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Abstract 

A small-scale underwater robot developed by the Centre for Biorobotics, Tallinn, is the 

focus of this thesis work. This robot has primarily been developed for demonstration of 

bioinspired locomotion, but it has slowly transitioned into a research object and a teaching 

tool for university students in the field of robotics. A robot with such high 

manoeuvrability could very well be used in applied underwater missions for 

archaeological or maintenance purposes, if the robot’s computational and sensing 

capabilities were improved. 

This thesis work aims to raise the significance of this miniature robot by providing the 

necessary upgrades: a new motherboard which implements a more powerful processor, 

integrates a camera and an advanced communication and remote control system, along 

with an updated physical design – resulting in improved user interfacing, dependability, 

producibility and ease of assembly. Apart from that, a hierarchical structure for dividing 

tasks into high-level and low-level control is proposed and implemented in the example 

of a test suite which serves as a practical aid in debugging the circuit board components. 

As a result of the tasks carried out, the new prototype is not only more competitive 

compared with other robots in its class, but also enhances the study quality when being 

used as a teaching tool. 

Establishing the requirements and then presenting specifications and methods to fulfil 

them constitutes the larger part of this thesis.  

This thesis is written in English and is 99 pages long, including 7 chapters, 32 figures and 

17 tables. 
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1 Introduction 

In this chapter, the reader will be introduced to the general background of the matter and 

study field with which this thesis is involved. Since this project is concerned with the 

improvement of an existing robot named µ-CAT (pronounced as “micro-cat”), the 

developers, the history and the main purpose of this robot are laid out first. After that, a 

discussion on comparable underwater robots will help clarify µ-CAT’s standing among 

them. This leads to a statement on the need to upgrade this underwater vehicle and finally 

to a personal note on the motivation for this thesis work. 

The remainder of this thesis is structured as follows: Chapter 2 gives an overview on the 

scope of the work on which this thesis is based by describing the initial state of the robot 

and then detecting the required modifications and upgrades. Chapter 3 to Chapter 4.23.6 

present the methodology for execution of the tasks in the fields of physical design, 

electronics and software development, and each of them contains a section on the 

achieved results in the end. The thesis closes with a cost estimation of the new robot and 

some summarizing statements on the accomplished work. 

1.1 About µ-CAT  

The Centre for Biorobotics is a science institute operating under TalTech (Tallinn 

Technical University) as a subdivision of the department of Computer Systems. It merges 

engineering and research activities of several fields, such as mechatronics, robotics and 

bioinspired sensing and locomotion. One of its main research areas has been the 

exploration and development of underwater robots which are inspired by biological 

lifeforms.  

It has recently called out for students willing to improve one of their underwater robots, 

namely µ-CAT which is a smaller version of a similar robot named U-CAT (Underwater 

Curious Archaeology Turtle) [1]. While U-CAT was meant right from the beginning to 

serve in field projects, µ-CAT was initially developed for demonstration purposes and 
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turned into a teaching tool and an object for in-lab tests. Compared to U-CAT, the 

production cost of µ-CAT has been kept at least one order of magnitude lower. 

The underwater robots U-CAT and µ-CAT have been designed and built in 2013 as part 

of the European-Union-funded project ARROWS (Archaeological Robot systems for the 

World’s Seas) [1], [2]. µ-CAT, the scaled-down version of U-CAT, was then first shown 

at an exhibition called “Robot Safari”, held at the Science Museum London. For this 

show, four µ-CAT copies were produced within three months to replace the not yet 

functional U-CAT. 

U-CAT itself was intended mainly as a helper for archaeological deep-sea explorations, 

since it can manoeuvre in very confined spaces due to its size and unconventional mode 

of locomotion which is inspired by a sea turtle [3]: Four independently driven flippers 

enable holonomic control on all six DOF (degrees of freedom). µ-CAT implements the 

same locomotion principle as U-CAT but can manoeuvre in even tighter confinements. 

Figure 1. Underwater robots U-CAT (left) and µ-CAT (right).1 

1.2 Literature review on small-scale underwater robots 

For a robot to be able to do field work, it must sense its surroundings and move efficiently 

on the terrain or in the medium where it has been deployed. Some environments are 

hostile to human beings, and scientific and industrial sectors have been pushing forward 

the development of robots which can replace humans and perform dangerous tasks. One 

such example is the class of robots specialized on underwater missions. Traditionally, 

they have been large and not very agile, and they show diminished performance when 

 

 

 

1 Image used with permission from TalTech Centre for Biorobotics. 
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motion in confined spaces and stable station-keeping is required. To address these issues, 

the scientific community has turned to nature for inspiration, particularly learning from 

organisms which have been thriving in these environments [4]. In this regard, the sea is 

one of the most fascinating environments for robotic endeavours, offering a multitude of 

species to learn from. A large part of developed underwater robots does not accomplish 

missions, but consists of research and testing machines, required to study techniques of 

making underwater robotics more capable and efficient. Especially in the field of 

bioinspired fish locomotion, a lot of research has been done, and a variety of bio-inspired 

underwater robots have been developed in the recent years [5], [6], [7]. Underwater robots 

serve very different purposes. Some of them are utilized as study objects, mostly in order 

to analyse the modes of locomotion or sensing employed in biological lifeforms, others 

exist for practical use in field projects. In the following analysis, abilities of underwater 

robots which are comparable in size (largest dimension smaller than 100cm) and 

application to µ-CAT will be discussed and compared. A large part of the research is 

based on reviews by Raj and Thakur [6] and by Salazar et al. [7]. The aim of this literature 

review is to gain clarity on µ-CAT’s role in the family of existing small-scale underwater 

robots and to understand its significance and potential. 

As Wang et al. point out, [8, Ch. 7.1], AUVs for shallow waters are of rising interest to 

the robotic community. Their application scenarios are wide-ranging compared with the 

cost. µ-CAT falls into that category, and its usefulness depends on its level of autonomy. 

Even a robot with limited diving depth can perform complex missions – inspecting ship 

chests (Canterbury AUV; [8, Ch. 7]), serving as an aid in industrial processes or as a 

maintenance tool for nuclear storage ponds and water treatment facilities [9, Ch. 1.2], for 

pipeline-tracking in the oil and gas industry, for operations under-ice, gathering data to 

develop climate change models [10, Sec. I], to mention just a few examples. The 

applicability to many of these use cases depends not so much on diving depth, but rather 

relies on the small size and the high manoeuvrability of the vehicle. Considering µ-CAT’s 

outer dimensions, the full six DOF including in particular its ability to turn on the spot 

about all axes, it performs outstandingly in this regard and is therefore a serious candidate 

for a variety of applications where other (even more costly) robots would most likely not 

perform comparably. In this regard, it is worth noticing that most robots presented in this 

analysis serve the main purpose of mimicking fish locomotion.  
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As Watson states [9, Ch. 2.6], there exist only few underwater vehicles with a small form 

factor and mass – the class into which µ-CAT belongs. The author emphasizes the special 

potential for such vehicles to be used in swarms, which presupposes some form of inter-

communication between the robots. The fact that micro-AUVs are especially useful when 

operated in swarms may lead to the conclusion that the cost-factor of a single device 

becomes more important than in robots which are meant to perform solo missions. Apart 

from that, robots which are supposed to operate in confined spaces are most useful if they 

can be operated untethered (to avoid entanglement) [5, Ch. 1], which means that they 

require enough onboard computation power to carry out a mission without external 

control. Their ability to perform a mission unattended depends also on their sensing 

capabilities. 

Robot control is usually divided into at least two levels: high-level (executive) and low-

level (reactive or behavioural) control [11, Sec. I], [12]. High-level control considers task 

executions which usually require longer time spans – several seconds or more. This 

typically includes definition and scheduling of overall mission goals and long-term 

navigational planning. Low-level control includes processes that are tightly coupled to 

the physical world and therefore directly interface with employed hardware – sensors, 

actuators and communication systems – and they are typically time-critical and perform 

in the magnitude of milliseconds or less. These two distinct levels of control are often 

reflected in the hardware architecture of the robot, as Section 1.2.1 shows. 

The following comparison is divided into two parts: hardware architectures and sensors. 

The first analyses the number and types of processors used, to understand if the 

architecture allows a division into high-level and low-level functions, as Wang et al. 

describe [8, Ch. 3]. The second lists commonly used sensors, to provide insight into the 

sensing, navigation and localisation capabilities of the robot, amongst others. For all 

analysed robots, their primary purpose(s) are also stated – see table column 

“Applications”. The given lists distinguish between the following purposes: 

▪ Study of bioinspired locomotion and swimming patterns. The robot aims to 

replicate locomotion principles found in biological lifeforms, mainly fishes.  

▪ Study of bioinspired sensing and navigation. The robot aims to replicate means of 

intercommunication and environmental sensing found in biological lifeforms, 

mainly fishes. Although all robots are equipped with sensors, only some of them 
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are directly comparable with those found in fishes, for example the presence of an 

array of depth sensors is comparable with the lateral line of a fish, or the 

implementation of electrocommunication is inspired by certain families of fish.  

▪ Teaching tool. If a robot is developed mainly for students to learn about principles 

of robotics, the robot falls within this category. 

▪ Field projects. If the robot is developed to perform certain missions useful to 

industry or science (excluding the study of robotics aspects), it falls within this 

category. 

1.2.1 Processor architectures 

Valavanis et al. have identified four different types of control architectures for unmanned 

underwater vehicles [13]. Three of them involve a layered structure – and the one that 

does not is basically not in use. The division of high-level and low-level tasks is most 

likely reflected in the hardware: Smaller, low-cost and energy-efficient processors such 

as ARM1, AVR2, PIC3 handle low-level control. More powerful processors including 

FPGA (field-programmable gate array) and those designed for PCs (personal computers) 

are responsible for updating mission goals, maintain supervision or instruct lower-level 

processes to execute based on decisions made to resolve exceptional situations.  

The following comparison between state-of-the-art underwater robots should help 

estimate the computational power of a robot and reveal the employed hard- and software 

architecture approach regarding the distribution into higher and lower-level tasks.  

 

 

 

 

 

 

 

 

1 Originally “Acorn RISC (Reduced-instruction-set computing) Machine”; computer architecture. 

2 Microcontroller architecture based on RISC. 

3 Family of microcontrollers made by Microchip Technology. 
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µ-CAT* T SL F   L H   
Canterbury AUV [8] F H  L    
Robotic fish [14] SL    ⚫   
Essex G9 [15] SL    H L  
Robot dolphin [16] SL    ⚫   
Cownose ray [17] SL    ⚫   
Fish robot [18] SL SS    H L   
CPG boxfish [19] SL    ⚫   
Boxybot [20] SL     H L  
New boxfish [21] SL SS    H L   
KnifeBot [22] SL     H L  
Sepios [23], [24] T SL  L  H   
Low-cost AUV [25] F   H L    
Micro-AUV [26] U   L H L   
MONSUN [27] F    H L   
MONSUN II [28] F      ⚫ 
Southampton [10] F      ⚫ 
Squidbot mini [29] SL   H L   

 

As Table 1 reveals, ARM processors (such as the one used on the Raspberry Pi) are most 

commonly used, and in the majority of the cases, they are involved in high-level task 

planning. In this regard, µ-CAT’s new design follows a commonly used hardware 

architecture. It is, however, surprising how few robots reportedly employ AVRs. These 

trivial components are either used but not reported or actually not used. If the latter is 

true, this might be related to the fact that ARM processors have taken over part of this 

market segment: They have become very available, cheap, and the community provides 

a variety of tools and support for efficient use of these very capable microcontrollers 

(including ROS; Robot Operating System). Also, ARM is employed on a lot of single-

board computers, and these are convenient to use because they provide data storage and 

communication peripherals on the same PCB.  

Table 1. Processors and computing architectures in underwater robots. Applications: T: teaching tool; SL: 

study of bioinspired locomotion; SS: study of bioinspired sensing; F: field projects; U: unknown. Processor 

utilizations: L: low-level; H: high-level; X: level unknown; ⚫: combined levels (single processor); *: refers 

to the robot in the state after the tasks of this thesis work are carried out. More than one entry in a cell 

indicates that two processors of the same type are used for different purposes. Processors with unknown 

architecture are listed as “Other”.  
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1.2.2 Sensors 

The following analysis tries to identify the most commonly used sensors on existing 

small-scale underwater robots. 

Localisation for submarines poses engineering challenges. Long-range wireless RF (radio 

frequency)-based signals or GPS (global positioning systems) are not applicable under 

water, and ultrasonic signals of hydrophones require external beacons to be placed which 

emit ping signals. Some robots employ a GPS module and surface from time to time to 

update their location accurately, and one example was found where the GPS tracker is 

released from the submarine in case of emergency and surfaces without the vehicle [25, 

Sec. IV]. If inertial measurements are used to estimate the position, the error increases 

with the time delay between samples, since it requires a sequence of two integrations with 

respect to time. Apart from that, inertial measurement sensors often cannot detect those 

small accelerations which may be caused by drift.  

Underwater communication poses challenges similar to those mentioned for localisation. 

Bluetooth, WLAN and other wireless communication methods commonly used in air are 

not applicable in water [21, Ch. 1] or can be used only in a few centimetres of range [27, 

Sec. 3.1]. 
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µ-CAT1  T SL F   ⚫ ⚫   ⚫ ⚫  ⚫      ⚫  

Canterbury AUV [8] F    ⚫   ⚫   ⚫      ⚫ ⚫ 

Essex G9 [15] SL    ⚫   ⚫ ⚫ ⚫    ⚫     

Robot dolphin [16] SL ⚫   ⚫    ⚫     ⚫     

RoMAN-III [30] SL    ⚫         ⚫     

Cownose ray [17] SL ⚫   ⚫   ⚫ ⚫     ⚫     

Fish robot [18] SL SS    ⚫ ⚫  ⚫ ⚫     ⚫    ⚫ 

Robotic dolphin [31] SL F    ⚫   ⚫ ⚫ ⚫ ⚫   ⚫     

CPG boxfish [19] SL ⚫    ⚫  ⚫ ⚫  ⚫        

Ostraciiform fish [32] SL    ⚫   ⚫ ⚫  ⚫   ⚫     

Robotic fish [14] SL    ⚫      ⚫   ⚫     

Boxybot [20] SL       ⚫       ⚫    

New boxfish [21] SL SS ⚫   ⚫   ⚫ ⚫  ⚫   ⚫     

KnifeBot [22] SL ⚫   ⚫   ⚫ ⚫        ⚫ ⚫ 

 

  

 

 

 

1 Refers to the robot in the state after the tasks of this thesis work are carried out. 

 

Table 2. Sensors used on autonomous underwater robots. Applications: T: teaching tool; SL: study of 

bioinspired locomotion; SS: study of bioinspired sensing; F: field projects; U: unknown. *: This includes 

all wireless modes of communication except for acoustic and optical. : Wireless communication, swarm 

synchronization;  and : localisation and navigation; : possibly more specific for obstacle detection and 

avoidance, target recognition, sampling or mapping; : diagnostics.  
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Table 2. Sensors used on autonomous underwater robots [continued]. 
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Sepios [23], [24] T SL    ⚫ ⚫ ⚫ ⚫ ⚫  ⚫   ⚫    ⚫ 

Low-cost AUV [25] F ⚫ ⚫  ⚫ ⚫ ⚫ ⚫ ⚫ ⚫      ⚫   

Micro-AUV [26] U ⚫   ⚫ ⚫  ⚫ ⚫ ⚫ ⚫       ⚫ 

MONSUN [27] F ⚫ ⚫  ⚫ ⚫  ⚫ ⚫ ⚫ ⚫        

MONSUN II [28] F ⚫   ⚫ ⚫  ⚫ ⚫  ⚫   ⚫     

Southampton [10] F ⚫   ⚫   ⚫ ⚫ ⚫       ⚫ ⚫ 

Squidbot mini [29] SL ⚫    ⚫  ⚫ ⚫  ⚫       ⚫ 

 

As the collected data in Table 2 reveals, the most commonly used sensors on AUVs relate 

to navigation, and amongst those, a pressure sensor for estimation of depth and an IMU 

comprising of accelerometers and gyroscopes for estimation of inertial properties. Laser 

or infrared sensors are often used for obstacle avoidance, in some cases accompanied by 

one or more cameras. Only one third of the investigated robots use a compass to determine 

absolute orientation, which means that others must rely on the IMU’s gyroscope for 

relative orientation. The measurement of speed via water flow sensors seems to be rare. 

Not many robots employ means of positioning: GPS is not frequently used. If it is, the 

robot (or at least the GPS module) must be near or above the water surface to make use 

of the signal. Less than one third of the robots use internal leakage or humidity sensors to 

improve dependability, and for only very few, internal temperature sensors (for detecting 

overheating, for example) are mentioned. However, some sensors related to fault-

detection or internal status monitoring which are rarely mentioned, such as current or 

voltage sensors, are not included in the table. 

For some of the robots presented in this section, information on some employed sensors 

might not be stated in the referenced papers. This might especially apply to self-diagnostic 
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sensors. In these cases, the table cells remain blank, although there is a possibility that the 

robot is actually equipped with such a sensor. 

µ-CAT can be categorized as a robot with a small number of sensors, compared to others 

in its class, but the optical communication system seems to make it quite unique amongst 

small-scale AUVs. 

1.2.3 Summary 

The following main conclusions can be drawn from the collected data presented in Table 

1 and Table 2: Small-scale robots employed in field projects are rare, and those which 

both serve as study objects and for real-life missions are even more rarely to find. Finally, 

it can be stated that robots used as a teaching tool are either rare or this use-case is not 

well documented. Based on the knowledge derived from the stated sources, µ-CAT is a 

highly versatile robot in terms of application fields, even though it does not currently 

focus on the study of bioinspired sensing. 

All aspects mentioned in the introductory part of Section 1.2 – underwater 

intercommunication, low-cost production and ease of producibility, untethered operation, 

high computational power onboard, sufficient sensing capabilities and high 

manoeuvrability – are core elements in the design of µ-CAT, and many of them are 

improved as part of this thesis project, hence rising µ-CAT’s significance in the class of 

small-scale underwater robots. The revised µ-CAT design features two processors – one 

for mission supervision and one for interfacing with hardware components – and 

improved sensing capabilities. Robots with a variety of use-cases are rare – µ-CAT takes 

a unique position, being also able to serve as a teaching tool, mainly due to its low cost. 

Although other robots have been developed in the scope of students’ projects and must 

therefore be characterized as study tools, the interactions of future students with them are 

mostly limited: Each robot is a black box. µ-CAT, however, is designed to be 

continuously modified and improved, and it offers the possibility for future students to 

experiment with it on the lowest design levels, involving electronics, software, mechanics 

and solid modelling. 
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1.3 Motivation for an upgraded µ-CAT  

From the side of the Centre for Biorobotics, the teaching tool µ-CAT must be more easily 

reproducible, so that more students can work with it at the same time. Also, the updated 

version of µ-CAT should be more applicable for studying problems related to robotics. 

In its present state, it lacks complex control, localization and fault detection, and the team 

of researchers and engineers at the Centre for Biorobotics have expressed their wish to 

have at least some of these missing aspects integrated into µ-CAT. Having a small capable 

robot would greatly simplify setting up research experiments and testing. This includes 

the possibility to run ROS [33] onboard the robot.  

1.4 Personal motivation 

The author of this thesis project picked up on this topic because of his deep interest in 

electronics engineering and his wish to combine his experience and knowledge in this 

field with 3D CAD (Computer-aided design) processes and with Embedded Systems 

software development. The task gave the opportunity to integrate aspects of all these areas 

into a hands-on project which would, after successful completion, provide a useful 

outcome for the sector of bio-inspired robotics. Apart from that, he has been working on 

U-CAT as his Bachelor project and was therefore already familiar with some of the 

features of these underwater robots and acquainted with the staff and researchers at the 

Centre for Biorobotics. The idea to contribute to the research sector of underwater 

robotics by offering a computationally powerful small-scale robot is inspiring and has 

been the main driver for carrying out this thesis work. 
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2 Scope of this thesis project 

This chapter presents all considerations and preparational works carried out before the 

implementation of upgrades and updates on the robot can begin. In order to clarify what 

exact changes need to be implemented and for which purpose, the original state of µ-CAT 

must be assessed, and requirements must be collected.  

2.1 Initial state of µ-CAT 

While U-CAT has been equipped with a camera and sensors for autonomous behaviour 

from the very beginning in order to be able to serve as an archaeological exploration 

vehicle, µ-CAT mainly adapts only the mode of locomotion from its more advanced 

sibling and serves as an in-lab test vehicle or to demonstrate the bioinspired locomotion 

concept of U-CAT. Henceforth, µ-CAT has been kept in a prototype stage of design and 

manufacturing. 

The robot’s capabilities are limited both in terms of computational power and sensing. 

Even as a test vehicle for in-lab studies of U-CAT, it implements too few features of its 

larger sibling. 

With the aim to get µ-CAT closer to U-CAT in terms of functionality while keeping its 

advantage of being inexpensive, small and lightweight, the following comparison 

between the two robots is carried out, in order to reveal potential aspects for improvement. 

2.1.1 Physical properties and mechanics 

The physical and mechanical properties of both robots, U-CAT and µ-CAT, are listed in 

Table 3. These include static properties and elements required for locomotion. 
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Table 3. Mechanical properties of U-CAT and µ-CAT.  

 U-CAT µ-CAT  

Dimensions 77 x 57 x 28cm 33 x 23 x 10cm 

Weight in air 18kg 1.5kg 

Nominal max. depth in water 100m 10m 

Flippers 4x Zhermack Elite Double 22 silicone 

 

While µ-CAT in much smaller and more lightweight than U-CAT, its nominal diving 

depth is also much smaller. This is mainly due to the materials being used – U-CAT 

employs an aluminium hull which withstands higher pressures than the 3D-printed parts 

on µ-CAT.  

2.1.2 Hardware components 

The following table (Table 4) lists the main hardware components on both vehicles and 

compares them. It becomes apparent that U-CAT has a higher degree of dependability 

due to self-diagnostic elements and implements more advanced controllers. While U-

CAT has a specialized motor controller, µ-CAT relies on software capabilities of the 

Arduino microcontroller to close the loop to the Hall sensor feedback from the servo 

motors. Due to the presence of the camera, U-CAT offers more autonomy than µ-CAT. 

U-CAT employs an advanced ARM-based computer for handling the camera data, i.e., to 

compress video feed in real-time. The same computer takes care about the communication 

between robot and external clients and the translation from high-level user commands to 

low-level control signals or – vice versa – from low-level sensor signals to high-level 

monitoring messages. µ-CAT’s Arduino interfaces all sensors and actuators. While U-

CAT uses eight ultrasonic (2MHz) sonars for underwater object detection and avoidance, 

µ-CAT has no such functionality implemented. The hydrophones on U-CAT are used for 

adjusting the robot’s orientation towards an external ping signal source. An acoustic 

modem allows transmission of messages under water, and outside of the water WLAN 

(Wireless local area network) or Ethernet cable connection can be used to communicate 

with the onboard computer. µ-CAT has two light sensors installed and can detect optical 

signals on a specific frequency (48kHz) via tone detector modules. The onboard tone 

detector modules filter incoming signals on that frequency. This way, the robot can 
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distinguish between two directions of incoming light (left and right) and can hence been 

instructed to change its orientation.  

Table 4. Hardware on U-CAT and old µ-CAT.  

 U-CAT µ-CAT  

Power source 4x HP Compaq NX8200 

laptop batteries 

2x 18650 Li-ion batteries 

Battery voltmeter Voltage divider and 

MCP3422 ADC  

Voltage divider and Arduino 

Mini 05 integrated ADC 

Current sensor LEM HO 25-NP  - 

Motor interface 4x controller Maxon EPOS2 

36/2  

4x H-bridge Texas 

Instruments DRV8830  

Motors 4x Maxon 272763 with 

integrated Hall sensor 

4x Robbe FS 70 MG  

Motor feedback 

sensor 

4x Rotary Hall encoder AMS 

AS5040 

Camera PointGrey CMLN-13S2C-CS  - 

Onboard computer BD-SL-I.MX6, ARM, 1GHz  Arduino Mini 05, AVR, max. 

20MHz  

Humidity sensor SHT21  - 

IMU sensor MPU-9150  MPU-6050  

Localization Hydrophones Aquarian 

Audio H1c 

- 

Obstacle avoidance Sonars SMSF20C30F21 - 

External control Acoustic modem Applicon 

Seamodem 

2x SFH203 photodiodes and 

tone detector modules 

Pressure sensor Gems 3101P-0016G-01-B-

000  

MS5407-AM  

Temperature sensor Included in pressure sensor, 

in IMU and in humidity 

sensor 

Included in IMU (not used) 

 

2.1.3 Voltage rails 

µ-CAT’s electric system operates at two different DC voltages (5V and 6V) which are 

generated from the battery voltage using two linear voltage regulators. The battery cells 

provide 2200mAh at 7.4V. 
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The 6V rail is used to power the servo motors through the motor driver chips and the 5V 

rail to supply the Arduino microcontroller, the tone detectors and the motor encoders. 

When connected to a USB (universal serial bus) power source, an additional 5V level 

becomes present which is used to power the USB-to-serial chip and which can be used as 

an alternative source to power the 5V circuitry. 

2.1.4 Software 

µ-CAT uses an Arduino Mini 05 board featuring the 8-bit microcontroller ATmega328P. 

The code on µ-CAT consists of various driver libraries written in C++ and of the main 

Arduino code. The software includes calculations for the motor motion profiles, several 

controllers for closed-loop motor control, depth, heading, as well as code for 

communication with UWSim (underwater simulator; used in “marine robotics research 

and development”1), to perform hardware-in-the-loop simulations. 

U-CAT’s onboard computer runs Linux Ubuntu 16.04 with ROS (Robot Operating 

System) Kinetic Kame for robot control, communications and interfacing of peripheral 

devices. ROS is an open-source framework which offers a peer-to-peer networking 

structure where each piece of information needed to monitor or control a hardware 

component or subsystem is contained in a certain “message” [34], [33]. When connected 

using TCP (transmission control protocol), all messages from the robot can be read and 

evaluated, and the client can publish its own messages to send data. Another essential 

task for U-CAT is to capture and process video data and publish messages containing the 

results. 

2.1.5 Design, manufacturing and assembly 

The hull consists of three main parts – the front, the back and a transparent cylindrical 

Plexiglass tube in between. O-rings and gaskets are used to keep water out. Apart from 

these, there are several other parts which complete the physical and mechanical robot 

design – a battery holder, a circuit board base plate, several threaded rods to hold ballast 

and to keep front and back end caps in place, the parts related to transmission of torque 

 

 

 
1 Source: http://wiki.ros.org/uwsim 

http://wiki.ros.org/uwsim
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onto the fins and the fins themselves. The front and back end caps are covered with plastic 

domes to enhance streamlining of the robot in water. 

µ-CAT is composed of parts which are available off the shelf and other parts which are 

custom-designed and then manufactured using rapid-prototyping (3D-printing), silicone 

casting, turning or manual methods. Some parts are a result of a combination of the above-

mentioned properties and methods. Regarding assembly methods, µ-CAT combines 

revertible mechanical fastening methods with non-revertible methods involving adhesive 

bonds (glue or epoxy). 

2.2 Contributions of this thesis 

This Master thesis project’s aim is to systematically improve the underwater robot µ-CAT 

in terms of two main aspects: the electronic hardware and the body design. The first 

relates mainly to functional improvements, and the second follows as a necessity, in order 

to host new components. Since the upgrades should not only achieve an improvement in 

the robot’s capabilities but also in its dependability, the creation of a test software 

framework and highly automated test cases is also included in this thesis project. 

As for the electronics part, not all implemented features are new developments. The 

circuit schematics for many subsystems are taken from the existing µ-CAT design – if 

they have proven to function as expected – or from other existing designs. Section 4.1 

gives an overview. Similarly, for the body design of the robot, many features are taken as 

used on the original robot, and Appendix A 3.1 clarifies the source for each part’s design.  

In addition to the upgrade requirements and specifications listed before, the author of this 

thesis project has determined additional tasks to be carried out. The complete set is 

presented in the following subsections. 

Some features are specifically tested against the requirements before implementing them, 

to detect if they are effective in accomplishing their purpose. Other features are 

implemented, and subsequent tests on the final product reveal their effectiveness. 

2.2.1 Required upgrades 

The required upgrades can be summarized as follows: 
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▪ improved computational capabilities; 

▪ ability to capture and process video images; 

▪ ability for communication using an advanced optical messaging system; 

▪ wireless communication for uploading code and for messaging; 

▪ more easily reproducible design of the robot. 

When implementing the changes on the robot, the following constraints must be 

considered: 

▪ maintain original main dimensions of the robot; 

▪ maintain original weight to guarantee neutral buoyancy in water; 

▪ consider roll and pitch stability of the submarine in the physical design upgrades; 

▪ maintain position of actuators, including motors and flippers; 

▪ maintain type and number of batteries; 

▪ use similar production techniques of the custom-made parts; 

▪ aim for an easy-to-assemble product; 

▪ keep production cost below 500 € net. 

2.2.2 Improving computational capabilities and capturing video data 

The Raspberry Pi Zero W computer and a camera module must be integrated into the new 

design (see Section 4.8.1). This way, µ-CAT can now capture video data to collect visual 

samples, perform visual servoing or use it to run object-detection and avoidance 

algorithms. Both features are important aspects of an AUV (autonomous underwater 

vehicle or aquatic unmanned vehicle) [7, Ch. 7], and the latter would significantly 

improve the degree of autonomy of the robot.  

With its small form factor (66 x 30.5mm) and its insignificant weight of only 9.3g (in 

air), the computer can be easily integrated into the confined space of the robot without 

posing a risk of exceeding its limits on buoyancy. The single-core Broadcom BCM2835 

CPU runs at 1GHz and provides enough computing power to run certain Linux 

distributions. With such an operating system, the implementation of ROS on µ-CAT 

becomes an option. Since ROS is used on U-CAT, µ-CAT can then serve as a feasible in-

lab experimentation vehicle to explore the possibilities of U-CAT. Apart from that, this 

framework is the de-facto standard in robot software, and students experimenting and 

working on µ-CAT would therefore gain a more relevant experience in the future. With 
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the implementation of the Raspberry Pi computer as part of this thesis work, a division of 

tasks into levels becomes an option and a hierarchical architecture with a top-down 

approach can be achieved [13]. As of now, the plan is for the Arduino to handle real-time 

sensitive tasks, such as low-level control including interfacing sensors and motor drivers, 

and for the Raspberry Pi to handle high-level control, image processing and 

communication with the simulator. 

According to commonly available specifications of the Raspberry Pi Zero W, the power 

consumption of this computer is 180mA at 5V. With the code to be run on the computer 

adding to the power consumption, it can be estimated that the power consumption will 

not exceed 200mA (1W) during regular operation, with WLAN enabled. This is within 

reasonable limits considering the available battery power of 2200mAh at 7.4V (16.28W 

for one hour). 

Since Raspberry Pi Zero W implements a WLAN and a Bluetooth module onboard, it can 

establish a connection to external clients in order to receive high-level task definitions. 

Although WLAN is not usable while the vehicle is in diving mode, it might still be 

functional when it is close to the water surface and it can definitely be used to 

communicate with the robot right before being placed in the water. 

2.2.3 Implementing internal and external communications 

As for inter-circuit communications, having at least one reliable pathway between 

Raspberry Pi and Arduino allows the Raspberry Pi access to the devices connected to the 

Arduino. Via the Raspberry Pi’s WLAN module, the user can then access peripheral 

devices wirelessly. The design and implementation of such methods of communicating 

between Arduino and Raspberry Pi are also part of this thesis project’s scope (see Section 

4.11 and Section 4.12). 

Concerning external communications, after the changes carried out in this thesis project, 

µ-CAT should be able to be used in field projects. To improve ergonomics of usage, the 

means to instruct the vehicle while it is above the water surface or to receive real-time 

feedback and mission reports must be simplified. In particular, the possibility to avoid 

any cable connections would facilitate the handling of the robot. So far, µ-CAT can only 

be instructed via USB cable. The implementation of the Raspberry Pi already improves 

the situation, because it offers wireless capabilities, as stated above. However, with the 
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additional implementation of a standalone Bluetooth module (see Section 4.10.2), the 

Arduino microcontroller can be directly interfaced, hence making potentially more 

power-demanding wireless connections to the Raspberry Pi unnecessary during regular 

operation. 

An advanced optical communication system is under development [35], and integration 

of this (albeit not yet fully functional) module and its surrounding components is therefore 

part of this thesis work (see Section 4.8.2). This might enable µ-CAT in the future to be 

instructed using messages modulated onto an optical source and allow 

intercommunication between robots while being under water. It could yield a significant 

improvement in terms of usability of the robot outside the lab. 

2.2.4 Improving dependability 

This thesis project tries to improve dependability of the robot. This includes its reliability 

(being free from erroneous behaviour during operation), its availability (being ready to 

be used) and its maintainability (making it easy to debug and fix). 

Availability can be improved with the implementation of a new power supply for some 

of the logic components. The addition of the Raspberry Pi and the camera module and the 

implementation of other advanced capabilities are most likely to pose a challenge on the 

battery lifetime and therefore reduce the maximum range of the robot’s missions. Since 

there is a strict constraint regarding type and number of batteries used, the only way to 

counteract this problem is to design a new power supply unit. The development details 

are presented in Section 4.6. 

In terms of reliability, the new PCB (printed circuit board) design features an improved 

placement of components to avoid long wire runs. This makes the system less susceptible 

to electromagnetic noise. In addition to that, the motor controllers, the USB-to-serial chip, 

the circuits detecting the frequency of incoming light signals and the Arduino 

microcontroller with its surrounding components are embedded on the new PCB instead 

of being connected using pin headers. This improves reliability when exposed to 

vibrations due to handling and transportation and in case of collisions. Also, the power 

supply components are placed on the same PCB and not on separate circuit boards, hence 

eliminating more unnecessary wire connections which are prone to fail due to corrosion 

or vibration.  
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Regarding maintainability, the avoidance of long freely hanging wires facilitates the study 

and debugging of system components. The previously existing mainboard and its separate 

subsystems require many long wires, and these do not only complicate the debugging of 

malfunctioning devices but make it also challenging for µ-CAT to serve as a research 

vehicle for people who were not involved in its original development process. The new 

PCB features silkscreen print layers on both sides, which identify all subsystems and 

relevant components on the circuit board. Apart from that, a lot of uniquely named test 

pads are placed on the top surface of the board, to give access to relevant signal lines by 

use of an oscilloscope or a multimeter. A detailed overview on the use of these test pads 

and their meanings can be found in Section 4.20.  

An RGB (red/green/blue) LED (light-emitting diode) is added to the PCB to allow for 

instantaneous visual feedback on system status and errors (see Section 4.14.1). Colour 

and blink codes can be used to differentiate between various messages. This feature 

facilitates maintainability regarding monitoring, debugging and testing. For similar 

reasons, several single-colour LEDs are added to the PCB, each dedicated to the 

indication of most common activities and statuses (see Section 4.14.2). 

Several software test routines are provided as part of this thesis project which facilitate 

debugging and testing of components and subsystems of the robot (see Section 5.2). 

Software is provided to test electronic subsystems, hardware components, signal lines and 

communication pathways (both wired and wireless). All software interacts with the user 

and reports the outcome of the tests in a way understandable for the educated human 

operator. 

2.2.5 Improving producibility and ease of assembly 

In terms of manufacturing and assembly, the following design aspects of the original µ-

CAT are potentially improvable: 

▪ the electronic circuitry consists of several hand-made boards; 

▪ the circuit board connectors are not named, which can lead to confusion when 

connecting components; 

▪ some circuit boards must be individually fastened on separate Plexiglass plates to 

keep them in place; 

▪ parts of the hull require rework after manufacturing: 
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o the front and back end caps are painted after 3D-printing, to make them 

waterproof; 

o the front and back end caps require manual rework (drilling, boring, 

sanding etc.) after manufacturing, to make the other parts fit; 

▪ some components are glued in place, obstructing maintenance or replacement. 

The fact that the circuit boards are handmade poses restrictions to the possibilities to 

integrate subsystems into the electronic design in a space-efficient and reliable way. 

Complex subsystems, such as the Arduino board, cannot easily be integrated onto a 

handmade board, due to the use of small and narrow-spaced components which are placed 

on both sides of the board, the use of “vias” (metal rivets contacting through several 

copper layers of a circuit board) and the fine circuit lines which often cause problems 

when attempting to produce them using non-industrial etching methods. The existing 

board layout is not space efficient and carrying out any upgrades on the circuitry is 

cumbersome.  

In the scope of this thesis work, many handmade components and structures to house 

parts are being replaced by new designs which can be reproduced without excessive 

manual work. This includes the new PCB and several design features of the physical 

structure of the robot. 

µ-CAT is a robot used in a scientific research environment and must therefore be ready 

to be continuously improved, updated and experimented with. This includes the necessity 

to be able to add new components or upgrade existing ones. For students, researchers and 

engineers working with µ-CAT, this poses problems because of the non-automized 

production methods employed on the existing circuit boards. During this thesis work, this 

is solved by designing a completely new PCB which can be manufactured by industrial 

methods. The results are presented in Chapter 3. In order to further guarantee that the 

robot is easy to reproduce, it must be ensured that the electric and electronic parts used 

are up-to-date and readily available. This is carried out in the course of redesigning the 

PCB. The IMU and the pressure sensor (see Section 4.15) are replaced by newer versions. 

The new design of the robot features consistent 3D design files as part of this thesis 

project’ scope, as presented in Chapter 3. These files are free from errors, contain well-

structured features and updated geometries, to reduce manual rework on integrated 
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components after 3D-printing and to reduce the need to use adhesive bonds to form 

physical structures.  

An additional 3D-printing method and different materials are used which can achieve 

better accuracy and highly water-resistant parts. 
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3 Mechanics, solid modelling and manufacturing 

This chapter provides an overview on the design, manufacturing and assembly process 

for mechanics and hull. 

According to Wang et al. [8, Ch. 2], the hull of an AUV requires a multitude of important 

considerations. Amongst these are the ability of the body to withstand the required 

environmental conditions (pressure, temperature, corrosion) and mechanical operating 

conditions (impacts and vibrations), as well as its practicality.  

Appendix A 3.1 gives an overview on materials and their properties – but only empirical 

studies can finally answer all questions related to strength of materials. However, the 

aspect of practicality can be considered during the early design phase of the robot hull. 

Practicality includes ease of use (weights, shape), ease of maintenance (ease of assembly 

and disassembly, accessibility of connectors and user-interface elements) and ease of 

producibility (reduced need for manual rework). 

 

(a) Old robot. 

 

(b) New robot. 

Figure 2. 3D CAD model of the robot (SolidWorks renderings).  

3.1 Overview 

The new design of the robot is created in SolidWorks, and a comparison to the old design 

can be seen in Figure 2. The design file consists of 43 parts, contained in one root 

assembly, three main assemblies and two sub-assemblies. The files do not only include 

parts relevant for the physical design but also (to a certain degree of detail) electronic 
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components, in order to plan their integration into the physical design. Some parts of the 

real robot are not reflected in the SolidWorks files. 

The majority of work is done on the front and back end caps, to accommodate new 

electronic components, and on the front and back domes, protecting the aforementioned 

parts from mechanical impacts. As for the domes, they also reduce drag: Spherical and 

cylindrical or similar shapes with dome- or bullet-shaped front have a much lower drag 

coefficient than flat faces [36].  

SolidWorks parts, their codes, names and the production methods (if applicable) are 

shown in Appendix A 3.1. The new design features 32 newly designed and 3 updated 

files, of which 32 are designed by the author of this thesis. 

3.2 Main modifications 

The main design work is applied to two parts: the front end cap and the back end cap. 

These parts are shown in comparison with the old robot in Figure 3. The yellow domes 

covering these parts are also redesigned to fit to the new caps. 

(a) Old robot. (b) New robot. 

  

  

Figure 3. Main design changes on the robot (SolidWorks renderings). Front end cap (top) and back end 

cap (bottom).  
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3.3 Buoyancy analysis 

In order to save energy during operation, it is important for the robot to be able to keep 

its depth in water with minimal use of energy. This can be accomplished if the robot is 

neutrally buoyant. However, to avoid loss of the robot in case of unexpected cease of 

operation, passive self-surfacing is a desired feature, which means, the robot needs to be 

slightly positively buoyant. 

According to Archimedes’ principle, an object immersed in water is subject to an upward 

force which equals in magnitude to the gravitational force of the amount of water it 

displaces. This force counteracts the gravitational force of the object itself, as Figure 4 

shows. In other words, if the average density of the object is equal to that of water, it is 

neutrally buoyant – the two force vectors add up to zero.  

Figure 4. Gravitational force and buoyant force along the same line of action.  

The following equations are scalars. The corresponding vectors with magnitude 𝐹b and 

𝐹result act upwards (against gravitation), while the vector of 𝐹g acts downwards. 

𝐹b = 𝑚water ∗ 𝑔 = 𝜌water ∗ 𝑉water ∗ 𝑔 (1) 

𝐹g = 𝑚object ∗ 𝑔 (2) 

𝐹result = 𝐹b − 𝐹g = (𝑚water − 𝑚object) ∗ 𝑔 (3) 

where: 𝐹b [N] buoyant upwards force acting on the object 
𝑚water [kg] mass of displaced water 

𝑔 [
m

s2] gravitational constant (9.81
m

s2) 

𝜌water [
kg

m3] density of water (997
kg

m3) 

𝑉water [m3] volume of displaced water 
𝐹g [N] gravitational force of the immersed object 

𝑚object [kg] mass of the immersed object 

𝐹result [N] resulting force on the object 
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Before production of the new robot, it is advisable to analyse its expected buoyancy 

characteristics, so that geometries can be adjusted or that the design provides the physical 

space to add fixtures for ballast elements, if needed. 

To do so, each part in the SolidWorks design assembly is assigned a material with specific 

density. If the material type is known and exists in the SolidWorks material library, it is 

used as-is. However, densities of the 3D-printed part do not only depend on the type of 

material, but also on the density of the print – which is difficult to estimate without 

empirical testing. In cases where the density is unknown, the part is modelled in 

SolidWorks, then 3D-printed and its mass finally measured using a scale. The volume of 

the modelled part is obtained from SolidWorks and dividing its mass by this volume 

yields its density. This value is then used in a custom-made material type which is applied 

to the part. As a result, SolidWorks can now calculate the mass of the complete assembly 

(𝑚object). 

As shown in the equations above (Eq. 1 – Eq. 3), it is necessary to know the effective 

volume of the robot to estimate its buoyancy characteristics – this means the volume 

enclosed within the surface which is in contact with the water. The interfacing surface 

surrounds all those part’s solid volumes which are in contact with water. To obtain their 

values, some parts’ geometries must be modified in SolidWorks to be completely solid 

(no closed cavities), while maintaining their outer surface shape. The obtained volume 

has the value of 𝑉water. This is the volume of water displaced by the robot, and the mass 

of this body of water is calculated by using its density: 

𝑚water = 𝜌water ∗ 𝑉water (4) 

For the buoyant force of this amount of water to be equal in magnitude to the gravitational 

force of the object (neutral buoyancy), the mass of the object should be equal to the mass 

of water. 

According to SolidWorks, the robot in its final design would have a mass of 1.075kg and 

hence be 500g too light to be neutrally buoyant. For the purpose of adjusting µ-CAT’s 

buoyancy, it is equipped with two steel rods inside the hull to which several steel washers 

can be attached. These increase the mass of the robot without increasing its overall 

volume, hence increasing its overall density. With the mass of one M5 washer disk to be 

4.58g (weight measured using real specimen), it requires 109 washers to get the robot 
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neutrally buoyant. The physical design provides space for maximum 116 washers with a 

thickness of 1.7mm each. The design files include additional assemblies containing the 

washers. These are especially useful for analysis of roll stability, carried out in Section 

3.4.  

As an alternative to washers, the design includes box-like fixtures to hold other types of 

weight-adding elements inside the hull. These fixtures are two equal 3D-printed parts 

with several compartments for holding the weights. The boxes slide onto the battery tube 

and link to other features of the existing geometry to prevent rotation or linear movement 

during operation. 

3.4 Roll stability 

An object which is neutrally buoyant is not necessarily free from rotational moments 

acting on it. Due to the cylindrical base shape of µ-CAT, it might especially tend to rotate 

around its longitudinal axis (for example, when being disturbed by flows), so it seems 

reasonable to minimize instability about this axis especially. The undesired tendency can 

be counteracted by distributing the densities of materials on the robot such that its centre 

of gravity is vertically below the centre of buoyancy when the robot is in the natural 

position. 

The centre of buoyancy of an object is coincident with the centre of gravity of the volume 

of water which it displaces. Since µ-CAT is completely submerged in water, the volume 

of displaced water has a shape equal to that of the whole vehicle. Assuming uniform 

density all throughout the volume of water, the centre of buoyancy of the vehicle is 

coincident with its centroid – the geometrical centre of a solid body with the same outer 

surface shape as the whole vehicle. 

The buoyant force acts at the centre of buoyancy, while the gravitational force acts in 

opposite direction at the centre of gravity. If the centre of buoyancy is horizontally offset 

from the centre of gravity, they form a couple – a moment acts on the object. The 

magnitude of this torque depends on the magnitude of the opposed forces and the length 

of the moment arm between the two force vectors – i.e., the distance between them. 

As described by Lautrup [37, p. 47], “[in] a fully submerged rigid body, for example a 

submarine, [… if] the centre of gravity does not lie directly below the centre of buoyancy, 
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but is displaced horizontally, for example by rotating the body, the direction of the 

moment will always tend to turn the body so that the centre of gravity is lowered with 

respect to the centre of buoyancy. The only stable equilibrium orientation of the body is 

where the centre of gravity lies vertically below the centre of buoyancy. Any small 

perturbation away from this orientation will soon be corrected and the body brought back 

to the equilibrium orientation […]” (because frictional forces will prevent it from swaying 

indefinitely). 

When designing an underwater robot, it should therefore be ensured that its centre of 

gravity lies vertically below its centre of buoyancy when the robot is in upright (neutral) 

orientation. This way, it can be guaranteed that the robot will return to this orientation if 

it gets rotated by external forces. The design must consider the following: 

▪ any horizontal offset between the two points must be minimized; 

▪ the centre of gravity must be shifted below the centre of buoyancy; 

▪ the vertical distance between centre of buoyancy and centre of gravity determines 

roll stability – it should be long enough to counteract a rotation caused by external 

influences, but short enough for the robot to be able to actively roll around its axis. 

The analysis of the locations of the centre of buoyancy and of the centre of gravity are 

carried out in SolidWorks as part of the design phase. To find the centre of buoyancy, the 

assembly (originally containing parts of different densities) is converted into solid filled 

objects of equal and homogenous densities. The position of the centroid is then computed 

by SolidWorks. This point is coincident with the centre of buoyancy, as explained above. 

3.5 Structural components 

The structural base frame of the physical design is formed by a set of six parts, as shown 

in Figure 5. 
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(a) (b) 

These parts define the base geometry of the robot and provide its initial mechanical 

stability. To additionally prevent them from twisting due to mechanical tolerances, 

supplementary parts are inserted (not shown above): 

▪ two Plexiglass ballast dividers, sliding onto the battery compartment and M5 steel 

rods; 

▪ two M3 steel rods pushed through provided holes on the exterior of front and back 

end cap and fastened with nuts.  

The ballast dividers also give structural support against torsion of the main PCB, which 

is clamped between front and back end caps by inserting it into provided grooves. For 

ease of assembly, the grooves for the PCB and the holes for inserting the M5 steel rods 

are opening up towards the parts, so the parts centre themselves in these geometries during 

insertion. The outer M3 steel rods, when closed with nuts, additionally prevent the front 

and back end cap from sliding apart.  

3.6 Waterproofing 

The robot consists of three main parts surrounding the interior: the front end cap, the back 

end cap and the Plexiglass tube. Not only these three parts must be in waterproof contact 

with each other, but also all other components inserted into the front and back end caps 

which require openings on these 3D-printed parts: the camera, the photodiodes, the 

battery cap and the USB plug. The following subsections explain how waterproofing on 

these parts and components is accomplished.  

  

Figure 5. Parts forming the physical base structure (SolidWorks renderings). (a) Isometric front view; 

(b) isometric back view. (1) Front end cap; (2) back end cap; (3) transparent Plexiglass cylinder; (4) 

battery compartment; (5) a pair of M5 steel rods.  
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The camera is located underneath a removable 3D-printed screw cap which holds a 

transparent flat circular Plexiglass piece and presses it against the body of the end cap. A 

custom-made silicone gasket is placed between end cap and camera cap to accomplish 

waterproof sealing. The gasket is cast using the method described in Section A 3.2.2. 

Each photodiode is surrounded by a custom-made silicone-cast (see Section A 3.2.2) seal 

which is squeezed between the photodiode and the wall of the insert hole. 

An M25-to-M20 steel reducer is screwed into the 3D-printed thread of the back end cap. 

Sealing between reducer and end cap is accomplished using Teflon tape along the thread. 

The steel battery cap has a M20 thread and fits onto the reducer. It comes off-the-shelf 

with an O-ring included which is squeezed between battery cap and reducer, protecting 

from leakage. 

The USB plug consists of several parts – the main body and the cap. The cap is screwed 

onto the main body and seals itself by pressing the included rubber gasket onto the body 

when being tightened. The USB body is sealed against the 3D-printed end cap by pressing 

an O-ring between body and end cap when tightening the plastic hex nut on the USB 

body’s thread. 

The transparent Plexiglass tube is sealed against the front and the back end caps with two 

O-rings which each sit firmly in a dedicated groove on the respective end cap. 

The fin shafts each reach the motor clutch located in the interior of the hull through a 

nitrile oil rubber seal which prevents water from entering. The shaft sleeve holds the 

nitrile oil seal, and this sleeve has a very firm fit with the hull. For additional 

waterproofing, epoxy may be used to seal any gap between sleeve and hull. 

3.7 Manufacturing 

The new design incorporates several 3D-printed parts. Some of them require high 

geometrical accuracy, to host electronic and mechanical components and to be in close 

contact with parts to avoid leakages. These parts are the front and back end cap and the 

camera cap. They are produced using SLA (stereolithography). Other 3D-printed parts 

are the front and back dome, which do not need a tight fit, since they are flooded. For 



44 

 

them, FDM (fused deposition modelling)1 is the method of choice, since the involved 

material is more lightweight and cheaper. Front and back dome are supposed to protect 

underlying parts from damage, and in the case of collisions, they will break and must be 

replicable without causing high additional cost. 

With µ-CAT being used in depths not more than 10 meters, the hydrostatic pressure 

exerted on the robot is small. Tests will reveal if the new material used for 3D-printing 

keeps its structural integrity during operation. Similarly, only empirical testing over a 

prolonged period can reveal the robot’s ability to withstand other mentioned external 

influences. With the employed low-cost rapid-prototyping production method, the choice 

of materials is very limited. The existing µ-CAT has proven to withstand required 

pressures with 3D-printed materials. Waterproofing was accomplished by applying a 

rubber paint coating onto the robot end caps. The SLA 3D-printing material has higher 

density, is less porous and hence more water-resistant. The painting cover can therefore 

be omitted. 

In-lab equipment is used for manufacturing the end caps, the camera cap, the domes and 

some of the gaskets. Processes and equipment are described in Appendix A 3.2. 

3.8 Results and discussion 

The new solid body design integrates all electronics, electromechanical and mechanical 

components in ways that facilitate assembly and handling of the robot. This chapter 

presents the results of the work carried out in SolidWorks. A photo of the new assembled 

µ-CAT can be seen in Figure 6. 

 

 

 

1 “Fused deposition modelling” and its abbreviation “FDM” are registered trademarks of Stratasys.  
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Figure 6. Assembled µ-CAT in its new design. Front and back domes are not present.  

An overview of components integrated into the physical design is given in the following 

(Figure 7 and Figure 8). 

Especially the redesign of the parts presented in Section 3.2 leads to several advantages 

over the previous robot design: 

▪ Motors can be inserted more easily: 

o do not require manual rework (cutting) in order to fit; 

o slide in easily into the end caps (enough tolerances). 

▪ Some parts need less or no glue in order to be integrated: 

o reed switch slides into the holder and needs no glue; 

o nut for holding the magnet clips into the holder and needs no glue; 

o 3D-printed thread in the back end cap provided for battery cap reducer. 

▪ Main PCB does not require bolts to be fastened; 

▪ Geometries are more accurate, hence mechanical fitting and tolerances are 

improved overall. 

The front end cap now additionally holds two new parts, namely the camera module and 

the messaging LEDs’ PCB. Since the camera does not have its own enclosure, a 

watertight protection mechanism is designed which allows for an easy attachment of the 

camera module and routing of its cable. The mechanism consists of a threaded cap, a seal 
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and a transparent plexiglass insert (see Section 3.6). The cap needs no further fastening 

and holds firmly when screwed onto the body thread. The PCB for the LEDs does not 

require screws but is clipped into the holder. 

The back end cap now additionally holds the new Bluetooth module (see Section 3.8.1) 

which clips into the holder. 

The SolidWorks design files are improved regarding the following aspects: 

▪ Materials with correct densities are assigned to all parts, therefore allowing 

precise calculation of the robot’s mass and buoyancy characteristics. 

▪ Errors and warnings present in features of the original files are eliminated. 

 

Figure 7. Components integrated in physical design (SolidWorks rendering). The front and back dome and 

the front and back end cap are shown as half transparent.  
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3.8.1 Integration of electrical components 

As part of the new design, one main aim was to improve integration of electrical 

components. Improvised methods of holding the components in place (glue etc.) are to be 

avoided. To give some examples of how these aims have been met, the integration of two 

components is presented in the following subsections, and Figure 9 gives an overview. 

 

Figure 8. Motors integrated in physical design. (SolidWorks rendering). Top view of front cap assembly. 

The front end cap is shown as half transparent, the front dome is not shown.  

 

Figure 9. Integration of Bluetooth module and reed switch (SolidWorks rendering). (1) Back end cap; (2) 

Bluetooth module; (3) Reed switch; (4) M5 hex nut; (5) transparent Plexiglass tube.  
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Placement of the Bluetooth module 

The back end cap provides a holder which is suitable for the HC-05 breakout board or for 

the custom-made Bluetooth PCB. Assembly and disassembly are simple, since it is held 

only by clips. The positioning of the Bluetooth module is on the highest possible place 

inside the hull. When the submarine is placed in the water and not operated, it stays on 

the surface, as proven in Section 3.8.3. In this state the user can communicate with the 

vehicle using Bluetooth without removing it from the water. It has been found 

experimentally that the Bluetooth device is reachable if it is less than 5cm below the water 

surface. With the knowledge obtained in Section 3.8.3, the distance between the 

Bluetooth antenna and the water level can be found. It is estimated to be only 3.66mm 

(see Figure 10), which is expected to provide good connectivity to the Bluetooth module. 

More importantly, due to the cylindrical shape of the Plexiglass tube, there is no water 

directly above the antenna, which is supposed to further ensure good connectivity. 

Placement of the reed switch 

In contrast to the old µ-CAT design, the reed switch is now properly integrated into the 

physical body. Physical space is provided in the 3D-printed back end cap to host the reed 

switch, exactly matching its dimensions. The legs are bent down by 90° and routed 

through dedicated channels. They can be bent around the lower part of the holder, and a 

connector or wires can be attached. A hex nut is placed on top of the reed switch which 

snaps into a dedicated recess and holds the magnet when placed on the outside of the 

Plexiglass tube above the reed switch. 

 

Figure 10. Bluetooth module positioning (SolidWorks rendering). Cross sectional cut through the robot 

assembly, showing water surface (upper green line) and Bluetooth module antenna plane (lower green line).  
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3.8.2 Roll stability 

Figure 11 shows the result of the analysis carried out in SolidWorks. The batteries are 

included in the computations. Their placement in the lower half of the vehicle lowers the 

centre of gravity, therefore working in favour of roll stability. By adding 100 steel washer 

disks onto the provided rods, the centre of gravity moves roughly 5.6mm downwards, 

hence increasing roll stability. The centre of buoyancy B then lies significantly above the 

centre of gravity G, offset vertically by 9mm. The horizontal offsets of all centres of 

masses from the vertical centre plane along the x axis are negligible, therefore no torque 

is expected to occur about the longitudinal axis (z) when the vehicle is in its natural 

position (as shown).  

In the most extreme case, the vehicle may be rotated by ±90° about its z axis. The 

moment acting on the vehicle about its z axis is then: 

𝑀𝑧 = 𝐹g ∗ |𝐵𝐺| = 0.1351Nm (5) 

This torque will turn the vehicle until the natural position is restored. While turning, the 

moment diminishes, with the moment arm shortening as a sine function of the angle of 

rotation, as the robot gets closer to its neutral orientation.  

3.8.3 Self-surfacing 

The recommended number of washers (100 pieces) is smaller than the calculated number, 

to achieve slightly positive buoyancy and have the robot slowly floating upwards in a 

case of malfunction (i.e., when it cannot actively surface). Using equations Eq. 1 – Eq. 3 

in Section 3.3, a resulting upwards force of 𝐹result = 0.437N can be expected with 100 

 

Figure 11. Analysis of buoyancy (SolidWorks rendering). Position of centre of buoyancy (B), centre of 

gravity without washers (R), centre of gravity with 100 washers (G) on x-y plane.  
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washers added. The number of washers is variable, and it not only determines the time it 

takes for the submarine to passively surface, but also the final depth position it takes when 

surfacing. This final position yields the equilibrium between gravitational and buoyant 

force, which is reached when the mass of the displaced water equals to that of the vehicle 

including the washers. Using SolidWorks, it is found that this mass is 𝑚object,corr =

1529.71g. The mass of displaced water when completely submerged is slightly larger 

(𝑚water = 1574.27g). The equilibrium condition occurs when approximately 97% of 

the robot is submerged (Figure 12). This is the position in which the robot eventually 

comes to rest without activity. 

3.8.4 Ease of production and assembly 

Manual rework on many parts is improved, and assembly of parts is easier than before, 

as stated in the beginning of Section 3.8.  

The procedure for disassembling the robot in order to reach the PCB is shown in 

Appendix A 3.3. Back end cap assembly, battery compartment, ballast rods with ballast 

washers, Plexiglass weight dividers and outer steel rods form one assembly and do not 

need to be taken apart for disassembling the robot. Cables connecting components in the 

front end cap assembly to the PCB are long enough, so the front end cap assembly can be 

slid out of the Plexiglass tube and the connectors on the PCB can be reached and 

disconnected. 

 

Figure 12. Estimation of water surface level (SolidWorks rendering). Reached in force equilibrium, with 

100 washers of ballast added.  
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3.8.5 Future work 

In the future, the holder for the Bluetooth module in the back end cap should be improved, 

to avoid too thin walls around the module. Due to the 3D-printing process, walls tend to 

bend, which might compromise a tight fit of the Bluetooth PCB. 

The physical design of each insert channels for the photodiodes should be slightly 

improved, to hold the photodiode and its surrounding seal in place from both sides, thus 

preventing it from sliding inwards or outwards. 

Another improvement concerns ease of assembly: To facilitate self-centring of the PCB 

in the grooves of the front end cap, the Plexiglass weight dividers which slide over the 

battery compartment will have grooves to hold the PCB from the sides. The PCB needs 

to slide into these parts freely, so electronic components too close to the edge of the PCB 

must be moved.  
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4 Electronics 

The work related to electronics includes the development of new circuit schematics, the 

modification of existing circuit schematics and the design of a PCB implementing all 

circuitry. These tasks are carried out in Autodesk Eagle, a commonly used CAD software 

for industrially produced circuit boards. 

Future versions of the manufactured PCB should include silkscreen-printed references to 

parts in the schematic diagrams, to facilitate manual soldering. This, however, may lead 

to a loss of clarity on names of connectors, LEDs and test pads which are required for 

use-cases after the manufacturing of the PCB has finished. An alternative way is to 

provide a separate printed sheet with positions and names of all parts marked which can 

be placed on top of the PCB between the soldering steps. 

4.1 Main modifications compared to original µ-CAT 

The following table (Table 5) gives an overview on all implemented features covered in 

this chapter, indicating for each of them to which group it belongs – newly developed or 

existing – and, if it belongs to the latter group, whether it has been taken from the given 

design “as-is” or whether it has been (at least in parts) updated (“U”) by a newer version 

or has been modified (“M”). The design of a feature is marked as new if it is not copied 

from existing products and if it is not derived from schematic layouts provided to the 

author of this thesis. Therefore, some features are marked as new although they have been 

present on the original µ-CAT robot but used some different working principle, and some 

features are marked as previously existing although they have not been used on the 

previous design of µ-CAT but were taken from external sources. 

It should further be noted that features marked as “Existing” might take over the existing 

schematic diagram but the routing of their circuit lines might be modified in the process 

of implementing their layout to the new PCB. 
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Feature N
ew
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Provision of different voltage rails  M 

Powering 5V rail alternatively through USB  ⚫ 

Logic power supply unit for 5V logic ⚫  

Logic power supply unit for 3.3V logic ⚫  

Motor power supply unit  M 

Raspberry Pi  ** 

Arduino Mini  M 

Camera  ⚫ 

Bluetooth module * ⚫ 

Shared UART bus (incl. multiplexing, level shifting)  ⚫  

Communication from Arduino to Raspberry Pi (incl. level shifting) ⚫  

Tone detectors  ⚫ 

Frequency-shift keying module  ** 

OR logic between input signals for frequency-shift keying ⚫  

RGB LED ⚫  

Various status LEDs ⚫  

IMU circuit  U 

Pressure sensor circuit  U 

Motor drivers circuit  ⚫ 

Motor feedback circuit  ⚫ 

Voltage measurement circuit  ⚫ 

FTDI (USB-to-serial)  ⚫ 

Reed switch  ⚫ 

Test pads ⚫  

Design of PCB ⚫  

 

4.2 Overview of components, subsystems, signals and busses 

The new electronic circuitry can be broken down into several functional blocks. Most of 

these elements are individually identified on the new PCB by their names. The following 

table (Table 6) gives an overview of all implemented elements. For each element, its 

placement on the new PCB is indicated (top or bottom side), and it is shown on which 

busses it actively participates and which GPIO (general-purpose input/output) lines it 

provides or requires. The latter covers only those lines which are routed to digital GPIO 

Table 5. Features implemented in the scope of this thesis project. M: modified; U: updated. *: The signals 

provided on the PCB consider the possibility to implement a modified design of the Bluetooth module 

circuitry. More details in Section 4.10.1. **: The existing design itself is not implemented, but only pin 

headers are provided. FTDI: Future Technology Devices International.  
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pins of one of the microcontrollers. Bus and GPIO signals can be either on a 3.3V or on 

a 5V level. 

The subsequent block diagram (Figure 13) accompanies Table 6 and clarifies the 

connection topology of all functional elements which participate on one of the busses or 

employ GPIO signal lines.  

Table 6. Functional elements, their placement side and their signals. FSK: frequency-shift keying.  

Element 

PCB side Signals used 
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𝟓

𝐕
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USB connector  ⚫        

Logic power supply (3.3V, 5V) ⚫ ⚫        

Motor power supply (6V) ⚫      ⚫   

Raspberry Pi Zero W  ⚫ ⚫   ⚫  ⚫  

Photo diodes connectors  ⚫        

Tone detectors ⚫ ⚫     ⚫   

Frequency-shift keying module ⚫      ⚫   

Switch between sources of FSK ⚫         

External LEDs connector ⚫         

Arduino ⚫   ⚫ ⚫  ⚫  ⚫ 

FTDI ⚫       ⚫  

Bluetooth connector ⚫     ⚫  ⚫  

Multiplexer  ⚫    ⚫    

Onboard RGB status LED ⚫     ⚫    

IMU ⚫  ⚫   ⚫    

Pressure sensor ⚫  ⚫       

Motor drivers  ⚫  ⚫      

Motor voltage connectors ⚫         

Motor encoder connectors  ⚫   ⚫     

Voltmeter  ⚫        

Reed switch connector ⚫         

Multipurpose level-shifter ⚫         

I²C level shifter  ⚫        

Test pads ⚫         

 

Note that the SPI (serial peripheral interface) bus includes GPIO signals (chip select; 

“CS”) by default. 
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Figure 13. Functional elements and their signals (GPIO and busses).  

4.3 Resistor value and power calculations on LEDs 

When choosing the current-limiting resistor for any LED used in the new design, the 

operating principle of the LED in general must be understood. An LED operates at a given 

nominal forward voltage with a corresponding forward current, as given in the datasheet. 

The values vary depending on type and colour of the LED. The brightness of an LED 

depends on the operating point, but the absolute maximum forward current must not be 

exceeded when driving the LED.  

The following equations are used to calculate the required resistor value for an LED and 

the power consumption of the network comprising of LED and resistor: 
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𝑅 =
𝑈CC−𝑈LED

𝐼
 (6) 

𝑃 = 𝑈CC ∗ 𝐼 (7) 

where: 𝑅 [Ω] resistance of in-series resistor 
𝑈CC [V] voltage across network of resistor and LED 
𝑈LED [V] forward voltage of LED (from datasheet) 
𝐼 [A] forward current through resistor and LED 
𝑃 [W] total power consumption of LED and resistor 

The calculated values of resistors may not be available on the market. In such cases, the 

closest available resistor value is chosen. With a resistor value different from the initially 

calculated one, the forward current differs and can be calculated as follows: 

𝐼real ≈
𝑈CC−𝑈LED

𝑅chosen
 (8) 

This value is just an approximation because the voltage drop across the LED (𝑈LED) also 

changes with the current through it. The approximation is sufficient if the chosen resistor 

value is close to the previously calculated one. 

Results of these calculations for all LEDs are given in Appendix A 2.1. 

4.4 Voltage rails 

The main purposes of the existing voltage rails (see Section 2.1.3) do not change during 

the upgrade of the robot. A new 3.3V rail is implemented for powering several sensors 

and other components. A second 3.3V rail becomes available which provides voltage 

through the voltage regulator onboard the Raspberry Pi computer. This is used directly to 

power the camera, the multiplexer and the general-purpose level shifter’s low side. The 

only device driven by this voltage through the GPIO pins of the Raspberry Pi is the RGB 

LED. The 3.3V generated within the USB-to-serial chip is not used. The 5V rail 

additionally powers the Raspberry Pi module, the frequency-shift keying module 

including the attached OR logic and the high sides of the level shifters. USB power can 

still be used as an alternative source for the 5V rail. The 6V rail now does not only power 

the motors, but also the high-power messaging LEDs installed on the front end cap. 
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4.5 Supplying 5V alternatively through USB 

A circuit is implemented which allows to override the battery voltage and use USB supply 

for the 5V logic instead. This allows programming of the Arduino microcontroller without 

having any batteries inserted. The circuit consists only of the Schottky diode D2 with 

maximum forward current of 3A and maximum reverse voltage of 20V. According to 

specifications [38], [39], the voltage of the USB supply can vary between 4.75V and 5.5V. 

If D2 is forward-biased (conducting), this voltage drops by 0.5V on the load side across 

the diode. If the reed switch is open (no magnet placed) while powering through USB, 

the Buck converter is enabled, and its output provides 5V (assuming sufficient battery 

voltage). In this case, D2 is reverse-biased (Anode potential equal to or lower than 

Cathode potential) and no power is provided through USB at all. Consequently, if the 

robot should be powered through USB, the reed switch must be closed (magnet attached). 

If the magnet is not in place, it must be expected that no voltage will be supplied from 

USB. 

4.6 Improving power supply 

One task is to extend the time span of uninterrupted operation of the vehicle. The original 

robot can remain operational for approximately four hours. Being powered by two Li-Ion 

cells of type 18650 in series, each with a capacitance of 2200mAh at 3.7V, the totally 

provided energy by a fully charged set of batteries is 16.28Wh. Assuming the vehicle 

remains operational until the batteries are fully drained (which, in reality, it does not), a 

mean power consumption of max. 4.07W for µ-CAT can be derived. 

With the new components added, especially the Raspberry Pi computer with camera (see 

Section 4.8.1) and the relatively powerful messaging LEDs (see Section 4.8.2), the battery 

lifetime is expected to be shortened. In order to counteract this undesired effect, a closer 

look must be taken on the power supply units used in µ-CAT. 

For estimating battery lifetime, the power consumptions of individual consumptions 𝑃𝑖 

could each be calculated as the product of the supply voltage of a component and its 

(typical) current consumption during operation. The total power consumption of the 

completely assembled robot can then be calculated by adding individual power 

consumptions 𝑃𝑖 of all components: 
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𝑃𝑖 = 𝑈CC,𝑖 ∗ 𝐼𝑖 (9) 

𝑃in = ∑ 𝑃𝑖
𝑛
𝑖=1  (10) 

The real power consumption of a component depends largely on its mode of usage. A 

more practical approach for estimating the average power consumption of µ-CAT is to 

run the final µ-CAT software and measure the current consumption 𝐼B right after the 

batteries (voltage 𝑈B). The power consumption is then calculated as: 

𝑃in = 𝐼B ∗ 𝑈B (11) 

In order to achieve a perceivable saving in energy consumption, it is obvious to aim for 

the voltage rails to which the heaviest consumers are attached. These are the 5V rail, 

mainly due to the Raspberry Pi computer and the camera with their total current demand 

during operation of approximately 150mA on that rail, and the 6V rail because of the four 

servo motors with a total stall current of up to 2A (all motors stalled) and a current demand 

of approximately 550mA during operation, according to previously conducted 

measurements. In the executed experiments for selecting the voltage rail which should be 

powered by the new power supply unit, the high-power messaging LEDs on the 6V line 

are not considered, because they had not been chosen at the time when the experiments 

were designed. 

4.6.1 Buck converter instead of linear series regulator 

Buck converters and voltage regulators are used to convert between two DC voltage 

levels, in particular to change a DC input signal to a lower level. These converters 

generate an output voltage on a stable value, independently from the input voltage 

provided and the output current drawn. When converting from a higher to a lower voltage, 

voltage dividers made of a network of two resistors are another alternative. Their 

disadvantage lies in the high heat dissipation due to the voltage drop across the resistors 

and the current drawn from the supply through the upper resistor. Apart from that, voltage 

dividers consume current even with no load connected. 

In linear voltage regulators, the excess power, due to the voltage drop between input and 

output voltage, is transformed into heat and therefore wasted. The higher the voltage drop 

across the regulator, the higher the heat dissipation. In fact, the dissipation of heat follows 

directly from generating the desired voltage drop. If the input current of the voltage 

regulator is equal to its output current, its efficiency can be calculated as follows: 
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µ =
𝑈out

𝑈in
=

𝑃out

𝑃in
 (12) 

The dissipated heat is then: 

𝑃heat = (𝑈in − 𝑈out) ∗ 𝐼 = 𝑃in − 𝑃out (13) 

Typically, linear voltage regulators are ICs (integrated circuits) comprising of a 

Darlington transistor array or MOSFET (Metal-oxide silicon field-effect transistor) 

configuration and an operational amplifier including an output transistor which drives the 

Darlington array, along with overheat and short circuit protection. The transistors are 

operated in their active, i.e., linear region, where their resistance is linear to the respective 

input signal. The operational amplifier compares the actual output voltage to a fixed 

reference voltage and changes the resistance of the driving output transistor which, in 

turn, determines the amount of current provided through the Darlington or MOSFET 

network [40]. Obviously, driving transistors in their active region leads to dissipation of 

heat due to their internal resistance, and the heat increases with the required current on 

the load side.  

Buck converters are known for their higher efficiency compared to linear voltage 

regulators, mainly because they produce less heat. The buck converter is controlled by a 

transistor switch and a diode and stores energy in an inductor. The transistor is only driven 

in its saturated region (fully on) or fully off, and therefore does not dissipate so much heat 

(only during the moment of switching). Since there is ideally no loss of power in the form 

of heat (if the transistor’s switching heat dissipation is neglected), the input power is equal 

to the output power, and a step-down in voltage therefore leads to a step-up in current.  

Figure 14. Basic schematic circuit diagram of a buck converter (power circuit only). The marked points 

refer to the simulation results.  

As shown in Figure 14, the basic buck converter circuit consists of a switching transistor 

(T1) and a flywheel circuit, comprising of diode D1, inductor L1 and capacitor C1. The 

operating principle is based on two phases which repeat indefinitely at high frequency. 

These two phases are (1) the one where the transistor is conductive (on) and (2) where 
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the transistor is not conductive (off). In the beginning of phase 1, since the inductor 

opposes the change of current flow, it restricts the emerging flow of current through it. 

During this time, it stores energy in a magnetic field, and the voltage across the inductor 

is highest because the capacitor has reached the end of its discharge cycle (lowest possible 

potential on the positive side of the capacitor). During phase 1, current is provided to the 

load and to the capacitor through the inductor. Over time, while the magnetic field builds 

up, the current flow through the inductor increases and the voltage drop across the 

inductor decreases due to the potential across the capacitor rising. 

𝑢 = 𝑈B ∗ 𝑒−𝑡∗
𝑅

𝐿  (14) 

𝑖 =
𝑈B

𝑅
∗ (1 − 𝑒−𝑡∗

𝑅

𝐿) (15) 

where: 𝑢 [V] momentary voltage drop across the inductor 
𝑈B [V] supply voltage from battery 
𝑒  Euler’s number (≈ 2.718) 
𝑡 [s] time 
𝑅 [Ω] load resistance 
𝐿 [H] inductance of the inductor 
𝑖 [A] momentary current through the inductor 

But the capacitor will not reach the full supply voltage because phase 2 will take place 

before it is charged up completely. During phase 2, the transistor is open (off) and the 

flow of current into the inductor is rapidly stopped. Current to the load is still provided, 

since the inductor releases current stored in its magnetic field in the direction in which it 

has been flowing previously, hence through the load. [41] The capacitor helps supply the 

load additionally. It smoothens at all instances the voltage ripples caused by the linearly 

changing current supply from the inductor. 

The switching frequency of the transistor is fixed, but the duty cycle 𝐷 varies depending 

on the required voltage drop Δ𝑈 = 𝑈out − 𝑈in, in particular: 

𝑈out = 𝐷 ∗ 𝑈in (16) 

Δ𝑈 = 𝑈𝑖𝑛 ∗ (𝐷 − 1) (17) 

The transistor gate driver (not shown in above schematics) takes care of matching the 

duty cycle to the output voltage requirements by comparing the instantaneous output 

voltage with an internal reference voltage created by the standard silicon bandgap. The 

inductance of the inductor must be chosen according to the switching frequency of the 
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transistor and the power demand of the load. Knowing the duration of a pulse, the output 

power can be expressed as energy provided per pulse. This is the energy to be transferred 

during every switching pulse of the converter. The datasheet of a specific buck converter 

IC which includes already the switching transistor, as it is in the case of the module used 

in this project, usually provides the required value for the inductor. 

Disadvantages of buck converters compared to linear voltage regulators are the higher 

noise level they generate due to the switching of the transistor, their higher cost factor 

and the larger requirement of components for assembling the circuit, leading to a larger 

footprint on the board. The switching noise may be critical in some applications where 

highly sensitive analogue measuring equipment is used but can mostly be reduced to an 

acceptable level by using appropriate capacitors on the output of the converter and at the 

inputs of noise-sensitive circuitry after the converter. The higher cost factor is still 

minimal and therefore not significant. The larger footprint of the circuitry may pose a 

challenge in space-critical applications, but µ-CAT offers plenty of room for hosting a 

large mainboard – only the original version of the robot did not use the available space 

sufficiently.  

Design of the buck converter circuit 

After carrying out several experiments as shown in Appendix A 1.1, the buck converter 

LM2596S is chosen to replace the original voltage regulator on the 5V logic voltage 

supply rail of µ-CAT.  

This chip provides up to 3A output current, which leaves enough headroom with the 

expected current of less than 1A on the 5V rail. Not driving the buck converter at its limit 

improves output voltage stability and decreases noisiness. The chip features an inverted 

enable pin (“ON/OFF”) which can be used to switch the device off. The quiescent current 

consumption of the disabled (idle) buck converter chip is expected to be around 80µA, 

but not more than 200µA under normal temperature conditions [42, Ch. 7.9]. Applying a 

conservative calculation, the robot can remain in switched off state for 458 days, with 

initially fully charged batteries.  

The current drawn by the enable pin is very small, so the reed switch can be used directly 

on that pin, to switch the robot on or off. 
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The buck converter circuit is designed according to the recommendations in the datasheet 

[42, p. 1] and is – apart from the values of some capacitors – equal to the design of the 

buck converter used in the experiments (see Figure 15). 

Figure 15. Implemented buck converter circuit.  

Integration of the reed switch 

The robot can be turned on and off without the need of having a physically accessible 

switch on the outside of the hull, which would require additional waterproofing. Instead, 

a reed switch is used inside the robot which reacts to the magnetic field of a magnet placed 

close to it, on the outside of the vehicle. This reed switch has been, in the original design, 

glued to the inside of the hull, and an iron hex nut has been used to hold the magnet in 

place. 

In the new design, the same reed switch and the same principle for holding the magnet 

are used, but the physical integration of the switch is improved (see Chapter 3.7). As for 

the wiring of the switch, it connects the positive battery voltage signal (“VIN”) to the 

enable (“ON/OFF”) pin of the buck converter chip LM2596S. Since the enable pin of the 

6V voltage regulator uses inverted logic, the buck converter chip is switched off when the 

reed switch is closed, i.e., when the magnet is placed. In order to keep the buck converter 

chip switched on while the reed switch is open, its enable pin is pulled down to “GND” 

through a 10kΩ resistor (R11 in Figure 15). In order to turn the robot off, the magnet 

must be placed. 
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4.7 Motor power supply unit 

The motors are supplied with 6V from the MIC29302WT voltage regulator, taken over 

from the original µ-CAT design. This chip takes the battery voltage as its input. It 

provides max. 3A output current [43, p. 1], which is enough for the motors even when 

they are stalled. The dropout voltage is as low as 370mV when drawing the maximum 

output current of 3A, otherwise even lower. This means that the device provides a stable 

output voltage if the input voltage is at least 6.37V – which is given even with drained 

batteries. The chip features an enable (“EN”) pin which can be used to switch the device 

on or off. This pin is pulled low through resistor R26 and routed to the Arduino 

microcontroller’s pin “PC3”. A high signal on this pin enables the voltage regulator. 

Having control of this pin through the Arduino allows for the robot to be tested and 

debugged without providing power to the motors.  

4.8 Capability upgrades 

In the following subsections, the implemented upgrades related to the improvement of 

functional abilities of µ-CAT are listed. This includes the Raspberry Pi Zero W, the 

camera and the advanced optical messaging system. 

4.8.1 Integration of Raspberry Pi Zero W single-board computer and camera 

In order to be able to upgrade the new design with future versions of the Raspberry Pi 

Zero module, this computer is integrated by providing a pin header, rather than copying 

the Raspberry Pi layout into the PCB layout. The 40-pin header is placed in a position 

that allows the camera ribbon cable to lead towards the camera module without deflecting 

from the geometrical centre axis of the robot and to avoid a too narrow bend radius of the 

ribbon cable when passing the front motors. 

The camera module (Raspberry Pi camera version 2.1) connects to the Raspberry Pi 

module with a ribbon cable. Therefore, the electrical connections to the camera are 

provided solely by the Raspberry Pi computer, and no connection must be provided on 

the PCB itself.  
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4.8.2 Implementation of advanced optical messaging 

The complete connection topology of the optical messaging system is shown in Figure 16 

and Figure 17 and described in the following subsections. 

Basic components 

The photodiode converts light into electrical current, and this current is amplified by the 

subsequent circuitry, then fed into the tone detectors and into the FSK (frequency-shift 

keying) modules. Two photodiodes are used to distinguish between optical signals to the 

left and to the right of the robot. The photodiodes are installed on the front hull of the 

robot, and two simple pin header connectors are provided on the PCB, as close as possible 

to the photodiodes, to keep wire runs short. 

Each tone detector circuit detects beacon signals on 48kHz coming from one of the 

photodiodes. Depending on which photodiode is active, the robot can distinguish between 

a signal coming from the left or from the right. At the core of the tone detector circuitry, 

the tone decoder IC LM567 is implemented. It provides a transistor switch which is closed 

whenever it receives an input signal within the specified passband [44, p. 1]. The tone 

 

Figure 16. Block diagram of topology for FSK demodulator (incoming signals).  

 

Figure 17. Block diagram of topology for FSK modulator (outgoing signals). “LED L” and “LED R” 

symbolize the messaging LEDs.  
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detectors’ outputs (“LEFTBEACON” and “RIGHTBEACON” in Eagle) are routed to two 

Arduino digital input pins. 

Integration of frequency-shift keying circuit 

As an application report by Texas Instruments states, “[in] telecommunications and signal 

processing, frequency modulation (FM) is encoding of information on a carrier wave by 

varying the instantaneous frequency of the wave. Digital data can be encoded and 

transmitted via carrier wave by shifting the carrier's frequency among a predefined set of 

frequencies—a technique known as frequency-shift keying (FSK).” [45, p. 1] In the case 

of µ-CAT, the source of information are external light signals, and the receivers are the 

same photodiodes used for the beacon signal detection. Decoded messages are sent to the 

Arduino using GPIO lines and the SoftwareSerial library (software-emulated version of 

UART). The module can also encode signals fed from the Arduino board using 

SoftwareSerial, and they are sent out in the form of light using the powerful messaging 

LEDs installed to the front end cap of the robot (see Chapter 3.7). 

The frequency-shift keying circuit has still been in development at the time of 

implementation on the new PCB. Changes to the circuitry might still be required. 

Therefore, the module is regarded as a black box. However, since its purpose and interface 

are known, it can be implemented in the form of an add-on component.  

Switching between signal sources 

The frequency-shift keying module can be set to react either on only the signals supplied 

from the left photodiode or from both. If the jumper “RCVMIX” (indicated as “RCV” on 

the PCB) is in default state, the frequency-shift keying module is fed by both photodiode 

signals (left and right). When selecting the mixed signal, the amplified individual signals 

from the two photodiodes are routed through an adder (logic OR) circuit, comprising of 

three N-channel MOSFETS (in two chips type FDC6401N). The first two transistors are 

routed in parallel configuration, with common drain, and each of them receives one of the 

incoming signals on its gate. Whenever at least one of them switches on, the common 

output signal (drain) is low. This output signal is routed to the gate of the third transistor 

which inverts it. 

The FSK module expects a digital (binary) message signal, which means that the 

MOSFETs are supposed to act as switches (saturated mode). The MOSFETs need a 
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voltage level of 2.5V or higher (maximum 12V) between gate and source to be on [46, p. 

2] and a voltage level of less than 0.5V to be off [46, p. 3]. 

The tone detector circuit is known to work with at least (typically) 20mV (RMS) input 

voltage signal [44, Ch. 8.4], which corresponds (for a sine wave signal) to a peak-to-peak 

level of 28.28mV: 

𝑈pp = 𝑈RMS ∗ √2 = 20mV ∗ √2 = 28.28mV (18) 

This value is therefore defined as the minimum required signal peak-to-peak amplitude 

for the system to be operational. Each channel of this signal (called “TO_RCVR_L” and 

“TO_RCVR_R”) is amplified twice before reaching the adder circuitry. 

The first amplifier (IC5B and IC9B in the schematic diagram) has a voltage gain of 

approximately 40. This corresponds to a valid peak-to-peak value of minimum 1.205V. 

The output capacitor (C33 and C48, respectively) achieves that the centre of the output 

signal (its average) is 0V – it is an AC signal. Accounting for this offset, the extreme 

(peak) DC signal voltage values for the minimum valid signal on that amplifier output 

can be calculated: 

𝑈low = −
𝑈pp

2
= −

1.205V

2
= −0.6025V (19) 

𝑈high =
𝑈pp

2
=

1.205V

2
= 0.6025V (20) 

The upper peak value must always be high enough to guarantee a saturated on-state of 

the first MOSFET stage in the adder circuitry, and the lower peak value must always be 

in a valid range to achieve that the first MOSFET stage is off. The lower half of the signal 

can be clipped off (minimum peak value will be 0V) since it is insignificant when 

interpreted as a frequency-shift-keyed message. The upper peak value should be greater 

than or equal to 2.5V, as mentioned above. To achieve this, an additional op-amp is used 

before the adder circuitry. The dual-channel operational amplifier TS972IPT is initially 

chosen and used in non-inverting configuration, as shown in Figure 18. With the negative 

input rail referenced to ground, the lower half of the input signal is clipped off, and the 

upper half has a magnitude of 0.6025V for the minimum required valid signal. 
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Figure 18. Operational amplifier in non-inverting configuration.1  

The required voltage gain is: 

𝐴V ≥
2.5V

0.6025V
= 4.15 (21) 

The values of resistors R1 and R2 in above schematic diagram define the amplification 

factor (voltage gain) of the circuit. The equation is: 

𝐴V = 1 +
𝑅2

𝑅1
 (22) 

A ratio of R2 to R1 can be found which accomplishes the required voltage gain. The 

resistors should be in the range of kiloohms, to avoid excessive currents and overheating 

of the operational amplifier chip. Available resistor values are R1 = 10kΩ and R2 =

39kΩ, which yields a voltage gain of 𝐴V = 4.9. This drives the subsequent MOSFETs 

safely into saturation, even for the valid worst-case signal: 

𝑈out = 𝐴V ∗ 𝑈in = 4.9 ∗ 0.6025V = 2.95225V (23) 

The problem with the chosen op-amp TS972IPT in the given scenario is its inability to 

guarantee linear amplification for input voltages below 𝑈DD + 1.15V (common mode 

input voltage range [47, Ch. 3]) – which is in this case 1.15V (for 𝑈DD = 0V). The 

smallest valid input signal, as discussed above, ranges from 0V to 0.6025V. A more 

suitable operational amplifier IC with the same pinout and footprint is MCP6022, which 

has a common-mode input range of values starting from −0.3V [48, p. 3]. 

 

 

 

1 Image source: https://www.watelectronics.com/wp-content/uploads/Non-Inverting-Operational-

Amplifier-Circuit.jpg 
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Integration of messaging LEDs 

The OSRAM DURIS S8 GW P9LR32.EM is a white high-power LED. The new design 

implements two of them, mounted on a separate PCB (including their resistors), which is 

installed in the front end cap (see Chapter 3.7). This PCB is connected to µ-CAT’s main 

PCB using a wire harness with plugs for two-pin SMD connectors on both ends. (The 

messaging LED PCB has been designed by Jaan Rebane.) 

Electrical characteristics, chosen resistor values and calculated power consumptions can 

be found in Appendix A 2.1. Calculations are based on equations given in Section 4.3 and 

values from the datasheet [49, p. 11]. The LED is driven below nominal voltage, at 5.5V. 

In case this product becomes unavailable, similar versions exist for replacement [50], 

[51]. 

4.9 Integration of Arduino Mini 05 

The Atmel/Microchip ATmega328P microcontroller is the CPU used on the Arduino 

Mini 05 board. For a reliable and shock-proof operation, integration of the Arduino layout 

directly to the new PCB instead of providing pin headers for the Arduino module seems 

preferable. This decision is reasonable in the case of the Arduino microcontroller, since 

no significant updates on the 8-bit AVR can be expected in the future. In regard to this 

topic, a more extensive discussion on space-efficiency, maintainability and reliability is 

made in Section 4.21. 

4.10 Communication with the outside world 

In this subsection, features are presented which relate to the possibility to interface the 

microcontrollers. This includes debug messages sent from the microcontrollers to an 

external client, instructions and program code sent from an external client to the 

microcontrollers. 

The new design provides the following communication interfaces: 
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▪ USB serial from and to Arduino, converted to UART by the FTDI1 chip; 

▪ Bluetooth serial from and to Arduino, converted to UART by the Bluetooth 

module; 

▪ WLAN connection with Raspberry Pi via its onboard WLAN module; 

▪ Bluetooth connection from and to Raspberry Pi via its onboard Bluetooth module. 

The last two features are not further described in this subsection, since they are integrated 

properties of the Raspberry Pi module. However, it should be noted that a connection to 

the Arduino microcontroller can be established through the wireless interfaces provided 

by the Raspberry Pi, because the Raspberry Pi and the Arduino can communicate with 

each other through UART (see Section 4.11). 

4.10.1 Integration of the FTDI chip 

The design of the original µ-CAT features a Sparkfun breakout board [52] holding the 

FTDI chip FT232. The same chip is implemented in the new design, with the circuit 

design derived from the original breakout board. It translates between the USB protocol 

(which offers half-duplex communication via two symmetric signal lines) and the UART 

buffered full-duplex communication standard. The UART port of the chip is routed to the 

Arduino UART port via a general-purpose level shifter to translate between the internal 

logic voltage level of the FTDI chip (3.3V) and the logic voltage level of the 

ATmega328P (5V). Details on this level shifter can be found in Section 4.19. 

4.10.2 Integration of the standalone Bluetooth module 

The main purpose of the Bluetooth module is to connect µ-CAT wirelessly to a computer 

or to a smartphone in order to get debugging messages from Arduino while the robot is 

operating. Since the Bluetooth module cannot communicate while the robot is under 

water, it is desirable to place it as high as possible inside the robot’s body (see Section 

3.8.1), so it can communicate while the robot is floating near the water surface. This 

allows debugging right before diving and immediately afterwards and does not require 

the operator to get the vehicle out of the water. Placing the Bluetooth module near the 

 

 

 

1 Abbreviation for the company name Future Devices Technology International; commonly used for 

USB-to-UART translator chips. 
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highest point inside the hull makes it necessary to connect it to the PCB using a wire 

harness. For this purpose, a surface-mount 8-pin connector is placed on the PCB to which 

the Bluetooth module can be easily plugged. The other side of the wire harness is 

connected to the Bluetooth module using pin headers. 

The chosen Bluetooth module is the EGBT045-MS, placed on a breakout board similar 

to HC-05. Since the original board HC-05 does not expose all relevant pins of the 

EGBT045-MS, a self-designed breakout board is used instead (PCB design by Jaan 

Rebane). 

The following table (Table 7) lists the provided signals on the new PCB and their intended 

connection to the Bluetooth module EGBT045-MS or, wherever applicable, their 

connection to the breakout board HC-05. Exact pin numbers for the signals connecting to 

the microcontrollers can be found in the tables of provided test pads in Section 4.20. 

Bluetooth 

module 

D
ir

ec
ti

o
n

 

µ-CAT main PCB 

Purpose H
C

-0
5

 p
in

  

E
G

B
T

0
4

5
-M

S
 

p
in

(s
) 

Signal name 

(Eagle) Connections 

STATE 25/32 → BT_STATE LED “BTS”; 

Raspberry Pi 

Get information on 

connection status 

RXD 2  BT_RX Arduino TX Send data 

TXD 1 → BT_TX Arduino RX Receive data 

GND 13  GND Common GND Logic ground 

VCC 12  +3V3 3.3V supply Logic supply 3.3V 

EN 34*  BT_CMD Raspberry Pi Select role (Master/Slave); 

put into command mode 

- 24/31 → BT_STATE1 LED “BTS1” Read status of the 

Bluetooth onboard LED 

- 11  BT_RST Raspberry Pi Reset Bluetooth module 

 

The “BT_CMD” signal, in combination with a reset of the module through “BT_RST”, 

can be used to put the Bluetooth module into AT command mode. In this mode, it can be 

configured using AT commands being sent via the UART interface. It should be noted 

that, in order to configure the Bluetooth module, Arduino and Raspberry Pi must 

Table 7. Routings between Bluetooth module and new PCB. Left arrow: to the Bluetooth module; right 

arrow: from the Bluetooth module. *: Through resistor 2.2kΩ on HC-05 breakout board.  
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collaborate: The Raspberry Pi controls the GPIO pins of the Bluetooth module, while the 

Arduino can access its UART port. The “EN” pin of the HC-05 breakout board is wired 

to the “CMD” pin (34) of the EGBT045-MS through a buffer resistor. Pushing the button 

on HC-05 performs the same action as setting the “EN” pin high (see Figure 19). 

By default, the module is in a Slave mode and appears to be transparent, acting like a 

Serial connection cable, as stated in the Bluetooth profile SPP (serial port profile). It needs 

no reconfiguration; entering the command mode is usually unnecessary. Therefore, the 

module can be operated without making use of those pins which are not exposed on the 

HC-05 breakout board. 

4.11 Sharing the UART bus 

The UART bus offers one-to-one communication between two devices. One line 

establishes the unidirectional connection for messages sent from the first device to the 

second and the other line vice versa. The protocol implements full-duplex buffered 

communication at various baud rates. 

As described in the previous sections, several devices must now be able to communicate 

with the Arduino microcontroller via the UART bus. This calls for an extension of the 

native protocol implementation. In the new µ-CAT design, a multiplexer chip is used to 

switch between the three communication partners of the ATmega328P microcontroller. 

Similar approaches have been used by other engineers in the past [53]. The ATmega328P 

supports baud rates up to 250kbps, and the employed multiplexer has been verified to 

handle baud rates up to 115.2kbps – the value commonly used when flashing program 

code to the ATmega328P microcontroller. Since all three communication partners operate 

on a 3.3V logic level (and Arduino on 5V), a level shifter must handle the voltage 

translations (see Section 4.19). 

 

Figure 19. Routing of enable pin on the HC-05 breakout board. “PIN34” refers to pin 34 of the EGBT-

045MS Bluetooth module, “EN” and “GND” are exposed pins on the HC-05 breakout board.  
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The following block diagram (Figure 20) illustrates the connection topology of the shared 

UART bus, including the pin designations used on the devices. 

Figure 20. Circuit diagram for multi-device UART connectivity to ATmega328P.  

4.11.1 Integration of the multiplexer chip 

A multiplexer is a universal logic functional element used in electronic designs to route 

one or more incoming signals to one or more selected pins, depending on the address 

setting. Analogue multiplexers handle analogue voltage ranges and route them to the 

corresponding outputs using MOSFET switches. Digital multiplexers expect discrete 

signals with the level either being high or low. Due to their different internal architectures, 

an analogue multiplexer can have its pins put into high-impedance mode – meaning that 

the routing is completely interrupted. Digital multiplexers, however, have a defined 

default output state, which makes it inappropriate for use with the UART bus. The digital 

multiplexer also has a dedicated input and output side, and it expects the signal on the 

input being the signal source (driving), while the output is the signal sink (driven) – 

meaning that a digital multiplexer is a unidirectionally operating device. In the topology 

employed to realize a shared UART bus, the device to which the RX and TX lines of 

various clients need to be routed (the ATmega328P) is the driving side of one of these 

lines (namely, the TX line), and therefore a digital multiplexer cannot be used. 

The analogue switch multiplexer MC14052B is implemented in the new circuit design of 

µ-CAT. It is digitally controlled (through address and enable), but the signals to be routed 

can be of any nature and – more importantly – of any direction. Depending on the 2-bit 
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address setting, the chip routes each signal in its singular pair of common pins to a 

corresponding signal in one of four other pairs of pins. The ATmega328P UART pins RX 

and TX are connected to the common pins of the multiplexer, and the UART interfaces 

of the three potential communication partners – the FTDI chip, the Raspberry Pi and the 

Bluetooth module – are connected to the other routing pins of the multiplexer. 

Figure 21. Multiplexer schematic diagram.  

Figure 21 shows the routing of the multiplexer pins. The routing table for the multiplexer 

is given in Appendix A 4.3. 

4.12 Communication line from Arduino to Raspberry Pi 

A GPIO status line is provided between Arduino physical pin 25 and Raspberry Pi 

physical pin 7. It can be used by the Arduino microcontroller to send simple messages (in 

the form of sequences of digital high and low states) to the Raspberry Pi. This way, the 

Raspberry Pi can be informed about critical or exceptional system states on low-level 

components which are monitored by the Arduino. The logic level translation from 

Arduino’s 5V level (signal called “ARD2RPI_HV”) to the Raspberry Pi’s 3.3V level 

(signal called “ARD2RPI_LV”) is done by the level shifter described in Section 4.19. 

The status LED “HWINT” lights up whenever this signal line is high. 

4.13 Performing a reset of the Arduino microcontroller 

It is possible to reset the Arduino microcontroller via the integrated pushbutton. However, 

this button is not accessible when the robot is fully assembled. Therefore, an alternative 

way of resetting via the GPIO pin 11 on the Raspberry Pi is provided by a signal line 

called “ARDU_RST_LV” which opens the digital NPN transistor T1, connecting “GND” 

to Arduino’s reset pin. Resetting the Arduino through the Raspberry Pi makes it possible 
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to upload code to the Arduino using the Raspberry Pi’s UART port. To perform this 

upload, the Raspberry Pi must set the multiplexer UART routing accordingly (see Section 

4.11). 

4.14 Implementation of status LEDs 

With the aim to improve user interaction with µ-CAT during operation and debugging, 

several status LEDs are integrated on the PCB. Each of them carries a printed name on 

the circuit board. In the following subsections, Table 8 lists the RGB LED and Table 9 

all single-coloured LEDs including their functions. Electrical characteristics, chosen 

resistor values and calculated power consumptions can be found in Appendix A 2.1. 

All LEDs except for LED11 are placed on the top layer of the PCB which points upwards 

when installed on the robot. 

4.14.1 Implementation of RGB status LED 

The RGB LED CLP6C-FKB consists of three separate LEDs in one die. Each of them 

has its individual forward voltage and needs its individual resistor, as calculated by the 

equation above. 

The purpose of the RGB LED is to have a high flexibility in being able to colour-code 

messages from the robot to the user, covering a wide range of different topics, including 

system status and warning or error codes. The definition of colour codes used on the RGB 

LED is up to the engineer and can be programmed through code executed on the 

Raspberry Pi. 

For highest flexibility and best PWM (pulse width modulation) output, the natively 

capable PWM pins [54] on the Raspberry Pi are used for the RGB LED. 

Table 8. Onboard RGB status LED.  

Eagle name Printed name Colour Indication 

LED5-G RGB LED green User-defined, implemented by software. 

LED5-R red 

LED5-B blue 

 

The resistors for the LED are chosen such that, assuming a 100% PWM duty cycle, each 

LED inside this chip is driven at about 50% of its nominal forward current, which is 



75 

 

expected to yield approximately 50% of the nominal luminous intensity of the RGB LED 

[55, p. 5]. As tests have shown, this is sufficient for low-distance signalling. 

As a side note, depending on the required distance between communication partners, the 

RGB LED offers potential for usage as a messaging device from robot to robot. Since µ-

CAT is now equipped with a capable camera, colour codes emitted by the RGB LED on 

a robot could be used as signals for communication between robots working in a swarm. 

4.14.2 Implementation of single-colour LEDs 

For the single-colour LEDs, a strict colour-coding scheme is used: Green LEDs indicate 

regular mode of operation, yellow or blue LEDs indicate special events (messages or 

certain status flags), and red LEDs indicate faults. 

In order to save power, the in-series resistor values for single-coloured LEDs in µ-CAT’s 

design are chosen such that the LEDs are driven at low brightness, at around 10% of their 

mid-range forward current values. Experimental tests have shown that this brightness is 

enough for a clear indication. For all single-coloured LEDs, the desired forward current 

is about 2mA.  

Table 9. Onboard status LEDs.  

Eagle name Printed name Colour Indication 

LED1 3V3 green On: 3.3V voltage regulator provides output. 

LED2 TX yellow Toggle: data flow from FTDI UART. 

LED9 RX yellow Toggle: data flow to FTDI UART. 

LED3 HWINT yellow Toggle: data flow from Arduino to 

Raspberry Pi via “ARD2RPI_HV”. 

LED4 BATLOW red On: battery voltage below critical level. 

LED6 5V green On: 5V buck converter provides output. 

LED8 6V green On: 6V voltage regulator provides output. 

LED10 BTS blue On: Bluetooth module is connected. 

LED11 BTS11 blue Flash 1Hz: Command mode. 

Flash 2Hz: Data mode. 

 

Locations of LEDs on the PCB can be found in Section 4.21. 

 

 

 

1 Parallel to onboard LED on HC-05 breakout board. 



76 

 

4.15 Component updates: IMU and pressure sensor 

To ensure the availability of components for this design upgrade and for the production 

of future copies of µ-CAT, the IMU and the pressure sensor are updated with newer 

versions. The new devices perform the same functions as the old ones but may require 

new software drivers and a different electrical connection. 

The original IMU is upgraded with a newer version from the same manufacturer – TDK 

InvenSense ICM-20608-G. The device’s features are similar to those of the original IC. 

The reason for this update is to maintain availability of components used on µ-CAT, to 

guarantee future producibility. 

The IMU includes a triple-axis MEMS gyroscope with digital output for angular 

velocities about all three axes, an accelerometer with digital output of linear accelerations 

along all three axes and a thermometer [56, Ch. 2]. The device can be interfaced using 

I²C or SPI [56, Ch. 2.3]. On µ-CAT’s design, I²C is used, and the device is a slave on that 

bus. Up to two of such chips can be placed on the same I²C bus, and their addresses are 

selected by setting the state of the address pin “AD0” [56, Ch. 6.2]. Whenever the sensor 

performs a new measurement, it stores it in its internal FIFO (First in, first out) buffer and 

sets a flag which can be read using the interrupt status pin signal on pin “INT”. 

The new pressure sensor MS5837-02BA has a very compact footprint 

(3.3 x 3.3 x 2.75mm – approximately one quarter of the area of the old pressure sensor) 

and is therefore very easy to physically integrate into the new design. The sensor covers 

pressures ranging from 300mbar to 1200mbar – which allows sensing in diving depths 

up to approximately 2m in water. It withstands pressures of up to 10bar (91m depth). 

The given resolution of 13cm at sea level [57, p. 1] means that it can detect changes as 

small as 0.0153mbar, which corresponds to a resolution of more than 65000 discretized 

values per 1bar of pressure – a resolution of around 0.15mm in water. The accuracy 

describes the maximum bias (offset) from the correct value to be expected in a single 

measurement under specific environmental and electrical conditions, and under the 

conditions in which µ-CAT is operated, it is stated to be within a corridor of ±2mbar 

[57, p. 3] which corresponds to roughly 2cm in water. The device is interfaced using the 

I²C protocol. 
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There are several advantages of the new over the old sensor, apart from the reduced 

footprint size. The first one to mention is the lower production cost and effort. The old 

sensor requires an operational amplifier and an ADC (analogue-to-digital) converter chip 

in order to have enough accuracy when reading the output voltage using an analogue input 

pin of the Arduino. The new one does not require these components, since it comes with 

a microcontroller integrated, providing digital data. Secondly, with the elimination of 

these additional components, the power consumption is expected to be reduced.  

4.16 Integration of motor drivers (I²C) 

Four ICs of type DRV8830 – one per motor – are used to drive the servo motors through 

an internal H-bridge. These chips can be interfaced via I²C bus. Each chip provides two 

address pins which can be in one of three states: high, low or open. This way, up to nine 

addresses can be set for this type of device on the I²C bus. When implementing the motor 

drivers into the new design, care is taken that the original addresses of the devices are 

kept, so that no software-sided modification is required. The devices can sense the current 

consumption of the load if external shunt resistors are placed. This feature is currently not 

used on µ-CAT, but space for the respective shunt resistors is provided on the circuit 

board. With the feature omitted these resistors should have a value of 0Ω, otherwise their 

values are calculated based on the voltage drop of 200mV (according to the chip’s 

reference voltage) to be created when the current threshold value is reached [58, Ch. 

7.3.3]: 

𝑅ISENSE [Ω] =
0.2 [V]

𝐼LIMIT [A]
 (24) 

With a measured current consumption of approximately 138mA per motor during regular 

operation and an expected current consumption of around 500mA per motor in stall 

condition, a current threshold of 400mA for each motor would be a safe choice to detect 

stalling. Using above equation, this would yield a value of 0.5Ω for each of the resistors 

R13, R14, R15 and R16 (see Figure 22). Since the dedicated “FAULT” pin of the chips 

is not routed on the PCB, the flag bits D0 and D4 set in the I²C register 1 [58, Ch. 7.6.1.2] 

would need to be used in order to detect the fault condition by software. 
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Figure 22. Motors drivers’ schematic diagrams.  

The chips’ surrounding circuitry (Figure 22) is developed in accordance with the 

prescriptions in the datasheet [58, Sec. 5], and they are integrated into the new layout of 

the PCB as per recommendation [58, Sec. 10.2]. The latter requires a specific footprint 

(Figure 23) which guarantees sufficient size of the thermal pad and which allows this pad 

to extend seamlessly into the surrounding ground fill of the PCB. With a proper heat-

sinking pad provided, the chip can provide up to 1A peak output current without 

overheating [58, Ch. 3]. 

Figure 23. Custom-made Eagle footprint for DRV8830 (Eagle rendering).  

The described implementations refer to PCB design version 26. 

4.17 Integration of motors 

The servo motors from the original µ-CAT are used in the upgraded version. Improved 

placement of motor connectors to the PCB allows for shorter wires from the motors. This 
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is expected to improve EMC (electromagnetic compatibility) characteristics and provides 

a cleaner overview when working on the robot. 

The outputs of the motor driver chips are routed to four pin header connectors with two 

pins each. These are SMD connectors, positioned near the corners of the PCB, to keep 

wire runs to the motors short. 

To obtain feedback from the motors, they have been modified by the engineers of Centre 

for Biorobotics and have been used with this modification already on the original version 

of µ-CAT. The team expressed their wish to keep this manual alteration of the motors in 

the upgraded version. The original motors (off the shelf) are equipped with an internal 

microcontroller, which allows for sending a position command to the motor, and an 

internal potentiometer as a feedback sensor to get the motor to the setpoint. This motor, 

when used as-is, does not provide any feedback information to the user, so no external 

control algorithms can be applied. 

In the course of the modification of the motor, the rotary Hall effect sensor AMS AS5040 

has been added as a replacement for the original potentiometer. The internal 

microcontroller has been removed, and interfacing signal lines to the Hall effect sensor 

have been provided, so that the feedback information is available to a user – who can now 

apply custom-made control algorithms. 

The Hall encoder interface lines consist of five signals, including 5V and ground. They 

use a three-wire SPI interface which contains a chip select (“CS”) line. To connect the 

motor encoders, SMD connectors are chosen and placed on the top layer of the PCB, near 

the corners, to keep the wire runs to the motors short. 

The described implementations refer to PCB design version 26. 

4.18 Integration of battery voltage measurement 

In order to measure the battery voltage with the Arduino microcontroller, a simple voltage 

divider circuit is implemented, taken over from the original µ-CAT design. The voltage 

divider is clamped between the battery voltage line (“VIN”) and the ground. The output 

line from the voltage divider is called “BATTERY_MEASURE” and routed to analogue 

input pin ADC6.  
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The output voltage of the voltmeter can be calculated as follows: 

𝑈out = 𝑈B ∗
𝑅L

𝑅L+𝑅H
 (25) 

where: 𝑈out [V] output from voltage divider 
𝑈B [V] supply voltage from battery 
𝑅L [Ω] resistor between supply and output (R28) 
𝑅H [Ω] resistor between ground and output (R29) 

With the resistor values used on µ-CAT (𝑅H = 47kΩ, 𝑅L = 5.6kΩ), the output voltage of 

the voltage divider is always around 10.6% of the supply voltage, therefore ranging up 

to approximately 0.72V for the nominal value of the batteries. With the resistor values 

used, the battery voltage value can be calculated from the voltage divider output voltage 

using the following equation: 

𝑈B =
𝑈out

0.106
 (26) 

The sensing range of the Arduino microcontroller is set to match with this range by using 

the internal analogue voltage reference of the ATmega328P, which is 1.1V. With 

approximately 0.79V being used as the maximum value (full batteries), this corresponds 

to almost 72% of the full range, providing a precision of 734 distinct values to measure 

battery voltage. In case the robot is powered through an external power source with 

slightly higher voltage, for the purpose of testing, the design leaves headroom for 

measuring this voltage without destroying the microcontroller. The maximum measurable 

input voltage is 10.37V. 

The correspondence between the analogue input value 𝑥 with range (0; 1023) and the 

output voltage from the voltage divider is expressed as follows: 

𝑈out = 1.1V ∗
𝑥

1023
 (27) 

From the analogue input value 𝑥, the battery voltage can be calculated using following 

equation: 

𝑈B = 1.1V ∗
𝑥

1023∗0.106
= 0.010V ∗ 𝑥 (28) 
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4.19 Implementation of level shifters 

Commonly used voltage levels on devices are 3.3V and 5V. In the Eagle design, most 

signal lines with voltage levels of 3.3V carry the suffix “_LV” (low voltage), the ones 

with 5V levels the suffix “_HV” (high voltage). Whenever two devices with different 

logic voltage levels must communicate with each other, a level shifter can be used to take 

care about the translation between these voltages. This helps protect the device with the 

lower voltage level from overvoltage. If the voltage level on one side of the level shifter 

is 0V (low), the other side automatically is also 0V (low). If the voltage on one side of the 

level shifter is high, the other side must also become high, but the voltage must correspond 

to the desired voltage level of this side. The voltages to be used by the level shifter are 

usually defined by applying the levels to reference pins, one on each side of the level 

shifter. 

Instead of using a dedicated voltage level shifter IC, a network of two resistors and a 

Schottky diode can be used, as suggested in the Bluetooth module datasheet [59, Fig. 3]. 

Since the new PCB design requires level shifting between more than two devices, using 

a chip is more space-efficient. 

In this new circuit design, two different level shifter ICs are used, as explained in the 

following subsections. 

TXB0104 is a digital CMOS bidirectional 4-channel voltage-level translator with 

automatic detection of the direction of a signal. This allows either of the two sides to be 

the driving side, while the other side follows accordingly. Whether a side is driving or 

driven is independent from its state (high or low). 

Since I²C uses strong pullup resistors (1kΩ), TXB0104 is not applicable for translating 

voltages on the I²C bus because of the low drive strength of the chip’s outputs [60, Ch. 

8.3.5]. Therefore, a different chip is used to translate the voltages on the I²C bus: 

PCA9306. This IC has been especially developed for the purpose of handling translations 

on the I²C bus. Its operating principle is based on an N-channel MOSFET switch used on 

each signal line routing. Additionally, a diode is placed from source to drain. The gate of 

the transistor is always high (connected to the low-side positive voltage), therefore the 

transistor conducts whenever its source voltage potential falls below that of the gate. The 



82 

 

source of the transistor is connected to the low-side bus signal, and its drain to the high- 

side bus signal.  

▪ In the default state, both sides are high (due to the external pullup resistors). 

▪ When the low-voltage side drives the bus low, the transistor becomes conductive 

(source potential below gate potential), and due to its very small internal 

resistance, the potential on the drain (high-voltage side signal) becomes low. 

▪ When the high-voltage side drives the bus low, the internal diode becomes 

forward-biased for one moment, and its knee voltage demands the voltage on the 

low-voltage side signal to become only slightly higher (around 0.7V) than that of 

the high-voltage side. In this condition, the transistor becomes conductive, and the 

signal on the low-voltage side becomes equal to that on the high-voltage side (0V). 

The diode is now bypassed. 

The level shifter can be disabled by opening jumper “I2CLVLEN” (indicated as 

“I2C_LVL_EN” on the PCB). This allows the use of the low-voltage I²C bus without 

connection to the high-voltage side (Raspberry Pi and all I²C devices except for Arduino 

and motor drivers). 

4.20 Provision of test pads 

The following tables list all test pads provided on the PCB, with their name indicated 

(printed) on the PCB in the left column. The last column relates to the signal connected 

to the respective test pad. 

For six signals related to power supply signals the following test pads (Table 10) are 

provided (more than one pad with the same name might be present on the PCB): 

Table 10. Provided power supply test pads.  

Pad name Purpose Eagle signal line name 

3V3 3.3V line from regulator 3V3 

5V 5V line from regulator 5V 

6V 6V line from regulator MOTOR_VCC 

GND Ground (0V) reference GND 

USB5 5V line from USB port USB_VCC 

VIN Battery voltage VIN 

 

For 11 miscellaneous signals, the following test pads (Table 11) are provided: 
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Table 11. Provided test pads for miscellaneous signals.  

Pad name Purpose Eagle signal line name 

PDL Photodiode left PHOTODIODE_L 

PDR Photodiode right PHOTODIODE_R 

RCL Tone detector received signal left TO_RCVR_L 

RCR Tone detector received signal right TO_RCVR_L 

TDA Tone detectors combined amplified output TD_OUT_AMP 

TDL Tone detector left output to FSK TD_OUT_L 

TDLA Tone detector left amplified output to logic OR TD_OUT_L_AMP 

TDR Tone detector right output to FSK TD_OUT_R 

TDRA Tone detector left amplified output to logic OR TD_OUT_R_AMP 

V2L Tone detector left centre voltage  VCC/2_L 

V2R Tone detector right centre voltage VCC/2_R 

 

Seven signals routed to pins of the Raspberry Pi computer have the following test pads 

(Table 12) on the PCB: 

Table 12. Provided test pads for signals connecting to Raspberry Pi pins.  

Pad 

name 

Purpose Pin 

no. 

Type Eagle signal line 

name 

APL Messages Arduino to Raspberry Pi 

(3.3V) 

7 Input ARD2RPI_LV 

BTE Bluetooth EN pin (enable) 13 Output BT_CMD 

BTR Bluetooth RST pin (reset) 38 Output BT_RST 

BTS Bluetooth STATE pin (connection status) 40 Input BT_STATE 

R3V3 Raspberry Pi-generated 3.3V output 1 Power RPI_3V3 

X0 UART TX (3.3V) 8 Output RPI_TX 

Y0 UART RX (3.3V) 10 Input RPI_RX 

 

23 signals routed to pins of the Arduino microcontroller have the following (smaller 

sized) test pads (Table 13) on the PCB: 

Table 13. Provided test pads for signals connecting to Arduino pins.  

Pad 

name 

Purpose Pin 

name 

Type Eagle signal line name 

A7 Analog input pin (unused) ADC7 A. Input ADC7 

APH Arduino to Raspberry Pi 

(5V) 

PC2 Output ARD2RPI_HV 

BLO Battery low signal PC0 Output BATTERY_LOW_LED 

BM Battery voltmeter signal ADC6 A. Input BATTERY_MEASURE 

CS1 Encoder Front-R. SPI select PD7 Output CS1 

CS2 Encoder Rear-R. SPI select PB2 Output CS2 

CS3 Encoder Rear-L. SPI select PB1 Output CS3 

CS4 Encoder Front-L. SPI select PB0 Output CS4 
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Table 14. Provided test pads for signals connecting to Arduino pins [continued]. 

Pad 

name 

Purpose Pin 

name 

Type Eagle signal line name 

FEN FSK module enable PC1 Output FSK_ENABLE 

FRX FSK module receive PD6 Input FSK_RX 

FTX FSK module send PD3 Output FSK_TX 

IMU IMU interrupt signal 5V PD2 Input IMUINT_HV 

LB Left beacon signal PD5 Input LEFTBEACON 

MEN Motor power enable pin PC3 Output MOTOR_EN 

MISO SPI MISO bus 5V PB4 Input SPI_MISO 

MOSI SPI MOSI bus 5V PB3 Output SPI_MOSI 

RB Right beacon signal PD4 Input RIGHTBEACON 

RST Arduino reset pin PC6 Input ARDU_RST 

RX UART RX (5V) PD0 Input ARDU_RX 

SCK SPI clock (5V) PB51 Output SPI_SCK 

SCL I²C clock (5V) PC5 Output I2C_SCL_HV 

SDA I²C data (5V) PC4 Bus I2C_SDA_HV 

TX UART TX (5V) PD1 Output ARDU_TX 

 

In addition to the test pads, two ground fill areas (congruent; one in top, the other in 

bottom layer) are exposed along part of one edge of the circuit board. These are practical 

when measuring signals using an oscilloscope: the ground connector (usually a crocodile 

clamp) can be attached to them. 

The physical locations of all test pads can be found in Section 4.21, Figure 24. 

4.21 Considerations on modularity and reliability 

With the aim to improve reliability in terms of vibration-tolerance and to avoid bad 

contacting due to corrosion, the overall design follows the principle to avoid pin headers 

or wire connections wherever possible. 

On the previous version of µ-CAT, the following devices were installed as add-on 

components: 

▪ motor drivers; 

▪ FTDI chip; 

 

 

 

1 Through resistor R1. 
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▪ tone detectors; 

▪ Arduino Mini 05 board; 

▪ power supply PCB. 

On the new version of the PCB, only the following devices are connected via pin headers: 

▪ Raspberry Pi single-board computer; 

▪ FSK module. 

The decision to integrate devices into the layout rather than making them detachable 

involves a trade-off in terms of modularity. In case of water damage or failure of a 

components, the corresponding device cannot be easily replaced. However, since the 

production of a single PCB is cheap and does not necessarily involve manual methods 

anymore, this trade-off is acceptable, and the aim for reliability is of higher importance. 

Apart from that, the provision of test pads facilitates debugging and detection of the failed 

component which can then be manually replaced in a few relatively simple steps. 

Another advantage of avoiding excessive modularity is the higher space-efficiency: 

devices can be placed more closely to each other, and with the avoidance of through-hole 

pin headers, both sides of the PCB can be used to a greater extent.  

4.22 Using the main PCB 

This section gives an overview on all features of the main PCB with which the user is 

most likely to interact during operation, debugging and assembly of the robot. 

Test pads and most LEDs are located on the top layer of the board, to allow for easy 

debugging and monitoring. Figure 24 shows their locations on the PCB. 
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Connectors are and jumpers are located on both copper sides of the PCB. Their locations 

are shown in Figure 25 and Figure 26.  

Figure 25. Connectors and jumpers on the top layer (Eagle rendering).  

 

 

Figure 24. Test pads and LEDs (Eagle rendering). Test pads (green), LEDs on the top layer (white) and 

LEDs on the bottom layer (orange).  
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Figure 26. Connectors and jumpers on the bottom layer (Eagle rendering).  

4.23 Results and discussion 

All working features of the original µ-CAT robot are implemented in the new design and 

tested. The following subsections do not emphasize on these features, but list only 

significant improvements and changes to the robot. Figure 27 shows the result of the 

Eagle design work (referring to version 26 of the PCB), and Figure 28 shows top and 

bottom view of the real PCB (version 21), with some components not yet in place. 
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Figure 27. Eagle renderings of new PCB. Top view (left) and bottom view (right).  
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Figure 28. New PCB. Top view (left) and bottom view (right).  

4.23.1 Power distribution, consumption and supply 

Apart from the 6V power supply for the motors, µ-CAT is now equipped with a 5V buck 

converter circuit and a 3.3V linear voltage regulator supply on the new PCB. 

Figure 29 shows the topology of power distribution lines of the updated robot, along with 

their names by which they are identified in the schematic diagram in Eagle.  
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The power consumptions of old and new µ-CAT have been experimentally compared, as 

described in Appendix A 1.3. The following observations can be made: 

▪ Under full load (including all new components added and running), the new robot 

consumes 5.669W. This yields a battery lifetime of approximately 2.9h, using the 

batteries from original µ-CAT, as stated in Section 2.1.2, 

o The old robot has a consumption of 3.434W with all devices powered. 

The consumption of the new robot has increased to 165%. 

▪ Analysing the performance of the new PCB with the old one under comparable 

conditions (same devices connected): 

o Quiescent consumption of the new PCB is 79% of the old PCB without 

Raspberry Pi. 

 

Figure 29. Block diagram of power distribution on the updated µ-CAT. The diode ensures that USB can 

power the 5V rail only if its voltage is higher than the supplied voltage from the buck converter. The 

minimum difference is equal to the knee voltage of the diode (~0.5V).  
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o Quiescent consumption of the new PCB is 57% of the old PCB with 

Raspberry Pi. This shows the obtained power saving due to the buck 

converter on the 5V rail. 

▪ Comparing old robot under full load including a Raspberry Pi with the new robot 

under full load (additional hardware: messaging LEDs and Bluetooth module), the 

new robot consumes 3% less power. 

Tests also show that the circuitry can be fully powered using only the USB supply. 

Changes have also been made to the reed switch connection. Its connection principle is 

opposed to that used in the original µ-CAT design, and it reduces the probability of the 

magnet getting lost during operation of the robot. With the original µ-CAT design, if the 

robot loses the magnet while being in the water, it would switch off and remain passively 

floating – which would pose the risk of getting lost or destroyed. In the new design, the 

robot is operated without the magnet in place. 

4.23.2 Integration of Arduino, Raspberry Pi Zero W and camera module 

The original Arduino board layout is copied with modifications to the new PCB. The 

onboard voltage regulator is removed, and a slightly different CPU package version is 

used, which features a thermal pad underneath. Redundant pin access points are removed 

for higher space-efficiency. Instead of the through-hole pins used on the original Arduino 

board, SMD (surface mount device) test pads are used. An ICSP (in-circuit serial 

programming) pin header is added to provide a port for low-level programming of the 

microcontroller, for example, if a new bootloader is needed. 

In cases where UART communication between Raspberry Pi and Arduino is not 

established, the Arduino can use a dedicated signal line to request certain tasks from the 

Raspberry Pi. 

The following list summarizes the implemented features relating interfacing between 

Raspberry Pi and other components and subsystems on µ-CAT: 

▪ Raspberry Pi interfaces the camera module; 

▪ Raspberry Pi can reset the Arduino via a dedicated GPIO output pin (see Section 

4.13); 
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▪ Raspberry Pi can communicate via the UART bus with Arduino (see Section 

4.11); 

▪ Raspberry Pi can be used to flash new software to the Arduino microcontroller (as 

a result of the previous two features combined);  

▪ Raspberry Pi can communicate via the I²C bus with other I²C devices and with 

Arduino (if jumpers “RPISDA” and “RPISCL” are set, which are indicated as 

“RPI_SDA” and “RPI_SCL” on the PCB, respectively); 

▪ Raspberry Pi can communicate with Arduino via Bluetooth; 

▪ Raspberry Pi controls the multiplexer chip (see Section 4.11.1); 

▪ Raspberry Pi drives the onboard RGB status LED (see Section 4.14.1); 

▪ Raspberry Pi controls the standalone Bluetooth module (see Section 4.10.2); 

▪ Arduino can send simple messages on a one-wire unidirectional signal line to the 

Raspberry Pi (see Section 4.12). 

The addition of jumpers on the I²C line allows for the Raspberry Pi instead of the Arduino 

to be used for interfacing all sensors on that bus if the I²C level shifter is disabled by 

opening jumper “I2CLVLEN” (indicated as “I2C_LVL_EN” on the PCB). 

With the implementation of the camera module, µ-CAT will now be able to perform 

visual servoing and object detection and avoidance, using software algorithms running on 

the Raspberry Pi. This greatly improves the level of autonomy of the robot. 

4.23.3 Implementation of advanced optical messaging 

The optical messaging system most typically covers three tasks: 

▪ steer the robot left or right by using external light beacons; 

▪ demodulate messages modulated onto the light signals; 

▪ modulate messages onto a base signal and send them out via messaging LEDs 

installed on the front end cap of the robot. 

Being equipped with powerful signal LEDs in the front end cap, the robots can now 

communicate back, either to the user or to other robots when working in a swarm. 

The development of the messaging system is currently still ongoing (not part of this thesis 

scope), but the PCB provides all interface pins to attach the FSK module. Pin headers are 

provided on the PCB which can hold any frequency-shift keying PCB which has a 
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compatible circuitry and is designed considering the given pin layout. This form of 

“partial integration” is less reliable than copying the layout to the PCB, but it offers more 

flexibility. This is necessary because the module is expected to undergo changes before 

it can finally implemented. 

The tone detectors already exist on the original µ-CAT in the form of separate circuit 

boards. For the new PCB design, to avoid potential sources of bad contacting, their layout 

is integrated on the main PCB.  

The same photodiodes used on the original µ-CAT design are implemented, but in a 

physically more advantageous configuration than before, now allowing a for a better 

distinction between optical signals from the right and from the left.  

4.23.4 Communications 

With integration of the new Bluetooth module, untethered messaging with the Arduino 

microcontroller becomes a possibility. The integration of Raspberry Pi Zero W allows 

additional for wireless communication methods. 

With the integration of the multiplexer, one of three devices can communicate with 

Arduino using UART. The Raspberry Pi W handles the switching procedure by 

interfacing the multiplexer. 

The integration of two level shifters allows for devices with two different voltage levels 

to communicate with each other on the same busses. 

4.23.5 Improved user-interface 

The RGB LED is implemented and ready to be used with PWM-capable pins on the 

Raspberry Pi. It offers possibility for µ-CAT to keep the user updated on system status. 

Colour-coded messages can be used to distinguish between a variety of messages. 

With test pads on 47 signals, almost each component of the new PCB can be tested using 

a voltmeter or oscilloscope. This improves µ-CAT’s usefulness as a teaching tool and 

allows for more efficient debugging procedures in case of malfunctions. 
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4.23.6 Future work 

In the latest design version of the PCB (version 26), some connectors are replaced by 

SMD components, in order to save space and facilitate connecting of plugs. Since many 

of them are of the same type – Molex PicoBlade – a user might accidentally plug a 

component into the wrong connector during assembly. As part of future improvements, 

some additional time must therefore be invested for finding dissimilar connector socket 

types for different types of devices. 

In the next design iterations, the fuse protecting the batteries from overcurrent must be 

integrated onto the PCB. A self-resettable polyfused can be used for that purpose. In the 

original design, a glass-body fuse has been placed inside the battery compartment. Since 

µ-CAT uses a new type of batteries now which are longer than the original ones, this fuse 

does not fit inside the compartment anymore. For now, it must be placed in line with the 

wire leading from the batteries to the PCB. 

The next version of the PCB will have the input of the 3.3V regulator routed to the output 

of the 5V regulator, not to the battery voltage. This will prevent the 3.3V components 

from remaining powered when the reed switch is closed. 

Other improvements concern ease of assembly: To facilitate self-centring of the PCB in 

the grooves of the front end cap, the PCB needs to slide into the Plexiglass weight dividers 

freely. To achieve this, electronic components close to the edge of the PCB must be 

moved. Apart from that, it is planned to mount one circuit board on the inside of each end 

cap. Each of them has connectors to the electronic components on one side and a slide-in 

connector on the other, where the PCB connects to when pushing the end caps against it. 

this way, mechanical and electrical contact are established at the same time. 
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5 Software 

This chapter presents the results of the thesis project regarding software development. 

The first part presents methods to flash new code to the Arduino microcontroller, and the 

second part describes the test software created for testing the components on the new 

motherboard. 

5.1 Programming the Arduino 

While the Raspberry Pi Zero is equipped with a Linux operating system on a micro-SD 

card and can easily be programmed by connecting to it via SSH (secure shell), WLAN or 

by placing the micro-SD card into another computer, the methods of programming of the 

low-level microcontroller need to be considered in the electronic design of the Embedded 

System. The new PCB offers several methods to program the Arduino. 

5.1.1 ICSP 

The microcontroller can be flashed via its ICSP pin header. This method is not 

recommended for regular use, because the code will overwrite the bootloader on the AVR. 

Without the bootloader, it is not possible to program the microcontroller through UART. 

In order to enable programming via UART, a bootloader must be flashed to the 

microcontroller. This can only be done via ICSP. The Arduino IDE (integrated 

development environment) offers a possibility to do that. 

For flashing code or the bootloader to the AVR, the ISP programmer must be connected 

to the ICSP pin header and the other side to a USB port of the PC. For flashing code, the 

function “Upload Using Programmer” can be selected in Arduino IDE from the “Sketch” 

menu. For flashing the bootloader, the option “Burn Bootloader” from the “Tools” menu 

can be used. 

5.1.2 UART 

Although UART is designed as a one-to-one communication protocol, the new PCB 

offers the possibility for one of several devices to communicate with Arduino via UART 
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using the multiplexer. To flash code to the microcontroller via UART, the multiplexer is 

instructed to route the respective UART device port to the Arduino. This instruction can 

only be issued by the Raspberry Pi, and Python scripts are provided as part of this thesis 

work which accomplish the switching procedure. 

UART via USB 

The Arduino Mini 05 does not offer a USB port out of the box. An FTDI chip is installed 

on the PCB, allowing the Arduino to be programmed via USB, using the Arduino IDE. 

When doing so, the microcontroller is automatically reset shortly before the flash 

procedure starts. This is done by pulsing the “DTR” pin on the FTDI chip. 

UART via Raspberry Pi 

The most convenient method of programming the Arduino is via the Raspberry Pi, 

because the Raspberry Pi can reset the Arduino automatically in the right moment. 

However, this automatic reset cannot be executed when flashing the Arduino through the 

regular Arduino IDE. Instead, Python scripts running on the Raspberry Pi are provided as 

part of this thesis work which fully automate the compilation and upload process of any 

given Arduino sketch. 

5.2 Test case automation 

For the components on the new PCB, test software is developed as part of this thesis 

project. The purpose of this software is to verify proper function of a newly produced 

PCB and to troubleshoot during regular use. The software suite consists of several test 

case modules and an overlaying user interface. The test case files are stored on the SD 

card of the Raspberry Pi and executed from there. The software is organized in a modular 

way, with distributed files in different folders, where the file structure reflects the 

software architecture: each test case is in a separate folder which contains all required 

files for that test case. Shared files which are used by several test cases are not duplicated 

but placed in a folder at the root of the test case folder structure. 

The following sections provide proof-of-concept of the test software suite, including a 

number of test cases. References to most relevant files can be found in Appendix A 4.4. 
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5.2.1 User interface 

The overlaying user interface – a Python 3 script – facilitates the execution of test cases 

in the following ways: 

▪ The end user does not need to manually locate the test case files. The user interface 

finds them as specified in a text file, and the user can start a test case through the 

user interface. 

▪ The user interface displays a general description for each test case, stating its 

purpose and working principle, and provides instructions individual to each test 

case. 

▪ The user interface takes care that parameters required for running a test case are 

defined and stores them for future executions of the test case. 

The working principle of the user interface script is graphically presented in Figure 30, 

and the corresponding Python code can be found in Appendix A 4.4.2. 

Figure 30. Flowchart of the overlaying user interface Python script.  

The list of test cases presented to the user contains only those test cases which are defined 

in the file “testcases.csv”. 

When the user interface calls a test case, it passes the following arguments along: 

▪ file name of the test case file to be executed, for example “a01.py”; 
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▪ code of the chosen test case, for example “a01”; 

▪ name of the chosen test case, for example “UART_RPi”; 

▪ date and time of execution (two arguments); 

▪ name of the file containing the parameters, i.e., “params.csv”. 

For test cases where the Arduino must be programmed with specific code, the Python 

script configures the Arduino code file to contain the user-specified parameters, wherever 

required. It also writes a timestamp to the Arduino code which is reported to the 

Raspberry Pi via UART upon execution of the Arduino code, so the Python script can 

detect if the flashing of the code has been successful. 

5.2.2 Test cases 

Test cases are divided into two groups – “Arduino” and “other”. The first involves the 

Arduino microcontroller, which means that a Python script will flash it with specific code 

in order to execute the test case. The latter does not need any collaboration with the 

Arduino and runs solely on the Raspberry Pi. 

The following list (Table 14) shows the minimum required test cases for a thorough 

testing of the PCB.  

Table 14. List of test cases and their mainly targeted unit(s) under test.  
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a01 UART (Raspberry Pi) ⚫  ⚫ ⚫ 

a02 

GPIO lines: 

ARDU_RST_LV 

ARDU_RST_HV 

⚫  ⚫ ⚫ 

a03 UART (FTDI/USB) ⚫ ⚫  ⚫ 

a04 Battery voltage measurement ⚫ ⚫ ⚫ ⚫ 

a05 UART (Bluetooth) ⚫ ⚫  ⚫ 
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Table 15. List of test cases and their mainly targeted unit(s) under test [continued].  

Code Main unit(s) under test F
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a06 

GPIO lines: 

ARD2RPI_HV 

ARD2RPI_LV 

⚫  ⚫ ⚫ 

a07 Bluetooth command mode ⚫ ⚫  ⚫ 

a08 I²C addresses ⚫  ⚫ ⚫ 

a09 Motor drivers: write (and read fault) ⚫ ⚫   

a10 SPI bus ⚫  ⚫  

a11 Motor feedback sensors: read ⚫ ⚫ ⚫  

a12 Motors: drive and check ⚫  ⚫  

a13 Pressure sensor: read ⚫    

a14 

IMU: read: 

Gyroscope data 

Accelerometer data 

Temperature data 

⚫  ⚫  

a15 Beacon signals ⚫ ⚫ ⚫  

a16 FSK: read and write (incl. messaging LEDs) ⚫ ⚫   

o01 RGB LED  ⚫  ⚫ 

o02 Camera: operation     

o03 Camera: object recognition  ⚫   

 

The table shows for each test case if the microcontroller will be programmed, if the test 

requires user-interaction, if the Raspberry Pi script can determine the success of the test 

without relying on user feedback and if the test case has been completed by the time of 

this thesis submission. The latter can be determined based on two factors: (a) the test case 

scripts and codes have been finished; (b) the execution of the test case yields positive 

results. Note that a test case, in order to function properly, may require more devices to 

operate correctly than the one stated as the main unit under test. This also means that 

some components on the PCB do not require dedicated test cases to be tested. 

The test cases provided are explained briefly in the following subsections. Some of them 

have already been executed several times in order to test the capabilities of the new PCB 

and to verify the correct operation of its components. For some test cases, conclusions 

drawn from the executed tests are stated in Section 5.4.1. 
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The individual test cases consist of a Python script and – in some cases – additional files, 

such as a parameter file and an Arduino sketch.  

The basic structure of all test cases is similar. Being called from the user interface script 

(as described in Section 5.2.1) with several strings as arguments, the test case script 

executes the following functions in the stated order (their main purposes are given to their 

right, respectively, and indented functions are called from the previous promoted 

function): 

Table 15. Overview of common functions used in test case scripts. Functions indicated in blue are used 

only in test cases which involve the Arduino.  

Function Purpose 

init() Stores passed command-line arguments in an array. 

getParameters() Reads parameters from csv file and stores them in an array. 

setup() Sets up GPIO Raspberry Pi pins and UART (if necessary). 

switch() Sets multiplexer routing between Arduino and Raspberry Pi. 

make() Compiles the Arduino code into hex file using make. 

flash() Uploads the hex file to the microcontroller using avrdude. 

reset() Resets the microcontroller before upload. 

execute() Runs the actual test routine. 

analyze() Compiles the test report. 

printParameters() Prints all parameters and their values into the test report. 

printResults() Prints specific test results into the test report. 

 

The execute() method is individual to each test case. For some test cases, user-interaction 

is required, and the execute() function contains functionality to guide the user through 

the test procedure. 

make is open-source software for compiling code into executables based on definitions 

stated in a document called “Makefile”. It “controls the generation of executables and 

other non-source files of a program from the program's source files” [61]. The script calls 

to make using a method that emulates the call being issued from the terminal. This involves 
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the use of the os library: os.system(<command>) makes it possible to execute from the 

Python script any command that could be used in the command-line terminal – where 

<command> is the command or line of commands to be issued. In the case of make, the 

command is make -f <path to Makefile>. In order to obtain useful executables from the 

source code, the compiler must know the target hardware architecture – in this case it is 

the ATmega328P microcontroller. Performing compilation on a processor architecture 

which is different from the target architecture is referred to as “cross-compiling”, and the 

compiler commonly used is GCC (GNU compiler collection) – more specifically, the 

program avr-gcc is being called. make detects the target hardware from the parameters 

specified in the “Makefile” and then invokes the actual compiler. The result of the 

compilation comprises of a set of executables with file ending “.o” and “.elf”. make 

invokes avr-objcopy to copy these output files into another format, thereby creating 

“.hex” files. 

avrdude is open-source software developed to flash AVR microcontrollers [62]. It takes 

the content of the executable hex file created by the compiler and flashes it into the 

EEPROM of the microcontroller. 

Each test case includes its individual parameters file in a csv format. Before the specific 

test case script is started, the main user interface gives the user opportunity to specify the 

parameter values and writes them into the csv file. The test case script reads the 

parameters from the file and uses them. Parameters for each test case are different. For 

finalized test cases, their parameters are listed in the following Table 16. For many 

parameters, their purpose is self-explanatory. For others, it is described in the following 

subsections, under the respective test case. 

Table 16. Parameters used in test cases.  

Test case code Parameter name in the file Unit Type 

a01 Baudrate bit/s Integer 

a02 Repetitions  Integer 
Pulse time s Float 

a03 Baudrate bit/s Integer 
Repetitions  Integer 

a04 R_H Ω Integer 
R_L Ω Integer 
Analog reference V Float 
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Table 16. Parameters used in test cases [continued]. 

Test case code Parameter name in the file Unit Type 

a05 Baudrate bit/s Integer 
Repetitions  Integer 

a06 Repetitions  Integer 
Pulse time ms Integer 
Off-time ms Integer 

a07 Bluetooth data baudrate bit/s Integer 
Bluetooth module name  String 
Bluetooth module password  String 
Max. attempts per parameter  Integer 
Max. time per parameter ms Integer 
Bluetooth AT baudrate bit/s Integer 

a08 Addr. H-bridge R-R  Integer (hex.) 
Addr. H-bridge F-R  Integer (hex.) 
Addr. H-bridge F-L  Integer (hex.) 
Addr. H-bridge R-L  Integer (hex.) 
Addr. Pressure sensor  Integer (hex.) 
Addr. IMU sensor  Integer (hex.) 
Max. attempts each  Integer 
Delay in attempts ms Integer 

o01 Set PWM frequency Hz Integer 

 

Each test case displays a report to the user after finishing execution and appends the same 

report to a text file located inside the respective test case folder for future reference. 

UART between Arduino and Raspberry Pi (“a01”) 

The Arduino code listens to the Serial port on a user-defined baud rate and echoes each 

message back to the sender. 

The Python script generates a user-defined number of random ASCII (American standard 

code for information interchange) strings and sends each of them to the Arduino. Upon 

reception of the responses, it compares the sent strings to the received ones and 

determines the success of the test. 

Resetting the Arduino via the Raspberry Pi (“a02”) 

The Arduino code detects if the microcontroller has been reset by writing a specific 

integer to the EEPROM (Electrically erasable programmable read-only memory) at a 

specific address upon its first execution, if this string is not yet present in the EEPROM. 

If it is, it indicates that the code runs for the second time, after which the EEPROM 



103 

 

content is overwritten with a zero value. The Arduino reports via UART to the Raspberry 

Pi if the code runs for the first or the second time. 

The Python script waits for the Arduino to be ready (the Arduino reports this via UART) 

and then resets the microcontroller. It waits for an answer via UART if the microcontroller 

has been reset. The test is repeated for a specified number of times, as per user-definition. 

Parameter Repetitions defines how many resets should be performed; parameter Pulse 

time sets the duration of time the Arduino reset pin will be pulled low. 

UART between Arduino and FTDI (“a03”) 

The Python script instructs the user to open a serial terminal. It generates a user-defined 

number of random ASCII strings and asks the user to enter them. The Arduino code, upon 

reception of a string, echoes it back via UART. The Python script asks the user to enter 

the received string into the Python terminal. When the test ends, the Arduino reports to 

the Raspberry Pi via UART all strings it has received. The Python script then analyses 

the results and determines how many transmissions were successful from user to Arduino 

and how many from Arduino to user. The test cannot determine if data got corrupted on 

the way between Arduino and Raspberry Pi; it is therefore recommended to execute test 

case “a01” before and verify that the connection is robust. 

Parameter Repetitions sets the number of strings the user will send to the Arduino during 

this test routine. 

Battery voltage measurement (“a04”) 

When instructed via UART, the Arduino reads the analogue input which is connected to 

the output of the voltage divider for the battery voltage measurement. Using a 

proportionality constant calculated in the beginning of code execution by using user-

defined values for the resistors, it determines the corresponding battery voltage value 

from the analogue input value and sends it to the Raspberry Pi via UART. 

The applied battery voltage is not random but set by the user upon specific instructions 

by the Python script. Henceforth, the Python script knows the correct battery voltage 

value and calculates a calibration coefficient which is written into the Arduino sketch. 

The Python script then flashes the Arduino with the modified code and repeats the test 
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execution. In the end, the optimal proportionality coefficient is reported to the user, along 

with a comparison of test results before and after calibration. 

Parameter R_H defines the value of the resistor between battery voltage and analogue input 

pin used on the PCB, and parameter R_L defines the value of the resistor between analogue 

input pin and ground. Parameter Analog reference sets the voltage value used as 

reference for the ADC (analogue-to-digital converter) of the microcontroller. The user 

must take care that this value corresponds to the microcontroller specifications and to the 

Arduino code. For example, if the user sets this value to 5, the Python code will not 

automatically remove the line analogReference(INTERNAL) from the Arduino code file. 

The user must do that manually. 

UART between Arduino and Bluetooth module (“a05”) 

The test works like “a03”, but the user is instructed to open a terminal to read data from 

and send data to the Bluetooth device. 

The parameter Repetitions sets the number of strings the user is expected to send via the 

Bluetooth terminal. 

Signal line from Arduino to Raspberry Pi (“a06”) 

In use cases where the UART interface of the Arduino microcontroller is not routed to 

the Raspberry Pi, a signal line from Arduino to Raspberry Pi is provided. While the 

Raspberry Pi can change the routing of the UART line to itself in order to report a critical 

system state to the Arduino, the Arduino does not have control of the multiplexer and 

must therefore rely on an alternative communication pathway in case of emergencies. 

Messages sent through this line are expected to be short and simple – a sequence of pulses, 

for example. Using a pre-defined number of pulses within a specified frequency range, 

the Arduino can instruct the Raspberry Pi to execute one of a few functions. The most 

likely to occur case is that the Arduino would need to instruct the Raspberry Pi to route 

the UART line between them so it can send required messages. 

For this test case, the user can specify pulse length, duration of off time between pulses 

and the number of cycles. In each executed message cycle, the number of pulses is 

incremented by one. The Python script uses an event listener to check for rising edges on 
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the GPIO pin. For each pulse sequence, it counts the number of detected rising edges and 

determines if the number corresponds to the respective sequence count. 

Parameter Repetitions defines the number of pulse sequences to send, Pulse time 

defines the on-time of a single pulse, Off-time defines the off-time between pulses in a 

sequence. 

Bluetooth AT mode configuration (“a07”) 

The main purpose of this testcase is to check if the Raspberry Pi can reset the Bluetooth 

module into AT command mode and if the Arduino can interface with it using AT 

commands [63]. To start the test case, UART is routed between Arduino and Raspberry 

Pi first. After the Python code has verified the integrity and responsiveness of the Arduino 

program, it instructs the Arduino code to start. Arduino responds with a pulse on the 

“ARD2RPI” line, which triggers the Raspberry Pi to reset the Bluetooth module into 

command mode, send a confirm code via UART and then route the Bluetooth module to 

the Arduino. From this moment on, the Python script and Arduino cannot communicate 

any more via UART and must therefore rely on the “ARD2RPI” line from Arduino to 

Raspberry Pi. Arduino sets its serial baud rate to the value required for communication 

with the Bluetooth module and issues a series of commands to the Bluetooth module, 

while recording the responses. It signals its completion to the Raspberry Pi by pulsing 

“ARD2RPI”. At this time, it resets its baud rate to the value required for communication 

with Raspberry Pi. When the Python script detects the pulse, it resets the Bluetooth 

module back into data mode and routes UART between Arduino and Raspberry Pi. It 

instructs the Arduino to send the test report via UART and evaluates the results, printing 

and storing a test report. 

The first three parameters in the file define new values to be set to the Bluetooth module 

during configuration: the new baud rate to be used during data mode, the new name of 

the module and the new password to be used during pairing. The fourth and fifth 

parameter relate to cases when the Bluetooth module does not respond to a command 

being sent to it: How often should the Arduino retry, and how much time should it wait 

between the retries. The last parameter, Bluetooth AT baudrate, defines the baud rate to 

be used for communicating with the Bluetooth module in command mode. 



106 

 

I²C detection (“a08”) 

With all addresses of I²C bus participants correctly defined in the parameters file, the test 

routine scans the I²C bus using the default Arduino “Wire” library’s public functions 

beginTransmission() and endTransmission(). The latter returns an error code if a device 

does not respond as expected or does not respond at all. The test case report states the 

success of the test as the ratio of error-free responses to the total number of devices 

expected on the bus. 

The first six parameters in the file define the I²C addresses of the bus participants as 

hexadecimal values. The last two parameters refer to the case when a device does not 

respond correctly: How often should the Arduino retry on each device, and how much 

time should it wait between the retries. 

RGB LED (“o01”) 

This test is fully user-interactive and requires the user to visually verify if the colour of 

the LED matches with the prescribed output. He also must verify the smoothness of 

transitions. By entering the results as answers to simple “yes/no” questions posed by the 

Python script, the code can compile a final test report. 

The script uses the pigpio library [64] in order to make use of hardware PWM capabilities 

on the Raspberry Pi Zero [54]. Tests have shown that PWM generated by software 

emulation may cause flickering. 

This test allows the user to specify a PWM frequency which should be used on the three 

pins to which the LED is connected. As stated in the pigpio library documentation [64], 

the employed function set_PWM_frequency() returns the real PWM frequency set for the 

respective pin, according to hardware limitations. The test report includes the desired and 

actual PWM frequency. The function get_PWM_range() returns the value that should be 

used on a PWM pin for a duty cycle of 100%, and get_PWM_real_range() returns the 

number of distinct values to be actually used by hardware (i.e., the resolution). For higher 

frequencies, the resolution drops. This may be observed as flickering during brightness 

transitions. 
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To summarize, a good choice of PWM frequency prevents flickering at duty cycles below 

100% caused by a too low frequency and prevents flickering during transitions caused 

by a too low resolution which might occur if the frequency is too high. 

5.3 Supplementary software 

To facilitate handling of the new PCB, two additional software pieces are provided as 

part of this thesis project. 

The Arduino code uploader, written in Python 3, can be used to upload any Arduino 

sketch from the Raspberry Pi to the Arduino microcontroller. When executed, it asks the 

user to enter the name of the ino file. The file must be located in a specific subdirectory. 

The path is ./arduino_test/<name>/<name>.ino, where <name> is the string specified by 

the user. The Python script locates the file, then calls to the compiler (make), resets the 

microcontroller and executes avrdude. 

The multiplexer switcher, also written in Python 3, facilitates the routing of UART to the 

Arduino. When executed, it presents a menu to the user with the three available UART 

clients – Raspberry Pi, FTDI chip and Bluetooth module. The user enters the respective 

integer, and the program instructs the multiplexer chip to set the routing accordingly. 

5.4 Results and discussion 

The following list summarizes all software features provided as part of the new robot 

design: 

▪ Automated user-interactive test suite. The main user menu is shown in Figure 31. 

▪ Ten test cases so far, automatically called by the test suite software. The software 

architecture provides a framework for software developers to implement more test 

cases, by following the existing software structure. 

▪ Test results with generated reports. All test cases have been successfully executed 

and yielded positive results for the respective components on the new PCB. 

▪ Arduino code uploader. Facilitates compilation and upload of Arduino software 

onto the microcontroller. 

▪ Multiplexer switcher. Facilitates routing of Arduino’s UART bus to one of three 

devices. 
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Figure 31. Main user menu of the test suite.  

In terms of possibilities for a new software architecture, the implementation of two 

processors allows for code decoupling which keeps device interaction code separate and 

independent from high-level user definitions. The modular code structure of the test suite 

software illustrates this: The Python modules run on Raspberry Pi and include the user 

definitions for the test cases. The low-level code for the Arduino is configured by the test 

case scripts, and the Arduino only interfaces low-level devices. The analysis and 

presentation of test results lies again in the hands of the high-level Python code. 

For mission use cases, the Raspberry Pi can store rules and policies, calculate navigation-

related data and take care that certain actions are executed whenever a given condition is 

met. It sends its instructions to the Arduino via UART. The Arduino just executes low-

level functions and does not need any “knowledge” of implemented policies or the overall 

mission. 

This modularity may also play an important role in exceptional cases: For example, when 

the Arduino reports a critical battery voltage to the Raspberry Pi, the latter could, in 

accordance with the policies it holds, give commands to the Arduino microcontroller 

which cause the flippers to stop moving, so the robot would self-surface. 

5.4.1 Representative test case results 

For debugging and verification of the new PCB and its components and for the purpose 

of verifying the working principle of the test software itself, all finished test cases (see 
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Section 5.2.2) have been executed at least once. The test software has been developed up 

to a state where it is fully functional, even though it has not yet been equipped with 

safeguards on user inputs. Some of the test results and conclusions drawn from them are 

presented in the following. 

Example test result: I²C detection (“a08”) 

A typical fault scenario for the I²C test is that an I²C device is not properly connected to 

the PCB. This is most likely to happen to the pressure sensor, since it uses a wire-to-board 

connection. 

For the presented example, the pressure sensor is disconnected and then the test case 

executed. The test report looks like this: 

Test report: a08; I2C_detect 

-------------------------------------------- 

Test executed        : 14/05/2020 11:21:31 

Correct Arduino code : True 

Code flash successful: True 

-------------------------------------------- 

Addr. H-bridge R-R   : 0x60 

Addr. H-bridge F-R   : 0x61 

Addr. H-bridge F-L   : 0x63 

Addr. H-bridge R-L   : 0x64 

Addr. Pressure sensor: 0x76 

Addr. IMU sensor     : 0x68 

Max. attempts each   : 3 

Delay in attempts    : 100ms 

-------------------------------------------- 

Test total duration  : 0.39043116569519043s 

Test end condition   : Completed 

Data sets received   : 6/6 

Successful           : 83.33333333333333% 

-------------------------------------------- 

Address              : 0x60 

Response             : 0 

Attempts             : 1 

Successful           : True 

-------------------------------------------- 

 

Address              : 0x61 

Response             : 0 

Attempts             : 1 

Successful           : True 

-------------------------------------------- 

Address              : 0x63 

Response             : 0 

Attempts             : 1 

Successful           : True 

-------------------------------------------- 

Address              : 0x64 

Response             : 0 

Attempts             : 1 

Successful           : True 

-------------------------------------------- 

Address              : 0x76 

Response             : 2 

Attempts             : 3 

Successful           : False 

-------------------------------------------- 

Address              : 0x68 

Response             : 0 

Attempts             : 1 

Successful           : True 

Figure 32. Test report for test case “a08”, with no pressure sensor connected. Highlighted: the non-

responsive (missing) device.  

The user can see that the property “Successful” did not reach 100%. Going through the 

individual address responses, it becomes apparent that address 0x76 did not respond, 

which is, according to the parameter listing in the beginning of the test report, the pressure 

sensor. 
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Example test result: Signal line from Arduino to Raspberry Pi (“a06”) 

By executing this test several times, it was found that the minimum required pulse length 

is 60ms. The robustness can be significantly improved if the off time is even longer 

(90ms). These required lower limits are probably a result of capacitor charge and 

discharge curves appearing on the signal line when switching between states. 

Example test result: RGB LED (“o01”) 

Lower frequencies may lead to observable flickering due to the long on- and off-times of 

the PWM signal, while higher frequencies reduce the resolution of the PWM output too 

much. Running the test can help find the appropriate PWM frequency. The test result 

shows that the real range (resolution) is only 25 distinct values for a frequency of 8000Hz 

and above. Flickering can be observed in low brightness. To avoid flickering, a PWM 

frequency between 1000Hz and 5000Hz appears to be reasonable. 

5.4.2 Future work 

The list of required test cases has been presented in Section 5.2.2. The not yet 

implemented test cases will be scripted in the near future, to allow a complete thorough 

testing of the PCB. 

The user interface and test cases require safeguards for user inputs which are not provided 

in the current versions.  
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6 Cost estimation 

One main goal in the redesign of µ-CAT is to keep production cost low. This guarantees 

for µ-CAT to remain economically competitive in the class of small-scale robots, even 

after the design upgrade.  

Software and hardware development cost for manhours are not included. Utilized IDEs 

are all freeware or no-cost open-source platforms and implemented libraries from third 

parties are licensed as open-source software and also free of charge. 

Table 17. Cost estimation per unit.  

Part(s), material or assembly Cost per robot, net [€] 

Physical structure 

Plexiglass tube 3.29 

Plexiglass parts, laser-cut 7.60 

3D-printed parts 51.50 

Steel parts and misc. 16.98 

Mechanical components 

Silicone flippers 5.37 

Motor shaft assemblies 15.13 

Electronic and electrical components 

Main PCB 12.00 

Main PCB soldering 20.00 

Raspberry Pi Zero W 12.00 

Raspberry Pi camera 23.19 

Bluetooth PCB and cable 21.00 

LED PCB and cable 5.00 

Motors 90.00 

Electronic components 157.13 

 

Total: 𝟒𝟒𝟎. 𝟏𝟖 

 

As Table 17 shows, the goal to stay below 500 € (see Section 2.2.1) has been met. 
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7 Summary  

In summary, this thesis work presents the design and development steps which lead to the 

production of an upgraded version of µ-CAT, resulting in a robot which is more robust, 

easier to debug and has potential for field missions. During the design, care has been 

taken that these upgrades consider the cost margin and that they are relevant for rising the 

robot’s significance in the field of small-scale underwater robotics. The latter has been 

accomplished by improving computational and underwater communication abilities, by 

providing a reliable hardware architecture for a collaboration of two processors and by 

providing means of debugging and monitoring, both in designed hardware and provided 

software. Apart from that, µ-CAT’s producibility has been facilitated and user interfacing 

with the robot has been improved.  

The design of a new motherboard and the redesign of the 3D-printed end caps form a 

central part of this thesis work. Integration of new components has been accomplished 

both on electronic and on physical level. In doing so, ease of assembly of the robot has 

been improved. 

µ-CAT is now ready to be equipped with even more functionality – plans potentially 

include the addition of more sensing capabilities, such as bioinspired sensing. The 

extendable test software framework enables future users to implement their own test cases 

with ease. Henceforth, the implementation of new features is highly simplified due to the 

provision of this software. The aspect of extendibility is also important for µ-CAT as a 

teaching tool, being more approachable to students for implementation of new 

functionalities. On top of that, it can be used to learn about ROS for mobile robotics and 

about distributed control architectures which are enabled by the multi-processor 

configuration. Being more easily reproducible, many students can now work and 

experiment on µ-CAT. Regarding µ-CAT’s applicability to field work, it has made an 

important step towards being used in a swarm and offers a higher level of autonomy due 

to the integration of the camera. The increased computational power allows for advanced 

use in various research areas, such as bioinspired locomotion or sensing.  
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A 1 Experimental results 

This appendix section presents the experimental setups, procedures and results carried 

out in order to determine the applicability of the chosen buck converter IC LM2596S. 

A 1.1 Choice of buck converter 

A 1.1.1 Comparison of two buck converters 

For a buck converter to be able to provide stable output voltage, the voltage difference 

between its input and output must be sufficiently high. In this regard, using a buck 

converter at the 3.3V rail would have made sense. However, the current demand on this 

rail is insignificantly low, and the increased cost and space of a buck converter would not 

be justified by the amount of saved energy on the small logic devices and sensors which 

operate on that rail. 

Whether or not a buck converter can be used on the 5V or 6V rail must be found out 

experimentally, and two buck converters are being compared for this purpose: the HW-

468 breakout board and LM2596S. The key question in this first experimental procedure 

is if the buck converter can provide the required output voltage at low battery levels (6.8V, 

as assumed by measurements for a drained battery). 

The HW-468 is a fixed-output voltage converter (5V) which accepts variable input 

voltages ranging approximately from 8V to 24V, and LM2596S exists as fixed- and 

adjustable-output voltage versions. For this experiment, the adjustable version is used, 

but it has the same efficiency and operating characteristics as the respective fixed-output 

voltage version. Both buck converters are compared with respect to their potential 

usability on the 5V rail.  

For this set of experiments, the following equipment is used: 

▪ Load device: Centre for Biorobotics proprietary (based on SPW20N60S5) 

▪ Power supply: Instek PSP-405 
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▪ Multimeter: Fluke 87V 

The load device allows to create a specific load scenario by defining a certain value of 

current to be drawn. 

 

Figure 33. Experimental setup for sets 1 and 2. 

Experiment 1: HW-468 applicability for 𝟓𝐕 output 

The input voltage of the buck converter required to drive the load at the desired current 

demand depends on the power supplied to the load. A current setpoint for the load was 

chosen (using the load device) and the input voltage was varied, starting from 35V 

(maximum value of power supply) down to a value where the buck converter could not 

provide a stable output of 5V any more (the measured stable value was 5.06V). If the 

value of supply voltage was significantly higher than the required supply voltage on µ-

CAT (assuming drained batteries, i.e., 6.8V) at the instance when the output voltage fell 

below 5.06V, the converter would not be applicable for our purposes. 

The experimental results show that even for a current demand as low as 0.4A on the 

output, the required input voltage is at least 8.27V, which is more than µ-CAT allows. 

This corresponds roughly to the information stated in the datasheet of the converter 

module (minimum 9V supply voltage required). Since the physical design of the robot 

(space restriction) does not allow to place more batteries in series (increasing the supply 

voltage) and since no other type of battery with a smaller form factor could be found 

which would be convenient to insert (cylindrical shape in order to maintain the tube and 

screw-cap design for water-proofing), there is no other conclusion to be made from this 

experimental result than to discard this buck converter module for our purposes. 

Power supply 

𝑈B 
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(unit under test) 

𝑈out 
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Experiment 2: LM2596S applicability for 𝟓𝐕 output 

The buck converter IC is used on a breakout board featuring the flywheel circuit 

according to the recommendations in the datasheet [65]. In this test setup, the input 

voltage is kept at 6.8V and the output voltage of the buck converter initially adjusted to a 

fixed value of 5V, using the onboard multiturn trimmer. While observing the output 

voltage on the load, the current demand was increased in several steps, using the load 

device. 

The experimental results show that the output voltage remains stable up to a current 

demand of 2A, which is enough for µ-CAT. Consequently, the device may be appropriate 

for our purposes. The results indicate that it would be worth testing the device regarding 

other aspects such as output noisiness and whether it could be used on the 6V rail. 

A 1.1.2 Comparison of chosen buck converter and two voltage regulators 

In this section, several experimental procedures and their results are presented which were 

carried out for the purpose of performance and efficiency comparison between the chosen 

buck converter LM2596S and the voltage regulators originally used on the robot to 

provide 5V and 6V to the mainboard, namely 29151-5.0 for 5V and 29302WT for 6V. The 

experiment was carried out in order to decide whether a buck converter should replace 

one or two of the originally employed voltage regulators in the updated design. 

In all following experimental sets, the desired load current 𝐼out [A] was set to a fixed value 

to simulate a certain load scenario. The battery supply current 𝐼B [A] was observed during 

experimentation. For the linear voltage regulators, 𝐼B ≈ 𝐼out, because of the power loss I 

the form of heat due to the voltage drop across the LDO (low-dropout regulator), for the 

buck converter, 𝐼B is expected to be lower than 𝐼out because of the law of energy 

preservation and due to the fact that the current must be stepped up while the voltage is 

being stepped down. The output voltage of the converter 𝑈out [V] was fixed for to the 

linear voltage regulators, or it was set to a desired value before experimentation for the 

buck converter using the onboard potentiometer. During the experiments, its value was 

monitored as 𝑈s [V]. Additionally, the temperature on the converter IC was sporadically 

measured and recorded as 𝑇 [°C]. To be able to make a comparison of the noisiness of the 

output signal, snapshots were taken from the oscilloscope plots. In each set, 

measurements have been repeated several times, with minimum one minute of time 
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between them, to monitor changes in performance over prolonged operation. The supply 

voltage to the converter circuit was set to 𝑈B = 7.4V, to simulate operation of the device 

on the robot at average battery supply voltage over time (value determined experimentally 

before), assuming initially fully charged batteries. 

For this set of experiments, the following equipment was used: 

▪ Load device: Centre for Biorobotics proprietary (based on SPW20N60S5) 

▪ Power supply: Instek PSP-405 

▪ Multimeters: Fluke 87V (2x) 

▪ Oscilloscope: Agilent DSO-X 3014A 

▪ Thermometer: Fluke 561 IR  

 

Figure 34. Experimental setup for sets 3 to 7. 

Experiment 3: LM2596S vs. 29302WT; motors at stall current (𝟔𝐕, 𝟐𝐀) 

If the buck converter can supply the load with stable 6V at a current demand of 2A, it can 

be used to drive the motors safely, even when they are all stalled at the same time. 

In a first step, the performance of the originally implemented voltage regulator 29302WT 

has been assessed. 

  

Power supply 
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Table 18. Performance data for voltage regulator 29302WT. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 2.004 2.077 5.762   

60 2.000 2.072 5.762 28.0  

120 2.000 2.071 5.745   

360 1.999 2.067 5.813 28.6  

600 1.997 2.067 5.824  Figure 35 

 

The above data (Table 18) shows that the linear voltage regulator is able to provide 2A of 

output current at a stable output voltage of close to 6V, enough to get the motors out of 

the stall position.  

Figure 35. Signal on output of 29302WT at 2A, after 10 minutes of operation. 

The high-frequency noise level remains in a corridor of approximately 30mV. The low-

frequency noise (50Hz) with a magnitude of around 50mV occurs most likely due to the 

mains AC power supply, which means that it is insignificant for the real-life case on the 

robot. 

After that, the buck converter LM2596S was tested, with the output voltage adjusted to 

𝑈out = 6V.  
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Table 19. Performance data for buck converter LM2596S. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

120 2.003 1.825 5.387   

180 2.000 2.008 5.385  Figure 36 

660 2.000 2.008 5.389   

840 1.998 2.006 5.379 72.0  

900 1.997 2.005 5.376 70.0  

1020 1.997 2.005 5.375  Figure 37 

1080 1.997 2.005 5.374   

 

Above data (Table 19) indicates that the buck converter is not able to provide the 

demanded output voltage of 6V at the current demand of 2A. It may still be enough to get 

the motors out of stalling, but it cannot be guaranteed. Also, the heat dissipation on the 

buck converter IC is so high that it would require a massive heatsink, which should be 

avoided in the PCB design for the sake of space-saving. 
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Figure 36. Signal on output of LM2596S at 2A, after 3 minutes of operation. 

Figure 37. Signal on output of LM2596S at 2A, after 17 minutes of operation. 

The output signal plotted on the oscilloscope (Figure 36 and Figure 37) shows that the 

high-frequency noise level is around 50mV, sometimes exceeding up to 70mV. As 

expected, the buck converter produces more noise than the LDO. 

Experiment 4: LM2596S vs. 29302WT; motors (𝟔𝐕, 𝟎. 𝟓𝟓𝐀) 

As previous measurements showed, the motors combined consume around 550mA at 6V 

during regular operation. The aim of this experimental set is to find out if the buck 

converter can provide a stable output to do so. 

The originally existing voltage regulator 29302WT was tested first. 

Table 20. Performance data for voltage regulator 29302WT. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 0.557 0.575 5.896 30.0  

60 0.557 0.575 5.896  Figure 38 

120 0.557 0.575 5.896   

180 0.557 0.575 5.896   

240 0.557 0.575 5.896   

 

The input power consumption is: 
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𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.557A = 4.12W (29) 

As Table 20 shows, the LDO provides stable output of nearly 6V to drive the motors at 

the demanded current. The heat dissipation on the device is moderate. 

Figure 38. Signal on output of 29302WT at 557mA, after 1 minute of operation. 

As Figure 38 shows, the high-frequency noise level is around 100mV. 

The tests conducted on the buck converter are presented in the following. 

Table 21. Performance data for buck converter LM2596S. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 0.557 0.544 6.000   

60 0.577 0.544 6.000   

120 0.577 0.544 5.990  Figure 39 

240 0.577 0.544 5.990 38.1  

 

Indeed, the buck converter can maintain a stable output voltage at the desired current, as 

Table 21 shows. A mathematical comparison with the voltage regulator yields that the 

buck converter saves 2% of input power when used for driving the motors: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.544A = 4.03W (30) 
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As Figure 39 shows, the noise level is again higher than for the LDO, namely around 

120mV. 

Intermediate conclusion I 

Although being suitable for driving the motors at 6V and with their current demand during 

regular operation with an insignificantly low value of saved input power, the buck 

converter can most likely not be used for driving the motors when they are stalled, since 

the output voltage on the buck converter drops and the device heats up. 

Experiment 5: LM2596S vs. 29151-5.0; logic supply (𝟓𝐕, 𝟎. 𝟐𝟓𝐀) 

Another option of using a buck converter instead of the LDO is for the 5V rail which 

drives the Arduino and the Raspberry Pi Zero. The current consumption at this rail has 

been found to be around 250mA at peak. 

The results of the performance test on the existing voltage regulator 29151-5.0 are shown 

in the following. 

  

 

Figure 39. Signal on output of LM2596S at 557mA, after 2 minutes of operation. 
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Table 22. Performance data for voltage regulator 29151-5.0. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 0.2516 0.268 4.482   

60 0.2516 0.268 4.483 28.0 Figure 40 

120 0.2516 0.268 4.482   

180 0.2516 0.268 4.482 28.6  

240 0.2516 0.268 4.482   

 

Although the voltage regulator was used successfully on the original µ-CAT, it can be 

seen from Table 22 that it does not provide the desired voltage of 5V under the given 

input and load conditions. 

The input power using the LDO is: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.268A = 1.98W (31) 

Figure 40. Signal on output of 29151-5.0 at 252mA, after 1 minute of operation. 

Figure 40 shows that the noise level is around 30mV, with 60mV peaks. 

In comparison, the performance results of the buck converter (which has been adjusted to 

5V output) are given in the following: 

  

 



128 

 

Table 23. Performance data for buck converter LM2596S. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 0.2516 0.228 5.022 29.0  

60 0.2516 0.228 5.022  Figure 41 

120 0.2516 0.228 5.024 29.7  

240 0.2516 0.228 5.023   

300 0.2516 0.228 5.022   
 

According to the results in Table 23, the buck converter can supply stable 5V at the given 

current and input conditions. 

The input power using the buck converter is: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.228A = 1.69W (32) 

This amounts to a power saving of 15% compared to the LDO. 

Figure 41. Signal on output of LM2596S at 252mA, after 1 minute of operation. 

The buck converter, as seen from Figure 41, creates a much higher noise on the output 

than the voltage regulator. The magnitude ranges from 90mV to 200mV. 
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Intermediate conclusion II 

With a power saving of around 15% compared to the LDO while maintaining the full 

output voltage, the buck converter seems to be the better choice. The high output noise 

might be problematic but can be dealt with by placing capacitors on inputs of critical 

components, such as sensors and microcontrollers. 

Experiment 6: LM2596S vs. 29151-5.0; motors stalled (𝟓𝐕, 𝟐𝐀) 

This experimental set and the next one take into consideration the possibility to drive the 

motors at 5V instead of 6V. Both linear voltage regulator and buck converter were tested 

under the corresponding conditions. 

This experimental set was designed to determine the behaviour of the converters under 

stall conditions of all four motors, i.e., around 2A of output current. 

For the voltage regulator, the experimental results are the following: 

Table 24. Performance data for voltage regulator 29151-5.0. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 2.004 2.097 4.660 35.0  

60 2.000 2.085 4.692 39.5 Figure 42 

120 1.998 2.081 4.693 40.0  

180 1.998 2.077 4.694 40.0  

240 1.998 2.077 4.694   

 

As Table 24 shows, the voltage regulator does not fully reach the required output voltage.  

The input power consumption of the voltage regulator for an average current consumption 

of 2.0834A is as follows: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 2.0834A = 15.42W (33) 
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Figure 42. Signal on output of 29151-5.0 at 2A, after 1 minute of operation. 

As Figure 42 shows, the noise magnitude is around 30mV and 90mV at peaks. 

For the buck converter, the experimental results are shown in the following: 

Table 25. Performance data for buck converter LM2596S. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 2.004 1.920 5.024 39.0  

60 2.001 1.920 5.043 57.0 Figure 43 

120 2.000 1.925 5.046 63.0  

180 1.999 1.924 5.045 72.0  

240 1.999 1.926 5.046 81.0  

 

The results in Table 25 show that the buck converter reaches and holds the nominal output 

voltage level under the given conditions, but it produces a significant amount of heat 

already after 4 minutes of operation, which may be addressed with a sufficiently 

dimensioned heatsink. This, however, could cause problems in terms of space-efficiency 

in the PCB layout. 

The input power consumption of the buck converter with an average current of 1.923A 

is: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 1.923A = 14.23W (34) 
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This corresponds to a battery power saving of almost 18% compared to the LDO. 

Figure 43. Signal on output of LM2596S at 2A, after 1 minute of operation. 

Figure 43 clearly indicates a very high noise level for this mode of operation, ranging up 

to 300mV. 

Experiment 7: LM2596S vs. 29151-5.0; motors (𝟓𝐕, 𝟎. 𝟓𝟓𝐀) 

This last experimental set was designed to determine the behaviour of the converters 

under operating conditions of all four motors at 5V, i.e., around 550mA of output current. 

For the voltage regulator, the experimental results are the following: 

Table 26. Performance data for voltage regulator 29151-5.0. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 0.558 0.576 4.915 26.6  

60 0.557 0.576 4.916 32.0 Figure 44 

120 0.557 0.576 4.915 32.0  

180 0.557 0.576 4.915   

240 0.557 0.576 4.915 32.0  

 

The voltage regulator, according to the results shown in Table 26, can supply the required 

voltage at a stable level. 
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The power consumption on the input is: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.576A = 4.26W (35) 

Figure 44. Signal on output of 29151-5.0 at 576mA, after 1 minute of operation. 

The noise generated on the output of the regulator is in magnitude of 20mV, with peaks 

of about 80mV. 

For the buck converter, the experimental results are the following: 

Table 27. Performance data for buck converter LM2596S. 

𝒕 [𝐬] 𝑰𝐨𝐮𝐭 [𝐀] 

Set 

𝑰𝐁 [𝐀] 

Observed 

𝑼𝐒 [𝐕] 

Observed 

𝑻 [°𝐂] 

Observed 

Image 

0 0.557 0.474 5.024 39.0  

60 0.557 0.474 5.024 38.8 Figure 45 

120 0.557 0.474 5.024 40.0  

180 0.557 0.474 5.024 38.4  

240 0.557 0.474 5.023 38.2  

 

According to the results shown in Table 27, the buck converter can provide the stable 

output voltage without significant heat dissipation. 

The power consumption on the battery is: 

𝑃in = 𝑈B ∗ 𝐼B = 7.4V ∗ 0.474A = 3.51W (36) 
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This is roughly 18% less than when using the voltage regulator. 

Figure 45. Signal on output of LM2596S at 557mA, after 1 minute of operation. 

The noise level in this mode of operation is around 130mV. 

Intermediate conclusion III 

With a power saving of up to 18% compared to the LDO while maintaining the full output 

voltage, the buck converter seems to be the better choice for operation of the motors at 

5V instead of (nominal) 6V.  

However, the effects of the voltage reduction on the motors on the behaviour of the robot 

are hard to estimate without extensive tests in water, which would exceed the scope of 

this project. It was therefore decided to keep the motors running at 6V, and as above 

experiments have shown, the voltage regulator is still the better choice to do that. 

A 1.2 Verification of chosen buck converter 

As stated in the previous section, there are concerns about the high noise level on the 

output of the buck converter. It must be ensured that a sensor, with capacitors added 

between “GND” and “+5V” near its supply terminals, provides stable output when using 

the buck converter as the power source. This is the purpose of the following experimental 

set. 
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The experiments were conducted using the old pressure sensor MS5407-AM [66], 

supplied with 5V. The pressure sensor is supposed to be one of the most noise-sensitive 

devices and would most likely show false readings under bad power supply conditions. 

The sensor was interfaced using the Arduino Mini 05 microcontroller board via the SPI 

bus. The sensor readings were plotted into the Serial terminal of the Arduino IDE (plotter 

mode). The microcontroller board was also supplied with 5V. The 5V rail which powers 

sensor and Arduino took its voltage from one of three sources, in each of the experiments: 

1. voltage regulator (LDO) 29151-5.0 (used on old µ-CAT); 

2. USB power supply from the laptop; 

3. buck converter LM2596S (used on new µ-CAT). 

The results indicate that all three voltage sources yield stable readings of the pressure 

sensor. Had the supply voltage been too shaky or noisy, unstable sensor output values 

could have been expected.  

The success of this test verifies that the chosen buck converter is adequate for use on the 

5V rail. 
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A 1.3 Power consumptions 

Power consumptions using the PCB of old and new µ-CAT were compared. The 

experimental results allow for conclusions on: 

▪ added power consumption due to newly integrated devices; 

▪ power consumption differences due to the use of the new power supply (buck 

converter on 5V rail); 

▪ power consumption differences due to any other reasons, such as unstable supply 

voltages, heating up of PCB copper traces etc (verification of the new PCB). 

The experiments were conducted using power supply Instek PSP-405 at a set input 

voltage of 𝑈B = 7.4V. Resulting input current 𝐼B was recorded and input power 

consumption 𝑃in was calculated: 

𝑃in = 𝑈B ∗ 𝐼B (37) 

In experiments where the camera or the motors are used, the resulting current varies, and 

therefore at least 24 repeated measurements were conducted. The power was then 

calculated using the average value of the measured currents. 

As Table 28 shows, a total of 12 experiments was conducted. The first six were carried 

out on the new PCB, the last six on the old PCB. In each experiment, another combination 

of devices was used. For a more direct comparison between the PCBs, the Raspberry Pi 

was additionally powered with the old PCB during experiments 8 and 10, using the 

onboard 5V regulator 29151-5.0.  

The results of the following experimental sets are directly comparable, because they 

employ the same devices: 

▪ 1 and 7; 

▪ 4 and 10; 

▪ 5 and 11; 

▪ 6 and 12. 

Table 29 lists the obtained results of the experiments. 
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 New PCB Old PCB 

1 2 3 4 5 6 7 8 9 10 11 12 

Tone detectors powered ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ 

Motors running ⚫ ⚫ ⚫    ⚫ ⚫ ⚫    

Bluetooth module powered  ⚫ ⚫          

Messaging LEDs powered  ⚫ ⚫          

Raspberry Pi powered  ⚫ ⚫ ⚫  ⚫  ⚫ ⚫ ⚫  ⚫ 

Camera powered  ⚫ ⚫ ⚫  ⚫  ⚫ ⚫ ⚫  ⚫ 

Camera in use   ⚫ ⚫     ⚫ ⚫   

 

Note that when the Raspberry Pi is powered, its WLAN connection is also established. 

This means that the measured Raspberry Pi’s power consumption always includes 

WLAN. 

Table 29. Power consumption experimental results and calculations. 

Experimental set Input current 𝑰𝐁 [𝐀] Input power 𝑷𝐢𝐧 [𝐖] 

1 0.352 2.605 

2 0.606 4.487 

3 0.766 5.668 

4 0.354 2.617 

5 0.089 0.659 

6 0.188 1.391 

7 0.464 3.434 

8 0.565 4.185 

9 0.789 5.839 

10 0.416 3.080 

11 0.112 0.829 

12 0.330 2.400 

 

Current consumption of the Bluetooth module was measured separately to be 45mA, and 

it amounts to 0.333W. 

Current consumption of the messaging LEDs was measured separately to be 120mA, and 

it amounts to 0.888W. 

Current consumption of the tone detectors was measured separately to be 15mA, and it 

amounts to 0.111W. 

Table 28. Experimental sets, PCB under test and involved devices. Colour-codes indicate which sets are 

directly comparable. 
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A 2 Components and values 

This appendix section lists some electronic parts used on the new PCB. Wherever 

applicable, additional information on electrical characteristics is given. 

A 2.1 LEDs 

Resistor values and power consumption are calculated according to the equations shown 

in Section 4.3. Chosen resistor values according to the availability on Farnell1. 

Table 30. RGB status LED parameters. 

Eagle name Colour S
u

p
p

ly
 v

o
lt

a
g
e 

𝑼
𝑪

𝑪
 [

V
] 

F
o

rw
a
rd

 v
o
lt

a
g

e 
𝑼

𝑳
𝑬

𝑫
 [

V
] 

R
ea

l 
fo

rw
a

r
d

 c
u

rr
en

t 
𝑰 

[m
A

] 

C
a
lc

u
la

te
d

 r
es

is
to

r 
v

a
lu

e 
𝑹

 [
Ω

] 

C
h

o
se

n
 r

es
is

to
r 

v
a

lu
e 

𝑹
 [

Ω
] 

P
o

w
er

 c
o
n

su
m

p
ti

o
n

 𝑷
 [

m
W

] 
LED5-G green 3.3 3.2 10.0 10 10 33.0 
LED5-R red 3.3 2.0 10.0 130 130 33.0 
LED5-B blue 3.3 3.2 10.0 10 10 33.0 

 
  

 

 

 

1 Online: https://ee.farnell.com/ 

https://ee.farnell.com/
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Table 31. Single-colour status LEDs parameters. 
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LED1 green 3.3 2.1 1.99 600 604 6.5 
LED2 yellow 5.0 2.1 2.03 1450 1430 10.1 
LED9 yellow 5.0 2.1 2.03 1450 1430 10.1 
LED3 yellow 5.0 2.1 2.03 1450 1430 10.1 
LED4 red 5.0 2.0 2.00 1500 1500 10.0 
LED6 green 5.0 2.1 2.03 1450 1430 10.1 
LED8 green 6.0 2.1 1.99 1950 1960 11.9 
LED10 blue 3.3 2.65 2.01 325 324 6.6 
LED11 blue 3.3 2.65 2.01 325 324 6.6 

 

Table 32. Messaging LEDs parameters. 
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 white 6.0 5.5 0.128 3.57 3.90 0.77 
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A 3 Mechanics, solid modelling and manufacturing 

A 3.1 Parts names and descriptions 

Table 33. Parts codes, file names and descriptions. 

Code Name Description 

01-01 PLEXIGLASS_HULL cylindrical Plexiglass tube 

01-02 BATTERY_HOLDER cylindrical tube containing the 

batteries 

01-03 THREADED_ROD_WEIGHT_

DISTRIBUTOR 

M5 rod holding the weights 

01-04 Weights_Divider Plexiglass supports for PCB 

01-05 PCB_raw rough model of new PCB 

01-06 THREADED_ROD_OUTSIDE M3 rods closing the end caps 

01-07 Battery battery cell model 

01-08 Washer_Outside DIN 433; washer on M3 rods 

01-09 HexNut_Outside ISO 4035; nut on M3 rods 

01-10 HexNut_WeightDistributor ISO 4035; nut on M5 rods 

02,03-01 SERVO_FS70MG servo motor 

02-02 Hull_Front front end cap 

02,03-03 MOTOR_SHAFT_CLUTCH clutch on servo motor 

02,03-04 SHAFT_SLEEVE sleeve on fin shaft 

02,03-05 Oil-less bush 8mm bushing on fin shaft 

02,03-06 Nitrile oil seal_5x16x6mm seal on fin shaft 

02-07 Camera Raspberry Pi camera 

02-08 Dome_Front front dome 

02-11 Camera-Cap_Body main body of camera cap 

02-13 Camera-Seal-Glass seal under glass of camera cap 

02-14 Camera-Glass glass of camera cap 

02-15 LED-PCB_raw rough model of LED PCB 

02-16 Pressuresensor_Hose-Connector connecting tube for pressure sensor 

hose 

02,03-17 Fin-Shaft shaft of fin 

02,03-18 Fin fin 

02,03-19 Oring_Hull sealing ring of cyclindrical Plexiglass 

tube 

02-20 Photodiode-Plug_raw rough model of seal around 

photodiode 

02,03-22 Fin-Shaft-Tube tube surrounding shaft of fin 

02,03-23 Weights-box box for additional weights 

03-01-01 USB-MainBody main body of USB insert 

03-01-03 USB-oring-main sealing ring of USB insert 
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Table 33. Parts codes, file names and descriptions [continued]. 

Code Name Description 

03-01-02 USB-Nut nut on USB insert 

03-01-04 USB-Cap cap of USB insert 

03-01-05 USB-Cap-Seal seal under cap of USB insert 

03-02 Hull_Back back end cap 

03-07 Bluetooth_raw rough model of Bluetooth PCB 

03-08 Dome_Back back dome 

03-09 BatteryHolder-Reducer_raw rough model of reducer holding 

battery cap 

03-20-01 BatteryCap_Body body of battery cap 

03-20-02 BatteryCap_Seal seal under battery cap 

03-20-03 BatteryCap_Spring spring connecting to batteries 

03-24 TR Fastenings Ltd-M5 ISO 4032; M5 nut holding reed switch 

03-25 ReedSwitch reed switch 
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Table 34 lists all SolidWorks design files and indicates the following properties for 

each: 

▪ to which assembly the assembly or part belongs (colour-coding); 

▪ the number of instances used; 

▪ the code used in the file name; 

▪ the file type (assembly or part); 

▪ whether it is part of the physical or mechanical design (not an element related to 

electronics); 

▪ whether it has been present on the original µ-CAT robot (in some form); 

o if so, whether its design file has been taken over from the previous design 

as-is; 

o if so, whether its design file has been updated; 

▪ whether the part is completely newly created; 

▪ in case it is updated or newly created, whether it is created by the author of this 

thesis or taken from an external source; 

▪ how it is produced: 

o bought and either taken as-is or manually modified after purchase; 

o custom-made by one or more methods, as indicated. 

Parts names and descriptions are given in Appendix A 3.1. 
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Table 34. Overview of SolidWorks assemblies and parts. A: assembly; P: part; ◼: source: [67]; : source: 

[68]; : modified part from source: [69]; *: alternatively, the Bluetooth module HC-05 can be used after 

some manual rework. 
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Table 5. Overview of SolidWorks assemblies and parts [continued]. 
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A 3.2 Manufacturing 

A 3.2.1 Equipment and procedure for SLA 3D-printing 

Equipment and procedure are explained in the following. 

Equipment: 

▪ 3D printer: formlabs Form 3 (early 2019 model) 

▪ Cleaning: formlabs bathing station with isopropyl alcohol 

▪ Curing: formlabs curing station 

▪ Printing material: formlabs Durable resin 

▪ Software: formlabs PreForm 3.4.2 and newer 

Procedure: 

4. Export an STL file from SolidWorks. 

5. Arrange part(s) in formlabs PreForm software, using rafts and 0.5mm touch points. 

6. 3D-print part(s). 

7. Clean parts in alcohol bath for 20 minutes. 

8. Harden part(s) in curing station at 60°C for one hour. 

9. Let part(s) cool down. 

10. Remove rafts. 

A 3.2.2 Equipment and procedure for FDM 3D-printing 

The front and back dome are printed using the other in-lab printer. Equipment and 

procedure are described in the following. 

Equipment: 

▪ 3D printer: 3D Systems BFB Touch 3D 

▪ Printing material: PLA (yellow) 

▪ Software: Axon 2 

Procedure: 

1. Export an STL file from SolidWorks. 
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2. In Axon 2, arrange it on the printing platform and choose settings: material, density 

(quality) and raft support options. 

3. Generate the printer file (G code) and save it to flash drive. 

4. Insert flash drive into printer and start the print. 

5. After the print is finished, remove the object from the platform and remove rafts (if 

applicable). 

A 3.2.3 Procedure for silicone-casting 

Seals around photodiodes and the gasket inside the camera cap are silicone-cast. The 

procedure is described in the following list. Note that mixing time and ratio depend on 

the type of silicone used. 

1. Design mould in SolidWorks. 

2. 3D-print mould. 

3. Cover the mould with “Ease Release” agent1 (optional). 

4. Mix two silicone components in 1:1 ratio. 

5. Pour a thin stream into mould from distance, to minimize formation of bubbles. 

6. Knock mould on flat surface to get bubbles out. 

7. Cover with film and place weights on it to achieve a flat smooth surface. 

8. Let it cure for approx. 30 minutes (depends on size). 

9. Remove weights, film and pull silicone out of the mould. 

10. Cut off flashes. 

A 3.3 Assembling 

A high-level exploded view of the robot is shown in Figure 46. The numbers indicate the 

assemblies or parts and refer to the order of steps when assembling the robot: 

1. Slide the PCB over the core assembly and into the provided grooves of the back end 

cap. 

 

 

 

1 “Ease Release” is a wax-based liquid release agent and can be used to facilitate the removal of the 

silicone body from the mould. 
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2. Route the wires of components installed in the back end cap assembly onto the PCB 

and connect them. 

3. Slide the Plexiglass cylinder over the PCB and over the back end cap. 

4. Bring the front end cap assembly close to the Plexiglass cylinder, route all wires of 

the installed components to the PC and connect them, then slide the front end cap into 

the Plexiglass cylinder. Close the hex nuts on the outside rods. 

5. Place front and end dome over the front and end cap, respectively. Each dome requires 

two bolts to be fastened. 

Figure 46. Assembling the robot. 
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A 4 Software 

A 4.1 Arduino interfacing 

Table 35. Pins of ATmega328P MLF32. : Restricted to denoted type. 

Physical pin 

number (MLF32) 

Arduino pin ID Signal name Type 

1 3 FSK_TX Digital Output 

2 4 RIGHTBEACON Digital Input 

3  GND Power 

4  +5V Power 

5  GND Power 

6  +5V Power 

7   Crystal 

8   Crystal 

9 5 LEFTBEACON Digital Input 

10 6 FSK_RX Digital Input 

11 7 CS1 Digital Output 

12 8 CS4 Digital Output 

13 9 CS3 Digital Output 

14 10 CS2 Digital Output 

15 11 SPI_MOSI Digital Output 

16 12 SPI_MISO Digital Input 

17 13 SPI_SCK_MEGA Digital Output 

18  +5V Power 

19 A6 BATTERY_MEASURE Analogue Input 

20  AREF Power 

21  GND Power 

22 A7 ADC7 (unused) Analogue Input 

23 A0 BATTERY_LOW_LED Digital Output 

24 A1 FSK_ENABLE Digital Output 

25 A2 ARD2RPI_HV Digital Output 

26 A3 MOTOR_EN Digital Output 

27 A4 I2C_SDA_HV Bus 

28 A5 I2C_SCL_HV Bus 

29  ARDU_RST Reset 

30 0 ARDU_RX Digital Input 

31 1 ARDU_TX Digital Output 

32 2 IMUINT_HV Digital Input 

 

Table 35 shows the Arduino microcontroller’s pins, along with their Arduino identifier 

(if any), the corresponding signal name and their usage on µ-CAT. 
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A 4.2 Raspberry Pi interfacing 

Table 36. Pins in use on Raspberry Pi Zero W.1 

Physical pin number 

(PCB header) 

BCM pin 

ID 

WiringPi2 

pin ID 

Signal name Type 

1   RPI_3V3 Power 

2   +5V Power 

3 2 8 RPI_SDA Bus 

4   +5V Power 

5 3 9 RPI_SCL Bus 

6   GND Power 

7 4 7 ARD2RPI_LV Digital Input 

8 14 15 RPI_TX Digital Output 

9   GND Power 

10 15 16 RPI_RX Digital Input 

11 17 0 ARDU_RST_LV Digital Output 

12 18 1 LED_R PWM Output 

13 27 2 BT_CMD Digital Output 

14   GND Power 

20   GND Power 

25   GND Power 

30   GND Power 

31 6 22 MUX_EN Digital Output 

32 12 26 LED_G PWM Output 

33 13 23 LED_B PWM Output 

34   GND Power 

35 19 24 MUX_A Digital Output 

37 26 25 MUX_B Digital Output 

38 20 28 BT_RST Digital Output 

39   GND Power 

40 21 29 BT_STATE Digital Input 

 

Table 36 shows the Raspberry Pi Zero W PCB header pins, along with their identifiers (if 

any), the corresponding signal name and their usage on µ-CAT.  

 

 

 

1 https://pinout.xyz/ 

2 http://wiringpi.com/ 

https://pinout.xyz/
http://wiringpi.com/


149 

A 4.3 Multiplexer interfacing 

Table 37. Multiplexer routing table. 

Address bit B Address bit A X (Arduino RX) 

routed to 

Y (Arduino TX) 

routed to 

Device 

0 0 X0 Y0 Raspberry Pi 

0 1 X1 Y1 Bluetooth 

1 0 X2 Y2 FTDI 

1 1 X3 Y3 (unused) 

 

A 4.4 Test suite 

A 4.4.1 Relevant files 

Accompanying Section 5.2, the following codes are a reference for the test engineer to 

compile required files. 

The “Makefile” presented in Figure 47 can be used as shown here. It includes the paths 

to Arduino libraries and the tag for the target architecture to compile for. 

ARDUINO_DIR = /usr/share/arduino 

ARDMK_DIR = /usr/share/arduino 

 

ARDUINO_LIBS = SPI Wire I2Cdev MPU6050 EEPROM i2cdetect 

USER_LIB_PATH = /home/pi/Arduino/libraries 

BOARD_TAG = mini328 

MONITOR_PORT = /dev/ttyS0 

 

include /usr/share/arduino/Arduino.mk 

Figure 47. Content of “Makefile”. 

The text presented in Figure 48 is part of the content of the file “testcases.csv” which is 

used by the main user interface to compile the list of available test cases. This file must 

be manually updated by the programming engineer, and its structure must follow the one 

shown here. 

category|code|name|displayname|description|unitsUnderTest|instructions 

other|o01|RGB-LED|RGB-LED|Testing RGB LED|RPi PWM, RGB LED|Guided test. 

Figure 48. Headline and example data set in the file “testcases.csv”. 

Figure 49 shows – as an example – the content of the parameters file for one test case. 

The programming engineer must follow the structure used in the existing parameter files 
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when creating a new parameter file for another test case. Possible options for the data 

type are (so far): 

▪ int integer 

▪ flt float 

▪ hex integer in hexadecimal representation 

▪ str string 

canUseDefault,paramName,paramValue,paramType,paramUnit,inInofile 

1,R_H,47000,int,Ohms,1 

1,R_L,5600,int,Ohms,1 

1,Analog reference,1.1,flt,V,1 

Figure 49. Content of file “params.csv” for test case “a04”. 

A 4.4.2 Main Python code 

#!/usr/bin/python3 

 

######################################### 

## 30.04.2020 

## Kilian Ochs 

## Test suite v1.0 

## 

## A user-interactive script which manages and runs test cases. 

## Test cases are specified in the csv file "testcases.csv", as specified 

## by the variable "path_to_file_testcases" below. 

## 

## This code runs on the RaspberryPi. 

## 

 

 

import csv, os, time, subprocess 

from datetime import datetime 

 

## globally used variables: 

 

  ## parameters: 

path_to_dir_resources = "./resources" 

path_to_file_testcases = path_to_dir_resources+"/testcases.csv" 

name_of_file_params = "params.csv" 

name_of_file_report = "report.txt" 

 

  ## internal: 

testCases = [] 

numTestCases = 0 

 

## example csv line: 

#  arduino,a01,UART_RPi,UART 1,Bidirectional test for UART interface between Arduino and 
RaspberryPi 

 

class TestCase: 

  category = "" # arduino or other 

  code = ""     # e.g., a01 

  name = ""     # e.g., UART_RPi 
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  displayname = "" # e.g., UART 1 

  description = "" # e.g., Bidirectional test for UART interface between Arduino and RaspberryPi 

  instructions = "" 

  devices = "" 

  path = "" # path to test case directory 

  num = 0   # global list number 

  params = []  # parameters for this test case; each row will hold: canUseDefault, paramName, 
paramValue, paramType (as strings) 

  execTime = None 

   

  def 
__init__(self,_num,_category,_code,_name,_displayname,_description,_devices,_instructions): 

    global path_to_dir_resources 

    self.num = _num 

    self.category = _category 

    self.code = _code 

    self.name = _name 

    self.displayname = _displayname 

    self.description = _description 

    self.devices = _devices 

    self.instructions = _instructions 

    self.path = path_to_dir_resources + \ 

      "/" + self.category + \ 

      "/" + self.code + "_" + self.name + "/" 

     

  def toString(self): 

    print("%2d  |  Category        : %s" % (self.num,self.category)) 

    print("    |  Name            : "+self.displayname) 

    print("    |  Description     : "+self.description) 

    print("    |  Units involved  : "+self.devices) 

    print("-------------------------------------------------------------------------------------
------------------------------------------------------------------------") 

 

 

''' Reads csv file and prints the list to the terminal ''' 

def setup(): 

  print("Setting up test cases.") 

  global path_to_file_testcases 

  global numTestCases 

  # Read available test cases into objects: 

  with open(path_to_file_testcases, 'r') as csvfile: 

    reader = csv.reader(csvfile, delimiter = '|')     

    rowNum = 0 

    for row in reader: 

      if rowNum > 0: 

        
testCases.append(TestCase(numTestCases+1,row[0],row[1],row[2],row[3],row[4],row[5],row[6])) 

        numTestCases += 1   

      rowNum += 1 

  print("Parsed "+str(numTestCases)+ " test cases.") 

 

''' Prints list of test cases imported from csv ''' 

def printTestCases(): 

  global testCases 

  print("\n-------------------------------------------------------------------------------------
------------------------------------------------------------------------") 

  for tc in testCases: 

    tc.toString() 

  print("\n") 

 

''' User-interactive menu '''   

def loop():    
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  global numTestCases 

  global path_to_dir_resources 

  global name_of_file_params 

  global testCases 

  while True:   

    # Present the list of test cases:  

    printTestCases() 

    # Wait for user input: 

    try:        

      instr = input("Open a test case by entering its integer.\n'0' to exit. ") 

    except EOFError as error: 

      print("\nCaught EOF error") 

    except Exception as exception: 

      print("\nCaught Exception") 

    # Parse user input: 

    choice = int(instr) 

    if choice == 0: 

      return 

    if choice > numTestCases: 

      print("\nUser input fault: No such test case!") 

    else: 

       

      # Display instructions: 

      displayInstructions(choice) 

       

      # Ask user if he really wants to run this test case: 

      try:        

        inStr = input("Type 'y' to start this test case, otherwise 'n'. ") 

      except EOFError as error: 

        print("\nCaught EOF error") 

      except Exception as exception: 

        print("\nCaught Exception") 

       

      if inStr == "y": 

        printHeadline(choice)         

       

        # Check if there are parameters to be defined: 

        path_to_file_params = path_to_dir_resources+\ 

          "/"+testCases[choice-1].category+\ 

          "/"+testCases[choice-1].code+"_"+testCases[choice-1].name+\ 

          "/"+name_of_file_params 

        if os.path.isfile(path_to_file_params): 

          testCases[choice-1].params = [] 

          try: 

            with open(path_to_file_params, 'r', newline='\n') as csvfile: 

              reader = csv.reader(csvfile, delimiter = ',')     

              rowNum = 0 

              numParams = 0 

              for row in reader: 

                if rowNum > 0: 

                  testCases[choice-1].params.append([row[0],row[1],row[2],row[3],row[4],row[5]]) 

                  numParams += 1   

                rowNum += 1 

            print("\nParsed "+str(numParams)+ " parameters.")    

            print("List of parameters:\n") 

            for param in testCases[choice-1].params:                  

              print(param[1]+": "+param[2]+param[4])    

              numParams += 1       

             

            # If parameters are mandatory to be defined by user, ask for them and save in test 
case object: 
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            allMandatory = True 

            for param in testCases[choice-1].params: 

              if param[0] == 0: 

                try: 

                  paramStr = input("\nSpecify "+param[1]+" value: ") 

                except EOFError as error: 

                  print("\nCaught EOF error") 

                except Exception as exception: 

                  print("\nCaught Exception") 

                param[2] = paramStr         

              else: 

                allMandatory = False             

             

            if not allMandatory:        

            # If not, ask if user wants to define parameters: 

              try: 

                inStr = input("\nDo you want to change parameters with already defined values? 
['y' or 'n']: ") 

              except EOFError as error: 

                print("\nCaught EOF error") 

              except Exception as exception: 

                print("\nCaught Exception") 

              if inStr == "y":                 

              # If yes, present list of parameters and let user choose and input values: 

                 

                while True: 

                  print("\nList of parameters:\n") 

                  numParams = 0 

                  for param in testCases[choice-1].params:                  

                    print(str(numParams+1)+"  "+param[1]+"  Current value: "+param[2]+param[4]+" 
(Type "+param[3]+")")    

                    numParams += 1    

                  try: 

                    inStr = input("\nSelect parameter integer or '0' to execute test case with 
chosen values: ") 

                  except EOFError as error: 

                    print("\nCaught EOF error") 

                  except Exception as exception: 

                    print("\nCaught Exception")                   

                  inVal = int(inStr) 

                  if inVal == 0: 

                    print("User aborted.") 

                    break 

                  if inVal > numParams: 

                    print("\nUser input fault: No such parameter!") 

                  else: 

                    try: 

                      paramStr = input("Enter new parameter value: ") 

                    except EOFError as error: 

                      print("\nCaught EOF error") 

                    except Exception as exception: 

                      print("\nCaught Exception")   

                    testCases[choice-1].params[inVal-1][2] = paramStr   

             

            # Write values to params.csv file:  

            numParams = 0 

            print("\nThe following parameter values will be used:\n") 

            for param in testCases[choice-1].params: 

              print(param[1]+": "+param[2]+param[4]) 

            with open(path_to_file_params, 'w') as csvfile:  

              writer = csv.writer(csvfile,delimiter = ',')      
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              row0 = ["canUseDefault", "paramName", "paramValue", "paramType", "paramUnit", 
"inInofile"]     

              writer.writerow(row0)          

              for row in testCases[choice-1].params: 

                writer.writerow(row) 

                numParams += 1 

                   

            # Write new parameters into ino file: 

            if testCases[choice-1].category == "arduino": 

              #print("\nConfiguring ino file.") 

              inoContent = "" 

              origInoContent = "" 

              paramBaseName = "param" 

               

              try: 

                with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'r') as 
inofile: 

                  inoContent = inofile.read() 

                  origInoContent = inoContent 

              except IOError: 

                print("\nError: Cannot access ino file for reading.") 

                return -1 

              startPos = 0             

              for i in range(numParams): 

                #print(testCases[choice-1].params[i][1]+" in ino: "+testCases[choice-
1].params[i][5]) 

                if testCases[choice-1].params[i][5] == '1': # replace only if this parameter is 
present in ino file 

                  startPos = inoContent.find(paramBaseName+str(i+1),startPos) 

                  if startPos < 0: 

                    print("\nError in ino file: Parameter \""+paramBaseName+str(i+1)+"\" not 
found!") 

                    return -1 

                  startPos = startPos + len(paramBaseName)+len(str(i+1))+1               

                  paramVal = inoContent[startPos:inoContent.find("\n",startPos)] 

                  paramLen = len(paramVal)               

                  newParamVal = testCases[choice-1].params[i][2] 

                  if testCases[choice-1].params[i][3] == "str": 

                    newParamVal = "\""+newParamVal+"\"" 

                  inoContent = 
inoContent[:startPos]+newParamVal+inoContent[(startPos+paramLen):] 

               

              if origInoContent != inoContent: 

                try: 

                  with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'w') as 
inofile: 

                    #print("Writing parameter values to ino file.") 

                    inofile.write(inoContent) 

                except IOError: 

                  print("\nError: Cannot access ino file for writing.") 

                  return -1 

               

          except IOError: 

            print("\nError: Cannot access parameters file.") 

            return -1 

         

        else: 

          print("No parameters.") 

         

        # Create timestamp: 

        testCases[choice-1].execTime = datetime.now() 

        dt_string = testCases[choice-1].execTime.strftime("%d/%m/%Y %H:%M:%S")   

         



155 

        # Write timestamp into ino file: 

        if testCases[choice-1].category == "arduino": 

          inoContent = "" 

          try: 

            with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'r') as inofile: 

              inoContent = inofile.read() 

          except IOError: 

            print("\nError: Cannot access ino file for reading.") 

            return -1 

           

          startPos = inoContent.find("timestamp",0)+len("timestamp")+1 

          paramVal = inoContent[startPos:inoContent.find("\n",startPos)] 

          paramLen = len(paramVal)    

          inoContent = 
inoContent[:startPos]+"\""+dt_string+"\""+inoContent[(startPos+paramLen):] 

          try: 

            with open(testCases[choice-1].path+testCases[choice-1].code+".ino",'w') as inofile: 

              #print("Writing timestamp to ino file.") 

              inofile.write(inoContent) 

          except IOError: 

            print("\nError: Cannot access ino file for writing.") 

            return -1 

           

        # Execute the chosen test case: 

        print("\nTest case executes in 5 seconds.\n"); 

        time.sleep(5) 

        resourcesFolderName = path_to_dir_resources[2:] 

        ''' 

        process = subprocess.Popen(['python3',"./resources/arduino/a01_UART_RPi/a01.py", "a01", 
"UART_RPi", "date", "time", "params.csv"],shell=False) 

        code = process.wait() 

        print("Process exited with code: "+str(code)) 

        ''' 

         

        os.system("cd "+resourcesFolderName+\ 

          "&& cd "+testCases[choice-1].category+\ 

          "&& cd "+testCases[choice-1].code+"_"+testCases[choice-1].name+\ 

          "&& python3 "+testCases[choice-1].code+".py "+\ 

          testCases[choice-1].code+" "+\ 

          testCases[choice-1].name+" "+\ 

          dt_string+" "+\ 

          name_of_file_params) 

         

        print("\n") 

         

      else: 

        print("User aborted.") 

 

def displayInstructions(choice): 

  global testCases 

  print("\nUser instructions:") 

  print("------------------")   

  currentParagraph = "" 

  contentLen = len(testCases[choice-1].instructions) 

  iterator = iter(range(0,contentLen)) 

  for i in iterator: 

    c = testCases[choice-1].instructions[i] 

    if c == '\\': 

      if i+1 < contentLen: 

        if testCases[choice-1].instructions[i+1] == "n": 

          print(currentParagraph) 

          currentParagraph = "" 
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          next(iterator, None) 

    else: 

      currentParagraph += c 

  print(currentParagraph)   

  print("\n") 

     

def printHeadline(choice): 

  global testCases 

  print("") 

  print("**********************") 

  print("*                    *") 

  print("*",end='') 

  lenOfCode = len(testCases[choice-1].code) 

  lenOfName = len(testCases[choice-1].displayname) 

  spaceCode = 20 - lenOfCode 

  spaceCodeLeft = int(spaceCode / 2) 

  spaceCodeRight = int(spaceCodeLeft + spaceCode % 2) 

  spaceName = 20 - lenOfName 

  spaceNameLeft = int(spaceName / 2) 

  spaceNameRight = int(spaceNameLeft + spaceName % 2) 

  for i in range (spaceCodeLeft): 

    print(" ",end='') 

  print(testCases[choice-1].code, end='') 

  for i in range (spaceCodeRight): 

    print(" ",end='') 

  print("*") 

  print("*",end='') 

  for i in range (spaceNameLeft): 

    print(" ",end='') 

  print(testCases[choice-1].displayname, end='') 

  for i in range (spaceNameRight): 

    print(" ",end='') 

  print("*") 

  print("*                    *") 

  print("**********************") 

  print("") 

 

 

 

print("u-CAT Test Suite v 1.0") 

print("------------------------------------------------\n") 

setup() 

loop() 

print("\nGood-bye!") 

 

Figure 50. Python script of the main user interface. 
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