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Abstract

Evolutionary  Robotics  is  a  methodology  inspired  by  the  Darwinian  principle  of

selective reproduction of the fittest. In this approach, robots are treated as autonomous

artificial  organisms  that  develop  necessary  skills  in  order  to  survive  in  their  test

environment.  Genetic  Algorithms are  one  the  most  popular  techniques  employed  to

solve robot controller optimization tasks.

The main objective of this thesis is to develop a search method in the form of a Genetic

Algorithm  that  produces  reasonably  fit  controllers  for  a  path-finding  and  planning

problem called Tartarus. In the course of this work, two separate controller models are

designed, implemented and evaluated. Two independent baselines are used to validate

the experimental results: one trivial, one from existing literature.

The result of this work is a search algorithm and a standalone Java application with a

graphical user interface that allows to reproduce the experiments presented in this thesis

as well as perform custom search using proposed models.

This thesis is written in English and is 49 pages long, including 10 chapters, 27 figures

and 5 tables.
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Kokkuvõte

Tartarose probleemi lahendamine geneetiliste algoritmidega

Evolutsiooniline  robootika  on  metodoloogia,  mille  aluseks  on  Darwini  selektiivse

reproduktsiooni  printsiip.  See  lähenemisviis  käsitleb  roboteid  autonoomsete

tehisorganismitena,  mis  arenguprotsessis  omandavad  testiümbruses  ellujäämiseks

vajalikke  oskusi.  Geneetilised  algoritmid  on  üks  levinumaid  meetodeid,  mida

kasutatakse roboti kontrolleri optimeerimiseks.

Käesoleva  töö  peamiseks  eesmärgiks  on  arendada  geneetilisel  algoritmil  põhinevat

otsingumeetodit,  mis  produtseerib  Tartaros-nimeliseks  raja  leidmise  ja  planeerimise

ülesandeks  kõlblikke  kontrollereid.  Töö  käigus  on  kavandatud,  implementeeritud  ja

testitud kaks erinevat kontrolleri mudelit.  Eksperimendi tulemuste valideerimiseks on

kasutatud kaks sõltumatut lähtetaset, millest üks on triviaalne ja  teine põhineb Tartarose

teemat käsitleval kirjandusel.

Töö  tulemuseks  on  otsingu  algoritm  ja  autonoomne  Java  rakendus  graafilise

kasutajaliidesega, mis võimaldab reprodutseerida käesolevas töös esitletud eksperimente

ning sooritada kohandatud otsingut kasutades pakutud mudeleid.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 10 peatükki, 27

joonist, 5 tabelit.
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List of abbreviations and terms

CSV Comma-Separated Values, file format

EA Evolutionary Algorithm

FSM Finite State Machine

GA Genetic Algorithm

GP Genetic Programming

GUI Graphical User Interface
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1 Introduction

Ever since the principles of cybernetics were formulated by Norbert Wiener in 1948, the

interest in robotics has been increasing around the world as various digital technologies

became more accessible. Nowadays, robots are developed for commercial, domestic and

military purposes and are present in virtually every aspect of human endeavour. One of

the methods of creating autonomous robots is Evolutionary Robotics. It is based on the

Darwinian principle and employs Evolutionary Algorithms to achieve its goals [1].

Biological evolution is an appealing source of inspiration for addressing problems of

creating adaptive and innovative solutions that may be too complex to program by hand

[2]. Genetic Algorithms are a subset of Evolutionary Algorithms and are used for both

theoretical research and finding solutions with real life applications [3].

Robot controller optimization tasks are usually non-trivial problems that have no known

algorithmic  solutions  and  require  extensive  use  of  metaheuristics  such  as  Genetic

Algorithms. This thesis deals with a robot controller optimization task for a particular

problem called Tartarus [4].

1.1 Problem overview

Tartarus is a path-finding and planning problem where a virtual robot agent is tasked

with pushing boxes from the centre of a fixed-size grid world towards its perimeter. The

robot is equipped with eight sensors to identify adjacent boxes and world boundaries

once it comes in contact with them and has no knowledge of its own position in the

world. It can only move forward one square at a time or make 90-degree turns while

remaining stationary.  The robot agent is expected to succeed at solving this partially

observable problem in limited simulation time.

The Tartarus problem is categorized as a deterministic NP-hard problem with no known

optimal solution  [5]. In the original article,  Teller focuses not so much on achieving

high fitness scores, but on the ability of the robot agents to form mental models of the
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world using indexed memory [4]. However, because of the many challenging properties

of its environment, a large number of equally scoring solutions and a very large search

space,  the Tartarus problem is now regarded by many as a standard test problem to

evaluate techniques in artificial intelligence [5]–[11].

1.2 Objectives

The main goal of this thesis is to develop a Genetic Algorithm-based search method that

produces reasonably fit  controllers  for the Tartarus problem with results that can be

related  to  existing  literature.  This  entails  viable  controller  model  design  and

implementation along with genetic representation as well as provision of baselines for

subsequent  analysis.  The  search  algorithm  is  implemented  as a  standalone  Java

application that allows to configure and run reproducible experiments using said models

and allow for the outcome to be analysed using external tools.

1.3 Outline

The  thesis  is  organized  in  the  following  way.  Chapter  2  contains  the  full  problem

statement.  Chapters  3  introduces  the  basic  theoretical  concepts  behind  Genetic

Algorithms and finite state machines. Chapter 4 provides a brief overview of existing

solutions and applied techniques. Chapter 5 elaborates on the choice of tools, general

strategy and validation methods used in the thesis. Chapters 6 and 7 are dedicated to the

detailed explanation of the proposed solution – controller models and search method,

respectively.  Chapter  8  documents  the conducted  experiments  and presents obtained

results,  while  Chapter  9  focuses  on  outcome  analysis  and  discussion  of  possible

interpretations before leading to conclusions.
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2 Problem statement

The classical Tartarus environment [4] is a 6×6 grid with 6 boxes randomly distributed

on the inner 4×4 grid. The robot can be located on any square of the inner grid that is

not occupied by a box and may face one of four directions: North, East, South and West.

The robot has no knowledge of its position in the world or the direction it is facing. To

gather information about its surroundings, it relies solely on a system of eight sensors

that are attached directly to its hull. The sensors are aimed at squares adjacent to the

robot and can distinguish between boxes, empty squares, and “walls” – positions that lie

outside the bounds of the grid.

The robot has three actions at its disposal: turn left, turn right (the robot remains on the

same  square  while  turning),  and  move  forward.  Each  action  costs  1  time  unit  to

perform. The goal of the robot is to push all of the boxes out of the inner grid and onto

the  squares  that  constitute  the  perimeter  within  the  span of  80  time  units.  Time  is

discrete and actions are performed instantaneously, without any transitional states.
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Figure 2: Sensor readings for
configurations from Figure 1.



There are no restrictions  on the robot's  ability  to turn left  or right,  so a decision to

perform a turn always produces the desired effect. However, the robot's ability to move

forward is limited to two scenarios only:

• when there is an empty square right in front of the robot, in which case the robot

moves forward onto the empty square,

• where there  is  a  single box right  in  front of  the robot  and an empty  square

directly behind that box, in which case the robot pushes the box onto the empty

square and moves onto the square that was previously occupied by the box.

Any attempts to move forward that do not correspond to either of these scenarios – like

trying to move into walls or push boxes that have obstacles behind them – produce no

effect, but cost 1 time unit nonetheless.

The robot's success is measured by the number of boxes that it has managed to push

onto the perimeter by the end of the allotted time: 1 point for each box on the straight

edge of the grid, 2 points for each box in the corner. Thus, the maximum score is 10.

15
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Unsolvable  starting  configurations  exist:  if  four  or  more  adjacent  boxes  form  a

rectangular block, it becomes impossible for the robot to push any of these boxes and

the maximum achievable score drops to 2 or lower.

Approx. 7.3% of all  possible  starting configurations  exhibit  such a trait  [9].  This is

significant enough to affect the evaluation process, therefore such configurations are

considered invalid and are excluded from the trials by consensus.
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3 Theoretical background

For optimization problems like Tartarus where multiple solutions exist, any solution that

is good enough proves to be sufficient. Since there is no known principled way to find a

good  solution,  but  all  candidate  solutions  can  be  easily  verified  and  graded,

metaheuristics  are  employed.  Metaheuristics  are  techniques  that  help  find  solutions

when there is little heuristic information to go on [12].

3.1 Evolutionary Algorithms

Evolutionary  Algorithms  (EA)  are  an  example  of  metaheuristics.  EAs  operate  on

populations of solutions using the theory of evolution as an algorithm [13]. Survival of

the fittest serves as the driving force towards better solutions to a problem.

First, a population of data structures that represent candidate solutions is generated. A

fitness function is then used to determine how good the individual solutions are. The

algorithm exhibits a bias towards better solutions and selects them for further variation

and tweaking,  while  less  suitable  solutions  are  killed  off  and replaced by copies  of

better ones. Together, survivors and offspring solutions form the next generation and the

whole process is repeated until the end condition has been satisfied [13].

3.2 Genetic Algorithms

Genetic  Algorithms  (GA)  are  the  best-known  subset  of  EAs  [13].  GAs  are  search

algorithms based on the mechanics of natural selection and natural genetics. Solutions

are encoded as genetic material which then undergoes change over generations, hence

the  name  of  the  technique.  While  relying  on  random  processes,  GAs  efficiently

converge on solutions with better performance [14].

Many different  variations  of  GAs exist.  Given  all  of  their  differences  they  do not,

however, deviate significantly from the canonical form.
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3.2.1 Canonical Genetic Algorithm

The  canonical  GA follows  the  iterative  process  of  EA with  specialized  steps:  after

creating the initial  population,  fitness of individuals is assessed, parent solutions are

selected and offspring is created by manipulating the genetic material [12].

The  genetic  manipulations  in  question  are  crossover  and  mutation,  which  will  be

explained later in the chapter along with methods used for parent selection.

3.2.2 Genetic representation

The classical representation of genetic material is in the form of bit strings. Each bit is a

gene, its values 0 and 1 are alleles, each string of bits is a chromosome. Together, the

chromosomes  make  up the  genome of  an  individual  solution,  i.e.  all  of  its  genetic

material. The term genotype is used to describe a particular set of genes contained in the

genome [2].

Depending on the problem domain and solution encoding scheme, genes can be data

types  other  than  bits  and  allow  for  more  than  two  possible  alleles.  They  are  still

represented internally as short blocks of binary data [2].

18
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3.3 Genetic operators

When considering the process of evolution, it is very important to distinguish between

pure chance and cumulative selection, as these are two completely different things that

yield  vastly  different  results:  while  the  former  is  merely  blink  luck  with  all  the

accompanying inefficiency, the latter is directed by non-random survival, which makes

it a fundamentally non-random process [15].

3.3.1 Selection

The simplest selection method is truncation selection, where only the fittest individuals

of the population are eligible for reproduction. This ensures that only the best possible

genetic material is used for the next generation, but may cause convergence too early in

the evolution [16].

Fitness-proportionate selection, also called roulette-wheel selection, is a method where

individuals in the population have an increasingly higher chance of being chosen for

reproduction based on their fitness. The better the fitness, the higher the chance. This

helps maintain diversity of the population [16].

Tournament selection is a method that takes a group of  n individuals and chooses the

best  individual  out  of  that  group for  reproduction.  This  procedure may be repeated

among the best individuals again depending the size of the population, necessary parent

count, and group size n.

In many cases, the quality of the solution found by GAs depends on the choice of the

selection method [16].

3.3.2 Crossover

Crossover is a process of exchanging subparts of parent chromosomes to produce new

offspring, roughly mimicking biological recombination between two organisms [2]. The

choice of the crossover method helps avoid premature convergence in GAs and affects

the overall performance of the search [17].

Crossover usually involves slicing of chromosomes in one or more places. A result of

single-point crossover between two strings 01000110 and 10011111 straight down the
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middle would be two offspring strings 01001111 and 10010110. Had the single-point

crossover been applied at the first gene, the offspring string would be 00011111 and

11000110.

Multi-point crossover slices chromosomes into more parts in multiple locations, while

the  uniform  crossover,  as  the  name  suggests,  distributes  genes  from  both  parents

uniformly between the offspring chromosomes.

3.3.3 Mutation

Mutation  is  a  straightforward  operation  of  randomly  selecting  some  gene  in  a

chromosome of an individual and altering it. This introduces random change into the

process of evolution and mimics  the DNA copying errors that  occur  in  nature.  The

mutation procedure itself depends on the gene data type, and can vary from a simple

binary bit flip to specialized algorithms [12].

3.4 Finite state machines

A finite state machine (FSM) is one of the most powerful and best-known models used

to  describe  behaviour.  It  uses  the  concept  of  state  to  represent  a  kind  of  internal

memory,  allowing  to  create  sophisticated  control  models,  where  events  and  inputs

trigger transitions between states [18].

Figure 6 shows a simple FSM consisting of 3 states: the initial state p, the intermediate

state  s, and the final state  q. In order to get to state  q, the machine has to invariably

transition from its starting state p through state s and further – this type of memory is

characteristic of FSMs. The machine in the provided example cannot end its operation

in states p or s, as they are not final. Transitions can be triggered by specific events, like

x for the transition between p and s, or happen automatically without relying on input –

the latter are called epsilon transitions and do not have any associated input markings on

the diagrams.

20
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4 State of the art

Since  Teller's  original  article,  many  different  approaches  to  the  problem have  been

developed  and  documented.  This  section  aims  to  provide  a  very  brief  overview of

existing solutions.

Teller's  initial  approach  uses  genetic  programming  (GP)  with  indexed  memory  and

introduces  the  distinction  between  and  reactive  and  non-reactive  controllers  [4].

Consequent work by Balakrishnan and Honavar uses neurocontrollers and experiments

with the evolution of sensors, slightly deviating from the classical problem specification

regarding sensor placement [19].

A considerable amount of work on the Tartarus problem was done by Ashlock. In a

number  of  separate  articles,  Ashlock  and  others  introduce  baselines  for  future

experiments:  non-reactive  string  and reactive  FSM controllers  [6],  [7].  Studies  also

report good fitness scores for If-Statement-Action table controllers [6].

Controllers that rely on specialized memory and additional heuristics are reported to

achieve  very  high  scores  [8].  However,  the  GA and experimental  conditions  in  the

related study also play a significant role in the reported success.

Other  approaches  implement  such  models  as  tree  state  machines  [20],  fractal  gene

regulatory networks [10], and recurrent neural networks [21]. At the time of writing, the

most recent work published regarding Tartarus is a revision of the GP-based approach

[11].

It is also important to mention the research of coevolution in Tartarus (robots being the

hosts  and  boards  being  parasites)  [9] as  well  as  research  of  diversity  sustaining

mechanisms to avoid getting stuck in local minima  [21] and improve on the standard

fitness-based search [22]. These works definitely contribute to the overall understanding

of the Tartarus problem.
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5 Methodology

Various methods and technologies can be utilized to tackle the Tartarus problem. The

ones used in this thesis are chosen with accessibility and efficiency in mind.

5.1 Tools

GAs are  processing-intensive  techniques,  so  even though interpreted  languages  like

Python boast a good number of libraries and frameworks for GAs, compiled languages

are much more suitable due to their efficiency and speed.

Java was chosen as the programming language for the implementation of models and

algorithms  described  in  this  thesis  due  to  the  author's  previous  experience  and

familiarity  with  it.  Programming  in  Java  has  the  added  benefit  of  the  resulting

application being platform-independent. Another argument in favour of Java is JavaFX,

which allows for fast prototyping and implementation of graphical user interface (GUI)

applications [23].

The four most prominent libraries for GAs in Java are ECJ (Evolutionary Computation

in Java)  [24],  JGAP (Java Genetic  Algorithms Package)  [25],  Watchmaker  [26] and

Jenetics  [27].  While  the  first  two are well-established,  tested  and documented,  they

target  earlier  versions of Java and no development  is  underway to modernize them.

Watchmaker  is  an  extensive  high-performance  evolutionary  computation  framework

with sufficient documentation, but an overabundance of features that are not required

for the purposes of this thesis. Jenetics,  on the other hand, is an up-to-date actively

developed and tested library that focuses specifically  on GAs. Its stability,  focus on

modern Java, active support and solid documentation make it the library of choice for

achieving the goals set forth in this thesis.
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5.2 Strategy

While it is possible for non-reactive controllers to achieve high fitness scores [4], this is

more of an exception and reactive controllers tend to perform significantly better than

non-reactive  ones  [6],  [7].  Therefore  the  controller  model  proposed in  this  thesis  is

reactive.

Existing research indicates that even though certain controller models are able evolve to

interpret sensory data in an efficient way, humans are much better at extraction of useful

information and sensor interpretation is a task more fit for a human and should not be

delegated to GA [8].

Memory is  very  important  in  the  Tartarus  problem – unless  the  virtual  robot  agent

employs some sort of internal state, it is doomed to fail in scenarios where its actions

have no observable effect on the environment. For example, a robot without memory

will not be able to recognize a failed attempt at pushing a box forward or perform open-

field maneuvers without any boxes in sight [4].

An  informed  choice  is  made  to  avoid  GP techniques  because  of  their  tendency  to

impose additional survival problems onto the evolutionary process [28].

5.3 Baselines for validation

Simple and easy-to-analyse controllers  are  used as baselines.  They provide minimal

expected performance levels. Two baseline controllers are used to validate experimental

results.

The first baseline represents the lowest possible performance, which is expected from a

controller driven by a random noise generator that is not affected by the evolutionary

process. Anything above the noise level can be considered an improvement, while all

performance below the random noise baseline indicates a defective controller.

The second, more advanced, baseline is a non-reactive string controller that was chosen

in order to relate the results presented in this thesis to existing studies  [6]. Since this

thesis focuses on reactive controllers, they should perform noticeably better than non-

reactive baselines.
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6 Controller models

A controller  for  a  virtual  robot  agent  in  Tartarus  can  be  viewed  as  a  monolithic

component that takes sensory data as input and outputs a single decision in the form of

an action for the robot to perform.

It is imperative to explicitly define enumerations and encodings in order to avoid any

confusion and ambiguity when referring to data sources as well  as input and output

values.

Individual sensors that supply data to the controller  are enumerated in the following

way: N for North, NE for North-East, E for East, SE for South-East, S for South, SW

for South-West,  W for West,  and NW for North-West.  Each sensor has three states,

encoded as EMPTY, BOX, and WALL. Action codes are: L for “turn left”, R for “turn

right”, and F for “move forward.” These abbreviations will be used throughout the rest

of the document.

6.1 Baseline string controller

A non-reactive fixed-size string controller is a single routine that executes in a loop until

the simulation ends. It can be represented as a simple FSM where all states are final.

24

Figure 7: Data flow through the controller.

Figure 8: Baseline string controller as a single-loop finite state machine.



There are n states, each state produces a single decision. The number and order of states

are fixed throughout evolution,  the only variables in the model are the action codes

produced by each state.

This model represents a controller that develops a general strategy to tackle all possible

scenarios.

6.2 Proposed controller model

The  decision-making  mechanism  of  the  proposed  controller  model  is  a  finite  state

machine with multiple subroutines of arbitrary lengths. A special initial state is used to

process  sensory  data  and  react  by  executing  the  corresponding  routine.  Once  the

triggered routine has finished executing, the machine immediately returns to its initial

state to consult the sensors once again.

The total number of states depends on the number of subroutines and their respective

lengths. Total state count also includes the special state. As with the baseline model, the

number and order of states are fixed throughout evolution and the only variables are the

action codes produced by states belonging to subroutines.

This  model  represents  a  controller  that  has  the  ability  to  develop  a  more  complex

strategy  with  multiple  specialized  manoeuvres  to  handle  different  scenarios.  The

baseline  string  controller  is,  in  fact,  a  slightly  altered  special  case  of  the  proposed

model.

25

Figure 9: Proposed controller model as a multi-loop finite state machine.



6.3 Genetic representation

Genetic  representation  used  for  the  aforementioned  models  is  very  straightforward.

Every gene can take on one of three values: L, R, or F. These directly represent the

action codes for the states that make up the routine(s). Keeping the genetic material as

simple as possible allows for easier and more accurate analysis of the results.

6.3.1 Baseline string controller

Genetic  representation  for  the  baseline  controller  is  straightforward:  the  genome

consists of a single chromosome of length n (the total number of states). Every gene in

the chromosome is an action code that corresponds to the nth state.

The genome size is equal to the total number of states that produce robot actions.

6.3.2 Proposed controller model

Genetic representation for the proposed controller model differs from the baseline only

by  the  number  of  chromosomes  in  the  genome.  Every  subroutine  is  encoded  as  a

separate chromosome of appropriate length.

The special sensor analysis state from the proposed controller model is not subject to

evolution and is therefore not represented in the genome.

6.3.3 Possible genetic defects

There  is  a  number  of  allele  combinations  that  result  in  the  controller  making  poor

decisions so that actions taken are guaranteed to have no effect [8]. Two examples of the

most common defective allele combinations are LR and RL, which have a chance of

appearing in any two adjacent genes 2 out of 9 times (provided that genetic material is

generated randomly).
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Figure 10: An example of a genome consisting
of a single chromosome.

Figure 11: An example of a genome consisting of
multiple chromosomes.



Depending on genome size, this results in roughly 11-22% of randomly generated initial

genetic material guaranteed to be junk genes. Subsequent mutations may activate these

dormant pairs, so for larger chromosomes this is not an issue – they contain enough

effective  genes  to  accommodate  for  the  loss.  However,  for  controllers  with  smaller

chromosomes (i.e. shorter routines), such genetic defects may become lethal, rendering

entire routines useless. Defects in shorter routines will also have an amplified effect due

to being executed multiple times per trial.

Other  wasteful  defects  exist,  but  they  have  a  lower probability  of  occurring.  These

include various series of turns, any consecutive forward moves after five in a row, and

other even more unlikely sequences.

6.3.4 Prevention of genetic defects

Proposed controller models will suffer from genetic defects quite significantly and need

to be protected. Their initial populations are created free of LR and RL combinations

(which  has  a  positive  side  effect  of  breaking  up  some  of  the  longer  turn-only

sequences). Crossover and mutation are not restricted in any way and will still introduce

genetic defects over the course of evolution.  This is allowed as a trade-off to avoid

creating tight genetic interdependencies that may render specific genes immutable in

certain combinations: for example, prohibiting LR and RL combinations to be formed

during genetic operations will result in combinations like LFR, where the middle gene

cannot be altered unless its neighbours are modified first.

Although  possible  [8],  prevention  of  genetic  defects  for  string  controllers  is  not

implemented  in  the  baseline  model  in  order  to  conform with examples  provided in

literature [6].

6.4 Sensory data interpretation

Any and all data that is available to the robot is provided to it by the sensor system. The

system comprises of eight tri-state sensors and has 38 = 6561 possible states. However,

not all of these states are observable due to the specifics of the Tartarus environment.
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While located on the inner grid, the robot can observe not more than 6 boxes and can

initially be blocked on all sides. If located on the straight edge of the grid, the robot can

observe  up to  4 adjacent  boxes,  but  they cannot  be blocking it  on all  sides.  When

located in a corner, the robot can see up to 2 boxes in a similar non-blocking fashion.

The total number of possible observable states can therefore be obtained by calculating:

nobservable=∑
i=0

6

(8i )+4[∑i=0
2

(5i)+∑
i=1

2

(3i )( 23−i)+(32)]+4[∑i=0
1

(3i)+(21)]
Thus, there are only 383 possible observable sensor system states for classical Tartarus.

Using the proposed decision-making mechanism, the search space for even the simplest

controller with one action per subroutine and one subroutine per sensor system state

would shoot up to 3383 ≈ 5.46 ·10182. To better appreciate the scale of this number, the

volume of the observable universe is approx. 8·10184 Planck volumes  [29], which are

theoretically considered to be the smallest unit required to quantize space.

Therefore  a  literal  interpretation  of  sensor  data  is  impossible  and it  is  necessary to

drastically reduce the number of scenarios that the controller can distinguish between

without leaving any of the possible 383 raw states unaccounted for.

6.4.1 Position inference

An important bit of information present in the raw sensory data is the general position

of the robot. Given the nature of the Tartarus board, it can be guaranteed that if a robot's
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Figure 12: Examples of impossible
sensor system states.



North sensor detects a wall, then it can be inferred that the robot is located somewhere

on the perimeter  of the board and is  oriented  towards a  wall.  This  conclusion may

appear  trivial,  but  it  provides  the  robot  with  very  helpful  information  that  was  not

previously available. The same basic logic can be applied to detect corners and their

relative orientation, resulting in 9 possible locations.

All of this new information can be presented through a new virtual  position sensor,

which  can  have  the  following states:  NO EDGES,  EDGE FRONT,  EDGE RIGHT,

EDGE  BACK,  EDGE  LEFT,  CORNER  FRONT  LEFT,  CORNER  BACK  LEFT,

CORNER  BACK  RIGHT,  CORNER  FRONT RIGHT.  This  method  is  inspired  by

heuristics used by Bot, Urquhart and Chisholm [8].

6.4.2 Sensor simplification

A study of  sensor  preferences  in  controllers  that  have  evolved  sensor  interpretation

mechanisms shows that the diagonal sensors are used the least by the best-performing

controllers [7], so diagonal sensors are discarded to simplify the system.

Once the virtual position sensor has extracted the relevant information, any further need

for wall detection disappears. At this stage, the remaining raw sensors can be replaced

with binary virtual sensors that detect  only two states:  BOX or NO BOX, the latter

covering the raw states EMPTY and WALL.
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Figure 13: Sensor
usage percentages by

successful FSM
controllers as reported

by Ashlock and
Freeman.



The number of possible states becomes significantly lower after simplification.

6.4.3 Left-Right Agnostic

This thesis proposes a way to further reduce the number of sensor system states that the

controller can differentiate between and still be able to make effective decisions. This

can be achieved by combining pairs of sensor images that are vertically symmetrical to

each other. Sensor states that are not a part of any symmetry association are considered

original and remain unaffected.

One of the sensor system states in a pair is designated as the original and second one as

the “mirrored” state. A virtual sensor system is responsible for distinguishing between

original and mirror states. Its output can serve as an inverter for the controller's resulting
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Figure 14: Combination of observable sensor states as a result of sensor system
simplification.

Figure 15: Examples of sensor
image symmetry associations: none

(top) and pair (bottom).



decisions: if the original action is a left turn, the mirrored action is a right turn and vice

versa. Decisions to move forward remain unaffected.

6.5 Behaviour around walls and corners

There are 16 relative positions on the grid that invariably present increased potential for

wasted actions: 4 corners and 12 squares along the perimeter (left, right and upper walls

as observed by the robot). 6 of these restrict  movement forward, while the other 10

allow the robot to turn towards a wall (and therefore end up in one of the 6 positions

with restricted movement options).

While  moving  forward  along the  edges  is  the  only  available  technique  for  pushing

boxes  into  corners,  operating  on  these  squares,  although  potentially  wasteful,  is

rewarded by evolution. Staying in corners, however, offers zero benefit. The risks are

increased since navigating out of corners requires very specific action sequences that are

less likely to be found and preserved by GA.

Moving  into  a  wall  has  no  positive  effect  and  should  therefore  be  avoided.  Such

behaviour can be circumvented by prohibiting transitions that lead to the robot agent

being turned towards the nearby wall. This is not disruptive to behaviour rewarded by

evolution.

By prohibiting transitions that result  in the robot burrowing further into corners and

adding a simple two-step logic it is possible to exit any corner within 2-4 time units,

depending on the presence of a blocking box nearby.
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Figure 16: Edge states with prohibited transitions in red.



Transition prohibition guarantees that the robot will assume a position that potentially

allows forward movement (ignoring the possibility of an obstructing box) immediately

after hitting a closed corner. Once facing away from the corner, the first logical step is

to move forward: if after this step the robot finds itself in the same position as it was

before, it will turn towards the other open side of the corner and move forward again,

going back the way it came from in the first place.

A hard-coded solution  that  uses  the  virtual  position  sensor  described earlier  can  be

easily implemented for efficient corner handling and edge behaviour correction instead

of relying on the GA to discover and adopt similar behaviours.

6.6 Model A

Controller  model A is based on the proposed decision-making mechanism and relies

solely on the virtual  position sensor for information about its surroundings. It has 5

subroutines that are subject to evolution and 4 hard-coded routines to implement the

corner  escape  logic  described  in  the  previous  section.  The  5  variable  subroutines

correspond  to  position  sensor  states  NO  EDGES,  EDGE  FRONT,  EDGE  RIGHT,

EDGE BACK, EDGE LEFT.

Since this model only uses the virtual position sensor, it lacks the ability to detect boxes

and bases all of its decisions on its inferred position, remaining unaware of any dynamic

obstacles.
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Figure 17: Corner states with prohibited
transitions in red.



6.7 Model B

Controller model B is based on the proposed decision-making mechanism and uses the

virtual position sensor alongside the simplified left-right agnostic system of 4 binary

sensors.  It  has  12  subroutines  that  are  subject  to  evolution  –  each  subroutine

corresponds to one of the original images as interpreted by the virtual sensor system.

Simplified sensors in model B are oblivious to walls, so it bases all of its decisions on

the perceived configuration of boxes in its  proximity.  To avoid getting stuck on the

perimeter,  this  model  implements  hard-coded  corner  escape  logic  and  corrective

behaviour overrides near walls. These hard-coded mechanisms depend on the virtual

position sensor.
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7 Proposed search method

The proposed search method is implemented as an application with a minimalistic GUI.

It is designed with considerations for efficiency, flexibility and usability.

7.1 Evolutionary process

The main search process is a single evolution run and is based on the canonical GA. A

single search procedure may consist of multiple consecutive evolution runs.

Offspring  creation  step  implies  a  sequence  of  selection,  crossover  and  mutation

operations as per canonical GA. Statistics collection and processing steps are included

for clarity. Fitness evaluation phase is explained in the next section.
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Figure 18: Activity diagram of a single evolution run.



7.2 Fitness function

During  the  fitness  evaluation  phase,  every  controller  is  tested  on  a  set  number  of

random configurations. A new batch of configurations is generated at the beginning of

every evaluation phase and all controllers within the population are evaluated using the

same collection of trials to provide stable testing conditions.

Each controller  is  given one attempt  per  test  configuration.  Each trial  ends  with an

integer score between 0 and 10. The average result across all trials is then calculated as

a real number and assigned to the controller as its fitness score.

Since the absolute orientation of the robot is required strictly for implementation and

plays no role in the solution of the configuration, there are rotated configurations that

have  the  same  set  of  solutions  and  appear  absolutely  identical  from  within  the

simulation.

An experimental option is provided to exclude such duplicate configurations from the

trials to ensure a more accurate evaluation process.

7.3 Statistics collection

For  every  generation,  fitness  values  are  collected  immediately  after  the  evaluation

process. At the end of the evolution run, best and average fitnesses per generation are

calculated and stored. If the experiment consists of more than one run, best and average

fitnesses per generation are themselves averaged across runs, and the absolute best per

generation is calculated using data from all evolution runs.
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Figure 19: An example of two Tartarus configurations with
the same set of solutions.



The application provides an immediate visualization of obtained statistics in the form of

a line chart. Collected data can also be saved in CSV file format for a more detailed

analysis with external tools.

7.4 Search parameters

Given  the  non-deterministic  trial-and-error  nature  of  GAs,  solutions  are  found  by

continuous tuning of evolution parameters that requires a great deal of experimentation.

This makes capacity for swift reconfiguration a very desirable quality in any GA-based

application. An attempt has been made to satisfy this requirement and expose all the

necessary parameters to the end user.

Table 1: Search parameters.

Parameter Description Allowed values

Evolution runs The  number  of  independent  evolution
runs that constitute a single experiment.

Integer [1..500]

Generation limit The  number  of  generations  after  which
the evolutionary process ends.

Integer [10..1000]

Population size The  fixed  population  size  sustained
throughout the evolutionary process.

Integer [100..5000]

Trials per evaluation How  many  random  configurations  any
given  individual  is  tested  on  during  the
evaluation phase.

Integer [1..1000]

Exclude duplicate 
configurations from 
trials

Self-explanatory.  This option is provided
for experimental purposes.

Boolean

Offspring fraction The fraction of individuals to be killed off
and  replaced  with  new  offspring  after
each generation.

Real [0..1]

Selection mode A  choice  between  truncation,  roulette
wheel and tournament selection modes.

Enumerated options

Tournament size Applies  only  to  tournament  selection
mode. Otherwise disabled.

Integer [2..100]

Crossover mode A choice  between  single-point,  double-
point and uniform crossover modes.

Enumerated options

Crossover probability Recombination probability for the chosen
crossover mode.

Real [0..1]

Mutation rate The fraction of all genes in the offspring
that will be affected by random mutations.

Real [0..1]
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8 Experiments

The  experiments  are  conducted  with  fixed  global  parameters  that  adhere  to  the

conditions stated in the original  article  and respected by a good number of existing

publications regarding Tartarus [4], [6], [7], [9], [19], [20].

Table 2: Global search parameters for conducted experiments.

Parameter Value

Evolution runs 25

Generation limit 80

Population size 800

Trials per evaluation 40

Exclude duplicate 
configurations from 
trials

No

Offspring fraction 0.50

The data for the experiments presented in this thesis was obtained by running the search

once and only once per model in order to avoid “cherry-picking” of suitable data sets.

8.1 Random noise generator

Random noise generator is tested in two flavours: the first one produces and executes

pure noise made up of L, R and F action codes using a feed from a standard pseudo-

random number generator, while the second one passes the same noise through corner

escape logic and applies corrective edge behaviour before executing the actions. This

model lacks any genetic material and is therefore unaffected by evolution.

8.1.1 Pure noise

Pure random noise generator is expected to produce low fitness scores with a uniform

distribution within a certain band.
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The average global fitness baseline is established at 1.08, while the absolute best score

achieved by this type of controller is 2.08. It is safe to say that if a controller model

cannot achieve a score of 2 using the proposed search method, it is flawed.

8.1.2 Hard-coded edge and corner behaviour

This flavour of random noise generator is expected to perform in a fashion similar to the

pure noise model, but with a slightly better overall fitness due to added behaviour.

The added benefit of intelligent handling of corners and walls results in a global average

fitness of 1.40 and an absolute best of 2.38. The average best fitness is now 1.96, which

is very close to the absolute best that just pure random noise can produce.
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Figure 20: Results for pure pseudo-random noise
generator.

Figure 21: Results for pseudo-random noise with
overridden perimeter behaviour.



8.2 Baseline string controller

Baseline  string  controllers  used  in  this  thesis  have  the  length  of  80,  as  this  is  the

minimum  number  of  actions  required  to  represent  one  full  attempt  at  solving  the

Tartarus  problem.  Evolution  parameters  are  chosen to  replicate  the  original  ones  as

closely as possible [6].

Table 3: Evolution parameters for the baseline string controller.

Parameter Value

Selection mode Tournament

Tournament size 4

Crossover mode Single-point

Crossover probability 0.50

Mutation rate 0.40

In the original experiment that introduces this baseline model, controllers with string

length of 80 achieve a global average fitness of 1.95 [6]. It is expected that the model

implemented in this thesis will get similar scores.

The baseline controller performs better than expected, averaging a score of 2.42 and

peaking at 4.40. This can be explained by the differences in implementation.
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Figure 22: Results for baseline string controller of size 80.



8.3 Model A

Subroutine lengths for model A were determined experimentally. The lengths 8, 1, 3, 3,

and 3 correspond to subroutines triggered by virtual position sensor states NO EDGES,

EDGE FRONT, EDGE RIGHT, EDGE BEHIND, and EDGE LEFT respectively.

Table 4: Evolution parameters for controller model A.

Parameter Value

Selection mode Truncation

Crossover mode Single-point

Crossover probability 1.00

Mutation rate 0.25

Controller model A has a significantly shorter genome than the baseline controller so the

best  solution  resides  in  an exponentially  smaller  search space.  The mutation  rate  is

reduced,  but  compensated  by  guaranteed  crossover,  which  ensures  variety  while

preventing genetic drift.

The  controller's  performance  exceeds  expectations,  given  that  it  only  has  an

arrangement of 18 action codes at its disposal and is bound to suffer from lethal genetic

defects. It has an absolute best score of 6.35 and a global average of 3.24.
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Figure 23: Results for controller model A.



8.4 Model B

Subroutine lengths for model B were set according to the distribution of 247 raw sensor

images  that  can be observed on the  inner  grid between the 12 subroutines  that  get

triggered by the respective images once the simplified left-right agnostic sensor system

has processed the raw input.

The respective lengths for the subroutines are 4, 4, 8, 8, 4, 4, 8, 8, 4, 4, 4, 4. Only inner

grid sensor images were taken into consideration because controller model B relies on

hard-coded  behaviour  for  wall  encounters  and  its  evolved  behaviours  are  reacting

exclusively to boxes.

Table 5: Evolution parameters for controller model B.

Parameter Value

Selection mode Truncation

Crossover mode Single-point

Crossover probability 0.50

Mutation rate 0.15

Much  less  aggressive  evolution  parameters  were  chosen  for  this  model  to  avoid

excessive disruption of its many individual routines.
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Figure 24: Distribution of raw sensor images observable
on the inner grid between the 12 subroutines in model B.



Controller  model  B  performs  slightly  better  than  model  A and  produces  the  best

experimental results, reaching a maximum fitness of 6.55 while the average score across

all generations is 3.67.
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Figure 25: Results for controller model B.



9 Analysis

The  results  of  random  noise  generator  experiments  serve  as  the  lower  bound for

controller performance. They are not subject to evolution and present no interest in the

context  of  this  thesis.  The  analysis focuses  on  comparison  of  the  baseline  string

controller to proposed controller models A and B.

9.1 Model comparison

Both of the proposed controller  models have performed significantly better  than the

baseline. The data obtained in these experiments is in no way an indication of the upper

bound  of  fitness  scores  that  these  controllers  can  attain. Nonetheless,  achieved

performances demonstrate that  the  proposed  controller  models  clearly  offer  an

advantage over the baseline.

Not  only  is  the  global  average  fitness  of  models  A and  B  higher  than  that  of  the

baseline, it also surpasses the average best for baseline controllers. Controller models

proposed in this thesis operate with average best fitness scores that are 0.33 and 0.52

points higher (for model A and B, respectively) than the absolute best achieved by the

baseline. The very best controllers are able to score 2 points above the baseline peak.
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Figure 26: Comparison of controller model results.



Despite being capable of much more complex behaviour, model B produces results that

are  only  marginally  better  than  those  of  model  A.  The  only  improvement  worth

mentioning is a 0.43 gain in average fitness across all model B controllers compared to

model A.

Considering the vast difference in search space size (318 ≈ 3.87 ·108 for model A versus

364 ≈ 3.43 ·1030 for model B), it is very likely that the search space for model B holds a

solution that performs exceptionally well, but remains undiscovered and requires a more

thorough search procedure. It may also be the case that for this particular problem the

position of the robot agent on the grid is a much more important piece of information

than a general sense of box locations relative to the robot.

Different subroutine lengths are also a factor. Since shorter routines statistically tend to

suffer more from genetic defects and model B has a higher routine count, its controllers

will have accumulated more harmful mutations over the course of evolution. While the

5 available routines in model A are likely to be utilized at least once per trial (given that

the robot agent can easily end up on any square of the grid during its run), some of the

12 routines  in  model  B have a  much lower probability  of being needed due to  the

uneven distribution of sensor system states that trigger their execution. This can result in

offspring controllers  that inherit  multiple  inefficient  routines at  once from otherwise

successful  parents  and  fail  to  survive,  taking  with  them  whatever  useful  genetic

information that had accumulated over generations. Model A controllers, however, are

less likely to carry genetic defects further than one generation.
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Figure 27: Advantages of proposed controller models over
the baseline.



Overall,  both  proposed models  display  clear  advantages  over  the  baseline  in  every

measured aspect. Based on this fact, it can be concluded that the main goal of this thesis

has been successfully accomplished.

9.2 Discussion

Based on the initial  analysis,  the solution strategy chosen for this  thesis  has proven

effective. However, there are certain key areas to consider for further development.

9.2.1 Success

The success of the models proposed in  this  thesis  can be attributed  to a number of

factors. Naturally, the most important one is the use of state. The proposed controller

models  have  a  rigid  decision-making  mechanism that  promotes  relatively  low state

count while operating with a more abstract notion of subroutines rather than individual

actions. Subroutines offer a highly functional way of adding state without introducing

runaway state  transitions  encountered  by pure FSM controllers  [7] or problems that

accompany GP-based strategies [28].

The use of sensors plays a big role in Tartarus. Experimental results presented in this

thesis may suggest that information regarding the robot's situation on the grid is of great

value  and  reactive  controllers  that  are  only  aware  of  their  position  and  relative

orientation in the environment perform almost just as well as reactive controllers that

evolve strategies that account for boxes only.

It is also important to be able to recognize trivial sub-problems and introduce partial

solutions  where possible  to  help reduce  the  complexity  of  the total  problem that  is

tackled  by  the  GA.  An  example  of  such  a  sub-problem is  the  corner  escape  logic

described in this thesis.

9.2.2 Shortcomings

As  far  as  subroutine  controllers  are  concerned,  finding  a  balance  between  over-

generalization  and  over-specialization  of  models  is  necessary.  A large  number  of

subroutines ensures versatility and implies high reactivity in general, but requires an

increase in the size of the genome for the routines to be effective.  The search space
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grows exponentially with genome size. This makes searching for solutions significantly

more challenging.

Multiple routines also present multiple points of failure and further amplify problems

caused by unhelpful genetic combinations. Chaining of routines also presents a potential

for  wasteful  action  sequences  being decided  on,  regardless  of  presence  of  apparent

genetic defects in individual chromosomes. Straightforward safeguarding against such

problems comes at a cost of imposing limitations that are in discord with the paradigm

of GA. Balance and distribution of different alleles across the chromosome are also very

important in order to maintain fully functional genetic material.

9.3 Future work

String  controller  studies  report  significantly  differing  results  for  strings  of  different

lengths and it is concluded that the genome size plays a major role in the success of

string controllers [6]. This serves as a motivation to impose genome size restrictions in

order to explore strengths and weaknesses of different models within identical search

spaces.

Different genetic  representation can be introduced to encode fixed-size routines into

single genes. This can help get rid of genetic defects present in the direct encoding

method as well as outline a set of mini-routines that prove most useful when solving the

Tartarus problem.

Some endeavours have benefited from collective human effort  [30]. As an avenue for

future work in machine learning, one option is developing an online Tartarus application

to gather data from human solutions in order to train neural networks.
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10 Summary

The  aim  of  this  work  was  to  develop  a  GA-based  search  method  that  produces

reasonably fit controllers for the Tartarus problem with results that can be related to

existing literature. As a part of the main objective, two successful models were designed

and later evaluated using the search method based on the canonical GA.

Baselines were provided for validation of experimental results. A trivial pseudo-random

noise generator served as a lower bound for expected controller performance, while a

baseline string controller  found in existing literature was used to relate experimental

results to the body of work that already exists on the subject.

The controller models proposed in this thesis both used the same control mechanism,

but  relied  on  different  sensor  interpretation  methods  and  mixed-in  hard-coded

behaviours to achieve scores that conclusively surpassed both baselines,  but did not

display a significant gap in performance in relation to each other.

The scores achieved by proposed models arise from a combination of a multitude of

factors like search space size, sensor usage, chromosome length, model-specific genetic

defects and hard-coded behaviour. These factors differ between models, so the similarity

of fitness scores presents grounds for further analysis, comparison and interpretation of

results.

In conclusion, the main objective of this thesis has been successfully accomplished. The

end  result  is  a  search  algorithm that  allows  for  further  experimentation  and

development.
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