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Abstract 

The spatial data from 3-dimensional point clouds have great potential for use in various 

tasks, such as autonomous vehicles or virtual maps of cities, once the objects in these 

clouds are classified. 

In this thesis, convolutional neural networks are constructed to classify point cloud 

objects of classes posts, vegetation, buildings and cars. Two scene classification methods 

are also constructed: a sliding window method, which classifies the scene by segment, 

and a method which clusters the scene into objects before classifying the objects. The 

sliding window method lays a grid over the initial point cloud, slides over this grid with 

a cube with certain dimensions and assigns the underlying points the class of the predicted 

value of the cube. The clustering method involves usage of existing algorithms for point 

cloud clustering. Segments are generated from the clustered objects one by one, and the 

points of each object are assigned based on a majority vote over all segments of an object. 

Two methods for analysing the networks’ performances are proposed. One method is 

segment-wise classification. A list of all segments from all objects is generated. These 

segments are classified one by one. The second method involves object-wise 

classification. This method iterates over all objects, generates segments for the object and 

applies all segments a class based on the majority vote over all segments of the object. 

 The proposed network achieved an accuracy of 83.7% in segment-wise classification and 

99.2% in object-wise classification. 

The second method achieved higher accuracy and thus is the proposed method. 

This thesis is written in English and is 36 pages long, including 6 chapters, 28 figures and 

7 tables. 
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Annotatsioon 

PUNKTIPILVE OBJEKTIDE TUVASTAMINE JA 

KLASSIFITSEERIMINE KONVOLUTSIOONILISTE 

NÄRVIVÕRKUDEGA 

Kolme-dimensioonilistel punktipilvede ruumilistel andmetel on potentsiaalseid 

kasutusvõimalusi mitmetes valdkondades, nagu isesõitvad sõidukid või linna 

digitaliseerimine, eeldusel, et punktipilvede objektid on klassifitseeritud. 

Antud töös kasutatakse konvolutsioonilisi närvivõrke, et klassifitseerida kolme-

dimensioonilisi objekte postideks, vegetatsiooniks, majadeks ja autodeks. Konstrueeriti 

kolm erinevat mudelit. Esialgselt lahendati probleem vaid kolme klassi leidmiseks: 

postid, vegetatsioon ja majad. Probleemi laiendamisel lisati ka autode klass juurde ning 

koostati nelja klassi klassifitseerija – sellest sai teine mudel. Kolmas mudel koostati 

neljast erinevast binaarsest klassifitseerijast. Iga klassi jaoks treeniti üks närvivõrk ning 

konstrueeriti meetod, mis klassifitseerib objekti nelja klassi kasutased binaarseid 

klassifitseerijaid. Võrreldes teist ja kolmandat mudelit, mis on nelja klassi 

klassifitseerijaid, olid paremad tulemused neist esimesel. 

Stseeni klassifitseerimist teostati kahe meetodiga: libiseva akna meetod ja klasterdatud 

objektide klassifitseerimise meetod. Libiseva akna meetod hõlmab kindla suurusega 

kuubiku libistamist üle punktipilve ruudustiku. Iga kuubiku hinnang määrab allolevate 

punktipilve punktide väärtuse. Klasterdamise meetodis kasutatakse olemasolevaid 

punktipilve klasterdamise algoritme. Klasterdamise tulemusel tekkinud objektide 

järjendist itereeriti üle ning iga objekti punktidele määrati klass, mis on kõige 

populaarsem objekti segmentide hinnangute seas. 

Klassifitseerijate hindamiseks katsetati kahte meetodit. Esimese meetodi puhul hinnati 

närvivõrkude täpsust segmentide põhjal. See tähendab, et esmalt koostati järjend kõikide 

objektide segmentides ning seejärel neid segmente hinnati ühekaupa. Teise meetodi puhul 

hinnati närvivõrkude täpsust objektide põhiselt. Objektidest itereeriti üle, genereerides 
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iga objekti jaoks segmendid. Kõikidele segmentidele määrati ühene klass vastavalt 

enamushääletusele. Närvivõrk saavutas täpsuse 83,7% segmendipõhise 

klassifitseerimisega, 99,2% objektipõhise klassifitseerimisega. 

Visuaalselt olid paremad tulemused klasterdamisel ning seda toetab ka kõrgem täpsus 

objektipõhisel klassifitseerimisel. Seega pakutud lahendus nelja klassi probleemile on 

teine närvivõrgu mudel koos klasterdamise meetodiga. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 36 leheküljel, 6 peatükki, 28 

joonist, 7 tabelit. 
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List of abbreviations and terms 

2D 2-dimensional 

3D 3-dimensional 

API Application Programming Interface 

CNN Convolutional Neural Network 

FN False Negatives 

FP False Positives 

GIS Geographic Information System 

GPU Graphics Processing Unit 

I/O Input/output 

Lidar Light Detection and Ranging 

PCD Point Cloud Data 

PCL Point Cloud Library 

ResNet Residual Network 

TN True Negatives 

TP True Positives 

VGG Net Visual Geometry Group Network 

voxel Volumetric pixel 
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1 Introduction 

Light Detection and Ranging (Lidar) technology is widely used for acquiring point cloud 

data due to its high precision, long range and invariance to lighting conditions [1]. This 

data has great potential to be used for autonomous vehicles and for mapping cities [2]. 

Several point clouds have been obtained from scenes in Tallinn using Lidar technology 

for the purpose of 3-dimensional (3D) object detection and classification. 

Manual point by point classification of 3D point clouds is labour expensive and time 

consuming as each scene can contain millions of points. Thus, machine learning can be 

applied to the problem of object classification in large point cloud scenes. Convolutional 

Neural Networks (CNNs) have successfully been applied to the problem of classifying 2-

dimensional (2D) images. This motivates the use of CNNs for the 3D classification 

problem as well. 

The goal of this work is to construct a method to classify posts, buildings, vegetation and 

cars in point cloud scenes. This goal is divided into the following subtasks: 1) generate 

datasets annotated by class, 2) to build, train and analyse the CNN model, 3) to construct 

different approaches to classify objects in point cloud scenes, and 4) to validate the results 

on point cloud scenes. As a result of this work, a new method of object classification for 

point cloud scenes has been developed. 

This paper consists of six sections. The introduction composes the first part. In the second 

part, the theoretical background is introduced. An overview of literature of related works 

is given in the third part. The fourth part is the core of the paper: the process of data 

generation and preparation is explained, the designed CNN models are introduced, and 

methods for scene classification are described. Results of the trained network models and 

scene classification methods are analysed in the fifth part. Lastly, a summary is presented 

in the sixth part. 
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2 Background 

In this section the definitions, methods and technologies used in the thesis are explained 

to aid comprehension of the proposed method. 

2.1 Dataset type 

This section discusses the technology behind the dataset type and the required 

augmentation of data for 3D machine learning. 

2.1.1 Lidar 

Lidar is a 3D scanner which measures the distance to a target by sending out laser light 

and measuring the reflected light with a sensor. 3D representations of scenes are 

constructed using the information of wavelength and differences in laser return times. [2] 

Lidar technology has many applications: agricultural purpose to determine farmland yield 

results to determine where to apply fertilizer, uses in archaeology to produce high-

resolution datasets quickly and cheaply and easily integrate into a Geographic 

Information System (GIS), usage in autonomous vehicles for obstacle detection and 

avoidance, and so on. [2] 

2.1.2 Point cloud data 

A point cloud is a set of data points usually in 3D space. These datasets are generally 

produced by 3D scanners. [3] 

The Point Cloud Library (PCL), a library for 2D/3D image and point cloud processing, 

commonly uses the Point Cloud Data (PCD) file format for input/output (I/O) operations 

when manipulating point cloud data. The possible fields to contain in the file for each 

point are XYZ coordinates, RGB values, XYZ normals. Other commonly used file 

formats include PLY (a polygon file format), STL (a file format native to CAD software), 

OBJ (a geometry definition file format), X3D (the ISO standard XML-based file format 

used for 3D computer graphics data), and many others. The PCD file format has many 

advantages: the ability to store and process organized point cloud datasets, the usage of 

binary data types to speed up file saving and loading, efficient storage as different data 

types are allowed, the support of n-D histograms for feature descriptors. [4]  
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2.1.3 Data representation for machine learning 

For 2D machine learning, images are usually converted into arrays depicting a grid where 

each pixel is represented by their RGB colour model. Similarly, point clouds are usually 

converted into 3D grids for machine learning. 

In this approach, the point cloud is contained within a bounding box, which is thereafter 

cut into voxels (volumetric pixels) of certain size. Each voxel is represented by a number 

depending on the points contained in the voxel. The simpler notion is to represent the 

voxel with a zero or one depending on if any points are inside the voxel. This data format 

is normally called a voxel, occupancy or density grid, referencing the grid-like structure, 

or a segment, referencing the fact that it could be a part of a larger point cloud scene. 

2.2 Classification 

In machine learning, binary classification is the problem on classifying instances into 

one of two classes accordingly. The problem of classifying instances into one of three or 

more classes is called multiclass or multinomial classification. [5] 

Classification is considered a type of supervised learning where the labels are provided 

with the input data. Classification is the process of predicting the class of given data 

points. [6] The algorithm which implements classification is called a classifier. The 

performance of a classifier depends on the characteristics of the dataset. To determine a 

suitable classifier, classifiers are evaluated using different metrics: precision, recall, and 

many others. [7] 

Confusion matrix is a table of predicted values where each row represents a class X, 

each column represents class Y, and the table cell values shows how many elements of 

class X where predicted to be in class Y. A confusion matrix is helpful for easily 

calculating values for precision, accuracy, recall and F-1 Score. [8] 

An example of a confusion matrix is given in Figure 1. The number of instances from 

class one which are predicted as class one is called True Positives (TP). The number of 

instances from class one which are predicted as class zero is called False Negatives (FN). 

The number of instances from class zero which are predicted as class one is called False 

Positives (FP). The number of instances from class zero which are predicted as class zero 
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is called True Negatives (TN). These abbreviations are used to describe precision (12), 

recall (2), accuracy (3) and F1 score (4) calculations for a single class. 

 

Figure 1. Example of a confusion matrix applied to a binary classification problem. 

For multi-class classification, the confusion matrix to determine TP, FP, FN and TN for 

class one is as presented in Figure 2. 

 

Precision (12) describes the proportion of positive identifications which were correct. [8] 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

Figure 2. Example of a confusion matrix for a three-class problem, where TP, FP, FN and TN are described 

for class one. 
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Recall (2) is also known as sensitivity and describes the proportion of correctly guessed 

actual positives identified correctly. [8] 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (2) 

Accuracy (3) determines how many elements were classified correctly out of all 

classifications. [8] 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3) 

The F1 Score (4) is the harmonic mean of precision and recall [9]. It determines how 

many instances were classified correctly without missing a significant number of 

instances. [8] 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

When generalising these metrics for all classes there are two approaches: average or 

weighted metrics. Average metrics calculations involve summing the metrics amongst the 

classes and dividing the result by the number of classes. In weighted metrics, the metrics 

are multiplied by the number of instances in that class and then the result is divided by 

the size of the dataset. In the equations for average and weighted precision (5)(8), recall 

(6)(9) and F1-Score (7)(10), n is the number of classes, sizec is the number of instances 

in class c and 𝑠𝑖𝑧𝑒 =  ∑ 𝑠𝑖𝑧𝑒𝑐
𝑛
𝑐 . 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  (∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐

𝑛

𝑐

) /𝑛 (5) 

 𝑅𝑒𝑐𝑎𝑙𝑙𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  (∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑐

𝑛

𝑐

) /𝑛 (6) 

 𝐹1𝑠𝑐𝑜𝑟𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =  (∑ 𝐹1𝑠𝑐𝑜𝑟𝑒𝑐

𝑛

𝑐

) /𝑛 (7) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  (∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑐 ∙ 𝑠𝑖𝑧𝑒𝑐

𝑛

𝑐

) /𝑠𝑖𝑧𝑒 (8) 

 𝑅𝑒𝑐𝑎𝑙𝑙𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  (∑ 𝑅𝑒𝑐𝑎𝑙𝑙𝑐 ∙ 𝑠𝑖𝑧𝑒𝑐

𝑛

𝑐

) /𝑠𝑖𝑧𝑒 (9) 
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 𝐹1𝑠𝑐𝑜𝑟𝑒𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 =  (∑ 𝐹1𝑠𝑐𝑜𝑟𝑒𝑐 ∙ 𝑠𝑖𝑧𝑒𝑐

𝑛

𝑐

) /𝑠𝑖𝑧𝑒 (10) 

2.3 Neural Networks 

Neural networks are one of the most commonly used machine learning methods where 

the user defines the input and output structure, and the network model. Neural networks 

are multi-layer networks of neurons used to classify data and make predictions. [10] 

 

Figure 3. Example neural network with two hidden layers. [10] 

 

Deep neural networks contain multiple hidden layers, where the output of each neuron is 

expressed by the equation (11) where W denotes weight and In denotes input. The output 

of a neuron is calculated using an activation function which is usually nonlinear [10]. 

 
𝑍1 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑊1 ∙ 𝐼𝑛1 + 𝑊2 ∙ 𝐼𝑛2 + 𝑊3 ∙ 𝐼𝑛3 + 𝑊4 ∙ 𝐼𝑛4

+ 𝑊5 ∙ 𝐼𝑛5 + 𝐵𝑖𝑎𝑠𝑁𝑒𝑢𝑟𝑜𝑛1) 
(11) 

An example of an activation function is ReLU (rectified linear unit) 𝑓(𝑥) = max (0, 𝑥) 

[11]. Another activation function used in this work is Softmax (12), where 𝑥 ∈

{𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} and 𝑖 ∈ {1, 2, 3 … 𝑛}. 
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𝑓(𝑥) =

𝑒𝑥

∑ 𝑒𝑥𝑖𝑖
 

(12) 

Generalising the output of one neuron, the general formula for the output of one layer, 

where the prior layer is m elements deep and the current layer is n elements deep, is 

presented in equation (13), where [W] is the n by m matrix of weights, [X] is the m by 

one matrix of inputs, [Bias] is the n by one matrix of neutron biases, [Z] is the n by one 

matrix of outputs, and @ denotes matrix multiplication. [10] 

 [𝑊]@[𝑋] + [𝐵𝑖𝑎𝑠] = [𝑍] (13) 

For the training process, the user must define a cost function and use gradient descent 

optimisation to minimise it. [10] 

2.3.1 Convolutional Neural Networks 

A CNN is a Deep Learning algorithm which can assign importance to various aspects of 

the input data and be able to differentiate one from the other. CNN requires less pre-

processing than other classification algorithms as CNNs can learn filters or characteristics 

that in primitive methods would be hand-engineered. [12] 

Compared to a feed-forward architecture, a CNN can capture spatial and temporal 

dependencies in images or other multidimensional grids through the application of 

relevant filters. CNNs are better fitting for this type of data due to the reduction in the 

number of parameters involved and reusability of weights. [12] 
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Figure 4. Example CNN architecture. 

The element carrying out the convolutional operation in the first part of a convolutional 

layer is called a kernel or filter which has a dimensionality of 𝑑 − 1, where d is the 

dimensionality of the input data. The kernel “slides” over the input with a certain stride 

value and applies the filter on the underlying values. The objective of the convolution 

operation is to extract high-level feature maps from the grid. [12] 

Like the convolutional layer, the pooling layer reduces the spatial size of the convolved 

feature to decrease the computational power required to process the data. The pooling 

layer extracts dominant features which are rotational and positional invariant. Max 

pooling applies a calculation which returns the maximum value of the portion of the grid 

covered. Average pooling returns the average value of the portion. [12] 

 

Figure 5. Max and average pooling. [12] 
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A fully connected layer learns non-linear combinations of the high-level features as 

represented by previous layers. To classify input data, usually a softmax layer is used at 

the end of the model. 

2.3.2 Training process 

The training of a neural network is a process during which the parameters are modified 

to improve the results of classification. Training is done using an iterative training 

algorithm where the input data and output shape are given. 

To estimate the error of the network and measure how good or bad the results are, a loss 

function is used. If the model succeeds in learning to classify data, the loss function value 

should decrease during the training process as the weights of neurons are adjusted. 

Usually, a model is trained until the loss function does not significantly change anymore. 

In classification tasks, the cross-entropy loss is commonly used when a probabilistic 

interpretation of the scores is desired. [13] The loss function evaluates as (14), where M 

is the number of classes, 𝑦𝑜,𝑐  is a binary indicator if the class label c is the current 

observation o, and 𝑝𝑜,𝑐 is the predicted probability that o is of class c. [14] The 

dissimilarity between the true label distribution y and the predicted label distribution p is 

measured. [13] 

 𝑙𝑜𝑠𝑠𝑐𝑟𝑜𝑠𝑠_𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑦, 𝑝) = − ∑ 𝑦𝑜,𝑐 ln(𝑝𝑜,𝑐)

𝑀

𝑐=1

, (14) 

The purpose of training a model is that it would also be able to classify data which it had 

not previously seen yet. This is achieved if the network succeeds at generalising features. 

To test the networks ability to generalise, its performance on the test dataset is analysed. 

The input data can be presented to the network during its training iterations either in 

samples, batches or the whole dataset if the memory allows it. A sample is a single row 

of data. The batch size is a parameter which defines the number of samples to process 

before updating model parameters. During one epoch all instances in the dataset are 

processed. 
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2.3.3 Popular convolutional neural network architectures 

Visual Geometry Group Network (VGG Net) is a CNN architecture which may look 

simple but outperforms many complex architectures. The idea is that every succeeding 

layer has more filters than the preceding layer, and only 3x3 kernels are used as 5x5 

kernels are more expensive and two 3x3 kernels can almost cover what one 5x5 kernel 

covers. The most popular VGG Nets are VGG-16 and VGG-19, where the number of 

layers with weights are accordingly 16 and 19. [15] [16] 

VGG Nets are not suitable for deeper networks as they are prone to the vanishing gradient 

problem. [15] This means that in some cases the gradient is vanishingly small and 

prevents the weight from changing its value. [17] VGG Networks are useful for small 

classification tasks and transfer learning. [15] 

Residual Network (ResNet) is a deep network which has residual connections. Unlike 

VGG Nets where every layer is connected to the previous layer, every layer input is the 

results of concatenation of the previous layer and the one before the previous layer. This 

way each layer can see more features than just from the previous layer. This architecture 

is possible by using batch normalisation layers after every convolutional layer. [15] Batch 

normalization is the process of normalising the output of a layer by subtracting the batch 

mean and dividing by the batch standard deviation. [18] These layers will enable the usage 

of higher learning rates while training and hence help train faster and minimise the 

vanishing gradient problem. [15] 

In DenseNet every layer is connected to the all previous layers in the same block. This 

means that less filters are required. This also helps towards the vanishing gradient 

problem. [15] 

The “inception” in Inception Net suggests going “deeper” in the network. While ResNets 

are also deep networks, the idea of Inception Net is to go wider as well. This is done by 

concatenating several parallel layers having different filters in every inception block. 

Inception Nets have less parameters to train compared to other architectures. [15] 

Xception Net means Extreme Inception. The Xception architecture aims to be 

computationally more efficient than Inception Nets. This is achieved by replacing 

convolutional operations with depth wise separable convolutional operations. A normal 
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convolution operates several filters over each feature map of the input and sums the 

corresponding values. In depth-wise separable convolutions the computational 

complexity is reduced as every kernel is of two dimensions only and convolves only over 

one feature map. [15] 

2.4 Implemented technologies 

In this work, programming language Python 3 and C++ are used. The TensorFlow library 

is used for training the network. PCL tools are used to perform various operations on 

point cloud files. The Cloth Simulation Filter (CSF) library [19] is used as an alternative 

method of ground removal. The Open3D library is used for I/O operations on PCD files 

in Python. 

2.4.1 Point Cloud Library 

PCL is a project for 2D/3D image and point cloud processing. The library contains 

algorithms for feature estimation, surface reconstruction, model fitting and segmentation.  

The PCL Progressive Morphological Filter is a filter used for detecting nonground 

LIDAR measurements such as buildings, vehicles and vegetation. The filter works by 

gradually increasing the window size of the filter and using elevation difference threshold 

to remove nonground data and preserve the ground data points. [20] Using the PCL 

library, it is possible to write a script in C++ to use the filter and extract non-ground points 

as well. 

The PCL Euclidean Cluster Extraction is a clustering method which divides an 

unorganised point cloud model into smaller parts. [21] 

The PCL Visualizer is used in this thesis to view the point cloud data and evaluate 

classification. 

2.4.2 Cloth Simulation Filter 

An alternative method of ground removal is the CSF method. This approach separates the 

ground and non-ground objects with the following steps: 1) inverts the point cloud over 

the xy-plane, 2) drops a cloth onto the terrain, 3) estimates ground points using the cloths 

shape. This work stands out with its unique approach and the fact that it does not require 

too many parameters, as do other solutions. However, this method yields high errors when 
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the terrain is disconnected. [19] Our version of the cloth simulation filter, where it is 

possible to read a PCD file and after applying the CSF save ground and non-ground PCD 

files, is presented in [22]. 

2.4.3 Open3D 

Open3D is a library which supports 3D data structures and algorithms in C++ and Python. 

[23] In this work, the library is used in Python code for point cloud read and write 

operations and modifying PCD files to contain colour values according to classification. 

2.4.4 TensorFlow and Keras 

TensorFlow is and open source library for developing and training machine learning 

models. [24] TensorFlow implements the Keras Application Programming Interface 

(API) specification. Keras is a high-level neural networks API. Keras allows easy and fast 

prototyping of neural networks, so the user does not have to focus on mathematical 

details. [25] The user must define a model, add layers, such as a convolution, pooling or 

dense layer, and define the input and output data shape. In contrast to the high-level Keras 

API, the low-level TensorFlow Core API requires working with TensorFlow 

computational graphs, tensors, operations, and sessions. This can be a lot harder to 

understand. [26] 

In the context of TensorFlow, tensors are multidimensional arrays. The library does 

differentiable operations across the tensors. It also allows computations on Graphics 

Processing Units (GPUs) for computers with GPUs which support CUDA. CUDA is a 

parallel computing platform and API model which allows the usage of GPUs for general 

purpose data processing. [27] 
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3 Related works 

This section discusses works related to classifying objects in 3D point cloud scenes. These 

works differ in used data types, CNN input shape, output shape and the scene 

classification method. For an overview of related works see Table 1. 

3.1 Convolutional neural network input type 

Usually solutions to convert point clouds into a suitable CNN input involve either 

generating images of the point cloud under different angles [28], [29], or transforming 

the point cloud into a voxel or occupancy grid [30], [31], [32], [33]. 

In the multi-view approach, the 3D problem is reduced to multiple 2D problems, where 

the images are in grayscale according to the number of points in a pixel. This is 

demonstrated in the work of Huang and You [28] where they compute three views of each 

object and classify them in a trained CNN with orthogonal view projections as input. The 

orthogonal view projection consists of three images: the XY-plane, XZ-plane and YZ-

plane. Pang et al [29] also use multiple 2D images of an object as the CNN input. These 

images are evenly chosen on a sphere. This method is chosen since CNNs synergise well 

with it as a lot of training data will be accumulated with the projection.  

The more popular approach is to represent point clouds as voxel grids. This is preferred, 

as important data, such as structural information, is lost when applying 2D techniques on 

3D [30]. Unfortunately using voxel grids are largely redundant due to the sparsity of point 

clouds. Xiang et al [31] implement an octree-based CNN to address this issue. The 

construction of the octree-based structure starts by enclosing the point cloud in a bounding 

box, known as the root node of the tree. Then, the octree nodes are recursively subdivided 

into eight equal-sized child nodes until reaching the finest resolution of the tree. 

3.2 Scene classification 

Classification on a larger point cloud scene is done using the sliding window method with 

voting or pre-classification segmentation of the point cloud via clustering. Both methods 

have their advantages and disadvantages. 
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The first approach, the sliding window method, consists of multiple steps. First, the 

scene is transformed into a voxel grid. Then sub-grids with CNN input shape are 

generated by sliding over the initial voxel grid. Lastly, the network is used to predict the 

results of the grids and the class of each point in the original point cloud scene is 

determined by voting. The advantage to this is that objects near each other can be 

distinguished. Unfortunately, as a result of this method, there are objects where most 

points are correctly classified, but some points inside it are misclassified. The edges of 

objects are usually also tougher to classify. 

The second approach consists of point cloud scene segmentation with clustering. Every 

clustered object is classified by a majority vote. The determined class is applied to every 

point in the clustered object. The benefit of this is that each object only contains points of 

one class. This avoids the misclassification of object edges. Depending on the minimal 

distance between clusters, two objects of different classes may be clustered together, and 

thus classified as one object. 

As an exception, Xiang et al [31] do scene classification in a way where the segmentation 

is done by the CNN. This means that the output has the same shape as the input, where 

voxels are annotated with various classes. Maturana and Scherer [33] and Qi et al [34] do 

not describe a scene classification method. 

Table 1. Comparison of related works. 

Approach Data type CNN input CNN output Scene classification 

method 

[35] RGBD 2D+3D Label Segmentation 

[28] 3D point cloud 2D Label Segmentation 

[30] 3D point cloud Voxel grid Label Sliding window 

[31] 3D point cloud Voxel grid Voxel grid Segmentation by CNN 

[29] 3D point cloud 2D Label Segmentation 

[32] 3D point cloud Voxel grid Label Sliding window 

[33] 3D point cloud Voxel grid Label - 

[34] 3D point cloud Set of points Label - 
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4 Proposed method 

This section discusses the voxelization method, the constructed CNN and scene 

classification methods. According to the drawbacks of the first constructed neural 

network, new models were created. 

4.1 Dataset 

This study was partially supported by the Archimedes Foundation and Reach-U Ltd. in 

the scope of the smart specialization research and development project #LEP19022: 

“Applied research for creating a cost-effective interchangeable 3D spatial data 

infrastructure with survey-grade accuracy”. In the scope of this project, a dataset of point 

clouds was acquired using the Lidar technology. Specifically, the Velodyne Puck Lidar 

was used. This product has a range of 100 m [36]. In October 2018 and June 2019 

approximately 250 files of point cloud data were obtained with the Velodyne Lidar, of 

which 25 files were annotated to create point cloud objects to be used in this work. 

To construct the dataset, the point cloud data was processed in several steps. The ground 

was removed from the original point clouds using PCL Progressive Morphological Filter. 

After clustering with PCL Euclidean Cluster Extraction, the resulting objects were 

separated into the desired classes. The initial dataset consists of objects of three classes: 

posts, vegetation, building. During the research, the dataset was augmented by adding 

new data and creating a separate class for cars. 

When converting point clouds to voxel grids the size of one voxel is 10 × 10 × 15 cm, 

where the length 15 cm is along the z axis. The chosen voxel grid shape is (32, 32, 32), 

thus the size is 3.2 × 3.2 × 4.8 m. The size of the dataset and its distribution between 

classes is shown in Table 2. Since the size of objects differ, the number of voxel grids 

generated for class is also given. The dataset is divided into train, validation and test 

datasets. The class balance was kept in mind when creating the train and validation 

datasets from the initial dataset. For the second dataset, class weights are initialised, so 

the balancing of the dataset was not required. Both datasets are used in the constructed 

CNNs. 
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Table 2. Initial dataset description. 

Class Objects Voxel grids 

Total Training Validation Test 

Posts 1 011 2 289 1 791 190 308 

Vegetation 605 3 655 1 839 198 1 618 

Buildings 113 5 105 1 849 179 3 077 

Total 1 729 11 049 5 479 567 5 003 

 

Table 3. Second dataset description 

Class Objects Voxel grids 

Total Training Validation Test 

Posts 1 011 2 289 1 791 190 308 

Vegetation 4 920 14 331 7 423 3 253 3 655 

Buildings 270 8 384 2 442 457 5 485 

Cars 333 682 262 71 349 

Total 6 534 25 686 11 918 3 971 9 797 

 

Each point cloud object is converted into voxel grids with shape (32, 32, 32) and step 

𝑠 =  16. This means that when an object is converted into a voxel grid of shape (𝑥, 𝑦, 𝑧), 

a voxel grid with shape (32, 32, 32) “slides” over the initial grid with step 𝑠 = 16 along 

each axis until the input shape is covered. To avoid mostly empty voxel grids, a minimum 

of 20 points is required in each cubed point cloud to be converted into a voxel grid. 

Figures Figure 6 and Figure 7 show examples of voxelizing objects. 
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Figure 6. Point cloud and voxel grid representations of a car. 

 

 

Figure 7. Point cloud and voxel grid representations of a post. 
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In the beginning of each training epoch, input voxel grids are shuffled and randomly 

rotated by 90 ·  𝑘|𝑘 ∈  {0. . .3} degrees around the z axis. 

4.2 The proposed Convolutional Neural Network 

For this task the DenseNet model was chosen due to feature map reuse and the small 

number of parameters required. The layer shapes were adjusted to handle 3D data, and 

less filters were used for computational reasons. 

The constructed model consists of four dense blocks, each followed by a transitional 

block. Within the dense block are 𝑛 ∈  {6, 12, 24, 16} dense layers, of which each 

consists of one convolutional layer with a (1 × 1 × 1) kernel and two convolutional layers 

with a (3 × 3 × 3) kernel. In each dense layer the feature maps from the last block are 

concatenated with the feature maps of the new block. The transitional block consists of a 

convolutional layer with (1 × 1 × 1) kernel and an average pooling layer. After the four 

dense blocks, global average pooling is performed to minimize overfitting by reducing 

the total number of parameters in the model. Lastly, there is a fully connected layer 

resulting in n outputs. 

In the constructed networks, the 𝑔𝑟𝑜𝑤𝑡ℎ_𝑟𝑎𝑡𝑒 =  4. This means that in every dense layer 

four new feature maps are added to the feature maps. This network architecture can be 

reused in different networks as the only parameter which requires changing is the number 

of outputs n. 

A full summary of the network is presented in [37]. The description and visualisation of 

the basic architecture can be seen in   
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Table 4 and Figure 8. In the figure, the smallest blocks represent applying convolution to 

the previous layer. 
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Table 4. Architectural overview of 3D DenseNet. 

Layers Output size 3D DenseNet 

Convolution 18 × 18 × 18 4 × 4 × 4 convolution, stride 2 

Pooling 20 × 20 × 20 3 × 3 × 3 max pooling, stride 1 

Dense block (1) 20 × 20 × 20 
[
1 ×  1 convolution
3 ×  3 convolution
3 ×  3 convolution

] × 6 

Transition block (1) 20 × 20 × 20 1 × 1 × 1 convolution 

19 × 19 × 19 2 × 2 × 2 average pooling, stride 1 

Dense block (2) 19 × 19 × 19 
[
1 ×  1 conv
3 ×  3 conv
3 ×  3 conv

] × 12 

Transition block (2) 19 × 19 × 19 1 × 1 × 1 convolution 

18 × 18 × 18 2 × 2 × 2 average pooling, stride 1 

Dense block (3) 18 × 18 × 18 
[
1 ×  1 conv
3 ×  3 conv
3 ×  3 conv

] × 24 

Transition block (3) 18 × 18 × 18 1 × 1 × 1 convolution 

17 × 17 × 17 2 × 2 × 2 average pooling, stride 1 

Dense block (4) 17 × 17 × 17 
[
1 ×  1 conv
3 ×  3 conv
3 ×  3 conv

] × 16 

Classification layer  Global average pooling 

 Fully connected softmax layer 
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Figure 8. 3D DenseNet architecture. Numbers on the top describe the number of feature maps in the 

current block or layer. Numbers on the bottom represent the input shape (e.g. number x refers to a shape 

of (𝑥 × 𝑥 × 𝑥)). Dx = dense block number x; T1 = transition layer number x; DLx = dense layer number 

x; K = kernel; S = stride. [38] (modified) 
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Multiple CNNs with this architecture were trained: 

▪ DenseNet-3C - a CNN with an output for three classes: post, vegetation, building 

(the number of outputs 𝑛 = 3); 

▪ DenseNet-4C - a CNN with an output for four classes: post, vegetation, building, 

car (the number of outputs 𝑛 = 4); 

▪ DenseNet-4CB – a method which uses four CNNs with an output for two classes, 

where each is a binary classifier for the classes post, vegetation, building and car 

(each classifier has 𝑛 = 2 outputs). 

Initially, the 3-class network was constructed. With this network cars were often 

misclassified, and thus the 4-class network was made. Realising that each added class 

meant training a new network, binary classifiers were made for each class. This way the 

networks already trained are still usable if there is a wish to add a new class. 

The models are trained with a batch size of 32, Adadelta as the optimizer, and categorical 

cross-entropy as the loss function. 

For the training, a computer with the graphics card Nvidia GeForce RTX 2080 is used. 

4.3 Scene classification 

To classify objects in a larger point cloud scene, both approaches are implemented – the 

sliding window and clustering methods. Before each method, ground removal is done 

using PCL Progressive Morphological Filter. This method was chosen because with the 

correct parameters it is possible to aggressively remove all ground points, even if this 

means losing the bottom part of some objects. This is important to the clustering method, 

because if there was ground remaining under a few close objects, they would be clustered 

into one object. 

4.3.1 Sliding window method implementation 

The input point cloud is read from a PCD file. As the first step, the point cloud in 

transformed into a voxel grid representation where occupied voxels are represented with 

one and empty voxels with zero. This means every connected set of non-empty voxels 

depict detected objects. 
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As the second step, the grid is padded so that the furthermost points would also get 

multiple predictions. Voxel grids of shape (32, 32, 32) are generated by sliding over the 

grid with a step 𝑠. All these grids are predicted, and the probabilities are appended to the 

list of probabilities for all voxels in the centre of the voxel grid with 𝑐 side length. As the 

last step, the class of each voxel is voted. The coloured by class point cloud is saved to a 

PCD file. 

4.3.2 Clustering method implementation 

In the clustering approach, the point cloud scene is segmented into objects by applying 

the PCL Euclidean Cluster Extraction. The minimal distance between clusters is 𝑑𝑚𝑖𝑛 and 

the minimum number of points in cluster is 100. The initial ground removal height is 0.4 

m to aggressively remove the ground so that no objects are connected to each other. The 

set of clustered objects are the detected objects in this method. 

This method involves classifying points by object. For each object, voxel grids are 

generated with step 𝑠 = 16. All these grids are then predicted using the network. The 

object class derived from the mean of predictions is applied to the all points included in 

the object. If predictions for all classes are under probability 𝑝, the object is classified as 

“other”.  
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5 Analysis 

This section analyses the performances of the proposed CNN architecture and the two 

different scene classification methods. According to the analysis, ideas on how to improve 

the solution are given. 

5.1 Performance of the Convolutional Neural Networks 

In order to evaluate the networks ability to learn, the accuracy on the train and validation 

dataset should increase whilst the loss decreases. 

 

Figure 9. Accuracy on train and validation datasets for DenseNet-3C. 

 

Figure 10. Loss on train and validation datasets for DenseNet-3C. 



36 

According to Figures Figure 9 and Figure 10, the DenseNet-3C network is suitable to 

generalize the features of different objects. Final accuracy on the training dataset lies 

around 88% while the accuracy on the validation set is 80%. 

 

Figure 11. Accuracy on train and validation datasets for DenseNet-4C. 

 

Figure 12. Loss on train and validation datasets for DenseNet-4C. 

Figures Figure 11 and Figure 12 show the accuracy and loss of the training and validation 

dataset for DenseNet-4C. Final accuracy on the training dataset lies around 84% while 

the accuracy on the validation set is 71%. The results are slightly worse due to a more 

complicated problem – instead of three classes, four classes are taught to the network. 



37 

 

Figure 13. Accuracy on train dataset for networks of DenseNet-4CB. 

 

Figure 14. Loss on train dataset for networks on DenseNet-4CB. 

Figures Figure 13 and Figure 14 display the training dataset accuracy and validation 

curves for all the binary classifiers of DenseNet-4CB. The number of epochs trained differ 

amongst the classifiers as early stopping was used. The graphs show that the traits of 

vegetation and buildings were the easiest to learn, possibly since these classes have more 

data to support training than the other classes. The final accuracies on the training dataset 

are for posts, vegetation, buildings and cars respectively 91%, 93%, 92% and 90%. Thus, 

the average accuracy on the training dataset is higher for the DenseNet-4CB when 

compared to DenseNet-4C. 
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5.2 Classification analysis 

To assess the shortcomings of the classification task, a confusion matrix is generated on 

the test dataset. In this confusion matrix, each segment or voxel grid of an object is 

considered as one instance. Columns and rows represent classes. Each cell with column 

y and row x shows how many instances of class x is predicted to belong to class y. 

As per Figure 15, for the DenseNet-3C the traits of posts are the easiest to learn. The 

biggest confusion occurs when classifying segments of buildings. This might be since the 

edge voxel grids of buildings may be confused with other classes. 

 

Figure 15. Confusion matrix on test dataset for DenseNet-3C (evaluation by segment). 

To improve results, another confusion matrix is generated with object-wise predictions. 

Object-wise classification means that each voxel grid of an object produces a list of 

predictions for each class (e.g. [0.1, 0.3, 0.6] means that there is a 0.1 probability that this 

segment is a post, and so on). These predictions are then summed by class amongst all 

voxel grids of the object and divided by the number of voxel grids. The class with the 

highest probability in this result is the determined class of the object and represents the 

class of every segment generated from the object. 
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According to Figure 16, the results of DenseNet-3C have drastically improved. This 

validates the assumption that edges of objects are more difficult to classify. The highest 

remaining is in classifying buildings as vegetation. The cause of this might be that some 

pieces of buildings are of irregular shape, as is vegetation. 

 

Figure 16. Confusion matrix on test dataset for DenseNet-3C (evaluation by object). 

Comparing the confusion matrices of evaluation by segment and evaluation by object, 

this also sheds light onto which scene classification method will perform better. Since the 

evaluation by object provides better results, this method will be used to analyse the 

performances of the four class models as well. 

The object-wise confusion matrices for DenseNet-4C and DenseNet-4CB are shown 

respectively in Figures Figure 17 and Figure 18. Mostly these models have similar results, 

however regarding the classification of cars, the DenseNet-4C performs better. This 

might be due to insufficient training of the classifier for cars of DenseNet-4CB. 
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Figure 17. Confusion matrix on test dataset for DenseNet-4C (evaluation by object). 

 

Figure 18. Confusion matrix on test dataset for DenseNet-4CB (evaluation by object). 
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Table 5 gives a better overview of the performances of three models on the test datasets. 

The results of DenseNet-4CB are worse due to the class of cars having recall of only 68%. 

Surprisingly, while adding a fourth class, the evaluation metrics have not decreased much 

for DenseNet-4C when compared to the three-class DenseNet-3C. 

Table 5. Comparison of DenseNet-3C, DenseNet-4C and DenseNet-4CB. 

Model Accuracy 

Average Weighted 

Precision Recall F1-

Score 

Precision Recall F1-

Score 

DenseNet-

3C 
99.5% 98.5% 99.2% 98.9% 99.5% 99.5% 99.5% 

DenseNet-

4C 
99.2% 98.2% 99.5% 98.8% 99.3% 99.2% 99.2% 

DenseNet-

4CB 
98.5% 98.4% 91.5% 94.2% 98.6% 98.5% 98.4% 

5.3 Scene classification performance 

This section analyses the performance of both scene classification methods by varying 

the parameters. 

The example point cloud contains 1 875 232 points. The calculated voxel grid size is 

1924 × 1814 × 182 voxels (x, y, z side lengths). Since the size of voxels is 

0.1 × 0.1 × 0.15 m, the size of the voxel grid of this point cloud scene is 

192.4 × 181.4 × 27.3 m. The point cloud is coloured according to determined classes of 

points: posts are blue, vegetation is green, and buildings are yellow. 

5.3.1 Sliding window method analysis 

First the step parameter (s) is analysed with 𝑐 = 32 used as default, where s is the step 

and c represents the side length of the cube in the centre of the predicted voxel grid, where 

the voxels inside the cube are appended the probabilities. As seen the figures below, this 

parameter does not increase performance by much, yet smaller steps take exponentially 

more time. The processing took two minutes and 46 seconds for Figure 19 with step 𝑠 =

16, 15 minutes and 35 seconds for Figure 20 with 𝑠 = 8, and one hour and 56 minutes 

for Figure 21 with 𝑠 = 4. 
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Next, the parameter (c) is analysed. Step 𝑠 = 16 is used in these calculations. Parameter 

c cannot be smaller than s as this would result in some voxels not being classified. Figure 

22 displays the results when 𝑐 = 16.  

Figure 19. Sliding window method with 𝑠 = 16 and 𝑐 = 32 for DenseNet-3C, where s is the step and c is 

the side length of the cube where predictions are applied. 

Figure 20. Sliding window method with 𝑠 = 8 and 𝑐 = 32 for DenseNet-3C, where s is the step and c is 

the side length of the cube where predictions are applied. 

Figure 21. Sliding window method with 𝑠 = 8 and 𝑐 = 32 for DenseNet-3C, where s is the step and c is 

the side length of the cube where predictions are applied. 
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Unfortunately, the adjustment of the parameters s and c have not provided better results. 

Thus, the most time efficient parameters are proposed: 𝑠 = 16 and 𝑐 = 32. 

5.3.2 Scene clustering method analysis 

In the scene clustering method, the parameters analysed are d, the minimum distance 

between clusters, and p, the minimum required probability of the predicted class. If the 

probability lies under p for each class, the object is said to be of class “other” and is 

coloured grey. The colour codes for the other three classes remain the same. 

The problem with parameter d is that if it is too low, there will be many small clusters 

which are hard to predict. If d is too high, different objects will be clustered as one. If 

parameter p is too low, objects that do not belong to the three classes, for example cars, 

will be classified wrongly. If it is too high, an object may belong to a class, but since its 

probability is not high enough it will be classified as “other”. 

Figures Figure 23 and Figure 24 show the effect of 𝑑 = 0.2 and 𝑑 = 0.3 respectively with 

a constant 𝑝 = 0.6. Figures Figure 25 and Figure 26 depict the results of 𝑑 = 0.2 and 𝑑 =

0.3 respectively with a constant 𝑝 = 0.5. According to the results, the proposed 

parameters are 𝑑 = 0.3 and 𝑝 = 0.5. The average processing time is one minute and 30 

seconds. 

Figure 22. Sliding window method with 𝑠 = 16 and 𝑐 = 16 for DenseNet-3C, where s is the step and c is 

the side length of the cube where predictions are applied. 
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Figure 23. Scene clustering method with 𝑝 = 0.6 and 𝑑 = 0.2 for DenseNet-3C, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 

Figure 24. Scene clustering method with 𝑝 = 0.6 and 𝑑 = 0.3 for DenseNet-3C, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 

Figure 25. Scene clustering method with 𝑝 = 0.5 and 𝑑 = 0.2 for DenseNet-3C, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 

Figure 26. Scene clustering method with 𝑝 = 0.5 and 𝑑 = 0.3 for DenseNet-3C, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 
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Since the scene clustering method gives better results visually and is also more time 

efficient, the other networks are analysed with this method. The probability parameter p 

is set to 0.2 as there are not a lot of objects to be classified as “other” when the class for 

cars exists. The distance parameter d remains the same for clustering. 

Comparing Figures Figure 27 and Figure 28, the DenseNet-4C provides better results. 

While DenseNet-4CB classifies a few cars as vegetation, the DenseNet-4C classifies them 

correctly. Contrarily, the DenseNet-4C classifies some vegetation as cars. Regarding 

posts, the DenseNet-4C identifies a post with wires on the left side while the other model 

does not. The processing time for this scene is one minute and 15 seconds for DenseNet-

4C and three minutes for DenseNet-4CB. 

Figures Figure 29 and Figure 30 demonstrate the models’ performance on a larger point 

cloud scene. The most significant shortcoming for both models is classifying some 

buildings as vegetation. As regards moving and stationary cars, the DenseNet-4C 

performs better again. The processing time for this scene is nine minutes for DenseNet-

4C and 13 minutes for DenseNet-4CB. 

 

 

Figure 27. Scene clustering method with 𝑝 = 0.2 and 𝑑 = 0.3 for DenseNet-4C, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 
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Considering all experiments, the proposed method for scene classification is the scene 

clustering method. Regarding the model, DenseNet-4C is proposed if no more than these 

Figure 28. Scene clustering method with 𝑝 = 0.2 and 𝑑 = 0.3 for DenseNet-4CB, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 

Figure 29. Scene clustering method with 𝑝 = 0.2 and 𝑑 = 0.3 for DenseNet-4C, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 

Figure 30. Scene clustering method with 𝑝 = 0.2 and 𝑑 = 0.3 for DenseNet-4CB, where d is the minimum 

distance between clusters and p is the minimum required probability of the predicted class. 
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four classes are required in scene classification. If it is desirable to add new classes in the 

future, DenseNet-4CB is suggested. 

5.4 Proposed future improvements 

The suggested solution could be improved in many ways. Firstly, the dataset size is quite 

small at the moment as only 25 point cloud scenes were used to generate the dataset used 

in this work. A larger dataset would help the network generalise the classes even better. 

Secondly, the classes could be more specific – a hierarchical structure could be made, i.e. 

the current class of posts could be further classified as street lighting, traffic light or traffic 

sign posts. Lastly, the most significant issue concerns scene classification. Further 

research should be conducted on how to perform the clustering of objects with less error. 

5.4.1 Proposed scene classification improvements 

Even though the results of scene classification are quite satisfactory, they obviously are 

not as accurate as the performance on the test dataset would suggest. The task of scene 

classification is a lot more difficult than just classifying “clean” objects. 

The test dataset consists of well clustered and verified objects. During the dataset 

generation many unfit objects, such as small clusters which could not be identified or 

buildings with connected trees, were disregarded. 

The objects generated from the scenes are not as cleanly clustered as it is not always 

possible to separate objects. The parameter for the minimal distance between the clusters 

is applied to the whole scene and while in some parts a smaller parameter would be more 

suitable, in other parts a larger parameter would yield better results. There is no perfect 

variable which would result in perfect object clustering. Thus, further research on the 

topic of scene segmentation is suggested.  
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6 Summary 

The classification of point cloud scenes is a relatively new research. Point cloud data takes 

much more time to process than 2D data as adding a third dimension with length L 

increases the data size L times. However, 3D data has a great potential in various fields 

due to the benefits of spatial data. The purpose of this work was to construct a point cloud 

data classifier to detect posts, vegetation, buildings and cars in point cloud scenes. To 

fulfil this objective, first, a new dataset was constructed, second, a custom voxelization 

of point clouds was programmed, third, CNN models were built, and lastly two scene 

classification methods were implemented. 

This work has verified that CNNs, more specifically DenseNets in this case, are suitable 

to solve the problem of 3D object classification. The proposed model achieved an 

accuracy of 99.2% on the test dataset. 

The scene classification problem was solved with two different methods: the sliding 

window method and the scene clustering method. The proposed approach of scene 

clustering achieved visually better results. This method was also validated by comparing 

segment-wise and object-wise classification results. While the chosen network only 

achieved an accuracy of 83.7% with segment-wise classification, the object-wise 

classification produced an accuracy of 99.2%. 

The proposed solution could be improved in several ways. First, the training dataset 

should be expanded in size and by adding new and more specific classes. Second, further 

research should also be conducted regarding the scene clustering method, as the simple 

approach of clustering objects with a minimal distance between objects does not always 

produce perfectly clustered objects.
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