

TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of Informatics

Chair of Information Systems

Web application front end architecture

and development using AngularJS

framework

Bachelor’s thesis

Student: Stanislav Nazmutdinov

Student code: 121078IAPB

Supervisor: Raul Liivrand

Tallinn
2015

Declaration of authorship

Herewith I declare that this thesis is based on my own work. All ideas, major views and data from

different sources by other authors are used only with a reference to the source. The thesis has not

been submitted for any degree or examination in any other university.

(date) (signature)

Abstract

The aim of this thesis is to investigate Single Page Web Application front end development and

architecture that is developed with AngularJS JavaScript framework. Both Single Page

Application concept and AngularJS framework are relatively new phenomena in web application

development, therefore their features need to be examined.

As the result of the work there will be developed a property rental web application. During the

project development will be reviewed various AngularJS-based application features. Project

development will not be limited only to AngularJS framework. AngularJS is pretty versatile and

flexible and therefore provides many ways to use and integrate other JavaScript libraries as well

as utilize various JavaScript development tools. Despite the fact that the main goal of this thesis

is to examine application front end development with AngularJS there will be developed both

front end and server-side of the application and briefly described application back end.

The thesis is in English language and contains 56 pages of text, 5 chapters, 19 figures, 6 tables

Annotatsioon

Selle bakalaureusetöö põhiseks eesmärgiks on uurida Single Page Application tüüpi

veebirakenduse front end’i arendamise ja arhitektuuri, mis on realiseeritud AngularJS’i

raamistiku abil. Kuna mõlemad Single Page Application tüüpi arhitektuur ja AngularJS raamistik

on päris uudsed fenomenid veebirakenduse arendamisel, seetõttu nende võimalused on oluline

uurida.

Lõputöö tulemusena on arendatud kinnisvara rentimise veebirakenduse. Projekti arendamise

jooksul uuritakse erinevad Angularil põhineva rakenduse omadused. Arendamine ei hakka olema

piiratud ainult AngularJS raamistikuga. AngularJS on päris paindlik, seetõttu ta pakub päris palju

erinevaid viise, kuidas kasutada ja integreerida rakenduses ka teisi JavaScript’i teeke ja

rakendada igasuguseid JavaScript’i töövahendeid. Vaatamata sellele, et lõputöö põhiseks

eesmärgiks on rakenduse kliendi poolse osa arendamine AngularJS raamistikuga, serveri osa ka

hakkab olema realiseeritud ja lühidalt kirjeldatud.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 56 leheküljel, 5 peatükki, 19 joonist, 6
tabelit.

Abbreviations

HTML HyperText Markup Language

CSS Cascading Style Sheets

JS JavaScript

JSON JavaScript Object Notation

SPA Single page application

DOM Document Object Model

AJAX Asynchronous Javascript and XML

REST Representational State Transfer

Table of figures

Figure 1: Web application architecture evolution ..14

Figure 2: Google Search interest over time towards various JS SPA frameworks16

Figure 3: Property managing use case diagram..18

Figure 4: Booking managing use case diagramm...20

Figure 5: Account managing use case diagram..21

Figure 6: Entity-relationship diagramm ...23

Figure 7: Look-up entities diagramm ...23

Figure 8: Overall application architecture ..25

Figure 9: Default grunt watch task activity diagram ..30

Figure 10: Grunt test task activity diagram ..30

Figure 11: Project static files structure ...30

Figure 12: Initial Angular application source code structure ...32

Figure 13: Improved Angular application source code structure ...33

Figure 14: Angular application architecture...35

Figure 15: Angular application scope object workflow ...38

Figure 16: My-datepicker directive produced result ..40

Figure 17: Successful authentication sequence diagram ..42

Figure 18: Security checks on state change sequence diagram..43

Figure 19: AngularJS http response interceptor sequence diagram ...44

Table of tables

Table 1: Description of property managing use cases..18

Table 2: Description of booking managing use cases ..20

Table 3: Description of account managing use cases ...21

Table 4: Defenition of entity types ...23

Table 5: Application REST endpoints..25

Table 6: Application login REST endpoint ..41

Table of contents

1. Introduction ..10

1.1 Thesis background and problem...10

1.2 Thesis objectives...11

1.3 Methodology...11

1.4 Thesis structure...11

2. Theoretical background ..13

2.1 Single page application...13

2.2 Single Page Application architecture ...13

2.3 AngularJS ...15

3. Project development ...17

3.1 Project analysis ...17

3.1.1 Use case models ..17

3.1.2 Entity-relationship diagram ...22

3.2 Server-side implementation..23

3.2.1 Application REST endpoints...25

3.3 Setting up development environment ...27

3.4 Project sources structure organization..31

3.5 AngularJS application architecture...35

3.5.1 Dependency injection ..36

3.5.2 Scope object...37

3.6 Third-party JavaScript libraries integration..38

3.7 AngularJS application security...41

4. AngularJS application testing...46

4.1 Unit testing tools...46

4.2 Testing Angular filters..46

4.3 Testing Angular directives..48

4.4 Testing Angular controllers ..49

5. Conclusion..51

Kokkuvõtte ...53

References ..55

Appendix 1. Bower dependencies ..57

Appendix 2. Node.js dependencies...59

10

1. Introduction

Nowadays web front end development advances extremely swiftly due to increasing number

of different frameworks and tools that allow to develop front end more efficiently. This fact

allows shifting all the presentation logic to the client-side of the application. As the result,

there are constantly increasing number of new type of web applications that no longer require

page refresh, provide rich user interface and at the same time are extremely testable,

maintainable and scalable for future development – Single Page Application.

Undoubtedly, there are a lot of frameworks that provide their own ways of implementing

Single Page Application such as AngularJS, Ember.js, Backbone.js, throughout this thesis

there will be used AngularJS in conjunction with other single-purpose JavaScript libraries that

all combined enable to make rich and interactive user interface.

When it comes to server-side of the application, the main requirement towards the server is

that it would be able to serve and accept data in JSON format. Such capabilities do possess

most of the modern server-side languages and frameworks, so the author will use

technologies, which he is most experienced in. Therefore, the server-side of the application

will be implemented with Java based technologies.

1.1 Thesis background and problem

Single Page Applications are relative new type of web applications that do take web

application front end development to a whole new level providing flexibility and at the same

time well organized structure and architecture that guarantees needed code maintainability,

scalability and testability.

The thesis might be particularly interesting for everybody who would like to explore the

nature of Single Page Application development with AngularJS framework and other

numerous JavaScript libraries and development tools.

11

1.2 Thesis objectives

During this thesis, there will be shortly explored how web application architecture evolved

and formed.

Besides, there will be examined project structure and architecture of AngularJS-based Single

Page Application and considered their advantages and drawbacks.

Thirdly, there will be reviewed JavaScript development tools and discussed what they can

provide for AngularJS front end developer.

What is more, there will be reviewed how to integrate third-party JavaScript libraries into

AngularJS application.

Furthermore, there will be inspection of way of implementing authentication in AngularJS

application.

Lastly, there will be a short overview of AngularJS-based application’s suitability for unit

testing.

1.3 Methodology

In order to achieve above listed aims there will be developed sample project of property rental

web application. Through the development of this system, there will be examined features of

Single Page Application and AngularJS framework in particular.

1.4 Thesis structure

Theoretical background chapter of the thesis presents an overview what Single Page

Application is and describes what opportunities AngularJS framework provides in order to

implement such web application functioning approach.

Project development chapter describes numerous aspects of AngularJS-based application

development as well as presents short project analysis.

AngularJS application testing chapter is devoted to AngularJS application testing. There is

reviewed how to test Angular application components with Jasmine testing framework.

12

Conclusion chapter summarizes the aims of the work and describes achieved results.

13

2. Theoretical background

2.1 Single page application

Web application development has always been a major part of software development.

However, there had been a lot of restrictions in interaction with complex web applications

which made them not as responsive as were for example desktop applications. As an

alternative to traditional web applications were developed so called rich internet applications

that are quite similar to desktop application software that run within browser via installed

third-party (oftentimes proprietary) plugins.

At the same time the new versions of traditional technologies used for web development such

as HTML, CSS and JavaScript were evolving and progressing which made it possible to

create a new generation of lightweight and flexible web applications - Single Page

Applications. This new type of web application are comparable in terms of interactivity with

desktop applications [1] and at the same do not require any additional plugins to function.

The only requirement that should be fulfilled in order to make Single Page Application work

on the user computer is ideally the latest web browser version. This may be considered as a

drawback of such applications since JavaScript support is still an issue all across the globe.

There are still lots of users that do not always update their web browsers to the latest version

or even deliberately turn JavaScript off for security or privacy reasons.

2.2 Single Page Application architecture

First of all, we will examine different web application architectures in order to fully

understand difference between various approaches and eventually comprehend the nature of

Single Page Applications.

The following scheme illustrates pretty well the evolution of web application architectures

[2]:

14

Figure 1: Web application architecture evolution

Model 1: classic Web application

The first diagram shows the architecture of old-fashioned web applications, which mostly do

not use any fancy JavaScript technologies. Server generates a whole HTML page on each

incoming from web browser request. It may also send to client some CSS and JavaScript files

that a little bit enhance user experience.

Model 2: AJAX Web application

The second type of web applications, which was introduced in mid-2000s, is an improved

version of the first type of web applications. Unlike classic web application, it uses not only

traditional HTTP requests to retrieve whole HTML pages from the server, but also AJAX

patterns so as to get code fragments or raw XML, JSON data from server-side. As the result

web applications become more responsive, since some parts of web page can be reloaded

dynamically using JavaScript without page refresh.

Model 3: Single Page Application

15

The third model shows brand new web application architecture that uses advanced JavaScript

framework on the front end. In contrast to previous architectures server no longer generates

views in any way, it only sends raw JSON/XML data and HTML templates (partials) to the

client on demand. Client-side of the application is fully responsible for generating user

interface using received from the server data. In other words, whole user interface logic is

moved from server to client-side of the application. Moreover, on Single Page Applications

everything operates on a single page – there is no page refreshes, as, for instance, in

traditional web applications where page reloads on each request. All above listed points

provide more fluid and rich user experience.

2.3 AngularJS

AngularJS is a part of a new generation of open-source web application client-side

frameworks that was initially created in 2009 as part of business idea of Miško Hevery and

Adam Abrons [3]. Unfortunately, as a business idea, it was not successful enough. As the

result, AngularJS was released as an open-source framework. Google and community

maintain nowadays AngularJS.

Although it is quite a new framework, which heavily relies on the latest versions of web

technologies, it has already gained some popularity among web developers. Although

AngularJS framework market share is not that high in comparison to other JavaScript libraries

(0.3% as of May 2015) [4], but it shows quite positive trends and has active and constantly

growing community. This may be illustrated by Google Trends that analyze people interest

towards different JavaScript frameworks, that allow building Single Page Applications [5]:

16

Figure 2: Google Search interest over time towards various JS SPA frameworks

Moreover, a lot of companies such as Google, Vevo, MSNBC, Sony have already taken

interest in AngularJS [6].

What is more, AngularJS framework is actively maintained – the updates are quite frequent.

AngularJS not only makes it possible to build well-structured, modern and responsive

applications, but also provides means to extend them with various JavaScript libraries.

17

3. Project development

In order to examine and illustrate nature of Single page applications and AngularJS

framework there will be developed sample project. The project is a property rental system.

The current version of project source code is accessible on GitHub

https://github.com/PrintScr/Property-rental-system

The project address is http://imbi.ld.ttu.ee:443/propertyRental

In order to ensure the correct work of the application, it is strongly recommended to use the

latest versions of modern web browsers.

3.1 Project analysis

Project analysis chapter presents project short analysis. Its main goal is to plan what

functionality should be implemented and what data structure is the most suitable for the needs

of the application.

3.1.1 Use case models

The following use case diagram illustrates use cases that are related to property managing:

18

Figure 3: Property managing use case diagram

Table 1: Description of property managing use cases

Use case Description

Watch property Any user can select and check property information.

Add property Registered user can add property.

Edit property Property owner can edit his own existing property

information.

Upload property photos Property owner can upload property photos.

Delete property photos Property owner can delete property photos.

Find own properties Property owner can find all his properties.

Search properties Any user can search properties by their location. Location is

19

either country or city.

Watch property reviews On each property information page, any user can read

property reviews that were written by other users who have

already booked a property.

Add property review Registered user who booked the property can write review

regarding the property he booked. Besides, property owner

can write answer to other reviews. Initial review author

cannot continue dialogue with property owner in the same

discussion tree.

Delete property review Registered user can delete his own review whenever he

wishes to do so.

Figure 3 describes booking related actions:

20

Figure 4: Booking managing use case diagramm

Table 2: Description of booking managing use cases

User case Description

Create booking Registered user can book property.

Find own bookings Registered user can find all their bookings.

Find own property’s

bookings

Property owner can find bookings related to his specific

property.

Find own property’s booked

and unavailable for booking

dates

Any user can check dates when property is booked or

unavailable for booking. These dates are grouped (user

cannot distinguish them).

Update own property’s

unavailable for booking

dates

Property owner can update his property’s unavailable for

booking dates.

Find own property’s booked

dates

Used as part of “Update own property’s unavailable for

booking dates” use case. Property owner cannot select these

dates.

Find own property’s

unavailable for booking

dates

Used as a part of “Update own property’s unavailable for

booking dates” use case. Property owner can freely select or

deselect these dates.

Accept booking Property owner can accept booking. Only booking with

status “Created” can be accepted.

Cancel booking Property owner can cancel booking. Canceled can be both

“Created” and “Accepted” bookings.

Annul last status change Used by property owner to annul last booking status change.

Get property booked days Property owner can get statistics that shows amount of

21

statistics booked days in each month for a specific property.

Get average guest count

statistics

Property owner can get statistics that shows average guest

count in each month for a specific property.

Get bookings average length

statistics

Property owner can get statistics that shows average length

of bookings in each month for a specific property.

Get property average review

rating statistics

Property owner can get statistics that shows average rating

of reviews in each month for a specific property.

Message property

owner/renter

When registered user (renter) created a booking, he can

message property owner or vice versa.

Get conversation messages Property owner or renter can get conversation history of a

specific booking.

Find unread messages Every five seconds when registered user is logged in,

application checks whether he has new messages or not.

There are also specified use cases for user authentication and registration:

Figure 5: Account managing use case diagram

Table 3: Description of account managing use cases

22

Use case Description

User registration Anybody can register a new user. All registered users have

authority ROLE_USER, since there is no others areas of

compitences in the current project.

User authentication In order to log in as the registered user one should provide

valid credentials.

Check username availability While registration process user can check whether his

username is available for registration or has already been

taken.

3.1.2 Entity-relationship diagram

The following diagram describes entities and their relationships between each other.

23

Figure 6: Entity-relationship diagramm

Figure 7: Look-up entities diagramm

Table 4 describes each entity more closely.

Table 4: Defenition of entity types

Name of the entity type Definition
Property Property is a real estate that a owner would like to rent out.
ImagePath Contains necessary information about image that is related to a

property.
UnavailableDate Property’s date that is unavailable for booking.
Booking Booking is a specific dates when a renter would like to use a

property at a given price.
Review Review is a renter’s opinion regarding property that he booked or

a property owner’s comment to this opinion.
Message Message is a text that can be sent from property owner to renter

or vice versa only after booking creation.
UserAccount User account is a registered user that can be both renter and

property owner.
PropertyFacility Property facility is something that is provided at a property for

renters to use.
PropertyType Property type represents a quality that differs specific property

from others.
BookingStatus Represents current booking status.
Authority A user role that defines what actions in the application user is

allowed to take and which not.

3.2 Server-side implementation

As it was already mentioned in introduction, in order to satisfy current project requirements

the server should be able to serve and process JSON data. Since it is quite a common demand,

almost every single technology can do that.

24

The server-side of the application is implemented using Java-based technologies. Apache

Tomcat is used as HTTP server and Spring Framework is used as a MVC framework on the

backend. Embedded SQL database H2DB is used as a data storage. In order to make

interactions with database as simple as possible there is also used ORM framework –

Hibernate, which runs in create-drop mode. In other words, the database schema is created

from the mapped entities (and performed necessary SQL insert queries) on application startup

and dropped when application is stopped. The entities are mapped corresponding to 3.1.3

Class diagram. Such way of building server-side will enable to focus mostly on the

application front end, since detailed analysis of server-side implementation is beyond the

scope of this thesis.

Overall application architecture looks like this (with emphasis on application back end):

Spring framework

Static
resources
(.js, .html,
.css files,
images)

Controllers

Hibernate

SQL server

HTTP
request

JSON
data

HTTP
request

Static
resource

Server-side

Services Repositories

25

Figure 8: Overall application architecture

The server receives HTTP requests from application front end. First of all, front end requests

static resources, for example, JavaScript, HTML, CSS files, images. If Angular application

sends request to the server REST endpoint, then the request is handled by Spring controller.

All the server business logic is performed in Service layer. In the repository layer are done the

database related actions.

3.2.1 Application REST endpoints

Typically, all mentioned use cases in the chapter 3.1.1 correspond to specific REST endpoint

of the application.

Table 5: Application REST endpoints

URL HTTP
Verb

POST
Body

Authori
ty
require
d

Use case

/api/properties/:id GET Empty None Watch property
/api/properties/:id PUT JSON

String
ROLE_
USER

Edit property

/api/properties POST JSON
String

ROLE_
USER

Add property

/api/properties/myProperties GET Empty ROLE_
USER

Find own properties

/api/properties/search GET Empty None Search properties
/api/properties/propertyTypes GET Empty None
/api/properties/propertyFaciliti
es

GET Empty None

/api/properties/uploadPhotos POST Bytes ROLE_
USER

Upload property photos

AngularJS

Client-side

26

/api/properties/reviews/:id GET Empty None Watch property reviews
/api/properties/reviews/:id POST JSON

String
ROLE_
USER

Add property review

/api/properties/reviews/:id DELET
E

Empty ROLE_
USER

Delete property review

/api/bookings POST JSON
String

ROLE_
USER

Create booking

/api/bookings/myBookings GET Empty ROLE_
USER

Find own bookings

/api/bookings/myPropertiesBo
okings

GET Empty ROLE_
USER

/api/bookings/bookedDaysStat
istitcs/:id/:year

GET Empty ROLE_
USER

Get property booked days
statistics

/api/bookings/bookingAvgGue
stCountStatistics/:id/:year

GET Empty ROLE_
USER

Get average guest count
statistics

/api/bookings/
bookingAvgRatingStatistics
/:id/:year

GET Empty ROLE_
USER

Get property average review
rating statistics

/api/bookings/bookingAvgLen
gthStatistics /:id/:year

GET Empty ROLE_
USER

Get bookings average length
statistics

/api/bookings/myPropertysBoo
kings/:id

GET Empty ROLE_
USER

Find own property’s
bookings

/api/bookings/unavailableDate
s/:id

GET Empty None Find property’s booked and
unavailable for booking
dates

/api/bookings/onlyUnavailable
Dates/:id

PUT JSON
String

ROLE_
USER

Update own property’s
unavailable for booking
dates

/api/bookings/onlyUnavailable
Dates/:id

GET Empty ROLE_
USER

Find own property’s
unavailable for booking
dates

/api/bookings/onlyBookedDate
s/:id

GET Empty ROLE_
USER

Find own property’s booked
dates

/api/bookings/bookingStatuses GET Empty ROLE_
USER

/api/bookings/bookingStatus/:b
ookingId/:statusId

GET Empty ROLE_
USER

Accept/Cancel booking,
Annul last status change

/api/bookings/canSendReview
s/:propertyId

GET Empty ROLE_
USER

/api/messages/:bookingId GET Empty ROLE_
USER

Get conversation messages

/api/messages POTS JSON
String

ROLE_
USER

Message property
owner/renter

/api/messages GET Empty ROLE_
USER

Find unread messages

/api/messages/markRead/:book
ingId

GET Empty ROLE_
USER

/api/accounts POST JSON
String

None User registration

27

/api/accounts/username/:usern
ame

GET Empty None Check username availability

/login?username=:username&
password=:password

POST Empty None User authentication

3.3 Setting up development environment

Web development advances nowadays extremely quickly so do various development tools

that help programmers to write code more swiftly and without great effort manage project

dependencies, builds and tests.

Firstly, as the main integrated development environment will be used Eclipse Enterprise

Edition. It is pretty suitable for Java back end and JavaScript front end development. In order

to make Angular application development a little bit more productive, there are installed some

useful Eclipse plugins. These include: AngularJS Eclipse and TM Terminal. AngularJS

Eclipse plugin enables AngularJS support in the JavaScript editor. TM Terminal integrates

command line terminal into Eclipse. Default Eclipse solutions do not suit for interactive work

with command line utilities such as Bower or Grunt.

The most JavaScript tools require Node.js platform in order to operate. Node.js is an open

source, cross-platform runtime environment that uses Google V8 JavaScript engine, therefore

the most Node.js applications are written in JavaScript [7]. This platform dramatically widens

JavaScript capabilities by providing modules for handling file system I/O, various networking

modules and other essential functions moving JavaScript to a whole new level. Moreover,

Node.js comes bound together with npm. Npm – is a package manager for Node.js

applications that will be used during development process. Please note, that tools downloaded

with npm manager are mostly based on Node.js, hence are not front end libraries or

frameworks, which web browsers can execute, but standalone applications.

Since large projects have typically lots of dependencies, it takes a lot of time to fetch and

install all necessary packages. Nowadays there are several front end package managers, but by

far the most popular is Bower. Although it is command line utility (as the most JavaScript

development tools), it is pretty simple and straight-forward.

To start with, Bower requires Git to be installed on the computer. In order to install globally

Bower package manager the following command should be executed in the command line:

28

npm install -g bower

To install a package you only need to run in the command line:

bower install angular#1.3.15

Bower will resolve all necessary packages (it also checks whether installing package’s

necessary dependencies are present or not) in bower_components folder. During the project

development there will be used current stable version of AngularJS framework – 1.3.15. The

list of project Bower dependencies may be found in Appendix 1.

Next, we need to globally install the JavaScript task runner called Grunt with npm package

manager.

npm install –g grunt

Its main goal is to perform repetitive tasks such as file copying and concatenation, code

minification and testing. In other words, Grunt automates workflow. This allows web

developer to concentrate more on the project itself. Grunt is extremely flexible and versatile:

there are plenty of configuration options in Gruntfile.js. What really makes it outstanding tool

is the fact that it has lots of plugins which can perform a great deal of different actions. On the

other hand, in contrast to Bower, it takes quite a time to understand how this tool actually

works and how to use it, since it requires manual configuring. Nevertheless, time spent on

configurations pays off. The list of project Node.js dependencies may be found in Appendix

2.

It is worth mentioning that there are actually plenty of premade AngularJS project structures

such as ngBoilerplate, angular-seed and so long. Their main aim is to provide developer with

everything they need in order to start coding. It frees developer from doing repetitive actions

required for each new project: configuring Grunt, Karma, organizing project structure.

Although these application skeletons do bring a lot to the kick starting of the Angular-based

application, during this thesis there will not be used any of those. On the contrary, everything

will be configured and organized manually so as to better understand the basics of the setting

up JavaScript developing environment.

In this project grunt is configured to run two tasks:

29

grunt

grunt test

During workflow, when default grunt task is run, it performs following actions on any file

change:

30

Figure 9: Default grunt watch task activity diagram

There is also separate task for a test runner:

Figure 10: Grunt test task activity diagram

Both tasks are running during development process simultaneously in different command line

windows. They are fired on each changed made in the source code and produce their results.

As the result, the project static files structure:

Figure 11: Project static files structure

Let us take a look at each project directive more closely.

31

Bower_components folder

This folder contains project’s front end dependencies.

Node_components folder

This directory contains various Node.js dependencies such as Grunt, Karma and Jasmine.

Src folder

The project’s front end source code is located in this folder.

Build folder

This folder contains the final minified version of the project. It is served to users, not the one

from /src folder.

Tests folder

This directory contains project test files.

In addition, there are several configuration files for Bower (bower.json), Grunt (GruntFile.js),

Karma (karma.conf.js) and Npm (package.json).

3.4 Project sources structure organization

In the previous chapter were examined tools that were used during development and overall

project static files structure. In this chapter we will take a look at organization of source code

structure.

The structure of project has a great influence on the development process. The influence may

be positive or negative depending on structure type and complexity of the project. In this

chapter will be shown and analyzed both plain project structure and more advanced version

that is able to cope with the growing complexity of the application.

Initially the project structure of the application’s front end was just like this:

32

Figure 12: Initial Angular application source code structure

This is a typical web app structure: HTML partials have their own folder (src/partials/);

JavaScript code is spread among files with corresponding names in src/js/ directory; there are

separate folders for CSS files and images.

At early stages of the development, such structure allowed to code rapidly. However, when

the application started to grow it turned out that such project architecture is not scalable

enough: the code maintainability was extremely poor, refactoring was quite hard. It fact, it

desperately needed massive overhaul for a variety of reasons.

33

Firstly, there have been over 1200 lines of code in one src/js/controllers.js file, more than 350

lines of code in src/js/directives.js and in src/js/services.js JavaScript files. When it comes to

main application file – src/js/app.js it had about 300 lines of code. Next, some partials had

their own folders and some did not. All these facts made development process much harder

and time consuming.

Improved version of the project structure [8]:

Figure 13: Improved Angular application source code structure

At the first glance, this project structure is much more complicated than the previous one, but

it does provide a lot of benefits for a number of reasons.

App.js and index.html files

These files are located at the root of the front end structure. Index.html – is main html file that

loads all the necessary files of the application. It also holds common elements that share all

34

pages of the application (for example, header and footer inclusions). App.js – is main

JavaScript file that is responsible for AngularJS application setup.

It is necessary to mention that app.js does not contain application routing rules (configured

with ui-router – routing framework for AngularJS) – they are defined in separate modules of

the application. Such way of organizing application states ensures complete modularity of the

application: there are quantity of absolutely standalone modules that do not depend on main

app.js file and vice versa. In the main app.js file, these modules only needed to be declared as

dependencies.

Assets folder

This folder contains CSS files and images that are used by the application.

Modules folder

The modules folder contains the actual sections of the application. Each folder represents one

separate state and its nested states. JavaScript files contain state configurations and controller

for a single state (whether it is parent or nested state). Folder partials contain view templates

for specific states. On the one hand, it was possible to go even further by creating separate

subfolders for different nested views of a parent view but it is not really necessary in case of

the current project.

Shared folder

The shared folder contains reusable components of the application: directives, filters and

services. Please note, that there are several service files, as distinct from first application

structure, where only one service file is used. The same way of grouping and partition is used

in both directives and filters directories.

Using such project organizational approach, we decouple different component of the

application, guaranteeing modularity and scalability.

To sum up, there are great varieties of different approaches that may be suitable for all sorts

of projects: whether it is small tutorial or complicated system. One however should take into

consideration each approach’s advantages and drawbacks before deciding which structure to

follow. There is no agreed upon approach how to organize AngularJS app structure. The

35

above-described final structure of the application is just one of the numerous variations, but it

fully fulfilled this project requirements.

3.5 AngularJS application architecture

AngularJS framework provides a lot of flexibility and good support of separation of concerns:

presentation logic, business logic and presentation state are nicely separated from each other.

As it was stated by Igor Minar, one of the key developers of AngularJS framework,

AngularJS application architectural pattern used to be closer to MVC (Model View

Controller) pattern, but now it is closer to MVVM (Model View ViewModel). On the other

hand, he prefers to call AngularJS to be so-called MVW (Model View Whatever) framework

– it does not strictly categorize framework, but identifies it just with MV*-type frameworks

[9].

The diagram illustrates the architecture of the application [10].

Figure 14: Angular application architecture

Application root module

Other modules Module Config
Run Other modules Other module

Config

States

Constant

States

View Controller

Directives Services/Factories

$scope

HTTP
response

interceptor

Constant

State
change
watcher

Other
Security
functions

36

The application root module consists of following components: application modules,

constants declarations, configuration phase and run block.

Firstly, in the application root module are declared all used submodules.

Secondly, when AngularJS bootstraps it applies all declared constant definitions. In the

current application there are two constants which contain application URL and common part

of the REST endpoints URL.

Therefore, AngularJS applies registered configuration blocks. Root application configuration

block contains a default state which user is redirected to if requested path does not match any

of the URLs specified. There is also declared HTTP responses interceptor that catches

responses from the server with error codes 401 Unauthorized, 403 Forbidden and behaves

accordingly.

Run block is the code that runs once application has been configured. There is declared state

change watcher that on each state change alters page title and performs necessary security

checks determining whether user is authorized to access given state or not.

Each submodule is able to use full list of angular features. In order to raise decoupling of

application modules states are configured not in the application root module but rather in the

concrete submodule. There are also configured controllers for a specific state.

The main goal of the state is to bind controller and view together by creating $scope object

that share controller and view.

When controllers are initialized Angular dependency injection subsystem provides controllers

with necessary services and factories. Angular also compiles directives in the templates to

produce view.

3.5.1 Dependency injection

Dependency injection is cornerstone of AngularJS framework that makes it possible to create

loosely coupled applications [11].

The most application components are not standalone and do depend on other modules.

Dependencies are typically defined in inline array annotation:

37

1. propertyService.factory("PropertyService", ["$resource", "API_URL", function($resou

rce,API_URL) {
2. //factory code

3. }]);

Module dependencies can also be defined without passing an array which consists of

dependency names and function but just one function with its parameters.

1. propertyService.factory("PropertyService", function($resource,API_URL) {
2. //factory code

3. });

However, such approach has a disadvantage: in this case, after application code minification

all the dependency names will be lost and dependency injector will not be able to find

required dependencies. On the contrary, the first code block will work properly since string

annotations are not minified and AngularJS is able to locate necessary dependencies:

1. propertyService.factory("PropertyService",["$resource","API_URL",function(a,b){...}]

);

Because of the fact that the project code minification is performed by Grunt, only the

recommended way of declaring module dependencies is used in the project.

3.5.2 Scope object

When it comes to $scope object, it is undoubtedly crucial part of the AngularJS application. It

is so called glue between controller and view – a layer where all the current variables and

functions are stored. Both controller and view can access same scope.

Scopes can be nested as much as needed in order to limit access to some application

properties while providing access to shared model properties [12].

Let us have a look at the following diagram to understand how scopes work [13]:

38

Figure 15: Angular application scope object workflow

First, there is root scope that is globally accessible in any module of the application. It is

created as soon as application root module is specified.

When each controller is loaded it creates own child scope that inherits all properties from the

root scope. Moreover, when AngularJS in the HTML partial (which is assigned using ui-

router – AngularJS routing module) compiles directive ng-repeat it creates child scope for this

directive. However, one should be aware that the child scope properties are not accessible

from the parent scope. Yet it allows child scopes to use their own private properties without

interfering with parent scope.

Whenever controller or view makes change in the scope object, the other side is notified about

it and gets updated data [14]. This is how two-way data binding between controller and view

works. It is performed automatically by Angular.

3.6 Third-party JavaScript libraries integration

Although AngularJS provides a great deal of built-in functions and objects it cannot always

alone fulfil all the project requirements. Therefore rises the need for other JavaScript libraries.

39

Typically, libraries that do not change HTML DOM and are only accessed in JavaScript code

can freely be used in all AngularJS modules. For instance, Moment.js – a JavaScript library

that makes manipulations with dates much more convenient than the standard Date JavaScript

object.

When it comes to libraries that do need to manipulate HTML DOM, they are usually

implemented in the Angular directives. In fact, it is recommended to integrate them in the

application with directives in order to improve Angular application decoupling and testability.

Directives – are HTML DOM elements that tell AngularJS’s HTML compiler to attach a

specified behavior to that DOM element [15].

Consider the following example. During the project development, in order to successfully

implement “Update property’s unavailable for booking dates” use case there was a need in

using bootstrap-datepicker external JavaScript library that enables multidate picking. The

datepicker is configured in a jQuery-way:

1. $('.datepicker').datepicker({

2. orientation:"top auto",
3. startDate: '0d'

4. })

Since using jQuery in the Angular controllers is considered as bad practice, it should be

moved into a separate directive:

1. propertyDirective.directive("myDatepicker",function(){
2. return {

3. restrict:"E",

4. scope:{

5. unavailableDates:"=",
6. bookedDates:"=",

7. updateUnDates:"&"

8. },

9. templateUrl:"shared/directives/partials/datepicker.html",

10. link : function(scope){
11. //a lot of code omitted
12. $('.datepicker').datepicker({
13. orientation:"top auto",
14. startDate: '0d'
15. })
16. //a lot of code omitted
17. }
18. };
19. });

Firstly, this particular directive can only be used as a HTML element (not attribute inside

other tags for example, line 3). Secondly, the directive defines its own isolated scope (not

child scope, lines 4-8). It means that it does not inherit any properties from parent scope but

40

operates only with the passed to the directive variables and functions. All jQuery logic is

moved into the directive link function (lines 10-17).

Besides, directive also references to a separate template (line 9) that is used by jQuery to

produce datepicker:

1. <div class="input-append date">
2. <div class="datepicker" data-date="" data-date-format="dd/mm/yyyy" data-date-

multidate="true"></div>

3. <input type="hidden" id="datepicker_data_input"/>

4. </div>

The directive is used in the application templates in a following way:

1. <my-datepicker class="col-md-12" ng-
if="currentUnDates.$resolved && currentBookedDates.$resolved"

2. update-un-dates="updateUnDates(dates)"

3. unavailable-dates="currentUnDates"

4. booked-dates="currentBookedDates"></my-datepicker>

The result of compilation of my-datepicker directive is shown below:

Figure 16: My-datepicker directive produced result

As seen from above, directives are just part of HTML that perform some hidden from user

actions. The user only needs to specify required attributes. Moreover, AngularJS directives

are extremely flexible – they can be nested as much as necessary, for example, ngIf directive

plays here crucial role: it does not allow AngularJS to compile myDatepicker directive as long

as there is not resolved data from the server. Otherwise, the directive will receive empty array

and produce nothing.

41

3.7 AngularJS application security

There are various ways to implement authentication and authorization in AngularJS-based

application. They depend on level of security needed, server-side technologies used and how

scalable application should be.

For the purposes of the current project there will be used authentication via cookies and

session. The reason for this is that there are actually only one client: web browser that is able

to operate cookies. Were there other clients such as smartphones, other web services this

approach would not be so elegant. This is one of the reasons why HTTP sessions usage is not

considered as the best practice in the REST applications.

As a server-side security framework is used Spring Security, since it fulfils all the

requirements, though it needs a bit of modification in its standard behavior to work with

single page application [16][17].

The authentication is implemented in a following way:

In the single page application current logged in user’s username and authority is stored in a

web browser’s HTML5 local storage.

When user attempts to log in his credentials are sent to the following REST endpoint:

Table 6: Application login REST endpoint

URL HTTP
Verb

POST
body

Authority
required

Use case

/login?username=:username&
password=:password

POST Empty None User authentication

42

Figure 17: Successful authentication sequence diagram

As it shown in Figure 16, if user with provided credentials exists, server creates new session.

Then, it returns HTTP response with logged in user’s username and authority. Response also

contains Set-Cookie header. User related data is then saved in HTML5 local storage by

AngularJS application. In addition, because of Set-Cookie header, web browser automatically

creates new cookie with received from server values. If authentication fails, server returns

error code 401 Unauthorized and authentication is not performed.

In order to restrict users from accessing states that they are not allowed to enter in each state

configuration are specified required authorities:

1. $stateProvider.state("addProperty",{

2. url:"/addProperty",
3. //code omitted

4. data : {

5. authorities:['ROLE_USER']

6. }

7. });

This information is used by a state change watcher, which runs in the root of the application:

1. $rootScope.$on('$stateChangeStart',
2. function(event, toState, toStateParams, fromState, fromStateParams){

3. //code omitted

4. });

43

Although all registered users in the application have same authority (ROLE_USER) authority

check is still implemented just to show one of the ways of restricting users to access some

application states in AngularJS application.

The following sequence diagram shows what actions are performed if user is not

authenticated.

Figure 18: Security checks on state change sequence diagram

To begin with, there are defined $stateChangeStart event which is fired when state transition

begins. Firstly, it gets what authorities are required to access given state. Secondly, it gets

current user authentication status and authorities. Then it checks whether current user

authenticated or not. If user is not authenticated, then the requested by user state is saved in

the application $rootScope and user is redirected to login page. The requested state is saved in

order to redirect user to it after successful authentication.

44

Theoretically, there might also happen such situation, that user is authenticated but does not

possess required authorities. In this case he is redirected to access denied state. However, in

the current project all registered users have same role, therefore it can never happen. In fact,

there is no need in role control in the project front end but it is still implemented just to show

that user roles control is possible to implement in the AngularJS-based application.

There is also absolute necessity in controlling user’s authorities on the server-side of the

application. There are several reasons for that. Firstly, users can access server REST

endpoints directly bypassing the front end. Moreover, user can open application after session

expiration but with still existing data in HTML5 storage, therefore frontend will not notice

any changes and treat current user as a logged in user. This is completely undesirable

behavior.

In order to resolve these issues the server on each request checks user authorities and if they

are not sufficient returns 401 Unauthorized or 403 Forbidden error codes. This not only solves

the first problem but also prepares the ground for the solution of the second problem.

Consider the following diagram:

Figure 19: AngularJS http response interceptor sequence diagram

Front end needs to get to know that user is not actually logged in and clear HTML5 local

storage. This may be achieved with configured in the application root HTTP Response

45

interceptor. Whenever Angular application receives 401 Unauthorized error from the server

(as the result of actually unauthorized user tries to access secured REST endpoint), it clears

stored in local storage information and redirects user to login state. In case of error 403

Forbidden (if user does not possess sufficient authorities) it simply redirects to access denied

error page.

46

4. AngularJS application testing

4.1 Unit testing tools

The Angular way of separating different components of the application makes it easy to test a

great variety of application modules and components.

As a main testing framework will be used Jasmine in conjunction with Karma and Grunt.

Jasmine – is an open source unit testing framework for JavaScript. It does not depend on other

JavaScript frameworks or web browsers. It is able to test both JavaScript versions used in

website development and JavaScript used in Node.js-based applications.

Tests written with Jasmine are usually executed using Karma. Karma – is a JavaScript test

runner that tells us which tests failed or passed.

Karma has pretty good integration with Grunt which allows to run Karma using Grunt

workflow tool. The activity diagram of Grunt testing task is shown in chapter 3.2 Setting up

development environment.

All above mentioned tools are based on Node.js runtime environment therefore required to be

fetched with npm package manager.

In order to test AngularJS application there should be Angular mocks package installed:

bower install angular-mocks

This package provides us necessary classes for unit testing.

With Jasmine it is possible to test a lot of different components of the application: controllers,

custom directives, custom filters, services [18].

4.2 Testing Angular filters

For instance, we have simple custom filter that truncates text if its length is greater than the

length given to the filter:

47

1. propertyFilters.filter('truncate', function(){

2. return function(text,limit,showMore){
3. //code omitted

4. };

5. });

The filter’s first parameter is text to be truncated, second parameter is maximum length of the

text and showMore must equal string “Show more” otherwise text will not be truncated. The

filter returns String value.

A typical Jasmine test:

1. describe('Truncate filter unit testing',function(){
2. var $filter;

3. var truncateFilter;

4. var text = "Test me please";
5.

6. beforeEach(function(){

7. module('RentalApp');

8. });

9. beforeEach(inject(function(_$filter_){

10. $filter = _$filter_;
11. truncateFilter = $filter('truncate');
12. }));
13.
14. it('returns full text if not Show more', function(){
15. expect(truncateFilter(text,5,"Show less").length).toEqual(text.length);
16. });
17. it('returns full text if Show more and length is greater than text

length', function(){

18. expect(truncateFilter(text,500,"Show more").length).toEqual(text.length);
19. });
20. it('returns truncated text if Show more and length less than text length', funct

ion(){

21. expect(truncateFilter(text,6,"Show more")).toEqual("Test...");
22. });
23. });

Describe code block represents a test suite (a group of tests). It has two parameters: a string,

that is a short description of the suite and a function, which is test implementation (line 1).

There is no restrictions in nesting describe blocks.

beforeEach code block runs before each test execution (lines 6-12). Typically, it is used to

perform test initial setup.

module(‘RentalApp’) in the first beforeEach block indicates which module should be loaded

(line 7). In this case, it is AngularJS application main module.

The inject function inside second beforeEach block main goal is to get necessary

dependencies into the test via AngularJS dependency injector (lines 9-12). Please note the

underscores (_) at the beginning and the end of $filter parameter. It is a little trick that is used

48

in order to preserve the same name ($filter) of the variable inside the test suite. The injector

unwraps underscores from around the parameter and injects correct dependency. To resolved

truncate filter, we just pass its name to $filter variable.

A single test is defined within it block which executable code ends with one or more

expectations (lines 14-22). They are pretty much self-explanatory: expect function takes a

value, called the actual, and chained with matcher function that receives expected value.

4.3 Testing Angular directives

Moreover, it is possible to test custom directives with Jasmine, for example, checking

generated DOM.

For example, there are custom directive that counts the booking price and amount of nights

and generates tag using partial:

1. {{nightCount}} nights - {{totalPrice}} EUR

The test suite:

1. describe('Count booking price directive unit testing', function() {
2. var $compile,

3. $rootScope,

4. compiledResult;
5.

6. beforeEach(module('RentalApp'));

7. beforeEach(module('myTemplates'));

8. beforeEach(inject(function(_$compile_, _$rootScope_){

9. $compile = _$compile_;

10. $rootScope = _$rootScope_;
11. var checkIn = moment("02/05/2015",'DD/MM/YYYY');
12. var checkOut = moment("9/05/2015",'DD/MM/YYYY');
13. compiledResult = $compile("<count-booking-price night-price='5' check-

in='"+checkIn+"' check-out='"+checkOut+"'></count-booking-price>")($rootScope);

14. $rootScope.$digest();
15. }));
16.
17. it('Should produce span element', function() {
18. expect(compiledResult.find("span").length).toEqual(1);
19. });
20. it('Should calculate property night count and price', function(){
21. expect(compiledResult.find("span").html()).toEqual("7 nights - 35 EUR");
22. });
23. });

Please note that there is loaded module ‘myTemplates’ (line 7). It contains all html partials of

the project. The module generated by Karma plugin karma-ng-html2js-preprocessor. It is

49

required to use it so that AngularJS directives would not try to fetch needed partials from the

server (and fail to do so), but from AngularJS $templateCache storage.

In order to compile given directive it is necessary to pass directive HTML code to special

AngularJS service called $compile (line 13). Furthermore there is also called

$rootScope.$digest() in order to simulate scope life cycle and therefore finalize the directive

generation (line 14). Then it is possible to test DOM elements that are generated by the

directive (lines 17-22).

Jasmine together with Karma are extremely powerful tools that can test a lot of aspects of the

AngularJS-based applications thanks to JavaScript natural flexibility, AngularJS framework

architecture principles and dependency injection system.

4.4 Testing Angular controllers

AngularJS controllers play undoubtedly crucial part in the application, hence they are also

needed to be tested. In this chapter is shown how to test controllers that interact with server

REST endpoints.

1. describe('ShowPropertyCtrl controller unit testing',function(){

2. var API_URL, $httpBackend, scope, $controller;

3. var stateParams = {propertyId:1};
4.

5. beforeEach(function(){

6. module('RentalApp');

7. });

8. beforeEach(module(function ($urlRouterProvider) {

9. $urlRouterProvider.otherwise(function(){return false;});
10. }));
11. beforeEach(inject(function(_$controller_,$rootScope,_$httpBackend_,_API_URL_){
12. $controller = _$controller_;
13. $httpBackend = _$httpBackend_;
14. API_URL = _API_URL_;
15. scope = $rootScope.$new();
16.

$controller('ShowPropertyCtrl',{$scope:scope,$stateParams:stateParams});

17. $httpBackend.when('GET',API_URL+'properties/reviews/1').respond([{id:1}]);
18.

$httpBackend.when('GET',API_URL+'bookings/canSendReviews/1').respond({can:true});
19.

$httpBackend.when('GET',API_URL+'properties/1').respond({id:1,description:"descripti

ons",rules:"rules",imagePaths:[{path:"img1.jpg"},{path:"img2.jpg"},{path:"img3.jpg"}

]});

20.
$httpBackend.when('GET',API_URL+'bookings/unavailableDates/1').respond([{date:'27/06

/15'}]);

21. $httpBackend.flush();
22. }));
23.
24. describe('$scope.mainImgUrl initial value',function(){
25. it('should set first image as main image',function(){

50

26. expect(scope.mainImgUrl).toEqual("img1.jpg");
27. });
28. });
29. describe('$scope.nextImg',function(){
30. it('should set second image as main image',function(){
31. scope.nextImg();
32. expect(scope.mainImgUrl).toEqual("img2.jpg");
33. });
34. });
35. describe('$scope.prevImg',function(){
36. it('should set third image as main image',function(){
37. scope.prevImg();
38. expect(scope.mainImgUrl).toEqual("img3.jpg");
39. });
40. });
41.
42. afterEach(function() {
43. $httpBackend.verifyNoOutstandingExpectation();
44. $httpBackend.verifyNoOutstandingRequest();
45. $httpBackend.resetExpectations();
46. });
47. });

In order to execute the controller explicitly, there should be used $controller service (line 16).

The test suite holds controller scope that is used to access controller functionality (line 2 and

16). Notice that during tests controller is not bound to any state, ui-router routing module do

not participate in its creation and execution. Therefore, it is needed to mock $stateParams

object and pass it to controller so that controller would normally work (line 16).

When controller bootstraps it fetches required data from the server. In order to simulate HTTP

server-side implementation there should be used special service $httpBackend which is

provided by angular-mocks module. In the $httpBackend service is specified which URL it

fakes and what data should be returned to the controller (lines 17-21).

Moreover, there occurs a problem if the project uses AngularJS ui-router. Namely, because of

following configuration in the root application configuration code block:

1. $urlRouterProvider.otherwise("/");

It specifies default application state where to redirect users if requested state cannot be found.

This configuration is applied during tests forcing application to make GET call asking for

HTML partial of default state. One of the possible solutions is to eliminate this configuration

in the beforeEach block (lines 8-10) [19].

Lastly, after each test was run $httpBackend service should be reset (lines 42-46). Other parts

of the test suite are pretty similar to the previous examples.

51

5. Conclusion

The main goal of the thesis was to explore the architecture of Single Page Application and

nature of AngularJS-based applications. There have been reviewed a lot of aspects of

AngularJS application such as project modules organization, AngularJS application

architecture, integration with third-party JavaScript libraries and implementation of

authentication. In the course of the work, there were also overviewed how suitable is

AngularJS applications for unit testing with Jasmine testing framework. Lastly, there were

reviewed different JavaScript development tools.

In order to achieve abovementioned objectives there have been developed sample project –

Property rental system.

AngularJS is extremely powerful and flexible framework that provides a lot of freedom to

developer. Developer is free to choose which application front end architecture and structure

to build. Right architectural choices ensure further scalability and maintainability of the

application.

In AngularJS application authentication and authorization may be implemented in a various

ways. One of them is using traditional session and cookies in conjunction with HTML5 local

storage and AngularJS components.

What is more, AngularJS framework provides all the necessary means to integrate third-party

JavaScript libraries into the application. This AngularJS feature was utilized in the project to

the fullest extent.

When it comes to testing AngularJS application, it turned out that AngularJS is test-friendly

framework – the most application modules can be tested: from filters that simply modify

given input to directives that compile HTML code.

There are constant growth of JavaScript-based development tools that allow developer to

focus mainly on application itself rather than on the performing routine and monotonous tasks

such as running tests, downloading project dependencies, etc. In the scope of the thesis, there

were used Bower, Grunt and Karma. They did prove to be extremely useful and customizable.

52

To sum up, all the thesis objectives were successfully achieved. On the other hand, some of

them could have been examined more precisely, for instance, AngularJS application

authentication concerns. One of the possible areas of further research could be usage of

various JavaScript development tools in AngularJS project.

53

Kokkuvõtte

Bakalaureusetöö põhiseks ülesandeks oli Single Page Application arhitektuuriga ja Angularil

põhinevate veebirakenduste omaduste ja disaini uurimine. Lõputöö käigus uuriti Angulari

raamistikku kasutavate rakenduste erinevaid aspekte: projekti osade struktureerimine,

rakenduse arhitektuuri, integratsioon teiste Javascript’i teekidega ja autentimise realiseerimine

Angulari rakenduses. Töö käigus uuriti kui hästi Angulari rakendus sobib unit testimiseks,

kasutades Jasmine testimise raamistikku. Käsitleti ka mitmesuguseid Javascript’i arendamise

töövahendeid.

Uurimise käigus ehitatud rakenduse valdkonnaks oli kinnisvara rentimise rakendus.

AngularJS on väga võimalusterikas ja paindlik raamistik mis pakub arendajale päris palju

vabadust. Arendajal on suhteliselt suur vabadus valida rakenduse kliendi poole arhitektuuri ja

projekti struktuuri ülesehitust. Õiged valikud tagavad, et rakendus on skaleeritav ja hooldatav

ja antud töö üheks eesmärgiks ja tulemuks oli nende valikute väljaselgitamine.

AngularJS rakenduses on võimalik erinevalt rakendada kasutajatunnustust. Üks viis on

kasutada traditsioonilist sessiooni koos HTML5 local storage’ga ja AngularJS’i

komponentitega.

AngularJS võimaldab integreerida rakendusse teisi Javascripti teeke, ka seda võimalust töö

käigus uuriti ja kasutati.

Uuriti AngularJS’i raamistiku poolt pakutavat tuge testimisele. Angular on testimise-sõbralik

süsteem - peaaegu kõik rakenduse elemendid on testitavad: alustades filtritest mis lihtsalt

muutuvad antud sisendit ja lõpetades directive’tega mis toodavad HTML koodi.

Tänapäeval arenevad Javascripti arendamise tööriistad kiiresti. Nad vabastavad arendajaid

rutiinsetest ja monotoonsetest tööst nagu testide käimapanek, teekide allalaadimine jne.

Projektis kasutati töövahendeid Bower, Grunt ja Karma. Nad on kahtlemata päris kasulikud

ja vajadustele kohaldatavad.

54

Arvan et tööle püstitatud eesmärgid on saavutatud. Selgusid ka teemad millega võiks tegeleda

edasi, näiteks AngularJS rakenduse kasutajatuvastamise protsess. Edasiseks

uurimisvaldkonnaks võiks olla ka Angulari koostöö erinevate Javascripti arendusvahenditega.

55

References

1. Single-page application. – Wikipedia. [WWW] http://en.wikipedia.org/wiki/Single-

page_application (08.04.2015)

2. François Petitit (2014) The new Web application architectures and their impacts for

enterprises – Part 1 – [WWW] http://blog.octo.com/en/new-web-application-

architectures-and-impacts-for-enterprises-1/ (15.04.2015)

3. AngularJS. – Wikipedia. [WWW] https://en.wikipedia.org/wiki/AngularJS

(09.04.2015)

4. Market share yearly trends for JavaScript libraries for websites. – W3Techs. [WWW]

http://w3techs.com/technologies/history_overview/javascript_library/ms/y

(14.05.2015)

5. Google Trends – Web search interest: angular js, ember js, backbone js, knockout js –

Worldwide, Jan 2010 – May 2015 – Google Trends [WWW]

http://www.google.com/trends/explore?q=angular+js#q=angular%20js%2C%20Ext%

20JS%2C%20ember%20js%2C%20backbone%20js%2C%20knockout%20js&date=1

%2F2010%2064m&cmpt=q&tz= (17.05.2015)

6. Dan Siepen (2014) – Top 15 sites built with AngularJS. – [WWW]

http://coderfactory.co/posts/top-sites-built-with-angularjs (14.05.2015)

7. Node.JS. – Wikipedia. [WWW] https://en.wikipedia.org/wiki/Node.js (14.04.2015)

8. Adnan Kukic. (2014) AngularJS Best Practices: Directory Structure. – [WWW]

https://scotch.io/tutorials/angularjs-best-practices-directory-structure (10.04.2015)

9. Igor Minar. (2012) MVC vs MVVM vs MVP. What a controversial topic that many

developers can spend hours and hours debating and arguing about. – [WWW]

https://plus.google.com/+AngularJS/posts/aZNVhj355G2 (17.05.2015)

56

10. Marco Rinck (2014) How to structure large angularJS applications – [WWW]

http://entwicklertagebuch.com/blog/2013/10/how-to-structure-large-angularjs-

applications/ (16.04.2015)

11. AngularJS: Developer guide: Dependency injection – [WWW]

https://docs.angularjs.org/guide/di (19.04.2015)

12. AngularJS: Developer guide: Scopes – [WWW] https://docs.angularjs.org/guide/scope

(18.04.2015)

13. AngularJS: Tutorial: 2 – Angular templates – [WWW]

https://docs.angularjs.org/tutorial/step_02 (20.04.2015)

14. AngularJS: Developer guide: Data binding – [WWW]

https://docs.angularjs.org/guide/databinding (18.04.2015)

15. AngularJS: Developer guide: Directives – [WWW]

https://docs.angularjs.org/guide/directive (19.04.2015)

16. Dave Syer (2015) The Login Page: Angular JS and Spring Security Part II – [WWW]

https://spring.io/blog/2015/01/12/the-login-page-angular-js-and-spring-security-part-ii

(21.04.2015)

17. Christopher Henkel (2014) Web Development Using Spring and AngularJS - Tutorial

12 – [WWW] https://www.youtube.com/watch?v=fx7hoza7wIA (21.04.2015)

18. AngularJS: Developer guide: Unit testing – [WWW]

https://docs.angularjs.org/guide/unit-testing (23.04.2015)

19. Karma test breaks after using ui-router. – [WWW] https://github.com/angular-ui/ui-

router/issues/212 (04.05.2015)

57

Appendix 1. Bower dependencies

Dependency Version Description

jquery 2.1.3 Although AngularJS framework has its own

implementation of some jQuery functions that is called

jQLite, jQuery is still needed as dependency for other

JavaScript libraries that are used in the project.

bootstrap 3.3.2 Bootstrap is extremely powerful framework for

developing web applications, used mainly for user

interface development.

lodash 3.4.0 JavaScript utility library.

moment 2.9.0 JavaScript library for date manipulations.

bootstrap-datepicker 1.4.0 Datetimepicker with Bootstrap styles.

angular 1.3.15 JavaScript framework that allows to create Single page

applications.

angular-resource 1.3.14 AngularJS module that provides high-level abstraction

for interactions with RESTful server endpoints.

angular-bootstrap 0.12.1 AngularJS directives for some Bootstrap elements.

angular-ui-router 0.2.13 Routing framework for AngularJS. Connects URLs to

specific states that load required HTML partials,

controllers and other data.

angular-google-maps 2.0.13 Google Maps AngularJS integration.

ngAutocomplete 1.0.0 Google Places Autocomplete AngularJS integration.

angular-bootstrap- 0.3.12 AngularJS datetimepicker with Bootstrap styles.

58

datetimepicker

ng-file-upload 3.2.4 AngularJS directive for file uploading.

highcharts-ng 0.0.8 Highcharts library AngularJS integration.

angular-mocks 1.3.15 Angular module for testing AngularJS application.

59

Appendix 2. Node.js dependencies

Dependency Version Description

grunt 0.4.5 JavaScript task runner. Automates a lot of aspects of

JavaScript development.

grunt-contrib-concat 0.5.1 Plugin for Grunt. Used to concatenate multiple

JavaScript files into one.

grunt-contrib-uglify 0.9.1 Plugin for Grunt. Used to minify JavaScript files.

grunt-contrib-copy 0.8.0 Plugin for Grunt. Used to copy files.

grunt-contrib-watch 0.6.1 Plugin for Grunt. Used to run predefined tasks.

grunt-contrib-clean 0.6.0 Plugin for Grunt. Used to delete files.

karma 0.12.31 Test runner for JavaScript.

jasmine-core 2.2.0 JavaScript testing framework.

karma-jasmine 0.3.5 Plugin for Karma in order to integrate Jasmine

framework.

karma-ng-html2js-

preprocessor

0.1.2 Plugin for Karma. Used to gather application HTML

templates and put them into AngularJS templates.

karma-phantomjs-

launcher

0.1.4 Plugin for Karma. Used to run PhantomJS – web

browser without graphical user interface where all the

tests are executed.

