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SOCdev
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Normalized standard deviation of SoC
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Average demand

Home battery next state
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1 Introduction

This thesis is devoted to developing a residential energy management platform, which
transfers residential homes to a readiness level suitable for active integration into the
future intelligent power networks, considering both hardware and software requirements.

1.1 Background

The power grid infrastructure, originally developed over two centuries ago to support
centralized energy generation, has not kept pace with the growing electricity demand,
the decentralization of power production, and shift toward Distributed Renewable
Energy Systems (DRESs) [1]. As a result, power networks in high-demand regions, such as
the European Union, are approaching their capacity limits, facing significant challenges
in maintaining reliability and stability [2]—[5]. To address these issues and to support a
seamless, efficient, and resilient energy transition, urgent and strategic upgrades are
essential across all levels of the power system, from high-voltage transmission to
low-voltage distribution [6], [7].

Modern technologies, including Electric Vehicles (EVs), data centers, digitalized urban
infrastructure, automated manufacturing, and advanced agriculture, are highly dependent
on electricity, driving a substantial and ongoing increase in power demand. Among these,
buildings account for approximately 40% of total energy consumption, encompassing
both electricity and heating [8]-[10]. The significant contribution of buildings to energy
consumption establishes them as pivotal elements in power grid dynamics, prompting
policymakers to implement stringent regulations on building energy efficiency and
renewable energy generation capabilities. For instance, European regulations mandate
that new buildings incorporate on-site renewable energy generation [11], with 95% of
these structures employing solar Photo Voltaic (PV) systems [12]. As a result, buildings
are transitioning from passive energy consumers to active participants in electricity
production and reshaping the future grids.

On-site renewable energy generation, such as solar PV systems, enables local
consumption and reduces reliance on long-distance transmission. However, its impact
on the power grid is complex due to the intermittent and synchronized nature of solar
production in near regions, coupled with misaligned electricity generation and
consumption patterns. Consequently, buildings now exert a more significant strain on
the electricity grid than previously observed [13]. A clear example is the “duck curve,”
phenomenon in the highly penetrated DRESs grids, where neighbourhoods generate
excess solar energy during sunny hours, lowering grid demand, but then need significant
power when sunlight fades. Fig. 1.1 illustrates California's duck curve effect from 2015 to
2022. With the increased deployment of rooftop PV units, the midday demand valley
deepens, approaching negative values, indicating that on-site distributed generation is
exceeding local demand. This synchronized behavior challenges the maintenance of
network voltage within acceptable limits and undermines grid reliability and resilience
[14], [15]. Therefore, integrating additional Renewable Energy Sources (RESs) without
effective coordination and smart infrastructure is no longer a simple plug-and-play
solution [16]-[18].
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Figure 1.1 California’s duck curve trend with higher penetration of distributed renewable energy
resources. CAISO lowest net load day each spring (March—-May, 2015-2023) [19].

1.2 Motivation of the Thesis

As energy networks become more complex and evolve toward intelligent grids, buildings
must also advance to be able to integrate with this ecosystem. Also, buildings with
on-site renewable energy generation units and potentially equipped with battery storage
technology require an intelligent Energy Management System (EMS) to coordinate and
control energy generation, storage, and consumption.

Intelligent EMS aim to maximize energy self-sufficiency, minimize electricity costs, and
ensure uninterrupted, green power delivery. Furthermore, these systems unlock new
opportunities through emerging business models, services, asset sharing, and energy
markets [20]-[22]. For example, well-equipped buildings can offer grid flexibility services
[23], [24], form local energy communities [25], or operate as part of microgrids [26]. They
can rent out their storage capacity [27], [28], provide EV charging infrastructure,
or participate in Vehicle-to-X (V2X) interactions [29].

In response to these emerging needs, this thesis proposes the development of a
platform designed to enhance building energy performance and facilitate effective
integration of RESs and energy storages (home batteries) into buildings and low-voltage
distribution networks. The work addresses both technical and economic challenges,
offering a practical, and scalable solution. Moreover, it establishes a foundation for
buildings to operate within smart grid ecosystems and future intelligent power networks.

This thesis was conducted as part of one of the research directions of the Power
Electronics Group and software science department at Tallinn University of Technology.
The aim is to gather knowledge and develop an advanced EMS solution for
residential buildings. The current work was supported by: PRG675: New Generation of
High-Performance Power Electronic Converters Simultaneously Applicable for DC and AC
Grids with Extended Functionalities, EAG234: New Concept of Energy Router (EnergyR)
for Residential Application (SoftER), PRG1463: Modeling and control of Low-INErtia
Systems (LINES), and TK230: Centre of Excellence in Energy Efficiency.

1.3 Aims, Hypothesis, and Research Tasks

This PhD research develops and validates an integrated hardware—software solution for
next-generation building energy systems incorporating solar PV generation and battery
storage units. The core software component is an EMS designed to intelligently
manage and optimize power flow within buildings based on user-defined priorities,
such as minimizing electricity bills or maximizing self-sufficiency. The primary hardware
component is a power electronics device, termed the EnergyR, which provides a unified
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interface for integrating PV systems and home batteries into the building and residential
dwellings. The platform addresses key technical challenges, including system uncertainties,
accurate forecasting of energy production and consumption trends, battery storage
degradation effects, and the economic complexities of such systems. Validation is
conducted through testing on a dedicated test bench at the TalTech nearly Zero-Energy
Building (nZEB).

Hypotheses:

1. Economic barriers to widespread adoption can be alleviated by carefully sizing
infrastructure such as solar PV units, power electronic devices, and Energy Storage
Systems (ESS) to achieve minimal payback periods.

2. With certain modifications, single-cell power electronic interfaces can effectively
connect solar PV units and ESSs to three-phase networks.

3. Stochastic optimization techniques can outperform deterministic methods by better
accounting for the uncertainties inherent in building energy systems.

4. In solar systems with limited historical data, hybrid forecasting models—combining
physics-based insights with data-driven techniques—can offer better day-ahead
prediction accuracy.

Research Tasks:

1. Review the existing solutions in the market and determine the challenges in front of
wide adoption of such systems.

2. Research and design a software tool for calculating the optimum infrastructure size
to achieve lowest payback time based on buildings energy consumption profiles and
solar power generation potentials.

3. Design an energy flow optimization algorithm and investigate various optimization
methods, considering inherent uncertainties in the system.

4. Research and develop a day ahead solar power generation forecasting model
considering residential roof-top setups limitations.

5. Build and prepare an experimental test setup for long term run test of the hardware
and software in an online operation.

1.4 Research Methods

This PhD research employs mathematical analysis, simulation models, and experimental
verification to develop and validate the proposed building energy system. A mathematical
model of the system is formulated, incorporating a cost function that accounts for
home battery capacity degradation, energy conversion losses, economic factors, and
other relevant parameters, aligned with defined system objectives. The deterministic
optimization problem is structured as a Mixed-Integer Linear Programming (MILP) model
in the Pyomo environment and solved using the GLPK solver, implemented in Python.
The stochastic optimization problem is also formulated as a MILP approach based on
statistical features of historical data.

The optimization operates on a 24-hour day-ahead window, integrating a solar power
generation forecasting unit. This forecasting model combines physics-based modeling
with Artificial Intelligence (Al) techniques, including Deep Learning (DL) and regression
methods. For load profile forecasting, two Machine Learning (ML) models are developed:
Long Short-Term Memory (LSTM) networks and eXtreme Gradient Boosting (XGBoost)
algorithms.
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For hardware development, multiple tools and platforms are utilized. Altium Designer
supports electronics hardware design, Raspberry Pi serves as an Internet of Things (loT)
server and runs optimization algorithms, and ESP32 facilitates home battery interfacing.
MATLAB/Simulink is used for system modeling and simulation, while PVlib and Pybamm
packages enable PV system and home battery modeling in Python, respectively.
The imperial battery State of Health (SoH) estimation model is incorporated into the
system. Experimental validation of theoretical results is conducted at TalTech’s
nZEB, equipped with an ESS, controllable loads, a solar PV system, power electronics
infrastructure, and an EMS unit. The Power Electronics Research Laboratory at TalTech
provides advanced facilities, including digital oscilloscopes, function generators, power
quality and efficiency analyzers, microprocessor development tools, and PCB prototyping
and assembly tools, supporting initial hardware development, home battery assembly,
configuration, testing, and verification.

1.5 Contributions and Disseminations

The results of the research are presented via scientific publications, conferences,
symposiums, doctoral schools, and presentations. During PhD studies the author
contributed to 17 publications. Among them, five papers were published in
peer-reviewed international journals. The remaining papers were reported at
international IEEE conferences. The dissertation is based on nine main scientific
publications, including three journals and six conference papers presented at IEEE
international conferences.

Scientific novelties:

e Development of a novel day-ahead solar generation forecasting method for solar
systems that addresses cold start issues in machine learning-based models.

e Justification of a novel single-cell three-phase topology, which reduces capital
expenditure and improves the economic feasibility of home EMS systems.

e Development of an optimal infrastructure sizing algorithm that accounts for battery
storage capacity fading.

e  Proposed a scenario-based stochastic programming framework to optimize uncertain
power flows within building electrical systems.

o Defined key functionalities and technical specifications required to prepare buildings
for seamless integration into future intelligent energy networks.

Practical contributions:

e Experimentally tested the operation of single-phase power converters connected to
a three-phase grid network and practically confirmed the applicability and benefits
of the proposed solution.

e  Built an experimental setup for running and testing EMS algorithms, including battery
storage, a load simulator, and an EMS computational unit.

o Designed, developed, and programmed GUI on a 10-inch touch display, running on
an Arm STM32H7 using the FreeRTOS operating system.

e Designed and developed a Wi-Fi-CAN interface for battery storage condition
monitoring, data acquisition, and online control commands exchange.
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1.6 Experimental Setup and Instruments

The main experimental tests have been performed in the nZEB house located on the
campus of Tallinn University of Technology. Fig. 1.2a. shows the building outside view
equipped with PV solar panels. Fig. 1.2b. shows the building inside view and installed
infrastructure for EMS operation, and renewable energy source, and battery interfacing.
Fig. 1.2c. shows a load simulator and various loads used during system tests. Fig 1.2 d.
shows the home battery assembly and configuration stages which have been assembled
and configured in the power electronics laboratory of Tallinn University of Technology.
The oscilloscope Tektronix MDO4034B-3 with special probes Tektronix P5205A and
Tektronix TCPOO30A are used for voltage and current measurements, respectively. And
the solar simulator equipment Chroma 62150H-1000S and battery simulator are used
during battery operational verification tests.

Battery Energy
Storage

Graphical User
Interface

(d) (e)

Figure 1.2 Experimental setup.
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1.7 Thesis Outline

Chapter 2 introduces the structure of the developed hardware and software platform for
the building EMS and describes the components in detail.

Chapter 3 details the developed tools for solar power generation and consumption
forecasting, presents experimental results, and discusses the challenges in achieving
accurate and stable outcomes.

Chapter 4 explains home EMS principles and compares the performance of ideal,
deterministic, and stochastic optimization methods.

Chapter 5 presents the battery storage SoH optimization model, explains the optimal
size calculation methodology, shows results based on the Estonian case study, and
outlines strategies to reduce capital expenditure. Also, presents and discusses the
economical and experimental justifications for a single-cell three phase-Energy Router
for residential applications.

Chapter 6 presents the experimental results from EMS algorithm testing using the test
bench and provides insights into the encountered challenges. Also, discuss the proposed
hierarchical method for digital twinning of building energy management systems.

Chapter 7 presents a conclusion, learned studies related to building EMSs.
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2 Proposed Hardware and Software Platform for Home EMS

This chapter aims to briefly review the existing commercial products and state-of-the-art
solutions in academia and define the scientific and technical niches for the hardware and
software components.

2.1 State-of-the-Art

Home EMS can be categorized into various groups based on their capabilities, objectives,
and the employed software/hardware technologies. Table 2.1 summarizes different
commercialized and proposed academic projects for home EMS solutions.

Table 2.1 Home EMS solutions comparison.

o0 Fol o
g §, 2 ¢+ o = § & £ g & &
e O 53 = ] S 3 S 2 T 2 = s
5 S ££ § 2 £ £ & 3 & ¢ & 3§
e < £ 5 £ 8§ 3 == }F ; B 3 E
[31]Tesla AC Al v v v x v x v v v v
Enphase AC RB+AI x v v v x x v v v v
Huawei AC ? v v v v v x v v v v
Sonnen AC ? x v v x x x v v v v
Schneider AC RB x v v v x x v v v v
[30] AC GA x x x x x x x x x x
[31] AC PSO v x x x x x x x x x
[32] AC MPC v x x x x x x x x x
[33] AC+DC  Ds-MPC v v x x x x x x x
[34] AC DP v 4 x v x x v - - x
[35] AC RL x x x v x x x x x x
[36] AC FL x x x v x x x x x x
[37] AC MILP x x x v x x x x x x
[38] AC MINLP x x x x x x x x x x
[39] AC SP-PSO v x x x v v x x x x
[40] AC MADC x x 4 v x x x x x x
[41] AC ML v x v x x x v v x x
Proposed AC+DC  MILP/SP v v x x x v 4 v v x

*RB: Rule-Based, GA: Genetic Algorithm, PSO: Particle Swarm Optimization, MPC: Model Predictive control,
Ds-MPC: Distributed MPC, DP: Dynamic Programming, RL: Reinforcement Learning, FL: Fuzzy Logic, LP: Linear
Programming, MILP: Mixed Integer Linear Programming, MINLP: Mixed Integer None-linear Programming, SP:
Stochastic Optimization, MADC: Multi Agent Decentralized Control, ML: Machine learning, AC: Alternative
Current, DC: Direct Current.

As observed, the technology is rapidly commercializing, and companies in the renewable
energy and home appliance sectors are introducing advanced solutions with features
such as personalized load scheduling, user-tailored energy optimization algorithms,
maximum energy autonomy, and grid independent energy supply. Since commercial
products must ensure reliability and scalability, the employed management strategies
are predominantly rule-based or follow user-defined logic. In certain cases, such as
solutions from Tesla and Huawei, companies advertise “smart” home EMS capabilities
but often do not disclose the underlying control complexity or optimization methodologies.
Fig. 2.1 shows some commercialized solutions currently available in the market.
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Figure 2.1 Some samples of commercialized solutions for home EMS from ENPHASE and LG
ELECTRONICS companies.

In contrast with industry, academic research is largely focused on the development of
advanced optimization and control methods for home EMS. These approaches can
generally be grouped into four major methodological paradigms. The first includes
heuristic and metaheuristic techniques such as Genetic Algorithms (GA), Particle Swarm
Optimization (PSO), and Ant Colony Optimization, which are widely used for their
flexibility and effectiveness in solving non-convex problems despite lacking guarantees
of global optimality.

The second paradigm is model-based control, where techniques like Model Predictive
Control (MPC) are applied to optimize system performance over a prediction horizon
using dynamic models of energy consumption and generation. The performance of
predictive solutions greatly depends on how accurately they can predict the next states
of the system. The third involves data-driven approaches, which leverage ML, DL
specifically Reinforcement Learning (RL) to learn patterns from historical data or adaptively
optimize decisions through interaction with the environment. The fourth paradigm

21



encompasses mathematical optimization methods, such as Linear Programming (LP),
MILP, Mixed-Integer Nonlinear Programming (MINLP), and Quadratic Programming (QP).
Additionally, optimization strategies used in Home EMS can be further characterized
as deterministic or stochastic, depending on whether uncertainty is explicitly considered
in the formulation. From a system architecture perspective, control frameworks can be
centralized, or decentralized, distributed, or even implemented as multi-agent systems,
where multiple controllers coordinate actions based on partial or local information.

2.1.1 Research Niches

Based on the literature review, the main limitations are as follows: First, although
numerous optimization algorithms have been proposed, most are evaluated solely in
simulation environments with limited experimental validation. Second, the economic
challenges associated with system deployment and operation, such as installation costs,
energy market participation, and return on investment, are often overlooked. Third,
the effects of home battery degradation and the development of degradation-aware
EMSs have received limited attention.

Fourth, most of the existing research focuses predominantly on Alternative Current
(AC) technologies, with minimal consideration of emerging Direct Current (DC)-based
solutions. Given that DC technology is increasingly regarded as a key enabler for
facilitating a smoother energy transition, DC-aware design, both at the software control
level and in the supporting hardware architecture, is essential. Finally, few studies have
attempted to develop integrated hardware and software solutions. Most research efforts
focus on one aspect of the system. A holistic design approach that integrates both
domains is critical to improving overall system performance, efficiency, scalability, and
enabling more effective coordination and synergy among components.

2.1.2 Technical Niches

From a technical perspective, the main limitations are related to enhancing EMS
performance and reducing the capital costs associated with system installation. One key
area for improvement is the integration of accurate personalized, user-specific
forecasting models capable of predicting short-term on-site power generation and
demand. Such models can significantly enhance the EMS’s ability to make future-aware
decisions, thereby reducing operational uncertainty.

On the hardware side, innovations that lower system costs, improve energy efficiency,
and minimize power conversion losses are particularly valuable. Furthermore,
considering the growing relevance of DC technologies in future energy systems, it is
essential to develop solutions that are compatible with DC-based technologies. Finally,
developing real test sites and providing infrastructure for running experiments test could
enhance the research and development quality.

2.2 Proposed Home EMS

Fig. 2.2 presents a holistic picture of the proposed home EMS ecosystem, comprising
hardware components such as a High-Performance Processing Unit (HPPU), EnergyR,
Battery Energy Storage (BES), solar photovoltaic (PV) systems, and Local database (Local
DB). In addition, the architecture integrates cloud services for hosting software and Al
functionalities and employs dedicated firmware to support edge computing capabilities
at the device level.

22



Figure 2.2 Proposed building DC- aware EMS ecosystem. EnergyR (ER).

The hardware solution and power electronics infrastructure are based on a DC-aware
design philosophy, anticipating the growing adoption of this technology alongside
traditional AC systems. Given the efficiency and performance advantages of DC solutions,
the proposed EMS ecosystem is engineered, to operate in purely AC or hybrid AC/DC
environments.

Fig. 2.3 illustrates the system architecture in greater detail. In this thesis, a Raspberry
Pi 4 module is employed as HPPU, and the main processing unit. This device is responsible
for handling computationally intensive tasks, such as executing real-time optimization
algorithms. The HPPU functions as an edge device, enabling on-site power flow
optimization and local data processing. However, the solar power generation and
demand forecasting models are hosted in the cloud. These models receive Numerical
Weather Prediction (NWP) data from external weather service providers through
Application Programming Interfaces (APls). The inference process is performed in the
cloud platform, and only the resulting forecasts are transmitted to the edge device.

The HPPU also serves as the communication hub and Local DB, interfacing with other
system components such as the energy router, home battery, and user interface
dashboard. Communication is established over a Wi-Fi network using Hypertext Transfer
Protocol (HTTP) requests and Message Queuing Telemetry Transport (MQTT) messaging
protocol.
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Figure 2.3 Proposed system components from data flow perspective.

For demonstration and monitoring, real-time system status, such as solar power
generation, household consumption, electricity tariffs, economic performance, and
home battery condition, is visualized through both a web-based dashboard and a local
display. Users can interact with the system via these interfaces to adjust parameters and
set optimization preferences. For example, they may choose to prioritize energy
autonomy or focus on maximizing financial savings by exporting surplus energy to the
power grid.

A local GUI displayed on a 10-inch LCD screen powered by an ARM-based STM32H7
microprocessor running a real time operating system called FreeRTOS. This local
dashboard communicates with the HPPU over an internal Wi-Fi connection. Fig. 2.4.a
shows the web-based user interface, and Fig. 2.4.b shows the local edge GUI. Fig. 2.5
shows the different pages of the designed GUI, and the navigation panel.
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Figure 2.4 (a) Web based EMS user interface and dashboard, (b) Local GUI running on edge device
for user interaction with a system.
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Figure 2.5 Designed user interface panel, navigation bar, and different sections for user interaction
and system status reporting.
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Following the identification of niches and projected future trends in Home EMSs,
the proposed software platform has been structured with the HPPU serving as a gateway
between the energy router, home battery, local DB and external internet and cloud
services. This architecture enhances system security by preventing unauthorized access
to private data, system statuses, and underlying hardware components without explicit
permission from the HPPU. The software platform adopts a six-layer design structure,
as illustrated in Fig. 2.6, with each layer responsible for a specific function.

1. User Interaction Layer

API for 3rd Party
Service/ Integration

sy
)
2. Application Layer

Cloud
Integration Module

i E & @

3.Data Management Layer

User Interface Mobile APP

Web Server

Reports

Cloud Based Al Optimization Engine

Local Database Cloud Storage

T

19101

E _?i 01010
@1]

4. Communication Layer

Internet Cloud Communication WiFi Modbus
A P~ o)
@ (@\) > &f\a
5. Edge (Fog) Layer
HPPU Edge Al Sensor Data Acquisiton

LY

6. Device Layer

BES ER PV IoT Sensors AC Loads DC Loads

D © A X /5

Figure 2.6 Proposed six-layer software architecture and each layers dedicated responsibilities.

This platform enables buildings equipped with PV and battery home to monitor,
manage, and evaluate their internal power flows and overall performance. Moreover,
it prepares buildings for seamless integration into future intelligent, renewable
energy-driven power networks, enabling the houses to participate in emerging energy
markets and local energy communities.

The backbone of the proposed EMS platform is a device called the energy router. This
multi-port converter is capable of simultaneously delivering power to both AC and DC
buses. Fig. 2.7 shows the EnergyR topology and its prototype. This device is a single-cell,
three-phase system, meaning that instead of using a dedicated three-phase topology,
a cost-effective single-cell topology is employed. The system includes controllable relays
that allow the device to connect to the phase with the highest demand. This single-phase
topology interacts with all phases, but not simultaneously. The technical and economic
justification for the proposed solution will be discussed in chapter 5.
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Figure 2.7 EnergyR internal topology and TRL-5 prototype.

During the experimental tests, human presence was not feasible; therefore, a load
simulator was designed to generate realistic consumption patterns. These patterns were
based on actual consumption data collected from a household with four residents in
Estonia. To replicate the demand, various electrical loads with different power ratings
were connected to the simulator. Fig. 2.8 shows the load simulator device, which consists
of a controller board equipped with multiple mechanical relays for switching the loads
on and off. Communication and control are handled via an ESP32-S3 module, which
supports Wi-Fi connection and data exchange.

Figure 2.8 Demand simulation controller board.

For the home battery system, a custom-assembled and configured 11 kWh, 350 VDC
lithium-ion battery bank is used. The battery bank consists of seven battery modules
connected in series. Each module contains multiple battery cells arranged in a
series-parallel configuration to meet the required voltage and current specifications.
Fig. 2.9 illustrates the battery management system (BMS), battery wiring layout, and the
home battery assembly process in the laboratory.
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Figure 2.9 BMS configuration and connectivity, and home battery assembly and test stages in the
laboratory.

2.3 Summary

In this chapter, the state-of-the-art academic and commercial solutions for home EMS
are systematically reviewed, focusing on their architecture, optimization strategies, and
functional features. A comparative analysis is presented, identifying their capabilities
in load scheduling, battery management, forecasting, cloud integration, and user
interaction. The chapter identifies key research and technical gaps. These include limited
experimental validation, underexplored DC-based system architectures, inadequate
economic analysis, and a lack of integrated hardware-software solutions. From a
technical standpoint, challenges include improving system cost-efficiency, implementing
personalized forecasting, and building real-world test infrastructures.

The chapter introduces a holistic home EMS ecosystem that integrates hardware and
software components, designed for hybrid AC/DC operation to support emerging DC
infrastructures. It is based on [43] and addresses research tasks 1 and 5. The main
contribution is the proposal of a comprehensive DC-aware EMS solution, fully integrated
into a hybrid nZEB.
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3 Solar Power Generation and Electricity Consumption
Forecasting

Accurate forecasting is essential for high-performance operation of home EMS. In building
level EMS, two critical variables must be predicted: the renewable power generation and
power demand. While data-driven methods such as Al based tools and ML models have
demonstrated impressive accuracy in these tasks, they typically require extensive
historical data for training. However, in most home EMS installations, such historical data
is scarce or entirely unavailable. Yet, users or homeowners expect the EMS to operate
properly immediately after deployment. This challenge requires innovative forecasting
strategies that can operate effectively right from system’s launch and be able to offer
reliable predictions without the need for long-term data accumulation.

3.1 Day Ahead Solar Power Generation Forecasting Algorithm

If we are not able to deliver an abundant amount of data for proper training of Al model,
then the model will have an issue which is called cold start issue. In this case,
the performance of model is poor since it was not able to acquire relevant knowledge
from available data. On method to solve this issue is using hybrid techniques. One
approach is combining Al based models, with physics-based ones. This synergy enables
the system to deliver reasonable accuracy during the early data-scarce phase, while
continuously enhancing its precision as real-world data is accumulated over time. Fig. 3.1
shows the proposed framework which combines physics-based and data driven
approaches to reach better performance in various conditions.
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Figure 3.1 Proposed framework for day-ahead solar generation forecasting.
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3.1.1 Physics-Based Model

Physics-Based Models (PBMs) use fundamental principles to explain system behaviours,

relying on understanding underlying physical processes. The prevalent technique for

solar cell simulation is the five parameters model, which characterizes the solar cell

behaviour with a single diode equivalent circuit model. Additional components inherent

to this model include an irradiance controlled current source, shunt, and series resistors

[42]. The mathematical relation between cell current and voltage is given as:

3.1

I =Ly —Ig— Ly )
q(V' + RscD) _ 1] _ V' + Ryl 3.2)

I =L,—1 ,
o = I fesp (1 -

where [ is the solar cell output current, V' is the output voltage, I, is the generated
current by solar irradiance, I; is the diode current, L, is the current of the parallel
resistor (Ry,¢), R, is the series output resistor, I, is diode reverse saturation current, 17 is
the ideality factor, q is the charge of the electron (1.602 x 10-19 C), k is the Boltzmann’s
constant (1.381 x 10-23 é), and T, is solar cell temperature in Kelvin and can be
calculated as [44]:

Tyoc — 20
n=n+i%ﬁ—xﬂ, 3.3)
where, T, is the ambient temperature (K), Tyoc is panel’s temperature in C° in normal
operation condition (extracted from panel datasheet), and SI refers to the solar
irradiance (W.m?). In PV panels, solar cells are connected in series/parallel formats. In
series style, PV module’s I /V relation can be calculated as:

=] I q(V + NgR,.I) V + NgRg. 1 3.4)

=fon bl g ) T T Ry,
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where V = V'. N, and N, denotes number of the cells in series in each single module.
Fig. 3.2 shows the PV module layout connected in the series format.
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Figure 3.2 PV module layout and equivalent circuit model of solar cells connected in the series
format.

The output power of a PV system is not only influenced by the characteristics of the
solar panels but also by the performance of the ancillary infrastructures, like solar
inverters. Consequently, the power generated by a PV system at the maximum power
point (MPP) for an individual panel can be approximated as [45]:

SI 3.5)

PpV = I:PPS;;TC X 1000] X [1 -y X (7} - 25)]'
I 3.6,
Tj = Tamp + % X (NOCT - 20) )
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where P,, represents the panel's output power at MPP and Ppﬁ,TC represents the output
power in the standard test condition, y is a temperature coefficient at MPP, T} is the solar
panel temperature (°C), Tymp is ambient temperature (°C), and Ny ¢y is a constant value.

3.1.2 ML Based Model

A major challenge for getting sufficient results from PBMs lies in their heavy reliance on
accurate input data. As illustrated in Fig. 3.3, weather forecasts for the same location and
time can vary considerably between different weather forecast service providers.
This inconsistency severely limits the reliability of PBM outputs, whereas data-driven
models are more adaptable to such variations, since they can learn and adopt themselves
for these inconsistencies. In sequence data and time series trend forecasting, ML
advancements, particularly DL, have significantly improved forecasting accuracy by
effectively capturing complex, hidden patterns between input features and target
outputs. In solar power generation forecasting, DL models excel at learning such
dependencies, making them more robust than PBMs, when facing disturbances.
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Figure 3.3 Solar radiation predictions for the same day and location, collected from different
weather service providers (a). Predicted temperatures for the same day and location collected from
different weather service providers (b).

The ML framework proposed in this research is illustrated in Fig. 3.4. The pipeline
consists of two parallel branches: one based on classified regression models, and the
other utilizing an encoder—decoder architecture with a self-attention mechanism.
The outputs of both branches are then fused using a meta-learner model to produce the
final forecast.

In this platform, the regression branch employs several LightGBM models, each
optimized for specific weather conditions categorized using SYNOPTIC (SYNOP) weather
codes. These codes, standardized by the World Meteorological Organization (WMO) and
used globally by meteorological stations, classify weather into 100 distinct types,
however not all categories are observed in every location. Using SYNOP codes for
weather classification offers several advantages:

1. No need for additional clustering: Eliminates the computational cost and complexity
of separate classification or clustering steps.

2. Universally recognized: Ensures consistency and interpretability across different

regions and datasets.

Data-efficient: Particularly suitable for situations where historical data is scarce.

4. Reduced overfitting risk: Minimizes classification errors and overfitting compared to
learned or dynamic clustering methods.

w
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Figure 3.4 The detailed pipeline of the proposed hybrid ML model.

In the proposed ML pipeline, the sequence data analysis branch is composed of a
Self-Attention Encoder-Decoder (SAED) network, as shown in Fig 3.5.
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Figure 3.5 Proposed SAED based solar power forecasting model.

For the encoder layer, for encoding the input sequence data, a Bidirectional Long
Short-Term Memory (BiLSTM) network is implemented. BiLSTM is capable of processing
sequence data in both forward and backward directions, thus improving the model’s
insight into sequential data. To prepare the dataset for the BiLSTM layer, transforming it
into a 3-D tensor shape is essential. This transformation was achieved using a sliding
window technique, as illustrated in Fig. 3.6. In our approach, we utilized a look-back
window of 360 records, corresponding to a continuous past 15 days period. Additionally,
the sliding window is designed to move 24 steps each time, providing a new data
segment for each day. The prediction horizon is set to 24 hours, aligning with the goal of
day-ahead forecasting.
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Figure 3.6 Sliding window technique and SAED network input data structure.

In this framework, a linear regression model has been trained using a Stochastic
Gradient Descent Regressor (SGDR) [46] as the meta learner. This type of regression is
adept at fitting by minimizing a regularized empirical loss through Stochastic
Gradient Descent (SGD). The choice of SGDR is due to its online learning capability, which
enables iterative model updates with new data inputs. This adaptability is crucial for
accommodating changes resulting from environmental variations or alterations in
system components. While there are other viable methods, such as weighted
averaging, the use of SGD for training strikes offers a balance between performance and
computational efficiency.

3.1.3 Numerical Results

Regression and forecasting model evaluations commonly utilize metrics like normalized
Root Mean Square Error (nRMSE), normalized Mean Absolute Error (nMAE), coefficient
of determination (R?) score, Symmetric Mean Absolute Percentage Error (sMAPE), and
Mean Absolute Percentage Error (MAPE). Notably, MAPE and sMAPE can pose
challenges, especially when both the actual target and the forecasted value are zero.
To mitigate this issue, MAPE and sMAPE in this study are calculated using a method
recommended in [47]. The formulas for these metrics are detailed accordingly:

n
1
nRMSE = - Z(yh ) 3.7)
n h=1
1 "l
MAE = = Wn = Yl 3.8)
n h=1 ymax
SS.
RZ = 1 — & 3.9)
TSS
100 & | "
MAPE = — Zu 3.10)
n y
100 o | o
SMAPE = In— Y
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where n is number of forecasting data samples, y and y' are actual and forecasted
values, respectively. V4, is the maximum amount of the target value in the
corresponding test set. Also, SSyes = Xi—1(Vp — ¥1)? and TSS = Xi_;(yn — ¥)* are
sum of squares residuals and total some of squares, respectively. ¥ and y’ represents the
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mean of actual PV output power values, and the mean of forecasted PV output power
values, respectively.

The performance of the proposed model was assessed in comparison to a spectrum
of foundational models, including LSTM, recursive LSTM, BiLSTM, XGBoost, LightGBM, a
basic encoder-decoder, averaging, and the Persistence model. The Persistence model
employs a simple forecasting method, predicting that the PV power output for any given
hour will replicate the output from the same hour on the previous day. Additionally, the
average model generates forecasts by averaging the outputs from the two branches
proposed in our model. Table | shows the comparison results and proposed models’
superiority to its benchmarks.

Table 3.1 Comparison of forecast performances between sunrise and sunset periods.

Model nMAE MAPE%  sMAPE% nRMSE  R? score
Proposed 0.043 22.62 21.62 0.089 0.898
Average 0.046 22.82 22.16 0.091 0.885
SAED 0.048 24.71 23.23 0.096 0.876
Classified LighGBM 0.050 25.54 24.63 0.101 0.864
LightGBM-LSTM 0.050 25.18 24.99 0.098 0.86
Recursive-LSTM 0.053 26.41 26.20 0.110 0.855
XGBoost 0.051 26.36 26.36 0.108 0.855
LightGBM 0.053 26.64 26.47 0.109 0.853
BiLSTM 0.056 27.88 26.93 0.114 0.829
Encoder-Decoder 0.053 26.77 26.41 0.111 0.853
LSTM 0.057 29.18 28.08 0.116 0.844
PBM 0.070 36.03 34.08 0.134 0.725
Persistence 0.084 43.13 43.13 0.174 0.584

The performance of the model across 15 consecutive days is presented in Fig. 3.7. It is
apparent that the model's performance varies, underperforming on certain days, which
highlights areas for further improvement. However, the overall efficacy for day-ahead
predictions is satisfactory. During purely sunny days, the model’s forecasting is near
ideal, and it also performs well on mostly sunny days with minimal cloud coverage.
Challenges arise in accurately predicting output during days with highly variable weather
conditions. This issue is compounded by a decrease in the accuracy of NWPs under
dynamic weather conditions. However, on rainy and cloudy days with full cloud coverage,
where power generation is considerably lower, the model provides relatively close
forecasts of the target values. Fig. 3.8 compares the residuals between actual measured
values and the forecasts produced by the PBM and hybrid PBM-ML model. The comparison
clearly demonstrates the superiority of the PBM-ML approach.
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Figure 3.7 Proposed forecasting framework comparison with measured data.
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3.2 Day Ahead Electricity Consumption Forecasting Algorithm

Like solar power generation forecasting, having accurate insights into hourly electricity
demand significantly enhances home EMS performance. However, demand forecasting
poses greater challenges compared to solar forecasting, as it is closely tied to the
behaviour and lifestyle patterns of home residents. Despite this complexity, the availability
of electricity consumption data, which is usually recorded for billing purposes, alleviates
the data scarcity issue. This makes the application of Al techniques more practical and
effective. Additionally, traditional time-series analysis methods, such as Auto Regressive
Models (ARM), Auto Regressive Integrated Moving Average (ARIMA), and Seasonal
ARIMA (SARIMA), still are solid and reliable methods for achieving satisfactory results for
demand forecasting.

In this thesis, the primary focus was placed on enhancing solar power generation
forecasting, while a relatively straightforward approach was adopted for electricity
demand forecasting. LSTM networks were selected for this purpose, given their proven
effectiveness in handling sequential and time-series data, and their widespread use in
related literature. Although this method provides a solid baseline, further research is
required to achieve higher forecasting accuracy and robustness. In particular, transitioning
from deterministic or single-point forecasts to probabilistic forecasting approaches could
offer significant advantages by capturing the uncertainty and variability inherent in
residential energy consumption patterns.

Fig. 3.9 presents the results of day-ahead, hourly-averaged demand forecasting using
the LSTM network. While the predicted values do not precisely match the actual demand,
the model demonstrates an ability to capture peak and valley patterns in the consumption
profile and reasonably estimate their amplitudes. One significant challenge in improving
model performance is access to high-quality data, which is often restricted due to privacy
concerns. Since residential demand profiles are considered sensitive information,
Distribution System Operators (DSOs) are generally prohibited from sharing them with
third parties, as they may reveal personal habits and lifestyle information. However,
emerging approaches such as federated learning offer promising solutions to this issue.
Federated learning enables collaborative model training across multiple data sources
without exchanging raw data and by only sharing Neural Network (NN) parameters,
weights and bias values.
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Figure 3.9 Hourly averaged electricity demand forecasting using LSTM network.
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3.3 Summary

In this chapter, the developed approaches for forecasting solar power generation and
household electricity consumption have been presented. Accurate forecasting is pivotal
for efficient energy management, grid stability, and progress toward carbon neutrality.
To address this need, the thesis introduces a hybrid day-ahead solar power forecasting
model for behind-the-meter applications. This achieved by combining PBMs with ML
techniques. This approach accommodates both PV systems with extensive historical data
and newly installed ones without prior records and mitigates cold-start issues.

For demand forecasting, a DL-based LSTM model is employed. This model demonstrates
an ability to identify peaks and valleys in demand profiles. However, further research is
required to improve demand forecasting accuracy. Novel approaches, such as federated
learning, are needed to develop more precise and reliable models.

This chapter is based on paper Il and paper VIl and addresses research tasks 4 and
hypothesis 4. The main contribution is development of a day-ahead solar power forecasting
framework for residential small scale solar PV setups, preventing cold start issue when
abundant historical data is not available for training complex ML algorithms. For this
propose a physics-based solution was merged with data driven methods.
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4 Developed Energy Management Method

Fig. 4.1 shows the general structure of the home EMS system. In the considered
configuration, EMS is supervising and monitoring power flow inside the building by
sending control commands to power electronic devices and battery management
system. An effective energy management algorithm requires knowledge of the system’s
current state and predictions of its near-future conditions. This data helps the system to
make informed, relevant, and optimal decisions.

PV system
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Grid _ A non-shiftable
. N,
, 7 iEMS T S
(@
o T
Power tﬁﬁ’
Electronics
Power line
- — — Data line

BESS

Figure 4.1 Home EMS system overview, considering integration of renewable energies, battery
energy storage systems, and various loads.

A home EMS relies on specific parameters to determine the most suitable power
usage strategy. These parameters can be categorized into two groups:

1. Near real-time parameters, including battery storage State of Charge (SoC), State of
Power (SoP), and SoH, as well as real-time power demand, solar PV power
generation, and power flow inside the building electricity network.

2. Future estimations, such as forecasted solar power generation, upcoming electricity
tariffs, and predicted power demand for the next hours.

After collecting the necessary data, an appropriate cost function must be defined,
considering user preferences, system priorities, and design constraints. In parallel,
the building’s electrical network needs to be accurately modelled using a set of
mathematical equations that represent its operational characteristics. This modeling
provides the foundation for the optimization algorithm, which aims to converge toward
an optimal solution. The resulting strategy is tailored to meet specific objectives, such as
minimizing energy costs or maximizing building energy autonomy. It should be noted
that, in addition to any high-level, low-resolution EMS algorithm (which typically runs
every few seconds or minutes), a low-level, high-resolution (micro/millisecond)
control algorithm should be integrated into the power electronics devices, to ensure
system correct and safe functioning. For instance, maintaining voltage, and current
within an acceptable range, regardless of uncertainties in the system, and providing
safety requirements.

In this thesis, in addition to the essential design parameters and constraints used for
modelling and cost function formulation of home EMS, battery degradation is explicitly
incorporated into the calculations. As the home battery is the most expensive
component of the system, accounting for its degradation is critical for two reasons:
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1. To prevent the EMS from over utilizing the home battery in energy arbitrage
applications, which could accelerate degradation.

2. To enable the development of an aging-aware EMS, which is capable of
effectively managing second-life batteries in residential applications. More
detailed information about battery degradation modeling and its impact on EMS
performance is shared in the next chapter.

At its core, any EMS serves as a framework for minimizing a defined cost function.
Depending on specific goals, stakeholders, and operational priorities, this cost function
can be formulated as either a single-objective or a multi-objective optimization problem.
In the context of home EMS applications, the problem formulation can generally be
summarized as follows: the EMS should aim to maximize the self-consumption ratio or
minimize the electricity bill, while preserving user comfort and convenience. Additional
functionalities, such as participating in energy markets or offering ancillary services,
are typically considered secondary objectives in residential EMS solutions.

In addition, the optimization problem must account for physical and operational
constraints, including the dynamic behavior and limitations of system components such
as home battery, loads, and power electronics. To achieve this, home EMS approaches
can be categorized into three main groups: 1- Heuristic (rule) based EMS, 2-Deterministic
EMS, and 3- Stochastic EMS.

4.1 Heuristic (Rule) Based Approach

The heuristic, or rule-based, approach is widely used in commercial solutions due to its
computational simplicity and straightforward implementation. These methods indirectly
specify system models by implementing sets of rules related to system operation.
The associated rules can be as simple as: charge the BES when generation is higher than
demand or as complex as: define the BES charging and discharging schedule based on
real-time market prices, forecasted demand, and generation profiles. However, formulating
these complex rules, requires extensive knowledge such as power generation, and demand
forecasts. Thus, in most cases rules are defined without including exogenous information,
such as forecasts, or energy-market prices. Algorithm | shows the sample of applied
rule-based approach in the literature and this thesis. In the proposed algorithm,
R represents the renewable energy generation, and D denotes the energy demand.
The parameter E.,., refers to the excess energy generated by the renewable source
that cannot be consumed or stored at a given moment. D,..,,, represents the residual
energy demand that cannot be fulfilled by the available renewable generation and must
be covered by other sources such as home battery or grid.

4.2 Deterministic approach

This approach is gaining popularity for home EMS applications, particularly due to its
simplicity. In such deterministic methods, decisions are made under the assumption that
all system parameters are precisely known and there is no uncertainty. Although this
assumption might initially seem unrealistic and potentially detrimental to model
performance, yet it can be applied for high level optimization where the lower-level high
resolution control system handles the inherent uncertainities. The reduced complexity
makes these methods highly suitable for implementation on resource-constrained edge
hardware platforms.
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Algorithm 1 Heuristic-Based EMS

1:if R= D then

2:  Meet the demand using renewable generation
3 Eextra « R - D

4 if Eextra> 0 then

5 while SOC < SOCmaxand Eextra> 0 do
6: Charge the battery

7 Update the SOC

8 Eextra < Eextra — Energy charged
9 end while

10: if Eextra> 0 then

11: Export Eexrato the grid

12: end if

13: end if

14: else
15:  Meet the demand using renewable generation
16: Diem<—D-R

17: if SOC > SOCpin then

18: while SOC > SOCpinand Drem> 0 do

19: Use battery to meet remaining demand
20: Update SOC and Diem

21: end while

22: end if

23: if Drem > 0 then

24: Import Drem from the grid

25: end if

26: end if

Popular solutions within this category include MPC, which optimizes energy
consumption by forecasting near-future demand and supply while respecting system
constraints, and applies only the first control action at each step before re-optimizing in
the next time step (receding horizon). LP is also widely adopted, as it formulates
energy management tasks as linear optimization problems aimed at minimizing costs
or maximizing operational efficiency. Additionally, Dynamic Programming (DP) offers
a structured approach by decomposing complex energy management decisions into
a series of simpler, sequential subproblems, enabling optimal scheduling of energy
resources over time.

In this thesis, a deterministic approach was initially developed using a combination of
rule-based and nonlinear LP framework, specifically employing a MINLP. The choice of
MINLP over MILP stems from the need to incorporate battery degradation modeling
within the optimization loop. The battery degradation related equations introduce
nonlinear dependencies into the system and cannot be accurately captured using linear
techniques. Fig. 4.2 shows the applied method’s visual pipeline.
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In Fig. 4.2, an ideal optimization block is employed to execute the same algorithm using
perfect forecast data, revealing the theoretical upper bound of system performance as a
benchmark for evaluating real-world outcomes. Since decision performance is inherently
tied to forecast accuracy, comparing results under ideal and actual conditions offers
valuable insights into the impact of forecasting inaccuracies. For instance, Monte Carlo
sensitivity analysis can introduce controlled random noise into the forecast data,
simulating various uncertainty scenarios. This enables an evaluation of the model’s
robustness and performance under diverse and imperfect conditions.

During system operation, the optimization problem should be continuously solved
based on new conditions and subjections. As stated, in this thesis, maximizing profit
considering home battery capacity fading, has been defined as the optimization
problem’s main objective. Thus, the system cost function is formulated as:

min, FT+ X - min ZGrC'j + Esg; — Fpj, 4.1)
=1
where Gr, € R" is the utility usage cost, Es, € R" is the cost of energy storage fading,
Fp € R™is the amount of profit system can earn by trading energy with the utility grid,
n is the total optimization iterations steps, and j represents j" iteration. In Eq. 4.1),
F € Rfis the vector of optimization variables, and X € R? represents the total
optimization factors, X = [Ppy 6, Prv1, Ppv/ess Poji» Pojess Prsyu Prs/e ]Twhere, suffix
G represents utility grid, ES represents energy storage, PV represents solar power,
and L represents demand or load. P/, € R™ represents the amount of power flow from
node x to node y, and ¢ represents the total dimension of the optimization vector.
G, j for residential sector is calculated as:
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Gre; = EgjUrou; + Crx + EpxjCex 4.2)

where F?g € R"is the net amount of electricity purchased from the main grid in each
iteration, Ur,y € R™ is vector of electricity tariff in each corresponding iteration,
Crx € Risthenetwork service charge, Eg, € R™ is the total amount of energy exchange
with the grid in each iteration. Eg, is calculated accumulating total amount of imported
and exported energy, and Cz, € Ris the fixed cost of energy exchange with the grid.
Energy storage fading expenses Es,, is calculated based on the capital cost of home
battery installation and assuming that when the End of Life (EoL) point is met, the storage
will not have any value for the user. Thus, the Escjis calculated as:
100 — SoH';_,
30

where Uggss €/kWh is the unit price of home battery installation. Thus, Uggss Cpm is the
total cost of adding energy storage to the dwelling. ASoH € R" is the amount of
degradation that occurs due to battery utilization in each optimization stage. SoH’;_; is
the energy storage SoH in the previous iteration. Consequently, the cost associated with

utilizing battery rises as SoH decreases. Finally, Fp ; is computed by:

4.3
Escj = UpgssCam ( >ASon, )

Fpj = (Efj - Urou,j) X7, 4.4)
where E; € R™ is the array of total amount of dropped energy to the grid in each
optimization iteration, and y € [0,1] is a Feed in Tariff (FiT) coefficient. Starting from the
second half of 2022, the FiT is set to be 20% below the Time of Use (ToU) electricity
purchase price.

Energy is the time integral of power, and under the assumption of constant time
intervals and constant system voltage and current levels within each interval, energy
parameters can be represented by power multiplied by time values E = P X t. So, the
optimization function can be reformulated and solved based on building grid’s power
values. For each infrastructure configuration the constraints will be different based on
PV setup, home battery, and power electronics size. For instance, infrastructure sizes as
3 kWp, 5 kWh, and 5 kW respectively, the non-equality constraints for this setup will be
as:

Vj,0 < Ppy/clil, Prvs Ul Pevyeslil < 3000, 4.5)

Vj,0 < Pggc Ul Pes/ i1, PejesUl, Pe 1 < 5000, 4.6)

Vj, Peilil + Pes/lil + Peysili] < 5000, 4.7)

Vj, Pessclil + Prygli] < 5000, 4.8)

Vj, Pes/lil + Pes/lj] < 5000, 4.9)

Vj, Pes/lil + Pgssclil < (SoC[j] — S0Cpmin) X C"pm X SoH[j], 4.10)
VY, Povseslil + Peyeslil < (S0Cimax — SoC[j1) X C"p X SoH[j], 4.11)
Vj, Ppy seslil + Pg/es[i] < 5000, 4.12)

4.13)

Vj, Pov ;61 + Ppyy i1+ Peveslil < 3000,
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Vj, Peeslil + Pelil < 5000, 4.14)

where, suffix G represents utility grid, ES represents energy storage, and L represents
demand or load. Py, [j] represents the amount of power flow from node x to node y in
the house distribution system during j*" iteration. C",,,,, X SoH[j] represents the amount
of power, in watts, that the energy storage can consistently deliver for a duration of one
hour.

The equality constraints are listed as follows:

, . . . , 4.1
vj, Poy 6lj1 + Ppy i, U1 + Peveslil = Pev totarlil, 5)

. . . . . 4.16
vj, Ppy 1 U1 + Pes/ili] + Pe il = Prrorar ], )

where Ppy 1oq; is the total amount of power generated by PV system and Py, ;4.4 is the
total amount of demand in the corresponding time interval. Nonlinear equations are
introduced as:

R S 4.17
Pg/gs * Pgsje =0, )
o o 4.18
PPV/ES : PES/G =0, )

4.19)

ﬁPV/ES' ﬁES/L =0.
These limitations prevent the events in which the algorithm may decide to charge and
discharge the energy storage simultaneously. Finally, E¢ ; and E ;, can be compiled as:

Ef-j = (PES/G[i] + PPV/G[/D X t, 4.20)

Eg; = (Pgeslil + Pg i) % t. 4.21)

The pre-defined nonlinear optimization problem was addressed using the Python
Pyomo optimization toolbox and the ‘fmincon’ solver. This solver utilizes a gradient of
the cost function to find the solution corresponding to objective function global
minimum.

Including forecasting data can enhance the performance of EMSs. However,
the designed cost function and the core optimization engine do not incorporate forecasts
into their optimization principles. This limitation leads to decisions being made based on
the current system state, restricting the benefits from future knowledge. To address
this issue partially, a rule-based decision-making block has been added to the main
optimization loop. The rule-based block utilizes day-ahead energy and load profile
forecasts to generate charge and discharge signals for home battery when certain
conditions are met. Thus, at the beginning of each day, total solar energy generation and
total load demand for the next 24 hours are forecasted. Additionally, the minimum and
maximum electricity prices and corresponding hours are extracted from the energy
market data.

In moments with minimum energy prices, if one of the conditions below is met,
the block sends a charge command to the home battery:

1. The forecasts for total generated energy should be less than the forecasts of
total load demand (This confirms that the PV will not be able to handle all energy
demand solely). In this stage, the battery can be charged in the amount to fill
the existing gap.

2. PRyax — PRpin 2= Es.j, where PRp;, and PR,y are the minimum and
maximum prices of electricity on the following operation day, respectively (This
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ensures that the cost of utilizing energy storage is less than the benefit from
energy arbitrage). In this condition, the energy storage will be fully charged to
maximize energy arbitrage.
In peak periods, if both conditions below are met, the block sends a discharge
command to the home battery:

1. The stored energy in the battery plus the energy generation forecast should be
higher than the load demand forecasts for the rest of the day (This ensures the
energy storage has surplus energy for trading). In this condition, the energy
storage is allowed to release surplus energy to the grid.

2. PRyax — PRmin = Esg,j.

4.3 Probabilistic Approach

The probabilistic approach is designed to account for the inherent uncertainties in the
system during operation and decision-making processes. By incorporating uncertainty,
this method enables more informed and robust decisions, resulting in system behavior
that aligns more closely with the planned or estimated performance. However, a major
limitation of this approach is its computational intensity. For example, in scenario-based
probabilistic optimization, the algorithm must evaluate multiple potential scenarios,
each weighted by its probability of occurrence, and then determine an optimal solution
that performs well across all scenarios, instead of optimizing for a single deterministic
case.

In this thesis, a novel stochastic optimization approach based on nominated scenario
generation considering both historical and forecasted data has been proposed. In this
method, initially the demand and generation forecasts are derived from forecasting
models which have been introduced in Chapter 3. As mentioned, forecasting tools generate
24 predictions for electricity generation and consumption (demand) for the next day. Let
F% and FP represent the forecasted values for power generation and demand at hour h,
respectively. Assuming the forecasting models provide acceptable accuracy; these values
should serve as the best possible estimates of the system’s uncertain input parameters
for the next 24 hours. This assumption is the foundation of proposed stochastic
optimization method. Fig. 4.3 shows the flowchart of a proposed method.
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Figure 4.3 A flowchart of proposed stochastic optimization method based on forecast driven and
historical data scenario generation.

Furthermore, based on available historical records and data distribution the mean and
standard deviation (o) are calculated for each hour of the day. After obtaining these
values, the initial historical mean is replaced with the forecasted values (Ffand FP).
Assuming a Gaussian distribution, a normal distribution curve is then generated using the
updated mean and the previously computed historical o for each hour of the day. Since
these curves represent physical quantities with finite values, they are constrained within
the minimum and maximum possible ranges for electricity generation and demand.

Then, the covered range is divided into R = 100 sections, and for each section,
the probability of the actual measured value falling within that range is calculated.
For instance, assuming the maximum power generation capacity of the solar PV system
is 5 kWp, each section will have a resolution of 50 W. By limiting the number of sections to
a fixed value, regardless of sizes of PV systems and building demand, the computational
complexity remains consistent across all cases. By dividing the continuous range of
possible values, we discretize and limit the potential subsequent values. However,
the impact of this action is negligible in system performance.

After calculating these probabilities, a matrix of forecasting probabilities is constructed.
Let Gp7 and D, represent the matrices for the probabilities of potential values for
electricity generation and demand, respectively, with dimensions R X D, where D is the
forecasting horizon, which in this case equals 24. Similarly, a probability matrix is
generated for each hour of the day using previously recorded historical data on solar PV
power generation and demand. Let G, and Dy represent the matrices for the
probabilities of historical values for generations and demand, respectively, with dimensions
RXD.

The calculation of the D%f matrix is straightforward. First, recorded demand values are
clustered based on their respective hours of the day and then grouped according to their
corresponding power range. Once all records are classified, the probabilities for each
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hour and power range are computed. However, since solar PV power generation is highly
dependent on weather conditions, classifying records based solely on temporal data
would lead to inaccurate results, as solar irradiance in summer is not comparable to that
in winter. To address this, the seasonality impact is eliminated based on a proposed
solution.

To achieve this, for each day of the year and each hour of the day, the maximum
possible solar irradiance values are calculated based on the sun position in the sky, and
building’s latitude, and longitude. These values represent the theoretical maximum
possible generation under clear sky conditions. The obtained solar irradiance value is
then fed into a physics-based simulation of the building’s solar PV system to determine
the potential maximum power generation. The minimum possible solar PV power
generation value is derived from historical data by identifying the lowest recorded value
for the same day and hour within a £30-day window.

Using the obtained minimum and maximum ranges for each hour and day of the year,
recorded solar PV power generation values can be categorized into a predefined number
of classes. This is done by normalizing the range, determining class boundaries, and
assigning each measurement to its corresponding class. In this approach, measurements
are classified based on the percentage of solar PV power generation relative to the
feasible range for each hour and day. This eliminates the seasonality factor from the data,
allowing for a direct comparison of solar PV power generation probabilities between
summer and winter without considering the absolute magnitude of the data. Fig. 4.4
illustrates the process described.

Solar PV power generation curves

Solar irradiance curves

Physics-based solar

Solar rradiation, W/(mh)
Power (kW)

PV Model
.
Solar Hour of the 15" Day
Categorazin - .
) 5 b dg . Normalizing of Obtaining
classess based o records maximum

their hour label <

values

15t of
July

o SN Obtaining
PI‘Oblbll.lty minimum values
calculation 15th of

October
4> +/_30 days
2. u records for the
H i5 e er o same hour of the
E & da;
Gr 3 - v

Figure 4.4 Abstract representation of obtaining Gpx from historical solar PV power generation
records. Solar irradiance curves are extracted from estimation of the hourly global solar irradiation
based on numerical weather predictions.

After assigning all measurements to their corresponding classes, the probabilities for
each hour of the day are calculated for the entire dataset based on the classes that share
the same hour label. As a result, the matrix G2 will have dimensions equal to the number
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of hours in a day and the number of classes, classes, which are set to 100 in this case.
Then, the final probability matrices are constructed as:

F ¥ T T RXD
G» +Gp =Gp , Gp € R,

D} +D¥ =D] , DI € R®P,

4.22)
4.23)

where g:,ff and D7, are total probabilities for production and demand ranges, respectively
by considering both historical and forecasted values. Whenever probabilities are
accumulated, an averaging operation is also performed to ensure that the total
probability sum always remains equal to one.

Scenarios are generated based on combinations of paired power generation and
consumption values. To achieve this, the Cumulative Distribution Function (CDF) for each
hour of the day is derived from the G and D3 probability matrices. For each CDF curve,
the probability range is equally divided into § sections, where § represents number of
scenarios. Then, one random value is generated for each section, and based on these
values, the corresponding points are selected for each time step in the control horizon.
Assuming S = 100 for each hour of the day, there are 100 power generation (G3,) and
demand (D) values, where h € [0,23] and S € [1, S]. Finally, the daily consumption and
generation profiles are generated by combining G3, and Dj; as:

1 1 S S
@ ’Do) ¢ 'Do) 4.24)
3= , .
(Gh 1'Dh 1) (Gh 1'Dh 1) hxS
where J is the matrix of all generated scenarios. Fig. 4.5 illustrates the described
procedure.
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Figure 4.5 Daily scenario generation based on calculated probability matrices and random
candidate selection.

Also, since combined generation and consumption values (G3_;, Dj_;) have different
probabilities, the probability for each pair is considered as multiplication of each
individual probability. For calculating the total probability of each scenario (P), the
probability of each individual hour is accumulated and then averaged. These probabilities
are stored in a scenario’s probability matrix:

pl = [P7,PI,PI,..,P7], P € RYS.
In this method, the main optimization problem consists of sub-optimization problems

for each scenario. In other words, the optimal solution is the one that minimizes the
defined cost function while considering all scenarios. However, this does not guarantee

4.25)
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that the solution is also optimal for each individual scenario. A general optimization
problem is defined as:
$
min, ZTiT.Xi.PiT 4.26)
i=1
S.t. Xi,min < Xi < Xi,max

where F; is the vector of optimization variables, X; represents the vector of optimization
factors, and PL-T denotes the probability of each scenario’s occurring within the
corresponding optimization horizon. Additionally, $ represents the number of selected
candidate scenarios. To manage the complexity of the optimization process, only ten
most probable scenarios are selected from the generated set after sorting them by
probability. It is also worth noting that the probabilities of the selected scenarios are
normalized to reflect their relative differences.
Furthermore, the sub-optimization problem for each scenario is defined as:

min Z EI™ x ToU™ — ESP x ToUS™. 4.27)
h=0
The objectives and constraints for Eq. 4.27)can be represented as:

Vhi, 0< P};_,B [hl, 4.28)

. i i 4.29

v h: L 0= Pplv—>gr [h] + Pplv—>es [h] +P v—>ld [h] pv max’ )
, 4.30

v hi, 0= Pgr—»ld [h] gr—»es [h] < Rgr,max )

, i i 4.31

v h' L 0< Pés—»ld [h] + Pels—>gr [h] < Pes,max ’ )

V by i, Plyoialh] + Py gr [R] 4+ Biyes[] = B[R], 4.32)

v h i P! i i _ pi 4.33)

L Pessld [h] + Pgr—>ld [h] + va—>ld [h] - Pld [h]'

V i S0Cym < S0Cis[h] < SOC pax 4.34)

V h,i export],.[h] + import.,[h] <1 4.35)
4.36)

Y h,i chargels[h] + dischargels[h] <1,

where Eme (Pyr—ialh] + Pyr_eslh]) X t is the total imported energy for each hour

of the day from the grid, and E;,? = (Py,_g-[h] + Pk_4-[h]) X t represents the total
amount of net energy exported to the grid during hour (h). Also, ToU,ilmp, and ToU,™?
denote the time-of-use tariffs for imported and exported energy, respectively.
The notation P}_,;[h] represents power flow from point A to point B, and A, B € {pv, gr,
es}.

Eq. 4.28) ensures that all power flows are non-negative. Furthermore, P, 1;_,gr[h]
Ppiv_)es[h], and Pz‘;v_)ld [h] represent power flow from PV to grid, energy storage, and
load, respectively. The notation P, nax denotes the maximum allowable power output
from the PV system, constrained by the PV system size and power electronics limitations.

P;r_)ld [h], and P}._¢s[h], represent power flow from grid to load and battery storage,
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respectively, and Py, max is the maximum allowable power exchange with the grid.
Pl_4[h], and Peis_nqr[h] represent power flow from energy storage to load and grid,
respectively, and Pyg nax is the maximum charge/discharge power of the battery storage
unit.

Eqg. 4.32) and 4.33) are equality constraints ensuring that the optimization algorithm
satisfies demand and utilizes all available solar PV power under all conditions. Here,
Ppiv [~] and Plid [R] represent the generated and demanded power, at time h, respectively.
In Eq. 4.34), SoCin, S0oC nax define, respectively, the minimum and maximum allowable
battery SoC levels. Finally, Eq. 4.35) and 4.36) prevent the optimization algorithm from
generating infeasible solutions. For example, importing and exporting power to the grid
simultaneously is physically impossible. Therefore, export;,[h],and importgr[h] are
Boolean values, that enforce this constraint. A similar logic applies to energy storage,
where chargel;[h], and discharge’[h] are Boolean variables indicating the charging
or discharging state of the battery. If the battery is charging chargels[h] = 1, and
otherwise the dischargel [h] = 1.

This optimization problem is formulated as a MILP problem. The problem has been
implemented using the Pyomo optimization framework and solved using the Gurobi solver.

4.4 Performance Comparison

4.4.1 Key Performance Indicators (KPIs)
Various factors can be considered when evaluating the performance of home EMSs.
Depending on optimization goals and problem formulation, these factors may include
self-consumption ratio, electricity costs, energy storage utilization or charge/discharge
cycles, demand response quality, energy conversion losses, etc. In this thesis, the focus
is on two key performance metrics: electricity costs as the primary performance indicator
and building self-consumption ratio (6 € [0,100] %) as the secondary factor. However,
since the optimization problem is formulated solely based on minimizing the energy bill,
6 serves only as a performance measurement metric and does not influence the
optimization process. Yet, there is a possibility to redefine the optimization problem, and
formulate it based on botch factors. In this case, a multi objective optimization function
must be solved based on evolutionary algorithm such as genetic algorithm, or PSP methods.
Considering, the energy bill minimization, as the main goal, annual energy bill (Ap;;)
is defined as:

365 w
_ imp imp exp exp 4.37)
Apin = ZZEh,d X ToUpg — Epg X ToUp 4 -
d=1h=0

where, E[™P and EZ*P represents the amount of total energy the house has been

imported and exported from grid or to the grid, respectively. ToU,lZ"dp and ToUy{
represents the import and export electricity tariffs, respectively. Also, the annual

self-sufficiency ratio is defined as:

365 23
o= Epv—»ld [h: d] + Epv—»es—»ld [h, d] 4.38)
Epylh d] '

d=1h=0
where Epy,1q = Ppyia X t, Epy = By X t, and Ep,y o5 1 = Ppyoes—ia X t. The notation

E

pv—es—ia fepresents the amount of energy generated by the solar PV system, stored in
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the energy storage system, and later delivered to the load. This term is often overlooked
in literature, where the self-consumption ratio is typically calculated only by considering
the real-time power delivery from the PV system to the load.

The other important factor to consider, is energy autonomy ratio. This factor,
quantifies, the undependability of a house to the grid. This means, houses without any
on-site renewable energy generation units, are 0 % energy independence, regardless of
the size of home battery they might have. In regions far from equator, due to the short
days in the wintertime and limited solar energy generation, it is technically infeasible to
reach full energy autonomy. So, regardless of the installed on-site solar PV size, this
factor has a saturation point for each region. The energy autonomy (&), is calculated as:

365
. Z Egemana(d) — Eimpore(d) 4.39)
e - )

a=1 Edemand (d)

where Ejmpore Shows the total amount of imported energy from grid, and Egemang is the
total amount of daily energy demand. Fig. 4.6 visualize the relationship between these
three factors, considering various scenarios.
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The simplest approach involves exporting all generated energy to the grid while
importing all household demand (Scenario 1), resulting in zero self-consumption.
These Scenario 1 is not a reasonable strategy and is only considered for comparison
proposes. A marginal improvement introduces a home battery used solely for energy
arbitrage. This means charging from the grid during low-tariff periods and discharging
during high-tariff periods (Scenario 2). This scenario is also not a reasonable strategy to
apply but making calculation based by only considering energy arbitrage, gives beneficial
insights about home battery applications even when there are no solar PV installations.
More restrictive configurations limit the PV system to cover only on-site demand with
no provision for grid export or storage, leading to wasted surplus generation
(Scenario 3). Scenario 3 is possible to happen in residential buildings without home
battery installations, and without permission to export surplus energy to the grid. In
these cases, the curtailment strategies must be applied. If home battery is integrated,
then this extra energy can be supplied and stored in the home batter for later use. In
Scenario 4, excess energy is stored but cannot be exported, and in Scenario 5, energy
arbitrage is incorporated into the battery usage strategy, enabling optimized demand
shifting under a zero-export constraint.

Grid-interactive strategies without home battery (Scenario 6) prioritize
self-consumption and allow the export of surplus energy. This is a common setup in
residential systems without batteries. More advanced configurations combine local
consumption, battery storage, and conditional grid export. In Scenario 7, energy is first
consumed locally, then stored in the battery, and any remaining surplus is exported to
the grid. Scenario 8 builds upon this by giving priority to both self-consumption and
energy storage, while also enabling export if battery capacity is exceeded. Among all
considered configurations, Scenario 9 employs a smart EMS solution capable of real-time
decision-making based on current generation, load demand, battery state-of-charge,
and electricity tariffs. This dynamic control algorithm continuously evaluates the optimal
energy flow to minimize the overall energy cost.

Table 4.1 Performance comparison between various EMS scenarios.

EMS . . " . . . SFR* AEB* TIEG* TEEG*
Scenarios PV HB or SA GE EAR (%) (€) (kwh) (kwh)
Scenario 1 v x x x v x 0 28.03  33838.23 4210.42
Scenario 2 v v x x v v 0 -44.05 3388.23 421042

Scenario 3 4 x x x x x 34.74 209.41 2056.47 0
Scenario 4 v v x x x x 46.74 14899 2389.86 0
Scenario 5 v v x x x v 3474 176.47 2389.86 0
Scenario 6 v x x x v x 31.74 84.05 205197 2874.15
Scenario 7 v 4 x x 4 x 46,74  71.29  2389.86 2065.21
Scenario 8 v v Rule-based x v v 51.26 6091 1651.97 2474.15
Deterministic v v DSOMMINSNC 5105 3097 205295 1297.40
+ Rule-based
Stocachtic v v Probabilistic v v v 71.10 -97.48 1721.38 1170.78
Ideal v v Determinisic % v v 8544 N 1246.82 222471
forecasting ) 163.85 : :
Conventional x x x  x x 0 33101 338823 0
home

*HB: Home Battery, OP: Optimizations, SA: Smart Algorithm, GE: Grid Export, EAR: Energy Arbitrage, SSR: PV Self-
Sufficiency Ratio, AEB: Annual Electricity Bill, TIEG: Total Imported Energy from the Grid, TEEG: Total Exported Energy
to the Grid.
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From a feasibility and practical deployment perspective, Scenarios 7 through 9 reflect
the most realistic and beneficial strategies, particularly in modern smart homes equipped
with PV systems, home battery, dynamic tariffs, and advanced EMS capabilities.
Table 4.1 compares these scenarios and proposed solutions performances for different
parameters. It must be mentioned, the developed solutions in this thesis, can be
classified as a scenario 9. So, in the Table 4.1, instead of scenario 9, each specific method
is mentioned and considered. Also, an ideal forecasting case is included in the table to
give insights about the best possible achievement for a setup.

As one can notice in Table 4.1, the closest performance belongs to the stochastic
optimization case. Deterministic scenario fails to compete with stochastic solutions, due
to overlooking inherit uncertainty in the system. Rule-based solutions are simple to
apply but may not be as effective as complicated methods.
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Figure 4.7 Error injections to PV and load profiles. (a) PV profile fluctuations with error injections.
(b) Load profile fluctuations with error injections.

4.4.2 Sensitivity Analysis

Due to the intermittent nature of renewable resources and uncertainties related to
energy consumption profiles within dwellings, optimizing energy flow without
accounting for these natural uncertainties will lead to deviations from ideal operational
assumptions. To analyze the effects of uncertainties on the system's operational logic,
Monte Carlo simulation has been performed. To this end, random errors have been
introduced into the PV and load profiles. These errors are assumed to follow a Gaussian
distribution with a mean value of zero and standard deviations of 0.05 and 0.2,
corresponding to error levels of 5% and 20%, respectively. Fig. 4.7(a) and Fig. 4.7(b) display
the error injections to the daily PV and load profiles.
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Figure 4.8 System variables deviations from ideal condition in presence of error injection to PV and
Load profiles. (a) ESS SoC level deviations from ideal condition. (b) PV to load delivered power
deviations from ideal condition. (c) Grid to load delivered power deviations from ideal condition.
(d) ESS to load delivered power deviations from ideal condition.

The outcomes of these random error injections have been analyzed after 100 iterations.
Deviations in the system’s variables are depicted in Fig. 4.8(a)—(d). It is observed that the
parameter most affected among the demand response elements is the power flow from
home battery to the load. Conversely, the home battery’s SoC profile shows the least
deviation from ideal performance, despite these variations. This phenomenon can be
attributed to the fact that deviations do not persist for long periods, and the impact of
errors on energy flow optimization has a short-lived effect. Yet, at certain times,
the EMS’s decisions regarding energy flow supervision and demand response follow
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entirely different scenarios, especially in cases of 20% error injection. This leads the
algorithm to converge to different minimum, indicating that the deterministic EMS
solution’s robustness should be examined more thoroughly.

4.5 Summary

In this chapter, the building EMS has been introduced and formulated, and multiple EMS
strategies have been developed, including heuristic, deterministic, and probabilistic
methods. The performance comparison between these approaches reveals that, from an
implementation perspective, heuristic or rule-based methods are the most straightforward
to apply; however, they typically fall short in delivering high-performance outcomes.

On the other hand, probabilistic methods, while the most challenging to implement
due to their computational complexity and requirements for HPPUs, offer the most
robust and reliable performance. This is largely due to their ability to incorporate
uncertainty into the optimization process, resulting in more accurate and resilient
decision-making.

Deterministic methods provide a middle ground, balancing computational complexity
and performance between heuristic and probabilistic approaches. These methods can
include forecasting techniques to estimate near-future system states and make decisions
with increased confidence. However, they do not account for the inherent uncertainties
within the system. In probabilistic and deterministic methods, to ensure uninterrupted
power delivery, it is necessary to implement an additional layer of rule-based or
high-resolution control mechanisms. These layers are responsible for overriding or
adjusting the control signals generated by the optimization algorithm in scenarios where
unforeseen changes in power generation or demand could lead to failure in power
delivery from the dedicated source.

This chapter is based on paper lll, paper V, paper VI, and [48] and addresses research
task number 3 and hypothesis number 3. The main contribution is development of a two
home EMS solution for deterministic and stochastic resource optimization and allocation
in the residential nZEBs. Also, sensitivity analysis was conducted to investigate the
sensitivity of EMS performances related to forecasting errors.
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5 Size Optimization and Cost Justification

Infrastructure size optimization is a critical step toward developing sustainable and cost-
effective solutions, particularly in residential applications. Poorly optimized systems
often result in high upfront costs and extended payback periods, deterring potential
adopters. The absence of region-based and case-based techno-economic models has left
end-users uncertain about the profitability and long-term benefits of implementing
home battery and EMSs. Thus, a comprehensive, user-specific model that integrates
technical, economic, and contextual factors can provide clearer insights for both
customers, domain experts, and policymakers. To address these requirements,
a comprehensive techno-economic model has been developed in this thesis to
evaluate the influence of various parameters on system profitability and to estimate the
payback period based on user-specific input factors.

5.1 Techno-Economic Model Development

The developed model incorporates a physics-based battery SoH estimator, a linear PV
degradation model, and an online tariff extraction module. In addition, it accounts for
key economic variables such as energy market trends, inflation rates, and long-term
economic projections.

5.1.1 Battery Degradation Model

Many previous studies have largely overlooked the impact of battery degradation on
model performance. While this simplification may be justifiable for systems that are
inherently unprofitable, it becomes a critical limitation in models with the potential for
cost-effectiveness. In such cases, accounting for the aging effects of lithium-ion batteries
is presumed essential. The rate of battery degradation is highly dependent on the usage
strategy, meaning that different operational approaches can significantly influence
battery longevity. Consequently, incorporating degradation-aware optimization can lead
to strategies that not only extend battery life but also enhance the overall economic
performance of the system.

Capacity fading is the most significant drawback of Li-ion battery cell technology.
This parameter refers to remained cell capacity in comparison with nominal cell capacity.
This phenomenon is specified with two major factors: degradation due to time pass and
fading due to the amount of processed charge [49]. As a result, total capacity degradation
Crq € [0,100] can be obtained as:

5.1)

Ccycle

Crqg = Ceqy +

X 100,

nm
where C,,; € [0,100] represents the calendar capacity loss due to battery stock or
long-term relaxation and C.y¢e € [0, Cpp] is the capacity degradation resulting from
the amount of the processed charge during cells recharge/discharge cycles and
Cpm € (0,15] kWh is the nominal capacity of the fresh battery cell. Finally, by
considering both degradation factors, the SoH € [0,100]% level of the energy storage
can be formulated as:

SoH = 100 — Cgq. 5.2)
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For fresh batteries Cr, is zero and SoH is equal to 100%. Thus, SoH equals to zero
indicates that all capacity of the energy storage is decayed, and the battery is no longer
capable of storing and delivering energy.

In the developed energy storage fading model, calendar capacity loss is applied using
the superposition rule and is calculated as [50]:

Cearfade = (0.019 X S0C*8?3 +0.5195) x (3.258 x 107 x T5987 + 0.295) x m®8,  5.3)

where Ceq) raae € [0,100] represents the percentage of total calendric capacity loss
over the course of m months, and T denotes the ambient temperature in degrees
centigrade, and SoC refers to the cells’ available charge level, expressed in percentage,
during batteries’ stock period.

To calculate the calendar loss during energy storage operation, Eg. 5.3) should be
reformed. For simplification, the SoC value is approximated to be constant at 1-hour
intervals. As a result, the SoC value is averaged for the corresponding time slot,
represented by SoCyp g, € [0,100]. Given that the cell temperature is maintained at
25 °C, the capacity fading ratio for 1 hour period represented by C.4; 15, € [0,100] can
be computed as follows:

Cearan = (6.6148 X S0Cyp gy + 4.6404) X 107°. 5.4)

In Eq. (5.4), Ccqi1n represents the percentage of the capacity loss during each hour of
storing battery cells in the mentioned condition and S0Cy, 454 is the average of SoC levels
during each hour. So, it can be concluded that a higher SoC ratio accelerates calendar
ageing and for a long-term stock, cells should not be fully charged. Finally, the total
calendric capacity fade represented by C.,; can be linearly expressed as:

h
Cear = Z Ceat1n [z],
=1

where h is the total hours of energy storage operation and relaxing times.

To calculate the capacity fading of cells due to charge circulations, the model proposed
in [51] has been applied. In this empirical model, energy storage degradation is calculated
based on average SoC level and its deviation from the average value during each
charge/discharge event. The total cyclic degradation is compiled as:

5.5)

1 1

#6-2)
*, i * : i re, 56
Ccycle = 2?:1((kslsocdev,i e(ksz SoCa,,g,,) + ks3 ek54 Socde”’l)e( FATE Trer ) Qi > )

where C¢y . is calculated by accumulating all recharge and discharge cycles i. Q; is the
amount of processed charge during each recharge/discharge cycle which is function of
cell’s current and time duration of passed current. Here, k¢, ks, kg3, kss are the
parameters of the empirical capacity fading model. E, is the activation energy, R is the
gas constant, T; is the cell temperature at the ith charge or discharge moment, T,..¢ is a
reference temperature, both in Kelvin, and e is the total number of recharge and
discharge cycles. The numerical values for the mentioned parameters are collated in
Table IV.InEq. 5.6), SoCyg,,4 is average amount of SoCs and SoC,,, is normalized standard
deviation of SoC from SoC,;,, during each charge/discharge operation. For instance,
if a full-charged cell is completely discharged in one cycle, then both SoCg,,; and SoCye,
will be obtained as 50%. S0C,;,4 and SoC,,, have been formulated as:
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SOCdev =

Qm
S0Capg = % J SoC(Q) dQ,

m—1

Qm-1

3 Qm
Mf (S0C(Q) — S0Cag)°dQ |,

5.7)

5.8)

where @Q,, is the final amount of processed charge, Q,,_; is the initial amount of
processed charge before starting of energy circulation through battery cells, and 4Q,,, is
the absolute amount of charge processed in each operation cycle. It should be
mentioned that this model holds accuracy only under conditions where the cells are
persistently operating at temperatures above 25 °C.

Table 5.1 Circular capacity fading model’s constant parameters.

Parameter Value Unit
kgy -4.092e-4 -
kg, -2.167 -
kg 1.408e-5 -
kgy 6.13 -
E, 78.06 k.mol/J
R 8.314 J/k.mol
Tref 298.15 K
T; 303.15 K

5.1.2 Techno-Economic Model
Table 5.2 lists the considered financial and certain technical parameters that impact the
economic performance of the model.

Table 5.2 Financial and technical parameters.

Parameter Value Unit Symbol
Li-ion BESS cost 750 €/kWh Usess
BESS annual price reduction [52] 12% - Qeess
BESS value/size reduction 3% Per kWh Qsess/size
PV cost [53] 1300 €/kW Upv

PV value/size reduction 4% Per kW Qpv/size
PV lifetime [54] 30 Year Wey

ER cost [55] 250 €/kW Uer

ER lifetime [54] 15 Year Wer

ER efficiency [55] 98 % Qine

ER capacity 2.5-20 kW Prmax
EMS cost 200 €/unit Uewms
Load annual increase rate 3% Per year QL
Utility tariffs inflation rate 5% Per year Qur
Annual inflation rate 4% Per year Qan
Interest rate 3.5% Per year Qi
Feed-in tariff coefficient 0.8 - X
Maintenance cost [56] 1% of setup cost €/year Um

Payback time is the duration required to recover an investment. The primary factors
in calculating the payback time are the initial installation Capital Expenditure (CapEx),
inflation, and the economic performance of the system during operation.
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There are two methods to calculate this parameter: simple and discounted.
The annual inflation rate is a crucial factor in computing returns, rendering the simple
payback calculation method imprecise due to its exclusion of this rate. Consequently,
the discounted payback time 9, which incorporates inflation rates in the return
calculation, is more accurate and is computed as:

1
9=in| —=— | = In(1 + 24, 5.9)
1-— SC‘QAN
Ty
where my represents the total annual cash flow in the system, {. denotes the initial
investment, and (), signifies the annual inflation. However, due to the impact of system
fading on performance over time, causing my to vary each operational year,
modifications to the conventional discounted payback formula are necessary to yield

accurate results. Consequently, Eq. 5.9) is modified as:

m
-
Oy = =&, — &4+ g”k—ﬂk 5.10)
=1 1+ FHk

where 9, is the remaining investment amount for compensation, &, is the annual
operating cost of the system, and ¢y, is the utility bill in the month number k if the user
has not installed any solar or energy storage. For instance, considering a corresponding
ke, month to be 30 days, @y = X72° Ejoaq,; X Uroy,j - @k represents monthly net

utility bill after deploying the PV and home battery setup and calculated as follows:
24%30

5.11
Py = Z [(Eg; — YEr DUroy,j + Epx,jCrx] + Crx. J
=1
In Eg. 5.10), the term Z}(":l((p";—:f)k — &4, represents the net present value of the profit
1+ —AN

12
the user accrues after equipping the house with the PV and home battery setup. &, is

compiled as:

ée = UBESSCnm(1 - QBESS/sizeCnm) + UpyOpy (1 — Qpy/0eOpv) + UprPrnax + Upmy,  5.12)

where @py, is the solar system size (kWp), U, is the unit price of installing each of the PV,
home battery, ER, and EMU. P4, is the selected EnergyR size in kW, and €, e
represents the cost/size reduction rate for both energy storage and PV panels. Also, &,
is compiled as:
§a=8Un(1 + 24n)Y + KppssUppss(1 + Qyn — Qppss)¥2Ess 5.13)
+ KprUpr(1 + Q4n) "R,

where y represents the running age of the setup in years, and Uy € [0,1] represents the
annual maintenance cost ration, and here is assumed to be 1% of &.. kgr and kggss
denote the number of times the EnergyR and energy storage have been replaced
respectively during setup run, ¥, indicates the year in which the replacement occurred,
and Qpgpss represents the annual price reduction in the market for the energy storage
technology. Based on Eq. 5.10), the payback time is the first month in which the 9, turns
to a positive value. Algorithm 5.1 summarizes the calculation procedure in the
highlighted section.
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Algorithm 5.1 Economical parameters calculation
1: Input: Eg, Ef, ﬁTaUﬂ?Vsizer BESSsize, ﬁsile, Table VI parm.

forv, s, rin Wsize, BESSsize,ﬁsize do
Calculate &.[v, s, 7] based on Eq. (35).
Calculate & 4[v, s, 7] based on Eq. (36).
for kinm do

Calculate @, [v, s, ] based on Eq. (34):
24+30

6 d)k < Z [Eg,u,s,r,j - YEf,U,S,T,j]UTDU,j + EEx,v,s,r,jCEx + Cfx
=
Calculate 9, [v, 5, 7] based on Eq.(33):
7: Bue = = &elvs,r] = Eilvs,rl+ ) @y
k
8: if9,, = 0then
9: paybackl|yv, s, r] = k
10: end if
11: end for
12: Calculate 8[v, s, r] based on Eq. (30)
13: Calculate &[v, s, 7] based on Eq. (31)
14: end for
15: forvin ?Vsize do
16: Select s’ € 5,1’ € r which satisfies:
’ V(s,1), Ourlv, s, 7'l < 9yklv, s, 7]
17: end for
18: Return: optimal setup values, 5, S'_ g

5.1.3 Results

Results show that, energy storage capacity degradation significantly affects the system’s
performance in terms of both revenue acquisition and the quality of demand response.
In all analyses. The pivotal role of battery nominal size in influencing the rate of cells
aging is evident from the simulation results. Fig. 5.1 shows the SoH level of home battery
for all simulated configurations, with Fig. 5.1(a) illustrating a more gradual degradation
in larger battery packs compared to smaller ones. This can be attributed to the slower
increase in the number of charge and discharge cycles experienced by larger battery
packs during operation. Nonetheless, the aging rate of the batteries are multifactorial,
being affected not only by the cycle number but also by other elements such as cell
temperature, DoD level, and cell current during charges and discharges. In practical
experiments, it has been reported that capacity fading exhibits an exponential trend for
Li-ion battery cells [57]. Generally, assuming normal operating conditions—encompassing
one charge/discharge cycle per day, standard operating temperature, and DoD—the linear
annual degradation rate for Li-ion batteries can be estimated to range between 2—4%.
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Figure 5.1 Battery degradation ratio for all possible combinations of PV and home battery.
(a) Degradation level dependency on BESS size. (b) Degradation level dependency on solar
generation setup size.

Moreover, the PV size has a bearing on the battery packs’ degradation rate; larger
solar power generation can lead to increased battery usage and, consequently,
additional degradation. This correlation is demonstrated in Fig. 5.1(b). Comparing
Fig. 5.1(a) and Fig. 5.1(b) reveals that the SoH level is predominantly influenced by
battery size over PV power capacity. This observation is attributed to the fact that setups
with larger solar power generation units tend to export excess energy to the main grid
more, thus earning revenue, reducing payback time.

Fig. 5.2 shows investment returns (dotted red line) and other pertinent economic
factors for the studied house, illustrating the annual cash flow, capital, maintenance, and
replacement costs for a case study house in Estonia. In the initial decade, the owner is
primarily responsible for annual maintenance and capital costs. However, in the second
decade, replacement costs for BESS and power electronic devices are incurred, typically
arising at the 10th and 15th years of operation, respectively. This fee is represented as a
step down in the cash revenue graphs, aligning with the replacement costs. In all
configurations, if any BESS setup reaches its EoL point before the expiration of its
warranted lifetime, it is promptly substituted with a new battery pack.
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Figure 5.2 Economic performance analysis of the case study house in Estonia.

Fig. 5.3(a) presents a discounted payback time analysis for all PV-home battery
combinations. Given the four-dimensional nature of the generated results, the EnergyR
dependency is omitted to facilitate clearer visualization, and only the most suitable
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EnergyR is selected for each PV-home battery size. From the outcomes, the minimum
achievable payback time is observed to be around 5 years. The blue horizontal dashed
line in Fig. 5.3(a) and Fig.5.3(b) illustrates the profitability frontier. Here, 10 years is
specified in accordance with the lifespan of battery packs. Thus, if the system cannot
reach the break-even point within the aforementioned time, it is deemed economically
impractical. The results reveal that considering the energy market condition in 2022,
choosing the size of PV systems larger than 9 kWp will mostly yield income for the owner.

V size = 1 KWp S PVsizeEskWp |, PVsize=9kWp | T

=2kWp PV size = 6 kKWp PVsize=10kWp PV size=14kWp

PV Jize= 17 KWp.
PV KWp

=3KWp  _._PVsize=7TkWp  _. PVsize=11kWp _ PVsize=15kWp e PVsize=19kWp
=4KWp  _,_PVsize=8kWp . PVsize=12kWp _PVsize=16kWp PV size =20 KWp

Payback (Year)

BESS size (kWh)

(a)

L, BESS size - 1 kWh . BESS size—6 kWh _ TBESS dize = 1 kowh |
_+ BESS size =2 kWh o BESS size = 7kWh . BESS size = 12 kWh

BESS size =3 kWh 4-BESS size =8 KWh + BESS size = 13 kWh
o BESS size = 4 KWh . BESS size = 9 KWh _aBESS size = 14 KWh 1
. BESS size = 5 kWh BESS size = 10 kWh o BESS size = 15 kWh

Payback (Yaer)

I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1
PV size (kWp)

18 19 20

(b)

Figure 5.3 Discounted payback calculation of PV-home battery combinations. (a) For each BESS size
when the PV size is swept in its range. (b) For each PV size when the BESS size is swept in its range.
The Y axis has a logarithmic scale in (b).

Fig. 5.3(b) indicates the dependencies of payback time on BESS size for each specific
PV system. This observation demonstrates that, in Estonia, for residential applications,
PV-home battery systems with a PV size less than 4.5 kWp are not profitable, even with
very small-sized home batteries. Moreover, the impact of PV size on payback time is
substantially more pronounced than the impact of home battery size. This is predominantly
because, with partial green energy generation, the majority of BESS capacity is allocated
to energy arbitrage. Nevertheless, due to battery protection policies and constraints in
power electronics, energy arbitrage exhibits lesser dependence on home battery size
variations when the PV size is held constant. Consequently, in the present circumstances
in Estonia, solely installing home battery in houses without PV systems does not emerge
as a feasible solution for long-term use.
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Table 5.3 displays the most profitable home battery—EnergyR sizes for each PV
arrangement, along with the associated repayment periods and expected income after
20 years of operation. These outcomes are derived from evaluating two distinct
scenarios. The first scenario considers the current incentive under the feed-in policy,
while the second scenario assumes the termination of the feed-in policy for residential
applications. In the latter scenario, surplus solar energy is channelled to the home
battery, optimizing system benefits to meet load demands; thus, no electricity is fed back
into the utility grid.

Table 5.3 Most profitable combinations’ economical results.

F(’\k/v\sllé;e FiT Bat('f((iNryhs)lze ER size (kW) Payback (year) Revuene (€)
1 0.8 ToU 1 2.5 12.25 2484
- 1 2.5 17.1 507
) 0.8 ToU 2 2.5 11.09 5603
- 2 2.5 18.62 841
3 0.8 ToU 2 25 9.05 8524
- 2 2.5 19.15 349
4 0.8 ToU 3 5 9.6 11463
- 2 5 19.63 106
5 0.8 ToU 4 5 9.1 14528
- 2 5 > 20 -1097
6 0.8 ToU 4 5 8.06 17779
- 2 5 >20 -1822
7 0.8 ToU 5 7.5 8.4 21117
- 3 7.5 > 20 -2480
3 0.8 ToU 5 7.5 8.03 24556
- 3 7.5 >20 -3095
9 0.8 ToU 6 10 8.22 27983
- 3 10 >20 -3653
10 0.8 ToU 6 10 7.65 31516
- 3 10 >20 -4159
11 0.8 ToU 7 10 7.25 35117
- 3 10 >20 -4614
12 0.8 ToU 8 12.5 7.01 38574
- 4 12.5 >20 -5014
13 0.8 ToU 9 12.5 7.18 42231
- 4 12.5 >20 -5368
14 0.8 ToU 9 12.5 7.69 45956
- 4 12.5 > 20 -5672
15 0.8 ToU 10 15 8.45 49566
- 4 15 >20 -5931
16 0.8 ToU 10 15 6.03 53429
- 4 15 >20 -6146
17 0.8 ToU 12 15 6.02 57269
- 4 15 >20 -6321
18 0.8 ToU 14 17.5 6.11 61139
- 5 17.5 > 20 -6456
19 0.8 ToU 15 17.5 6.42 65154
- 5 17.5 >20 -6559
20 0.8 ToU 15 20 6.93 69126
- 5 20 > 20 -6631
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5.2 Single-Cell Three-Phase Solution

The payback time results presented in the previous section underscore the importance
of delivering cost-effective solutions to enhance the economic viability of EMS
integration. In this context, hardware improvements are just as vital as software
advancements within such complex systems. The energy router, serving as the hardware
core of the proposed EMS platform, plays a pivotal role in enabling diverse operational
possibilities and system flexibility.

Simultaneously, the rapid integration of renewable energy sources, has significantly
transformed the topology of modern power distribution networks. This transition
demands that power systems accommodate a growing proportion of distributed
behind-the-meter renewable energy source, introducing new challenges in managing
decentralized and localized energy flows. Also, grid congestion and phase imbalances
have become more prominent, especially in residential areas, due to the increasing
prevalence of home EV charging facilities.

Considering both economic and technical challenges, this thesis introduces a
single-cell three-phase EnergyR topology. In this configuration, the EnergyR is designed
to interface with all three phases of a residential three-phase grid connection.
This capability enables the EnergyR to provide phase balancing services not only within
the household electricity network but also to the external grid. Such functionality
addresses growing concerns related to phase imbalance, enhancing the stability and
efficiency of modern residential power systems.

5.2.1 Single-Cell Three-Phase EnergyR Topology

Fig. 5.4 shows the proposed topology for a Single-Cell Three-Phase (SC-TP) EnergyR and
its experimental prototype. In this configuration, a dc bus can interact with all ac phases
through an energy router, but not simultaneously. Phase balance can be enhanced by
detecting and reducing the power consumption of the phase with the highest demand.
Since the power drawn from the three phases in a three-phase connected buildings often
varies significantly, reducing the phase imbalance ratio with the proposed solution could
lead to substantial economic benefits by eliminating the need for two additional
converting cells. Table 5.4 shows the technical specifications for SC-TP energy router.

Figure 5.4 Abstract view of the proposed single cell topology connected to three-phase terminal
with EV charger, PV, and ES integration and its experimental realization [58].
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Table 5.4 EnergyR technical parameters.

Parameters Value
Rated power 15 kW
Grid and load side ac voltage (RMS) 230 V-50 HZ
dc-link voltage 350V
Nominal current of each phase 25A
Switching frequency 65 kHz
Solar voltage input range 150 - 600 V
ES voltage input range 150-330V
dc-link capacitor 3mF

5.2.2 Analysed Scenarios and Problem Formulation

To validate the hypothesis and assess the effectiveness of the proposed topology, data
on annual load consumption from a residential house located in Tallinn, Estonia, were
collected and analyzed. The house is connected to the electricity grid via a three-phase
terminal, and the owner has an EV. The data were collected at a 3-second resolution;
however, for simplicity and improved visualization, it was averaged and down sampled
to a 1-hour resolution. Fig. 5.5 illustrates and compares a snapshot of initial phase
imbalances and phase statuses after ideal phase balancing actions. In initial mode, it is
evident that phase 3, labeled “L3”, delivers less power compared to the other two
phases, indicating that the EV charger should be connected to this phase. However, as
observed, severe phase imbalance occurs during EV charging, regardless of which phase
the EV is linked.
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Figure 5.5 Imbalanced and balanced phase power range comparison assuming ideal phase
balancing possibilities.

In this thesis, three EnergyR topologies include: Single-Cell Single-Phase (SC-SP),
Three-Cell Three-Phase (TC-TP), and SC-TP, are considered and their capability for phase
balancing have been compared with each other. The SC-TP EnergyR is the upgraded
version of the SC-SP energy router. The 10 kWh Li-lon battery pack is used as an ES.

65



Here, the phase imbalance ratio is defined as:
T

UB% =y Lunote 100 5.14)
P Lavg,t N
Lunbl,t = Max ( |Lavg,t - Ll,t| + |Lavg,t - L2,t| + |Lavg,t - L3,t| ) 5.15)

5.16
Lavge = (Lig + Loe + Lye)/3 )

where Ly, Ly, L3; is a power consumption for phase 1, 2, 3 at time t, respectively.
Lgpg, is the average power consumption from all phases in time t and Lyqp;; is a
maximum power deviation from Lg,, ; at time t. N is the total number of time steps in
which the phase unbalance is calculated. Finally, UB % is the average phase imbalance.
To minimize the UB% ratio an optimization problem is formulated for the TC-TP mode
as:

Min f(x) = Min(|Lipg — L] + |Ling — L3 + |Liwg — L] 5.17)
subject to:

v 20 5.18)

PV, + PV, + PV, <PV 5-19)

ES,, + ES, + ES,, <ES 5.20)

Li—PV, — ES, =L}, i=123 5.21)

where Ly, = (L7 + L3 + L3)/3 represents the average demand and L}, is each phase’s
demand from the electricity grid after allocating available renewable energy resources.
Here, y denotes the phase number. PVly and ESly represents the allocated energy from

solar energy production and home battery, respectively. PV and ES denote the total
accessible energy from renewable setups and batteries, respectively. In Eq. (5.17),
x represents optimization factors, x = [PV, , PV, PV, ES; , ES;, ,ES,, ]. Finally,
the home battery SoC level should be updated as:

ESir; = min(ESpay, ES — ES,, — ES,, — ES;, + PV'))

where, ES; 4 is the home battery, SoC (%) for the next time step, and ES,,,, denotes
the maximum energy capacity of the home battery, and PV denotes the remaining
generated solar energy after demand responding. It should be mentioned that, in all
equations, energy is considered instead of power, since this assumption simplifies the
equations.

In SC-TP mode, the optimization problem must be reformulated. Algorithm | outlines
the optimization process for SC-TP mode, where the phase with the maximum load
demand is identified at each time step. The EnergyR then links this phase to the DC link
and injects renewable or stored energy to meet the demand, in the selected phase.
In SC-SP mode, since phase exchange is not possible and the EnergyR remains
permanently connected to phase “L1,” the optimization problem simplifies into a
reduced version of Algorithm |, with the index consistently set to 1.

5.22)
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Algorithm 1 SC-TP Energy Optimization Algorithm

1 Input: Annual load profiles (fl , l;, E),Annual PV profile (PV).
2 fori=1tondo:

3 lindgex, index = max (lu b I )

4: Index = [1, 2, 3]

5: X, y = Index.drop(index)

6: Minf(x) =Min (|l:1,vg,i - ;’ndex,il + Ilr,;vg,i - lJ’C’,il + |lgvg,i - l;,zl)
7 Subject to:

8: avgi = VG (Ungex Loy 1)

10: ;lndex,i =0

11: l{Index,i = lindex,i - PV”i - ES”i

12: PV", < PV;

13: ES"; < ES;

14: ES;.1 = min(ES,.. ,ES; — ES"; + PV, — PV")

22:  end for

23:  Return: optimal values PV";, ES";

Fig. 5.6 presents a normalized radar chart comparison across all topologies, measuring
variables such as UB%, PV self-consumption ratio, average SoC (%) of home battery,
capital costs and average load per phase during an experimental test period. Each
category is normalized to its maximum observed value. For example, the average load
per phase is highest when the house does not utilize any local renewable energy sources.
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Figure 5.6 Normalized radar chart comparison for all topologies.

Calculations show, in conventional houses, the phase balance ratio is better than in
scenarios where the PV setup is connected to only one phase. The greatest phase
imbalance is observed in the SC-SP topology, indicating that the presence of PV in this
configuration reduces the phase balance ratio. This is because, in such operational
modes, the generated renewable energy is only injected into one phase and significantly
lowers the demand on that phase alone. Meanwhile, the other phases continue to draw
the same demand from the grid and are unable to benefit from PV production or stored
energy. Considering that the SC-SP topology is a commonly used option in residential PV
setups, this underscores the necessity of proposing novel solutions for improving phase
balance ratio.

The TC-TP topology outperforms other configurations in all categories, including PV
self-consumption ratio, phase balance ratios, and average home battery’s SoC (%) level.
However, its capital cost ratio is 1.35 times higher than that of the SC-TP topology, posing
a further barrier to adoption in residential buildings, where economic feasibility is a
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critical factor. Furthermore, the TC-TP topology can reduce grid interaction across
all phases at a similar rate, whereas the SC-TP topology does not achieve the same
performance, with the management algorithm primarily focused on reducing interactions
on phase L1. This is because, for most of the time, the demand on L1 is higher than on
the other two phases, prompting EnergyR to link PV and home battery resources to this
phase. It is important to note that phase switching frequency is constrained by numerous
factors; in this study, it is set to 15-minute intervals.

Fig. 5.7 compares the performance of SC-TP, SC-SP, and TC-TP topologies over a
10-day continuous operation period during spring, when PV power generation is at its
moderate level. Solar power production and load demand are identical across all phases
in each scenario, as shown in Fig. 5.7(a). Additionally, Fig. 5.7(b) compares each scenario’s
interaction with the electricity grid. The SC-SP topology exhibits the highest energy
exchange and, consequently, the lowest self-sufficiency ratio, whereas the TC-TP
topology achieves the lowest energy exchange and the highest self-sufficiency ratio.
Notably, phase balance is prioritized as the optimization objective across all scenarios
rather than maximizing self-sufficiency. This leads to slightly lower self-sufficiency ratios
than if the optimization had focused solely on maximizing self-sufficiency.

Additionally, a comparison of the home battery SoC under both single-phase and
multi-phase operating conditions is presented in Fig. 5.7(c). The results indicate that
when the EnergyR distributes PV-generated power and stored energy across all phases,
battery charge and discharge cycles become more frequent, which diminishes battery’s
longevity by increasing stress on the battery cells. Notably, when the EnergyR and battery
operate in single-phase mode, the energy management algorithm has fewer opportunities
to maximize the usage of locally generated energy and the self-consumption ratio. This
leads to an increased need for PV curtailment or grid injection when the battery is fully
charged, ultimately resulting in lower battery utilization. However, this approach helps
maintain a higher battery health ratio.

A comparison of various operational modes indicates that the TC-TP topology is the
least effective at protecting battery cells from rapid degradation, while the SC-SP mode
achieves the highest battery health status during operation compared to other modes.
Under high solar energy availability, the performance of the SC-TP mode is comparable
to, though slightly better than, the TC-TP mode in terms of battery longevity. However,
when solar energy is limited, the SC-TP mode outperforms TC-TP by using the home
battery less frequently.
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Figure 5.7 Comparison of the three different topologies performances during first 10 days in May-
2022. (a) Load demand and PV generation. (b) Amount of energy exchange with the electricity grid
(negative values show imported energy and positive values show exported energy to the electricity
grid). (c) home battery SoC (%) level during systems’ operation.
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Figure 5.8 Comparison of the topologies based on weekly aggregated performance over a year:
(a) Total load demand and PV generation for each week; (b) Total weekly energy exchange with the
electricity grid; (c) Average weekly SoC (%) ratio of the home battery.

While this improved longevity is beneficial, it may not fully meet end-user expectations,
as reduced battery operation increases reliance on the electricity grid to meet demand.
Therefore, it is essential for the energy management unit to account for battery
degradation costs, but it should not behave so conservatively and thus lower the system
performance. The proper strategy should be able to prioritize resource allocation based
on electricity tariffs. Fig. 5.8 presents a comparison of the performance of the investigated
operational modes over a year. From a broader perspective, the differences between
topologies become clearer. For example, during winter, particularly between weeks
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10 and 20, when solar generation is exceptionally low, grid interactions are quite similar
across modes. However, during peak solar generation, particularly between weeks 30
and 50, the SC-SP topology shows significantly higher grid interactions, leading to
increased grid power flow and potential congestion. This outcome further highlights the
limitations of the SC-SP topology in maximizing PV self-consumption, as most of the
on-site generated solar power is injected back into the grid. However, two other
topologies have been able to utilize locally available renewable sources, to minimize their
energy exchanges with the electricity network. The differences between topologies
interaction with the electricity network is demonstrated in Fig. 5.8(b).

Fig. 5.8(c) compares the average SoC (%) levels across topologies. It is evident that
during periods of low solar generation, TC-TP utilizes home battery more frequently than
the other two topologies. However, when solar generation increases, the SoC (%) levels
between topologies become more similar, though TC-TP still charges and discharges the
batteries more often. Interestingly, the performance of SC-SP and SC-TP topologies is
almost identical, with both benefiting from home battery in an equivalent manner.
Finally, Fig. 5.9 shows number of times the EnergyR linked renewable resources to each
phase in SC-TP topology. Also, Fig. 5.10 presents a comparison of the cost distribution
between different EnergyR components in case of SC-TP and TC-TP.
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Figure 5.9 A number of times, each phase is connected through EnergyR to the local renewable
energy sources.

The cost analysis is based on the retail price of the components used for a single
prototype. It includes the cost of all semiconductors and passive components, such as
heatsinks and inductors. However, the cost of the printed circuit board and the enclosure
used for the demonstrator are not included in the calculations, as these costs are not
representative and strongly depend on scaling.

The total cost of the considered components for the porotype of SC-TP EnergyR is
approximately 1700 euros. The diagram shows that the most expensive part of the
prototype relates to the auxiliary (common) components, such as power supply circuits,
heatsinks, and relays. The prototype of the TC-TP EnergyR was not assembled or used in
real tests. However, its cost was evaluated based on a bill of materials collected to design
the prototype. The total power of the three-phase inverter, as well as the power of the
single-phase inverter, was the same, following the same concept with a common ground
approach.
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Figure 5.10 Cost comparison diagram which shows the cost distribution between different EnergyR
components in case of SC-TP and TC-TP.

The overall cost of the components included in the analysis is around 2100 euros,
which is 25% higher than that of the SC-TP energy router. This cost increase is attributed
to the higher number of components required for redundant circuits to connect PV setup
and home battery to all three phases. It should be noted that the absolute values
presented in this thesis cannot be directly used for primary cost estimation, as they
strongly depend on scaling, the supply chain during production, and auxiliary circuit
optimization. However, the relative comparison is reliable and can be used for cost
analysis.

5.3 Summary

This chapter presented a comprehensive approach to optimizing the size and economic
feasibility of residential energy systems, focusing on PV systems, battery storage, and
Home EMS. A techno-economic model is developed to estimate realistic payback periods
by accounting for battery degradation, PV performance, market tariffs, inflation, and
user-specific load profiles. The findings show that usage strategies and battery size
significantly impact lifespan and return on investment.

Furthermore, simulation results based on real residential data demonstrate that PV
size is the dominant factor influencing profitability, while battery size has a secondary
role. PV systems above 9 kWp typically offer the shortest payback times, especially under
feed-in tariff policies. Systems below a certain size threshold are not economically viable.

To address hardware-related cost and performance trade-offs, a novel SC-TP EnergyR
control strategy is introduced. This control algorithm is designed to maximize phase
power balances across grid phases and reduces phase imbalances. Compared to other
topologies, the SC-TP offers a favorable balance between cost, performance, and battery
health, making it a suitable solution for scalable and sustainable residential EMS.

This chapter is based on paper | and paper IV and addresses research task number 2
and hypothesis number 1 and 2. The main contribution is development of an optimal size
calculator tool and phase balancing strategy for a SC-TP energy router.
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6 Performance Report, and Future Direction

6.1 Performance Report

To validate the proposed Building EMS, a DC-aware hybrid platform was experimentally
realized and tested in a nZEB at TalTech campus. As stated before, the system integrates
hardware and software components designed to optimize power flows between PV
generation, home battery, building loads, and the utility grid while supporting both AC
and DC distribution. The overview of the setup is proposed at Introduction section,
Fig. 1.2. As evidence in Fig. 5.4, in this platform two DC buses are provided. A 350 V
non-isolated bus for heavy DC loads and BESS interfacing. A 48 V isolated bus for light
DC loads and consumer devices through smart sockets with USB Type-C outputs.
Furthermore, The EnergyR supports three standard communication protocols (CAN,
Modbus, Wi-Fi).

In this setup, a Raspberry Pi 4 is used as the HPPU. The HPPU exchanges data with
components, including ES, the Graphical Ul, EnergyR, load simulator, cloud, and the
internet. During system operation, the HPPU, runs an optimization function based on the
collected data, and then sends control commands to the EnergyR to determine the
appropriate energy source (PV system, BESS, or grid) for meeting the demand. In current
setup, CAN interface is utilized for home battery and building EMS data exchange, and
Wi-Fi connection is utilized for connecting a cloud-based server to the edge HPPU and
LCD display UL. Fig. 6.1 presents the temporal flowchart of the HPPU’s operation.
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Figure 6.1 Temporal flowchart for HPPU operation and various sections operational resolutions.
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As mentioned earlier, since human presence is not feasible in this stage of
development, to replicate household demand profiles, a load simulator was developed
using an ESP32-based controller which supports integrated radio frequency (RF)
communication and Wi-Fi protocol, to activate and deactivate various loads with
mechanical relays. Table 6.1 lists the AC and DC loads along with their average daily
power consumption. Fig. 6.2 shows the overview of load profile replication with the
developed load simulator. Loads connected during testing included typical household
appliances, categorized into AC and DC devices. On average, DC-compatible loads
accounted for 15% of daily demand, including lighting, personal computers, and small

electronics.

Table 6.1 DC and AC loads daily consumption shares.

Avg. demand Avg. active time
Name AC/DC (kWh/day) per day*
Lights DC 0.9 6 hours
Personal computers DC 1.2 4 hours
Mobile chargers DC 0.015 3 hours
Vacuum robot DC 0.1 1 hour
Oven AC 0.5 10 minutes
Fridge AC 1.2 24 hours
TV AC 0.55 5 hours
Dish washer AC 4.5 2.5 hours
Luandry machine AC 0.8 0.5 hour
Cook-top stove AC 6.4 2 hours
Microwave AC 0.1 10 minutes
Iron AC 0.17 5 minutes
Hair dryer AC 0.4 30 minutes
Misselenous AC 1 1 hour

* Numbers are daily averaged based on total weekly consumption of devices. The house is considered to have
a 3-phase connection with 17.32 kW capacity.

Control Signals

Figure 6.2 Load simulator overview.
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6.1.1 Day-Ahead Solar Forecasting Performance

Fig. 6.3 shows a performance of day-ahead solar forecasting unit after deployment in the
cloud server. Asitis visible, the forecasting tool has in general shows a good performance
during the operation. However, since the prediction of cloud movements are not
technically possible, so, it is not possible to accurately follow all up and downs of solar
power generation during the day. In practice, instead of prediction instantaneous value
of solar generation, for residential applications, the precise prediction of accumulated
hourly and daily solar generation is considered as a suitable performance. These
forecasts are utilized as an input for EMS for energy optimization and resource allocation.

Figure 6.3 Comparison of actual and day ahead forecasting for solar power generation.

6.1.2 Optimization Performance Monitoring

The EMS utilizes hourly electricity tariffs, solar generation forecasts, and a demand
profile for optimal resource allocation. In each iteration, it minimizes the objective
function based on current and future system states. However, it is important to note that
high-level control signals lack the resolution needed to effectively regulate AC and DC
bus voltages and prevent any violations related to power quality. Therefore,
high-resolution underlying control algorithm is needed to operate at a microsecond
scale and ensure uninterrupted power delivery to the end user. EnergyR is using
proportional-integral-derivative (PID) controller for this purpose. For example, suppose
the EMS sends a command to use solar PV-generated power to meet the demand for the
next hour. However, a partially cloudy sky may frequently interrupt solar power
generation, making it infeasible to supply the required power at certain moments.
In such scenarios, the EnergyR must take over and utilize stored energy or draw
electricity from the grid to compensate for the power deficiency.

Fig. 6.4 illustrates the EMS performance over a single day of operation. As shown,
the algorithm decides to charge the home Battery when there is a surplus of solar PV
power generation and later uses it to supply the demand when electricity tariffs are high.
A key highlight is that the EMS chooses to charge the batteries during the early hours of
the day. Based on the forecast for solar PV generation on the following day, the algorithm
anticipates insufficient renewable power to meet all the demand, and it is evident in
Fig. 6.4 (b) that the home battery is discharged during the peak hours at the end of the
day. Fig. 6.5 shows the snapshots, collected from power waveforms during EnergyR’s
operation including power conversion stages for interfacing various energy sources to
the AC and DC loads.
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Figure 6.4 EMS performance logs during its operation. (a). Energy flow inside the building electricity
network and building-grid power exchanges. (b).

Solar PV Output v
Current

AC output voltage
and current

Cur: 2.2129A
Avg 22304A
Max: 2.2934A

Figure 6.5 EnergyR experimental results supplying AC bus by means of solar power as the main
energy source.

From the EMS perspective, both DC and AC loads behave similarly; the primary
difference lies in the energy losses incurred when supplying these loads from an AC or
DC bus. For example, by connecting devices such as lights, personal computers, mobile
chargers, and a vacuum robot to a DC bus, the calculations show a daily energy saving of
110.75 Wh is achievable. This saving is primarily due to the elimination of dual DC/AC/DC
conversions, which are independent of EMS performance. Theoretically, the energy
saved could reach up to 891.75 Wh per day, representing approximately 7% of the total
daily energy consumption.

During wintertime, when solar power is often unavailable due to snow coverage and
limited daylight hours, the impact of using DC technology becomes negligible. This is
because the loads are primarily supplied by electricity from the AC grid, and an AC/DC

conversion stage is still required to feed DC loads. In such periods, economic savings are
the focus, achieved through energy arbitrage.
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6.1.3 Home Battery Operation Logs

Fig. 6.6 presents the home battery status logs during its charge and discharge cycles.
The SoH ratio is also monitored during home battery operation. Capacity fading or
degradation is a major factor affecting the economic performance of battery storage
systems. Intense battery usage can lead to accelerated degradation; however, batteries
often recover a portion of lost capacity after adequate rest periods. In our experiments,
based on short-term degradation monitoring and assuming a linear degradation
pattern, it is estimated that the home battery will reach 80% of its nominal capacity in
approximately 10 years, which is commonly considered the end-of-life threshold. After
this point, battery degradation accelerates, and their round-trip efficiency drops.
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Figure 6.6 Home batter operation logs during charge and discharge cycles.

6.2 Future Direction

6.2.1 Digital Twinning

While the experimental realization of the building EMS has demonstrated its technical
feasibility and energy-saving potential, the long-term development of such systems
requires deeper integration with Digital Twin (DT) technologies. Digital Twins extend the
physical testbed by creating a synchronized virtual replica of the building and its energy
infrastructure, enabling advanced monitoring, prediction, optimization, and resilience
analysis. Fig. 6.7 represents and compares the DT and physical twin of building EMS.
One example of a DT is Google Maps, which models geographical details for services like
route planning by synchronizing with real-time data.
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DT technology in power systems, could accelerate and streamline the energy
transition. Considering buildings as an example, they should autonomously manage their
energy tasks, exchange data, and participate in energy markets. They could collaborate
with neighbours to form district level energy communities, provide EV charging services,
engage in peer-to-peer energy exchange, and rent out infrastructure such as Battery.
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Figure 6.7 Differences between digital twins and simulation models.

The motivation for adopting DT technology stems from several challenges observed
during experimental realization:

1. Scalability — Physical testbeds cannot easily replicate diverse demand
profiles, weather conditions, or tariff schemes. DTs allow exploration of
multiple scenarios in a risk-free virtual environment.

2. Resilience and Reliability — DTs can predict the impact of faults (e.g., inverter
malfunction, battery degradation) and suggest corrective strategies before
disruptions occur.

3. Market Integration — DTs enable buildings to simulate their participation in
energy markets, peer-to-peer trading, and demand response, supporting
proactive decision-making.

4. Lifecycle Optimization — By tracking degradation, usage patterns, and
efficiency losses, DTs support predictive maintenance and long-term
investment planning.

The next phase of this project envisions adopting a hierarchical DT platform. This
structure is illustrated in Fig. 6.8. In this approach, a core, component-agnostic DT
provides essential functionalities such as data collection, synchronization, and
visualization. On top of this foundation, component-specific DTs are developed for PV
arrays, batteries, and energy routers. These component DTs can then be aggregated into
a building-level DT, which itself can be integrated into larger ecosystems, such as
community microgrids or national grid platforms.

This approach simplifies DT development while addressing compatibility challenges.
The proposed core DT model is component-agnostic, providing only the essential
functionalities required to build component-specific DTs on top of it, much like how a
computer Operating System (OS) offers fundamental services while supporting the
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installation of application-specific software. For instance, a BESS DT would incorporate a
state-of-health estimation module using electrochemical models (e.g., PyBaMM), while
a PV DT would integrate irradiance-based generation prediction models (e.g., pvlib).
Together, these sub-twins form a comprehensive virtual building energy system capable
of high-fidelity simulations, real-time performance tracking, and optimization under
diverse operating conditions.
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Figure 6.8 Hierarchical platform for DTs and establishing a complex DTs using local DT agents.

6.2.1.1 Core DT

The backbone of proposed layered DT structure is called a core DT. Core DT automates
data collection, cleaning, processing, visualization, and finally provides near-real-time
knowledge for higher level systems. Figure 3 illustrates the core DT which compromise
only base requirements, including: “Data interface” block which facilitates data exchange
operations, “DT OS” block which manages DT units’ operations. Fig 6.9 shows various
blocks and parts of Core DT.
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Figure 6.9 Core DT architecture and functional blocks. (LEC: local energy community, MG: micro grids).

Core DT consist of several layers and blocks, such as data interface, DT OS, Data
Engineering, Data Analysis, and Twins Interface.

Data Interface: This layer acts as the communication bus and ensures that data
exchange among internal DT blocks, between different DTs, and with the physical world
adheres to the defined protocols, determined by the origin and destination of data
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packets. It provides a framework for message passing across the entire involved parties.
All messages—whether sensor readings, control signals, or simulation outputs—must
pass through this layer to be routed to the appropriate components.

Users Interface: This layer provides all necessary services for visualizing and
interacting with the DT model. Interactions typically occur via mobile applications or
web-based dashboards. Users may include general end-users—who adjust system
settings, define optimization objectives, or stream reports on techno-economic
performance—and experts, who monitor system conditions and manage maintenance
activities.

DT OS: This layer acts as the central coordinator for DT operations. The “Kernel” serves
as the core execution engine, managing resources and orchestrating inter-component
communications. The “Synchronization” block ensures that the DT is consistently
updated in real time by aligning data streams and events from physical sensors with their
virtual models, thereby maintaining state consistency. The “Task” block allocates
process, service, or data as required, executing tasks based on incoming requests while
verifying their authorization and legitimacy. Finally, the “Request” block receives,
organizes, and processes requests from both external and internal sources, ensuring that
all requests are handled efficiently and securely.

Data Engineering: This block is responsible for all data acquisition, processing,
formatting, cleaning, and storage. These processes are supervised and coordinated by
the “Data Manager” block, which ensures data quality, consistency, and readiness for
downstream tasks. Since DTs interact with diverse data types—such as time-series data
from sensors, graph-based data representing relationships or network topologies,
structured records from enterprise systems, and temporary state data used for real-time
decision-making—the choice of database technologies must account for scalability,
efficiency, and low-latency performance.

Data Analytics: This layer provides all services required for data analytics, including
“visualization”, “forecasting”, “optimization”, etc. Since functionalities in this section are
highly dependent on the specific use case for which the DT is designed, as well as the
physical asset it represents, more details will be provided in the applied case study.

6.2.1.2 nZEB DT

A nZEB DT can be created by adding building-specific functionalities to the core DT,
as illustrated in Fig. 6.10. The modular framework allows for the integration of
component-specific features. For example, the “High-Fidelity Simulation” section
supports the modeling, simulation, and power flow calculations of the building’s
electricity network. The “Simulation Models Manager” ensures that the digital model
consistently reflects the building’s electricity network, including loads and energy
sources. “Component Models” provide services for holding and delivering component-
specific models, such as loads and home battery models. This framework, also,
introduces advanced DT functionalities to buildings, such as “building as a service”.
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Figure 6.10 Building DT architecture developed based on core DT framework. (loT: internet of things).

Integrating DT technologies into building EMS platforms, could potentially result in
several benefits. However, this integration also may rise several challenges as a side
effect, enabling virtual commissioning, enabling synergetic operation of building as an
energy block in future intelligent power networks, and introducing better user
experience and interactions with a building EMS. Furthermore, several challenges of this
technology are, lack of standardization, and universal design, data exchange latency,
higher computational complexity, and security issues.

6.3 Summary

This chapter presented the performance evaluation of the proposed DC-aware EMS and
outlined future directions with a focus on DT integration. The performance report
highlighted the successful experimental realization of the hybrid AC/DC building EMS.
The experiments demonstrated the effectiveness of the platform in coordinating
renewable generation, storage, and grid interaction. However, since integration of
several layers of control, condition monitoring, and optimization is necessary for a safe
and reliable operation of building EMS platforms, thus it is necessary to extensively test
such systems before real deployment of them for normal user usage.

Looking forward, the chapter highlighted DT integration as the next step in building
EMS platforms. A DT enables the creation of a synchronized virtual replica of the building
and its energy infrastructure, providing advanced monitoring, prediction, optimization,
and resilience analysis. The envisioned hierarchical DT framework builds upon a core
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model that offers essential functionalities such as data synchronization, engineering,
and analytics. This approach facilitates scalability, predictive maintenance, market
participation, and improves user interaction. Nevertheless, the integration of DT
technology presents challenges related to standardization, data exchange latency,
computational requirements, and cybersecurity, which must be addressed in future
research.

This chapter is based on [43] and [59] and addresses research task number 5. The main
contribution is experimentally testing the proposed system in a controlled environment
and ideal conditions.
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7 Conclusions

Integration of solar power harvesting facilities is an initial step toward making buildings
energy independent. The next stage in boosting building energy autonomy is the
installation of local energy storage systems, such as home batteries. In large-scale
buildings, such as shopping malls and complexes, hydrogen storage technology can
also be a viable option. Having both generation and storage facilities may appear to be
the ultimate solution for maximizing building self-sufficiency. However, this thesis
demonstrates that without an intelligent supervisory EMS, it is highly challenging to
maintain synergy between energy generation and consumption.

Moreover, a high-performance EMS requires accurate estimation of both the available
solar energy and the expected demand in advance to solve the optimization problem and
define an optimal (or suboptimal) trajectory and energy usage scenario. Insights into
near-future possibilities can be obtained either through classical forecasting methods or
by applying data-driven Al- and ML-based tools. Thanks to advancements in computational
power and the abundance of data, Al and ML models often outperform classical methods.
However, in data-scarce scenarios, such as newly installed solar power generation systems,
Al models exhibit poor performance. To address this challenge, physics-based models
can be coupled with Al models to improve accuracy when insufficient historical data is
available.

Because of the stochastic nature of both energy generation and consumption, it is
impossible to predict future trends with perfect accuracy. Thus, relying solely on
deterministic approaches for scenario generation and power flow optimization reduces
EMS performance. A better approach is to integrate system randomness and employ
stochastic optimization methods, enabling the system to handle uncertainties and
generate solutions that may not be optimal for a single scenario but are optimal across
multiple possible scenarios.

Power electronics also play a crucial role in improving the energy performance of
buildings. Based on the investigations in this thesis, the author argues that integrating
DC solutions is essential for future building technologies. Utilizing a DC network inside a
building offers several benefits, including reduced energy loss from power conversions
and the elimination of AC/DC conversion units inside electronic devices. Furthermore,
with the emergence of DC microgrids and DC neighbourhoods, integrating a DC-equipped
building into larger systems becomes more straightforward compared to AC-based
buildings.

Finally, as loT technology becomes an integral part of modern buildings, which are
equipped with air conditioning systems, smart devices, and advanced sensors, the digital
twinning of building from energy perspective can further enhance performance of EMSs.
This approach facilitates the transition toward fully autonomous building energy
management at an advanced level. Here, “advanced” refers to a stage in which a building
can handle all energy-related tasks without user intervention, achieve defined goals (e.g.,
minimum energy bills, maximum energy autonomy), and autonomously interact with
intelligent power systems, other buildings, EVs, e-scooters, etc. Potential applications
include participation in energy markets, providing utility services, and enabling peer-to-
peer energy trading.

As a results of thesis, author can claim the following:

e Stochastic optimization techniques outperform deterministic and rule-based
solutions; however, any high-level optimization algorithm is only effective
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when supported by a high-resolution low-level control algorithm that can
monitor and react to system status changes at microsecond resolution.

e  Physics-based models can enhance the performance of data-driven and
ML-based models when the amount of historical data is insufficient for
training. Furthermore, physics-based models can be used for synthetic data
generation to train ML models, which helps improve their performance.
Based on studied data and PV setup, including physics-based model,
ultimately improves a ML models accuracy by 20%.

e A hybrid AC/DC solution for residential buildings’ internal electricity
distribution networks improves energy performance only if sufficient solar
energy is available. In winter, particularly in northern parts of Europe where
solar irradiance is very limited, a hybrid solution may decrease a building’s
energy performance.

e For residential applications in Estonia, considering climate conditions and
electricity prices based on data from 2022-2024, not all combinations of
PV-home battery setups are beneficial. Case studies show that PV systems
smaller than 4 kWp and home batteries below 5 kWh are not profitable once
degradation effects are considered.

Future work will focus on improving EMS performance through benchmarking of novel
stochastic and data-driven (both model-free and model-based) control methodologies,
as well as extended field testing to monitor the seasonal effects on system performance.
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Abstract

Energy management system for single-cell three phase
energy router in residential applications

This dissertation develops and validates an integrated hardware—software platform for
residential Building EMS that couples rooftop PV, a home battery, and flexible loads
through a cost-effective, single-cell, three-phase EnergyR. The work is motivated by
the growing complexity of low-voltage networks, where behind-the-meter renewables
and EV charging intensify variability and phase imbalance; buildings therefore need
EMSs that can forecast, optimize, and coordinate power flows while remaining
economically viable. The thesis formulates clear aims and hypotheses: optimal sizing can
shorten payback times; a single-cell interface can serve three-phase grids; stochastic
optimization can outperform deterministic methods under uncertainty; and hybrid
physics—data-driven forecasting can improve day-ahead accuracy when historical data
are limited.

Methodologically, the platform comprises (i) a hybrid day-ahead PV forecast that
fuses a physics-based model with a ML branch (LightGBM regressors conditioned on
SYNOP weather codes) and a sequence model (BiLSTM self-attention encoder—decoder),
to produce the final prediction; (ii) residential demand forecasting using LSTM/XGBoost;
and (iii) an EMS optimizer implemented as heuristic rules, a deterministic MILP in
Pyomo/GLPK, and a scenario-based stochastic MILP to explicitly handle forecast and
tariff uncertainty.

Across 100 evaluation days, the hybrid forecast outperforms LSTM, BiLSTM, XGBoost,
LightGBM, encoder—decoder, physics-only, and persistence baselines, supporting the
hypothesis that hybridization improves accuracy in data-scarce, weather-sensitive
settings.

A techno-economic framework integrates market tariffs, inflation, PV performance,
and an explicit battery degradation model to compute realistic payback times. Case
studies with real residential data show PV size dominates profitability while battery
capacity plays a secondary role; PV systems > 9 kWp typically yield the shortest payback,
whereas undersized systems may be uneconomic.

On the hardware side, the thesis proposes and justifies a SC-TP EnergyR that connects
a single conversion cell to all three phases non-simultaneously via controlled relays,
enabling phase-aware power dispatch and balancing within the home and at the grid
interface. This topology reduces phase imbalance by steering PV/ battery power to the
most loaded phase while avoiding two additional conversion cells.

The complete platform is experimentally validated at TalTech’s nZEB. Collectively,
the contributions include a cold-start-robust solar forecasting method, a scenario-based
stochastic EMS optimizer, an infrastructure sizing tool accounting for battery fade, and
the SC-TP EnergyR concept that lowers capex while improving technical performance.
These achievements, advance the readiness of residential buildings to participate in
future intelligent, renewable-dominant power systems.
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Lihikokkuvote

Energiahaldussiisteem iiheelemendilisele kolmefaasilisele
energiaruuterile elamutes

Kaesolevas vaitekirjas arendatakse ja valideeritakse integreeritud riist- ja tarkvaraplatvorm
elamute energiahaldussiisteemidele (EHS), mis Glhendavad paikesepaneelid, akusalvesti
ja paindlikud koormused kulutdhusa (iheelemendilise kolmefaasilise energiaruuteri
(EnergyR) abil. T66 on motiveeritud madalpingevorkude kasvavast keerukusest
tanu lisanduvatele taastuvenergiaallikatele ja elektriautolaadijatele, mis suurendavad
muutlikkust ja faaside tasakaalustamatust. SeetGttu vajavad hooned EHS-e, mis suudavad
prognoosida, optimeerida ja koordineerida energiavooge, jdades samas majanduslikult
tasuvaks. T6O sdnastab selged eesmargid ja hilipoteesid: optimaalne akusuurus vdib
lihendada tasuvusaega; Uheelemendiline vorguliides vdib teenindada kolmefaasilisi
vorke; stohhastiline optimeerimine vGib ebakindluse korral lletada deterministlikke
meetodeid; hiibriidsete andmepdhiste mudelitega prognoosimine véib parandada
ennustuse tapsust, kui ajaloolised andmed on piiratud.

Platvorm koosneb jargmistest komponentidest: (i) hibriidsest pdev-ette
paikesepaneelide tootlikkuse prognoosist, mis ihendab fiisikalise mudeli masindppe
(ML) haruga (LightGBM regresioonid, mis s6ltuvad SYNOP ilmaprognoosi koodidest) ja
jarjestusmudeliga (ingl. BiLSTM self-attention encoder—decoder), mis tagab 18pliku
prognoosi; (ii) elamute energia ndudluse prognoosimudelist (LSTM/XGBoost); (iii) EHS
optimeerijast, mis on realiseeritud heuristiliste reeglitena (deterministlik MILP
Pyomo/GLPK mudel) ja stsenaariumipdhise stohhastilise MILP-na, et ilmutatud kujul
kasitleda prognoosi ja tariifi madramatust.

100 hindamispdeva jooksul (letas hibriidprognoos LSTM, BiLSTM, XGBoost,
LightGBM, encoder—decoderi, fiilsikalise mudeli ja pusiva baasjoone tulemused,
kinnitades hiipoteesi, et hilbridmudel parandab tulemuse tapsust puudulike andmete ja
ilmastikust soltuva konfiguratsiooni korral.

Tehno-majanduslik raamistik ithendab turuhinnad, inflatsiooni, pdikesepaneelide
tootlikkuse mudeli ja aku vananemismudeli, et arvutada realistlikud tasuvusajad.
Reaalseid elamute andmeid kasutavad uuringud naitavad, et PV pargi vdimsus maarab
kasumlikkuse, samas kui aku mahutavus mangib teisejargulist rolli; PV-sisteemid
> 9 kWp annavad tavaliselt lihima tasuvusaja, samas kui alamd6d6dulised slisteemid
voivad olla majanduslikult ebaotstarbekad.

Riistvaraga seoses pakub vaitekiri valja SC-TP EnergyR topoloogia, mis suudab
rakendada Gihte muunduri elementi (mitte samaaegselt) kolme faasi jaoks kasutades
relee juhtimist, vdimaldades nii faaside vahelist vGimsuse jaotamist ja tasakaalustamist
kodus ja vorgu liidesel. See topoloogia vahendab faaside tasakaalustamatust, suunates
PV/aku véimsuse kdige koormatumasse faasi, véltides samal ajal kaht lisamuunduri
elementi.

Kogu platvorm on eksperimentaalselt valideeritud TalTechi liginullenergiahoones.
Kokkuvottes tootati valja kilmkaivitust taluv pdikeseenergia prognoosimise meetod,
stsenaariumipdhine stohhastiline EHS optimeerija, akude v&imsuse viahenemisega
arvestav infrastruktuuri mé&tmise tdoriist ja SC-TP EnergyR kontseptsioon, mis vahendab
kapitalikulusid ja parandab tehnilist jdudlust. Need saavutused edendavad elamute
valmisolekut osaleda tulevikus intelligentsetes, taastuvenergia poolt domineerivates
elektrisiisteemides.
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Battery energy storage systems (BESSs) are essential in enhancing self-sufficiency, sustainability, and delivering
flexibility services. However, adoption of this technology in residential applications is constrained, predomi-
nantly due to its suboptimal economic performance. A proper selection of design parameters and optimal
resource utilization can significantly enhance performance and establish economic feasibility. This research
introduces a photovoltaic (PV)-BESS optimization framework, formulated to ascertain optimal infrastructure
sizing, and maximize economic performance. The proposed tool considers various elements, such as energy
storage state of health status, renewable profiles, residential load profiles, and prevailing energy market con-
ditions. A novel rule-based, non-linear optimization method is developed, with a focus on maximizing revenue
while considering energy storage (ES) degradation to project more accurate and realistic scenarios and payback
periods. Employing the Estonian energy market as an illustrative case study, the model probes the potential of
integrating ES and PV technology in North European residences. The model achieved the shortest payback period
of five years in our case study, underscoring the emerging potential of such technologies in behind-the-meter
applications.

1. Introduction stands out in the residential sector compared to other green energy
methods, owing to its adaptable scale, low-maintenance nature, and
extended lifespan. However, the intermittent nature of solar energy re-

quires innovative solutions to fully harness its benefits. For example,

THE profound impacts of carbon emissions, including global warm-
ing and climate change, are currently both undeniable and intolerable.

Fossil fuels have been the predominant source of such emissions for
centuries. This has led to the intensified adoption of stricter global
regulations and the development of eco-friendly technologies aimed at
mitigating reliance on fossil fuels. For example, the European Union’s
energy performance of buildings directive necessitates that all new
constructions adhere to near-zero energy building (nZEB) standards
p[1]. This regulation implies that newly constructed buildings are
obligated to produce as much energy as they consume on an annual
scale.

Solar panels, or PVs, facilitate the harvesting of solar energy, with
capabilities ranging from several watts to megawatts. This technology

integrating energy storage systems (ESSs) into existing PV setups serves
as a significant solution. Such storage systems alleviate the intermit-
tency of renewable energy sources, stabilize grid frequency, and
contribute to enhanced flexibility and power balancing p[2]. Further-
more, the substantial gaps in electricity tariffs have made energy arbi-
trage a profitable earning opportunity for ESSs p[3].

Despite the numerous advantages of including energy storage sys-
tems beside PV setups, their adoption has not piqued public interest,
largely due to economic drawbacks, such as high upfront costs and long
payback periods p[4], P[5]. In many regions without subsidies, the
economic viability of integrating ESs is often questioned p[6].

Abbreviations: BESS, Battery energy storage system; PV, Photovoltaic; ES, Energy storage; SoH, Energy storage state of health; NZEB, Near-zero energy building;
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Consequently, various governments have implemented subsidy in-
centives to propel the adoption of these technologies p[7], P[8]. For
instance, the newly implemented tax reduction policy for energy storage
installations in Italy significantly impacted the economic viability and
profitability of the technology p[6]. On the other hand, integration of PV
systems into residential grids is currently proven to be highly profitable
worldwide p[9]. Thus, incentives which only support PV installations
are scheduled to be phased out soon.

Projection of utility prices for the next 20 years indicates an upward
trend due to increased demand, transition to renewable energy sources,
and infrastructure investments p[4]. Fig. 1 illustrates the weekly average
end-user electricity price trends in Estonia from 2020 to 2022. Statistics
reveal that, at several points in 2022, energy costs were up to ten times
higher than in previous years, setting new records. Additionally, the
utility tariff experiences notable daily fluctuations. Fig. 2 displays the
oscillations in electricity tariffs on August 23rd, 2022, with the peak
period price being approximately five times that of the off-peak period
on the same day. These daily fluctuations in tariffs introduce new op-
portunities for energy arbitrage and underscore the importance of load
shifting and peak shaving in reducing consumers’ electricity bills. Such
growing and disproportionate trends signal to users the need to optimize
their consumption patterns, both quantitatively and temporally.

Existing studies will soon be less accurate due to new market vari-
ables, policy adjustments, and the advent of new technologies. However,
it remains crucial to incorporate the findings and methodologies pro-
posed in these studies for future research. Paper p[10] examined the life
cycle cost optimization of BESS in residential applications, concluding
that for a standalone system, the break-even price for Li-ion batteries is
400 €/kWh. In contrast, for grid-connected modes, the calculated BESS
price is as low as 30 €/kWh, which is significantly below the current
market prices.

The authors in p[11] calculated the optimal size of the hybrid
PV-BESS system using commercially available products like TESLA and
ENPHASE power walls, concluding that BESS prices would need to
decrease by 40-70% to be profitable for customers. Work p[12] analyzed
various electricity pricing methods and, in the best scenario, determined
the minimum payback period to be approximately 10 years. Researchers
in p[13] explored the integration of BESS in existing PV systems, eval-
uating three different tariff strategies including fixed, dynamic, and
double tariff. Another study p[14] found that utilizing BESS with
grid-connected PV systems is economically viable for residential build-
ings in Finland. Validation of simple rule-based methods for BESS con-
trol and battery degradation model have been investigated with
experimental measurements in p[5]. Study p[4] identified that, for
average homes in Germany, the optimal configuration comprises a PV
system size above 6 kWp combined with a 5 kWh BESS and a 2.5 kW
inverter.

Control strategies and optimization methods play an essential role in
concluding the economic model. In p[15], ESSs control methods have
been reviewed. The Internet of energy-based building energy manage-
ment systems is reviewed in p[16]. Optimal charge/discharge
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Fig. 1. Weekly average electricity tariff in Estonian energy market.
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Fig. 2. Electricity price oscillations on August 23rd, 2022, Estonia.

scheduling for BESS considering feed-in feasibility has been introduced
in p[17]. Work p[18] proposed a MILP optimization method for a home
energy management system with the main objectives of reducing utility
cost, demand side management, and maximizing occupant comfort
levels. HOMER, a microgrid software design tool, has been used to
obtain optimum sizes for hybrid PV-BESSs in p[19,20]. The
multi-objective optimization framework has been developed in p[21].
The authors considered energy and power independence and payback
period as objectives and feed in tariff (FiT), battery degradation, PV
orientation, and setup capital cost (CC) as optimizing variables. The
operation and optimization of grouped BESS have been evaluated in
p[22]. The interaction of electric vehicles (EVs) as an ES unit for
PV-integrated houses has been evaluated in p[23,24]. In p[2] a resi-
dential apartment is analyzed as a local energy community for a
cost-effective PV-BESS design. Conventional and intelligent energy
management methods have been reviewed in p[25].

Given that Li-ion batteries possess a typical operational lifespan of
less than 15 years, the majority of cited studies have concluded that,
without governmental assistance and subsidies, the installation of resi-
dential BESS remains economically unviable. However, considering
recent significant shifts in the energy market such as reductions in
battery costs, increased electricity prices, and technological advance-
ments, the integration of energy storage with PV systems seems to be
gaining interest due to the potential for profitable returns. Nonetheless,
economic viability is profoundly influenced by the system’s design
process and operational policy.

Many studies have incompletely addressed various technical aspects
in their models. Some have omitted considerations of aging factors
p[26]1, p[27], p[28] including battery p[6], P[19], p[29] and solar panel
degradation p[29], p[30]. Others have overlooked the impacts of power
electronics, accounting for storage round trip efficiency p[14], p[22],
maintenance p[12], p[13], p[22], and replacement costs P[31]. Addi-
tionally, economic elements like annual inflation were ignored in p[13],
p[21], p[22]. Some studies employed optimistic prices p[32], and many
incorrectly treated elements’ size/cost coefficients as constant. Conse-
quently, the results from these studies may tend to be optimistic.
Including such non-ideal parameters is, however, unnecessary when
even the ideally modeled system lacks economic attractiveness. Table 1
compares the proposed solution with the state-of-the-art and provides an
overview of the objectives and methods applied in the literature.

The lack of reliable personalized techno-economic models has left
end-users in uncertainty regarding the profitability of deploying such
systems. A comprehensive personalized model that encapsulates all the
mentioned details can thus offer clearer insights for customers and au-
thorities. Additionally, a universal platform applicable to diverse situ-
ations across different regions could facilitate the discovery of optimal
policies and enable the designing of personalized systems suited to in-
dividual cases.

Addressing identified gaps, this paper presents a personalized
techno-economic model evaluating diverse parameters on system prof-
itability and payback time. The model integrates a physics-based battery
SoH estimator, a linear PV degradation model, and an online tariff
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extractor. It also factors in key economic variables, such as energy
market dynamics, inflation rates, and projections. By using a novel rule-
based non-linear objective function, the model optimizes energy distri-
bution in the residential grid to both maximize annual revenue and
minimize storage degradation. This involves solving a cost function in
every iteration to achieve the optimal energy distribution and shortest
payback period. While this research focuses on the Estonian market, the
adaptable model can cater to different regions and residential setups
with parameter adjustments and requisite data input.

Online energy market data
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é 2.1. BESS specifications
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i The selected lithium-ion (Li-ion) cells for this application are of the
g lithium iron phosphate (LiFePO4) type, part of the 18650 Li-ion battery
ES S xoxoxoxox x x x xS xS K xS X family. This technology is recognized for its suitability in residential and
Y EV applications due to its safety, long cycle life, and thermal stability, as
g highlighted in reference pp[49]. To maximize the lifespan of these bat-
ﬁ tery cells, operational guidelines based on the manufacturer’s recom-
g mendations dictate that the maximum and minimum allowable state of
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charge (SoC) levels should be maintained at 90 % and 15%, respectively.
Adhering to these SoC thresholds ensures that the maximum possible

Literature review and comparison with current study.
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Fig. 3. Solar power generation at different days selected from four different
months in 2022, Tallinn, Estonia.
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Fig. 4. Energy management unit abstract structure equipped with PV-BESS-ER.

incremental depth of discharge (DoD) — the measure of how much
energy has been drained relative to the battery’s total capacity — does
not exceed 75 %. The difference between the initial and final SoC during
a cell’s discharge cycle, denoted as ADoD, is critical for optimizing
battery health and performance over time. This operational strategy not
only prolongs the life of the battery but also maximizes energy avail-
ability for user applications.

Normally 20 % reduction from battery nominal capacity is consid-
ered as the cells” end-of-life (EoL) point for EVs and mostly this criterion
is selected between 20 % and 40 % for residential applications p[50]. In
this study, battery cells EoL is considered as a point where cell capacity
reaches 70% of its nominal capacity. This criterion enables the re-use of
second-hand EV battery packs in residential grids. Some studies p[51],
p[52], p[53] pointed the possibility of benefiting secondhand retired EV
batteries as energy storages. Subsequently, researchers have investi-
gated the application of second-hand batteries in residential grids p[35],
P[54]. However, batteries during their second life have lower roundtrip
efficiency due to their fast internal resistance growth. This phenomenon
decreases the system’s overall performance and leads to higher power
losses.

Table 3

Bess Technical Specifications.
Specification Value Unit
Cell voltage 3.3 A
Cell stored energy 3.63 Wh
Cell nominal capacity 1.1 Ah
Internal resistance 12.6 mQ
Battery roundtrip efficiency 92 %
Continuous discharge current 30 A
Continuous charge current 4 A
ADoD 75 %
EoL 70 %
Cycle life, 100% DOD 2000> Cycles
Calendar life 10 Years
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The specifications for the cells of the battery pack can be found in
Table 3, with most of the parameters extracted from the battery data-
sheet pp[55]. Energy storage is presumed to be housed within dwellings.
Consequently, the ambient temperature is maintained at 25°C
year-round, irrespective of the external temperature. For the sake of
simplicity, it is assumed that the temperature is uniform across all bat-
tery cells. Based on the datasheet values and cell current ratios, the
temperatures of all cells are presumed to be 30 °C during operation. This
assumption is valid as the single-cell current during the controlled and
limited charge/discharge phases is significantly below the maximum
permissible current limits. Note that, to meet the required energy stor-
age capacity in the designed residential grid, battery cells are stacked in
series and parallel form. For instance, in order to have a BESS with 5
kWh energy storage capacity and selecting an output dc voltage level
equals to 330 V, 100 battery cells should be stacked in series and in 14
parallel branches.

3. Proposed method

In this section, the proposed method will be introduced, starting with
the BESS degradation model. This will be followed by the development
of the system cost function and the formulation of the optimization
problem. Then, the energy management algorithm will be discussed.
Finally, the economic model and the principles of calculation will be
discussed in detail.

3.1. Battery degradation model

Many studies have largely overlooked the impacts of battery degra-
dation on model performance. This simplification may be a valid
approach for systems that are inherently unprofitable. However, for
models that are potentially cost-effective, it is presumed essential to
consider the aging impacts of Li-ion batteries. Different methods of
battery usage significantly influence the rate of battery aging. Conse-
quently, optimal strategies can effectively prolong battery life and
favorably influence the economic model’s performance. The effects of
BESS degradation in various systems have been explored in P[56], P[57],
P[58]. Several works have assessed the degradation characteristics of
Li-ion batteries and their influencing parameters. Data-driven ap-
proaches have been employed in p[59], P[60], p[61]. Physics-based
models are discussed in p[62], p[63], and reduced physics-based solu-
tions for SoH estimation have been utilized in p[64], P[65]. Finally,
equivalent circuit models have been implemented in p[66], P[67].

Capacity fading is the most significant drawback of Li-ion battery cell
technology. This parameter refers to remained cell capacity in com-
parison with nominal cell capacity. This phenomenon is specified with
two major factors: degradation due to time pass and fading due to the
amount of processed charge p[49]. As a result, total capacity fading
Crg € [0,100]%can be obtained as:

Ceyele,
Cu = Cearu +% x 100, (€D)

where C.q € [0,100]% represents the percentage of calendar capacity
loss from the initial nominal capacity due to battery stock or long-term
relaxation and Ceyr € [0, Crr] is the capacity degradation resulting from
the amount of the processed charge during cells recharge/discharge
cycles and Cpm € (0,15] kWh is the rated energy of the fresh battery cell.
Finally, by considering both degradation factors, the SoHe [0,100]%
level of the energy storage can be formulated as:

SoH = 100 — Cyy. 2

For fresh batteries Cy is zero and SoH is equal to 100%. Thus, SoH
equals to zero indicates that all capacity of the energy storage is
decayed, and the battery is no longer capable of storing and delivering
energy.
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In the developed energy storage fading model, calendar capacity loss
is applied using the superposition rule and is calculated as p[68]:

Cean = (0.019 x SoC*** +0.5195)
x(3.258 x 107 x T>%7 +0.295) x m*%, (3)

where C.qm € [0,100]%represents the percentage of total calendric ca-
pacity loss over the course of m months, and T denotes the ambient
temperature in degrees centigrade, and SoC refers to the cells” available
charge level, expressed in percentage, during batteries’ stock period.

In order to calculate the calendar loss during energy storage opera-
tion, Eq. (3) should be reformed. For simplification, the SoC value is
approximated to be constant at 1-hour intervals. As a result, the SoC
value is averaged for the corresponding time slot, represented by
S0C1hayg € [0,100]%. Given that the cell temperature is maintained at 25
°C during relaxation times, the capacity fading ratio for 1 hour period
represented by Cq1n € [0,100]% can be computed as:

Ceatin = (6.6148 X S0Cy 0 +4.6404) x 1076, @

In Eq. (4), Ccain represents the percentage of the capacity loss
during each hour of storing battery cells in the mentioned condition and
SoCihay is the average of SoC levels during each hour. So, it can be
concluded that a higher SoC ratio accelerates calendar ageing and for a
long-term stock, cells should not be fully charged. Finally, the Ccqy
can be linearly expressed as:

h
le,ﬂl = Z Ceat1h [T]~ 5)
=1

where h
times.

To calculate the capacity fading of cells due to charge circulations,
the model proposed in p[65] has been applied. In this empirical model,
energy storage degradation is calculated based on SoC level average and
its deviation from the average value during each charge/discharge
event. The total cyclic degradation is compiled as:

is the total hours of energy storage operation and relaxing

e A (T
Couest = Y_Fix 0 xe ( ) : ©

=1
Fy = ki S0C o050 4 kg ¥Ciens, )

where Cylfq is calculated by accumulating all recharge and discharge
events denoted as i. Q; is the amount of processed charge during each
recharge/discharge event which is function of cell’s current and time
duration of passed current. Here, kg, k2, ks3, ks are the parameters of
the empirical capacity fading model. E, is the activation energy, R is the
gas constant, T; is the cell temperature at the i charge or discharge
moment, T is a reference temperature, both in Kelvin, and e is the total
number of recharge and discharge events. The numerical values for the
mentioned parameters are collated in Table 4. In Eq. (7), SoCay is
average amount of SoCs and SoCy,, is normalized standard deviation of

Table 4
Circular capacity fading model’s constant parameters.
Parameter Value Unit
ka1 -4.092e-4
k2 -2.167
ks 1.408e-5
k4 6.13 -
E, 78.06 k.mol/J
R 8.314 J/k.mol
Ty 298.15 K
T; 303.15 K
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SoC from SoCyy, during each charge/discharge operation. For instance,
if a full-charged cell is completely discharged in one cycle, then both
S0Cqyg and SoCy,, Will be obtained as 50%. SoCqy, and SoCg,, have been
formulated as:

1 Q1
S0Coyy :A_Q,/Q SoC(Q) dO, 38)
Q1
S0Cu = \/ ' g / (SoC(Q) — SoCug )'d0 | . ©
1J 0

where Q; is the final amount of processed charge, Q,—; is the initial
amount of processed charge before starting of energy circulation
through battery cells, and AQ, is the absolute amount of charge pro-
cessed in each operation event. It should be mentioned that this model
holds accuracy only under conditions where the cells are persistently
operating at temperatures above 25 °C.

3.2. System operation optimization problem

For optimized energy circulation, there is a need for defining a
proper cost function based on optimization goals to select the optimum
strategy for utilizing resources and demand responding. This optimiza-
tion problem should be continuously solved during system operation
based on new conditions and subjections. Here, maximizing profit
considering energy storage capacity fading, has been defined as the
optimization problem’s main objective. Thus, the system cost function is
formulated as:

min, 7" e #—min > Grj+Ese;—Fp; (10)

=

where Gr, € R" is the utility usage cost, Es. € R" is the cost of energy
storage fading, Fp € R" is the amount of profit system can earn by
trading energy with the utility grid, n is the total optimization iterations
steps, and j represents jth iteration. In Eq. (10), % € R” is the vector of
optimization variables, and 2 € R” represents the total optimization
factors,

— — — — — — — — T
2 = | PpvsG, PrvL, Ppvses, Po/Ly Pajess PesjLy Pesjc | where,

suffix G represents utility grid, ES represents energy storage, PV repre-
sents photovoltaic setup, and L represents demand or load. P/, € R"
represents the amount of power flow from point x to point y, and /
represents the total dimension of the optimization vector. In Estonian
energy market, Gr.;  for residential sector is calculated as:

Gr.j=Egj x Upuj+Cx +Egj X Cgy, 1)
where EG € R" is the net amount of electricity purchased from the
main grid in each iteration, Ur,y € R" is vector of electricity tariff in
each corresponding iteration, Cp € R is the network service charge
which is currently 2.02 €/month, Eg, € R" is the total amount of energy
exchange with the grid in each iteration. Eg, is calculated accumulating
total amount of imported and exported energy, and Cg € R is the fixed
cost of energy exchange with the grid and is 0.45 cents/kWh.

Energy storage fading expenses Es,, is calculated based on the capital
cost of BESS installation and assuming that when the EoL point is met,
the storage will not have any value for the user. Thus, the Es.; is
calculated as:

ASoH
Escj = —UppssCun ( o >7

100 — EoL a2
where Uggss €/kWh is the unit price of energy storage installation. Thus,
Upgss Cum is the total cost of adding energy storage to the dwelling.
ASoH € R" is the amount of degradation that occurs due to energy
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storage utilization in each optimization stage and ASoH; is equal to
SoH; — SoH;_;. Consequently, the cost associated with utilizing energy
storage rises as SoH decreases. Finally, Fp; is computed by:

Fp; = (Epj @ Urouj) X 7, (13)

where E; € R" is the array of total amount of dropped energy to the grid
in each optimization iteration, and y € [0,1] is a FiT coefficient.

Indeed, energy is the time integral of power, and under the
assumption of constant time intervals and constant system voltage and
current levels within each interval, energy parameters can be repre-
sented by power multiplied by time values E = P x t. So, the optimi-
zation function can be reformulated and solved based on residential
distribution grid’s power values. For each infrastructure configuration
the constraints will be different based on PV, BESS, and ER size. For
instance, considering PV, BESS, and ER as 3 kWp, 5 kWh, and 5 kW
respectively, the non-equality constraints for this particular setup will be
as:

V7,0 < Ppysglils Pevie 1], Pevyesli] < 3000, a4
Vj,0 < Pesic |l Pes/li], Pojesli], PoyLli] < 5000, (15)
Vi, PoLlf] 4 Pes/L[j] + Peylj] < 5000, (16)
Vj, Pes/clj] + Pevclj] < 5000, 17)
VY, Pesyclj] + PesLlj] < 5000, (18)

Vj, (Pes/ ] + Pes/ali]) x t <
(SoClj] — SoCin) X Cp x SoH[j], 19

j, (PPV/'ESU] +PG,fEs[i]) Xt <

(S0Cpmax — SoClj]) X Cp x SoH]j], (20)
Vj, Peyysli] + Peyesli] < 5000, 21
) Ppvyclil + Pevie ] + Pevyesli] < 3000, (22)
Vj, Pgyeslj] + PayLlj] < 5000, (23)

where, suffix G represents utility grid, ES represents energy storage, and
L represents demand or load. P,y [j] represents the amount of power flow
from point x to point y in the house distribution system during jth iter-
ation. Cyn, x SoH[j] represents the amount of remaining capacity inside
the BESS. In Eq. (19) and Eq. (20), t represents the iteration intervals or
steps in hours. For instance, the proposed optimization engine is
designed to optimize the power flow every 5 minutes.
The equality constraints are listed as follows:

Vi, PevGlil + Pevie U]+ Pevyesli] = Pevjolf]s 24)

N, Py 14 Pesyili] + Poyilil = Priowlils (25)

where Ppy g is the total amount of power generated by solar cells and
Py orar is the total amount of demand or load in the corresponding time
interval. Nonlinear equations are introduced as:

— —
Pgies® Prsjc =0, (26)
— —

PPV/ES L4 PES/’G =0, 27)
?PV/ES A ?ES/L =0, (28)
— —

PG/ES L4 PES/L =0. 29)
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These limitations prevent the events in which the algorithm may
decide to charge and discharge the energy storage simultaneously.
Finally, Ey; and Eg,, can be compiled as:

Eypj = (Prsiglj] + Prvsalil) x 1, (30)

Eg; = (Pgyeslj] +PG/LU]) Xt @D

The pre-defined nonlinear optimization problem was addressed
using the MATLAB optimization toolbox and the ‘fmincon’ solver. This
solver utilizes a gradient of the cost function to find the solution cor-
responding to objective function global minimum.

After solving the initial power flow optimization problem which
defines best energy flow strategy for each particular configuration, we
employed a grid search method for selecting the optimal setup config-
urations for each particular PV size, as the size variables are integers and
the solver cannot handle these in its optimization algorithm, thus
another stage of optimization is required.

In determining the search space for PV, BESS, and ER sizing, we
surveyed available market products. Batteries up to 15 kWh are
commonplace for residential energy management. The primary deter-
minant for PV systems is installation area; thus, a 20 kWp system,
occupying approximately 80 m?, was chosen as the maximum size. ER
size varies based on PV and storage capacities, with numerous options
available. Table 5 summarizes the chosen variable ranges. Furthermore,
all possible PV-BESS-ER combinations are simulated under two different
conditions: availability of energy trade with the grid and absence of
possibility to export energy to the grid, to identify the optimal energy
storage and ER sizes for each specified PV size in the two possible sce-
narios. Moreover, during system operation, the C-rate ratios for the BESS
charging and discharging procedures are confined to the manufacturer’s
recommended values, which are detailed in Table 5. Additionally, the
ER maximum power ratio plays a crucial role in determining the
maximum power that can be delivered to or received from the BESS. For
example, if the ER size is set at 3 kW, the maximum achievable charge or
discharge ratio for a 5 kWh BESS would be 0.6.

Including forecasting data can enhance the performance of EMUs.
However, the designed cost function and the core optimization engine
do not incorporate forecasts into their optimization principles. This
limitation leads to decisions being made based on the current system
state, restricting the benefits from future knowledge. To address this
issue partially, a rule-based decision-making block has been added to the
main optimization loop. The rule-based block utilizes day-ahead energy
and load profile forecasts to generate charge and discharge signals for
energy storage when certain conditions are met. Thus, at the beginning
of each day, total solar energy generation and total load demand for the
next 24 hours are calculated. Additionally, the minimum and maximum
electricity prices and corresponding hours are extracted from the energy
market.

In moments with minimum energy prices, if one of the conditions
below is met, the block sends a charge command to the energy storage:

1. The forecasts for total generated energy should be less than the
forecasts of total load demand (This confirms that the PV will not be
able to handle all energy demand solely). In this stage, the battery
can be charged in the amount to fill the existing gap.

Table 5

Simulated variables ranges and steps.
Variable name Range Step Unit Symbol
BESS size 1-15 1 kWh BESSuse
PV size 1-20 1 kwp PVie
ER size 2.5-20 2.5 kw ER size
C-rate charge 0-1.35C Continuous : Cratech
C-rate discharge 0-1C Continuous - Cratedis
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2. PRyax — PRuin > Es.j, where PRy, and PRy are the
minimum and maximum prices of electricity on the following oper-
ation day, respectively (This ensures that the cost of utilizing energy
storage is less than the benefit from energy arbitrage). In this con-
dition, the energy storage will be fully charged to maximize energy
arbitrage.

In peak periods, if both of the conditions below are met, the block
sends a discharge command to the energy storage:

1. The stored energy in the battery plus the energy generation
forecast should be higher than the load demand forecasts for the
rest of the day (This ensures the energy storage has surplus energy
for trading). In this condition, the energy storage is allowed to
release surplus energy to the grid.

2. PRyax — PRuin > Esc,j.

In this study, ideal forecasts are utilized for simplification; however,
incorporating real forecast data will tie the effectiveness of the decisions
to the accuracy of the forecasts.

3.3. Energy management framework

Fig. 5 illustrates the overview of the proposed energy management
platform. Initially, the platform collects all available setup configura-
tions, real-time grid tariffs, economic parameters, house consumption
profiles, solar energy generation profiles, system technical parameters,
and energy storage status. For each candidate configuration, the system
runs simulations for 20 years to model the energy circulation inside the
residential grid based on the inputs and system specifications. In every
iteration, the optimization engine determines the optimum method to
leverage available resources to meet the demand and attain the defined
goals. If feasible, after proper load management, the device exchanges
energy with the main grid to accrue benefits.

During each iteration, the platform calculates the energy processed
through energy storage to update SoC and SoH parameters for the sub-
sequent iteration. Once all possible combinations have been computed,
the economic model calculates system revenue and payback time. Based
on these calculated values, the optimal configuration for each PV size is
selected and reported. Additionally, user-related reports such as total
energy production, battery health status, system performance, and
others are documented at this stage. It’s critical to acknowledge that

Available Data Collection
Infrastructure sizes )
Grid tariffs % Economical
@ % parameters
- R ° ikl
=z [0 9

M soH&SoC

= l;l % @ Solar profile ﬁ status
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when the energy storage SoH level declines below the EoL point, the
model anticipates that the energy storage will be replaced with new
batteries. Replacement also occurs for ER after 15 years of operation,
substituting the old device with a new one. Nevertheless, it is assumed
that the solar panels will work properly during the operation period.
Therefore, there is no need to replace the PV panels, yet 0.5% annual
linear performance degradation denoted as Qpy is implemented in the
calculations p[33].

PV self-consumption, and energy autonomy factor are two funda-
mental factors for evaluating the nZEB and EMU performance. However,
maximizing these factors has not been considered as an optimization
goal in the proposed method, yet the system’s performance for both
factors has been evaluated and reported. In this paper, self-consumption
denoted as 8 € [0,100]%, is defined as follows:

E,,
§ = il (32)
E,,

where, Ej,/; = EJLEPV/L [j] is the total amount of delivered PV energy to
the load, and E,, = ZJ'-’ZIEPV j is the total amount of green energy pro-
duction. Furthermore, the energy autonomy factor denoted as
€ € [—,100]%, indicates the percentage of the imported energy from the
main utility grid in comparison with the amount of load demand, is
calculated as p[21]:

E — Egiq

=——x1
e 3 x 100, (33)

where E; = Y1, Ey, is the total amount of energy consumed in the
house, and Eyiq = (Z]’?,IPWESJ +PG/]_J-> X t is the total amount of im-

ported energy from the main electricity grid.

3.4. Techno-economic model

In this section, the techno-economic model for this platform is
delineated. Table 6 lists the considered financial and certain technical
parameters that impact the economic performance of the model. It is
worth to add, forecasting economic parameters, such as inflation rates,
and future cost trends is a challenging task. These forecasts can drasti-
cally diverge from actual values due to several unpredicted events.
However, estimating the payback times, without considering economic
factors, may lead to crucially unrealistic results. Payback time is the
duration required to recover an investment. The primary factors in
calculating the payback time are the initial installation cost of the setup,
inflation, and the economic performance of the system during operation.

There are two methods to calculate this parameter: simple and dis-

Apply results
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Fig. 5. Proposed platform for PV-BESS size optimization and techno-economic
analysis of the deployed setup.

Table 6

Financial and technical parameters.
Parameter Value Unit Symbol
Li-ion BESS cost 750 €/kWh Usgss
BESS annual price reduction p[8] 12% - Qpgss
BESS value/size reduction 3% Per kWh QpEss/size
PV cost P[21] 1300 €/kW Upy
PV value/size reduction 4% Per kW Qpy/size
PV lifetime p[29] 30 Year Ypy
ER cost P[69] 250 €/kW Ugr
ER lifetime p[29] 15 Year Yer
ER efficiency p[69] 98 % QN
EMU cost 200 €/unit Uemu
Load annual increase rate 3% Per year Q,
Utility tariffs inflation rate 5% Per year Qur
Annual inflation rate 4% Per year Qan
Interest rate 3.5% Per year QN
Feed-in tariff coefficient 0.8 - Y
Maintenance cost P[70] 1% of setup cost €/year Unm
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counted. The annual inflation rate is a crucial factor in computing
returns, rendering the simple payback calculation method imprecise due
to its exclusion of this rate. Consequently, the discounted payback time
9, which incorporates inflation rates in the return calculation, is more
accurate and is computed as:

+1In(1+Quy), 34)

where 7y represents the total annual cash flow in the system, £, denotes
the initial investment, and Qay signifies the annual inflation. However,
due to the impact of system fading on performance over time, causing 7y
to vary each operational year, modifications to the conventional dis-
counted payback formula are necessary to yield accurate results.
Consequently, Eq. (33) is modified as:

m
P — P
9= —E— Gt , (35)
o ; (1+5)"
where 9, is the remaining investment amount for compensation, &, is

the annual operating cost of the system, and ¢y is the utility bill in the
month number k if the user has not installed any solar or energy storage.

For instance, considering a corresponding ks month to be 30 days, ¢, =

24:30
i1 ELj % Urouj

after deploying the PV-BESS setup and calculated as follows:

. In Eq. (35), & represents monthly net utility bill

2430

D = + Egy;jCr) + C.
. /:Zl [(Ecj — YE£)Urou, e/l + G

(36)

In Eq. (35), the term ZZ‘,I%
+15)

value of the profit the user accrues after equipping the house with the
PV-BESS setup. &, is compiled as:

— &,, represents the net present

& = UggssCum (1 - QBESS/sizccnm) +

UpvOpv (1 — QbvsineOpv) + UrrERize + Upny, 37)

where ©py is the solar system size (kWp), U, is the unit price of installing
each of the PV, BESS, ER, and EMU. Q, .

Algorithm 1. Economical parameters calculation

(continued on next column)
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(continued)

Input: Eg, Ef, ﬁTUU,W;iZE, BESSize, ﬁsile, and Table 6
parameters.

forv, s, rin TVsize, BESSsize,ﬁsiZE do
Calculate ¢.[v, s, 7] based on Eq. (37).
Calculate é,[v, s, 7] based on Eq. (38).
for kinmdo

Calculate @, [v, s, 7] based on Eq. (36):

24%30

B

By D Wgusrs = YErmsrslUron + BewsriCox + Cre

=
Calculate 9, [v, s, 7] based on Eq.(35):

7 Sy = Elvis, ] = o]+ ) 0
[

8: if 9y = 0 then

9: payback[v, s, r] =k

10:  endif

11:  end for

12:  Calculate 8[v, s, r] based on Eq. (32)

13:  Calculate €[v, s, 7] based on Eq. (33)

14:  end for

15: forvin PVyy,, do

Select s’ € s,7" € r which satisfies:

Y (5,7), Oyplv, s, 1] < 9yplv,s, 7]

17:  end for

18:  Return: optimal setup values, §, 8, &

represents the cost/size reduction rate for both energy storage and
PV panels. Also, &, is compiled as:

&y =EUn(1 + Q) +
KpessUpgss (1 + Quan — Qpess) ™™ +

KerUsr(1 4+ Qan) "™, 38
where y represents the running age of the setup in years, and Uy € [0,1]
represents the annual maintenance cost ratio, and here is assumed to be
1%. kgr and kpgss denote the number of times the ER and energy storage
have been replaced respectively during setup run, ¥, indicates the year
in which the replacement occurred, and Qgpgss represents the annual
price reduction in the market for the energy storage technology. Based
on Eq. (35), the payback time is the first month in which the 9, turns to a
positive value.

In Fig. 5, the box which has been highlighted with darker color,
dedicates to economic factors calculation procedure. Algorithm 1 sum-
marizes the calculation procedure in the highlighted section.

4. Results and discussions

In this section, the performance of the proposed system, applied in
the mentioned case study, will be demonstrated, and discussed in detail.
All simulations and calculations are compiled with a desktop’ running
MATLAB 2022 and Python 3.10. Fig. 6 shows the demand request
management in the house for three different setup configurations. One
can observe that the purchased amount of energy from main grids
increased dramatically when PV-BESS size is limited. Furthermore,
providing a proper PV and energy storage sizes gives the EMU the op-
portunity to be less dependable to the grid. Moreover, Table 7 summa-
rizes the total imported and exported energy from the utility grid, the
total stored energy in the BESS, the total solar energy generation, and
demand response statuses from the utility grid, BESS, and PV, as well as

! Intel(R) Core(TM) i7-7700 K CPU @ 4.20 GHz, 32 GB RAM.
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Fig. 6. Demand response management with three different configurations.
subfigure of Fig. 7—primarily occur during periods when energy prices
Tz.'ble 7 . . . . are at their lowest, especially during nighttime. Conversely, the dis-
Different configurations energy status reports during test period (20 years). . . . .
charging process, marked by a red trajectory in the same subfigure,
Case 1 2 3 aligns with periods of high tariffs, typically in the latter half of the day.
Name Value Value Value This trend enables the EMU to benefit from energy arbitrage, thereby
(kwWh) (kWh) (kWh) minimizing the energy bill. Specifically, in Fig. 7(a), due to the absence
Total Export Energy 1.76E5 7.64E4 4.73E3 of solar power generation, the only options for savings are through
Total Import Energy 1.06E5 9.84E4 1.02E5 exploiting the possibility of energy arbitrage in both demand response
;"tai z“e'gy S;";e‘f i“EBESS i-ggg: z-if;‘ i;zzz and energy trade. Consequently, the EMU sends the charge command to
otal arvestes olar Energy . . o . .
Total Demand Response with BESS 6.46E4 6.05E4 16384 the BESS before the' mmjmng pealf hours and later dlscha.rges the BESS
Total Demand Response with Utility ~ 0.83E4 3.19E4 8.79F4 when the energy price rises, starting from 17:00 and ending at 20:00.
Total Demand Response with Solar 4.32E4 2.37E4 1.26E4 During periods of excess solar generation and after demand response
Energy actions by renewable energy sources, the EMU has two options for
Total Demand 1.16E5 1.16E5 1.16E5 managing surplus energy: storing it in the ESS or exporting it to the grid.
Total Energy Waste 2.90E4 1.69E4 1.42E3

*1: PV size = 10 kWp, BESS size = 10 kWh, ER = 5 kW *2: PV size = 5 kWp, BESS
size = 5 kWh, ER = 5 kW, *3: PV size = 2 kWp, BESS size = 1 kWh, ER = 2.5 kW.

total energy waste during the simulation period (20 years). Note that the
demand profile is the same for all setups, since only one house was
selected for investigation and optimization.

In order to investigate the system performance in more detail, the
optimization engine performance, the power flow, demand response,
and energy storage operation inside the residential grid has been re-
ported for two various conditions in different days. The first scenario has
been selected when there is no power generation from solar setup, and
system has to response the demand relying only on the main utility grid
and BESS. The second scenario has been picked from samples in which
the solar power is enough for demand response, and the optimization
engine has the opportunity to decide if the surplus power should be
stored or exported to the utility grid to earn profit. Fig. 7(a), and Fig. 7
(b) show both scenarios, respectively. In Fig. 7, the power flow between
two points is denoted using the *X to Y’ notation, where "X’ represents
the energy source and 'Y’ the energy consumer. For example, 'PV to
Grid’ signifies power being exported from the PV system to the grid.

By focusing on power flow trends in both scenarios, it is noticeable
that when price fluctuations are high, the charging cycles of the
ESS—indicated by a green trajectory in the 'ESS Operation Logs’

In Fig. 7(b), the surplus green energy is used to both charge the BESS and
export to the grid. Later, during peak hours when solar energy is not
available, the system utilizes the stored energy to meet load demands
and engages in energy trading with the grid to earn profit. Additionally,
when the EMU anticipates the next day’s ideal energy generation fore-
casts, it can capitalize on the energy trading option even during
midnight hours when energy prices are high. This strategy is evident in
the early hours depicted in Fig. 7(b).

Energy storage capacity degradation significantly affects the sys-
tem’s performance in terms of both revenue acquisition and the quality
of demand response. In all analyses, it is assumed that all the cells are
fresh in the initial point. The pivotal role of BESS nominal size in
influencing the rate of battery aging is evident from the simulation re-
sults. Fig. 8 elucidates the SoH level of energy storage for all simulated
configurations, with Fig. 8(a) illustrating a more gradual degradation in
larger battery packs compared to smaller ones. This can be attributed to
the slower increase in the number of charge and discharge cycles
experienced by larger battery packs during operation. Nonetheless, the
aging rate of the batteries are multifactorial, being affected not only by
the cycle number but also by other elements such as cell temperature,
DoD level, and cell current during charges and discharges. In practical
experiments, it has been recorded that capacity fading exhibits an
exponential trend for Li-ion battery cells p[64]. Generally, assuming
normal operating conditions—encompassing one charge/discharge
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Fig. 7. Daily power flows inside the residential distribution grid. (a) When solar power generation is very limited. (b) When the solar power generation surpluses the
demand. Setup configuration: PV size = 7.5 kWp, BESS size = 15 kWh, ER size = 5 kW.

cycle per day, standard operating temperature below 40 °C, and
DoD—the linear annual degradation rate for Li-ion batteries can be
estimated to range between 2 % and 4 %.

Moreover, the PV size has a bearing on the battery packs’ degrada-
tion rate; larger solar power generation can lead to increased battery
usage and, consequently, additional degradation. This correlation is
demonstrated in Fig. 8(b). Comparing Fig. 8(a) and Fig. 8(b) reveals that
the SoH level is predominantly influenced by battery size over PV power
capacity. This observation is attributed to the fact that setups with larger
solar power generation units tend to export excess energy to the main
grid more, thus earning revenue, reducing payback time.

Fig. 9 shows investment returns (dotted red line) and other pertinent

10

economic factors for the studied house, illustrating the annual cash flow,
capital, maintenance, and replacement costs for a case study house in
Estonia. In the initial decade, the owner is primarily responsible for
annual maintenance and capital costs. However, in the second decade,
replacement costs for BESS and power electronic devices are incurred,
typically arising at the 10th and 15th years of operation, respectively.
This fee is represented as a step down in the cash revenue graphs,
aligning with the replacement costs. In all configurations, if any BESS
setup reaches its EoL point before the expiration of its warranted life-
time, it is promptly substituted with a new battery pack.

Fig. 10(a) presents a discounted payback time analysis for all PV-
BESS combinations. Given the four-dimensional nature of the
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Fig. 8. Battery degradation ratio for all possible combinations of PV-BESS. (a)
Degradation level dependency on BESS size. (b) Degradation level dependency
on solar generation setup size.
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Fig. 9. Economic performance analysis of the case study house in Estonia.
Setup configuration: PV size = 5 kWp, BESS size = 5 kWh, ER size = 5 kW.

generated results, the ER dependency is omitted to facilitate clearer
visualization, and only the most suitable ER is selected for each PV-BESS
size. From the outcomes, the minimum achievable payback time is
observed to be around 5 years. The blue horizontal dashed line in Fig. 10
(a) and Fig. 10(b) illustrates the profitability frontier. Here, 10 years is
specified in accordance with the lifespan of battery packs. Thus, if the
system cannot reach the break-even point within the aforementioned
time, it is deemed economically impractical. The results reveal that
considering the energy market condition in 2022, choosing the size of
PV systems larger than 9 kWp will mostly yield income for the owner.
Fig. 10(b) indicates the dependencies of payback time on BESS size
for each specific PV system. This observation demonstrates that, in
Estonia, for residential applications, PV-BESS systems with a PV size less
than 4.5 kWp are not profitable, even with very small-sized BESSs.
Moreover, the impact of PV size on payback time is substantially more
pronounced than the impact of BESS size. This is predominantly

11
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Fig. 10. Discounted payback calculation of PV-BESS combinations.(a) For each
BESS size when the PV size is swept in its range. (b) For each PV size when the
BESS size is swept in its range. The Y axis has a logarithmic scale in (b).

because, with partial green energy generation, the majority of BESS
capacity is allocated to energy arbitrage. Nevertheless, due to battery
protection policies and constraints in power electronics, energy arbi-
trage exhibits lesser dependence on BESS size variations when the PV
size is held constant. Consequently, in the present circumstances in
Estonia, solely installing BESS in houses without PV systems does not
emerge as a feasible solution for long-term use.

Table 8 displays the most profitable BESS-ER sizes for each PV
arrangement, along with the associated repayment periods and expected
income after 20 years of operation. These outcomes are derived from
evaluating two distinct scenarios. The first scenario takes into account
the current incentive under the feed-in policy, while the second scenario
assumes the termination of the feed-in policy for residential applica-
tions. In the latter scenario, surplus solar energy is channeled to the
BESS, optimizing system benefits to meet load demands; thus, no elec-
tricity is fed back into the utility grid.

The findings in Table 8 serve as practical guidelines for end-users
regarding the anticipated payback periods of varied setups in Estonia.
However, it is crucial to acknowledge that these results are deduced by
analyzing a specific load profile, implying that alterations in load pro-
files would yield different outcomes. Therefore, while these results
provide a valuable point of reference, adjustments may be necessary to
accurately reflect the payback periods and profitability of different
setups based on the individual load profiles and other specific circum-
stances pertinent to each case.

The extent of achieved energy autonomy is illustrated in Fig. 11(a)
and Fig. 11(b). In scenarios utilizing energy trade options, the maximum
attained energy autonomy is approximately 30 %. In Fig. 11(a), red
segments on the plot represent areas of negative energy autonomy,
signifying that energy imported from the main grid surpasses total load
demand. This phenomenon predominantly occurs in setups with
expansive storage sizes. Typically, in buildings utilizing PV-BESS, a
boost in storage size is presumed to elevate energy autonomy. This
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Table 8
Most profitable combinations’ economical results.
PV size FiT BESS size ER size (kW) Payback (year) Revuene (€)
(kWp) (kWh)
1 0.8 ToU 1 25 12.25 2484
- 1 25 171 507
2 0.8 ToU 2 2.5 11.09 5603
- 2 2.5 18.62 841
3 0.8 ToU 2 25 9.05 8524
- 2 25 19.15 349
4 0.8 ToU 3 5 9.6 11463
- 2 5 19.63 106
5 0.8 ToU 4 5 9.1 14528
- 2 5 > 20 -1097
6 0.8 ToU 4 5 8.06 17779
- 2 5 > 20 -1822
7 0.8 ToU 5 7.5 8.4 21117
- 3 7.5 > 20 -2480
8 0.8 ToU 5 7.5 8.03 24556
- 3 7.5 > 20 -3095
9 0.8 ToU 6 10 8.22 27983
- 3 10 > 20 -3653
10 0.8 ToU 6 10 7.65 31516
- 3 10 > 20 -4159
11 0.8 ToU 7 10 7.25 35117
- 3 10 > 20 -4614
12 0.8 ToU 8 12.5 7.01 38574
- 4 12.5 > 20 -5014
13 0.8 ToU 9 12.5 7.18 42231
- 4 12.5 > 20 -5368
14 0.8 ToU 9 12.5 7.69 45956
- 4 12.5 > 20 -5672
15 0.8 ToU 10 15 8.45 49566
- 4 15 > 20 -5931
16 0.8 ToU 10 15 6.03 53429
- 4 15 > 20 -6146
17 0.8 ToU 12 15 6.02 57269
- 4 15 > 20 -6321
18 0.8 ToU 14 17.5 6.11 61139
- 5 17.5 > 20 -6456
19 0.8 ToU 15 17.5 6.42 65154
- 5 17.5 > 20 -6559
20 0.8 ToU 15 20 6.93 69126
- 5 20 > 20 -6631

unexpected observation can be attributed to the opportunities for energy
arbitrage. Hence, elevated FiTs and the profitable nature of energy
arbitrage make setups with substantial energy storages prefer energy
trade, engaging in more energy exchange than the actual load necessi-
tates. Consequently, in setups where energy trade is an option, solely
considering the energy autonomy factor as a metric understates a sys-
tem’s performance.

In contrast, Fig. 11(b) displays the opposite trend due to restrictions
on delivering energy to the main grid. Thus, the supervisory algorithm
reserves all surplus PV-generated electricity in the energy storage for
responding to future load demands, diminishing dependency on the
main grid, and thereby increasing the overall energy autonomy ratio. As
depicted in the surface plot, augmenting BESS size improves the build-
ing’s energy autonomy. In this scenario, the energy autonomy factor
relies more heavily on the PV system size than the BESS size. In this
contrasting scenario, the maximum achievable energy autonomy factor
reaches up to 48 %. In Tallinn, the long, dark winter days make
achieving high energy autonomy a significant challenge. In some in-
stances, meeting demand without the main grid’s support during
consecutive cloudy days becomes nearly impossible.

The PV self-consumption factor for one selected BESS size and range
of PV setups, considering both feed-in possibilities and energy exchange
restrictions, is depicted in Fig. 12. This metric exhibits higher values
when the algorithm lacks a trade option and consumes as much energy
as the PV system generates. However, when a trade option is available,
the supervisory system opts to exchange excess available energy with
the main grid and utilizes stored off-peak energy to satisfy load demand.
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Fig. 12. PV self-consumption ratios comparison between two scenarios.

This approach reduces the PV self-consumption ratio but increases
revenue. Moreover, as the size of the PV system expands, the amount of
green energy generated exceeds the load demand, leading to the ma-
jority of produced energy being delivered to the main grid or remaining
unused. Thus, achieving high PV self-consumption ratios is a challenge
in Estonia even with substantial PV-BESS systems, as well. However,
cooperative policies for clean energy production and daily intensive
tariff fluctuations have forged significant opportunities for energy
arbitrage.

In Table 9, state-of-the-art results are compiled to facilitate an
analysis of PV-BESS installation payback times across diverse locations.
Notably, the proposed algorithm achieved a lower payback period in
comparison to state-of-the-art. However, due to the distinct and specific
variables and parameters inherent to each system, drawing straightfor-
ward comparisons among the literature is not simple. Another signifi-
cant variable affecting payback period calculations encompasses the
extensive range of economic parameters in different studies. For
instance, the capital costs for BESS and PV systems show considerable
variability, with prices spanning from €100 to €1200 and €400 to €1550,
respectively. Furthermore, factors such as climatic conditions, the
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Table 9
Proposed model benchmarking with state-of-the-art.
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Ref. Location Currency UTs/kWh FiTs/kWh Tariff type Upy/kWp Uggss/kWh Um BESS fade Inflation 9 (Years)
PP Estonia Euro Nord pool 0.8*ToU ToU 1300 750 v v v 5
Pl11] Australia AUD x x ToU 400 740 v v v 9
r[29] South Africa UsSD 0.11 0.16 FT 651 405 v x v 8.6
Pl12] Estonia Euro Nord pool x FT/SP/ToU 400 100 x x x 10
rlel Italy Euro 0.19 0.06 FT 700 500 v x v Profitable
rl13] Switzerland UsD 0.17-0.25 0.056 FT/DT/ToU 0 450 x x v Unprofitable
P[19] Taiwan UsDh 0.04-0.15 x ToU 0 340 v x v 8.37
P[21] Netherlands USD 0.20 0.092 ToU 1350 500 v v x 11
pr21] USA USD 0.11 0.097 ToU 1350 500 v v x 20
r[5] Ireland Pound 0.08-0.32 0.05 FT/DT/TT 1400 507 v v v 22
Pl4] Germany Euro 0.443 0.108 FT 1542 1178 v x v Profitable
r[22] Australia USD 0.107-0.511 0.06 ToU 1500 148 x x x 5-10
geographical locale of the installation, existing incentive policies, can
alter the strategy of the control algorithm, leading to diverse outcomes. -== Ideal forecast

Due to the intermittent nature of renewable resources and un-
certainties related to energy consumption profiles within dwellings,
optimizing energy flow without accounting for these natural un-
certainties will lead to deviations from ideal operational assumptions.
To analyze the effects of uncertainties on the system’s operational logic,
Monte Carlo simulation has been performed. To this end, random errors
have been introduced into the PV and load profiles. These errors are
assumed to follow a Gaussian distribution with a mean value of zero and
standard deviations of 0.05 and 0.2, corresponding to error levels of 5 %
and 20 %, respectively. Fig. 13(a) and Fig. 13(b) display the error in-
jections to the daily PV and load profiles.

The outcomes of these random error injections have been analyzed
after 100 iterations. Deviations in the system’s variables are depicted in
Fig. 14(a)-(d). It is observed that the parameter most affected among the
demand response elements is the power flow from energy storage to the
load. Conversely, the energy storage’s SoC profile shows the least de-
viation from ideal performance, despite these variations. This phe-
nomenon can be attributed to the fact that the deviations do not persist
for long periods, and the impact of errors on energy flow optimization
has a short-lived effect. Yet, at certain times, the EMU’s decisions
regarding energy flow supervision and demand response follow entirely
different scenarios, especially in cases of 20% error injection. This leads
the algorithm to converge to different minima, indicating that the sys-
tem’s robustness should be examined more thoroughly in future studies.
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5. Conclusion

This paper provides a comprehensive analysis of the economic
viability of residential PV-BESS setups in the Estonian energy market,
taking into account a multitude of technical and economic parameters. A
battery degradation model is incorporated in this study to accurately
simulate battery capacity loss during energy processes, considering both
calendar aging and cyclic degradation. The personalized techno-
economic model integrates various economic variables and parameters
including annual interest rates, price size dependencies, net present
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value, maintenance and replacement costs, and government policy
incentives.

Additionally, a novel rule-based non-linear optimization function is
implemented to maximize system revenue while minimizing energy
storage degradation. The rules within the system are formulated to
maximize benefits from energy arbitrage and FiT incentives, in accor-
dance with battery aging constraints. Furthermore, by analyzing the
outcomes of Monte Carlo simulation, the robustness of the optimization
framework against certain levels of uncertainties in input parameters
has been assessed. Such investigations are crucial to enhancing the
system’s reliability and robustness.

The findings of this paper indicate that installing hybrid PV-BESS
systems in Estonia can currently be profitable, with minimum payback
time of 5 years, but this profitability is significantly dependent on FiTs
incentives and ToU fluctuations. However, the removal of FiTs in-
centives notably impacts the profitability of the systems, making hybrid
PV-BESS setups economically non-viable without such subsidies. In such
a scenario, owners could only rely on energy self- sufficiency and grid
relief. Furthermore, the maximum achievable energy autonomy ratios in
investigated scenarios are 30% and 48% with and without a feed-in
option, respectively, which shows the unfeasibility of grid indepen-
dency. Despite the current potential for profitability, the evolving eco-
nomic landscape necessitates a careful consideration of the long-term
economic outlook for PV-BESS installations in Estonia.

The main goals and contributions of this work are as follows:

e Providing a precise and reliable personalized tool for end-users and
authorities to customize the calculations for obtaining the optimal
size of PV-BESS and inverter configuration based on their load pro-
file, energy generation, and electricity tariff profile. This tool will
support them, in the decision-making process, by delivering capital
cost, best-matching instrument combinations, and budget-based
payback time estimation. Furthermore, the model’s applicability is
not confined to any specific region; it can be adapted and utilized for
personalized scenarios across diverse geographical locations.

The effect of element fading is included in profit maximization
equations and discounted payback calculations. Thus, the conven-
tional discounted payback formula is modified to enhance payback
time result accuracy.

e An optimization engine designed by fusion of rule-based, non-linear
gradient based, and grid search methods, to benefit each methods
strength for channeling energy inside the residential grid.
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Day-Ahead Solar Power Forecasting Using
LightGBM and Self-Attention Based
Encoder-Decoder Networks

Hossein Nourollahi Hokmabad
and Juri Belikov

Abstract—The burgeoning trend of integrating renewable en-
ergy harvesters into the grid introduces critical issues for its re-
liability and stability. These issues arise from the stochastic and
intermittent nature of renewable energy sources. Data-driven fore-
casting tools are indispensable in mitigating these challenges with
their rugged performance. However, tools relying solely on data-
driven methods often underperform when an adequate amount
of recorded data is unattainable. To bridge this gap, this paper
presents a novel day-ahead hybrid forecasting framework for pho-
tovoltaic applications. This framework integrates a physics-based
model with Machine Learning (ML) techniques, enhancing pre-
diction reliability in environments with scarce data. Additionally,
an innovative ML pipeline is introduced for data-abundant envi-
ronments. The proposed ML tool comprises two branches: a set of
regressors, each tailored for specific weather conditions, and a self-
attention-based encoder-decoder network. By fusing the outputs
from these branches through a meta-learner, the tool achieves pre-
dictions of higher quality, as evidenced by its superior performance
over benchmark models in an investigated test dataset.

Index Terms—Solar power forecasting, photo voltaic systems,
physics-based modeling, hybrid approach, data scarce environ-
ments, machine learning, LightGBM, encoder-decoder, attention.

1. INTRODUCTION

REEN technologies are crucial for Europe’s goal to be
G carbon neutral by 2050. This objective has led to a sig-
nificant increase in the installation of renewable energy systems
by electric energy providers. Concurrently, this is paralleled by
a rise in the transition of buildings from passive consumers to
active prosumers and the emergence of net-zero energy build-
ings. However, a study in Japan suggests that high penetration
of behind-the-meter Photo Voltaic (PV) systems might paradox-
ically lead to increased carbon emissions [ 1], mainly due to grid
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imbalances caused by inaccurate forecasts. Effective forecasting
enhances the management of renewable energy intermittency,
improves grid reliability, optimizes energy use, and benefits
investors in the energy market [2].

PV power output forecasting methods are broadly classified
into data-driven (statistical), physics-based, and hybrid tech-
niques [3]. Data-driven models fall into two categories: single-
variant and multi-variant methods. Single-variant methods, such
as Auto Regressive Integrated Moving Average (ARIMA) and
its derivatives [4], [5], [6], use historical sequence data to
identify autocorrelation and trends. Additionally, single-variant
ML methods, particularly Recurrent Neural Networks (RNNs)
like Long Short-Term Memory (LSTM) models, are effective in
recognizing patterns in sequence data [7], [8].

Single-variant methods can sometimes miss critical exoge-
nous factors, like weather conditions. To overcome this, more
sophisticated methodologies have been developed to examine
the intricate relationships between the target variable and exter-
nal parameters. In the sphere of multi-variant data-driven mod-
els, diverse approaches are utilized. These encompass Artificial
Neural Networks (ANN) [9], a range of regression techniques
including linear and Bayesian methods [10], Support Vector
Regression (SVR) models [11], tree-based methods such as
Gradient Boosted Regression Trees (GBRT) [12], and advanced
deep learning methodologies [13], [14]. Overall, these multi-
variant models are found to be more effective than single-variant
models in capturing dependencies within data.

Physics-Based Models (PBMs) utilize mathematical model-
ing grounded in fundamental system physics to replicate sys-
tems’ behavior. These models are employed to estimate solar
power output, factoring in aspects such as solar irradiance,
ambient temperature, panel technology, and installation char-
acteristics, as detailed in [15]. PBMs are especially useful in
environments with limited data, where data-driven methods
might be less effective. However, PBMs come with inherent
challenges, including the necessity for in-depth domain knowl-
edge and complexities in further improvement. They frequently
need modifications to accommodate factors like panel degra-
dation or environmental shifts [16]. Additionally, PBMs are
typically optimized for standard testing conditions and specific
panel technologies, which can limit their broader applicability.
Nevertheless, recent advancements have led to the development
of more versatile mathematical models capable of functioning
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effectively under diverse temperature and irradiance conditions,
as demonstrated in [17].

Hybrid models, which combine various methodologies, have
demonstrated promising results, outperforming the first two
groups of models [7], [18], [19], [20]. The primary motivation
for this integration is to capitalize on the strengths of different
approaches while mitigating their individual limitations. The
composition of these hybrid models is quite diverse. For in-
stance, some models amalgamate multiple ML techniques to
form robust systems [21], while others integrate physics-based
insights with data-driven tools [22]. Furthermore, hybrid ap-
proaches sometimes incorporate signal or image processing
techniques, such as wavelet analysis and sky image processing,
alongside Artificial Intelligence (Al) technologies [23], [24],
enhancing their analytical capabilities.

Recent advancements in solar output power forecasting have
incorporated encoder-decoder models, traditionally utilized in
machine translation and natural language processing, into their
structural framework. A notable example is a day-ahead fore-
casting method employing an autoencoder-LSTM hybrid net-
work, as discussed in [25]. RNN-based encoder-decoder models
are especially valued for their ability to capture long-range de-
pendencies within data. The inclusion of attention mechanisms
further strengthens these models by allowing them to focus on
specific parts of the input sequence, thereby improving both
the accuracy and relevance of the forecasts. An example of
such innovation is the development of an attention-based Tem-
poral Convolutional Neural Network (TCNN) stacked model
for spatio-temporal forecasting, presented in [26]. This model
leverages the attention mechanism to better interpret spatial
and temporal data, illustrating the flexibility and efficiency of
encoder-decoder models in various forecasting scenarios.

PV panel output variability, due to weather fluctuations, chal-
lenges forecasting models’ accuracy. To tackle this issue, several
studies have proposed the use of classifiers to segment data based
on distinct weather characteristics, thereby enabling the devel-
opment of class-specific models. For example, [3] presented a
hybrid classifier-regressor approach for day-ahead forecasting.
In a similar vein, [27] devised a method that leverages weather
variables to identify days with similar characteristics. Addition-
ally, [28] employed SVRs to develop several specialized models
catering to various weather conditions and daily time intervals.
Despite advancements in solar power forecasting, several gaps
still require further investigation. A significant gap exists in the
study of scenarios lacking historical records. In such cases, the
absence of pre-existing data at the onset can substantially impede
the initial performance of ML models, highlighting the necessity
for alternative methods. Moreover, although training models on
weather categorization and specific weather classes typically
enhances a system’s overall accuracy, data-driven classification
approaches are prone to classification errors and overfitting. Ad-
ditionally, their reliance on initially trained weather conditions
constrains their adaptability and scalability, thereby diminishing
their effectiveness in diverse forecasting scenarios in different
regions.

In this study, we introduce a novel day-ahead forecasting
mechanism developed for behind-the-meter PV systems. The
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Fig. 1. Proposed framework for day-ahead solar generation forecasting.

main contributions of this research are as follows: (1) The
fusion of system physics-based insights with ML techniques
to address scenarios with abundant data and to alleviate cold
start issues common in ML applications. This feature allows
for immediate solar power predictions right after PV installa-
tion. (2) The development of an innovative ML framework that
combines the strengths of regression-based models, specifically
LightGBM, and sequence analysis techniques, notably a Self-
Attention based Encoder-Decoder (SAED) model, to enhance
forecasting accuracy for day-ahead predictions. (3) The utiliza-
tion of surface synoptic weather codes (SYNOP) for weather
data classification, streamlining the data clustering process, min-
imizing computational overhead, and reducing potential errors
or overfitting risks, while also ensuring model applicability in
various climates and locations. (4) Leveraging publicly accessi-
ble Numerical Weather Predictions (NWP) services to achieve
consistent performance across diverse geographical locations,
and to enhance the global applicability of the proposed method.
(5) Investigating how the volume of collected data affects the
performance of data-driven and physics-based models during
system operation.

II. PROPOSED METHOD

A visual flowchart of the proposed framework is depicted in
Fig. 1. Briefly, the technique can be classified into several distinct
stages.

Stage 1 (data retrieval): Obtaining archived weather forecasts
using the open-source NWP services, considering the specific
locale of the PV setup and historical data timeline, if it exists.

Stage 2 (physics-based modeling): A PBM utilizes the in-
stalled system’s technical specifications and climate data to
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simulate the expected output power. If the system under in-
vestigation lacks historical data, the outputs from the PBM
are considered the final forecast. Conversely, when historical
data is available, the focus shifts to the development of the ML
models. In this scenario, physics-based knowledge is employed
to enhance the performance of the ML model.

Stage 3 (feature generation and data pre-processing): Exoge-
nous features, like solar positioning, which are instrumental in
improving the performance of ML models, have been generated.
Following the integration of these features into the dataset, it
undergoes a pre-processing phase. This step is essential for
indigenous feature extraction.

Stage 4 (classification, regression, and sequence learning):
The data instances are categorized based on their SYNOP
weather codes. For each weather class, distinct regressors are
employed to train custom regression models. Concurrently, se-
lected features in the dataset are reshaped to create an appropriate
data structure for training a custom SAED network.

Stage 5 (meta learner): The predictions from the regression
models and the SAED model are combined using a meta-learner.
This combination serves to enhance the overall accuracy of
the final forecasting model and reduce the residuals from the
previous stages.

A. Physics-Based Model

PBMs use fundamental principles to explain system behav-
iors, relying on understanding underlying physical processes.
The prevalent technique for solar cell simulation is the 5-
parameters model, which characterizes the solar cell behavior
with a single diode equivalent circuit. Additional components
inherent to this model include an irradiance controlled current
source, shunt, and series resistors, given as [17]:

I =1y, —1qg—1Ip

I e q( [ ! IESCI) 1 ‘ ! llsu[
= — X —_ | = -
ph =10 | OXP nrT, R,

where [ is the solar cell output current, V' is the output voltage,
Iy, is the generated current by solar irradiance, I, is the diode
current, I, is the current of the parallel resistor (R,.), R is
the series output resistor, /; is diode reverse saturation current,
7 is the ideality factor, ¢ is the charge of the electron (1.602 x
1071°C), & is the Boltzmann’s constant (1.381 x 10~23J/K),
and 7. is solar cell temperature in Kelvin and can be calculated
as [29]:

Tnoc — 20
— X

T. =T,
i 800

SI, (@)

where T, is the ambient temperature (K), Tyoc is panel’s
temperature in °C in normal operation condition (extracted from
panel datasheet), and ST refers to the solar irradiance (w.m™). In
PV panels, solar cells are connected in series/parallel formats.
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Fig.2. PV module layout and equivalent circuit model of solar cells connected
in the series format.

TABLE I
SIMULATED PV SYSTEM PARAMETERS

Parameter Value/Name

PV model AU Optronics PMO72MWO0 345W
Cell type Monocrystalline

Inverter Yaskawa Solectria Solar PVI 50 kW
Panels count 88

Installation type ground based (Fix)
Azimuth angle 165°

Tilt angle 30°

Temperature model ~ Open-rack-glass-glass

In series style, PV module’s I /V relation can be calculated as:

q(V + NsRscI) \%4 + NsRscI

I=I—1 WV £ NRseD)y ) VA Notsel
o (0 el
3)

where V' = V’.N,, and N, denotes number of the cells in series
in each single module. Fig. 2 shows the PV module layout
connected in the series format.

The output power of a PV system is not only influenced by the
characteristics of the solar panels but also by the performance of
the ancillary infrastructures, like solar inverters. Consequently,
the power generated by a PV system at the maximum power point
(MPP) for an individual panel can be approximated as [28]:

y SI
_ STC _ .
P,, = {va X 1000} x[1—yx(T; —25)], &)
and,

SI
T = Tamp + 300 > (Noct — 20), (®)

where P, represents the panel’s output power at MPP and
P represents the output power in the standard test condition,
v is a temperature coefficient at MPP, T} is the solar panel
temperature (°C), 1,5 is ambient temperature (°C), and Nocr
is a constant value.

To model the infrastructure of the target PV system and ensure
compatibility with a wide variety of commercial solar invert-
ers, we recommend utilizing the open-source package pvlib,
developed by the U.S. Sandia National Laboratories [30]. This
tool encompasses various PV cell technologies and provides
the capability to design PV cells using custom PBMs. Detailed
parameters of the PV cell model, along with other relevant
system-specific data, are documented in Table I. For synthesiz-
ing the target system’s output power, various weather parameters
such as ambient temperature, global horizontal irradiance, direct
normal irradiance, diffuse horizontal irradiance, wind speed,
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and total accumulated precipitable water are essential. These
weather parameters must be sourced from renowned global
weather prediction organizations, based on the geographical
location of the PV installation and corresponding time span.
Subsequently, the gathered weather parameters are inputted into
the PBM to predict potential PV generation for the following
conditions.

B. Data Description and Preprocessing

This research examines a behind-the-meter PV setup located
within a 30 km radius of Tallinn, Estonia, with a capacity of
30.6 kWp. Initially, the solar setup’s output power data, mea-
sured and collected at five-minute intervals throughout 2021,
2022, and the first half of 2023. NWP data was sourced from the
Open-meteo API, an open-source weather service that provides
hourly weather forecasts in Europe. This API delivers forecasts
that include parameters such as solar irradiance and cloud cov-
erage. The recorded power output data was then averaged and
down-sampled from five-minute intervals to hourly intervals to
align with the granularity of the NWP data.

In the subsequent stage of preparing the dataset, additional
features were generated. The performance of ML solar forecast-
ing models can be enhanced by incorporating parameters like
solar zenith, azimuth, and elevation, which were calculated using
the geolocation of the PV region. The detailed methodologies
for these calculations are discussed in [31]. Moreover, the results
of PBM simulations, labeled as ’pvsim’, were incorporated
as a feature in the dataset for ML framework development.
Autocorrelation and correlogram analysis, conducted using the
Auto Correlation Function (ACF) and the Partial Auto Correla-
tion Function (PACF), have revealed significant dependencies
between the PV output power and its time lags, particularly
those corresponding to the previous day’s hours. Notably, auto
correlations are more pronounced at lags that are multiples of the
seasonal frequency, specifically 24 hours. Therefore, multiples
of lag 1 and 2, such as lag 24 and lag 25, emerge as robust
features that could significantly enhance the performance of ML
forecasting models. Additionally, lags 47, 48, and 49, along with
their corresponding subsequent day lags, also demonstrate sig-
nificant correlations with the target value. Therefore, lags with
correlation coefficients above 0.75 were additionally included in
the dataset, with this threshold value being determined through
trial and error. However, it’s important to note that this threshold
is not a universal design factor and may not be the best level for
filtering out lag values in all cases.

To more effectively capture the inherent seasonality in the
target label data, we applied sinusoidal and cosinusoidal trans-
formations to cyclical features (Cy) such as month, day, and
hour instead of using their initial values. The transformations
are formulated as: C§ = cos(%), cjn = sin(%),
where C3* and C§" represent the cosinusoidal and sinusoidal
transformations of the cyclical features, respectively. Finally, the
data underwent scaling using the Min-Max method, constraining
the values between 0 and 1. This scaling approach helps avoid
masking effects by maintaining a consistent range across all
features. The scaling factors, determined based on the training

TABLE II
LAND STATION SYNOP WEATHER CODES [32]

Code  Precipitation  Description
00 no Cloud development not observable
01 no Clouds dissolving or becoming less developed
02 no State of sky on the whole unchanged
03 no Clouds generally forming or developing
51 yes Slight drizzle
53 yes Moderate drizzle
55 yes Heavy drizzle
61 yes Slight rain
63 yes Moderate rain
71 yes Slight continuous fall of snowflakes
73 yes Moderate continuous fall of snowflakes
75 yes Heavy continuous fall of snowflakes
-25000
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Fig. 3.  (a) Average (bar plot), maximum (orange dots), and minimum (purple

dots) harvested power for different weather codes in the installed PV system.
(b) Number of total observed hours within the same class.

set, were then consistently applied to the test set to prevent data
leakage.

C. Weather Conditions Classification

Climate variations are significant across different seasons,
and many methodologies underscore the benefits of classifying
weather and developing class-specific ML models. Here, we
use SYNOP codes for weather categorization, a system en-
dorsed by the world meteorological organization, applied by
meteorological stations globally. This system classifies climate
into 100 distinct groups. Table II lists only the weather codes
observed at the investigated PV setup location. Fig. 3(a) and (b)
illustrate the hourly average, minimum and maximum values of
PV output power segmented by SYNOP codes and the number
of observations per weather code, respectively.

This approach offers several advantages: 1) It eliminates the
need for additional clustering or classification computations.
2) The codes are universally recognized and clear, ensuring
consistency. 3) Itis particularly suitable for scenarios where data
may be limited. 4) It reduces the risk of classification overfitting
and potential errors.

Furthermore, in cases where SYNOP codes are absent in
the acquired NWP data, it is possible to generate these codes
by utilizing weather information such as cloud coverage, tem-
perature, precipitation, wind speed, direction, etc. Since, these
weather factors are essential for accurate solar power generation
forecasting, using either physics-based or data-driven models,
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therefore, adding SYNOP codes to NWP datasets does not
noticeably increase the data processing burden.

D. Sequence Forecasting Model

For sequence data analysis, a custom SAED model has been
developed, which has 3 main parts: encoder, self-attention layer,
and decoder, as depicted in Fig. 4.

For the encoder layer, a Bidirectional LSTM network (BiL-
STM) is implemented for encoding the input sequence data.
BiLSTMs are capable of processing sequence data in both
forward and backward directions, thus improving the model’s
insight into sequential data. Fig. 5 depicts the LSTM unit
cell layouts. An LSTM cell consists of four Neural Networks
(NNs), each dedicated to a unique role. As seen in Fig. 5,
the blue-highlighted section determines memory retention; the
green section, equipped with two distinct NNs, formulates and
selects long-term memory candidates; and the orange section
forecasts the output using past memory and current information.
In LSTM cells, the tanh and sigmoid (o) functions have been
implemented to prevent gradient issues and ensure network
stability, irrespective of the memory length.

To prepare the dataset for the BILSTM layer, transforming it
into a 3-D tensor shape is essential. This transformation was
achieved using a sliding window technique, as illustrated in
Fig. 6. In our approach, we utilized a look-back window of
360 records, corresponding to a continuous past 15 days period.
Additionally, the sliding window is designed to move 24 steps
each time, providing a new data segment for each day. The
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prediction horizon is set to 24 hours, aligning with the goal of
day-ahead forecasting. Thus, by assuming input batch data with
(I, S, F) dimensions, where I is the number of data blocks, S
is the memory length, and F' is the number of features. The
mathematical description of the LSTM cell with A/ hidden units
is as:

fi=o(Ws x 2 +Up X hy_1 +bg), fi eRY,

i =o(W; X 3+ Uy X hy_y +b;), iz € RV,

0t =0(Wo X 24Uy X hy_1 +b,), o € RV,

¢, =tanh(W. x 2, + U. X hy_1 +b.), ¢, € RV,
c=fiOc1+i ¢, o€ RN,

yr = hy = oy ® tanh(c;), hy € RN, (6)

where W, € RV*F and U, € RVNV represent weight matrices
forinputdataz; € RY intimestep t and hidden state data by €
RY in previous timestep ¢ — 1, respectively, while b, € RV
represents bias term for each gate and ©® denotes element wise
product. f, 1, o, c are abbreviations for forget, input, output gates,
and cell state, respectively.

Before feeding the data processed by the encoder into the
decoder layer, the self-attention mechanism, initially pivotal in
machine language translation and computer vision [33], has been
integrated between the encoder and decoder layers to enhance
performance. This mechanism, inspired by human vision, has
become fundamental in natural language processing and gener-
ative Al models. Its recent application in various forecasting
areas, including solar output power forecasting, has yielded
valuable results [34], [35], [36].

The attention mechanism allows NNs to focus on specific
segments of the input sequence, akin to human selective percep-
tion. In encoder-decoder architectures, it processes the encoder’s
hidden states through an attention head. This head generates
attention scores that pinpoint crucial information within the se-
quence. These scores are then utilized by the decoder network to
emphasize and retain the most informative parts of the input. As
a result, this selective focus significantly enhances the model’s
overall effectiveness. The versatility of the attention mechanism
allows its adaptation across various networks dealing with se-
quential data.

We have implemented a self-attention mechanism, inspired
by the methodologies outlined in [37], [38]. The structure
of this attention mechanism is illustrated in Fig. 4. The in-
put matrix to the self-attention layer is represented as H =
{ht—ny.oyhey. .. hypn}, where H € RS*N This mechanism
computes three matrices from #: Queries (¢), Keys (k), and
Values (v), using learned dense transformations. The formulas
for these are ¢ = HW,, k = HW),, and v = HW,, with ¢, k,
v each belonging to RS*datt | Here, Wy, Wy, and W, are the
respective weight matrices for Queries, Keys, and Values, sized
RV *datt The dimension d s denotes the number of units in the
dense layers. Attention weights W, are derived using the dot
product of Queries and transposed Keys, followed by a softmax
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TABLE III
ML MODELS HYPERPARAMETERS

Model Name Weather Name/Value
Class
0 {Bt: goss, Obj: MAPE, metric: RMSE, Ff: 0.84, Lr: 0.0957, MD: 8, MCS: 26, MDIL: 14, NoE: 98, Nol: 752,
NoL: 50, L1: 5.283, L2: 1.173, ES: 75}
1 {Bt: goss, Obj: MAPE, metric: RMSE, Ff: 0.66, Lr: 0.0976, MD: 5, MCS: 87, MDIL: 14, NoE: 1198, Nol: 640,
LightGBM NoL: 164, L1: 4.989, L2: 0.657, ES: 20}
2 {Bt: goss, Obj: MAPE, metric: RMSE, Ff: 1, Lr: 0.0765, MD: 10, MCS: 2, MDIL: 25, NoE: 1368, Nol: 1243,
NoL: 23, L1: -, L2: -, ES: 20}
3 {Bt: goss, Obj: MAPE, metric: RMSE, Ff: 1, Lr: 0.0764, MD: 18, MCS: 71, MDIL: 1, NoE: 367, Nol: 1400,
NoL: 52, L1: -, L2: -, ES: 200}
others {Bt: goss, Obj: MAPE, metric: RMSE, Ff: 0.8, Lr: 0.0420, MD: 18, MCS: 10, MDIL: 2, NoE: 184, Nol: 471,
NoL: 196, L1: -, L2: -, ES: 100}
SAED - {Number of BiLSTM layers: 1, LSTM cells: 50, Attention layer width: 100, FNN depth: 4, HL _1I size: 60, HL_2

size: 120, HL _3 size: 60, output size: 24, optimizer: Adam, Loss: MSE, Lr: 5e-4, epoch: 100, batch size: 32}

Meta learner

{loss: huber, penalty: elasticnet, Lr: invscaling, alpha: 0.0016, eta0: 0.3, Nol: 50, power_t: 0.48, tol: 6e-4}

Recursive-LSTM*

{Number of LSTM layers: 2, LSTM cells: 60, drop out: 0.25, Dense: 1, optimizer: Adamax, Lr: 3e-4, epoch: 60,
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batch size: 16}

XGBoost* - {MD: 6, eta: 0.007, SS: 0.9, CST: 0.9, CL: 0.2, MSW: 94.81, L1: 1.63, L2: 29.7, gamma: 0.9}

LSTM* - {Number of LSTM layers: 2, LSTM cells: 200, drop out: 0.15, Dense: 24, optimizer: Adam, Lr: 5e-4, epoch: 200,
batch size: 8}

BiLSTM* - {Number of BiLSTM layers: 1, LSTM cells: 50, output Dense: 24, optimizer: Adam, Lr: 3e-4, epoch: 100, batch
size: 32}

LightGBM* - {Bt: goss, Obj: MAPE, metric: RMSE, Ff: 1, Lr: 0.0501, MD: 17, MCS: 24, MDIL: 1, NoE: 782, Nol: 900, NoL:

35, L1: -, L2: -, ES: 200}

Encoder-Decoder* -

{ Number of BiLSTM layers: 1, LSTM cells: 50, NN depth: 4, HL _1 size: 60, HL_2 size: 120, HL _3 size: 60,

output size: 24, optimizer: Adam, Loss: MSE, Lr: 5e-4, epoch: 100, batch size: 32}

Benchmark models

Hyperparameters abbreviations: Boosting type (Bt), objective (Obj), Feature fraction (Ff), Learning rate (Lr), Max Depth (MD), Minimum Child Samples
(MCS), Min Data in Leaf (MDIL), Number of Estimators (NoE), Number of Iterations (NoI), Number of Leaves (NoL), Regression Alfa (L1), Regression
Lambda (L2), Early Stopping (ES), Sub Sample (SS), Minimum Child Weight (MSW), Column Sample by Tree (CST), Column Sample by Level (CL),

Hidden Layer (HL).

operation as:

( q kT ) SxS
W = softmax (| —— |, Wy € RO, (7)
att

where the squared form d,;; is used as scaling factor. This
scaling is crucial for stabilizing the gradients during the learning
process. Without scaling, the dot product could grow large in
magnitude, pushing the softmax function into regions where it
has extremely small gradients, which is known as the softmax
bottleneck. The final attention scores is obtained by matrix
multiplication of v and W, as:

Satt = Watgv, Sap € RS orr, (8)

The output of the attention layer (Og;) is then obtained by
applying another learned dense transformation (W, € Rat xS,
b, € RS) to the attention output:

Oatt = Sa,f,tW() + bm O(Ltt € RSXda”~ (9)

Finally, O is transformed using 1-D global averaging. The
global averaging is implemented to squeeze the dimension of
the attention scores to be compatible with decoder layer.

In the decoder segment of the model, a Feedforward Neural
Network (FNN) is utilized to process and synthesize the in-
sights gathered from the preceding layers. This FNN comprises
three hidden layers. The output layer is distinctively designed

360 t 424

Output power O Archive NWPs

Feature 1 OOOOO o000 (O Next day Nwps
i 0O0~000|00-O
rauren QO~OO00O|OO-~O

Output power records

Predictions

Fig. 7. SAED network input data structure.

for one-shot forecasting of the next day, featuring 24 output
neurons, each representing an hour of the ensuing day. One-shot
forecasting is generally preferred over recursive methods, as
it is less prone to error propagation. The intricate technical
details and specific characteristics of the decoder layers are
comprehensively documented in Table III.

During the training phase of the SAED model, the initial
80% of the reshaped data is utilized for training, with the
remaining 20% dedicated to making predictions. The model
leverages five key features: Solar Radiation Parameters, Cloud
Coverage, Temperature, pvsim, and Output Power records. Fig. 7
displays the internal structure of the input data blocks fed into
the encoder layer. The training objective is to enable the model
to predict PV output power by analyzing past records alongside
the forthcoming 24 hours’ NWPs. However, since the last 24
hours of the Output Power data column are the target values to
be predicted, missing values in these data chunks are filled with
Zeros.
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E. Regression Models

In our study, for each weather class a specific regression
model has been developed. However, due to a limited number
of occurrences in certain weather code classes in our dataset,
namely ‘53°, 55°, ‘61°, ‘63’, ‘71°, ‘73’, ‘75, these classes
were merged into the class code ‘51’ and collectively labeled
as ‘others’. Consequently, this led to the formation of 5 distinct
weather classes, each equipped with its own regression engine.
To ensure that these models can effectively generalize across
different seasons, the train datasets were shuffled.

In this study, the selected regression model is LightGBM.
LightGBM incorporates two key techniques: Gradient-Based
One Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB). EFB bundles mutually exclusive features, like one-hot-
encoded ones, reducing data dimensionality and speeding up
model training. Conversely, GOSS optimizes instance selection
for calculating information gain. Instead of using all instances,
GOSS focuses on high gradient ones and randomly samples
the rest, lowering computational costs. Furthermore, Light GBM
discretizes continuous features into integers to efficiently con-
struct decision trees, creating feature histograms to identify
potential split points. The instances have been splitin Light GBM
based on the estimated variance v;(s) over subsets described
as [39]:

(10)

2
1
w(s)=<2 g¢+wzgi> : an
z; €8

T €A

2
1
vp(s) = < Z gier Z 91) ) (12)
z;€Ap

z;€Bp

where z; € {z1,...,2,}, ¥; € R™, m is the number of
features in the feature space x', and n is the total number
of samples in the subsets (AU B). A refers to the subset of
a% of all data samples with highest gradient and B represents
the subset of the 5% randomly selected instances from the
remaining data samples. 1) represents the potential point of
splitting based on feature j. subsets are divided based on 1) as:
A= {11 EAZ:EZ'J' S?/}},Bl = {(Ll € BZ:EZ']' Sw},Ah:

{z;i € A:ay; >}, By = {x; € B:x;; > ¢}. Furthermore,
nf refers to number of instances in the subset 4; U B; and n{L
refers to number of instances in the subset Ay U By,. g; is the
negative gradient of the instance x;, and term a% is used to
normalize the sum of gradients. The training procedure for both
branches of the proposed model is summarized in Algorithm 1.

F. Meta Learner

In our framework, we have selected a linear regression
model trained using a Stochastic Gradient Descent Regressor
(SGDR) [40] as the meta learner. This type of regression is adept
at fitting by minimizing a regularized empirical loss through
Stochastic Gradient Descent (SGD). The choice of SGDR is
due to its online learning capability, which enables iterative
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Algorithm 1: Proposed ML Branchs’ Training Procedure.

Input:dataset D" = {(z;,y;)}, hyperparameters Sy,
M € {LightGBMs, SAED, SGDR}, batch size B
Output:weights wn, N € {SAED, SGDR} and F(-),

F € {LightGBN, }J € {007, ‘01’, <02°, ‘03", ‘others’}
1: Identify 7 for all z;: J; + SY NOP(z;)
2: Generate class-based datasets:
D" «Classifier(D" 7,
3: for all 7 do
Fg ]-'(Df;“i"., F)
: end for
: Initialize ws A pp with random weights:
: {wM7 ﬁ}m’ Watt, wfnm bfn,n} ~R
: for epoch = 1 to Epochs do
9: Initialize total loss: L7 = 0
10:  for all batches B C D" do
11:  for all pairs (x;,y;) in B do

- . . -
12: h“ i FBlLSTM(wW,wm,IJ

13: Wi, «+Attention(h;h;)
14: zitt — W,ittVi
15: Oy« SE,WE+ b
16: ?jL — U(annojztt + bfnn,)
17: Accumulate batch loss: L7 < L1 + L(Y:, yi)
18: end for
Ly

19: Average batch loss: L < 5
20: Calculate gradients:

G <Backpropagation(I, Lg)
21: W, +UpdateWeights(9M,§,LearningRate)
22: end For
23: end For

model updates with new data inputs. This adaptability is cru-
cial for accommodating changes resulting from environmental
variations or alterations in system components. While there are
other viable methods, such as weighted averaging, the use of
SGD for training strikes offers a balance between performance
and computational efficiency, making it a preferable choice for
dynamic and evolving forecasting scenarios.

G. Hyper Parameters Optimization

The hyperparameter optimization stage for tree-based models
like LightGBM in this study was conducted using Bayesian opti-
mization, as cited in [41]. This technique is particularly effective
because it leverages information from previous iterations to
guide the search, making it more efficient than Grid or Random
search methods, especially for models with a large number of
hyperparameters. Decision trees are susceptible to overfitting,
especially with smaller datasets, which makes careful hyperpa-
rameter selection imperative and thus the Bayesian optimization
shows to outcome with better results than Random and Grid
search methods. For all models, the hyperparameters have been
optimized after conducting 100 iterations with 10 initial points.
In contrast, for training the SAED, the SGDR meta learner, and
RNN-based benchmark models, the Grid search algorithm has
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Fig. 8.  The detailed pipeline of the proposed hybrid ML model.

been employed. This choice was made because the number and
range of hyperparameters in these models are limited, making
Grid search a suitable choice.

H. Hybrid ML Models Pipeline

Fig. 8 summarizes the detailed pipeline related to the data
segmentation, scaling, training, validation, and test evaluation
of the proposed hybrid ML model. At the initial stage, the
dataset is divided into training and testing sets. The test dataset is
exclusively reserved for the final hybrid ML model performance
evaluation. During the training of the regression models, the
main training dataset is segmented based on weather codes. Once
data instances are classified, the subsets are further divided into
train-validation and test sub-datasets. Importantly, as we plan to
train a sequence model later, the data is split sequentially without
shuffling. The subset designated as the test sub-dataset is used
to generate outputs for training a meta learner from learned
regression models represented as M1,M2,.., Mn in Fig. 8. At
this stage, the train-validation datasets are shuffled and split into
sub-train and sub-validation datasets. Specific regression models
for each class are then trained and undergo hyperparameter
optimization. After the training and optimization of the models,
each regression model processes its respective sub-test dataset
to produce initial predictions. Following these procedures for all
classes, we compile a dataset that is ready to be integrated with
the outputs of the sequence model through a meta learner.

In the second branch, the main dataset undergoes a similar
division procedure as the regression branch. After this division,
a Min-Max scaler is applied to normalize the sub-train data,
and the same scaler is then used to transform the sub-validation
dataset. The test setis similarly scaled using the same fitted scaler
to maintain consistency. Following data scaling, the datasets
are separately prepared and reshaped to facilitate the training,

hyperparameter optimization, and testing phases. Subsequently,
the trained SAED model processes the sub-test dataset to gen-
erate initial predictions. These predictions are then rescaled and
integrated with the results from the regression models. During
the meta learner training stage, the outputs from previous stages
are divided into training and validation subsets. The meta learner
is then trained, and its hyperparameters are simultaneously
optimized.

In Fig. 8, the "Performance Check’ block illustrates the prin-
ciple of model operation after training all models. At this stage,
the pre-trained models are fed with test data, which was set
aside at the beginning. It is important to note that the test data
undergoes the same classification/scaling procedures as in the
regression stage and the same scaling/data reshaping as in the
SAED branch. These steps are not repeated in the flowchart
to avoid over-complexity. Ultimately, the outputs from both
branches are combined by a meta learner, resulting in 24 final
forecasts that are generated and delivered.

III. NUMERIC RESULTS

In this section, we separately discuss the performance of the
PBM, LightGBM, and the SAED model. Following this, we
compare the overall performance of these models with selected
benchmarks. The development of these models was facilitated
using the Keras 2.10 and Scikit-learn 1.3.10 libraries, running
on Python 3.10.7. All computational processes were carried out
on a desktop system equipped with an Intel Core i7-7700K CPU
(4.20 GHz) and 32 GB of RAM.

For the training of regression models and for metrics reports
for all models, only data instances during daytime were used.
Furthermore, forecasts for the subsequent day for all models are
generated at midnight after acquiring NWP data. The test set
spans 8760 hours (365 days), covering the latter half of 2022
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and the first half of 2023. This period allows for the analysis
of the models’ ability to capture seasonality and adaptation
to both extremely low and high solar generation, due to the
unique daylight conditions in northern European countries. In
late spring and summer, day lengths can extend up to 21 hours,
significantly longer than in regions closer to the equator. Con-
versely, during autumn and winter, day lengths can shorten to as
low as 5 hours, making these seasons less suitable for evaluating
forecast performance. This comprehensive year-round analysis
helps in understanding the models’ performance under varying
solar conditions. Table III indicates the best hyperparameters
sets for all the models.

A. Evaluation Metrics

Regression and forecasting model evaluations commonly uti-
lize metrics like normalized Root Mean Square Error (n(RMSE),
normalized Mean Absolute Error (nMAE), coefficient of de-
termination (R?) score, Symmetric Mean Absolute Percentage
Error (SMAPE), and Mean Absolute Percentage Error (MAPE).
Notably, MAPE and sMAPE can pose challenges, especially
when both the actual target and the forecasted value are zero,
potentially leading to undefined values. To mitigate this issue,
MAPE and sMAPE in this study are calculated using a method
recommended in [3]. The formulas for these metrics are detailed
accordingly.

1 1 &
nRMSE = —— | — -2 (13)
Y \| 72 h;(yh yh)
1 <=~ |yn — )
nMAE — —ZM, (14)
7] h 1 ymax
S e
R?=1- "= 15
7SS’ (15)
100 — —
MAPE = —ZM (16)
n Yy
h=1
100 & —
SMAPE — 100y~ [ — 4 an

R =ACER Y

where n is number of forecasting data samples, y and 3y’ are
actual and forecasted values, respectively. ymax 1S the maxi-
mum amount of the target value in the corresponding test set.
Also, SSres = > op_1(yn —y3,)% and TSS =370, (yn — §)?
are sum of squares residuals and total some of squares, respec-
tively. § and ' stands for the means of actual PV output power
values, and the mean of forecasted PV output power values,
respectively.

B. Benchmark Models

The performance of our proposed model was assessed
in comparison to a spectrum of foundational models, in-
cluding LSTM, recursive LSTM, BiLSTM, XGBoost, Light-
GBM, a basic encoder-decoder, averaging, and the Persistence
model.Furthermore, we have compared the performance of our
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TABLE IV
FORECAST PERFORMANCE OF LIGHTGBM MODELS

Weather class nMAE MAPE % sMAPE % nRMSE RZ score

0 0.029 9.22 10.13 0.052 0.967

1 0.048 15.68 16.95 0.075 0.931
2 0.082 26.88 28.62 0.120 0.819
3 0.059 35.61 34.92 0.098 0.764
others 0.077 33.61 35.07 0.115 0.729

TABLE V
COMPARISON OF FORECAST PERFORMANCES BETWEEN SUNRISE AND SUNSET
PERIODS
< S

s w 8 8 8

< & < S 2

Model - - 2 R
Proposed 0.043 2262 21.62 0.089 0.898
Average 0.046 2282 22.16 0.091 0.885
SAED 0.048 2471 2323 0.096 0.876
Classified LightGBM  0.050 2554 24.63 0.101  0.864
LightGBM-LSTM* 0.050 25.18 2499 0.098 0.860
Recursive-LSTM* 0.053 2641 2620 0.110 0.855
XGBoost* 0.051 2636 2636 0.108 0.855
LightGBM* 0.053  26.64 2647 0.109 0.853
BiLSTM* 0.056 27.88 2693 0.114 0.829
Encoder-Decoder* 0.053 2677 2641 0.111 0.853
LSTM* 0.057 29.18 28.08 0.116 0.844
PBM 0.070  36.03 34.08 0.134 0.725
Persistence 0.084 43.13 43.13 0.174 0.584

proposed model with state-of-the-art solutions documented in
the literature. To ensure equitable benchmarking, all these mod-
els underwent the same optimization process as our proposed
model. Notably, during the training of the benchmark models,
the ‘pvsim’ column, which represents physics-based insights,
was included to isolate its impact on the comparative perfor-
mance of the ML models. The Persistence model employs a
simple forecasting method, predicting that the PV power output
for any given hour will replicate the output from the same hour
on the previous day. Additionally, the average model generates
forecasts by averaging the outputs from the two branches pro-
posed in our model.

C. Physics-Based Model Performance Evaluation

The performance of PBM has been reported and compared
with other data-driven methods in Table V. Although these
mathematical models might not rival the performance of data-
driven methods in every aspect, they hold significant value for
initializing new systems. Another advantage of incorporating
a PBM in forecasting tools is its ability to effectively handle
weather conditions not previously seen in historical datasets. In
contrast, models relying solely on ML techniques may struggle
when encountering unfamiliar data instances in the test set. Fig. 9
presents the daily sum of simulated output energy derived from
the PBM and the daily sum of actual recorded values, along with
their residuals, during the last 4.5 months of the test period.
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Fig. 9. Daily summed real output energy values and daily summed physics-
based simulations outcomes and their residuals.

D. Regression Models Performance Evaluation

Table IV outlines the performance of LightGBM models
across weather classifications. The highest accuracy is in class
‘0, representative of sunny conditions, with a MAPE score of
9.22% and 96.7% proficiency in capturing variable changes.
However, performance drops notably in weather classes ‘2’,
3’, and ‘others’, with class 3’s MAPE reaching 35.61% due
to the unpredictability of cloud formations, which is not fully
addressed by NWPs.

Despite these limitations, LightGBM models perform satis-
factorily overall. Note that while MAPE for class ‘3’ is the
highest, other metrics indicate its superior performance over
class ‘others’. This highlights MAPE’s tendency to favor higher
forecasts, leading to potential underestimation and suggests the
need for using multiple metrics in model evaluation. Thus,
the regressor for class ‘3’, despite a tendency to overestimate,
generally produces more accurate predictions than the ‘others’
class.

E. SAED Performance Evaluation

The core feature of the encoder-decoder structure applied in
this study is the self-attention mechanism. The effectiveness of
an attention mechanism depends on its ability to identify key
segments of the sequence data, thereby guiding the decoder to
focus on these areas, which enhances model performance. To
assess this, evaluating the attention weights is instrumental in de-
termining whether meaningful attention is being formed within
the sequence data and if the model is learning to concentrate on
significant parts of the training data.

Fig. 10 illustrates the attention weights for the training data
during the model’s training process. Initially, there is no signifi-
cantfocus on particular features. However, as training progresses
through more epochs, the attention mechanism learns to distin-
guish specific parts of the data by increasing attention weights
and scores on them. These scores are pivotal for the decoder’s

performance and allow for the use of a relatively simple FNN in
the decoder part while still achieving considerable results. The
performance of the proposed SAED model was compared with a
simplified version of the same encoder-decoder model (Encoder-
Decoder*), which lacked the self-attention mechanism. The
outcomes confirm that the inclusion of the attention mechanism
improves various metrics, thus system general performance.
The detailed metrics and their improvements are enumerated
in Table V.

E. Proposed Model Performance Analysis

The performance metrics of the proposed model are detailed
in Table V. The proposed model demonstrates commendable
day-ahead forecasting performance during daytime hours, with
annMAE of 0.052, nRMSE of 0.043, MAPE 0f 22.62%, SMAPE
of 21.62% and an R? score of 0.898. Notably, the performance
of the ‘Average’ meta learner closely approximates that of the
chosen meta learner, suggesting that the results from the two
parallel branches are sufficiently accurate to employ a simple
method like averaging as a combination head.

Additionally, the SAED model shows superior performance
compared to the BiLSTM*, simple Encoder-Decoder*, and
Recursive-LSTM* models, underscoring the effectiveness of
incorporating the attention mechanism. Furthermore, the per-
formance of the XGBoost* model, with a nMAE of 0.051
and sSMAPE of 26.36%, is comparable to that of the applied
LightGBM regressors. This suggests that the XGBoost regressor
could also be a viable option within the framework [42].

The performance of the model across 15 consecutive days is
presented in Fig. 11. It is apparent that the model’s performance
varies, underperforming on certain days, which highlights ar-
eas for further improvement. However, the overall efficacy for
day-ahead predictions is satisfactory. During purely sunny days,
the model’s forecasting is near ideal, and it also performs well
on mostly sunny days with minimal cloud coverage. Challenges
arise in accurately predicting output during days with highly
variable weather conditions. This issue is compounded by a
decrease in the accuracy of NWPs under dynamic weather con-
ditions, affecting the model’s forecasting ability. Moreover, on
rainy and cloudy days, where power generation is considerably
lower and more variable, the model still provides relatively close
forecasts of the target values, which should be highlighted as
well.

Fig. 12 offers a comparative analysis of the actual total so-
lar energy generation versus the forecasted day-ahead energy
production and the prediction residuals. Compared to Fig. 9,
there is a significant reduction in residuals, underscoring the
importance of integrating ML tools with PBMs. Accurate pre-
dictions of cumulative available energy for the next day are
crucial for behind-the-meter energy management systems, as
their optimization algorithms rely more on aggregate renewable
energy availability than on hourly predictions [43].

The ability of models to capture seasonal trends and manage
seasonality parameters is essential for precise forecasting. Reli-
able and robust models should consistently maintain their perfor-
mance within an acceptable range throughout the year and across
different seasons. To validate the effectiveness of our model in
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Fig. 10.  Attention formation by increasing training epochs.
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Fig. 11.  Proposed forecasting framework comparison with measured data.

forecasting solar power generation across varying seasons, we
conducted a detailed seasonal comparison of model accuracy.
Various metrics were calculated separately for each month to
assess the model’s accuracy in different seasonal contexts, pro-
viding a clearer insight into its strengths and weaknesses under
various weather conditions and day lengths. These metrics were
then averaged for each season and compared against bench-
mark models. The seasonal performance data are compiled in
Tables VI to IX.
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Fig. 12.  Daily summed real output energy values and daily summed proposed

model predictions and their residuals.

TABLE VI
COMPARISON OF MODELS’ PERFORMANCES DURING SPRING (MARCH, APRIL,
MaAY)
< R

) i & 2 g

< & < s 2
Model ;: = = % o
Proposed 0.041 2228 21.78 0.084 0.908
Average 0.043 2248 2192 0.086 0.890
SAED 0.045 2461 2339 0.091 0.883
Classified LightGBM ~ 0.047  25.69 2540 0.097 0.871
LightGBM-LSTM* 0.049 26.11 2595 0.096 0.860
Recursive-LSTM* 0.049 2574 2588 0.099 0.864
LightGBM* 0.051 2693 27.06 0.102 0.855
BiLSTM* 0.052 27.04 2653 0.105 0.854
Encoder-Decoder* 0.048 2635 2638 0.100 0.859
LSTM* 0.053 2892 28.04 0.106 0.849
XGBoost* 0.049 26.16 26.67 0.102 0.858
PBM 0.058 3146 3242 0.112 0.825
Persistence 0.080 4494 4507 0.174  0.560

Our proposed model, which incorporates three distinct tech-
niques for forecasting solar power generation, consistently out-
performs benchmark models in most cases and across various
seasons. However, like all models, it struggles significantly
during cold and snowy days to maintain accuracy. This decreased
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TABLE VII TABLE X
COMPARISON OF MODELS’ PERFORMANCES DURING SUMMER (JUNE, JULY, COMPARISON OF MODELS’” PERFORMANCES WITH STATE OF THE ART
AUGUST)
Model nMAE MAPE % sMAPE % nRMSE R? score
<
® Z . ) Proposed  0.043 22.62 21.62 0.089 0.898
) & & g S 131 0.047 25.13 24.57 0.097 0.872
= ) s & & [44] 0.045 22.32 21.73 0.088 0.883
Model = = 7 = ~ 45] 0.055 28.01 27.29 0.114 0.846
Proposed 0.049 2295 2146 0.096 0.888
Average 0.049 23.15 2239 0.097 0.879
SAED 0.051 2481 23.06 0.100 0.868 . . iy due t 1 d th
Classified LightGBM ~ 0.052 2539 2385 0.104 0.857 accuracy 1s primarily due to snow coverage on panels and the
LightGBM-LSTM* 0.051 2425 2402 0.099 0.860 very low energy generation during such conditions, which devi-
Recursive-LSTM* 0.057 2707 2651 0.120  0.846 ate from typical weather patterns and expected power outputs.
LightGBM* 0.055 2635 2588 0.115 0.850 Add . the inclusi f th h in f "
BIiLSTM* 0060 2872 2732 0124 0841 ressing the inclusion of these phenomena in forecasting
Encoder-Decoder* 0.058 27.19 2643 0.121 0.846 models is beyond the scope of this work. Despite the challenges
LSTM* 0.061 2944 2811 0.126 0839 posed by these extreme conditions, our model still outperforms
XGBoost* 0.053 26.61 2605 0.113 0.852 he bench K del firmi . A d reliabil
PBM 0081 4060 3573 0155 0.624 t e benchmark models, confirming its superiority and reliabil-
Persistence 0.087 4132 41.19 0.173  0.608 ity even in less-than-ideal scenarios. Furthermore, all models
perform best during the spring and summer months, when
weather conditions are relatively stable, and the accuracy of
TABLE VIII NWPs is higher compared to winter and autumn. This seasonal
COMPARISON OF MODELS’ PERFORMANCES DURING AUTUMN (SEPTEMBER,  variation highlights the impact of environmental consistency on
OCTOBER, NOVEMBER) . .. . . L.
forecasting accuracy, as stable conditions simplify the predictive
— modeling process and reduce the likelihood of anomalies that
5 == .
" i 3_, o g could disrupt model performance.
<Et & Z < 2 Additionally, the potential of the proposed technology is
Model = = % E k2 compared with cutting-edge technologies, and the outcomes are
Proposed 0.034 3725 3635 0.076 0.843 summarized in Table X. Overall, our proposed solution outper-
Average 0.036  37.67 37.59 0.079  0.836 forms its competitors in many aspects. However, it is important
SAED 0.036 3872 39.23 0082 0823 to note that [44] achieves slightly better results in terms of nMAE
Classified LightGBM ~ 0.038 4226 4085 0.087 0.797 NS o, X
LightGBM-LSTM* 0.037 4155 4127 0086 0817 and sMAPE. Despite this, our model, which integrates diverse
Recursive-LSTM* 0.038 4206 41.81 0.088 0.784 methodologies and combines elements of data-driven models
LightGBM* 0.039 43.07 4324 0092 0.762 . S o . . o
BILSTM* 0037 4302 4086 0087 0798 and PBM, delivers outcomes that are reliable, dccyrdte, and
Encoder-Decoder® 0.040  47.17 4628 0.093  0.737 robust compared to state-of-the-art approaches. This demon-
LSTM* 0.039 4923 47.53  0.091  0.752 strates the efficacy of blending different analytical techniques to
XGBoost* 0.039 46.09 4728 0.090 0.767 . :
PEM 0041 5685 5248 0099 0653 enhance foreca}stmg perfgrman.ce. .Nevertheless, there are still
Persistence 0.066 8550 8073 0.162 0311 areas that require further investigation.
IV. CONCLUSION
TABLE IX

COMPARISON OF MODELS’ PERFORMANCES DURING WINTER (DECEMBER, Accurate solar power forecasting is pivotal for efficient energy
JANUARY, FEBRUARY) management, grid stability, and the pursuit of carbon neutrality.

Addressing this need, our study introduces a hybrid day-ahead

© ® o solar power forecasting model for behind-the-meter applica-
, @ E ué 3 tions, blending PBMs and ML techniques. The approach is
Model = %’: > % oy versatile, catering to setups with extensive historical data and
new installations without past records. This model is designed
Proposed 0013 47.26 4849 0.050  0.787 to be versatile, accommodating both installations with extensive
Average 0.014  49.13 51.62 0.051  0.752 i ) ’ X g .
SAED 0.014 5265 5322 0052 0734 historical data and those without past records, addressing cold
Classified LightGBM ~ 0.017 5876  60.90  0.059  0.629 start issues effectively.
LightGBM-LSTM* 0015 5421 5518 0054 0.717 Our findines s ¢ that decisions reearding the reli:
Recursive-LSTM* 0015 5518 5605 0055 0.690 ur indings suggest that decisions regarding the reliance
LightGBM* 0.017 6190 6234 0060 0.615 on PBMs or ML models as the definitive forecasting solution
BiL.STM* 0.016 5606  57.63  0.056  0.656 should not be made until at least 12 to 15 months after initiating
Encoder-Decoder* 0.016  55.82 56.87 0.055  0.679 dat lecti d del traini This timeli 11 f
LSTM?* 0017 6039 5831 0058 0635 ata collection and model training. This timeline allows for
XGBoost* 0.017 5981 6153  0.059 0.620 adequate adaptation to the model’s learning algorithms, though
PBM 0.029 11345 8832 0.090  0.179 it may vary based on regional differences and varying weather
Persistence 0.029 10496 108.42 0.108 0.181

conditions. For instance, areas with less variability in weather
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parameters might benefit from the ML model’s outputs sooner
than the 12th month. Such variability highlights the importance
of considering local contextual and environmental factors when
deploying ML predictions in diverse settings.

In the proposed method, adaptability to different climates
is ensured by using open-access NWPs and SYNOP weather
codes for streamlined classification. The framework comprises
two models: a regression approach using LightGBM and self-
attention based encoder decoder branch, enhanced by a SGDR
as ameta-learner. In a test period, the model achieved a MAPE of
22.62%, SMAPE of 21.62%, nMAE of 0.043, nRMSE of 0.089,
and R? score of 0.90, thereby outperforming benchmark and
state-of-the-art models. Despite its efficacy, the model showed
limitations under variable weather conditions, indicating a need
for improved accuracy in weather predictions, particularly for
solar radiation and cloud coverage.
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Abstract: Non-intrusive load monitoring (NILM) has emerged as a pivotal technology in energy man-
agement applications by enabling precise monitoring of individual appliance energy consumption
without the requirements of intrusive sensors or smart meters. In this technique, the load disaggre-
gation for the individual device is accrued by the recognition of their current signals by employing
machine learning (ML) methods. This research paper conducts a comprehensive comparative analysis
of various ML techniques applied to NILM, aiming to identify the most effective methodologies
for accurate load disaggregation. The study employs a diverse dataset comprising high-resolution
electricity consumption data collected from an Estonian household. The ML algorithms, including
deep neural networks based on long short-term memory networks (LSTM), extreme gradient boost
(XgBoost), logistic regression (LR), and dynamic time warping with K-nearest neighbor (DTW-KNN)
are implemented and evaluated for their performance in load disaggregation. Key evaluation met-
rics such as accuracy, precision, recall, and F1 score are utilized to assess the effectiveness of each
technique in capturing the nuanced energy consumption patterns of diverse appliances. Results
indicate that the XgBoost-based model demonstrates superior performance in accurately identifying
and disaggregating individual loads from aggregated energy consumption data. Insights derived
from this research contribute to the optimization of NILM techniques for real-world applications,
facilitating enhanced energy efficiency and informed decision-making in smart grid environments.

Keywords: non-intrusive load monitoring; load disaggregation; pattern recognition; machine learning;
deep learning

1. Introduction

The rising demand for an increased proportion of renewable energy resources (RES)
in the coming decades, driven by the cost-effectiveness and environmental benefits of
cleaner energy production, is expected to follow an upward trajectory [1]. Although RES
contributes positively to sustainability and environmental concerns, their intermittent
nature poses challenges in the residential energy sector [2,3]. Therefore, it is crucial to strike
a balance between demand and supply to effectively manage these energy resources. The
inclusion of shiftable and non-essential loads in the residential sector, such as electric vehi-
cles (EV) and battery energy storage systems (BESS), can play a pivotal role in optimizing
energy management and enhancing system flexibility. The strategy involves scheduling
these loads to coincide with the availability of RES-like photovoltaic (PV) energy. This
approach not only reduces energy consumption costs and promotes sustainability and
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self-reliance but also augments the penetration of renewable energy [4]. Referred to as
energy flexibility (EF), this adaptability is essential for transitioning towards eco-friendly
and efficient energy grids. A noteworthy development in this context is the emergence of
demand-side energy aggregators, which contribute to balancing demand and supply by
minimizing peak loads during periods of high demand, thereby ensuring stability in power
systems, and facilitating EF [5].

The EF is generally referred to as the customer’s capacity to adjust or modify behavior
based on energy demand, production variations, weather conditions, and user or grid
requirements [6,7]. Several devices in the household are known as shiftable loads such
as EVs, washing machines, dishwashers, etc. These devices are not essential and could
be used at a later time, therefore, referred to as shiftable/movable devices. Another
prevalent definition focuses on the earliest start time and ending time of shiftable devices.
Traditional EF characterization involved installing smart meters on residential devices and
continuously monitoring data, which, although straightforward, could be costly and slow
it also raised concerns about data privacy [8].

A new approach, non-intrusive load monitoring (NILM), has been proposed as an
alternative. NILM observes the usage patterns of devices based on their current signals,
eliminating the necessity for smart meters [9]. The total energy consumption of the user
is given to the NILM model as an input and then the device usage times are extracted,
this method is known as load disaggregation. This makes NILM an essential tool for
demand-side management (DSM) and EF applications. Although the most precise method
to measure device usage is through energy meters on individual devices, this approach
is not the most practical [10]. The integration of data-driven technologies, such as ma-
chine learning (ML), into NILM has enhanced its efficiency. A detailed review of the
NILM method is given in [11]. NILM solutions can be categorized into supervised and
unsupervised learning [12]. In supervised learning, the model is trained using a dataset,
followed by testing and verification. On the other hand, unsupervised learning involves
the model extracting information from data and forming clusters without prior training
sets [13]. While unsupervised learning is faster and more convenient, it lacks the accuracy
of supervised learning [14]. Several ML-based methods, including K-nearest neighbor
(kNN), neural networks, support vector machine (SVM), deep learning (DL), and event
matching classification, have been proposed in supervised NILM. There are many studies
that have also incorporated statistical methods such as particle swarm and Markov chain
models. In Table 1, a comparison of previous studies with this study has been presented.

Table 1. Comparison of the current study with existing literature.

Study Year Place Method Used for NILM Dataset Avg. Efficiency (%)
[15] 2019 China Particle swarm 1 year 94.2
[16] 2023 Indonesia Random Forests 1 year 99
[17] 2020 India Markov Chain 31 days 94
[5] 2021 Estonia Extreme Gradient Boost (XgBoost) 3 years 97.2
[18] 2022 Malaysia K-NN, SVM, Ensemble 30 days 98.8
[19] 2020 Iran SVM 1 week 98.2
[20] 2021 Indonesia Convolutional Neural Networks (CNN) 1 month 98
[21] 2023 Ttaly Random Forests 27 months 96.3
[22] 2024 Spain Long Short-Term Memory Networks (LSTM) 7 months 98
[23] 2023 Greece Recurrent Neural network (RNN) 10 days 97
[24] 2023 Canada LSTM 2 days 98

Current Waveform Features with Rule-Based
[25] 2023 UAE Set Theory (CRuST) 1 month 9%
This Study 2024 Estonia EIEVI:I]:IESFI;\T//I Logistic Regression (LR), XgBoost, 1 year 98

The NILM method has been used for anomaly detection at the appliance level by
incorporating machine learning [26]. In another study [8], NILM is utilized for the event
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matching of devices. This study was based on the Pecan Street dataset, and it used a deep
learning algorithm for this event matching. In [27], the NILM technique is used to identify
the load patterns, and then later, these patterns are used to improve the accuracy of the
load forecasting. A NILM-based solution has been proposed for energy management in
microgrids [28]. Furthermore, the solution also provides input for the electricity market
based on the load characterization by NILM. The results indicated that using this technique
the energy costs and load curtailment can be reduced. In [29], a NILM-based algorithm
has been proposed for the monitoring of loads in the power distribution network. This
technique consists of a neural network and improves accuracy by 5%.

In most of the literature presented above, there are several methods used in NILM
modeling. However, the accuracy of these NILM models is challenging as there are many
device variations, different manufacturers with different power ratings and device operat-
ing modes. The inclusion of ML and DL methods improves this performance significantly
but still, these methods require larger datasets of reference device signals which is prob-
lematic. Therefore, there is a gap in the research studies about the comparison of different
ML and DL algorithms on the accuracy of the NILM technique. Moreover, the impact of
the size of the dataset on the performance of NILM is also of interest. This paper tries to
fill this gap by evaluating the performance of several ML and DL algorithms employed
in NILM. These models are designed based on a real-life dataset measured in an Estonian
household for the whole year. These are the main contributions of this work:

e  Thorough comparative analysis of ML Techniques for NILM, revealing optimal method-
ologies for load disaggregation.

e  Utilization of diverse dataset from an Estonian household for comprehensive evalua-
tion of ML algorithms.

e Implementation and Evaluation of LSTM, XgBoost, LR, and DTW-KNN models, high-
lighting XgBoost’s superior performance.

e Insightful evaluation metrics application includes accuracy, precision, recall, and F1
score for nuanced assessment.

e  Identification of XgBoost as the most effective model for load disaggregation, offering
practical implications for enhancing energy efficiency.

The rest of the article is structured as follows: Section 2 provides detailed background
information about NILM and the ML and DL methods used in this research. The case study
of the Estonian household and the development of these NILM models are presented in
Section 3. The results and discussion are given in Section 4. Finally, the conclusion and
future works are summarized in Section 5.

2. Non-Intrusive Load Monitoring (NILM)

Non-Intrusive Load Monitoring (NILM) is a progressive approach for estimating
individual appliance operating states and their energy consumption based on household
total electrical load measured at a single point. It involves acquiring and disaggregating
the overall electricity usage, offering a simple and cost-effective means of monitoring
appliances’ operation and energy consumption formulated as:

Protar(t) = Yy pe(t) +e(t) 1)

where

Prorar (1) is the power consumed by all appliances,

pr(t—power consumed by the kth appliance,

e(t)—error or difference between aggregate meter reading and the sum of actual
power consumption.

The examination relies on the measurement of voltage and current waveforms taken
at the electrical service entrance (ESE). These data serve as the basis for deducing the
operational conditions and power consumption of each individual load. Load signatures,
also known as load features, are derived from these waveforms, providing measurable
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parameters that reveal information about the nature and operating status of individual
appliances. Appliances can be categorized into distinct types based on their load signatures,
shaping the approach to disaggregation:

e  Type-I appliances, such as toasters and boilers, exhibit a straightforward ON/OFF
state.

e  Type-Il devices like washing machines and ovens operate with multiple (finite) number
of operating states with recognizable patterns.

o  Type-III devices, presented by dimmer lights, belong to continuously variable de-
vices (CVD), presenting a challenge in disaggregation due to their constantly varying
consumption.

e  Type-IV, devices that are constantly in operation and have different energy consump-
tion modes like smoke detectors and refrigerators.

Given the diversity outlined above, developing an accurate yet broadly applicable
NILM system is a challenging task. Consequently, many algorithms are designed to focus
on identifying only the most significant appliances. This strategic approach acknowledges
the complexity of capturing the varied operational signatures across different appliance
types while aiming to provide targeted and effective load disaggregation. The goal is to
strike a balance between accuracy and generalization, ensuring that the NILM system
can reliably identify and monitor key appliances without becoming overly intricate and
challenging to implement [30,31]. A general NILM process can be presented in four phases
and observed in Figure 1.

Event Feature Load

Detection extraction Disaggregation

» Handle missing data or
noise

= Normalization/
standardization

= Data encoding

+ Performance evaluation day of the week (cyclical)

month (cyclical)

* aggregate
e — * hour (cyclical)
Thresholds estimation « time interval (cyclical) « Load disaggregation
* Event classification . :
= day (cyclical) accuracy metrics

Figure 1. The general flow of the NILM technique.

2.1. Data Collection

The initial step in any NILM algorithm involves data acquisition, typically obtained
from smart meters. The crucial question in load disaggregation is determining the opti-
mal data collection frequency for smart meters to ensure accurate appliance identification
and power estimation. The trade-off between high and low data frequencies significantly
impacts NILM algorithm effectiveness. High-resolution measurements, often exceeding
1 Hz, can extract transient features crucial for identifying appliances with similar power con-
sumptions, particularly during state transitions. On the other hand, excessively small data
frequencies limit feature extraction to steady-state characteristics, proving it insufficient for
differentiating appliances with comparable power usage.

The sampling frequency, an essential factor in data pre-processing, varies based on
the appliance signature of interest, with researchers recognizing the utility of both low-
frequency and high-frequency signatures. High-frequency data, however, require high-end
hardware, additional data storage, and have transmission problems, and thereby increasing
costs. Recent NILM solutions strategically balance algorithmic efficiency and performance
across a diverse range of appliances, often favoring low-frequency signals to achieve
satisfactory results [32].

The algorithms differ significantly in their approach to handling data at the collection
stage. The below-mentioned algorithms have the following differences: DTW-KNN excels
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in time series classification, accommodating speed variations but lacks explicit handling
of missing data or noise. XgBoost robustly handles tabular data, automatically adapting
to missing data and outliers, despite needing careful tuning and pre-processing. Logistic
Regression, suitable for binary classification, demands meticulous pre-processing, espe-
cially for categorical data, and lacks inherent handling of missing values and noise. LSTM
networks, an expert at processing sequential data, are robust to noise but may struggle with
lengthy sequences, necessitating truncation or summarization and requiring numerical
input. Based on the above mentioned each algorithm offers unique strengths, and optimal
performance relies on meticulous data pre-processing and tuning tailored to the task and
data characteristics.

2.2. Event Detection

Within the domain of NILM, event detection serves as a crucial task, focusing on detect-
ing state transition actions generated by appliances. The event detection module identifies
instances of state transitions in the aggregated power signal, characterizing actions like
ON/OFF switches, changes in appliance speed and mode alternations. Challenges in event
detection arise from high fluctuations, long transitions and near-simultaneity, and misiden-
tification of events can lead to decreased accuracy and increased computational complexity
in NILM methods. The event detection module employs various models, including ex-
pert heuristics, probabilistic models, and matched filter models, to identify events in the
aggregate signal, with a subsequent focus on exploring different signatures for effective
NILM research, including steady-state features extracted from low-frequency sampled
data around the event detection window. Despite their ease of extraction, steady-state
features face challenges of feature overlapping and susceptibility to power disturbances,
highlighting the ongoing efforts to enhance NILM methodologies [30].

In the event detection phase, the process begins with threshold estimation, where
a specific value is set or calculated dynamically to identify when an event, such as an
appliance turning on or off, has occurred. This threshold is typically based on changes in
power consumption and aims to minimize both false positives and negatives. Following
the detection of events, they are classified into different categories, often corresponding to
individual appliances. The performance of this event classification is then evaluated using
various metrics such as precision, recall, and Fl-score. These metrics assess the accuracy of
the classification in terms of the proportion of correctly identified events, the proportion of
actual events that were missed, and the balance between precision and recall, respectively.

2.3. Feature Extraction

Effective NILM methods necessitate distinctive features or signatures that capture the
unique behaviors of appliances, facilitating the differentiation of various types of appliances.
These features are derived from the distinctive power consumption patterns exhibited by
individual appliances and are utilized to identify or recognize corresponding appliances
from aggregated signals. Two main categories of features employed in NILM are transient
features and steady-state features. Transient features, extracted from the transition process
between two steady states, require high-frequency data acquisition by smart meters, typi-
cally exceeding 1 Hz. Event detection methods separate the transition process from overall
measurements, posing a challenge to accurately capture the start and end of transitions.
The steady-state features, on the other hand, encompass variables such as active power,
reactive power, current, and voltage waveform, and can be extracted from conventional
smart meter data without the need for high-frequency sampling. Although steady-state
features are commonly used, determining the number of states remains challenging [30,33].

Feature extraction is a crucial step that involves processing the collected data to
extract meaningful information. Features mentioned above (see Figure 1) can be used
individually or in combination to improve the performance of the systems. For example,
“aggregation” refers to the total energy consumption data collected from the main power
line. It serves as the primary input for NILM systems. Date/time features can capture
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daily /weekly /monthly /annual patterns in energy usage. Time intervals can refer to the
duration for which an appliance is used, as different appliances tend to be used for different
lengths of time [31,32]. These features can be used individually or in combination to
improve the performance of NILM systems. The choice of features often depends on
the specific characteristics of the problem at hand, such as the number of appliances, the
sampling rate of the data, and the availability of training data [33,34].

2.4. Load Disaggregation

The final stage in the process is load disaggregation, where the identified features and
patterns are used to determine the individual energy consumption and operational states
of specific appliances within a building. During the load disaggregation phase, machine
learning or pattern recognition algorithms, previously trained on labeled datasets in the
earlier stages, are applied to the real-time or historical aggregated energy data [35]. These
algorithms use the learned patterns and features to attribute portions of the total energy
consumption to specific appliances. The complexity of load disaggregation lies in the fact
that multiple appliances may be operating simultaneously, and their energy signatures
may overlap. Advanced machine learning models are often employed to handle these
challenges and improve the accuracy of disaggregation. The choice of algorithm often
depends on specific characteristics of the data and the complexity of the task, including the
number and types of appliances, the intricacy of energy usage patterns, and the availability
of labeled training data [36].

Recognizing the diverse nature of energy consumption patterns, a strategy involving
multiple algorithms has been chosen. NILM studies have explored both supervised and
unsupervised approaches. Supervised methods, utilized in our approach, require a labeled
dataset with sub-metered appliances. However, this kind of dataset may not always
be available. On the other hand, unsupervised methods can be applied without prior
knowledge of the environment. Nevertheless, users are required to validate identified
appliance patterns. As our data are labeled, we primarily use supervised methods in
our approach. Dynamic Time Warping (DTW) is employed for its ability to measure
similarity between sequences, providing flexibility in capturing dynamic variations in
energy consumption. The K-NN algorithm leverages the proximity of data points to classify
patterns, contributing a robust method for identifying similarities in energy signatures.
XgBoost, a powerful ensemble learning technique, excels in handling complex relationships
and boosting predictive performance [37]. Lastly, LSTM is chosen for its effectiveness in
discerning patterns in high-dimensional spaces [38]. By integrating these algorithms, we
aim to enhance the accuracy and versatility of our load disaggregation process, addressing
the complexities inherent in energy consumption data.

3. Machine Learning Techniques

ML revolutionized NILM by providing transparency and precision in energy con-
sumption analysis. ML algorithms excel at analyzing vast datasets and uncovering hidden
patterns within the energy signal. They can learn from historical data to identify unique
signatures of individual appliances, even when operating simultaneously. ML's dynamic
nature allows it to adapt continuously to evolving usage patterns and seasonal variations,
ensuring sustained accuracy over time. Ultimately, ML transforms raw energy data into
actionable insights, empowering users to optimize energy management.

3.1. Dynamic Time Warping with K-Nearest Neighbor (DTW-KNN)

DTW is a crucial algorithm for time series classification, where the objective is to
train a model capable of accurately predicting the class of a time sequence within the
labeled dataset [39]. The K-NN algorithm is commonly employed for this task, with
a modification using the DWT metric instead of the classic Euclidian distance. DTW
accommodates variations in length and speed between the compared time series, making it
particularly effective for capturing patterns in energy consumption over time [40]. Despite
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its efficiency, the challenge lies in the time complexity of DTW, especially for large datasets
with lengthy sequences [41]. However, understanding the nuances of DTW allows for
necessary adjustments to enhance the algorithm’s speed, ensuring practical and efficient
time series classification in the context of NILM.

For one-dimensional time series denoted as f(x(i)) and f(y(j)), where i and j represent
time points in series, and x and y are vectors, characterized by their Euclidian distances [42].
The DTW algorithm involves creating a local cost matrix D storing pairwise distances
between x and y. The algorithm seeks an optimal warping path under certain constraints
using dynamic programming, determining the DTW distance as the minimum accumulated
distance normalized by the length of the optimal warping path. This alignment process
minimizes the “distance” between the two-time series is presented in Equation (2):

Di—l,j—l (match)
D;j=d(x;y;) + min¢ D; 1; (insertion), )
Di,jfl (deletion)

where d(x;,yj) = |xi — ;]

The k-nearest neighbors (K-NN) nonparametric statistical algorithm relies on k training
samples in proximity to the feature space as input. The classification of an object is based
on the most frequently occurring class among the identified k nearest points. The parameter
k denotes the number of nearest neighbors influencing the classification process, and the
selection of an appropriate k is a nuanced yet crucial step for optimizing the model’s
performance [43].

The integration of DTW and K-NN in a combined approach is motivated by the
distinctive strengths of each method. This integration yields a more robust and accurate
predictive model, specially tailored for applications in time series analysis. Essentially, the
synergy between DTW and K-NN capitalizes on DTW’s efficacy in capturing temporal
nuances and K-NN's proficiency in pattern classification based on similarity. This combined
approach facilitates a more comprehensive analysis of time series data, proving particularly
beneficial when dealing with complex and dynamic patterns [43].

3.2. Extreme Gradient Boosting

XgBoost is a highly efficient machine learning algorithm known for its effectiveness
in predictive modeling tasks. As a gradient-boosting algorithm in the ensemble learning
family, XgBoost excels in capturing intricate patterns and relationships within energy con-
sumption data [44]. Its strength lies in accurately identifying and distinguishing between
energy signatures of diverse appliances, making it invaluable in scenarios with complex
and evolving consumption behaviors [44,45]. Operating as a tree ensemble model with k
trees XgBoost predicts outcomes for data samples (x;,y;) through a defined expression [46]:

Vi = Fe(xi) = Fe_1(x;) + fr(xi), 3

where

Fy_1(x;) is the prediction result of previous k — 1 trees,

fi(x;)—k-th decision tree.

The algorithm’s objective function involves a cost function, assessing the error between
predicted and actual values.

Fubj = Z?:1 L(yi, yAl) + 25:1 Q(f]) (4)

The regularization term incorporates the L1-norm, preventing overfitting by penalizing
the number of leaf nodes, and the L2-norm, penalizing leaf node weights. Each iteration
introduces a new tree, and the objective function is approximated using first and second-
order gradients.
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3.3. Logistic Regression

Logistic regression plays a pivotal role in load disaggregation within NILM systems
for binary classification tasks, determining the ON/OFF states [47]. In this context, logistic
regression models are trained using labeled data where the state of each appliance is
known. Features extracted from the aggregated power signal, such as voltage, current, and
frequency, serve as input variables for the logistic regression model. The model learns the
relationship between these features and the probability of an appliance being in the on or
off state [48].

During inference, the trained logistic regression model is applied to real-time aggre-
gated power data to predict the probability of each appliance being ON or OFF. By setting
a threshold probability, appliances are classified as either ON or OFF, providing valuable
insights into individual appliance usage patterns. The performance of the regression-based
load disaggregation model is then evaluated using metrics such as accuracy and precision
and recall, with iterative optimization techniques like feature selection and hyperparameter
tuning applied to enhance model efficacy.

3.4. Long Short-Term Memory Networks (LSTM)

The LSTM algorithm has become one of the essential tools in NILM due to its ability
to overcome the limitations of traditional Recurrent Neural Networks (RNNs), especially
in handling long-term dependencies and gradient vanishing issues [49]. LSTMs are par-
ticularly favored for NILM tasks because they excel at capturing the inherent long-term
dependencies present in time series data. Equipped with forget, input, and output gates,
the LSTM architecture provides precise control over information flow within each memory
block, allowing for the retention of relevant information while discarding extraneous data.

The hidden layer of an LSTM network is a crucial component comprising gated units
or cells, which work in tandem to generate both the cell’s output and internal state (see
Figure 2). Consisting of four interconnected elements, including three logistic sigmoid
gates and one hyperbolic tangent (tanh) layer, LSTMs exhibit a sophisticated mechanism
for controlling information flow within the cell [50]. The forget gate, employing a sigmoid
activation function, determines the relevance of information from the previous cell state,
aiding in the removal of obsolete data. Subsequently, the input gate combines current
input with the previous hidden state, filtering pertinent information and generating new
candidate values for the cell state through a tanh layer. Finally, the output gate normalizes
cell state values and produces the final output, emphasizing LSTMs’ capability to retain
long-term dependencies and regulate information flow effectively [51].

(tanh)
»© )
7 a o | tanh a 5
I |
= i)

&

Figure 2. Structure of the LSTM Network.

It is essential not to overlook the need for additional signal processing when inte-
grating neural networks (NNs) into applications. Circular timestamps provide a cyclic
representation of time, which is beneficial for handling periodic data such as daily or



Electronics 2024, 13, 1420

9of 21

seasonal patterns. They enable neural networks, especially LSTM models, to better capture
recurring patterns in tasks like time series forecasting and energy consumption model-
ing [52]. When using circular timestamps with LSTMs, it is crucial to encode timestamps as
angles on a unit circle and design networks to handle circular sequences effectively. This
approach enhances LSTM models” ability to accurately learn cyclic patterns across diverse
domains, offering a compact yet powerful representation of time-related data [53].

3.5. Performance Indicators

Evaluating NILM systems requires careful consideration since a single metric cannot
capture all its nuances. Although metrics like mean squared error (MSE) and false posi-
tive/negative rates offer insights into overall accuracy, the evaluation should extend to
specific appliance identification metrics such as precision, recall, and F1-score [22]. These
metrics provide a granular understanding of how well the system distinguishes between
individual appliances, which is essential for practical implementation in real-world scenar-

ios [10,43].
TP

Precision = TP+ EP’ (5)
TP

Recall = m, (6)

Fl— Precision x Recall @

"~ " Precision + Recall’

A confusion matrix is a fundamental technique in machine learning that serves as a
concise summary of a classification algorithm’s performance. It provides a tabular layout
of the correct and incorrect predictions made by the classifier, mapping these predictions
to the original classes of the data. This matrix offers crucial insights that go beyond
simple accuracy metrics, which is especially valuable when dealing with imbalanced
datasets or multiple classes. In the matrix, columns denote predicted values, while rows
represent actual values. This arrangement offers a clear visualization of the model’s
accuracy and the patterns of its errors across all classes simultaneously. This structured grid
aids in understanding the classifier’s performance by comparing the correct and incorrect
predictions for each class.

The evaluation, however, does not end at core performance metrics. Computational
efficiency, adaptivity, and data handling diversity must also be considered. Metrics such
as execution time and memory usage shed light on the system’s computational demands,
crucial for real-time applications and resource-constrained environments. Flexibility metrics
gauge the system’s ability to adapt to new appliances and environmental changes, ensuring
its relevance and applicability over time. Finally, scalability and robustness metrics assess
how well the system performs across diverse datasets and under varying conditions,
offering a comprehensive picture of its reliability and generalizability.

4. Case Study of an Estonian Household
4.1. Exploratory Data Analysis

In this study, forecasting algorithms were developed using load data from a household
in Estonia. The specific residence is situated in Tallinn city, comprising two levels, four
rooms, and holding a “C” energy rating. With a total area of around 100 square meters, it
was designed for two adults and one child. The data was measured using the Emporia
Gen 2 3-PHASE device with 16 Sensors. Data collection spanned from August 2021 to
August 2022, achieving an accuracy rate with an error margin below 5%. Measurements
were taken at 15-min intervals. The analysis included various household appliances such
as a dishwasher, vacuum cleaner, television, stereo, sauna, ventilation system, refrigerator,
lighting fixtures, electric stove, and washing machine. Additionally, the house featured a
heating system, water heater, and electric heating floor. The key DC power consumers in
the residence comprised interior and exterior lights, multiple phone and laptop chargers, a
TV and sound system, and a floor heater.
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The data for the entire year is illustrated in Figure 3, showcasing separately measured
AC and DC loads within the household. The combined average value loads hours around
3 kW. The peak recorded load, reaching approximately 19 kW, occurred in February during
the winter months when heating demands were at their peak. In Estonia, winter spans from
November to March, typically witnessing higher energy consumption. Conversely, during
the summer months between May and August, energy consumption drops significantly
as heating demands diminish. The monthly energy consumption throughout the year is
shown in Figure 4.
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Figure 3. The residential load throughout the year.
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Figure 4. The monthly energy consumption.

The hourly energy consumption data is presented in Figure 5 indicating the highest
energy utilization during the evening hours around 7 and 8 p.m., coinciding with most
occupants being at home. While there isn’t a specific hour of lowest energy consumption
evident in the analysis, energy usage tends to be lower in the early morning hours between
2 to 6 am. In Figure 6, the individual load patterns of devices like stoves, rainwater
drainers, sauna, sockets, water pumps, washing machines, lights and heating are shown
during a single day. The sauna, washing machine, electric stove, heater, and water pump
are the most energy-consuming loads when they are being utilized.
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Figure 6. The individual device load pattern in a day.

4.2. Development of NILM based Models

In this research, all compilation has been done utilizing Python 3.10, TensorFlow 2.10.1,
and Scikit-Learn1.4.1, running on a desktop with Intel(R) Core (TM) i7-7700K 4.20 GHz
CPU, NVIDIA GeForce GTX 1080 GPU and 32 GB DDR4 RAM. The XgBoost and LSTM
models have been trained on a GPU, utilizing the CUDA toolkit version 12.4. However, the
Logistic Regression and DTW_KNN models have been trained on a CPU.

Data preprocessing lays the groundwork for effective model training. In the initial data
preparation phase, handling missing values is crucial. Mean imputation (replacing missing
values with the mean of available data) or forward fill (propagating the last observed
value) can be utilized as more general and potentially effective solutions to address missing
values. These methods offer more flexibility in handling different types of missing data
while preserving the integrity of the dataset. The train-test split, typically at 80/20 ratio
ensures unbiased model assessment, additionally shuffling the data during splitting ensures
randomness and prevents any inherited order from affecting model performance. It is
worth noticing that shuffling the data is not performed when working with LSTM due
to the sequential nature of the data. This process is omitted to maintain the integrity of
the temporal relationships within the dataset, ensuring optimal performance of the LSTM
model. The model specifications for different algorithms are given in Table 2.
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Table 2. Model specifications for different algorithms.

Logistic Regression

Solver: “Ibfgs”, Penalty: “L2”, Class Weighted: “balanced”, Max_Iteration: 150, Data Shuffle: Yes.

DTW_KNN Number of Neighbors: 5, Window Size: 150 min (10 samples), Sample Signal Length: 360, Data Shuffle: No.
Booster: “dart”, Device: “GPU”, eta: 0.5, Max Depth: 4, Min_Child_Depth: 1, Max_Delta_Step: 1, Sub

XgBoost Sample: 0.9, Sampling Method: “Subsample”, Objective: “Binary Logistic”, Evaluation Metrics: “log loss”,
Early Stopping: 10, Data Shulffle: Yes.
Layer 1: Units: 50, Number of Features: 11

LSTM Layer 2: Dense:1, Activation: “Sigmoid”

Optimizer: “Adam”, Learning Rate: 0.0005, Epochs: 60, Batch size: 32, Early Stopping: 10, metrics:

“Accuracy”, Loss: “Binary Cross Entropy”, Validation Split: 0.1, Class Weight: “Balanced”, Data Shuffle = No

Time-related features play a significant role in modeling. Extracting the hour

of the

day, time interval number (with 15 min resolution), day of the week, and month provides
valuable context. Generating cosine and sine values for these above-mentioned features
encodes cyclic behavior and enhances models’ ability to learn from data. Additionally labeling
weekends and holidays provides further insights for predictive modeling. Manual labeling
on/ off state of appliances based on specific thresholds ensures that the model can learn the
underlying patterns as these labels serve as our target variable for supervised learning.
Handling power consumption patterns, particularly for devices with consistent steady
consumption, requires a method that effectively identifies meaningful deviations in power
usage, filtering out noise and focusing on relevant changes. The approach involves estab-
lishing a baseline consumption level for devices such as sockets and lights, representing the
minimal power draw when inactive. Significant increases in power consumption beyond
this baseline are then interpreted as the device being turned on. Additionally, recognizing
that certain devices may exhibit consistent consumption patterns, such as modems, allows
for their exclusion to prevent false positives. Overall, this approach balances sensitivity in
detecting genuine “on” states with specificity in avoiding false positives, offering a practical

means to enhance energy consumption prediction models.

To avoid overfitting in our LSTM and XgBoost networks, we employ early stopping.
This method halts the training when the model fails to improve on the validation data after
several attempts. It monitors metrics such as loss or accuracy and terminates the training
prematurely. This ensures that the model performs well with new data by stopping at the

optimal moment. However, we acknowledge that including the training behavior

of the

models under investigation can offer additional insights into the design process. To this end,
we have provided some examples related to the training procedures of LSTM and XgBoost
networks below. Note that some of the training sessions ended before reaching the maximum
epoch number due to the early stopping callback. Figure 7 shows the logarithmic loss curves

related to XgBoost. In Figure 8, the LSTM training and validation losses are depicted.
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Figure 7. Logarithmic loss curves related to XgBoost training procedure.
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Figure 8. LSTM networks training and validation loss errors for some of the appliances.

5. Results and Discussion

As previously mentioned, our data comprise a 1-year aggregated record of electricity
demand, including both the overall demand and the demands and consumption patterns
of each appliance, with a resolution of 15 min. Consequently, the dataset encompasses
approximately 35,000 data measurements for each sample. We have allocated 80% of the
data for training and validation, and 20% for testing purposes. It is critical to highlight that
we selected a 1-year period to capture all fluctuations related to seasonality. For example, the
sauna is mostly used during the colder seasons, while during summer, the dataset records
very few instances of sauna usage. This pattern holds true for heating systems as well.

As you truly mentioned a training time and resource usage investigation is also very
important to make a fair comparison among proposed methods. To this end, the training
time and RAM resource usage for all the models have been provided in Table 3.

The XgBoost algorithm stands out with exceptional performance across most cases,
except for the “other” labeled group, which likely encompasses aggregated power con-
sumption or unknown loads. Given its consistent performance, XgBoost emerges as a
robust choice for the given task. The logistic regression demonstrates varying success rates,
achieving optimal results in detecting sauna status and rainwater drainers but faltering in
other cases.

Dynamic time warping with K-nearest neighbors segments consumption curves
into 400-length samples, employing a warping window size of 10 samples to deter-
mine appliance classes based on the five nearest neighbors. While generally effective,
misidentifications between appliances like washing machines and stoves indicate room
for improvement—perhaps through refined feature engineering. Additionally, mislabeling
lights_1st and lights_2nd as “others” due to their similar patterns underscores the method’s
susceptibility to mixing closely related patterns.
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Table 3. Comparison of computation cost training times.

Appliance Name Method RAM Usage Training Time Duration
LSTM 652 MB 104.62 s
Stove XgBoost 13.27 MB 2.58 s
Logistic Regression 17 MB 0.156 s
LSTM 456 MB 228.74 s
Sockets_2nd XgBoost 4.6 MB 8.07s
Logistic Regression 0.87 MB 0.027 s
LSTM 381 MB 141.05 s
Heating_2nd XgBoost 5.65 MB 397s
Logistic Regression 1.12 MB 0.053 s
LSTM 506 MB 288.38 s
Washing Machine XgBoost 43 MB 7.84s
Logistic Regression 1.6 MB 0.16s
LST™M 602 MB 289.56 s
Rainwater Drainer XgBoost 13.12 MB 731ls
Logistic Regression 1.15 MB 0.047 s
LSTM 925 MB 169.72 s
Sockets_1st XgBoost 60 MB 6.86s
Logistic Regression 450 KB 0.05s
LST™M 319 MB 160.30 s
Lights_1st XgBoost 73 MB 7.24s
Logistic Regression 626 KB 0.054 s
LSTM 113 MB 131.14 s
Sauna XgBoost 27 MB 1.11s
Logistic Regression 11 MB 0.027 s
LSTM 168 MB 87.52s
Lights_2nd XgBoost 65 MB 7.37 s
Logistic Regression 328 KB 0.036 s
LSTM 226 MB 165.17 s
Hot Water pump XgBoost 32 MB 226s
Logistic Regression 10.6 MB 0.16s

By exploiting the LSTM architecture to analyze 480 samples, representing a window
spanning 120 h, the model effectively captures temporal dependencies and inherent patterns
within the dataset. The strategic handling of imbalanced labels through the implementation
of the class weight method reflects a judicious approach to mitigate bias during model
training. The adjustment of class weights ensures equitable consideration of both “on” and
“off” states, thereby averting the model’s inclination towards the predominant class and
fostering a more balanced learning process.

In the domain of NILM, the classification threshold plays a pivotal role in optimizing
the balance between precision and recall. Precision, prioritizing correctness, and risks
overlook certain energy consumption patterns, while recall, emphasizing completeness
may falsely identify non-existent appliance activations. The choice to adjust the threshold
depends on the consequences within the context of energy management. For instance, in
residential energy monitoring, minimizing false negatives is crucial to accurately detect
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Sockets_1st

appliance usage, ensuring efficient energy usage and potentially identifying malfunctioning
devices. Conversely, in commercial settings like smart buildings, reducing false positives
is essential to avoid unnecessary interventions and maintain occupants’ comfort while
optimizing energy consumption.

In the provided Figure 9 the confusion matrices indicate that the LSTM method
performed less effectively compared to other techniques. One possible reason for this
discrepancy could be the suboptimal sampling rate of 15 min. Previous studies have
shown that increasing the measurement frequency can significantly enhance prediction
accuracy in NILM applications. Additionally, fine-tuning the LSTM method through
architectural adjustments or hyperparameter tuning may further improve its performance.
Therefore, future research should explore optimizing the sampling frequency alongside
other methodological enhancements to maximize the effectiveness of LSTM-based NILM
approaches.
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Figure 9. Confusion matrices obtained for specific threshold value.

However, comparative analyses (see Table 4) reveal that alternative models such as
XgBoost and DTW with KNN outperform LSTM in the specific scenario under investigation,
emphasizing the importance of exploring diverse model architectures and methodologies.
Considerations of interpretability, computational efficiency, and ease of implementation
will be pivotal in inappropriate model selection for a given task.
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Table 4. Performance analysis of different ML algorithms.
Appliance Stove Washing Machine Sauna
Model Metrics  Precision Recall F1-Scroe Precision Recall F1-Scroe Precision Recall F1-Scroe
DTW_KNN 0.91 0.92 0.95 0.86 0.48 0.62 0.92 0.79 0.85
XgBoost 0.87 0.73 0.78 0.87 0.74 0.79 0.94 0.93 0.93
LR 0.71 0.56 0.59 0.72 0.56 0.59 0.95 0.92 0.93
LSTM 0.63 0.95 0.69 0.58 0.92 0.63 0.76 1.00 0.84
Appliance Heating_2nd Sockets_2nd Rainwater drainer
Model Metrics Precision Recall Fl-scroe Precision Recall Fl-scroe Precision Recall Fl-scroe
DTW_KNN 0.91 1.00 0.95 0.94 0.83 0.88 1.00 0.95 0.97
XgBoost 0.90 091 0.90 0.87 0.75 0.79 0.99 0.99 0.99
LR 0.81 0.83 0.81 0.81 0.88 0.82 0.86 0.86 0.85
LSTM 0.90 0.89 0.89 0.96 0.92 0.94 0.93 0.96 0.95
Appliance Sockets_1st Lights_1st Hot water pump
Model Metrics Precision Recall Fl-scroe Precision Recall Fl-scroe Precision Recall Fl-scroe
DTW_KNN 0.92 0.79 0.85 0.94 0.60 0.73 0.80 0.92 0.86
XgBoost 0.96 0.96 0.96 0.99 0.98 0.99 0.85 0.88 0.89
LR 0.74 0.74 0.74 0.77 0.79 0.76 0.70 0.71 0.70
LSTM 0.83 0.81 0.82 0.82 0.73 0.76 0.60 1.00 0.66
Appliance Lights_2nd Others Total Performance
Model Metrics Precision Recall Fl-scroe Precision Recall Fl-scroe Precision Recall Fl-scroe
DTW_KNN 0.90 0.82 0.82 0.52 1.00 0.68 0.93 0.85 0.86
XgBoost 0.92 0.90 091 0.80 0.67 0.71 091 0.86 0.88
LR 0.86 0.88 0.87 0.95 0.97 0.96 0.81 0.79 0.78
LSTM 0.96 0.86 0.90 0.70 0.81 0.75 0.79 0.90 0.80

Figure 10 depicts the comparative analysis of all the ML algorithms based on the
accuracy of identification of the appliance at the individual level. The accuracy of LSTM and
XgBoost is comparable for most of the devices, however, the accuracy of LSTM is extremely
low for the lighting loads. On the other side, the LR algorithm has low accurate results
for lights, heating, and rainwater drainer. The DTW-KNN algorithm shows comparatively
better results than the LR algorithm, but it also has variations in accuracy results. Overall,
the most consistent results are from the XgBoost algorithm.
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Figure 10. Accuracy analysis of different ML algorithms.

Washing Rain water Lights
drainer

B DIW

T

Heating  Sockets

Water
pump

Sauna

There could be several reasons why XgBoost outperforms other methods. First, Xg-
Boost effectively handles various data types and missing values, which can be beneficial
when dealing with different sampling rates. In our case, the sampling rate was quite low.



Electronics 2024, 13, 1420

18 of 21

On the other hand, LSTM can be significantly influenced by the sampling rate. Additionally,
the amount of training data has a substantial impact on the performance of neural networks
due to their long-term memory capability. Sampling rates matter in Logistic Regression as
well. Secondly, XgBoost, as a representative of the family of gradient boosting algorithms,
is more robust to overfitting compared to deep learning models like LSTM. This could
be particularly beneficial if the data set is not very large, as in our case. XgBoost has
many parameters, which gives the designer the opportunity to tune the model and prevent
overfitting.

In general, all algorithms have their strengths and weaknesses. For instance, LSTM has
the ability to capture long-term dependencies, but it may require a large amount of data and
computational resources. Logistic Regression is a simple and fast algorithm, but it may not
capture complex patterns in the data. DTW-KNN is good at capturing temporal patterns,
but it may be sensitive to noise and outliers. All of the above leads to the conclusion that it
is reasonable to focus on developing hybrid models that combine the strengths of different
algorithms. Moreover, improving the robustness and efficiency of existing algorithms is
valuable as well. This approach not only enhances the performance of the model but also
makes it more adaptable to various types of data and tasks.

6. Conclusions

As energy consumption monitoring becomes increasingly vital in the transition to-
wards sustainable practices, this research provides valuable guidance for the selection and
deployment of ML techniques in Non-Intrusive Load Monitoring systems. This paper
presents a thorough analysis of machine learning techniques employed by NILM through a
meticulous examination and comparison, we have elucidated the efficacy and adaptability
of various algorithms in disaggregating energy consumption data accurately. Our research
underscores the necessity of tailored approaches, emphasizing the significance of selecting
suitable models aligned with the specific characteristics and objectives of the data at hand.
By providing a nuanced understanding of the strengths and limitations inherent in different
methodologies, our study offers valuable insights that can inform the development and
implementation of more efficient NILM systems. Furthermore, our findings highlight
the multifaceted nature of NILM challenges and the complexity involved in accurately
discerning individual appliance signatures from aggregate energy data. The results of this
study indicate that the LSTM and XgBoost algorithms give the most accurate identification
results, however, XgBoost has the best results on average.

Looking ahead, as the field of NILM continues to evolve, further research and innova-
tion are warranted to address persistent challenges and capitalize on emerging opportuni-
ties. By fostering interdisciplinary collaborations and leveraging advances in data science,
artificial intelligence, and energy engineering, we can unlock new avenues for improving
the accuracy, efficiency, and scalability of NILM solutions. Ultimately, our collective efforts
aim to empower consumers with actionable insights, facilitate informed decision-making,
and promote sustainable energy consumption practices in support of a more resilient and
environmentally conscious future.
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Abstract—The rise of building-integrated photovoltaics and
distributed electric vehicle charging has led to significant phase
imbalances in utility grids, challenging service providers due to
limited behind-the-meter visibility. This paper introduces a
novel Single-Cell Three-Phase (SC-TP) Energy Router (ER)
that accesses all phases and balances them without the
complexities and costs associated with conventional three-phase
systems. Our comparative analysis shows that the SC-TP ER
reduces phase unbalancing by 16% and achieves cost savings,
offering a viable alternative to three-phase solutions with 25%
reduction in cost.

Keywords—near zero energy building, renewable energies,
grid congestion, phase imbalance, phase balancing, smart grids

1. INTRODUCTION

In recent years, the rapid integration of renewable energy
sources, especially Photovoltaic (PV) systems, has
significantly reshaped the topology of modern power
distribution networks. This shift requires power systems to
accommodate an increasing share of intermittent renewable
generation while addressing new complexities in managing
localized and distributed energy sources. Grid congestion and
phase imbalances are intensifying due to the rise of small-
scale renewable setups and Electric Vehicle (EV) charging
stations, particularly in residential sectors. Additionally,
phenomena like the duck curve are challenging the reliability
of electricity grids [1], [2].

Phase imbalances reduce grid reliability and resiliency by
decreasing power capacity and increasing losses in
transformer secondaries [3], [4]. Expanding feeder capacity to
address these issues would impose significant costs for
Distribution System Operators (DSOs) [5], [6]. Consequently,
alternative solutions which do not require large investments
are preferred. One proposed solution involves clustering
residential prosumers equipped with PV-Energy Storage (PV-
ES) systems and high-demand buildings into evenly
distributed three-phase microgrids. However, this approach
faces challenges due to limited visibility of behind-the-meter
installations [7], [8], [9].

Enhancing the intelligence of low-voltage equipment and
integrating advanced power electronic technologies provide
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innovative and cost-effective solutions for phase balancing,
potentially reducing or delaying the need for costly grid
reinforcement [10], [11]. To this end, various solutions have
been proposed. For example, some researchers have
developed data-driven approaches for identifying and
mitigating phase imbalances [12], [13], [14]. Others have
introduced a two-stage network balancing strategy that
employs phase-switch devices at terminal nodes and phase-
switching soft open points across grid nodes [15].
Additionally, phase balancing challenges may also arise in
highly Inverter-Based Resource (IBR) peneterated grids,
where IBRs must form and stabilize the grid in the absence of
a central generator. To address these scenarios, [16] proposes
a solution in which inverters use droop control mechanisms to
balance phases within the distribution network.

Demand-side phase balancing, proposed as a
complementary solution to dispatch-side balancing in [17],
involves regulating asymmetric loads. This approach
integrates an optimization model that manages load
imbalances from the demand side while coordinating with step
voltage regulators and dispatching distributed generators to
enhance overall phase stability and balance. However, with
effective management and coordination, these high-demand
loads could be leveraged as grid-balancing resources, offering
support to DSOs [18]. Yet, there are currently very few
market-ready options that autonomously address these issues
without requiring end-user involvement. A promising
alternative is presented in [19], which proposes an incentive-
based scheme encouraging flexible consumers to assist in
phase balancing. This method employs a centralized control
algorithm that utilizes customers’ installed converters for
balancing phases at the substation. However, the paper
assumes infrastructure readiness without addressing its
practical implementation or scalability challenges.

While extensive research exists, practical solutions for
grid phase balancing with PV, ES, and EVs often overlook the
economic feasibility of the developed systems, making them
less attractive to the market. This paper bridges the gap
between practicality and economic efficiency by proposing a
novel topology that detects unbalanced phases at terminal
points and selectively directs PV or ES power to equalize
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interactions across each phase with the three-phase electricity
grid. The proposed single-cell topology connects to all phases
and includes an integrated non-isolated 350 V and isolated 48
- 350 V direct current (dc) bus alongside alternating current
(ac) lines, enabling direct power supply to dc loads. This
design reduces unnecessary energy conversion losses and
minimizes harmonic injection into the ac grid.

II. PROPOSED SINGLE CELL ENERGY ROUTER CONCEPT

A. Structure of Single Cell ER:

Fig. 1 shows the proposed topology for a Single-Cell
Three-Phase (SC-TP) Energy Router (ER) and its
experimental realization. In this configuration, a dc bus can
interact with all ac phases through an ER, but not
simultaneously. Phase balance can be enhanced by detecting
and reducing the power consumption of the phase with the
highest demand. Since the power drawn from the three phases
in a three-phase connected buildings often varies significantly,
reducing the phase imbalance ratio with the proposed solution
could lead to substantial economic benefits by eliminating the
need for two additional converting cells. This advantage
supports the rationale for adopting a single-cell approach
rather than a conventional three-phase system. To achieve this
goal, a Smart Energy Management Algorithm (SEMA)
running beside essential low level controlling algorithm is
needed to enable the ER to detect, mitigate and smooth the
phase differences. Accordingly, the method proposed in [20]
has been selected as the SEMA, and details regarding the
energy flow optimization can be reviewed there. The technical
characteristic of ER is collected in Table I. Further details
related to the SC-SP ER topology is introduced in [21]. An
alternative approach, which also offers dual purpose
applications for both ac and dc grid is proposed in [22].

B. Test Study and Analyzed Scenarios:

To validate our hypothesis and assess the effectiveness of
the proposed topology, we collected and analyzed annual load
consumption data from a residential house located in Tallinn,
Estonia, where the owner has an EV, and the dwelling is

Conventional

Relay Phase selector ac loads

|

isolated

terminal

=

Fig. 1. Abstract view of the proposed single cell topology connected to three-phase terminal with EV charger, PV, and ES integration and its experimental realization.
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connected to the electricity grid via a three-phase terminal.
The data were collected at a 3-second resolution; however, for
simplicity and improved visualization, it was averaged and
down sampled to a 1-hour resolution. Fig. 2, illustrates and
compares a snapshot of initial phase imbalances and phase
statuses after ideal phase balancing actions. In initial mode, it
is evident that phase 3, labeled "L3", delivers less power
compared to the other two phases, indicating that the EV
charger should be connected to this phase. However, as
observed, severe phase imbalance occurs during EV charging,
regardless of which phase the EV is linked.

In this study, three ER topologies include: Single-Cell
Single-Phase (SC-SP), Three-Cell Three-Phase (TC-TP), and
SC-TP, are considered and their capability for phase balancing
have been compared with each other. The topologies
performances are first simulated and then validated with an
experimental setup. The SC-TP ER is the upgraded version of
the SC-SP ER. The 8 kWh Li-Ion battery pack is used as an
ES. The methodology for selecting the optimal ES capacity is
demonstrated in [23].

TABLE L. ER TECHNICAL PARAMETERS
Parameters Value
Rated power 15 kW
Grid and load side ac voltage (RMS) 230 V-50 HZ
de-link voltage 350V
Nominal current of each phase 25A
Switching frequency 65 kHz
Solar voltage input range 150 - 600 V
ES voltage input range 150-330V
dc-link capacitor 3 mF

de-link capacitors
SSCB 350V 4mF

battery inductors
500 uH

inverter

Tnverter’s capacitor
3.3 uF

filter capacitor

Optional non-

350 V de voltage

de-dc auxiliary
power supply
Microcontroller
F2837xD

33uF

inverter-side filter
inductor 680 jH

ESP32 module

ac relays
and ports

heatsink (inside plastic box)
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Fig. 2. Imbalanced and balanced phase power range comparison assuming ideal phase balancing possibilities.

C. Phase imbalance:
In this study, the phase imbalance ratio is defined as:

UB % = YT, funblt » 100 (1)
Lavg,t N
Lunpie =
Max ( |Lavg,t - L1,t| + ILavg,t - L2,t| + |La1;g,t -
Lac|) ©)
Lavg,t = (Ll,t + Ly + L3,t)/3 (3)

where Ly ¢, Ly, L3, is a power consumption for phase 1,2, 3
at time t, respectively. Lgy,g¢ is the average power
consumption from all phases in time t and Ly,p,; is a
maximum power deviation from Lg, . at time t. N is the total
number of time steps in which the phase unbalance is
calculated. Finally, UB % is the average phase imbalance. In
order to minimize the UB% ratio an optimization problem is
formulated for the TC-TP mode as:

Min f(x) = Min( |Liyg — Li| + |Lawg — L] +

|Llévg - L”l ) (4)
subject to:
I/ LII > 0 (5)
PV, + PV, + PV,, <PV 6)
ES, + ES,, + ES,, <ES )
L,—PV, — ES,, =L}, i=12,3 ®)
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where Lg,g = (L7 +Lj + L3)/3 represents the average
demand and L}, is each phase’s demand from the electricity
grid after allocating available renewable energy resources.
Here, y denotes the phase number. PV, and ESly represents
the allocated energy from solar energy production and energy
storage, respectively. PV and ES denote the total accessible
energy from renewable setups and batteries, respectively. In
Eq. (4), x represents optimization factors, x =
[PVy,, PV,,, PV, ES, , ES;,,ES;,]. Finally, the ES SoC
level should be updated as:

ES;s1 = min(ESyey  ES — ES;, —

PV")

ES,, — ES, +

(C)]

where, ES;,, is the ES, State of Charge (SoC) (%) for the
next time step, and ES,,,, denotes the maximum energy
capacity of ES, and PV denotes the remaining generated
solar energy after demand responding. It should be mentioned
that, in all equations, we are considering energy instead of
power, since this assumption simplifies the equations.

In SC-TP mode, the optimization problem must be
reformulated. Algorithm I outlines the optimization process
for SC-TP mode, where the phase with the maximum load
demand is identified at each time step. The ER then links this
phase to the DC link and injects renewable or stored energy
to meet the demand, in the selected phase. In SC-SP mode,
since phase exchange is not possible and the ER remains
permanently connected to phase "L1," the optimization
problem simplifies into a reduced version of Algorithm I,
with the index consistently set to 1. The optimization
problems are solved using the Pyomo interface with the
IPOPT solver, due to the nonlinear nature of the formulation.
All code related to optimization process is implemented in
Python 3.11.
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Algorithm 1 SC-TP Energy Optimization Algorithm
Input:
Annual load profiles (fl ) l;, l;),Annual PV profile (PV).

2:  fori=1tondo:

3: lingexs index = max (1, Ly, ls; )

4: Index =[1, 2, 3]

5: x, y = Index.drop(index)

6: Min f{x) = Min (Mvg,i = ll{,miex,il + |lgvg,i =l +
[tangi = i)

7: Subject to:

8: avgi = WG Lngeri Lo 1y)

10: lingexi =0

1 Lindex,i = lindexi —PV"i — ES";

12: PV"; < PV

13: ES"; < ES;

14: ESiyy = Min(ESpay ,ES; — ES"; + PV; — PV"))

22:  end for

23:  Return: optimal values PV";, ES";

III. CASE STUDIES EVALUATION AND DISCUSSION

In this section, the outcomes of the proposed methodology
are discussed from multiple perspectives, including technical
performance, operational feasibility, and economic impact.
The phase balancing potential of all possible topologies is
compared, followed by a discussion of the experimental
realization of the SC-TP ER. Finally, a cost comparison is
provided to highlight the impact of the proposed topology on
cost reductions and its potential for practical adoption in
building with three-phase grid-connected systems.

A. Phase Balancing Outcomes:

Fig. 3 presents a normalized radar chart comparison across
all topologies, measuring variables such as UB%, PV self-
consumption ratio, average SoC (%) of ES, capital costs and
average load per phase during an experimental test period.
Each category is normalized to its maximum observed value.
For example, the average load per phase is highest when the
house does not utilize any local renewable energy sources.

Phase unbalance
1008,

== Conventional
mode

PV self-
onsumption

Average L3 - ___
load(kW) [~
/ ~e—Single cell-Single
Phase
Average L2/ &
load(kW)
\

\,
\

—e—Single cell-Three
Phase

—o—Three cell-Three

N
\ 7
. / stors
Average Lt/ nergy szordge SoC Phase
o

load(kW) %
Fig. 3. Normalized radar chart comparison for all topologies.

In conventional houses, the phase balance ratio is better
than in scenarios where the PV setup is connected to only one
phase. The greatest phase imbalance is observed in the SC-SP
topology, indicating that the presence of PV in this
configuration reduces the phase balance ratio. This is because,
in such operational modes, the generated renewable energy is
only injected into one phase, significantly lowering the
demand on that phase alone. Meanwhile, the other phases
continue to draw the same demand from the grid, unable to
benefit from PV production or stored energy. Considering that
the SC-SP topology is a commonly used option in residential
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PV setups due to its affordability [24], this underscores the
necessity of proposing novel solutions for improving phase
balance ratio.

The TC-TP topology outperforms other configurations in
all categories, including PV self-consumption ratio, phase
balance ratios, and average ES’s SoC (%) levels. However, its
capital cost ratio is 1.35 times higher than that of the SC-TP
topology, posing a further barrier to adoption in residential
buildings, where economic feasibility is a critical factor for
end-users. Furthermore, the TC-TP topology can reduce grid
interaction across all phases at a similar rate, whereas the SC-
TP topology does not achieve the same performance, with the
management algorithm primarily focused on reducing
interactions on phase L1. This is because, for most of the time,
the demand on L1 is higher than on the other two phases,
prompting the ER to link PV and ES resources to this phase.
It is important to note that phase switching frequency is
constrained by numerous factors; in this study, it is set to 15-
minute intervals. Improving phase-switching algorithms and
increasing switching frequency will be explored in future
research.

Fig. 4 compares the performance of SC-TP, SC-SP, and
TC-TP topologies over a 10-day continuous operation period
during spring, when PV power generation is at its moderate
level. Solar power production and load demand are identical
across all phases in each scenario, as shown in Fig. 4a.
Additionally, Fig.4b compares each scenario’s interaction
with the electricity grid. The SC-SP topology exhibits the
highest energy exchange and, consequently, the lowest self-
sufficiency ratio, whereas the TC-TP topology achieves the
lowest energy exchange and the highest self-sufficiency ratio.
Notably, phase balance is prioritized as the optimization
objective across all scenarios rather than maximizing self-
sufficiency, which leads to slightly lower self-sufficiency
ratios than if the optimization had focused solely on
maximizing self-sufficiency.

Additionally, a comparison of the ES SoC under both
single-phase and multi-phase operating conditions is
presented in Fig. 4c. The results indicate that when the ER
distributes PV-generated power and stored energy across all
phases, battery charge and discharge cycles become more
frequent, which diminishes ES longevity by increasing stress
on the battery cells [25]. Notably, when the ER and ES operate
in single-phase mode, the SEMA has fewer opportunities to
maximize the usage of locally generated energy and the self-
consumption ratio. This leads to an increased need for PV
curtailment or grid injection when the ES is fully charged,
ultimately resulting in lower ES utilization. However, this
approach helps maintain a higher battery health ratio.

A comparison of various operational modes indicates that
the TC-TP topology is the least effective at protecting battery
cells from rapid degradation, while the SC-SP mode achieves
the highest ES health status during operation compared to
other modes. Under high solar energy availability, the
performance of the SC-TP mode is comparable to, though
slightly better than, the TC-TP mode in terms of ES longevity.
However, when solar energy is limited, the SC-TP mode
outperforms TC-TP by using the ES less frequently.
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Fig. 5. Comparison of the topologies based on weekly aggregated performance over a year: (a) Total load demand and PV generation for each week; (b) Total
weekly energy exchange with the electricity grid; (c) Average weekly SoC (%) ratio of the ES system.

While this improved longevity is beneficial, it may not fully
meet end-user expectations, as reduced ES operation increases
reliance on the electricity grid to meet demand. Therefore, it
is essential for the energy management unit to account for ES
degradation costs and prioritize resource allocation based on
electricity tariffs.

Fig. 5 presents a comparison of the performance of the
investigated operational modes over a year. From a broader
perspective, the differences between topologies become
clearer. For example, during winter—particularly between
weeks 10 and 20—when solar generation is exceptionally low,
grid interactions are quite similar across modes. However,
during peak solar generation—particularly between weeks 30
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and 50—the SC-SP topology shows significantly higher grid
interactions, leading to increased grid power flow and
potential congestion. This outcome further highlights the
limitations of the SC-SP topology in maximizing PV self-
consumption, as most of the on-site generated solar power is
injected back into the grid. However, two other topologies
have been able to utilize locally available renewable sources,
to minimize their energy exchanges with the electricity
network. The differences between topologies interaction with
the electricity network is demonstrated in Fig. Sb.

Fig. 5¢ compares the average SoC (%) levels across
topologies. It is evident that during periods of low solar
generation, TC-TP utilizes ES more frequently than the other
two topologies. However, when solar generation increases, the
SoC (%) levels between topologies become more similar,
though TC-TP still charges and discharges the batteries more
often. Interestingly, the performance of SC-SP and SC-TP
topologies is almost identical, with both benefiting from ES in
an equivalent manner. Finally, Fig. 6. shows number of times
the ER linked renewable resources to each phase in SC-TP
topology.

4000
3000

2000

Times Selected

1000

0 .

L1 L2 L3

Fig. 6. A number of times, each phase is connected through ER to the local
renewable energy sources.

IV. COST BENEFITS ANALYSIS

Fig. 7 presents a comparison of the cost distribution
between different ER components in case of SC-TP and TC-
TP.

Cost comparison
Auxiliary

components Sc-1p
. g ) (total cost 1700 Euro)
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Fig. 7. Cost comparison diagram which shows the cost distribution between
different ER components in case of SC-TP and TC-TP.
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The cost analysis is based on the retail price of the
components used for a single prototype. It includes the cost of
all semiconductors and passive components, such as heatsinks
and inductors. However, the cost of the printed circuit board
and the enclosure used for the demonstrator are not included
in the calculations, as these costs are not representative and
strongly depend on scaling.

The protype of SC-TP ER is shown in Fig. 1., and the total
cost of the considered components is approximately 1700
euros. The diagram shows that the most expensive part of the
prototype relates to the auxiliary (common) components, such
as power supply circuits, heatsinks, and relays.

The prototype of the TC-TP ER was not assembled or used
in real tests. However, its cost was evaluated based on a bill
of materials collected to design the prototype. The total power
of the three-phase inverter, as well as the power of the single-
phase inverter, was the same, following the same concept with
a common ground approach. The overall cost of the
components included in the analysis is around 2100 euros,
which is 25% higher than that of the SC-TP ER. This cost
increase is attributed to the higher number of components
required for redundant circuits to connect and link PV and
ESS to all three phases.

It should be noted that the absolute values presented in this
work cannot be directly used for primary cost estimation, as
they strongly depend on scaling, the supply chain during
production, and auxiliary circuit optimization. However, the
relative comparison is reliable and can be used for cost
analysis.

V. CONCLUSIONS

The proposed SC-TP topology improves PV self-
consumption and the phase unbalance ratio by 23% and 16%
respectively, compared to the SC-SP solution. Moreover, it
offers a significant cost saving of 25% compared to the TC-
TP system. This achievement underscores the potential
benefits of SC-TP systems as a promising solution to replace
SC-SP topologies. Since the SC-TP topology offers better
phase balancing, it effectively mitigates the negative effects of
distributed behind-the-meter PV setups, improves grid
reliability and resiliency, and better distributes the load across
each phase. This highlights its value in enhancing grid
stability and reducing operational challenges for utility
providers.
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Abstract—Buildings are essential components of power grids,
and their energy performance directly affects overall power
system operation. This paper presents a novel stochastic
optimization framework for building energy management
systems, aiming to enhance buildings' energy performance and
facilitate their effective integration into emerging intelligent
power grids. In this method, solar power generation and
building electricity demand forecasts are combined with
historical data, leveraging statistical characteristics to generate
probability matrices and corresponding scenarios with
associated probabilities. These scenarios are then used to solve
the stochastic optimization problem, optimizing building energy
flow while accounting for existing uncertainties. The results
demonstrate that the proposed methodology effectively manages
inherent uncertainties while maintaining performance and
outperforming rule-based and custom-built reinforcement
learning-based solutions.

1. INTRODUCTION

With the integration of Solar Photovoltaic (PV) systems in
buildings and the widespread deployment of Distributed
Energy Resources (DERs), local energy management agents
are becoming crucial in the energy transition. However, these
platforms face challenges in optimizing energy use due to the
intermittent nature of renewables and the variability of
building electricity demand [1]. The inclusion of Battery
Energy Storage (BES) and Electric Vehicles (EVs) further
increases system complexity by introducing additional
parameters that complicate decision-making [2].

Building energy management methodologies comprise
rule-based, deterministic, stochastic, Model Predictive Control
(MPC), and Artificial Intelligence (Al)-based approaches,
including Reinforcement Learning (RL). Rule-based methods
dominate commercial applications due to their simplicity but
offer limited adaptability. Deterministic approaches leverage
predictions for optimization but struggle with uncertainty and
rely on forecast accuracy. Stochastic methods address
uncertainties in power flow optimization but require high
computational effort due to scenario-based modeling.

Stochastic optimization algorithms include heuristic
approaches, such as Monte Carlo methods, which use random
sampling to account for uncertainty in optimization problems.
These methods generate a wide range of potential solutions
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based on probabilistic simulations [3]. Metaheuristic
algorithms, such as genetic algorithms [4] and particle swarm
optimization [5], are widely adopted approaches for finding
near-optimal solutions to complex optimization problems.

Real-time optimization methods are essential for the
practical implementation of building EMSs. In this category,
stochastic MPC-based systems provide promising results due
to their ability to compensate for forecasting errors in real-
time. The authors in [6], proposed an MPC-based approach
with performance very close to ideal conditions. In [7], a real-
time Mixed Integer Linear Programming (MILP)-based
stochastic EMS is presented. In [8], the authors utilized
stochastic optimization to design a self-healing EMS capable
of handling real-time contingencies based on its available
resources. Model-free and data-driven solutions are also
gaining significant attention for solving building energy
optimization problems. With advancements in computing
power, Al- and RL-based methods are being widely applied
and have demonstrated reliable performance. For instance,
RL-based solutions inherently handle system uncertainties.
The Deep-RL-based model-free method proposed in [9],
outperforms stochastic programming-based methods for
energy optimization inside the building. However, the study
did not compare the computational complexity of the proposed
solution, or the amount of data required for model training.
Despite the progress in building EMSs, this field is still
relatively new and requires further research to develop reliable
solutions that can be confidently integrated into real-world
platforms while ensuring performance that justifies the
owner's investment. One limitation of state-of-the-art solutions
is their tendency to overlook the benefits of incorporating
outputs from deterministic forecasting models [10].

To further enhance the performance of stochastic
programming solutions, this work fills this gap and presents a
forecast-driven approach for generating scenarios for both
demand and PV power production to optimize power flow and
improve EMS’s performance in buildings equipped with PV
systems and BES. The proposed approach utilizes historical
data distributions to calculate probabilities and pairs
generation, and demand profiles based on probability-aware
sampling of feasible solutions. The most probable scenarios
are then selected and used to solve a multi-scenario
optimization problem formulated as a MILP. By incorporating
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forecasting tools into the scenario generation and selection
procedure, the approach enhances system performance and
provides a robust solution that accounts for uncertainties.

II. PROPOSED METHODOLOGY

A. Building Energy Management Systems

Near Zero Energy Buildings' electricity networks generally
consist of a Solar PV system, Battery Energy Storage, power
electronics infrastructure, and loads. Power electronics tools
are essential for enabling power exchange and conversion
within the building network and with the electricity grid.

Building EMSs serves as a supervisory element, collecting
near real-time indigenous data from the building's electricity
network using Internet of Things (IoT) sensors and power
electronics devices, as well as the required external data, such
as weather conditions and electricity tariffs, from the internet.
These data are utilized to optimize energy flow within the
building to achieve predefined goals, such as minimizing
energy costs or maximizing self-consumption. Figure 1
provides a schematic representation of building EMS and its
components.

PV system
| Shiftable/
Grid _ A - non-shiftable
iEMS N Loads
N R 4
Power tﬁn.
Electronics
Power line
Data line

BESS

Fig. 1. Schematic representation of near zero energy buildings.

In buildings, loads are usually divided into two groups:
shiftable and non-shiftable. Shiftable loads are those that the
management system has the flexibility to reschedule based on
optimization outcomes. Examples of shiftable loads include
washing machines, robotic vacuum cleaners, dishwashers, and
heating ventilation systems. Non-shiftable loads, on the other
hand, are those that the EMS cannot modify and must be
served as requested. Examples of non-shiftable loads include
entertainment devices, laptops, and lighting. Additionally,
some loads can be categorized as hybrid loads, such as EV
chargers and heat pumps, as they can function as either
shiftable or non-shiftable loads depending on user
requirements. In this paper, we consider all loads to be non-
shiftable since they are typically the dominant type of loads in
residential applications.

B. Demand and Renewable Energy Generation Forecasts

Any optimal decision-making process or algorithm
requires insight into the system’s future input variables and
states. Without accurate forecasting, making optimal decisions
becomes highly unlikely. Conversely, if perfect forecasts were
available, stochastic optimization problems could be
simplified into a deterministic format. However, the
intermittent and stochastic nature of electricity demand and
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Solar PV power generation presents significant challenges to
prediction accuracy.

Since discussions on forecasting methods and models are
beyond the scope of this work, we have used the day-ahead
solar PV power generation a forecasting models proposed in
[11] and Long Short-Term Memory (LSTM) based Deep
Neural Networks (DNN) model for demand forecasting. These
models generate 24 values per run, each with a 1-hour
resolution for the next 24 hours. The generated values
represent the expected mean values for solar PV power
generation and building electricity demand at each hour of the
day.

C. Forecast-Driven Scenario Generation

As mentioned above, forecasting tools generate 24
predictions for electricity generation and consumption for the
next day. Let F§ and F? represent the forecasted values for
power generation and demand at hour 4, respectively.
Assuming the forecasting models provide acceptable
accuracy, these values should serve as the best possible
estimates of the system’s uncertain input parameters for the
next 24 hours. However, the inherent uncertainties must be
addressed to ensure robust decision-making.

To this end, based on available historical records and data
distribution the mean and standard deviation (o) are calculated
for each hour of the day. After obtaining these values, the
initial mean is replaced with the forecasted values (F¢ and
FP). Assuming a Gaussian distribution, for each hour of the
day, anormal distribution curve is generated using the updated
mean and the previously computed o. Since these curves
represent physical quantities with finite values, they are
constrained within the minimum and maximum possible
ranges for electricity generation and demand.

Then, the covered range is divided into R =100 sections,
and for each section, the probability of the actual measured
value falling within that range is calculated. For instance,
assuming the maximum power generation capacity of the solar
PV system is 5 kWp, each section will have a resolution of
50 W. By limiting the number of sections to a fixed value,
regardless of sizes of PV systems and building demand, the
computational complexity remains consistent across all cases.
By dividing the continuous range of possible values, we
discretize and limit the potential subsequent values. However,
the impact of this action is negligible in system performance.

After calculating these probabilities, a matrix of forecasting
probabilities is constructed. Let G and D3 represent the
matrices for the probabilities of potential values for electricity
generation and demand, respectively, with dimensions R X D,
where D is the forecasting horizon, which in this case equals
24. Similarly, a probability matrix is generated for each hour
of the day using previously recorded data on solar PV power
generation and demand. Let GZfand D represent the matrices
for the probabilities of historical values for generations and
demand, respectively, with dimensions R X D.

The calculation of the D matrix is straightforward. First,
recorded demand values are clustered based on their respective
hours of the day and then grouped according to their
corresponding power range. Once all records are classified, the
probabilities for each hour and power range are computed.
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However, since solar PV power generation is highly
dependent on weather conditions, classifying records based
solely on temporal data would lead to inaccurate results, as
solar irradiance in summer is not comparable to that in winter.
To address this, we propose a novel method for classifying
solar PV power generation that eliminates seasonal impacts.

To achieve this, for each day of the year and each hour of
the day, the maximum possible solar irradiance values are
calculated based on the sun position in the sky, and building's
latitude, and longitude. These values represent the theoretical
maximum under clear sky conditions. The obtained solar
irradiance value is then fed into a physics-based simulation of
the building’s solar PV system to determine the potential
maximum power generation, the detailed information about
physics-based modeling can be found in [11]. The minimum
possible solar PV power generation value is derived from
historical data by identifying the lowest recorded value for the
same day and hour within a £30-day window.

Using the obtained minimum and maximum ranges for
each hour and day of the year, recorded Solar PV power
generation values can be categorized into a predefined number
of classes. This is done by normalizing the range, determining
class boundaries, and assigning each measurement to its
corresponding class. In this approach, measurements are
classified based on the percentage of Solar PV power
generation relative to the maximum feasible value. This
eliminates the seasonality factor from the data, allowing for a
direct comparison of Solar PV power generation probabilities
between summer and winter without considering the absolute
magnitude of the data. Figure 2 illustrates the process
described.

After assigning all measurements to their corresponding
classes, the probabilities for each hour of the day are calculated
for the entire dataset based on the classes that share the same
hour label. As a result, the matrix G will have dimensions
equal to the number of hours in a day and the number of
classes, which are set to 100 in this case. Then, the final
probability matrices are constructed as:

F H T T RXD
Gr +G5 =Gp . Gp € R, )
Df +DF¥ =D} , Dj € R®®, ()
Solar PV power generation curves
Solar irradiance curves =

Physics-based solar
PV Model

Obtaining
maximum
values

Normalizing of

cla don
records

ased o1
their hour label

Obtaining
minimum values

Probibility
calculation

G

Fig. 2.  Abstract representation of obtaining G2 from historical solar
PV power generation records. Solar irradiance curves are extracted from
estimation of the hourly global solar irradiation based on numerical
weather predictions.
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where G and DJ, are total probabilities for production and
demand ranges, respectively, considering both historical and
forecasted values. Whenever probabilities are accumulated, an
averaging operation is also performed to ensure that the total
probability sum always remains equal to one.

Scenarios are generated based on combinations of paired
power generation and consumption values. To achieve this, the
Cumulative Distribution Function (CDF) for each hour of the
day is derived from the G2 and DI probability matrices. For
each CDF curve, the probability range is equally divided into
S sections, where S represents number of scenarios. Then, one
random value is generated for each section, and based on these
values, the corresponding points are selected for each time step
in the control horizon. Assuming § = 100 for each hour of the
day, there are 100 power generation (G3) and demand (Dj)
values, where h € [0,23] and S € [1,S]. Finally, the daily
consumption and generation profiles are generated by
combining G} and Dj as:
(G4, D8) G3,D8)

: : )

hxs

3= : :
(Gh-1,Dp-1) (Gh-1,Di-1)

where J is the matrix of all generated scenarios. Figure 3
illustrates the described procedure.

Also, since combined generation and consumption values
(G3_1, Di_1) have different probabilities, the probability for
each pair is considered as multiplication of each individual
probability. For calculating the total probability of each
scenario (P]), the probability of each individual hour is
accumulated and then averaged. These probabilities are stored
in a scenario’s probability matrix:

P = [P, PY, P{,.., P71, P{ € R™S. (4)
III. OPTIMIZATION FRAMEWORK

In the previous section, scenarios and their associated
probabilities have been generated. In this section, the
optimization framework will be described, to optimize
building energy flow based on defined objectives.

A. Optimization Function Formulation

The main optimization problem consists of sub-
optimization problems for each scenario. In other words, the
optimal solution is the one that minimizes the defined cost
function while considering all scenarios. However, this does
not guarantee that the solution is optimal for each individual
scenario. A general optimization problem is defined as:

$
; T 5T
min, Zfﬂ- X P
i=1

s.t. Xi,min < Xi < Xi,max (5)

where F;is the vector of optimization variables, X;
represents the vector of optimization factors, and P} denotes
the probability of each scenario’s occurring within the
corresponding  optimization horizon. Additionally, $
represents the number of selected candidate scenarios. To
manage the complexity of the optimization process, only the
10 most probable scenarios are selected from the generated set.
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Daily scenario generation is performed based on calculated probability matrices and random candidate selection. For each hour of the day,

probabilities for d=100, different possible values are accumulated to form CDF curves. From each range, candidate values are selected through random
sampling and combined to form complete daily profiles. Finally, the 10 most probable scenarios are selected for the final optimization round.

after sorting them by probability. It is also worth noting that
the probabilities of the selected scenarios are normalized to
reflect their relative differences Furthermore, the sub-
optimization problem for each scenario is defined as:

min Y¥_o EF™ x ToUT™ — EFP x ToUS™.  (6)

Since energy is the time integral of power, under the
assumption of constant time intervals and stable system
voltage and current levels within each interval, energy
parameters can be expressed as E = P X t. Consequently, the
optimization function can be reformulated and solved based on
the power flow within the building's internal electricity
network. Thus, the objectives and constraints for Eq. (6) can
be represented as:

V hi, 0 < Pip[h], )
V10,0 < Byyosgr[h] + Bopoes[h] + Poyoialh] < Bpwmaxs
(®)
Vhi, 0< Phiqlh]l + Phroeslt] < Porma » ©)
Vhi, 0< Pl qlh] + P ogr[h] S Pegmax s (10)
V i, Pyyalh] + Phuogrlh] + Biyoeslh] = Piy[hl, (1)
V i, Phsalh] + Poyall] + Ppyialhl = Plg[h],  (12)
V h,i S0Cmin < SoCi[h] < SoC pay » (13)
V h,i exportl,.[h] + import,[h] <1, (14)
V h,i chargels[h] + dischargel[h] <1, (15)

where E,imp = (Pgr_,,d[h] + Pgrqes[h]) Xt is the total
imported energy for each hour of the day from the grid, and
ES?P = (Pp,,_,gr [h] + Pogr [A]) x t represents the total
amount of net energy exported to the grid during hour (%).
Also, ToU,lep, and ToU,fxp denote the time-of-use tariffs for
imported and exported energy, respectively. The notation
PL_ z[h] represents power flow from point A to point B, where
A, B € {pv, gr, es}. Equation (7) ensures that all power flows
are non-negative. Furthermore, Pl gr[h], Plyoes[hl,
and Pz‘;v_)ld [h] represent power flow from PV to grid, energy

storage, and loads, respectively. The notation B, may denotes
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the maximum allowable power output from the PV system,
constrained by the PV system size and power electronics
limitations. Pg,_;4[h], and Pj._.s[h], represent power flow
from grid to loads and energy storage, respectively, and
Py max .is the maximum allowable power exchange with the
grid. Pgsq[h], and P)s_g-[h] represent power flow from
energy storage to load and grid, respectively, and P, 4y is the
maximum charge/discharge power of the energy storage unit.

Equations (11) and (12) are equality constraints ensuring
that the optimization algorithm satisfies demand and utilizes
all available solar PV power under all conditions. Here, Pz,iv [h]
and P},[h] represent the generated and demanded power, at
time /4, respectively. In Eq (13), S0Cpin, S0C nax define,
respectively, the minimum and maximum allowable battery
State of Charge (SoC) levels. Finally, equations (14) and (15)
prevent the optimization algorithm from generating infeasible
solutions. For example, importing and exporting power to the
grid simultaneously is physically impossible. Therefore,
exportl,[h],and import).[h]are Boolean values, that
enforce this constraint. A similar logic applies to energy
storage, where chargel[h], and dischargel;[h] are
Boolean variables indicating the charging or discharging state
of the battery. If the battery is charging chargel;[h]=1, and
otherwise the dischargels[h]=1.

C. Performance Metrics

Various factors can be considered when evaluating the
performance of EMSs. Depending on optimization goals and
problem formulation, these factors may include self-
consumption ratio, electricity costs, energy storage utilization
and charge/discharge cycles, demand response efficiency,
energy conversion losses, and more. In this study, we focus
on two key performance metrics: electricity costs as the
primary performance indicator and building self-consumption
ratio (8 € [0,100] %) as the secondary factor. However, since
the optimization problem is formulated solely based on
minimizing the energy bill, & serves only as a performance
measurement metric and does not influence the optimization
process.

Annual energy bill (Ap;y;) 1s defined as:
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(16)

And an annual self-sufficiency ratio is defined as:

E [nd]+E [h,d]
365 y123  Epv-ld pesold

o= > 2 3 17
2355 22, P (7
where Epyia = Ppyoia X 8, Epy =By X8, and
Epyoessia = Ppyses—ig Xt The  notation  E,, 0 q

represents the amount of energy generated by the solar PV
system, stored in the energy storage system, and later
delivered to the load. This term is often overlooked in
literature, where the self-consumption ratio is typically
calculated only by considering the real-time power delivery
from the PV system to the load.

D. Performance Benchmarks

The proposed algorithm is benchmarked against three
different approaches. The first approach is a simple rule-based
algorithm that follows a priority-based energy management
strategy. It prioritizes supplying demand from the PV system
first, then from the BES, and finally from the grid. If the
generated power exceeds the demand, the surplus energy is
stored in the battery. If the battery's SoC reaches its maximum
limit, any additional energy is exported to the grid.
Conversely, during energy shortages, the system first utilizes
stored energy in the battery, and if the demand is still not met,
the remaining energy is imported from the grid.

The second approach assumes that the optimization
algorithm has access to ideal forecasts for PV power
generation and demand over the next 24 hours. This scenario
represents the best feasible solution for an optimization
problem, as it eliminates performance losses due to
uncertainty, given that all future information is known and
predictable. Finally, two RL-based agents, one using Proximal
Policy Optimization (PPO) and the other based on Deep Q-
Networks (DQN), are utilized for benchmarking.

In all scenarios, the system follows a consistent strategy. At
the start of the day, optimal control signals are generated based
on forecasts for PV power generation and demand.
Throughout the day, a high-resolution algorithm ensures that
voltage and current levels remain within acceptable ranges. If
the system falls short (e.g., PV power generation is
insufficient), the grid is used to compensate for energy
shortages, ensuring continuous operation within safe
parameters. And if the PV generation exceeds the demand, the
extra generation will be first directed to charge the BES and
then the main grid if the BES SoC level reaches SoCy, -

IV. NUMERIC RESULTS

A. Case Study

Four years of historical consumption data from House
Number 1, obtained from the UK-DALE dataset [12] and
recorded from March 2013 to April 2017, are combined with
synthetic Solar PV generation data for a similar period and the
same geographical location, generated using the Photovoltaic
Geographical Information System (PVGIS) [13]. The
generated dataset’s granularity is 1 hour, and the recorded
values represent the average measurement during each hour of
the day. Additionally, Time-of-Use (ToU) electricity price
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data, sourced from Estonia’s end-user electricity price dataset
and recorded from March 2020 to April 2024, are utilized.

The optimization problem is formulated as a MILP model.
The problem has been implemented using the Pyomo
optimization framework and solved using the IPOPT solver.
Additionally, all code has been developed using Python 3.11.
Table I collects systems parameters, and constraints.

TABLE L. BUILDING ELECTRICITY NETWORK CHARACTERISTICS AND
OPERATIONAL CONSTRAINTS

Variable Name Value Unit  Symbol
PV system 10 kWp -

PV inverter size 12 kW Pyvmax
BES capacity 10 kWh -

BES inverter size 5 kW Pesmax
Grid-connected converter size 5 kW Py max
Minimum SoC 15 % S0C in
Maximum SoC 90 % S0C max

B. Probability Matrices

Figure 4 (a) illustrates the number of members for distinct
class labels, each corresponding to a specific range that covers
the entire span of possible solar PV power generation and
demand values. As shown in the figure, the probability of
higher solar PV power generation is notably higher during
midday hours, which is consistent across different seasons.
This reflects the natural behavior of solar power generation,
with peak production occurring when the sun is at its highest
in the sky.

Regarding the demand patterns, which are depicted in
Figure 4 (b), the probability distribution is spread across the
day, but with notable peaks during the early morning hours
and evening times. These peaks align with typical electricity
demand patterns, as buildings typically require more power in
the morning for activities such as heating, cooling, and
appliance use, and again in the evening when residents return
home and start using electricity for lighting, cooking, and
other household tasks.

C. Generated Scenarios

Scenarios are generated by randomly selecting and
bounding consumption and generation power values for each
hour of the day based on initial day-ahead forecasts. Figure 5
shows the predicted PV power generation and demand for 72
hours during the system’s operation in the first week of June
2015. Observe that the PV power generation prediction
outperforms the power consumption predictions. This can be
attributed to the higher randomness and uncertainty associated
with building power demand, whereas PV power generation is
highly correlated with weather conditions and predictions.
Numerical weather predictions are easily accessible from
weather service providers, leading to more reliable PV power
generation forecasts. Figure 6 demonstrates the ten most
probable generated scenarios for the corresponding days
during the first week of June 2015. These scenarios are
extracted from ¥, which is a paired combination of the 3 and
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Fig. 4. (a) Solar PV system power generation class membership per

hour for entire dataset. (b) Building energy demand class membership
per hour for entire dataset. Each graph also represents the distribution of
probabilities for each class. The classes with a higher footprint have a
higher probability of occurring.

D probability matrices. As shown, tuning the forecasts with
historical data distribution and generating scenarios based on
both historical data and forecasts allowed the tool to estimate
the range of PV power generation and building demand with
moderate accuracy. However, improvements are still needed
to ensure that the generated scenarios closely follow real
profiles. To ensure realistic forecasting, zero values are
assigned to night hours in the final solar PV production
profiles, as power generation during these hours is negligible
regardless of forecast outputs or scenario results. This
assignment is based on the local sunrise and sunset times.

D. Performance Benchmarking

Each paired scenario is included in Eq. (5), with their
corresponding probabilities as a weighting factor. In this work,
we have defined the optimization problem to solely minimize
the annual electricity bill; however, other factors could be
incorporated to construct a multi-objective optimization
problem. Figure 7 shows the optimized power flow based on
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Fig. 6. Ten most probable scenarios based on day-ahead forecasts and
historical data distribution.

input variables and scenarios. The decision made for bill
minimization is highly dependent on the infrastructure size.
Since the focus here is on the algorithm's performance, the
results are reported considering only one configuration.

It is noticeable that the proposed methodology makes
optimization decisions that are closest to the ideal forecasting
scenario compared to other methodologies. However, perfect
alignment is not achievable, as it is impossible to precisely
forecast the system's future states. Table II presents economic
and technical metrics based on one year of system operation.
As expected, the ideal forecasting scenario yields the best
performance both technically and economically. The closest
performance is achieved by the proposed solution, which not
only generates revenue but also effectively utilizes the BES to
enhance the self-sufficiency ratio.

The proposed solution and the RL-DQN method exhibit
relatively similar performance. However, their operational
principles and computational complexities differ significantly.
The primary computational burden of RL-based approaches
lies in the training phase rather than inference. In contrast, the
proposed method requires the calculation of probabilities and
corresponding scenarios at least once per day, followed by
solving an optimization problem that considers multiple
scenarios. This computational demand may be regarded as a
limitation of stochastic programming-based approaches. A
similarity between the two approaches is their reliance on
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substantial historical data. Both methods face challenges
related to cold-start issues, as their performance heavily
depends on the availability of sufficient past data for training
or scenario generation. To compare the computational
complexity of the proposed method with its benchmarks, all
algorithms were executed on the same Windows machine with
the following configuration: Intel Core Ultra 9-185H 2.5 GHz
processor and 32 GB of RAM. Table Il compares the
execution times. The reported inference time refers to the
complete processing of the test set.
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Fig. 7. The optimized power flow comparison between various methods.
(a) Hourly-averaged BES stored energy levels, (b) hourly-averaged imported
power from the grid, and (c) averaged exported power to the grid.

TABLE IL. PERFORMANCE BENCHMARKS
Optimization SCR* AEB* ABC* TIEG* TEEG*
Method (%) © (%) (kWh)  (kWh)
Rule-based 82.01 13567 49.38  2990.50 5451.72
RL-based (PPO) 67.02 517 65.64  5615.76  6426.80
RL-based (DQN) 8148 -70.73 4894 307895 9384.62
Ideal forecasting 91.44 -19385 7126  746.82 322471
Proposed 81.10 -97.48 4408  2721.38 4683.14

*SCR: PV Self-Consumption Ratio, AEB: Annual Electricity Bill, ABC:
Average Battery Charge, TIEG: Total Imported Energy from the Grid,
TEEG: Total Exported Energy to the Grid.

V. CONCLUSION

This article presents a forecast-driven stochastic energy
management agent for building EMSs. The proposed solution
relies on day-ahead forecasts and historical data distributions
to generate the most probable scenarios for solar PV power
generation and building electricity demand. These scenarios
are then used for power flow optimization to minimize the
annual electricity bill while accounting for inherent system
uncertainties. The performance of the proposed method is
compared with rule-based, two RL-based methods, and ideal
forecasting approaches. The results confirm the superiority of
the proposed method over the benchmarked models.
However, it should be noted that the performance of RL-
based methods heavily depends on the learning process and
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hyperparameters. The main disadvantages of the proposed
solution are its relatively complex computational process and
the need for extensive historical data, which is a typical
challenge for stochastic programming optimization-based
methods. In future work, cold start issues and a sensitivity
analysis of the amount of data required to achieve satisfactory
performance will be investigated.

TABLE III EXCUTION TIME COMPARISON

Optimization Method  Train (ms) Inference (ms)

Rule-based - 350

RL-based (PPO) 38197 7710

RL-based (DQN) 59959 6457

Ideal forecasting - 18974

Proposed - 62531
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Abstract— Leveraging advancements in power electronics,
the adoption of Direct Current (dc) technology in net-Zero
Energy Buildings (nZEBs) is seen as a promising approach to
boost energy efficiency. Emerging dc technology aims to reduce
power losses by eliminating unnecessary conversions between
dc and Alternating Current (ac). This paper thoroughly assesses
the effectiveness of dc and hybrid dc (partial dc) topologies in
comparison to conventional ac nZEBs. The hybrid solution
integrates ac and dc networks and loads within the building,
while the dc solution benefits from a purely dc internal
electricity distribution network and exclusively dc loads. The
study involves analyzing annual load profile data from 16
neighboring houses in Estonia, simulating their transition to
nZEBs with dc, hybrid dc , and pure dc topologies. The study
examines power conversion losses, the operational periods of
power converters in relation to their maximum power capacity,
and energy exchanges with the utility grid. Additionally, it
explores the potential for creating energy communities based on
the consumption patterns of these houses. The results indicate
that pure dc nZEBs might not be as efficient as initially thought,
especially when renewable resources are limited.

Keywords—Net zero energy buildings, dc house, ac
distribution network, ac-dc hybrid house, renewable energies.

I. INTRODUCTION

Europe's commitment to carbon neutrality by 2050 is set
to enhance the integration of both centralized and distributed
renewable energy resources. Notably, 95% of renewable
energy harvesters in buildings are dc-operating Photo Voltaic
(PVs) panels [1]. Likewise, Electric Vehicles (EVs), Energy
Storage Systems (ESSs), and electronic appliances primarily
use dc technology. Advancements in power electronics and
semiconductor technologies are increasingly making electric
devices operate in dc mode for higher efficiency. Most
modern home and office appliances, being internally dc-
based, have adapted to existing ac networks by losing some
efficiency. Furthermore, in transmission side, high voltage dc
technology is a more efficient solution for long-range power
transmission than traditional transformers-based methods.

These trends are reinforcing the move towards dc in
energy systems. However, replacing ac-reliant distribution
networks, developed over the past 200 years, is not feasible in
the short term. Consequently, establishing a pure dc electricity
grid is not a realistic option soon. The most anticipated
developments are likely to include transitioning conventional
grids to smart grids and upgrading buildings with PVs, ESSs,
and Energy Management Systems (EMSs). Additionally,
installing dc distribution lines alongside existing ac systems

could boost grid capacity. Finally, the creation of 'energy
neighbors' would enable the exchange of energy among
nearby prosumers and help reduce the load on the grid [2].

Achieving nZEB status requires aligning a building's
annual energy consumption and production, necessitating
minimized energy use. This can be achieved through
advanced construction technologies and cutting unnecessary
energy usage. For instance, eliminating unnecessary dc-ac-dc
energy conversions potentially improves efficiency by up to
15% [3]. Fig. l.a, 1.b, and 1.c illustrate conventional ac-based,
hybrid ac-dc, and pure dc-based nZEB solutions, respectively.

While the transition to dc technology in buildings
compared to other topologies seems to be more efficient,
further research is needed to assess the actual performance of
dc buildings linked to the existing ac distribution networks. In
[4], the required technical standards, and prerequisites for
such integration have been collected and reviewed. Work [1],
have listed available dc home appliances in the market. The
compatibility of existing home appliances with potential dc
distribution network, has been evaluated in [5]. The authors
recommend 311 V and 230 V as suitable voltage levels within
buildings for a dual line dc distribution system. These voltage
levels are deemed appropriate for efficiently powering
modern devices equipped with switched-mode power supplies

Energy
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Fig. 1. a) nZEB topology with conventional ac network, b) nZEB topology
with hybrid ac-dc network (partial dc), ¢c) nZEB topology with pure dc
network. The arrows indicate the direction of power flow.
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and universal motors, without the need for significant
modifications.

In [6], the efficiency of dc buildings linked to conventional
ac distribution networks is explored. The study examines three
types of load profiles, representing low, medium, and high-
power consumption in US houses. It concludes that higher
voltage dc distribution systems are less efficient than lower
voltage networks, primarily due to increased losses in ac-dc
converters at the 220 V dc range compared to 48 V dc.
Interestingly, the addition of ESSs decreases overall
efficiency due to round-trip power losses, which can reduce
efficiency by up to 10% in some cases. These findings align
with the results in [7], which identify the 48 V DC voltage
level as the most efficient solution. Additionally, some
research, like [8], suggests a dual voltage level system with
380 V for high voltage and 48 V for low voltage dc loads.
However, a universal standard for low voltage dc distribution
systems has yet to be established. This is crucial for unifying
technical requirements for further development.

The efficiency of the ac-dc rectifier, a crucial component
in managing power transfer between the dc building and the
utility grid, significantly impacts the overall performance of
buildings. For example, rectifying efficiency can drop to as
low as 85% during periods of low power demand from the
load side. State-of-the-art converters discussed in the
literature can achieve efficiencies above 96% [9]. In the
market, commercial products typically demonstrate an
efficiency range of 92-95% at their nominal peak power [5].
Nevertheless, recent advances in the power electronics
industry, particularly with wide bandgap semiconductors,
have led to the development of converters with peak
efficiencies of 98%. These products are primarily designed for
vehicle-to-grid interactions but are also applicable to dc house
topologies. Moreover, in recent years, the use of hybrid
solutions, featuring both ac and dc distribution networks, has
gained research interest [10]. This approach aims to harness
the benefits of both systems while minimizing their individual
drawbacks if used alone. Fig. 2 demonstrates the collected
state-of-the-art efficiency curves of bidirectional isolated ac-
dc power converters in the literature [9], [11]-[14].

Despite the higher performance of dc houses in islanded
mode compared to ac or hybrid topologies, further research is
needed to assess these topologies performance when linked to
ac distribution systems. Key research questions for these
emerging technologies include: What is the most effective
design for internal electricity distribution in residential
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Fig. 2. Efficiency curves of bidirectional isolated ac-dc converters.

buildings? How would a pure dc-based house perform when
connected to an ac distribution system? What level of energy
efficiency improvement can be achieved by transitioning from
an ac to a pure dc house? Are hybrid solutions superior to pure
dc networks in the absence of a readily available dc
distribution system? And how occupants’ consumption
pattern could affect the overall performance of the dc house?

In this paper, to address the questions, a detailed analysis
of the performance of dc and partial dc houses operating
within the current utility grid topology is conducted. For this
purpose, the annual consumption profiles of 16 buildings have
been studied, assuming their conversion to nZEB using ac, dc,
and partial dc technologies. This research, specifically
focused on Estonia, aims to assist experts and researchers in
understanding the actual performance of these systems in
Estonian houses and the broader context of North European
climate conditions.

II. METHODOLOGY
A. Transfering Conventional Buildings to nZEBs:

Annual hourly average power consumption data was
gathered from a rural district in Estonia. Assuming all
buildings require integration of PV and energy storage (ES)
systems for transformation into nZEBs, the initial step
involved determining the appropriate component sizes. The
principles for determining the optimum size configuration are
outlined in Algorithm 1. For simplicity, the solar energy
generation profile recorded in the same area was uniformly
applied to all buildings.

In the size optimization process, economic considerations
were excluded. Therefore, the optimal ESS size was
determined by plotting the Total Energy Exchange (TEE)
curve with the grid, varying the ES size from 1 kWh to
40 kWh. The optimal size is selected at the point where the
curve reaches saturation, and further increases in ES size do
not yield significant performance improvements.

Algorithm 1 Optimum PV and ES size calculation for nZEBs

1 Input: Annual load profiles (fp),Annual PV profile (Pyy)-
2: Py, = sum (pp,)/Max(p,,)
3: fori=1tol6do:
4 Lylil = sum (,[i,:1)
4: PVsizelil = round up (l;’j—m)
o
5 Pov= DVsizeli] * Ppw
6 for es in ES:
7 Sor h =1to 8760 do:
8: if Bl 1] 2 1[0 A
9: Supply load: Ppv (W] = By [R] = L,[i, k]
10: if Ppy (] >0:
11: Charge es: Bpv [h] = Bpy [R] —"€Scy[h]
12: if Bpy [R] > 0: Export to utility grid
13: else:
14: Supply load:
’ Lpli,h] = Lli,h] = By [h] — eSeu[h - 1]
15: if 1,[i, h] > 0: Import from utility grid
16: end for
17: Calculate Total exchange energy with grid (TEEf®)
18: end for
19: Sori=1to0 16 do:
20: plot TEE;
51 Select optimum es size for each building
1:

end for

22:  end for

23:  Return: optimal setup values PVy;,, , ES;,.
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Fig. 3. Annual load profile, renewables power generation, and exchange power with the electricity utility grid.

Additionally, the implemented EMS, obtained from [15],
gives priority to PV-generated and ESS-stored energy over
the utility grid for meeting energy demands, and exports
surplus energy to the grid only when the ESS is full. The
Annual power flow and interaction with the grid is depicted
in Fig. 3.

B. Power Electronics Specifications:

For estimating dc building performance, the distribution
topology shown in Fig. 1.c was considered. The PV MPPT
converter and the ES dc-dc bidirectional converter were
selected based on the specifications outlined in [16] and
[17], respectively. The dc bus voltage was set at 350 V. The
ES round trip efficiency (7§’ ), excluding the power
conversion stages, was selected as 97%. For a hybrid
solution a dual-purpose power converter, proposed in [9], is
selected to connect PV and ES to the ac and dc buses. In a
hybrid solution, as shown in Fig. 1.b it is possible to feed ac
and dc loads from both grid and renewable resources.

For each house, the size of the power electronics
infrastructure is designed to accommodate the maximum
load consumption, maximum PV generation, and a quarter
of the ES nominal capacity. This sizing applies to the
isolated bidirectional ac-de, MPPT, unidirectional, and
bidirectional dc-dc converters, respectively. In each
building, the efficiency curves for the converters have been
scaled up or down to match the sizes of selected converters.

C. Energy Loss Analysis

The Energy loss analysis was conducted considering
the converters’ nominal peak power and efficiency curves
and the duration for which they operate at each power level.
To this end, the energy loss has been calculated as:

Elpss = Pross X t, (1

Pioss = exchange X Topt> 2)
Pou

Topt = et ?3)

where P,ycpange 1 the amount of exchange power with the
utility grid, n,,; is the converters efficiency in operating
power, t is the energy exchange duration, and Ej, is the
total amount of energy loss during power transformation.
P, and P, are converters output and input power,
respectively, and Py, is the power loss. Due to the negligible
loss in the wires, energy losses in the buildings’ distribution
systems are disregarded. In dc solutions, only one
conversion stage is required to connect the generator,

storage, and dc load to the dc bus. Thus, energy losses are
calculated as:

Toos = Pow X My X i x @)
Efed® = Pyy X7boy X e X £, )
Ejyss = Pos X e X i X 1 x ¢, ©)
Efed™ = Py by, x iy X, )
Efyee = Poria X Mg X 15 X £, ®)
where Elxo'g/s is the energy loss amount when power is

transferred from x to y for t time period. 7g,:, * €
{pv, es,load, grid} is the efficiency of the PV, ES, grid,
and dc load converters in their operating power,
respectively. P is the amount of delivered power in all
equations. In conventional ac nZEBs topology, the energy
losses are calculated as:

Elz::;_i = By X ﬁé’;t X ﬁ(l;%atd Xt, ©9)
EDve® = Pyy X fboy X Ti5, X £, (10)
s = Pog X 155 X filotd X ng* x ¢, ()
EDYIT = By, x by X 8, (12)
El%sls = Pgria X ﬁé%atd Xt, (13)

where Ej;;; is the energy loss in the conversion stages,
between PV, ES, grid, and ac loads. fj;, is the efficiency
of dc-ac and ac-dc power converters in their operating
point. Finally, if the hybrid solution is considered for nZEB
topology, the energy losses are calculated as:

EP2I9¢ = Py, x ifbv, x 145 x t, (14)
ED7ES = Py X iy X 155, X 8, (15)
EP29T = P, x by, x ijibd x t, (16)
B2 = Bpy X Ay, X T1058 X £, a7
EES = Py x 15, X 7,35 x 1 x t, (18)
EE¢ = Py x 155, X b8 x ng® x t, (19)
EOM = Pypiq x iR58 x 746 x t, (20)

where E l*(;lsic is the energy loss during the supply of dc loads
from grid, PV, or ES. and E;)% is the energy loss during
the supply of ac loads from grid, PV, or ES. ﬁ’,}g? is the
efficiency of hybrid dual purpose power converter, which
links the buildings’ internal ac and dc distribution
networks. ﬁfgft is the efficiency of dc loads’ dec-dc
converter. Furthermore, the efficiencies of the internal
power conversion for ac and dc loads are extracted from
[18], [19], [20] and is collected in TABLE I.
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III. RESULTS AND DISCUSSIONS
A. Power Electronics Size Optimization Qutcomes

Selected infrastructure sizes have been collected in
TABLE II. The TEE curves for some houses if operating in
ac and dc mode, with various ES sizes, are presented in Fig.
4. As observed, increasing the ES size reduces the power
exchange ratio. Furthermore, the energy exchange ratios for
dc topologies are less than ac systems. Later we will explore
this figure in more detail.

TABLE I
HOME APPLIANCES’ POWER CONVERSION EFFICIENCIES
Efficiency (%) Efficiency (%)

App de-de ac-dc Api de-de ac-dc
Laptop 932 859 Lights 99 96
Refrigerator 95 86 TV 98 90
Mixer grinder 98 96 Oven 97.2 95.6
Vacuum cleaner 95 93 Heating 99.9 99.8

TABLE I
POWER ELECTRONICS SIZE SELECTION FOR HOUSES
Grid tied
House ac-de PV size ES size deloads
code converter
converter

1 3 kW 5 kW 20 kWh 2 kW
2 25 kW 25 kW 11 kWh 1.5 kW
3 4 kW 3 kW 15 kWh 35 kW
4 1.5 kW 2 kW 4  kWh 1 kW
5 35 kW 45 kW 17 kWh 25 kW
6 4 kW 15 kW 8 kWh 35 kW
7 45 kW 6 kW 13 kWh 3 kW
8 5 kW 65 kW 16 kWh 3 kW
9 4 kW 45 kW 12 kWh 25 kW
10 1 kW 1 kW 5 kWh 1 kW
11 65 kW 45 kW 13 kWh 4 kW
12 6 kW 5 kW 12 kWh 4 kW
13 35 kW 3 kW 10 kWh 25 kW
14 35 kW 45 kW 12 kWh 25 kW
15 25 kW 25 kW 8 kWh 15 kW
16 3 kW 75 kW 20 kWh 2 kW
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Fig. 4. ES size impacts on annual energy exchange for some ac and dc
buildings.

B. Device Operating Region Analysis

Considering that converters do not consistently operate
at peak efficiency, the time spent in low power modes
significantly affects the system's overall performance. Fig.
5 displays the duration of the main isolated bidirectional ac-
dc converter operating at different capacity levels over the
year for each dc building. It can be observed that in all the
studied cases, with appropriately sized PV and ES systems,
the main converter predominantly operates in the low

power, which corresponds to less than a quarter of its
nominal peak power. This power capacity is highlighted in
red to emphasize the higher loss values. These losses are a
result of the lower efficiency of converters at this reduced
power level. In most of the studied cases, the main grid-tied
converter operates for less than 5% of the total operation
period at above 75% of its nominal peak power.
Furthermore, on average, the converters transfer power at
less than half their capacity for 90% of the operation
periods. These results question the overall efficiency gains
achievable through converting an ac building into a dc
building. However, it is important to note that these results
are case-sensitive and influenced by factors such as the
user's lifestyle, the energy grade of the buildings, and the
area's climate conditions. Despite these variables, the data
can still provide a realistic insight into the real potential of
dc transformation in Estonian households. Furthermore, to
draw a more comprehensive analysis and conclusion, a
comparison of the performance and energy losses of ac, dc,
and hybrid nZEBs is also necessary.
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Fig. 5. Share of each operation power for the main isolated bidirectional
ac-dc converter in the buildings. (colors show the operating power level).

C. Distribution Topologies Performance Comparison

To compare the performance of different topologies, the
total energy loss for each topology across all studied cases
has been analyzed and compared. Fig. 6. presents a
comparison of the total annual renewable energy loss for all
houses, highlighting the differences when the solar power
converter is connected to ac versus when it is connected to
dc distribution networks. So, on average, 52% of renewable
energy loss could be reserved in both dc and hybrid
solutions, in comparison to conventional ac topology.

Fig. 4 reveals that the annual energy exchange with the
utility grid for a dc house is less than conventional ac
houses. However, energy exchange in conventional ac
houses is almost lossless compared to dc houses. This is due
to the required dc-ac conversion stage needed to connect a
dc building to an ac distribution network. Therefore, for a
comprehensive  performance analysis, total power
conversion losses in different topologies must be evaluated.
Since hybrid or partial dc topologies incorporate both ac and
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Fig. 6. PV power converters’ annual energy losses when connected to ac
bus and dc bus.
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dc buses within the buildings, determining the capacity of
each bus is critical to minimize power flow between the
internal ac and dc buses. In this study, 40% of the load
demand was considered as ac, with the remainder supplied
through a dc bus. This ratio was chosen through trial and
error, and further research into hybrid topologies is
necessary to identify the optimum balance.

Fig. 7 compares the annual total energy losses due to
power conversions in all topologies and houses. It shows
that the nZEB using ac technology incurs the highest losses.
Conversely, the hybrid solution demonstrates the best
performance in terms of energy loss. This outcome is
expected and reasonable, as the hybrid solution has the
advantage of directly feeding high-demand ac loads from
the grid, bypassing the power converter. Additionally, as
shown in Fig. 5, in dc buildings, the interlink isolated ac-dc
converter mostly operates in the first quarter of its maximum
capacity. Consequently, this leads to lower efficiency and
higher conversion losses.
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House
Fig. 7. Power conversion losses comparison in hybrid, ac, and dc
topologies.

Annual Power Conversion
Loss (kWh)

Fig. 8 compares grid interactions for all topologies. The
hybrid solution shows lower performance compared to both
dc and ac topologies, with a higher rate of annual energy
trade with the main utility grid. The effectiveness of the
hybrid solution heavily relies on the implementation of a
suitable EMS. In our study, the supervisory algorithm lacks
forecasting capabilities, thus failing to optimally manage
stored energy for both dc and ac loads. Consequently, the
ES system is dominantly used for powering dc loads,
leading to increased energy exchanges and imports from the
grid for feeding ac loads. Therefore, without an advanced
EMS capable of efficiently controlling ES and power
distribution, the hybrid solution might not consistently
achieve optimal performance.
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Fig. 8. Annual energy trade comparison for hybrid, ac, and dc topologies
in all studied buildings.

D. Buildings Consumption Pattern Comparison

For dc technology, a promising approach is the
formation of energy districts by integrating nearby buildings
or houses. This facilitates power transfer among prosumers
and enables energy exchanges independent of the main ac
utility grid. Such a configuration could enhance the overall
performance of dc buildings and minimize power
interactions with the ac grid. However, for optimal
functioning, it is crucial to analyze electricity generation and
consumption patterns in each building to identify potential
overlaps. For instance, solar energy generation occurs
simultaneously for all nearby users. This leads to concurrent
availability of surplus energy. Additionally, houses’ energy
consumption patterns often align due to similar lifestyles.

We analyzed daily consumption patterns in all studied
cases to assess the feasibility of the establishment of dc
energy neighborhoods. For each building, demand was
categorized into three sections: ‘Low’, 'Normal', and 'High'.
This classification involved calculating the mean and
standard deviation for each case. Consumption values lower
than mean minus half the standard deviation were labeled as
'‘Low', and those higher than mean plus half the standard
deviation as 'High'. Values falling outside these ranges were
considered 'Normal'. The results of this data analysis are
detailed and displayed in Fig. 9.
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Fig. 9. Power consumption pattern for all studied houses during a day.

Analyzing the consumption habits reveals that most of
the buildings, except for houses number 4 and 5, show
remarkably similar usage patterns, primarily consuming
power during early morning and evening times. However,
the pattern for house number 16 is an outlier in the examined
buildings. This deviation is due to the presence of an electric
vehicle (EV) in this household, which is mostly charged
during off-peak night hours. Consequently, house number
16 has high power demand at times when other buildings
are experiencing their low-demand phases.

Given that all buildings are equipped with a similar EMS
and have adopted solar power as a renewable energy source,
it can be concluded that while the concept of constructing
local dc neighborhoods for energy trading is appealing,
crucial challenges such as overlapping consumption phases
and concurrent access to renewable sources will pose
difficulties for the system's operation, and reliability. For
instance, in the studied neighborhood, the only house that
could potentially benefit from energy sharing is house
number 16. This is due to it owning an EV and requiring
power during midnight hours. So, if other houses also adopt
EVs, similar challenges in the local dc distribution network
are likely to emerge soon.
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E. Discussion

Investigations into various nZEB topologies have
revealed significant challenges in implementing a pure dc
topology. The anticipated performance improvements are
not as substantial as initially expected. This can be attributed
to two main reasons. First, our data profiles shows that the
interlink ac-dc power converter often operates at its least
efficient stage due to low power demands during off-peak
periods. Second, during Estonia's winters, with limited solar
power availability, the system heavily relies on power from
the ac utility grid, leading to energy loss during power
conversion. In contrast, hybrid or partial solutions can
mitigate this issue by utilizing the ac distribution network to
directly supply heavy ac loads, potentially resulting in lower
energy losses and higher annual efficiency.

However, the main challenge for hybrid solutions lies in
the complexity of the supervisory management algorithm.
This algorithm needs to efficiently distribute power between
dc and ac loads to outperform conventional ac nZEBs. This
complexity demands advanced management algorithms and
greater computational resources. Given the current absence
of a low voltage dc distribution system, it is evident that
both dc and hybrid topologies need further enhancements in
power electronics and information technology to compete
effectively with conventional ac nZEBs topology.

IV. CONCLUSION

In this study, we investigated the transformation of
conventional ac houses into nZEBs, considering three
different topologies: ac, hybrid, and dc. The comparison of
these topologies shows that in terms of power loss metrics,
the hybrid or partial dc solution performs better. In contrast,
the dc topology demonstrates the lowest grid interaction,
hence the highest energy autonomy compared to the others.
While both the hybrid and dc topologies outperform the
conventional ac nZEB topology, the improvements are not
as significant as anticipated. These findings underscore the
need for further development of these alternative
technologies to gain market acceptance. Additionally,
analyzing consumer consumption patterns reveals that
forming dc energy communities with nearby dc buildings
may not function as expected due to similar consumption
patterns. However, this study's outcomes depend on the
specific data and location analyzed. While the results may
vary for different users and locations, they offer valuable
insights into potential challenges and areas for improvement
in dc and hybrid nZEB technologies.
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Abstract—Recently, global photovoltaic (PV) system
installations have surged. Precise forecasting is vital for their
grid integration and carbon emission cuts. However, due to
fluctuating solar radiation, predicting PV output is difficult.
Machine learning models, notably Long Short-Term Memory
(LSTM) networks, offer a solution. This study presents a novel
framework using a boosted recursive Light Gradient Boosting
Machine (LightGBM)-LSTM network to forecast daily PV
output at hourly intervals. Conducted in Northern Europe—a
region with significant solar radiation variability—the models
trained on meteorological and historical data showed a 12%
improvement in RMSE, a 13% reduction in MAPE, and a 5%
increase in the R? score compared to standalone LSTM models.

Index Terms--Solar power forecasting, numerical weather
prediction, LightGBM, LSTM, boosting ensemble method.

1. INTRODUCTION

Renewable resources are essential for achieving carbon
neutrality and sustainable energy. However, due to their
intermittent nature, they aren't as consistent as dispatchable
power plants. Without precise short-term predictions of
renewable availability, utility companies may overproduce
energy, potentially challenging grid stability. Furthermore,
PV setup owners entering the energy market without adequate
estimation of their achievable production level may incur
financial penalties for under or over-delivering. Moreover, in
the small-scale size installation, for instance, commercial or
residential real estates, accurate projection of available
renewable energy boosts the energy management systems
performance as well [1]. Therefore, precise forecasting of both
short and long-term energy generation is critical for achieving
environmentally sustainable grid management and ensuring
profitability in the energy market [2].

Lately, within the forecasting realm, Machine Learning
(ML) and Deep Learning (DL) techniques are becoming
predominant in state-of-the-art applications [3]. Among
ML/DL techniques, hybrid methods that combine results from
different methods have shown superiority over simpler
standalone methods. Attention based convolutional neural
networks (CNN) model has been adopted in [4] for ultra short-
term predictions. LSTM models, as an improved version of
recurrent neural networks, have been merged into many
hybrid models in the literature. For instance, a composite of
CNN-LSTM and multi-layer perceptron networks integrated
with error correction and decomposition methods has been
proposed in [6] for step-by-step solar irradiance forecasting.
In [7], Coati optimization algorithm has been applied with
LSTM-CNN framework to perform wind and solar power
forecasting.

Regression models, adept at uncovering hidden
relationships between target variables and features, have
reliably served the solar forecasting sector. Notable
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implementations include the Support Vector Regressor [8],
Gradient Boosted Regression Tree [9], and Weighted
Gaussian Process Regression [10] for short-term forecasting.
Some researchers have amplified the efficacy of these models
by integrating them with classification [3] or transfer learning
methods [11]. Given their inherent structure, tree-based
regression models are particularly favored for non-linear
regression tasks. The LightGBM model, an ensemble tree-
based regression approach, has been applied in forecasting
loads [12], PM 2.5 ranges [13], and PV power [14].

Building on these insights and established methodologies
in the field, our research aims to push the boundaries of day
ahead PV forecasting. In this study, a novel approach for day-
ahead output power forecasting of a PV setup is proposed,
combining the LightGBM and LSTM cells. Unlike previous
studies, this approach aims to harness the strengths of both
tree-based ensemble regression and time series regression
analysis. A boosting approach merges the LightGBM model,
capturing complex weather-to-power relationships, with
LSTM cells that learn temporal data dependencies for accurate
recursive multistep forecasts. The integration of a meta-
learner and tuning stages further refines predictions,
enhancing the combined model's performance and offering
more precise day-ahead forecasts.

II. PROPOSED METHODE AND DATA DESCRIPTION

As previously mentioned, this study proposes an ensemble
approach. Ensemble models have demonstrated superior
performance in forecasting tasks compared to conventional
statistical and base ML models [15]. Fig. 1 provides an
abstract structure of the suggested framework.

In this pipeline, the LightGBM model is trained with
historical time series output power records from the target PV
site, along with meteorological measurements of the located
area. Simultaneously, LSTM units have been trained on the
same dataset to learn temporal features of the target data.
During the forecasting stage, numerical weather prediction
(NWP) data for the target period (next 24 hours) is utilized to

NWP
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Learned model
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@
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£
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£
El
=
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Fig. 1. An abstract structure of the proposed LightGBM-LSTM framework.
Here, X is a historical time series data, y' is the validation stage output, and
y is a predicted target value, m is a meta learner, and T is a tune stage.
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obtain initial results from the regressor ( y{4; ). The
corresponding regression output along with an output of the
stacked LSTM network (y;,,) have been utilized to train a
gradient boosting regression (GBR) meta-learner to enhance
the final prediction value (yi+1). Finally, recursive forecasting
method utilizing sliding window technique is applied to
leverage the past forecasting values to generate the next set of
predictions. However, recursive multi step timeseries
forecasting techniques are prone to error propagation and
show a poor performance in the long-range forecasting, but
the proposed auxiliary regression, meta learner, and tuning
tools try to enhance the performance of the main framework.

A. LightGBM

LightGBM [16] is a ML framework developed by
Microsoft, which is open-source and implements the Gradient
Boosting Decision Tree (GBDT) algorithm. Despite its ability
to handle big data, LightGBM does not sacrifice accuracy,
making it a powerful and practical ML tool. To improve its
efficiency when dealing with big data, such as datasets with
thousands of features and millions of instances, LightGBM
incorporates two techniques: Gradient-Based One Side
Sampling (GOSS) and Exclusive Feature Bunding (EFB)
[18]. The EFB technique groups exclusive features, such as
one-hot-encoded features, to reduce dimensionality and
improve model training speed. The GOSS technique involves
discarding a significant portion of data instances with small
gradients and using only those with larger gradients to
estimate information gain [18]. This approach leads to a more
streamlined and efficient computation of information gain,
which is a metric used in decision tree algorithms to measure
the relevance of features in predicting the target variable and
discovering optimal split points. Information gain is also
widely used in feature selection processes.

B. LSTM

LSTM networks [17] are a variant of recurrent neural
networks (RNNs) that can model long-term dependencies by
employing layers of LSTM cells. Unlike traditional RNNss,
LSTMs are robust against vanishing and exploding gradient
problems, making them well-suited for retaining information
over long-term sequences. Within the LSTM unit, a cell state
is modified by two gates, the forget and input gates, and an
output gate generates a hidden state signal based on the current
cell state. Multi stacked LSTM units enables the network to
learn temporal and sequential dependencies of input data. In
this study (as shown in Fig. 2), the LSTM network was trained
on 48 hours of past data for one-step prediction, followed by
a recursive strategy for subsequent predictions.
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Fig. 2. LSTM network data structure.

C. Meta Learner

Meta-learning techniques can be employed to refine
prediction accuracy further. In this context, we've chosen the

GBR [18] method as our meta-learner. GBR stands out as a
formidable tree-based ensemble regression technique, which
operates by sequentially building base learners to minimize
the residuals of preceding stages. These base learners, by
rectifying each other's errors, collectively offer more
dependable outcomes in regression analysis.

D. Tune Stage

The final tuning units in this study perform feasibility
checks on predicted outcomes based on the technical
characteristics of the PV farm, which range from 0-25 kW.
Predictions that exceed the maximum or minimum output
power of the system are adjusted to the maximum or zero,
respectively. Additionally, non-zero outcomes corresponding
to twilight times are set to zero using sunrise and sunset times
from the corresponding calendar day of the previous year.
These corrections during the ML model development process
can improve both the performance and reliability of the
obtained results.

E. Site Location and Data Description

Tallinn, located in the northeastern region of Europe,
experiences imbalanced levels of solar irradiance throughout
the year. Fig. 3 presents a comparative analysis of the total
daily surface net solar radiation between Tallinn and several
European cities. The analysis reveals that Tallinn experiences
a greater degree of variability in solar radiation levels
compared to most of these cities excluding Oslo, rendering the
task of accurate model training more challenging.
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Munich

Rome

Madrid
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Solar Irradiance W/m?

Fig. 3. Comparison of daily accumulated solar irradiance at multiple
European cities during 2010 to 2022.

PV output power data was collected from a small-scale PV
installation located within 20km of Tallinn, Estonia over the
years 2021 and 2022. The present data consists of compiled
information regarding farm generated power, recorded and
accumulated at 1-minute intervals. To align the granularity of
the output power data with the meteorological dataset, the data
was down-sampled from 1-minute intervals to hourly intervals
and aggregated accordingly.

To obtain archived meteorological data, this study utilizes
the ERAS reanalysis dataset, which is publicly available and
provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) [19]. This dataset offers high spatio-
temporal resolution, with a resolution of 31km and 1 hour,
respectively. It includes detailed records of various climate
parameters such as solar irradiance, temperature, dew point,
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wind direction, wind speed, cloud cover, cloud layers,
visibility, precipitation amount, snow cover, and others. These
records span from 1959 onwards, providing a rich source of
meteorological data for the study. Moreover, in the forecasting
stage, weather parameters data for the subsequent day was
procured by utilizing freely accessible NWP application
programming interfaces (APIs).

F. Feature Engineering

Various feature selection methods, such as Pearson
correlation coefficient (PCC), Recursive Feature Elimination
(RFE) with Random Forest Regressor, and feature importance
ranking with Ridge regression were used to eliminate
redundant and highly correlated features that may negatively
impact model performance. These methods are suitable for
continuous data and regression analysis. The feature selection
process reduced the number of features from 44 to 11,
indicating the effectiveness of the selected methods in
identifying the most relevant meteorological features for PV
output power forecasting. However, it should be noted that the
specific number of features selected may vary depending on
the nature of the data and the particular feature selection
methods used.

To improve the performance of the proposed model,
additional features were generated and added to the existing
dataset. These features included a daytime index, which was
produced using the clear sky surface net solar radiation value.
Given that the PV output power consistently registers as zero
in the absence of sunlight, consequently, during the training of
the regression model, solely those rows exhibiting a daytime
value of one have been utilized. In addition, month and hour
values were extracted from the timeseries index for each
instance, enabling the model to capture seasonal and diurnal
patterns in the dataset.

Furthermore, the PCC values among the target column and
its lags were examined, revealing strong correlations between
current PV output and its time shifts. To incorporate this
temporal information into the model, time lags with PCC
values higher than 0.75 (including 1, 2, 24, 25, 48, and 72
hours) were added to the dataset. It is worth mentioning that
snow-related features, such as coverage, albedo, and layer
thickness, were included in the dataset to account for their
impact on PV output power generation during autumn and
winter. These features are location-specific and play a crucial
role in accurate forecasting during the colder months. In
particular, snow coverage and layer thickness can affect the
amount of sunlight absorbed by the solar panels, while albedo
(the reflective properties of the snow surface) can impact the
amount of solar radiation reflected or absorbed by the panels.
By including these location-specific features, the proposed
model can better capture the seasonal variability.

G. Evaluation Metrics

In the realm of evaluating ML models’ performances,
several metrics have been identified. Here, the Root Mean

Square Error (RMSE = ,%(22=1(yh = ¥1)?)), Mean

Absolute Percentage Error (MAPE = %1100 ho1 |yhy_ ) and
h

), have been

SSres
SStotal
chosen as measures to gauge the accuracy and reliability of the
models. Where n is number of forecasting steps (here
considered as twenty-four) and h is a current forecast step, y

coefficient of determination (R2 =1 —

and y' are actual and forecasted values, respectively. Also,
SSres = Zﬁ=1(yh - y;l,)z and SStotal = Zz=1(yh - 37)2
are sum of squared residuals and the total some of squares,
respectively.

H. Baselines

The proposed method has been evaluated against single
established statistical models within the time series
forecasting and regression analysis fields. The selected
models for comparison include Persistence, LSTM,
LightGBM, and XGBoost [20]. Each of the benchmark
models has been optimized to exhibit their optimal
performance to ensure a fair comparison. The Persistence
model utilizes a straightforward methodology for forecasting,
whereby it assumes that the predicted value for PV power is
equivalent to the value from the corresponding hour of the
previous day.

III. MODEL STRUCTURE AND RESULTS

The model advancements were executed using the Keras
2.10 library in Python 3.10.7 and implemented on a desktop
computer featuring an Intel Core-17-7700K CPU (4.20GHz)
and a 32 GB memory capacity. Furthermore, hyperparameters
optimization process have been conducted utilizing Optuna
[21] automatic hyper parameter optimization framework and
Google Colab cloud service.

A. Model Hyperparameters

During LightGBM model design process, various
hyperparameters should be calibrated to assure the model
performance. These hyperparameters can be classified into
three categories: data-related, boosting-related, and
regularization-related. Data-related hyperparameters include
parameters such as the maximum depth of a tree, minimum
number of samples in each leaf node, and the fraction of
features to consider when building a tree. Boosting-related
hyperparameters include the number of trees to be used in the
model, learning rate (LR), and subsample rate.
Regularization-related hyperparameters include parameters
such as L1 and L2 regularization. The selected
hyperparameters for regression model have been collected in
Table I.

TABLEI
LIGHTGBM HYPER PARAMETERS

Hyper parameter name Value/Name Range
Boosting type Goss GOSS-DART
Learning rate 0.0098 le-4-3e-3
Feature fraction 0.7 0-1
Number of leaves 61 20-100
Minimum child samples 24 1-40
Minimum child weight 0.0024 le-4-le-1
Regression alfa (L1) 0.0029 le-4-1¢3
Regression lambda (L2) 0.0013 le-4-1e3
Number of estimators 972 200-1500
Subsample 0.568 0-1

Furthermore, stacked LSTM network has been optimized
utilizing grid search technique. This technique guarantees
finding the best answer in the search space, however, is
computationally expensive and slower than other methods.
Specifically, the hyperparameters optimized for the stacked
LSTM network included the number of LSTM units, the
learning rate, activation function type, the dropout rate, and
number of neurons in the hidden dense layer. Table II
tabulates these values. Additionally, the training data for
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LSTM model was obtained from the last two days' samples,
corresponding to 48 data rows, to predict one step ahead value.

TABLE II
LSTM NETWORK CHARACTERISTICS

Hyper parameter name Value/Name Range
LSTM layer 1 units 41 20-100
Activation function Tanh Relu, Tanh
Drop out 0.1 0.05-0.25
LSTM layer 2 units 55 20-100
Activation function Tanh Relu, Tanh
Drop out 0.25 0.05-0.25
Hidden dense layer neurons 131 50-200
Activation function Relu Relu, Tanh
Output dense layer neurons 1 1
Optimizer RMSprop RMSprop/Adam
rho 0.9 -
Leamning rate 0.0024 le-3-3e-2
Loss metrics MSE -

B. Results and Discussions

In this section first the result of each sub-model will be
reviewed then they will be compared to the main ensemble
model performance. Also, the outcomes are benchmarked
with baselines to assess the extent to which combining the two
models enhances forecasting accuracy. It is important to note
that the quality and quantity of data can have a significant
impact on the performance of each model, and thus, each
model's performance should be evaluated based on the dataset
it was trained on. Fig. 4 displays the prediction versus actual
values for four ML models: LightGBM, l-step LSTM,
multistep recursive LSTM, and XGBoost. Among these
models, the LightGBM model demonstrated the best
performance, while XGBoost had a similar R? score but was
more computationally expensive. Additionally, the 1-step
LSTM model outperformed the multistep recursive LSTM
model due to its step-by-step update during the forecasting
process. Moreover, LightGBM was found to be an effective
model for boosting the multistep recursive LSTM's
performance, as it delivered excellent results while reducing
computational costs compared to XGBoost model.

Data leakage is a prevalent issue in time series forecasting
that can result in a model's overfitting and inflated
performance metrics. This occurs when future instances,
which should be unseen during LSTM model training, are
included in the regression models training set. As a result, the
model's validation accuracy is artificially higher than its
performance on unseen data. To avoid data leakage during the
boosting stage of the LSTM model, the LightGBM model was
trained using an unshuffled train/test split data. While this
approach reduced the Light-GBM model's R? score from 0.93
to 0.90, it ensured that the LSTM model's performance was
not impacted by data leakage issues. This precautionary
measure underscores the importance of carefully handling
data in time series forecasting to develop robust and accurate
models. The results of the proposed model and the benchmark
models (LightGBM, 1 step LSTM, and multi-step LSTM) are
presented in Fig. 5, depicting the forecasting accuracy over a
one-week duration.
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Fig. 4. Comparison between predicted values and actual values in four
distinct ML models.
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The figure illustrates that all models are capable of
accurately capturing the sophisticated relationships between
the input features and the PV output power. However,
during overcast and partly cloudy days, the models'
forecasting accuracy is challenged by the randomness of
cloud movements. On the other hand, for fully or mostly
sunny days, all algorithms have shown satisfying
forecasting results. Table III summarizes the performance
metrics of the proposed model and benchmark models.
Boosting the multi-step LSTM model with LightGBM
improved the R? score from 0.844 to 0.932 and decreased
the MAPE and RMSE values by 27% and 25%,
respectively.  Additionally, the multi-step LSTM-
LightGBM model outperformed the 1-step LSTM model,
indicating the strength of regression models when the
forecasting weather conditions and parameters are accurate
enough for the corresponding day. However, it is worth
mentioning that the LightGBM model has demonstrated
promising performance, even without utilizing the merging
stage with the LSTM network. This suggests that
LightGBM can be a reliable standalone model for PV output
power forecasting providing enough data in the learn stage.

TABLE III
MODEL PERFORMANCE BENCHMARKS
Model R? score MAPE%  RMSE (Wh)
Proposed 0.932 17.82 1586.79
1-step LSTM 0.896 20.61 1791.65
Multi-step recursive LSTM 0.844 24.62 2142.03
LightGBM 0.904 19.58 1693.05
XGBoost 0.898 20.49 1764.18
Multi-step persistence 0.593 34.73 3648.72
1-step Persistence 0.742 29.31 2869.86

IV. CONCLUSION

In conclusion, this study presents a novel approach for
day-ahead output power forecasting of a PV farm by
integrating the LightGBM and LSTM models using a meta
learner and tuning units. The proposed method surpasses
individual LightGBM, LSTM, and other benchmark
models, exhibiting an 11% improvement in the R? score and
13% reduction in MAPE compared to conventional multi-
step LSTM networks. Although the tuning strategy, feature
engineering, and other approaches have demonstrated
improved final model performance, the proposed
framework has weaknesses, particularly during challenging
weather conditions such as partly cloudy and overcast days.
Furthermore, it is computationally expensive due to
utilizing LSTM networks alongside the meta learner. Future
work could include evaluating the model's performance in
different locations and exploring more advanced methods
and strategies for the tune unit.
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