 

 

The total logic elements, total combinational function and embedded multipliers are 

almost identical for the full parallel, full parallel without pipeline and semi parallel with 

clock enable architectures because the design has small amount of variation around the 

main basic structure. This could be explained by the fact that the synthesis tool has not 

promoted hardware reuse in the more sequential architectures, resulting in the same 

amount of required resources as for the more parallel ones.   

 

And for the case of generic semi parallel, the number of the embedded multiplier is quite 

higher- 25, as compared to other architectures with identical low-8.This is also because 

of the internal organization design which is quite different than the others. The RTL 

design of generic semi parallel is shown in Figure 14 and Figure 15. It gives a clear 

understanding how this architecture differs from other. Even though it is semi parallel, 

the design remains quite sequential because the parallelism is limited with the first two 

blocks and the other blocks are designed sequentially. 

 

Finally, the effect of enabling or not a pipeline can also be noted by comparing the results 

for para_4_2 and para_4_2_wo_pipe. For the latter, the maximum frequency is 116.9 

MHz, whereas for the former it can be increased to 299.04 thanks to the pipeline (i.e. 

decomposing long combinatorial blocks is smaller ones). The price to pay is the increased 

number of registers (increase from 32 to 100) which stores data between the pipeline 

stages. 
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Input side of generic semi parallel architecture 

                                                                 

 

 

 

 

                                                                                                                                  .…….. 

 

 

 

 

 

 

 

 

Output end of generic semi parallel architecture 

 

 

Figure 15. RTL implementation of generic semi parallel architecture. 
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Figure 16. RTL implementation of full parallel architecture. 
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Table 3: Power estimates for different architectures in power balanced mode at 

100MHz. 

 

Component Architectures 

full_para_N4_M2 Para_4_2_wo_pip

e 

Generic_semi_para 

Mult_Add_example_

1 

Power estimates 

clock 

100 MHz 100 MHz 100 MHz 

Optimization 

mode 

Balanced Balanced Balanced 

Total Thermal 

Power Dissipation 

85.97 mW 83.31 mW 69.98 mW 

Core Dynamic 

Thermal Power 

Dissipation 

3.59 mW 2.66 mW 11.53 mW 

Core Static 

Thermal Power 

Dissipation 

42.588 mW 42.87 mW 42.91 mW 

I/O Thermal 

Power Dissipation 

39.50 mW 37.77 mW 15.53 mW 

Power Estimation 

Confidence 

High: user provided 

sufficient toggle rate 

data 

High: user 

provided sufficient 

toggle rate data 

Medium: user 

provided moderately 

complete toggle rate 

data 
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From Table 3, it is observed that lowest total thermal power dissipation-69.98 mW using 

the balanced optimization mode is achieved for the generic semi parallel architecture. 

Although it requires more resources, the architecture design and the way its operations 

are executed, results in a lower power consumption. As can be seen in Table 2, the number 

of I/Os-92 is lower than that of the other architectures and are not read all simultaneously 

but rather sequentially. This is reflected in Table 3, where the I/O power- 15.33 mW is 

quite lower than that of the other architectures (39.50 mW and 37.77 mW). 

 

Note, however, that the power estimation confidence is only ‘medium’ for the generic 

semi parallel architecture (it is ‘high’ for the other ones). Although I have experimented 

with the various input signals and internal configuration, it was not possible to increase 

the confidence level. This means that no firm conclusion can be made when comparing 

the power consumption of this architecture as compared to the other ones. Nevertheless, 

the results still indicates that this architecture may have the potential to be lower power 

than the other ones (at the cost of the higher resource usage). 
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Table 4: Power estimates for different architecture in power aggressive mode at 100 

MHz. 

 

Component Architectures 

full_para_N4_M2 Para_4_2_wo_pipe Generic_semi_para 

Mult_Add_example

_1 

Power estimates 

clock 

100 MHz 100 MHz 100 MHz 

Optimization 

mode 

Power (Aggressive) Power (Aggressive) Power (Aggressive) 

Total Thermal 

Power Dissipation 

83.50 mW 81.28 mW 69.59 mW 

Core Dynamic 

Thermal Power 

Dissipation 

2.80 mW 2.59 mW 11.16 mW 

Core Static 

Thermal Power 

Dissipation 

42.87 mW 42.88 mW 42.91 mW 

I/O Thermal 

Power Dissipation 

37.82 mW 38.82 mW 15.53 mW 

Power Estimation 

Confidence 

High: user provided 

sufficient toggle rate 

data 

High: user provided 

sufficient toggle rate 

data 

Medium: user 

provided moderately 

complete toggle rate 

data 

 

 

Finally, the illustration of the power consumed by the three different architectures in 

power (aggressive) optimization mode can be observed in Table 4. The designer can use 

Power (aggressive) optimization mode if it is needed to further minimize the power 

consumption. 
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For all three architectures, the power consumption decreases as compared to the balanced 

mode. The total thermal power dissipation for full parallel, full parallel without pipeline 

and generic semi parallel architecture is decreased by 2.47 mW, 2.03 mW and 0.39 mW 

respectively. It can also be noted that the aggressive power optimization mode affects the 

three power components, but in small amounts. As for the results with the balanced 

optimization, the power estimation confidence is ‘high’ for the full parallel and full 

parallel without pipeline architecture and ‘medium’ for generic semi parallel architecture. 

 

Based on the above experiments and comparisons, system designers would have to make 

trade-off between resource usage, speed, and power consumption. 

 

The full parallel without pipeline architecture requires less resources which can be seen 

from Table 2, but its maximum speed is also twice less than the full parallel. So, for 

example, depending on the requirement of the application, if designers need a fast 

architecture they should choose the full parallel. But, if speed is not a major problem then 

the full parallel without pipeline architecture can be used as it lowers the speed but is less 

resources can be hungry. At the same time, the power consumption between the two 

architectures is quite similar, so this cannot be used as a comparison parameter between 

them. 

 

Based on the above results, it is also clear that the generic semi parallel with clock enable 

architecture provides the lower power consumption; but at the same time it requires much 

more resources. So again, the choice depends on the application requirements and 

designers have to trade-off one performance metric for another one. 
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6 Conclusion  

The problem statement for this MSc thesis was formulated as follows: 

                 “How to estimate the power consumption of FPGA-based HRM nodes and 

what are those estimates for the full parallel, full parallel without pipeline and generic 

semi parallel architectures proposed in [3]?” 

I have performed a number of tasks to address this problem. Firstly, I have analysed the 

proposed overall system, illustrating how QRS extraction and CS can be performed to 

reduce the amount of data to be transmitted. Then I have analysed existing architectures 

for the CS hardware engine, illustrating how parallelism is related to execution time. I 

then described the method for estimating power consumption using Altera tools. Next, I 

applied this method on four architectures for the hardware synthesis and three selected 

architectures for the power estimation. Finally, both the synthesis results and power 

estimation results have been discussed.  

The main findings are: 

 Enabling pipelining (full parallel architecture) results in higher possible 

maximum frequency at the cost of increased required number of registers; at the 

same time, pipelining does not affect power consumption very much; 

 The generic semi parallel architecture has the lowest power consumption but 

requires many more resources as compared to the other ones (put some numbers 

(main difference power consumption)); 

 For the tested architectures, using the aggressive power optimization mode brings 

a moderate reduction in terms of power consumption (key number).  

Given the above described method and corresponding results, it can be said that the 

problem statement has been addressed adequately. In what follows, a possible extension 

of this work is discussed. 

In this thesis the focus was on power. A natural continuation of the work would be to 

investigate energy consumption; this would help estimating e.g. the time a node can 

operate depending on its battery capacity. 
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Generally speaking, energy is the product of power and execution time. In the above 

work, we have estimated the power consumption, so what would be needed is the 

execution time of the various architectures. Although the synthesis results already give 

an indication of the maximum frequency, they do not include the execution times for the 

individual computations. This would require to run detailed timing simulations, which 

could be a task for future work. 

Another possible future work would be to port the architectures onto ultra-low power 

FPGAs such as Microsemi’s IGLOO nano low-power FPGAs. On the one hand, porting 

the architectures onto this other FPGA family is deemed relatively uncomplicated (the 

operations being mostly additions and multiplications). On the other hand, such FPGAs 

are much more resource limited than the Cyclone IV used in this thesis; thus, it remains 

to be explored which of the architectures might possibly fit onto the IGLOO FPGAs. This 

might also call for further modification of the digital signal processing algorithms, such 

as reducing their numerical precision.  
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Appendix 1  

This appendix presents examples of VHDL source code of the testbench used for 

simulating the architectures, as described in Chapter 4. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%% vhdl file for test bench of full_para_N2_M4 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

library IEEE; 

use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

use std.textio.all; --to read from and write to files 

entity TB_para_N4_M2 is 

--Testbench, thus no ports     

end entity TB_para_N4_M2; 

architecture MyTB of TB_para_N4_M2 is 

component para_4_2 is 

 generic ( 

 M: integer := 2; -- 2^M   Number of And's 

 b_m: integer := 8 

 );  

  

 port ( 

 clk:  in STD_LOGIC; 

 reset: in std_logic := '0'; 

 X:   in STD_LOGIC_VECTOR(b_m*(2**M)-1 downto 0) := 

 "00000010000000100000001000000010"; 

 H:   in STD_LOGIC_VECTOR(b_m*(2**M)*2-1 downto 0) := 

"0000001000000010000000100000001000000100000001000000010000000100"; 

 Y1:   out STD_LOGIC_VECTOR((b_m*2)-1 downto 0); 

 Y2:   out STD_LOGIC_VECTOR((b_m*2)-1 downto 0) 

 ); 

end component para_4_2; 

constant M: integer := 2; -- 2^M   Number of And's 
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constant b_m: integer := 8; 

signal TB_clk : std_logic := '0'; 

signal TB_reset : std_logic := '0'; 

signal TB_X : STD_LOGIC_VECTOR(b_m*(2**M)-1 downto 0) := 

 "00000010000000100000001000000010"; 

signal TB_H: STD_LOGIC_VECTOR(b_m*(2**M)*2-1 downto 0) := 

"0000001000000010000000100000001000000100000001000000010000000100"; 

signal TB_Y1: STD_LOGIC_VECTOR((b_m*2)-1 downto 0); 

signal TB_Y2: STD_LOGIC_VECTOR((b_m*2)-1 downto 0); 

 

signal TB_reset_done : std_logic := '0'; 

 

-- Change this to control the clock frequency !!! 

constant clk_period : time := 10 ns; --100 MHZ, as in .sdc file 

 

begin 

uut: para_4_2 PORT MAP ( 

--M => TB_M, 

--b_m => TB_b_m, 

clk => TB_clk, 

reset => TB_reset, 

X => TB_X, 

H => TB_H, 

Y1 => TB_Y1, 

Y2 => TB_Y2 

);     

-- Reset process 

 TB_para_N4_M2_GEN_RESET: process (TB_clk) is 

 begin 

 -- Change this to control reset duration 

 if (TB_reset_done = '0') then   

TB_reset <= '1', '0' after 10 ns;       

 end if; 

TB_reset_done <= '1';                 --not clean style 
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end process TB_para_N4_M2_GEN_RESET; 

 

-- Clock process definitions(clock with 50% duty cycle) 

   TB_para_N4_M2_CLK: process 

   Begin 

TB_clk <= '0'; 

    wait for clk_period/2;   

    TB_clk <= '1'; 

    wait for clk_period/2;   

    end process TB_para_N4_M2_CLK; 

 

-- Stimuli process 

   TB_para_N4_M2_GEN_STIMULI: process (TB_clk) 

   file infile : text is in  "D:\CD_appendix\3. VHDL code\full_para_N4_M2\ECG.txt";   -

-declare input file  --path needed? 

   variable inline : line; --line number declaration 

   variable dataread : integer; 

 begin  

  if (TB_clk = '1' and TB_clk'event and TB_reset_done = '1') then 

             if (not endfile(infile)) then   --checking the "END OF FILE" is not reached. 

  readline(infile, inline);       --reading a line from the file. 

  read(inline, dataread); --reading the data from the line and putting it in an 

integer type variable. 

  TB_X <= std_logic_vector(to_unsigned(dataread, 32));  

   

  end if; 

  end if; 

   end process TB_para_N4_M2_GEN_STIMULI;end architecture MyTB; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%% vhdl file for testbench of generic semi parallel architecture 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

library IEEE; 
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use IEEE.std_logic_1164.all; 

use IEEE.numeric_std.all; 

use std.textio.all; --to read from and write to files 

 

entity TB_generic_semi_para is 

--Testbench, thus no ports     

end entity TB_generic_semi_para; 

 

architecture MyTB of TB_generic_semi_para is 

 

component mult_Add_example_1 is 

 generic ( 

 N: integer :=25; -- Antal multipliers 

 M: integer :=8   -- Bit multiplier 

 );  

  

 port ( 

 clk:  in STD_LOGIC ; 

 X:  in STD_LOGIC_VECTOR(M*N-1 downto 0); 

 B:  in STD_LOGIC_VECTOR(M*N-1 downto 0); 

 Y:  out STD_LOGIC_VECTOR((M*2)-1 downto 0) 

 ); 

end component mult_Add_example_1; 

 

constant N: integer := 25; 

constant M: integer := 8; 

constant Z: integer := M*2; -- Bit adder 

signal mult_con: STD_LOGIC_VECTOR(Z*N-1 downto 0) := 

"1111111111111111100110111111111111111111110011011111111111111111111001

1011111111111111111111001101111111111111111111100110111111111111111111

1100110111111111111111111110011011111111111111111111001101111111111111

1111111001101111111111111111111100110111111111111111111110011011111111

1111111111110011011111111111111111111001101111111111111111111100110111

11111111111111111001101111111111111111111100110111"; 
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signal add_con: STD_LOGIC_VECTOR(Z*(N-2)-1 downto 0) := 

"1111111111111111100110111111111111111111110011011111111111111111111001

1011111111111111111111001101111111111111111111100110111111111111111111

1100110111111111111111111110011011111111111111111111001101111111111111

1111111001101111111111111111111100110111111111111111111110011011111111

1111111111111111111111111111110011111111111111111111111111111111111111

111111111111111111"; 

  

signal TB_clk : std_logic := '0'; 

signal TB_X : STD_LOGIC_VECTOR(M*N-1 downto 0) := 

"1111111111111111111111111111111111111111111111111111111111111111111111

1111111111111111111111111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111111111111111"; -- 

Vector Input 

 

signal TB_B: STD_LOGIC_VECTOR(M*N-1 downto 0) := 

"1111111111111111111111111111111111111111111111111111111111111111111111

1111111111111111111111111111111111111111111111111111111111111111111111

111111111111111111111111111111111111111111111111111111111111"; -- 

Matrix Input 

signal TB_Y: STD_LOGIC_VECTOR((M*2)-1 downto 0); 

 

-- Change this to control the clock frequency !!! 

constant clk_period : time := 10 ns; --100 MHZ, as in .sdc file 

 

begin 

 

 uut: mult_Add_example_1 PORT MAP ( 

 --M => TB_M, 

 --b_m => TB_b_m, 

 clk => TB_clk, 

 X => TB_X, 

 B => TB_B, 

 Y => TB_Y 
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 );     

 

 

-- Clock process definitions(clock with 50% duty cycle) 

   TB_generic_semi_para_CLK: process 

   begin 

TB_clk <= '0'; 

wait for clk_period/2;   

TB_clk <= '1'; 

wait for clk_period/2;   

end process TB_generic_semi_para_CLK; 

-- Stimuli process 

   TB_generic_semi_para_GEN_STIMULI: process (TB_clk) 

   file infile : text is in  "D:\CD_appendix\3. VHDL code\full_para_N4_M2\ECG2.txt";   

--    declare input file  --path needed? 

   variable inline : line; --line number declaration 

   variable dataread : integer; 

 begin  

   

if (not endfile(infile)) then   --checking the "END OF FILE" is not reached. 

readline(infile, inline);       --reading a line from the file. 

read(inline, dataread); --reading the data from the line and putting it in an integer type 

variable. 

TB_X <= std_logic_vector(to_unsigned(dataread, 200));     

 end if; 

end process TB_generic_semi_para_GEN_STIMULI; 

end architecture MyTB; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%% end of TB files 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%% 
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Appendix 2 

This appendix 2 presents the input parameters needed to be considered for determination 

of power consumption. 

The parameters determine on if the junction temperature is manually entered or auto 

computed. The list of parameters is given in Table 4 [25]. 

 

Table 4. Information about the Input Parameters [25]. 

 

Input Parameter Description 

Family Device family is selected. 

 

Device Device is selected by you. Bigger device 

consumes for static power and clock 

dynamic power is high. Nothing more is 

affected (power components) by the use of 

device. 

 

Package Choose the package that is implemented. 

Larger scale of packages provides more 

cooling surface contact points to the 

circuit board. Dynamic power is not 

affected. 

 

 

Power Characteristic 

Theoretical or typical worst case silicon 

process is selected. This influence the 

static power consumption. Maximum 

power characteristic is recommended by 

Altera for the use of power estimation. It 

provides output that line up with worst-

case device measurement. 
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VCCINT Voltage (V) 

Select VCCINT voltage for Cyclone IV E 

devices. Devices with different speed 

grades C8L, C9L and I8L, VCCINT is set 

to 1.0V. Devices with speed of grade C6, 

C7, C8, I7 and A7, VCCINT is set to 1.2V. 

 

VCC_ONE Voltage (V) VCC-ONE voltage is set for maximum of 

10 devices with 3.0V or 3.3V. The internal 

voltage is adjusted to 1.2V to power 

supply at the periphery. 

 

Power Model Status The power model for the devices is 

suitable only for EPE 14.0 moving. 

 

VCCL Voltage (V) Devices with the speed grade of -4L the 

voltage can be 0.9V or 1.1V and for the 

other speed devices grades, the voltage is 

set to 1.1V. 

 

Junction Temp, TJ (°C) The junction temperature is available if we 

login on the User Entered TJ option. The 

junction temp is not studied related to the 

thermal information that is provided. For 

the highest value of selected temperature 

grade, Altera recommends setting junction 

Temp TJ(°C). 

 

Ambient Temp, TA (°C) When the air temperature near the device 

entered, this can range from –40°C to 

125°C. This field is suitable if we turn on 

Auto Computed TJ option. If the 

Estimated Theta JA option is On then it 

results to compute the junction 
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temperature which are always related with 

power dissipation and thermal resistance 

(heat sink) and circuit board. In the case of 

Custom Theta JA option in On then there 

is computation of junction temperature 

related with power dissipation and custom 

θJA entere 

  

Custom θJA (°C/W)  

Junction to ambient thermal resistance is 

entered between device and ambient air 

(in °C/W). This area is only suitable if the 

below option are turned On. 

 Auto Computed TJ 

 Estimated Theta JA 

 Heat Sink parameter is custom 

 

Board Thermal Mode   

The board is selected which is 

conventional for thermal analysis which 

can be typical board, none Conservative or 

JEDEC (2s2p). It works only when Auto 

computed TJ is on and estimated Theta JA 

options. It we select none conservative, 

the thermal model pretends there is no 

heat dissipated from the device board 

which results on calculated junction 

temperature. This alternative is not 

accessible if the Heat Sink choice is set to 

None. If we choose Typical Board then 

device and package is selected based on 

the characteristics of a typical customer 

board stack. 
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Airflow The ambient airflow is selected in linear 

feet per minute (lfm) or meters per second 

(m/s).The resulted values are 100(lfm)  

which is 0.5 m/s, 200 lfm (2.0m/s) amd for 

400 lfm (2.0m/s). 

 

Heat Sink Heat sink is selected that is used. We can 

select one of below mentioned. 

 No Heat Sink 

 A custom Solution (Custom) 

 Heat sink parameters (15 mm–

Low Profile, 23 mm– Medium 

Profile, or 28 mm–High Profile) 

This subject is accessible if we turn On the 

Auto computed TJ and Estimated Theta 

JA options. If neither of this option is 

selected, custom θSA value is updated by 

heat sink and we can read the value in 

Custom θSA (°C/W) parameter. 
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Appendix 3 

This screenshot shows the output waveform for the semi parallel with clock enable 

architecture. 
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Appendix 4 

This screenshot show the synthesis of the full parallel architecture. 
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Appendix 5 

This screen shot shows the output waveform for the semi_para_N4_M2_w_clken 

architecture. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%end of simulation screenshots 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 


