
Tallinn 2016

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

ITV40LT

Ivan Studenikin 120478IABB

ANALYSIS OF ALGORITHMS USED IN
RECOMMENDER SYSTEMS AND

USABILITY OF TOOLS IMPLEMENTING
THEM

Bachelor's thesis

Supervisor: Ago Luberg

 Master of Science

 Assistant

Tallinn 2016

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Arvutiteaduse instituut

ITV40LT

Ivan Studenikin 120478IABB

SOOVITUSALGORITMIDE JA NEID
RAKENDAVATE TÖÖRISTADE

KASUTUSMUGAVUSE ANALÜÜS

Bakalaurusetöö

Juhendaja: Ago Luberg

 Magister

 Assistent

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Ivan Studenikin

23.05.2016

4

Abstract

The main goals of this thesis are analysis of popular algorithms used in recommender

systems, their presentation in an easy to digest manner and analysis of usability of

software frameworks that implement these algorithms.

In the second chapter, we look into the most popular recommendation algorithms based

on the work of researchers. They are analysed in terms of idea behind them, various

features and types of the algorithms, performance, scalability, application and accuracy.

The analysis is presented in a manner readable also for non-technical people.

In the third chapter the usability of three advanced frameworks implementing the

algorithms, presented in the second chapter, is tested. It is done by building a simple

recommender system, using the provided documentation for the frameworks.

Finally, in the summary conclusions are drawn as to which algorithms are suitable for

different use cases and what framework is suitable for which application.

Analysis presented in the thesis should be sufficient to enable informed choice of

algorithms and frameworks to be used in development of a domain specific

recommender system.

This thesis is written in English and is 34 pages long, including 4 chapters, 11 figures

and 1 table.

5

Annotatsioon

Soovitusalgoritmide ja neid rakendavate tööristade

kasutusmugavuse analüüs

Antud bakalarausetöö eesmärkideks on analüüsida populaarseimad soovitusalgoritme,

kirjeldada neid lihtsalt loetaval viisil ning analüüsida neid implementeerivaid tarkvara

raamistike kasutusmugavust.

Teises peatükis analüüsitakse algoritme, mida kasutatakse soovitussüsteemides kõige

enam. Uuritakse nende põhiideid, erinevusi ning algoritmide tüüpe, nende toimivust,

skaleerivust, rakendamist ja täpsust. Analüüs on püütud teha hästi loetavaks ning

mõistetavaks.

Kolmandas peatükis uuritakse saadavalolevate soovitussüteemide tarkvararaamistike

kasutusmugavust läbi lihtsa soovitussüsteemi loomise kaudu nende raamistikke abil.

Vaadeldakse dokumentatsiooni kättesaadavust, konfigureerimise ja integreerimise

lihtsust, erinevusi, skaleeritavuse tuge ning kasutuse lihtsust.

Lõpuks, kokkuvõtes tehakse järeldusi tehtud analüüsi alusel. Arutletakse millised

algoritmid on sobilikud erinevate kasutusjuhtude puhul ning millal on parem võtta

kasutusele üht või teist raamistikku soovitussüsteemi loomisel.

Tehtud analüüs peaks olema piisav, et langetada teadlik otsus soovitusalgoritmide ning

raamistike valikul erivaldkonna soovitusüsteemi loomiseks.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 34 leheküljel, 4 peatükki, 11

joonist ja 1 tabel.

6

List of abbreviations and terms

Weighted average Average value of items computed by considering relative importance of

each value

Kaaludega varustatud suuruste keskmine

Data mining Computational process of discovering patterns in large datasets

Automaatne protsess kasulike mustrite paljastamiseks suurtest
andmehulkadest

Machine learning Study and construction of algorithms that can learn from and make
predictions on data

Teadusvaldkond, mille eesmärk on välja töötada empiiriliste andmete
põhjal otsuseid ja ennustusi tegevaid algoritme

Cosine Ratio of the length of the adjacent side to the length of the hypotenuse

Lähiskülje ja hüpotenuusi suhe

Data sparsity Percentage of empty cells in the table

Tühjade väljade osa tabelis

Open source

software

Computer software with its source code made available with a license in
which the copyright holder provides the rights to study, change, and
distribute the software to anyone and for any purpose

Tarkvara, mille lähtekood ja dokumentatsioon on kõigile kasutajatele ja
arendajatele vabalt kättesaadav nii tutvumiseks kui muutmiseks

Framework Abstraction, which provides generic functionality helping to simplify

application development

Abstraktsioon, mis pakub geneerilise funktionaalsuse, aidates rakenduste

arendamisel

Java An object-oriented programming language

Objektorienteeritud programmeerimiskeel

7

API Application Programming Interface, a set rules for interacting with

existing software

Reeglistik olemasoleva programmiga suhtlemiseks

Node Single active electronic device that is attached to a network

Üksik seade mis on ühenduses osana arvutivõrgust

Fork Creation of separate and distinct software based on an existing software
package

Eraldiseisva tarkvara loomine olemasoleva tarkvarapaketi alusel

Interface An abstract type in object-oriented programming languages that
contains no data or code, but defines behaviors as method signatures for
implementation in child classes

Abstraktne tüüp objekt-orienteeritud programmeerimiskeeltes milles ei ole
andmeid ega koodi, aga mis määrab end implemeteerivate klasside
kätumist

IDE Integrated Development Environment, software that provides
comprehensive facilities to computer programmers for software
development

Tarkvara programm, mis pakub programmeerijatele põhjalikke vahendeid
tarkvara arendamiseks

8

Table of contents

1 Introduction .. 11	

2 Analysis of popular algorithms used in recommender systems 12	

2.1 User-based collaborative filtering ... 12	

2.1.1 Process of user-based collaborative filtering ... 13	

2.1.2 Types of user-based collaborative filtering .. 14	

2.1.3 Performance ... 15	

2.2 Item-based collaborative filtering ... 16	

2.2.1 Determining item similarity ... 17	

2.2.2 Performance ... 19	

2.3 Hybrid user-based and item-based recommendation algorithms 20	

2.4 Matrix factorization approach ... 21	

2.4.1 Singular value decomposition applied to matrix factorization 22	

2.4.2 Adding extra inputs to matrix factorization ... 22	

2.4.3 Dynamic recommendations ... 23	

2.4.4 Performance ... 23	

3 Analysis of recommender system frameworks' usability ... 24	

3.1 Apache Mahout ... 24	

3.1.1 Usability in development ... 25	

3.2 LibRec ... 28	

3.2.1 Usability in development ... 28	

3.3 LensKit .. 30	

3.3.1 Usability in development ... 30	

3.4 Comparison of frameworks' performance ... 31	

4 Summary .. 33	

References ... 34	

Appendix 1 - Comparison of usability of recommender frameworks 35	

Appendix 2 - Example of LibRec configuration file .. 36	

9

List of figures

Figure 1. Example of user-based recommendation ... 12	

Figure 2. Example of item-based recommendation .. 16	

Figure 3. Item-based recommendation algorithm in pseudo code 17	

Figure 4. Example of cosine similarity of cartoon characters .. 18	

Figure 5. Example of hybrid recommendation algorithm ... 21	

Figure 6. Simplified example of matrix factorization ... 21	

Figure 7. Example of Mahout dependency declaration in Maven 26	

Figure 8. Example of a simple fully functional user-based recommender 27	

Figure 9. Example of a simple fully functional matrix factorization-based recommender

 ... 27	

Figure 10. Example of a function required to generate recommendations using LibRec

 ... 29	

Figure 11. Example of LensKit configuration .. 31	

10

List of tables

Table 1. Recommendations and their scores generated by the frameworks 32	

11

1 Introduction

Nowadays there is a great amount of data being collected on people's behaviour. Every

time someone visits a website online, swipes a loyalty card in the shop or pays for

purchases with a credit card all these actions are being recorded. For commercial

enterprises, there is great potential in using this vast amount of data in order to generate

insights that can lead to increased revenue. The companies that have embraced data

analysis as cornerstones of their business, such as Google, Amazon and Netflix, have

thrived and become household names.

However, not all companies are taking full advantage of such a valuable resource. Some

of the most glaring examples that can be observed in Estonia are supermarket chains.

Even though some of them have been collecting information about our shopping habits

for decades, we as end customers don't see much personal benefit from it. Indeed, some

of these chains have recently introduced some services that are based on data analysis

and benefit the consumer. However, these are mostly rudimentary and lacking in

personalization. One of the possibilities for improving the status quo is introducing a

recommender system to the shopping experience. This approach has already been

proven in e-commerce to improve the shopping experience for consumers and increase

revenue for companies [2]. It is high time the traditional retailers also adopt it.

Unfortunately, the majority of research papers that deal with this subject are extremely

technical and hard to read, especially for people that are not well versed in computer

programming or higher mathematics. This makes for a high barrier of entry into the

field.

In this thesis I will analyse the most widely used algorithms in recommender systems

and try to present the findings in an easy to digest manner, in order to provide a solid

understanding of available approaches for potential users. I will also try out and analyse

the usability in development of some of the software frameworks that implement such

algorithms, which would help potential users to make the right decision when choosing

what tool to go with.

12

2 Analysis of popular algorithms used in recommender

systems

2.1 User-based collaborative filtering

Collaborative filtering is one of the earliest and most successful approaches used in

recommender systems [15].

The basic premise behind collaborative filtering is to collect and analyse large amounts

of data on customers' behaviours, activities and preferences in order to determine

whether a product would be useful to the target customer based on the opinions and

buying habits of other similar customers [9]. Similarity of customers can be judged

based on a multitude of factors, chief among them is the tendency to buy or rate

different products in an analogous manner [15]. In essence, if there is a customer who

has purchased several items and there is another customer who has purchased, say

seventy per cent, of the same items, then it is likely that the second customer would be

interested in purchasing the remaining thirty per cent of the items purchased by the first

customer. An example of user-based collaborative filtering is given in Figure 1.

Figure 1. Example of user-based recommendation [3]

13

2.1.1 Process of user-based collaborative filtering

The process of user-based collaborative filtering can be divided into three main steps -

representation, neighbourhood formation and recommendation generation.

Typically, the input data or original representation in recommender systems is the

purchasing or rating history of items by customers.

Neighbourhood formation is the most important step in collaborative filtering-based

recommender systems. Here, the similarity between the target customer and other

compatible customers is calculated. This step is the learning process for the

recommender system.

Finally, generation of recommendation is basically deriving the top items bought or

rated by the formed neighbourhood of customers. There are three ways of

accomplishing this:

• Recommendation of most frequent items - here the purchase history of

neighbours (customers) in the neighbourhood is looked over and the frequency

count of items is performed. After that process is finished, the items are ranked

based on their count and the most popular ones are presented as recommended to

the target customer;

• Recommendation based on a rule - this approach takes a predefined rule, usually

incorporating a prediction about the result of the computation, and applies it to

the formed neighbourhood. For example, the rule can state that if an item was

bought together with the items that might be of interest to the target customer,

the item itself would also be useful to this customer. Thus this item is

recommended;

• Mix of the previous two [15].

The approaches described above are tackled with more detail in the next chapter.

14

2.1.2 Types of user-based collaborative filtering

2.1.2.1 Memory-based

Memory-based approach to collaborative filtering has its goal the prediction of a

customer's purchase based on the dataset of purchases of other existing customers. For

example, the probability of a customer buying an item is calculated as an average of

some similar customers' rate of buying the same item.

One of the ways it can be implemented is by calculating the similarity between the

target customer and one other customer, which is the most similar, and taking the

weighted average of the rate of purchased items as an indicator for recommendation.

Another way is finding the k most similar customers and aggregating their purchase

histories in order to identify the most likely items that the target customer will like [9].

The advantages of this approach are its relative simplicity, independence of the content

of the items to the outcome of the computation and explainability of the results.

Disadvantages are decrease of performance in the event of data sparsity, which hinders

scalability and adds difficulty in introducing new items to the dataset [13].

2.1.2.2 Model-based

A model is a rule created by applying data mining algorithms and machine learning

techniques in order to uncover patterns in the existing datasets [4].

There are a multitude of available models, most of them based on mathematical and

statistical algorithms such as clustering, where items are grouped into a set in such a

way that members of the set are more similar to each other than to members of other

sets, Bayesian networks, where relationships between nodes represent conditional

dependencies (cause and effect) and classification [4].

Applying the model-based approach to collaborative filtering gives more control over

the resulting recommendations as it provides a way to influence them. For example,

instead of looking for customers with similar purchasing behaviour regardless of any

external factors, such variables as weather conditions, day of week and others can be

introduced as a rule, which might significantly affect the end result.

15

Advantages of using the model-based approach are better handling of data sparsity,

which in turn helps scalability, and potentially higher quality of recommendations, as

with thoroughly researched models additional solid data points are introduced.

Main disadvantages are difficulty in building models, potential loss of useful

information and occasionally difficulty in explaining resulting recommendations [4].

2.1.3 Performance

A compelling feature of user-based collaborative filtering is that this method does not

require understanding of the content of complex items being recommended [3]. Instead

simply the commonality is used to determine probable usefulness of the products.

Another advantage of using user-based collaborative filtering-based recommender

system is that implicitly all possible statistical factors are taken into consideration [4].

However, even though the given approach is one of the most successful it also has its

drawbacks. The main ones are:

• The necessity to collect a sizable amount of data in order to provide worthwhile

recommendations;

• Scalability issues past several million customers and items [3];

• Inadaptability to new items;

• Synonyms - items with different names referring to the same core product [13].

Accordingly, there are several ways these limitations are handled. In order to deal with

data sparsity a variety of techniques are employed, such as automatic rating of the items

based on their contents, which allows to provide a more detailed background on each

bought product. One way of addressing scalability issues is to group the customers into

clusters and limit the search to the one, which correlates with the target user the most.

As for introducing new items into the equation the same approach as for dealing with

data sparsity can be utilized [4].

16

2.2 Item-based collaborative filtering

Another approach to finding products that would be of interest to the target customer is

by basing the recommendation algorithm not at finding similar customers and their

shopping history, but at the items themselves. With this approach, first the similarities

between the various items are determined and then used to identify suitable items to be

recommended.

As opposed to traditional collaborative filtering, this approach does not require the

computation to determine the so-called neighbourhood of comparable customers, which

tends to be one of the most performance-intensive parts of generating the

recommendation, so the end result is generally achieved much faster. Item-based

recommendation approach uses a precomputed model of items' similarities, which

enables it to identify a set of items to be recommended quite quickly.

The premise behind this way of pinpointing items of interest is that the customer is

more likely to find appealing the items that are related or share similarities with the

products that he or she has already purchased [9]. An example of item-based

collaborative filtering is given in Figure 2.

Figure 2. Example of item-based recommendation [3]

17

2.2.1 Determining item similarity

As mentioned, one of the advantages of item-based approach to finding items of interest

is that it requires less real-time overhead in comparison to collaborative filtering, due to

the fact that the model on which the recommendation is based is computed in advance

of the actual generation of the recommendation. The phase of model building consists

of:

• Finding the n most similar items for each item;

• Recording the similarities between the items;

• Determining the top recommended items for each customer, based on the set of

items from the customer's shopping history.

The last step is performed as follows:

• For each item present in the customer's shopping history the k most similar items

are found;

• The items that are already present in the customer's shopping history are

removed from the resulting set;

• For each item in the remaining set the similarity to the existing shopping history

of the customer is computed as the sum of similarities between all the items in

the remaining set and all the items in the existing shopping history;

• The items in the resulting set are sorted by similarity rating and the specified

number of items is selected as recommended.

For	
 each	
 item	
 in	
 product	
 catalogue	
 I1	

	
 For	
 each	
 customer	
 C	
 who	
 purchased	
 I1	

	
 	
 For	
 each	
 item	
 I2	
 purchased	
 by	

	
 	
 	
 Customer	
 C	

	
 	
 	
 Record	
 that	
 a	
 customer	
 purchased	
 I1	

	
 	
 	
 And	
 I2	

	
 For	
 each	
 item	
 I2	

	
 	
 Compute	
 the	
 similarity	
 between	
 I1	
 and	
 I2	

Figure 3. Item-based recommendation algorithm in pseudo code

18

Example of the described process is given in Figure 3.

The most important part of the described process is determining item similarity. There

are two most common ways of doing that [9].

2.2.1.1 Cosine-based similarity

The first way of computing the correlation of items is by treating each item as a vector

in customer-space. The similarity is thus represented as a cosine of the angle between

such vectors [1].

Figure 4. Example of cosine similarity of cartoon characters [3]

As can be seen from Figure 4, if the customer has bought one item and also the other

one the similarity between the two items will be rather high. The rate or frequency of

purchases is also taken into account, so the items that are bought the most will share a

high similarity rating with other items that are bought the most [9].

2.2.1.2 Conditional probability-based similarity

Another way of computing the similarity of items is by measuring the probability of the

event that an item is bought, given that a set of other items has already been bought.

This can be presented by a simple equation (1).

P(u | v) = Freq(uv)
Freq(v) (1)

What the equation (1) represents is essentially a number of customers that purchase both

items v and u divided by the total number of customers that have purchased v.

19

One of the glaring disadvantages of using such a measure of similarity is that every item

in the dataset will have a high similarity rating to the items that are bought the most

frequently, caused simply by the fact that popular items are bought more frequently and

other items tend to be bought together with them. In order to combat this shortcoming

researchers have come up with several strategies the most straightforward of which is

simply dividing the resulting probability of similarity by the frequency of occurrence of

the each item in the dataset [9].

2.2.1.3 Normalization of similarity

As the frequency of item purchases can vary greatly so can the similarity rating of

items. The products that are bought less often can potentially have a big influence on the

overall result of determining the suitable recommendations if they have even a moderate

correlation with other items, that are also bought infrequently. This can manifest itself

in unsuitable recommendations. In order to deal with this shortcoming similarity

normalization techniques are used that place more emphasis on less active customers,

whose shopping history data is more insightful, and deemphasizes the more frequently

purchased items, the data on which can be polluting. Similarity normalization has been

demonstrated to bring improvements in quality of recommendations up to the tune of

twelve per cent [9].

2.2.2 Performance

Performance-intensiveness of item-based recommendation algorithms is calculated

depending on two factors:

• The amount of time it takes to compute the most similar items for each item

(creating a model);

• The amount of time it takes to generate recommendations based on the created

model.

As a result of the fact that most customers tend to buy a small number of products,

which are usually clustered, the data sparsity level can be very high. Consequently, this

allows to perform the necessary computations only between pairs of products that have

been bought together at least once, removing the need to take into account all the data,

that does not conform to this requirement. In some datasets the sparsity can be as high

20

as ninety nine per cent, which means the recommendation is generated by only looking

at one per cent of the whole dataset [9].

The described feature is a big performance advantage in comparison to traditional user-

based collaborative filtering, where the whole dataset needs to be combed through in

order to generate the recommendation, and is especially useful in real-time systems.

In addition, a big advantage is that the most data-intensive computations, namely

looking up similar items for each item, are performed offline. This allows scalability

independent of the total number of items in the dataset [12].

Another notable quality of item-based algorithms is their tendency to generate only

gradually decreasing quality of recommendations with smaller datasets. Interestingly,

studies have shown that by shrinking the dataset fivefold the quality of

recommendations only suffered to the tune of less than two per cent [9]. In fact, high-

quality recommendations can be achieved with as few as several item pairs in the

dataset [12].

Where item-based algorithms suffer is the personalization. Generally, user-based

approach where the results are calculated from the data of the neighbourhood of most

similar users, tends to offer more personal recommendations [9].

2.3 Hybrid user-based and item-based recommendation algorithms

User-based and items-based approaches to generating recommendations can be

combined with the goal of taking advantage of the benefits of both.

The implementation of such algorithm can vary from first identifying a neighbourhood

of similar customers and then applying item-based filtering to it [9] to running both

algorithms independently and combining the results [3].

There are several studies that compare the performance of the hybrid approach with the

strictly collaborative and item-based algorithms. They show that the hybrid algorithms

can provide more accurate recommendations than pure approaches. This approach can

also be used to overcome some of the common issues in recommender systems such as

cold start and the data sparsity problem [9].

21

Figure 5. Example of hybrid recommendation algorithm

2.4 Matrix factorization approach

Matrix factorization is an alternate approach to generating recommendations. Such

algorithms, instead of finding similarity between customers or items, look for a

multitude of factors, called dimensions, gathered from the shopping or rating history

patterns. For example, for edible products this can be expiration date at time of sale,

seasonal trends, age of customer and others. Another good example of such approach by

a prominent user of this algorithm - Netflix - is categorizing movies into dimensions,

where a dimension can correspond to a genre, target demographic (male or female) and

the general feel of a movie. Figure 6 demonstrates this example.

Figure 6. Simplified example of matrix factorization [10]

22

In matrix factorization interactions (purchase or rating) between a customer and an item

are placed onto a single space of factors where each customer and item is associated

with a vector, which represents positive or negative extent, to which the customer is

interested in the factors or the item possesses the factors, of which the space is

comprised. The result of such mapping is a matrix of dots, which captures the

customer's interest in any given item. A simplified version of this can again be observed

on Figure 6.

The main difficulty in this approach is computing the user-item mapping [7].

2.4.1 Singular value decomposition applied to matrix factorization

Matrix factorization is very similar to a well-known technique for information retrieval

called singular value decomposition (SVD). SVD is basically decomposition of a matrix

into matrices of lower dimension. These matrices are useful for recommender systems

because they allow to reduce computational overhead by producing a low-dimensional

representation of the initial space of customers and items, thus enabling calculations on

much reduced dataset. They also help with the main goal of matrix factorization by

enabling capture of relationships between customers and items, which allows prediction

of likelihood of customer's interest in an item [10].

2.4.2 Adding extra inputs to matrix factorization

A great strength of matrix factorization is that it allows for input of additional

information to the dataset, when existing data is lacking or needs modifications to

comply with business rules [10].

In matrix factorization this additional data is called a bias. Biases can be used to reduce

or magnify the weight of necessary factors. One example is a critical customer, who

tends to rate an item lower than other customers. In this case such customer's ratings of

items can be given a lower weight when looking for items to recommend.

Another example is adding biases based on the customer's behaviour not directly related

to any products. In e-commerce this can be browsing and search history, location data

and so on. In retail it can be, for example, weather data and distance of customer's home

to the retail location. Such biases can greatly alleviate a common problem of

recommender systems working with a small dataset - a so-called cold start [10].

23

2.4.3 Dynamic recommendations

As customer's tastes and products' popularity change over time, recommender systems

need to provide up to date suggestions. To this extent matrix factorization offers

decomposition of purchase or rating history over different time periods.

The fact that an item's perception can change in time is addressed as item biases, which

represent item's popularity as a function of time. Customer's perception of items can

also vary, wherein a user might hold a product in high regard at one point and change

his or her opinion at another point, perhaps due to peer pressure or new knowledge

about an item. For such cases user bias can also be represented as a function of time.

Fleeting trends are also addressed by matrix factorization. It can work with less

meaningful data caused by varying interest in products and assign less weight to such

trends. One-time events are recognized as such and the recurring events are treated as

more indicative of a customer's opinion [10].

2.4.4 Performance

Matrix factorization lends itself well to scalability due to the possibility of working on

smaller (decomposed) dataset matrices.

Quality of predictions is dependent on refinement level of factor space, namely the

accuracy in choosing and describing the parameters of the space, which can number in

the hundreds of millions. Generally, the quality of recommendations is considered to be

of very high level.

Nowadays matrix factorization has become the dominant approach to recommender

systems [10].

24

3 Analysis of recommender system frameworks' usability

With the rise in popularity of applying recommendation algorithms to real-world data,

there have emerged several software engineering community-supported frameworks,

which assist the developers with creating software that utilizes the mentioned

algorithms to help the end users with finding interesting products. As Java is the most

popular programming language [16], the frameworks based on it were chosen for

evaluation. Two frameworks were chosen for evaluation because of their availability in

the Maven Central repository and richness of documentation. These were Apache

Mahout and LensKit. Another one - LibRec - was chosen due to offering many modern

algorithms, that the first two do not provide out of the box [6]. These frameworks offer

essentially the same base algorithms. They, however, differ in implementation, data

management and evaluation ratings, all of which has an effect on usability, performance

and results. There exists a multitude of performance and results-oriented publications

about these frameworks [6],[14]. However, they overlook an important side of the

frameworks which is ease of use. In the following chapters this topic will be examined

more closely by building a simple recommender engine using each of theme and

evaluating the difficulty of doing so. The data for testing the systems is a small dataset

crawled from the Filmtrust website containing 35497 item ratings which is provided by

the creators of LibRec [(A Collection of Recommendation Data Sets, 2011)].

3.1 Apache Mahout

Apache Mahout is an open source Java framework that provides an API for building

applications, which require use of scalable machine learning algorithms. It is licensed

under the Apache License, meaning it is free to use, modify and distribute. At the time

of writing the latest version of the framework is 0.12, but despite the major version

number being zero it is quite mature. Some of the main goals of the Mahout project are

focusing of practical use cases, instead of unproven techniques or new and raw research

and providing quality documentation, which, together with being free to use, makes it

an attractive candidate for use in commercial systems [7].

25

One of the prominent uses cases for Mahout is in recommender systems, as it offers via

its API implementations of many algorithms required in such systems. These include all

of the ones that were analysed in the first part of this thesis - user based collaborative

filtering, item based collaborative filtering and matrix factorization. It has to be noted

that some researchers have pointed out that Mahout focuses on memory-based

algorithms and might be becoming out-dated [6].

Apache Mahout's core algorithms are implemented in two modes: one for use on a

single node, called Taste, and another one for use in distributed multi node systems,

which are necessary for maintaining performance when working with large datasets. For

simplicity's sake we will focus on the single node mode when evaluating ease of

creating a recommender system from scratch.

3.1.1 Usability in development

As Mahout is a Java-based framework the prerequisite to using it is having Java

installed on the machine. The latest Mahout version, which is 0.12 at the time of writing

requires Java version no lower than 7. Installing Java is very straightforward and the

developers, who work in it ecosystem usually already have it available on their

machines. Being a Java-based library, Mahout is cross platform, meaning it can run on

any device supporting Java.

Apache Mahout is available as a standalone Java library, which can be added to any

Java application just like any other library. A very convenient feature of Mahout is its

availability in the most widely used library repositories, such as Maven Central. This

allows for declaring the library as a dependency for the automated application build

tools like Maven or Gradle, that are used in the vast majority of software projects [8] in

order to have a automated, structured and maintainable process on including external

tools used in development. In practice this means that integrating Mahout into an

application is as easy as declaring it a dependency in the project build file, as

demonstrated in Figure 7.

26

<dependencies>	

	
 	
 	
 	
 <dependency>	

	
 	
 	
 	
 	
 	
 	
 	
 <groupId>org.apache.mahout</groupId>	

	
 	
 	
 	
 	
 	
 	
 	
 <artifactId>mahout-­‐mr</artifactId>	

	
 	
 	
 	
 	
 	
 	
 	
 <version>0.12.0</version>	

	
 	
 	
 	
 </dependency>	

</dependencies>	

Figure 7. Example of Mahout dependency declaration in Maven

When Mahout is integrated into the project and ready to be used, there are several

relatively simple steps needed to make it generate recommendations:

• Preparing data in the format userId, itemId, rating (can be any numeric value, the

higher the better rating);

• Preparing the model (tuning the algorithm);

• Integrating with the application that will use the recommendations.

The data can be fetched from either the database, by implementing the interface

JDBCDataModel offering database-agnostic access to the data store, or a file with

comma-separated data values, using the existing class FileDataModel. Once that is

done, an implementation of the interface UserSimilarity is used to define the

similarity between users on a scale of -1.0 to 1, where 1 represents perfect similarity.

Mahout provides out of the box multiple implementations for UserSimilarity,

covering the major algorithms used for determining similar customers, such as Pearson

correlation and Euclidian distance. Then, in case of user-based recommendation, the

neighbourhood of the most similar users is determined by using an implementation of

the UserNeighborhood interface based on previously defined UserSimilarity. In

case of item-based recommendation an implementation of the interface named

ItemSimilarity needs to be used, which determines similarity the same way as

UserSimilarity, but between items. Finally, in order to generate the actual

recommendation, a function called recommend, taking as parameters one of the

previously defined similarities and a userId, from an implementation of

UserBasedRecommender or ItemBasedRecommender is used. The collection that is

returned from the function contains objects of type RecommendedItem, which store

itemId and recommendation score for the item.

27

public	
 List<RecommendedItem>	
 recommend(long	
 userId,	
 int	

numberOfItemsToRecommend)	
 throws	
 IOException,	
 TasteException	
 {	

	
 	
 	
 	
 DataModel	
 model	
 =	
 new	
 FileDataModel(new	

File("/Users/ivan.studenikin/ratings.csv"));	

	
 	
 	
 	
 UserSimilarity	
 userSimilarity	
 =	
 new	
 PearsonCorrelationSimilarity(model);	

	
 	
 	
 	
 int	
 neighborhoodSize	
 =	
 10;	

	
 	
 	
 	
 UserNeighborhood	
 neighborhood	
 =	
 new	

NearestNUserNeighborhood(neighborhoodSize,	
 userSimilarity,	
 model);	

	
 	
 	
 	
 UserBasedRecommender	
 userBasedRecommender	
 =	
 new	

GenericUserBasedRecommender(model,	
 neighborhood,	
 userSimilarity);	

	
 	
 	
 	
 return	
 userBasedRecommender.recommend(userId,	
 numberOfItemsToRecommend);	

}	

Figure 8. Example of a simple fully functional user-based recommender

In case of using matrix factorization the steps required are the same, but instead an

implementation of the Factorizer interface and one of the applicable Recommender

implementations is used.

public	
 List<RecommendedItem>	
 recommendSVD(long	
 userId,	
 int	

numberOfItemsToRecommend)	
 throws	
 IOException,	
 TasteException	
 {	

	
 	
 	
 	
 DataModel	
 model	
 =	
 new	
 FileDataModel(new	

File("/Users/ivan.studenikin/ratings.csv"));	

	
 	
 	
 	
 int	
 numberOfFeatures	
 =	
 5;	

	
 	
 	
 	
 int	
 numberOfIterations	
 =	
 100;	

	
 	
 	
 	
 Factorizer	
 factorizer	
 =	
 new	
 SVDPlusPlusFactorizer(model,	

numberOfFeatures,	
 numberOfIterations);	

	
 	
 	
 	
 Recommender	
 recommender	
 =	
 new	
 SVDRecommender(model,	
 factorizer);	

	
 	
 	
 	
 return	
 recommender.recommend(userId,	
 numberOfItemsToRecommend);	

}	

Figure 9. Example of a simple fully functional matrix factorization-based recommender

As can be seen from Figures 8 and 9 the interfaces, their implementations and functions

have self-explanatory names, which makes Mahout's API quite pleasant to use. It can

also be noted that the amount of code required to build a fully functional recommender

system is very small. A lot of popular algorithms are already implemented within the

API. However, new ones can easily be added or the existing ones customized to better

infer business rules.

Mahout also provides a web interface to expose the recommendation results via the web

or internal network out of the box. This makes integration with external systems easier.

Documentation is quite extensive and covers a lot of use cases. Examples are also

provided.

28

3.2 LibRec

LibRec is an open source library used in recommender systems, offering

implementations of a large suite of recommendation algorithms. It is licensed under

GNU General Public License, meaning it is free to use, share and copy. LibRec is

touted as a much faster alternative to other libraries [6], however, verification of this

claim is out of scope of this thesis. It has to be noted though that due to modern

algorithms doing the most performance-intensive computations offline and various

optimization techniques in use, this advantage has limited it current use cases.

The latest LibRec version, which is 1.3 at the time of writing requires Java version no

lower than 7, so there's no difference in comparison to Apache Mahout. LibRec is also

cross platform, being a Java-based library.

LibRec offers recommendation algorithms based on work of researchers and each

available one has a reference to paper that it was taken from in the documentation. This

approach means that a lot of very modern and not widely used algorithms are offered.

There is no mention of support for scalability in the documentation, so an assumption

can be made that this is not available out of the box. However, this also means that

whoever uses the library is free to choose any suitable technology to add this

functionality, if the requirement for making the recommendation system work with

massive datasets arises.

3.2.1 Usability in development

Unfortunately, at the time of writing LibRec was not present in any major library

repositories, making its use in development of commercial systems more cumbersome.

This means that the library and its dependencies have to be added and maintained in a

project by hand.

Once the library and its dependencies were downloaded and added to the application, an

attempt was made to run an example provided in the documentation. This attempt failed

due to the main function used for generating recommendations having protected access,

meaning that any applications that are to use LibRec as a dependency need to be

essentially a fork of LibRec itself. This may be a disadvantage, that commercial users

will not look past. Although LibRec, just like Mahout, also offers a command line

29

interface that could be used to mitigate the problem, its use is explicitly discouraged in

the documentation, due to, again, having to deal with external dependencies by hand.

Having checked out and imported into the IDE the source code of the library, the next

step was to configure the application to generate recommendations. In LibRec this is

done mostly via a single configuration file. For some developers having to configure the

system not programmatically, but via a separate configuration file might be a turnoff, as

it was for the author of the thesis. In contrast to Mahout, the naming pattern is lacking in

clarity, as demonstrated in Appendix 2. It takes quite a lot of time to understand the

meaning of the majority of parameters and their values. It has to be noted though, that

all of the options have a description in the documentation.

Another downside of LibRec is that it currently only works with files, containing

comma-separated values, so no database connectivity is provided, which is quite

inconvenient for development, as purchasing and rating data is usually stored in the

database. A workaround for copying the necessary values from the database to a file is

required to mitigate this issue. As the data needs to be kept up to date, this might

become a rather cumbersome step in the application's lifecycle.

After having setup the configuration and the data, creating the code to actually run the

application is quite simple: basically, only the location of the configuration file needs to

be specified, as can be observed from Figure 10.

public	
 void	
 recommend(String[]	
 args)	
 throws	
 Exception	
 {	

	
 	
 	
 	
 String	
 configFile	
 =	
 "librec/src/main/resources/librec.conf";	

	
 	
 	
 	
 LibRec	
 librec	
 =	
 new	
 LibRec();	

	
 	
 	
 	
 librec.setConfigFiles(configFile);	

	
 	
 	
 	
 librec.execute(args);	

}	

Figure 10. Example of a function required to generate recommendations using LibRec

One obvious downside here is that the function called execute does not return any

value, but instead either outputs the result to a file or clipboard, based on the

configuration setting. This means that in order to usable in commercial systems, a

workaround has to be created to allow further usage of the results of the computation in

the application. No web interface is provided though, so integration with external

systems will have to be done by hand.

30

The documentation for LibRec covers all of the algorithms offered, explains the

meaning and use of the configuration parameters, and offers examples on how to create

an application using the library, so the information is quite extensive. Another useful

thing offered is several datasets, which can be used to test the performance of different

algorithms.

3.3 LensKit

LensKit is also an open source framework for recommender systems available under the

GNU Lesser General Public License, meaning it is free to use, modify and integrate, but

not or proprietary components. It offers implementation of four recommender

algorithms: user-based collaborative filtering, item-based collaborative filtering, matrix

factorization and Slope-One.

The latest LensKit version, which is 2.2.1 at the time of writing requires Java version no

lower than 6, so it can be said that it is more backwards compatible in terms of Java

version that the previous two frameworks [11].

LensKit is touted as useful in research of recommender systems and multiple papers are

cited as using it [11].

There is no mention of support for scalability in the documentation, so here also an

assumption can be made that this is not available out of the box.

3.3.1 Usability in development

A convenient feature of LensKit is that it is available in major public repositories for

dependencies, such as Maven Central. It makes integrating it into an existing application

rather fast.

After LensKit is integrated similar steps to the previously discussed frameworks are to

be performed: data grooming into the format "userId, itemId, ranking", algorithm

configuration and integration with existing system, if applicable. The configuration is

done in the source code via the library's API, which is quite convenient. At first, an

EventDao	
 needs to be set to define the data source. It can be either the database or a

file with comma-separated values. Support for both is provided out of the box. Then

LenskitConfiguration	
 is created and EventDao	
 is added to it. Afterwards we

31

need to bind algorithm specific ItemScorer to the configuration. When configuration

is finished, we create a Recommender that takes the previously defined

LenskitConfiguration as a parameter. The recommender's method recommend	

then takes the userId and number of items to recommend as parameters and returns a

collection of recommendations of type ScoredId, which contains within itself the

itemId and score of recommendation that can be used further in the application. The

basic configuration seems quite easy to setup, although the amount of code required to

create a simple recommender is more that Mahout or LibRec need. This is clear from

Figure 11.

public	
 List<ScoredId>	
 recommend()	
 {	

	
 	
 	
 	
 LenskitConfiguration	
 config	
 =	
 new	
 LenskitConfiguration();	

	
 	
 	
 	
 config.addComponent(new	
 SimpleFileRatingDAO(inputFile,	
 ","));	

	
 	
 	
 	
 config.bind(ItemScorer.class).to(FunkSVDItemScorer.class);	

	
 	
 	
 	
 config.bind(BaselineScorer.class,	

ItemScorer.class).to(UserMeanItemScorer.class);	

	
 	
 	
 	
 config.bind(UserMeanBaseline.class,	

ItemScorer.class).to(ItemMeanRatingItemScorer.class);	

	
 	
 	
 	
 Recommender	
 rec;	

	
 	
 	
 	
 try	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 rec	
 =	
 LenskitRecommender.build(config);	

	
 	
 	
 	
 }	
 catch	
 (RecommenderBuildException	
 e)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 throw	
 new	
 RuntimeException("recommender	
 build	
 failed",	
 e);	

	
 	
 	
 	
 }	

	
 	
 	
 	
 ItemRecommender	
 itemRecommender	
 =	
 rec.getItemRecommender();	

	
 	
 	
 	
 return	
 itemRecommender.recommend(111,	
 10);	

}	

Figure 11. Example of LensKit configuration

The library provides no interface to external systems, so it will have to be implemented

by hand, if required. The documentation for LensKit is comparable in size to Mahout,

there are clear explanations as to which component is responsible for what and

extensive examples are provided.

3.4 Comparison of frameworks' performance

In this chapter I will present and analyse results of the computations performed by the

simple recommender systems that were created in the previous chapters. In order to

harmonise the comparison the Filmtrust dataset and matrix factorization algorithm will

be used in all cases. Algorithm specific settings such as number of iterations (100) and

features (40) will also be the same for all frameworks. Despite the fact that the main

settings are the same, some of the additional ones are framework specific due to

inability to override them. The recommendations were generated for a single user with

32

userId 111 and were computed five times, with the average values taken into

consideration. The findings are presented in Table 1 in the format itemId/score. It has to

be noted that the score does not hold any semantic value, but rather is just a way to

express preference in the hierarchy of suggestions. The higher the score, the more likely

the recommendation will be of high quality.

Apache Mahout (took
29299 ms on average)

LibRec (took 21044
ms on average)

LensKit (took 4391
ms on average)

312/3.60 318/3.98 68/3.53

309/3.48 309/3.44 312/3.46

1517/3.44 432/3.30 1179/3.44

187/3.35 17/3.21 1167/3.44

463/3.23 400/3.10 1865/3.44

338/3.20 248/3.03 1866/3.44

476/3.20 434/3.01 867/3.43

1537/3.18 1091/3.00 854/3.43

261/3.17 1167/3.00 894/3.43

1443/3.16 1972/2.94 162/3.43

Table 1. Recommendations and their scores generated by the frameworks

What is obvious from Table 1 is that the recommended items only correlate once,

meaning that in order to generate relevant recommendations probably a fair amount of

domain specific fine-tuning of the frameworks is required and out of the box

functionality is not enough to do that. However, we can also note that the scores are

very similar in terms of numeric value so the scale at which the basic algorithm operates

is comparable. What can also be seen is that LensKit is on average quite a bit faster than

the other two. This however might be due to a rather small dataset, as studies have

shown that LibRec might actually be the fastest [6].

The source code used in the comparison is available on GitHub [5]. Further evaluation

and tuning of the frameworks is ongoing, as more up to date datasets become available

via collaboration with local companies.

33

4 Summary

The main goals of this thesis were analysis of popular algorithms used in recommender

systems, their presentation in an easy to digest manner and analysis of usability of

software frameworks that implement these algorithms.

In the thesis I tried to explain ideas behind different approaches in an easily readable

way.

The algorithms presented in this thesis all have their use cases, so a selection of a

particular one should be based on the requirements of a concrete system. If no in-depth

classification of the products is a feature of the system or there is no need for high

performance, then the use of user-based collaborative filtering might be the optimal

solution. If performance is of great importance, such as in real time systems, then item-

based collaborative filtering can be used. If inclusions of additional factors into the

recommender system or dynamic time- or trend-based recommendations are required,

the matrix factorization is the better approach. In addition, all the algorithms can be

combined. The main correlation between all three analysed algorithms is that the more

data is available to be processed, the better the quality of recommendations will be.

As for the usability of available software frameworks implementing the algorithms, it

seems that Apache Mahout is the more suitable choice for building commercial-grade

recommender systems, as it is very easy to use and integrate into the project, offers

support for scalable systems and the most popular algorithms. However, if a system is

to be highly innovative and requires usage of multiple bleeding edge algorithms, then

LibRec is a better choice, despite the need to highly customize the library. LensKit, on

the other hand, might be useful as a simpler and faster alternative to Mahout for

performing research on recommender systems.

34

References

[1] Almazro, D., Shahatah, G., Albdulkarim, L., Kherees, M., Martinez, R., & Nzoukou, W.
(2010). A Survey Paper on Recommender Systems. [Online] ResearchGate (15.04.2016)

[2] Amazon's recommendation secret. (2012). [WWW]
http://fortune.com/2012/07/30/amazons-recommendation-secret/ (15.05.2016)

[3] An Introduction to Recommendation Engines. (2015). [WWW] http://dataconomy.com/an-
introduction-to-recommendation-engines/ (13.05.2016)

[4] Breese, J., Heckerman, D., & Kadie, C. (1998). Empirical Analysis of Predictive
Algorithms for Collaborative Filtering. [Online] Microsoft Research (16.04.2016)

[5] Github: ivanstudenikin/recommenders. (2016). [WWW]
https://github.com/ivanstudenikin/recommenders (23.05.2016)

[6] Guo, G., Zhang, J., Sun, Z., & Yorke-Smith, N. (2015). LibRec: A Java Library for
Recommender Systems. - UMAP-ExtProc 2015, Dublin, Ireland, June 29-July 3, 2015:
UMAP 2015 Extended Proceedings. [Online] CEUR-WS (02.05.2015)

[7] Introducing Apache Mahout. (2009). [WWW]
http://www.ibm.com/developerworks/java/library/j-mahout/ (05.05.2016)

[8] Java Build Tools. (2016). [WWW] http://zeroturnaround.com/rebellabs/java-build-tools-
part-1-an-introductory-crash-course-to-getting-started-with-maven-gradle-and-ant-ivy/
(17.06.2016)

[9] Karypis, G. (2000). Evaluation of Item-Based Top-N Recommendation Algorithms. -
Proceedings of the tenth international conference on information and knowledge
management, New York, NY, USA : ACM, 247-254.

[10] Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix Factorization Techniques for
Recommender Systems. [Online] IEEE Computer Society (06.05.2016)

[11] LensKit documentation. (2016). [WWW] http://lenskit.org/documentation/ (17.06.2016)
[12] Linden, G., Smith, B., & York, J. (2003). Amazon.com: Item-to-Item Collaborative

Filtering. [Online] IEEE Computer Society (06.05.2016)
[13] Recommendation Engine. (2016). [WWW] http://auguricorp.com/auguri/recommendation-

engine (30.04.2016)
[14] Said, A., & Bellogin, A. (2014). Comparative Recommender System Evaluation:

Benchmarking Recommendation Frameworks. - Proceedings of the 8th international
conference on information and knowledge management, New York, NY, USA : ACM,
129-136.

[15] Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Analysis of Recommendation
Algorithms for E-Commerce. - Proceedings of the 2nd ACM conference on electronic
commerce, New York, NY, USA : ACM, 158-167.

[16] TIOBE Index for May 2016. (2016).[WWW] http://www.tiobe.com/tiobe_index
(13.05.2016)

35

Appendix 1 - Comparison of usability of recommender

frameworks

 Apache Mahout LibRec LensKit

Open source yes yes yes

Available on Maven
Central

yes no yes

Extensible yes yes yes

Requires forking no yes no

Supports scalability yes no no

Offers web interface yes no no

Self explanatory API yes no yes

Offers database
interface

yes no yes

36

Appendix 2 - Example of LibRec configuration file

dataset.ratings.lins=/Users/ivan.studenikin/ratings.txt	

dataset.social.lins=-­‐1	

ratings.setup=-­‐columns	
 0	
 1	
 2	
 -­‐threshold	
 -­‐1	
 -­‐-­‐time-­‐unit	
 SECONDS	

recommender=PMF	

evaluation.setup=cv	
 -­‐k	
 5	
 -­‐-­‐test-­‐view	
 all	
 -­‐-­‐early-­‐stop	
 RMSE	

item.ranking=off	
 -­‐topN	
 -­‐1	
 -­‐ignore	
 -­‐1	

output.setup=on	
 -­‐dir	
 ./Results/	
 -­‐verbose	
 on,	
 off	
 -­‐-­‐to-­‐clipboard	

guava.cache.spec=maximumSize=200,expireAfterAccess=2m	

num.factors=10	

num.max.iter=100	

learn.rate=0.001	
 -­‐max	
 -­‐1	
 -­‐bold-­‐driver	

reg.lambda=0.1	
 -­‐u	
 0.001	
 -­‐i	
 0.001	
 -­‐b	
 0.001	
 -­‐s	
 0.001	

pgm.setup=-­‐alpha	
 2	
 -­‐beta	
 0.5	
 -­‐burn-­‐in	
 300	
 -­‐sample-­‐lag	
 10	
 -­‐interval	
 100	

similarity=PCC	

num.shrinkage=-­‐1	

num.neighbors=50	

AoBPR=-­‐lambda	
 0.3	

BUCM=-­‐gamma	
 0.5	

BHfree=-­‐k	
 10	
 -­‐l	
 10	
 -­‐gamma	
 0.2	
 -­‐sigma	
 0.01	

FISM=-­‐rho	
 100	
 -­‐alpha	
 0.5	

GBPR=-­‐rho	
 0.8	
 -­‐gSize	
 5	

GPLSA=-­‐q	
 5	
 -­‐b	
 0.4	

Hybrid=-­‐lambda	
 0.5	

LDCC=-­‐ku	
 20	
 -­‐kv	
 19	
 -­‐au	
 1	
 -­‐av	
 1	
 -­‐beta	
 1	

PD=-­‐sigma	
 2.5	

PRankD=-­‐alpha	
 20	

RankALS=-­‐sw	
 on	

RSTE=-­‐alpha	
 0.4	

SLIM=-­‐l1	
 1	
 -­‐l2	
 5	
 -­‐k	
 50	

SoRec=-­‐c	
 1	
 -­‐z	
 0.001	

SoReg=-­‐beta	
 0.01	

timeSVD++=-­‐beta	
 0.4	
 -­‐bins	
 30	

TrustMF=-­‐m	
 T	

WRMF=-­‐alpha	
 1	

