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Abstract

The transition towards Industry 4.0 and 5.0 requires increasingly sophisticated robotic
systems capable of handling complex, multi-step tasks while maintaining interpretability
and adaptability. With Deep Reinforcement Learning (DRL) showing promises in robotic
applications, challenges persist in enabling robots to execute complex tasks requiring
higher-level decision-making. This thesis presents a novel modular arbitration framework
to combine multiple pre-trained reinforcement learning agents to address these challenges
in real-world robotic applications.

The framework utilizes actor-critic algorithms, specifically Proximal Policy Optimization
(PPO), and uses a learning arbitration agent to select actions based on policy and value
network outputs from pre-trained modules. The effectiveness of this approach is evaluated
through a series of experiments in both simulated and real-world environments using a
multi-step robotic task involving exploration, collision avoidance, and object detection.

Results demonstrate the framework’s capability to combine specialized agents, but also
show the limitations of only relying on the policy and value network outputs of pre-trained
modules. This becomes especially apparent in changing environments, simulated or real-
world, causing a shift in the value estimate ranges and thereby preventing a successful
module selection.

This thesis is written in English and is 84 pages long, including 7 chapters, 23 figures and
17 tables.
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Annotatsioon
Modulaarne arbitraažiraamistik stiimulõppeks robootikas koos

simulatsiooni reaalsuseks üleviimisega

Üleminek tööstuse 4.0 ja 5.0 suunas nõuab üha keerukamaid robotisüsteeme, mis suu-
davad täita keerulisi, mitmeastmelisi ülesandeid, säilitades samal ajal tõlgendatavuse ja
kohanemisvõime. Kuigi sügavtugevdusõppel (Deep Reinforcement Learning, DRL) on
robotite rakendustes palju lubadusi, seisneb jätkuvalt väljakutse selles, kuidas võimal-
dada robotitel sooritada keerukaid ülesandeid, mis nõuavad kõrgema taseme otsustamist.
Käesolev magistritöö esitleb uudset modulaarset arbitraažiraamistikku, mis ühendab mitu
eelnevalt treenitud tugevdusõppe agenti, et lahendada neid väljakutseid reaalmaailma
robotirakendustes.

Raamistik kasutab tegija-kriitik (actor-critic) algoritme, eelkõige Proksimaalset Poliitika
Optimeerimist (Proximal Policy Optimization, PPO), ja õppivat arbitraažiagentti, et valida
tegevusi eelnevalt treenitud moodulite poliitika- ja väärtusvõrkude väljundite põhjal. Selle
lähenemise efektiivsust hinnatakse mitmete eksperimentide kaudu nii simuleeritud kui
ka reaalmaailma keskkondades, kasutades mitmeastmelist robotülesannet, mis hõlmab
uurimist, kokkupõrgete vältimist ja objektide tuvastamist.

Tulemused näitavad, et raamistik on võimeline kombineerima spetsialiseerunud agente,
kuid toovad esile ka piirangud, mis tulenevad ainult eelnevalt treenitud moodulite poliitika-
ja väärtusvõrkude väljunditele tuginemisest. See probleem muutub eriti ilmseks muutuvates
keskkondades, olgu need siis simuleeritud või reaalmaailma omad, kus väärtushinnangute
vahemikud võivad muutuda.

Lõputöö on kirjutatud [mis keeles] keeles ning sisaldab teksti 84 leheküljel, 7 peatükki, 23
joonist, 17 tabelit.

3



List of Abbreviations and Terms

CNN Convolutional Neural Network.
CUDA Compute Unified Device Architecture.

DQN Deep Q-Network.
DRL Deep Reinforcement Learning.

FNN Feedforward Neural Network.

GAE Generalized Advantage Estimate.

HRL Hierarchical Reinforcement Learning.

KL Kullback-Leibler.

LSTM Long Short-Tem Memory.

MARL Multi-Agent Reinforcement Learning.
MDP Markov Decision Process.
MORL Multi-Objective Reinforcement Learning.
MRL Modular Reinforcement Learning.

OGM Occupancy Grid Map.

PGM Policy Gradient Method.
PPO Proximal Policy Optimization.

RL Reinforcement Learning.
RNN Recurrent Neural Network.
RoI Region of Interest.
ROS Robot Operating System.

TD Temporal Difference.
TRPO Trust Region Policy Optimization.

URDF Unified Robot Description Format.
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1. Introduction

Industrial processes are undergoing a fundamental transformation through the ongoing
transition towards Industry 4.0 and 5.0. While Industry 4.0 focuses on automation and data
exchange in manufacturing processes, Industry 5.0 emphasizes human-robot collaboration
and flexibility. This shift requires advancements in robotic control and learning capabilities
to enable systems that can adapt to dynamic environments and handle complex tasks. Future
robots must be able to handle varying objectives and environments while being interpretable
and maintainable. The ability to understand, modify, and extend robot behaviors is
becoming as crucial as their capabilities, especially in safety-critical applications or human-
robot collaboration scenarios [2].

One promising approach for achieving those capabilities is DRL, having demonstrated
impressive potential in solving complex problems while processing high-dimensional
input data. With the first notable milestones in simulations and game environments, DRL
is successfully utilized for robotic tasks that cannot be handled effectively by classical
control. This includes tasks like grasping, manipulation, and navigation. But challenges
remain in enabling robots to handle complex, multi-step tasks that require a higher level
of understanding and decision-making. For instance, robots in a modern warehouse
might need to navigate dynamic obstacles, identify specific items, and perform multi-step
manipulation sequences. Similarly, service robots in healthcare settings must execute
complex tasks while safely interacting with humans [3].

There are multiple approaches for handling these challenges, including experience replay
for improved sample efficiency, curriculum learning for guiding the learning process
and leveraging prior knowledge using transfer learning. An especially promising direc-
tion is the decomposition of tasks into sub-tasks, as done in hierarchical and modular
reinforcement learning. Hierarchical reinforcement learning addresses complex tasks
by dividing them into a hierarchy of sub-tasks. Prominent frameworks are Options [4],
JointPPO [5], MaxQ [6] and Concepts [7]. However, there are still notable areas for
improvement, including the not straightforward reusability of the sub-agents and the re-
quirements of the higher-level agents to obtain at least the same observation space as
their sub-agents, resulting in high memory requirements and complex neural network
architectures. In modular reinforcement learning, each of the resulting sub-tasks is trained
independently and then re-combined using an arbitration agent to solve the original task.
This approach reduces the complexity of the overall task and allows for a modular and
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extendable implementation, making it especially promising for real-world robotics applica-
tions where flexibility and maintainability are crucial. Relevant work in this field includes
Q-decomposition [8], Arbi-Q Command Arbitration [9] and GRACIAS [10] with some
robotic-focused research [11].

Problem Statement and Research Questions
Despite the promising capabilities of modular reinforcement learning, available research
still needs to be expanded. Most existing approaches primarily use value-based reinforce-
ment learning algorithms with a limited focus on robotic applications and evaluation in
real-world scenarios. This creates an interesting research gap for investigating the potential
of actor-critic-based algorithms in the context of complex, multi-step robotic tasks.

To advance the field of modular reinforcement learning, we propose a novel modular
framework designed to combine multiple pre-trained reinforcement learning agents to
solve complex tasks in real-world robotic applications. The agents are trained using actor-
critic algorithms, specifically the PPO algorithm. They are combined using an arbitration
agent that selects actions based on the agents’ policy and value network outputs. This
approach aims to provide a modular, interpretable, and maintainable system that can be
easily extended and adapted to new tasks.

This thesis will address the following key research questions:

1. How effectively can an arbitration agent, utilizing only policy and value network
outputs and cross-evaluation of actions, combine multiple specialized reinforcement
learning agents to solve complex tasks in robotic applications?

2. How does the performance of the combined system compare to that of the individual
agents?

3. How successful can this approach be transferred to a real-world robotic system?

Hypothesis, Objectives, and Contributions
This thesis makes the following hypotheses:

■ A modular arbitration framework using actor-critic agents and arbitration based on
policy and value network outputs can effectively address complex tasks in robotic
applications.

■ Cross-evaluation of actions using the other modules’ policy and value networks will
improve the arbitration agent’s decision-making.

■ No modifications to the used algorithm are required to implement the proposed
framework.
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■ The performance of the combined system will be comparable to that of the individual
agents.

■ This approach can be successfully transferred to a real-world robotic system.

The primary objective is to outline the modular arbitration framework using existing
algorithms and connect it to the current literature. Based on this, the framework is
applied to a multi-step robotic task. This includes the design of the required modules
and the arbitration agent, whose capabilities are evaluated and compared in a simulated
environment. Ultimately, the approach is transferred to a real-world robotic system and
evaluated.

Contribution
This thesis contributes to the advancement of research in modular reinforcement learning
approaches, especially in real-world robotic applications. It provides a novel framework
using actor-critic algorithms for combining multiple pre-trained reinforcement learning
agents, allowing to solve complex tasks in a modular, interpretable, and maintainable way.
The framework is evaluated in a simulated environment and transferred to a real-world
robotic system, providing insights into the effectiveness and challenges of the approach.
Additionally, the complete codebase and instructions are provided to enable future research
in this area.

Thesis Structure
The remainder of the thesis is structured as follows.

Chapter 2 presents the state-of-the-art in handling complex, multi-step tasks and connects
our proposed framework to those existing approaches.

Chapter 3 covers the fundamental concepts and background knowledge required to under-
stand the research topic. It introduces the basics of reinforcement learning, the used PPO
algorithm, modular approaches, and sim-to-real transfer.

Chapter 4 introduces the proposed modular arbitration architecture in detail. This includes
the design of the modules, the arbitration agent, the state inputs, the reward structure, and
the system integration.

Chapter 5 describes the actual experiment within the simulation environment, the de-
scription of the complex, multi-step task, and the design and simulation results of each
agent.
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Chapter 6 presents the zero-shot transfer of the trained agents to the real-world Hiwonder

JetAuto robot and compares the results to the simulation results.

In Chapter 7, the research questions are revisited, the key contributions and findings are
summarized and analyzed, and an outlook for future research is given, followed by the
conclusion of this thesis.
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2. State-of-the-Art

The following literature review outlines the current state of research in the main areas of
interest for this thesis. This includes an overview of reinforcement learning in robotics and
a comparison and delimitation of our modular arbitration framework from other approaches
for solving complex tasks, especially modular approaches.

2.1 Reinforcement Learning in Robotics

Reinforcement learning has its fundamentals in the development of Markov Decision
Processes by Richard Bellman in the 1950s [12] and was first framed in a computational
context in 1961 by Marvin Minsky in his paper Steps Toward Artificial Intelligence where
he discussed the first concepts which would later evolve into reinforcement learning [13].
With the introduction of temporal difference learning [14] in 1988 and Q-learning [15] in
1992, the first agents could learn without explicit environment models and from delayed
rewards. This was accompanied by one of the first robotics applications for learning control
policies for robot motion in 1990 [16], showing the potential for learning robotic tasks
through trial-and-error, which would have been difficult to program traditionally.

More complex applications of Reinforcement Learning (RL) in robotics were limited due
to Q-Learning only supporting discrete action spaces and using a lookup table for the
state-action mapping, preventing high-dimensional state spaces. This changed with the
groundbreaking results of the famous Human-level control through deep reinforcement

learning paper by Mnih et al., introducing Deep Q-Network (DQN) and innovations
like experience replay, target networks, and integration of deep convolutional neural
networks [17]. Those new methods made DRL stable and applicable, starting a surge in
popularity and discoveries.

DRL can handle high-dimensional inputs and apply end-to-end learning, allowing to
directly map the state inputs like sensor or camera data to the control action outputs,
with automatic feature generation [18]. This allowed the application of various robotic
tasks like grasping, manipulation, locomotion, navigation and control. Furthermore, with
the advancements in algorithms and simulation environments, agents can be directly
transferred from simulation to the real world, reducing the time and cost for training and
testing in real-world environments [19].
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Despite those achievements, DRL has some fundamental challenges for robotic applica-
tions. One is the low sample efficiency, requiring millions of interactions even for learning
simple tasks, making the training in real-world environments non-feasible [20]. Addition-
ally, deep neural networks come with interpretability and explainability issues, making it
difficult to retrace agent decisions. Current approaches have problems solving complex,
multi-step tasks and are not very good in applying learned skills on related tasks [3].
Agents still have problems in applying their learned skills in new situations or different
environments, indicating a lack of generalization and robustness [21]. In high-dimensional
state and action spaces, as in robotic applications, current algorithms struggle with more
complex tasks [3].

2.2 Approaches for Learning Complex Task

Solving more complex, multi-step tasks in robotics requires alternative techniques. The
first fundamental approaches for making complex tasks more manageable were multi-task
learning [22], reward shaping [23], and curriculum learning [24]. More modern, robotic-
focused approaches, were introduced by meta-learning [25], imitation learning [26], and
the combination of multiple of those techniques [27].

Hierarchical Reinforcement Learning (HRL) made the beginnings of decomposing com-
plex tasks by using hierarchies of subtasks with temporal abstraction [4, 28, 29], with
successful applications in robotic manipulation tasks [7, 30] and more complex multi-step
manipulation tasks [31]. Besides advantages like improved learning speed [32] and im-
proved skill transfer for new tasks [33], there are still limitations regarding designing the
hierarchy, task decomposition, training stability, communication overhead, and increased
state spaces.

Another approach is Modular Reinforcement Learning (MRL), which has seen a surge
in interest in recent years. It decomposes complex tasks concurrently into sub-tasks,
allowing for better reusability, scalability, and interpretability [34]. Russell et al. used Q-
decomposition, where each module has its Q-value function, and a central arbitrator sums
all Q-values and selects the action with the highest value [8]. Sprague et al. used the RL
algorithm Sarsa(0) for training each module and the arbitrator. The arbitrator uses the same
state inputs as the modules for the selection [35]. This was similarly implemented using
DQN [9] and applied in a robotic context using SplitDQN [11]. A weighted joint Q-value
is used by Gupta et al. in their framework GRACIAS, with the weights being calculated at
each timestep by the arbitrator based on the current environment state [10]. Fundamental
challenges for modular approaches are designing an effective arbitration mechanism to
combine different modules and handling the communication overhead between modules

14



and arbitrators [36].

The approach researched in this thesis uses the neural network representation of each
module’s policy and value network as input for the arbitrator, resulting in a smaller state
space than by using the current environment state. This approach is similar to the one
used by Simpkins et al. [9] and Huang et al. [11]. The main difference is that instead of
a value function based algorithm, an actor-critic algorithm is used, allowing for different
state inputs derived from the modules. By implementing the arbitrator as a learning
agent, a more effective arbitration mechanism can be achieved, similar to the framework
GRACIAS [10].

15



3. Background and Preliminaries

The following chapter introduces the components for implementing our proposed modular
arbitration framework. First, the background of RL, DRL, and methods for solving complex
tasks and hierarchical approaches are covered. This is followed by a more in-depth analysis
of modular approaches with their task decomposition and arbitration. For evaluating our
framework, the requirements for a successful sim-to-real transfer to a real-world application
are discussed, as well as the technical frameworks and tools needed.

3.1 Reinforcement Learning

In RL, an agent learns to make decisions by interacting with their environment through
trial-and-error, receiving rewards as feedback for performed actions. The agent aims to
maximize the cumulative reward [37]. One of the main advantages of using RL compared
to classical methods is that the agent can be trained without any instructions on how to
solve the task but only by guiding its actions using a reward signal.
This section overviews the fundamental concepts of classical RL and creates the foundation
for DRL.

3.1.1 Markov Decision Process

The trial-and-error interaction with the environment can be stated using a Markov Decision
Process (MDP), a model for sequential decision-making with uncertain results. The MDP
is defined by the tuple (S,A, T,R, γ), with S representing the set of states the agent can
be in, A the set of actions the agent can take, P the transition probability function, R the
immediate reward function and γ as a discount factor.

At each time step t, the agent is in a state st ∈ S, selects an action at ∈ A, and receives
a reward rt ∈ R. The environment then transitions to a new state st+1 according to the
transition probability function P (st+1|st, at). The Markov property specifies that the new
state depends only on the current state and the selected action, not on previous states. In
other words, each state must contain all details of previous interactions that influence the
next state [37].

The goal in RL is maximizing the expected reward Gt, which is defined by equation (3.1)
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for continuous tasks, meaning tasks without a terminal state.

Gt =
∞∑
k=0

γkRt+k+1. (3.1)

The discount factor γ can take values between 0 and 1 to focus more on future or immediate
rewards. With γ = 0, the agent focuses on immediate rewards, while higher values
emphasize future rewards. With γ < 1, the infinite sum converges to a finite value [37].

3.1.2 Policy and Value Functions

The policy π is a function that maps states to actions and is used to decide the following
action at of the agent based on the current state of the environment st.

The value function estimates the expected discounted return for a particular state. Value
functions can be divided into state-value functions vπ(s), equation (3.2), estimating the
expected return starting in the current state s and then following the policy π, and action-
value functions qπ(s, a), equation (3.3), estimating the expected return starting in the
current state s, taking action a, and then following the policy π. State-value functions are
mostly used with deterministic policies, and action-value functions with stochastic policies
due to their consideration of the expected return of different actions [38].

vπ(s) = Eπ [Gt|St = s]

= Eπ

[
∞∑
k=0

γkRt+k+1|St = s

]
,

(3.2)

qπ(s, a) = Eπ [Gt|St = s|At = a]

= Eπ

[
∞∑
k=0

γkRt+k+1|SDonet = s, At = a

]
.

(3.3)

By using the Bellman equation, vπ(s) can be written recursively, equation (3.4). This
sets the mathematical foundation for learning long-term values by allowing us to estimate
future rewards recursively and the usage of temporal differences, which will be explained
in Section 3.1.3 [38].

vπ(s) = Eπ [Gt|St = s]

= Eπ [Rt+1 + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a)[r + γvπ(s
′)].

(3.4)
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For maximizing the expected reward, an optimal policy π∗ needs to be found that maximizes
the cumulative reward as shown in equation (3.5).

π∗(s) = argmax
a

Q∗(s, a). (3.5)

This shows that the optimal policy is based on an optimal value function, defined by
equation (3.6).

V ∗(s) = max
π

E[
∞∑
t=0

γtR(st, at, st + 1)]. (3.6)

Policy Iteration
The fundamental approach for finding optimal policies and value functions is based on the
following two key steps [38]:

1. Policy Evaluation: by applying the current policy, the state-value function is computed
using equation (3.4). The resulting value is compared with values that could be obtained by
selecting another action in the current state using the action-value function, equation (3.3).

2. Policy Improvement: based on the policy improvement theorem, if qπ(s, π′(s)) ≥ vπ(s)

for all states s, then the new policy π′ is at least as good as the original policy. The
new, improved policy is obtained by selecting the action that maximizes the action-value
function qπ(s, a), equation (3.7).

π′(s) ≡ argmax
a

qπ(s, a)

= argmax
a

E[Rt+1 + γvπ(St+1)|St = s, At = a]

= argmax
a

∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)].

(3.7)

Value Iteration
A computationally more efficient version is achieved by skipping the policy evaluation and
directly updating the value function using value iteration; see equation (3.8) [38].

vk+1(s) ≡ max
a

E[Rt+1 + γvk(St+1)|St = s, At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γvk(s
′)].

(3.8)

Various approaches to finding the optimal value function exist, such as dynamic program-
ming, Monte Carlo methods, and their combination, Temporal Difference learning, which
will be introduced in the next section.
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3.1.3 Temporal Difference

Temporal Difference (TD) is a model-free RL algorithm, updating estimated values of
states or state-action pairs based on the difference between predicted and observed reward
and was introduced by Sutton in 1988 [14]. They combine Monte Carlo and dynamic
programming methods, using observed transitions and rewards to update value estimates.
The value estimate is updated at every time step, not needing a complete episode, using
the observed reward Rt+1 and the current value function estimate V (St), as shown in
equation (3.9) [39].

V (St) = V (St) + α[Rt+1 + γV (St+1)− V (St)]. (3.9)

Over time, estimations should get closer and closer to Rt+1, meaning the state estimations
are getting more accurate. The difference between the estimated and updated value is
called the TD error, see equation (3.10), which is used in various RL methods for learning
the value function, while being less optimal for updating policies [38].

δt = Rt+1 + γV (St+1)− V (St). (3.10)

3.2 Deep Reinforcement Learning

DRL builds upon RL but replaces the tabular function approximators for the policy and
value functions with deep neural networks. Using neural networks allows for automatic
feature engineering and end-to-end learning. This allows the handling of high-dimensional
data and generalization over unseen states. Using a cost/loss function, the parameters of
the neuronal network, weights, and biases are updated using backpropagation and gradient
descent optimization methods [40].

3.2.1 Artificial Neural Networks

An artificial neural network is composed of neurons. Each neuron has n input connections
and processes the inputs according to equation (3.11). The inputs are weighted and
summed, the bias is added, and an activation function is applied.

aj = f(
∑
i

wijai + bj), (3.11)

aj being the output of neuron j, wij the weight connecting neuron i from the previous
layer to neuron j, ai the output from neuron i in the previous layer, bj the bias term for
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neuron j and f the activation function for non-linearity.

For approximating a function, the weights wij and biases bj are adjusted to minimize the
difference between the predicted and wanted output; see equation (3.12). This is done by
optimizing a loss function, for example, mean-square-error (3.13) [40].

Ypred = f(X, θ), (3.12)

L(θ) =
∑
i

(Ypred − Ytrue)
2. (3.13)

For updating the weights, the gradient of the loss ∇L(θ) is calculated and backpropagated
through the network, meaning from end to start. Stochastic gradient descent is combined
with batch learning, based on the equation (3.19) in the following section, for calculating
how much the weights are updated.

The actual neural network uses certain fundamental building blocks connected feedforward.
The main building blocks, which will also be used in this thesis, are feedforward, convolu-
tional, and recurrent neural networks. Neural networks are used as function approximators
by learning the parameter set θ, which contains the weights of all neurons inside the
network.

Feedforward Neural Network
Feedforward Neural Network (FNN) consists of multiple neurons arranged in an input
layer, N hidden layers, and an output layer. All neurons are fully connected to the next
layer, and their output is calculated according to equation (3.11).
FNN can be used to approximate any function. For the usage in DRL, this includes the
value function V (s) for mapping states to value estimates, policy π(a|s) by outputting
action probabilities or values, and Q-function by mapping state-action pairs, to expected
returns [40].

Convolutional Neural Network
Convolutional Neural Network (CNN) can be used for processing matrix-like data, espe-
cially images. In the context of robotics, this allows the processing of visual inputs, for
example, from cameras. They are composed of two primary types of layers: convolutional
and pooling.

The convolutional layer is the core building block that learns a square matrix of neu-
rons, called filters, that are applied to the input matrix g in a convolution operation and
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search for patterns, called localized features [40]. This is expressed mathematically by
equation (3.14).

h[x, y] = fġ[x, y] =
k−1∑
i=0

k−1∑
j=0

w[i, j]g[x+ i, y + j]. (3.14)

The advantage of convolutional layers is that they require a smaller number of weights
than fully-connected layers, as the weights are shared across the input. This allows the
network to learn spatial hierarchies of features.
Applying a pooling layer can reduce the data dimensions by applying non-linear downsam-
pling. The most common pooling layer is the max-pooling layer, which uses a filter of size
[m×m] and outputs the maximum value inside this filter. While this reduces the data size,
it also loses information about exact feature positions [38].

Recurrent Neural Network
Using Recurrent Neural Network (RNN) allows the extraction of temporal features from
a sequence of inputs. Using a hidden vector, resembling the memory, the network can
remember previous inputs and update the states accordingly. This is especially useful for
processing time-series data, for example, in the context of robotics for processing sensor
data [40].

3.2.2 Stochastic Policy

Policies can be differentiated based on their action selection. Deterministic policies directly
map a state to a single action, whereas stochastic policies assign probabilities to those
actions and sample from their distribution. While the direct mapping by deterministic
policies can be easier and more stable to learn, stochastic policies have the advantage of
inherent exploration due to the randomness in the action selection and a better handling of
noise. In the following, stochastic policies will be analyzed further, as they are usually the
basis for policy gradient and actor-critic methods [41].

Stochastic policies assign probabilities to each action in the current state, for example
Gaussian distributions in a continuous action space. The policy generates a mean and
standard deviation and uses it to create a Gaussian distribution, see equation (3.15).

f(x) =
1

σ
√
2π

e−
1
2(

x−µ
σ )

2

. (3.15)

From this distribution an action is sampled using the reparameterization trick, which
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describes a differentiable sampling approach, thereby allowing backpropagation during
training [42]. The mean and standard deviation from the policy network is also used for
calculating the log probability, see equation (3.16), which is needed for policy updates and
training.

log π(a|s) = −(a− µ)2

2σ2
− log(σ)− 1

2
log(2π) (3.16)

The mean represents the most preferred action for the given state, while the standard
deviation represents the uncertainty within the current state [41]. This will be used in
Section 4 for designing our modular arbitration framework.

3.2.3 Policy gradient methods

Policy gradient methods, a subclass of policy-based methods, optimize a policy directly
instead of learning a value function. The policy is represented as a parameterized function
πθ for this. The parameter set θ usually represents the neural network weights used to
approximate the function. While the policy can be deterministic a = πθ(s) or stochastic
a ∼ πθ(a|s), the following explanation will focus on a stochastic policy like used in PPO
which outputs a probability distribution of actions: πθ(s) = P[A|s; θ].

The goal is to tune the policy parameters to sample actions that maximize the return more
frequently. For evaluating the policy, we use the objective function J(θ), which measures
the expected reward [43], see equation (3.17).

J(θ) = Eτ∼πθ
[R(τ)], (3.17)

where τ = (s0, a0, ..., sT+1) represents a trajectory containing a sequence of states, actions
and state transitions. The reward for this trajectory is calculated using the cumulative
reward function R(τ). A trajectory differs from an episode because its last state must not
be final [38].

The objective function can also be expressed in terms of the policy; see equation (3.18).
By multiplying the total reward accumulated along a trajectory R(τ) with the probability
of taking that trajectory under the current policy parameters θ, we get the weighted return
for this specific trajectory. Summing all weighted returns results in the expected return, the
average return of all trajectories weighted by their probabilities.

J(θ) =
∑
τ

P (τ ; θ)R(τ). (3.18)
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The goal is to maximize the expected reward for the objective function, making it an
optimization problem that can be optimized using gradient ascent. This is achieved by
updating the θ parameter in the direction of steepest increase using the gradient of the
objective function ∇θJ(πθ) multiplied with the learning rate α, see equation (3.19).

θk+1 = θk + αk∇θJ(πθ)
∣∣
θk
. (3.19)

For calculating the gradient, equation (3.18) is reformed into equation (3.20) and further
simplified, allowing to express P (τ |θ) as a product of probabilities of taking an action that
lead to higher returns , see equation (3.21).

∇θJ(θ) =
∑
τ

∇θP (τ |θ)R(τ) = Eτ∼πθ
[∇θ logP (τ |θ)R(τ)], (3.20)

∇θJ(θ) = Eτ∼πθ

[
T−1∑
t=0

∇θ log πθ(at|st)R(τ)

]
. (3.21)

The policy parameters can now be optimized by:

1. Sampling trajectories by following the current policy πθ;
2. Computing the gradient of the objective function based on equation (3.21). By not

using all but only the m sampled trajectories, the policy gradient is estimated using
the sample mean in equation (3.22);

∇θJ(θ) ≈ ĝ =
1

m

m∑
i=1

∑
t=0

∇θ log πθ(at|st)R(τ). (3.22)

3. Updating policy parameters using equation (3.19).

Policy gradient methods are used in algorithms like Reinforce, Trust Region Policy Op-
timization (TRPO) and PPO. The advantages are that they can learn a stochastic policy
that automatically implements an exploration and exploitation trade-off. By estimating
the policy directly, the dimension is reduced. The function approximation using a neural
network allows for the natural handling of continuous action spaces. Limitations are the
high variance in gradient estimates, sample inefficiency, sensitivity to hyperparameters,
and converging to local maximum instead of global optimum [44].
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3.2.4 Actor-Critic Methods

Actor-critic methods combine the strengths of policy gradient and value-based methods
by learning two function approximations with the actor representing the policy πθ and the
critic the action-value function q̂w(s, a). The actor updates its policy network parameters
using policy gradient methods as introduced before; see equation (3.19). In contrast, the
critic updates its action-value network using TD learning, see equation (3.10) [41].

Based on the current state St, the actor generates the action At, and the critic uses this
action with the current state for computing the action-value function, the Q-value q̂w(s, a).
After the action, At is executed, and the new state St+1 and reward Rt+1 are available, the
actor can update its policy parameters θ using the Q-value, see equation (3.23). This is the
same approach as in the previous section using policy gradient methods [37].

θ = θ + α∇θ(log πθ(s, a))q̂w(s, a). (3.23)

Using the updated policy πθ, the actor generates the next action At+1 which the critic uses
for updating its value parameters w, see equation (3.24).

w = w + βδ∇wq̂w(st, at), (3.24)

where β represents the learning rate, ∇wq̂w(st, at) is the gradient for the value function and
δ the TD error (see equation (3.10)). This shows that the actor updates policy parameters
to increase the expected reward. At the same time, the critic provides feedback on the
quality of the actions taken, which guides those policy updates directly [37].

Using an advantage function instead of TD error reduces the variance of policy gradient
updates and allows to focus on actions that yield higher returns than average. The advan-
tage function calculates how much better it is to take a specific action compared to the
average, policy-based action at a given state by subtracting the value function from the
Q-value function, see equation (3.25). By subtracting the value function as a baseline, the
cumulative reward is smaller and, thereby, the gradients, resulting in more stable updates.

A(st, at) = Qw(st, at)− Vv(st). (3.25)

Instead of learning two neural networks for Q value and value function, which is very
inefficient, the equation can be rephrased using the Bellman optimality equation, see
equation (3.26), and rewritten as equation (3.27) [37].

Q(st, at) = E[rt+1 + γV (st+1)]. (3.26)
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A(st, at) = rt+1 + Vπθ
(st+1)− Vπθ

(st). (3.27)

Actor-critic methods have the advantage of better sample efficiency, resulting in less data
requirements, and can be used for continuous and discrete action spaces. Limitations are
the high variance in policy gradient updates, slow convergence, and difficulties in tuning
hyperparameters [37].

3.3 Proximal Policy Optimization

The PPO algorithm was developed by Schulman et al. in 2017 and became one of the
most used RL algorithms. It is an actor-critic method, approximating a policy function for
decision-making, which maps states directly to actions [45]. It is often wrongly classified
as a Policy Gradient Method (PGM), which is incorrect as it does not use the gradient
directly but instead a surrogate objective [46]. The two core variants of PPO are PPO-
Penalty and PPO-Clip. In the following, PPO-Clip is analyzed in more detail, as this is the
variant used in this thesis.

Policy gradient methods have the limitation of unstable policy updates due to taking too
large steps during improving the policy. This was addressed by TRPO by introducing a
penalty in the form of the Kullback-Leibler divergence, which limits how much the policy
can change in a single update [47], expressed by equation (3.28).

max
θ

Et

[
A(st, at, π)

πθ(at|st)
πθold(at|st)

− βKL[πθold(·|st), πθ(·|st)]
]
, (3.28)

where πθold it the previous policy version and β the regularization parameter controlling
the strength of penalty. While TRPO provided stability improvements, the practical usage
was limited by the computationally inefficient use of second-order optimization, resulting
in the development of PPO as an easier-to-implement alternative [45].

The PPO algorithm uses separate policy and value networks, with the value network
computing the advantage function for policy updates and the policy network calculating
the probability density function for deciding on the following action based on the current
state. It uses a clipped surrogate objective function; see equation (3.29). This limits policy
changes to a small range to avoid too large weight updates, making the policy more likely
to converge to an optimal solution. More precisely, any advantage obtained is ignored if
the probability of an action changes by a factor smaller than 1− ϵ or larger than 1 + ϵ [45].

Lclip(θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)], (3.29)

where clip is constraining the policy, ϵ as clipping parameter and rt as probability ratio,
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see equation (3.30), Lclip as loss function and Ât the estimated advantage function, see
equation (3.31).

Taking the minimum of the clipped and unclipped objective results in a lower bound,
resulting in changes of the probability ratio rt being ignored when the change improves
the objective but included otherwise, see equation (3.30). The probability ratio compares
the likeliness of the current policy taking an action to the old policy [45].

rt(θ) =
πθ(at|st)
πθold(at|st)

. (3.30)

The advantage function, introduced in equation (3.25), is extended by using Generalized
Advantage Estimate (GAE). In its basic form, the advantage function uses the TD error,
which has a fixed number of steps looking ahead. Alternatively, it can use the Monte-Carlo
method to calculate the estimation error till the end of the episode. GAE is a hybrid
combination, using the parameter λ for adjusting the look ahead steps, see equation (3.31).
With λ = 0, the advantage function represents the TD error, and with λ = 1, the Monte-
Carlo method [48]. A typical value for PPO is λ = 0.95, giving a balance in considering
only immediate rewards and all future rewards.

Ât = δ + (γλ)δt+1 + ...+ ...+ (γλ)T−t+1δT−1 =
∞∑
l=0

(γλ)l ∗ δt+l, (3.31)

where δt as temporal difference error, see equation (3.10).

The objective function is extended by two additional terms: entropy and value loss. The
entropy loss encourages exploration of the policy network by promoting policies that have
more randomness in their actions. If a continuous action space is used, the entropy loss
is not necessarily required because the actions are sampled from a Gaussian distribution,
which is already encouraging exploration, see also Section 3.2.2. In case of a distinct
action space, the Shannon Entropy is calculated and added to the loss function [49].

The value network is trained using the value loss function by minimizing the squared
difference between the predicted value and the target value over multiple samples, see
equation (3.32) [49].

LV F (θ) = Et[(Vθ(st)− V target
t )2]. (3.32)

The complete objective function for PPO is shown in equation (3.33).

LTOTAL(θ) = E[LCLIP (θ)− c1L
V F (θ) + c2S[πθ](st)], (3.33)

where
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■ LV F (θ): value-loss function: (Vθ(st)− V target
t )2

■ S[πθ](st): entropy bonus for encouraging exploration
■ c1, c2: weighting factors

The main advantages are that PPO only requires a first-order optimization and can use
standard stochastic gradient descent for the optimization. It can re-use the same data for
multiple epochs while maintaining stability, similar to the training of neural networks,
improving sample efficiency [49]. While PPO requires less hyperparameter tuning than
other RL algorithms, finding good ones is still a significant challenge, especially if using it
in more complex simulations where it takes a long time till the current hyperparameter can
be evaluated.

The step-wise algorithm, as implemented by the reinforcement learning library used in this
thesis, skrl [42], is described below.
For each iteration:

1. While the agent interacts with the environment using the current policy π collect the
following data for the rollout memory:
set of states s, actions a, rewards r, dones d, log probabilities logp and values V
from Vϕ

2. Use the advantage function, equation (3.31), to estimate returns R and advantages A
3. If required, compute the entropy loss S
4. Compute policy loss using current and previous policy, equation (3.29)
5. Compute value loss, equation (3.32)
6. Optimize the total loss, equation (3.33)

3.4 Approaching Complex Tasks

Complex tasks in RL are defined by delayed rewards, sequential decision-making, long-
term dependencies, and a hierarchical task structure, requiring sub-tasks to be completed
to achieve the overall goal. Due to the delayed rewards, the agent must perform multiple
actions before receiving feedback. In sequential decision-making, a series of actions is re-
quired in a specific order to achieve the goal. Long-term dependencies refer to the possible
lasting impact of previous actions on the final outcome, requiring the agent to consider
the long-term effects of the selected actions [50]. In the following, multiple approaches
are presented for dealing with the challenges of complex tasks. Those approaches can be
seen as fundamental blocks developed to expand the capabilities of DRL, allowing the
integration into more sophisticated architectures or use as standalone solutions.

27



The first concept, multi-task learning, was introduced in 1997 by Caracuna, showing that
learning similar tasks together can improve learning and generalization between tasks [22].
This is caused by the model having to find common features across multiple tasks, requiring
a more evolved feature detection. While there is the risk of negative transfers between
tasks or domination by one, this approach is still applied in state-of-the-art applications,
with the newest approach being the development of neural network architectures that
access certain areas of the neural network to share relevant features while maintaining
task-specific specialization [51]. In robotics, Yang et al. successfully used multi-task
learning to teach a robot multiple manipulation skills while preventing the risk of negative
transfers inside the network by implementing a soft modularization technique. This uses a
separate routing network that assigns certain parts of the base network to different tasks,
thereby preventing gradient interference during learning from other tasks [52].

Reward shaping can be used to ensure a faster and more guided learning process. With
rewards guiding the agents’ learning, shaping it the right way helps them learn faster. This
fine-tuning of the reward function does not change the optimal policy if the transformations
are potential-based or positive linear transformations [23]. While incorrect reward shaping
could lead to unintended behaviors, using the potential-based shaping suggested allows
for a notable speed-up in learning. The guaranteed effectiveness makes reward shaping a
very active research area with various variations. Using intrinsic motivation in hierarchical
reinforcement learning, as done by Kulkarni et al., represents an alternative form of reward
shaping for guiding the agents towards their sub-goals [30]. Inverse reward design, while
primarily a theoretical approach, analyzes how to ensure that agents understand the implicit
parts of the reward function, also when deployed in new environments, making it interesting
for real-world application [53]. Fu et al. proposed an approach for deriving a reward
function automatically from data by supplying ranked events and states, preventing poorly
designed reward functions [54]. Using a dataset labeled as optimal allowed Wolf et al. to
train a deep neural network to generate a shaped reward for a complex autonomous driving
task, significantly improving the performance of the RL algorithm [55].

Curriculum learning can be applied to deal with complex, longer tasks. By progressively
increasing the task complexity during training, an agent can start with learning fundamental
object interactions and progress to more complex manipulations using the learned knowl-
edge and skills, enabling it to learn tasks that would be too difficult to learn directly. The
sample efficiency improves if the agent starts with more solvable tasks. This curriculum
learning approach closely resembled human educational practices and was applied for
training neural networks in a gradually increasing complexity [24]. Newer approaches
apply automated curriculum learning for agents based on their learning process [56].
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Meta-learning is a more fundamental approach for improving the learning process and
thereby increasing the sample efficiency. It focuses on “learning to learn” and quickly
adapting to and solving new tasks. This allows meta-RL agents to adapt to dynamic
environments and new tasks quickly [25]. It positively influences various RL approaches
and methods. By leveraging experiences from related tasks, the generalization improves,
and learning becomes faster, resulting in an improved sample efficiency. Current research
tries to create even more intelligent and adaptable agents by utilizing generative models for
letting the meta-learner generate its training tasks [57]. Zou et al. combined meta-learning
with reward shaping by training a neural network to generate a shaping reward even for
new tasks, guiding and shortening the main agents learning time [58]. A very interesting
publication is by Yu et al. and their Meta-World. This benchmark is for evaluating
meta-learning algorithms on 50 robotic manipulation tasks to enable real meta-learning
algorithms. Current approaches are trained on very similar tasks. This broader spectrum of
tasks should support algorithms with even more generalization capabilities [3].

To shorten the long training times of models and also improve the generalization, transfer
learning focuses on reusing knowledge learned in one task in a new task by transferring
information about policies, value functions, state representations, or entire models. This
allows for a speed-up in learning, better generalization, and lower data requirements. Trans-
ferring knowledge from a simulation to a real-world application reduces the requirements
of collecting costly real data. In addition, transfer learning can be used to transfer knowl-
edge from one task to a related task. Current research focuses on learning transferable
policies in deep neural networks, transferring knowledge across tasks in a hierarchical
structure, and transferring from simulation to the real world. In robotics, this is often
applied for fine-tuning pre-trained visual features for new tasks [59].

The vast number of different approaches and research shows the high activity in the area of
DRL and the growing focus on robotic applications. Those techniques are often even more
effective if multiple are used together, provided that the correct methods for the specific
task are combined [27]. Besides all advancements, those approaches still struggle with
long-horizon, multi-stage problems. For this, techniques like hierarchical and modular
reinforcement learning are more suited, as introduced in the following sections.

3.5 Hierarchical Approaches

HRL decomposes complex tasks into hierarchies of subtasks with multiple levels of
temporal abstraction, as introduced by Sutton et al. with the Options framework [4].
Temporal abstraction describes policies that operate over multiple time steps using high-
level controllers and low-level sub-policies, which allows handling long-horizon problems
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with improved sample efficiency. Another fundamental hierarchy approach is Feudal

Networks, introduced by Dayan et al. [28], which uses managers to set goals that workers
execute. Parr et al. provided a framework for defining hierarchical policies, called
Hierarchical Abstract Machines [29], and demonstrated their use for complex control
tasks.

Options were applied to robotic manipulation tasks and showed improved performance
and generalization compared to normal RL methods [30]. Further developments were
made with Concept Networks by Aditya Gudimella et al., allowing for better re-usability
by defining sub-agents as concepts that can be integrated into a higher-level agent in a
modular way. Those concepts can be trained on a limited state space, resulting in more
data-efficient learning [7].

Multiple practical implementations and research have shown several advantages of applying
hierarchical approaches in robotics. Those are improved learning speed for manipulation
tasks [32], skill transfer between robots [33], complex multi-step manipulation through
hierarchical planning [31] or handling of complex quadrupedal locomotion by using high-
level policies for path planning and low-level policies for motor control by combining
hierarchical policies with modular architectures [60].

The main concepts in HRL are the hierarchy of tasks, temporal abstraction, hierarchical
policies, and value functions. The hierarchical structure uses high-level tasks to represent
abstract goals and low-level tasks for concrete actions or sequences of actions, forming a
tree-like structure. Temporal abstraction allows learning at multiple time scales, with the
high-level task being inactive while the low-level task executes its actions. This allows for a
more efficient learning of long-horizon problems and reduces computational requirements.
High- and low-level tasks have their own policies and value functions, which are trained
separately and interact through the information flow between the hierarchy levels. The
high-level policy selects the subtask, and the low-level policy executes the actions. The
value functions are used for credit assignment and learning the value of the high-level
tasks.

Some of the open challenges in HRL are the design of the hierarchy, which requires
expert knowledge and, in current approaches, always a manual specification and task
decomposition. For successful coordination, the information flow between the hierarchy
levels has to be defined and balanced, together with the credit assignment across those
levels. The training of the hierarchical policies can become unstable, and there are
limitations in scaling the approaches to more complex or deeper hierarchies [60].
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3.6 Modular Approaches

Similar to many fields, especially modern software engineering, a modular approach
in reinforcement learning has advantages like reusability, easier scalability, and better
interpretability. There are various approaches and frameworks for modular solutions with
an increasing interest in recent years [34]. MRL decomposes complex tasks concurrently
into a collection of sub-tasks with their own goals, distinguishing from HRL which
decomposes tasks temporally. Each sub-task with its agent represents a specialized module
and can be trained independently. Multiple modules can be combined using an arbitration
function that evaluates the output of each module and selects an action, either from one of
the modules or by generating a new one [9].

Multi-Objective Reinforcement Learning (MORL) differs from MRL as the focus is on
optimizing multiple, potentially competing goals. The learning is done within a single
policy, focusing on balancing objectives, not coordinating and integrating them. Multi-
Agent Reinforcement Learning (MARL), while involving multiple agents, focuses on
independent agents interacting with each other, with each agent technically running the
same code.

One of the first modular approaches was proposed by Russel et al. in 2003 by using
modules with their own Q-value function, which a central arbitrator combines by summing
the Q-values. The sums are interpreted as the knowledge of each module, equation (3.34).
The result is a joint Q-value with the arbitrator selecting the action with the maximum
value [8].

Qjoint(s, a) =
∑

Qi(si, a). (3.34)

Limitations are that the reward scales for each module must be compatible with the
summation, and the modules need to be trained for similar goals; otherwise, the joint
Q-function will select non-optimal actions.

Summing the Q-values represents a utility fusion approach, which is one of the main
arbitration strategies. It is defined by applying a function to the individual utilities of
pre-trained agents to solve a global problem; see equation (3.35).

Q∗(s, a) ≈ (Q∗
1(s1, a), ..., Q

∗
n(sn, a)). (3.35)

This decomposition can lead to a suboptimal solution because it ignores interactions
between subproblems. A suggested solution is calculating a correction term using a neural
network, which is added to the output of the utility fusion to approximate a globally optimal
solution [61].
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A more advanced approach was introduced by Simpkins et al. in 2019 with the Arbi-Q
command arbitration algorithm, which uses a DQN to learn which module to select under
certain state conditions, allowing the usage of modules with different reward scales. The
arbitration agent and modules can use state abstractions, meaning only a subset of the
full state representation, and the modules can be trained independently [9]. Using DRL
for training the modules and the arbitration agent is a similar approach as will be used
in our proposed framework, with the main difference being the state inputs, class of RL
algorithm, and the application of the framework on a robotic system. Those approaches
show that the main required steps for solving a complex task with a modular method is
decomposing the task into sub-tasks and designing an arbitration mechanism.

While there were some attempts for automated task decompositions, among others by
applying the mathematical discipline category theory for a theoretical definition [62], all
actual implementations still require domain expertise and human knowledge.

For selecting the action of the agent, the individual modules utilities need to be combined
using an arbitrator. The main arbitration approaches are command arbitration, command
fusion and utility fusion. In command arbitration, only one module’s action is selected and
executed. The selection can be based on a voting approach, where each module votes for
an action and the action with the most votes is selected, on confidence-based selection,
where the module with the highest confidence in its action is selected, or by the arbitrator
selecting an action based on its state inputs. In command fusion, the arbitrator generates a
new action by combining the proposed actions by the modules. The composite action is
created by weighted averaging or neural networks. Using utility fusion, the value estimates
for each action from the modules are combined, for example the Q-values, and the action
maximizing the combined utility is selected. A last approach is learning-based arbitration,
where the arbitrator learns to select an action based on the inputs from each module [61].

3.7 Sim-to-Real Transfer

Sim-to-real describes the transfer of RL agents from the simulated environment into the
real world, making it essential for the application in real-world robotics. The following
evaluates the challenges and requirements for a successful transfer and relevant research in
this area.

Early attempts to transfer algorithms trained in a simulated environment to the real world
failed due to computation and simulation limitations, variations in the real world, differ-
ences in the sensors, incomplete system identification, and unmodeled physical effects.
This issue became known as the reality gap [63].
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Initially, research focused on closing the reality gap by improving the simulation envi-
ronment. While simulation environments are becoming more realistic, they still cannot
capture all complexities of the real world, such as physics, lightning, sensor noise, and
especially various dynamics. Modeling all factors would also result in a slow and overly
complex simulation. Conveniently, Jakobi et al. showed in 1995 that just by adding noise
to the simulation, a successful transfer of simulated controllers to the real world could be
achieved [64]. This was further formalized by Tobin et al. with domain randomization, the
usage of randomized rendering in the simulator [63]. Other work further decreased the
reality gap by applying improved system identification in the simulation and more accurate
models of the robot dynamics [65], with Kelchtermans et al. achieving a zero-shot sim-2-
real transfer for visual navigation by training the agent in an empty simulated environment
but applying randomized augmentations like different lightning and camera effects like
noise and blur [66]. This confirms that a photo-realistic simulation is not necessary but
variability in the collected data used to train the algorithms [63].

Visual domain randomization is a main factor for successful sim-to-real transfer, meaning
randomizing colors, textures, lighting, and object positions. The randomization amount
is ideally applied gradually over time to help the network learn [63]. Other aspects focus
on domain randomization, which includes the visual domain but also changes physic
properties and adds noise to the sensors. A more exact system identification or adding
noise and random delays to the actuators can improve the transfer [65]. Due to the visual
domain randomization, CNNs are forced to learn more robust and generalizable patterns by
focusing on essential features, which improves the generalization capabilities and reduces
the risk of overfitting.

While applying the above techniques, a zero-shot transfer, meaning no additional training
on the target system is required, already shows their effectiveness, there are still various
challenges in real-world robotic applications using only RL. To achieve a maximum reliable
result, real-world data is still needed to fine-tune the agent. Collecting this data is expensive
and time-consuming, especially regarding the amount of data needed with DRL algorithms
and their low sample efficiency. Real-world environments are much more unpredictable
than any simulation, especially with human interactions. Additionally, non-stationary
dynamics like changing environments, hardware degradation, and variable physics like
friction can further complicate the transfer. The usage of neural networks results in the
decision process of the agent becoming a black box and difficult to interpret, making it
very difficult to ensure the agent behaves responsibly and ethically or to accurately predict
its behavior in certain situations [67].

Those limitations are why there is still no utilization of fully RL based robotic systems in
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the real world. However, with the first agents used in applications like healthcare, news
recommendations, and gaming, the first commercialized robotic systems should follow
soon [68].

3.8 Simulation Environments and Frameworks

The following section describes the requirements for the simulation environment and
frameworks needed to develop reinforcement learning-based agents for solving robotic
tasks and transferring them to a real-world system. Additionally, the software selected for
this thesis is justified.

As a first step, a model of the robot is required, which contains the basic structure,
properties like joints, links and their relationships, and physical properties like inertia
and mass. The model and other required objects like scenery or obstacles can be created
using modeling tools like Blender or FreeCAD and are then usually translated into a
Unified Robot Description Format (URDF) file, which allows loading it into the simulation
environment.

The simulation environment is the platform where the agent is trained and tested. It
must provide a physics simulation, rendering capabilities, and support for specific sensors
like cameras or lidar. An important aspect is the performance of the simulation, the
possibility of training multiple agents simultaneously, and support for GPU acceleration. A
programming interface is required for executing a RL algorithm, and a certain community
size is always helpful. Common platforms are PyBullet, Unity, Gazebo, and Isaac Sim, and
Isaac Sim is used in this thesis. This choice is based on the close integration with Compute
Unified Device Architecture (CUDA), NVIDIA’s parallel computing platform using GPU
acceleration, outperforming CPU-based implementations [69]. Additional factors were the
availability of RL frameworks and tutorials and the NVIDIA Jetson Nano compute system
used on the robot for the real-world application [70].

A framework is required to develop and run the RL algorithm inside the simulation
environment. It must be able to communicate with the simulation environment for accessing
data and manipulating objects and have features for running the training simulation with
parallel execution and support for different RL libraries. This thesis uses Isaac Lab, an
open-source framework specifically built on Isaac Sim (used to be called Orbit). It is
implemented as a Python library, can easily access Isaac Sim, supports all important
sensors, and supplies a wrapper for training with multiple agents in parallel [71].

The last building block for developing the agent is the RL library. The actual algorithms

34



like PPO are implemented here. Prominent choices are Stable Baselines, RL Games, RSL
RL, and skrl. The choice of skrl was made because of the modular design of the algorithms,
which enables a more custom implementation, especially for the neural network. Other
libraries often focus on using configuration files for setting up the neural network and the
training process, which is unsuitable for complex multi-stream networks that have to fuse
different sensor data [42].

Figure 1 shows the interplay between simulation environment, RL framework and library.
The framework initializes the simulation environment with its configuration. After this,
at every time step the simulation environment send the current environment state to the
framework which passes it on to the agent implemented using the RL library. The agent
returns an action which is applied by the framework and the simulation environment is
updated again. This repeats till a termination signal. For updating the policy and value
functions, trajectories are stored as batches inside a memory created by the RL library.
Those trajectories are then used for the learning.

For the real-world system, the Robot Operating System (ROS) framework is used. This is
a middleware for communicating between robot components like sensors, actuators, and
the control system. This choice is due to its wide usage in the robotics community and the
already existing implementation for the robot used in this thesis [72].

Figure 1. Connection between simulation environment, reinforcement learning framework
and library
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4. Modular Arbitration Framework

4.1 System Overview

The proposed modular arbitration framework combines multiple pre-trained actor-critic
modules using a specialized arbitration agent. The arbitrator is a learning agent who uses
each module’s internal neural network representations — specifically the outputs of their
value and policy networks — as state inputs. This allows a minimized state input compared
to other modular or hierarchical approaches while fully utilizing the learned knowledge by
each module.

The arbitration agent makes a discrete decision at each timestep, selecting which module’s
action to execute. This selection is based on the state inputs from each module’s value
and policy networks, allowing the selection of a different agent at each timestep without
requiring an explicit termination state by the active agent. While the arbitration agent could
be based on any reinforcement learning algorithm that supports a discrete action space, this
implementation will utilize PPO due to its stability and wide use in robotic applications.

By using only the internal representations of each module, the arbitration agent can
be trained without additional domain knowledge and without requiring access to each
module’s full environmental state or sensor inputs. This allows for a more general approach
and easier integration of new modules. The arbitration agent is trained inside a simulation
environment and can then be transferred to the real world. This arbitration framework
builds upon other modular reinforcement learning approaches, but with a focus on utilizing
the neural network representations of actor-critic algorithms.

For learning the selection strategy, the arbitration agent uses its own reward function, which
allows it to consider certain conditions or constraints that are not directly related to the
sub-tasks. This can be used to adapt the arbitration agent’s strategy to specific scenarios,
like preventing the selection of certain modules under specific conditions.

In the following, the actual implementation and functionality of this design is outlined.
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4.2 Pre-Trained Modules Architecture

Overview
The modular architecture’s foundation is specialized modules trained on one specific task.
This task can be a sub-task from a multi-step, complex task or just a specific skill the
agent should possess. Each module needs to be designed in a way that allows training the
respective agent on its own to obtain optimized policies for each module. By focusing each
module on only one well-defined task instead of multiple, the training is more efficient,
interpretable, and a better performance can be obtained. For example, a possible complex
task might be to navigate an unknown area, with one module responsible for exploring the
area and another for avoiding obstacles. The separation into modules follows principles
that are applied in other engineering areas, such as software engineering.

Sub-Task Composition
The actual sub-task composition is a manual step requiring domain knowledge. A starting
point is to identify the complex task’s main objectives and differentiate between the sensor
inputs required. Each sub-task needs to be defined in a way that allows training the
respective agent independently.

Architectural Requirements
Certain requirements must be met for the modules to be usable within the arbitration agent.
With the value and policy networks of each module being used for generating the state
inputs during arbitration, each agent has to be implemented and trained using an actor-critic
method as introduced in section 3.2.4. Examples would be A2C, A3C, and PPO. The
policy network generates actions based on the current state, with the probability density
function allowing to compare those. The value network returns the expected cumulative
reward, representing how promising this state appears to the module.

Because the value network is used as input for the arbitration agent, it can only use states
that are also available during interference, just like the policy network. Usually, this is not
required for actor-critic methods because the value network is only used during training,
meaning additional values that are not accessible during interference can be supplied.

The value network should be designed as a state-action value network for optimal accuracy,
as done in most practical implementations. This means it receives the last action or actions
as part of its input states. Based on those inputs, the value function rates the agent’s current
state by returning the expected cumulative reward. By adding the last action as input, once
this agent is used as a sub-agent in the arbitration approach, the value function of each
agent can be used with the proposed actions of the other agent’s policy network, generating
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an additional input for the arbitration agent. This additional input can be interpreted as the
expected cumulative reward by this agent’s value network if executing the action of the
other agent. As a practical example, supplying the action of the module, which explores the
environment, to a collision avoidance module’s value network, could show if the proposed
action would result in a collision or is seen as acceptable by this module.

A similar cross-evaluation approach is implemented for the policy network for the actions
of modules with the same action space by using the log probability density function of each
other module, rating how likely this action would have been chosen by this module. This
allows for an additional verification of the proposed actions and can prevent the execution
of actions that are seen as risky by the other agents.

The modular approach allows for easy integration of new modules. Modules can share
the same action space, allowing cross-evaluation, or generate different actions if required.
This flexibility allows for a wide range of applications and use cases.

Training
By solving the sub-tasks independently in a modular way, each module can be developed
and trained separately, reducing the complexity of the overall task. This reduces the
risk of negative interference between the sub-tasks and allows for easier debugging and
optimization of each module. Due to the faster training times of smaller agents, necessary
adjustments for a successful simulation-to-real transfer can be made without the need to
retrain each module.

It is essential to ensure that each module achieves robust and reliable performance in its
specific task. This is crucial for the overall system as the arbitration agent depends on the
reliability of each module.

4.3 Reinforcement Learning Based Arbitration Agent

The arbitration agent is used to combine the skills of pre-trained modules to solve a
complex task. For this, it selects at each timestep which module’s actions to execute,
serving as the coordinator for the modules. The arbitration agent is implemented using
a reinforcement learning algorithm that supports a discrete action space, for example,
Q-learning, DQN or PPO.
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4.3.1 State inputs and Action Generation

The state inputs for the arbitration agent are obtained from the policy and value networks of
the specialized modules. Those are different evaluations of the probability density function
of each policy network and the value estimates of each value network. For modules sharing
an action space, each proposed action can be cross-evaluated by the policy and value
network of the other agents.

Policy network
If the modules share an action space, the actions and log probability function of the policy
networks are used to cross-evaluate (ce) the likelihood of executing the other agents actions.
This gives a first measure how similar and thereby safe the respective actions are, see
equation (4.1). For example, the collision avoidance module could evaluate the proposed
actions of the exploration module to indicate actions that could result in a collision. As
each action inside the action space receives their own probability rating, the minimum one
is sufficient for the state input, keeping the input dimensions low for the arbitration agent.

πce
ij =

{
min(log πi(aj|si)

∣∣i, j = 1, ..., n, i ̸= j)
}
. (4.1)

More suitable characteristics like the standard deviation of the log probabilities or a real
certainty measure for the current action are not available outside of training for actor-critic
policies.

In certain scenarios it is important that the actions do not change too abruptly if the module
selection changes, for example in a robotic system. This can be ensured by adding the
last executed action as state input to the policy network. By setting this action to the
actual executed action by the arbitration agent, a stable transition between modules can be
achieved.

Value network
The value network estimates represent the expected future rewards by each agent, rating
the current state. A higher value should favor the selection of this agent because a high
cumulative reward is expected by following its policy. Here, the progression of each
agent’s value estimate is important, with a change in the value function representing a
different assessment of the current state.

Similar to the cross-evaluation of the proposed actions, the value network of each agent can
be used with the proposed actions of the other agents. This allows us to get the estimated
value of the proposed actions by other agents and thereby the difference to the initial value
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estimate; see equation (4.2).

V ce
ij =

{
Vi(st, aj)− Vi(st, ai)

∣∣i, j = 1, ..., n, i ̸= j
}
. (4.2)

Temporal context
Using the last N estimates as state inputs allows the arbitration agent to also consider
temporal changes, resulting in the complete state input expressed in equation (4.3).

St = {V (t− k), πce
ij (t− k), V ce

ij (t− k)|k = 0, ..., N − 1}. (4.3)

The value and policy network outputs can be combined in various ways, which is analyzed
in-depth in Section 5. Using the value estimates, the cross-evaluated value estimates and
the cross-evaluated minimum log probabilties as state inputs achieved the best perfor-
mance in the conducted experiments. This results in a state space dimension according to
equation (4.4), with n as number of modules.

dim(St) = N · 6n. (4.4)

An overview of the arbitration framework using two modules and the resulting state inputs
is given in Figure 2. Only the modules receive observations from the environment, while
the arbitration agent uses the outputs of their internal networks. This limited state space
of the arbitration agent allows for a fast training and therefore easier integration of new
modules.

Figure 2. Concept of the proposed arbitration agent’s architecture
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Action Space
The arbitration agent’s action space is discrete and consists of n actions corresponding to
the number of modules. At each time step t, one module is selected and its actions are
executed, without any modifications.

Reward Function
The reward function for the arbitration agent is crucial for training, as it shapes how the
agent learns to coordinate between each module. While a sparse reward function would be
the most straightforward approach and closes to an actual modular framework, it would
result in long training times. Additionally, the learned strategy tends to always select the
same module, making it not suitable for solving complex robotic problems [61].

A successful modular system requires a dense reward function, which defines the final
objective and intermediate rewards to encourage the selection of different modules [9]. In
some cases, the same reward functions as for the sub-agents can be used for the arbitration
agent. However, this also risks the arbitration agent getting stuck in a non-optimal policy
by only selecting the same agent. A more feasible approach is to write specific reward
functions for the complex task. This also allows for the covering of specific scenarios like
constraining excessive module switching or preventing the selection of certain modules
under specific conditions.

Training Strategy
The required modules are integrated as function blocks to train the arbitration agent.
Each module receives the required state inputs and produces the needed outputs for the
arbitration agent. The modules themselves are no longer trained. Using the selected RL
algorithm, state inputs, and reward functions, the arbitration agent learns under which
conditions to select the action of which module. This is the same approach as with any
other RL agent.

4.3.2 Design Considerations and Limitations

Certain considerations have to be taken into account when integrating the arbitration agent.
These include:

■ Normalization: Different modules will have different scales for their value and policy
network outputs. It is always good practice to normalize the inputs to the arbitration
agent to ensure a stable learning process. For the log odds, a normalization between
0 and 1 can easily be achieved by transforming them to a probability using the
sigmoid function. The value estimates can be normalized by sampling the minimum
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and maximum values before starting the learning process.
■ Runtime execution: The update frequency of each module might be different. Those

cases have to be handled individually, either by using the slowest sampling frequency
or by re-using the previous observations for the slower modules.

While the functionality and deployability of our proposed arbitration framework is verified
in the following sections in a simulated as well as a real-world environment, certain
limitations remain and should be considered before applying this approach.
Primarily, the usage of actor-critic algorithms for the modules results in certain drawbacks.
The policy network outputs do not provide a good measure for the certainty of the current
action, which could be a valuable input for the arbitration agent. While using the already
available value and policy networks allows a limited input dimension and utilization of the
modules knowledge, under normal circumstances the value network would not be required
during interference, resulting in a higher computational overhead. Other approaches
utilizing state-value methods, or a module selection based on environment observations,
might be more suitable.
Secondly, each module evaluates it’s state space at every timestep, creating an additional
computational overhead linear to the number of modules. While a single agent would
have the same computational requirements, approaches where not all modules are active
simultaneously, for example by using termination signals as done in hierarchical designs,
could be more efficient.
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5. Agent Design and Training

This chapter will implement the modular arbitration architecture as described in Chapter 4
for a compositional robotic task. Two specialized modules are designed and trained
individually for their specific task in a simulation environment. The arbitration agent will
solve the initial robotic task using the trained modules.

The fundamental task objective is to locate and approach a specific object, in this case, a
red cube, in an unknown environment. This task is decomposed into two sub-tasks: an
exploration module for exploring the environment and an object detection module for iden-
tifying and approaching the red cube. Each module is trained in the Isaac Sim simulation
environment and evaluated based on key metrics like task success rates. Afterwards, the
modules are combined using the modular arbitration approach, and the arbitration agent is
trained. Finally, the performance of the individual modules is compared with the combined
approach.

5.1 Task Decomposition Overview

5.1.1 System Requirements and Constraints

The robot’s fundamental objective is to find and approach a specific object, in this case,
a red cube, in an unknown environment. This objective can be decomposed into two
sub-tasks with different sensor requirements and objectives.

First, the robot must systematically explore an unknown environment to locate the target
cube while avoiding obstacles. Because the robot has no prior knowledge about the
environment, systematic exploration is necessary while building a map representation.
Solving this task requires a lidar and a depth camera for the state inputs.

Second, the robot must reliably detect the cube from different distances, angles, and
lighting conditions. Once identified, it needs to drive towards it, maintaining visual contact
and ideally handling a temporary loss of vision. This requires a specialized object detection
module that uses RGB camera data to identify the cube and generate motion commands to
drive toward it.

This task decomposition allows us to train and optimize each module individually while
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ensuring an effective combination later using the modular arbitration architecture.

5.1.2 Shared Implementation Aspects

All agents share the following implementation aspects to ensure compatibility with the
arbitration architecture.

Each agent is trained within the Isaac Sim simulation environment with Isaac Lab as
training framework and skrl for the RL algorithm implementation. A simplified 4-wheeled
model was generated for the robot, representing the Hiwonder JetAuto. The original
JetAuto robot uses mecanum wheels, which caused issues when running the simulation
using the GPU and its respective solver. All four wheels of the model are steerable, each
using the same steering angle. This allows us to recreate most of the characteristics of
mecanum wheels but not sideways driving.

Table 2 lists the used simulation parameters. The time interval between each simulation
step is defined by dt. Decimation defines the ratio of simulation steps to control steps,
meaning after how many simulation steps the RL algorithm receives a new observation.
The rendering interval defines after how many simulation steps the visualizations are
updated.

Table 2. Isaac Sim simulation parameter

Parameter Value
dt 1/60s
decimation 4
rendering interval 1
device CUDA

The training is done using PPO for all agents due to its proven robustness and successful
application for robotic applications. The default algorithm configuration parameters and
their connections to the fundamental equations are listed in Table 3. Changed parameters
are specified in the respective sections. Each agent uses separate policy and value networks.
State inputs for modules whose value network is used for action cross-evaluation are
limited to environmental observations which are also accessible during interference.
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Table 3. Default configuration parameters PPO by skrl

Parameter Value Explanation
rollouts 16 Number of trajectories gathered before update
learning epochs 8 Number of passes over collected trajectories for updat-

ing the policy and value networks
mini batches 2 Trajectories are divided into mini-batches for during

learning, more memory efficient and possible more
stable training

discount factor 0.99 Equals gamma γ
lambda 0.95 GAE parameter for advantage estimate, see equa-

tion (3.31)
learning rate 0.001 Step size for parameter updates θ, see equation (3.23)
grad norm clip 0.5 Limits size of gradient during policy updates
ratio clip 0.2 ϵ parameter for clipped surrogate objective, see equa-

tion (3.29)
value clip 0.2 Limits maximum change of estimated value
entropy loss scale 0.0 Entropy for increased exploration

Different domain randomizations, such as randomized lightning and random noise for the
sensor inputs, are applied to the simulation to improve its transfer to the real-world robot.

Both modules use the same continuous action space with two values. The first represents
the linear velocity, and the second the angular position of the four wheels. This allows the
arbitration agent to use cross-evaluation for each action as additional input.

5.2 Object Detection and Approach Module

5.2.1 Design Requirements

The object detection and approach module must be able to identify the specified object in
the environment and drive towards it. The main focus is a robust detection algorithm under
varying distances, orientations, and lighting conditions. This was achieved by training a
separate object detection network, see Section 5.2.2. A secondary goal is a smooth driving
behavior. The technical implementation of the module is presented in Section 5.2.3 and
the training and evaluation in Section 5.2.4.

Based on the task for this module and the supplied sensor data, the agent’s expected learned
strategy is to rotate into one direction at the starting position until the cube is detected and
then drive towards it.
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5.2.2 Fine-tuned Object Detection Network

Training a reliable end-to-end object detection network using RL was not feasible due
to the need for a large amount of training data. This is connected to the known issues of
sample inefficiency and sparse rewards. The feedback received for the agent is too sparse
to supply meaningful updates for the object detection network. While training the object
detection network together with the agent was successful if a bigger cube was used and
no other objects or changed lightning conditions were present, a reliable detection under
realistic conditions required a separate trained network.

The object detector is trained using supervised learning with labeled data generated within
the simulation environment. This fine-tuned network classifies whether the cube is in the
current image and supplies its position, which allows the RL agent to focus on learning
the control policy instead of having to learn basic image recognition, which is especially
troublesome with changing cube orientations, distances and changed lighting conditions.

For achieving an efficient and fast object detection network, the pre-trained object detection
network Faster R-CNN [73] was used as a base model. This model excels at handling
objects at different scales and positions due to using Region of Interest (RoI) pooling
and region proposal networks. The first layer is a CNN for feature extraction, outputting
feature maps. Those feature maps are analyzed by the region proposal network, which
outputs a set of regions of interest, and the RoI pooling, which extracts the feature vectors
from those regions. The object detection network then uses the extracted features to
classify and regress the bounding boxes. For the backbone, the mobile phones optimized
MobileNetV3-Large FPN was used, which allows for a faster computation compared to
bigger models like ResNet-50-FPN [74].

The network was fine-tuned to accurately classify and detect the red cube by replacing the
final classification layer with a new layer with the two output classes no-cube and cube.
The fine-tuning was achieved using 1, 000 images, with and without a cube, generated
within the simulation environment under varying lighting conditions and different distances
and orientations. The images and cube positions were labeled using Label Studio [75].
A random color jitter was applied to each image during training to improve the stability
(brightness = 0.6, contrast = 0.4, saturation = 0.4, hue = 0.2). See Table 4 for the used
training parameter.
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Table 4. Training parameter fine-tuned Faster R-CNN

Parameter Value

Optimizer
type: SGD
momentum: 0.9
weight decay: 0.0005

Learning rate
initial: 0.005
step scheduler: num_epochs//2

Epochs 25

The trained network has 5 neurons as output layer, one for the classification task with the
confidence score and the other four for the normalized bounding box, specifying the x and
y coordinates and width and height of the detection area.

5.2.3 Technical Implementation

The state inputs for the agent are the last six detection results of the object detection network
and the last four executed actions. The last six detection results are used to ensure a more
robust cube detection and a memory if specific actions or failed identifications resulted in
losing the cube. Supplying the last four actions ensures that the actions by the agent are
more steady, resulting in smoother driving behavior. Also, it ensures that the robot knows
in which direction it is rotating when searching for the cube. Detection and action history
are initially individually processed, both in their own two-layer feed-forward network.
Their outputs are combined into an additional two-layer feed-forward network, producing
the policy and value network outputs. Figure 3 displays the full network architecture which
is used as separate networks for the policy and value functions.

Figure 3. Neural network architecture object detection agent
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The agent receives multiple rewards and penalties for guiding its behavior. The main
reward is for reaching the cube, which is achieved when the distance to the cube is below
0.2m, equation (5.1). Additionally, it receives a dense reward or penalty based on the
change of distance to the cube, equation (5.2). If the sum of the generated actions change
by more than a specific threshold from the previous ones, a penalty is given proportional
to this change, see equation (5.3). This ensures a smoother driving behavior. An additional
reward or penalty is given for the driving direction to encourage the robot to rotate while
driving forward when searching for the cube, equation (5.4). The total reward is the sum
of all rewards and penalties, see equation (5.5).

Rgoal = (dcube(t) < 0.2) · 3.0, (5.1)

Rdist = (dcube(t− 1)− dcube(t)) · 2.0, (5.2)

Raction = (|a(t)− a(t− 1)| > 0.25) · −0.015, (5.3)

Rdirection = alinear(t) · 0.04, (5.4)

Rtotal = Rgoal +Rdist +Raction +Rdirection. (5.5)

For the PPO algorithm the default parameters (see Table 5) were adjusted according to
Table 5.

Table 5. Object detection module PPO training parameters

Parameter Value
mini batches 8
rollouts 32
learning epochs 4
discount factor 0.95

5.2.4 Training and Evaluation

The object detection agent is trained using 32 parallel environments, with the robot
spawning in the middle of the room with a random orientation and the goal cube with
a randomized distance and orientation around it. Based on the agent’s success rate, the
cube’s distance towards the robot is steadily increased, which is a usage of curriculum
learning. Additionally, the lighting conditions are randomized to increase the robustness of
the detection. The simulation environment is displayed in Figure 4, resembling a room with
furniture at the walls. See Figure 4a for a top-down view and Figure 4b for the first-person
view using the robot’s camera. All objects are placed out of reach for the robot as they
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only serve to increase the complexity for the object detection, not as obstacles.

(a) Single simulation environment (b) Robot’s point of view

Figure 4. Object detection agent simulation environment

The tracked training process using TensorBoard is displayed in Figure 5. It can be seen
that the agent successfully learned the task over time and achieved a stable performance
after ≈ 30 k time steps. This is indicated by the mean total reward per episode staying
steady and the mean time steps per episode decreasing.

(a) Mean total reward per episode (b) Mean time steps per episode

Figure 5. Object detection agent training progress TensorBoard
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Evaluation
While initial training runs had issues with the agent just driving at the same spot in a circle,
the agent successfully learned to find the cube after adjusting the rewards. The learned
strategy corresponds to the expected behavior defined in the design requirements.

Table 6 contains the evaluation metrics of the trained agent. It has to be mentioned that
the success rate is not the most informative value for this task alone, as the only way to
fail is by reaching the time limit of 20 s, which barely happens once the task is learned.
Reducing the time limit more would just result in the random position of the cube deciding
if the episode is a success or not. Nonetheless, the agent successfully learned the task and
can now be used for the arbitration agent and transferred to the real robot. Because of the
decimation of 4, only every 4 time steps a new observation is evaluated by the agent.

Table 6. Test results object detection module

Metric Value
Total episodes 1, 000
Total time steps 381, 456
Total observations 95, 364
Average observations per episode 95.36
Average time per episode 6.36 s
Average initial cube distance 1.62m
Task success rate 98.60%
Action deviation above 0.25 6.81%
Action deviation above 0.5 2.56%
Action deviation above 0.75 2.24%

5.3 Environment Exploration Module

5.3.1 Design Requirements

The environment exploration module needs to learn to explore an unknown environment
while avoiding obstacles, which requires a certain level of understanding about one’s
position and surroundings. For this, a lidar sensor and depth camera is used. The depth
camera is used for obstacle avoidance, while the lidar data is used to generate an occupancy
grid map to supply exploration awareness to the robot. The resulting action output should
result in smooth and efficient motion planning.

Based on the task and available sensor data, the basic strategy the agent and, therefore,
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the neural network should learn is as follows: Using the depth image, the steering output
action should be adjusted so that the robot drives towards an area without obstacles. If
the area ahead is a wall, the velocity action should be adjusted to stop the robot or drive
backward. The lidar data will be turned into a map representation, allowing the agent to
recognize unknown areas and adjust the steering output accordingly to drive toward them.

5.3.2 Technical Implementation

As state inputs for the exploration module, the lidar and depth camera sensor data is
processed.

The lidar measurements are used to generate a robotic centered Occupancy Grid Map
(OGM) of size 256× 256. The resolution of the map is dependent on the selected room
size. Using a square room with a length of 8m results in a length of each grid cell of
lcell = lroom ∗ 2/Nogm = 0.0625 m. The room size is multiplied by two because of the
robotic-centered map; this ensures no loss of information when the robot approaches the
walls of the room. Using a robotic-centered perspective ensures a consistent frame of
reference and simplifies learning. The OGM cells are transformed into probabilities to
normalize the values into the range [0, 1] and used as state input for a CNN. The CNN
should learn to extract features like rooms and open areas. The detailed architecture of
the OGM CNN is shown in Figure 6, its integration in the overall network architecture in
Figure 11.

Figure 6. Occupancy grid map processing network architecture

A depth image from the RGB-D camera is used for obstacle avoidance, with an initial
resolution of 320 × 240, and is transformed in multiple steps as depicted in Figure 10.
For improving the robustness of the feature detection, noise and random black patches
is added to the the initial depth image, Figure 10a. The black patches resemble capture
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errors and reflections as found in the real world. For every fifth image, the count (2 to 6)
size ([5 to 20]× [30 to 100] px), and location of patches are randomized, Figure 10b. The
Gaussian noise is applied to the full image with an increasing standard deviation based on
the distance measured, Figure 10c.
The image values are then clipped to a maximum depth of 3m to improve the close-range
perception and normalized to the range [0, 1]. Now, a horizontal slice of 320× 16 is taken
to greatly reduce the input size while maintaining the relevant obstacle information and
used as input for the depth CNN. Figure 10d shows 15 sequential image slices, resembling
the sequence length used by the following RNN. The network architecture of the CNN
is shown in Figure 7. For the depth CNN residual blocks are used, first introduced with
ResNet, which skip connections between layers to improve the gradient flow. This helps
reduce the vanishing gradient problem, allows easier reuse of features, and allows the
design of deeper networks [76]. The depth CNN output is then flattened into a 1D vector,
processed by a fully connected layer, and analyzed by an Long Short-Tem Memory (LSTM)
for temporal dependencies. Using an LSTM helped the agent not get stuck when oriented
into a corner or taking a too-steep curve and colliding with the obstacle sideways. This
network is integrated into the overall network architecture shown in Figure 8.

Figure 7. Depth image processing network architecture

As an additional component of the multi-stream network architecture, the last 8 actions and
5 robot orientations, normalized to [0, 1], are used as inputs into a two-layer feed-forward
network. The output of all three networks is concatenated and processed by a three-layer
feed-forward network. The resulting output is used to select the robot’s actions. The usage
of multi-stream networks allows for efficient feature detection and processing of different
sensor inputs. Figure 8 shows the final network architecture used by the exploration agent,
implemented separately by the policy and value function.
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Figure 8. Exploration agent network architecture

For training the agent, multiple rewards and penalties are used to guide its behavior. The
main reward is the exploration reward, which is calculated using the discovery percentage
of the OGM map, equation (5.6), and the main penalty is if the robot collides with an
obstacle, resulting in the episode being aborted, equation (5.7). To encourage smooth
driving behavior, the agent receives a penalty if the current actions differ by more than a
specific threshold from the previous ones, equation (5.8). For preventing strategies like
just driving forward and backward or in circles, which prevents collisions and therefore a
high penalty, one additional reward and one penalty are used. A reward is given for driving
forward, equation (5.9), which also ensures that the robot correctly associates the depth
images with obstacle avoidance. A penalty is given if the location over the last 50 time
steps did not change enough, penalizing the driving in circles, see equation (5.10). The
total reward is calculated using equation (5.11).

Rexplo = [E(t)− E(t− 1)] · 0.25, (5.6)

Rcoll = −1.25, (5.7)

Raction = (|a(t)− a(t− 1)| > 0.25) · −0.015, (5.8)

Rforward = avelo(t) · 0.04, (5.9)

Rloc = (p(t− 50)− p(t) > 0.1) · −0.1, (5.10)

Rtotal = Rexplo +Rcoll +Raction +Rforward. (5.11)

For the PPO algorithm the default parameters (see Table 5), were adjusted according
to Table 7. The used learning rate scheduler KLAdaptiveRL adjusts the learning rate
dynamically based on how much the policy is changing. For this it measures the Kullback-

53



Leibler (KL) divergence between the last and current policy distribution. If the policy
change is greater then the kl threshold, the learning rate is reduced by lr factor, resulting in
more conservative updates.

Table 7. Exploration module PPO training parameters

Parameter Value
mini batches 32
rollouts 480
learning epochs 4
learning rate 1e− 4

learning rate scheduler
KLAdaptiveRL

kl threshold 0.008
lr factor 1.2

5.3.3 Training and Evaluation

The exploration agent is trained using 16 parallel environments. This limit is caused by
Isaac Sim’s replicator crashing if more than that are used. The simulation environment
is a room containing multiple obstacles with different shapes and orientations. Figure 9a
shows the simulation environment of a single agent, Figure 9b the arrangement of multiple
ones. At the beginning of each episode, the robot spawns at a random location. For this
simulation, no specific lightning or material is used.

(a) Single environment
(b) Multiple environments for parallel com-
puting

Figure 9. Exploration agent simulation environment

A sample for a depth image obtained during simulation and its transformation to the final
slices used for the depth CNN input is shown in Figure 10. Figure 11 shows three OGM
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maps over time, which are used as input for the OGM CNN. The maps show the exploration
progress of the agent, with white representing explored cells, black occupied and gray
unknown.

(a) Initial depth image (b) Added random black areas

(c) Added random noise (d) Series of 15 slices

Figure 10. Transformation process of initial depth image to slices for network input

Figure 11. Exploration agent occupancy grid map over time

Figure 12 shows the tracked training progress using TensorBoard for ≈ 105 k time steps.
The mean total reward per episode is shown in Figure 12a, and the mean time steps per
episode in Figure 12b. Based on the mean total reward, the best results were obtained with
the learned progress at 40 k time steps, meaning this agent will be used for the following
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evaluations. The mean reward does not stay steady at the maximum obtainable reward and
the mean time steps per episode also show a lot of fluctuation. This indicates that the agent
was maybe not able to learn an optimal policy and further adjustments to the state inputs,
network architecture or learning parameters might give a better, more stable result.

(a) Mean total reward per episode (b) Mean time steps per episode

Figure 12. Exploration agent training progress TensorBoard

Evaluation
The agent learned successfully to drive around the map while avoiding obstacles. Table 8
shows the evaluation metrics of the exploration agent. The agent was able to explore on
average 56% of the map, with a maximum of 86.75% and managed to finish 60.73% of the
episodes without colliding. While those results could be better, especially the percentage
of episodes finished without colliding, it confirms the basic functionality of the agent.

Table 8. Test results exploration module

Metric Value
Total episodes 1, 159
Total time steps 597, 936
Average time steps per episode 520.9/600
Average time per episode 34.73 s
Average discovery percentage 56.9%
Average discovery percentage w/o colliding 62.5%
Max discovery percentage 84.7%
Count collisions 355
Task success rate 69.37%
Average time step of collision 346.72
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While the quantitative evaluation of the exploration agent gives first positive results, the
average discovery percentage of only 56.9% leaves room for improvement. One issue
seems to be that the agent still collides too many times with obstacles, reflected by the
task success rate of 69.37%. But even when just measuring episodes without collisions
is the average discovery percentage only 62.5%, a difference of ≈ 22% to the maximum
achieved discovery percentage.
While the low success rate is caused by collisions with walls when the robot tries to turn
around them, touching the wall with its inner side, the low discovery percentage could be
due to the lidar data not being used effectively for guiding the robot towards undiscovered
areas. Figure 13 shows exemplary the path traveled during two different episodes. The
path in Figure 13a is a well chosen path with a high discovery rate, while in Figure 13b the
robot got stuck driving in circles for quite a while. It remains questionable if the lidar data
and, thereby, the OGM positively influenced the exploration success.

(a) Sample path robot A (b) Sample path robot B

Figure 13. Exploration agent traveled path samples

5.4 Arbitration Agent Integration

5.4.1 Technical Implementation

The arbitration agent uses the internal neural network representations from the above-
mentioned modules as state inputs. This can include the value estimates, policy network
log probabilities and cross-evaluations of the other module’s actions using the value or
policy network. For the following training and evaluation, the last 3 values are used
as state inputs for a temporal context, resulting in a state input dimension according to
equation 4.4. Additionally, the last 5 agent selections are included in the state inputs. For
evaluating the usefulness of the suggested state inputs, especially the log probabilities and
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cross-evaluations, the following combinations of possible state inputs are tested:

■ value estimates with value cross-evaluation: Svce, see equation (5.12)
with a dimension of dim = 3× 4 = 8

■ value estimates with value cross-evaluation and minimum of cross-evaluated actions
using log probs: Svmp, see equation (5.13)
with a dimension of dim = 3× 6 = 18

■ value estimates with value cross-evaluation, cross-evaluated actions using log probs
and ratio of policies: Svpr, see equation (5.14)
with a dimension of dim = 3× 12 = 36

Svce =
{
V0, V1, V

ce
0,1, V

ce
1,0

}
, (5.12)

Svmp =
{
V0, V1, V

ce
0,1, V

ce
1,0,min(πce

0,1),min(πce
1,0)

}
, (5.13)

Svpr =

{
V0, V1, V

ce
0,1, V

ce
1,0, π

ce
0,1, π

ce
1,0,

π0

π1

}
. (5.14)

Figure 14 shows the neural network architecture using a three-layer feed-forward network.
The arbitration agent has a discrete action space with two possible actions representing
the module selection. For this a categorical policy is used, which means the actions are
sampled from a categorical, not Gaussian distribution.

Figure 14. Neural network architecture arbitration agent

For the reward function, some of the reward functions of the individual modules are re-used
for creating a dense reward function, which ensures that each module will be selected. This
includes the exploration agent’s exploration reward and collision penalty, equations (5.6)
and (5.7). Additionally, the object detection agent’s goal reached and distance change
rewards are used, equations (5.1) and 5.2, with the restriction that the distance change
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reward is only given if the cube is visible. To prevent excessive module swapping, a penalty
is given for every changed module selection, equation (5.15). The total dense reward is
calculated as shown in equation (5.16).

Rswitch = (at ̸= at−1) · −0.01, (5.15)

Rdense = Rexplo +Rcoll +Rgoal + (Rdist if cube visible) +Rswitch. (5.16)

The PPO algorithm is used with its default parameters, see Table 5.

5.4.2 Training Strategy

The arbitration agent is trained using 16 parallel environments, with the robot and cube
spawning at random room locations. The pre-trained exploration and cube detection
modules are used as state inputs with frozen weights. At each time step, both modules
process the environment using their specific sensors and generate the state inputs needed
for the arbitration agent. Based on those values, one of the modules is selected, the action
is executed, and the simulation advances to the next simulation step.

In the following, the state inputs for the arbitration agent are analyzed in detail using one
episode as sample. Figure 15 shows the distance to the cube and the classifier value for
the cube detector. Those values are not supplied to the agent, but help to understand what
is happening during this episode. In the beginning, no cube can be seen by the robot’s
camera up to the time step ≈ 420, indicated by the classifier value. Figure ?? shows the
value estimates of the exploration and object detection agent. In can clearly be seen that,
while no cube can be seen by the robot, the object detection agent’s value estimate keeps
the same value. Once a cube is detected this value rises. Using the policy networks log
probability function for cross-evaluation allows to compare how similar the actions of each
module are, see Figure 17. Here a higher value indicates that the action is safe to execute.

Figure 15. Arbitration agent sample episode cube distance and cube classifier
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Figure 16. Arbitration agent sample episode value estimates

Figure 17. Arbitration agent sample episode cross-evaluation of actions using log probs

The tracked training process for all three state-input variations using TensorBoard is shown
in Figure 18. The mean total reward per episode shows no real progress, indicating an
issue with the learning.

5.4.3 Performance Evaluation

For evaluating the performance of the arbitration agent and the different combinations
of state inputs, each agent is tested in three different environments. Those are the object
detection environment cube, the exploration agent environment Exploration and a mixed
environment, containing obstacles and a cube, multi.

Inside the object detection environment, see also Figure 4a, the robot needs to find the cube
as fast as possible. Obstacles are only placed near the walls and the walls itself. The test
results are shown in Table 9. It can be seen that the agent vce and vmp have issues finding
the cube. This can be attributed to the high usage of the exploration module, while the vpr

agent has a very good success rate with a more balanced share of modules active. The
challenge with this environment for the agents is that by only activating the exploration
module in the beginning, the robot drives towards the room wall and then follows it,
resulting in a time out before the cube becomes visible for the object detection module.
While the vpr agent achieved an acceptable result with a task success rate of 78.80% and
an average of 155.3 time steps per episode, it is still notably below the performance of the
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(a) Mean total reward per episode

(b) Mean time steps per episode

Figure 18. Arbitration agent training progress TensorBoard

object detection agent with its task success rate of 98.60% and an average of 95.36 time
steps per episode.

Table 9. Test results arbitration agent in cube only environment

Metric Agent vce Agent vmp Agent vpr
Total episodes 376 450 769
Total time steps 117, 546 119, 107 119, 422
Average time steps per episode 312.6 264.6 155.3
Task success rate 13.83% 30.44% 78.80%
Exploration module active 95.36% 92.1% 47.5%
Object d. module active 4.6% 7.8% 52.49%
Module changes 6.36% 2.3% 35.8%

Running each agent in the exploration environment presents a different challenge. Here
the optimal approach is to select the exploration agent all the time to achieve a maximum
discovery percentage without colliding, see Table 10 for the test results. In this environment
the agents vce and vmp were most successful, with task success rates of 70.12% and
75.22% respectively. The vpr agent seems to use the object detection module too much,
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resulting in a worse performance of only 27.93%. Surprisingly, the task success rates and
average discovery percentages of the first two agents are even better than the task success
rate of the exploration agent, indicating that the occasional module change has a positive
effect on exploration.

Table 10. Test results arbitration agent in exploration only environment

Metric Agent vce Agent vmp Agent vpr
Total episodes 241 226 426
Total time steps 116, 379 115, 087 118, 423
Average time steps per episode 482.9 509.23 277, 9
Average discovery percentage 59.25% 58% 36%
Average discovery percentage w/o colliding 68.3% 63.5% 44.25%
Max discovery percentage 89.3% 89.1% 67%
Task success rate 70.12% 75.22% 27.93%
Exploration module active 98.35% 99.09% 74.1%
Object d. module active 1.6% 0.9% 25.9%
Module changes 2.28% 0.72% 22.6%

The last environment for evaluation is the multi environment, representing the initial
robotic task. Here, the agent has to explore its surrounding while avoiding obstacle, but can
also find the red cube in random locations. The evaluation metrics are shown in Table 11.
For this task the vpr agent was the most successful in finding the cube, while also achieving
a satisfying average discovery percentage of 56.7% and finishing 92.87% of all episodes
without colliding.

Table 11. Test results arbitration agent in mixed environment

Metric Agent vce Agent vmp Agent vpr
Total episodes 431 1439 421
Total time steps 117, 718 118, 733 118877
Average time steps per episode 273.1 82.5 282.37
Average discovery percentage 60.84% 35.1% 56.7%
Episodes finished without collision percentage 58.24% 30.30% 92.87%
Cube found percentage 28.54% 30.37% 67.93%
Exploration module active 96.74% 75.14% 62.68%
Object d. module active 3.2% 24.86% 37.31%
Module changes 4.2% 5.98% 29.2%

An important observation considering the use of value estimates was made using the

62



arbitration agent in different environments. In every environment, the min and max value
of the value estimates changed, see Table 12. The change is particularly high for the
exploration module. This presents a notable challenge of using any value estimates as
state inputs. While the value estimates can be normalized to a range of [0, 1], as also done
in this approach, this would prove challenging in a real-world application with no clear
environment transitions to indicate that the bounds have to be recalculated.

Table 12. Module value estimate ranges in different environments

Environment
Module Value estimate Cube Exploration Multi

Object detection
Min 0.0 0.0 0.0
Max 5.92 4.8 5.99

Exploration
Min −2.4 −1.55 −0.76
Max 1.17 1.13 1.02
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6. Real-World Implementation and Evaluation

As a final validation of the modular agent approach, we conduct real-world experiments
using the Hiwonder JetAuto Pro robot platform. Each sub-task module and the arbitration
agent are transferred directly to the robot without additional training.

The experimental setup with the used hardware, environmental scene, and the system
integration and deployment are described in Section 6.1. The results are analyzed in 6.2
by evaluating each module’s performance and comparing it with the simulation results.
As a conclusion, the results are discussed and key insights are worked out for possible
improvements in 6.3.

6.1 Experimental Setup

6.1.1 Hardware Platform and System Architecture

The experiments were performed on the JetAuto Pro robot platform from Hiwonder, a
four-wheeled mobile robot with mecanum wheels and various sensors, see Figure 19. This
experiment uses the SLAMTEC A1 Lidar, the 3D RGB-D camera Orbbec Astra, and a
real-time IMU. The system is powered by an NVIDIA Jetson Nano, which runs Ubuntu
18.04 and ROS Melodic for sensor communication and control [1]. The decision for the
robot platform was based on the wide range of available sensors, the already existing ROS
sensor integration, and the reasonable price.

6.1.2 Environmental Setup and System Integration

The experiments were conducted in a controlled indoor environment of 4 × 3.5 meters
with furniture at each wall, including a hallway, see Figure 21. The trained agents were
executed on an external computer as a ROS node, which subscribed to the required sensor
topics and published the linear and angular velocity commands. The RGB-D images are
scaled down to 320× 240 pixels before being processed by each agent, the lidar scan is
transformed from a point cloud to the OGM and the IMU data is transformed into euler
coordinates.
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Figure 19. JetAuto Pro robot from Hi-
wonder [1]

Figure 20. Robot model used in simula-
tion

(a) Without obstacles (b) With obstacles

Figure 21. Real-world test environments

6.2 Performance Evaluation and Comparison

Each of the three agents is evaluated separately in the real-world environment by executing
similar tasks as in the simulation. Where possible, results are compared to the simulation
results to evaluate the sim-to-real transfer capabilities of the agents.
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6.2.1 Object Detection Agent Sim-to-Real

First, the fine-tuned object detection network is tested under real-world conditions. Fig-
ure 22 shows the detection result for different scenarios. The prediction accuracy varies
depending on the distance between camera and cube. With the minimum distance of
0.7m, resulting in the robot chassis being 25 cm distanced from the cube, the classification
accuracy is around 63%. At 1.0m distance, see Figure 22a, the classification accuracy
increases to 77% and reduces to 35% at 1.5m and 11% at 2.0m, see Figure 22b. If
multiple cubes with different colors are present, the network still correctly recognizes the
red cube with a classification certainty of up to 87%, with the other two cubes having a
value of 65% and 61% from left to right, see Figure 22c. Adding other red objects to the
scene, see Figure 22d, results in the network still correctly identifying the red cube with a
classification certainty of 80% and no classifications for the other red objects. This shows
that the network’s main feature for the detection is the shape of the object, not so much the
color of it, which becomes an issue if other objects but the cube are within the scene. For a
more reliable detection, the network could be re-trained with more diverse objects in the
scene, to ensure that the color has a stronger influence on the classification.

(a) Red cube with detection box, 1m distance (b) Red cube with detection box, 2m distance

(c) Multiple cubes with detection box around
red cube

(d) Multiple red objects with detection box
around red cube

Figure 22. Object detection network detection results real-world

The second evaluation is done by running the object detection agent in the real-world
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environment while measuring certain metrics. For this the agent is tested 20 times with
a random orientation and the cube in a random location with a distance of 1.6m, which
equals the average distance of the simulation test results. Every 15Hz a new observation
is analyzed by the agent, with the action generation taking on average 28ms. Table 13
shows the test results and the comparison to the simulation. If no other objects were
mistakenly classified for the red cube, the agent always successfully detected and reached
the cube. Only if other objects were mistaken for the cube the agent failed. This confirms
the results from above that the object detection network needs to be more robust against
other objects in the scene. While the average time per episode is three times higher than in
the simulation, the real-world robot also drives four times slower than the simulation robot.
The action change rate shows very similar results for the real-world and the simulation.

To summarize, the real-world transfer of the agent was successful. For a more robust
detection, especially with more obstacles in the scenery, the object detection network needs
to be improved.

Table 13. Real-world test results object detection agent

Metric Value Compared to simulation
Total episodes 20 2%
Average initial cube distance 1.6m 100%
Average time per episode 20.15 s 316%
Task success rate 90% 91.3%
Average processing time per observation 28ms -
Action difference above 0.25 8% 117%
Action difference above 0.5 2.7% 105%
Action difference above 0.75 1.8% 80%

6.2.2 Exploration Agent Sim-to-Real

The exploration agent was evaluated in the test environment with obstacles. Due to issues
with the lidar and localization, only a depth image based obstacle avoidance was evaluated,
limiting the comparability with the test results from the simulation. Basic comparisons can
still be made, as the same reward functions were used for the training. Figure 23 shows two
exemplary depth images from the test environment. It can be seen that those real-world
depth images contain multiple black spots, which are areas where the depth sensor was not
able to measure a distance. Those were replicated in the simulation by the random black
areas added to the depth images, see Figure 10.
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Figure 23. Real-world depth images

Table 14 shows the obtained test results, with the agent driving through the environment
till colliding with an obstacle. The agent was mostly successful in identifying and avoiding
obstacles, with an average time till collision of 61.7 s. At the same time this only translates
to a traveled distance of 5.5m on average. This is mostly caused by an uncertain behavior
of the agent, with lot of stopping and slow driving, further amplified by the slow processing
time of 95ms. Additionally, due to only analyzing a sliced section of the depth image, the
robot can only avoid obstacles of a certain height.

Table 14. Real-world test results exploration agent

Metric Value
Total episodes 20
Average time till collision 61.7 s
Average distance traveled 5.5m
Average processing time per observation 95ms

6.2.3 Arbitration Agent Sim-to-Real

The arbitration agent is evaluated in three different real-world scenarios:

■ Environment without obstacles but cube
■ Environment with obstacles¸
■ Environment with obstacles and cube

For the agent the vpr version is used, as it achieved the best results in the simulation. This
means the value estimates with value cross-evaluation, cross-evaluated actions using log
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probs and ratio of policies are used as state inputs, see equation (5.14). As already noted in
the performance evaluation of the simulation, Section 5.4.3, the value estimate ranges differ
a lot depending on the environment. This is an even bigger issue in the real-world scenario,
with the exploration module value estimates now being in a range from [−0.23, 0.61]

and the object detection modules value estimates in a range from [0.365, 1.272]. In the
simulations the value ranges were [−2.4, 1.17] and [0.0, 5.99] for the exploration and object
detection module respectively, see Table 12. This required adjusting the min and max
values for the normalization function of the arbitration agent.

Table 15 shows the real-world test results of the arbitration agent in a obstacle free
environment with the cube in a random location. The task success rate was 50%, with the
object detection module being reliable selected once the cube was visible. The module
selection and activity share of the respective modules is not directly comparable to the
simulated results, due to the usage of an exploration module without lidar. The much
higher average processing time of 257ms shows the increased computational requirement
due to 2 value networks and 3 policy networks being calculated.

Table 15. Real-world test results arbitration agent cube environment

Metric Value
Total episodes 10
Average initial cube distance 1.6m
Average observations per episode 412
Average time per episode 130 s
Task success rate 50%
Average processing time per observation 257ms
Exploration module active 80.1%
Object d. module active 19.8%
Module changes 21.3%

The results for the obstacle environment are shown in Table 16. It can be seen that the
results are significantly worse than for the individual exploration agent. This is caused by
the object detection module classifying parts of the objects as a cube, resulting in excessive
module switching and early collisions.
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Table 16. Real-world test results arbitration agent obstacle environment

Metric Value
Total episodes 10
Average time till collision 23.3 s
Average distance traveled 2m
Average processing time per observation 252ms
Exploration module active 48.65%
Object d. module active 51.34%
Module changes 16.3%

Similar results are observed in the multi environment, see Table 17. Due to too many
wrong classifications by the object detection module, the robot barely moves and, if it does,
collides quickly with an obstacle.

Table 17. Real-world test results arbitration agent multi environment

Metric Value
Total episodes 10
Average time till collision 33.1 s
Cube found percentage 20%
Average distance traveled 3m
Average processing time per observation 246ms

6.3 Discussion and Insights

6.3.1 Key Challenges and Solutions

The agents’ designs and validation within the simulations, followed by the real-world trans-
fer, exposed multiple challenges with each agent and the proposed arbitration framework.

While the object detection agent achieved a very good task success rate in the simulation
and real-world, it showed clear limitations if other objects with a similar shape to the red
cube were present in the environment. The solution for this would be further training of
the fine-tuned object detection module. An interesting aspect would be to validate that
changing the object detection module does not require retraining the object detection agent.

For the exploration agent, multiple challenges arise. The training never achieved the

70



same stable results as the object detection agent, indicating problems with the network
architecture, the state inputs, or the algorithm parameters. A possible solution could be
further modularizing this agent to allow a separate training of a lidar and depth image
module, possibly by using frontiers and a way-point-based approach for the navigation.
This would allow for easier error detection and targeted improvements. Furthermore, the
real-world lidar data was much more noisy than expected, resulting in issues with the
localization needed for generating the OGM.

The arbitration agent’s main challenge is an effective approach for normalizing the value
estimates within changing environments. The only applicable solution would be to use a
running min-max scaler, resulting in additional challenges for correctly setting the window
size. Additionally, the learning process did not arrive at a stable solution. While the
non-optimal integrated modules partly caused this, it also indicates that the used state
inputs are not sufficient to achieve an optimal policy.

6.3.2 Lessons Learned

The main lesson learned is that modularity is the most reliable and stable approach
to reinforcement learning and neural networks. This applies to the proposed modular
framework and to each agent separately. Individual verifiable modules allow for continuous
development progress and subsequent goal-oriented improvements. The fine-tuned object
detection network is a perfect example of this approach, which could also be applied to
multiple other components.

Transferring the trained agent from the simulation to the real world generated mixed results.
While the initial transfer was surprisingly simple, and it was easy to obtain the first results,
refining those into a reliable system by adjusting the simulation parameters proved very
challenging. This clearly shows the limitations of zero-shot transfers.

6.3.3 Recommendations for Future Implementations

While using already existing actor-critic algorithms for combining modules is an interesting
and easily repeatable approach, it has clear limitations regarding the obtainable state inputs.
For future implementations trying to use the internal neural network representations of
the modules for the arbitration, some additional value for rating the action certainty of
each module should be considered. This could be implemented by including the standard
deviation as a learned parameter to the policy network.
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Nonetheless, a more feasible approach for the arbitration, especially in a real-world
scenario, is to use environment observations as state inputs. While this comes with
disadvantages like increased state dimensions and a more difficult integration of new
modules, the resulting agent should be more reliable. By relying on the other modules
networks for the selection, any imprecision or errors in a module are passed on to the
selection logic.
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7. Conclusion and Future Work

7.1 Research Questions and Hypotheses Revisited

The research questions outlined in Section 1 are now revisited.

1. How effectively can an arbitration agent, utilizing only policy and value network
outputs and cross-evaluation of actions, combine multiple specialized reinforcement
learning agents to solve complex tasks in robotic applications?

Our research showed that the internal neural network representation, meaning the policy
network log probabilities and value function estimates, provides mostly sufficient informa-
tion to the arbitration agent for solving the original task. Based on those values, the agent
was able to select the appropriate module in different situations. An important precondition
is that the environment in which the arbitration agent was trained is similar to the test
environment.

2. How does the performance of the combined system compare to that of the individual
agents?

The comparison of the performance of the combined system was very dependent on the
analyzed task and the test environment. While the object detection modules’ performance
was deprecated in the combined approach, the exploration agents’ performance slightly
increased.

3. How successful can this approach be transferred to a real-world robotic system?

While the basic transfer of the modules was successful, the specific arbitration framework
using the module’s value estimates as state inputs does not seem to be a reliable approach
for real-world robotic systems. Due to the high variance in value estimates based on the
environment and no practical solution to normalize those values in dynamic settings, a
value estimate-based approach does not seem applicable to a real-world setting.

This results in the following conclusions for the hypotheses stated:

■ A modular arbitration framework using actor-critic agents and arbitration based on
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policy and value network outputs can effectively address complex tasks in robotic
applications.

– Yes, but only in a static environment. Any greater changes in the environment
affecting the value estimates of the modules will degrade the performance.

■ Cross-evaluation of actions using the other modules’ policy and value networks will
improve the arbitration agent’s decision-making.

– Yes, cross-evaluation was a useful additional input for the arbitration agent,
improving its decision-making.

■ No modifications to the used algorithm are required to implement the proposed
framework.

– Yes, the arbitration framework was implemented without any modifications to
the PPO algorithm.

■ The performance of the combined system will be comparable to that of the individual
agents.

– Inside the simulation, the performance was comparable to the individual agents.
At the same time, it also became clear that the proposed arbitration mechanism
will not result in an optimal solution but will always cause some unnecessary
module changes.

■ This approach can be successfully transferred to a real-world robotic system.
– No, the value estimates deviate too much on a real-world system. Additionally,

any uncertainties by the integrated modules are forwarded to the arbitration
agent, making the decisions unstable.

To summarize, the basic arbitration framework approach works but is unsuitable for a
real-world robotic system.

7.2 Critical Analysis

Apart from the arbitration framework’s limited applicability to real-world robotic systems,
the approach has some additional limitations and drawbacks. While the internal network
representations were used to limit the state dimensions and thereby computational over-
head, requiring the value network together with the policy network probably negates those
advantages. Additionally, every module must evaluate the current state at each timestep, re-
sulting in additional computational requirements. Certain hierarchical approaches wait for
the active module to terminate before other modules are activated, reducing computational
requirements.

The discrete action space only allows one module to be active at a time, and the internal
network representations do not seem sufficient for an optimal module selection. Due to
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the cross-evaluation of actions, the state space grows quadratically with the number of
modules. Additionally, the complexity of the training will increase significantly with more
modules.

Using a four-wheel steering robot model instead of the actual mecanum wheels used by
the Hiwonder JetAuto resulted in a less smooth motion once transferred to the real world
and did not allow for the full range of possible movements. All real-world tests of the
agents only happened in a controlled test environment with no external influences.

As a last limitation of this research, no alternative approaches for solving the proposed
task were analyzed, preventing any reliable comparison of our modular approach or an
assessment of modular approaches in general.

7.3 Future Research Directions

There are several directions in which the research in this thesis can be improved. An
interesting topic would be to extend the flat modular approach with a hierarchical com-
ponent, which could allow for more efficient computations and even more reusability of
elemental skills. The state inputs for the arbitration agent could be improved by adding an
action certainty estimate from each module, resulting in a more reliable selection process.
Another interesting research would be combining modules with different action spaces,
with multiple active modules simultaneously.

7.4 Conclusion

This thesis presented a novel modular arbitration framework that allows decomposing
complex tasks into sub-tasks and coordinating those modules to reach the original objective.
All results were validated in simulation and the real world.

Our research shows the possibility of using an actor-critic-based modular design without
requiring any new RL algorithms or modifications. While the benefits of a modular
approach are evident for any step in the design of RL agents, using the policy and value
networks as inputs for an arbitration mechanism showed its limitations.
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Appendix 2 – Code Repository

All code and instructions for the implementation of the individual modules, the modular
arbitration framework and the experiments can be found at https://github.com/
PhixedAP/modular-ppo-sim2real.
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