
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Kilian Hubertus Ochs 184624IASM

SOLID MODELLING AND TESTABLE

ELECTRONIC DESIGN OF A SMALL

UNDERWATER ROBOT

Master’s thesis

Supervisors: Roza Gkliva

 MSc

 Jaan Rebane

 MSc

Tallinn 2020

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Kilian Hubertus Ochs 184624IASM

VÄIKESE ALLVEEROBOTI

MAHTMODELLEERIMINE JA TESTITAV

ELEKTROONILINE DISAIN

Magistritöö

Juhendajad: Roza Gkliva

 MSc

 Jaan Rebane

 MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Kilian Hubertus Ochs

25.05.2020

4

Abstract

A small-scale underwater robot developed by the Centre for Biorobotics, Tallinn, is the

focus of this thesis work. This robot has primarily been developed for demonstration of

bioinspired locomotion, but it has slowly transitioned into a research object and a teaching

tool for university students in the field of robotics. A robot with such high

manoeuvrability could very well be used in applied underwater missions for

archaeological or maintenance purposes, if the robot’s computational and sensing

capabilities were improved.

This thesis work aims to raise the significance of this miniature robot by providing the

necessary upgrades: a new motherboard which implements a more powerful processor,

integrates a camera and an advanced communication and remote control system, along

with an updated physical design – resulting in improved user interfacing, dependability,

producibility and ease of assembly. Apart from that, a hierarchical structure for dividing

tasks into high-level and low-level control is proposed and implemented in the example

of a test suite which serves as a practical aid in debugging the circuit board components.

As a result of the tasks carried out, the new prototype is not only more competitive

compared with other robots in its class, but also enhances the study quality when being

used as a teaching tool.

Establishing the requirements and then presenting specifications and methods to fulfil

them constitutes the larger part of this thesis.

This thesis is written in English and is 99 pages long, including 7 chapters, 32 figures and

17 tables.

5

List of abbreviations and terms

ADC Analogue-to-digital converter

ARROWS Archaeological Robot systems for the World’s Seas

ASCII American standard code for information interchange

AUV Autonomous underwater vehicle

CAD Computer-aided design

CNC Computer numerical control

CPG Central pattern generator

DOF Degrees of freedom (unit)

EEPROM Electrically erasable programmable read-only memory

EMC Electromagnetic compatibility

FDM Fused deposition modelling

FIFO First in, first out

FM Frequency modulation

FPGA Field-programmable gate array

FSK Frequency-shift keying

FTDI Future Technology Devices International

GCC GNU compiler collection

GPIO General-purpose input/output

GPS Global positioning system

I²C Inter-integrated circuit

IC Integrated circuit

ICSP In-circuit serial programming

IDE Integrated development environment

IMU Inertial measurement unit

INS Inertial navigation system

LDO Low-dropout regulator

LED Light-emitting diode

MEMS Microelectromechanical system

6

MOSFET Metal-oxide silicon field-effect transistor

MUX Multiplexer

PC Personal computer

PCB Printed circuit board

PWM Pulse width modulation

RF Radio frequency

RGB Red/green/blue

RISC Reduced-instruction-set computing

ROS Robot Operating System

SLA Stereolithography

SMD Surface mount device

SPI Serial peripheral interface

SPP Serial port profile

SSH Secure shell

TalTech Tallinn University of Technology

TCP Transmission control protocol

U-CAT Underwater Curious Archaeology Turtle

UART Universal asynchronous receiver-transmitter

USB Universal Serial Bus

UWSim Underwater simulator

WLAN Wireless local area network

7

Table of contents

Author’s declaration of originality ... 3

Abstract ... 4

List of abbreviations and terms .. 5

Table of contents .. 7

List of figures ... 11

List of tables ... 13

1 Introduction ... 14

1.1 About µ-CAT .. 14

1.2 Literature review on small-scale underwater robots ... 15

1.2.1 Processor architectures .. 18

1.2.2 Sensors ... 20

1.2.3 Summary .. 23

1.3 Motivation for an upgraded µ-CAT ... 24

1.4 Personal motivation .. 24

1.5 Acknowledgements .. 24

2 Scope of this thesis project .. 25

2.1 Initial state of µ-CAT ... 25

2.1.1 Physical properties and mechanics .. 25

2.1.2 Hardware components ... 26

2.1.3 Voltage rails ... 27

2.1.4 Software ... 28

2.1.5 Design, manufacturing and assembly .. 28

2.2 Contributions of this thesis ... 29

2.2.1 Required upgrades ... 29

2.2.2 Improving computational capabilities and capturing video data 30

2.2.3 Implementing internal and external communications 31

2.2.4 Improving dependability ... 32

2.2.5 Improving producibility and ease of assembly .. 33

3 Mechanics, solid modelling and manufacturing .. 36

8

3.1 Overview .. 36

3.2 Main modifications ... 37

3.3 Buoyancy analysis .. 38

3.4 Roll stability ... 40

3.5 Structural components .. 41

3.6 Waterproofing ... 42

3.7 Manufacturing .. 43

3.8 Results and discussion .. 44

3.8.1 Integration of electrical components ... 47

3.8.2 Roll stability .. 49

3.8.3 Self-surfacing .. 49

3.8.4 Ease of production and assembly .. 50

3.8.5 Future work ... 51

4 Electronics ... 52

4.1 Main modifications compared to original µ-CAT .. 52

4.2 Overview of components, subsystems, signals and busses 53

4.3 Resistor value and power calculations on LEDs .. 55

4.4 Voltage rails .. 56

4.5 Supplying 5V alternatively through USB ... 57

4.6 Improving power supply ... 57

4.6.1 Buck converter instead of linear series regulator .. 58

4.7 Motor power supply unit .. 63

4.8 Capability upgrades .. 63

4.8.1 Integration of Raspberry Pi Zero W single-board computer and camera 63

4.8.2 Implementation of advanced optical messaging .. 64

4.9 Integration of Arduino Mini 05 .. 68

4.10 Communication with the outside world .. 68

4.10.1 Integration of the FTDI chip .. 69

4.10.2 Integration of the standalone Bluetooth module ... 69

4.11 Sharing the UART bus ... 71

4.11.1 Integration of the multiplexer chip .. 72

4.12 Communication line from Arduino to Raspberry Pi .. 73

4.13 Performing a reset of the Arduino microcontroller .. 73

4.14 Implementation of status LEDs .. 74

9

4.14.1 Implementation of RGB status LED ... 74

4.14.2 Implementation of single-colour LEDs ... 75

4.15 Component updates: IMU and pressure sensor .. 76

4.16 Integration of motor drivers (I²C) ... 77

4.17 Integration of motors .. 78

4.18 Integration of battery voltage measurement ... 79

4.19 Implementation of level shifters ... 81

4.20 Provision of test pads .. 82

4.21 Considerations on modularity and reliability ... 84

4.22 Using the main PCB ... 85

4.23 Results and discussion .. 87

4.23.1 Power distribution, consumption and supply .. 89

4.23.2 Integration of Arduino, Raspberry Pi Zero W and camera module 91

4.23.3 Implementation of advanced optical messaging .. 92

4.23.4 Communications .. 93

4.23.5 Improved user-interface ... 93

4.23.6 Future work ... 94

5 Software ... 95

5.1 Programming the Arduino .. 95

5.1.1 ICSP ... 95

5.1.2 UART .. 95

5.2 Test case automation .. 96

5.2.1 User interface ... 97

5.2.2 Test cases ... 98

5.3 Supplementary software ... 107

5.4 Results and discussion .. 107

5.4.1 Representative test case results ... 108

5.4.2 Future work ... 110

6 Cost estimation .. 111

7 Summary .. 112

Bibliography ... 113

Appendix .. 117

A 1 Experimental results .. 118

A 1.1 Choice of buck converter .. 118

10

A 1.1.1 Comparison of two buck converters .. 118

A 1.1.2 Comparison of chosen buck converter and two voltage regulators 120

A 1.2 Verification of chosen buck converter .. 133

A 1.3 Power consumptions ... 135

A 2 Components and values ... 137

A 2.1 LEDs ... 137

A 3 Mechanics, solid modelling and manufacturing .. 139

A 3.1 Parts names and descriptions .. 139

A 3.2 Manufacturing ... 143

A 3.2.1 Equipment and procedure for SLA 3D-printing 143

A 3.2.2 Equipment and procedure for FDM 3D-printing 143

A 3.2.3 Procedure for silicone-casting ... 144

A 3.3 Assembling ... 144

A 4 Software ... 146

A 4.1 Arduino interfacing ... 146

A 4.2 Raspberry Pi interfacing ... 147

A 4.3 Multiplexer interfacing ... 148

A 4.4 Test suite ... 148

A 4.4.1 Relevant files ... 148

A 4.4.2 Main Python code .. 149

11

List of figures

Figure 1. Underwater robots U-CAT and µ-CAT. ... 15

Figure 2. 3D CAD model of the robot. ... 36

Figure 3. Main design changes on the robot. .. 37

Figure 4. Gravitational force and buoyant force along the same line of action. 38

Figure 5. Parts forming the physical base structure.. 42

Figure 6. Assembled µ-CAT in its new design. ... 45

Figure 7. Components integrated in physical design. ... 46

Figure 8. Motors integrated in physical design. ... 47

Figure 9. Integration of Bluetooth module and reed switch. .. 47

Figure 10. Bluetooth module positioning. .. 48

Figure 11. Analysis of buoyancy. ... 49

Figure 12. Estimation of water surface level. ... 50

Figure 13. Functional elements and their signals (GPIO and busses). 55

Figure 14. Basic schematic circuit diagram of a buck converter (power circuit only). .. 59

Figure 15. Implemented buck converter circuit.. 62

Figure 16. Block diagram of topology for FSK demodulator (incoming signals). 64

Figure 17. Block diagram of topology for FSK modulator (outgoing signals). 64

Figure 18. Operational amplifier in non-inverting configuration. 67

Figure 19. Routing of enable pin on the HC-05 breakout board. 71

Figure 20. Circuit diagram for multi-device UART connectivity to ATmega328P. 72

Figure 21. Multiplexer schematic diagram. .. 73

Figure 22. Motors drivers’ schematic diagrams. .. 78

Figure 23. Custom-made Eagle footprint for DRV8830. ... 78

Figure 24. Test pads and LEDs. ... 86

Figure 25. Connectors and jumpers on the top layer. ... 86

Figure 26. Connectors and jumpers on the bottom layer. ... 87

Figure 27. Eagle renderings of new PCB. .. 88

Figure 28. New PCB. .. 89

Figure 29. Block diagram of power distribution on the updated µ-CAT. 90

12

Figure 30. Flowchart of the overlaying user interface Python script. 97

Figure 31. Main user menu of the test suite. .. 108

Figure 32. Test report for test case “a08”, with no pressure sensor connected 109

13

List of tables

Table 1. Processors and computing architectures in underwater robots. 19

Table 2. Sensors used on autonomous underwater robots. ... 21

Table 3. Mechanical properties of of U-CAT and µ-CAT. .. 26

Table 4. Hardware on U-CAT and old µ-CAT. .. 27

Table 5. Features implemented in the scope of this thesis project. 53

Table 6. Functional elements, their placement side and their signals. 54

Table 7. Routings between Bluetooth module and new PCB. 70

Table 8. Onboard RGB status LED. ... 74

Table 9. Onboard status LEDs. ... 75

Table 10. Provided power supply test pads. ... 82

Table 11. Provided test pads for miscellaneous signals. .. 83

Table 12. Provided test pads for signals connecting to Raspberry Pi pins. 83

Table 13. Provided test pads for signals connecting to Arduino pins. 83

Table 14. List of test cases and their mainly targeted unit(s) under test. 98

Table 15. Overview of common functions used in test case scripts. 100

Table 16. Parameters used in test cases. ... 101

Table 17. Cost estimation per unit. ... 111

14

1 Introduction

In this chapter, the reader will be introduced to the general background of the matter and

study field with which this thesis is involved. Since this project is concerned with the

improvement of an existing robot named µ-CAT (pronounced as “micro-cat”), the

developers, the history and the main purpose of this robot are laid out first. After that, a

discussion on comparable underwater robots will help clarify µ-CAT’s standing among

them. This leads to a statement on the need to upgrade this underwater vehicle and finally

to a personal note on the motivation for this thesis work.

The remainder of this thesis is structured as follows: Chapter 2 gives an overview on the

scope of the work on which this thesis is based by describing the initial state of the robot

and then detecting the required modifications and upgrades. Chapter 3 to Chapter 4.23.6

present the methodology for execution of the tasks in the fields of physical design,

electronics and software development, and each of them contains a section on the

achieved results in the end. The thesis closes with a cost estimation of the new robot and

some summarizing statements on the accomplished work.

1.1 About µ-CAT

The Centre for Biorobotics is a science institute operating under TalTech (Tallinn

Technical University) as a subdivision of the department of Computer Systems. It merges

engineering and research activities of several fields, such as mechatronics, robotics and

bioinspired sensing and locomotion. One of its main research areas has been the

exploration and development of underwater robots which are inspired by biological

lifeforms.

It has recently called out for students willing to improve one of their underwater robots,

namely µ-CAT which is a smaller version of a similar robot named U-CAT (Underwater

Curious Archaeology Turtle) [1]. While U-CAT was meant right from the beginning to

serve in field projects, µ-CAT was initially developed for demonstration purposes and

15

turned into a teaching tool and an object for in-lab tests. Compared to U-CAT, the

production cost of µ-CAT has been kept at least one order of magnitude lower.

The underwater robots U-CAT and µ-CAT have been designed and built in 2013 as part

of the European-Union-funded project ARROWS (Archaeological Robot systems for the

World’s Seas) [1], [2]. µ-CAT, the scaled-down version of U-CAT, was then first shown

at an exhibition called “Robot Safari”, held at the Science Museum London. For this

show, four µ-CAT copies were produced within three months to replace the not yet

functional U-CAT.

U-CAT itself was intended mainly as a helper for archaeological deep-sea explorations,

since it can manoeuvre in very confined spaces due to its size and unconventional mode

of locomotion which is inspired by a sea turtle [3]: Four independently driven flippers

enable holonomic control on all six DOF (degrees of freedom). µ-CAT implements the

same locomotion principle as U-CAT but can manoeuvre in even tighter confinements.

Figure 1. Underwater robots U-CAT (left) and µ-CAT (right).1

1.2 Literature review on small-scale underwater robots

For a robot to be able to do field work, it must sense its surroundings and move efficiently

on the terrain or in the medium where it has been deployed. Some environments are

hostile to human beings, and scientific and industrial sectors have been pushing forward

the development of robots which can replace humans and perform dangerous tasks. One

such example is the class of robots specialized on underwater missions. Traditionally,

they have been large and not very agile, and they show diminished performance when

1 Image used with permission from TalTech Centre for Biorobotics.

16

motion in confined spaces and stable station-keeping is required. To address these issues,

the scientific community has turned to nature for inspiration, particularly learning from

organisms which have been thriving in these environments [4]. In this regard, the sea is

one of the most fascinating environments for robotic endeavours, offering a multitude of

species to learn from. A large part of developed underwater robots does not accomplish

missions, but consists of research and testing machines, required to study techniques of

making underwater robotics more capable and efficient. Especially in the field of

bioinspired fish locomotion, a lot of research has been done, and a variety of bio-inspired

underwater robots have been developed in the recent years [5], [6], [7]. Underwater robots

serve very different purposes. Some of them are utilized as study objects, mostly in order

to analyse the modes of locomotion or sensing employed in biological lifeforms, others

exist for practical use in field projects. In the following analysis, abilities of underwater

robots which are comparable in size (largest dimension smaller than 100cm) and

application to µ-CAT will be discussed and compared. A large part of the research is

based on reviews by Raj and Thakur [6] and by Salazar et al. [7]. The aim of this literature

review is to gain clarity on µ-CAT’s role in the family of existing small-scale underwater

robots and to understand its significance and potential.

As Wang et al. point out, [8, Ch. 7.1], AUVs for shallow waters are of rising interest to

the robotic community. Their application scenarios are wide-ranging compared with the

cost. µ-CAT falls into that category, and its usefulness depends on its level of autonomy.

Even a robot with limited diving depth can perform complex missions – inspecting ship

chests (Canterbury AUV; [8, Ch. 7]), serving as an aid in industrial processes or as a

maintenance tool for nuclear storage ponds and water treatment facilities [9, Ch. 1.2], for

pipeline-tracking in the oil and gas industry, for operations under-ice, gathering data to

develop climate change models [10, Sec. I], to mention just a few examples. The

applicability to many of these use cases depends not so much on diving depth, but rather

relies on the small size and the high manoeuvrability of the vehicle. Considering µ-CAT’s

outer dimensions, the full six DOF including in particular its ability to turn on the spot

about all axes, it performs outstandingly in this regard and is therefore a serious candidate

for a variety of applications where other (even more costly) robots would most likely not

perform comparably. In this regard, it is worth noticing that most robots presented in this

analysis serve the main purpose of mimicking fish locomotion.

17

As Watson states [9, Ch. 2.6], there exist only few underwater vehicles with a small form

factor and mass – the class into which µ-CAT belongs. The author emphasizes the special

potential for such vehicles to be used in swarms, which presupposes some form of inter-

communication between the robots. The fact that micro-AUVs are especially useful when

operated in swarms may lead to the conclusion that the cost-factor of a single device

becomes more important than in robots which are meant to perform solo missions. Apart

from that, robots which are supposed to operate in confined spaces are most useful if they

can be operated untethered (to avoid entanglement) [5, Ch. 1], which means that they

require enough onboard computation power to carry out a mission without external

control. Their ability to perform a mission unattended depends also on their sensing

capabilities.

Robot control is usually divided into at least two levels: high-level (executive) and low-

level (reactive or behavioural) control [11, Sec. I], [12]. High-level control considers task

executions which usually require longer time spans – several seconds or more. This

typically includes definition and scheduling of overall mission goals and long-term

navigational planning. Low-level control includes processes that are tightly coupled to

the physical world and therefore directly interface with employed hardware – sensors,

actuators and communication systems – and they are typically time-critical and perform

in the magnitude of milliseconds or less. These two distinct levels of control are often

reflected in the hardware architecture of the robot, as Section 1.2.1 shows.

The following comparison is divided into two parts: hardware architectures and sensors.

The first analyses the number and types of processors used, to understand if the

architecture allows a division into high-level and low-level functions, as Wang et al.

describe [8, Ch. 3]. The second lists commonly used sensors, to provide insight into the

sensing, navigation and localisation capabilities of the robot, amongst others. For all

analysed robots, their primary purpose(s) are also stated – see table column

“Applications”. The given lists distinguish between the following purposes:

▪ Study of bioinspired locomotion and swimming patterns. The robot aims to

replicate locomotion principles found in biological lifeforms, mainly fishes.

▪ Study of bioinspired sensing and navigation. The robot aims to replicate means of

intercommunication and environmental sensing found in biological lifeforms,

mainly fishes. Although all robots are equipped with sensors, only some of them

18

are directly comparable with those found in fishes, for example the presence of an

array of depth sensors is comparable with the lateral line of a fish, or the

implementation of electrocommunication is inspired by certain families of fish.

▪ Teaching tool. If a robot is developed mainly for students to learn about principles

of robotics, the robot falls within this category.

▪ Field projects. If the robot is developed to perform certain missions useful to

industry or science (excluding the study of robotics aspects), it falls within this

category.

1.2.1 Processor architectures

Valavanis et al. have identified four different types of control architectures for unmanned

underwater vehicles [13]. Three of them involve a layered structure – and the one that

does not is basically not in use. The division of high-level and low-level tasks is most

likely reflected in the hardware: Smaller, low-cost and energy-efficient processors such

as ARM1, AVR2, PIC3 handle low-level control. More powerful processors including

FPGA (field-programmable gate array) and those designed for PCs (personal computers)

are responsible for updating mission goals, maintain supervision or instruct lower-level

processes to execute based on decisions made to resolve exceptional situations.

The following comparison between state-of-the-art underwater robots should help

estimate the computational power of a robot and reveal the employed hard- and software

architecture approach regarding the distribution into higher and lower-level tasks.

1 Originally “Acorn RISC (Reduced-instruction-set computing) Machine”; computer architecture.

2 Microcontroller architecture based on RISC.

3 Family of microcontrollers made by Microchip Technology.

19

Applications P
C

F
P

G
A

A
V

R

A
R

M

P
IC

O
th

er

µ-CAT* T SL F L H
Canterbury AUV [8] F H L
Robotic fish [14] SL ⚫
Essex G9 [15] SL H L
Robot dolphin [16] SL ⚫
Cownose ray [17] SL ⚫
Fish robot [18] SL SS H L
CPG boxfish [19] SL ⚫
Boxybot [20] SL H L
New boxfish [21] SL SS H L
KnifeBot [22] SL H L
Sepios [23], [24] T SL L H
Low-cost AUV [25] F H L
Micro-AUV [26] U L H L
MONSUN [27] F H L
MONSUN II [28] F ⚫
Southampton [10] F ⚫
Squidbot mini [29] SL H L

As Table 1 reveals, ARM processors (such as the one used on the Raspberry Pi) are most

commonly used, and in the majority of the cases, they are involved in high-level task

planning. In this regard, µ-CAT’s new design follows a commonly used hardware

architecture. It is, however, surprising how few robots reportedly employ AVRs. These

trivial components are either used but not reported or actually not used. If the latter is

true, this might be related to the fact that ARM processors have taken over part of this

market segment: They have become very available, cheap, and the community provides

a variety of tools and support for efficient use of these very capable microcontrollers

(including ROS; Robot Operating System). Also, ARM is employed on a lot of single-

board computers, and these are convenient to use because they provide data storage and

communication peripherals on the same PCB.

Table 1. Processors and computing architectures in underwater robots. Applications: T: teaching tool; SL:

study of bioinspired locomotion; SS: study of bioinspired sensing; F: field projects; U: unknown. Processor

utilizations: L: low-level; H: high-level; X: level unknown; ⚫: combined levels (single processor); *: refers

to the robot in the state after the tasks of this thesis work are carried out. More than one entry in a cell

indicates that two processors of the same type are used for different purposes. Processors with unknown

architecture are listed as “Other”.

20

1.2.2 Sensors

The following analysis tries to identify the most commonly used sensors on existing

small-scale underwater robots.

Localisation for submarines poses engineering challenges. Long-range wireless RF (radio

frequency)-based signals or GPS (global positioning systems) are not applicable under

water, and ultrasonic signals of hydrophones require external beacons to be placed which

emit ping signals. Some robots employ a GPS module and surface from time to time to

update their location accurately, and one example was found where the GPS tracker is

released from the submarine in case of emergency and surfaces without the vehicle [25,

Sec. IV]. If inertial measurements are used to estimate the position, the error increases

with the time delay between samples, since it requires a sequence of two integrations with

respect to time. Apart from that, inertial measurement sensors often cannot detect those

small accelerations which may be caused by drift.

Underwater communication poses challenges similar to those mentioned for localisation.

Bluetooth, WLAN and other wireless communication methods commonly used in air are

not applicable in water [21, Ch. 1] or can be used only in a few centimetres of range [27,

Sec. 3.1].

21

A
p

p
li

ca
ti

o
n

s

R
a
d

io
 f

re
q

u
en

cy
*

A
co

u
st

ic

O
p

ti
ca

l

P
re

ss
u

re

C
o
m

p
a

ss

F
lo

w
 s

en
so

r

A
cc

el
er

o
m

et
er

G
y
ro

sc
o
p

e

G
P

S
 o

r
o
th

er

C
a
m

e
ra

U
lt

ra
so

n
ic

O
p

ti
ca

l
fi

b
re

In
fr

a
re

d
 o

r
la

se
r

L
ig

h
t

se
n

so
r

(I
m

a
g

in
g

)
so

n
a

r

T
h

er
m

o
m

et
e
r

H
u

m
id

it
y
 o

r
le

a
k

a
g
e

µ-CAT1 T SL F ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Canterbury AUV [8] F ⚫ ⚫ ⚫ ⚫ ⚫

Essex G9 [15] SL ⚫ ⚫ ⚫ ⚫ ⚫

Robot dolphin [16] SL ⚫ ⚫ ⚫ ⚫

RoMAN-III [30] SL ⚫ ⚫

Cownose ray [17] SL ⚫ ⚫ ⚫ ⚫ ⚫

Fish robot [18] SL SS ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Robotic dolphin [31] SL F ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

CPG boxfish [19] SL ⚫ ⚫ ⚫ ⚫ ⚫

Ostraciiform fish [32] SL ⚫ ⚫ ⚫ ⚫ ⚫

Robotic fish [14] SL ⚫ ⚫ ⚫

Boxybot [20] SL ⚫ ⚫

New boxfish [21] SL SS ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

KnifeBot [22] SL ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

1 Refers to the robot in the state after the tasks of this thesis work are carried out.

Table 2. Sensors used on autonomous underwater robots. Applications: T: teaching tool; SL: study of

bioinspired locomotion; SS: study of bioinspired sensing; F: field projects; U: unknown. *: This includes

all wireless modes of communication except for acoustic and optical. : Wireless communication, swarm

synchronization; and : localisation and navigation; : possibly more specific for obstacle detection and

avoidance, target recognition, sampling or mapping; : diagnostics.

22

Table 2. Sensors used on autonomous underwater robots [continued].

A
p

p
li

ca
ti

o
n

s

R
a
d

io
 f

re
q

u
en

cy

A
co

u
st

ic

O
p

ti
ca

l

P
re

ss
u

re

C
o
m

p
a

ss

F
lo

w
 s

en
so

r

A
cc

el
er

o
m

et
er

G
y
ro

sc
o
p

e

G
P

S
 o

r
o
th

er

C
a
m

e
ra

U
lt

ra
so

n
ic

O
p

ti
ca

l
fi

b
re

In
fr

a
re

d
 o

r
la

se
r

L
ig

h
t

se
n

so
r

(I
m

a
g

in
g

)
so

n
a

r

T
h

er
m

o
m

et
e
r

H
u

m
id

it
y
 o

r
le

a
k

a
g
e

Sepios [23], [24] T SL ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Low-cost AUV [25] F ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Micro-AUV [26] U ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

MONSUN [27] F ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

MONSUN II [28] F ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Southampton [10] F ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Squidbot mini [29] SL ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

As the collected data in Table 2 reveals, the most commonly used sensors on AUVs relate

to navigation, and amongst those, a pressure sensor for estimation of depth and an IMU

comprising of accelerometers and gyroscopes for estimation of inertial properties. Laser

or infrared sensors are often used for obstacle avoidance, in some cases accompanied by

one or more cameras. Only one third of the investigated robots use a compass to determine

absolute orientation, which means that others must rely on the IMU’s gyroscope for

relative orientation. The measurement of speed via water flow sensors seems to be rare.

Not many robots employ means of positioning: GPS is not frequently used. If it is, the

robot (or at least the GPS module) must be near or above the water surface to make use

of the signal. Less than one third of the robots use internal leakage or humidity sensors to

improve dependability, and for only very few, internal temperature sensors (for detecting

overheating, for example) are mentioned. However, some sensors related to fault-

detection or internal status monitoring which are rarely mentioned, such as current or

voltage sensors, are not included in the table.

For some of the robots presented in this section, information on some employed sensors

might not be stated in the referenced papers. This might especially apply to self-diagnostic

23

sensors. In these cases, the table cells remain blank, although there is a possibility that the

robot is actually equipped with such a sensor.

µ-CAT can be categorized as a robot with a small number of sensors, compared to others

in its class, but the optical communication system seems to make it quite unique amongst

small-scale AUVs.

1.2.3 Summary

The following main conclusions can be drawn from the collected data presented in Table

1 and Table 2: Small-scale robots employed in field projects are rare, and those which

both serve as study objects and for real-life missions are even more rarely to find. Finally,

it can be stated that robots used as a teaching tool are either rare or this use-case is not

well documented. Based on the knowledge derived from the stated sources, µ-CAT is a

highly versatile robot in terms of application fields, even though it does not currently

focus on the study of bioinspired sensing.

All aspects mentioned in the introductory part of Section 1.2 – underwater

intercommunication, low-cost production and ease of producibility, untethered operation,

high computational power onboard, sufficient sensing capabilities and high

manoeuvrability – are core elements in the design of µ-CAT, and many of them are

improved as part of this thesis project, hence rising µ-CAT’s significance in the class of

small-scale underwater robots. The revised µ-CAT design features two processors – one

for mission supervision and one for interfacing with hardware components – and

improved sensing capabilities. Robots with a variety of use-cases are rare – µ-CAT takes

a unique position, being also able to serve as a teaching tool, mainly due to its low cost.

Although other robots have been developed in the scope of students’ projects and must

therefore be characterized as study tools, the interactions of future students with them are

mostly limited: Each robot is a black box. µ-CAT, however, is designed to be

continuously modified and improved, and it offers the possibility for future students to

experiment with it on the lowest design levels, involving electronics, software, mechanics

and solid modelling.

24

1.3 Motivation for an upgraded µ-CAT

From the side of the Centre for Biorobotics, the teaching tool µ-CAT must be more easily

reproducible, so that more students can work with it at the same time. Also, the updated

version of µ-CAT should be more applicable for studying problems related to robotics.

In its present state, it lacks complex control, localization and fault detection, and the team

of researchers and engineers at the Centre for Biorobotics have expressed their wish to

have at least some of these missing aspects integrated into µ-CAT. Having a small capable

robot would greatly simplify setting up research experiments and testing. This includes

the possibility to run ROS [33] onboard the robot.

1.4 Personal motivation

The author of this thesis project picked up on this topic because of his deep interest in

electronics engineering and his wish to combine his experience and knowledge in this

field with 3D CAD (Computer-aided design) processes and with Embedded Systems

software development. The task gave the opportunity to integrate aspects of all these areas

into a hands-on project which would, after successful completion, provide a useful

outcome for the sector of bio-inspired robotics. Apart from that, he has been working on

U-CAT as his Bachelor project and was therefore already familiar with some of the

features of these underwater robots and acquainted with the staff and researchers at the

Centre for Biorobotics. The idea to contribute to the research sector of underwater

robotics by offering a computationally powerful small-scale robot is inspiring and has

been the main driver for carrying out this thesis work.

1.5 Acknowledgements

The author would like to express his gratitude towards the supervisors Roza Gkliva and

Jaan Rebane for their unconditional support in the completion of this thesis work. Special

thanks go to Andres Ernits, whose expertise in electronics has helped significantly during

the execution of tasks related to electronics and software programming. Finally, the

author would like to emphasize that this large amount of work would not have been

possible to complete in the given time without the positive attitude of the whole team of

Centre for Biorobotics which has generated a motivational work atmosphere.

25

2 Scope of this thesis project

This chapter presents all considerations and preparational works carried out before the

implementation of upgrades and updates on the robot can begin. In order to clarify what

exact changes need to be implemented and for which purpose, the original state of µ-CAT

must be assessed, and requirements must be collected.

2.1 Initial state of µ-CAT

While U-CAT has been equipped with a camera and sensors for autonomous behaviour

from the very beginning in order to be able to serve as an archaeological exploration

vehicle, µ-CAT mainly adapts only the mode of locomotion from its more advanced

sibling and serves as an in-lab test vehicle or to demonstrate the bioinspired locomotion

concept of U-CAT. Henceforth, µ-CAT has been kept in a prototype stage of design and

manufacturing.

The robot’s capabilities are limited both in terms of computational power and sensing.

Even as a test vehicle for in-lab studies of U-CAT, it implements too few features of its

larger sibling.

With the aim to get µ-CAT closer to U-CAT in terms of functionality while keeping its

advantage of being inexpensive, small and lightweight, the following comparison

between the two robots is carried out, in order to reveal potential aspects for improvement.

2.1.1 Physical properties and mechanics

The physical and mechanical properties of both robots, U-CAT and µ-CAT, are listed in

Table 3. These include static properties and elements required for locomotion.

26

Table 3. Mechanical properties of U-CAT and µ-CAT.

 U-CAT µ-CAT

Dimensions 77 x 57 x 28cm 33 x 23 x 10cm

Weight in air 18kg 1.5kg

Nominal max. depth in water 100m 10m

Flippers 4x Zhermack Elite Double 22 silicone

While µ-CAT in much smaller and more lightweight than U-CAT, its nominal diving

depth is also much smaller. This is mainly due to the materials being used – U-CAT

employs an aluminium hull which withstands higher pressures than the 3D-printed parts

on µ-CAT.

2.1.2 Hardware components

The following table (Table 4) lists the main hardware components on both vehicles and

compares them. It becomes apparent that U-CAT has a higher degree of dependability

due to self-diagnostic elements and implements more advanced controllers. While U-

CAT has a specialized motor controller, µ-CAT relies on software capabilities of the

Arduino microcontroller to close the loop to the Hall sensor feedback from the servo

motors. Due to the presence of the camera, U-CAT offers more autonomy than µ-CAT.

U-CAT employs an advanced ARM-based computer for handling the camera data, i.e., to

compress video feed in real-time. The same computer takes care about the communication

between robot and external clients and the translation from high-level user commands to

low-level control signals or – vice versa – from low-level sensor signals to high-level

monitoring messages. µ-CAT’s Arduino interfaces all sensors and actuators. While U-

CAT uses eight ultrasonic (2MHz) sonars for underwater object detection and avoidance,

µ-CAT has no such functionality implemented. The hydrophones on U-CAT are used for

adjusting the robot’s orientation towards an external ping signal source. An acoustic

modem allows transmission of messages under water, and outside of the water WLAN

(Wireless local area network) or Ethernet cable connection can be used to communicate

with the onboard computer. µ-CAT has two light sensors installed and can detect optical

signals on a specific frequency (48kHz) via tone detector modules. The onboard tone

detector modules filter incoming signals on that frequency. This way, the robot can

27

distinguish between two directions of incoming light (left and right) and can hence been

instructed to change its orientation.

Table 4. Hardware on U-CAT and old µ-CAT.

 U-CAT µ-CAT

Power source 4x HP Compaq NX8200

laptop batteries

2x 18650 Li-ion batteries

Battery voltmeter Voltage divider and

MCP3422 ADC

Voltage divider and Arduino

Mini 05 integrated ADC

Current sensor LEM HO 25-NP -

Motor interface 4x controller Maxon EPOS2

36/2

4x H-bridge Texas

Instruments DRV8830

Motors 4x Maxon 272763 with

integrated Hall sensor

4x Robbe FS 70 MG

Motor feedback

sensor

4x Rotary Hall encoder AMS

AS5040

Camera PointGrey CMLN-13S2C-CS -

Onboard computer BD-SL-I.MX6, ARM, 1GHz Arduino Mini 05, AVR, max.

20MHz

Humidity sensor SHT21 -

IMU sensor MPU-9150 MPU-6050

Localization Hydrophones Aquarian

Audio H1c

-

Obstacle avoidance Sonars SMSF20C30F21 -

External control Acoustic modem Applicon

Seamodem

2x SFH203 photodiodes and

tone detector modules

Pressure sensor Gems 3101P-0016G-01-B-

000

MS5407-AM

Temperature sensor Included in pressure sensor,

in IMU and in humidity

sensor

Included in IMU (not used)

2.1.3 Voltage rails

µ-CAT’s electric system operates at two different DC voltages (5V and 6V) which are

generated from the battery voltage using two linear voltage regulators. The battery cells

provide 2200mAh at 7.4V.

28

The 6V rail is used to power the servo motors through the motor driver chips and the 5V

rail to supply the Arduino microcontroller, the tone detectors and the motor encoders.

When connected to a USB (universal serial bus) power source, an additional 5V level

becomes present which is used to power the USB-to-serial chip and which can be used as

an alternative source to power the 5V circuitry.

2.1.4 Software

µ-CAT uses an Arduino Mini 05 board featuring the 8-bit microcontroller ATmega328P.

The code on µ-CAT consists of various driver libraries written in C++ and of the main

Arduino code. The software includes calculations for the motor motion profiles, several

controllers for closed-loop motor control, depth, heading, as well as code for

communication with UWSim (underwater simulator; used in “marine robotics research

and development”1), to perform hardware-in-the-loop simulations.

U-CAT’s onboard computer runs Linux Ubuntu 16.04 with ROS (Robot Operating

System) Kinetic Kame for robot control, communications and interfacing of peripheral

devices. ROS is an open-source framework which offers a peer-to-peer networking

structure where each piece of information needed to monitor or control a hardware

component or subsystem is contained in a certain “message” [34], [33]. When connected

using TCP (transmission control protocol), all messages from the robot can be read and

evaluated, and the client can publish its own messages to send data. Another essential

task for U-CAT is to capture and process video data and publish messages containing the

results.

2.1.5 Design, manufacturing and assembly

The hull consists of three main parts – the front, the back and a transparent cylindrical

Plexiglass tube in between. O-rings and gaskets are used to keep water out. Apart from

these, there are several other parts which complete the physical and mechanical robot

design – a battery holder, a circuit board base plate, several threaded rods to hold ballast

and to keep front and back end caps in place, the parts related to transmission of torque

1 Source: http://wiki.ros.org/uwsim

http://wiki.ros.org/uwsim

29

onto the fins and the fins themselves. The front and back end caps are covered with plastic

domes to enhance streamlining of the robot in water.

µ-CAT is composed of parts which are available off the shelf and other parts which are

custom-designed and then manufactured using rapid-prototyping (3D-printing), silicone

casting, turning or manual methods. Some parts are a result of a combination of the above-

mentioned properties and methods. Regarding assembly methods, µ-CAT combines

revertible mechanical fastening methods with non-revertible methods involving adhesive

bonds (glue or epoxy).

2.2 Contributions of this thesis

This Master thesis project’s aim is to systematically improve the underwater robot µ-CAT

in terms of two main aspects: the electronic hardware and the body design. The first

relates mainly to functional improvements, and the second follows as a necessity, in order

to host new components. Since the upgrades should not only achieve an improvement in

the robot’s capabilities but also in its dependability, the creation of a test software

framework and highly automated test cases is also included in this thesis project.

As for the electronics part, not all implemented features are new developments. The

circuit schematics for many subsystems are taken from the existing µ-CAT design – if

they have proven to function as expected – or from other existing designs. Section 4.1

gives an overview. Similarly, for the body design of the robot, many features are taken as

used on the original robot, and Appendix A 3.1 clarifies the source for each part’s design.

In addition to the upgrade requirements and specifications listed before, the author of this

thesis project has determined additional tasks to be carried out. The complete set is

presented in the following subsections.

Some features are specifically tested against the requirements before implementing them,

to detect if they are effective in accomplishing their purpose. Other features are

implemented, and subsequent tests on the final product reveal their effectiveness.

2.2.1 Required upgrades

The required upgrades can be summarized as follows:

30

▪ improved computational capabilities;

▪ ability to capture and process video images;

▪ ability for communication using an advanced optical messaging system;

▪ wireless communication for uploading code and for messaging;

▪ more easily reproducible design of the robot.

When implementing the changes on the robot, the following constraints must be

considered:

▪ maintain original main dimensions of the robot;

▪ maintain original weight to guarantee neutral buoyancy in water;

▪ consider roll and pitch stability of the submarine in the physical design upgrades;

▪ maintain position of actuators, including motors and flippers;

▪ maintain type and number of batteries;

▪ use similar production techniques of the custom-made parts;

▪ aim for an easy-to-assemble product;

▪ keep production cost below 500 € net.

2.2.2 Improving computational capabilities and capturing video data

The Raspberry Pi Zero W computer and a camera module must be integrated into the new

design (see Section 4.8.1). This way, µ-CAT can now capture video data to collect visual

samples, perform visual servoing or use it to run object-detection and avoidance

algorithms. Both features are important aspects of an AUV (autonomous underwater

vehicle or aquatic unmanned vehicle) [7, Ch. 7], and the latter would significantly

improve the degree of autonomy of the robot.

With its small form factor (66 x 30.5mm) and its insignificant weight of only 9.3g (in

air), the computer can be easily integrated into the confined space of the robot without

posing a risk of exceeding its limits on buoyancy. The single-core Broadcom BCM2835

CPU runs at 1GHz and provides enough computing power to run certain Linux

distributions. With such an operating system, the implementation of ROS on µ-CAT

becomes an option. Since ROS is used on U-CAT, µ-CAT can then serve as a feasible in-

lab experimentation vehicle to explore the possibilities of U-CAT. Apart from that, this

framework is the de-facto standard in robot software, and students experimenting and

working on µ-CAT would therefore gain a more relevant experience in the future. With

31

the implementation of the Raspberry Pi computer as part of this thesis work, a division of

tasks into levels becomes an option and a hierarchical architecture with a top-down

approach can be achieved [13]. As of now, the plan is for the Arduino to handle real-time

sensitive tasks, such as low-level control including interfacing sensors and motor drivers,

and for the Raspberry Pi to handle high-level control, image processing and

communication with the simulator.

According to commonly available specifications of the Raspberry Pi Zero W, the power

consumption of this computer is 180mA at 5V. With the code to be run on the computer

adding to the power consumption, it can be estimated that the power consumption will

not exceed 200mA (1W) during regular operation, with WLAN enabled. This is within

reasonable limits considering the available battery power of 2200mAh at 7.4V (16.28W

for one hour).

Since Raspberry Pi Zero W implements a WLAN and a Bluetooth module onboard, it can

establish a connection to external clients in order to receive high-level task definitions.

Although WLAN is not usable while the vehicle is in diving mode, it might still be

functional when it is close to the water surface and it can definitely be used to

communicate with the robot right before being placed in the water.

2.2.3 Implementing internal and external communications

As for inter-circuit communications, having at least one reliable pathway between

Raspberry Pi and Arduino allows the Raspberry Pi access to the devices connected to the

Arduino. Via the Raspberry Pi’s WLAN module, the user can then access peripheral

devices wirelessly. The design and implementation of such methods of communicating

between Arduino and Raspberry Pi are also part of this thesis project’s scope (see Section

4.11 and Section 4.12).

Concerning external communications, after the changes carried out in this thesis project,

µ-CAT should be able to be used in field projects. To improve ergonomics of usage, the

means to instruct the vehicle while it is above the water surface or to receive real-time

feedback and mission reports must be simplified. In particular, the possibility to avoid

any cable connections would facilitate the handling of the robot. So far, µ-CAT can only

be instructed via USB cable. The implementation of the Raspberry Pi already improves

the situation, because it offers wireless capabilities, as stated above. However, with the

32

additional implementation of a standalone Bluetooth module (see Section 4.10.2), the

Arduino microcontroller can be directly interfaced, hence making potentially more

power-demanding wireless connections to the Raspberry Pi unnecessary during regular

operation.

An advanced optical communication system is under development [35], and integration

of this (albeit not yet fully functional) module and its surrounding components is therefore

part of this thesis work (see Section 4.8.2). This might enable µ-CAT in the future to be

instructed using messages modulated onto an optical source and allow

intercommunication between robots while being under water. It could yield a significant

improvement in terms of usability of the robot outside the lab.

2.2.4 Improving dependability

This thesis project tries to improve dependability of the robot. This includes its reliability

(being free from erroneous behaviour during operation), its availability (being ready to

be used) and its maintainability (making it easy to debug and fix).

Availability can be improved with the implementation of a new power supply for some

of the logic components. The addition of the Raspberry Pi and the camera module and the

implementation of other advanced capabilities are most likely to pose a challenge on the

battery lifetime and therefore reduce the maximum range of the robot’s missions. Since

there is a strict constraint regarding type and number of batteries used, the only way to

counteract this problem is to design a new power supply unit. The development details

are presented in Section 4.6.

In terms of reliability, the new PCB (printed circuit board) design features an improved

placement of components to avoid long wire runs. This makes the system less susceptible

to electromagnetic noise. In addition to that, the motor controllers, the USB-to-serial chip,

the circuits detecting the frequency of incoming light signals and the Arduino

microcontroller with its surrounding components are embedded on the new PCB instead

of being connected using pin headers. This improves reliability when exposed to

vibrations due to handling and transportation and in case of collisions. Also, the power

supply components are placed on the same PCB and not on separate circuit boards, hence

eliminating more unnecessary wire connections which are prone to fail due to corrosion

or vibration.

33

Regarding maintainability, the avoidance of long freely hanging wires facilitates the study

and debugging of system components. The previously existing mainboard and its separate

subsystems require many long wires, and these do not only complicate the debugging of

malfunctioning devices but make it also challenging for µ-CAT to serve as a research

vehicle for people who were not involved in its original development process. The new

PCB features silkscreen print layers on both sides, which identify all subsystems and

relevant components on the circuit board. Apart from that, a lot of uniquely named test

pads are placed on the top surface of the board, to give access to relevant signal lines by

use of an oscilloscope or a multimeter. A detailed overview on the use of these test pads

and their meanings can be found in Section 4.20.

An RGB (red/green/blue) LED (light-emitting diode) is added to the PCB to allow for

instantaneous visual feedback on system status and errors (see Section 4.14.1). Colour

and blink codes can be used to differentiate between various messages. This feature

facilitates maintainability regarding monitoring, debugging and testing. For similar

reasons, several single-colour LEDs are added to the PCB, each dedicated to the

indication of most common activities and statuses (see Section 4.14.2).

Several software test routines are provided as part of this thesis project which facilitate

debugging and testing of components and subsystems of the robot (see Section 5.2).

Software is provided to test electronic subsystems, hardware components, signal lines and

communication pathways (both wired and wireless). All software interacts with the user

and reports the outcome of the tests in a way understandable for the educated human

operator.

2.2.5 Improving producibility and ease of assembly

In terms of manufacturing and assembly, the following design aspects of the original µ-

CAT are potentially improvable:

▪ the electronic circuitry consists of several hand-made boards;

▪ the circuit board connectors are not named, which can lead to confusion when

connecting components;

▪ some circuit boards must be individually fastened on separate Plexiglass plates to

keep them in place;

▪ parts of the hull require rework after manufacturing:

34

o the front and back end caps are painted after 3D-printing, to make them

waterproof;

o the front and back end caps require manual rework (drilling, boring,

sanding etc.) after manufacturing, to make the other parts fit;

▪ some components are glued in place, obstructing maintenance or replacement.

The fact that the circuit boards are handmade poses restrictions to the possibilities to

integrate subsystems into the electronic design in a space-efficient and reliable way.

Complex subsystems, such as the Arduino board, cannot easily be integrated onto a

handmade board, due to the use of small and narrow-spaced components which are placed

on both sides of the board, the use of “vias” (metal rivets contacting through several

copper layers of a circuit board) and the fine circuit lines which often cause problems

when attempting to produce them using non-industrial etching methods. The existing

board layout is not space efficient and carrying out any upgrades on the circuitry is

cumbersome.

In the scope of this thesis work, many handmade components and structures to house

parts are being replaced by new designs which can be reproduced without excessive

manual work. This includes the new PCB and several design features of the physical

structure of the robot.

µ-CAT is a robot used in a scientific research environment and must therefore be ready

to be continuously improved, updated and experimented with. This includes the necessity

to be able to add new components or upgrade existing ones. For students, researchers and

engineers working with µ-CAT, this poses problems because of the non-automized

production methods employed on the existing circuit boards. During this thesis work, this

is solved by designing a completely new PCB which can be manufactured by industrial

methods. The results are presented in Chapter 3. In order to further guarantee that the

robot is easy to reproduce, it must be ensured that the electric and electronic parts used

are up-to-date and readily available. This is carried out in the course of redesigning the

PCB. The IMU and the pressure sensor (see Section 4.15) are replaced by newer versions.

The new design of the robot features consistent 3D design files as part of this thesis

project’ scope, as presented in Chapter 3. These files are free from errors, contain well-

structured features and updated geometries, to reduce manual rework on integrated

35

components after 3D-printing and to reduce the need to use adhesive bonds to form

physical structures.

An additional 3D-printing method and different materials are used which can achieve

better accuracy and highly water-resistant parts.

36

3 Mechanics, solid modelling and manufacturing

This chapter provides an overview on the design, manufacturing and assembly process

for mechanics and hull.

According to Wang et al. [8, Ch. 2], the hull of an AUV requires a multitude of important

considerations. Amongst these are the ability of the body to withstand the required

environmental conditions (pressure, temperature, corrosion) and mechanical operating

conditions (impacts and vibrations), as well as its practicality.

Appendix A 3.1 gives an overview on materials and their properties – but only empirical

studies can finally answer all questions related to strength of materials. However, the

aspect of practicality can be considered during the early design phase of the robot hull.

Practicality includes ease of use (weights, shape), ease of maintenance (ease of assembly

and disassembly, accessibility of connectors and user-interface elements) and ease of

producibility (reduced need for manual rework).

(a) Old robot.

(b) New robot.

Figure 2. 3D CAD model of the robot (SolidWorks renderings).

3.1 Overview

The new design of the robot is created in SolidWorks, and a comparison to the old design

can be seen in Figure 2. The design file consists of 43 parts, contained in one root

assembly, three main assemblies and two sub-assemblies. The files do not only include

parts relevant for the physical design but also (to a certain degree of detail) electronic

37

components, in order to plan their integration into the physical design. Some parts of the

real robot are not reflected in the SolidWorks files.

The majority of work is done on the front and back end caps, to accommodate new

electronic components, and on the front and back domes, protecting the aforementioned

parts from mechanical impacts. As for the domes, they also reduce drag: Spherical and

cylindrical or similar shapes with dome- or bullet-shaped front have a much lower drag

coefficient than flat faces [36].

SolidWorks parts, their codes, names and the production methods (if applicable) are

shown in Appendix A 3.1. The new design features 32 newly designed and 3 updated

files, of which 32 are designed by the author of this thesis.

3.2 Main modifications

The main design work is applied to two parts: the front end cap and the back end cap.

These parts are shown in comparison with the old robot in Figure 3. The yellow domes

covering these parts are also redesigned to fit to the new caps.

(a) Old robot. (b) New robot.

Figure 3. Main design changes on the robot (SolidWorks renderings). Front end cap (top) and back end

cap (bottom).

38

3.3 Buoyancy analysis

In order to save energy during operation, it is important for the robot to be able to keep

its depth in water with minimal use of energy. This can be accomplished if the robot is

neutrally buoyant. However, to avoid loss of the robot in case of unexpected cease of

operation, passive self-surfacing is a desired feature, which means, the robot needs to be

slightly positively buoyant.

According to Archimedes’ principle, an object immersed in water is subject to an upward

force which equals in magnitude to the gravitational force of the amount of water it

displaces. This force counteracts the gravitational force of the object itself, as Figure 4

shows. In other words, if the average density of the object is equal to that of water, it is

neutrally buoyant – the two force vectors add up to zero.

Figure 4. Gravitational force and buoyant force along the same line of action.

The following equations are scalars. The corresponding vectors with magnitude 𝐹b and

𝐹result act upwards (against gravitation), while the vector of 𝐹g acts downwards.

𝐹b = 𝑚water ∗ 𝑔 = 𝜌water ∗ 𝑉water ∗ 𝑔 (1)

𝐹g = 𝑚object ∗ 𝑔 (2)

𝐹result = 𝐹b − 𝐹g = (𝑚water − 𝑚object) ∗ 𝑔 (3)

where: 𝐹b [N] buoyant upwards force acting on the object
𝑚water [kg] mass of displaced water

𝑔 [
m

s2] gravitational constant (9.81
m

s2)

𝜌water [
kg

m3] density of water (997
kg

m3)

𝑉water [m3] volume of displaced water
𝐹g [N] gravitational force of the immersed object

𝑚object [kg] mass of the immersed object

𝐹result [N] resulting force on the object

39

Before production of the new robot, it is advisable to analyse its expected buoyancy

characteristics, so that geometries can be adjusted or that the design provides the physical

space to add fixtures for ballast elements, if needed.

To do so, each part in the SolidWorks design assembly is assigned a material with specific

density. If the material type is known and exists in the SolidWorks material library, it is

used as-is. However, densities of the 3D-printed part do not only depend on the type of

material, but also on the density of the print – which is difficult to estimate without

empirical testing. In cases where the density is unknown, the part is modelled in

SolidWorks, then 3D-printed and its mass finally measured using a scale. The volume of

the modelled part is obtained from SolidWorks and dividing its mass by this volume

yields its density. This value is then used in a custom-made material type which is applied

to the part. As a result, SolidWorks can now calculate the mass of the complete assembly

(𝑚object).

As shown in the equations above (Eq. 1 – Eq. 3), it is necessary to know the effective

volume of the robot to estimate its buoyancy characteristics – this means the volume

enclosed within the surface which is in contact with the water. The interfacing surface

surrounds all those part’s solid volumes which are in contact with water. To obtain their

values, some parts’ geometries must be modified in SolidWorks to be completely solid

(no closed cavities), while maintaining their outer surface shape. The obtained volume

has the value of 𝑉water. This is the volume of water displaced by the robot, and the mass

of this body of water is calculated by using its density:

𝑚water = 𝜌water ∗ 𝑉water (4)

For the buoyant force of this amount of water to be equal in magnitude to the gravitational

force of the object (neutral buoyancy), the mass of the object should be equal to the mass

of water.

According to SolidWorks, the robot in its final design would have a mass of 1.075kg and

hence be 500g too light to be neutrally buoyant. For the purpose of adjusting µ-CAT’s

buoyancy, it is equipped with two steel rods inside the hull to which several steel washers

can be attached. These increase the mass of the robot without increasing its overall

volume, hence increasing its overall density. With the mass of one M5 washer disk to be

4.58g (weight measured using real specimen), it requires 109 washers to get the robot

40

neutrally buoyant. The physical design provides space for maximum 116 washers with a

thickness of 1.7mm each. The design files include additional assemblies containing the

washers. These are especially useful for analysis of roll stability, carried out in Section

3.4.

As an alternative to washers, the design includes box-like fixtures to hold other types of

weight-adding elements inside the hull. These fixtures are two equal 3D-printed parts

with several compartments for holding the weights. The boxes slide onto the battery tube

and link to other features of the existing geometry to prevent rotation or linear movement

during operation.

3.4 Roll stability

An object which is neutrally buoyant is not necessarily free from rotational moments

acting on it. Due to the cylindrical base shape of µ-CAT, it might especially tend to rotate

around its longitudinal axis (for example, when being disturbed by flows), so it seems

reasonable to minimize instability about this axis especially. The undesired tendency can

be counteracted by distributing the densities of materials on the robot such that its centre

of gravity is vertically below the centre of buoyancy when the robot is in the natural

position.

The centre of buoyancy of an object is coincident with the centre of gravity of the volume

of water which it displaces. Since µ-CAT is completely submerged in water, the volume

of displaced water has a shape equal to that of the whole vehicle. Assuming uniform

density all throughout the volume of water, the centre of buoyancy of the vehicle is

coincident with its centroid – the geometrical centre of a solid body with the same outer

surface shape as the whole vehicle.

The buoyant force acts at the centre of buoyancy, while the gravitational force acts in

opposite direction at the centre of gravity. If the centre of buoyancy is horizontally offset

from the centre of gravity, they form a couple – a moment acts on the object. The

magnitude of this torque depends on the magnitude of the opposed forces and the length

of the moment arm between the two force vectors – i.e., the distance between them.

As described by Lautrup [37, p. 47], “[in] a fully submerged rigid body, for example a

submarine, [… if] the centre of gravity does not lie directly below the centre of buoyancy,

41

but is displaced horizontally, for example by rotating the body, the direction of the

moment will always tend to turn the body so that the centre of gravity is lowered with

respect to the centre of buoyancy. The only stable equilibrium orientation of the body is

where the centre of gravity lies vertically below the centre of buoyancy. Any small

perturbation away from this orientation will soon be corrected and the body brought back

to the equilibrium orientation […]” (because frictional forces will prevent it from swaying

indefinitely).

When designing an underwater robot, it should therefore be ensured that its centre of

gravity lies vertically below its centre of buoyancy when the robot is in upright (neutral)

orientation. This way, it can be guaranteed that the robot will return to this orientation if

it gets rotated by external forces. The design must consider the following:

▪ any horizontal offset between the two points must be minimized;

▪ the centre of gravity must be shifted below the centre of buoyancy;

▪ the vertical distance between centre of buoyancy and centre of gravity determines

roll stability – it should be long enough to counteract a rotation caused by external

influences, but short enough for the robot to be able to actively roll around its axis.

The analysis of the locations of the centre of buoyancy and of the centre of gravity are

carried out in SolidWorks as part of the design phase. To find the centre of buoyancy, the

assembly (originally containing parts of different densities) is converted into solid filled

objects of equal and homogenous densities. The position of the centroid is then computed

by SolidWorks. This point is coincident with the centre of buoyancy, as explained above.

3.5 Structural components

The structural base frame of the physical design is formed by a set of six parts, as shown

in Figure 5.

42

(a) (b)

These parts define the base geometry of the robot and provide its initial mechanical

stability. To additionally prevent them from twisting due to mechanical tolerances,

supplementary parts are inserted (not shown above):

▪ two Plexiglass ballast dividers, sliding onto the battery compartment and M5 steel

rods;

▪ two M3 steel rods pushed through provided holes on the exterior of front and back

end cap and fastened with nuts.

The ballast dividers also give structural support against torsion of the main PCB, which

is clamped between front and back end caps by inserting it into provided grooves. For

ease of assembly, the grooves for the PCB and the holes for inserting the M5 steel rods

are opening up towards the parts, so the parts centre themselves in these geometries during

insertion. The outer M3 steel rods, when closed with nuts, additionally prevent the front

and back end cap from sliding apart.

3.6 Waterproofing

The robot consists of three main parts surrounding the interior: the front end cap, the back

end cap and the Plexiglass tube. Not only these three parts must be in waterproof contact

with each other, but also all other components inserted into the front and back end caps

which require openings on these 3D-printed parts: the camera, the photodiodes, the

battery cap and the USB plug. The following subsections explain how waterproofing on

these parts and components is accomplished.

Figure 5. Parts forming the physical base structure (SolidWorks renderings). (a) Isometric front view;

(b) isometric back view. (1) Front end cap; (2) back end cap; (3) transparent Plexiglass cylinder; (4)

battery compartment; (5) a pair of M5 steel rods.

43

The camera is located underneath a removable 3D-printed screw cap which holds a

transparent flat circular Plexiglass piece and presses it against the body of the end cap. A

custom-made silicone gasket is placed between end cap and camera cap to accomplish

waterproof sealing. The gasket is cast using the method described in Section A 3.2.2.

Each photodiode is surrounded by a custom-made silicone-cast (see Section A 3.2.2) seal

which is squeezed between the photodiode and the wall of the insert hole.

An M25-to-M20 steel reducer is screwed into the 3D-printed thread of the back end cap.

Sealing between reducer and end cap is accomplished using Teflon tape along the thread.

The steel battery cap has a M20 thread and fits onto the reducer. It comes off-the-shelf

with an O-ring included which is squeezed between battery cap and reducer, protecting

from leakage.

The USB plug consists of several parts – the main body and the cap. The cap is screwed

onto the main body and seals itself by pressing the included rubber gasket onto the body

when being tightened. The USB body is sealed against the 3D-printed end cap by pressing

an O-ring between body and end cap when tightening the plastic hex nut on the USB

body’s thread.

The transparent Plexiglass tube is sealed against the front and the back end caps with two

O-rings which each sit firmly in a dedicated groove on the respective end cap.

The fin shafts each reach the motor clutch located in the interior of the hull through a

nitrile oil rubber seal which prevents water from entering. The shaft sleeve holds the

nitrile oil seal, and this sleeve has a very firm fit with the hull. For additional

waterproofing, epoxy may be used to seal any gap between sleeve and hull.

3.7 Manufacturing

The new design incorporates several 3D-printed parts. Some of them require high

geometrical accuracy, to host electronic and mechanical components and to be in close

contact with parts to avoid leakages. These parts are the front and back end cap and the

camera cap. They are produced using SLA (stereolithography). Other 3D-printed parts

are the front and back dome, which do not need a tight fit, since they are flooded. For

44

them, FDM (fused deposition modelling)1 is the method of choice, since the involved

material is more lightweight and cheaper. Front and back dome are supposed to protect

underlying parts from damage, and in the case of collisions, they will break and must be

replicable without causing high additional cost.

With µ-CAT being used in depths not more than 10 meters, the hydrostatic pressure

exerted on the robot is small. Tests will reveal if the new material used for 3D-printing

keeps its structural integrity during operation. Similarly, only empirical testing over a

prolonged period can reveal the robot’s ability to withstand other mentioned external

influences. With the employed low-cost rapid-prototyping production method, the choice

of materials is very limited. The existing µ-CAT has proven to withstand required

pressures with 3D-printed materials. Waterproofing was accomplished by applying a

rubber paint coating onto the robot end caps. The SLA 3D-printing material has higher

density, is less porous and hence more water-resistant. The painting cover can therefore

be omitted.

In-lab equipment is used for manufacturing the end caps, the camera cap, the domes and

some of the gaskets. Processes and equipment are described in Appendix A 3.2.

3.8 Results and discussion

The new solid body design integrates all electronics, electromechanical and mechanical

components in ways that facilitate assembly and handling of the robot. This chapter

presents the results of the work carried out in SolidWorks. A photo of the new assembled

µ-CAT can be seen in Figure 6.

1 “Fused deposition modelling” and its abbreviation “FDM” are registered trademarks of Stratasys.

45

Figure 6. Assembled µ-CAT in its new design. Front and back domes are not present.

An overview of components integrated into the physical design is given in the following

(Figure 7 and Figure 8).

Especially the redesign of the parts presented in Section 3.2 leads to several advantages

over the previous robot design:

▪ Motors can be inserted more easily:

o do not require manual rework (cutting) in order to fit;

o slide in easily into the end caps (enough tolerances).

▪ Some parts need less or no glue in order to be integrated:

o reed switch slides into the holder and needs no glue;

o nut for holding the magnet clips into the holder and needs no glue;

o 3D-printed thread in the back end cap provided for battery cap reducer.

▪ Main PCB does not require bolts to be fastened;

▪ Geometries are more accurate, hence mechanical fitting and tolerances are

improved overall.

The front end cap now additionally holds two new parts, namely the camera module and

the messaging LEDs’ PCB. Since the camera does not have its own enclosure, a

watertight protection mechanism is designed which allows for an easy attachment of the

camera module and routing of its cable. The mechanism consists of a threaded cap, a seal

46

and a transparent plexiglass insert (see Section 3.6). The cap needs no further fastening

and holds firmly when screwed onto the body thread. The PCB for the LEDs does not

require screws but is clipped into the holder.

The back end cap now additionally holds the new Bluetooth module (see Section 3.8.1)

which clips into the holder.

The SolidWorks design files are improved regarding the following aspects:

▪ Materials with correct densities are assigned to all parts, therefore allowing

precise calculation of the robot’s mass and buoyancy characteristics.

▪ Errors and warnings present in features of the original files are eliminated.

Figure 7. Components integrated in physical design (SolidWorks rendering). The front and back dome and

the front and back end cap are shown as half transparent.

47

3.8.1 Integration of electrical components

As part of the new design, one main aim was to improve integration of electrical

components. Improvised methods of holding the components in place (glue etc.) are to be

avoided. To give some examples of how these aims have been met, the integration of two

components is presented in the following subsections, and Figure 9 gives an overview.

Figure 8. Motors integrated in physical design. (SolidWorks rendering). Top view of front cap assembly.

The front end cap is shown as half transparent, the front dome is not shown.

Figure 9. Integration of Bluetooth module and reed switch (SolidWorks rendering). (1) Back end cap; (2)

Bluetooth module; (3) Reed switch; (4) M5 hex nut; (5) transparent Plexiglass tube.

48

Placement of the Bluetooth module

The back end cap provides a holder which is suitable for the HC-05 breakout board or for

the custom-made Bluetooth PCB. Assembly and disassembly are simple, since it is held

only by clips. The positioning of the Bluetooth module is on the highest possible place

inside the hull. When the submarine is placed in the water and not operated, it stays on

the surface, as proven in Section 3.8.3. In this state the user can communicate with the

vehicle using Bluetooth without removing it from the water. It has been found

experimentally that the Bluetooth device is reachable if it is less than 5cm below the water

surface. With the knowledge obtained in Section 3.8.3, the distance between the

Bluetooth antenna and the water level can be found. It is estimated to be only 3.66mm

(see Figure 10), which is expected to provide good connectivity to the Bluetooth module.

More importantly, due to the cylindrical shape of the Plexiglass tube, there is no water

directly above the antenna, which is supposed to further ensure good connectivity.

Placement of the reed switch

In contrast to the old µ-CAT design, the reed switch is now properly integrated into the

physical body. Physical space is provided in the 3D-printed back end cap to host the reed

switch, exactly matching its dimensions. The legs are bent down by 90° and routed

through dedicated channels. They can be bent around the lower part of the holder, and a

connector or wires can be attached. A hex nut is placed on top of the reed switch which

snaps into a dedicated recess and holds the magnet when placed on the outside of the

Plexiglass tube above the reed switch.

Figure 10. Bluetooth module positioning (SolidWorks rendering). Cross sectional cut through the robot

assembly, showing water surface (upper green line) and Bluetooth module antenna plane (lower green line).

49

3.8.2 Roll stability

Figure 11 shows the result of the analysis carried out in SolidWorks. The batteries are

included in the computations. Their placement in the lower half of the vehicle lowers the

centre of gravity, therefore working in favour of roll stability. By adding 100 steel washer

disks onto the provided rods, the centre of gravity moves roughly 5.6mm downwards,

hence increasing roll stability. The centre of buoyancy B then lies significantly above the

centre of gravity G, offset vertically by 9mm. The horizontal offsets of all centres of

masses from the vertical centre plane along the x axis are negligible, therefore no torque

is expected to occur about the longitudinal axis (z) when the vehicle is in its natural

position (as shown).

In the most extreme case, the vehicle may be rotated by ±90° about its z axis. The

moment acting on the vehicle about its z axis is then:

𝑀𝑧 = 𝐹g ∗ |𝐵𝐺| = 0.1351Nm (5)

This torque will turn the vehicle until the natural position is restored. While turning, the

moment diminishes, with the moment arm shortening as a sine function of the angle of

rotation, as the robot gets closer to its neutral orientation.

3.8.3 Self-surfacing

The recommended number of washers (100 pieces) is smaller than the calculated number,

to achieve slightly positive buoyancy and have the robot slowly floating upwards in a

case of malfunction (i.e., when it cannot actively surface). Using equations Eq. 1 – Eq. 3

in Section 3.3, a resulting upwards force of 𝐹result = 0.437N can be expected with 100

Figure 11. Analysis of buoyancy (SolidWorks rendering). Position of centre of buoyancy (B), centre of

gravity without washers (R), centre of gravity with 100 washers (G) on x-y plane.

50

washers added. The number of washers is variable, and it not only determines the time it

takes for the submarine to passively surface, but also the final depth position it takes when

surfacing. This final position yields the equilibrium between gravitational and buoyant

force, which is reached when the mass of the displaced water equals to that of the vehicle

including the washers. Using SolidWorks, it is found that this mass is 𝑚object,corr =

1529.71g. The mass of displaced water when completely submerged is slightly larger

(𝑚water = 1574.27g). The equilibrium condition occurs when approximately 97% of

the robot is submerged (Figure 12). This is the position in which the robot eventually

comes to rest without activity.

3.8.4 Ease of production and assembly

Manual rework on many parts is improved, and assembly of parts is easier than before,

as stated in the beginning of Section 3.8.

The procedure for disassembling the robot in order to reach the PCB is shown in

Appendix A 3.3. Back end cap assembly, battery compartment, ballast rods with ballast

washers, Plexiglass weight dividers and outer steel rods form one assembly and do not

need to be taken apart for disassembling the robot. Cables connecting components in the

front end cap assembly to the PCB are long enough, so the front end cap assembly can be

slid out of the Plexiglass tube and the connectors on the PCB can be reached and

disconnected.

Figure 12. Estimation of water surface level (SolidWorks rendering). Reached in force equilibrium, with

100 washers of ballast added.

51

3.8.5 Future work

In the future, the holder for the Bluetooth module in the back end cap should be improved,

to avoid too thin walls around the module. Due to the 3D-printing process, walls tend to

bend, which might compromise a tight fit of the Bluetooth PCB.

The physical design of each insert channels for the photodiodes should be slightly

improved, to hold the photodiode and its surrounding seal in place from both sides, thus

preventing it from sliding inwards or outwards.

Another improvement concerns ease of assembly: To facilitate self-centring of the PCB

in the grooves of the front end cap, the Plexiglass weight dividers which slide over the

battery compartment will have grooves to hold the PCB from the sides. The PCB needs

to slide into these parts freely, so electronic components too close to the edge of the PCB

must be moved.

52

4 Electronics

The work related to electronics includes the development of new circuit schematics, the

modification of existing circuit schematics and the design of a PCB implementing all

circuitry. These tasks are carried out in Autodesk Eagle, a commonly used CAD software

for industrially produced circuit boards.

Future versions of the manufactured PCB should include silkscreen-printed references to

parts in the schematic diagrams, to facilitate manual soldering. This, however, may lead

to a loss of clarity on names of connectors, LEDs and test pads which are required for

use-cases after the manufacturing of the PCB has finished. An alternative way is to

provide a separate printed sheet with positions and names of all parts marked which can

be placed on top of the PCB between the soldering steps.

4.1 Main modifications compared to original µ-CAT

The following table (Table 5) gives an overview on all implemented features covered in

this chapter, indicating for each of them to which group it belongs – newly developed or

existing – and, if it belongs to the latter group, whether it has been taken from the given

design “as-is” or whether it has been (at least in parts) updated (“U”) by a newer version

or has been modified (“M”). The design of a feature is marked as new if it is not copied

from existing products and if it is not derived from schematic layouts provided to the

author of this thesis. Therefore, some features are marked as new although they have been

present on the original µ-CAT robot but used some different working principle, and some

features are marked as previously existing although they have not been used on the

previous design of µ-CAT but were taken from external sources.

It should further be noted that features marked as “Existing” might take over the existing

schematic diagram but the routing of their circuit lines might be modified in the process

of implementing their layout to the new PCB.

53

Feature N
ew

E
x
is

ti
n

g

Provision of different voltage rails M

Powering 5V rail alternatively through USB ⚫

Logic power supply unit for 5V logic ⚫

Logic power supply unit for 3.3V logic ⚫

Motor power supply unit M

Raspberry Pi **

Arduino Mini M

Camera ⚫

Bluetooth module * ⚫

Shared UART bus (incl. multiplexing, level shifting) ⚫

Communication from Arduino to Raspberry Pi (incl. level shifting) ⚫

Tone detectors ⚫

Frequency-shift keying module **

OR logic between input signals for frequency-shift keying ⚫

RGB LED ⚫

Various status LEDs ⚫

IMU circuit U

Pressure sensor circuit U

Motor drivers circuit ⚫

Motor feedback circuit ⚫

Voltage measurement circuit ⚫

FTDI (USB-to-serial) ⚫

Reed switch ⚫

Test pads ⚫

Design of PCB ⚫

4.2 Overview of components, subsystems, signals and busses

The new electronic circuitry can be broken down into several functional blocks. Most of

these elements are individually identified on the new PCB by their names. The following

table (Table 6) gives an overview of all implemented elements. For each element, its

placement on the new PCB is indicated (top or bottom side), and it is shown on which

busses it actively participates and which GPIO (general-purpose input/output) lines it

provides or requires. The latter covers only those lines which are routed to digital GPIO

Table 5. Features implemented in the scope of this thesis project. M: modified; U: updated. *: The signals

provided on the PCB consider the possibility to implement a modified design of the Bluetooth module

circuitry. More details in Section 4.10.1. **: The existing design itself is not implemented, but only pin

headers are provided. FTDI: Future Technology Devices International.

54

pins of one of the microcontrollers. Bus and GPIO signals can be either on a 3.3V or on

a 5V level.

The subsequent block diagram (Figure 13) accompanies Table 6 and clarifies the

connection topology of all functional elements which participate on one of the busses or

employ GPIO signal lines.

Table 6. Functional elements, their placement side and their signals. FSK: frequency-shift keying.

Element

PCB side Signals used

T
o

p

B
o
tt

o
m

I²
C

 (
𝟑

.𝟑
𝐕

)

I²
C

 (
𝟓

𝐕
)

S
P

I
(𝟓

𝐕
)

G
P

IO
 (

𝟑
.𝟑

𝐕
)

G
P

IO
 (

𝟓
𝐕

)

U
A

R
T

 (
𝟑

.𝟑
𝐕

)

U
A

R
T

 (
𝟓

𝐕
)

USB connector ⚫

Logic power supply (3.3V, 5V) ⚫ ⚫

Motor power supply (6V) ⚫ ⚫

Raspberry Pi Zero W ⚫ ⚫ ⚫ ⚫

Photo diodes connectors ⚫

Tone detectors ⚫ ⚫ ⚫

Frequency-shift keying module ⚫ ⚫

Switch between sources of FSK ⚫

External LEDs connector ⚫

Arduino ⚫ ⚫ ⚫ ⚫ ⚫

FTDI ⚫ ⚫

Bluetooth connector ⚫ ⚫ ⚫

Multiplexer ⚫ ⚫

Onboard RGB status LED ⚫ ⚫

IMU ⚫ ⚫ ⚫

Pressure sensor ⚫ ⚫

Motor drivers ⚫ ⚫

Motor voltage connectors ⚫

Motor encoder connectors ⚫ ⚫

Voltmeter ⚫

Reed switch connector ⚫

Multipurpose level-shifter ⚫

I²C level shifter ⚫

Test pads ⚫

Note that the SPI (serial peripheral interface) bus includes GPIO signals (chip select;

“CS”) by default.

55

Figure 13. Functional elements and their signals (GPIO and busses).

4.3 Resistor value and power calculations on LEDs

When choosing the current-limiting resistor for any LED used in the new design, the

operating principle of the LED in general must be understood. An LED operates at a given

nominal forward voltage with a corresponding forward current, as given in the datasheet.

The values vary depending on type and colour of the LED. The brightness of an LED

depends on the operating point, but the absolute maximum forward current must not be

exceeded when driving the LED.

The following equations are used to calculate the required resistor value for an LED and

the power consumption of the network comprising of LED and resistor:

56

𝑅 =
𝑈CC−𝑈LED

𝐼
 (6)

𝑃 = 𝑈CC ∗ 𝐼 (7)

where: 𝑅 [Ω] resistance of in-series resistor
𝑈CC [V] voltage across network of resistor and LED
𝑈LED [V] forward voltage of LED (from datasheet)
𝐼 [A] forward current through resistor and LED
𝑃 [W] total power consumption of LED and resistor

The calculated values of resistors may not be available on the market. In such cases, the

closest available resistor value is chosen. With a resistor value different from the initially

calculated one, the forward current differs and can be calculated as follows:

𝐼real ≈
𝑈CC−𝑈LED

𝑅chosen
 (8)

This value is just an approximation because the voltage drop across the LED (𝑈LED) also

changes with the current through it. The approximation is sufficient if the chosen resistor

value is close to the previously calculated one.

Results of these calculations for all LEDs are given in Appendix A 2.1.

4.4 Voltage rails

The main purposes of the existing voltage rails (see Section 2.1.3) do not change during

the upgrade of the robot. A new 3.3V rail is implemented for powering several sensors

and other components. A second 3.3V rail becomes available which provides voltage

through the voltage regulator onboard the Raspberry Pi computer. This is used directly to

power the camera, the multiplexer and the general-purpose level shifter’s low side. The

only device driven by this voltage through the GPIO pins of the Raspberry Pi is the RGB

LED. The 3.3V generated within the USB-to-serial chip is not used. The 5V rail

additionally powers the Raspberry Pi module, the frequency-shift keying module

including the attached OR logic and the high sides of the level shifters. USB power can

still be used as an alternative source for the 5V rail. The 6V rail now does not only power

the motors, but also the high-power messaging LEDs installed on the front end cap.

57

4.5 Supplying 5V alternatively through USB

A circuit is implemented which allows to override the battery voltage and use USB supply

for the 5V logic instead. This allows programming of the Arduino microcontroller without

having any batteries inserted. The circuit consists only of the Schottky diode D2 with

maximum forward current of 3A and maximum reverse voltage of 20V. According to

specifications [38], [39], the voltage of the USB supply can vary between 4.75V and 5.5V.

If D2 is forward-biased (conducting), this voltage drops by 0.5V on the load side across

the diode. If the reed switch is open (no magnet placed) while powering through USB,

the Buck converter is enabled, and its output provides 5V (assuming sufficient battery

voltage). In this case, D2 is reverse-biased (Anode potential equal to or lower than

Cathode potential) and no power is provided through USB at all. Consequently, if the

robot should be powered through USB, the reed switch must be closed (magnet attached).

If the magnet is not in place, it must be expected that no voltage will be supplied from

USB.

4.6 Improving power supply

One task is to extend the time span of uninterrupted operation of the vehicle. The original

robot can remain operational for approximately four hours. Being powered by two Li-Ion

cells of type 18650 in series, each with a capacitance of 2200mAh at 3.7V, the totally

provided energy by a fully charged set of batteries is 16.28Wh. Assuming the vehicle

remains operational until the batteries are fully drained (which, in reality, it does not), a

mean power consumption of max. 4.07W for µ-CAT can be derived.

With the new components added, especially the Raspberry Pi computer with camera (see

Section 4.8.1) and the relatively powerful messaging LEDs (see Section 4.8.2), the battery

lifetime is expected to be shortened. In order to counteract this undesired effect, a closer

look must be taken on the power supply units used in µ-CAT.

For estimating battery lifetime, the power consumptions of individual consumptions 𝑃𝑖

could each be calculated as the product of the supply voltage of a component and its

(typical) current consumption during operation. The total power consumption of the

completely assembled robot can then be calculated by adding individual power

consumptions 𝑃𝑖 of all components:

58

𝑃𝑖 = 𝑈CC,𝑖 ∗ 𝐼𝑖 (9)

𝑃in = ∑ 𝑃𝑖
𝑛
𝑖=1 (10)

The real power consumption of a component depends largely on its mode of usage. A

more practical approach for estimating the average power consumption of µ-CAT is to

run the final µ-CAT software and measure the current consumption 𝐼B right after the

batteries (voltage 𝑈B). The power consumption is then calculated as:

𝑃in = 𝐼B ∗ 𝑈B (11)

In order to achieve a perceivable saving in energy consumption, it is obvious to aim for

the voltage rails to which the heaviest consumers are attached. These are the 5V rail,

mainly due to the Raspberry Pi computer and the camera with their total current demand

during operation of approximately 150mA on that rail, and the 6V rail because of the four

servo motors with a total stall current of up to 2A (all motors stalled) and a current demand

of approximately 550mA during operation, according to previously conducted

measurements. In the executed experiments for selecting the voltage rail which should be

powered by the new power supply unit, the high-power messaging LEDs on the 6V line

are not considered, because they had not been chosen at the time when the experiments

were designed.

4.6.1 Buck converter instead of linear series regulator

Buck converters and voltage regulators are used to convert between two DC voltage

levels, in particular to change a DC input signal to a lower level. These converters

generate an output voltage on a stable value, independently from the input voltage

provided and the output current drawn. When converting from a higher to a lower voltage,

voltage dividers made of a network of two resistors are another alternative. Their

disadvantage lies in the high heat dissipation due to the voltage drop across the resistors

and the current drawn from the supply through the upper resistor. Apart from that, voltage

dividers consume current even with no load connected.

In linear voltage regulators, the excess power, due to the voltage drop between input and

output voltage, is transformed into heat and therefore wasted. The higher the voltage drop

across the regulator, the higher the heat dissipation. In fact, the dissipation of heat follows

directly from generating the desired voltage drop. If the input current of the voltage

regulator is equal to its output current, its efficiency can be calculated as follows:

59

µ =
𝑈out

𝑈in
=

𝑃out

𝑃in
 (12)

The dissipated heat is then:

𝑃heat = (𝑈in − 𝑈out) ∗ 𝐼 = 𝑃in − 𝑃out (13)

Typically, linear voltage regulators are ICs (integrated circuits) comprising of a

Darlington transistor array or MOSFET (Metal-oxide silicon field-effect transistor)

configuration and an operational amplifier including an output transistor which drives the

Darlington array, along with overheat and short circuit protection. The transistors are

operated in their active, i.e., linear region, where their resistance is linear to the respective

input signal. The operational amplifier compares the actual output voltage to a fixed

reference voltage and changes the resistance of the driving output transistor which, in

turn, determines the amount of current provided through the Darlington or MOSFET

network [40]. Obviously, driving transistors in their active region leads to dissipation of

heat due to their internal resistance, and the heat increases with the required current on

the load side.

Buck converters are known for their higher efficiency compared to linear voltage

regulators, mainly because they produce less heat. The buck converter is controlled by a

transistor switch and a diode and stores energy in an inductor. The transistor is only driven

in its saturated region (fully on) or fully off, and therefore does not dissipate so much heat

(only during the moment of switching). Since there is ideally no loss of power in the form

of heat (if the transistor’s switching heat dissipation is neglected), the input power is equal

to the output power, and a step-down in voltage therefore leads to a step-up in current.

Figure 14. Basic schematic circuit diagram of a buck converter (power circuit only). The marked points

refer to the simulation results.

As shown in Figure 14, the basic buck converter circuit consists of a switching transistor

(T1) and a flywheel circuit, comprising of diode D1, inductor L1 and capacitor C1. The

operating principle is based on two phases which repeat indefinitely at high frequency.

These two phases are (1) the one where the transistor is conductive (on) and (2) where

60

the transistor is not conductive (off). In the beginning of phase 1, since the inductor

opposes the change of current flow, it restricts the emerging flow of current through it.

During this time, it stores energy in a magnetic field, and the voltage across the inductor

is highest because the capacitor has reached the end of its discharge cycle (lowest possible

potential on the positive side of the capacitor). During phase 1, current is provided to the

load and to the capacitor through the inductor. Over time, while the magnetic field builds

up, the current flow through the inductor increases and the voltage drop across the

inductor decreases due to the potential across the capacitor rising.

𝑢 = 𝑈B ∗ 𝑒−𝑡∗
𝑅

𝐿 (14)

𝑖 =
𝑈B

𝑅
∗ (1 − 𝑒−𝑡∗

𝑅

𝐿) (15)

where: 𝑢 [V] momentary voltage drop across the inductor
𝑈B [V] supply voltage from battery
𝑒 Euler’s number (≈ 2.718)
𝑡 [s] time
𝑅 [Ω] load resistance
𝐿 [H] inductance of the inductor
𝑖 [A] momentary current through the inductor

But the capacitor will not reach the full supply voltage because phase 2 will take place

before it is charged up completely. During phase 2, the transistor is open (off) and the

flow of current into the inductor is rapidly stopped. Current to the load is still provided,

since the inductor releases current stored in its magnetic field in the direction in which it

has been flowing previously, hence through the load. [41] The capacitor helps supply the

load additionally. It smoothens at all instances the voltage ripples caused by the linearly

changing current supply from the inductor.

The switching frequency of the transistor is fixed, but the duty cycle 𝐷 varies depending

on the required voltage drop Δ𝑈 = 𝑈out − 𝑈in, in particular:

𝑈out = 𝐷 ∗ 𝑈in (16)

Δ𝑈 = 𝑈𝑖𝑛 ∗ (𝐷 − 1) (17)

The transistor gate driver (not shown in above schematics) takes care of matching the

duty cycle to the output voltage requirements by comparing the instantaneous output

voltage with an internal reference voltage created by the standard silicon bandgap. The

inductance of the inductor must be chosen according to the switching frequency of the

61

transistor and the power demand of the load. Knowing the duration of a pulse, the output

power can be expressed as energy provided per pulse. This is the energy to be transferred

during every switching pulse of the converter. The datasheet of a specific buck converter

IC which includes already the switching transistor, as it is in the case of the module used

in this project, usually provides the required value for the inductor.

Disadvantages of buck converters compared to linear voltage regulators are the higher

noise level they generate due to the switching of the transistor, their higher cost factor

and the larger requirement of components for assembling the circuit, leading to a larger

footprint on the board. The switching noise may be critical in some applications where

highly sensitive analogue measuring equipment is used but can mostly be reduced to an

acceptable level by using appropriate capacitors on the output of the converter and at the

inputs of noise-sensitive circuitry after the converter. The higher cost factor is still

minimal and therefore not significant. The larger footprint of the circuitry may pose a

challenge in space-critical applications, but µ-CAT offers plenty of room for hosting a

large mainboard – only the original version of the robot did not use the available space

sufficiently.

Design of the buck converter circuit

After carrying out several experiments as shown in Appendix A 1.1, the buck converter

LM2596S is chosen to replace the original voltage regulator on the 5V logic voltage

supply rail of µ-CAT.

This chip provides up to 3A output current, which leaves enough headroom with the

expected current of less than 1A on the 5V rail. Not driving the buck converter at its limit

improves output voltage stability and decreases noisiness. The chip features an inverted

enable pin (“ON/OFF”) which can be used to switch the device off. The quiescent current

consumption of the disabled (idle) buck converter chip is expected to be around 80µA,

but not more than 200µA under normal temperature conditions [42, Ch. 7.9]. Applying a

conservative calculation, the robot can remain in switched off state for 458 days, with

initially fully charged batteries.

The current drawn by the enable pin is very small, so the reed switch can be used directly

on that pin, to switch the robot on or off.

62

The buck converter circuit is designed according to the recommendations in the datasheet

[42, p. 1] and is – apart from the values of some capacitors – equal to the design of the

buck converter used in the experiments (see Figure 15).

Figure 15. Implemented buck converter circuit.

Integration of the reed switch

The robot can be turned on and off without the need of having a physically accessible

switch on the outside of the hull, which would require additional waterproofing. Instead,

a reed switch is used inside the robot which reacts to the magnetic field of a magnet placed

close to it, on the outside of the vehicle. This reed switch has been, in the original design,

glued to the inside of the hull, and an iron hex nut has been used to hold the magnet in

place.

In the new design, the same reed switch and the same principle for holding the magnet

are used, but the physical integration of the switch is improved (see Chapter 3.7). As for

the wiring of the switch, it connects the positive battery voltage signal (“VIN”) to the

enable (“ON/OFF”) pin of the buck converter chip LM2596S. Since the enable pin of the

6V voltage regulator uses inverted logic, the buck converter chip is switched off when the

reed switch is closed, i.e., when the magnet is placed. In order to keep the buck converter

chip switched on while the reed switch is open, its enable pin is pulled down to “GND”

through a 10kΩ resistor (R11 in Figure 15). In order to turn the robot off, the magnet

must be placed.

63

4.7 Motor power supply unit

The motors are supplied with 6V from the MIC29302WT voltage regulator, taken over

from the original µ-CAT design. This chip takes the battery voltage as its input. It

provides max. 3A output current [43, p. 1], which is enough for the motors even when

they are stalled. The dropout voltage is as low as 370mV when drawing the maximum

output current of 3A, otherwise even lower. This means that the device provides a stable

output voltage if the input voltage is at least 6.37V – which is given even with drained

batteries. The chip features an enable (“EN”) pin which can be used to switch the device

on or off. This pin is pulled low through resistor R26 and routed to the Arduino

microcontroller’s pin “PC3”. A high signal on this pin enables the voltage regulator.

Having control of this pin through the Arduino allows for the robot to be tested and

debugged without providing power to the motors.

4.8 Capability upgrades

In the following subsections, the implemented upgrades related to the improvement of

functional abilities of µ-CAT are listed. This includes the Raspberry Pi Zero W, the

camera and the advanced optical messaging system.

4.8.1 Integration of Raspberry Pi Zero W single-board computer and camera

In order to be able to upgrade the new design with future versions of the Raspberry Pi

Zero module, this computer is integrated by providing a pin header, rather than copying

the Raspberry Pi layout into the PCB layout. The 40-pin header is placed in a position

that allows the camera ribbon cable to lead towards the camera module without deflecting

from the geometrical centre axis of the robot and to avoid a too narrow bend radius of the

ribbon cable when passing the front motors.

The camera module (Raspberry Pi camera version 2.1) connects to the Raspberry Pi

module with a ribbon cable. Therefore, the electrical connections to the camera are

provided solely by the Raspberry Pi computer, and no connection must be provided on

the PCB itself.

64

4.8.2 Implementation of advanced optical messaging

The complete connection topology of the optical messaging system is shown in Figure 16

and Figure 17 and described in the following subsections.

Basic components

The photodiode converts light into electrical current, and this current is amplified by the

subsequent circuitry, then fed into the tone detectors and into the FSK (frequency-shift

keying) modules. Two photodiodes are used to distinguish between optical signals to the

left and to the right of the robot. The photodiodes are installed on the front hull of the

robot, and two simple pin header connectors are provided on the PCB, as close as possible

to the photodiodes, to keep wire runs short.

Each tone detector circuit detects beacon signals on 48kHz coming from one of the

photodiodes. Depending on which photodiode is active, the robot can distinguish between

a signal coming from the left or from the right. At the core of the tone detector circuitry,

the tone decoder IC LM567 is implemented. It provides a transistor switch which is closed

whenever it receives an input signal within the specified passband [44, p. 1]. The tone

Figure 16. Block diagram of topology for FSK demodulator (incoming signals).

Figure 17. Block diagram of topology for FSK modulator (outgoing signals). “LED L” and “LED R”

symbolize the messaging LEDs.

65

detectors’ outputs (“LEFTBEACON” and “RIGHTBEACON” in Eagle) are routed to two

Arduino digital input pins.

Integration of frequency-shift keying circuit

As an application report by Texas Instruments states, “[in] telecommunications and signal

processing, frequency modulation (FM) is encoding of information on a carrier wave by

varying the instantaneous frequency of the wave. Digital data can be encoded and

transmitted via carrier wave by shifting the carrier's frequency among a predefined set of

frequencies—a technique known as frequency-shift keying (FSK).” [45, p. 1] In the case

of µ-CAT, the source of information are external light signals, and the receivers are the

same photodiodes used for the beacon signal detection. Decoded messages are sent to the

Arduino using GPIO lines and the SoftwareSerial library (software-emulated version of

UART). The module can also encode signals fed from the Arduino board using

SoftwareSerial, and they are sent out in the form of light using the powerful messaging

LEDs installed to the front end cap of the robot (see Chapter 3.7).

The frequency-shift keying circuit has still been in development at the time of

implementation on the new PCB. Changes to the circuitry might still be required.

Therefore, the module is regarded as a black box. However, since its purpose and interface

are known, it can be implemented in the form of an add-on component.

Switching between signal sources

The frequency-shift keying module can be set to react either on only the signals supplied

from the left photodiode or from both. If the jumper “RCVMIX” (indicated as “RCV” on

the PCB) is in default state, the frequency-shift keying module is fed by both photodiode

signals (left and right). When selecting the mixed signal, the amplified individual signals

from the two photodiodes are routed through an adder (logic OR) circuit, comprising of

three N-channel MOSFETS (in two chips type FDC6401N). The first two transistors are

routed in parallel configuration, with common drain, and each of them receives one of the

incoming signals on its gate. Whenever at least one of them switches on, the common

output signal (drain) is low. This output signal is routed to the gate of the third transistor

which inverts it.

The FSK module expects a digital (binary) message signal, which means that the

MOSFETs are supposed to act as switches (saturated mode). The MOSFETs need a

66

voltage level of 2.5V or higher (maximum 12V) between gate and source to be on [46, p.

2] and a voltage level of less than 0.5V to be off [46, p. 3].

The tone detector circuit is known to work with at least (typically) 20mV (RMS) input

voltage signal [44, Ch. 8.4], which corresponds (for a sine wave signal) to a peak-to-peak

level of 28.28mV:

𝑈pp = 𝑈RMS ∗ √2 = 20mV ∗ √2 = 28.28mV (18)

This value is therefore defined as the minimum required signal peak-to-peak amplitude

for the system to be operational. Each channel of this signal (called “TO_RCVR_L” and

“TO_RCVR_R”) is amplified twice before reaching the adder circuitry.

The first amplifier (IC5B and IC9B in the schematic diagram) has a voltage gain of

approximately 40. This corresponds to a valid peak-to-peak value of minimum 1.205V.

The output capacitor (C33 and C48, respectively) achieves that the centre of the output

signal (its average) is 0V – it is an AC signal. Accounting for this offset, the extreme

(peak) DC signal voltage values for the minimum valid signal on that amplifier output

can be calculated:

𝑈low = −
𝑈pp

2
= −

1.205V

2
= −0.6025V (19)

𝑈high =
𝑈pp

2
=

1.205V

2
= 0.6025V (20)

The upper peak value must always be high enough to guarantee a saturated on-state of

the first MOSFET stage in the adder circuitry, and the lower peak value must always be

in a valid range to achieve that the first MOSFET stage is off. The lower half of the signal

can be clipped off (minimum peak value will be 0V) since it is insignificant when

interpreted as a frequency-shift-keyed message. The upper peak value should be greater

than or equal to 2.5V, as mentioned above. To achieve this, an additional op-amp is used

before the adder circuitry. The dual-channel operational amplifier TS972IPT is initially

chosen and used in non-inverting configuration, as shown in Figure 18. With the negative

input rail referenced to ground, the lower half of the input signal is clipped off, and the

upper half has a magnitude of 0.6025V for the minimum required valid signal.

67

Figure 18. Operational amplifier in non-inverting configuration.1

The required voltage gain is:

𝐴V ≥
2.5V

0.6025V
= 4.15 (21)

The values of resistors R1 and R2 in above schematic diagram define the amplification

factor (voltage gain) of the circuit. The equation is:

𝐴V = 1 +
𝑅2

𝑅1
 (22)

A ratio of R2 to R1 can be found which accomplishes the required voltage gain. The

resistors should be in the range of kiloohms, to avoid excessive currents and overheating

of the operational amplifier chip. Available resistor values are R1 = 10kΩ and R2 =

39kΩ, which yields a voltage gain of 𝐴V = 4.9. This drives the subsequent MOSFETs

safely into saturation, even for the valid worst-case signal:

𝑈out = 𝐴V ∗ 𝑈in = 4.9 ∗ 0.6025V = 2.95225V (23)

The problem with the chosen op-amp TS972IPT in the given scenario is its inability to

guarantee linear amplification for input voltages below 𝑈DD + 1.15V (common mode

input voltage range [47, Ch. 3]) – which is in this case 1.15V (for 𝑈DD = 0V). The

smallest valid input signal, as discussed above, ranges from 0V to 0.6025V. A more

suitable operational amplifier IC with the same pinout and footprint is MCP6022, which

has a common-mode input range of values starting from −0.3V [48, p. 3].

1 Image source: https://www.watelectronics.com/wp-content/uploads/Non-Inverting-Operational-

Amplifier-Circuit.jpg

68

Integration of messaging LEDs

The OSRAM DURIS S8 GW P9LR32.EM is a white high-power LED. The new design

implements two of them, mounted on a separate PCB (including their resistors), which is

installed in the front end cap (see Chapter 3.7). This PCB is connected to µ-CAT’s main

PCB using a wire harness with plugs for two-pin SMD connectors on both ends. (The

messaging LED PCB has been designed by Jaan Rebane.)

Electrical characteristics, chosen resistor values and calculated power consumptions can

be found in Appendix A 2.1. Calculations are based on equations given in Section 4.3 and

values from the datasheet [49, p. 11]. The LED is driven below nominal voltage, at 5.5V.

In case this product becomes unavailable, similar versions exist for replacement [50],

[51].

4.9 Integration of Arduino Mini 05

The Atmel/Microchip ATmega328P microcontroller is the CPU used on the Arduino

Mini 05 board. For a reliable and shock-proof operation, integration of the Arduino layout

directly to the new PCB instead of providing pin headers for the Arduino module seems

preferable. This decision is reasonable in the case of the Arduino microcontroller, since

no significant updates on the 8-bit AVR can be expected in the future. In regard to this

topic, a more extensive discussion on space-efficiency, maintainability and reliability is

made in Section 4.21.

4.10 Communication with the outside world

In this subsection, features are presented which relate to the possibility to interface the

microcontrollers. This includes debug messages sent from the microcontrollers to an

external client, instructions and program code sent from an external client to the

microcontrollers.

The new design provides the following communication interfaces:

69

▪ USB serial from and to Arduino, converted to UART by the FTDI1 chip;

▪ Bluetooth serial from and to Arduino, converted to UART by the Bluetooth

module;

▪ WLAN connection with Raspberry Pi via its onboard WLAN module;

▪ Bluetooth connection from and to Raspberry Pi via its onboard Bluetooth module.

The last two features are not further described in this subsection, since they are integrated

properties of the Raspberry Pi module. However, it should be noted that a connection to

the Arduino microcontroller can be established through the wireless interfaces provided

by the Raspberry Pi, because the Raspberry Pi and the Arduino can communicate with

each other through UART (see Section 4.11).

4.10.1 Integration of the FTDI chip

The design of the original µ-CAT features a Sparkfun breakout board [52] holding the

FTDI chip FT232. The same chip is implemented in the new design, with the circuit

design derived from the original breakout board. It translates between the USB protocol

(which offers half-duplex communication via two symmetric signal lines) and the UART

buffered full-duplex communication standard. The UART port of the chip is routed to the

Arduino UART port via a general-purpose level shifter to translate between the internal

logic voltage level of the FTDI chip (3.3V) and the logic voltage level of the

ATmega328P (5V). Details on this level shifter can be found in Section 4.19.

4.10.2 Integration of the standalone Bluetooth module

The main purpose of the Bluetooth module is to connect µ-CAT wirelessly to a computer

or to a smartphone in order to get debugging messages from Arduino while the robot is

operating. Since the Bluetooth module cannot communicate while the robot is under

water, it is desirable to place it as high as possible inside the robot’s body (see Section

3.8.1), so it can communicate while the robot is floating near the water surface. This

allows debugging right before diving and immediately afterwards and does not require

the operator to get the vehicle out of the water. Placing the Bluetooth module near the

1 Abbreviation for the company name Future Devices Technology International; commonly used for

USB-to-UART translator chips.

70

highest point inside the hull makes it necessary to connect it to the PCB using a wire

harness. For this purpose, a surface-mount 8-pin connector is placed on the PCB to which

the Bluetooth module can be easily plugged. The other side of the wire harness is

connected to the Bluetooth module using pin headers.

The chosen Bluetooth module is the EGBT045-MS, placed on a breakout board similar

to HC-05. Since the original board HC-05 does not expose all relevant pins of the

EGBT045-MS, a self-designed breakout board is used instead (PCB design by Jaan

Rebane).

The following table (Table 7) lists the provided signals on the new PCB and their intended

connection to the Bluetooth module EGBT045-MS or, wherever applicable, their

connection to the breakout board HC-05. Exact pin numbers for the signals connecting to

the microcontrollers can be found in the tables of provided test pads in Section 4.20.

Bluetooth

module

D
ir

ec
ti

o
n

µ-CAT main PCB

Purpose H
C

-0
5

 p
in

E
G

B
T

0
4

5
-M

S

p
in

(s
)

Signal name

(Eagle) Connections

STATE 25/32 → BT_STATE LED “BTS”;

Raspberry Pi

Get information on

connection status

RXD 2  BT_RX Arduino TX Send data

TXD 1 → BT_TX Arduino RX Receive data

GND 13 GND Common GND Logic ground

VCC 12 +3V3 3.3V supply Logic supply 3.3V

EN 34*  BT_CMD Raspberry Pi Select role (Master/Slave);

put into command mode

- 24/31 → BT_STATE1 LED “BTS1” Read status of the

Bluetooth onboard LED

- 11  BT_RST Raspberry Pi Reset Bluetooth module

The “BT_CMD” signal, in combination with a reset of the module through “BT_RST”,

can be used to put the Bluetooth module into AT command mode. In this mode, it can be

configured using AT commands being sent via the UART interface. It should be noted

that, in order to configure the Bluetooth module, Arduino and Raspberry Pi must

Table 7. Routings between Bluetooth module and new PCB. Left arrow: to the Bluetooth module; right

arrow: from the Bluetooth module. *: Through resistor 2.2kΩ on HC-05 breakout board.

71

collaborate: The Raspberry Pi controls the GPIO pins of the Bluetooth module, while the

Arduino can access its UART port. The “EN” pin of the HC-05 breakout board is wired

to the “CMD” pin (34) of the EGBT045-MS through a buffer resistor. Pushing the button

on HC-05 performs the same action as setting the “EN” pin high (see Figure 19).

By default, the module is in a Slave mode and appears to be transparent, acting like a

Serial connection cable, as stated in the Bluetooth profile SPP (serial port profile). It needs

no reconfiguration; entering the command mode is usually unnecessary. Therefore, the

module can be operated without making use of those pins which are not exposed on the

HC-05 breakout board.

4.11 Sharing the UART bus

The UART bus offers one-to-one communication between two devices. One line

establishes the unidirectional connection for messages sent from the first device to the

second and the other line vice versa. The protocol implements full-duplex buffered

communication at various baud rates.

As described in the previous sections, several devices must now be able to communicate

with the Arduino microcontroller via the UART bus. This calls for an extension of the

native protocol implementation. In the new µ-CAT design, a multiplexer chip is used to

switch between the three communication partners of the ATmega328P microcontroller.

Similar approaches have been used by other engineers in the past [53]. The ATmega328P

supports baud rates up to 250kbps, and the employed multiplexer has been verified to

handle baud rates up to 115.2kbps – the value commonly used when flashing program

code to the ATmega328P microcontroller. Since all three communication partners operate

on a 3.3V logic level (and Arduino on 5V), a level shifter must handle the voltage

translations (see Section 4.19).

Figure 19. Routing of enable pin on the HC-05 breakout board. “PIN34” refers to pin 34 of the EGBT-

045MS Bluetooth module, “EN” and “GND” are exposed pins on the HC-05 breakout board.

72

The following block diagram (Figure 20) illustrates the connection topology of the shared

UART bus, including the pin designations used on the devices.

Figure 20. Circuit diagram for multi-device UART connectivity to ATmega328P.

4.11.1 Integration of the multiplexer chip

A multiplexer is a universal logic functional element used in electronic designs to route

one or more incoming signals to one or more selected pins, depending on the address

setting. Analogue multiplexers handle analogue voltage ranges and route them to the

corresponding outputs using MOSFET switches. Digital multiplexers expect discrete

signals with the level either being high or low. Due to their different internal architectures,

an analogue multiplexer can have its pins put into high-impedance mode – meaning that

the routing is completely interrupted. Digital multiplexers, however, have a defined

default output state, which makes it inappropriate for use with the UART bus. The digital

multiplexer also has a dedicated input and output side, and it expects the signal on the

input being the signal source (driving), while the output is the signal sink (driven) –

meaning that a digital multiplexer is a unidirectionally operating device. In the topology

employed to realize a shared UART bus, the device to which the RX and TX lines of

various clients need to be routed (the ATmega328P) is the driving side of one of these

lines (namely, the TX line), and therefore a digital multiplexer cannot be used.

The analogue switch multiplexer MC14052B is implemented in the new circuit design of

µ-CAT. It is digitally controlled (through address and enable), but the signals to be routed

can be of any nature and – more importantly – of any direction. Depending on the 2-bit

73

address setting, the chip routes each signal in its singular pair of common pins to a

corresponding signal in one of four other pairs of pins. The ATmega328P UART pins RX

and TX are connected to the common pins of the multiplexer, and the UART interfaces

of the three potential communication partners – the FTDI chip, the Raspberry Pi and the

Bluetooth module – are connected to the other routing pins of the multiplexer.

Figure 21. Multiplexer schematic diagram.

Figure 21 shows the routing of the multiplexer pins. The routing table for the multiplexer

is given in Appendix A 4.3.

4.12 Communication line from Arduino to Raspberry Pi

A GPIO status line is provided between Arduino physical pin 25 and Raspberry Pi

physical pin 7. It can be used by the Arduino microcontroller to send simple messages (in

the form of sequences of digital high and low states) to the Raspberry Pi. This way, the

Raspberry Pi can be informed about critical or exceptional system states on low-level

components which are monitored by the Arduino. The logic level translation from

Arduino’s 5V level (signal called “ARD2RPI_HV”) to the Raspberry Pi’s 3.3V level

(signal called “ARD2RPI_LV”) is done by the level shifter described in Section 4.19.

The status LED “HWINT” lights up whenever this signal line is high.

4.13 Performing a reset of the Arduino microcontroller

It is possible to reset the Arduino microcontroller via the integrated pushbutton. However,

this button is not accessible when the robot is fully assembled. Therefore, an alternative

way of resetting via the GPIO pin 11 on the Raspberry Pi is provided by a signal line

called “ARDU_RST_LV” which opens the digital NPN transistor T1, connecting “GND”

to Arduino’s reset pin. Resetting the Arduino through the Raspberry Pi makes it possible

74

to upload code to the Arduino using the Raspberry Pi’s UART port. To perform this

upload, the Raspberry Pi must set the multiplexer UART routing accordingly (see Section

4.11).

4.14 Implementation of status LEDs

With the aim to improve user interaction with µ-CAT during operation and debugging,

several status LEDs are integrated on the PCB. Each of them carries a printed name on

the circuit board. In the following subsections, Table 8 lists the RGB LED and Table 9

all single-coloured LEDs including their functions. Electrical characteristics, chosen

resistor values and calculated power consumptions can be found in Appendix A 2.1.

All LEDs except for LED11 are placed on the top layer of the PCB which points upwards

when installed on the robot.

4.14.1 Implementation of RGB status LED

The RGB LED CLP6C-FKB consists of three separate LEDs in one die. Each of them

has its individual forward voltage and needs its individual resistor, as calculated by the

equation above.

The purpose of the RGB LED is to have a high flexibility in being able to colour-code

messages from the robot to the user, covering a wide range of different topics, including

system status and warning or error codes. The definition of colour codes used on the RGB

LED is up to the engineer and can be programmed through code executed on the

Raspberry Pi.

For highest flexibility and best PWM (pulse width modulation) output, the natively

capable PWM pins [54] on the Raspberry Pi are used for the RGB LED.

Table 8. Onboard RGB status LED.

Eagle name Printed name Colour Indication

LED5-G RGB LED green User-defined, implemented by software.

LED5-R red

LED5-B blue

The resistors for the LED are chosen such that, assuming a 100% PWM duty cycle, each

LED inside this chip is driven at about 50% of its nominal forward current, which is

75

expected to yield approximately 50% of the nominal luminous intensity of the RGB LED

[55, p. 5]. As tests have shown, this is sufficient for low-distance signalling.

As a side note, depending on the required distance between communication partners, the

RGB LED offers potential for usage as a messaging device from robot to robot. Since µ-

CAT is now equipped with a capable camera, colour codes emitted by the RGB LED on

a robot could be used as signals for communication between robots working in a swarm.

4.14.2 Implementation of single-colour LEDs

For the single-colour LEDs, a strict colour-coding scheme is used: Green LEDs indicate

regular mode of operation, yellow or blue LEDs indicate special events (messages or

certain status flags), and red LEDs indicate faults.

In order to save power, the in-series resistor values for single-coloured LEDs in µ-CAT’s

design are chosen such that the LEDs are driven at low brightness, at around 10% of their

mid-range forward current values. Experimental tests have shown that this brightness is

enough for a clear indication. For all single-coloured LEDs, the desired forward current

is about 2mA.

Table 9. Onboard status LEDs.

Eagle name Printed name Colour Indication

LED1 3V3 green On: 3.3V voltage regulator provides output.

LED2 TX yellow Toggle: data flow from FTDI UART.

LED9 RX yellow Toggle: data flow to FTDI UART.

LED3 HWINT yellow Toggle: data flow from Arduino to

Raspberry Pi via “ARD2RPI_HV”.

LED4 BATLOW red On: battery voltage below critical level.

LED6 5V green On: 5V buck converter provides output.

LED8 6V green On: 6V voltage regulator provides output.

LED10 BTS blue On: Bluetooth module is connected.

LED11 BTS11 blue Flash 1Hz: Command mode.

Flash 2Hz: Data mode.

Locations of LEDs on the PCB can be found in Section 4.21.

1 Parallel to onboard LED on HC-05 breakout board.

76

4.15 Component updates: IMU and pressure sensor

To ensure the availability of components for this design upgrade and for the production

of future copies of µ-CAT, the IMU and the pressure sensor are updated with newer

versions. The new devices perform the same functions as the old ones but may require

new software drivers and a different electrical connection.

The original IMU is upgraded with a newer version from the same manufacturer – TDK

InvenSense ICM-20608-G. The device’s features are similar to those of the original IC.

The reason for this update is to maintain availability of components used on µ-CAT, to

guarantee future producibility.

The IMU includes a triple-axis MEMS gyroscope with digital output for angular

velocities about all three axes, an accelerometer with digital output of linear accelerations

along all three axes and a thermometer [56, Ch. 2]. The device can be interfaced using

I²C or SPI [56, Ch. 2.3]. On µ-CAT’s design, I²C is used, and the device is a slave on that

bus. Up to two of such chips can be placed on the same I²C bus, and their addresses are

selected by setting the state of the address pin “AD0” [56, Ch. 6.2]. Whenever the sensor

performs a new measurement, it stores it in its internal FIFO (First in, first out) buffer and

sets a flag which can be read using the interrupt status pin signal on pin “INT”.

The new pressure sensor MS5837-02BA has a very compact footprint

(3.3 x 3.3 x 2.75mm – approximately one quarter of the area of the old pressure sensor)

and is therefore very easy to physically integrate into the new design. The sensor covers

pressures ranging from 300mbar to 1200mbar – which allows sensing in diving depths

up to approximately 2m in water. It withstands pressures of up to 10bar (91m depth).

The given resolution of 13cm at sea level [57, p. 1] means that it can detect changes as

small as 0.0153mbar, which corresponds to a resolution of more than 65000 discretized

values per 1bar of pressure – a resolution of around 0.15mm in water. The accuracy

describes the maximum bias (offset) from the correct value to be expected in a single

measurement under specific environmental and electrical conditions, and under the

conditions in which µ-CAT is operated, it is stated to be within a corridor of ±2mbar

[57, p. 3] which corresponds to roughly 2cm in water. The device is interfaced using the

I²C protocol.

77

There are several advantages of the new over the old sensor, apart from the reduced

footprint size. The first one to mention is the lower production cost and effort. The old

sensor requires an operational amplifier and an ADC (analogue-to-digital) converter chip

in order to have enough accuracy when reading the output voltage using an analogue input

pin of the Arduino. The new one does not require these components, since it comes with

a microcontroller integrated, providing digital data. Secondly, with the elimination of

these additional components, the power consumption is expected to be reduced.

4.16 Integration of motor drivers (I²C)

Four ICs of type DRV8830 – one per motor – are used to drive the servo motors through

an internal H-bridge. These chips can be interfaced via I²C bus. Each chip provides two

address pins which can be in one of three states: high, low or open. This way, up to nine

addresses can be set for this type of device on the I²C bus. When implementing the motor

drivers into the new design, care is taken that the original addresses of the devices are

kept, so that no software-sided modification is required. The devices can sense the current

consumption of the load if external shunt resistors are placed. This feature is currently not

used on µ-CAT, but space for the respective shunt resistors is provided on the circuit

board. With the feature omitted these resistors should have a value of 0Ω, otherwise their

values are calculated based on the voltage drop of 200mV (according to the chip’s

reference voltage) to be created when the current threshold value is reached [58, Ch.

7.3.3]:

𝑅ISENSE [Ω] =
0.2 [V]

𝐼LIMIT [A]
 (24)

With a measured current consumption of approximately 138mA per motor during regular

operation and an expected current consumption of around 500mA per motor in stall

condition, a current threshold of 400mA for each motor would be a safe choice to detect

stalling. Using above equation, this would yield a value of 0.5Ω for each of the resistors

R13, R14, R15 and R16 (see Figure 22). Since the dedicated “FAULT” pin of the chips

is not routed on the PCB, the flag bits D0 and D4 set in the I²C register 1 [58, Ch. 7.6.1.2]

would need to be used in order to detect the fault condition by software.

78

Figure 22. Motors drivers’ schematic diagrams.

The chips’ surrounding circuitry (Figure 22) is developed in accordance with the

prescriptions in the datasheet [58, Sec. 5], and they are integrated into the new layout of

the PCB as per recommendation [58, Sec. 10.2]. The latter requires a specific footprint

(Figure 23) which guarantees sufficient size of the thermal pad and which allows this pad

to extend seamlessly into the surrounding ground fill of the PCB. With a proper heat-

sinking pad provided, the chip can provide up to 1A peak output current without

overheating [58, Ch. 3].

Figure 23. Custom-made Eagle footprint for DRV8830 (Eagle rendering).

The described implementations refer to PCB design version 26.

4.17 Integration of motors

The servo motors from the original µ-CAT are used in the upgraded version. Improved

placement of motor connectors to the PCB allows for shorter wires from the motors. This

79

is expected to improve EMC (electromagnetic compatibility) characteristics and provides

a cleaner overview when working on the robot.

The outputs of the motor driver chips are routed to four pin header connectors with two

pins each. These are SMD connectors, positioned near the corners of the PCB, to keep

wire runs to the motors short.

To obtain feedback from the motors, they have been modified by the engineers of Centre

for Biorobotics and have been used with this modification already on the original version

of µ-CAT. The team expressed their wish to keep this manual alteration of the motors in

the upgraded version. The original motors (off the shelf) are equipped with an internal

microcontroller, which allows for sending a position command to the motor, and an

internal potentiometer as a feedback sensor to get the motor to the setpoint. This motor,

when used as-is, does not provide any feedback information to the user, so no external

control algorithms can be applied.

In the course of the modification of the motor, the rotary Hall effect sensor AMS AS5040

has been added as a replacement for the original potentiometer. The internal

microcontroller has been removed, and interfacing signal lines to the Hall effect sensor

have been provided, so that the feedback information is available to a user – who can now

apply custom-made control algorithms.

The Hall encoder interface lines consist of five signals, including 5V and ground. They

use a three-wire SPI interface which contains a chip select (“CS”) line. To connect the

motor encoders, SMD connectors are chosen and placed on the top layer of the PCB, near

the corners, to keep the wire runs to the motors short.

The described implementations refer to PCB design version 26.

4.18 Integration of battery voltage measurement

In order to measure the battery voltage with the Arduino microcontroller, a simple voltage

divider circuit is implemented, taken over from the original µ-CAT design. The voltage

divider is clamped between the battery voltage line (“VIN”) and the ground. The output

line from the voltage divider is called “BATTERY_MEASURE” and routed to analogue

input pin ADC6.

80

The output voltage of the voltmeter can be calculated as follows:

𝑈out = 𝑈B ∗
𝑅L

𝑅L+𝑅H
 (25)

where: 𝑈out [V] output from voltage divider
𝑈B [V] supply voltage from battery
𝑅L [Ω] resistor between supply and output (R28)
𝑅H [Ω] resistor between ground and output (R29)

With the resistor values used on µ-CAT (𝑅H = 47kΩ, 𝑅L = 5.6kΩ), the output voltage of

the voltage divider is always around 10.6% of the supply voltage, therefore ranging up

to approximately 0.72V for the nominal value of the batteries. With the resistor values

used, the battery voltage value can be calculated from the voltage divider output voltage

using the following equation:

𝑈B =
𝑈out

0.106
 (26)

The sensing range of the Arduino microcontroller is set to match with this range by using

the internal analogue voltage reference of the ATmega328P, which is 1.1V. With

approximately 0.79V being used as the maximum value (full batteries), this corresponds

to almost 72% of the full range, providing a precision of 734 distinct values to measure

battery voltage. In case the robot is powered through an external power source with

slightly higher voltage, for the purpose of testing, the design leaves headroom for

measuring this voltage without destroying the microcontroller. The maximum measurable

input voltage is 10.37V.

The correspondence between the analogue input value 𝑥 with range (0; 1023) and the

output voltage from the voltage divider is expressed as follows:

𝑈out = 1.1V ∗
𝑥

1023
 (27)

From the analogue input value 𝑥, the battery voltage can be calculated using following

equation:

𝑈B = 1.1V ∗
𝑥

1023∗0.106
= 0.010V ∗ 𝑥 (28)

81

4.19 Implementation of level shifters

Commonly used voltage levels on devices are 3.3V and 5V. In the Eagle design, most

signal lines with voltage levels of 3.3V carry the suffix “_LV” (low voltage), the ones

with 5V levels the suffix “_HV” (high voltage). Whenever two devices with different

logic voltage levels must communicate with each other, a level shifter can be used to take

care about the translation between these voltages. This helps protect the device with the

lower voltage level from overvoltage. If the voltage level on one side of the level shifter

is 0V (low), the other side automatically is also 0V (low). If the voltage on one side of the

level shifter is high, the other side must also become high, but the voltage must correspond

to the desired voltage level of this side. The voltages to be used by the level shifter are

usually defined by applying the levels to reference pins, one on each side of the level

shifter.

Instead of using a dedicated voltage level shifter IC, a network of two resistors and a

Schottky diode can be used, as suggested in the Bluetooth module datasheet [59, Fig. 3].

Since the new PCB design requires level shifting between more than two devices, using

a chip is more space-efficient.

In this new circuit design, two different level shifter ICs are used, as explained in the

following subsections.

TXB0104 is a digital CMOS bidirectional 4-channel voltage-level translator with

automatic detection of the direction of a signal. This allows either of the two sides to be

the driving side, while the other side follows accordingly. Whether a side is driving or

driven is independent from its state (high or low).

Since I²C uses strong pullup resistors (1kΩ), TXB0104 is not applicable for translating

voltages on the I²C bus because of the low drive strength of the chip’s outputs [60, Ch.

8.3.5]. Therefore, a different chip is used to translate the voltages on the I²C bus:

PCA9306. This IC has been especially developed for the purpose of handling translations

on the I²C bus. Its operating principle is based on an N-channel MOSFET switch used on

each signal line routing. Additionally, a diode is placed from source to drain. The gate of

the transistor is always high (connected to the low-side positive voltage), therefore the

transistor conducts whenever its source voltage potential falls below that of the gate. The

82

source of the transistor is connected to the low-side bus signal, and its drain to the high-

side bus signal.

▪ In the default state, both sides are high (due to the external pullup resistors).

▪ When the low-voltage side drives the bus low, the transistor becomes conductive

(source potential below gate potential), and due to its very small internal

resistance, the potential on the drain (high-voltage side signal) becomes low.

▪ When the high-voltage side drives the bus low, the internal diode becomes

forward-biased for one moment, and its knee voltage demands the voltage on the

low-voltage side signal to become only slightly higher (around 0.7V) than that of

the high-voltage side. In this condition, the transistor becomes conductive, and the

signal on the low-voltage side becomes equal to that on the high-voltage side (0V).

The diode is now bypassed.

The level shifter can be disabled by opening jumper “I2CLVLEN” (indicated as

“I2C_LVL_EN” on the PCB). This allows the use of the low-voltage I²C bus without

connection to the high-voltage side (Raspberry Pi and all I²C devices except for Arduino

and motor drivers).

4.20 Provision of test pads

The following tables list all test pads provided on the PCB, with their name indicated

(printed) on the PCB in the left column. The last column relates to the signal connected

to the respective test pad.

For six signals related to power supply signals the following test pads (Table 10) are

provided (more than one pad with the same name might be present on the PCB):

Table 10. Provided power supply test pads.

Pad name Purpose Eagle signal line name

3V3 3.3V line from regulator 3V3

5V 5V line from regulator 5V

6V 6V line from regulator MOTOR_VCC

GND Ground (0V) reference GND

USB5 5V line from USB port USB_VCC

VIN Battery voltage VIN

For 11 miscellaneous signals, the following test pads (Table 11) are provided:

83

Table 11. Provided test pads for miscellaneous signals.

Pad name Purpose Eagle signal line name

PDL Photodiode left PHOTODIODE_L

PDR Photodiode right PHOTODIODE_R

RCL Tone detector received signal left TO_RCVR_L

RCR Tone detector received signal right TO_RCVR_L

TDA Tone detectors combined amplified output TD_OUT_AMP

TDL Tone detector left output to FSK TD_OUT_L

TDLA Tone detector left amplified output to logic OR TD_OUT_L_AMP

TDR Tone detector right output to FSK TD_OUT_R

TDRA Tone detector left amplified output to logic OR TD_OUT_R_AMP

V2L Tone detector left centre voltage VCC/2_L

V2R Tone detector right centre voltage VCC/2_R

Seven signals routed to pins of the Raspberry Pi computer have the following test pads

(Table 12) on the PCB:

Table 12. Provided test pads for signals connecting to Raspberry Pi pins.

Pad

name

Purpose Pin

no.

Type Eagle signal line

name

APL Messages Arduino to Raspberry Pi

(3.3V)

7 Input ARD2RPI_LV

BTE Bluetooth EN pin (enable) 13 Output BT_CMD

BTR Bluetooth RST pin (reset) 38 Output BT_RST

BTS Bluetooth STATE pin (connection status) 40 Input BT_STATE

R3V3 Raspberry Pi-generated 3.3V output 1 Power RPI_3V3

X0 UART TX (3.3V) 8 Output RPI_TX

Y0 UART RX (3.3V) 10 Input RPI_RX

23 signals routed to pins of the Arduino microcontroller have the following (smaller

sized) test pads (Table 13) on the PCB:

Table 13. Provided test pads for signals connecting to Arduino pins.

Pad

name

Purpose Pin

name

Type Eagle signal line name

A7 Analog input pin (unused) ADC7 A. Input ADC7

APH Arduino to Raspberry Pi

(5V)

PC2 Output ARD2RPI_HV

BLO Battery low signal PC0 Output BATTERY_LOW_LED

BM Battery voltmeter signal ADC6 A. Input BATTERY_MEASURE

CS1 Encoder Front-R. SPI select PD7 Output CS1

CS2 Encoder Rear-R. SPI select PB2 Output CS2

CS3 Encoder Rear-L. SPI select PB1 Output CS3

CS4 Encoder Front-L. SPI select PB0 Output CS4

84

Table 14. Provided test pads for signals connecting to Arduino pins [continued].

Pad

name

Purpose Pin

name

Type Eagle signal line name

FEN FSK module enable PC1 Output FSK_ENABLE

FRX FSK module receive PD6 Input FSK_RX

FTX FSK module send PD3 Output FSK_TX

IMU IMU interrupt signal 5V PD2 Input IMUINT_HV

LB Left beacon signal PD5 Input LEFTBEACON

MEN Motor power enable pin PC3 Output MOTOR_EN

MISO SPI MISO bus 5V PB4 Input SPI_MISO

MOSI SPI MOSI bus 5V PB3 Output SPI_MOSI

RB Right beacon signal PD4 Input RIGHTBEACON

RST Arduino reset pin PC6 Input ARDU_RST

RX UART RX (5V) PD0 Input ARDU_RX

SCK SPI clock (5V) PB51 Output SPI_SCK

SCL I²C clock (5V) PC5 Output I2C_SCL_HV

SDA I²C data (5V) PC4 Bus I2C_SDA_HV

TX UART TX (5V) PD1 Output ARDU_TX

In addition to the test pads, two ground fill areas (congruent; one in top, the other in

bottom layer) are exposed along part of one edge of the circuit board. These are practical

when measuring signals using an oscilloscope: the ground connector (usually a crocodile

clamp) can be attached to them.

The physical locations of all test pads can be found in Section 4.21, Figure 24.

4.21 Considerations on modularity and reliability

With the aim to improve reliability in terms of vibration-tolerance and to avoid bad

contacting due to corrosion, the overall design follows the principle to avoid pin headers

or wire connections wherever possible.

On the previous version of µ-CAT, the following devices were installed as add-on

components:

▪ motor drivers;

▪ FTDI chip;

1 Through resistor R1.

85

▪ tone detectors;

▪ Arduino Mini 05 board;

▪ power supply PCB.

On the new version of the PCB, only the following devices are connected via pin headers:

▪ Raspberry Pi single-board computer;

▪ FSK module.

The decision to integrate devices into the layout rather than making them detachable

involves a trade-off in terms of modularity. In case of water damage or failure of a

components, the corresponding device cannot be easily replaced. However, since the

production of a single PCB is cheap and does not necessarily involve manual methods

anymore, this trade-off is acceptable, and the aim for reliability is of higher importance.

Apart from that, the provision of test pads facilitates debugging and detection of the failed

component which can then be manually replaced in a few relatively simple steps.

Another advantage of avoiding excessive modularity is the higher space-efficiency:

devices can be placed more closely to each other, and with the avoidance of through-hole

pin headers, both sides of the PCB can be used to a greater extent.

4.22 Using the main PCB

This section gives an overview on all features of the main PCB with which the user is

most likely to interact during operation, debugging and assembly of the robot.

Test pads and most LEDs are located on the top layer of the board, to allow for easy

debugging and monitoring. Figure 24 shows their locations on the PCB.

86

Connectors are and jumpers are located on both copper sides of the PCB. Their locations

are shown in Figure 25 and Figure 26.

Figure 25. Connectors and jumpers on the top layer (Eagle rendering).

Figure 24. Test pads and LEDs (Eagle rendering). Test pads (green), LEDs on the top layer (white) and

LEDs on the bottom layer (orange).

87

Figure 26. Connectors and jumpers on the bottom layer (Eagle rendering).

4.23 Results and discussion

All working features of the original µ-CAT robot are implemented in the new design and

tested. The following subsections do not emphasize on these features, but list only

significant improvements and changes to the robot. Figure 27 shows the result of the

Eagle design work (referring to version 26 of the PCB), and Figure 28 shows top and

bottom view of the real PCB (version 21), with some components not yet in place.

88

Figure 27. Eagle renderings of new PCB. Top view (left) and bottom view (right).

89

Figure 28. New PCB. Top view (left) and bottom view (right).

4.23.1 Power distribution, consumption and supply

Apart from the 6V power supply for the motors, µ-CAT is now equipped with a 5V buck

converter circuit and a 3.3V linear voltage regulator supply on the new PCB.

Figure 29 shows the topology of power distribution lines of the updated robot, along with

their names by which they are identified in the schematic diagram in Eagle.

90

The power consumptions of old and new µ-CAT have been experimentally compared, as

described in Appendix A 1.3. The following observations can be made:

▪ Under full load (including all new components added and running), the new robot

consumes 5.669W. This yields a battery lifetime of approximately 2.9h, using the

batteries from original µ-CAT, as stated in Section 2.1.2,

o The old robot has a consumption of 3.434W with all devices powered.

The consumption of the new robot has increased to 165%.

▪ Analysing the performance of the new PCB with the old one under comparable

conditions (same devices connected):

o Quiescent consumption of the new PCB is 79% of the old PCB without

Raspberry Pi.

Figure 29. Block diagram of power distribution on the updated µ-CAT. The diode ensures that USB can

power the 5V rail only if its voltage is higher than the supplied voltage from the buck converter. The

minimum difference is equal to the knee voltage of the diode (~0.5V).

91

o Quiescent consumption of the new PCB is 57% of the old PCB with

Raspberry Pi. This shows the obtained power saving due to the buck

converter on the 5V rail.

▪ Comparing old robot under full load including a Raspberry Pi with the new robot

under full load (additional hardware: messaging LEDs and Bluetooth module), the

new robot consumes 3% less power.

Tests also show that the circuitry can be fully powered using only the USB supply.

Changes have also been made to the reed switch connection. Its connection principle is

opposed to that used in the original µ-CAT design, and it reduces the probability of the

magnet getting lost during operation of the robot. With the original µ-CAT design, if the

robot loses the magnet while being in the water, it would switch off and remain passively

floating – which would pose the risk of getting lost or destroyed. In the new design, the

robot is operated without the magnet in place.

4.23.2 Integration of Arduino, Raspberry Pi Zero W and camera module

The original Arduino board layout is copied with modifications to the new PCB. The

onboard voltage regulator is removed, and a slightly different CPU package version is

used, which features a thermal pad underneath. Redundant pin access points are removed

for higher space-efficiency. Instead of the through-hole pins used on the original Arduino

board, SMD (surface mount device) test pads are used. An ICSP (in-circuit serial

programming) pin header is added to provide a port for low-level programming of the

microcontroller, for example, if a new bootloader is needed.

In cases where UART communication between Raspberry Pi and Arduino is not

established, the Arduino can use a dedicated signal line to request certain tasks from the

Raspberry Pi.

The following list summarizes the implemented features relating interfacing between

Raspberry Pi and other components and subsystems on µ-CAT:

▪ Raspberry Pi interfaces the camera module;

▪ Raspberry Pi can reset the Arduino via a dedicated GPIO output pin (see Section

4.13);

92

▪ Raspberry Pi can communicate via the UART bus with Arduino (see Section

4.11);

▪ Raspberry Pi can be used to flash new software to the Arduino microcontroller (as

a result of the previous two features combined);

▪ Raspberry Pi can communicate via the I²C bus with other I²C devices and with

Arduino (if jumpers “RPISDA” and “RPISCL” are set, which are indicated as

“RPI_SDA” and “RPI_SCL” on the PCB, respectively);

▪ Raspberry Pi can communicate with Arduino via Bluetooth;

▪ Raspberry Pi controls the multiplexer chip (see Section 4.11.1);

▪ Raspberry Pi drives the onboard RGB status LED (see Section 4.14.1);

▪ Raspberry Pi controls the standalone Bluetooth module (see Section 4.10.2);

▪ Arduino can send simple messages on a one-wire unidirectional signal line to the

Raspberry Pi (see Section 4.12).

The addition of jumpers on the I²C line allows for the Raspberry Pi instead of the Arduino

to be used for interfacing all sensors on that bus if the I²C level shifter is disabled by

opening jumper “I2CLVLEN” (indicated as “I2C_LVL_EN” on the PCB).

With the implementation of the camera module, µ-CAT will now be able to perform

visual servoing and object detection and avoidance, using software algorithms running on

the Raspberry Pi. This greatly improves the level of autonomy of the robot.

4.23.3 Implementation of advanced optical messaging

The optical messaging system most typically covers three tasks:

▪ steer the robot left or right by using external light beacons;

▪ demodulate messages modulated onto the light signals;

▪ modulate messages onto a base signal and send them out via messaging LEDs

installed on the front end cap of the robot.

Being equipped with powerful signal LEDs in the front end cap, the robots can now

communicate back, either to the user or to other robots when working in a swarm.

The development of the messaging system is currently still ongoing (not part of this thesis

scope), but the PCB provides all interface pins to attach the FSK module. Pin headers are

provided on the PCB which can hold any frequency-shift keying PCB which has a

93

compatible circuitry and is designed considering the given pin layout. This form of

“partial integration” is less reliable than copying the layout to the PCB, but it offers more

flexibility. This is necessary because the module is expected to undergo changes before

it can finally implemented.

The tone detectors already exist on the original µ-CAT in the form of separate circuit

boards. For the new PCB design, to avoid potential sources of bad contacting, their layout

is integrated on the main PCB.

The same photodiodes used on the original µ-CAT design are implemented, but in a

physically more advantageous configuration than before, now allowing a for a better

distinction between optical signals from the right and from the left.

4.23.4 Communications

With integration of the new Bluetooth module, untethered messaging with the Arduino

microcontroller becomes a possibility. The integration of Raspberry Pi Zero W allows

additional for wireless communication methods.

With the integration of the multiplexer, one of three devices can communicate with

Arduino using UART. The Raspberry Pi W handles the switching procedure by

interfacing the multiplexer.

The integration of two level shifters allows for devices with two different voltage levels

to communicate with each other on the same busses.

4.23.5 Improved user-interface

The RGB LED is implemented and ready to be used with PWM-capable pins on the

Raspberry Pi. It offers possibility for µ-CAT to keep the user updated on system status.

Colour-coded messages can be used to distinguish between a variety of messages.

With test pads on 47 signals, almost each component of the new PCB can be tested using

a voltmeter or oscilloscope. This improves µ-CAT’s usefulness as a teaching tool and

allows for more efficient debugging procedures in case of malfunctions.

94

4.23.6 Future work

In the latest design version of the PCB (version 26), some connectors are replaced by

SMD components, in order to save space and facilitate connecting of plugs. Since many

of them are of the same type – Molex PicoBlade – a user might accidentally plug a

component into the wrong connector during assembly. As part of future improvements,

some additional time must therefore be invested for finding dissimilar connector socket

types for different types of devices.

In the next design iterations, the fuse protecting the batteries from overcurrent must be

integrated onto the PCB. A self-resettable polyfused can be used for that purpose. In the

original design, a glass-body fuse has been placed inside the battery compartment. Since

µ-CAT uses a new type of batteries now which are longer than the original ones, this fuse

does not fit inside the compartment anymore. For now, it must be placed in line with the

wire leading from the batteries to the PCB.

The next version of the PCB will have the input of the 3.3V regulator routed to the output

of the 5V regulator, not to the battery voltage. This will prevent the 3.3V components

from remaining powered when the reed switch is closed.

Other improvements concern ease of assembly: To facilitate self-centring of the PCB in

the grooves of the front end cap, the PCB needs to slide into the Plexiglass weight dividers

freely. To achieve this, electronic components close to the edge of the PCB must be

moved. Apart from that, it is planned to mount one circuit board on the inside of each end

cap. Each of them has connectors to the electronic components on one side and a slide-in

connector on the other, where the PCB connects to when pushing the end caps against it.

this way, mechanical and electrical contact are established at the same time.

95

5 Software

This chapter presents the results of the thesis project regarding software development.

The first part presents methods to flash new code to the Arduino microcontroller, and the

second part describes the test software created for testing the components on the new

motherboard.

5.1 Programming the Arduino

While the Raspberry Pi Zero is equipped with a Linux operating system on a micro-SD

card and can easily be programmed by connecting to it via SSH (secure shell), WLAN or

by placing the micro-SD card into another computer, the methods of programming of the

low-level microcontroller need to be considered in the electronic design of the Embedded

System. The new PCB offers several methods to program the Arduino.

5.1.1 ICSP

The microcontroller can be flashed via its ICSP pin header. This method is not

recommended for regular use, because the code will overwrite the bootloader on the AVR.

Without the bootloader, it is not possible to program the microcontroller through UART.

In order to enable programming via UART, a bootloader must be flashed to the

microcontroller. This can only be done via ICSP. The Arduino IDE (integrated

development environment) offers a possibility to do that.

For flashing code or the bootloader to the AVR, the ISP programmer must be connected

to the ICSP pin header and the other side to a USB port of the PC. For flashing code, the

function “Upload Using Programmer” can be selected in Arduino IDE from the “Sketch”

menu. For flashing the bootloader, the option “Burn Bootloader” from the “Tools” menu

can be used.

5.1.2 UART

Although UART is designed as a one-to-one communication protocol, the new PCB

offers the possibility for one of several devices to communicate with Arduino via UART

96

using the multiplexer. To flash code to the microcontroller via UART, the multiplexer is

instructed to route the respective UART device port to the Arduino. This instruction can

only be issued by the Raspberry Pi, and Python scripts are provided as part of this thesis

work which accomplish the switching procedure.

UART via USB

The Arduino Mini 05 does not offer a USB port out of the box. An FTDI chip is installed

on the PCB, allowing the Arduino to be programmed via USB, using the Arduino IDE.

When doing so, the microcontroller is automatically reset shortly before the flash

procedure starts. This is done by pulsing the “DTR” pin on the FTDI chip.

UART via Raspberry Pi

The most convenient method of programming the Arduino is via the Raspberry Pi,

because the Raspberry Pi can reset the Arduino automatically in the right moment.

However, this automatic reset cannot be executed when flashing the Arduino through the

regular Arduino IDE. Instead, Python scripts running on the Raspberry Pi are provided as

part of this thesis work which fully automate the compilation and upload process of any

given Arduino sketch.

5.2 Test case automation

For the components on the new PCB, test software is developed as part of this thesis

project. The purpose of this software is to verify proper function of a newly produced

PCB and to troubleshoot during regular use. The software suite consists of several test

case modules and an overlaying user interface. The test case files are stored on the SD

card of the Raspberry Pi and executed from there. The software is organized in a modular

way, with distributed files in different folders, where the file structure reflects the

software architecture: each test case is in a separate folder which contains all required

files for that test case. Shared files which are used by several test cases are not duplicated

but placed in a folder at the root of the test case folder structure.

The following sections provide proof-of-concept of the test software suite, including a

number of test cases. References to most relevant files can be found in Appendix A 4.4.

97

5.2.1 User interface

The overlaying user interface – a Python 3 script – facilitates the execution of test cases

in the following ways:

▪ The end user does not need to manually locate the test case files. The user interface

finds them as specified in a text file, and the user can start a test case through the

user interface.

▪ The user interface displays a general description for each test case, stating its

purpose and working principle, and provides instructions individual to each test

case.

▪ The user interface takes care that parameters required for running a test case are

defined and stores them for future executions of the test case.

The working principle of the user interface script is graphically presented in Figure 30,

and the corresponding Python code can be found in Appendix A 4.4.2.

Figure 30. Flowchart of the overlaying user interface Python script.

The list of test cases presented to the user contains only those test cases which are defined

in the file “testcases.csv”.

When the user interface calls a test case, it passes the following arguments along:

▪ file name of the test case file to be executed, for example “a01.py”;

98

▪ code of the chosen test case, for example “a01”;

▪ name of the chosen test case, for example “UART_RPi”;

▪ date and time of execution (two arguments);

▪ name of the file containing the parameters, i.e., “params.csv”.

For test cases where the Arduino must be programmed with specific code, the Python

script configures the Arduino code file to contain the user-specified parameters, wherever

required. It also writes a timestamp to the Arduino code which is reported to the

Raspberry Pi via UART upon execution of the Arduino code, so the Python script can

detect if the flashing of the code has been successful.

5.2.2 Test cases

Test cases are divided into two groups – “Arduino” and “other”. The first involves the

Arduino microcontroller, which means that a Python script will flash it with specific code

in order to execute the test case. The latter does not need any collaboration with the

Arduino and runs solely on the Raspberry Pi.

The following list (Table 14) shows the minimum required test cases for a thorough

testing of the PCB.

Table 14. List of test cases and their mainly targeted unit(s) under test.

Code Main unit(s) under test F
la

sh
es

 A
rd

u
in

o

U
se

r
-i

n
te

ra
c
ti

v
e

S
el

f-
ev

a
lu

a
ti

n
g

C
o
m

p
le

te
d

a01 UART (Raspberry Pi) ⚫ ⚫ ⚫

a02

GPIO lines:

ARDU_RST_LV

ARDU_RST_HV

⚫ ⚫ ⚫

a03 UART (FTDI/USB) ⚫ ⚫ ⚫

a04 Battery voltage measurement ⚫ ⚫ ⚫ ⚫

a05 UART (Bluetooth) ⚫ ⚫ ⚫

99

Table 15. List of test cases and their mainly targeted unit(s) under test [continued].

Code Main unit(s) under test F
la

sh
es

 A
rd

u
in

o

U
se

r
-i

n
te

ra
c
ti

v
e

S
el

f-
ev

a
lu

a
ti

n
g

C
o
m

p
le

te
d

a06

GPIO lines:

ARD2RPI_HV

ARD2RPI_LV

⚫ ⚫ ⚫

a07 Bluetooth command mode ⚫ ⚫ ⚫

a08 I²C addresses ⚫ ⚫ ⚫

a09 Motor drivers: write (and read fault) ⚫ ⚫

a10 SPI bus ⚫ ⚫

a11 Motor feedback sensors: read ⚫ ⚫ ⚫

a12 Motors: drive and check ⚫ ⚫

a13 Pressure sensor: read ⚫

a14

IMU: read:

Gyroscope data

Accelerometer data

Temperature data

⚫ ⚫

a15 Beacon signals ⚫ ⚫ ⚫

a16 FSK: read and write (incl. messaging LEDs) ⚫ ⚫

o01 RGB LED ⚫ ⚫

o02 Camera: operation

o03 Camera: object recognition ⚫

The table shows for each test case if the microcontroller will be programmed, if the test

requires user-interaction, if the Raspberry Pi script can determine the success of the test

without relying on user feedback and if the test case has been completed by the time of

this thesis submission. The latter can be determined based on two factors: (a) the test case

scripts and codes have been finished; (b) the execution of the test case yields positive

results. Note that a test case, in order to function properly, may require more devices to

operate correctly than the one stated as the main unit under test. This also means that

some components on the PCB do not require dedicated test cases to be tested.

The test cases provided are explained briefly in the following subsections. Some of them

have already been executed several times in order to test the capabilities of the new PCB

and to verify the correct operation of its components. For some test cases, conclusions

drawn from the executed tests are stated in Section 5.4.1.

100

The individual test cases consist of a Python script and – in some cases – additional files,

such as a parameter file and an Arduino sketch.

The basic structure of all test cases is similar. Being called from the user interface script

(as described in Section 5.2.1) with several strings as arguments, the test case script

executes the following functions in the stated order (their main purposes are given to their

right, respectively, and indented functions are called from the previous promoted

function):

Table 15. Overview of common functions used in test case scripts. Functions indicated in blue are used

only in test cases which involve the Arduino.

Function Purpose

init() Stores passed command-line arguments in an array.

getParameters() Reads parameters from csv file and stores them in an array.

setup() Sets up GPIO Raspberry Pi pins and UART (if necessary).

switch() Sets multiplexer routing between Arduino and Raspberry Pi.

make() Compiles the Arduino code into hex file using make.

flash() Uploads the hex file to the microcontroller using avrdude.

reset() Resets the microcontroller before upload.

execute() Runs the actual test routine.

analyze() Compiles the test report.

printParameters() Prints all parameters and their values into the test report.

printResults() Prints specific test results into the test report.

The execute() method is individual to each test case. For some test cases, user-interaction

is required, and the execute() function contains functionality to guide the user through

the test procedure.

make is open-source software for compiling code into executables based on definitions

stated in a document called “Makefile”. It “controls the generation of executables and

other non-source files of a program from the program's source files” [61]. The script calls

to make using a method that emulates the call being issued from the terminal. This involves

101

the use of the os library: os.system(<command>) makes it possible to execute from the

Python script any command that could be used in the command-line terminal – where

<command> is the command or line of commands to be issued. In the case of make, the

command is make -f <path to Makefile>. In order to obtain useful executables from the

source code, the compiler must know the target hardware architecture – in this case it is

the ATmega328P microcontroller. Performing compilation on a processor architecture

which is different from the target architecture is referred to as “cross-compiling”, and the

compiler commonly used is GCC (GNU compiler collection) – more specifically, the

program avr-gcc is being called. make detects the target hardware from the parameters

specified in the “Makefile” and then invokes the actual compiler. The result of the

compilation comprises of a set of executables with file ending “.o” and “.elf”. make

invokes avr-objcopy to copy these output files into another format, thereby creating

“.hex” files.

avrdude is open-source software developed to flash AVR microcontrollers [62]. It takes

the content of the executable hex file created by the compiler and flashes it into the

EEPROM of the microcontroller.

Each test case includes its individual parameters file in a csv format. Before the specific

test case script is started, the main user interface gives the user opportunity to specify the

parameter values and writes them into the csv file. The test case script reads the

parameters from the file and uses them. Parameters for each test case are different. For

finalized test cases, their parameters are listed in the following Table 16. For many

parameters, their purpose is self-explanatory. For others, it is described in the following

subsections, under the respective test case.

Table 16. Parameters used in test cases.

Test case code Parameter name in the file Unit Type

a01 Baudrate bit/s Integer

a02 Repetitions Integer
Pulse time s Float

a03 Baudrate bit/s Integer
Repetitions Integer

a04 R_H Ω Integer
R_L Ω Integer
Analog reference V Float

102

Table 16. Parameters used in test cases [continued].

Test case code Parameter name in the file Unit Type

a05 Baudrate bit/s Integer
Repetitions Integer

a06 Repetitions Integer
Pulse time ms Integer
Off-time ms Integer

a07 Bluetooth data baudrate bit/s Integer
Bluetooth module name String
Bluetooth module password String
Max. attempts per parameter Integer
Max. time per parameter ms Integer
Bluetooth AT baudrate bit/s Integer

a08 Addr. H-bridge R-R Integer (hex.)
Addr. H-bridge F-R Integer (hex.)
Addr. H-bridge F-L Integer (hex.)
Addr. H-bridge R-L Integer (hex.)
Addr. Pressure sensor Integer (hex.)
Addr. IMU sensor Integer (hex.)
Max. attempts each Integer
Delay in attempts ms Integer

o01 Set PWM frequency Hz Integer

Each test case displays a report to the user after finishing execution and appends the same

report to a text file located inside the respective test case folder for future reference.

UART between Arduino and Raspberry Pi (“a01”)

The Arduino code listens to the Serial port on a user-defined baud rate and echoes each

message back to the sender.

The Python script generates a user-defined number of random ASCII (American standard

code for information interchange) strings and sends each of them to the Arduino. Upon

reception of the responses, it compares the sent strings to the received ones and

determines the success of the test.

Resetting the Arduino via the Raspberry Pi (“a02”)

The Arduino code detects if the microcontroller has been reset by writing a specific

integer to the EEPROM (Electrically erasable programmable read-only memory) at a

specific address upon its first execution, if this string is not yet present in the EEPROM.

If it is, it indicates that the code runs for the second time, after which the EEPROM

103

content is overwritten with a zero value. The Arduino reports via UART to the Raspberry

Pi if the code runs for the first or the second time.

The Python script waits for the Arduino to be ready (the Arduino reports this via UART)

and then resets the microcontroller. It waits for an answer via UART if the microcontroller

has been reset. The test is repeated for a specified number of times, as per user-definition.

Parameter Repetitions defines how many resets should be performed; parameter Pulse

time sets the duration of time the Arduino reset pin will be pulled low.

UART between Arduino and FTDI (“a03”)

The Python script instructs the user to open a serial terminal. It generates a user-defined

number of random ASCII strings and asks the user to enter them. The Arduino code, upon

reception of a string, echoes it back via UART. The Python script asks the user to enter

the received string into the Python terminal. When the test ends, the Arduino reports to

the Raspberry Pi via UART all strings it has received. The Python script then analyses

the results and determines how many transmissions were successful from user to Arduino

and how many from Arduino to user. The test cannot determine if data got corrupted on

the way between Arduino and Raspberry Pi; it is therefore recommended to execute test

case “a01” before and verify that the connection is robust.

Parameter Repetitions sets the number of strings the user will send to the Arduino during

this test routine.

Battery voltage measurement (“a04”)

When instructed via UART, the Arduino reads the analogue input which is connected to

the output of the voltage divider for the battery voltage measurement. Using a

proportionality constant calculated in the beginning of code execution by using user-

defined values for the resistors, it determines the corresponding battery voltage value

from the analogue input value and sends it to the Raspberry Pi via UART.

The applied battery voltage is not random but set by the user upon specific instructions

by the Python script. Henceforth, the Python script knows the correct battery voltage

value and calculates a calibration coefficient which is written into the Arduino sketch.

The Python script then flashes the Arduino with the modified code and repeats the test

104

execution. In the end, the optimal proportionality coefficient is reported to the user, along

with a comparison of test results before and after calibration.

Parameter R_H defines the value of the resistor between battery voltage and analogue input

pin used on the PCB, and parameter R_L defines the value of the resistor between analogue

input pin and ground. Parameter Analog reference sets the voltage value used as

reference for the ADC (analogue-to-digital converter) of the microcontroller. The user

must take care that this value corresponds to the microcontroller specifications and to the

Arduino code. For example, if the user sets this value to 5, the Python code will not

automatically remove the line analogReference(INTERNAL) from the Arduino code file.

The user must do that manually.

UART between Arduino and Bluetooth module (“a05”)

The test works like “a03”, but the user is instructed to open a terminal to read data from

and send data to the Bluetooth device.

The parameter Repetitions sets the number of strings the user is expected to send via the

Bluetooth terminal.

Signal line from Arduino to Raspberry Pi (“a06”)

In use cases where the UART interface of the Arduino microcontroller is not routed to

the Raspberry Pi, a signal line from Arduino to Raspberry Pi is provided. While the

Raspberry Pi can change the routing of the UART line to itself in order to report a critical

system state to the Arduino, the Arduino does not have control of the multiplexer and

must therefore rely on an alternative communication pathway in case of emergencies.

Messages sent through this line are expected to be short and simple – a sequence of pulses,

for example. Using a pre-defined number of pulses within a specified frequency range,

the Arduino can instruct the Raspberry Pi to execute one of a few functions. The most

likely to occur case is that the Arduino would need to instruct the Raspberry Pi to route

the UART line between them so it can send required messages.

For this test case, the user can specify pulse length, duration of off time between pulses

and the number of cycles. In each executed message cycle, the number of pulses is

incremented by one. The Python script uses an event listener to check for rising edges on

105

the GPIO pin. For each pulse sequence, it counts the number of detected rising edges and

determines if the number corresponds to the respective sequence count.

Parameter Repetitions defines the number of pulse sequences to send, Pulse time

defines the on-time of a single pulse, Off-time defines the off-time between pulses in a

sequence.

Bluetooth AT mode configuration (“a07”)

The main purpose of this testcase is to check if the Raspberry Pi can reset the Bluetooth

module into AT command mode and if the Arduino can interface with it using AT

commands [63]. To start the test case, UART is routed between Arduino and Raspberry

Pi first. After the Python code has verified the integrity and responsiveness of the Arduino

program, it instructs the Arduino code to start. Arduino responds with a pulse on the

“ARD2RPI” line, which triggers the Raspberry Pi to reset the Bluetooth module into

command mode, send a confirm code via UART and then route the Bluetooth module to

the Arduino. From this moment on, the Python script and Arduino cannot communicate

any more via UART and must therefore rely on the “ARD2RPI” line from Arduino to

Raspberry Pi. Arduino sets its serial baud rate to the value required for communication

with the Bluetooth module and issues a series of commands to the Bluetooth module,

while recording the responses. It signals its completion to the Raspberry Pi by pulsing

“ARD2RPI”. At this time, it resets its baud rate to the value required for communication

with Raspberry Pi. When the Python script detects the pulse, it resets the Bluetooth

module back into data mode and routes UART between Arduino and Raspberry Pi. It

instructs the Arduino to send the test report via UART and evaluates the results, printing

and storing a test report.

The first three parameters in the file define new values to be set to the Bluetooth module

during configuration: the new baud rate to be used during data mode, the new name of

the module and the new password to be used during pairing. The fourth and fifth

parameter relate to cases when the Bluetooth module does not respond to a command

being sent to it: How often should the Arduino retry, and how much time should it wait

between the retries. The last parameter, Bluetooth AT baudrate, defines the baud rate to

be used for communicating with the Bluetooth module in command mode.

106

I²C detection (“a08”)

With all addresses of I²C bus participants correctly defined in the parameters file, the test

routine scans the I²C bus using the default Arduino “Wire” library’s public functions

beginTransmission() and endTransmission(). The latter returns an error code if a device

does not respond as expected or does not respond at all. The test case report states the

success of the test as the ratio of error-free responses to the total number of devices

expected on the bus.

The first six parameters in the file define the I²C addresses of the bus participants as

hexadecimal values. The last two parameters refer to the case when a device does not

respond correctly: How often should the Arduino retry on each device, and how much

time should it wait between the retries.

RGB LED (“o01”)

This test is fully user-interactive and requires the user to visually verify if the colour of

the LED matches with the prescribed output. He also must verify the smoothness of

transitions. By entering the results as answers to simple “yes/no” questions posed by the

Python script, the code can compile a final test report.

The script uses the pigpio library [64] in order to make use of hardware PWM capabilities

on the Raspberry Pi Zero [54]. Tests have shown that PWM generated by software

emulation may cause flickering.

This test allows the user to specify a PWM frequency which should be used on the three

pins to which the LED is connected. As stated in the pigpio library documentation [64],

the employed function set_PWM_frequency() returns the real PWM frequency set for the

respective pin, according to hardware limitations. The test report includes the desired and

actual PWM frequency. The function get_PWM_range() returns the value that should be

used on a PWM pin for a duty cycle of 100%, and get_PWM_real_range() returns the

number of distinct values to be actually used by hardware (i.e., the resolution). For higher

frequencies, the resolution drops. This may be observed as flickering during brightness

transitions.

107

To summarize, a good choice of PWM frequency prevents flickering at duty cycles below

100% caused by a too low frequency and prevents flickering during transitions caused

by a too low resolution which might occur if the frequency is too high.

5.3 Supplementary software

To facilitate handling of the new PCB, two additional software pieces are provided as

part of this thesis project.

The Arduino code uploader, written in Python 3, can be used to upload any Arduino

sketch from the Raspberry Pi to the Arduino microcontroller. When executed, it asks the

user to enter the name of the ino file. The file must be located in a specific subdirectory.

The path is ./arduino_test/<name>/<name>.ino, where <name> is the string specified by

the user. The Python script locates the file, then calls to the compiler (make), resets the

microcontroller and executes avrdude.

The multiplexer switcher, also written in Python 3, facilitates the routing of UART to the

Arduino. When executed, it presents a menu to the user with the three available UART

clients – Raspberry Pi, FTDI chip and Bluetooth module. The user enters the respective

integer, and the program instructs the multiplexer chip to set the routing accordingly.

5.4 Results and discussion

The following list summarizes all software features provided as part of the new robot

design:

▪ Automated user-interactive test suite. The main user menu is shown in Figure 31.

▪ Ten test cases so far, automatically called by the test suite software. The software

architecture provides a framework for software developers to implement more test

cases, by following the existing software structure.

▪ Test results with generated reports. All test cases have been successfully executed

and yielded positive results for the respective components on the new PCB.

▪ Arduino code uploader. Facilitates compilation and upload of Arduino software

onto the microcontroller.

▪ Multiplexer switcher. Facilitates routing of Arduino’s UART bus to one of three

devices.

108

Figure 31. Main user menu of the test suite.

In terms of possibilities for a new software architecture, the implementation of two

processors allows for code decoupling which keeps device interaction code separate and

independent from high-level user definitions. The modular code structure of the test suite

software illustrates this: The Python modules run on Raspberry Pi and include the user

definitions for the test cases. The low-level code for the Arduino is configured by the test

case scripts, and the Arduino only interfaces low-level devices. The analysis and

presentation of test results lies again in the hands of the high-level Python code.

For mission use cases, the Raspberry Pi can store rules and policies, calculate navigation-

related data and take care that certain actions are executed whenever a given condition is

met. It sends its instructions to the Arduino via UART. The Arduino just executes low-

level functions and does not need any “knowledge” of implemented policies or the overall

mission.

This modularity may also play an important role in exceptional cases: For example, when

the Arduino reports a critical battery voltage to the Raspberry Pi, the latter could, in

accordance with the policies it holds, give commands to the Arduino microcontroller

which cause the flippers to stop moving, so the robot would self-surface.

5.4.1 Representative test case results

For debugging and verification of the new PCB and its components and for the purpose

of verifying the working principle of the test software itself, all finished test cases (see

109

Section 5.2.2) have been executed at least once. The test software has been developed up

to a state where it is fully functional, even though it has not yet been equipped with

safeguards on user inputs. Some of the test results and conclusions drawn from them are

presented in the following.

Example test result: I²C detection (“a08”)

A typical fault scenario for the I²C test is that an I²C device is not properly connected to

the PCB. This is most likely to happen to the pressure sensor, since it uses a wire-to-board

connection.

For the presented example, the pressure sensor is disconnected and then the test case

executed. The test report looks like this:

Test report: a08; I2C_detect

--

Test executed : 14/05/2020 11:21:31

Correct Arduino code : True

Code flash successful: True

--

Addr. H-bridge R-R : 0x60

Addr. H-bridge F-R : 0x61

Addr. H-bridge F-L : 0x63

Addr. H-bridge R-L : 0x64

Addr. Pressure sensor: 0x76

Addr. IMU sensor : 0x68

Max. attempts each : 3

Delay in attempts : 100ms

--

Test total duration : 0.39043116569519043s

Test end condition : Completed

Data sets received : 6/6

Successful : 83.33333333333333%

--

Address : 0x60

Response : 0

Attempts : 1

Successful : True

--

Address : 0x61

Response : 0

Attempts : 1

Successful : True

--

Address : 0x63

Response : 0

Attempts : 1

Successful : True

--

Address : 0x64

Response : 0

Attempts : 1

Successful : True

--

Address : 0x76

Response : 2

Attempts : 3

Successful : False

--

Address : 0x68

Response : 0

Attempts : 1

Successful : True

Figure 32. Test report for test case “a08”, with no pressure sensor connected. Highlighted: the non-

responsive (missing) device.

The user can see that the property “Successful” did not reach 100%. Going through the

individual address responses, it becomes apparent that address 0x76 did not respond,

which is, according to the parameter listing in the beginning of the test report, the pressure

sensor.

110

Example test result: Signal line from Arduino to Raspberry Pi (“a06”)

By executing this test several times, it was found that the minimum required pulse length

is 60ms. The robustness can be significantly improved if the off time is even longer

(90ms). These required lower limits are probably a result of capacitor charge and

discharge curves appearing on the signal line when switching between states.

Example test result: RGB LED (“o01”)

Lower frequencies may lead to observable flickering due to the long on- and off-times of

the PWM signal, while higher frequencies reduce the resolution of the PWM output too

much. Running the test can help find the appropriate PWM frequency. The test result

shows that the real range (resolution) is only 25 distinct values for a frequency of 8000Hz

and above. Flickering can be observed in low brightness. To avoid flickering, a PWM

frequency between 1000Hz and 5000Hz appears to be reasonable.

5.4.2 Future work

The list of required test cases has been presented in Section 5.2.2. The not yet

implemented test cases will be scripted in the near future, to allow a complete thorough

testing of the PCB.

The user interface and test cases require safeguards for user inputs which are not provided

in the current versions.

111

6 Cost estimation

One main goal in the redesign of µ-CAT is to keep production cost low. This guarantees

for µ-CAT to remain economically competitive in the class of small-scale robots, even

after the design upgrade.

Software and hardware development cost for manhours are not included. Utilized IDEs

are all freeware or no-cost open-source platforms and implemented libraries from third

parties are licensed as open-source software and also free of charge.

Table 17. Cost estimation per unit.

Part(s), material or assembly Cost per robot, net [€]

Physical structure

Plexiglass tube 3.29

Plexiglass parts, laser-cut 7.60

3D-printed parts 51.50

Steel parts and misc. 16.98

Mechanical components

Silicone flippers 5.37

Motor shaft assemblies 15.13

Electronic and electrical components

Main PCB 12.00

Main PCB soldering 20.00

Raspberry Pi Zero W 12.00

Raspberry Pi camera 23.19

Bluetooth PCB and cable 21.00

LED PCB and cable 5.00

Motors 90.00

Electronic components 157.13

Total: 𝟒𝟒𝟎. 𝟏𝟖

As Table 17 shows, the goal to stay below 500 € (see Section 2.2.1) has been met.

112

7 Summary

In summary, this thesis work presents the design and development steps which lead to the

production of an upgraded version of µ-CAT, resulting in a robot which is more robust,

easier to debug and has potential for field missions. During the design, care has been

taken that these upgrades consider the cost margin and that they are relevant for rising the

robot’s significance in the field of small-scale underwater robotics. The latter has been

accomplished by improving computational and underwater communication abilities, by

providing a reliable hardware architecture for a collaboration of two processors and by

providing means of debugging and monitoring, both in designed hardware and provided

software. Apart from that, µ-CAT’s producibility has been facilitated and user interfacing

with the robot has been improved.

The design of a new motherboard and the redesign of the 3D-printed end caps form a

central part of this thesis work. Integration of new components has been accomplished

both on electronic and on physical level. In doing so, ease of assembly of the robot has

been improved.

µ-CAT is now ready to be equipped with even more functionality – plans potentially

include the addition of more sensing capabilities, such as bioinspired sensing. The

extendable test software framework enables future users to implement their own test cases

with ease. Henceforth, the implementation of new features is highly simplified due to the

provision of this software. The aspect of extendibility is also important for µ-CAT as a

teaching tool, being more approachable to students for implementation of new

functionalities. On top of that, it can be used to learn about ROS for mobile robotics and

about distributed control architectures which are enabled by the multi-processor

configuration. Being more easily reproducible, many students can now work and

experiment on µ-CAT. Regarding µ-CAT’s applicability to field work, it has made an

important step towards being used in a swarm and offers a higher level of autonomy due

to the integration of the camera. The increased computational power allows for advanced

use in various research areas, such as bioinspired locomotion or sensing.

113

Bibliography

[1] B. Allotta et al., “The ARROWS project: Adapting and developing robotics

technologies for underwater archaeology,” in IFAC-PapersOnLine, 2015, vol. 28,

no. 2, pp. 194–199.

[2] “Arrows Project.” [Online]. Available: http://www.arrowsproject.eu/. [Accessed:

23-Mar-2020].

[3] T. Salumäe et al., “Design principle of a biomimetic underwater robot U-CAT,”

in 2014 Oceans - St. John’s, 2014, pp. 1–5.

[4] D. T. Roper, S. Sharma, R. Sutton, and P. Culverhouse, “A review of

developments towards biologically inspired propulsion systems for autonomous

underwater vehicles,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol.

225, no. 2, pp. 77–96, May 2011.

[5] R. Salazar, V. Fuentes, and A. Abdelkefi, “Classification of biological and

bioinspired aquatic systems: A review,” Ocean Eng., vol. 148, pp. 75–114, 2018.

[6] A. Raj and A. Thakur, “Fish-inspired robots: design, sensing, actuation, and

autonomy—a review of research,” Bioinspir. Biomim., vol. 11, no. 3, p. 031001,

Apr. 2016.

[7] R. Salazar, A. Campos, V. Fuentes, and A. Abdelkefi, “A review on the

modeling, materials, and actuators of aquatic unmanned vehicles,” Ocean Eng.,

vol. 172, pp. 257–285, 2019.

[8] W. H. Wang, R. C. Engelaar, X. Q. Chen, and J. G. Chase, “The State-of-Art of

Underwater Vehicles - Theories and Applications,” in Mobile Robots - State of

the Art in Land, Sea, Air, and Collaborative Missions, 2009.

[9] S. A. Watson, “Mobile Platforms for Underwater Sensor Networks,” University

of Manchester, 2012.

[10] A. B. Phillips et al., “Agile design of low-cost autonomous underwater vehicles,”

in OCEANS 2017 - Aberdeen, 2017, vol. 2017-Octob, pp. 1–7.

[11] D. Goldberg, “Huxley: A flexible robot control architecture for autonomous

underwater vehicles,” in OCEANS 2011 IEEE - Spain, 2011.

[12] D. Kortenkamp, R. Simmons, and D. Brugali, “Robotic systems architectures and

programming,” in Springer Handbook of Robotics, Springer International

Publishing, 2008, pp. 187–204.

[13] K. P. Valavanis, D. Gracanin, M. Matijasevic, R. Kolluru, and G. A. Demetriou,

“Control architectures for autonomous underwater vehicles - IEEE Journals &

Magazine,” IEEE Control Syst. Mag. (Volume 17, Issue 6, Dec. 1997), 1997.

[14] K. Wang, M. Tan, and J. Zhang, “Design and Control of an Embedded Vision

Guided Robotic Fish with Multiple Control Surfaces,” Sci. World J., 2014.

[15] O. Hu, J. Liu, I. Dukes, and G. Francis, “Design of 3D swim patterns for

autonomous robotic fish,” in IEEE International Conference on Intelligent

Robots and Systems, 2006, pp. 2406–2411.

[16] J. Yu and C. Wei, “Towards development of a slider-crank centered self-

propelled dolphin robot,” Adv. Robot., vol. 27, no. 12, pp. 971–977, 2013.

[17] C. Niu, L. Zhang, S. Bi, and Y. Cai, “Development and depth control of a robotic

fish mimicking cownose ray,” in 2012 IEEE International Conference on

114

Robotics and Biomimetics, ROBIO 2012 - Conference Digest, 2012, pp. 814–818.

[18] W. Wang, D. Gu, and G. Xie, “Autonomous Optimization of Swimming Gait in a

Fish Robot with Multiple Onboard Sensors,” IEEE Trans. Syst. Man, Cybern.

Syst., vol. 49, no. 5, pp. 891–903, 2019.

[19] W. Wang and G. Xie, “CPG-based locomotion controller design for a boxfish-

like robot,” Int. J. Adv. Robot. Syst., vol. 11, no. 1, 2014.

[20] D. Lachat, A. Crespi, and A. J. Ijspeert, “BoxyBot: A swimming and crawling

fish robot controlled by a central pattern generator,” in Proceedings of the First

IEEE/RAS-EMBS International Conference on Biomedical Robotics and

Biomechatronics, 2006, BioRob 2006, 2006, vol. 2006, pp. 643–648.

[21] W. Wang, J. Liu, G. Xie, L. Wen, and J. Zhang, “A bio-inspired

electrocommunication system for small underwater robots,” Bioinspiration and

Biomimetics, vol. 12, no. 3, 2017.

[22] H. Liu and O. Curet, “Swimming performance of a bio-inspired robotic vessel

with undulating fin propulsion,” Bioinspiration and Biomimetics, vol. 13, no. 5,

2018.

[23] “Sepios: Nautical Robot.” [Online]. Available: https://sepios.org/#project.

[Accessed: 15-May-2020].

[24] M. P. Möller et al., “Focus Project Sepios (report),” 2014.

[25] J. Busquets et al., “Low-cost AUV based on Arduino open source

microcontroller board for oceanographic research applications in a collaborative

long term deployment missions and suitable for combining with an USV as

autonomous automatic recharging platform,” in 2012 IEEE/OES Autonomous

Underwater Vehicles, AUV 2012, 2012.

[26] C. Wang, Z. Hu, Y. Yang, L. Geng, and L. Wang, “Control system design for

micro AUV based on open source hardware,” in 2018 IEEE International

Conference on Information and Automation, ICIA 2018, 2018, pp. 980–984.

[27] B. Meyer, K. Ehlers, C. Isokeit, and E. Maehle, “The development of the

modular hard- and software architecture of the autonomous underwater vehicle

MONSUN,” in Proceedings for the Joint Conference of ISR 2014 - 45th

International Symposium on Robotics and Robotik 2014 - 8th German

Conference on Robotics, ISR/ROBOTIK 2014, 2014, pp. 258–263.

[28] C. Osterloh, T. Pionteck, and E. Maehle, “MONSUN II: A small and inexpensive

AUV for underwater swarms,” in Robotics; Proceedings of ROBOTIK 2012; 7th

German Conference on, 2012, pp. 1–6.

[29] M. Sfakiotakis, R. Gliva, and M. Mountoufaris, “Steering-plane motion control

for an underwater robot with a pair of undulatory fin propulsors,” in 24th

Mediterranean Conference on Control and Automation, MED 2016, 2016, pp.

496–503.

[30] K. H. Low, C. Zhou, G. Seet, S. Bi, and Y. Cai, “Improvement and testing of a

robotic Manta Ray (RoMan-III),” in 2011 IEEE International Conference on

Robotics and Biomimetics, ROBIO 2011, 2011, pp. 1730–1735.

[31] Z. Wu, J. Liu, J. Yu, and H. Fang, “Development of a Novel Robotic Dolphin

and Its Application to Water Quality Monitoring,” IEEE/ASME Trans.

Mechatronics, vol. 22, no. 5, pp. 2130–2140, 2017.

[32] W. Wang, G. Xie, and H. Shi, “Dynamie modeling of an ostraciiform robotic fish

based on angle of attack theory,” in Proceedings of the International Joint

Conference on Neural Networks, 2014, pp. 3944–3949.

[33] “ROS.org | History.” [Online]. Available: http://www.ros.org/history/. [Accessed:

22-Mar-2018].

115

[34] M. Quigley et al., “ROS: an open-source Robot Operating System,” in ICRA

2009, 2009.

[35] A. Gonibedu Dathatri, “An optical communication protocol between underwater

robots,” Tallinn University of Technology, 2020.

[36] “Shape Effects on Drag.” [Online]. Available:

https://www.grc.nasa.gov/WWW/K-12/airplane/shaped.html. [Accessed: 13-

May-2020].

[37] B. Lautrup, Physics of Continuous Matter. Boca Raton: CRC press, 2011.

[38] Compaq et al., “Universal Serial Bus Specification Rev. 2.0,” 2000.

[39] Compaq et al., “USB Engineering Change Notice: USB 2.0 VBUS Max Limit,”

2014.

[40] “What is Voltage Regulator and How Does It Work?” [Online]. Available:

https://components101.com/articles/what-is-voltage-regulator-and-how-does-it-

work. [Accessed: 13-Mar-2020].

[41] “Buck Converter: Basics, Working, Design and Operation.” [Online]. Available:

https://components101.com/articles/buck-converter-basics-working-design-and-

operation. [Accessed: 13-Mar-2020].

[42] “LM2596 datasheet.” [Online]. Available:

http://www.ti.com/lit/ds/symlink/lm2596.pdf. [Accessed: 12-Mar-2020].

[43] “MIC29302 datasheet.” [Online]. Available:

http://ww1.microchip.com/downloads/en/devicedoc/20005685a.pdf. [Accessed:

06-Apr-2020].

[44] “LM567x datasheet.” [Online]. Available:

http://www.ti.com/lit/ds/snosbq4e/snosbq4e.pdf. [Accessed: 24-Mar-2020].

[45] M. Patel, “Implementation of FSK Modulation and Demodulation using

CD74HC4046A,” 2013.

[46] “FDC6401N datasheet.” [Online]. Available:

https://www.mouser.com/datasheet/2/149/FDC6401N-77688.pdf. [Accessed: 17-

Apr-2020].

[47] “TS971, TS972, TS974 datasheet.” [Online]. Available:

https://www.st.com/resource/en/datasheet/ts971.pdf. [Accessed: 17-Apr-2020].

[48] “MCP6021/1R/2/3/4 datasheet.” [Online]. Available:

http://ww1.microchip.com/downloads/en/devicedoc/20001685e.pdf. [Accessed:

20-Apr-2020].

[49] “DURIS S 8 GW P9LR32.EM datasheet.” [Online]. Available:

https://dammedia.osram.info/media/resource/hires/osram-dam-5589023/GW

P9LR32.EM_EN.pdf.

[50] “DURIS® S 8, GW P9LR34.PM | OSRAM OS.” [Online]. Available:

https://www.osram.com/ecat/DURIS® S 8 GW

P9LR34.PM/de/de/class_pim_web_catalog_103489/global/prd_pim_device_426

9724/. [Accessed: 14-Apr-2020].

[51] “DURIS® S 8, GW P9LR35.PM | OSRAM OS.” [Online]. Available:

https://www.osram.com/ecat/DURIS® S 8 GW

P9LR35.PM/de/de/class_pim_web_catalog_103489/global/prd_pim_device_543

1473/#62a1fdff42f13778e2055fdc87c50fcb. [Accessed: 14-Apr-2020].

[52] “SparkFun FTDI Basic Breakout - 5V - DEV-09716 - SparkFun Electronics.”

[Online]. Available: https://www.sparkfun.com/products/9716. [Accessed: 09-

Apr-2020].

[53] C.-M. Lu, “Communication system for devices with UART interfaces,”

US7650449B2, 2010.

116

[54] “Hardware PWM with Raspberry Pi Zero – Codecubix.” [Online]. Available:

https://www.codecubix.eu/linux/hardware-pwm-with-raspberry-pi-zero/.

[Accessed: 14-May-2020].

[55] “CLP6C-FKB datasheet.” [Online]. Available:

http://www.farnell.com/datasheets/2003905.pdf?_ga=2.143229493.1223965175.

1585138498-627741049.1504615003. [Accessed: 25-Mar-2020].

[56] “ICM-20608-G datasheet.” [Online]. Available: https://invensense.tdk.com/wp-

content/uploads/2015/03/DS-000081-v1.01.pdf. [Accessed: 09-Apr-2020].

[57] “MS5837-02BA datasheet.” [Online]. Available:

https://www.te.com/commerce/DocumentDelivery/DDEController?Action=show

doc&DocId=Data+Sheet%7FMS5837-

02BA01%7FA7%7Fpdf%7FEnglish%7FENG_DS_MS5837-

02BA01_A7.pdf%7FCAT-BLPS0059. [Accessed: 23-Mar-2020].

[58] “DRV8830 datasheet.” [Online]. Available:

http://www.ti.com/lit/ds/symlink/drv8830.pdf. [Accessed: 23-Mar-2020].

[59] “E-GIZMO EGBT-045MS hadware manual.” [Online]. Available:

https://www.manualslib.com/manual/1499691/E-Gizmo-Egbt-045ms.html.

[Accessed: 25-Mar-2020].

[60] “TXB0104 datasheet.” [Online]. Available:

http://www.ti.com/lit/ds/symlink/txb0104.pdf. [Accessed: 25-Mar-2020].

[61] “Make - GNU Project - Free Software Foundation.” [Online]. Available:

https://www.gnu.org/software/make/. [Accessed: 14-May-2020].

[62] “AVRDUDE - AVR Downloader/UploaDEr.” [Online]. Available:

https://www.nongnu.org/avrdude/. [Accessed: 27-Mar-2020].

[63] “HC-05 AT commands,” 2011. [Online]. Available:

http://www.linotux.ch/arduino/HC-

0305_serial_module_AT_commamd_set_201104_revised.pdf. [Accessed: 08-

May-2020].

[64] “pigpio library.” [Online]. Available: http://abyz.me.uk/rpi/pigpio/. [Accessed:

05-May-2020].

[65] Texas Instruments, “LM1117 800-mA Low-Dropout Linear Regulator 1 Features

3 Description.” 2016.

[66] “MS54XX datasheet.” [Online]. Available:

https://www.te.com/commerce/DocumentDelivery/DDEController?Action=srchrt

rv&DocNm=MS54XX&DocType=DS&DocLang=English. [Accessed: 19-May-

2020].

[67] P. Höjerslev, “Raspberry Pi Camera | 3D CAD Model Library | GrabCAD.” .

[68] “Hexagon Full Nut to DIN 934 ~ISO 4032 | 3D CAD Model Library | 3D

ContentCentral.” .

[69] J. Head, “Comus GC2322 Reed Switch | 3D CAD Model Library | GrabCAD.” .

117

Appendix

118

A 1 Experimental results

This appendix section presents the experimental setups, procedures and results carried

out in order to determine the applicability of the chosen buck converter IC LM2596S.

A 1.1 Choice of buck converter

A 1.1.1 Comparison of two buck converters

For a buck converter to be able to provide stable output voltage, the voltage difference

between its input and output must be sufficiently high. In this regard, using a buck

converter at the 3.3V rail would have made sense. However, the current demand on this

rail is insignificantly low, and the increased cost and space of a buck converter would not

be justified by the amount of saved energy on the small logic devices and sensors which

operate on that rail.

Whether or not a buck converter can be used on the 5V or 6V rail must be found out

experimentally, and two buck converters are being compared for this purpose: the HW-

468 breakout board and LM2596S. The key question in this first experimental procedure

is if the buck converter can provide the required output voltage at low battery levels (6.8V,

as assumed by measurements for a drained battery).

The HW-468 is a fixed-output voltage converter (5V) which accepts variable input

voltages ranging approximately from 8V to 24V, and LM2596S exists as fixed- and

adjustable-output voltage versions. For this experiment, the adjustable version is used,

but it has the same efficiency and operating characteristics as the respective fixed-output

voltage version. Both buck converters are compared with respect to their potential

usability on the 5V rail.

For this set of experiments, the following equipment is used:

▪ Load device: Centre for Biorobotics proprietary (based on SPW20N60S5)

▪ Power supply: Instek PSP-405

119

▪ Multimeter: Fluke 87V

The load device allows to create a specific load scenario by defining a certain value of

current to be drawn.

Figure 33. Experimental setup for sets 1 and 2.

Experiment 1: HW-468 applicability for 𝟓𝐕 output

The input voltage of the buck converter required to drive the load at the desired current

demand depends on the power supplied to the load. A current setpoint for the load was

chosen (using the load device) and the input voltage was varied, starting from 35V

(maximum value of power supply) down to a value where the buck converter could not

provide a stable output of 5V any more (the measured stable value was 5.06V). If the

value of supply voltage was significantly higher than the required supply voltage on µ-

CAT (assuming drained batteries, i.e., 6.8V) at the instance when the output voltage fell

below 5.06V, the converter would not be applicable for our purposes.

The experimental results show that even for a current demand as low as 0.4A on the

output, the required input voltage is at least 8.27V, which is more than µ-CAT allows.

This corresponds roughly to the information stated in the datasheet of the converter

module (minimum 9V supply voltage required). Since the physical design of the robot

(space restriction) does not allow to place more batteries in series (increasing the supply

voltage) and since no other type of battery with a smaller form factor could be found

which would be convenient to insert (cylindrical shape in order to maintain the tube and

screw-cap design for water-proofing), there is no other conclusion to be made from this

experimental result than to discard this buck converter module for our purposes.

Power supply

𝑈B

Converter

(unit under test)

𝑈out

Load device

𝐼out

𝑈S

120

Experiment 2: LM2596S applicability for 𝟓𝐕 output

The buck converter IC is used on a breakout board featuring the flywheel circuit

according to the recommendations in the datasheet [65]. In this test setup, the input

voltage is kept at 6.8V and the output voltage of the buck converter initially adjusted to a

fixed value of 5V, using the onboard multiturn trimmer. While observing the output

voltage on the load, the current demand was increased in several steps, using the load

device.

The experimental results show that the output voltage remains stable up to a current

demand of 2A, which is enough for µ-CAT. Consequently, the device may be appropriate

for our purposes. The results indicate that it would be worth testing the device regarding

other aspects such as output noisiness and whether it could be used on the 6V rail.

A 1.1.2 Comparison of chosen buck converter and two voltage regulators

In this section, several experimental procedures and their results are presented which were

carried out for the purpose of performance and efficiency comparison between the chosen

buck converter LM2596S and the voltage regulators originally used on the robot to

provide 5V and 6V to the mainboard, namely 29151-5.0 for 5V and 29302WT for 6V. The

experiment was carried out in order to decide whether a buck converter should replace

one or two of the originally employed voltage regulators in the updated design.

In all following experimental sets, the desired load current 𝐼out [A] was set to a fixed value

to simulate a certain load scenario. The battery supply current 𝐼B [A] was observed during

experimentation. For the linear voltage regulators, 𝐼B ≈ 𝐼out, because of the power loss I

the form of heat due to the voltage drop across the LDO (low-dropout regulator), for the

buck converter, 𝐼B is expected to be lower than 𝐼out because of the law of energy

preservation and due to the fact that the current must be stepped up while the voltage is

being stepped down. The output voltage of the converter 𝑈out [V] was fixed for to the

linear voltage regulators, or it was set to a desired value before experimentation for the

buck converter using the onboard potentiometer. During the experiments, its value was

monitored as 𝑈s [V]. Additionally, the temperature on the converter IC was sporadically

measured and recorded as 𝑇 [°C]. To be able to make a comparison of the noisiness of the

output signal, snapshots were taken from the oscilloscope plots. In each set,

measurements have been repeated several times, with minimum one minute of time

121

between them, to monitor changes in performance over prolonged operation. The supply

voltage to the converter circuit was set to 𝑈B = 7.4V, to simulate operation of the device

on the robot at average battery supply voltage over time (value determined experimentally

before), assuming initially fully charged batteries.

For this set of experiments, the following equipment was used:

▪ Load device: Centre for Biorobotics proprietary (based on SPW20N60S5)

▪ Power supply: Instek PSP-405

▪ Multimeters: Fluke 87V (2x)

▪ Oscilloscope: Agilent DSO-X 3014A

▪ Thermometer: Fluke 561 IR

Figure 34. Experimental setup for sets 3 to 7.

Experiment 3: LM2596S vs. 29302WT; motors at stall current (𝟔𝐕, 𝟐𝐀)

If the buck converter can supply the load with stable 6V at a current demand of 2A, it can

be used to drive the motors safely, even when they are all stalled at the same time.

In a first step, the performance of the originally implemented voltage regulator 29302WT

has been assessed.

Power supply

𝑈B = 7.4V

Converter

(unit under test)

𝑈out

Load device

𝐼out

𝐼B

𝑈S

Oscilloscope

𝑈S

122

Table 18. Performance data for voltage regulator 29302WT.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 2.004 2.077 5.762

60 2.000 2.072 5.762 28.0

120 2.000 2.071 5.745

360 1.999 2.067 5.813 28.6

600 1.997 2.067 5.824 Figure 35

The above data (Table 18) shows that the linear voltage regulator is able to provide 2A of

output current at a stable output voltage of close to 6V, enough to get the motors out of

the stall position.

Figure 35. Signal on output of 29302WT at 2A, after 10 minutes of operation.

The high-frequency noise level remains in a corridor of approximately 30mV. The low-

frequency noise (50Hz) with a magnitude of around 50mV occurs most likely due to the

mains AC power supply, which means that it is insignificant for the real-life case on the

robot.

After that, the buck converter LM2596S was tested, with the output voltage adjusted to

𝑈out = 6V.

123

Table 19. Performance data for buck converter LM2596S.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

120 2.003 1.825 5.387

180 2.000 2.008 5.385 Figure 36

660 2.000 2.008 5.389

840 1.998 2.006 5.379 72.0

900 1.997 2.005 5.376 70.0

1020 1.997 2.005 5.375 Figure 37

1080 1.997 2.005 5.374

Above data (Table 19) indicates that the buck converter is not able to provide the

demanded output voltage of 6V at the current demand of 2A. It may still be enough to get

the motors out of stalling, but it cannot be guaranteed. Also, the heat dissipation on the

buck converter IC is so high that it would require a massive heatsink, which should be

avoided in the PCB design for the sake of space-saving.

124

Figure 36. Signal on output of LM2596S at 2A, after 3 minutes of operation.

Figure 37. Signal on output of LM2596S at 2A, after 17 minutes of operation.

The output signal plotted on the oscilloscope (Figure 36 and Figure 37) shows that the

high-frequency noise level is around 50mV, sometimes exceeding up to 70mV. As

expected, the buck converter produces more noise than the LDO.

Experiment 4: LM2596S vs. 29302WT; motors (𝟔𝐕, 𝟎. 𝟓𝟓𝐀)

As previous measurements showed, the motors combined consume around 550mA at 6V

during regular operation. The aim of this experimental set is to find out if the buck

converter can provide a stable output to do so.

The originally existing voltage regulator 29302WT was tested first.

Table 20. Performance data for voltage regulator 29302WT.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 0.557 0.575 5.896 30.0

60 0.557 0.575 5.896 Figure 38

120 0.557 0.575 5.896

180 0.557 0.575 5.896

240 0.557 0.575 5.896

The input power consumption is:

125

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.557A = 4.12W (29)

As Table 20 shows, the LDO provides stable output of nearly 6V to drive the motors at

the demanded current. The heat dissipation on the device is moderate.

Figure 38. Signal on output of 29302WT at 557mA, after 1 minute of operation.

As Figure 38 shows, the high-frequency noise level is around 100mV.

The tests conducted on the buck converter are presented in the following.

Table 21. Performance data for buck converter LM2596S.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 0.557 0.544 6.000

60 0.577 0.544 6.000

120 0.577 0.544 5.990 Figure 39

240 0.577 0.544 5.990 38.1

Indeed, the buck converter can maintain a stable output voltage at the desired current, as

Table 21 shows. A mathematical comparison with the voltage regulator yields that the

buck converter saves 2% of input power when used for driving the motors:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.544A = 4.03W (30)

126

As Figure 39 shows, the noise level is again higher than for the LDO, namely around

120mV.

Intermediate conclusion I

Although being suitable for driving the motors at 6V and with their current demand during

regular operation with an insignificantly low value of saved input power, the buck

converter can most likely not be used for driving the motors when they are stalled, since

the output voltage on the buck converter drops and the device heats up.

Experiment 5: LM2596S vs. 29151-5.0; logic supply (𝟓𝐕, 𝟎. 𝟐𝟓𝐀)

Another option of using a buck converter instead of the LDO is for the 5V rail which

drives the Arduino and the Raspberry Pi Zero. The current consumption at this rail has

been found to be around 250mA at peak.

The results of the performance test on the existing voltage regulator 29151-5.0 are shown

in the following.

Figure 39. Signal on output of LM2596S at 557mA, after 2 minutes of operation.

127

Table 22. Performance data for voltage regulator 29151-5.0.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 0.2516 0.268 4.482

60 0.2516 0.268 4.483 28.0 Figure 40

120 0.2516 0.268 4.482

180 0.2516 0.268 4.482 28.6

240 0.2516 0.268 4.482

Although the voltage regulator was used successfully on the original µ-CAT, it can be

seen from Table 22 that it does not provide the desired voltage of 5V under the given

input and load conditions.

The input power using the LDO is:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.268A = 1.98W (31)

Figure 40. Signal on output of 29151-5.0 at 252mA, after 1 minute of operation.

Figure 40 shows that the noise level is around 30mV, with 60mV peaks.

In comparison, the performance results of the buck converter (which has been adjusted to

5V output) are given in the following:

128

Table 23. Performance data for buck converter LM2596S.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 0.2516 0.228 5.022 29.0

60 0.2516 0.228 5.022 Figure 41

120 0.2516 0.228 5.024 29.7

240 0.2516 0.228 5.023

300 0.2516 0.228 5.022

According to the results in Table 23, the buck converter can supply stable 5V at the given

current and input conditions.

The input power using the buck converter is:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.228A = 1.69W (32)

This amounts to a power saving of 15% compared to the LDO.

Figure 41. Signal on output of LM2596S at 252mA, after 1 minute of operation.

The buck converter, as seen from Figure 41, creates a much higher noise on the output

than the voltage regulator. The magnitude ranges from 90mV to 200mV.

129

Intermediate conclusion II

With a power saving of around 15% compared to the LDO while maintaining the full

output voltage, the buck converter seems to be the better choice. The high output noise

might be problematic but can be dealt with by placing capacitors on inputs of critical

components, such as sensors and microcontrollers.

Experiment 6: LM2596S vs. 29151-5.0; motors stalled (𝟓𝐕, 𝟐𝐀)

This experimental set and the next one take into consideration the possibility to drive the

motors at 5V instead of 6V. Both linear voltage regulator and buck converter were tested

under the corresponding conditions.

This experimental set was designed to determine the behaviour of the converters under

stall conditions of all four motors, i.e., around 2A of output current.

For the voltage regulator, the experimental results are the following:

Table 24. Performance data for voltage regulator 29151-5.0.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 2.004 2.097 4.660 35.0

60 2.000 2.085 4.692 39.5 Figure 42

120 1.998 2.081 4.693 40.0

180 1.998 2.077 4.694 40.0

240 1.998 2.077 4.694

As Table 24 shows, the voltage regulator does not fully reach the required output voltage.

The input power consumption of the voltage regulator for an average current consumption

of 2.0834A is as follows:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 2.0834A = 15.42W (33)

130

Figure 42. Signal on output of 29151-5.0 at 2A, after 1 minute of operation.

As Figure 42 shows, the noise magnitude is around 30mV and 90mV at peaks.

For the buck converter, the experimental results are shown in the following:

Table 25. Performance data for buck converter LM2596S.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 2.004 1.920 5.024 39.0

60 2.001 1.920 5.043 57.0 Figure 43

120 2.000 1.925 5.046 63.0

180 1.999 1.924 5.045 72.0

240 1.999 1.926 5.046 81.0

The results in Table 25 show that the buck converter reaches and holds the nominal output

voltage level under the given conditions, but it produces a significant amount of heat

already after 4 minutes of operation, which may be addressed with a sufficiently

dimensioned heatsink. This, however, could cause problems in terms of space-efficiency

in the PCB layout.

The input power consumption of the buck converter with an average current of 1.923A

is:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 1.923A = 14.23W (34)

131

This corresponds to a battery power saving of almost 18% compared to the LDO.

Figure 43. Signal on output of LM2596S at 2A, after 1 minute of operation.

Figure 43 clearly indicates a very high noise level for this mode of operation, ranging up

to 300mV.

Experiment 7: LM2596S vs. 29151-5.0; motors (𝟓𝐕, 𝟎. 𝟓𝟓𝐀)

This last experimental set was designed to determine the behaviour of the converters

under operating conditions of all four motors at 5V, i.e., around 550mA of output current.

For the voltage regulator, the experimental results are the following:

Table 26. Performance data for voltage regulator 29151-5.0.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 0.558 0.576 4.915 26.6

60 0.557 0.576 4.916 32.0 Figure 44

120 0.557 0.576 4.915 32.0

180 0.557 0.576 4.915

240 0.557 0.576 4.915 32.0

The voltage regulator, according to the results shown in Table 26, can supply the required

voltage at a stable level.

132

The power consumption on the input is:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.576A = 4.26W (35)

Figure 44. Signal on output of 29151-5.0 at 576mA, after 1 minute of operation.

The noise generated on the output of the regulator is in magnitude of 20mV, with peaks

of about 80mV.

For the buck converter, the experimental results are the following:

Table 27. Performance data for buck converter LM2596S.

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀]

Set

𝑰𝐁 [𝐀]

Observed

𝑼𝐒 [𝐕]

Observed

𝑻 [°𝐂]

Observed

Image

0 0.557 0.474 5.024 39.0

60 0.557 0.474 5.024 38.8 Figure 45

120 0.557 0.474 5.024 40.0

180 0.557 0.474 5.024 38.4

240 0.557 0.474 5.023 38.2

According to the results shown in Table 27, the buck converter can provide the stable

output voltage without significant heat dissipation.

The power consumption on the battery is:

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.474A = 3.51W (36)

133

This is roughly 18% less than when using the voltage regulator.

Figure 45. Signal on output of LM2596S at 557mA, after 1 minute of operation.

The noise level in this mode of operation is around 130mV.

Intermediate conclusion III

With a power saving of up to 18% compared to the LDO while maintaining the full output

voltage, the buck converter seems to be the better choice for operation of the motors at

5V instead of (nominal) 6V.

However, the effects of the voltage reduction on the motors on the behaviour of the robot

are hard to estimate without extensive tests in water, which would exceed the scope of

this project. It was therefore decided to keep the motors running at 6V, and as above

experiments have shown, the voltage regulator is still the better choice to do that.

A 1.2 Verification of chosen buck converter

As stated in the previous section, there are concerns about the high noise level on the

output of the buck converter. It must be ensured that a sensor, with capacitors added

between “GND” and “+5V” near its supply terminals, provides stable output when using

the buck converter as the power source. This is the purpose of the following experimental

set.

134

The experiments were conducted using the old pressure sensor MS5407-AM [66],

supplied with 5V. The pressure sensor is supposed to be one of the most noise-sensitive

devices and would most likely show false readings under bad power supply conditions.

The sensor was interfaced using the Arduino Mini 05 microcontroller board via the SPI

bus. The sensor readings were plotted into the Serial terminal of the Arduino IDE (plotter

mode). The microcontroller board was also supplied with 5V. The 5V rail which powers

sensor and Arduino took its voltage from one of three sources, in each of the experiments:

1. voltage regulator (LDO) 29151-5.0 (used on old µ-CAT);

2. USB power supply from the laptop;

3. buck converter LM2596S (used on new µ-CAT).

The results indicate that all three voltage sources yield stable readings of the pressure

sensor. Had the supply voltage been too shaky or noisy, unstable sensor output values

could have been expected.

The success of this test verifies that the chosen buck converter is adequate for use on the

5V rail.

135

A 1.3 Power consumptions

Power consumptions using the PCB of old and new µ-CAT were compared. The

experimental results allow for conclusions on:

▪ added power consumption due to newly integrated devices;

▪ power consumption differences due to the use of the new power supply (buck

converter on 5V rail);

▪ power consumption differences due to any other reasons, such as unstable supply

voltages, heating up of PCB copper traces etc (verification of the new PCB).

The experiments were conducted using power supply Instek PSP-405 at a set input

voltage of 𝑈B = 7.4V. Resulting input current 𝐼B was recorded and input power

consumption 𝑃in was calculated:

𝑃in = 𝑈B ∗ 𝐼B (37)

In experiments where the camera or the motors are used, the resulting current varies, and

therefore at least 24 repeated measurements were conducted. The power was then

calculated using the average value of the measured currents.

As Table 28 shows, a total of 12 experiments was conducted. The first six were carried

out on the new PCB, the last six on the old PCB. In each experiment, another combination

of devices was used. For a more direct comparison between the PCBs, the Raspberry Pi

was additionally powered with the old PCB during experiments 8 and 10, using the

onboard 5V regulator 29151-5.0.

The results of the following experimental sets are directly comparable, because they

employ the same devices:

▪ 1 and 7;

▪ 4 and 10;

▪ 5 and 11;

▪ 6 and 12.

Table 29 lists the obtained results of the experiments.

136

 New PCB Old PCB

1 2 3 4 5 6 7 8 9 10 11 12

Tone detectors powered ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Motors running ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Bluetooth module powered ⚫ ⚫

Messaging LEDs powered ⚫ ⚫

Raspberry Pi powered ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Camera powered ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫

Camera in use ⚫ ⚫ ⚫ ⚫

Note that when the Raspberry Pi is powered, its WLAN connection is also established.

This means that the measured Raspberry Pi’s power consumption always includes

WLAN.

Table 29. Power consumption experimental results and calculations.

Experimental set Input current 𝑰𝐁 [𝐀] Input power 𝑷𝐢𝐧 [𝐖]

1 0.352 2.605

2 0.606 4.487

3 0.766 5.668

4 0.354 2.617

5 0.089 0.659

6 0.188 1.391

7 0.464 3.434

8 0.565 4.185

9 0.789 5.839

10 0.416 3.080

11 0.112 0.829

12 0.330 2.400

Current consumption of the Bluetooth module was measured separately to be 45mA, and

it amounts to 0.333W.

Current consumption of the messaging LEDs was measured separately to be 120mA, and

it amounts to 0.888W.

Current consumption of the tone detectors was measured separately to be 15mA, and it

amounts to 0.111W.

Table 28. Experimental sets, PCB under test and involved devices. Colour-codes indicate which sets are

directly comparable.

137

A 2 Components and values

This appendix section lists some electronic parts used on the new PCB. Wherever

applicable, additional information on electrical characteristics is given.

A 2.1 LEDs

Resistor values and power consumption are calculated according to the equations shown

in Section 4.3. Chosen resistor values according to the availability on Farnell1.

Table 30. RGB status LED parameters.

Eagle name Colour S
u

p
p

ly
 v

o
lt

a
g
e

𝑼
𝑪

𝑪
 [

V
]

F
o

rw
a
rd

 v
o
lt

a
g

e
𝑼

𝑳
𝑬

𝑫
 [

V
]

R
ea

l
fo

rw
a

r
d

 c
u

rr
en

t
𝑰

[m
A

]

C
a
lc

u
la

te
d

 r
es

is
to

r
v

a
lu

e
𝑹

 [
Ω

]

C
h

o
se

n
 r

es
is

to
r

v
a

lu
e

𝑹
 [

Ω
]

P
o

w
er

 c
o
n

su
m

p
ti

o
n

 𝑷
 [

m
W

]
LED5-G green 3.3 3.2 10.0 10 10 33.0
LED5-R red 3.3 2.0 10.0 130 130 33.0
LED5-B blue 3.3 3.2 10.0 10 10 33.0

1 Online: https://ee.farnell.com/

https://ee.farnell.com/

138

Table 31. Single-colour status LEDs parameters.

Eagle name Colour S
u

p
p

ly
 v

o
lt

a
g
e

𝑼
𝑪

𝑪
 [

V
]

F
o

rw
a
rd

 v
o
lt

a
g

e
𝑼

𝑳
𝑬

𝑫
 [

V
]

R
ea

l
fo

rw
a

r
d

 c
u

rr
en

t
𝑰

[m
A

]

C
a
lc

u
la

te
d

 r
es

is
to

r
v

a
lu

e
𝑹

 [
Ω

]

C
h

o
se

n
 r

es
is

to
r

v
a

lu
e

𝑹
 [

Ω
]

P
o

w
er

 c
o
n

su
m

p
ti

o
n

 𝑷
 [

m
W

]

LED1 green 3.3 2.1 1.99 600 604 6.5
LED2 yellow 5.0 2.1 2.03 1450 1430 10.1
LED9 yellow 5.0 2.1 2.03 1450 1430 10.1
LED3 yellow 5.0 2.1 2.03 1450 1430 10.1
LED4 red 5.0 2.0 2.00 1500 1500 10.0
LED6 green 5.0 2.1 2.03 1450 1430 10.1
LED8 green 6.0 2.1 1.99 1950 1960 11.9
LED10 blue 3.3 2.65 2.01 325 324 6.6
LED11 blue 3.3 2.65 2.01 325 324 6.6

Table 32. Messaging LEDs parameters.

Eagle name Colour S
u

p
p

ly
 v

o
lt

a
g
e

𝑼
𝑪

𝑪
 [

V
]

F
o

rw
a
rd

 v
o
lt

a
g

e
𝑼

𝑳
𝑬

𝑫
 [

V
]

R
ea

l
fo

rw
a

r
d

 c
u

rr
en

t
𝑰

[A
]

C
a
lc

u
la

te
d

 r
es

is
to

r
v

a
lu

e
𝑹

 [
Ω

]

C
h

o
se

n
 r

es
is

to
r

v
a

lu
e

𝑹
 [

Ω
]

P
o

w
er

 c
o
n

su
m

p
ti

o
n

 𝑷
 [

W
]

 white 6.0 5.5 0.128 3.57 3.90 0.77

139

A 3 Mechanics, solid modelling and manufacturing

A 3.1 Parts names and descriptions

Table 33. Parts codes, file names and descriptions.

Code Name Description

01-01 PLEXIGLASS_HULL cylindrical Plexiglass tube

01-02 BATTERY_HOLDER cylindrical tube containing the

batteries

01-03 THREADED_ROD_WEIGHT_

DISTRIBUTOR

M5 rod holding the weights

01-04 Weights_Divider Plexiglass supports for PCB

01-05 PCB_raw rough model of new PCB

01-06 THREADED_ROD_OUTSIDE M3 rods closing the end caps

01-07 Battery battery cell model

01-08 Washer_Outside DIN 433; washer on M3 rods

01-09 HexNut_Outside ISO 4035; nut on M3 rods

01-10 HexNut_WeightDistributor ISO 4035; nut on M5 rods

02,03-01 SERVO_FS70MG servo motor

02-02 Hull_Front front end cap

02,03-03 MOTOR_SHAFT_CLUTCH clutch on servo motor

02,03-04 SHAFT_SLEEVE sleeve on fin shaft

02,03-05 Oil-less bush 8mm bushing on fin shaft

02,03-06 Nitrile oil seal_5x16x6mm seal on fin shaft

02-07 Camera Raspberry Pi camera

02-08 Dome_Front front dome

02-11 Camera-Cap_Body main body of camera cap

02-13 Camera-Seal-Glass seal under glass of camera cap

02-14 Camera-Glass glass of camera cap

02-15 LED-PCB_raw rough model of LED PCB

02-16 Pressuresensor_Hose-Connector connecting tube for pressure sensor

hose

02,03-17 Fin-Shaft shaft of fin

02,03-18 Fin fin

02,03-19 Oring_Hull sealing ring of cyclindrical Plexiglass

tube

02-20 Photodiode-Plug_raw rough model of seal around

photodiode

02,03-22 Fin-Shaft-Tube tube surrounding shaft of fin

02,03-23 Weights-box box for additional weights

03-01-01 USB-MainBody main body of USB insert

03-01-03 USB-oring-main sealing ring of USB insert

140

Table 33. Parts codes, file names and descriptions [continued].

Code Name Description

03-01-02 USB-Nut nut on USB insert

03-01-04 USB-Cap cap of USB insert

03-01-05 USB-Cap-Seal seal under cap of USB insert

03-02 Hull_Back back end cap

03-07 Bluetooth_raw rough model of Bluetooth PCB

03-08 Dome_Back back dome

03-09 BatteryHolder-Reducer_raw rough model of reducer holding

battery cap

03-20-01 BatteryCap_Body body of battery cap

03-20-02 BatteryCap_Seal seal under battery cap

03-20-03 BatteryCap_Spring spring connecting to batteries

03-24 TR Fastenings Ltd-M5 ISO 4032; M5 nut holding reed switch

03-25 ReedSwitch reed switch

141

Table 34 lists all SolidWorks design files and indicates the following properties for

each:

▪ to which assembly the assembly or part belongs (colour-coding);

▪ the number of instances used;

▪ the code used in the file name;

▪ the file type (assembly or part);

▪ whether it is part of the physical or mechanical design (not an element related to

electronics);

▪ whether it has been present on the original µ-CAT robot (in some form);

o if so, whether its design file has been taken over from the previous design

as-is;

o if so, whether its design file has been updated;

▪ whether the part is completely newly created;

▪ in case it is updated or newly created, whether it is created by the author of this

thesis or taken from an external source;

▪ how it is produced:

o bought and either taken as-is or manually modified after purchase;

o custom-made by one or more methods, as indicated.

Parts names and descriptions are given in Appendix A 3.1.

142

Table 34. Overview of SolidWorks assemblies and parts. A: assembly; P: part; ◼: source: [67]; : source:

[68]; : modified part from source: [69]; *: alternatively, the Bluetooth module HC-05 can be used after

some manual rework.

Q

u
a

n
ti

ty

Code T
y
p

e

Is
 p

a
rt

 o
f

p
h

y
si

ca
l/

m
ec

h
a

n
ic

a
l

d
es

ig
n

Is
 u

se
d

 o
n

 o
ld

 µ
-C

A
T

 r
o
b

o
t

SolidWorks

design
Manufacturing method(s)

 F
ro

m
 e

x
is

ti
n

g

µ
-C

A
T

N
ew

S
o

u
rc

e
(o

f
n

ew

p
a

rt
 o

r
u

p
d

a
te

)

O
ff

-t
h

e-
sh

el
f

Custom-made

 A
s-

is

U
p

d
a

te
d

S
el

f

E
x
te

rn
a

l

A
s-

is

W
it

h
 m

a
n

u
a
l

re
w

o
rk

3
D

-p
ri

n
ti

n
g

L
a
se

r-
cu

tt
in

g

L
a
th

e-
tu

rn
in

g

S
il

ic
o
n

e
-c

a
st

in
g

O
th

er

 1 0 A

 1 01 A

 1 01-01 P ⚫ ⚫ ⚫
⚫

 1 01-02 P
⚫

⚫
⚫

⚫

 2 01-03 P ⚫ ⚫ ⚫
⚫

 2 01-04 P ⚫ ⚫
⚫ ⚫

⚫

 1 01-05 P
⚫ ⚫

⚫

 2 01-06 P ⚫ ⚫
⚫

⚫
⚫

 2 01-07 P
⚫

⚫ ⚫
⚫

 8 01-08 P ⚫ ⚫
⚫ ⚫

⚫

 12 01-09 P ⚫ ⚫
⚫ ⚫

⚫

 20 01-10 P ⚫ ⚫
⚫ ⚫

⚫

 1 02 A

 1 03 A

 4 02,03-01 P
⚫

⚫
⚫

⚫

 1 02-02 P ⚫ ⚫
⚫ ⚫

⚫

 4 02,03-03 P
⚫ ⚫

⚫

 4 02,03-04 P
⚫ ⚫

⚫

 4 02,03-05 P
⚫ ⚫

⚫

 4 02,03-06 P
⚫ ⚫

⚫

 1 02-07 P
⚫

◼ ⚫

 1 02-08 P ⚫ ⚫
⚫ ⚫

⚫

 1 02-11 P ⚫
⚫ ⚫

⚫

 1 02-13 P ⚫
⚫ ⚫

⚫

 1 02-14 P ⚫
⚫ ⚫

⚫

143

Table 5. Overview of SolidWorks assemblies and parts [continued].

Q
u

a
n

ti
ty

Code T
y

p
e

Is
 p

a
rt

 o
f

p
h

y
si

ca
l/

m
ec

h
a

n
ic

a
l

d
es

ig
n

Is
 u

se
d

 o
n

 o
ld

 µ
-C

A
T

 r
o
b

o
t

SolidWorks

design
Manufacturing method(s)

 F
ro

m
 e

x
is

ti
n

g

µ
-C

A
T

N
ew

S
o

u
rc

e
(o

f
n

ew

p
a
rt

 o
r

u
p

d
a
te

)

O
ff

-t
h

e-
sh

el
f

Custom-made

 A
s-

is

U
p

d
a

te
d

S
el

f

E
x
te

rn
a

l

A
s-

is

W
it

h
 m

a
n

u
a

l
re

w
o
rk

3
D

-p
ri

n
ti

n
g

L
a
se

r-
cu

tt
in

g

L
a
th

e-
tu

rn
in

g

S
il

ic
o
n

e
-c

a
st

in
g

O
th

er

 1 02-15 P
⚫ ⚫

⚫

 1 02-16 P
⚫

⚫ ⚫
⚫

 4 02,03-17 P ⚫ ⚫ ⚫
⚫

 4 02,03-18 P ⚫ ⚫ ⚫
⚫

 2 02,03-19 P ⚫ ⚫
⚫ ⚫

⚫

 2 02-20 P
⚫

⚫ ⚫
⚫

 4 02,03-22 P ⚫ ⚫
⚫ ⚫

⚫

 2 02,03-23 P ⚫
⚫ ⚫

⚫

 1 03-01 A

 1 03-01-01 P
⚫

⚫ ⚫
⚫

 1 03-01-02 P
⚫

⚫ ⚫
⚫

 1 03-01-03 P
⚫

⚫ ⚫
⚫

 1 03-01-04 P
⚫

⚫ ⚫
⚫

 1 03-01-05 P
⚫

⚫ ⚫
⚫

 1 03-02 P ⚫
⚫ ⚫

⚫

 1 03-07* P
⚫ ⚫

⚫

 1 03-08 P ⚫ ⚫
⚫ ⚫

⚫

 1 03-09 P
⚫

⚫ ⚫
⚫

 1 03-20 A

 1 03-20-01 P
⚫

⚫ ⚫
⚫

 1 03-20-02 P
⚫

⚫ ⚫
⚫

 1 03-20-03 P
⚫

⚫ ⚫
⚫

 1 03-24 P ⚫ ⚫
⚫

 ⚫

 1 03-25 P ⚫ ⚫  ⚫

144

A 3.2 Manufacturing

A 3.2.1 Equipment and procedure for SLA 3D-printing

Equipment and procedure are explained in the following.

Equipment:

▪ 3D printer: formlabs Form 3 (early 2019 model)

▪ Cleaning: formlabs bathing station with isopropyl alcohol

▪ Curing: formlabs curing station

▪ Printing material: formlabs Durable resin

▪ Software: formlabs PreForm 3.4.2 and newer

Procedure:

4. Export an STL file from SolidWorks.

5. Arrange part(s) in formlabs PreForm software, using rafts and 0.5mm touch points.

6. 3D-print part(s).

7. Clean parts in alcohol bath for 20 minutes.

8. Harden part(s) in curing station at 60°C for one hour.

9. Let part(s) cool down.

10. Remove rafts.

A 3.2.2 Equipment and procedure for FDM 3D-printing

The front and back dome are printed using the other in-lab printer. Equipment and

procedure are described in the following.

Equipment:

▪ 3D printer: 3D Systems BFB Touch 3D

▪ Printing material: PLA (yellow)

▪ Software: Axon 2

Procedure:

1. Export an STL file from SolidWorks.

145

2. In Axon 2, arrange it on the printing platform and choose settings: material, density

(quality) and raft support options.

3. Generate the printer file (G code) and save it to flash drive.

4. Insert flash drive into printer and start the print.

5. After the print is finished, remove the object from the platform and remove rafts (if

applicable).

A 3.2.3 Procedure for silicone-casting

Seals around photodiodes and the gasket inside the camera cap are silicone-cast. The

procedure is described in the following list. Note that mixing time and ratio depend on

the type of silicone used.

1. Design mould in SolidWorks.

2. 3D-print mould.

3. Cover the mould with “Ease Release” agent1 (optional).

4. Mix two silicone components in 1:1 ratio.

5. Pour a thin stream into mould from distance, to minimize formation of bubbles.

6. Knock mould on flat surface to get bubbles out.

7. Cover with film and place weights on it to achieve a flat smooth surface.

8. Let it cure for approx. 30 minutes (depends on size).

9. Remove weights, film and pull silicone out of the mould.

10. Cut off flashes.

A 3.3 Assembling

A high-level exploded view of the robot is shown in Figure 46. The numbers indicate the

assemblies or parts and refer to the order of steps when assembling the robot:

1. Slide the PCB over the core assembly and into the provided grooves of the back end

cap.

1 “Ease Release” is a wax-based liquid release agent and can be used to facilitate the removal of the

silicone body from the mould.

146

2. Route the wires of components installed in the back end cap assembly onto the PCB

and connect them.

3. Slide the Plexiglass cylinder over the PCB and over the back end cap.

4. Bring the front end cap assembly close to the Plexiglass cylinder, route all wires of

the installed components to the PC and connect them, then slide the front end cap into

the Plexiglass cylinder. Close the hex nuts on the outside rods.

5. Place front and end dome over the front and end cap, respectively. Each dome requires

two bolts to be fastened.

Figure 46. Assembling the robot.

147

A 4 Software

A 4.1 Arduino interfacing

Table 35. Pins of ATmega328P MLF32. : Restricted to denoted type.

Physical pin

number (MLF32)

Arduino pin ID Signal name Type

1 3 FSK_TX Digital Output

2 4 RIGHTBEACON Digital Input

3 GND Power

4 +5V Power

5 GND Power

6 +5V Power

7 Crystal

8 Crystal

9 5 LEFTBEACON Digital Input

10 6 FSK_RX Digital Input

11 7 CS1 Digital Output

12 8 CS4 Digital Output

13 9 CS3 Digital Output

14 10 CS2 Digital Output

15 11 SPI_MOSI Digital Output

16 12 SPI_MISO Digital Input

17 13 SPI_SCK_MEGA Digital Output

18 +5V Power

19 A6 BATTERY_MEASURE Analogue Input

20 AREF Power

21 GND Power

22 A7 ADC7 (unused) Analogue Input

23 A0 BATTERY_LOW_LED Digital Output

24 A1 FSK_ENABLE Digital Output

25 A2 ARD2RPI_HV Digital Output

26 A3 MOTOR_EN Digital Output

27 A4 I2C_SDA_HV Bus

28 A5 I2C_SCL_HV Bus

29 ARDU_RST Reset

30 0 ARDU_RX Digital Input

31 1 ARDU_TX Digital Output

32 2 IMUINT_HV Digital Input

Table 35 shows the Arduino microcontroller’s pins, along with their Arduino identifier

(if any), the corresponding signal name and their usage on µ-CAT.

148

A 4.2 Raspberry Pi interfacing

Table 36. Pins in use on Raspberry Pi Zero W.1

Physical pin number

(PCB header)

BCM pin

ID

WiringPi2

pin ID

Signal name Type

1 RPI_3V3 Power

2 +5V Power

3 2 8 RPI_SDA Bus

4 +5V Power

5 3 9 RPI_SCL Bus

6 GND Power

7 4 7 ARD2RPI_LV Digital Input

8 14 15 RPI_TX Digital Output

9 GND Power

10 15 16 RPI_RX Digital Input

11 17 0 ARDU_RST_LV Digital Output

12 18 1 LED_R PWM Output

13 27 2 BT_CMD Digital Output

14 GND Power

20 GND Power

25 GND Power

30 GND Power

31 6 22 MUX_EN Digital Output

32 12 26 LED_G PWM Output

33 13 23 LED_B PWM Output

34 GND Power

35 19 24 MUX_A Digital Output

37 26 25 MUX_B Digital Output

38 20 28 BT_RST Digital Output

39 GND Power

40 21 29 BT_STATE Digital Input

Table 36 shows the Raspberry Pi Zero W PCB header pins, along with their identifiers (if

any), the corresponding signal name and their usage on µ-CAT.

1 https://pinout.xyz/

2 http://wiringpi.com/

https://pinout.xyz/
http://wiringpi.com/

149

A 4.3 Multiplexer interfacing

Table 37. Multiplexer routing table.

Address bit B Address bit A X (Arduino RX)

routed to

Y (Arduino TX)

routed to

Device

0 0 X0 Y0 Raspberry Pi

0 1 X1 Y1 Bluetooth

1 0 X2 Y2 FTDI

1 1 X3 Y3 (unused)

A 4.4 Test suite

A 4.4.1 Relevant files

Accompanying Section 5.2, the following codes are a reference for the test engineer to

compile required files.

The “Makefile” presented in Figure 47 can be used as shown here. It includes the paths

to Arduino libraries and the tag for the target architecture to compile for.

ARDUINO_DIR = /usr/share/arduino

ARDMK_DIR = /usr/share/arduino

ARDUINO_LIBS = SPI Wire I2Cdev MPU6050 EEPROM i2cdetect

USER_LIB_PATH = /home/pi/Arduino/libraries

BOARD_TAG = mini328

MONITOR_PORT = /dev/ttyS0

include /usr/share/arduino/Arduino.mk

Figure 47. Content of “Makefile”.

The text presented in Figure 48 is part of the content of the file “testcases.csv” which is

used by the main user interface to compile the list of available test cases. This file must

be manually updated by the programming engineer, and its structure must follow the one

shown here.

category|code|name|displayname|description|unitsUnderTest|instructions

other|o01|RGB-LED|RGB-LED|Testing RGB LED|RPi PWM, RGB LED|Guided test.

Figure 48. Headline and example data set in the file “testcases.csv”.

Figure 49 shows – as an example – the content of the parameters file for one test case.

The programming engineer must follow the structure used in the existing parameter files

150

when creating a new parameter file for another test case. Possible options for the data

type are (so far):

▪ int integer

▪ flt float

▪ hex integer in hexadecimal representation

▪ str string

canUseDefault,paramName,paramValue,paramType,paramUnit,inInofile

1,R_H,47000,int,Ohms,1

1,R_L,5600,int,Ohms,1

1,Analog reference,1.1,flt,V,1

Figure 49. Content of file “params.csv” for test case “a04”.

A 4.4.2 Main Python code

#!/usr/bin/python3

30.04.2020

Kilian Ochs

Test suite v1.0

A user-interactive script which manages and runs test cases.

Test cases are specified in the csv file "testcases.csv", as specified

by the variable "path_to_file_testcases" below.

This code runs on the RaspberryPi.

import csv, os, time, subprocess

from datetime import datetime

globally used variables:

 ## parameters:

path_to_dir_resources = "./resources"

path_to_file_testcases = path_to_dir_resources+"/testcases.csv"

name_of_file_params = "params.csv"

name_of_file_report = "report.txt"

 ## internal:

testCases = []

numTestCases = 0

example csv line:

arduino,a01,UART_RPi,UART 1,Bidirectional test for UART interface between Arduino and
RaspberryPi

class TestCase:

 category = "" # arduino or other

 code = "" # e.g., a01

 name = "" # e.g., UART_RPi

151

 displayname = "" # e.g., UART 1

 description = "" # e.g., Bidirectional test for UART interface between Arduino and RaspberryPi

 instructions = ""

 devices = ""

 path = "" # path to test case directory

 num = 0 # global list number

 params = [] # parameters for this test case; each row will hold: canUseDefault, paramName,
paramValue, paramType (as strings)

 execTime = None

 def
__init__(self,_num,_category,_code,_name,_displayname,_description,_devices,_instructions):

 global path_to_dir_resources

 self.num = _num

 self.category = _category

 self.code = _code

 self.name = _name

 self.displayname = _displayname

 self.description = _description

 self.devices = _devices

 self.instructions = _instructions

 self.path = path_to_dir_resources + \

 "/" + self.category + \

 "/" + self.code + "_" + self.name + "/"

 def toString(self):

 print("%2d | Category : %s" % (self.num,self.category))

 print(" | Name : "+self.displayname)

 print(" | Description : "+self.description)

 print(" | Units involved : "+self.devices)

 print("---
--")

''' Reads csv file and prints the list to the terminal '''

def setup():

 print("Setting up test cases.")

 global path_to_file_testcases

 global numTestCases

 # Read available test cases into objects:

 with open(path_to_file_testcases, 'r') as csvfile:

 reader = csv.reader(csvfile, delimiter = '|')

 rowNum = 0

 for row in reader:

 if rowNum > 0:

testCases.append(TestCase(numTestCases+1,row[0],row[1],row[2],row[3],row[4],row[5],row[6]))

 numTestCases += 1

 rowNum += 1

 print("Parsed "+str(numTestCases)+ " test cases.")

''' Prints list of test cases imported from csv '''

def printTestCases():

 global testCases

 print("\n---
--")

 for tc in testCases:

 tc.toString()

 print("\n")

''' User-interactive menu '''

def loop():

152

 global numTestCases

 global path_to_dir_resources

 global name_of_file_params

 global testCases

 while True:

 # Present the list of test cases:

 printTestCases()

 # Wait for user input:

 try:

 instr = input("Open a test case by entering its integer.\n'0' to exit. ")

 except EOFError as error:

 print("\nCaught EOF error")

 except Exception as exception:

 print("\nCaught Exception")

 # Parse user input:

 choice = int(instr)

 if choice == 0:

 return

 if choice > numTestCases:

 print("\nUser input fault: No such test case!")

 else:

 # Display instructions:

 displayInstructions(choice)

 # Ask user if he really wants to run this test case:

 try:

 inStr = input("Type 'y' to start this test case, otherwise 'n'. ")

 except EOFError as error:

 print("\nCaught EOF error")

 except Exception as exception:

 print("\nCaught Exception")

 if inStr == "y":

 printHeadline(choice)

 # Check if there are parameters to be defined:

 path_to_file_params = path_to_dir_resources+\

 "/"+testCases[choice-1].category+\

 "/"+testCases[choice-1].code+"_"+testCases[choice-1].name+\

 "/"+name_of_file_params

 if os.path.isfile(path_to_file_params):

 testCases[choice-1].params = []

 try:

 with open(path_to_file_params, 'r', newline='\n') as csvfile:

 reader = csv.reader(csvfile, delimiter = ',')

 rowNum = 0

 numParams = 0

 for row in reader:

 if rowNum > 0:

 testCases[choice-1].params.append([row[0],row[1],row[2],row[3],row[4],row[5]])

 numParams += 1

 rowNum += 1

 print("\nParsed "+str(numParams)+ " parameters.")

 print("List of parameters:\n")

 for param in testCases[choice-1].params:

 print(param[1]+": "+param[2]+param[4])

 numParams += 1

 # If parameters are mandatory to be defined by user, ask for them and save in test
case object:

153

 allMandatory = True

 for param in testCases[choice-1].params:

 if param[0] == 0:

 try:

 paramStr = input("\nSpecify "+param[1]+" value: ")

 except EOFError as error:

 print("\nCaught EOF error")

 except Exception as exception:

 print("\nCaught Exception")

 param[2] = paramStr

 else:

 allMandatory = False

 if not allMandatory:

 # If not, ask if user wants to define parameters:

 try:

 inStr = input("\nDo you want to change parameters with already defined values?
['y' or 'n']: ")

 except EOFError as error:

 print("\nCaught EOF error")

 except Exception as exception:

 print("\nCaught Exception")

 if inStr == "y":

 # If yes, present list of parameters and let user choose and input values:

 while True:

 print("\nList of parameters:\n")

 numParams = 0

 for param in testCases[choice-1].params:

 print(str(numParams+1)+" "+param[1]+" Current value: "+param[2]+param[4]+"
(Type "+param[3]+")")

 numParams += 1

 try:

 inStr = input("\nSelect parameter integer or '0' to execute test case with
chosen values: ")

 except EOFError as error:

 print("\nCaught EOF error")

 except Exception as exception:

 print("\nCaught Exception")

 inVal = int(inStr)

 if inVal == 0:

 print("User aborted.")

 break

 if inVal > numParams:

 print("\nUser input fault: No such parameter!")

 else:

 try:

 paramStr = input("Enter new parameter value: ")

 except EOFError as error:

 print("\nCaught EOF error")

 except Exception as exception:

 print("\nCaught Exception")

 testCases[choice-1].params[inVal-1][2] = paramStr

 # Write values to params.csv file:

 numParams = 0

 print("\nThe following parameter values will be used:\n")

 for param in testCases[choice-1].params:

 print(param[1]+": "+param[2]+param[4])

 with open(path_to_file_params, 'w') as csvfile:

 writer = csv.writer(csvfile,delimiter = ',')

154

 row0 = ["canUseDefault", "paramName", "paramValue", "paramType", "paramUnit",
"inInofile"]

 writer.writerow(row0)

 for row in testCases[choice-1].params:

 writer.writerow(row)

 numParams += 1

 # Write new parameters into ino file:

 if testCases[choice-1].category == "arduino":

 #print("\nConfiguring ino file.")

 inoContent = ""

 origInoContent = ""

 paramBaseName = "param"

 try:

 with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'r') as
inofile:

 inoContent = inofile.read()

 origInoContent = inoContent

 except IOError:

 print("\nError: Cannot access ino file for reading.")

 return -1

 startPos = 0

 for i in range(numParams):

 #print(testCases[choice-1].params[i][1]+" in ino: "+testCases[choice-
1].params[i][5])

 if testCases[choice-1].params[i][5] == '1': # replace only if this parameter is
present in ino file

 startPos = inoContent.find(paramBaseName+str(i+1),startPos)

 if startPos < 0:

 print("\nError in ino file: Parameter \""+paramBaseName+str(i+1)+"\" not
found!")

 return -1

 startPos = startPos + len(paramBaseName)+len(str(i+1))+1

 paramVal = inoContent[startPos:inoContent.find("\n",startPos)]

 paramLen = len(paramVal)

 newParamVal = testCases[choice-1].params[i][2]

 if testCases[choice-1].params[i][3] == "str":

 newParamVal = "\""+newParamVal+"\""

 inoContent =
inoContent[:startPos]+newParamVal+inoContent[(startPos+paramLen):]

 if origInoContent != inoContent:

 try:

 with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'w') as
inofile:

 #print("Writing parameter values to ino file.")

 inofile.write(inoContent)

 except IOError:

 print("\nError: Cannot access ino file for writing.")

 return -1

 except IOError:

 print("\nError: Cannot access parameters file.")

 return -1

 else:

 print("No parameters.")

 # Create timestamp:

 testCases[choice-1].execTime = datetime.now()

 dt_string = testCases[choice-1].execTime.strftime("%d/%m/%Y %H:%M:%S")

155

 # Write timestamp into ino file:

 if testCases[choice-1].category == "arduino":

 inoContent = ""

 try:

 with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'r') as inofile:

 inoContent = inofile.read()

 except IOError:

 print("\nError: Cannot access ino file for reading.")

 return -1

 startPos = inoContent.find("timestamp",0)+len("timestamp")+1

 paramVal = inoContent[startPos:inoContent.find("\n",startPos)]

 paramLen = len(paramVal)

 inoContent =
inoContent[:startPos]+"\""+dt_string+"\""+inoContent[(startPos+paramLen):]

 try:

 with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'w') as inofile:

 #print("Writing timestamp to ino file.")

 inofile.write(inoContent)

 except IOError:

 print("\nError: Cannot access ino file for writing.")

 return -1

 # Execute the chosen test case:

 print("\nTest case executes in 5 seconds.\n");

 time.sleep(5)

 resourcesFolderName = path_to_dir_resources[2:]

 '''

 process = subprocess.Popen(['python3',"./resources/arduino/a01_UART_RPi/a01.py", "a01",
"UART_RPi", "date", "time", "params.csv"],shell=False)

 code = process.wait()

 print("Process exited with code: "+str(code))

 '''

 os.system("cd "+resourcesFolderName+\

 "&& cd "+testCases[choice-1].category+\

 "&& cd "+testCases[choice-1].code+"_"+testCases[choice-1].name+\

 "&& python3 "+testCases[choice-1].code+".py "+\

 testCases[choice-1].code+" "+\

 testCases[choice-1].name+" "+\

 dt_string+" "+\

 name_of_file_params)

 print("\n")

 else:

 print("User aborted.")

def displayInstructions(choice):

 global testCases

 print("\nUser instructions:")

 print("------------------")

 currentParagraph = ""

 contentLen = len(testCases[choice-1].instructions)

 iterator = iter(range(0,contentLen))

 for i in iterator:

 c = testCases[choice-1].instructions[i]

 if c == '\\':

 if i+1 < contentLen:

 if testCases[choice-1].instructions[i+1] == "n":

 print(currentParagraph)

 currentParagraph = ""

156

 next(iterator, None)

 else:

 currentParagraph += c

 print(currentParagraph)

 print("\n")

def printHeadline(choice):

 global testCases

 print("")

 print("**********************")

 print("* *")

 print("*",end='')

 lenOfCode = len(testCases[choice-1].code)

 lenOfName = len(testCases[choice-1].displayname)

 spaceCode = 20 - lenOfCode

 spaceCodeLeft = int(spaceCode / 2)

 spaceCodeRight = int(spaceCodeLeft + spaceCode % 2)

 spaceName = 20 - lenOfName

 spaceNameLeft = int(spaceName / 2)

 spaceNameRight = int(spaceNameLeft + spaceName % 2)

 for i in range (spaceCodeLeft):

 print(" ",end='')

 print(testCases[choice-1].code, end='')

 for i in range (spaceCodeRight):

 print(" ",end='')

 print("*")

 print("*",end='')

 for i in range (spaceNameLeft):

 print(" ",end='')

 print(testCases[choice-1].displayname, end='')

 for i in range (spaceNameRight):

 print(" ",end='')

 print("*")

 print("* *")

 print("**********************")

 print("")

print("u-CAT Test Suite v 1.0")

print("--\n")

setup()

loop()

print("\nGood-bye!")

Figure 50. Python script of the main user interface.

	Author’s declaration of originality
	Abstract
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 About µ-CAT
	1.2 Literature review on small-scale underwater robots
	1.2.1 Processor architectures
	1.2.2 Sensors
	1.2.3 Summary

	1.3 Motivation for an upgraded µ-CAT
	1.4 Personal motivation
	1.5 Acknowledgements

	2 Scope of this thesis project
	2.1 Initial state of µ-CAT
	2.1.1 Physical properties and mechanics
	2.1.2 Hardware components
	2.1.3 Voltage rails
	2.1.4 Software
	2.1.5 Design, manufacturing and assembly

	2.2 Contributions of this thesis
	2.2.1 Required upgrades
	2.2.2 Improving computational capabilities and capturing video data
	2.2.3 Implementing internal and external communications
	2.2.4 Improving dependability
	2.2.5 Improving producibility and ease of assembly

	3 Mechanics, solid modelling and manufacturing
	3.1 Overview
	3.2 Main modifications
	3.3 Buoyancy analysis
	3.4 Roll stability
	3.5 Structural components
	3.6 Waterproofing
	3.7 Manufacturing
	3.8 Results and discussion
	3.8.1 Integration of electrical components
	Placement of the Bluetooth module
	Placement of the reed switch

	3.8.2 Roll stability
	3.8.3 Self-surfacing
	3.8.4 Ease of production and assembly
	3.8.5 Future work

	4 Electronics
	4.1 Main modifications compared to original µ-CAT
	4.2 Overview of components, subsystems, signals and busses
	4.3 Resistor value and power calculations on LEDs
	4.4 Voltage rails
	4.5 Supplying 5V alternatively through USB
	4.6 Improving power supply
	4.6.1 Buck converter instead of linear series regulator
	Design of the buck converter circuit
	Integration of the reed switch

	4.7 Motor power supply unit
	4.8 Capability upgrades
	4.8.1 Integration of Raspberry Pi Zero W single-board computer and camera
	4.8.2 Implementation of advanced optical messaging
	Basic components
	Integration of frequency-shift keying circuit
	Switching between signal sources
	Integration of messaging LEDs

	4.9 Integration of Arduino Mini 05
	4.10 Communication with the outside world
	4.10.1 Integration of the FTDI chip
	4.10.2 Integration of the standalone Bluetooth module

	4.11 Sharing the UART bus
	4.11.1 Integration of the multiplexer chip

	4.12 Communication line from Arduino to Raspberry Pi
	4.13 Performing a reset of the Arduino microcontroller
	4.14 Implementation of status LEDs
	4.14.1 Implementation of RGB status LED
	4.14.2 Implementation of single-colour LEDs

	4.15 Component updates: IMU and pressure sensor
	4.16 Integration of motor drivers (I²C)
	4.17 Integration of motors
	4.18 Integration of battery voltage measurement
	4.19 Implementation of level shifters
	4.20 Provision of test pads
	4.21 Considerations on modularity and reliability
	4.22 Using the main PCB
	4.23 Results and discussion
	4.23.1 Power distribution, consumption and supply
	4.23.2 Integration of Arduino, Raspberry Pi Zero W and camera module
	4.23.3 Implementation of advanced optical messaging
	4.23.4 Communications
	4.23.5 Improved user-interface
	4.23.6 Future work

	5 Software
	5.1 Programming the Arduino
	5.1.1 ICSP
	5.1.2 UART
	UART via USB
	UART via Raspberry Pi

	5.2 Test case automation
	5.2.1 User interface
	5.2.2 Test cases
	UART between Arduino and Raspberry Pi (“a01”)
	Resetting the Arduino via the Raspberry Pi (“a02”)
	UART between Arduino and FTDI (“a03”)
	Battery voltage measurement (“a04”)
	UART between Arduino and Bluetooth module (“a05”)
	Signal line from Arduino to Raspberry Pi (“a06”)
	Bluetooth AT mode configuration (“a07”)
	I²C detection (“a08”)
	RGB LED (“o01”)

	5.3 Supplementary software
	5.4 Results and discussion
	5.4.1 Representative test case results
	Example test result: I²C detection (“a08”)
	Example test result: Signal line from Arduino to Raspberry Pi (“a06”)
	Example test result: RGB LED (“o01”)

	5.4.2 Future work

	6 Cost estimation
	7 Summary
	Bibliography
	Appendix
	A 1 Experimental results
	A 1.1 Choice of buck converter
	A 1.1.1 Comparison of two buck converters
	Experiment 1: HW-468 applicability for 𝟓𝐕 output
	Experiment 2: LM2596S applicability for 𝟓𝐕 output

	A 1.1.2 Comparison of chosen buck converter and two voltage regulators
	Experiment 3: LM2596S vs. 29302WT; motors at stall current (𝟔𝐕, 𝟐𝐀)
	Experiment 4: LM2596S vs. 29302WT; motors (𝟔𝐕, 𝟎.𝟓𝟓𝐀)
	Intermediate conclusion I
	Experiment 5: LM2596S vs. 29151-5.0; logic supply (𝟓𝐕, 𝟎.𝟐𝟓𝐀)
	Intermediate conclusion II
	Experiment 6: LM2596S vs. 29151-5.0; motors stalled (𝟓𝐕, 𝟐𝐀)
	Experiment 7: LM2596S vs. 29151-5.0; motors (𝟓𝐕, 𝟎.𝟓𝟓𝐀)
	Intermediate conclusion III

	A 1.2 Verification of chosen buck converter
	A 1.3 Power consumptions

	A 2 Components and values
	A 2.1 LEDs

	A 3 Mechanics, solid modelling and manufacturing
	A 3.1 Parts names and descriptions
	A 3.2 Manufacturing
	A 3.2.1 Equipment and procedure for SLA 3D-printing
	A 3.2.2 Equipment and procedure for FDM 3D-printing
	A 3.2.3 Procedure for silicone-casting

	A 3.3 Assembling

	A 4 Software
	A 4.1 Arduino interfacing
	A 4.2 Raspberry Pi interfacing
	A 4.3 Multiplexer interfacing
	A 4.4 Test suite
	A 4.4.1 Relevant files
	A 4.4.2 Main Python code

