
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Thomas Johann Seebeck Department of Electronics

IEE70LT

Arbind Kumar Rimal IVEM144955

POWER ESTIMATION OF FPGA

ARCHITECTURES FOR A WIRELESS

HEART-RATE MONITORING SYSTEM

BASED ON COMPRESSED SENSING

Master’s Thesis

Supervisor: Yannick Le Moullec

 PhD

 Senior Researcher

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

IEE70LT

Arbind Kumar Rimal IVEM144955

FPGA ARHITEKTUURIDE VÕIMSUSTARBE

HINDAMINE HÕREDAL SEIREL

PÕHINEVA SÜDAMELÖÖGISAGEDUSE

JUHTMEVABA SEIRESÜSTEEMI JAOKS

Magistritöö

Juhendaja: Yannick Le Moullec

 Doktorikraad

 Vanemteadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Arbind Kumar Rimal

19.01.2017

4

ACKNOWLEDGEMENT

I would first like to thank my thesis supervisor Yannick Le Moullec, PhD, Senior

Researcher of Faculty of Information Technology/Thomas Johan Seebeck Department of

Electronics at Tallinn University of Technology. The door to Prof. Moullec office was

always open whenever I was into a trouble or had any question about my writing or

practical work; he helped me through out and guided me in right direction whenever he

thought I needed it. His guidance, words of encouragement and positive attitude and

consultation were inspiring. You will always be greatly appreciated.

I would like to display my appreciation to all my friends who supported and incented me

to strive towards my goal.

Finally, a special thanks to my parents. Words cannot express how grateful I am to them

for all their support morally and sacrifices that they made on my behalf. Your love prayers

and supports for me was what sustained me thus far. I am extremely grateful for the

opportunities they have given me to further my education. May God blessing in their life

never cease.

5

 Abstract

Developments in wireless sensor networks have helped healthcare medical systems to be

advanced with many new opportunities in sports training, smart hospitals and nursing

homes, medical surveillance for aged people and many more. The application considered

in this MSc thesis is a wireless heart rate monitoring system. The focus is on the

evaluation of the power consumption of various architectural design implemented on an

FPGA platform.

Firstly, this thesis introduces an existing system for such an application. An analysis is

performed, including 1) algorithmic aspects, i.e. QRS detection on the electrocardiogram

signal and compressed sensing that allows reducing the amount of data to be transmitted

wirelessly (to reduce radio activity and thus energy consumption), and 2) architectural

aspects, i.e. different structures with various parallelism levels for the compressed sensing

block.

Then, this thesis discusses elements of power consumption on FPGA as well as a method

for estimating the power consumption of the existing architectures on a Cyclone IV FPGA

platform by means of Altera Quartus and ModelSim tools.

Subsequently, various architectures are synthesized for the Cyclone IV FPGA and the

synthesis results are presented. Finally, power estimation is performed for three different

example architectures (full_para_N4_M2, para_4_2_wo_pipe, and Generic_semi_para).

The power estimates are then compared; the results show that one of the architectures has

a lower power consumption than the others but requires many more resources. The results

also show that pipelining allows higher maximum frequencies but requires more

resources and at the same time does not affect power consumption significantly.

This thesis is written in English and is 56 pages long, including 6 chapters, 16 figures and

4 tables.

6

Annotatsioon

FPGA arhitektuuride võimsustarbe hindamine hõredal seirel põhineva

südamelöögisageduse juhtmevaba seiresüsteemi jaoks

Arengud traadita andurite võrkude osas on aidanud tervishoiu meditsiinilise süsteemide

arendamist ja pakkunud palju uusi võimalusi sportliku treeningu, tarkade haiglate ja

hooldekodude, eakate meditsiinilise järelevalve jne osas. Käesolev magistritöö on

juhtmeta südame löögisageduse seiresüsteemist.Keskendutakse erinevate FPGA-

põhaliste arhitektuuride hindamisele energiatarbe järgi.

Töö alguses tutvustakse ühte olemasolevat süsteemi. Analüüsitud on muuhulgas:1)

algoritmilisi aspekte, st QRS avastamise elektrokardiogrammi signaali ja tihendatud

sensori-signaale, mis lubab vähendada juhtmevabalt edastatavate andmete hulka

(vähendada raadio aktiivsust ja seega energiakulu) ja 2) arhitektuurilisi aspekte, st

erinevate struktuuride erinevaid parallelismi tasemeid kokkusurutud kaugseire

blokeerimiseks.

See väitekiri käsitleb ka FPGA elementide voolutarbimist, samuti energiatarbe hindamist

olemasolevate struktuuride kohta Cyclone IV FPGA platvormi abil Altera Quartus ja

Modelsim tööriistu kasutades. Seejärel sünteesitakse erinevate arhitektuuride jaoks

Cyclone IV FPGA. Sünteesi tulemused on esitatud. Lõpuks võimsustarbe hindamine

viiakse läbi kolmes erinevas näiids arhitektuurile (full_para_N4_M2, para_4_2_wo_pipe

ja Generic_semi_para).Võimsus hinnanguid on võrreldud. Tulemused näitavad, et

ühtedel arhitektuuridel on väiksem energiatarve kui teistel, kuid nõuavad palju rohkem

ressursse. Tulemused näitavad ka, et konveier lubab kõrgemat maksimaalset sagedust,

kuid nõuab rohkem ressursse ja samal ajal ei mõjuta energiatarve oluliselt.

Lõputöö on kirjutatud Eesti keeles ning sisaldab teksti 56 leheküljel, 6 peatükki, 16

joonist, 4 tabelit.

7

List of abbreviations and terms

CS Compressed Sensing

ECG Electrocardiogram

FPGA Field Programmable Gate Array

FSMD Finite State Machine With Data Path

HR Heart Rate

HRMs Heart Rate Monitors

HRV Heart Rate Variability

LEs Logic Elements

PC Personal Computer

RTL Register Transfer Level

WSN Wireless Sensor Network

8

Table of contents

1 Introduction ... 12

1.1 Starting Point of this MSc Thesis ... 14

1.2 Problem Statement .. 15

2 Background .. 17

2.1 Electrocardiogram .. 17

2.2 The Need for Compressing the ECG Signal ... 19

3 Analysis of the Existing System .. 21

3.1 System Overview .. 21

3.2 Analysis of the Transmitting Side .. 22

3.2.1 Pan and Tompkins QRS Detection Algorithm .. 23

3.2.2 Noises Types ... 25

3.2.1 Detection of the QRS ... 26

3.2.2 Compressed Sensing .. 26

3.2.3 Sparsity and Compressible Signals ... 27

3.3 Heart-Rate Monitoring Examples for Reconstruction of Sparsified ECG Test

Signals .. 29

3.4 Analysis of the Existing Architectural Design ... 30

3.5 RTL Implementation Results.. 32

4 Method for Estimating the power Consumption on FPGA ... 35

4.1 Power Overview ... 37

4.2 Standby Power .. 38

4.3 Dynamic Power .. 39

4.4 I/O Power .. 39

4.5 PowerPlay Early Power Estimator Overview ... 40

4.6 Estimating Power Consumption ... 40

4.6.1 Pros and Cons of Power Estimation before Design of FPGA 40

4.6.2 Estimating Power Consumption While Creating the FPGA Design 41

9

4.6.3 Pros and Cons of Power Estimation if the Design of FPGA is partially

complete ... 41

4.6.4 Estimating Power Consumption after Completing the FPGA Design 41

4.7 Thermal Power ... 42

5 Result and analysis .. 43

5.1 High level synthesis results of different architecture (with the various levels of

parallelism) and their comparisons ... 43

6 Conclusion ... 52

References .. 54

10

List of figures

Figure1. System overview of many-to-one HRM [3]..14

Figure 2. A healthy ECG and its characteristics [7]...18

Figure 3. Overview of transmitter and receiver end of the HR monitoring [2].......................21

Figure 4. Overview of the inputs, outputs and contents of the digital signal processing part of

the transmitting side [3]……………………………………………………………………....22

Figure 5. Steps within the R waves extraction algorithm [3]...24

Figure 6. Three examples of noises on the ECG signal [13]..25

Figure 7.Graphical representation of the CS [3]..28

Figure 8. Uncompressed, compressed and reconstructed version of the sparsified ECG test

signals [3]...29

Figure 9. Total execution time for the different schedules as a function of N [3]………...…31

Figure10.The RTL implementation of the modified semi-parallel architecture [3]………….33

Figure 11. The RTL implementation for the full-parallel architecture [3]…………………...34

Figure 12. Method for FPGA power estimation with Altera tools...36

Figure 13. Relationship between junction temperature and standby power [6].......................38

Figure 14. Overview of the RTL generic semi parallel architecture..45

Figure 15. RTL implementation of generic semi parallel architecture....................................46

Figure 16. RTL implementation of full parallel architecture...47

11

 List of tables

Table 1: Synthesis results for different types of functional units [3]…………………..31

Table 2: FPGA synthesis results and comparison of different degrees of parallelism....44

Table 3: Power estimates for different architecture in power aggressive mode at 100

MHz…………………………………………………………………………………….48

Table 4: Power estimates for different architecture in power aggressive mode at 100

MHz…………………………………………………………………………………….50

12

1 Introduction

Over the past 20 years, the development of heart rate monitors (HRMs) has evolved

rapidly. Heart rate monitoring has wide range of application, i.e. sports, biomedical, self-

monitored health and fitness for common people, emergency condition monitoring on

hospitals, health monitoring for elderly peoples at home and many more. The

development of new HRMs makes that they are increasingly used in sports as a training

tool for the players to monitor and increase their strength, stamina and intensity of

exercise. In addition with the increasing demands on sports, HRM research has recently

focused on heart rate variability (HRV). HRV is actually evaluated by examining beat-

to-beat variations in normal R-R intervals [1]. Increases in HRV is directly dependent

with lower morality rate and thus affects human regardless of age and sex. HRM is also

being used by medical experts in hospitals to diagnosis the patient mainly for the cardiac

diseases which are dependent on HRV and which can be diagnosed from heart rate (HR)

measurements [2].

In sports, to obtain the maximum benefit from training and to restrict the over training, it

is needed to measure the intensity that an individual puts in during their exercise. In

racing, only speed is not the accurate factor of exercise intensity so there should be some

alternative to find the intensity in training or competition. The power output generated

during exercise may be the direct factor but instead of calculating the consumption of

power output, heart rate is easier to monitor and measure comparatively [26].

It is noticed that during graded exercise, the studies [1] and [27] show that the HRV

decreases constantly till reasonable intensities and after that it stabilises, which shows

that the trained individuals have higher HRV. So the HR sensing is employed on

professional sport players, especially athletes, to determine their exercise and workout

intensity. Thus the heart rate monitors are used for maximum utilization of their training

session for the proper preparation of professional and maximum benefits is achieved [1].

In these days heart rate monitors are mainly referred by the medical professionals to

13

monitors their patients so that the person knows they are within their target heart rate

zone.

Because of the high expansion of the use of heart rate monitors, several products (e.g.

wearable smart shirt, AMON: a wearable multiparameter medical monitoring and alert

system) are available on the market using wireless technology for the transmission of

data collected by sensors on the human body and to analyses the data. However, this kind

of system is generally limited to one-to-one monitoring. This means a single

communication channel system at a time i.e. one person at a time is connected to one

computing device which can be on a PC or a smartphones. And in the case of multiple

persons (e.g. a group of people in a team) that need simultaneous supervision of a heart

rate at a time, a wireless sensor network (WSN) approach can be deployed. The data

transmitted from the persons can be collected through the series of sensor nodes which

can be acquired and further processed through means of transmission protocol. The data

can be analysed at real-time and monitored on PC screens.

An illustration of the concept can be seen in Figure 1[3].The data is collected from the

series of sensor nodes (each sensor nodes is related with a specific person profile) and

further processed into the signal processing block and for this case it is assumed to be

black box. After that the collected data is transmitted to the centralized server which is

connected to WSN- nodes through the means of transmission protocol. Then, the real time

monitoring of HR can be received on a monitoring screen [1].

14

Figure 1. System overview of many-to-one HRM [3].

1.1 Starting Point of this MSc Thesis

One such above-mentioned WSN-based, multi-user HRM system has been previously

designed and explored in the project “Architectural Design Space Exploration of an

FPGA-based Compressed Sampling Engine: Application to Wireless Heart-Rate

Monitoring”- by Mohammad EI-Sayed and Soren Lund [3] under the supervision of Peter

Koch (Department of Electronics Systems, Aalborg University, Denmark) and Yannick

Le Moullec, T.J. Seebeck Department of Electronics, Tallinn University of Technology.

In [3], two important blocks in the WSN- node i.e., the so-called QRS detection in the

electrocardiogram (ECG) and compressed sensing (CS) encoder and its corresponding

reconstruction decoder have been designed and simulated for the Altera Cyclone III

FPGA platform using the-Quartus design tool. Furthermore, various hardware

architectures for the CS engine have been developed at the register transfer level (RTL).

15

The main aim in [3] was to explore the design and show how parallelism affects execution

time at RTL level. As a result, a prototyping solution (partial and full-parallel

architectures) has been simulated onto the above-mentioned FPGA platform.

1.2 Problem Statement

Gathering the information from [3] and the preliminary literature survey, a topic is put

forward in order to guide the direction of this project.

In particular, it is worth noting that whereas minimizing power consumption has been

taken care of during the design of the architectures proposed in [3], no evaluation

regarding the power consumption on the FPGA implementation has been reported. Given

that power consumption is critical in wearable WSNs (that are typically battery-powered),

this MSc thesis can be seen as a continuation of the above work, the overall purpose being

to estimate and analyse the power consumption of the existing architectures.

The problem statement for this MSc thesis is two-fold and is formulated as follows:

 “How to estimate the power consumption of FPGA-based HRM nodes and

what are those estimates for the full parallel, full parallel without pipeline and generic

semi parallel architectures proposed in [3]?”.

To address this problem, I have performed the following tasks:

 Analysed the proposed overall system, including gaining a basic understanding of

how an HR signal can be pre-processed and how to reduce the amount of data to

be transmitted by means of CS;

 Analysed the existing architectures, including gaining an understanding of how

parallelism affects execution time;

 Prepared a method for estimating the power consumption, including performing

high-level synthesis, implementing a method for power estimation (configuration

of the needed tools, test-bench creation, etc.);

16

 Performed the experiments to obtain power consumption estimates of the HRM

for full parallel, full parallel without pipeline and generic semi parallel

architectures on the Cyclone IV;

The rest of this MSc thesis is organized as follows: Chapter 2 presents some background

information about the electrocardiogram (ECG) and the need for compressing the ECG

signal. Chapter 3 analyses the existing system and architectures. Chapter 4 presents the

method used to estimate the power consumption of the architectures on the Cyclone IV

FPGA. Chapter 5 presents the result and their analysis. The final chapter concludes the

work.

17

2 Background

2.1 Electrocardiogram

ECG is the most commonly used process for heart rate monitoring. ECG records the

electrical activity of the heart through electrodes that are placed on the skin over a period

of time, and from it the contraction (depolarization) and relaxation (repolarization) of the

heart can be seen and measured in the form of waves [6]. ECG is widely used in the field

of medical industry around the world for identifying and continues monitoring of the

several heart diseases and disorders.

The overall objective of ECG is to obtain information about the function, structure and

condition of the heart. It helps in the detection of several diseases such as myocardial

infarction (heart attack), suspected pulmonary embolism, a cardiac murmur, cardiac stress

testing and so on. The normal ECG signal reading can be observed in Figure 2[7]. The

ECG is explained in terms of five intervals; P, Q, R, S and T. These intervals describes a

deflection which means heart rate, rhythm and morphology. A normal ECG wave of

general heart beat consists of P wave, a QRS complex and T wave. P wave describes the

sequential depolarization of the left and right atria. The QRS reflects to depolarization of

left and right ventricles. It lasts till 70- 110 milliseconds in general; the heartbeat has the

largest amplitude of the ECG waveform which can be clearly noticed in Figure 2. The T

wave represents the ventricular repolarization and about 300 milliseconds extension after

QRS wave complex. The positioning of T wave is mainly dependent on the heart rate [8].

18

Figure 2. A healthy ECG and its characteristics [7].

In the project that this MSc thesis expands, the main task was to measure the heart rate of

an individual but not to detect the different irregularities within the ECG itself. As

explained in [3], this means that the detection of the heart rate is possible without cardiac

arrhythmias and others different conditions which causes an irregular heartbeat. Few

examples of irregularities are variation(s) in the beat-to-beat interval, where beats are

completely bypassed, small or great morphing of the P, Q, R, S and T intervals or heart

beats where one or more of intervals are not present [6][9].

As also explained in [3], the major task was to measure the heart rate (HR). Reading

several articles and relevant literature which study about the methods of measuring HR,

it is noticed that QRS complex interval of the ECG is mostly used [10] [4] [11]. This is

because, QRS has a unique appearance and is easily differentiated from other intervals in

the ECG because of its high amplitude. Others intervals have generally low amplitude.

Generally the overall amplitude of the QRS interval will not change drastically when

compared to the rest of the ECG intervals, even in case of heart disease is detected or

present. This characteristic of QRS intervals is a suitable selection for tracking the HR,

19

because of its higher amplitude to the remaining peaks, which is easier to detect and the

rate of depolarization is also a direct measure of the HR. When the QRS intervals are

detected, from here R waves can be extracted, and the rate between them can be directly

calculated into the measure of HR, normally represented in Beats-per-minute (BPM) [1].

2.2 The Need for Compressing the ECG Signal

Designing a system such as shown in Figure 1 is a difficult task to perform efficiently and

emphasis on the inter-related parameters of energy consumption and bandwidth is

required. Power (and energy) consumption is a main aspect in such a system because the

sensor nodes are mainly operated by batteries and if they consume a lot of energy, the

batteries need to be recharged on regular basis by the user or network provider.

The Wireless technologies such as Wi-Fi support high data-rates but are quite energy-

hungry, so it is preferable to rely on lower power, low-data-rate technologies such as

6LoWPAN or Bluetooth [28]. Because of this low data-rate, it is needed to consider the

different ways of reducing the amount of data to be transmitted. Therefore, it has been

proposed to create a sparse representation of the sampled HR signal and further process

the data with a compression technique which can result in creating a low energy system.

Compressing the data which are transmitted into the system could help to deal with the

above-mentioned issue which results in less radio activity on the sensors and the traffic

gets decreased in the network.

To achieve this, it has been proposed to use CS, as mentioned in Section 1.1. CS is used

for data reduction which makes it possible to under sample signals at frequencies below

the Nyquist-Shannon rate [3]. For heart rate monitoring, the QRS interval (normally high

in amplitude) is mainly extracted during the processing because this interval helps to

identify the heart rate and because its nature makes it differ from the other and is easily

recognisable. Firstly, the QRS detection algorithm is used for the detection of the R

waves. These R waves can be represented as sparse which can be further applied for

compressed sensing. Secondly, CS helps to reduce the number of samples that are needed

to represent the signal. The amount of the data is reduced by this process which helps in

20

reduction of power consumption during the transmission of data [1]. The principle of CS

is explained in Section 3.2.4.

Pan and Tompkins QRS detection algorithm (introduced in Section 3.2.1) can be applied

to FPGA based hardware implementation. This algorithm is widely used in biomedical

system. There are several uses for a dependable QRS recognition algorithm among which

computer interpretation of the 12-lead ECG is the most accepted technique. Coronary

care units use arrhythmia monitors which are currently under development for ambulatory

patients which analyses the ECG in real time [31]. The other widely used one is Holter

tape recording which need a Holter scanning instrument that includes a QRS detector to

analyse the tapes more efficiently than real time. In case of false detection, it results in

unnecessarily transmission of data or requires extremely large memory to store all ECG

segments which are captured unnecessarily [4].

So, an accurate QRS detector is the vital function of ECG devices. QRS detection is a

difficult task to perform because of the physiological variability of the QRS complexes

and also because of the different noises which are present in ECG signals. An algorithm

for the detection of QRS is illustrated and explained in Sections 3.2.1 and 3.2.3. This

processing uses different blocks; i.e., filtering, integration, differentiation and intelligent

thresholding. This algorithm’s input is the ECG signal and it results in a sparse

representation of the ECG indicating the position of the R waves which is also explained

briefly in Section 3.2.5[4][5].

21

3 Analysis of the Existing System

The purpose of this chapter is to analyse and understand the algorithmic and architectural

design proposed in [3] for the real time wireless heart rate monitoring system which

compresses the heart rate signal by means of Pan and Tompkins QRS detection and CS.

For this, an understanding of how to create a sparse representation of the sampled HR

signal is needed as well as an understanding of the CS for further compression, which can

result in creating a low energy system.

3.1 System Overview

In this section an overview of the HR monitoring system proposed in [3] is presented in

Figure 3. The analysis of the system is performed in order to get a better understanding

of what kind of pre-processing is required, depending on the various kind of noise that

occur in the ECG. In addition, the QRS detection technique is used for the extraction of

the R wave’s location, which is discussed afterwards on the introduction to CS section.

Figure 3. Overview of transmitter and receiver end of the HR monitoring [2].

22

The input in this case is the ECG signal which is as shown in Figure 2. The input ECG

signal is passed through the signal processing block, where the extraction of R waves is

performed. In this system, the signal processing block of a WSN- node consists of two

major blocks; R-wave extraction and CS; its target is to facilitate the system with energy-

efficient hardware realization.

The main concepts of extraction of R waves is to extract the location of the R waves, so

that the extracted R waves can be represented as a sparse signal. This enables the sparse

signal to be later-on subject to CS, which is the next task [2]; the functionality of CS is

described Section 3.2.4.

The CS block uses the extracted R waves signal as an input and decreases the number of

samples needed to represent the signal. It is performed for decreasing the amount of signal

data which should be transferred wireless in order to reduce the consumption of power

during the process of transmission.

3.2 Analysis of the Transmitting Side

Figure 4. Overview of the inputs, outputs and contents of the digital signal processing

part of the transmitting side [3].

23

In this section the analysis of the system is carried out with the understanding of pre-

processing needed into the system based on the noises types which may occurs with the

ECG. The major concept of QRS detection algorithm to extract the location of the R

waves is discussed. Afterwards the concept of CS is explained, including a discussion of

how CS relies on the given signal which is represented as sparse.

3.2.1 Pan and Tompkins QRS Detection Algorithm

Pan and Tompkins QRS Detection Algorithm is used for the detection of the QRS interval

of an ECG signal. This algorithm is suitable for all kind of ECG signals without the use

of manual algorithm measurement. This is possible because of the adaptive behaviour of

the detection algorithm. It uses a dual-threshold technique, search-back technique which

is used for finding missing peaks and a working RR-interval estimation for the detection

of the irregularities [32].

This detection method uses the functionalities of filtering, differentiation, integration and

thresholding. The procedure of the steps within the algorithm can be seen in Figure 5.

Preprocessing is done in order to make the processing on QRS complexes detection easier

and acknowledged. The blocks used in the Preprocessing of the ECG are contained within

the striped box as in Figure 5.

24

Figure 5. Steps within the R waves extraction algorithm [3].

The main reason for using the band pass-filter is to attenuate the noise that is imposed

onthe ECG; it helps to improve the signal-to-noise ratio, and so make it easier to detect

the QRS complexes within the signal. The band-pass filter consists of a high-pass filter

and low-pass filter in form of cascade. The differential equation of the filters are explained

in [11].

The final steps in the preprocessing is integration which results in obtaining the waveform

information and the slope of the R waves.. Its mathematical final results can be seen in

Equation (1).

 nsqrsqrsqr XNnXNnX
N

nX 21
1

int (1)

where X is the input signal and N is the size of the sliding window (selected on basis of

the sampling rate).

25

3.2.2 Noises Types

In this section, and also discussed in [3], the different types of noises that occurs during

the processing of ECG are studied. This study is mainly based on [13]. Several of the

existing ECG analysis system requires noise-free digitized ECG. The data that are

corrupted by the relative noise should be filtered or discarded. For the detection of noise,

ECG quality assurance not only requires the software noise detection technique or human,

but it can result into the major loss of significant data as well. Filtering the data itself can

alter the signal and can require considerable computational overhead. These problems are

vital for the design study of real-time HRM monitoring applications.

ECG signals can be corrupted by different types on noise. These are:

 Power Lines Interference;

 Electrode Contact Noise;

 Motion Artifacts;

 Muscle Contractions [EMG];

 Baseline Drift and ECG Amplitude Modulation with Respiration;

 Electrosurgical Noise;

 Noise Generated by Electronic Devices Used in Signal Processing;

Three examples diagrams of different types of noise and how they differ from original

ECG signal are shown in Figure 6.

 Figure 5(a):Power Lines Interference Figure5 (b): Electrode Contact Noise

 Figure5(c): Muscle Contractions

Figure 6. Three examples of noises on the ECG signal [13].

26

3.2.1 Detection of the QRS

In this section, the extraction of location of the R waves, as proposed in [3] is discussed.

A double thresholding technique is implemented for the extraction of R waves. These

different two threshold used for pre-processing are further applied to bandpass filter the

ECG signal and the integrations waveform which are performed as shown in Figure 4.

The QRS complex peaks should exceed the thresholds in both signals. And in case the

peaks are not detected by the thresholds, then it is the noise peak in the given signal.

For maximizing the chance of detection of QRS, the algorithm involves applying two

thresholds to both the signals. It includes a low and a high threshold and automatically

adjust the level of threshold based on amplitudes of QRS and noise peaks. The higher

threshold is used for the analysis of the system and lower threshold for no QRS complexes

is detected in certain time interval. And then it goes back in time using a search-back

algorithm and search for peaks within that time interval using the lower threshold.

For the case of irregular heart rate detection, the slow adjustment of the threshold is

performed when it operates on normal heart rates, but if the heart rates becomes irregular,

the algorithm should be able to control that as well. And this can be performed by

reducing the thresholds by half and this is done to increase the chance of detection

sensitivity and avoid missing beats [3].

3.2.2 Compressed Sensing

CS plays a vital role in the signal processing due to its ability to reconstruct signals from

data sampled at sub-Nyquist rate. It has been already applied in medical imaging,

communication, MRI, radar imaging, remote sensing, machine learning and so on.

Usually the Shannon Nyquist sampling theorem is strongly followed in system signal

processing. As per the theorem, “the sampling frequency of a signal should be at least

twice the bandwidth of the signal to avoid aliasing. Signal bandwidth is defined as the

difference between highest and lowest frequencies of a signal”. Mathematically, the

Nyquist sampling theorem can is expressed as per (2).

27

 sf > 2 maxf ; (2)

 Where fs is the sampling frequency and fmax is the highest frequency occurring in the

signal.

With the Shannon-Nyquist sample theorem, aliasing happens when signals are sampled

at sub-Nyquist rate or when the desired condition is violated. Because of aliasing, higher

frequencies appears as lower frequencies in the sampled signal. As a result, reconstruction

of signal cannot be done from the aliased samples.

In this project, this is one of the critical case since one of the main aims is to achieve a

compressed representation of the signal to reduce the power consumption of the wireless

transfer of the data. So, this method for compressing the signal is important and in this

section the CS is explored as a tool for that task [14].

3.2.3 Sparsity and Compressible Signals

“CS relies on the given signal being represented as sparse in a given

basis, and its purpose is to reduce the amount of measurements used to represent the

signal. It is possible to find such a basis, if it is assumed that natural signals are sparse

or compressible in the sense that they have concise representations when expressed in the

proper basis” [3]. After all, the physical signals are typically non-sparse by nature. So, it

is possible to construct the signal to transform domain in which a sparse representation

can be extracted. In this concern, the introduction to the pre-processing stage is imported

where a sparse signal representation is derived using the above mentioned Pan and

Tompkins QRS detection algorithm. Specially, this algorithm is designed in such a way

that it is suitable for any type of ECG signals without the need of manual algorithm

calibration. This is basically carried out because of the robust nature of the detection

algorithm, which utilizes a dual-threshold technique, search-back for missing peaks, and

a running RR-interval estimation for detecting irregularities. Initially, the sparsified ECG

signal is compressed and then it is transmitted over a wireless channel or medium. And

at the receiver-end the original signal is recovered from the CS samples by solving a

convex optimization problem that detects the sparsest solution out of infinitely many

possible. As this is often prove to be the correct solution [15]. Applying a sufficient

28

amount of CS samples to the system, this type of algorithm enables (almost) exact signal

recovery.

Figure 7.Graphical representation of the CS [3].

CS theory depends first and foremost on the signal of . The theory behind CS is outside

the scope of this thesis; the interested reader can refer to [14, 29, 30 from the report] for

more information. To summarise, and as illustrated in Figure 7;

The dense signal f had a sparse representation x.

,
1

,

n

i

ixxfxf ||x|| 0 ˂ n (3)

And to compress the signal a sensing matrix is applied.

1, mTT RyHxxfy (4)

 where, TH

29

3.3 Heart-Rate Monitoring Examples for Reconstruction of Sparsified

ECG Test Signals

Figure 7[3] shows the uncompressed, compressed and reconstructed forms of the

sparsified ECG signal for three instances of test signals by performing the CS simulation.

These three test signals are very similar in their pulse streams and the only changed

parameters is the intervals between the consecutive R peaks. And such variation is mainly

due to the arrhythmic behaviour of the ECG signal.

Figure 8. Uncompressed, compressed and reconstructed version of the sparsified ECG

test signals [3].

30

The peaks of the reconstructed signals are observed clearly in Figure 8.Similarly, the

amplitude of the reconstructed signals are also preserved. The estimation results given

based on visual inspection with calculated error metrics i.e. mean squared error (MSE)

value between the original R wave and the reconstructed extracted ECG for above Signal

1, Signal 4 and Signal 6 from Figure 7 are 3.1028·10-19, 1.3395·10-18 and 7.6325 · 10-22,

respectively [3]. Therefore, its concluded that the reconstruction of the ECG have been

performed and achieved in all three cases.

3.4 Analysis of the Existing Architectural Design

The kernel operation in CS is a matrix-vector multiplication which is shown in Equation

(5) and Equation (6).

 𝑦 = 𝐻𝑥 (5)

My

y

y

2

1

=

NMNMM

NN

NN

xHxHxH

xHxHxH

xHxHxH

2211

2222121

1212111

 (6)

From (5), it can be seen that all the operations can be executed in sequential order. Initially

one possible sequence is calculated as y1 and then y2 and so on; this means all the

operation in the successive matrix rows are executed before any other operations. So, one

logical procedure is to reorganize the individual operations in time onto the available

hardware units in order to reduce the total execution time.

In [3], the Altera Quartus II design suite has been used [17]. Here, the adders and

multipliers are synthesized on the hardware platform FPGA and the information and

results collected from the synthesis are presented in Table 1. In this MSc thesis, such

synthesis is also conducted (on a different FPGA model) and reported in Section 5.

31

Table 1: Synthesis results for different types of functional units [3].

Component Type Number of LEs fmax [MHz] Tmin [ns]

Adder 16 312.79 3.197

Multiplier

(combinatorial)

188 85.37 11.714

Multiplier

(embedded)

9 225.33 4.438

Figure 9. Total execution time for the different schedules as a function of N [3].

Figure 9 [3] describes the total execution time that is estimated as a function N for the

multiplier (combinatorial) and embedded multiplier. The different degrees of parallelism

are plotted with their respective execution time. From Figure 9, it is observed that the

semi-parallel schedule has linear growth in the number of clock cycles as a function of N

and for the case of full-parallel scheme, the clock cycles grows logarithmically with N,

whereas the full sequential schedule has a non-linear growth with N. The speed-up

element is mainly dependent on the type of schedule chosen and the amount of hardware

resources.

32

The full parallel approach is more beneficial with respect to execution time and large

number of N values. And for the case of reduction of the usage of hardware resource,

semi parallel and the full-sequential can be used. So, this can be a possible trade-off for

the designer to consider.

3.5 RTL Implementation Results

In [3], the RTL implementation of the modified semi and full parallel solution are

presented. They are explained according to a finite state machine with data path (FSMD)

which supports the matrix H ∈ R2x4 and a vector x ∈ R4.

In the case of the modified semi-parallel architecture (which is illustrated in Figure 10),

the multiplication are performed in parallel and a single addition is executed in every

control step. The FSM helps to delete the temporary results that are stored in intermediate

registers and updates the output. It also reset every time with the internal counter when

the latter approaches to N. Moreover, the “clock enables” signal has to be controlled in

every state in order to minimize the energy consumption. The input registers and matrix

are in registers Xi and Hji, respectively and its temporary results are stored in Ri and the

main results in register Yi. Increasing the numbers of rows and columns in the matrix

simultaneously will increase the numbers of FUs in both the cases matching numbers of

rows and columns in the respective matrix [12].

And in the case of full-parallel architecture (which is shown in Figure 11), multipliers and

adders are also allocated for each operation in the matrix-vector multiplication. The FSM

remains the same as for the case of modified semi-parallel architecture. These two

architectures are coded in VHDL and further synthesized on the Cyclone III

P3C25F324C8 FPGA.

33

Figure 10.The RTL implementation of the modified semi-parallel architecture [3].

34

Figure 11. The RTL implementation for the full-parallel architecture [3].

This concludes the analysis of the existing system. The next chapter present the method

used to estimate the power consumption of the above architectures on an FPGA platform.

35

4 Method for Estimating the power Consumption on FPGA

The previous chapter has introduced the essential elements of the existing WSN-based

HRM system proposed in [3]. In particular, the signal processing chain (QRS detection

and CS) has been presented; furthermore, the corresponding architectures and their FPGA

implementation results have been highlighted.

As mentioned in the problem statement (see Section 1), the next natural step (and the

main goal of this thesis) is to evaluate the power consumption of these architectures for

an FPGA based implementation. This chapter presents the method used to estimate the

power consumption of the architectures on the Cyclone IV FPGA. Then, Section 5

presents the corresponding results.

Please note the FPGA used in this thesis is not exactly the same as used in [3]; this is due

to the end of support for the Cyclone III by Altera. Also note that this chapter is based on

some work that I have carried out during a traineeship at T.J. Seebeck Department of

Electronics. Thus, the main body of this chapter is based on material developed during

that traineeship with the purpose of supporting the experimental phase of this thesis.

Also note that following the acquisition of Altera by Intel, the tools and supported devices

have again been revised; the method described here specifically applies to the versions

mentioned later on.

This chapter demonstrates how to prepare a design so that its power consumption can be

estimated using Altera Tools. It describes the specified design in VHDL which is to be

studied for the power consumption and its estimation using Altera Quartus and ModelSim

10.4b for the Cyclone IVE FPGA.

The method presented is based on following version of software:

 Quartus Prime 15.1 Lite_Edition

 ModelSim 10.4b

36

There are several possible ways for estimating the power of designs mapped onto FPGA;

with all information delivered, estimation becomes easier, understandable and accurate

too. The method presented in this chapter is one of the accurate ways of performing power

estimation without executing the analog (i.e. hardware-based) simulation. The major

steps are explained in the flow chart shown in Figure 12. I have composed it by compiling

information from Altera documents [20][21][22].

r

Figure 12. Method for FPGA power estimation with Altera tools.

Next, synthesis of the design is performed. After successful running, Quartus generates

synthesis description of the design in VHDL and SDF files which has the information on

delays of the circuit and it generates additional script to store all signal performances in

post synthesis simulation.

Initially we begin with the simulation of the design at the register transfer (RT) level.

This step does not play significant role in power estimation but help to understand the

test bench and that the design performs as assumed.

After the post synthesis simulation is successful, the VHDL, SDF and also script are

now automatically simulated on ModelSim. (VHDL, SDF and Script). This results in a

VCD file (Value change Dump) which stores all toggles of all signals that occurred

during simulation

Quartus reads the VCD files. The switching occurrence for the individual signal is

generated from the VCD file. Finally, power consumption and estimation report is

generated after processing the information and combining it with models on the FPGA.

used.

37

The following background information has been composed by studying Altera documents

[22][23].

4.1 Power Overview

External energy is obtained from external power supplies which is required for operation

both internally and externally for the FPGA. Designers should have knowledge of the

power needed while implementing power supplies solutions which are called “rail

power”. In addition, the designers should acknowledge the amount of power actually to

be dissipated by the device which means “Thermal power or dissipated power” as

compared with the total amount of power dissipated outside the device such as capacitive

external loads and different resistors networks in circuit.

The actual power consumed by an FPGA device, external networks and output consists

of three main components:

 Dynamic

 Standby

 I/O

The device in standby mode generates standby power from ICCINT current in the device.

Internal switching in the device generates dynamic power through charging and

discharging of internal nodes on capacitance which is connected to the device pins,

input/output drivers and external network termination. Thermal power is constituent of

total power that is dissipated actually occurring inside the device package and others

dissipated externally. The real thermal power dissipated inside the device is a major

concern for designers when determining if the device intrinsic heat transfer ability is

sufficient to sustain internal die-junction temperatures within normal operating

specification. For thermal dissipation, it requires a solution such as aluminium heat sinks

which are needed for better heat transfer performance. In common, standby power,

dynamic power and a section of I/O power will consist of actual thermal power

constituent of total power.

38

4.2 Standby Power

Because of leakage currents the device consumes power in standby mode. The amount of

power consumption varies by size, temperature and process variations.

In what follows, optimization of power and performance of a Stratix II device built on a

90 nm technology is used as an example. Comparing with other process technology

devices, the 90 nm device dissipates more power because of leakage which is a major

constituent of the overall power. Junction temperature is a major focus of designers to

keep it to minimum temperature for lowering the standby constituent of overall power.

Figure 13 illustrates the relation between junction temperature and standby power.

Figure 13. Relationship between junction temperature and standby power [6].

39

4.3 Dynamic Power

Dynamic power is consumed by internal nodes changing logic levels. The power is

required to charge and discharge internal capacitances in the logic array and interconnect

networks. Core dynamic power contains routing power and logic element power (LE) for

the Stratix II example. Logic element power is absorbed from charging and discharging

of internal node capacitance and internal resistive elements. Routing power is generated

from charge and discharge of external routing capacitance operated by each logic element.

Dynamic power includes architectural resources such as:

 RAM blocks (M512, M4K, and M-RAM)

 DSP-multiplier blocks

 Phase locked loops (PLLs)

 Clock tree networks

 High-speed differential interface (HSDI) transceivers

4.4 I/O Power

VCCIO power is called I/O power, it is absorbed due to charging and discharging of load

capacitor. It is connected to the output pins. The output driver circuit is operated mainly

in resistive mode and external termination networks (if available).

Devices I/O power is calculated as per Equation (7):

I/O power = (number of active output drivers × power dissipation coefficient) +0.5 ×

(Sum of die-pad, package trace, pin, and output load cap) ×I/O standard voltage-swing×

fMAX × (toggle-factor/100) × VCCIO (7)

40

4.5 PowerPlay Early Power Estimator Overview

The PowerPlay Early Power Estimator (EPE) [5] supports the Arria II, Arria V, Cyclone

III, Cyclone IV, Cyclone V and MAX 10 device families. The user guideline provided by

Altera to estimate the power consumption on FPGA design, supports FPGA design at all

stage and it also provides detailed features about thermal analysis and the factors that

contribute to FPGA power consumption. We can calculate the FPGA power with the

Microsoft Excel-based PowerPlay EPE spreadsheet too. For a more accurate power

estimation, we should use the PowerPlay Power Analyzer in the Quartus II software.

4.6 Estimating Power Consumption

We can use the PowerPlay EPE spreadsheet to estimate the consumption of power of the

design at any stages of design cycle. Even if the design is not started or is incomplete,

estimation of power consumption can be performed. The PowerPlay EPE spreadsheet

helps to estimates the full design but Altera recommends PowerPlay Power Analyzer in

the Quartus II software for accurate information of the design.

4.6.1 Pros and Cons of Power Estimation before Design of FPGA

We can calculate the power estimation before the full FPGA design or even at complete

stage which is the positive side.

The disadvantage is precision of the design depends on the inputs and the estimation of

the device resources and this may be changed before or after the design is completed. In

this case the accuracy of power estimation differs and are less precise. The PowerPlay

EPE spreadsheet uses the mean or average but not the real design details implementations.

For accessing of the full design details, Altera recommends the PowerPlay power

analyser.

41

4.6.2 Estimating Power Consumption While Creating the FPGA

Design

When the FPGA design is completed to a limited extend, we can import the PowerPlay

EPE file (early_pwr.csv) which is generated on Quartus software to EPE spreadsheet. We

can edit the PowerPlay EPE spreadsheet to demonstrate the resource of device for the

final estimation of design.

4.6.3 Pros and Cons of Power Estimation if the Design of FPGA is

partially complete

We can perform power estimation in the early stage of FPGA design cycle. It gives the

adaptability to consequently fill in the PowerPlay Early Power Estimator spreadsheet

taking into account the Quartus II programming aggregation results.

The disadvantage in this case is similar with the previous case.

4.6.4 Estimating Power Consumption after Completing the FPGA

Design

When the design of FPGA is fully completed, Altera highly suggest using PowerPlay

Power Analyser in the Quartus II software. EPE provides highly accurate result for the

device power consumption. In this case EPE uses simulation, user mode or default toggle

rate and routing information for the determination of actual power consumption of the

complete FPGA design of device.

42

4.7 Thermal Power

Thermal power is the power scattered in the device. Total thermal power is defined as the

total of the thermal power of all the support used in device which includes the maximum

power from dynamic power and standby mode. It includes the thermal resources for the

I/O parts but it does not include the external power dissipation. Static power (PSTATIC)

is the thermal power dissipation on the chip which is independent of user clocks.

PSTATIC incorporates the radiation power from the FPGA functional blocks, excluding

for I/O DC bias power and transceiver DC bias power and which are considered for the

I/O and transceiver section. PSTATIC is the thermal power integral which differs with

junction temperature; determine device and characteristics of power processing.

43

5 Result and analysis

5.1 High level synthesis results of different architecture (with the

various levels of parallelism) and their comparisons

The high level synthesis and analysis is performed using Altera Quartus Prime 15.1 Lite

Edition for different parallelisms of architectures which are as follows.

 Full parallel

 Full parallel without pipeline

 Generic semi parallel

 Semi parallel with clock enable.

In this thesis, the different architectures (mentioned above) RTL implementations are

examined through tests. The VHDL code is synthesized in Altera Quartus IV and tested

through simulations. Based on these simulation performed in the program ModelSim-

Altera Edition 10.4b, the code is validated with respect of its specifications and

requirements. The results are summarised in Table 2.

The different architectural designs were compiled and further, estimation of the power

consumption for design full para_4_2, full parallel without pipeline and generic semi

parallel was performed. The corresponding power estimation results are shown in Table

3 and Table 4 with two different optimization mode, i.e. Balanced mode and Power

(Aggressive) mode, respectively. The RTL implementation of full parallel architecture is

shown if Figure 16.

Regarding resource usage, one of the main aspects is the number of embedded multiplier

on the FPGA and the reason is the operations within the algorithm which are computed

in parallel, so the number of multipliers might be the limiting factor. Furthermore, the

logic elements (LEs) are used to implement logics along the multipliers. They can also be

used to implement additional multipliers when all embedded multipliers are already used

(not the case here).

44

Table 2: FPGA synthesis results and comparison of different degrees of parallelism.

Architecture Full

parallel

Full Parallel

without

Pipeline

Semi

Parallel_clk

Generic Semi

Parallel

Top-level Entity Name para_4_2 Para_4_2_wo

_pipe

Seq_8_clken Mult_Add_examp

le_1

Family Cyclone

IV E

Cyclone IV E Cyclone IV E Cyclone IV E

Total Logic elements 100 96 103 384

Total combinational

functions

98 96 98 384

Dedicated logic

registers

100 32 101 384

Total registers 100 32 101 384

Total I/O pins 130 129 180 92

Embedded multipliers

9-bit elements

8 8 8 25

Fmax clk frequency

(MHz)

299.04 116.9 281.85 282.81

45

From the synthesis results of the different architectures shown in Table 2, it is observed

that the numbers of total logic elements are not much difference (ca 100), except for the

generic semi parallel architecture which is 384. This is explained by the fact that the

generic semi parallel architecture requires many more blocks than the three other types,

as can be observed in Figure 14 (see Figure 14 for some of the details).

Figure 14. Overview of the RTL generic semi parallel architecture

The total logic elements, total combinational function and embedded multipliers are

almost identical for the full parallel, full parallel without pipeline and semi parallel with

clock enable architectures because the design has small amount of variation around the

main basic structure. This could be explained by the fact that the synthesis tool has not

promoted hardware reuse in the more sequential architectures, resulting in the same

amount of required resources as for the more parallel ones.

And for the case of generic semi parallel, the number of the embedded multiplier is quite

higher- 25, as compared to other architectures with identical low-8.This is also because

of the internal organization design which is quite different than the others. The RTL

design of generic semi parallel is shown in Figure 14 and Figure 15. It gives a clear

understanding how this architecture differs from other. Even though it is semi parallel,

the design remains quite sequential because the parallelism is limited with the first two

blocks and the other blocks are designed sequentially.

Finally, the effect of enabling or not a pipeline can also be noted by comparing the results

for para_4_2 and para_4_2_wo_pipe. For the latter, the maximum frequency is 116.9

MHz, whereas for the former it can be increased to 299.04 thanks to the pipeline (i.e.

decomposing long combinatorial blocks is smaller ones). The price to pay is the increased

number of registers (increase from 32 to 100) which stores data between the pipeline

stages.

46

Input side of generic semi parallel architecture

 .……..

Output end of generic semi parallel architecture

Figure 15. RTL implementation of generic semi parallel architecture.

47

Figure 16. RTL implementation of full parallel architecture.

48

Table 3: Power estimates for different architectures in power balanced mode at

100MHz.

Component Architectures

full_para_N4_M2 Para_4_2_wo_pip

e

Generic_semi_para

Mult_Add_example_

1

Power estimates

clock

100 MHz 100 MHz 100 MHz

Optimization

mode

Balanced Balanced Balanced

Total Thermal

Power Dissipation

85.97 mW 83.31 mW 69.98 mW

Core Dynamic

Thermal Power

Dissipation

3.59 mW 2.66 mW 11.53 mW

Core Static

Thermal Power

Dissipation

42.588 mW 42.87 mW 42.91 mW

I/O Thermal

Power Dissipation

39.50 mW 37.77 mW 15.53 mW

Power Estimation

Confidence

High: user provided

sufficient toggle rate

data

High: user

provided sufficient

toggle rate data

Medium: user

provided moderately

complete toggle rate

data

49

From Table 3, it is observed that lowest total thermal power dissipation-69.98 mW using

the balanced optimization mode is achieved for the generic semi parallel architecture.

Although it requires more resources, the architecture design and the way its operations

are executed, results in a lower power consumption. As can be seen in Table 2, the number

of I/Os-92 is lower than that of the other architectures and are not read all simultaneously

but rather sequentially. This is reflected in Table 3, where the I/O power- 15.33 mW is

quite lower than that of the other architectures (39.50 mW and 37.77 mW).

Note, however, that the power estimation confidence is only ‘medium’ for the generic

semi parallel architecture (it is ‘high’ for the other ones). Although I have experimented

with the various input signals and internal configuration, it was not possible to increase

the confidence level. This means that no firm conclusion can be made when comparing

the power consumption of this architecture as compared to the other ones. Nevertheless,

the results still indicates that this architecture may have the potential to be lower power

than the other ones (at the cost of the higher resource usage).

50

Table 4: Power estimates for different architecture in power aggressive mode at 100

MHz.

Component Architectures

full_para_N4_M2 Para_4_2_wo_pipe Generic_semi_para

Mult_Add_example

_1

Power estimates

clock

100 MHz 100 MHz 100 MHz

Optimization

mode

Power (Aggressive) Power (Aggressive) Power (Aggressive)

Total Thermal

Power Dissipation

83.50 mW 81.28 mW 69.59 mW

Core Dynamic

Thermal Power

Dissipation

2.80 mW 2.59 mW 11.16 mW

Core Static

Thermal Power

Dissipation

42.87 mW 42.88 mW 42.91 mW

I/O Thermal

Power Dissipation

37.82 mW 38.82 mW 15.53 mW

Power Estimation

Confidence

High: user provided

sufficient toggle rate

data

High: user provided

sufficient toggle rate

data

Medium: user

provided moderately

complete toggle rate

data

Finally, the illustration of the power consumed by the three different architectures in

power (aggressive) optimization mode can be observed in Table 4. The designer can use

Power (aggressive) optimization mode if it is needed to further minimize the power

consumption.

51

For all three architectures, the power consumption decreases as compared to the balanced

mode. The total thermal power dissipation for full parallel, full parallel without pipeline

and generic semi parallel architecture is decreased by 2.47 mW, 2.03 mW and 0.39 mW

respectively. It can also be noted that the aggressive power optimization mode affects the

three power components, but in small amounts. As for the results with the balanced

optimization, the power estimation confidence is ‘high’ for the full parallel and full

parallel without pipeline architecture and ‘medium’ for generic semi parallel architecture.

Based on the above experiments and comparisons, system designers would have to make

trade-off between resource usage, speed, and power consumption.

The full parallel without pipeline architecture requires less resources which can be seen

from Table 2, but its maximum speed is also twice less than the full parallel. So, for

example, depending on the requirement of the application, if designers need a fast

architecture they should choose the full parallel. But, if speed is not a major problem then

the full parallel without pipeline architecture can be used as it lowers the speed but is less

resources can be hungry. At the same time, the power consumption between the two

architectures is quite similar, so this cannot be used as a comparison parameter between

them.

Based on the above results, it is also clear that the generic semi parallel with clock enable

architecture provides the lower power consumption; but at the same time it requires much

more resources. So again, the choice depends on the application requirements and

designers have to trade-off one performance metric for another one.

52

6 Conclusion

The problem statement for this MSc thesis was formulated as follows:

 “How to estimate the power consumption of FPGA-based HRM nodes and

what are those estimates for the full parallel, full parallel without pipeline and generic

semi parallel architectures proposed in [3]?”

I have performed a number of tasks to address this problem. Firstly, I have analysed the

proposed overall system, illustrating how QRS extraction and CS can be performed to

reduce the amount of data to be transmitted. Then I have analysed existing architectures

for the CS hardware engine, illustrating how parallelism is related to execution time. I

then described the method for estimating power consumption using Altera tools. Next, I

applied this method on four architectures for the hardware synthesis and three selected

architectures for the power estimation. Finally, both the synthesis results and power

estimation results have been discussed.

The main findings are:

 Enabling pipelining (full parallel architecture) results in higher possible

maximum frequency at the cost of increased required number of registers; at the

same time, pipelining does not affect power consumption very much;

 The generic semi parallel architecture has the lowest power consumption but

requires many more resources as compared to the other ones (put some numbers

(main difference power consumption));

 For the tested architectures, using the aggressive power optimization mode brings

a moderate reduction in terms of power consumption (key number).

Given the above described method and corresponding results, it can be said that the

problem statement has been addressed adequately. In what follows, a possible extension

of this work is discussed.

In this thesis the focus was on power. A natural continuation of the work would be to

investigate energy consumption; this would help estimating e.g. the time a node can

operate depending on its battery capacity.

53

Generally speaking, energy is the product of power and execution time. In the above

work, we have estimated the power consumption, so what would be needed is the

execution time of the various architectures. Although the synthesis results already give

an indication of the maximum frequency, they do not include the execution times for the

individual computations. This would require to run detailed timing simulations, which

could be a task for future work.

Another possible future work would be to port the architectures onto ultra-low power

FPGAs such as Microsemi’s IGLOO nano low-power FPGAs. On the one hand, porting

the architectures onto this other FPGA family is deemed relatively uncomplicated (the

operations being mostly additions and multiplications). On the other hand, such FPGAs

are much more resource limited than the Cyclone IV used in this thesis; thus, it remains

to be explored which of the architectures might possibly fit onto the IGLOO FPGAs. This

might also call for further modification of the digital signal processing algorithms, such

as reducing their numerical precision.

54

References

[1] Juul Achten.;Asker.Jeukendrup.”Heart Rate Monitoring Application and

Limitations”. A.E. Sports Med,2003.

[2] Mohammad EI-Sayed.; Peter Koch.; Yannick Le Moullec “Architectural Design

Space Exploration of an FPGA-based Compressed Sampling Engine: Application to

Wireless Heart-Rate Monitoring”. Aalborg University, IEEE Conference Publication,

2015.

[3] Mohammad EI-Sayed.; Soren Lund.; “An FPGA-friendly Compressed Sampling

Engine for WSN-based Heart Rate Monitoring” Project Work, Department of Electronic

System, Aalborg University, 2015.

[4] J. Pan and W. J. Tompkins, “A Real-Time QRS Detection Algorithm”, IEEE, pp. 230-

236, 1985.

[5] C. Pavlatos, et al., “Hardware Implementation of Pan & Tompkins QRS Detection

Algorithm”, 2003.

[6] R. Matos and R. Pereira, “Electrocardiogram”, UCIP, pp. 825-831, 2012.

[7] Small Animal Cardiology, “Electrocardiogram”,

http://research.vet.upenn.edu/smallanimalcardiology/ECGTutorial/tabid/4930/Default.as

px, visit date: 26/02-2015.

[8]YongijinYongjin Wang, Foteini Agrafioti, Dimitrios Hatzinakos, and

Konstantinos,”Analysis of Human Electrocardiogram for Biometric Recognition”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.450.8148&rep=rep1&type=p

df

http://research.vet.upenn.edu/smallanimalcardiology/ECGTutorial/tabid/4930/Default.aspx
http://research.vet.upenn.edu/smallanimalcardiology/ECGTutorial/tabid/4930/Default.aspx
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.450.8148&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.450.8148&rep=rep1&type=pdf

55

[9] Practical Clinical Skills, “Arrhythmia Reference Guide”,

 http://www.practicalclinicalskills.com/ekg-reference-guide

[10] N. V. Thakor, J. G. Webster and W. J. Tompkins, “Optimal QRS detector”, pp.343-

350, 1983.

[11] C. Pavlatos, et al., “Hardware Implementation of Pan & Tompkins QRS Detection

Algorithm”, 2003.

[12] Marjan Karkooti and Joseph R. Cavallaro, “Semi-Parallel Reconfigurable

Architectures for Real-Time LDPC”, Department of Electrical and Computer

Engineering-Rice University.

[13] G. M. Friesen, et al., “A Comparison of the Noise Sensitivity of Nine QRS

Detection Algorithms”, IEEE, pp. 85-98, Feb. 1990.

[14] E. Cándes and M. B. Wakin, “An introduction to compressive sampling”, IEEE

Signal Processing Magazine 25 (2), pp. 21-30, 2008.

[15] F. Chen, A. Chandrakasan, and V. Stojanovic, “A Signal-Agnostic Compressed

Sensing Acquisition System for Wireless and Implantable Sensors,” in Custom Integrated

Circuits Conference (CICC), 2010 IEEE, Sept 2010, pp. 1–4.

[16]MathWorks, “Eps: Floating-point relative accuracy”, http://se.mathworks.

com/help/matlab/ref/eps.html, visit date: 01/04-2015.

[17] Altera, Quartus II v11.1. Documentation and Download,

https://w1.altera.com/download/software/quartus-ii-se/11,1,2011,download date:2/4-

2015.

[18] Altera, “Cyclone III Device Handbook”, publication date: 01/08-2012.

[19]Altera,2 Cyclone III FPGA Starter Board Reference Manual”, publication date’ 2007.

[20]http://wwwhome.cs.utwente.nl/~molenkam/ods/low_power_exercise/dds-

power.pdf.

http://www.practicalclinicalskills.com/ekg-reference-guide
https://w1.altera.com/download/software/quartus-ii-se/11,1,2011,download
http://wwwhome.cs.utwente.nl/~molenkam/ods/low_power_exercise/dds-power.pdf
http://wwwhome.cs.utwente.nl/~molenkam/ods/low_power_exercise/dds-power.pdf

56

[21] http://files.chinaaet.com/files/group/2010/09/14/7822031785966.pdf.

[22]https://www.altera.com/support/support-resources/operation-andtesting/power/pow-

overview.html

[24]https://www.altera.com/support/support-resources/operation-and-

testing/power/pow-overview.html.

[25]https://www.altera.com/content/dam/alterawww/global/en_US/pdfs/literature/ug/ug

_epe.pdf.

[26]Nate Brookreson, “Using Heart Rate Monitoring for Personal Training” American

college of sports medicine-july-2015.

[27]K.C.Chua, V.Chandran, U.R. Acharya and C. M. Lim, “Cardiac state diagnosis using

higher order spectra of heart rate variability”, Journal of Medical Engineering and

Technology 32 (2),pp. 145-155,2008.

[28]Mohmoud Shuker Mahmoud, Auday A.H. Mohamad “A study of Efficient power

Consumption Wireless Communication Techniques/ Modules for Internet of Things (loT)

Applications”- http://file.scirp.org/pdf/AIT_2016042217163795.pdf.

[29] A. Y. Carmi, et al., “Compressed Sensing & Sparse Filtering”, Springer, 2014.

[30] Y. C. Eldar and G. Kutynoik, “Compressed Sensing - Theory and Applications”,

Cambridge University Press, 1 edition, 2012.

[31] JIAPU PAN and WILLIS J.TOMPKIN,“A real-Time QRS Detection

Algorithm”,JPAN-1985.

[32] Nehemiah T.liu, Jose Salinas, “Peak Detection System and Method for Calculation

of Signal-Derived”,2016.

http://files.chinaaet.com/files/group/2010/09/14/7822031785966.pdf
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-overview.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-overview.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-overview.html
https://www.altera.com/support/support-resources/operation-and-testing/power/pow-overview.html
https://www.altera.com/content/dam/alterawww/global/en_US/pdfs/literature/ug/ug_epe.pdf
https://www.altera.com/content/dam/alterawww/global/en_US/pdfs/literature/ug/ug_epe.pdf
http://file.scirp.org/pdf/AIT_2016042217163795.pdf

57

Appendix 1

This appendix presents examples of VHDL source code of the testbench used for

simulating the architectures, as described in Chapter 4.

%%

%%%%% vhdl file for test bench of full_para_N2_M4

%%

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use std.textio.all; --to read from and write to files

entity TB_para_N4_M2 is

--Testbench, thus no ports

end entity TB_para_N4_M2;

architecture MyTB of TB_para_N4_M2 is

component para_4_2 is

 generic (

 M: integer := 2; -- 2^M Number of And's

 b_m: integer := 8

);

 port (

 clk: in STD_LOGIC;

 reset: in std_logic := '0';

 X: in STD_LOGIC_VECTOR(b_m*(2**M)-1 downto 0) :=

 "00000010000000100000001000000010";

 H: in STD_LOGIC_VECTOR(b_m*(2**M)*2-1 downto 0) :=

"0000001000000010000000100000001000000100000001000000010000000100";

 Y1: out STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

 Y2: out STD_LOGIC_VECTOR((b_m*2)-1 downto 0)

);

end component para_4_2;

constant M: integer := 2; -- 2^M Number of And's

58

constant b_m: integer := 8;

signal TB_clk : std_logic := '0';

signal TB_reset : std_logic := '0';

signal TB_X : STD_LOGIC_VECTOR(b_m*(2**M)-1 downto 0) :=

 "00000010000000100000001000000010";

signal TB_H: STD_LOGIC_VECTOR(b_m*(2**M)*2-1 downto 0) :=

"0000001000000010000000100000001000000100000001000000010000000100";

signal TB_Y1: STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

signal TB_Y2: STD_LOGIC_VECTOR((b_m*2)-1 downto 0);

signal TB_reset_done : std_logic := '0';

-- Change this to control the clock frequency !!!

constant clk_period : time := 10 ns; --100 MHZ, as in .sdc file

begin

uut: para_4_2 PORT MAP (

--M => TB_M,

--b_m => TB_b_m,

clk => TB_clk,

reset => TB_reset,

X => TB_X,

H => TB_H,

Y1 => TB_Y1,

Y2 => TB_Y2

);

-- Reset process

 TB_para_N4_M2_GEN_RESET: process (TB_clk) is

 begin

 -- Change this to control reset duration

 if (TB_reset_done = '0') then

TB_reset <= '1', '0' after 10 ns;

 end if;

TB_reset_done <= '1'; --not clean style

59

end process TB_para_N4_M2_GEN_RESET;

-- Clock process definitions(clock with 50% duty cycle)

 TB_para_N4_M2_CLK: process

 Begin

TB_clk <= '0';

 wait for clk_period/2;

 TB_clk <= '1';

 wait for clk_period/2;

 end process TB_para_N4_M2_CLK;

-- Stimuli process

 TB_para_N4_M2_GEN_STIMULI: process (TB_clk)

 file infile : text is in "D:\CD_appendix\3. VHDL code\full_para_N4_M2\ECG.txt"; -

-declare input file --path needed?

 variable inline : line; --line number declaration

 variable dataread : integer;

 begin

 if (TB_clk = '1' and TB_clk'event and TB_reset_done = '1') then

 if (not endfile(infile)) then --checking the "END OF FILE" is not reached.

 readline(infile, inline); --reading a line from the file.

 read(inline, dataread); --reading the data from the line and putting it in an

integer type variable.

 TB_X <= std_logic_vector(to_unsigned(dataread, 32));

 end if;

 end if;

 end process TB_para_N4_M2_GEN_STIMULI;end architecture MyTB;

%%

%%%%%%%%%%%%% vhdl file for testbench of generic semi parallel architecture

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

library IEEE;

60

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

use std.textio.all; --to read from and write to files

entity TB_generic_semi_para is

--Testbench, thus no ports

end entity TB_generic_semi_para;

architecture MyTB of TB_generic_semi_para is

component mult_Add_example_1 is

 generic (

 N: integer :=25; -- Antal multipliers

 M: integer :=8 -- Bit multiplier

);

 port (

 clk: in STD_LOGIC ;

 X: in STD_LOGIC_VECTOR(M*N-1 downto 0);

 B: in STD_LOGIC_VECTOR(M*N-1 downto 0);

 Y: out STD_LOGIC_VECTOR((M*2)-1 downto 0)

);

end component mult_Add_example_1;

constant N: integer := 25;

constant M: integer := 8;

constant Z: integer := M*2; -- Bit adder

signal mult_con: STD_LOGIC_VECTOR(Z*N-1 downto 0) :=

"1111111111111111100110111111111111111111110011011111111111111111111001

1011111111111111111111001101111111111111111111100110111111111111111111

1100110111111111111111111110011011111111111111111111001101111111111111

1111111001101111111111111111111100110111111111111111111110011011111111

1111111111110011011111111111111111111001101111111111111111111100110111

11111111111111111001101111111111111111111100110111";

61

signal add_con: STD_LOGIC_VECTOR(Z*(N-2)-1 downto 0) :=

"1111111111111111100110111111111111111111110011011111111111111111111001

1011111111111111111111001101111111111111111111100110111111111111111111

1100110111111111111111111110011011111111111111111111001101111111111111

1111111001101111111111111111111100110111111111111111111110011011111111

1111111111111111111111111111110011111111111111111111111111111111111111

111111111111111111";

signal TB_clk : std_logic := '0';

signal TB_X : STD_LOGIC_VECTOR(M*N-1 downto 0) :=

"11

11

11"; --

Vector Input

signal TB_B: STD_LOGIC_VECTOR(M*N-1 downto 0) :=

"11

11

11"; --

Matrix Input

signal TB_Y: STD_LOGIC_VECTOR((M*2)-1 downto 0);

-- Change this to control the clock frequency !!!

constant clk_period : time := 10 ns; --100 MHZ, as in .sdc file

begin

 uut: mult_Add_example_1 PORT MAP (

 --M => TB_M,

 --b_m => TB_b_m,

 clk => TB_clk,

 X => TB_X,

 B => TB_B,

 Y => TB_Y

62

);

-- Clock process definitions(clock with 50% duty cycle)

 TB_generic_semi_para_CLK: process

 begin

TB_clk <= '0';

wait for clk_period/2;

TB_clk <= '1';

wait for clk_period/2;

end process TB_generic_semi_para_CLK;

-- Stimuli process

 TB_generic_semi_para_GEN_STIMULI: process (TB_clk)

 file infile : text is in "D:\CD_appendix\3. VHDL code\full_para_N4_M2\ECG2.txt";

-- declare input file --path needed?

 variable inline : line; --line number declaration

 variable dataread : integer;

 begin

if (not endfile(infile)) then --checking the "END OF FILE" is not reached.

readline(infile, inline); --reading a line from the file.

read(inline, dataread); --reading the data from the line and putting it in an integer type

variable.

TB_X <= std_logic_vector(to_unsigned(dataread, 200));

 end if;

end process TB_generic_semi_para_GEN_STIMULI;

end architecture MyTB;

%%

%%%% end of TB files

%%

%%%

63

Appendix 2

This appendix 2 presents the input parameters needed to be considered for determination

of power consumption.

The parameters determine on if the junction temperature is manually entered or auto

computed. The list of parameters is given in Table 4 [25].

Table 4. Information about the Input Parameters [25].

Input Parameter Description

Family Device family is selected.

Device Device is selected by you. Bigger device

consumes for static power and clock

dynamic power is high. Nothing more is

affected (power components) by the use of

device.

Package Choose the package that is implemented.

Larger scale of packages provides more

cooling surface contact points to the

circuit board. Dynamic power is not

affected.

Power Characteristic

Theoretical or typical worst case silicon

process is selected. This influence the

static power consumption. Maximum

power characteristic is recommended by

Altera for the use of power estimation. It

provides output that line up with worst-

case device measurement.

64

VCCINT Voltage (V)

Select VCCINT voltage for Cyclone IV E

devices. Devices with different speed

grades C8L, C9L and I8L, VCCINT is set

to 1.0V. Devices with speed of grade C6,

C7, C8, I7 and A7, VCCINT is set to 1.2V.

VCC_ONE Voltage (V) VCC-ONE voltage is set for maximum of

10 devices with 3.0V or 3.3V. The internal

voltage is adjusted to 1.2V to power

supply at the periphery.

Power Model Status The power model for the devices is

suitable only for EPE 14.0 moving.

VCCL Voltage (V) Devices with the speed grade of -4L the

voltage can be 0.9V or 1.1V and for the

other speed devices grades, the voltage is

set to 1.1V.

Junction Temp, TJ (°C) The junction temperature is available if we

login on the User Entered TJ option. The

junction temp is not studied related to the

thermal information that is provided. For

the highest value of selected temperature

grade, Altera recommends setting junction

Temp TJ(°C).

Ambient Temp, TA (°C) When the air temperature near the device

entered, this can range from –40°C to

125°C. This field is suitable if we turn on

Auto Computed TJ option. If the

Estimated Theta JA option is On then it

results to compute the junction

65

temperature which are always related with

power dissipation and thermal resistance

(heat sink) and circuit board. In the case of

Custom Theta JA option in On then there

is computation of junction temperature

related with power dissipation and custom

θJA entere

Custom θJA (°C/W)

Junction to ambient thermal resistance is

entered between device and ambient air

(in °C/W). This area is only suitable if the

below option are turned On.

 Auto Computed TJ

 Estimated Theta JA

 Heat Sink parameter is custom

Board Thermal Mode

The board is selected which is

conventional for thermal analysis which

can be typical board, none Conservative or

JEDEC (2s2p). It works only when Auto

computed TJ is on and estimated Theta JA

options. It we select none conservative,

the thermal model pretends there is no

heat dissipated from the device board

which results on calculated junction

temperature. This alternative is not

accessible if the Heat Sink choice is set to

None. If we choose Typical Board then

device and package is selected based on

the characteristics of a typical customer

board stack.

66

Airflow The ambient airflow is selected in linear

feet per minute (lfm) or meters per second

(m/s).The resulted values are 100(lfm)

which is 0.5 m/s, 200 lfm (2.0m/s) amd for

400 lfm (2.0m/s).

Heat Sink Heat sink is selected that is used. We can

select one of below mentioned.

 No Heat Sink

 A custom Solution (Custom)

 Heat sink parameters (15 mm–

Low Profile, 23 mm– Medium

Profile, or 28 mm–High Profile)

This subject is accessible if we turn On the

Auto computed TJ and Estimated Theta

JA options. If neither of this option is

selected, custom θSA value is updated by

heat sink and we can read the value in

Custom θSA (°C/W) parameter.

67

Appendix 3

This screenshot shows the output waveform for the semi parallel with clock enable

architecture.

68

Appendix 4

This screenshot show the synthesis of the full parallel architecture.

69

Appendix 5

This screen shot shows the output waveform for the semi_para_N4_M2_w_clken

architecture.

%%

%%%%end of simulation screenshots

%%

