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Abstract 

The contents of this paper are based on the data gathered during the tests conducted by 

the author. It examines all the major methods how one could approach the challenge of 

detecting malicious URLs based solely on the components of the URL by formulating it 

as a binary classification problem. The paper offers a comprehensive comparison of 3 

predominant predictor variable classes (Lexical, Linguistic, Host-Based) and assesses 

their efficacy for predictive modelling, in conjunction with their complexity and 

challenges of computability, while evaluating each class of predictors on 10 learning 

algorithms. The paper aims to ascertain which classes of predictors are best suited for 

predictive modelling in different circumstances, and which learning algorithms tend to 

perform best for each evaluated set of predictors.  

The analysis concludes by providing valuable information for future researchers about 

expected challenges, potential complications, and analytical techniques to be aware of 

should they decide to adopt and further research predictive models examined in this paper. 

This thesis is written in English and is 46 pages long, including 6 chapters, 11 figures and 

5 tables. 
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Annotatsioon 

Statistilised õpimeetodid kuritahtlike URL-ide tuvastamisel 

Töö baseerub autori poolt lõputöö käigus läbiviidud testide andmetel. Töös uuritakse 

peamisi meetodeid, mille abil leitakse pahatahtlikud URL-aadressid. Seejuures 

kasutatakse üksnes URL-i komponente. Ülesanne formuleeritakse binaarse 

klassifitseerimise ülesandena. Töös esitatakse kõikehõlmav võrdlus kolme domineeriva 

prognoosimuutuja klassi (leksikaalne, lingvistiline, võõrustajapõhine) vahel. Hinnatakse 

nende efektiivsust modelleerimisel koos arvutusliku keerukusega. Hindamisel 

kasutatakse kümmet õpialgoritmi iga prognoosimuutuja klassi jaoks. Töö eesmärgiks on 

tuvastada, millise klassi prognoosimuutujad sobivad kõige paremini erinevates 

olukordades. Samuti uuritakse, milline õpialgoritm osutub efektiivseimaks iga 

prognoosimuutuja klassi puhul. 

Analüüsi tulemusena esitatakse oluline teave tulevastele uurijatele probleemi 

väljakutsete, potentsiaalsete probleemsete kohtade ja andalüüsitehnikate kohta, mida 

tuleks prognoosimudelite edasisel rakendamisael ja täiustamisel arvesse võtta. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 46 leheküljel, 6 peatükki, 11 

joonist, 5 tabelit. 
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1 Introduction 

Chapter 1.1 outlines legacy methods for detecting malicious URLs, chapter 1.2 provides 

background information about the problem this research will aim to resolve, followed by 

a formal definition of assignment in the chapter 1.3, assumed limitations in the chapter 

1.4 and information about the structure of thesis in the chapter 1.5. 

1.1 Non-Statistical Methods of Pinpointing Malicious URLs 

Historically the problem of detecting malicious URLs (Uniform Resource Locators) was 

combatted against by compiling and maintaining databases of known harmful URLs. 

However, the so called “Reputation Based Blacklisting” technique did not prove to be 

sustainable, for as the number of records kept increasing, so did the computational 

complexity of performing database lookups. Moreover, in 2008 [1] have demonstrated 

that no such database can be perfectly, or even sufficiently inclusive and more 

importantly, precise. More malicious hosts emerged per unit time than could be 

Blacklisted, and even in case this shortcoming could somehow be overcome, the nature 

of type I and type II decision errors during network and host analysis of potentially 

harmful URLs were nontrivial. Thus, a need arose of finding ways to perform malicious 

URL detection proactively rather than retroactively. One of the first ways of doing real 

time analysis was rule-based approach. It entailed dynamical analysis of website 

behaviour such as frequency of redirections, and its contents, particularly JavaScript. It 

was certainly more accurate and scalable, however, as [2] argues, the need for loading 

website content before making the decision puts the end users at the risk of triggering 

malicious executables – the very threat this solution aimed to mitigate, thus defying its 

purpose.  

In 2011 an influential paper “Learning to Detect Malicious URLs” came out [3] which 

drew upon most of the relevant foundational research that had already been done by that 

time, great part of which focused merely on feature engineering, and attempted to 

implement a real-time Malicious URL predictor using nothing but predictor variables 
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extracted from URLs and a learning algorithm, moving away from webpage behaviour 

and content analysis.   

 

1.2 Description of the problem 

We will come back to the chronology of developments in this field and overview related 

work in the consequent chapters, but the central point is that in the recent years several 

serviceable papers have been published which attempted to propose new predictor 

variables and learning algorithms that were reportedly more efficacious than previous 

approaches. However, despite all the effort, to this day, unlike in the fields of Computer 

Vision (CV) and Natural Language Processing (NLP) wherein certain solutions are 

conspicuously superior to others, such as Convolutional Neural Networks for CV and 

Transformers for NLP, and where we already have pre-trained models such as BERT 

(NLP) and ResNet (CV), for the problem of detecting Malicious URLs it remains largely 

unclear how the efficacy of different proposed solutions compares objectively. One of the 

contributing factors to this persisting uncertainly is the problem of reproducibility. 

Claiming that one’s Machine Learning model achieved, suppose, 95% accuracy 

compared to 80% claimed in a certain other paper is not an informative and statistically 

accurate piece of information due to the following reasons: 

1. The same learning algorithm evaluated on different data sets will almost certainly 

yield different results. Normally, if the size of the training dataset was sufficiently 

large, model performance should not vary substantially. However, sampling logic 

matters greatly. It is crucial for objective evaluation that the sample is 

representative. For otherwise, If the sample is biased, this could lead to the 

exclusion of certain types of URLs on which the model would have performed 

poorly, leading to the artificial increase in the model’s accuracy while, in reality, 

the model is not as accurate as performance test results would lead one to believe. 

2. Same learning algorithm will perform differently even on the same dataset if the 

feature engineering was handled differently. Thus, paper A claiming that their 

Support Vector Classifier trained on a feature set S1 = [a1, a2, a3…an]  which had 

achieved 95% accuracy is superior approach to paper B’s Logistic Regression 
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with the accuracy score of 90%, trained on the feature set S2 = [b1, b2, b3…bn] , 

while in part true, is misleading, for we do not know how these learning 

algorithms would have performed and compared to each other if they had been 

trained on the same set of features. Same applies to comparing approaches to 

feature engineering. 

This is a recurring theme the reader will observe in the section dedicated to related work. 

While many excellent pieces of research have been published with the aim of developing 

techniques for identifying malicious URLs using Machine Learning, either the datasets 

on which their models were trained, or data preparation and feature extraction pipelines 

they chose, or all the above vary substantially across many pieces of research, making it 

challenging to perform cross-comparisons to ascertain: 

1.  which approaches to feature extraction produce the best predictors and 

2. given a preferred feature extraction method, which statistical learning algorithms 

perform most efficaciously.  

Furthermore, most published researches merely cherry-pick 2 or 3 algorithms that score 

best given their set of assumptions and a choice of data preprocessing pipelines while not 

disclosing methodology they used for sampling training and testing data. There has not 

yet been a comprehensive evaluation and comparison of all major proposed approaches 

performed on equal grounds – the shortfall this paper strives to address. 

 

1.3 Formulation of the assignment 

The aim of this paper is to replicate and conduct comparisons between all three major 

proposed methods for detecting malicious URLs solely based on the anatomy of the URL 

itself on the dataset of over 650,000 observations, and offer thorough analysis of obtained 

results to ascertain: 

• Which approach to feature extraction yields variables with the highest predictive 

power: Linguistic Features (Applying natural language processing techniques to 

URLs), Lexical Features (derived mathematical features calculated from various 
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URL components), or Host-based Features (performing host-related lookups in 

public databases, such as WHOIS). 

• Which learning algorithms with which hyperparameters perform best given a 

preferred set of predictor variables. 10 learning algorithms will be trained and 

evaluated on each set of features. 

• Lastly, this paper provides a comprehensive evaluation of advantages and 

potential complications associated with extracting and employing each set of 

features for predictive modelling, including complexity of feature engineering, 

computational time, and essential system resources usage. Moreover, the analysis 

concludes by providing anyone interested in pursuing this research with valuable 

information such as which classes of learning algorithms would be optimal to use 

on different sets of features, what are some of the problems associated with 

retrieving host-related data from public databases, which approaches to predictive 

modeling do and do not work and more. The analysis, thus, strives to aid future 

researchers navigate the vast landscape of possibilities by offering the ultimate 

guide to which methodologies are worth exploring assuming their research aims 

and resources. 

1.4 Limitations 

Due to the scale of the conducted experiment and time restraints, certain restrictions had 

to be imposed to narrow down the research problem.  

Firstly, due to the nature of the labeled dataset and the fact that dependent variable only 

contains 2 classes (Malicious/Benign), detecting Malicious URLs will be approached as 

a supervised learning, more specifically, as a binary classification problem. Unsupervised 

learning algorithms, therefore, will not be evaluated. This also implies that the aim of 

predictive models is not to ascertain exact ways in which given URLs are malicious, but 

merely to make a binary prediction – Malicious or Not Malicious. Topics in web 

application security such as spam, phishing, malware, and defacement URLs will, 

therefore, not be covered.  



15 

1.5 Division of chapters 

Chapter 2 provides essential information about the anatomy of URLs, and how their 

different components can be engineered to act as predictors for maliciousness in 3 

different ways. Chapter 2.3 offers a big-picture summary of related work in this research 

field and describes shortcomings in their methods. Chapter 3 expounds methodology and 

technical details behind the conducted experiment, followed by result analysis in chapter 

4, future research recommendations in chapter 5 and a final summary in chapter 6.  
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2 Background 

Chapter 2.1 outlines components of URLs which are particularly efficacious for 

generating predictors. Chapter 2.2 explains the details behind generating each class of 

predictors, followed by an overview of related work on this issue in the chapter 2.3. 

2.1 The Anatomy of the URL 

URLs, unlike human languages, do not possess grammatical or inherent semantic 

properties. However, their formatting still follows a strict syntax (see Figure 1). 

Figure 1. Components of the URL. 

 

Due to this fact, URLs can be decomposed into different subcomponents, some of which 

are more helpful for identifying a potential security threat than others. Here are some of 

the URL components that are generally agreed to be statistically relevant for building 

predictive models [4]: 

• Scheme – specifies which protocol to use for retrieving a specific resource. In the 

dataset on which predicted models were trained, schemes were mostly http:// or 

https:// and did not vary substantially amongst malicious and benign data points. 

But URL scheme need not be limited to the aforementioned two, scheme may also 

be ftp://, mailto:// and others.  

• Hostname - can be further broken down into subdomain, domain and top-level 

domain as shown in the Figure 1. Hostname, particularly if it contains IP address, 

can be highly useful for building predictive models. 

 

mailto:
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• Path – specifies directory route and a specific resource in the destination which 

needs to be accessed. Frequently used for generating lexical features. (See chapter 

2.2) 

• Query String – is not always present, but it is usually a string of key-value pairs, 

providing an information that the resource can use for some purpose [4]. Query 

strings are heavily used for generating predictor variables using Natural Language 

Processing techniques. 

2.2 Generating Predictors 

In machine learning terms the process of generating predictor variables is called Feature 

Engineering which is how it will be referred to from here onwards. Generally, any 

numerical or categorical variable whose values are correlated with the values of the 

dependent variable (in our case, whether a given URL is malicious), is considered to be 

a feature.  

Examples of features include matrices of bytes with each byte corresponding to a pixel in 

the image for the problems of Computer Vision, word embeddings (vectorized words) for 

NLP, and variables such as frequency, phase, and amplitude for Digital Signal Processing. 

However, for detecting Malicious URLs feature extraction is neither as intuitive nor so 

straightforward since URLs do not have a one-to-one numeric representation unlike 

images and digital signals. 

[5] and [6] were some of the first papers which examined how malicious URLs tend to 

vary from benign ones, what are the parameters presence of which might help detect any 

potential threat, and how to use them for model building. Broadly speaking, if we are to 

leave the webpage content information aside and perform URL evaluation solely based 

on its components, predictor features can be divided into three main categories: 

1. Lexical Features – usually numerical variables calculated based on statistical 

properties of URLs, such as the number of ‘\’, ‘@’, ‘.’, '?’, ‘=’, ‘-‘, etc. More 

sophisticated Lexical features include special-to-normal character ratio, a Boolean 

indicating the use of shortening services, subdirectory count in the path, number 

of subdomains, relative length of the URL considering interquartile range, and 

measures calculated using information theory such as text entropy. 
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2. Host Features – mostly categorical variables obtained as a result of performing 

host-related lookups in the public databases. WHOIS queries are one example. [5] 

have argued that specific pieces of information about given host, such as date of 

registration and expiration, host registrar and registrant, registration country, TTL 

for the corresponding DNS record and connection bandwidth can be effectively 

used to quantify the likelihood of the URL associated with this host being 

malicious. 

3. Linguistic Features – sometimes also known as tokenized features, or “Bag-of-

Words” method. There is no strict definition of what criteria a feature must satisfy 

to fall under this category, however, normally, any set of predictor variables 

obtained by employing the techniques initially developed for NLP is considered 

Linguistic. The end result of generating Linguistic Features is a set of abstract, 

vectorised URL components which can be clustered together using some distance 

metric d(x, y…n) defined on the obtained n-dimensional vector space to ascertain 

which feature vectors “look” more similar to malicious URL components and 

which vectors resemble benign URL tokens. 

During the conducted analysis 25 lexical and 15 most commonly used host features were 

selected as an input for learning algorithms. A detailed list of employed predictors is given 

in the tables 1 and 2. 

2.2.1 Lexical Features 

Table 1 provides a detailed explanation of selected Lexical features and how they are 

derived. 

Table 1. Selected Lexical Features. 

Feature   Description 

url_contains_ip Boolean. True IFF at least one substring of 

the URL is a valid IPv4 or IPv6 address. 

url_length Count of all characters in the URL string. 

path_length Count of all characters in the URL path. 
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Feature   Description 

host_length Count of all characters in the URL host. 

contains_port Boolean. True IFF domain is followed by 

a port number. 

digit_count Count of numeric characters in the URL 

string. 

query_parameter_count Count of query parameters in the URL’s 

query string. (See Figure 1) 

query_fragment_count Count of query fragments in the URL’s 

query string. Fragments usually reference 

elements with specific IDs in the 

document and are preceded with #. 

encoded Boolean. True IFF URL displays signs of 

being encoded. 

encoded_char_count Count of encoded characters in the URL 

string. 

subdir_count Count of subdirectories in URL’s path. 

url_string_entropy Shannon entropy of the entire URL string. 

(See Equation 1). 

dot_count Count of dots in the URL string. 

client_substring_present Boolean. True IFF at least one of the 

substrings of the URL is “client”. 

admin_substring_present Boolean. True IFF at least one of the 

substrings of the URL is “admin”. 
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Feature   Description 

server_substring_present Boolean. True IFF at least one of the 

substrings of the URL is “server”. 

login_substring_present Boolean. True IFF at least one of the 

substrings of the URL is “login”. 

norm_char_count Count of normal English characters (a-z) 

in the URL string. 

digit_count Count of Arabic numerals (0-9) in the 

URL string. 

is_shortened Boolean. True IFF pattern matching 

identifies the use of at least one of top free 

shortening services. 

special_char_count Count of special characters in the URL 

string. 

spec_ratio Ratio of special the special character count 

and the length of the entire URL. 

norm_ratio Ratio of normal character count and the 

length of the entire URL. 

numeric_ratio Ratio of count of digits and the length of 

the entire URL. 

url_length_agg Aggregated URL length taking into 

account interquartile range of all URL 

lengths in the dataset. Value Range [1…4] 

 

The only feature that needs further clarification is “string_text_entropy”. Shannon 

Entropy is a measure first introduced in information theory by Claude Elwood Shannon. 
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It is directly correlated with quantifying how much information a given set of characters 

contains. If we assume an argument to be a string of characters, as it was for the dataset 

of malicious URLs, text entropy can be calculated using the following equation: 

H(x) = -∑ 𝑃(𝑥) log2 𝑃(𝑥)𝑥                                                                                                           (1) 

Where P(x), for each character in the string, is count of occurrences of that particular 

character divided by the length of the entire string. [7, pp. 73-74] 

2.2.2 Host Features 

Table 2 outlines Host Features selected for predictive modelling, and how each of them 

are constructed. 

Table 2. Selected Host Features. 

Feature Description 

subdomain_count Count of distinct subdomains that are 

registered for the host of a given URL. 

url_age CURRENT_TIMESTAMP – (domain 

registration date according to WHOIS 

records) 

url_intended_life_span The difference between expiration and 

registration dates according to WHOIS. 

url_life_remaining (Domain expiration date according to 

WHOIS) - CURRENT_TIMESTAMP 

url_registrar Registrar of host according to WHOIS. 

url_registration_country WHOIS lookup. 

url_host_country WHOIS lookup. 

open_ports_count Count of distinct open ports. 
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os Operating System of the platform where 

the webpage is hosted. 

days_since_last_seen (Count of days since the webpage was last 

seen online according to snapshots) - 

CURRENT_TIMESTAMP 

days_since_first_seen (Count of days since the webpage was first 

seen online according to snapshots) - 

CURRENT_TIMESTAMP 

mean_update_frequency Mean number of days it takes for the 

webpage to update according to its 

snapshots. 

number_of_updates Total number of times a given webpage 

was updated, according to snapshots. 

ttl_from_registration TTL for the corresponding DNS record 

isp Internet service provider of the platform 

where a given webpage is hosted. 

 

Unlike Lexical and Linguistic features, deriving Host Features based on URL is not a 

self-contained procedure. It involves making a multitude of API calls to query public 

databases and, consequently, additional layers of pre-processing. As [5] argue, one of the 

lookups which can provide valuable statistical information about host is WHOIS lookup. 

The reasoning behind this suggestion is that every time a new domain is registered, 

contact and identification information must be provided such as name, mailing address, 

Email, phone number, city, postal code, and country [8] which, due to its privacy policy, 

can later be retrieved by anyone using WHOIS lookup [9]. 

Using python API, performing such lookup can be done by passing the URL as an 

argument, as depicted in the Figure 2: 
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The returned is the “whois.parser” object containing semi structured data, ready for pre-

processing: 

From the Figure 3 it is apparent that, while valuable, data returned by the WHOIS lookup 

is limited and does not allow calculation of more elaborate features listed in the Table 2. 

[23] have demonstrated how to overcome these limitations and retrieve more 

sophisticated host data proposed by [5] and [6] using Python’s Shodan and Wayback 

Machine libraires. Their approach was partially reused as a starting point for this stage of 

feature engineering. 

2.2.3 Linguistic Features 

Generating linguistic features is computationally much more straightforward and self-

contained procedure. The first stage is decomposing URLs into their constituent parts as 

depicted in the Figure 1. This is often called tokenization. The second stage involves 

filtering out tokens whose distributions do not change significantly between the two 

classes (Malicious and Benign) to reduce the dimensionality of the resultant vector space. 

Such tokens are called “stop words” – words that appear far too frequently to be 

statistically significant for predictive modelling. These can include different parts of 

speech such as pronouns. In case of URLs, potential stop words are URL scheme, “www”, 

“.com” etc. [11, p. 70].  

The third and final stage of linguistic feature generation entails addressing representation 

problem – the process of converting obtained URL tokens to numeric values that can be 

parsed by learning algorithms. Most papers investigating Malicious URLs default to using 

“Bag of Words” approach. It involves vectorizing obtained tokens based on their 

 

Figure 2. Performing WHOIS lookup. 

 

Figure 3. Returned WHOIS object. 
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occurrence frequencies. While more sophisticated N-Gram vectorization methods have 

been proposed in NLP which allow “meaning” of tokens to be captured more precisely 

[12, p. 203], URLs do not have semantic structure unlike human languages, hence, during 

conducted analysis conventional unigram “Bag of Words” method was employed. 

A detailed performance comparison of these 3 sets of features, in conjunction with the 

review of challenges and potential complications associated with using them for 

predictive modelling will be done in the chapter 4.5. For the readers who would like to 

find out more technical information about everything discussed in this paper, data pre-

processing script in its entirety, along with predictive modelling script and all collected 

datasets is available at [10]. 

2.3 Related Work 

Most of the relevant related work has already been mentioned in the chapters dedicated 

to presenting historical perspective, formulating the research problem, and describing 

employed feature engineering methods. This chapter draws the reader’s attention to 

supplementary pieces of research that would be valuable resource for anyone 

investigating malicious URL detection techniques and highlights additional ways in 

which this paper differs from them. 

Broadly speaking, most papers that have been published in this field can be divided in the 

categories depicted in the Figure 4: 
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Information illustrated in the Figure 4 was based on the data gathered in the recent 

survey [13] which is a comprehensive technical summary of over 150 papers published 

in this field.  It is apparent from the Figure 4 that this paper is only concerned with the 

approach which is but one of vast number of possible solutions proposed in the recent 

years. Moreover, while other papers focus too narrowly on specific business problems, 

and investigate challenges associated with deploying obtained predictive models to 

production, this paper focuses on comparing and thoroughly evaluating all the different 

proposed methods of assembling predictive models themselves, without deployment 

constrains, by testing 10 learning algorithms on 3 different sets of features. The only 

other paper that comes close in the number of evaluated learning algorithms is [14]. 

However, they do not cover first order optimisation methods such as Gradient Boosting 

classification models discussed in this paper, nor do they make any attempts to evaluate 

them on lexical, host and linguistic features which are thoroughly covered in this paper. 

 

Figure 4. Techniques of detecting Malicious URLs.  
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Lastly, this work is a comprehensive evaluation of all major URL-based predictive 

methods propounded from the early 2000s onwards, tested on equal grounds, which is 

analysis that has not been conducted before. The contents of this paper will aid future 

researchers navigate the vast landscape of possibilities by providing valuable 

information about advantages, shortcomings, challenges, and potential complications 

associated with adopting each of the methods evaluated in this research. 
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3 Methodology and Tooling 

The research that lies at the foundation of this paper involved experimentation stage 

followed by the theoretical analysis of obtained empirical data. This section provides 

technical information about conducted experiment, assumptions made and employed 

tooling. 

At the centre of conducted experiment was the dataset of over 650,000 Malicious and 

Benign URLs with the following dependent variable distribution (Figure 5): 

Since the dataset is labelled and dependent variable only has 2 possible classes, this makes 

malicious URL detection a supervised learning, more particularly, a binary classification 

problem. 

During the course of conducted analysis 2 Python3 scripts were developed. Using 

predominantly Pandas and NumPy libraires, the first script parses and cleans the dataset, 

performs foundational pre-processing, and handles feature engineering for lexical and 

host features. The second script takes derived datasets as an input and handles predictive 

 

Figure 5. Class imbalance in the dataset. 

34%

66%

#N Observations

Malicious Benign
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modelling stage. Using predominantly Python’s Scikit-Learn and Tensorflow2 libraires, 

it implements 10 learning algorithms and thoroughly evaluates them on all 3 sets of 

features. Chosen algorithms, as well as metrics used for their evaluation are discussed in 

detail in the Chapter 4. Both scripts are available for viewing at [10]. Code samples are 

provided in the Jupyter Notebook format and were executed on Google Cloud’s hosted 

runtimes [15] for security reasons. Computational complexity of the 3 sets of features and 

evaluated learning algorithms is discussed in the chapter 4. 

 

4 Research and Analysis 

Chapter 4.1 formally defines the process of detecting Malicious URLs as a binary 

classification problem and introduces learning algorithms used during conducted 

analysis. Chapter 4.2 describes statistical methods used during data preparation. Chapter 

4.3 formulates metrics using which the efficacy of learning algorithms was evaluated 

followed by chapters 4.4 - 4.5 which outline obtained results in detail. 

4.1 Learning Algorithms 

As mentioned in the Chapter 3, due to the nature of the dataset, the process of detecting 

malicious URLs can be assumed to be a binary classification problem. One can think of 

any binary classification algorithm as some multivariable function g(x1…xn) which 

accepts n number of predictor variables as arguments and outputs either of the 2 possible 

values for the dependent variable Y.  

Prediction Class Y = g(X1…Xn); n ∈ ℕ.                                                                                   (2) 

During the conducted experiment nLexical = 25, nHost = 15 and Y∈ [′𝑀𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠′,

𝐵𝑒𝑛𝑖𝑔𝑛′]. Input dimensionality of linguistic features is slightly more nuanced and will be 

explained in the later chapters. 

Equation (2) is manifestly a broad generalisation of binary classification logic. Each 

learning algorithm tends to be different in terms of which mathematical methods they use 
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to perform the mapping of each set of independent variables X1…Xn to the dependent 

variable Y. The algorithms that were chosen for predictive modelling are the following: 

1. K-Nearest Neighbours (KNN) – “K” in the “KNN” is a free parameter. It is an 

integer indicating how many neighbouring observations an algorithm should use 

to perform classification. KNN embeds each observation, in our case URL data in 

a feature space and deicides which class a given URL belongs to according to the 

majority class of k-number of closest observations to it. 

2. Logistic Regression (LR) – Despite its name, LR is mostly used for classification 

problems. Using logistic function, it calculates the probability of a given 

observation (URL) belonging to a particular class (Malicious/Benign), given a set 

of corresponding predictor variables X1…Xn. By default, if the probability 

exceeds 0.5, observation is classified as Malicious. However, decision boundary 

can be altered.  

3. Naïve Bayes (NB) – At the heart of Naïve Bayes Classifier lies the Bayes Theorem 

for conditional probability. NB tends to achieve performance comparable to that 

of linear classifiers such as LR and SVC, however its computational complexity 

is usually lower as it learns parameters by analysing individual predictor variables 

to infer basic class-wise statistics for each independent variable [16, pp 68]. 

4. Support Vector Classifier (SVC) – The key idea behind SVC is the fact that it tries 

to separate observations to different classes as effectively as possible. To do so, 

SVC attempts to come up with what is called a decision boundary and optimise it 

using a distance metric. Since observations are represented as points in n-

dimensional space, in 2D decision boundary is a “separation line” between these 

points, in higher dimensions it becomes a hyperplane [17 pp 145-148]. 

Observations that lie closest to the decision boundary are called support vectors, 

hence the name. 

5. Decision Tree (DT) – is a tree-based classification technique which excels in cases 

when the dataset is relatively complex, and observations are not linearly 

separable. That is to say, one cannot come up with a line, or hyperplane equation 

which accurately divides observations in distinct classes [17, chapter 6]. 

Shortcomings of using DT include model interpretability as it can sometimes be 
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difficult to make sense of how the decisions are made, and its predisposition to 

overfitting (see Chapter 4.3). 

6. Random Forest (RF) – is similar to simplistic DT, however RF is what is called 

an ensemble method, meaning that it makes use of multiple instances of the 

learning algorithm simultaneously for decision-making, and hence eliminates the 

overfitting problem. Number of Decision Tree instances used for Random Forest 

is a free parameter that can be specified. But generally, if one chooses K instances, 

the dataset will be randomly sampled into train-test sets K number of times, with 

each time new instance of Decision Tree being trained on the training set. Once 

this stage is complete, we are left with K number of Decision Trees trained on 

different datasets due to random sampling. During prediction, all K number of 

DTs will be asked to predict the class of a given observation. Final answer is mode 

of resultant K predictions [18 pp 320-321]. 

7. Bagging Classifier (BC) – Bagging is the name of the method used by RF to 

repeatedly re-sample the data and train multiple instances of the learning 

algorithm on them. Unlike RF though, BC does not randomly subset a set of 

predictor variables used by each instance of the learning algorithm. 

8. Gradient Boosting Classifier (GBC) – Boosting is an ensemble method much like 

Bagging, designed to improve upon simplistic Decision Trees. Similarly to 

Bagging, it entails implementing multiple instances of the learning algorithm, but 

what’s different is that Boosting builds DTs in a sequential manner, each learning 

and improving upon previous models. “Improvements” are quantified by tracking 

incremental minimization of a chosen a loss function. [16, pp 88 - 92], [18, pp 321 

- 324].  

9. Stochastic Gradient Descent Classifier (SGDC) – Gradient Descent and 

Stochastic Gradient Descent are not, on their own, classes of learning algorithms. 

Rather, they are what are called optimization algorithms – mathematical 

techniques for minimizing a given loss function and, consequently, maximizing 

the accuracy of models [17, pp 111-119].  For instance, one can initiate Logistic 

Regression with the gradient descent learning technique instead of the default 

solver [19]. 
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10. Artificial Deep Neural Network (DNN) – Much like the previous example, DNNs 

use Gradient Descent as a method for minimizing the loss function. During 

conducted testing, two 2-layer DNNs were implemented for lexical and host 

features using Keras sequential API. The input layers had the same dimensionality 

as corresponding feature vectors, with activation function set to relu. Output 

layers contained a single node with sigmoid activation function. Both networks 

were compiled using Adam optimizer with the binary cross-entropy selected as a 

loss function. For readers who would like to find out more technical details, 

Python notebooks can be found at [10]. 

 

4.2 Data Preparation 

Chapter 4.2.1 elucidates one of the most important characteristics of any dataset – its 

dimensionality. We will see in the later chapters how overly high dimensional datasets 

can have a negative influence on learning algorithms. Chapter 4.2.2 outlines essential 

statistical methods for transforming datasets such that they can be used for predictive 

modelling. 

4.2.1 Input Dimensionality 

After running feature engineering script described in the chapter 2.2, we are left with 3 

datasets each containing a distinct set of features. However, their dimensionality varies 

in a nontrivial manner. The shape of the matrix containing Lexical data is 651k x 25 

meaning that we have 651,000 observations to work with, each portrayed by 25 

independent variables.  

Once we move on to the Host data, dimensionality drops to 188k x 15 – more than 70% 

reduction in the number of observations. One of the reasons behind this is the quality of 

the dataset itself. Since host features are generated by the means of performing public 

database lookups related to the URL host, the lookup will fail if URL parsing library fails 

to extract host [21]. However, a larger problem is the fact that Malicious websites tend to 

have a much shorter lifespan than genuine ones [2] and therefore, if host features are not 

collected in a near real-time, they are likely to be forever lost. This is one of the problems 
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associated with using host features for predictive modelling that we will come back to in 

the later chapters. 

In regard to Linguistic features, the dimensionality of the dataset amounted to 651k x 

824k – significantly larger than the other two sets of features. The reason behind this 

enormous size is how count-vectorisation works. Every distinct URL token is, essentially, 

represented as a Boolean value in the new column. As we will see in the following 

chapters, the matrix of this size is likely to cause hardware limitation problems. 

4.2.2 Encoding and Rescaling 

During predictive model building, it is an essential step to sample datasets into training 

and testing data, for it makes no sense to evaluate the models on the same data they were 

trained on. Since the number of observations available to us was on the scale of hundreds 

of thousands, approximately 75% of data points were allocated to training. 

Since it is required by chosen learning algorithms for all data points to be numerical 

values, the next stage of data preparation is handling categorical features such as host ISP, 

domain registrar, etc. This can be done by one-hot-encoding depicted in the Figure 6: 

Note that after performing one-hot-encoding, the 2nd dimension of the data frame will 

increase by the same amount as the count of distinct entries in each categorical column 

summed over all categorical columns. 

 

Figure 6. Encoding Categorical Feature. 
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The final stage of data preparation is addressing varying scales, or “units” among different 

features. Learning algorithms that make use of Euclidean distance metric or gradient 

descent are sensitive to these variations [20, pp 194]. It is, therefore, crucial to rescale 

data such that the difference between the mean values of any two columns is no longer 

too large. During data preparation this was done using StandardScaler which subtracts 

column mean from each observation and divides the result by standard deviation [22]. 

4.3 Performance Metrics 

In order to quantify the efficacy of predictive models, one has to introduce metrics with 

which to measure the performance first. Since the assignment at hand is to accurately 

predict whether a given URL is malicious, it would make sense to begin with the plain 

Accuracy.  

4.3.1 Confusion Matrix and Accuracy 

Since binary classifiers, by definition, can only produce 4 types of predictions: True 

Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN), one 

can assemble these statistics in a mathematical object called Confusion Matrix which is 

a handy tool for calculating more sophisticated measures: (see Figure 7). 

Accuracy, then, would be a ratio of correct decisions and all decisions: 

 

Figure 7. Confusion Matrix of Binary Classifier. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                            (3) 

 

4.3.2 Recall (True Positive Rate) 

It should be noted that plain accuracy is a dataset dependent metric and is not 

informative in cases where class imbalance is present. Consider the scenario where the 

predictive model has been deployed to production where Malicious URLs only 

correspond to a mere 1% of the traffic. Even if predictor were to utterly fail to detect 

any Malicious URLs and classify all samples as benign, prediction accuracy would still 

amount to 99% which is clearly deceiving. To counter this problem, one can define the 

true positive rate of classifier as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                              (4) 

Recall tells us out of total number of Malicious URLs (TP + FN), what proportion the 

classifier has managed to classify correctly as Malicious.   

4.3.3 Precision (Positive Predictive Value) 

Ideally, it would be preferred for the resultant classifier not to mark too many benign 

URLs as malicious, for this reason it is necessary to introduce positive predictive value: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                        (5) 

Precision tells us out of total number of URLs that were marked as Malicious by classifier, 

how many were actually Malicious. To summarize, Precision is oriented on decreasing 

the number of Benign URLs incorrectly classified as Malicious, while Recall focuses on 

maximizing the number of correctly detected Malicious URLs.  

4.3.4 F-Measure 

Since for the problem of Malicious URL detection both, Precision and Recall are relevant, 

there is a need to introduce a more sophisticated metric, the one that takes both (4) and 

(5) into consideration: 

𝐹𝛽 =  
(1+ 𝛽2)(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝛽2 x 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                         (6) 
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F-Beta is essentially a weighted harmonic mean of Precision and Recall where  

{ 𝛽 ∈ ℝ+ |  𝛽 ≥ 0 } is a free parameter ascertaining weights [23]. Since for the 

current assignment both, precision and recall are equally relevant, we can take (6) 

with 𝛽 = 1 to obtain what is called an F1 score (7): 

𝐹1 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                                 (7) 

 

4.4 Benchmarking Results 

All 10 classifiers introduced in the chapter 4.1 were implemented and trained on all 3 sets 

of features after which each learning algorithm was thoroughly evaluated using metrics 

introduced in the chapter 4.3. Gathered model performance data is summarized in the 

tables 3, 4 and 5: 

Table 3. Classifier Performance on Lexical Feature Set. 

Classifier Accuracy Precision Recall F1 

KNN 94.231% 94% 94% 94% 

LR 86.495% 87% 86% 86% 

SVC 92.592% 93% 93% 92% 

NB 78.512% 82% 79% 76% 

DT 93.498% 93% 93% 93% 

RF 94.286% 94% 94% 94% 

BC 94.276% 94% 94% 94% 

GBC 93.258% 93% 93% 93% 

SGDC 86.259% 87% 86% 86% 

DNN 93.63% N/A N/A N/A 
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Table 4. Classifier Performance on Host Feature Set. 

Classifier Accuracy Precision Recall F1 

KNN 98.193% 98% 98% 98% 

LR 93.136% 93% 93% 93% 

SVC 94.823% 95% 95% 95% 

NB 42.389% 86% 42% 44% 

DT 98.321% 98% 98% 98% 

RF 98.342% 98% 98% 98% 

BC 98.329% 98% 98% 98% 

GBC 97.946% 98% 98% 98% 

SGDC 94.468% 95% 94% 95% 

DNN 98.06% N/A N/A N/A 

 

Table 5. Classifier Performance on Linguistic Feature Set. 

Classifier Accuracy Precision Recall F1 

KNN 86.163% 88% 86% 86% 

LR 94.936% 95% 95% 95% 

SVC N/A N/A N/A N/A 

NB N/A N/A N/A N/A 

DT 95.366% 95% 95% 95% 

RF 95.555% 96% 96% 96% 
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BC 95.171% 95% 95% 95% 

GBC 87.716% 88% 88% 87% 

SGDC 92.171% 93% 92% 92% 

 

4.5 Result Analysis and Conclusion 

This section offers summary of gathered experimental data and thus provides answers  to 

the research questions posed in the chapter 1.3. 

4.5.1 Comparing Learning Algorithms 

Judging by the overall accuracy metric (Equation 3), for all classes of predictor variables 

ensemble learning algorithms performed best. In particular, Random Forest Classifier has 

managed to achieve the highest accuracy scores 94.28% - 98.34% for all 3 sets of features, 

followed closely by Bagging Classifier 94.27% - 98.32% for Lexical and Host features, 

and Decision Tree 95.36% for Linguistic features (see figure 8).  

It appears continuous resampling and multiple classifier instance approaches employed 

by ensemble methods such as RF and BC are particularly effective for the nature of the 

URL-based datasets. It should be noted that linear classifiers such as NB, SVC and LR, 

which are most frequently used during Malicious URL detection, are not nearly as 

efficacious as tree-based methods according to the results of the conducted experiment.  

 

Figure 8. Accuracy Scores of Top Classifiers for Each Feature Set. 
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Another piece of data that is informative to examine is algorithm training time 

comparison, which helps ascertain performance to run time ratio, for a certain algorithm 

may perform 5% more accurately, but it would likely not be worth adopting if its training 

time is a factor of 106 higher. 

From the Figure 9 it is apparent that not only were ensemble learning algorithms most 

accurate, but they were also highly efficient. Furthermore, due to their time complexity, 

linear classifiers such as SVC and KNN do not scale well on large datasets. Lastly, it 

should be noted that efficiency of learning algorithms depends on the number of 

observations they were trained on, DNNs for instance, scale exceptionally well on 

massive datasets. This will be discussed further in the chapter 5. 

4.5.2 Comparing Predictor Variables 

Based on data depicted in the figure 8 it is evident that learning algorithms trained on the 

host variables managed to achieve the highest accuracy score 98.34%, followed by 

Linguistic variables 95.55% and lastly, Lexical variables 94.28%. However, as was the 

case for algorithms, assessment of superiority of different variable classes is more 

nuanced than merely comparing performances of learning algorithms trained on them. 

One must also take variable computation times and challenges associated with their 

derivation into account. 

 

Figure 9. CPU-Training Time of Learning Algorithms. 
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As illustrated in the figure 10, computation of Linguistic variables takes the least amount 

of time since vectorization is a highly optimized operation. Lexical variables take slightly 

longer - 11 minutes, meaning, this class of predictors still scales well. This is not 

unexpected since calculation of lexical variables involves basic pattern matching and 

algebraic manipulations.  

Host variables, though, are very different in nature. Due to the need of performing public 

database lookups, collection of host variables takes nearly 103 times longer. What is 

worse, this is the computation time after optimizing extraction script not to perform 

duplicated lookups for URLs with the same host. This means, the speed of computation 

goes up exponentially over time since as the number of performed lookups increases, so 

does the probability of the next host already being encountered. During the conducted 

experiment it took 8 hours for the extraction script to calculate host variables for 10% of 

the data, and additional 9 hours to reach 100%. It is reasonable to assume, therefore, that 

if one tried to derive host variables the same number of unique hosts, computational time 

would go up by approximately additional factor of 10. Furthermore, unlike other variable 

classes for which URL itself is sufficient for computation, host variables require that the 

webpage to which a given URL corresponds still exists. This is problematic since it has 

been demonstrated that malicious URLs have a shorter overall lifespan than benign ones 

[2]. Because of this, only 30% of observations were suitable for computing host variables 

which caused a 70% reduction in both, available training, and testing data. 

 

Figure 10. Computation Time of 3 Examined Variable Classes. 



40 

To conclude, although learning algorithms trained on host variables perform 

approximately 4% better, the increase in computational complexity and drop in trainable 

data quantity makes this class of predictor variables hard to recommend to researchers for 

adoption.  

Based on the conducted analysis it would be reasonable to conclude that lexical variables 

are overall most optimal for use in the majority of circumstances. While it is true that 

algorithms trained on linguistic variables manage to achieve a slightly higher accuracy 

score compared to the ones trained on lexical data, it should also be noted that the 

dimensionality of linguistic variable data is extraordinarily high, making it impossible for 

the learning algorithms which do not scale well to the massive amount of features to be 

trained on them, as depicted in the Table 5 where scores for some algorithms are missing 

for linguistic variables. 

5 Future Research 

Due to the nature of thesis work, it was necessary to narrow down the research problem 

to that which could be accomplishable in the limited time allocated to the corresponding 

study module. In this chapter outlines how one could extend the scope of the research 

problem examined in this paper to potentially achieve more precise predictive models, 

and cover more edge cases, given enough time and resources.  

After evaluating almost 30 different combinations of predictor variables and learning 

algorithms, it became apparent that investing time in feature engineering makes more 

overall difference than model selection. It is incontrovertible that a superior learning 

algorithm will almost certainly manage to extract more insights from the data. However, 

it is more fruitful to try increasing the number of insights itself which can be achieved by 

increasing the number of effective predictor variables. This can be accomplished by 

further examining what the visual or statistical differences are amongst benign and 

malicious URLs, then proposing new derived measures and evaluating their predictive 

power using correlation tests and chi-squared tests. Not only would this effort help 

achieve higher classification scores, but it would also expand the scope of covered types 
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of attacks, which in this paper have been limited to defacement, malware, phishing, and 

spam URLs. 

Second method how one could increase the amount of learnable insights is by increasing 

the dataset size itself. However, unlike in the previous case, being mindful in algorithm 

selection becomes crucial. One must consider aspects such as computational complexity 

of algorithms, how well they scale to large datasets, and, most importantly, how the 

algorithm performance varies as a function of number of observations. A good example 

of this is depicted in the Figure 11: 

It is evident from the Figure 11 that while conventional non-deep learning algorithms 

outmatch Artificial Neural Networks on smaller datasets, once the number of 

observations grows substantially, Deep Learning manages to extract more insights. It 

simply scales much better on massive datasets. Furthermore, Deep Learning models can 

make use of hardware acceleration and, therefore, massive parallelization, which is not 

an option for most conventional learning algorithms. 

Lastly, if collecting high quality annotated data is problematic, it is worth trying to 

formulate the challenge of detecting malicious URLs as an unsupervised or semi-

supervised learning problem. Clustering or anomaly detection could prove to be a fruitful 

starting point. 

 

Figure 11. Relative Performance of Learning Algorithms as a Function of Dataset Size. Source: [24]. 
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6 Summary 

The aim of this research was to conduct a comprehensive comparison of 3 different 

predictor variable classes used for detecting Malicious URLs by evaluating each of them 

on 10 different learning algorithms to ascertain which classes of predictors were most 

optimal for use in different circumstances, and which learning algorithms tend to achieve 

highest accuracy scores for each class of variables.  

Relevant findings, in no particular order, are the following: 

• Learning algorithms trained on the host variables managed to achieve the highest 

accuracy score 98.34%, followed by Linguistic variables 95.55% and lastly, 

Lexical variables 94.28%. 

• Lexical variables are most optimal for use in most circumstances due to their short 

calculation time, high data quality and effectiveness. Linguistic variables are 

equally quick to calculate, however, dimensionality of this type of data is 

exceptionally high, making it impossible to be used for training certain types of 

learning algorithms which do not scale well to high number of features. Linguistic 

variables would be a good choice for circumstances where one is working with a 

low number of observations and feature extraction needs to be automated.  

• Host variables have the highest predictive power, however, due to the need of 

performing public database lookups, their calculation time can be a factor of 105 

higher compared to lexical features. Combined with the fact that yield rate of 

usable host variables is only 30% and decreases over time, this class of predictors 

is difficult to recommend unless one is extracting features nearly in real-time. 

• Ensemble learning methods, in particular, Random Forest and Bagging Classifier 

have achieved the lowest false negative rates for all 3 classes of predictors, with 

the peak value being a mere 1.7%. They also seem to scale exceptionally well on 

the datasets as large as 6 x 105 observations. However, for anything larger, Deep 

Learning is recommended due to its power to extract more insights and benefit 

from hardware acceleration. 

 



43 

References 

[1] S. Sinha, M. Bailey, and F. Jahanian, “Shades of grey: On the effectiveness of 

reputation-based ‘blacklists,’” 2008 3rd International Conference on Malicious and 

Unwanted Software (MALWARE), Oct. 2008, doi: 10.1109/malware.2008.4690858. 

 

[2] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. 

Ghorbani, “Detecting Malicious URLs Using Lexical Analysis,” Network and System 

Security, pp. 467–482, 2016, doi: 10.1007/978-3-319-46298-1_30. 

 

[3] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Learning to detect malicious 

URLs,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, pp. 1–

24, Apr. 2011, doi: 10.1145/1961189.1961202. 

 

[4] “The components of a URL,” www.ibm.com. https://www.ibm.com/docs/en/cics-

ts/5.3?topic=concepts-components-url (accessed Apr. 25, 2022). 

 

[5] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists,” Proceedings 

of the 15th ACM SIGKDD international conference on Knowledge discovery and data 

mining - KDD ’09, 2009, doi: 10.1145/1557019.1557153. 

 

[6] P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detection using 

classification techniques,” IEEE Xplore, Oct. 01, 2009. 

https://ieeexplore.ieee.org/document/5403020 (accessed Apr. 25, 2022). 

 

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, 

Massachusetts: The Mit Press, 2016. 

 

[8] “SecurityTrails | Whois Lookup: Definition and Examples,” securitytrails.com. 

https://securitytrails.com/blog/whois-lookup (accessed Apr. 13, 2022). 

 

[9] “What is Whois Information and Why is it Valuable? | DomainTools 

Support,” DomainTools. https://www.domaintools.com/support/what-is-whois-

information-and-why-is-it-valuable#:~:text=Whois%20is%20a%20widely%20used 

(accessed Apr. 13, 2022). 

 

[10] “Thesis – Google 

Drive,” https://drive.google.com/drive/folders/1vPN6aMA_Vjc0myHjeFsweuZYV9tCHi

zQ?usp=sharing 

https://securitytrails.com/blog/whois-lookup
https://www.domaintools.com/support/what-is-whois-information-and-why-is-it-valuable#:~:text=Whois%20is%20a%20widely%20used
https://www.domaintools.com/support/what-is-whois-information-and-why-is-it-valuable#:~:text=Whois%20is%20a%20widely%20used


44 

[11] C. Chio and D. Freeman, Machine learning and security : protecting systems with 

data and algorithms. Beijing: O’reilly, 2018. 

 

[12] S. Bird, Natural language processing with python. O’reilly Media, 2016. 

 

[13] D. Sahoo, C. Liu, and S. C, “Malicious URL Detection using Machine Learning: A 

Survey,” arXiv.org, 2017. https://arxiv.org/abs/1701.07179 

 

[14] F. Vanhoenshoven, G. Napoles, R. Falcon, K. Vanhoof, and M. Koppen, 

“Detecting malicious URLs using machine learning techniques,” 2016 IEEE Symposium 

Series on Computational Intelligence (SSCI), Dec. 2016, doi: 

10.1109/ssci.2016.7850079. 

 

[15] Google, “Colaboratory – Google,” research.google.com. 

https://research.google.com/colaboratory/faq.html 

 

[16] A. C. Müller and S. Guido, Introduction to machine learning with Python : a guide 

for data scientists. Beijing: O’reilly, 2017. 
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