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Abstract

Rhythm games are video games in which a significant part of the gameplay is based on

perceiving music and rhythm. In most rhythm games players must press buttons or perform

other actions in response to visual or audio cues.

Songs are added to these games by manually timing the audio and placing notes to create a

corresponding map. These maps are created entirely by hand with minimal tooling, making

the process long and tedious.

This work proposes a machine learning approach to automatically generate such maps

for any user-selected song. Over 100,000 unique beatmaps were collected from the game

osu! to train a transformer-based model with 240 million parameters. The resulting model

is capable of generating fun and engaging maps for osu!, allowing players to enjoy their

favorite songs in the game.

The thesis is in English and contains 30 pages of text, 5 chapters, 23 figures, 2 tables.
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Annotatsioon
Rütmimängudele tasemete automaatne loomine

masinõppemudeliga

Rütmimängud on videomängud, milles oluline osa mängust põhineb muusika ja rütmi

tajumisel. Rütmimängus peab mängija vajutama nuppe või sooritama muid tegevusi

vastavalt visuaalsetele või helilistele vihjetele.

Uute lugude lisamine rütmimängudesse on pikk ja oskustnõudev protsess. Loo lisamiseks

tuleb sellele luua kaardistus (tase). Kaardistuse jaoks peab käsitsi millisekundi täpsusega

määrama loo alguse, tuvastama tempo ja paigutama mänguelemendid. Selle abistamiseks

on saadaval väga vähe tööriistu.

Käesolevas töös pakutakse välja masinõppel põhinev lähenemine, mis võimaldab kasutaja

valitud loo põhjal automaatselt selliseid kaardistusi luua. Mängust osu! koguti üle 100 000

unikaalse kaardistuse ning nende põhjal treeniti 240 miljoni parameetriga transformer-

arhitektuuriga mudelit. Valminud mudel suudab luua lõbusaid ja kaasahaaravaid kaardistusi

osu! jaoks, võimaldades mängijatel selles mängus oma lemmiklaule mängida.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 30 leheküljel, 5 peatükki, 23

joonist, 2 tabelit.
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List of abbreviations and terms

GPU Graphics Processing Unit

VRAM Video Random Access Memory

LLM Large Language Model

RoPE Rotary Positional Embedding

SiLU Sigmoid Linear Unit

ReLU Rectified Linear Unit

RMS Root Mean Squared

BPM Beats Per Minute
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1 Introduction

Rhythm games are video games where a significant part of the gameplay is based on

perceiving music and rhythm. In most rhythm games, players must press buttons or perform

other actions in response to visual or audio cues. These games test the player’s sense of

timing, reaction speed, and hand-eye coordination.

In most rhythm games, multiple maps with different difficulty levels or styles are created

for a song. Creating these maps is a very long, tedious, and skill-demanding process. The

creator of the map must manually time the song, determining its tempo and beat timings

with millisecond accuracy. Next, the creator assigns the timing, placement, and often

additional attributes for each individual game element, depending on the game. There are

very few tools available to assist with this process because map creation is highly creative.

This work proposes a machine learning model based solution to this problem. The model

takes a song as input and generates a map of user-selected difficulty and style as output.

Some models have already been created that try to do exactly this [1]. However, these

models fail to meet the bare minimum of quality expectations. This is mostly because these

models are very small and are trained on very small datasets. For example the BeatLearning

[1] model only has around 200k parameters. In this work a 240M parameter model will

be trained on over 100,000 unique maps. The model trained in this work will be able to

overcome the shortcomings of those smaller models.

This work focuses on the rhythm game osu!. osu! was originally published in 2007 by its

lead developer ppy. osu!’s gameplay primarily involves clicking circles to a song or beat.

osu! is the most popular rhythm game in the world, is open source and has an extensive list

of freely available beatmaps.
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2 Background

2.1 osu! Gameplay

Figure 1. osu! Gameplay [2]

osu! has several game modes (osu!mania, osu!taiko and others) but the most popular is

osu!standard (or just osu!). The players have to place their cursor on top of the circles and

click them to the beat. While the rules are very simple this game can be very difficult and

expressive. Mappers have come up with very creative ways to express different songs and

rhythms in the game.

2.1.1 Hit Circle

The hit circle is the simplest hit object in osu!standard. Hit circles are numbered to indicate

their order in a combo. Each hit circle is surrounded by an approach circle that shrinks

around it. Once the approach circle overlaps the hit circle, the player must click or tap the

hit circle to earn score [3].
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Figure 2. Hit circle [3]

2.1.2 Slider

A slider is a hit object in osu!, which consists of a slider head, a slider body, and a slider

tail [4]. Similarly to hit circles, once the approach circle reaches the slider head’s border

the player must tap or click the beginning of the slider and then follow a moving target

along the track until the slider tail is reached.

Sliders may also repeat multiple times, in which case the user has to follow the slider back

along the same path.

Figure 3. Slider [4]

Curve Types

Sliders curves are defined with (invisible to the player) points in the play grid. Different

types of sliders exist that form different paths between these points. Linear sliders draw a
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straight line between two points in the play grid. Perfect sliders draw a perfect 3 point arc

between points in the play grid. Bézier sliders draw a Bézier curve between any number of

points in the play grid.

Slider Velocity

Sliders move with a constant velocity from the start of the slider to the end. Each slider

can have its own individual velocity. There is no explicit indicator for the velocity of an

upcoming slider and players must guess, based on the song, mapping style and other factors,

the approximate velocity of a slider to hit it correctly.

2.1.3 Spinner

A spinner is an object in osu! that takes up the whole play field. Players must simply

hold down a button and move their cursor in a circular motion until a certain threshold is

reached. Spinners are often used as a way to help the player relax at the end of a song.

2.2 Mapping

Mapping refers to the process of creating new difficulties, levels or "mappings" for songs.

The creator of a map, or a "mapper", chooses a song they would like to map, they time it,

and place hit objects at the appropriate locations and timings to create an interesting and

fun-to-play beatmap.

2.2.1 Hit Sounds

Hit sounds are sounds that are played when a player successfully clicks a hit object or

performs other actions. Hit sounds are used to give auditory feedback to players to help

them judge their accuracy in relation to the song.

Hit sounds consists of a default sample called a "hit normal", and any combination of

whistle, finish, or clap sample additions. Different combinations and sequences of hit

sounds are often used to better fit the rhythm of the song.

2.2.2 Combos

Hit objects are often grouped together into combos. Each combo set has a unique color

and each hit object in a combo has its own combo number that starts from 1 and counts up.
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Combos are used to give better visual separation between different patterns. Typically, they

consist of 4 to 8 hit objects, but they can be as short as 1 or 2 hit objects or longer than 100

hit objects.

Mappers may add up to 8 unique combo colors. Usually, the colors are cycled one after

another, but mappers may also add special combo offsets when starting new combos. This

is sometimes done to emphasize different sections of the song. For example, slow parts of

the song could use more muted colors, while intense sections of songs could use bright and

intense colors.

Players may choose to keep the colors determined by the mapper or override them to their

own default color set provided by their skin of the game.

2.2.3 Timing Songs

Technically, hit objects can be arbitrarily placed with millisecond accuracy, but in practice

an overarching tempo is determined for the whole song or some sections of the song. The

mapper uses their intuition and some basic tools to guess the correct tempo (in beats per

minute or "bpm") and an offset of the first downbeat in milliseconds from the start of the

song file. A beat length is the length of time between beats. For example, if the tempo

of the song is 150 BPM then the beat length is 1000·60
150 = 400 milliseconds. Hit objects

are typically placed on whole number fractions of the beat length. For example, the most

common time signature for popular songs is 4
4 , where each hit object would fall on 0

4 , 1
4 ,

2
4 , 3

4 multiples of the beat length. Many popular songs in rhythm games may have more

complicated or changing timing signatures, where, for example, 1
4 beat timed notes may be

mixed with 1
3 beat timed notes.

2.2.4 Object Placement

Mappers must place each hit object on the play grid by hand. The play grid is set up as a

grid with a width of 512 and a height of 384. Some simple tools exist, such as placing

objects with constant relative distance or converting a slider into a stream of hit circles. But

in general it is very difficult to place all the objects in a way that the map is not repetitive,

fun to play, and nice to look at.
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2.2.5 Mapping Style

Maps come in many different difficulty levels and styles. Some beatmaps are aimed at

beginners and may only feature a hit object once every second or so. While other beatmaps

that are meant for seasoned veterans may feature 20 hit objects per second or more.

Maps often come in different mapping styles. For example, some common categories

include aim/jump maps that focus on fast movement and the player’s ability to accurately

position their cursor. Stream maps often feature a lot of hit circles placed closely in a

row, or "streams" of hit circles. These types of maps require a lot of tapping stamina to

play. Other styles include technical maps, reading maps and others that focus on different

gimmicks or aspects of the game.

2.2.6 Difficulty Rating

The difficulty of a beatmap is measured by star rating. The star rating of a map is calculated

with an algorithm that considers hit object density, spacing, speed, and many other aspects

of the map. The algorithm is often updated by developers to more accurately reflect the

difficulty of maps. Star rating is expressed on a scale from 0 - 10, with an exponentially

increasing level of difficulty. Some of the easiest maps meant for beginners have a star

rating of 2 or lower, while most maps fall within the 2 to 5 star rating range, and out of the

millions of players that have played osu!, fewer than 10 players have completed a 10 star

map without missing a single circle.

0 2 4 6 8 10
0

5

10

star rating

de
ns

ity
(%

)

Figure 4. Star rating spread
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2.2.7 Map Submission Process

Mappers may freely upload their maps to the osu! beatmap listing on the osu! website.

While anyone can submit a beatmap, most maps end up on the unranked list or in the

"Graveyard". This means that players cannot see these maps unless they specifically search

for them by disabling a couple of filters. The quality of Graveyard maps varies a lot, but

usually the average graveyard map is of low quality. If players want to get their map ranked

and officially listed on the main beatmap list, they must submit their map for review. Two

beatmap nominators must review their map, ask for changes or improvements and then

approve the map. Once the map is approved, there is a 1 week waiting list where players

can try out the soon-to-be ranked map and if any problems are found and fixed, the week

long timer is restarted. Once the map is finally ranked, the state of the map is frozen, no

further updates are allowed, and players can earn official score and performance points

from that map. This process ensures that a ranked map is generally of high quality, well

timed, has proper metadata, and was well liked enough to be approved by 2 professionals.

As of 2025 there are 48,000 ranked beatmap sets and over 1 million "Graveyard" beatmap

sets.

17



3 Implementation

3.1 Model Architecture

The model is based on the transformer architecture originally proposed in 2017 in [5].

Input
Embedding

Output
Embedding

Add & Norm

Multi-Head
Attention

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Feed
Forward

Linear

Softmax

Inputs Outputs
(shifted right)

Output
Probabilities

N×

N×

Positional
Encoding

Positional
Encoding

Figure 5. Original transformer architecture

The transformer model is a type of deep learning model designed to process sequential

data, like text. The inputs to the model need to be tokenized, or converted into a list of

numerical vectors. The model applies several matrix operations and non-linear activation

functions to these inputs until a probability distribution is outputted.

Several modifications have been made to this architecture to greatly improve the performance

and output quality of the model.
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3.1.1 Rotary Positional Encoding
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Figure 6. ROPE

The sinusoidal positional encoding used in the 2017 transformer model is replaced with

Rotary Positional Encoding (RoPE) originally proposed in [6]. While sinusoidal positional

encoding is applied to the embedding, RoPE is applied just before multi-head attention on

each of the layers of the transformer. RoPE has proven to encode the relative distance of

tokens much better and has been scaled to hundreds of thousands of tokens by models like

Llama3 [7]. Although this model does not scale well to very long songs due to how timing

information is tokenized, RoPE still helps to generalize to different mapping densities.

3.1.2 RMSNorm

All LayerNorm modules are replaced with RMSNorm which was originally proposed in [8].

RMSNorm offers a more computationally efficient drop-in replacement for LayerNorm

while providing similar normalizing properties.

3.1.3 Activation Functions

Figure 7. ReLU vs SiLU activation [9]
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The activation functions used throughout the model have been replaced by SiLU (Sigmoid-

Weighted Linear Units) originally proposed in [9]. This SiLU function is a popular choice

in modern LLMs, having been successfully used in models like Llama3 [7].

3.1.4 Conformer Modules

Layernorm Glu
Activation

Pointwise
Conv BatchNorm Swish

Activation
1D

Depthwise
Conv

Pointwise
Conv Dropout +

Figure 8. Conformer module [10]

Conformer modules were added to the audio encoder [10]. This greatly increased the

model’s ability to comprehend the input audio and produced a significant drop in the loss

for timing tokens.

Similarly to [10], convolutional modules were introduced as an audio down-sampling layer.

The spectrogram of the audio that is one of the inputs of the model has a stride of 10 ms

and amplitudes for 80 different frequencies. To represent 20.48 seconds of audio, a total of

2048 audio tokens would be needed. This would be computationally expensive compared

to the rest of the model, so a down-sampling layer was introduced to reduce the number

of needed audio tokens. Multiple experiments were run on a smaller 50M parameter size

model.

100 200 300 400 500

1

2

3

4

Millions of tokens

tim
in

g
to

ke
n

lo
ss

2x
4x
8x
16x
64x

Figure 9. Down-sampling loss
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Figure 10. Down-sampling throughput

A down-sampling rate of 8x was chosen for the combination of good loss and throughput.

With this setup, each audio token represents 80ms of audio and 256 tokens represent 20.48

seconds of audio.

3.1.5 Flash Attention
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Figure 11. Flash attention [11]

The classic implementation of the attention mechanism was replaced with flash attention

originally introduced in [11]. The attention mechanism scales with the square of the

context length because every token needs to be able to communicate with all other tokens.

Flash attention makes this attention step so efficient that the model scales nearly linearly at

smaller (<4000) context sizes, by making the attention step take only a small portion of the

computation time needed for a pass through the model.
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3.1.6 Mixed Precision Training

Instead of representing all of the model weights as 32-bit floating point (fp32) numbers,

most of the model weights were represented as 16-bit bfloat16 (bf16). Bf16 is a modern

format found on modern Nvidia GPUs. The Bf16 format keeps the same number of

exponent bits as the fp32 numbers, giving it the same dynamic range as fp32, just at a

reduced precision. Keeping the same number of exponent bits avoids scaling issues that

using fp16 can introduce.

Mixed precision training greatly reduces memory usage and improves throughput, while

barely affecting the quality of the model.

3.1.7 Weight Initialization

Model weights were initialized by sampling weights randomly from a normal distribution

with a mean of 0 and a standard deviation of 1√
d

where d is the dimension of the model.

The weights of the residual layers were initialized with a standard deviation of 1√
N ·dwhere

d is the dimension of the model and N is the number of residual layers, similarly to the

GPT-2 technical paper [12].

This initialization strategy produced a model that had an initial cross entropy loss really

close to log(vocabularySize) ≈ 8.36, this means that the model was guessing each token

with an equal probability and this served as a good baseline to start training. If the weights

are initialized sub-optimally, the initial loss may be several times larger and the model may

fail to train entirely.

3.2 Beatmap Tokenization

To feed the beatmap into the model, the beatmap needs to be tokenized, or converted into a

long list of tokens.

3.2.1 Hit Circle

Hit circles are encoded with 6 tokens

<|time|> <|hit circle|> <|x coordinate|> <|y coordinate|> <|combo|> <|hit sound|>
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These tokens are explained in greater detail later in this section.

3.2.2 Slider

Encoding sliders can take many more tokens

<|time|> <|slider type|> <|x coordinate|> <|y coordinate|> ... <|combo|> <|hit sound|>

<|time|> <|repeat|> <|time|> <|slider end|>

The time between the first timing token and the last token determines the total duration of

the slider. If the slider repeats, a repeat timing token is encoded. The slider is repeated

until the final end timing point is reached. This way, it is possible to encode every possible

slider duration and any possible number of repeats.

The <|slider type|> token determines if the slider is a linear slider (2 points), perfect slider

(3 points), or a Bézier slider (3+ points).

3.2.3 Timing

A point in time is encoded as a single token denoting the time. A unique token is created to

represent each possible time point with a 10 ms accuracy. A spacing of 10 ms was chosen

as a trade off between accuracy and vocabulary size. Even in the fastest beatmaps with

a tempo of 300 bpm, a 1/12 note lasts 16.66 ms and songs of that speed typically only

contain 1/4 or 1/3 notes, so 10 ms should be enough accuracy to accurately represent the

vast majority of notes. Veteran osu! players may feel the difference of 10 ms or less when

hitting a note, so a more accurate timing for a map can be provided and all hit objects can

be snapped to the correct timing with 1 ms accuracy in the decoding process. To represent

20 seconds of a song, approximately 2,000 tokens are required. Unfortunately, this method

does not scale very well to very long songs, because as each token is unique, the model

must learn the meaning of each token individually and thus may fail to generalize to songs

several minutes long.

3.2.4 Coordinates

Multiple strategies for tokenizing coordinates of hit objects were explored.

The simplest strategy is to encode the coordinates as simple x and y tokens. For example, a
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hit object at the coordinates (423,56) will get encoded as <|x=423|> <|y=56|>. It is also

possible to create a token for only the even-numbered coordinates. This would help reduce

the total number of tokens, but does in turn lose some fine-grained accuracy.

Figure 12. Probability heatmap with x,y strategy

Another strategy is splitting the coordinate grid into squares and creating a token for each

square. For example, the grid could be split into 8x8 squares, which would create a total of
512·384

8·8 + 512
8 + 384

8 = 3, 184 unique tokens. Choosing too high of an accuracy generates

too many tokens, for example if we choose squares of size 1x1 almost 200k tokens are

generated. At a model dimension of 1,024 just the embedding table for 200k tokens would

take over 200M parameters making it extremely costly in terms of the total model size.

Having too many unique tokens also greatly worsens the problem with cross entropy loss

for coordinate encoding. In practice, if trained from a randomized starting point the model

fails to generalize even a little if the tokens are too sparse.

A strategy to avoid this pitfall would be to keep the accuracy quite low, but include another

token specifying a more accurate location inside the square. This way the first token

would determine the approximate global position of the hit object and the next token would

determine the exact location inside that square.
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Figure 13. Probability heatmap with grid strategy

Another way to help the model learn with just a single token that determines an hit objects’s

global position is to first start with super low accuracy, e.g. 64x64. This way, the model

first learns the rough global placement of hit objects. During training, the the grid size can

then be progressively decreased, helping the model to generalize better. In practice, this

strategy yields far better results than just training with high accuracy from the start, but

still falls short of the aforementioned strategies.

In conclusion, the simple x and y encoding was chosen for its simplicity and good loss in

test training runs.

3.2.5 Hit Sounds

Hit sounds are encoded as a single token representing all the possible combinations of

sound sets and hit sounds. In total, there are 3 sets (soft, normal, and drums) and 3 hit

sounds for each set (clap, whistle, and finish) making a total of 3 · 23 = 24 possible hit

sound tokens.

3.2.6 Combo

Combo colors are encoded as combo tokens <|newcombo,x|> where x (1-8) represents the

next combo color to be used.
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The colors themselves are encoded in the metadata section of a beatmap. While osu!

supports 8-bits per channel for colors, they are down-sampled to 5-bit per channel for a

smaller vocabulary size.

3.2.7 Compression

A common strategy for reducing the total length of a tokenized sequence is increasing the

vocabulary size by adding several merged tokens that can encode two or more tokens as

a single new token. In LLMs, these merged tokens are most commonly found with an

algorithm called byte pair encoding, where the most common pairs of tokens are greedily

merged together until a target vocabulary size is reached.

This strategy does not produce good results for tokenized beatmaps, because encoded

beatmaps have different kinds of patterns that can be taken advantage of, which do not exist

in natural languages [13]. Tokens can be rearranged or even omitted without losing any

information about the beatmap if done in a smart way.

Figure 14. Merging 3 hit circles into one
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Figure 15. Token compression

A full example of a 20 second tokenized beatmap can be found in Appendix 5.
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3.3 Optimizer

For optimizing the model, the adamW optimizer is used with β1 = 0.9, β2 = 0.98, ϵ =

1 · 10−6 weight_decay = 0.1. Weight decay is selectively applied to weights with the

number of dimensions>2 [14]. The global norm of the gradient is clipped at 1.0 during

training.

The training rate is linearly increased from 0 to 6 · 10−4 over the first 1,000 steps of training

as a warm up. Then it is kept high until the final 1,000 steps where cosine decay is used for

the learning rate until it drops down to 10% of the maximum value similarly to how GPT3

was trained [15].

A batch size of 512 was used, but due to memory limitations, mini-batching was also used,

where the final 512 batches of gradients were accumulated over many steps, before doing

an optimization step. The exact size of the mini-batch was chosen as the biggest size that

would fit on VRAM.

Loss Function

A loss function is used to measure how well the model is predicting the next token.

Generally, the lower the loss the better the model is at predicting the next token. When the

loss is 0 the model is predicting every token perfectly. For the loss function, cross entropy

loss was chosen. This is the most popular choice for modern LLMs. Cross entropy loss

can be thought of as measuring the distance between two probability distributions.

While cross entropy loss works great for a large number of mostly independent tokens like

in LLMs, in the tokenized beatmap syntax many tokens are closely related to one another.

For example when the correct token is <|t=1.00|> but the model guesses <|1.01|>, this

is, in the view of the loss function, just as wrong as guessing <|spinner|> or some other

completely unrelated token, because this loss considers each token as its own independent

class.

Some losses do exist that can consider the relative "distance" to the right guess, for example

the Mean Squared Error (MSE) loss. With a loss function like MSE we can calculate how

far off the guess was, but a big disadvantage of this is that the model must output just one

guess for the correct token instead of a probability distribution for every token. In practice,

using MSE for coordinate tokens and cross entropy for everything else did not produce
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good results, because the placement of objects is extremely hard to predict and inconsistent.

Since there is no right way to map in osu! there are usually multiple perfectly reasonable

possible coordinates for each hit object. For example, let us consider a hit object that is

placed on <|x=100|> in 50% of the difficulties in the dataset and on <|x=200|> for the

other half. Cross entropy loss, in a perfect world, would learn to predict exactly 50% for

<|x=100|> and 50% for <|x=200|>. But when using a loss like MSE the model would learn

to predict the token that gives the least error, which for this case is <|x=150|>, because it

is in the exact middle of these tokens, even when the probability in the dataset for this

token is 0% and a placement on the coordinate x=150 for that hit object may be completely

ridiculous.

For this reason, cross entropy loss was used for every token, even though it is hugely

inefficient for coordinates.

3.4 Dataset

For the dataset, all the ranked maps from 2012-present were included. The ranked maps

from 2011 and earlier were excluded, because at that time the ranking criteria were not as

strict and many maps from that era are mistimed or poorly mapped. From other categories

of maps (including Graveyard and Loved maps), all the maps that had at least 100 favorites

were included. This filtering excludes maps that have never been played by anyone other

than the original mapper and helps to increase the quality of the dataset.

3.4.1 Further Filtering and Cleaning

Once all the maps were downloaded, each one was parsed and additional cleanup processes

were employed. Maps with multiple objects appearing at the same time, extremely low

or high tempos (less than 0.001 bpm or more than 10000 bpm) were excluded and other

indicators of quality were used. Maps with 70% of the song not having any hit objects in a

15 second window were also excluded, because these are often practice difficulties where a

small part of the map is copied to a separate difficulty.

All difficulties from all the remaining maps were extracted and grouped by the hash of their

audio file.
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3.4.2 Final Dataset Statistics

After all the filtering, 26,577 unique audio files remained with 108,043 unique difficulties

in total.

The total length of all the unique audio files is around 523 hours, and the total length of all

unique beatmaps is 2,129 hours.

When encoded, this amounts to over 350 million tokens of unique high-quality beatmaps.

After converting all audio files to spectrograms, the dataset takes around 200GB of disk

space.

For the evaluation dataset, about 2% (total of 512) of the songs were put aside for testing

and evaluation.

3.5 Training the Model

For the final model, parameters defined in Table 1 were chosen.

Table 1. Model parameters.

Hyperparameter Value
Layers 12

Model Dimension 768

Attention Heads 12

Head Dimension 64

Batch Size 512

Audio context 1024

Beatmap context 3072

Max learning rate 6 ∗ 10−4

The final model has a size of 240 million parameters. It was trained for 48 hours on an

Nvidia RTX 4090 running at an average of 420 Watts. The initial training was done with a

song context length of 512 which is equivalent to 20.48 seconds of audio and 768 tokens of

the encoded beatmap.
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Figure 16. Training run

3.5.1 Context Extending

When the model was sufficiently trained with the initial context size, the context size was

doubled and the model was trained until the loss returned to original levels. This process

was performed once more so that the final model could produce maps for 80 seconds of

audio at a time. This process is similar to one used in the training of Llama3 models [7].

The model mostly just needs to learn representations for the new timing tokens introduced

with the longer context size. The model does this very fast because it has already learned

most of the patterns from the smaller context sizes.
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Figure 17. Context extension
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4 Results

4.1 Statistical Analysis

To get an idea of how well the model is predicting certain aspects of beatmaps, it is possible

to calculate losses and prediction accuracies on just certain types of tokens by masking out

all other kinds of tokens.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

Billions of tokens

lo
ss

BPM token loss
overall loss

Figure 18. Total vs bpm loss

Figure 18 shows loss over all tokens compared to the loss from only tokens in the form

<|bpm=xxx|>. It is really interesting to note that until 500 million tokens the model suddenly

"figures out" how to correctly guess the tempo of a song. It is likely that before that moment

the model was trying to guess the bpm token based on the distribution found in the training

dataset and not actually analyzing the song.

4.1.1 Prediction Accuracy

Accuracy can also be a very interesting statistic to look at, when evaluating a model. The

accuracy of a model is measured as the probability that the correct token was the top 1

most probable guess outputted by the model. For example, let’s say the correct next token

is <|x=56|> denoting that the next x coordinate should be 56. If the model outputs the

<|x=56|> as the most probable, it is counted towards being accurate, even if the probability

distribution looks something like this:
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■ <|x=56|> - 10.2%

■ <|x=55|> - 8.3%

■ <|x=54|> - 5.9%

■ ...

■ <|hitcircle|> - 0.1%

■ ...

In this case the model had very low "confidence" in the guess, but it will still get counted

as being "accurate" in this instance, because accuracy measurement does not take into

consideration the "confidence" of a model like cross entropy loss does.

4.1.2 Accuracy for Different Token Classes

Table 2. Statistics per token class

class loss accuracy
Timing tokens 0.652 86.9 %

Coordinates 3.745 20.45 %

Slider velocity 2.149 50.45 %

Hit object type 1.683 66.7 %

In Table 2, some different classes of tokens are analyzed separately for accuracy and loss.

For example, timing tokens of the form <|t=xx|> have an accuracy 86.9%. This statistic

is very high considering that, to accurately predict a time token, a lot of factors need to

be taken into account, other than the simple tempo of the map. For example, time tokens

encode a lot of the rhythmic and pattern choices made by the mapper. There is no ground

truth in mapping, every song can be represented in a number of different ways, but still the

model manages to output the correct timing token as it’s top 1 guess 86.9% of the time.
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Figure 19. Time token accuracy

On Figure 19, accuracy for timing tokens from <|t=0.00|> to <|t=7.00|> is graphed. The

model’s accuracy significantly improves after a couple of seconds from the start of the

song, where the rhythmic choices of the mappers are more concrete and the model can

more confidently predict based on previous tokens and not just the song.

4.2 Attention Maps

4.2.1 Attention for Beatmap Tokens

While most of the weights of the model are really hard to analyze, thanks to the attention

mechanism it is possible to see what tokens the model was taking into consideration when

predicting the next token.

33



Figure 20. Beatmap attention

Figure 20 depicts the attention mechanism on only one of the heads of the first layer of the

model. While most of it is hard to understand, in the exact middle a vertical yellow bar

is visible. This bar corresponds to the tokens <|y=99|>, <|y=177|>,<|newcombo|>,<|hs-|>

taking attention of the token <|sliderlinear|>. This is exactly what one would expect. To

predict the tokens of a slider, the model needs to know what type of slider it is trying to

predict. While this one may be looking at the type of the slider, other attention heads may

be looking at other hit objects, different timings, metadata and other tokens.

On this attention heatmap, the top right triangle is blank because the model is not allowed

to consider future tokens.
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4.2.2 Attention for Audio

Figure 21. Audio attention

It is much harder to exactly understand what the attention mechanism is doing when

analyzing the song in Figure 21. The model seems to be finding different patterns in the

audio.
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4.2.3 Cross Attention

Figure 22. Cross attention

Figure 22 shows what audio tokens were considered when trying to predict a token for

the beatmap. The attention heatmap is very noisy but it is possible to make out a very

particular curve on the right. The brighter yellow/green line was drawn manually where

the model "should" have been attending to if the timing tokens of a beatmap corresponded

to the exact right parts of the song. <|t=2.32|> attending to the audio token representing the

slice of the song starting at 2,320 ms. The curve on the right and the manually drawn curve

on the left are a near match and give confirmation that the model has learned to associate

the correct timing token with the correct part of a song without ever being told to do so.

4.3 Generated Beatmaps

4.3.1 Inference

To use the model to generate a beatmap, the user must select a song and set their preferred

metadata parameters like circle size and star rating. The song is transformed into a

spectrogram and the initial metadata is tokenized and then fed into the model. The model

predicts one token at a time. When given the song and the current tokens, the model

outputs a probability distribution over all the possible tokens. Multiple strategies were

tested for sampling tokens from this probability distribution, some of which are discussed

below. When a token is picked from the probability distribution, it is appended to the end
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of the current tokens and fed through the model again. This process is repeated until an

<|endofmap|> token is reached at which point the tokens can be converted back into an .osu

file format and played in osu!.

During inference, it is also possible to apply certain algorithms to the outputted tokens

to help the model in the generation process. For example, it would be possible to mask

out invalid tokens to completely prevent the model from outputting invalid syntax. For

example, two timing tokens should never be next to one another, or if a <|spinner|> token is

outputted, a <|spinnerend|> token should closely. It is also possible to force the model to

output hit objects with correct timing this way - for example if we want the whole beatmap

to be in 1/4 timing it is possible to mask out all the other timing tokens to aid the model.

Furthermore, due to the encoding process rounding timing points to a 10 ms accuracy it is

sometimes impossible for the model to know the exact timing token that is correct.

In this example two beatmaps are encoded with slightly different first beat offsets. From

the perspective of the model the timing information given is the same, but the timing of the

2nd beat is inexplicably different.

180bpm offset=0.498 -> <|t=0.50|> <|bpm=180|> <|t=1.17|> <|some hitobject...

180bpm offset=0.504 -> <|t=0.50|> <|bpm=180|> <|t=1.16|> <|some hitobject...

During the inference process, if the user provides timing information with better than 10

ms accuracy, subsequent timing points are corrected to exact millisecond accuracy timings.

Sampling

The simplest strategy for sampling is to pick the token with the highest probability, but this

leads to very predictable and boring beatmaps and often leads to model collapse, where for

example every hit object could end up on the exact same coordinates. Another strategy is

to randomly sample the exact probability distribution outputted from the model. While this

leads to better-quality generated beatmaps, this strategy can lead to very unlikely tokens

being outputted, because every token has a non-zero probability in the distribution due to

the Softmax step used when calculating the probability distribution. This means there is a

non-zero chance for the generation process to randomly end because of the <|endofmap|>

token being outputted. A strategy to stop very unlikely tokens from being outputted is

top-k sampling, where the k top probable tokens are kept and the probability of other
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tokens is set to zero. k is often chosen to be a number like 50 in general LLMs, but in

this use case it is very hard to pick one number to be applied across the sampling process.

This is because different parts of the beatmap syntax have wildly different amounts of

possible options for each token. For example, when trying to sample a coordinate for an

hit object the probability distribution can be very spread out over hundreds of possible

coordinate tokens, but when choosing which type of slider should be outputted there

are only about 9 reasonable options. A better approach for this use case is to use top-p

sampling or "nucleus" sampling [16]. Top-p sampling calculates the cumulative sum of

the most probable tokens and keeps the least amount of tokens to exceed the threshold p.

For this model the threshold is set to p=0.95. This fits the beatmap syntax much better

by dynamically filtering out unlikely tokens and ensures diversity in outputs. This type

of sampling also removes the need to use some other masking to prevent the model from

outputting incorrect tokens. When using top-p=0.95 the model predicts well enough that it

just never outputs an syntactically incorrect token.

Running on a 4090 the 240M size model achieves a generation rate of 20 tokens/s averaging

a generation speed 2x faster than real time on the most densely populated beatmaps, and

several times faster than real time on less difficult and less dense beatmaps.

4.3.2 Quality of Generated Beatmaps

The maps generated by the model feel natural and fun to play. The model is good at

choosing rhythms and patterns that fit the song well. Thanks to it’s relatively long context

window songs also feel consistent - when the song gets more intense the maps get harder

and repeating parts of a song are often mapped similarly, just like in human mapped maps.

While the maps are perfectly playable they can feel a bit generic and will not be replacing

maps made by professional human mappers.

4.3.3 Weak Points of the Model

Changing Tempo

The model often struggles to correctly time songs with changing tempo.
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Figure 23. Initial vs changing bpm loss

As seen on Figure 23 the model fails to generalize and predict changing tempo, like it

does with guessing the initial tempo. This is likely due to the relatively low density of

songs with changing tempo and could probably be fixed with curated or synthetic datasets

containing more of these examples.

Coordinates

The weakest part of the model is still predicting the coordinates of hit objects and especially

the slider bodies. Due to this the sliders can take on unnatural shapes not often found in

human mapped maps. To fix this, a different approach is likely needed that can consider

the coordinates as a continuous space and not as a massive list of independent classes like

this model does. A post-processing step using something like a diffusion model found

in modern image generators is likely to greatly improve the placement of objects and the

shapes of sliders.

Mapping Style Selection

Although simple parameters, such as difficulty, are available to guide the generation process,

it is not possible to select the exact mapping style the model should output. This aspect of

the model is much more difficult to improve upon because of the lack of easily available

data on the mapping style of individual beatmaps.
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5 Summary

In this work, a model was implemented that accomplishes the initial goal established in

the thesis. A user can select a map of their choosing and generate a map for it with very

little effort. The model was optimized to run well on modern GPUs and was thoroughly

analyzed. The model achieves state-of-the-art performance, but is still not sufficient to

completely replace human mappers.
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Appendix 2 – Tokenized Beatmap

<|startofmap|> <|cs=3.5|> <|ar=9.8|> <|od=9.0|> <|hp=8.0|> <|sr=6.6|> <|slidermult=1.8|> <|col=168|> <|

col=112|> <|col=168|> <|col=32|> <|col=144|> <|col=136|> <|col=24|> <|col=184|> <|col=24|> <|col

=255|> <|col=24|> <|col=24|> <|totalP=0.54|> <|circleP=0.52|> <|sliderP=0.48|>

<|t=0.81|> <|bpm=200|> <|slider−1/4d−1r|> <|sliderlinear|> <|sv=10%|> <|x=133|> <|y=99|> <|x=149|>

<|y=177|> <|newcombo,0|> <|hs−2−0−0|>

<|t=1.04|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=214|> <|y=107|> <|x=230|> <|y=185|>

<|t=1.26|> <|hitcircle|> <|x=295|> <|y=114|> <|hs−1−0−0|>

<|t=3.21|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=89|> <|y=211|> <|x=105|> <|y=289|> <|newcombo,0|>

<|hs−2−0−0|>

<|t=3.44|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=170|> <|y=219|> <|x=186|> <|y=297|>

<|t=3.66|> <|hitcircle|> <|x=251|> <|y=226|> <|hs−1−0−0|>

<|t=5.01|> <|sliderlinear|> <|sv=20%|> <|x=34|> <|y=311|> <|x=50|> <|y=384|> <|newcombo,2|> <|hs

−2−0−0|>

<|t=5.46|> <|sliderend|>

<|t=5.61|> <|slider−1/4d−1r|> <|sliderlinear|> <|sv=100%|> <|x=376|> <|y=106|> <|x=360|> <|y=184|> <|

newcombo,0|>

<|t=5.84|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=295|> <|y=114|> <|x=279|> <|y=192|>

<|t=6.06|> <|hitcircle|> <|x=214|> <|y=121|> <|hs−1−0−0|>

<|t=8.01|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=420|> <|y=218|> <|x=404|> <|y=296|> <|newcombo,2|>

<|hs−2−0−0|>

<|t=8.24|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=339|> <|y=226|> <|x=323|> <|y=304|>

<|t=8.46|> <|hitcircle|> <|x=258|> <|y=233|> <|hs−1−0−0|>

<|t=9.81|> <|sliderlinear|> <|sv=20%|> <|x=475|> <|y=318|> <|x=459|> <|y=384|> <|newcombo,0|> <|hs

−2−0−0|>

<|t=10.26|> <|sliderend|>

<|t=10.41|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|1/4|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|

sliderperfect|> <|sv=180%|> <|x=503|> <|y=233|> <|x=465|> <|y=231|> <|x=379|> <|y=286|> <|

newcombo,2|> <|sliderperfect|> <|x=346|> <|y=292|> <|x=308|> <|y=303|> <|x=269|> <|y=301|> <|

sliderlinear|> <|sv=50%|> <|x=158|> <|y=250|> <|x=166|> <|y=227|> <|newcombo,0|> <|sliderlinear|>

<|x=269|> <|y=301|> <|x=261|> <|y=324|>

<|t=11.01|> <|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|hitcircle|> <|x=363|> <|y=182|> <|newcombo,2|> <|x

=57|> <|y=245|> <|hs−1−0−0|> <|x=384|> <|y=174|> <|hs−2−2−8|> <|x=181|> <|y=134|> <|hs

−2−0−0|>
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<|t=11.61|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderlinear|> <|sv=120%|> <|x=447|> <|y=63|> <|x

=464|> <|y=168|> <|newcombo,0|> <|sliderlinear|> <|x=359|> <|y=35|> <|x=376|> <|y=140|>

<|t=11.91|> <|hitcircle|> <|x=512|> <|y=295|> <|hs−2−2−8|>

<|t=12.06|> <|hitcircle|1/4|hitcircle|1/4|hitcircle|> <|x=257|> <|y=368|> <|newcombo,2|> <|hs−2−0−0|> <|

x=313|> <|y=375|> <|hs−2−2−8|> <|x=369|> <|y=382|> <|hs−2−0−0|>

<|t=12.36|> <|hitcircle|> <|x=512|> <|y=295|> <|hs−1−0−0|>

<|t=12.51|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|1/4|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderbezier

−4|> <|sv=180%|> <|x=275|> <|y=172|> <|x=236|> <|y=167|> <|sharp|> <|x=150|> <|y=195|> <|

newcombo,0|> <|hs−2−0−0|> <|sliderbezier−4|> <|x=136|> <|y=276|> <|x=175|> <|y=281|> <|sharp

|> <|x=261|> <|y=253|> <|sliderlinear|> <|sv=120%|> <|x=127|> <|y=117|> <|x=110|> <|y=222|> <|

newcombo,2|> <|sliderlinear|> <|x=43|> <|y=112|> <|x=26|> <|y=217|>

<|t=13.11|> <|slider−3/4d−1r|> <|sliderperfect|> <|sv=180%|> <|x=213|> <|y=93|> <|x=224|> <|y=50|> <|

x=89|> <|y=70|> <|newcombo,1|>

<|t=13.41|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|1/4|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderlinear

|> <|sv=80%|> <|x=67|> <|y=274|> <|x=72|> <|y=240|> <|newcombo,2|> <|sliderlinear|> <|x=142|> <|

y=324|> <|x=152|> <|y=267|> <|newcombo,2|> <|sliderlinear|> <|sv=100%|> <|x=247|> <|y=192|> <|

x=238|> <|y=271|> <|newcombo,0|> <|sliderbezier−4|> <|sv=180%|> <|x=313|> <|y=384|> <|x

=337|> <|y=353|> <|sharp|> <|x=434|> <|y=377|> <|newcombo,2|>

<|t=14.01|> <|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|hitcircle|> <|x=449|> <|y=309|> <|newcombo,0|> <|hs

−1−0−0|> <|x=228|> <|y=319|> <|hs−2−0−0|> <|x=449|> <|y=309|> <|newcombo,2|> <|hs

−2−2−8|> <|x=228|> <|y=319|> <|hs−1−0−0|>

<|t=14.61|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderperfect|> <|sv=120%|> <|x=422|> <|y=158|>

<|x=439|> <|y=207|> <|x=416|> <|y=259|> <|newcombo,0|> <|hs−2−0−0|> <|sliderperfect|> <|x

=375|> <|y=362|> <|x=358|> <|y=313|> <|x=381|> <|y=261|><|t=14.91|> <|slider−1/2d−1r|1/2|slider

−1/2d−1r|> <|sliderbezier−6|> <|sv=180%|> <|x=247|> <|y=192|> <|x=201|> <|y=185|> <|sharp|> <|

x=147|> <|y=214|> <|sharp|> <|x=79|> <|y=201|> <|newcombo,2|> <|sliderperfect|> <|x=499|> <|y

=117|> <|x=442|> <|y=72|> <|x=340|> <|y=127|> <|newcombo,1|>

<|t=15.51|> <|hitcircle|1/2|hitcircle|1/2|hitcircle|> <|x=281|> <|y=272|> <|newcombo,1|> <|hs−1−0−0|> <|

x=212|> <|y=82|> <|hs−2−2−2|> <|x=159|> <|y=337|> <|hs−1−0−0|>

<|t=15.96|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderlinear|> <|sv=120%|> <|x=212|> <|y=82|> <|x

=193|> <|y=183|> <|newcombo,0|> <|hs−2−0−0|> <|sliderlinear|> <|x=270|> <|y=216|> <|x=289|>

<|y=317|>

<|t=16.26|> <|slider−1/4d−1r|> <|sliderlinear|> <|x=75|> <|y=322|> <|x=56|> <|y=384|>

<|t=16.41|> <|slider−1/2d−1r|> <|sliderbezier−x|> <|sv=180%|> <|x=0|> <|y=137|> <|x=24|> <|y=108|>

<|x=41|> <|y=97|> <|x=73|> <|y=96|> <|sharp|> <|x=94|> <|y=125|> <|sharp|> <|x=118|> <|y=102|>

<|x=147|> <|y=97|> <|x=159|> <|y=126|> <|newcombo,0|>

<|t=16.71|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderbezier−4|> <|sv=120%|> <|x=323|> <|y

=217|> <|x=295|> <|y=225|> <|sharp|> <|x=251|> <|y=208|> <|newcombo,1|> <|sliderbezier−4|> <|x

=444|> <|y=164|> <|x=418|> <|y=154|> <|sharp|> <|x=390|>
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<|y=162|>

<|t=17.01|> <|hitcircle|> <|x=496|> <|y=304|> <|newcombo,0|> <|hs−1−1−2|>

<|t=17.16|> <|hitcircle|1/4|hitcircle|1/4|hitcircle|> <|x=338|> <|y=60|> <|newcombo,2|> <|hs−1−0−0|> <|x

=287|> <|y=55|> <|x=236|> <|y=51|> <|hs−1−1−2|>

<|t=17.46|> <|hitcircle|1/4|hitcircle|1/4|slider−1/4d−1r|> <|x=82|> <|y=305|> <|newcombo,0|> <|hs

−1−0−0|> <|x=133|> <|y=300|> <|sliderperfect|> <|sv=100%|> <|x=184|> <|y=296|> <|x=196|> <|y

=270|> <|x=190|> <|y=243|> <|newcombo,2|> <|hs−2−0−0|>

<|t=17.76|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderperfect|> <|x=289|> <|y=218|> <|x=280|> <|y

=190|> <|x=258|> <|y=173|> <|sliderbezier−4|> <|sv=120%|> <|x=372|> <|y=331|> <|x=384|> <|y

=359|> <|sharp|> <|x=369|> <|y=384|> <|newcombo,0|>

<|t=18.06|> <|slider−1/4d−1r|> <|sliderbezier−4|> <|x=461|> <|y=253|> <|x=449|> <|y=281|> <|sharp|>

<|x=464|> <|y=310|>

<|t=18.21|> <|hitcircle|1/4|hitcircle|1/4|hitcircle|1/4|hitcircle|1/4|hitcircle|1/4|hitcircle|1/4|hitcircle|1/4|

hitcircle|> <|x=380|> <|y=210|> <|newcombo,0|> <|hs−1−0−0|> <|x=388|> <|y=202|> <|x=396|> <|y

=195|> <|x=405|> <|y=188|> <|x=414|> <|y=181|> <|x=424|> <|y=176|> <|x=434|> <|y=171|> <|x

=444|> <|y=167|>

<|t=18.81|> <|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|hitcircle|1/2|

hitcircle|> <|x=454|> <|y=164|> <|hs−1−2−2|> <|x=79|> <|y=82|> <|newcombo,0|> <|hs−2−2−2|>

<|x=148|> <|y=272|> <|x=187|> <|y=154|> <|x=43|> <|y=227|> <|newcombo,2|> <|hs−2−3−8|> <|x

=380|> <|y=210|> <|hs−2−3−4|> <|x=43|> <|y=227|> <|newcombo,0|> <|hs−1−0−0|> <|x=380|> <|

y=210|>

<|t=20.01|> <|slider−3/4d−1r|> <|sliderperfect|> <|sv=100%|> <|x=207|> <|y=100|> <|x=185|> <|y=155|>

<|x=140|> <|y=115|> <|newcombo,2|> <|hs−2−0−0|>

<|t=20.31|> <|slider−1/4d−1r|1/4|slider−1/4d−1r|> <|sliderperfect|> <|sv=120%|> <|x=155|> <|y=45|> <|

x=124|> <|y=45|> <|x=78|> <|y=73|> <|newcombo,0|> <|sliderperfect|> <|x=43|> <|y=227|> <|x=74|>

<|y=227|> <|x=120|> <|y=199|> <|endofmap|>
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