

Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Rasmus Rüngenen 164640IAPB

SOLUTION FOR KUBERNETES RESOURCE

MONITORING

Bachelor’s thesis

Supervisor: Ago Luberg

 MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Rasmus Rüngenen 164640IAPB

KUBERNETESE RESSURSSIDE

MONITOORINGU LAHENDUS

bakalaureusetöö

Juhendaja: Ago Luberg

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Rasmus Rüngenen

05.01.2021

4

Abstract

Kubernetes is a container orchestration platform, which allows to configure and

coordinate the lifecycle of containers. Kubernetes is originally made by Google and was

released to the public in 2014 June.

The main purpose of this thesis is to implement the Kubernetes resource monitoring

solution in Pipedrive. This was necessary because Kubernetes platform was introduced

to Pipedrive, which at the time, had no way of monitoring.

In this thesis the plausible open-source solutions on the market were analysed against a

set of requirements. These requirements were reliability, metrics usability, the total

amount of metrics, and adjustability to Pipedrive's requirements. After the analysis, the

author concluded that there are no suitable open-source solutions that would comply with

the requirements. Due to no suitable solutions, the creation of custom implementation

was required. The exporters' architecture was created keeping in mind the goals of data

gathering time constraints, modularity, and the external configuration possibility of

metrics and the requirements from the analysis.

As a result of this implementation, the author built a solution that follows previously set

requirements and was deployed to the Pipedrive production environment as a core

solution for alerting and monitoring of Pipedrive’s services resource usage.

After the implementation and deployment to the production environment, the author

presents an overview related to the exporter in the production environment. The author

also gathered feedback regarding the built solution from Pipedrive engineers and the

responses were positive.

This thesis is written in English and is 31 pages long, including 8 chapters, 9 figures and

4 tables.

5

Annotatsioon

Kubernetese ressursside monitooringu lahendus

Kubernetes on konteinerite haldamise platvorm, mille abil on võimalik hallata ja

koordineerida konteinerite elutsüklit ja tööd. Kubernetes on loodud Google poolt ning

tehti avalikusele kättesaadavaks 2014. aasta juunis.

Lõputöö peamine eesmärk on implementeerida Kubernetese ressursside monitooringu

lahendus Pipedrive'ile. Selle eesmärgi motivaatoriks on Kubernetese platvormi

kasutusele võtmine antud firmas, mille tõttu oli vaja uut monitooringu lahendust.

Selle lõputöö raames analüüsis autor turul olevaid vabavaralisi lahendusi kindlaid

kriteeriumeid jälgides. Nendeks kriteeriumiteks olid töökindlus, meetrikate kasutatavus

ehk mis kujul need on, meetrikate koguarv koos vajamineva kettapinna suurusega ning

vastavus Pipedrive’i nõuetele. Analüüsi tulemusena selgus, et olemasolevad lahendused

ei vasta kriteeriumitele, seega otsustas autor implementeerida lahenduse. Antud

rakenduse andmevaramuna kasutatakse Prometheusi. Selle lahenduse planeerimisel pidas

autor meeles kolme eesmärki. Esiteks andmevaramu poolt tulevaid ajapiiranguid, mis

standardina on 30 sekundit. Teiseks rakenduse modulaarsust ning kolmandaks meetrikate

konfiguratsiooni eraldatust rakendusest. Lisaks peeti meeles ka analüüsis käsitletud

kriteeriumeid.

Autor implementeeris rakenduse edukalt Pipedrive’i toodangu keskkonda ning see võeti

kasutusele peamise konteinerite ressursside monitooringu rakendusena firmas. Antud

lahenduse väljundit kasutatakse igapäevaselt antud firmas erinevate meeskondade poolt.

Peamine eesmärk antud lahenduse väljundil on võimaldada näha ressursside kasutuse

taset ning garanteerida teenuste stabiilsus. Lisaks on võimalik anda häiret, kui teenuse

ressursside kasutused lähenevad kriitilisele piirile kasutades implementeeritud lahenduse

meetrikaid.

6

Peale rakenduse edukat rakendamist toodangukeskkonnas küsis autor tagasisidet

Pipedrive’i inseneridelt, kes kasutavad oma töös antud rakenduse meetrikaid. Tagasiside

oli positiivne ning insenerid leidsid, et kokkuvõttes on tegemist rakendusega, mis aitab

neil igapäevaseid toiminguid lihtsustada Kubernetese platvormil.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 31 leheküljel, 8 peatükki, 9

joonist, 4 tabelit.

7

List of abbreviations and terms

API Application Programming Interface

cAdvisor Container Advisor

CI/CD Continuous Integration/Continuous Development

CNCF Cloud Native Computing Foundation

FIFO First in First out

GB Gigabyte

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

K8s Numeronym of Kubernetes

Kube Abbreviation of Kubernetes

kube-state-metrics Kubernetes state metrics

MB Megabyte

Metric Time series that is defined by its unique name and optional key-

value pairs called labels

PromQL Prometheus Query Language

REST API Restful Application Programming Interface

Scraping Prometheus configuration task, what defines the endpoints,

where data should be retrieved.

SIG Special Interest Group

TSDB Time series database

UID Unique Identifier

VM Virtual Machine

YAML YAML is a human-readable data-serialization language

8

Table of contents

1 Introduction ... 12

2 Background .. 13

2.1 Monitoring .. 13

2.2 Kubernetes .. 13

2.3 Monitoring Kubernetes .. 15

2.4 Prometheus.. 16

2.4.1 Prometheus metrics... 17

2.4.2 Prometheus exporters.. 18

2.4.3 Prometheus as a data storage... 18

3 Analysis of existing solutions ... 19

3.1 Container Advisor ... 19

3.1.1 Reliability ... 19

3.1.2 Metrics usability ... 20

3.1.3 Total amount of metrics .. 20

3.1.4 Adjustability to Pipedrive’s requirements ... 20

3.2 kube-state-metrics ... 21

3.2.1 Reliability ... 21

3.2.2 Metrics usability ... 21

3.2.3 Total amount of metrics .. 22

3.2.4 Adjustability to Pipedrive’s requirements ... 22

3.3 metrics-server .. 22

3.3.1 Reliability ... 23

3.3.2 Metrics usability ... 23

3.3.3 Total amount of metrics .. 23

3.4 Summary ... 23

4 Proposed method .. 25

4.1 Proposed Architecture ... 25

4.2 Service technological stack .. 26

9

4.3 Pre-requisites for metrics and labels .. 27

5 Implementation .. 28

5.1 Service initialization with the first cycle .. 28

5.2 CRON job for data collection and metrics ... 29

5.3 Requests to exporter .. 30

5.4 Data gathering and storing ... 31

5.5 Metrics configuration .. 34

5.6 Metrics creation and exposing ... 36

5.7 Deployment of the exporter ... 37

6 Implementation in Production Environment ... 38

6.1 Feedback from the engineering teams .. 39

7 Future outcomes ... 42

8 Summary ... 43

References .. 44

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis... 46

Appendix 2 – Proposed metrics and labels .. 48

Appendix 3 – Feedback questions to engineering teams .. 51

10

List of figures

Figure 1. Example high-level architecture of Kubernetes cluster 14

Figure 2. The example architecture of Prometheus .. 16

Figure 3. Default Prometheus metric model .. 17

Figure 4. Example of Prometheus metric ... 18

Figure 5. Service initialization with the first lifecycle .. 28

Figure 6. CRON job one lifecycle ... 30

Figure 7. Request to exporter .. 31

Figure 8. Example of metrics configuration ... 35

Figure 9. Naming convention of exposed metrics .. 37

11

List of tables

Table 1. cAdvisor unique metrics by type and the total amount of metrics 20

Table 2. kube-state-metrics unique metrics by type and the total amount of metrics 22

Table 3. Metrics storage evaluation ... 24

Table 4. Total amount of developed exporter metrics .. 38

12

1 Introduction

Cloud Native Computing Foundation, an organization that incubates open-source cloud

solutions such as Kubernetes, releases yearly a survey that investigates the adaptation of

cloud-native services. According to their 2019 survey report, 78 percent of the

respondents are using the Kubernetes container orchestration platform in their production

and testing environment. In 2018 this same percentage was 58, which means that the

adoption rate has increased strongly [1].

Datadog, one of the leading monitoring service providers in the industry, has witnessed

that containerization adoption has been on the rise since 2017. According to their

research, over fifty percent of their customers' workloads are running in the Kubernetes

container orchestration platform. Kubernetes has gained more traction and is considered

the most widespread container orchestration platform according to their research

conducted in 2020 November [2].

The incentive for this thesis is the introduction of Kubernetes platform to Pipedrive. Due

to this, a new tool for monitoring was needed to gain visibility about the resource usage

of the services running on the new platform. Kubernetes has a more complicated

architecture than the previous container orchestration platform. Previous container

orchestration platform was Docker Swarm [3]. This requires thorough analysis of the

platform and the plausible points for monitoring.

This thesis consists of seven sections. The Introduction is the current section. The second

section is about the background and gives an overview of the topics to give more context

to this thesis. The third section analyses the existing open-source solutions for Kubernetes

resource monitoring. The fourth section discusses the proposed method for the custom

implementation of Kubernetes resource monitoring. The fifth section gives an overview

of the implementation results with the iterations made during the development. The sixth

part describes the implementation in the production environment. It also provides

gathered feedback from engineers. The seventh section proposes ideas for future

outcomes and the eight section is the summary of this thesis.

13

2 Background

In this section, an overview of background technologies, methods, and definitions will be

introduced and explained, giving more knowledge related to the proposed method and

analysis.

2.1 Monitoring

“From a technology perspective, monitoring is the tools and processes by which you

measure and manage your technology system” [4].

It also supplies the insight and ability to diagnose, detect and alert based on the data that

is being gathered. This data is a representation of the experience that customers are seeing

while using your product. There is a common misconception that only technological

teams can receive help from monitoring. Business departments can also make decisions

based on the reports that allow to measure the state of product and technological

investments [4].

To have a solid monitoring set for application development, it must be considered as a

core component rather than an additional component. It is best to have metrics and

monitoring taken into consideration during the planning phase [4].

2.2 Kubernetes

Kubernetes is an open-source platform for managing containerized workloads released to

the public in June 2014 by Google [5].

14

Figure 1. Example high-level architecture of Kubernetes cluster, while on the figure there is one control

plane and one worker, there can be N amount of both inside one cluster. [6]

Cluster is the highest object in Kubernetes. It consists of control planes and workers.

Control plane, referred to as the master node in some writings, is a set of components on

virtual machines (VM) or bare-metal servers that handle making the global decisions

about the cluster and responding to the state of the cluster. Control plane components can

be on any node in the cluster. For simplicity, user-defined containers and pods are not

running typically on the same machines, thus requiring a set of worker nodes. Worker

nodes or nodes are a set of VMs specifically meant for running the pods and containers

inside one cluster [7]. Control planes handle managing the cluster and workers are nodes

where pods are scheduled. Pods can have a single container or a group of containers that

share the same space. It can be thought of as a capsule to host multiple containers on one

host [8]. Containers are an abstraction layer for a lightweight and portable executable

Docker image that holds software and all its dependencies [9].

Every container runs at least one workload declared in the manifest file. The manifest

file is a set of configurations that allow to add, change, or delete Kubernetes objects [10].

The most common workload is running a service that has been built into a Docker image.

For an added explanation regarding Figure 1, the following information is given. The

kubelet can be thought of as an application that runs on each Kubernetes node and checks

its status. It registers and controls the node it is running on with the Application

15

Programming Interface (API) server [11]. API server provides a Restful API (REST

API), through which the one or more kubelets validate Kubernetes objects and if needed

configure them. Kube-proxy acts as a networking interface between the worker node and

control plane nodes. The scheduler assigns pods to nodes according to First in First Out

(FIFO) and decides if the pod can be scheduled to a specific node. Controller manager

is a component that runs the overall processes inside the Control plane node [7]. Etcd is

key-value storage that has the configuration data, state, and metadata needed for the

Kubernetes cluster [12].

2.3 Monitoring Kubernetes

Kubernetes monitoring was initially tested using Zabbix [13]. It is a host monitoring

platform designed for real-time system metrics collection using their proprietary agents,

that collect resource usage through these agents [14]. Initially the setup was made for one

of the test environments clusters so that the agents would register every Kubernetes pod

as one host.

The problem with Zabbix is that it is not meant for dynamic environments, where hosts

that are monitored are disappearing and appearing. In Pipedrive there are over five

hundred deployments each week, and every deployment creates a set of new pods which

caused Zabbix to register them as new hosts while keeping the old hosts and their data

due to an internal retention period. This meant that within a week, the high number of

abandoned hosts started causing problems for the underlying Zabbix instance. After this

testing phase, it was clear that there was a need for another more dynamic platform to

monitor services running inside Kubernetes.

The next platform that was taken into consideration is Prometheus. Prometheus had much

more promise than Zabbix since it did not have any relation to the resources in

Kubernetes. One of the advantages that Prometheus has over Zabbix is that there are

Kubernetes monitoring endpoints already outputting the data in a format that Prometheus

accepts.

16

2.4 Prometheus

Prometheus is a systems and services monitoring toolkit built by Soundcloud in 2012

[15]. It was developed as an in-house monitoring system since solutions at that time were

not enough for their needs [16]. In May 2016, it was accepted to Cloud Native Computing

Foundation (CNCF) as its second project after Kubernetes [17]. Prometheus ecosystem

consists of a server, alertmanager, pushgateway and user interface.

Figure 2. The example architecture of Prometheus [15]

The server consists of a time series database (TSDB) for data storage and a Hypertext

Transfer Protocol Secure (HTTPS) server for data retrieval or sending. Prometheus

defines its workloads using scraping. Scraping is a Prometheus configuration task, what

defines the endpoints, where data should be retrieved. It also allows for the manipulation

of data before storing it inside a TSDB. By default, Prometheus collects data every thirty

seconds from its targets [15]. This data collection timing can also be modified in the

configuration of a scrape.

Prometheus has a proprietary query language called Prometheus Query Language

(PromQL) that provides the ability to query and aggregate data stored inside TSDB [15].

17

The alertmanager provides the ability to create alerts on the metric and its values

ingested into Prometheus. Its configuration is stored inside of the Prometheus and it has

integrations to other alerting platforms and the ability to send out alerts over webhooks

[18].

The pushgateway allows external services that do not expose metrics to constantly send

data to Prometheus. One of the upsides of it is that it allows services to send metrics to

Prometheus that might not be present during the data collection. This solution is good for

batch job-based services. Pushgateway does not change or aggregate data provided to it

[19].

Prometheus server also has a user interface to query and visualize metrics using

PromQL. Unfortunately, it lacks the possibility to create dashboards. Every time a user

wants to see some data, they have to re-query it. Thus, Prometheus is mostly used as a

storage for data. Visualization and dashboards for services are commonly sent to another

service such as Grafana.

2.4.1 Prometheus metrics

Prometheus stores all data as time series. Time series is a set of data points ordered by

time [20]. Metric is a time series that is defined by its unique name and optional key-

value pairs called labels [21]. Prometheus is suited for numeric time series, meaning the

values of each metric must be numeric [22]. Since Prometheus metrics are numerical, it

is possible to apply mathematical functions such as sum or rate to the metrics [23].

With each metric, there are two metadata identifiers for Prometheus to consume during

ingestion called #HELP and #TYPE. The identifier #HELP provides a string that contains

the metric name and gives a short explanation of the metric. #TYPE provides the type of

the metric, such as Gauge, Counter, Histogram, Summary [24], [25]. These two metadata

identifiers are important to Prometheus as it will define the type of metric before the

writing to the TSDB. Before the type definition, each metric is set to untyped.

HELP <metric_name> <Description>
TYPE <metric_name> <type>
<metric_name>{<label name>=<label value>, ...} <metric_value>

Figure 3. Default Prometheus metric model

18

HELP api_http_failed_requests_total Total failed requests to endpoint with
method
TYPE api_http_failed_requests_total counter
api_http_failed_requests_total{m h =”POST”, h =”/items”} 241

Figure 4. Example of Prometheus metric

Due to the architecture of Prometheus, every unique combination of key-value labels

creates a new time series, which can dramatically increase the cardinality of metrics

stored in TSDB. Prometheus recommends not using label values that have high

dimensionalities such as unique user IDs or email addresses [26].

2.4.2 Prometheus exporters

Prometheus has a vast ecosystem of exporters, which are all prebuilt by the open-source

community such as CouchDB or Elasticsearch exporter. This allows for faster metrics

gathering for the users and the creation of more complex monitoring systems out of the

box. Prometheus has official instrumentation libraries for Go, Java or Scala, Python, and

Ruby languages. There are other unofficial third-party client libraries for Node.js, C, and

PHP [27]. Custom written exporters have the possibility to create custom business logic

related metrics that can be monitored such as requests made to a specific endpoint in the

last five minutes or the average duration of a specific database query.

2.4.3 Prometheus as a data storage

The author decided to choose Prometheus as the data storage for this project. One of the

primary reasons the author chose Prometheus was that the Kubernetes has support for

Prometheus [28], [29]. Another point is that Prometheus does not need to have relation

with the underlying service as it just accepts the metrics and stores them inside the TSDB

(see more in section 2.3). And the final reason for the choice was that Pipedrive already

had Prometheus running in the production environment that made it convenient to start

sending metrics to it.

19

3 Analysis of existing solutions

In this analysis, there were three open-source solutions picked as a candidate for the

Kubernetes monitoring solution - Container Advisor, kube-state-metrics, and metrics-

server. The solutions were picked due to the first solution being provided by Google,

while the last two are provided by Kubernetes.

During the analysis, four categories were picked: reliability of the solution, the usability

of metrics when creating dashboards, the total amount of metrics, and the adjustability to

Pipedrive's requirements. The usability of metrics is being analysed from the labels point

of view as the labels are related to the grouping and visualization of metrics. Pipedrive’s

requirements were the ability to have custom metric names and custom labels. An

example of custom labels is the team name, who owns the pod or container, or repository

name label where the source code for the container is found.

3.1 Container Advisor

Container Advisor (cAdvisor) provides metrics about container resource usage. This

service is developed and maintained by Google [30]. cAdvisor can be run standalone or

in Kubernetes case, the metrics are integrated into kubelet (see more in section 2.2 above)

making it easy to use as no configuration is needed.

Since it is built into kubelet, the discovery of containers is native and out of the box

meaning that no configuration must be done additionally other than enabling the metrics

in the kubelet declarative manifest.

3.1.1 Reliability

Pipedrive used cAdvisor metrics before monitoring the containers in Docker Swarm. This

product was therefore considered to have a prominent level of reliability and due to it

being inside of kubelet binary the reliability of this metric exporter is considered highest.

20

3.1.2 Metrics usability

Container Advisor supplies multiple default labels that can be used to aggregate the data.

Most metrics have the following labels: container, id, image, name, namespace, pod. The

container label provides the name of the container, for example, calico-node.

The label id has the Kubernetes pod class with the Quality-of-Service class. The label

image is the Docker image running inside the container with the tag. The final label is a

name.

3.1.3 Total amount of metrics

The Container Advisor gives out around 7760 metrics per worker. In Pipedrive there are

30 worker nodes per environment and per region, that will sum up to 231 800 metrics per

one scrape. To gather the data for an hour with intervals set as 30 seconds would result in

300 Megabytes (MB) or 0.3 Gigabytes (GB) per hour of data. This would mean that the

data storage would need to be over 7.2 Gigabytes to store 24 hours of data collected only

from that source.

Table 1. cAdvisor unique metrics by type and the total amount of metrics

Type Unique

metrics

Total lines of metrics

CPU 13 1808

Memory 12 2332

Network 9 1666

Filesystem 18 860

Other (Tasks, information, last seen) 7 1093

In Pipedrive the general retention of metrics is 30 days so that would add up to 216

Gigabytes. There are 59 unique metrics exposed by the cAdvisor.

3.1.4 Adjustability to Pipedrive’s requirements

This solution does not supply any label remapping or renaming of metrics on the exporter

side. If there is a need to drop and not store some metrics, it can be done through

Prometheus in-flight ingestion rules, which will put more pressure on the Prometheus

server. In-flight ingestion rules allow for data to be tested against a set of rules before

saving them to TSDB.

21

One solution to more metrics would be to fork the project and rewrite the creation of

internal metrics to support other labels. This solution has a major downside as it would

mean keeping the codebase always up to date with the upstream solution and that

eventually creates unnecessary development overhead.

3.2 kube-state-metrics

Kubernetes state metrics (kube-state-metrics) is a service that listens to Kubernetes APIs

and aggregates the data to Prometheus format about the state of objects inside the cluster.

This service is developed and maintained by the Kubernetes project. Its focus is on nodes,

pods, and deployments health metrics inside the platform [31]. One important note is that

kube-state-metrics does not have resource metrics about pods and containers. Data output

by this service is solely related to the Kubernetes cluster. So, to get the metrics about

pods, there needs to be a hybrid data collection combined with other out of the box

solution.

3.2.1 Reliability

Since this service is officially developed and maintained by the Kubernetes project, they

emphasize the reliability and uniformity of the metrics and have the same grade stability

as the Kubernetes API objects themselves. While analysing the stability through restarts

and errors of this service over 3 months, there were no downtime witnessed on this

service.

3.2.2 Metrics usability

Kube-state-metrics is oriented more towards the analytics of the cluster state. Most

metrics have component, group, scope, resource, and verb labels. The component label

provides the component that this metric is about, for example, api server or etcd (see more

in section 2.2). Group gives an overview if this metric is about apps or other Kubernetes

internal services such as Calico or events. The scope is the object that the metric is

connected, for example, cluster or namespace. The resource label is the same as the

scope. The verb is the action that this metric observes such as get, post, watch, list.

22

3.2.3 Total amount of metrics

Kube-state-metrics data is exposed from the control plane nodes contrary to Container

Advisor metrics, which are exposed from each worker node from the cluster. This means

that metrics are aggregated across the control plane and produce a less overall number of

metrics.

This service gives out a total of 33154 metrics per scrape. For a US-based test datacentre

that would mean 99 462 lines of metrics per one scrape. Since data is once again gathered

every 30 seconds then one hour of metrics will add up to 672 Megabytes or 0.672 GB.

Table 2. kube-state-metrics unique metrics by type and the total amount of metrics

Type Unique metrics Total lines of metrics

API server 27 27841

Etcd 3 4499

Rest client 3 200

Workqueue 7 415

Other (open API, process

information)

51 199

For one day of data collection the needed storage, in this case, accumulates to 16.128 GB

and the 30 days retention 483.84 GB of storage. There are 91 unique metrics exported by

kube-state-metrics.

3.2.4 Adjustability to Pipedrive’s requirements

Kube-state-metrics like cAdvisor does not offer any adjustability of metrics out of the

box. This means the adjustability relies on changing the code of the solution which can

be considered time consuming.

3.3 metrics-server

The metrics-server belongs to the Special Interest Group (SIG) community of Kubernetes

[32]. This project is maintained and developed by the open-source community. It collects

the data from kubelets running on nodes and its main output is to be used by other

23

Kubernetes services such as Horizontal Pod Autoscaler. While other out of the box

solutions expose Prometheus metrics as a response, this service exposes metrics in the

JSON format [32]. Metrics-server must be deployed manually, and it does not come built-

in to the Kubernetes cluster.

3.3.1 Reliability

The author analysed the reliability metrics-server by looking at the restarts count and

errors over three months and found no significant issues. While this project is based on

open-source contributions the quality gate of the latest changes is managed the same way

as is the Kubernetes project itself, ensuring the stability and quality of releases.

3.3.2 Metrics usability

Since the metrics-server outputs the data in the JSON format, the comparison of labels

cannot be made.

3.3.3 Total amount of metrics

It is not possible to compare the number of metrics with other solutions as this service

does not give out metrics in Prometheus format. The output of this is gathered from the

metrics-server pod on one of the control plane nodes. Adjustability to Pipedrive’s

requirements

Since this output is significantly different than other out of the box solutions the

adjustability must be handled on another service or consumer that scrapes these metrics.

Prometheus cannot consume JSON metrics.

3.4 Summary

Existing solutions offer a variety of metrics for engineers to visualize the data. From

container CPU and memory usage to Kubernetes cluster internal metrics such as the state

of etcd or API server (see more in section 2.2). These metrics are useful since they can

expose any outliers and issues with the Kubernetes internal or custom services running

inside the cluster.

On the other hand, the Container Advisor does not expose any metrics related to pods,

while it does have a pod label. Pod labels can be used to aggregate the data, although it

24

would cause a lot of pressure on the data visualization user interface, where metrics are

queried. Also, there are no indications on what node the pods/containers are in the cluster,

making the debugging of potential issues complicated.

Another problem that came out of the analysis is the amount of data required to store,

with 7 GB and 16.128 GB for cAdvisor and kube-state-metrics respectively per day. That

amount of storage must be taken into consideration as the total amount of storage needed

is related to data retention. With metrics-server, the data retention could not be compared

directly to other out of the box solutions since it does not have the Prometheus style

output.

In Pipedrive the default storage retention is 30 days. That would mean 699.84 GB of

storage only for Kubernetes cluster metrics. To compare the size, in the Pipedrive

production environment, the joint disk space for Prometheus installation is 700 GB and

that holds all the metrics ranging from services metrics to infrastructure metrics with the

data retention of 30 days.

Table 3. Metrics storage evaluation

Source Size of scrape

in Megabytes

Size of scrapes per

day in Gigabytes

Total storage

required for 30 days

in Gigabytes

Container Advisor 2,5 7,2 216

kube-state-metrics 5,6 16,128 483,84

Another key problem is the label adjustability as neither cAdvisor, nor kube-state-metrics

supply the possibility to configure other labels to metrics nor change metric names

without forking the solutions and writing additional code. This causes bad usability

because the labels do not match across multiple metrics and are vaguely defined.

25

4 Proposed method

In this section, the proposed method for the developed service will be presented with an

overview of its architecture goals, technological stack, metrics and labels, and local

development environment.

After the analysis of plausible existing solutions in the market, the results were presented

to engineers in the Monitoring and Infrastructure team. One of the primary concerns from

Infrastructure engineers was the requirement of storage that would increase rapidly due

to the total amount of metrics that must be stored for 30 days. Monitoring engineers also

suggested that the adjustability of those is below expectations and thus suggested the

development of customized service.

The author of this thesis decided to create a solution to present all the needed features

brought up in the analysis of existing solutions. The author did not plan to create a solution

that would be a direct competitor to existing solutions in terms of speed of the application

or the resources the service consumes. Instead, plan was for a service that would export

resource usage from Kubernetes cluster and would be easily expandable to add more

resources later.

4.1 Proposed Architecture

Kubernetes service exporter consists of three parts:

a) Data gathering and storing

b) Metrics creation and configuration

c) Exposing of metrics

The first and most important goal for the architecture was the time restriction.

Prometheus has a default timeout for gathering data from exporters set to thirty seconds

26

(see more in section 2.4). That means the request, data gathering, and parsing, with the

creation of metrics, must fit into this time restriction.

The second goal was modularity. The point was to separate the parts of code in the same

ways as objects are separated in the Kubernetes ecosystem. This means that pods,

deployments, services, nodes, and clusters should have different handlers inside the

service. For example, deployments resource would have its handler file called

deployments.js, which handles the data collection and format before storing it in an in-

memory storage. This allows to add more resources by creating a new handler to match

the resource and expand it without the need to change the whole codebase.

The third point was the external metrics configuration method. This was solved by,

after each data gathering the metrics configuration is requested from an external source

(see more in section 5.3). One of the key ideas behind this would be to have the possibility

to change the metrics configuration without the need to cause an interruption to the

exporter by redeploying it. Having interruptions in the service that should supply data for

alerting and monitoring purposes is considered a bad practice. The external metrics

configuration provides a satisfactory solution to change metrics or even add new ones.

4.2 Service technological stack

This service programming language is Node.js. One of the reasons for using Node.js is

that this programming language is supported by Pipedrive’s Continuous Integration/Con

tinuous Development (CI/CD) platform and has support for Pipedrive’s internal libraries.

The service must also have a web server that serves the /metrics endpoint to expose the

data in Prometheus format. For that, the decision was to use the Express package [33] as

it has proven to be reliable for other exporters in the production environment of Pipedrive.

For faster array iteration and object parsing, the author decided to use Lodash, as it has

many built-in functions to for instance reduce an array of objects to a subset of objects

without having to write the implementation from scratch.

For the creation of the metrics, Prometheus does not have a Node.js library that is

maintained by their organization. Instead, they have opted to support a third-party client

27

that offers metrics implementation out of the box, so the author opted to use the prom-

client package.

For metrics storage, there was a decision made to store the metrics in Consul [34]

key/value store. To access the Consul K/V store for metrics configuration, Pipedrive’s

internal Diplomat package is used. It allows accessing the configuration stored inside the

regions Consul.

To get the data from the Kubernetes API, the k8s package is used. The main reason is the

simplicity of authentication handling between client and API while keeping the ability to

query all the objects exposed by the API. It also can use a KUBECONFIG flag (see more

in section 5.4) or read the rights directly from the file.

4.3 Pre-requisites for metrics and labels

Before development, there had to be precise prerequisites set to achieve a reliable and

scalable solution. One of these prerequisites was creating a list of metrics and labels for

each metric that were required.

That also included keeping the same label format throughout the metrics, for example,

pod_name and podName label names have the same values, while making it difficult to

remember which metrics had corresponding label names. It is also useful to have the same

label names, because Prometheus can apply mathematical aggregation functions over

some labels. The initially planned metrics and labels can be found in Appendix 2.

28

5 Implementation

In this section, the results of the development of the Kubernetes resource monitoring

service, also known as kube-scraper, will be presented with the results of its architecture,

data gathering and storing, and the metrics creation and exposing.

The most time-consuming part of this implementation was data gathering and storing.

One of the reasons was the unknown responses of the Kubernetes API that the author had

to analyse and then make decisions on the data that would be stored in the in-memory

storage.

5.1 Service initialization with the first cycle

When the service starts, the first step is the configuration initialization. During that the

in-memory storage is created for the Kubernetes objects, Kubernetes API configuration

is set based on the environment the exporter is running in, and the libraries are initialized.

Figure 5. Service initialization with the first lifecycle

29

After the configuration is initialized three different parts of the service start in parallel.

The first part is the data collection triggering, that starts collecting and storing the data

from Kubernetes API. The second part is the creation of a web server that has the metrics

endpoint and listens to a port specified in the manifest (see more in section 2.2) of this

service. The third part is the initialization of a CRON job that collects data and creates

metrics every thirty seconds.

After running three parallel steps, the next step is collecting metrics configurations from

Consul. The configuration is stored inside service memory until the triggering of the next

metrics collection. If the collection from Consul fails, then there is a fail-safe built into

the exporter that allows the default metrics to be exposed.

The fourth step is the creation and storing of metrics based on the data stored in

memory.

The last step is the exposing of metrics through the metrics endpoint of the exporter. This

part is valid if the exporter receives the request of metrics from Prometheus before the

CRON job has created its first cycle.

5.2 CRON job for data collection and metrics

The purpose of this CRON job is to make handling of the data collection and metrics

creation separate. In the first iteration of this service, the data was collected after there

was an external request made to the exporter by Prometheus.

While the collecting and creating the metrics fit into the timeframe of Prometheus data

collection, the author decided to create more future proof solution. This decision was

made to ensure that this service can handle bigger Kubernetes clusters with more

resources.

30

Figure 6. CRON job one lifecycle

The implementation has the same part from data gathering until the creation of metrics

and storing them inside the registry that the initialization does. This process is running

every sixty seconds, which guarantees near-real-time results.

5.3 Requests to exporter

As a result of creating a separate CRON job for data collection and metrics creation, one

of the positive outcomes was the speed of requests that were done from the Prometheus

side.

Due to the nature of kube-scrapers’ architecture, the external requests to it are fast and do

not need to keep the network connection alive until the full flow has been done. This is

guaranteed by the fact that data collection and metrics creation is handled separately.

Every request made to the metrics endpoint allows the exporter to reply with the data it

already has. In addition to the futureproofing, another idea on data collection was to

decrease the time Prometheus spends gathering the data as it takes internal resources for

the service to have an open connection and uphold a network connection until the full

flow from data collection to exposing metrics is carried out. This issue was also

remediated once the CRON job was implemented in the service.

31

Figure 7. Request to exporter

When a request comes from outside to the exporter, the request is handled by the

Express web server created during the start-up of service. It then calls out Prometheus

client library to expose the metrics from the registry in plaintext and the contents of it

are attached to the context of response.

5.4 Data gathering and storing

Data gathering and storing was created based on the “ask as much as possible and store

as little as required” idea. This idea means that for each Kubernetes resource that is being

requested from the API, there is a subset of request-response data that is being stored

inside of the kube-scrapers in-memory storage. What it allows for is better usage and a

smaller footprint of memory. If there is a need to add some part of the API response to

the storage, then changes to the mappings must be made inside of the code. For the

storage, the data is stored inside of the Node.js applications' constant variables. This

means that for each Kubernetes resource object there is a variable that is initialized in the

first cycle. This solution did not prove to have a significant impact on memory usage and

thus no further data stores were considered.

Since the exporter requires authentication access to Kubernetes API, the best way was to

supply an environment variable called KUBECONFIG to the k8s package. For

development purposes, author decided to use administrator configuration, which has

32

access to all the endpoints inside of the cluster. While this means, in the development

environment there is access to Create, Read, Update, Delete (CRUD) operations via API,

the risk was mitigated as the exporter does not have any update and delete calls towards

the API and all the development was done using test environment Kubernetes clusters. In

the production environment, kube-scraper does not have administrator configuration and

has explicitly provided API endpoints with read-only rights to limit access.

Due to the nature of Kubernetes API, there was also a need for conversion before storing

the data. The endpoints returned resource metrics in strings. Random-access memory

(RAM) data was provided in different formats such as bytes, kilobytes, megabytes, and

gigabyte as a unit of measurement [35]. The output for memory conversion is measured

in megabytes as it allows for clear conversion, for example, if the API response had one

gigabyte as memory usage, the conversion output would be 1024 megabytes, where only

the numeric value would be saved into the storage.

For central processing unit (CPU), Kubernetes measures the resources in CPU units

[35]. In the API responses millicpu, microcpu, nanocpu as units of measurement for CPU.

Thus, the conversion was once again needed to get a baseline value that would be similar

across the metrics. The output of the conversion is the number of CPU cores used for

service. For example, if the service uses five hundred millicpu-s it is translated to 0.5

CPU units and like RAM data, it is stored as a numerical value.

As shown in Figure 6, the data collection consists of making requests to the Kubernetes

API and getting the results back. The gathering is started by getting the Pods

information from Kubernetes API. It is important to note that the requests are done in

the following order: pod, node, deployments, namespaces. Pod data objects already

include the containers that are inside the pod, which makes the mapping of data easier

although causes issues when the data does not exist in the response. This issue is trivial

as there is always one container inside the pod [8]. Every pod object that is saved into the

storage consists of following: an array of container objects, metadata related to the pod

such as namespace and owner team name, resources like limit and requests, spec that

allows shows attached volumes to pod and node name the pod is on, and status that

contains the statuses of container.

33

To get data about nodes, there were two different endpoints used. The first endpoint is

the metrics-server node metrics endpoint. As was pointed out in the analysis, one of the

open-source solutions was metrics-server (see more in section 3.3) that was considered

as one of the plausible sources of data for this exporter. This endpoint allows to get the

memory and CPU data of nodes. The second endpoint gave out the filesystem data that

had to be mapped according to each node from the first request. As a combination after

the two requests were merged into one, there was a need to create a mapping of the node

data that would be stored inside the memory. Once again, the separate converter methods

were useful as the resources did not follow a strict response as was later also confirmed

when looking at the documentation of resources. The resulting array consists of node

objects. Every object about a node consists of metadata such as name of the node and

UID of node, pods that are located on this node and resources of the node such as

available, limit, total, usage of memory and CPU.

Namespaces are directly queried from Kubernetes API and stored into the internal

storage. The namespace name is stored in the metadata that is later used to show what

namespaces are existing in a cluster. These metrics are useful for debugging the

deployment of new Kubernetes clusters and making sure all required namespaces are

existing.

Deployment data is collected from the Kubernetes API endpoint. For the deployments

the saved fields are metadata similar to pod objects metadata, app label that indicates

the service name, status of the deployment and template. From deployment metrics

author also decided to create service objects. These objects contain combination of pods

and deployments data and were hence decided to not query directly from the API again.

With the cluster object, author decided to not query the same data again since all the

required metrics could be done using the previously gathered data. That meant a save in

both requests to outside endpoints and time to complete these requests. All the cluster

data is done using the aggregation of nodes, pods, and containers data to output the

required metrics. One of the risks of aggregating cluster data is the requirement of all the

previously mentioned data. This means that if the data about some of the components is

missing, so is the cluster data. The decision was made to accept this risk and relieve it by

making sure that even if some parts of the data are missing the in-memory data for them

is returned as empty arrays instead of undefined values.

34

After metrics are stored inside of the in-memory storage, there is last step that involves

adding cluster name, for example, k8s-1, to the metadata of containers, pods, and nodes.

This allows the possibility to create a label cluster_name, which shows the cluster this

pod is in.

5.5 Metrics configuration

During the planning phase, one of the pre-requisites was to create a modular service that

would not need to be redeployed for a small metrics configuration. One of the solutions

proposed was the external metrics configurations.

As a result, when the service is asking for metrics for the first time from Consul, the

exporter creates a folder under one general configuration folder called “kube-scraper”.

Inside this folder, there is a file called available_metrics and a folder called metrics.

The file called available_metrics holds a string of possible exported Kubernetes objects:

pods, cluster, containers, nodes, deployments, namespaces, services. Each element stands

for an object that data is being gathered for. This is built to allow for fast enablement or

disablement of metrics if there is either an issue with the data collection or some of the

metrics are not needed from a specific region. Metrics folder contains the following

Kubernetes API objects: clusters, containers, deployments, nodes, services, and pod files.

After some iterations on the structure of this configuration, the result came to be that each

of this file holds a JSON object, where there are two main objects inside one big object.

35

Figure 8. Example of metrics configuration

The first object is named defaultLabels. This allows the exporter to get the labels that it

must apply for each metric that is connected to this Kubernetes object inside the exporter.

The key shows the label name, and the value is the location inside the object stored in the

in-memory storage.

The second object is the metrics object. The key shows the name of the metric and the

value shows the location inside the object stored in the in-memory storage. There is also

a possibility to override or add custom labels to certain metrics. This can be achieved by

adding the value as an object and supplying the value and labels as separate fields inside

that object.

36

Additionally, there was a need to be able to add specific labels to certain metrics. To this

need, the author decided to implement an additional label possibility by adding a label

object inside the metric. As shown in Figure 8, the container_oomkilled differentiates

from the other key/values by having an object instead of a string as a value. Inside that

object, it is possible to add a label that also follows the same mapping logic as regular

labels. It was also required to add persistent value as false to make a new metric instead

of adding the label to an old metric.

While building the service, there was a decision made to create a fail-safe in case the

Consul K/V store is unavailable. For that, there are basic metrics configuration stored

with the same structure as in Consul and the exporter can fall back to default metrics

inside of the code if it does not get the response from an external source. Although this

goes against the external metrics configuration idea, it was decided to keep it to make

sure the service does not have heavy relations towards outer services and can survive the

loss of external data source.

5.6 Metrics creation and exposing

The exporter uses Express to create a web server that can serve the metrics as plain text.

By default, Prometheus organization recommends exposing the metrics from the

/metrics endpoint. With Kubernetes exporter, the decision was made to use Gauge [25]

metrics, since most of the monitored values are arbitrarily increasing and decreasing in

time.

The creation of metrics starts by making an external request to Consul. As the first step

all the enabled resources from the previously mentioned files are fetched. Then another

request is done to get the JSON configurations from the folder. If the requests to get the

configuration fails, then the service defaults to the created fail-safe that was previously

mentioned.

Since metrics are grouped similar to the way data is cached inside the exporter, the

creation of metrics is considered trivial timewise and can be excluded as a time-

consuming event inside the exporter. Metrics are generated with a specific naming

convention using the prom-client library as show in Figure 9.

37

<prefix><kubernetes_object><metric_name>{<label_name>=<label_value>} <metric_
value>

Figure 9. Naming convention of exposed metrics

The prefix of every metric is kube_scraper, which indicates the name of the service

outputting this metric. Kubernetes object is related to the name of the objects that are

gathered for instance cluster, node, pod, container, service. Metric name is created using

the best practices [26] provided by Prometheus and following a logical structure to ease

the use of them later in the visualization. Label names and values are mapped based on

the configuration taken from the Consul. The metric value is created by getting the value

of a metric from the stored object from a specific location that is provided as a key in the

configuration.

After the metrics have been saved to a registry provided by the Prometheus Node.js

library, the results can be exposed through the metrics endpoint.

5.7 Deployment of the exporter

The deployment of this exporter is done using Chef [36]. Chef provides the ability to

provision the exporter to each Kubernetes cluster via YAML configuration. To deploy a

newer version of the exporter two things need to be changed. Firstly, a new image with

the changes must be built. In Pipedrive the repository for Docker images is Docker Hub

[37]. Image is built locally using Docker commands and then pushed to the repository.

After that, the version environment variable inside the manifest of the exporter must be

updated. Once the variable reaches master, it triggers a change in the manifest and signals

Kubernetes to configure the deployment. During the deployment, a new image with the

tag latest is pulled from the repository.

To guarantee the quality of each deployment the changes are tested thoroughly in the test

environment for at least a week to ensure the stability of new code and spot any critical

issues that might not show up instantly.

38

6 Implementation in Production Environment

Kubernetes exporter has been in the production environment since February 2020 with

the latest deployment in August 2020.

Pipedrive has two datacentres located in Germany and the United States of America. Each

of these regions has 3 Kubernetes clusters with fifty-four nodes. On those fifty-four nodes,

2667 pods are running. These clusters hold all the live microservices that makeup

Pipedrive.

Every cluster has one kube-scraper that collects data about the objects from that cluster.

This means in total there are 3 scrapers per one datacentre that expose the metrics. Metrics

are then scraped from the Prometheus that is in that datacentre and then shipped off to a

third region where data aggregation is done for visualization and alerting.

The developed service gives out a total of 19818 metrics per scrape. Data will be gathered

every 30 seconds and one hour of metrics would add up to 562 MB or 0.562 GB. For one

day of data collection, the needed storage accumulates to 13.536 GB and the 30-days

retention 406.08 GB of storage.

The solution requires nearly two times more storage than cAdvisor for thirty days of data

retention. On the other hand, it must be considered that cAdvisor metrics contain only

information about containers whereas the metrics exposed by Kubernetes exporter give

out data about containers, pods, deployments, services, nodes, and cluster.

There are 57 unique metrics exported by developed Kubernetes exporter.

Table 4. Total amount of developed exporter metrics

Type Unique metrics Total lines of unique

metrics

Containers 12 13399

Pods 7 4563

39

Type Unique metrics Total lines of unique

metrics

Nodes 16 223

Cluster 19 18

Service 3 1440

One of the positive outcomes of the exporter was the separate configuration. This has

proved to be a helpful tool for multiple cases where there was a request for new metrics.

Regarding the reliability of the Consul, that stores the external configuration, there have

been no observed issues with getting the metrics configuration from that data source.

Kubernetes exporter allowed four different departments in Pipedrive's engineering to gain

visibility about the resources in the Kubernetes cluster.

Developers are interested in these metrics because they can see and monitor their services

in the production environment. These metrics have also allowed them to see if the changes

made to the services’ codebase caused elevated or decreased resource usage.

For the DevOps Tooling tribe, these metrics give an insight into the deployments and the

scheduling of services to nodes. They can see if the spreading of pods works across all

nodes inside the Kubernetes cluster, and react to the potential issues should they arise.

They can also suggest optimal resource allocation to developers for their services.

For the Infrastructure team, the main usage of these metrics is the resource utilization

of nodes. The relevant metrics for them are memory and CPU resource usage and limits

– these can cause the overfilling or failures of nodes.

The Site Reliability Engineering team has found the Kubernetes exporter to be

beneficial by providing insight into the overall metrics. Also, it has allowed for a

smoother transition of platforms during the implementation of Kubernetes.

6.1 Feedback from the engineering teams

The following section introduces feedback gathered from engineers across multiple teams

in Pipedrive. Questions regarding feedback are presented in the Appendix 3.

40

“Kube-scraper helped to filter out Kubernetes internal metrics and only provide those,

which are useful for us. In addition, it helped to ease the migration from Docker Swarm

to Kubernetes and minimised the necessary changes to our related monitoring,” said

George Javakhidze, Lead Site Reliability Engineer in Pipedrive.

“Kubernetes resource exporter has allowed DevOps Tooling to do data-driven decisions

regarding Kubernetes. Besides visualization, we also use the metrics to alert and

guarantee stable environment within the Kubernetes cluster.”

“As an example of usage of metrics, I have monitored Kubernetes resource usage

reservations by services, to make sure services reserve optimal number of resources. This

ensures that clusters are well utilized and not overprovisioned,” brought out Pavel

Baranov, Senior DevOps Engineer in Pipedrive. “As for the additional data, I would like

to have more Kubernetes objects such as replicasets or daemonsets, which would allow

to create even more complex dashboards and correlate data in a more meaningful way. In

terms of labels, it is important that child objects have information about their parents such

as container metrics have labels about pod it is in which current metrics have.”

“With kube-scraper we can easily configure metrics and their labels. This allows us to

quickly modify Prometheus metrics without any kind of redeploy or restart. As an

example, we wanted the possibility to filter all services by their team or tribe. With kube-

scraper it was very easy to just add an additional metrics,” told Tambet Paljasma, Senior

Infrastructure Engineer. Regarding more features Tambet suggested to also have IP

addresses of pods. This would help Infrastructure engineers to debug some network or

service discovery related issues more easily.

“Kube-scraper has had impact in many different ways throughout the company itself – as

it concentrates the information provided by Kubernetes itself in a more granular method,

it helps the engineers working closely with Kubernetes recover their systems in a more

timely manner,” told Kristjan Hiis, Monitoring team lead.

Regarding the reliability of implemented service none of the engineers had complaints

about it.

41

To summarize the feedback from engineers, current implementation has enabled them to

alert and visualize the data in a meaningful way. There were some improvements that

engineers suggested, and these have been taken as future improvements of this thesis.

42

7 Future outcomes

During the writing of this thesis, the solution the author implemented was not released to

the public. The author has plans to open-source the kube-scraper after adding more

metrics configuration stores. This open sourcing may lead to more metrics being added

to the exporter that this thesis has not covered. The tool is widely used inside the company

that it was created for but needs more testing to be released as an open-source solution.

One of the proposed data sources would be a Kubernetes ConfigMap. This could contain

the metrics that can be also changed on the fly without causing disruptions to the service.

To achieve more data sources, the author has plans to add storage handlers that can be

chosen during initialization.

From the feedback of engineers, it was also suggested to add replicasets and daemonsets

metrics as well as data about Container Network Interface. This would allow to increase

the observability of the Kubernetes cluster and allow for more in-depth monitoring of it.

Another possible addition in the future would be to create tests that would mock the

Kubernetes API responses. That would allow to test functions that would rely on input

from Kubernetes API and enhance the reliability and stability of this service.

43

8 Summary

The goal for this thesis was to implement a Kubernetes resource monitoring solution in

Pipedrive. The first trial was done using Zabbix monitoring system and then it was

concluded that this system was not sufficient. After that Prometheus as a datastore was

considered and opted for.

After finding a platform where to store the data, analysis was conducted by the author of

this theses to find currently existing open-source monitoring solutions for Kubernetes

clusters that would fit the criteria. The analysis concluded that there were no suitable

solutions found. After that author designed and created the solution for Kubernetes

resource monitoring.

As a result, a custom Prometheus exporter, which has an external configuration for its

metrics, was created. It allows to add metrics and labels for the metrics without service

disruption. Thus, the exporter was built with scalability in mind.

The previously mentioned solution runs in every Kubernetes cluster in Pipedrive. It

supplies the required data to let the engineers see resource usage over time and know if

something goes wrong with their services.

The implementation received positive feedback from engineers from different teams

inside of Pipedrive. Thus, the solution built within the scope of this thesis has successfully

solved the given problem.

44

References

[1] “CNCF_Survey_Report.pdf,” [Online]. Available: https://www.cncf.io/wp-

content/uploads/2020/08/CNCF_Survey_Report.pdf . [Accessed 02 12 2020].

[2] “11 Facts About Real-World Container Usage | Datadog,” [Online]. Available:

https://www.datadoghq.com/container-report/ . [Accessed 02 12 2020].

[3] “Deploy to Swarm | Docker Documentation,” [Online]. Available:

https://docs.docker.com/get-started/swarm-deploy/. [Accessed 30 12 2020].

[4] J. Turnbull, in Monitoring with Prometheus, Turnbull Press, 2018, pp. 6-9.

[5] “What is Kubernetes? | Kubernetes,” [Online]. Available:

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/. [Accessed 29

11 2020].

[6] “community/icons at master · kubernetes/community,” [Online]. Available:

https://github.com/kubernetes/community/tree/master/icons. [Accessed 30 12

2020].

[7] “Kubernetes Components,” [Online]. Available:

https://kubernetes.io/docs/concepts/overview/components/. [Accessed 10 10

2020].

[8] “Pods | Kubernetes,” [Online]. Available:

https://kubernetes.io/docs/concepts/workloads/pods/. [Accessed 10 10 2020].

[9] “What is a Container? | App Dockerization | Docker,” [Online]. Available:

https://www.docker.com/resources/what-container. [Accessed 11 10 2020].

[10] W. a. K. M. Deployments. [Online]. Available:

https://devspace.cloud/docs/cli/deployment/kubernetes-manifests/what-are-

manifests#:~:text=Kubernetes%20manifests%20are%20used%20to,apply%20%2

Df%20my%2Dfile.. [Accessed 19 10 2020].

[11] “kubelet | Kubernetes,” [Online]. Available:

https://kubernetes.io/docs/reference/command-line-tools-

reference/kubelet/#synopsis. [Accessed 19 10 2020].

[12] “What Is Etcd and How Do You Set Up an Etcd Kubernetes Cluster?,” [Online].

Available: https://rancher.com/blog/2019/2019-01-29-what-is-etcd/. [Accessed

19 10 2020].

[13] [Online]. Available: https://www.zabbix.com/. [Accessed 19 10 2020].

[14] Z. Agent. [Online]. Available: https://www.zabbix.com/zabbix_agent. [Accessed

20 10 2020].

[15] “Overview | Prometheus,” [Online]. Available:

https://prometheus.io/docs/introduction/overview/. [Accessed 22 10 2020].

[16] “Prometheus: Monitoring at SoundCloud | SoundCloud Backstage Blog,”

[Online]. Available: https://developers.soundcloud.com/blog/prometheus-

monitoring-at-soundcloud. [Accessed 12 12 2020].

[17] “Prometheus 1.0 is here | Cloud Native Computing Foundation,” [Online].

Available: https://www.cncf.io/blog/2016/07/18/prometheus-1-0-is-here/.

[Accessed 12 12 2020].

45

[18] “Github - prometheus/alertmanager: Prometheus Alertmanager,” [Online].

Available: https://github.com/prometheus/alertmanager.

[19] “Github - promtheus/pushgateway: Push acceptor for ephemeral and batch jobs.,”

[Online]. Available: https://github.com/prometheus/pushgateway. [Accessed 15

10 2020].

[20] “Time series - Wikipedia,” [Online]. Available:

https://en.wikipedia.org/wiki/Time_series. [Accessed 04 01 2020].

[21] “Data model | Prometheus,” [Online]. Available:

https://prometheus.io/docs/concepts/data_model/. [Accessed 22 10 2020].

[22] “Overview | Prometheus,” [Online]. Available:

https://prometheus.io/docs/introduction/overview/#when-does-it-fit. [Accessed

01 01 2020].

[23] “Query functions | Prometheus,” [Online]. Available:

https://prometheus.io/docs/prometheus/latest/querying/functions/. [Accessed 03

01 2020].

[24] “Prometheus Metrics, Implementing your Application | Sysdig,” [Online].

Available: https://sysdig.com/blog/prometheus-metrics/. [Accessed 22 12 2020].

[25] “Metric types | Prometheus,” [Online]. Available:

https://prometheus.io/docs/concepts/metric_types/#metric-types. [Accessed 27 11

2020].

[26] “Metric and label naming | Prometheus,” [Online]. Available:

https://prometheus.io/docs/practices/naming. [Accessed 15 10 2020].

[27] “Client libraries | Prometheus,” [Online]. Available:

https://prometheus.io/docs/instrumenting/clientlibs/. [Accessed 19 10 2020].

[28] “Metrics For Kubernetes System Components | Kubernetes,” [Online]. Available:

https://kubernetes.io/docs/concepts/cluster-administration/system-metrics/.

[Accessed 05 01 2020].

[29] “Tools for Monitoring Resources | Kubernetes,” [Online]. Available:

https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-

monitoring/. [Accessed 05 01 2021].

[30] “GitHub - google/cadvisor: Analyzes resource usage and performance

characteristics of running containers.,” [Online]. Available:

https://github.com/google/cadvisor. [Accessed 18 10 2020].

[31] “GitHub - kubernetes/kube-state-metrics: Add-on agent to generate and expose

cluster-level metrics.,” [Online]. Available: https://github.com/kubernetes/kube-

state-metrics. [Accessed 20 10 2020].

[32] “GitHub - kubernetes-sigs/metrics-server: Cluster-wide aggregator of resource

usage data.,” [Online]. Available: https://github.com/kubernetes-sigs/metrics-

server. [Accessed 20 10 2020].

[33] “Express - Node.js web application framework,” [Online]. Available:

https://expressjs.com/. [Accessed 3 11 2020].

[34] “Intro to Consul | Consul by HashiCorp,” [Online]. Available:

https://www.consul.io/docs/intro. [Accessed 29 12 2020].

[35] “Managing resources for Containers | Kubernetes,” [Online]. Available:

https://kubernetes.io/docs/concepts/configuration/manage-resources-

containers/#meaning-of-memory. [Accessed 30 10 2020].

46

[36] “Chef Infrastructure Management | Infrastructure Management Automation |

Chef,” [Online]. Available: https://www.chef.io/products/chef-infrastructure-

management. [Accessed 30 12 2020].

[37] “Docker Hub,” [Online]. Available: https://hub.docker.com/. [Accessed 30 12

2020].

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Rasmus Rüngenen

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis "Kubernetes resource monitoring solution", supervised by Ago Luberg

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

05.01.2021

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

47

48

Appendix 2 – Proposed metrics and labels

Container

Labels: Container name, Namespace, Pod name, Node name, Container owner (Tribe

name), Cluster name, Region, Environment, Image of the container

Metrics:

• Container memory

o Usage

o Limit

o Requested

• Container CPU

o Usage

o Limit

o Requested

• Container Network (optional)

• Container I/O traffic (optional)

• Container storage

o Usage

o Limit

o Requested

• Count for container restarts

• Container exit codes

Pod

Labels: Pod name, Pod ID, Namespace, Node name, Pod owner (Tribe name), Cluster

name, Region, Environment, Service name

Metrics:

• Pod memory usage/limit/requested

• Pod CPU usage/limit/requested

• Pod health checks - readiness and liveness probes with status

49

• Pod I/O traffic (optional)

• Pod Network (optional)

• Pod Out of Memory

• Pod disruption budget (optional)

• Pod Storage

• Count for Pod restarts

Node

Labels: Node name, Node UID, Environment, Cluster name, Region

Metrics:

• Node memory

o Available

o Allocatable

o Limits

o Requested

o Total

o Unrequested

o Usage

• Node CPU

o Available

o Allocatable

o Limits

o Requested

o Total

o Unrequested

o Usage

• Total count of allocatable pods to node

• Total count of running pods on node

Service

Labels: Service name, Namespace, Cluster name, Region, Service owner (Tribe name),

Service Repository name (Optional), Environment, Docker tag (Optional), Docker

image (Optional), Instances, Job name – name of deployment (Optional)

50

Metrics:

• Service replication

• Service available replicas

Cluster

Labels: Domain, Cluster name, Region, Environment

Metrics:

• Cluster memory

o Available

o Allocatable

o Free

o Limits

o Requested

o Total

o Unrequested

o Usage

• Cluster CPU

o Available

o Allocatable

o Free

o Limits

o Requested

o Total

o Unrequested

o Usage

• Total count of pods in the cluster

• Total count of nodes in the cluster

• Total count of containers in the cluster

51

Appendix 3 – Feedback questions to engineering teams

In total four questions were given to engineers to gather feedback related to the

implementation of the exporter.

1. How has kube-scraper enabled you to deal with the tasks related to Kubernetes? If

possible, bring out few examples.

2. Is there some data you would like to get from Kubernetes cluster via kube-scraper that

doesn't currently exist?

3. Have you had any issues with the kube-scraper during your usage?

4. Regarding the metrics, are there any labels that you would like to add to metrics or

change the format of existing ones?

