

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Aleksandr Trohhatšov 192931IVSB

A Low-Cost Secure Connection Tunnel Solution for Raspberry Pi
Zero Computers

Bachelor's thesis

 Supervisor: Aleksei Talisainen
MSc (Lecturer)

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

 Aleksandr Trohhatšov 192931IVSB

Odav ja turvaline ühendustunnelilahendus Raspberry Pi Zero
arvutitele

Bakalaureusetöö

Juhendaja: Aleksei Talisainen
MSc (Lektor)

Tallinn 2022

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis, and this thesis has not been

presented for examination or submitted for defence anywhere else. All used materials,

references to the literature and work of others have been cited.

Author: Aleksandr Trohhatšov

17.04.2022

4

Annotatsioon

Odav ja turvaline ühendustunnelilahendus Raspberry Pi Zero
arvutitele

Tänu sellele, kuidas tänapäeva maailm on arenenud, ei saa inimene iga üksikut tehnoloogiat

kogu aeg endaga kaasas kanda. Seetõttu on ülimalt tähtis, et meil oleks võimalus ühendada

iga päev kaasas kantav tehnoloogia süsteemidega, millel pole silmapaistvat kaasaskantavust

ja mis tuleb seetõttu jätta staatilisele kohale. Selle lõputöö eesmärk on tuua välja sobiv ja

kaubanduslikult saadav lahendus VPN-tunneli jaoks väljastpoolt eemal asuvasse

privaatvõrku, samuti toota Ansible baasil hõlpsasti juurutatav installiskript koos teenuse

jälgimisega. , alternatiivina laialt saadaolevatele Bashi-põhistele skriptidele. VPN-protokolli

jaoks valiti Wireguard selle tõhususe ja selle juurutamiseks kasutatava platvormi jaoks

Raspberry Pi Zero 2 W selle juurdepääsetavuse ja taskukohasuse tõttu. Vastav Ansible skript

on juurutatud.

5

Abstract

A Low-Cost Secure Connection Tunnel Solution for Raspberry Pi
Zero Computers

With how the modern world has developed, a person cannot always carry every single piece

of technology with him. Therefore, it is paramount to have a way to link the technology we

carry with us every day with the systems that do not have outstanding portability and thus

have to left at a static position. The aim of this thesis is to highlight a suitable and

commercially available solution for a VPN tunnel to a remotely situated private network from

outside of it, as well as produce an easily deployable install script, complete with monitoring

for the service, based on Ansible, as an alternative to the widely available Bash-based scripts.

For the VPN protocol, Wireguard has been chosen for its efficiency and for the platform to

deploy it on, a Raspberry Pi Zero 2 W has been chosen due to its accessibility and

affordability. The appropriate Ansible script has been deployed. The thesis is in English and

consists of 33 pages, 9 chapters, 9 figures and 1 table.

6

List of tables and figures

Figure 1. Raspberry Pi Zero 2 W..11
Figure 2. Raspberry Pi OS..13
Figure 3. Basic visualisation of how a VPN works............................14
Figure 4. Raspberry Pi Imager Menu...19
Figure 5. Infrastructure model..20
Figure 6. Prometheus GUI..23
Figure 7. Namecheap Advanced DNS Configuration........................25
Figure 8. DDNS Configuration menu in Asus Router........................26
Figure 9. QR Code Generation...28
Table 1. Resource usage…………………………………………….30

7

List of abbreviations and terms

ACL Access Control List
AES Advanced Encryption Standard
ARM Advanced RISC Machines
CA Certificate Authority
CGNAT Carrier Grade Network Address Translation
CISC Complex Instruction Set Computer
CPU Central Processing Unit
DDNS Dynamic Domain Name System
GPIO General Purpose Input/Output.
HDMI High-Definition Multimedia Interface
HDR High Dynamic Range
HKDF HMAC-Based Key Derivation Function
HMAC Hash-Based Message Authentication Code
HTTPS Hypertext Transfer Protocol Secure
ISP Internet Service Provider
MOBIKE Mobile Internet Key Exchange
NAS Network-Attached Storage
NAT Network Address Translation
RISC Reduced Instruction Set Computer
RSA-4096 Rivest-Shamir-Adleman on 4096 bits
SATA Serial AT Attachment
SBC Single-board Computer
SHA-512 Secure Hash Algorithm on 512 bits
SoC System-on-a-chip
SSH Secure Shell
SSL Secure Sockets Layer
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
USB Universal Serial Bus
VPN Virtual Private Network
WAN Wide-Area Network
WSL Windows Subsystem for Linux

8

CONTENTS

Contents
1. Introduction ... 9

2. What is a Raspberry Pi? .. 10

3. Ansible and the infrastructure ... 12

4. VPN Protocol Selection .. 13

4.1. OpenVPN ... 14

4.2. IPSec IKEv2 .. 14

4.3. Wireguard .. 15

4.4. Choosing the appropriate VPN.. 15

5. Building the script ... 17

5.1. Required hardware ... 17

5.2. Required networking capabilities .. 17

5.2. Prometheus .. 22

5.3. Grafana .. 23

5.4. DDNS Updater .. 23

5.5. Security level of infrastructure .. 25

6.Installation .. 26

6.1. Script Deployment ... 26

6.2. Mobile Installation ... 27

6.3. Desktop Installation ... 28

7. Testing ... 29

8. Conclusions ... 30

9. References ... 31

9

1. Introduction

As time keeps moving, we as humans invent increasingly sophisticated solutions for aiding us

in our daily lives. As we mostly use these devices at home, they often must stay there,

causing inconvenience by not having the necessary tools available wherever the person is.

This is where a secure connection like a VPN (Virtual private network) to a private network

is vital. It would allow for access to your private network and the services hosted on that

network. Due to this, another issue instantly materialises. What if you, as a home user, want

that kind of connection but do not desire expensive equipment and yet want total control over

the installation, as well as the ability to deploy changes in minutes and be able to quickly

respond to a service outage and recover your server if your hardware or software fails. This is

what this thesis aims to highlight and examine.

10

2. What is a Raspberry Pi?

Devices like the Raspberry Pi are an evolution of the popular miniaturisation concept.

Created by the Raspberry Pi Foundation, a UK-based charity organisation, in 2012, this is the

most popular single-board computer in the industry. What makes single-board computers so

incredibly unique is that instead of using multiples of large components that you connect to a

motherboard for those components to communicate with each other, everything is already

integrated into this board from the start.

Most single-board computers use ARM architecture [1]. It is an architecture based on the

RISC instruction set, which is most used in mobile devices like smartphones, as opposed to

the more mature standard of CISC. This is a crucial fact because RISC was an instruction set

that has been built from its inception to maximise efficiency and to minimise heat and power

consumption. This allows for less stringent power delivery requirements, as well as the

ability to integrate more of the components into a special System-on-a-chip (SoC), which also

adds a performance benefit, due to lowering access latency between system components. The

Raspberry Pi takes advantage of this concept to its fullest.

Figure 1. Raspberry Pi Zero 2 W

The Raspberry Pi Zero 2 W uses a custom Broadcom SoC, using 4 Cortex-A53 low-power

ARM cores, with both the CPU and 512 MB of RAM integrated into one chip [2]. The board

also contains 2 USB Micro-B ports and 1 micro-HDMI port on the side for connectivity. For

11

storage, the board uses a Micro-SD storage card, which is used to store all the files we will

require for the project itself. Power delivery is handled through the Micro-USB ports.

That is all the main aspects of the device that every buyer will receive. The following two

aspects will depend on what model you have chosen, namely connectivity and the presence of

GPIO pins on the device. The USB ports on the device in all cases support adapting them to

an Ethernet connection to gain Internet connectivity, as per the USB specifications, although

it is advantageous to pay about 20% more in most cases for a version of the board that

contains a 2.4GHz 802.11 b/g/n Wi-Fi module. This will prove to be fruitful to some users

because it will allow you to run your Raspberry-Pi as a ‘headless’ device. It should however

be kept in mind that due to the Wi-Fi antennas being confined to the 2.4GHz band, internet

speeds that can be achieved are limited to around 25 Mbps, which may become a system

bottleneck if the user requires high bandwidth.

A headless device [3] or service is a term that refers to a server or application that is designed

from the ground up to run without the use of a graphical user interface of any kind. This is

advantageous in 2 ways. Firstly, it eliminates the need for the connection of additional

adapters for a display output and other peripherals. Secondly, it allows the user to install a

terminal-only version of the operating system we are going to be using for the project,

Raspberry Pi OS, formerly known as Raspbian, which, as it is the platform that will be

utilised during this project, will be discussed further later in the thesis. The second optional

addition is the previously mentioned GPIO pins. These are pins that can, through appropriate

software development, be used to connect any peripheral a given user may desire, ranging

from connecting old gaming console controllers to adapting the pins to a SATA slot for

adding external storage to Raspberry Pi, which can for instance be used as a platform for

creating a basic instance of a NAS(Network-attached storage) device.

Raspberry Pi OS [4] is a Linux distribution based on Debian Linux, which runs on both 32-

bit and 64-bit devices based on the ARM architecture. For this project, the 64-bit variant has

a multitude of benefits despite the slightly higher resource requirements the choice entails

due to many closed-source apps only being available for arm64, and open-source apps not

being fully optimised to run on 32-bit armhf. Beyond that, the arm64 instruction set has some

inherent performance gains, which are already apparent in benchmarks against amrhf but are

12

expected to be reflected in real-world application performance in the future, although for our

purposes the 32-bit variant, which admittedly is far more mature, would be suitable as well.

NB! At the time of authoring this paper, Docker for 32-bit ARM architectures, for

example armhf, may experience GPG key verification errors for mirrors in newer

Debian-based distros due to libseccomp2 library issues , which are currently still being

fixed, thus it is highly recommended to avoid using the 32-bit version of Raspberry Pi

OS.

Figure 2. Raspberry Pi OS

3. Ansible and the infrastructure

Ansible is a management tool that uses special scripts called playbooks as a basis for

automating the setup and deployment of key services [5]. Ansible playbooks are effectively

frameworks, or pre-written code that developers can utilise on the fly or as a starting point.

Ansible playbooks are used to automate IT infrastructure (such as operating systems or

container platforms), networking, security systems, and developer personas. Ansible connects

to your nodes and transmits lightweight programs known as "Ansible modules" to them.

These programs are intended to serve as resource models for the desired state of the system.

Ansible then runs these modules (by default over SSH) and removes them as soon as they

have been executed. A significant benefit of using this toolkit that must be mentioned is that

13

it runs in agentless mode, meaning it does not require any additional software to be deployed

on the hosts Ansible is serving, which is a crucial benefit of using Ansible for deployment

automation. The structure of how an Ansible playbook is executed is quite simple. When

executing the playbook, the master host then attempts to establish an SSH connection to the

hosts and then executes the requested commands, listed in the host file the user specifies.

4. VPN Protocol Selection

A virtual private network (VPN) is a secure link between a client and a network. All

commonly used operating systems can be used as a VPN client.

Figure 3. Basic visualisation of how a VPN works[6]

There are multiple VPN protocols in consideration, namely of OpenVPN, IPSec IKEv2 and

Wireguard. Fundamentally each of the protocols have specific traits that warrant its usage

over other options, depending on the scenario. Based on this fact, the individual traits of the

previously mentioned VPN protocols will be discussed and the best one among them will be

chosen for usage during the experiment.

14

4.1. OpenVPN

OpenVPN is free and open source [7], and it makes use of the OpenSSL library as well as

additional security features. OpenSSL is a cryptography and SSL/TLS toolkit, which is

required for secure end-to-end communications. All the essential encryption and

authentication components are provided by this toolkit. As a result, OpenVPN may make use

of the OpenSSL library's multiple ciphers. Out of those ciphers, the Blowfish and AES

ciphers are preferred by most VPN services, Blowfish being the default option for OpenVPN,

for encrypting data using data channel encryption and the connection via control channel

encryption. Most of the time, OpenVPN uses the greatest level of encryption possible,

meaning a cipher that uses 256-bit encryption, an RSA-4096 handshake, and SHA-512 hash

authentication would be utilised for this purpose. It may include HMAC authentication and

Perfect Forward Secrecy on occasion. To establish a connection, the protocol requires the

authentication of previously generated certificates of both the server and client, each signed

by a master CA (certificate authority). After authentication, the devices exchange traffic via

previously generated keys. OpenVPN also takes advantage of hardware acceleration to boost

performance and additionally can run on a single TCP/UDP port 443. OpenVPN

unfortunately shares a port with HTTPS, which is the building block of secure web traffic.

This fact severely complicates securing the port against OpenVPN connections. The UDP

port for the service can be set to run on another port number if needed.

4.2. IPSec IKEv2

IKEv2 is a tunnelling protocol [8] , which is used to securely exchange keys. It requires

another protocol for encryption and asymmetric authentication to be utilised as a VPN

protocol. Therefore, it is used in conjunction with IPSec, which provides a secure connection,

supports a variety of encryption schemes, and supports up to 256-bit encryption. The

tunnelling protocol was originally developed as result of a collaboration between Microsoft

and Cisco to be used as a “request-and-response encryption protocol” and released officially

in 2005. IKEv2 uses the Diffie-Hellman key exchange to initiate and complete a secure

handshake and permits using Perfect Forward Secrecy to safeguard its data due to IKEv2

characteristics as a key exchange protocol. A mobility and multihoming protocol is used to

15

facilitate conventional mobility (MOBIKE). As a result, users can switch networks while still

maintaining a secure connection, which could be used to provide connection redundancy with

almost no connection loss due to the VPN link becoming unreachable. IKEv2 operates on the

UDP 500 port.

4.3. Wireguard

The final VPN protocol which will be compared is Wireguard [9]. It is the newest standard of

the three which are being discussed, officially publicly available as of September 2019. For

encryption algorithms and ciphers, ChaCha20 and Poly1305 represent 2 frequently

mentioned options for use inside the Wireguard protocol. Encryption is done with ChaCha20,

while authentication of the connection is done with Poly1305.Wireguard also has the ability

to use other cryptography techniques such as the Noise protocol framework, Curve25519,

BLAKE2, SipHash24, and HKDF. The concept of Cryptokey Routing, which works by

associating public keys with a list of tunnel IP addresses that are allowed inside the tunnel, is

the basis of Wireguard. Each network interface has its own private key as well as a list of

peers, with each peer having a unique public key. When sending packets, the list of allowed

IPs simulates a routing table, and when receiving packets, it acts as an ACL (Access control

list). Encapsulated traffic travels through the virtual tunnel through UDP after a handshake

and key exchange between the peer and server has been established. The port number for

Wireguard is configured by the user, usually being port numbers such as 51900 or 51820.

4.4. Choosing the appropriate VPN

Due to all of the previously mentioned protocols having their own applications, it is

necessary to examine the advantages of each in relation to the objective of this thesis, that

being a user-friendly solution to remotely access a user’s home network over the open

internet, with a reliable connection, which can be deployed on Raspberry Pi Zero 2 W and

handle demanding workloads, and which can be accessed from any device.

Beginning with OpenVPN, the advantages of the protocol are quite clear. Due to its

modularity, configuration of features such as password authentication, load-balancing or

16

direct access to a Samba share can be configured using community resources, like those on

the official OpenVPN website [10]. That extra configuration however is quite complex,

which clashes with the goal of this thesis in creating an accessible solution. Moreover, the

protocol, has causes about 5-10% bandwidth reduction when used due to every packet being

encrypted and decrypted while being transported through the tunnel.

IKEv2 is also a formidable protocol with excellent compatibility with all existing operating

systems, especially mobile devices. It delivers robust security for data-sensitive applications,

while offering an excellent automatic reconnection feature, which quickly establishes a new

connection to the VPN server if the link were to be dropped. Instant network switching is also

an excellent point when considering IKEv2 as an option for a protocol. Unfortunately, some

drawbacks concerning IPsec IKEv2 hinder its applicability. The first would be that the

protocol is closed source. This actively hinders its adaptability and security, as a hidden

codebase can be considered far more vulnerable to exploits than an open-source solution.

Additionally, it is vital to mention that the port which IKEv2 uses, UDP 500, is frequently

blocked on many networks, rendering the protocol completely useless, which is a factor that

cannot always be avoided when connecting to public networks.

Wireguard is the final candidate for the protocol this project will use, and which integrates a

crucial feature for mobile devices called roaming. Due to how the client configuration

contains only an initial endpoint for the server, if the endpoint is changed, the client discovers

the new endpoint of the tunnel without much delay in the connection. Clients do not have

fixed endpoints for Wireguard, pinpointing their location to the server by sending

authenticated data to it. This fact allows for uninterrupted usage of the tunnel while on

cellular internet, which frequently changes the IP address of the devices using it. The first

message sent by the client is authenticated to avoid the possibility for unauthorized access.

Wireguard also has a dynamic port number, which can be adapted to whatever network the

user installs their server node on. Finally, Wireguard is the most efficient protocol out of the

3 being compared, idle CPU load of which can be considered negligible. The only significant

downside, which should be mentioned, is that the protocol does support cryptographic agility

[11], which means that replacing cryptographic algorithms related to the protocol is not

possible, as it only supports a small number of established primitives.

17

Based on this comparison, Wireguard is the best candidate for the application discussed in

this thesis, due to the simplicity of configuration, the low overhead and ability to dynamically

adjust the endpoints to maintain connection with roaming.

5. Building the script

5.1. Required hardware

Now that the theory of this work has been successfully covered and the type of VPN has been

chosen, the breakdown of the practical portion of this thesis can begin. The setup will begin

with the hardware components as well as the networking capabilities involved, which

admittedly are not extensive. A person wishing to deploy this solution will need 3 pieces of

hardware: a Raspberry Pi Zero 2 W, a microSD card and a computer which can be accessed

to both flash the memory card with our operating system, Raspberry Pi OS, to use a secure

connection like SSH and in order to deploy the ansible script which will be examined

thoroughly later during this analysis.

5.2. Required networking capabilities

For the networking components, it is required to know which technology does your internet

service provider uses for distributing IP addresses to their clients. If ISP is using CGNAT,

then the ability to use a proposed solution depends on whether the provider network has

disabled all their interface ports or not and on whether the ISP has adopted IPv6 into their

topology as well [12]. CGNAT is a layer between the user and the global Internet that assigns

the same public IPv4 address to several private connections at once, routing each point (user)

through distinct ports. The difference between CGNAT and regular NAT networks is that

instead of all private networks being dedicated their own WAN IP address, CGNAT

aggregates multiple host private gateways to a single external gateway. This solution was

originally meant to conserve the dwindling supply of public IPv4 addresses, which has since

been depleted, until a suitable solution, namely IPv6, could be used to replace it. Since then,

it has enabled internet service providers the ability to distribute one IP address to many of

their clients, maximising the amount of potential total clients. If a client requires a dedicated

IP, whether an ISP would be so inclined to provide the service varies dramatically. If the

client has a dedicated IP for his private network by default or have acquired such an address

18

from your provider, then DDNS and, subsequently, Wireguard, should be an attainable

solution.

Operating system image can be accessed by visiting the official Raspberry Pi Foundation

website and acquiring the Raspberry Pi OS Imager [13] for the selected platform.

Figure 4. Raspberry Pi Imager Menu

After downloading and running the program the user will be greeted with a simple selection

screen, where the first setting screen named ‘Operating System’ enables viewing and

selecting a suitable OS image. Since the 64-bit version will be used for this thesis, that option

can be selected via ‘Raspberry Pi OS – Other’. Here the user is presented with a choice of

whether they want a desktop environment or not. Considering that the VPN node will be

operated via a remote shell, as a headless node, and to save on system resources, the version

without a desktop environment, the Lite Version, will be used. After selecting the image

version, a cog icon appears in the imager, where the user can configure the device hostname,

Wi-Fi connection, region settings and Linux user credentials. After suitable configuration, it

is only required to select the appropriate volume to flash the operating system and initiate

writing the data. After a short amount of time, the SD card is ready for deployment. Inserting

the memory card and plugging in a USB power adapter should successfully boot the single-

board computer. When the device is powered on, it should have a small yellow LED rapidly

flashing whenever the SBC is trying to execute and action. If the boot of the machine was a

success, then the user should notice the board status LED having stopped its blinking process.

The next step is to cover the infrastructure that is going to be deployed.

19

The following diagram is presented as the structure of the infrastructure, which is being

covered in this thesis.

Figure 5. Infrastructure model

This mock-up depicts how the entire infrastructure would function. Docker will be the center

of the application suite, hosting Wireguard, Grafana and Prometheus, using containers from

both community-proven and official Docker images. Prometheus Node Exporter will be used

to forward required diagnostic data to the Grafana container which would have to be setup

manually. The installation script is separated into 4 parts: Wireguard installation and

configuration, Prometheus installation, Grafana installation and Node Exporter installation.

Wireguard installation includes installing Wireguard itself, the configuration files that

determine how the tunnel would operate and setting up the Docker container. For container

installation, a community Wireguard image by LinuxServer [14] will be used as the base.

The configurations feature a private network, to which, after a successful handshake, a client

can connect to using a client app. The following configuration files show how the Wireguard

VPN is configured [14].

20

Server Interface Configuration:

[Interface]

Address = xxx.xxx.xxx.1/24

ListenPort = xxx

PrivateKey = --redacted--

PostUp = iptables -A FORWARD -i %i -j ACCEPT; iptables -A FORWARD

-o %i -j ACCEPT; iptables -t nat -A POSTROUTING -o wlan0 -j

MASQUERADE

PostDown = iptables -D FORWARD -i %i -j ACCEPT; iptables -D FORWARD

-o %i -j ACCEPT; iptables -t nat -D POSTROUTING -o wlan0 -j

MASQUERADE

[Peer]

Client

AllowedIPs = xxx.xxx.xxx.2/32

PublicKey = --redacted--

Client Interface Configuration:

[Interface]

Client

Address = xxx.xxx.xxx.3/24

PrivateKey = --redacted--

[Peer]

PublicKey = --redacted--

AllowedIPs = xxx.xxx.xxx.1/32

Endpoint = --redacted--:xxx

As it is depicted in the configuration, the bridge is created from a private network, for

example 10.155.2.1, to an endpoint accessible outside of this network. This endpoint can be

both an IP address, like a VPS, or in the case of this thesis, a DDNS domain. DDNS can be

acquired via both paid and free sources. DuckDNS can be recommended as a free service, but

21

if the user is in search of his own domain, then purchasing a budget domain from Namecheap

and using their DDNS service is recommended. The previously mentioned Asus DDNS

service [15] is also an option if the user owns the supported hardware to support it, namely an

Asus wireless access point. Due to the existence of both options, it is then paramount to

examine both as well.

For the purposes of this thesis, the Namecheap solution will be utilised, due to having less

services involved with the VPN solution. If a user owns an ASUS wireless network router,

the manufacturer also offers such a service, which can be activated from the ASUS Router

administration panel. The interface in the PostUp and PostDown configuration depends on

the interface on the host device used to access the internet. In this case, the wlan0 interface

oversees routing all IP addresses (hence the 0.0.0.0/0 marked in the allowed IP address

section) and should handle all the traffic passing through your server. By changing this value

to any subnet, corresponding to your desired network topology, the user can restrict a peer’s

access to networks through the VPN, for example by locking traffic to only move within the

private network.

22

5.2. Prometheus

Prometheus [16] is a free and open-source program for gathering and processing metrics. It

comprises of a timeseries database and a query language for retrieving and processing the

metrics it stores. Metric exposure is handled by separate services, which the Prometheus

server can access. It comes with an extremely basic web interface out of the box. Third-party

technologies like Grafana can be utilized to create an useful dashboard system. The default

configuration [17] keeps track of the prometheus process, but not much else. You can use

prometheus-node-exporter to perform system monitoring by pulling metrics from the local

system. The prometheus-node-exporter service can be started and enabled, which will launch

it by default on port 9100 of the host server. Once the service is up and operating, prometheus

must be configured to scrape the exporter service on a regular basis in order to collect data.

Figure 6. Prometheus GUI

23

5.3. Grafana

Grafana is a web-based analytics and interactive visualization program that is open-source. It

enables the user to consume data from a wide range of sources, query it, and visualize it in

beautiful, customisable charts for quick study. It is also possible to configure alerts so that the

user can be notified of unusual activity in a significantly quicker manner than the user would

otherwise. Grafana, in simple terms, allows the user to visualize the mountains of

performance metric data generated from user’s apps. This will enable the user to draw

educated conclusions and make suitable changes in order to maintain the health of your

application stack. The data gets extracted from exporters like Prometheus and is displayed

using panels on a dashboard.

Grafana configuration, in the case of the official Docker container, is done via environment

variables when deploying the container itself. If installing on the actual hardware, outside of a

container, then the configuration is controlled via a default.ini or grafana.ini configuration

file, depending on the operating system used [18].

5.4. DDNS Updater

Since this thesis covers connecting remotely to your own home network from outside of such

network, it would be logical to assume that the device you are hosting the VPN through is

also located in your home and/or private network. Using a VPN client, the user gains access

to that network by pointing the connection to the external IP address of your network, which,

using port forwarding, transmits the VPN server port over the Internet. However, this regular

solution has some shortcomings, namely the fact that your external IP can be configured to

frequently change, in which case your Wireguard instance will fail to complete the required

handshake for the VPN connection to be established. To avoid encountering such an issue,

DDNS must be used, in order to bind an A record to your external network IP address. To

achieve successful DDNS routing, a provider for the service must be chosen. For the

purposes of this thesis a solution using Namecheap as the DDNS provider will be used. A

solution involving editing the configuration of an Asus-branded gateway router of the private

network will be given a demonstration as well. To send DNS Updates, in the case of

Namecheap, a Python program [19] will be used which creates an API call request to

Namecheap, using variables such as the domain, IP address to which needs to be matched and

24

the DDNS password, which was previously generated and received when creating the

appropriate A Record in the ‘Advanced DNS’ tab of Namecheap’s client domain

management. If all the data matches, then Namecheap can point the listed domain to the

requested IP address, which allows for more intuitive establishing of a VPN connection.

Figure 7. Namecheap Advanced DNS Configuration

In the case of the Asus router configuration, it becomes mildly easier. By accessing the router

control panel, which is by default 192.168.1.1, the person is greeted with an administration

sign-in and subsequently the admin panel. From this screen navigating to ‘WAN’ and

‘DDNS’ the user are presented with a menu to select your DDNS provider and mark a URL

via which the router will be accessible outside the private network. After applying the

settings, the URL should now be paired to the WAN IP of your router.

25

Figure 8. DDNS Configuration menu in Asus Router Administration panel

5.5. Security level of infrastructure

Before the infrastructure can be installed, an analysis from a security perspective must be

performed to determine whether the infrastructure meets all of the necessary requirements for

data security. According to FIPS 199 [20], security can be divided into 3 main pillars:

availability, integrity and confidentiality. Availability stipulates that a service or source of

information must be available in a timely and dependable manner. Integrity points to

protection against information forgery and the destruction of information by using methods to

prove data authenticity. The final main security objective is confidentiality, which concerns

protecting and maintaining restricted access to sensitive information. If any of these 3

security categories are compromised, an adverse effect of varied importance would be seen.

These security objective breach categories can be classified as either of low, moderate or high

severity. In the case of Wireguard, all of the 3 categories could have a moderate or high

adverse effect on the service. The first security to be examined to determine the severity of

adverse effects is confidentiality. If a third party gains access to sensitive information like the

private key of the server node used in Wireguard, then the third party would have access to

all traffic being transported through the secure tunnel, which in most use cases for this

device, would mean the entire home private network would be compromised, but only if

26

safeguards have not been put in place to protect individual nodes on the private network. Due

to the server private key being held in a Docker container, which has SSH connections to it

completely disabled and which can only be accessed through a secure connection to the VPN

node itself. Taking this assessment into account, loss of confidentiality could prove

catastrophic to the security of the service, although secured sufficiently. Integrity of the

connection is ensured via handshakes performed between the VPN host and client by

exchanging public keys, as well as the encryption algorithms used in forming the tunnel.

Failure in key exchange yields a failed connection. Integrity can only be feasibly

compromised if a third party gains access to the necessary cryptographic keys. Finally,

availability is the least catastrophic point of failure. If availability is compromised, the

service will not be accessible to the client, which fortunately does not result in data loss due

to the connection not being formed in the first place. A possible vector of attack could be the

login credentials used for a dynamic DNS service, which the user could have set up. In

conclusion, the most severe data breach for this infrastructure from a cyber security point of

view would be neglectful storage of associated server and client private keys, which would

allow anyone full access to a given private network. Security vectors for prometheus and

Grafana are negligible as the services only supply metrics to graphical interface. Although

this risk needs to be considered, due to the keys being generated inside a Docker Container, it

is unlikely that such a breach would occur if other security practices were followed.

6.Installation

6.1. Script Deployment

Running the setup script requires to clone the repository that has been created by the author

for this specific purpose (namely https://github.com/AAdmiral56/wireguard-docker-pi). The

user also is required to install Ansible on their computer, using which they have elected to

run the installation script. The installation itself is easiest on a Linux-based device, as most

package managers, like apt or rpm or others, have Ansible as an easily installable package

without any tweaks necessary. In addition to that, both MacOS and Linux distributions

support installing Ansible through the Python-based pip package manager. As Ansible

requires a Unix-based system to run, installation to Windows involves the usage of the

27

WSL(Windows Subsystem For Linux) [21], the installation of which requires enabling a

specific feature in a menu named ‘Turn Windows Features on and off.’ After installing and

rebooting, the user is required to install a Linux container using an image from the Microsoft

Store, after which the installation is the exact same as it were to be on a Linux-based system.

Before executing the script, variables for /group_vars/all.yaml must be edited with the values

that the user desires and the IP Address of the locally placed Raspberry Pi has to match the

one allocated on the users’ network. After this step, the playbook can be executed. After 20

minutes or so, the infrastructure should be running on your Raspberry Pi Zero 2 W.

6.2. Mobile Installation

To connect your devices, the user would need special client configuration. For instance, for

Android devices, it is paramount that the Wireguard app be downloaded to the phone using

either the Google Play Store or the open-source F-Droid App Store. It is important to mention

that the second method requires enabling installation of apps through third-party sources, or

in other words from sources excluding the Google Play Store, which opens a gateway for

malicious applications to a user’s device if not managed properly.

After installation, the user is required to open the application, click the add button and

activate the camera for QR Code-based login. To acquire the appropriate configuration code,

one must either enter the command ‘qrencode ansiutf8 << app/show-peer/ <number of peer>’

from inside of the Docker Container CLI after entering ‘docker exec –it wireguard bash’ or

passthrough the previously listed command by appending it to the docker exec line

mentioned here. By acquiring the QR code and scanning it using the built-in scanner, a

handshake between the remote server and the mobile device is established. If the previously

mentioned process was successful, then the mobile device should have access to the

previously defined parts of the network, which in this case would be the entire Internet

including the target private network.

28

Figure 9. QR Code Generation

6.3. Desktop Installation

Compared to the mobile clients, which have a quite intuitive installation procedure, the

desktop version is not as seamless. The potential peer must start by installing the desktop

version of Wireguard from the project website wireguard.com/install or, in the case of most

Unix-based operating systems, installing through the appropriate package manager.

In the case of Windows, once installed, Wireguard opens a graphical menu where one might

import their peer configuration to the device. Since this project uses a terminal-based version

of Raspberry Pi OS, downloading the configuration from the server itself may not be the most

elegant solution. The solution that can be recommended however is using SSH from the

device you want to pair to the VPN server to output the contents of the peer configuration file

into the console window, after which the user can copy it over to an empty tunnel, which you

can create by pressing Ctrl + N on your keyboard while Wireguard is the app in focus. After

installing the appropriate config, the tunnel can be established by clicking the ‘Activate’

button that has now appeared in the program. After a couple of seconds, provided the

29

configuration was copied correctly, your desktop device should now be using the VPN

tunnel.

When installing Wireguard as a client on a Unix-based system, the configuration resembles

what was done during the initial setup of the VPN server. Once the package has been

successfully installed, the user must navigate to the standard Wireguard directory

/etc/wireguard. There the peer configuration file contents should be inserted as a Wireguard

interface, for example wg0.conf. Once this step has been completed, the user must use ‘wg-

quick up *interface name*’ to activate the configuration, which should complete the required

handshake and grant the device access to your desired private network

7. Testing

Once the connection has been established, the user can begin to use their device. Testing the

impact of the VPN connection on latency of the connection should be an important starting

point, as sudden jumps in network access latency can cause services like SSH to become

almost unusable due to the very slow response time. Testing for this thesis was conducted via

a 100 time ping request to IP address 1.1.1.1. Pinging from Elisa LTE to this IP address

yielded a 46.714 ms average latency, with a maximum latency of 96.228 ms. Now with the

Wireguard VPN connection being active, again using mobile internet and running the test

again, it yields a 58.807 ms average latency with a peak of 94.217. This result proves that,

due to the extra processing power and time required to forward and receive data through the

VPN tunnel, latency suffers about a 25.89% increase. What is however fascinating is that the

same cannot be said about the maximum latency, as it remains the same in both runs,

attributing the jumps in latency to other factors in the network. Answering the question of

resource usage, watching a 1080p video on YouTube, while also running htop resource

monitoring on the Pi in an open terminal window, yielded spikes on individual cores to

around 20% usage, up from the usual 3% idle CPU usage. Stressing the VPN node via

watching a 4K HDR(High Dynamic Range) YouTube video yields constant processor usage

of about 15% on all cores with spikes up to 60% usage when the video was buffering, and

thus sending large chunks of data through the tunnel. Using a remote desktop service called

Reemo[22], 100% usage on one of the CPU Cores was achieved for a moment when initially

launching the remote session, while basic usage while navigating through the UI produced a

30

processor load of around 15%. Considering streaming video is technically about as much as a

regular person would do on their mobile device, this could be considered a success. Memory

usage after installing all 3 containers is approximately 150 MB out of 419 MB available to

the system when using the Lite image of Raspberry Pi OS. This means that the system has

sufficient extra memory capacity for deploying other minor services if required.

Workload Resource Usage

1080p video streaming on YouTube 3% idle usage, 20% when buffering

4K HDR video streaming on YouTube 15% idle usage, 60% when buffering

Remote Desktop using Reemo.io 15% normal usage, 100% on one CPU core

during initial rendering

Infrastructure average memory usage 150 MB

Table 1. Resource usage

8. Conclusions

As can be deduced from how the project deployment performed, provided that the network

requirements for deploying such a solution are met, the usage of Wireguard in this manner is

quite advantageous. For a very minimal investment, the person gets access to his/her entire

internal network, while not being present in the network itself. This tunnel could provide

access to a network-attached storage unit to view files you store online, perform software-

based maintenance on remote connection. It is also crucial to highlight how portable this

solution is, due to the sheer size of the hardware that is being utilised and the added flexibility

in rebuilding the infrastructure when required. But this solution is of course not ideal for

numerous reasons. One being that the specifications of the system-on-a-chip included with

the Raspberry Pi Zero 2 W are, while admittedly far more capable than the previous iteration

of the device, quite rudimentary. If a user is ever so inclined as to deploy extra solutions on

the same device, he would have to use a Raspberry Pi 4 instead of this SBC, which has a

much more powerful CPU than the Zero 2. Considering all these facts, this solution is still

viable if the user is willing to pursue a budget-conscious and highly configurable VPN

tunnel.

31

9. References

1. https://www.arm.com/architecture/cpu (visited 01/05/2022)

2. https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/ (visited 01/05/2022)

3. https://www.raspberrypi.com/documentation/computers/configuration.html#setting-

up-a-headless-raspberry-pi (visited 01/05/2022)

4. https://www.raspberrypi.com/documentation/computers/os.html#introduction (visited
01/05/2022)

5. https://www.ansible.com/overview/how-ansible-works?hsLang=en-us (visited
01/05/2022)

6. https://afteracademy.com/blog/what-is-a-vpn-explain-its-working (visited

01/05/2022)

7. https://surfshark.com/blog/what-is-openvpn (visited 01/05/2022)

8. https://www.cactusvpn.com/beginners-guide-to-vpn/what-is-ikev2/ (visited
01/05/2022)

9. https://www.wireguard.com/protocol/#primitives (visited 01/05/2022)

10. https://openvpn.net/community-resources/how-to/#connecting-to-a-samba-share-over-
openvpn (visited 01/05/2022)

11. https://nordvpn.com/blog/wireguard-simplicity-efficiency/ (visited 01/05/2022)

12. https://www.fortinet.com/solutions/mobile-carrier/4g-5g/carrier-grade-nat (visited
01/05/2022)

13. https://www.raspberrypi.com/software/ (visited 01/05/2022)

14. https://github.com/linuxserver/docker-wireguard (visited 01/05/2022)

15. https://www.asus.com/support/faq/1011725/ (visited 01/05/2022)

16. https://prometheus.io/docs/introduction/overview/ (visited 01/05/2022)

17. https://prometheus.io/docs/introduction/first_steps/ (visited 01/05/2022)

32

18. https://grafana.com/docs/grafana/latest/administration/configuration/ (visited

01/05/2022)

19. https://github.com/Gaunsessa/namecheap-ddns (visited 01/05/2022)

20. https://csrc.nist.gov/csrc/media/publications/fips/199/final/documents/fips-pub-199-

final.pdf (visited 01/05/2022)

21. https://docs.microsoft.com/en-us/windows/wsl/install (visited 01/05/2022)

22. https://reemo.io (visited 01/05/2022)

33

Appendix 1 – Non-exclusive licence for reproduction and
publication of a graduation thesis¹

I Aleksandr Trohhatsov

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis " A Low-Cost Secure Connection Tunnel Solution for Raspberry Pi Zero Computers",
supervised by Aleksei Talisainen, MSc (Lecturer);
1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library of
Tallinn University of Technology until expiry of the term of copyright;
1.2. to be published via the web of Tallinn University of Technology, incl. to be
entered in the digital collection of the library of Tallinn University of Technology
until expiry of the term of copyright.
2. I am aware that the author also retains the rights specified in clause 1 of the non exclusive
licence.
3. I confirm that granting the non-exclusive licence does not infringe other persons'
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.
04.04.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access
to the graduation thesis
that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a
graduation thesis is based
on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending
his/her graduation thesis
consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-
exclusive license shall not be
valid for the period.

