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Abstract 

Fatigue is a natural condition of the human organism after it has lost its energy on an 

activity. During last century, the state of fatigue has been studied separately and in 

conjunction with numerous chronic illnesses. However, the issue of fatigue is topical and 

poorly understood because of its subjectivity. The focus of the present thesis is modelling 

human fatigue, using a digitalised fine motor skill test as an easy-to-use solution. The 

main goal is to determine a set of significant parameters that would be used for modelling 

of fatigue recognition and to make it possible to distinguish between fatigued and non-

fatigued individuals. 

This thesis is written in English and is 38 pages long, including 8 chapters, 15 figures 

and 12 tables.
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Annotatsioon 

Väsimus on inimorganismi loomulik seisund pärast oma jõu kaotamist millegi tegemise 

tõttu. Viimase sajandi jooksul on uuritud väsimuse seisundit omaette ja mitmete 

krooniliste haiguste korral. Sellest hoolimata on väsimuse teema aktuaalne ja seda 

mõistetakse halvasti selle subjektiivsuse tõttu. Käesoleva väitekirja keskmes on inimeste 

väsimuse modeleerimine, kasutades motoorsete võimete digiteeritud testi kergesti 

kasutatava lahendusena. Peamine eesmärk on määrata kindlaks oluliste parameetrite 

kogum, mida kasutada väsimuse äratundmise modeleerimiseks ning mis võimaldaks 

eristada väsinud ja väsimata üksikisikuid.  

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 8 peatükki, 15 

joonist, 12 tabelit.
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List of abbreviations and terms 

JSON JavaSciprt Object Notation – data exchange format 

CSV Comma-Separated Values 

PyCharm IDE Integrated Development Environment 

Amazon S3 Amazon Simple Storage Service – data storage in the 

cloud 

DTW Dynamic Time Warping 

MM Motion Mass 

VAS Visual Analog Scale 

E Euclidean distance 

𝑉𝑚 Velocities mass 

𝐴𝑚 Accelerations mass 

𝐽𝑚 Jerks mass 

t Time 

dist_div_am Ratio of Euclidean distance to acceleration mass 

am_div_dist Ratio of acceleration mass to Euclidean distance 

s3, s6, s9, s12 Spiral separation ways respectively – 3 o’clock, 6 o’clock, 

9 o’clock, 12 o’clock in the daytime 

DT Decision tree classifier 

LR Logistic regression classifier 

SVM Support Vector Machine classifier 

kNN K Nearest Neighbours classifier 
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1 Introduction 

The focus of this thesis is to research the influence of fatigue on human fine motor 

functions. Since there is no information in the literature that physical fatigue and mental 

fatigue are involved in the same motor functions, they are considered separately in this 

work. 

The fast pace of modern life is keeping people in high tension which naturally causes the 

lack of energy. At the same time, for people working as pilots or truck drivers, for 

instance, the state of fatigue is in principle unacceptable and it is, therefore, important to 

create preventive measures. Fatigue has been recently identified as one of the major 

factors to cause incidents, efficiency loss and other similar problems which disrupt many 

areas of human machine interaction [1]. Modern approach to the working environment is 

to eliminate low productivity periods of an employee. An ability to recognize people’s 

fatigue may improve the quality of the working environment and make people’s lives 

safer. 

During the recent time fatigue detection and modelling gain a lot of attention. 

Nevertheless, relatively few results are devoted to the applicability of fine motor test to 

tackle the problem. Initially developed to diagnose and model cognitive impairments, like 

those cause by neurodegenerative disease, fine motor tests provide unique inside in the 

state of human motor functions both, on the levels of planning and execution of limb 

motions. The working hypothesis of the present research is that fatigue should affect 

human abilities to plan and execute motions [2], in the similar way like neurodegenerative 

diseases [3] or in opposite way to the learning processes [4].  

The main goal of this thesis is to research the applicability of fine motor test for 

distinguishing fatigued and non-fatigued individuals. In case positive result is archived 

during the research, the aim is to find out a set of parameters that can be used to build a 

predictive model of differentiation of the fatigued state. 

Given the novelty of the topic and the usefulness of the present research in the study of 

the problem of fatigue, the investigation which forms  the basis of this work is supposed 
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to become the first step in modelling an easy-to-use solution capable of evaluating the 

level of fatigue in  employees who work  using their fine motor skills such as dentists, 

surgeons, welders, etc. 

The following structure is used for the thesis. In Chapter 2, the influence of fatigue on 

motor-cognitive functions is presented and spiral drawing test is explained to be an 

appropriate method for screening of motor-cognitive interference. Formally, the problem 

is presented in Chapter 3 and the next chapter provides literature overview. Tools, 

experimental settings and research methodology are discussed in Chapter 5. Chapter 6 

presents and interprets the achieved results. It is followed by a short discussion of the 

results and concluding remarks are drawn in the last chapter. 
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2 Background 

Perception of fatigue is subjective. There is no exact definition of fatigue because it is 

overlapped between symptoms of various illnesses and can be also noticed in a healthy 

person. Therefore, fatigability is individual and the period of recovering from fatigue in 

healthy individuals is different as well. Fatigue is best defined as the difficulty in initiating 

or sustaining voluntary activities [5]. It occurs due to the impairment of one or several 

physiological processes, which enable the contractile proteins to generate force [6]. 

Before fatigue modelling, it is necessary to understand the essence of the phenomenon. 

Two kinds of fatigue should be considered – mental (cognitive) fatigue and physical 

(muscle) fatigue. As an example, the case of mental fatigue can be manifested in the 

difficulty to concentrate on performing a task, e.g., reading a document may take twice 

as much time and even cause drowsiness. Physical or muscle fatigue, best explained as 

inability to continue running after a hard training, may include muscle weakness. Both of 

the fatigue types have their own symptoms, but both also have an influence on the motor 

unit. According to the type of exhaustion, the latter may be caused by different 

components of the central nervous system. In the scope of the current study the entire 

mechanism of fatigue is not going to be explained. It suffices to know that motor unit is 

the functional unit of movement. When one performs some kind of action, fibres of one’s 

muscles are innervated by a motor neuron which transmits impulses from the brain that 

are triggered by those regions. Violation of the conductivity of those impulses from the 

brain to the muscle fibre can result in fatigue. Based on a research article about the effect 

of physical exhaustion on cognitive functioning, the impact of physical fatigue on 

cognitive functions can be assumed [7, 8]. Moreover, mental fatigue can also dramatically 

influence those functions by decreasing mental energy [9]. 

With the previous explanation, understanding of the influence of fatigue on motor-

cognitive functions has been archived. The following part of this section will focus on 

what can be used for screening of motor-cognitive interference and be appropriate for 

differentiating between fatigued and non-fatigued individuals. Applicability of the spiral 
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drawing test to fatigue modelling is in the focus of the present research. Spiral drawing 

test was chosen due to its popularity among practitioners and due to the fact that it was 

among the first tests to have been digitised. The latest studies provide different 

opportunities to use commonly used features to describe and interpret achieved results. 

Drawing of the Archimedean spiral, the so-called spirography, is commonly used in 

neurological diagnostic tests to quantify motor activity. Spiral analysis is a clinically 

validated method that gives objective evaluation for such disorders as Parkinson disease 

or tremor disorder. Therefore, spiral analysis can be used to study the details of normal 

motor control. In its classical (non-computerised) version, the spiral drawing test is 

performed by means of pen and paper. Tested individual is demonstrated the etalon of 

spiral drawn on the paper. To conduct the test, a testee is asked to follow the contour of 

the spiral with the pen. Different ways of conducting the test are described in literature. 

Contour following may be done clockwise or counter clockwise. Instead of following the 

contour, a testee may be asked to draw the spiral in the white space limited by the contour, 

so that the pen would not touch the etalon drawing. These variations depend on the tested 

case and on the practitioner. Assessment of a testee is done by the practitioner on the basis 

of visual observation of the testing process and its results. In the digitised (computerised) 

form of the test, paper is replaced by the screen of the tablet computer, and pencil is 

replaced by the stylus pen. Obviously, the digitised version of the test allows to observe 

and record more parameters more precisely, including those invisible for the naked eye, 

like pressure on the pen, accelerations and velocities at each point, etc. Some recent 

contributions suggest up to 90 parameters to have been recorded and analysed [10]. 
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3 Problem statement 

Fatigue has been acknowledged as a fundamental factor to consider in the efficient 

management of human resource and also as a major cause of many incidents. Fatigue is 

a reason for people’s unpredicted behaviour and low productivity. Since the perception 

of fatigue is subjective, it is mostly measured using different subjective methods as 

questionnaires or sleeping diaries, but objective methods also exist. An overview of 

available assessment tools for the fatigue measurement are discussed in the study of 

fatigue in multiple sclerosis [11]. However, existing measuring methods are too complex 

and cannot be used for the evaluation of fatigue in an everyday working environment. 

Ideally, every employee during the working day could determine his or her less 

productive periods and even dangers that are caused by increased fatigue. Ability to 

recognize fatigue may improve working environment and make it safer. 

Recent advances in information technology have enabled advances in medicine. Faster 

and comprehensive data collection allowed clinicians to conduct cause-and-effect 

analysis and also contribute to early diagnosing of several disorders. For example, 

nowadays, digitised such handwriting assessments as spiral drawing test are used to 

timely detect such neurological disorders as Parkinson disease [5]. Handwriting definitely 

suggests cognitive impairment and may be relevant to fatigue evaluation. 

In the scope of “Research-Based Software Development Project: Startup” (ITX8549) 

course, fatigue recognition tool infrastructure has been developed for Android mobile 

users that made possible the collection of training data and its storage. Moreover, test 

group data have been analysed and prediction models have been composed. However, the 

result of prediction was unexpectedly low. Generally, the initial version of the tool has its 

weaknesses and needs to be analysed and improved, so that fatigue can be detected. 

Finally, it was decided to continue the research of the current problem under controlled 

environment, where the following main conditions meant for the purity of the experiment 

were set: tests were conducted under supervision and with the use of the same device. 

Formally, the problem is defined as follows: to construct a method to distinguish between 
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the spiral drawings done by individuals experiencing fatigue from those done by non-

fatigued individuals. This leads to a number of subproblems to be solved: 

• data acquisition: motion capture during spiral drawing test 

• feature extraction and selection 

• classifier selection training 
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4 Related work 

The state of fatigue has been studied separately and also in the context of numerous 

chronic illnesses during the past century [11, 5, 8]. Still, the topic of fatigue remains acute 

and poorly understood because of its subjectivity. Nevertheless, there have been attempts 

to detect physical and mental fatigue using objective methods. For example, Volkswagen 

worked out a monitoring system for drivers which follows their blink rate, nodding and 

eye pupil position. If any symptoms of fatigue have occurred, the system will alert a driver 

with alarms [12]. In case of physical fatigue, electromyography (EMG) is widely used 

and established as a relevant technique of assessing muscle function through placement 

of electrodes on the skin [13]. Since existing practices are expensive, complicated and 

some of them can only be applied in clinical research, there is a need to create a separate 

easy-to-use application, especially for those areas where human fatigue may cause great 

damage. 

Fatigue has an indisputable impact on human cognitive and/or motor function [7]. 

Volkswagen (VW) researchers acknowledged human error to be a casual factor in many 

road accidents [12]. One of the components of human error is general physical and mental 

fatigue which affects cognitive processes. In other words, when drivers are tired, their 

cognitive function is so much impaired that it does not enable them to react to a situation 

and this results in an accident. 

What if fatigue affects the same functions of motion planning and execution as 

neurological disease? There is a huge amount of literature on the topic of fatigue, 

describing numerous experiments and explaining the nature of muscle fatigue. Moreover, 

mental fatigue has been investigated as a subjective component using various 

questionnaires and scales. Different types of fatigue and its causes received an extensive 

treatment [14]. Nevertheless, the possibility of fine motor tests to be used for fatigue 

recognition and modelling received much less attention [15]. In the [16] review of 

physical and cognitive consequences of fatigue based on several articles referred to in this 

thesis, authors propose that fatigue appears to influence cognitive functions which 
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interfere with executive function of motor performance and should be further 

investigated. 

The common approach to evaluating motor function is to apply a neurological 

examination such as fine motor tests. Spiral drawing test or spirography is widely used 

by clinicians for the study of upper limb motor dysfunctions in patients with essential 

tremor, Parkinson’s disease, and related disorders [17]. Spirography has its primary 

advantage of being appropriate for the implementation on a wide variety of devices [18], 

including relatively small ones. In the study [19], feasibility of spirography resulted in 

86% of classification for assessment of motor function in Parkinson’s disease. 

Various studies [17, 20, 21] focused on digitalisation of the handwriting process to 

quantify the kinematic parameters that can be applied in further analysis. In the research 

[22], a set of kinematic parameters were offered to measure quantity and smoothness of 

human limb motions. Subsequently this method was presented as an alternative approach 

to distinguishing movements in patients with Parkinson’s disease [3]. Reliability of using 

kinematic features in the case of fatigue has been addressed in several studies. The 

research [23] of the effect of mental fatigue on speed–accuracy trade-off shows increase 

of movement duration due to mental fatigue in case of whatever task difficulty. 
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5  Methodology 

5.1 Tools 

In the course of this work, different techniques were used to achieve the main goals. Data 

acquisition process was constructed using an application that was preinstalled on iPad Pro 

9.7-inch tablet, equipped with native stylus (Apple Pen). This application has been 

developed by the members of the working group and allows to collect the data describing 

position of the pen tip, orientation of the pen and its pressure on the screen 200 times per 

second. Based on this data, different parameters describing movements of the pen tip are 

computed.  

The collected data was stored in Amazon S3 and made available to pull it in JSON format 

for further analysis. Analysis of the extracted features is made by using Python 3 

programming language in PyCharm IDE development tool. The choice of the language is 

based on its wide range of libraries for data manipulation, statistical and visual analysis. 

It is necessary to mention the most prominent libraries that are used during the research 

work. Plotting functionality is ensured by Matplotlib and statistical calculations by SciPy 

and Numpy. To solve classification problem, scikit-learn machine learning library is used. 

5.2 Design of experiment 

In the scope of this work, both mental and physical states of fatigue are researched in 

healthy subjects. Altered handwriting suggests cognitive impairment and may be relevant 

to fatigue evaluation. There are several fine motor tests to do it. The initial realisation 

asks a subject to overdraw a spiral clockwise using a background pattern, as it is 

illustrated in Figure 1. 
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Figure 1. Etalon spiral and spiral drawn by a testee 

 

Three kinds of experiments are going to be conducted – the first is supposed to measure 

mental fatigue (Experiment A), the second and the third ones – physical fatigue 

(Experiments B1 and B2). The basic idea of an experiment is to let a subject to draw a 

handwriting sample. 

A. A group of subjects is measured with a tablet in the office during normal working 

day for three times, or every 2 hours. Working in the office is a pretty much 

exhausting process and supposed to give a result in mental fatigue research. Since 

fatigue is a subjective perception of tiredness, a Visual Analogue Scale (VAS) 

[24] depicted in Figure 2, has been considered as a simple subjective fatigue 

assessment method to estimate cognitive fatigue changes during the working day. 

The VAS consists of a straight line with the endpoints defining “Energetic, no 

fatigue” and “Worst possible fatigue”. Participants were asked before each spiral 

drawing test to point their current felt of fatigue on the line between two endpoints.

 

Figure 2. Visual Analog Test [25] 
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Before lunchtime, at 12 o’clock in the daytime, a subject will be tested for the first 

time. Lack of energy can be restored by having a rest or even during food 

consumption. So, a little walk outside of office and lunchtime in a nice company 

makes the working day in the office possible. This hypothesis will be checked 

after 2 hours and it is expected to see that the subject will become less tired or at 

least remain on the same level of tiredness. The last attempt at measuring fatigue 

will be performed before the end of working day. 

B. First, the researcher is more focused on hand muscle fatigue and asks a subject to 

exercise with a dumbbell until the subject feels real inability in his or her muscles 

to continue the exercise. Two samples are derived from this test – before and after 

the exercise. The second test measures physical exhaustion during a difficult rock-

climbing training. Three samples will be collected before the physical activity and 

three samples after it. 

Additional criteria for experiments as listed below are found to be useful for the purity of 

the experiment: 

• The age of subjects in the test group is in the range from 25 to 50. 

• A healthy individual without diagnosed cognitive disorders is supposed to be 

tested. 

• A drawing must consist of a continuous line or polyline. 

• Task execution time must be less than one minute for each trial. 

• A subject performs the test with his or her working hand. 

• Subjects do not experience a severe headache at the moment of experiment. 

5.3 Feature extraction 

Drawing samples can be fed into a classifier itself for building a fatigue recognition model 

only in the case of deep learning, but this result is difficult to interpret. For the cases of 

medical problems, it is important to give clinicians understandable result. This calls for 

the use of decision tree and logistic regression classifiers which can handle as an input 

only numerical variable in case of scikit-learn Python library. There is a common practice 
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to extract some specific attributes or so-called features from those samples using 

mathematical principles which can explain the difference between fatigued and non-

fatigued individuals. 

In the present research, there is no knowledge what features are meaningful. However, 

two kinds of features are supposed to be calculated – motion mass and similarity–based 

ones. Firstly, principles of the calculation of those features will be explained, while initial 

attributes are presented. The raw data of each handwriting sample derived from a tablet 

consists of five values illustrated in Figure 3: pen tip positions x(t) and y(t), pen tip 

pressure p(t) and pen orientation angle altitude (0 o – 90 o) and azimuth (0 o – 359o). 

 

Figure 3. The raw data of each handwriting sample derived from a tablet [26]. 

 

For every subject, data is stored as a data matrix demonstrated in Figure 4 and, therefore, 

used for feature calculation. To avoid invalid data in this research, data pre-processing 

process has been performed and visually incomplete spiral samples have been excluded. 

 

Figure 4. Example of the initial data 
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5.3.1 Motion Mass features 

In the present research, Motion Mass (MM) parameters, describing amount and 

smoothness of motion, were adopted to extract features for further analysis to distinguish 

between tired and non-tired subjects. Similar approach was previously applied in the 

analysis of human limb motions and this approach was acknowledged to be sufficient for 

differentiating between movements of patients with Parkinson’s disease and healthy 

controls [3]. Basically, it is assumed that fatigue is linked to motion functions of execution 

and planning which means that MM approach could be also appropriate for the analysis 

of spiral drawings and give us the set of significant features. Because there is no 

information about relevant parameters for the stated problem, different strategies for 

spiral splitting are going to be tried and motion mass parameters will be calculated 

separately for retrieved parts. Actual splitting strategy will be decided upon during the 

statistical analysis of MMs. 

Spiral drawing and each retrieved segment are considered as one single stroke S that is 

presented with collections of many points that are ordered in time. The way passed by 

stylus from the starting point of stroke to the final point of the spiral or its segment is 

described as follows: 

𝑆 = {𝑆1, … , 𝑆𝑛−1}                                                    (1) 

where the path between two points Si or line segment and n is the number of registered 

points. 

The notion of MM parameters is denoted for the line segment as follows: 

𝑀𝑠 = {𝑇𝑚, 𝑉𝑚, 𝐴𝑚, 𝐽𝑚, 𝑡}                                              (2) 

where Tm stands for Trajectory Mass, Vm stands for Velocity Mass, Am stands for 

Acceleration Mass, Jm is Jerk Mass and t is time. 

Trajectory Mass parameter is excluded because the sum of Euclidean distances of each 

line segment is calculated separately and it equals to the sum of trajectory masses of each 

line segment. 

MM parameters of each registered stylus movement are calculated as shown below: 

𝑡𝑖 = 𝑡𝑒𝑛𝑑 −  𝑡𝑠𝑡𝑎𝑟𝑡     (3) 

𝑇𝑚𝑖
=  ∑ 𝐸𝑖

𝑛
𝑖=1               (4) 
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𝑉𝑚𝑖
=  ∑

𝐸𝑖

𝑡𝑖

𝑛
𝑖=1       (5) 

𝐴𝑚𝑖
=  ∑

𝑉𝑚𝑖

𝑡𝑖

𝑛
𝑖=1      (6) 

𝐽𝑚𝑖
=  ∑

𝐴𝑚𝑖

𝑡𝑖

𝑛
𝑖=1      (7) 

where E is Euclidean distance that is defined as follows: 

𝐸𝑖 =  √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦
𝑗

− 𝑦
𝑗−1

)
2

    (8) 

Finally, the set of sums of MM parameters is calculated for each stroke. 

5.3.2 Similarity -based features 

In addition to the abovementioned feature extraction approach, a commonly used 

Dynamic Time Warping distance (DTW) technique is applied for assessing the similarity 

between two time series. In other words, there are two hand-drawn spirals that were 

produced with different speed and can have different length, but still have a similar 

pattern. The basic principle of DTW algorithm is recursive search for minimal distances 

between two trajectories. According to standard DTW algorithm time-complexity O(N2), 

open-source Python library ‘FastDTW’ with linear time and memory complexity for 

calculation of the following features was chosen: dtw_time, dtw_position, dtw_speed, 

dtw_acceleration, dtw_distance_div_acceleration, 

dtw_acceleration_divided_by_distance. 

5.4 Statistical evaluation 

After extracting features statistical evaluation is going to be conducted to figure out the 

set of significant features. Such statistical concept as hypothesis testing is widely used 

and applied for every extracted feature to check null hypothesis. For the current problem, 

that selected feature is not indicative and does not show any association between test 

group samples. In other words, the conducted experiment does not provide a solution for 

the current problem. Therefore, tired and non-tired conditions of subjects are not 

differentiated. 

To be more precise, two-sided p-value approach is applied and this value is calculated 

using the open-source python library ‘SciPy’. To observe the means of two independent 

samples from different populations or test groups, a built-in function ttest_ind(a, b, 
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axis=0, equal_var=False, nan_policy=’propagate’) is used. For this Two-Sample t-test 

for Equal Means, 5% threshold for p-value is applied. If p-value is smaller than a selected 

threshold, then the null hypothesis of equal means for an exact feature will be rejected. In 

other words, the feature is indicative of fatigue. 

A statistical hypothesis test pointed out those features which mean values of non-tired 

and tired subjects are differentiated. Therefore, to better evaluate feature relevance to one 

of the class labels and select only significant ones for the classification process, the Fisher 

scoring method is going to be applied, which allows to measure the discriminatory power 

of the feature. The larger this number, the more evidence that this feature is sensitive to 

the classification algorithm. 

For calculating the Fisher score (F) of a feature, the ration of the interclass separation to 

intraclass separation is defined as follows: 

𝐹 =  
∑ 𝑝𝑗(𝜇𝑗−𝜇)2𝑘

𝑗=1

∑ 𝑝𝑗𝜎𝑗
2𝑘

𝑗=1

     (9) 

where 𝜇𝑗, 𝜎𝑗 and 𝑝𝑗 are the mean, standard deviation and  fraction of data points 

belonging to class j for the feature being evaluated and 𝜇 is its global mean  [27]. 

5.5 Classification 

This thesis is focusing on dealing with classification problem that is a part of a modern 

trend in informational technology known as data mining. In short, data mining is the 

practice of discovering patterns and trends in a large set of data.  

Talking about classification, the basic idea is to accurately predict or identify to which 

category or class a new observation belongs, based on the knowledge about group 

members. For the current problem, it is needed to assign a subject’s state of fatigue into 

“Tired” and “Non-Tired” classes. To solve classification problem, techniques described 

in the book “Data Classification: Algorithms and Applications” by Charu C. Aggarwal 

are going to be used. Basically, all the process consists of two phases – the training phase 

and the model validation phase. In the training phase a randomly chosen subset of data is 

used to create the model, and after that the rest of the data is used to validate created 

model. 
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In classifiers building it is expected to reach high accuracy of prediction and, if possible, 

interpretable result. Basically, two linear methods are going to be tested – logistic 

regression (LR) and Support Vector Machine (SVC linear), and two nonlinear methods – 

Decision Tree (DT), and K Nearest Neighbours (kNN). First, it needs to be observed if 

the problem is linearly separable and can be easily and faster solved by linear methods. 

LR is selected because it is widely used in medical research and works well in case of a 

problem with many features. Linear SVC is used in handwriting recognition application. 

Nonlinear methods are usually applied when linear classification is not giving expected 

accuracy. DT method can find interactions between features and is good for easy 

interpretation of the result. kNN is reasonable to try because there is much noise in the 

dataset, and similarity-based learning may improve predictive accuracy. 

To assess predictive performance of models, the following techniques are going to be 

used: 

• cross-validation 

• confusion matrix 

Cross-validation approach makes it possible to evaluate whether features that separate the 

training set well have been identified successfully and can be further applied for “real-

world” data. Otherwise, this knowledge can be used for tuning of the model or proving 

that this learning method is not productive. Furthermore, to evaluate quality of the model, 

confusion matrix is going to be composed. 
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6 Analysis 

In the previous chapter, methods have been described which should be appropriate to 

achieve the goals of this master thesis. This chapter will discuss the results of 

implementation of each method in detail and give the initial estimation for methods 

chosen and the experiment form for fatigue recognition problem. The chapter is organised 

in the way of implementation workflow. First, the set of features were acquired from 

spiral drawing test and formed into separate datasets to analyse the problem from different 

angles. To create models for fatigue recognition, the sets of significant and highly 

correlated features were selected using statistical hypothesis test and Fisher’s score, 

respectively. At the end of this chapter, the results of machine learning will be presented. 

6.1 Feature extraction 

The basic idea of this phase is to extract as many features as possible from spiral samples. 

A wide variety of features is necessary because there is no knowledge about relevant 

features for the current problem. Overall 260 features of two groups were extracted from 

the spiral sample. In the following part of this section, data separation process of 

experiments will be explained, and each group of features is going to be reviewed in 

detail. During data acquisition process, collected data were divided into five test groups 

depending on an experiment form. Moreover, features that belong to each group were 

calculated and divided into separate datasets. Each row of the dataset had information 

whether its features belong to tired or non-tired subjects. The group forming principle is 

provided in Table 1: 
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Table 1. The group forming principle 

 Number of tired (T) and 

non-tired (NT) subjects 

Description 

T NT 

 Group I 49 39 Group contains spiral samples of all three 

experiments, A, B1, B2. In case of B2, attempt 1 

result belongs to NT and 2,3 to T 

 Group II 18 12 Group contains spiral samples of B2 experiment. 

Attempt 1 result corresponds to NT and 2,3 to T 

 Group III 10 12 Group contains spiral samples of B2 experiment. 

Attempt 1 result corresponds to NT and 3 to T 

 Group IV 17 17 Group contains spiral samples of B1 experiment. 

Some results were invalid and removed from the 

research 

 Group V 10 20 Group contains spiral samples of B2 experiment. 

Attempt 1,2 results correspond to NT and 3 to T 

 

This approach was found to be useful in the case of two types of experiments. One is 

based on physical exhaustion and another one on mental exhaustion. There is no 

knowledge whether the same motor units suffer from a different kind of exhaustion. 

Initially each spiral sample data was stored in JSON format into a separate file and was 

extracted from this file using built-in data parsing method from Pandas library. Each 

sample or spiral drawing consisted of one single stroke that was presented with a 

collection of many points. Generally, each point had the following attributes – x-axis and 

y-axis position, pressure, azimuth, altitude and time. Therefore, to check the correctness 

of drawing and exclude faulty samples, drawings were preliminarily visualised using x 

and y coordinates. 

After extracting attributes of the point, mean values of pressure, azimuth and altitude are 

calculated. Next, Motion Mass group features are computed. The spiral does not have any 

corners or intersection causing the testee to slow drawing down or stop. Nevertheless, it 

become apparent that behaviour of the drawing process differs very much between 

different sectors of the spiral. This gave an idea to split the spiral into sectors and generate 

full set of the features for each sector. Four different splitting depicted in Figure 5:  
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Figure 5. Possible ways of splitting a spiral 

 

Each splitting is defined by the orientation of splitting line, three o’clock, six o’clock nine 

o’clock and 12 o’clock and denoted correspondingly as s3, s6, s9 and s12. Each splitting 

produces six segments referred as segment. All the MM parameters were computed for 

each segment of each splitting leading relatively large feature set for initial selection. The 

following notation system is adopted. The feature name consists of three parts: splitting 

name, segment number and finally parameter name. For example, s3_segment4_jerks 

refer to the accumulated jerks observed over fourth segment of the spiral in splitting 

defined by three o’clock splitting line. 

Currently there are 25 strokes – the full spiral stroke plus 1–6 spiral segments multiplied 

by 4 for each separation way as it is shown in Figure 5. For each of those strokes the 

following MM features were calculated: 
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• Euclidean distance (E) 

• Velocity mass (𝑉𝑚) 

• Acceleration mass (𝐴𝑚) 

• Jerk mass (𝐽𝑚) 

• Time deltas (t) 

• Ratio of Euclidean distance to acceleration mass (dist_div_am) 

• Ratio of acceleration mass to Euclidean distance (am_div_dist) 

In the current issue, there is no knowledge about relevant features. In this situation, any 

intuitively used techniques are accepted if they are applied equally to each sample. For 

example, there were attempts to use several strategies to find out significant features. 

Firstly, there were attempts to change spiral intersection points with a line. And secondly, 

features’ values were divided by: a) Euclidean distance, b) logarithm of a trajectory mass, 

c) squared trajectory mass values. To evaluate the significance of features in the case of 

current issue, statistical analysis was applied to them, but its result will be discussed in 

the following section. Summing up the above, the so-called “clock” separation ways and 

dividing features’ values by distance were included into the final analysis. 

The last group of features were added into the final assessed set are similarity-based 

features: dtw_time, dtw_position, dtw_speed, dtw_acceleration, dtw_dist_div_acc, 

dtw_am_div_dist.  

After extracting all the features for all five test groups, they are stored in separate CSV 

file. Moreover, each row carries knowledge whether a set of features belongs to tired or 

non-tired subjects. In the following sections gathered features would be used for the 

further analysis and machine learning model training. 

6.2 Statistical analysis 

Comparison of the averages of the experimental features for all datasets was separately 

performed using Student’ t-test. A p < 0,05 was considered statistically significant. 



30 

Instead of explaining the results for all datasets, only results of Group 2 and 4 as the most 

notable representatives of mental and physical fatigue are explicated in the current thesis. 

The result of statistical analysis in the case of office workers describing mental fatigue 

(Group 2) was impressive and almost half of features were highlighted, which probably 

can be used as a relevant predictor for creating a model in machine learning. Table 12 in 

Appendix 2 provides an example of the most significant features filtered by the p < 0.009. 

Moreover, average scores of two features located at the top of the table were significantly 

different between two groups (p < 0.003). 

According to the results presented in Table 12, the most efficient way of spiral separation 

is on 3 o’clock, and its first and fourth segments pointed out differences between the 

group of tired and non-tired subjects. The result of statistical analysis showed one more 

specific result. Execution time of drawing spiral or its segment is supposed to differentiate 

tired and non-tired spirals. But more remarkably, not only time features can be used in 

fatigue modelling but also jerk, acceleration and Euclidian distance. 

Statistical analysis of physically tired individuals after climbing training (Group 4) de-

tected only one relevant feature – distance listed in Table 2. The distance of execution 

of the second segment of spiral, according to 12 o’clock separation way, were different 

for tired and non-tired subjects. 

Table 2. Significant feature according to the result of Group 4 

Features T-stat P-value 

s12_part2_distances -2.074354 0.046179 

 

Unexpectedly, t-test analysis did not find the set of dtw features in case of both groups 

potentially significant, whereas the popularity of the Dynamic Time Warping approach 

in assessing similarity between two datasets has been increasing over the years. 

6.3 Feature selection 

The statistical hypothesis test pointed out those features which mean values of non-tired 

and tired subsets are distinguished. Therefore, to better evaluate feature relevance to one 

of the class labels and select only significant ones for the classification process, Fisher 

scoring method is going to be applied, which measures the discriminatory power of the 

feature, where F denotes Fisher’s score. The larger this number, the more evidence that 
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the feature is sensitive to the classification algorithm. The results of highly correlated 

features for mental fatigue dataset are demonstrated in Table 3. 

Table 3. An example of highly correlated features with Fisher score larger than 0.4 for Group 2 (mental 

fatigue). 

Features Fisher’s score 

s3_segment3_time_deltas 0.800138 

s3_segment3_time_deltas_ratio_to_length   0.797788 

s6_segment2_time_deltas   0.779537 

s6_segment2_time_deltas_ratio_to_length   0.777582 

… … 

time_deltas   0.488000 

s3_segment3_am_div_dist   0.487915 

s3_segment4_jerks   0.483130 

s6_segment2_am_div_dist 0.482549 

s3_segment4_jerks_ratio_to_length   0.478012 

s12_segment2_am_div_dist   0.476241 

s9_segment2_am_div_dist   0.453036 

s3_segment4_accelerations   0.438980 

 
  

According to Fisher’s score results, the execution time of spiral and its segments might 

be a good predictor. However, other features independent of time, such as jerk and 

acceleration masses, are also applicable for fatigue recognition modelling. 

After the results of both test – t-test and Fisher scoring were calculated, it is necessary to 

decide upon the right number of features to be applied in the learning algorithm directly 

because a learning model tends to overfit in case of many parameters. In other words, a 

model can predict with high accuracy only on training data but will obviously fail with 

unseen instances. 

Since Group 2 indicated 126 significant features but only 1/3 were signed as highly 

correlated (F > 0.5), only the most significant features (p < 0.006) were selected for 

training of models. At the same time, one of the goals of this thesis is to build the time-

independent model. Accordingly, a demand to Fisher’s score was degraded and accepted 

F > 0.4. 
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The results of Fisher’s score for Group 4 are presented in Table 4 and demonstrate a low 

number: 

Table 4. An example of Fisher’s score for Group 4 (mental fatigue). 

Features Fisher’s score 

s12_segment1_time_deltas_ratio_to_length 0.028320 

s12_segment1_time_deltas   0.027588 

s9_segment1_time_deltas   0.022652 

s9_segment1_time_deltas_ratio_to_length   0.021249 

… … 

s9_segment1_dist_div_am 0.141105 

s12_segment2_distances   0.138539 

s6_segment1_ dist_div_am   0.136719 

s3_segment1_ dist_div_am   0.132978 

 

6.4 Model selection 

Four machine learning methods were investigated: k nearest neighbours (k-NN), support 

vector machines (SVM), logistic regression (LR) and decision tree (DT). To access the 

predictive performance of chosen methods, cross-validation technique (k-fold=3) and 

confusion matrix were used. Overall, two types of models were built for each dataset: a) 

temporal, b) non-temporal. 

6.4.1 Mental fatigue modelling 

Based on t-test and Fisher’s score results, purely temporal features were selected as 

predictors and, therefore, used for training the first set of predictive models. Temporal 

features are drawing time for the third segment in three o’clock splitting, ratio of time to 

the Euclidian distance of the drawn line and the same parameters for the second segment 

of six o’clock splitting. Separation of the individuals affected by fatigue and control group 

described by the first three features is depicted in Figure 6, where red dots represent 

individuals affected by mental fatigue and blue dots belong to the control group: 
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Figure 6. Separation of two groups described by temporal features only (mental fatigue). 

 

For the second set of models, only non-temporal features were selected. These features 

are ratio of the acceleration mass to the Euclidean distance am_div_dist of the third 

segment in three o’clock splitting, jerk mass of the fourth segment in the same splitting, 

ratio of the acceleration mass to the Euclidean distance am_div_dist in the same splitting 

and ratio of jerk mass to the Euclidean distance. Separation of the individuals affected by 

mental fatigue and control group described by the first three features is depicted in Figure 

7. 

 

Figure 7. Separation of two groups described by kinematic features only (mental fatigue). Y and Z axis 

values scaled by 1e+12 and X – 1e+16. 
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For both sets it was attempted to train all four classifiers based on two, three and four 

predictors. The results of cross-validation for the trained classifiers are presented in Table 

5. For all chosen methods, temporal models showed lower accuracy results comparing to 

non-temporal models. In spite of the lower Fisher’s score, classifiers trained for the 

kinematic features in many cases have higher accuracy compared to those trained on the 

basis of temporal features only. There were attempts to tune models, which resulted in 

increased levels of accuracy, and final scores are presented in the last column of Table 5: 
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Table 5. Models training results for the case of mental fatigue. 

Models 
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DT ✔ ✔       0.754 0.786 

DT ✔ ✔ ✔      0.754 0.786 

DT ✔ ✔ ✔ ✔     0.762 0.794 

DT     ✔ ✔   0.762 0.841 

DT     ✔ ✔ ✔  0.762 0.841 

DT     ✔ ✔ ✔ ✔ 0.762 0.841 

SVC ✔ ✔       0.659 0.794 

SVC ✔ ✔ ✔      0.659 0.794 

SVC ✔ ✔ ✔ ✔     0.659 0.794 

SVC     ✔ ✔   0.754 0.897 

SVC     ✔ ✔ ✔  0.706 0.841 

SVC     ✔ ✔ ✔ ✔ 0.706 0.841 

LR ✔ ✔       0.659 0.794 

LR ✔ ✔ ✔      0.659 0.794 

LR ✔ ✔ ✔ ✔     0.659 0.794 

LR     ✔ ✔   0.754 0.897 

LR     ✔ ✔ ✔  0.754 0.897 

LR     ✔ ✔ ✔ ✔ 0.754 0.897 

kNN ✔ ✔       0.659 0.690 

kNN ✔ ✔ ✔      0.603 0.690 

kNN ✔ ✔ ✔ ✔     0.603 0.643 

 kNN     ✔ ✔   0.762 0.897 

kNN     ✔ ✔ ✔  0.762 0.897 

kNN     ✔ ✔ ✔ ✔ 0.762 0.944 
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Confusion matrices for each best classifier in its class are presented in Table 6 – Table 9, 

where F denotes an individual affected by fatigue and C – a non-tired individual: 

Table 6. Confusion matrix for the classifier for the most accurate kNN model (mental fatigue). 

 Predicted (F) Predicted (C) 

Actual (F) 

Actual (C) 

3 

2 

1 

4 

 

Table 7. Confusion matrix for the classifier for the most accurate SVM model (mental fatigue). 

 Predicted (F) Predicted (C) 

Actual (F) 

Actual (C) 

3 

1 

1 

5 

 

Table 8. Confusion matrix for the classifier for the most accurate LR model (mental fatigue). 

 Predicted (F) Predicted (C) 

Actual (F) 

Actual (C) 

3 

1 

1 

5 

 

Table 9. Confusion matrix for the classifier for the most accurate DT model (mental fatigue). 

 Predicted (F) Predicted (C) 

Actual (F) 

Actual (C) 

3 

2 

1 

4 

 

The following analysis of kinematic feature – jerk, and VAS score as a subjective 

assessment tool of fatigue is proposed to give some understanding for incorrectly 

predicted instances. In Figure 8 and Figure 9 are depicted, respectively, spiral samples of 

non-fatigued and fatigued individuals, where orange dots symbolise areas with high 

values of jerks, more than 2.5e+14, and green dots – areas with low values, less than 

5e+9. In other words, formed heat map characterises smoothness of movement. 
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Figure 8. Spiral samples of non-fatigued individuals. 
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Figure 9. Spiral samples of fatigued individuals. 

 

According to the results of training and validation, incorrectly predicted samples are 

crossed out. Subjective perception of fatigue showed relatively low difference between 

fatigued (average VAS score - 4) and non-fatigued (average VAS score - 4,7) individuals. 

Overall, it is supposed to have outliers in both sets, but more samples could give a 

defining statement. 

To sum up training results for the case of mental fatigue, decision tree and k-NN models 

demonstrated higher levels of the accuracy. The common practice to understand classifier 

behaviour is using a decision boundary technique. More specifically, decision boundary 
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illustrates how a classifier will decide whether observed point belongs to one or other 

class. For the case of mental fatigue, data spreading and decision boundaries for decision 

tree and kNN classifiers are demonstrated in Figure 10. Data spreading and decision 

boundaries for decision tree (right) and k-NN (left) classifiers., where black dots belong 

to control individual and white dots to fatigued individual. If any instance occurs in the 

shaded area, this means classifier will define it as fatigued. For example, some instance 

has jerk value for the fourth segment in three o’clock splitting 7e+16 and ratio of 

acceleration mass to Euclidean distance 2e+12. kNN and DT classifiers will label the 

instance as fatigued. Decision boundary of DT presents additional interest because it has 

its shaded area in non-fatigued area. According to personal communication with another 

student who has similar case, this needs to be further analysed. 

 

Figure 10. Data spreading and decision boundaries for decision tree (right) and k-NN (left) classifiers. X-

axis values scaled by 1e+12 and Y-axis values scaled by 1e+16 

 

As an example of why decision tree classifier is useful for the medical problems is that it 

can be visually interpreted. The graph of the decision tree classifier for the two best 

kinematic features is depicted in Figure 11, where full logic of decision in each step is 

clear.  
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Figure 11. Example of the graph of decision tree with the best two kinematic features. 

 

6.4.2 Physical fatigue modelling 

Using the same principle of selecting predictive models for mental fatigue, the set of 

models for the case of physical (muscle) fatigue were constructed. The only difference is 

that t-test highlighted one feature as significant and, therefore, predictors were selected 

purely on the basis of the Fisher’s score. Temporal features are time and ratio of time to 

the length of the drawn line for the first segment in 12 o’clock in the daytime splitting, 

and the same parameters for the first segment of nine o’clock splitting. Separation of the 

individuals affected by physical fatigue and control group described by the first three 

features is depicted in Figure 12, where red dots represent individuals affected by fatigue 

and blue dots belong to the control group: 
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Figure 12. Separation of two groups described by temporal features only (physical fatigue). 

 

For the second set of models, only non-temporal features were selected. These features 

are ratio of the Euclidean distance to the acceleration mass dist_div_am of the first 

segment in nine o’clock splitting, the same parameter for the first segment in six and three 

o’clock splitting and the length of the second segment in 12 o’clock in the daytime 

splitting. Similarly, separation of the individuals affected by physical fatigue and control 

group described by the first three non-temporal features is depicted in Figure 13: 

 

 

Figure 13. Separation of two groups described by kinematic features only (physical fatigue). 
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Results of cross-validation for the trained classifiers are presented in Table 10 and it 

demonstrates for almost all classifiers relatively low levels of accuracy close to random 

labelling. Therefore, only for the best classifier –– logistic regression, confusion matrix 

is presented in Table 11: 

Table 10. Models training results for the case of physical fatigue (Group 4). 

Models 
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DT ✔ ✔       0.439 

DT ✔ ✔ ✔      0.506 

DT ✔ ✔ ✔ ✔     0.539 

DT     ✔ ✔   0.622 

DT     ✔ ✔ ✔  0.567 

DT     ✔ ✔ ✔ ✔ 0.622 

LR ✔ ✔       0.500 

LR ✔ ✔ ✔      0.561 

LR ✔ ✔ ✔ ✔     0.561 

LR     ✔ ✔   0.656 

LR     ✔ ✔ ✔  0.656 

LR     ✔ ✔ ✔ ✔ 0.656 

KNN ✔ ✔       0.533 

KNN ✔ ✔ ✔      0.494 

KNN ✔ ✔ ✔ ✔     0.533 

KNN     ✔ ✔   0.556 

KNN     ✔ ✔ ✔  0.528 

KNN     ✔ ✔ ✔ ✔ 0.528 

SVC ✔ ✔       0.589 

SVC ✔ ✔ ✔      0.589 
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SVC ✔ ✔ ✔ ✔     0.589 

SVC     ✔ ✔   0.556 

SVC     ✔ ✔ ✔  0.589 

SVC     ✔ ✔ ✔ ✔ 0.589 

 

Table 11. Confusion matrix for the most accurate LR model (physical fatigue). 

 Predicted (F) Predicted (C) 

Actual (F) 

Actual (C) 

5 

2 

1 

4 

 

Actual accuracies are not presenting any interest to conduct further analysis for selecting 

models for the case of physical fatigue. 
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7 Discussion 

Since the issue in question has not been investigated before using fine motor test, the main 

problem was to find an appropriate and available approach to research it. Unquestionably, 

acquisition of the relative data took more time than expected, because there was no 

knowledge as to which experiments would give differentiating data for fatigued and 

control individuals. By means of trial suitable experiments were conducted but gathering 

of huge datasets was limited in time and resources. Difficulty in the collection of data 

arose from the errors in the application, which in turn led to the loss of some of the 

collected samples. Therefore, the number of samples is too modest for making 

indisputable conclusions. However, it still proves the need to research the current 

problem. 

Analysis of the results showed that, among all the experiments, only the experiment with 

employees in the office was an appropriate method for investigating fatigue, more 

precisely – mental fatigue. Moreover, the result of machine learning among all trained 

classifiers gave the highest accuracy of 0.762. Based on the results of validation, the data 

collected in the confusion matrices confirmed the ability of models to predict with similar 

accuracy. Running classifiers with different parameters, the so-called tuning the models, 

gave improved accuracies. Furthermore, in case of kNN classifier, the result of 0.9 was 

achieved, which means that nine in ten spirals will be correctly predicted. However, 

validation of the models gave lower precisions that can be explained by the presence of 

outliers visible in the spreading diagrams and in the jerks heatmap of spirals. Overall, the 

result can be interpreted as positive because the working hypothesis of the present 

research is confirmed, which is that mental fatigue affects temporal and kinematic 

parameters describing spiral drawing test. 

Another point to note is the importance of kinematic parameters. In some cases, lesser 

number of kinematic parameters provided the possibility to train more accurate classifiers. 

This clearly demonstrates that cognitive fatigue affects fine motor functions. Finally, 

among the kinematic parameters acceleration masses and jerk masses have higher 
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Fisher’s score and were placed close to the roots of the decision trees. This is a clear 

indication of the fact that cognitive fatigue affects smoothness of fine motor motions. 

For the case of physical fatigue, achieved by experiment with climbers, the result can be 

characterised as random because the result of training for all the classifiers did not exceed 

0.65. Statistical evaluation of the averages did not show significant features, and in the 

case of Fisher’s analysis scores were also low, which did not allow to find a suitable 

predictor for physical fatigue. Analysing the result, it can be assumed that the following 

factors could have a negative effect:  small amount of data, an experiment was conducted 

in the evening after a working day and general fatigue by that time might have been 

already at its peak. It is worth noting that the second experiment of physical fatigue with 

dumbbells also failed at the stage of statistical analysis without selecting any of significant 

features. Since the approach to studying the problem of fatigue is new, one should not 

immediately chase the collection of a huge amount of data, but it is worth determining 

the method to solving the problem and setting demonstrative experiments. Undoubtedly, 

it is worthwhile to try other fine motor tests capable of evaluating the functions of motion 

planning and execution. Perhaps results of this research will encourage scientists to 

further explore the possibility of estimating fatigue with the help of fine motor tests. 
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8 Summary 

The focus of the present master thesis is on a study of the ability of digitalised fine motor 

skills test to determine fatigue at the levels of planning and execution of limb motions. A 

commonly used spiral drawing test was applied in the current work for the screening of 

motor-cognitive interference due to a research influence of fatigue on those functions. 

Physical and mental fatigue were considered separately. The main goals were to research 

applicability of fine motor test for distinguishing individuals affected by fatigue and a 

control group, and to find a set of parameters differentiating those groups so that a fatigue 

recognition model could be built. 

For the possibility of studying this problem, it was necessary to set up experiments in a 

controlled environment, which were able to catch the higher level of fatigue compared to 

the control group. Thus, mental fatigue was assessed within a normal working day in an 

office. For evaluation of physical fatigue, the first group of testees were asked to exercise 

with a dumbbell and the second group was tested before and after a hard rock-climbing 

training. To conduct statistical analysis so that it would be possible to evaluate an associ-

ation between the test group samples fatigued and non-fatigued, a set of specific attrib-

utes, or so-called features, were extracted from spiral samples using mathematical prin-

ciples. To calculate those features, two approaches were applied: Motion Mass and DTW. 

In total, five datasets were formed, but according to statistical analysis, further research 

was applied only for two datasets. 

Generally, the results reported in the present work demonstrated that the spiral drawing 

test may be used to detect mental fatigue. First, it was demonstrated that the proposed 

experimental setting is sensitive enough to capture the difference between fine motor mo-

tions of two groups. Importance of the temporal features was achieved, and it was estab-

lished that kinematic features describing smoothness of motions allow constructing clas-

sifiers of a higher accuracy. This is a clear demonstration of the fact that cognitive fatigue 

affects the smoothness of finger motions. 
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For the case of physical fatigue testing, there was not found any proof of the working 

hypothesis. However, it could mean that the experimental setting is inappropriate and a 

further testee should be rested to keep purity of the experiment. 

The approach used in this work was not previously applied to fatigue modelling, but the 

results of the current research confirm the need for further analysis, which could lead to 

the creation of an easy-to-use solution. This solution provides a special interest to those 

areas of human machine interaction where fine motor skills are involved. Furthermore, it 

may improve the quality of a working environment, decrease the number of incidents, 

and exclude the subjective factor of fatigue. 
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Appendix 1 – Visualisation of kinematic features 

  

Figure 14. 3D plotting example of spiral of fatigued (left) and non-fatigued (right) individuals and their 

jerks at each point for the case of mental fatigue. Orange dots symbolise jerks values more than 25e+13. 

 

 

 

Figure 15. 3D plotting example of spiral of fatigued (left) and non-fatigued (right) individuals and their 

accelerations at each point for the case of mental fatigue. Orange dots symbolise accelerations values 

more than 3e+9. 
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Appendix 2 – Statistical evaluation 

Table 12. An example of the most significant (p-value < 0.009) features sorted by lowest p-value 

according to the result of Group 2 (mental fatigue). s3, s6, s9, s12 prefixes identify the separation method 

of spiral presented in Figure 5. 

Features T-stat P-value 

s3_segment4_jerks  3.409646   0.002174 

s3_segment1_time_deltas  -3.304345   0.002632 

s3_segment4_jerks_ratio_to_length  3.264040   0.003019 

s3_segment1_time_deltas_ratio_to_length -3.225199   0.003226 

s3_segment4_accelerations  3.250555   0.003232 

s6_segment2_time_deltas_ratio_to_length -3.203842   0.003464 

s9_segment2_time_deltas_ratio_to_length -3.189824   0.003518 

s6_segment2_time_deltas -3.173548   0.003750 

s9_segment2_time_deltas -3.158003   0.003818 

s6_segment2_am_div_dist  3.153335   0.003896 

s3_segment3_am_div_dist -3.133149   0.004079 

s12_segment2_time_deltas_ratio_to_length -3.106208   0.004357 

s12_segment2_time_deltas -3.073505   0.004737 

s9_segment2_am_div_dist -3.048328   0.005055 

s3_segment4_accelerations_ratio_to_length  3.050275   0.005079 

s3_segment3_time_deltas_ratio_to_length -3.056446   0.005098 

s12_segment3_time_deltas_ratio_to_length -3.039240   0.005259 

s12_segment2_am_div_dist -3.020729   0.005362 

s3_segment3_time_deltas -3.033574   0.005409 

s3_segment1_am_div_dist -3.028745   0.005453 

s12_segment3_time_deltas -3.014757   0.005605 

s3_segment4_velocities  2.972400   0.006151 

s9_segment3_time_deltas_ratio_to_length -2.952964   0.006474 

s12_segment4_jerks  2.961577   0.006691 

s3_segment2_time_deltas_ratio_to_length -2.913906   0.007004 

s9_segment3_time_deltas -2.918968   0.007047 

s12_segment3_am_div_dist -2.902107   0.007306 

s3_segment2_time_deltas -2.874833   0.007720 

s12_segment1_am_div_dist -2.880816   0.007749 

s3_segment2_am_div_dist -2.855989   0.008103 

s9_segment1_am_div_dist -2.840008   0.008360 

s6_segment1_am_div_dist -2.831713   0.008582 

s6_segment1_time_deltas_ratio_to_length -2.825350   0.008722 

s12_segment1_time_deltas_ratio_to_length -2.827754   0.008772 

s3_segment1_jerks  2.851876   0.008897 

 


