TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
17/2020

Operational Semantics of Weak
Sequential Composition

HENDRIK MAARAND

TAL
TECH

PRESS

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

The dissertation was accepted for the defence of the degree of Doctor of Philosophy
(Informatics) on 29 March 2020

Supervisor: Prof. Tarmo Uustalu
Tallinn University of Technology / Reykjavik University

Opponents: Dr. Brijesh Dongol
University of Surrey

Prof. Peter Thiemann
Albert-Ludwigs-Universitat Freiburg

Defence of the thesis: 26 June 2020, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Hendrik Maarand
signature
* X %
* *
* *
* *
* o *
j ——
European Union Investing
European Regional in your future

Development Fund

Copyright: Hendrik Maarand, 2020
ISSN 2585-6898 (publication)

ISBN 978-9949-83-560-7 (publication)
ISSN 2585-6901 (PDF)

ISBN 978-9949-83-561-4 (PDF)
Printed by Auratriikk

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
17/2020

Norga jadakompositsiooni
operatsioonsemantika

HENDRIK MAARAND

TAL
TECH

KIRJASTUS

Contents

[List Of PUBIICATIONS] + v v veeeeeeetnieeee et etiiiei ettt eiieeeeeeeeenieeeeeeennnaaaeeeennnns 7
|Author’s Contributions to the Publications]ccoveiieiiiiiiiiiiiiiiiiiiiinnnnn.. 8
T TR oY VTai o) PP 9
T R E T L PPt 15
2.1 WOrd LANGUABES. ..o eeiie ettt et et 15
2.2 RegUIAr LANGUAEES| .. v et tteei ettt ittt i ettt 15
2.3 MazUurkieWIiCZ TraCeT| .. v evv v et et e 16
2,31 Normal FOrmMS| .. vveeie i e e e i 18

2.4 Properties of Trace Closures of Regular Languages|.............ccooevvviiinnn.. 19

2.5 Rational and Recognisable Languages of Monoids|...........covvvviiiennennn.. 19
.. 20

2.7 Derivatives Of @ LaNgZUAZE]vvviiiii ittt ittt et eeieeanenns 21
271 __BrzozowsKi DErIVATIVE]vveeeeee e 22

2.72 Antimirov DerivatiVe]ovvneiii i 23

[2.8 __Small-Step Operational Semantics|...............coooooiiiiii 26
2.9 _AXIomMatic MOEIS]. ... ovoeieieiee e 27
[3_Reordering DEeriVatiVeS|ueuueueeuueuueeueuniiiiiiiaiiaiiaaiaaieaeenaannns 29
3.1 Prefixes and Suffixes of Representatives of Traces|..........coovvviiiiiii. 29
3.2 Trace-Closing Semantics of Regular EXpressions|........covvvveviiininenenennn. 33
.. 36
3.3.1 Reordering Derivative of a Language|..........covveiiiivieiiiinnnnnnn. 36

3.3.2 Brzozowski Reordering Derivative]......o.coviiiiiiiiiiiiiiiiiin. 38
...................................... 41

|3.3.4 Automaton Finiteness for Star-Connected Expressions| 43

3.4 Uniform Scattering Rank of alLanguage|........c..ovviiiiiiiniiiiiiiinnann, 45
3.4.1 Scattering Rank vs. Uniform Scattering Rankl.......................... 45
----------------------- 48
.......................... 51
3.5.1 Refined Antimirov Reordering Derivative|............coovviiinan... 52

[3.5.2 Automaton Finiteness for Regular Expressions with Uniform Rank|.. 59

3.6 Related WKl . .o v e e e e s 59
[3.7_Conclusion and Future Worklccovviuiiiiiiiiiiiiii i eeieenns 60
4__Normal Forms of Generalised TraCes]..ueeeeeeeeieeeiiniineninenrneneenenenenennns 63
BT MOTIVATION. .+ e+ e eeeee e e e e e e e e e e e 63
4.2 Generalised MazurKIeWICZ TraCesl ... vvneriiii it 64
4.3 __Generalised Foata Normalisationl.ccoveeriieiiiiiiii i 66
4.3 NOIrMal FOIMS| .o vveeeie ettt it ettt eaaes 66

[4.3.2 Normalisation]vvvveeeiiiiieee et 67

[4.3.3 Correctness].ooviiiii e 68

|4.4 _Generalised Lexicographic Normalisation|.....................ooo, 71
[A.4T NOIMAIFOIMS] v vveeeeeee et 71

[4.4.2 NormaliSation]ovvvneiie e i i e e 72

4.3 Correctnessl....coovvvniiiii i s 73

4.5 Example: TSO-like Independence Alphabet|.....................o 74
B8 Related WOIK oo 76
4.7 __Conclusion and FUture Worklovviviiiiiiiiiii ittt cie i eie s, 77

B IMOTIVATION. .+ v e ettt e e e e e e e et 79
5.2 Preliminaries] . oovueeie ettt ettt et 80
[5.21 Semicommutationsl.......cooveriiiiiiiii i 80

5.2.2 PO aMS| . ettt e 80

5. Reordering SEMaNtiCs|.oviiiiiii i e 81
5.3.1 Word Language Interpretation of Programs|co.u... 81

5.3.2 Reorderabilitylovuiuiiiii i e 83

5.3.3 Operational Semantics|..........ccooviiiiiiiiii i 85

5.3.4 Parallel-Independent Programs|...........ccooviiiiiiiiiiiiiiiinnnnnn, 89

5.4 Example: While LanguUage]coovriiiiiiiiii it ci et iieeenns 90
[B.5__Partial-Order RedUCEON. vuvveeeeeee e 92
5.5.1 Representative EXeCULIONS|.......ovuiiiiiiiiii it 93

[B.5.2 NOIMMALFOIMS] - v vveeeeee et 94

[5.6 _Extending the Framework| ... 94
5.6.1 Operational Semantics inContext|.............ccooiiiiiiiiiiiiat, 95

[5.6.2 Context-Dependent Semicommutation Relation] 97

[5.6.3 Reordering ACLIONS|........c.oviiiniiiiiiiiiii i 98

6.4 Non-Atomic INSEructions].uvvvvininininirerireieieieieieeeaene, 99

[5.6.5 Extensions and Partial-Order Reductionlccovvviiiiiiieennnnn.. 99

[5.6.6 Context-Dependence of 6 and Actions|................cooeiiinn.n. 100
... 101
B8 Related WOIKI. ... eeeeeeeeeeee e 104
[5.9_Conclusion and FUture Worklooviiiniiiiiii i 105

6 Example: Multicopy-AtomIC ARMV|. . ..iiiiiiiii ittt iiiiieteteeeereeeenanens 107
6.1 Abstract Maching]coooviiiiiiii e 107
6.2 __From Axiomatic to Operationall.................oiiiiiinn 108
B3 PTOTOEYDE - vveessoeee e, 12
16.4 Related WOrKI. ..o e e e 13
16.5 _Conclusion and FUture Worklcoovveiiiiiiii ittt cie i eieennens 113
IZ__Conclusions and FUtUre Workleeeeeeeeeiieniieinenieeereenracecncncncncncanns 115
[Z1 Conclusions|.......oviiniiiii 115
[72 FUtUrE WOIKI . .o e 115
[RT F = o= 117
|A__Certified Normalisation of Generalised Traces|....coeveiiiiiiieniieirieeeeennnnnns 125
JACKNOWIEAZEMENTS| « ot ttiee i in i iiiieeeeeeneeeeeeneeeeseseresesocncacacnsncncncncanns 139
T T 1 72T i Y 140
T A RIS 2 S 142
[CUTICUTUM VIEBE] + e v eneetet et et et ettt ettt et et ea e e eneneeneeneneens 144
(1[0 [T RT3 T3 L [V 1S R 146

List of Publications

H. Maarand and T. Uustalu. Reordering derivatives of trace closures of regular lan-
guages. In W. J. Fokkink and R. van Glabbeek, editors, 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-
lands, volume 140 of LIPIcs, pages 40:1-40:16. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, 2019

H. Maarand and T. Uustalu. Certified Foata normalization for generalized traces. In
A. Dutle, C. A. Mufioz, and A. Narkawicz, editors, NASA Formal Methods - 10th Interna-
tional Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceedings,
volume 10811 of Lecture Notes in Computer Science, pages 299-314. Springer, 2018
H. Maarand and T. Uustalu. Certified normalization of generalized traces. Innovations
in Systems and Software Engineering, 15(3-4):253-265, 2019

(This is the journal version of Publicationll})

H. Maarand and T. Uustalu. Generating representative executions [extended abstract].
In V. T. Vasconcelos and P. Haller, editors, Proceedings of the Tenth Workshop on Pro-
gramming Language Approaches to Concurrency- and Communication-cEntric Soft-
ware, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, volume 246 of EPTCS,
pages 39-48. Open Publishing Association, 2017

H. Maarand and T. Uustalu. Operational semantics with semicommutations. Accepted
for publication in J. Log. Algebr. Methods Program.

(This is the journal version of Publication [[V]and the material has been significantly
elaborated here.)

Author’s Contributions to the Publications

In Publication[l] I proposed the idea of developing reordering derivatives with the goal of
developing an operational semantics for relaxed memory out of it. Many of the results
were obtained together with my supervisor. | wrote the first draft of the manuscript and
also presented the results at the conference.

In Publications (IHITI), | proposed the idea of using normal forms of generalised traces to
allow a more precise description of some relaxed memory models which in turn led to
this work. | carried out the formalisation and wrote the first drafts of the manuscripts. |
presented the results of Publication[ll] at the conference.

In Publications (IVHV), | proposed the idea of using the same independence relation both
for generating the program executions and also for discarding those executions that are
not in normal form. | implemented the prototypes and wrote the first drafts of the manu-
scripts. | presented the results of Publication[[V]at the workshop.

1 Introduction

This dissertation considers the execution of concurrent programs in a manner that is not
sequentially consistent. Intuitively, this means that we consider program executions that
are not justifiable by simply interleaving the program-order instruction sequences of the
individual threads. The sequentially consistent model is intuitive, but real world CPUs and
compilers do not adhere to it as it forbids many common optimisations. Instead we have
consistency models that are weaker than sequential consistency in the sense that they
allow more program executions. These weaker models, however, are less intuitive than
sequential consistency and may lead to unexpected results at runtime.

A mechanism that is commonly used in programming languages to introduce order-
ing constraints between instructions is sequential composition. If we take p and ¢ to
be programs, then their sequential composition p;q expresses that the program ¢ is to
be executed after the program p has been executed. In this dissertation we develop an
operational semantics that allows to weaken (or relax) some of the ordering constraints
introduced by sequential composition.

Context

A memory consistency model (or, more generally, a memory model) describes the mean-
ing of memory operations such as reads and writes in a shared memory system. For exam-
ple, it should specify the set of values that a processor is allowed to read when executing
an instruction that reads the content of memory location x. Intuitively, this set of values
should be determined based on all the write instructions to memory location x that have
occurred so far.

It is very intuitive to consider the shared memory to be a mapping from locations to
values that is updated accordingly whenever a write to a location x occurs. As an example
we now consider something different. We say that the processors agree on variable x
if the last value written to x has also been at some point written to location x by all of
the processors and no other values have been written to location x in between these
writes. We say that the current value of location x is the last value that the processors
agreed upon (and we assume that the processors agree on the initial values of the memory
locations). For example, if during the execution of a program the processors never agree
on any location, then every memory location still holds the initial value also in the final
state. If we are not aware of the fact that the shared memory of some machine behaves as
described above, then we might be very surprised when we begin to execute programs on
that machine. We can see that, with this unconventional memory behaviour, we may have
to write our programs differently and we also must reason about the programs differently.
In other words, we have to take the behaviour of the memory system into account in both
of these tasks.

Perhaps the simplest memory model is Sequential Consistency (SC) which was defined
by Lamport [44] for a system consisting of processors and memory modules where the
processors communicate with each other only by sending fetch and store requests to the
memory modules. He defined a system to be sequentially consistent if the following holds:
the result of any execution is the same as if the operations of all the processors were ex-
ecuted in some sequential order, and the operations of each individual processor appear
in this sequence in the order specified by its program. In the same paper Lamport also
notes that the requirements for sequential consistency rule out some techniques that
can be used to speed up individual processors and thus, for some applications, achieving
sequential consistency might not be worth the price of slowing down the processors.

Modern CPUs and compilers indeed include optimisations that make them weaker
than sequential consistency. It is common, however, for weaker consistency models to
still satisfy the requirement that each processor (or thread) is individually sequentially
consistent by which we mean that a single processor executing in isolation is sequentially
consistent. It is also a very reasonable requirement for compiler optimisations that, for
single-threaded programs, the optimisations do not introduce any new behaviours (in
which case we also say that the optimisation is individually sequentially consistent). As
Lamport notes in [44], the fact that each processor is individually sequentially consistent
is not sufficient for the whole system to be sequentially consistent. In other words, the
effects of optimisations that are individually sequentially consistent might become visible
in a concurrent setting.

We now continue with a small example to explain how optimisations can violate se-
quential consistency. The following concurrent program represents the message-passing
pattern.

x:=4Ly:=1|r:=yn:==x
Here the first thread stores to x the result of some computation (which happens to be 41)
and then sets y to 1. The intended meaning of the second instruction is that the variable y
having value 1 indicates that the first thread has finished its computation (and the result
is now available in variable x). The second thread first reads the variable y and then the
variable x. If we follow the requirements of sequential consistency, then no execution of
this program, starting from an initial state where everything is set to 0, can result in a
final state where r; = 1 and r, = 0. In other words, when the variable y holds the value 1
(indicating that the first thread has finished), then the variable x must hold the value 41.

We can observe, however, that in both threads reordering the two instructions is in-
dividually sequentially consistent, i.e., when executing a thread in isolation, we cannot
distinguish (based on the final state) whether we executed the instructions in the given
order or in the reverse order. This is so because the instructions in a single thread use
different variables. After an optimisation like this we could end up with the following
program where the instructions in the second thread have been reordered.

x:=4Ly:=1|rn:=xr =y
This optimised program has the interleaving
rpi=xx:=41;y:=1;r =y

which results in a final state where r; = 1 and r, = 0. Thus we can see that applying an
optimisation that is individually sequentially consistent to a concurrent program (either
in advance or at runtime) might introduce behaviour that is not possible under sequential
consistency. In other words, this optimisation is not valid under sequential consistency.

Systems with a memory consistency model that allows more behaviours than sequen-
tial consistency are often said to have a weak or relaxed memory model. The above
example demonstrates that under a relaxed memory model a program can have addi-
tional final states compared to those that it has under sequential consistency. As a con-
sequence, when reasoning about programs we have to be precise about the particular
memory model as the same program might satisfy certain properties on some memory
models but not on others.

Problem Statement

In the example above we interpreted the message passing program in two different ways.
First, assuming sequential consistency, we argued that the program does not allow a cer-

10

tain undesirable final state. Then we argued that, if we would first apply a seemingly
harmless optimisation to the program, then the final state in question is allowed. In other
words, the optimised program can reach the undesirable final state. The optimisation
necessary for this just reorders a single pair of instructions. This raises the question: how
to describe or specify such relaxed memory models?

A successful approach to describing memory models has been the use of axiomatic
models or axiomatic style descriptions. An example of this is the generic framework for
weak memory models developed by Alglave in her PhD thesis [[6]]. A characteristic feature
of the axiomatic approach is the predicate on (complete) candidate executions which de-
fines those (candidate) executions that are allowed by the memory model. In other words,
the memory model definition itself does not specify how to construct an execution, it only
specifies when an execution is allowed by the memory model.

Our goal in this dissertation is somewhat opposite: we pursue a framework for defining
relaxed memory models via small-step operational semantics. Thus our goal is to describe
how to execute a program in a relaxed manner. In other words, given a configuration con-
sisting of a program and a machine state, the framework should specify what are the
possible next steps in the execution that are allowed by the memory model. The exe-
cutions allowed by the memory model are then precisely those executions that can be
constructed in such a step-by-step manner and which take us from the initial state to a
final state.

Contributions

We develop an operational semantics that has reordering capabilities (such as those nec-
essary for the example optimisation above) built in. This means that to obtain the unde-
sirable final state for the example program we do not have to consider a set of optimised
versions of the given program as we did above. Instead, we can set up our operational
semantics so that it can produce an execution that goes from the initial state to this un-
desirable final state. Altogether, we make the following contributions.

1. Reordering derivatives: We use regular expressions over an alphabet of instruc-
tions as the syntax with which we describe programs. For regular expressions, the
idea corresponding to operational semantics is the notion of (syntactic) derivatives.
By this we mean that derivatives describe how to construct (in a letter-by-letter
manner) a word in the language of a regular expression.

Thus as a first step towards our goal we investigate derivatives of regular expressions
in the presence of an independence relation on the alphabet. The independence
relation (as in Mazurkiewicz traces [52]]) specifies the pairs of letters that commute
and we use this as the mechanism to describe the optimisations that we include in
the semantics.

As a specification of what the (syntactic) reordering derivatives should compute,
we develop a non-standard interpretation of regular expressions as trace-closed
languages. This means that if a word belongs to the interpretation, then so does any
word that is equivalent to it (according to the equivalence relation induced by the
independence relation). We then generalise the Brzozowski [20] and Antimirov [10]
(syntactic) derivative operations to match this non-standard interpretation.

We also investigate questions regarding the finiteness of the set syntactic reordering
derivatives. This part is not directly related to relaxed memory models.

Our generalisations of Brzozowski and Antimirov derivative operations can also be

1

used for constructing an automaton from a regular expression. In general, these
automata cannot be finite for the simple reason that, in general, they must accept
non-regular languages. We show that, for a class of regular expressions called star-
connected expressions, the set of Antimirov reordering derivatives is finite modulo
certain equations.

We also develop a refinement of the Antimirov reordering derivative operation that
allows us to more precisely keep track of how an expression is derived along a word.
With this refinement in mind, we define a stronger version of (scattering) rank [32]
which we call uniform (scattering) rank and show that languages defined by star-
connected expressions have finite uniform scattering rank. We then show that, if
the language of an expression has finite uniform scattering rank, then the refined
Antimirov reordering derivative operation can be used to construct a finite automa-
ton from the expression. This construction does not require any quotienting, in-
stead it relies on truncation to make the state set finite.

. Normalisation of generalised traces: In the previous item we mentioned that the
non-standard interpretation of regular expressions produces trace-closed languages.
In other words, the non-standard interpretation wrt. independence relation I pro-
duces a language that can be partitioned into equivalence classes (traces) according
to the equivalence relation induced by I. In some applications it might be desirable
to work with concrete words representing these equivalence classes. For Mazur-
kiewicz traces there are two well-known normal forms that can be used to specify a
canonical representative of a trace (equivalence class): the Foata normal form and
the lexicographic normal form.

Our development here is motivated by the fact that, in some cases, an indepen-
dence relation (as in Mazurkiewicz traces) might not be expressive enough. More
precisely, in Mazurkiewicz traces, the independence relation is a binary relation on
the alphabet and thus it is static. By this we mean that we cannot have a pair of
letters independent in some configuration of the system, but not in others.

We develop Foata and lexicographic normal forms and corresponding normalisa-
tion algorithms for a generalisation of Mazurkiewicz traces introduced by Sassone,
Winskel and Nielsen [74]. We also formalise this development in the dependently
typed programming language Agda.

In this generalisation the independence relation is replaced by a family of indepen-
dencerelations, i.e., for any word u we have an independence relation I, associated
with u. In this setting, a1, b (only) means that a and b are independent in the con-
text u (the prefix of the letters a and b). In other words, if al, b, then uabv and ubav
are considered equivalent, but it is not necessarily the case that the same holds for
u'abv and u'bav. This word parameter u can be seen as the current configuration
of a system and thus allows us to say that a pair of letters are independent in some
configuration but not in others.

We are interested in generalised traces since, in some relaxed memory models, it
may be that two instructions commute in some machine state but not in others. This
could be because one of the instructions accesses a shared resource only under
certain conditions. For example, a processor executing a read instruction might
access the shared memory to determine the result of the read, but also it might
not, when the result is determined based on locally available information.

12

3. Operational semantics with semicommutations: We further extend the Antimirov
reordering derivatives to obtain an operational semantics that, according to a given
independence relation, produces all possible executions that are justified by the
reorderings described by the independence relation.

The basic changes needed to go from Antimirov reordering derivatives to opera-
tional semantics are the following. First, we interpret the alphabet as the set of
possible instructions. By this we mean that we can interpret the letters of the al-
phabet as (partial) state transformers. A program then is just a regular expression
over this alphabet. Intuitively, the Antimirov reordering derivatives of a program tell
us what the instructions are that we are allowed to execute next and what the corre-
sponding residual programs are that still need to be executed afterwards. Here we
also let go of the requirement that an independence relation must be symmetric.
Thus we are working with a generalisation of Mazurkiewicz traces called semicom-
mutations that was introduced by Clerbout and Latteux [24]. To describe parallel
programs we also add parallel composition to the syntax.

Note that, if we take the set of machine states to be a singleton set and we inter-
pret the letters as the identity state transformer, then we essentially get back to
Antimirov reordering derivatives.

To allow more intricate relaxed behaviour we also describe a couple of extensions of
this framework. For example, we allow a semicommutation relation to be context-
dependent so that we are justified to reorder a pair of instructions in some state but
not in others. We also allow for the possibility that reordering a pair of instructions
can modify them. This is described using reordering actions, i.e., we have left and
right actions of the alphabet (acting) on itself. We also allow for instructions to be
executed in multiple steps.

Relaxed memory models are often specified in the axiomatic style. To test the ca-
pabilities of the operational framework described above, we take the axiomatically
specified multicopy-atomic ARMv8 [67] memory model and translate a fragment
of it into our operational framework. The main contribution here is an example of
how the extensions mentioned in the previous paragraph can be used to give an
operational translation of an axiomatic model.

Outline

In Chapter [2)we go over some background material relevant to this work.

In Chapter [3| we describe the non-standard interpretation of regular expressions as
trace-closed languages, the I-reordering language derivatives and the corresponding gen-
eralisations of the Brzozowski and Antimirov derivative operations. We then investigate
the question of finiteness of the set of these syntactic derivatives. We also develop a
refinement of the Antimirov reordering derivative. This is based on Publication[]

In Chapter[4]we cover the Foata and lexicographic normal forms for generalised traces
together with the corresponding normalisation algorithms and correctness proofs. This is
based on Publications (IIHII).

In Chapter [5| we further generalise the Antimirov reordering derivative operation to
develop an operational semantics for relaxed memory where the semantics is parame-
terised by an independence relation that controls the relaxedness of the semantics. This
is based on Publication [V} (The early ideas for this work are from Publication[IV] but they
were developed significantly further in Publication M)

13

In Chapter[6|we give an example of how the framework from Chapter [5]could be used
to describe a memory model. More precisely, we take the multicopy-atomic ARMv8 [67]
memory model, which is axiomatically specified, and translate a fragment of it into the
operational framework from Chapter[5 This is based on Publication[V]

14

2 Preliminaries

In this chapter we briefly go over some background material that is necessary for or rele-
vant to our later developments.

2.1 Word Languages

An alphabet is a finite non-empty set of letters (also called symbols). A word (or string)
over an alphabet X is a finite sequence of letters from X. The empty word (the sequence
consisting of zero letters) is denoted by €. The concatenation of words « and v (denoted
by u - v but - may be omitted and then we just write uv) is the sequence that consists of
the letters of the sequence u followed by the letters of the sequence v.

The set X* of all words over X is the free monoid on X with the empty word € as the
unit and concatenation of words as the multiplication. Thus we have that eu = u = ue
and s(tu) = (st)u for any s,t,u € X*.

We write |u| for the length of the word u (i.e., the length of the sequence u). We have
|e| = 0 (i.e., the length of the empty sequence is 0) and |uv| = |u| + |v|. For a set X, we
write |X| for the cardinality of the set X. By 7y () we mean the projection of aword uto a
subalphabet X C X. Thus 7y («) is a subword (or subsequence) of u obtained by discarding
from u all letters that are not in X. By X(u) C X we denote the set of letters that occur in
u. As a shorthand we write |u|y for |y (u)| which is the number of occurrences of letters
from X in u.

For two words u,v € X*, we say that u is a prefix of v when there exists t € X* such that
ut = v. Similarly, v is a suffix of u when there exists ¢ such that tv = u.

A (word) language over X is a set of words over X. The empty language is the empty
set 0 and the language consisting of all possible words over X, the universal language, is
Y*. Thus a (word) language is a subset of X*. The empty word and the concatenation of
words lift to word languages vial =g {€} and L-L' =4t {uv [u € LAv € L'}.

The shuffle (product) of u,v € £*, denoted by u LLI v, is the set of all valid interleavings
of uand v.

ewv =g {v}
ullle =g4r {I/t}
aullby =g {a} - (uwbv)U{b}- (aulv)

This lifts to word languages via LI L =4 {uliv|uc LAve L'}

2.2 Regular Languages

The set RE of regular expressions over an alphabet X is given by the grammar
E:=a|0|E+E|1|EE|E"

where a ranges over X. We write RE(X) when we need to explicitly specify the alphabet.
The word-language semantics of regular expressions is given by the function [_] :
RE — Z2(X*) defined recursively by

la] =ar {a}
[0 =ar ©

[E+F] =4 [E]JU[F]
] =a 1

[EF] =a [E]-[F]
[£] = uX10[E]-X = U [£]

15

Aword language L is said to be regular (or rational) if L = [E] for some regular expres-
sion E € RE. We also say that [_] is the standard interpretation of regular expressions as
(regular) word languages.

A deterministic finite automaton (DFA) is a quintuple (Q,X, 8, qo, F) where Q is a finite
set (of states), X is the (input) alphabet, 6 : O x ¥ — Q is the transition function, ¢y € Q
is the initial state and F C Q is the set of final states. We write (¢)a for d(g,a) and ex-
tend it to words as (g)€ =4r ¢ and (q)au =g4¢ ((g)a)u. A deterministic automaton is said
to accept a word u when (qo)u € F, i.e., when the automaton transitions according to o
from the initial state g as prescribed by the word u to a state that is final (or accepting).
The language {u € £* | (go)u € F} of all words accepted by the automaton is the lan-
guage recognised by the automaton. The transitions of the automaton can also be given
relationally in terms of 8 as {(¢,a,(q)a) |g € QNa € X}.

A nondeterministic finite automaton (NFA) is otherwise just like a deterministic finite
automaton, except that the transition function becomes d : Q x X — £2(Q), i.e., in state
q € Q with input letter a € ¥ we may have zero or more states we can transition to.
We write (g)a for the set 8(g,a) and extend it to words as (g)e =¢¢ {g} and (g)au =4¢
U{(¢)u | 4 € (q9)a}. A nondeterministic automaton is said to accept a word u when u
can take the automaton from the initial state gy to some accepting state ¢ € F. In other
words, u is accepted when (go)u N F # 0. The transitions of the automaton can also be
given relationally in terms of 6 as {(¢,a,4') | g€ OANa € ENg € (q)a}.

Kleene's theorem [40] says that a word language is rational iff it is recognisable, i.e.,
accepted by a deterministic finite automaton (acceptance by a nondeterministic finite
automaton is an equivalent condition because of determinisability [69]]).

A Kleene algebra is an idempotent semiring with an additional operation (_)* (the
Kleene star) together with some additional axioms governing this operation. It was shown
by Kozen [42] that the set {[E] | E € RE} of all regular languages together with the lan-
guage operations 0, U, 1, -, (_)* isthe free Kleene algebra on X. Animportant consequence
of this is that the equational theory of Kleene algebra is sound and complete for [_]. In
other words, we have that E = F iff [E] = [F] where = refers to valid equations in the
Kleene algebra theory.

2.3 Mazurkiewicz Traces

An independence relation on an alphabet X is an irreflexive and symmetric binary relation
I CE x L. Itscomplement D = £ x £\ I, which is reflexive and symmetric, is called the de-
pendence relation. An independence (or concurrency) alphabet (X,7) is just an alphabet
Y together with an independence relation I on it. We extend the independence relation
to words by saying that two words u and v are independent, denoted by u1v, if al b for all
a,b € ¥ such that a € X(u) and b € X(v). Two words u and v are dependent, denoted by
uDv, when they are not independent, i.e., there exist a,b € X such thata € £(u), b € £(v)
andaDb.

Intuitively, the independence relation reflects the meaning we have attached to the
symbols in the alphabet X. If al b, then we say that the letters a and b are independent
and by this we mean that the ordering of the letters a and b in a word does not matter,
i.e., the words uabv and ubav represent the same thing (we consider them equivalent).

We define ~' C T* x ©* to be the least relation such that a1 b implies uabv ~' ubav,
i.e., it relates words that differ only by the ordering of a pair of adjacent independent
letters. We define (Mazurkiewicz) equivalence ~'* to be its reflexive-transitive closure. A
(Mazurkiewicz) trace is an equivalence class of words wrt. ~'*. The equivalence class of
a word w is denoted by [w]’. Equivalently, we could define ~* as the least congruence

16

(wrt. -) such that al bimplies ab~'* ba. A consequence of the definition of the equivalence
relation is that the ordering of dependent letters is fixed in an equivalence class, i.e., if
aDband u~"™v, then i,y (u) = a5y (v).

The set £* /~!* of all traces is the free partially commutative monoid on (X,1). If I =0,
then E*/w’* =~ ¥* the set of words, i.e., we recover the free monoid. On the other hand,
if I = {(a,b) | a # b}, then T* /~* = (%), the set of finite multisets over £, i.e., the
free commutative monoid.

A trace language is a subset of ©*/~*. Trace languages are in bijection with word
languages L that are (trace) closed in the sense that, if z € L and z~"* w, then alsow € L.
If T is a trace language, then its flattening L =4 UT = {u € * | [u)/ € T} is a closed
word language. On the other hand, the trace language corresponding to a closed word
language Lis T =4 {t €L*/~I* |z €t.z€ L} = {t €X*/~1* |Vz€t.z € L}.

Given a general (not necessarily closed) word language L, we define its (trace) closure
[L]! as the least closed word language containing L. Clearly [L]! = {w € 2* | 3z € L.w~'* 7}
and also [L)/ = J{t € Z*/~!* | Iz € t.z € L}. The trace closure operator [_]! is indeed a
closure operator as, for any L, we have L C [L]! and [[L]!]' = [L]!. Furthermore, we have
[0)) =0 and, for any L and L', [LUL']" = [L)) U[L]!. We also have that [1}' = 1 and, for
anya € ¥, [{a}]! = {a}. Alanguage L is closed iff [L]| = L.

Aword w = aj ...a, where a; € X yields a directed node-labelled acyclic graph as fol-
lows. We take the vertex set to be V =4 {1,...,n} and we label vertex i with a;. We take
theedge settobe E =g4; {(i, /) | i < jAa;Daj}. Thisgraph (V,E) for aword wis called the
dependence graph of w and is denoted by (w)p. If w~* z, then the dependence graphs
of w and z are isomorphic, i.e., traces can be identified with dependence graphs up to
isomorphism. If w ~* z, then w is a linearisation of (z)p.

We say that a letter a is minimal in the word z when there exist v/ and v’ such that
z=Vav" andV'Ia. An equivalent condition is that a is the first letter of an equivalent word,
i.e., there exists v such that z~"* av. In the dependence graph of z the node corresponding
to this a has no incoming edges. If I = 0, then the word av has exactly one minimal letter
and this is the letter a.

As an example independence alphabet we take X =4 {a,b,c,d} and I to be the least
symmetric relation satisfying al b, ald, b1d, cId. Then the words abcd and bdac are
equivalent, since abed ~! bacd ~' badc ~' bdac, but achd is not equivalent to them. The
words abced, abdc, adbc, bacd, badc, bdac, dabc, dbac form one equivalence class of words
or a trace. Another is {acbd, acdb, adcb, dacb}. Altogether, there are four traces contain-
ing each letter from X exactly once.

Continuing with the above example, we have seen that the words abcd and acbd are
not equivalent and thus should have distinct dependence graphs. Indeed, we can draw
the dependence graphs of the words abcd and acbd as follows (we have drawn rectangles
to separate the two dependence graphs).

\ 4 ——>c—>p

The concatenation of two dependence graphs is obtained by adding the necessary edges
between dependent vertices of the two graphs. The concatenation of the two depen-

17

dence graphs above ({(abcd)p and {acbd)p) can be drawn as follows.

a

Just to emphasise, we draw the transitive reduct of the dependence graph, i.e., we have
omitted transitive edges like the one between the two a’s. We can check that this is indeed
the dependence graph of abcdachd.

2.3.1 Normal Forms

Traces are equivalence classes of words. We have seen that a trace can be identified with
its dependence graph (up to isomorphism) and thus a dependence graph can be used to
represent a trace. Here we describe two well-known normal forms that specify a word
representing a trace as a canonical representative of that trace. For this we require a
strict total order (i.e., a transitive and asymmetric relation) < on the alphabet. We take
the strict total order on the example alphabet Ztobea < b < ¢ < d.

The Foata normal form [21] is a well-formed sequence of well-formed steps. A well-
formed step is a <-sorted word where all the letters are pairwise independent. We think
of a step as a set of independent letters, but add the requirement of <-sortedness to pick
a representative word for that step. A sequence of steps is well-formed when every letter
in a step has a dependent letter in the previous step (the first step is excepted). This leads
to the maximally parallel representation of the trace, with every letter occurrence in the
earliest possible step.

The Foata normal form of abcd in our example is (abd)(c). Here abd is the first step
and c is the second step of the normal form. It is a normal form since the letters are
pairwise independent in both of the steps and ¢ has a dependent letter in the previous
step. It is the normal form of abcd since, if we turn the normal form (abd)(c) into a word
by flattening the steps, we get abdc, which is equivalent to abcd. Similarly, the normal
form of acbd is (ad)(c)(b).

The Foata normal form of a trace can be read off of its dependence graph. The first step
of the normal form is the set of minimal letters (vertices with no incoming edges) in its
dependence graph. The rest of the normal form is obtained recursively from the residual
dependence graph, i.e., the dependence graph with its minimal letters removed. From
the dependence graph of abcd above we can see that the first step in the normal form of
abced isindeed (abd). Similarly, the first step in the normal form of acbd is (ad). From the
dependence graph of abcdacbd we can see that the first step in the normal form is (abd).

A word is said to be in lexicographic normal form if it is the least element in its equiv-
alence class according to the lexicographic ordering induced by <. An equivalent charac-
terisation in terms of a forbidden pattern was given by Anisimov and Knuth [9]: a word
s is in lexicographic normal form if and only if, for every factorisation tbuav of s where
blaand a < b, there is a letter d in u such that d D a (in other words, we are not able to
commute a to the left past b).

The word abcd is the lexicographic normal form in its equivalence class. Similarly, the
word acbd is the lexicographic normal form in its equivalence class. The only potentially
forbidden pattern in this word could be formed by ¢ and b as they occur in the wrong
order, but the two letters are dependent and hence there are no forbidden patterns. The

18

equivalent word acdb has a forbidden pattern: the letters d and b are in the wrong order,
independent, and the subword between them (the empty word) does not contain a de-
pendent letter. We denote the set of lexicographic normal forms for the independence
alphabet (X,7) by Lex(X,1).

Similarly to the Foata normal form, the lexicographic normal form of a trace can also
be read off of its dependence graph. The first letter in the normal form is the least letter
according to < among the minimal letters in the dependence graph of the trace. The rest
of the normal form is obtained recursively from the residual dependence graph, i.e., the
dependence graph with the first letter removed.

2.4 Properties of Trace Closures of Regular Languages

Trace closures of regular languages are theoretically interesting due to their intricate prop-
erties and have therefore been studied in a number of works, e.g., [13, 59, (3| [71, [32} [41].
For a thorough survey, see Ochmanski’s handbook chapter [60].

An important property for us is that the trace closure of a regular language is not nec-
essarily regular.

Proposition 2.1. There exists a regular language L such that [L]’ is not regular.

Proof. Take £ =¢¢ {a,b}, alb and let the regular language be L =4 [(ab)*]. The language
L) ={u€X*||ul, = |ulp}is not regular. O

The class of trace closures of regular languages behaves quite differently from the class
of regular languages. Here are some results demonstrating this.

Theorem 2.2 (Bertoni et al. [14], Aalbersberg and Welzl [3]], Sakarovitch [71]). (cf. 60,
Thm. 6.2.5]) The class of trace closures (wrt. I) of regular languages (over ¥) is closed
under complement iff I is quasi-transitive (i.e., its reflexive closure is transitive).

Theorem 2.3 (Bertoni et al. [13], Aalbersberg and Welzl [3] (“if” part); Aalbersberg and
Hoogeboom [1]). (cf. [60, Thm. 6.2.5]) The problem of whether the trace closures (wrt. I)
of two regular languages (over L) are equal is decidable iff I is quasi-transitive.

Theorem 2.4 (Sakarovitch [72]). (cf. [60, Thm. 6.2.7]) The problem of whether the trace
closure (wrt. I) of the language of an expression over X is regular is decidable iff I is quasi-
transitive.

A closed language is regular iff the corresponding trace language is accepted by a fi-
nite asynchronous (a.k.a. Zielonka) automaton [80, [81]. In Section[2.8we will see further
characterisations of regular closed languages based on star-connected expressions.

2.5 Rational and Recognisable Languages of Monoids

Trace languages are a special case of languages of monoids. A subset 7' of a monoid M is
called an M-language. An M-language T is called rational if T = [[E]]M for some regular
expression E over M. Here [_]* : RE(M) — &2 (M) interprets any element m of M as {m},
the 0, + constructors of regular expressions by @ and U, the 1, - constructors as mandated
by the monoid structure, and (_)* as the appropriate least fixpoint.

An M-language T is recognised by an action 6 : Q x M — Q if there exist gy € Q and
F CQsuchthatT = {m e M| (qo)m € F} where we write (¢)m for §(g,m). In other
words, T is the set of elements of M that take go to F'. An M-language T is recognisable
if it is recognised by an action of M on a finite set. If an M-language T is recognised by an

19

action 6 : Q x M — Q, then 8§ can be seen as an automaton by taking QO to be the state
set, go to be the initial state, F' to be the final states and the set of transitions is given
by {(g,m,(q)m) | g € Q Am € M}. If M is finitely generated with G as the generators,
then we can obtain an equivalent automaton by restricting the set of transitions to be
{(g,m,(q)m) | g € Q Am € G}. If Qs finite, then the resulting automaton is also finite.

Kleene’s celebrated theorem says that, for languages of free monoids on finite sets
(i.e., word languages over finite alphabets), rationality and recognisability are equivalent
conditions (and we can thus just speak about regularity). For a general monoid, however,
the two notions are different.

Theorem 2.5 (Kleene [40Q]). Let M be the free monoid £* on a finite set £.. An M-language
T is rational iff T is recognisable.

Theorem 2.6 (McKnight [53]]). Let M be finitely generated. If an M-language T is recog-
nisable, then T is rational.

Given a monoid M and a congruence = on M, the set M /= is a monoid too. We view
M /=-languages as sets of equivalence classes wrt. =.

Proposition 2.7. Given a monoid M and a congruence = on it.

1. Given a regular expression E, its M /=-language [[EHM/ = is expressible via its M-
language [E]™ by [E]M/= = {te M/=|3u e t.u c [E]"}.

2. AM/=-language T is recognisable iff its flattening | J T into an M-language is recog-
nisable.

In the free partially commutative monoid the classes of rational and recognisable lan-
guages are different: the class of recognisable languages is a proper subclass of that of
rational languages. In view of Proposition[2.7] a trace language T is rational if and only if
T ={teX*/~"|3uct.uclL}or equivalently, UT = [L)! for some regular word lan-
guage L (in the terminology of Aalbersberg and Welzl [3], such a trace language T is called
existentially regular), and recognisable iff | J T = L for some regular word language L (such
a trace language is called consistently regular).

The question of when a rational trace language is recognisable is nontrivial. We have
just seen that, reformulated in terms of word languages, it becomes: given a regular lan-
guage L, when is its trace closure [L]' regular?

2.6 Star-Connected Expressions

Star-connected expressions are important as they characterise regular closed languages.
A corollary of that is a further characterisation of such languages in terms of a “concur-
rent” semantics of regular expressions that interprets the Kleene star non-standardly as
“concurrent star”.

Definition 2.8. A word w € X* is connected if its dependence graph (w)p is connected. A
language L C X* is connected if every word w € L is connected.

Definition 2.9.

1. Star-connected expressions are a subset of the set of all regular expressions defined
inductively by: 0, 1 and a € X are star-connected. If E and F' are star-connected,
then so are E + F and EF. If E is star-connected and [E] is a connected language,
then E* is star-connected.

20

2. A language L is said to be star-connected if L = [E] for some star-connected ex-
pression E.

Ochmanski [59] proved that a closed language is regular iff it is the closure of a star-
connected language. This means that, for any expression E, the language [[E]]’ is regular
iff there exists a star-connected expression E’ such that [[E]]’ = [[E']]!. It is important to
realise that generally E # E’ and also [E] # [E']. Ochmanski’s proof was as follows (recall
that we write Lex(X, I) for the set of all lexicographic normal forms over the independence
alphabet (X,1)).

Lemma 2.10. (cf. [60, Props. 6.3.4, 6.3.10])
1. Lex(%,1) is regular.
2. For any regular language L, if L C Lex(X,I), then L is star-connected.

Theorem 2.11 (Ochmanski [59]). (cf. [60, Thm. 6.3.13]) For any closed language L (i.e.,
L = [L]!), the following are equivalent:

1. Lisregular;
2. LNLex(X,I) is regular;
3. there exists a star-connected L' such that L = [L'].

Proof. (1) = (2) is a consequence of Lemma 1) as the intersection of regular lan-
guages is regular. (2) = (3) follows from Lemma 2) as L = [LN Lex(X,I)]’. For
the step (3) = (1), Ochmanski employed Hachiguchi’s notion of rank of a language and
Hachiguchi’s lemma, which we will study in Definition [3.43] and Proposition [3.44] below,
and proved that, if L is closed and connected, then L* has rank. O

The non-standard concurrent-star trace-language semantics of regular expressions,
denoted by [_]" : RE(X) — £(X*), is like [_] except that the Kleene star is interpreted
non-standardly as the concurrent star operation. Informally, the concurrent star of a lan-
guage iterates not the given language but the language of connected components of its
words.

The concurrent star of a connected language coincides with its Kleene star. The idea of
this non-standard semantics is to make non-star-connected regular expressions harmless,
so as to obtain the following replacement for Kleene’s theorem.

Theorem 2.12 (Ochmanski [59]). (cf. [60} Thm. 6.3.16]) A closed language L is regular iff
L = [[E]*®)! for some regular expression E.

2.7 Derivatives of a Language

A word language L is said to be nullable (or that it has the empty word property), denoted
by L4, if € € L. The derivative (or left quotient)' of L along a word u is defined by

D,L =4 {V ex” | uy € L}.

For any L, we have DL = L as well as D,,L = D,(D, L) for any u,v € £*. Thus the oper-
ation D : Z(X*) x X* — Z2(X*) is aright action of £* on & (X*). We have

L={e|Ls}uU | J{{a} DiL|act}

"We use the word ‘derivative’ both for languages and expressions, reserving the word ‘quotient’
for quotients of sets by equivalence relations.

21

and, for any u € X*, we have
uel < (D,L)4.

Example 2.13. Let X =4¢ {a,b}, E =gr | +a(1+b(1+a)) +b(14+a(1+b)) and L =4 [E].
We have
L= {€,a,ab,aba,b,ba,bab}

and thus
D,L = {¢g,b,ba}.

Since € € D,L, we have (D,L)4 and thus we know it must be that a € L.
Similarly, we have D,L = {¢,a,ab}, DL = {€,a} and D,,L = {€}. On the other
hand, D,,L = @ and thus we know that aa ¢ L.

Derivatives of regular languages are regular. A remarkable fact is that they can be
computed syntactically, on the level of regular expressions. There are two constructions
for this, due to Brzozowski [20] and Antimirov [10]. We now continue with a brief overview
of these two constructions.

2.7.1 Brzozowski Derivative

Nullability and derivative are semantic notions, defined on languages. However, Brzo-
zowski [20] noticed that for regular languages, one can compute nullability and the deriva-
tives syntactically, on the level of regular expressions.

Definition 2.14. The syntactic nullability (or empty word property) and the Brzozowski
derivative of a regular expression are given by functions (_)4 : RE—B,D: RExX — RE
and D : RE x X* — RE defined recursively by

by =4 ff D,b =4 ifa=bthenlelse0
07 =g ff D0 =4 O
(E+F)é =gt E4VF} Da(E+F) =4t DuE +D.F
17 =g ftt Dyl =4 O
(EF)4 =g E4AF4 DuEF) =g if E4 then (D,E)F +DyF else (DyE)F
(E*)§ =q tt Du(E*) =dat (DJE)E*
D¢eE =4 E

DuaE =df Da(DuE)

The important property is that the syntactic nullability and derivative agree with their
semantic counterparts as shown by the following proposition.

Proposition 2.15. Forany E,
1 [E]s =E4;
2. foranya € £, D,[E] = [D.E];
3. forany u € ¥*, D,[E] = [D.E].
Corollary 2.16. Forany E,
1 [E]={e|E{}U U{{a}-[DuE] |a € Z};
2. foranya € Landv € ¥, av € [E] iffv € [D,E];

3. forany u,v € X*, uv € [E] iffv € [D,E];

22

4. foranyu € £*, u € [E] iff (D,E)4.

The Brzozowski derivative operation gives a method for turning a regular expression
into a deterministic automaton. Given an expression E, the set of states is QF = {D.E |
u € T*}, the initial state is g5 = E, the final states are F£ = {E' € QF | E'4 } and the tran-
sition function 8 is defined by D restricted to QF. This automaton is generally not finite,
but becomes finite when quotiented by associativity, commutativity and idempotence of
+. Identified up to the Kleene algebra theory, the states of the Brzozowski automaton
correspond to the derivatives of the language [E]. Note that regular languages can be
characterised as languages with finitely many derivatives.

Example 2.17. LetX =g {a,b}, E =¢¢ 1 +a(1+b(1+a))+b(1+a(1+b)) and L =¢4 [E]
as in Example Before (in|2.13) we calculated that D,L = {&,b,ba}. Syntactically we
have the following.

DE = Dgl+Dg(a(1+b(14a)))+Du(b(1+a(1+b)))
= 0+ (Dua)(1+b(1+a))+ (Dyb)(1+a(1+Db))
= 0+1(14+b(14+a))+0(1+a(l1+b))
= 14+b+ba

We can see that D,L = [D,E]. Before we had D,,L = {€,a}. Thus we should be able to
show that D, E = 1+a.

DwE = Dy(D.E)
Dy(1+b+ba)
Dyl + Dypb+ Dy(ba)
0+1+(Dpb)a
0+1+1a

= l+4a

Before we had that D,,L = 0. Thus we should be able to show that D,,E = 0.

DuE = Du(D.E)
Du(1+b+ba)
D,1+D,b+D,(ba)
0+0+ (Dyb)a
0+0+0a

= 0

2.7.2 Antimirov Derivative
Antimirov [10] optimised Brzozowski's construction essentially constructing a nondeter-
ministic finite automaton instead of a deterministic one, with a smaller number of states
and, crucially, without having to identify states up to equations.

Antimirov’s syntactic derivative operation is a multivalued function, in other words,
a relation. Antimirov spoke of “partial derivatives”, we prefer to use the term “parts-of-
derivative”. The relational definition below corresponds to the equational characterisa-
tion given in [10].

Definition 2.18. The Antimirov parts-of-derivative of a regular expression along a letter
and a word are given by the relations —+ C RE x £ x RE and —* C RE x * x RE defined

23

inductively by
E — (a,E") F — (a,F')
a—(a,1) E4+F— (a,E") E+F — (a,F')

E—(aE) E4 F—(aF') E-—(aFE)
EF > (a,E'F) EF — (a,F') E — (a,E'E")

E—* (uwE") E —(a,E"
b)
E —* (¢,E) E —* (ua,E")

The following proposition tells us that the Antimirov parts-of-derivative indeed com-
pute parts of the semantic derivative (though the parts are not necessarily disjoint). Put
another way, the Antimirov parts-of-derivative collectively compute the semantic deriva-
tive.

Proposition 2.19. Forany E,
1. foranya € X, D,[E] = U{[E'] | E — (a,E")};
2. forany u € ¥, D,[E] = U{[E'] | E =" (u,E")}.
Corollary 2.20. ForanyE,
1. foranya € Xandv € X, av € [E] <= 3JE'.E — (a,E")Av e [E'];
2. foranyu,v € ¥*,uv € [E] <= 3JE".E —* (u,E")Av € [E'];
3. foranyu e X*, u€[E] < JE'.E —* (u,E')\E'}.

The last item tells us that a word u belongs to the language [E] if and only if there exists
a derivation for E —* (u, E") such that E’4 . Thus each such derivation gives us a justifica-
tion why the word u belongs to [E]. Importantly, there can be many such derivations for
a given u.

If we took languages to be multisets of words (i.e., introduced the notion of a word oc-
curring in a language some number of times) and adopted the obvious multisets-of-words
semantics of regular expressions, then the Antimirov parts-of-derivative would also com-
pute the semantic derivative, but in a partitioning manner. In the sets-of-words semantics,
however, overlaps are possible, so we do not get a partition.

The parts-of-derivative of an expression E induce a nondeterministic automaton. The
state set is QF =4 {E’ | Ju € T*.E —* (u,E')}. The initial state is g5 =4 E. The set
of final states is FE =4 {E' € QF | E'4}. Finally, the transition relation is defined by
E' —E (a,E") =4t E' — (a,E") for E' \E" € QF.

The state set QF is shown finite by proving it to be a subset of another set that is
straightforwardly seen to be finite.

Definition 2.21. For any E, the set E~" of regular expressions is defined recursively by

E? =g {E}UE™"

aﬁi —df {1}

07" =g 0
(E+F)”" =4 E7 UF™

17" =g 0

(EF)™" =g E—i.{F}UF—>+
(E")” =a E7 -{E"}

24

Proposition 2.22. Forany E,
1. E™ s finite, in fact, of cardinality linear in the size of E;
2. QFECE™.

Corollary 2.23. For any E, the Antimirov automaton is finite.

We note that the Antimirov automaton, constructed as above, while canonical, is gen-
erally not trim: every state is reachable, but not every state is generally coreachable (i.e.,
not every state needs to have a path to some final state). A state E’ is not coreachable if
and only if [E'] = 0. This is the case precisely when E’ equals 0 in the theory of idempo-
tence of + and the left and right zero laws of O wrt. -. The Antimirov automaton is trimmed
by removing the states that are not coreachable.

Now we can also show that a suitable sound quotient of the Brzozowski automaton is
finite. (We consider a quotient to be sound if the resulting automaton is equivalent to the
original automaton.) For this we prove a syntactic version of Proposition[2.19]relating the
Brzozowski derivative and the Antimirov parts-of-derivative.

Proposition 2.24. For any E,
1. foranya € £, D,E =Y{E'|E — (a,E")};
2. foranyu € ¥, D,E =Y{E' | E —* (u,E")}.
(using the semilattice equations for 0 and +, the left zero law, and distributivity of - over
+ from the right).
Corollary 2.25. For any E, the Brzozowski automaton, suitably quotiented, is finite.

Proof. Just notice that the powerset of a finite set is finite too. O

This quotient does not give the minimal deterministic automaton (given by semantic
derivatives of [E]). The minimal deterministic automaton is obtained from the Brzozowski
automaton by quotienting it by the full Kleene algebra theory.

Example 2.26. Let ¥ =¢4¢ {a,b}, E =4r 1 +a(1+b(14a))+b(1+a(l1+b)) and L =4 [E]

as in Examples[2.13/and[2.17] For the Brzozowski derivative we had that D,E = 1+ b+ ba.
With Antimirov parts-of-derivative we have the following.

a— (a,l)
a(l+b(1+a)) — (a,1(1+b(1+a))
l14+a(l+b(1+a))+b(1+a(1+b)) — (a,1(1+b(1+a)))

Of course 1(1+b(1+a)) =1+ b+ ba. Note that a(1 + b(1 +a)) is the part of E that
we can derive along a with Antimirov parts-of-derivative, i.e., there is no derivation for
1 — (a,E") nor b(1+a(1+b)) — (a,E") for any E" and E".

Before we had that D, E = 14-a and similarly we consider here deriving the expression
1 + b+ ba along b. The difference is that here we now have a choice, i.e., we have two
ways to derive it along b.

b— (b,1)
b— (b,1) ba — (b, 1a)
b+ba— (b,1) b+ba— (b,1a)
1+b+ba— (b,1) 1+b+ba— (b,1a)

We can see that in this case the Antimirov parts-of-derivative collectively deliver the Br-
zozowski derivative: 14+ 1a = 1+a.

25

2.8 Small-Step Operational Semantics

The characteristic feature of small-step operational semantics is that the focus is on de-
scribing the individual small steps that are taken during an execution. These small steps
represent the execution of instructions (like assignments) but also the evaluation of con-
ditionals. An introduction to the subject can be found in [56].

The meaning of a statement § in state o is described in terms of a transition system
with configurations either of the form (o, S) (the statement S is to be executed from state
o) or o (aterminal configuration). The transitions are given by a relation (o, S) = ywhere
v is either of the form (o’,S’) or ¢’. The transition (c,S) = y describes the first step of
the execution of S from 6. If y= (0’,5'), then the execution of S from the state o has not
yet completed and the residual computation is represented by the configuration (¢’,5’).
If y= o, then the execution of S from ¢ has terminated with ¢’ as the final state.

The definition of = for a simple While language is given by the following rules. We
have arithmetic expressions (ranged over by a), Boolean expressions (ranged over by b)
and variables (ranged over by x). A state o is just a mapping of variables to values.

(0,x:=a) = o[x— [a]o]

(o,skip) = ©

<67S1>j<6,asll> <GvS1>:>Gl
<G,Sl;52> = <G/,S/I;Sz> <G,Sl;52> = <G/,SQ>

Bb]o =tt
(0,if bthen Sj else $s) = (0,51) [5]

AB|b]o = ff
(0,if bthen S| else $) = (0,5,) [bJo

(o,while bdo S) = (0,if b then (S;while bdo S) else skip)

For example, the rule for assignment says that executing x := a in state o terminates
in a state which is otherwise like o except the value of variable x has been updated to be
</ [a] o (which is the value of the arithmetic expression a in the state o).

The interesting part for us are the two rules for sequential composition S;;S,. These
say that to execute S1;S, from state o, we first must execute a step of §; from state .
This has two possible outcomes: either (o, S;) = (¢’,S]) or (0,S1) = ¢’. Inthe first case
we still have the residual program S} to execute, but in the second case the execution of
S terminated in state ¢’. Since these are the only rules for S1;5,, we cannot execute
anything from S, until the execution of S| has terminated. What we will develop later is
precisely about relaxing this restriction, i.e., we will allow (under certain conditions) to
execute something from S, even when the execution of S has not yet terminated.

A derivation sequence of statement S from state o is either a finite sequence ¥, ..., %
or an infinite sequence Y, 71, ... such that 1 = (0, S), ¥ is a terminal configuration, and
% = ¥+1.- Thus a derivation sequence either describes a path in the transition system from
configuration (o, S) to a terminal configuration ¥; or it describes an infinite path from the
configuration (o, S).

We will represent programs in the style of Kleene algebra with tests (KAT) [43], i.e.,
with regular expressions over some alphabet of instructions. A Kleene algebra with tests
is a Kleene algebra where the tests b (a subset of the carrier of the Kleene algebra) form a
Boolean algebra with b as the complement. Thus for us an assignment x := a will just be

26

a letter of the alphabet. The statement skip will be the expression 1. Sequential compo-
sition S1; S, will be multiplication E| E, where E; is the expression representing S;. Condi-
tionals are represented as a determinised choice. In other words, if b then S| else S,
is represented by bE; + bE,. (Note that the expression E; + E, is a nondeterministic
choice between E;| and E,; we take our alphabet to also include tests b together with
their complements.) While loops while b do S are represented as (bE)*b where E is the
expression representing S. The expression 0 will represent the program that is stuck or
aborted: something that does not lead to a terminal configuration.

Although we said that we will represent programs in the style of Kleene algebra with
tests, our intention is not to include upfront all axioms of KAT into our operational seman-
tics (that we will develop in Chapter. For any test b, bb = b holds in KAT as conjunction
is idempotent in Boolean algebra. Similarly, for any tests b and ¢, bc = ¢b holds in KAT.
In terms of operational semantics, we view these as potential optimisations that can be
applied to programs. Furthermore, the effects of such optimisations may become visible
in a concurrent context. For describing relaxed memory models we leave these open as
we may want to allow only some of these for a particular memory model.

2.9 Axiomatic Models

The axiomatic style of describing memory models specifies when a given (complete) ex-
ecution is allowed by the memory model. Basically, the memory model is a predicate
on candidate executions which defines those that are allowed (or valid) on that model.
Typically this predicate is given in terms of certain relations on memory accesses that oc-
curred during the candidate execution. We now give a brief introduction to this approach.
A more thorough introduction can be found in [8].

The instructions that are executed during the execution of a program are represented
as abstract events. For example, a write instruction like x := 1 could be represented by the
event W (x, 1) saying that this is a write instruction (W) that writes the value 1 to variable
x. A read instruction like r; := y would be represented (if y happens to hold the value
2) by the event R(y,2) saying that this event represents a read instruction (R) that reads
the value 2 from variable y. These events may also hold some extra information like a
processor or event identifiers.

The relations that are defined on these events basically describe two things: control
flow and data flow.

The relations for the control flow relate these events to the program that we are consid-
ering. For example, there is a relation named program order (denoted by po) which relates
pairs of events that are from the same thread and it records the order in which the corre-
sponding instructions occur in the program. Thus (a,b) € po when the instruction repre-
sented by a occurs before the instruction represented by b in the program text. Another
such would be the control dependency relation (denoted by ctrl) for which (a,b) € ctrl
when b corresponds to an instruction in a conditional branch where the condition de-
pends on the outcome of the instruction a.

The data flow relations are used to describe how memory events are related in terms
of the values that they read and write. For example, in a concurrent program we may have
two threads that both write to variable x. The coherence order relation (denoted by co)
relates write events to the same variable, i.e., (a,b) € co says that a and b are both write
instructions to the same variable and a reaches the memory first. The coherence order
relation can be partitioned into coi and coe for internal (events from same thread) and
external (events from different threads) coherence order.

Since there may be several write events to a variable, we also need to specify for a

27

read event where the value (that it reads) came from. The read-from relation (denoted
by rf) relates a write event and a read event (to the same variable) when the read event
reads the value that was written by the write event, i.e., (a,b) € rf when a is a write event
to variable x, b is a read event from variable x and b reads the value that was written by
a (meaning that there was no other write to x in between). The rf relation can also be
partitioned into rfi and rfe.

A candidate execution is a set of events together with program order, dependency,
read-from and coherence relations. Whether this execution is allowed on a particular
memory model is determined by the constraints that the memory model requires from
a valid execution. A typical example how this is achieved is by constructing from the ba-
sic relations described above a relation called happens-before which represents certain
invariants of the memory model. A candidate execution is allowed when this happens-
before relation does not introduce a cycle on the set of memory events, i.e., the transitive
closure of the happens-before relation is irreflexive. Intuitively, a cycle would basically say
that some memory event has to happen before itself for this execution to be valid on this
memory model.

To determine whether a candidate execution is a valid execution, we just need to check
whether the predicate holds on it. If we want to find all possible valid executions of a
program on a memory model, then we first have to construct a set of candidate executions
that is complete (i.e., contains at least all valid executions) and then filter by the predicate
that the memory model requires. A candidate execution is often visualised as a graph
where memory events are the vertices and a relation is given by the edges with a certain
label. It is then possible to visually check whether the candidate execution is valid by
checking whether the happens-before relation forms a cycle.

For the example program we considered in the introduction,

x:=4Ly:=1|r:=yrn:=x
one possible candidate execution (as a graph) is the following.

W (x,41) R(y,1)

po
/s
R(x,0)

Here we have also used the relation fr. This is derived from rf and co as follows: (a,b) € fr
if there exists a ¢ such that (¢, a) € rf and (¢, b) € co. Hence (a,b) € fr says that ais a read
event and it reads its value from a write event that is before b in the coherence order. The
dangling rf edge to R(x,0) just says that it reads its value from the initial state. Since the
initial state can be seen as a W (x,0) event that is before W (x,41), we then get the fr edge.
Is this candidate execution allowed? If we take the happens-before relation to be po U
rf UfrUco and we require it to be acyclic, then it is not a valid execution since there is a
cycle. If we take the happens-before relation to be rf UfrUco (i.e., how the two threads
communicate), then there is no cycle and the execution is valid. Excluding program order
from the happens-before relation corresponds to allowing the reordering of instructions
we considered before and we can see that this is the execution where r; = 1 and r, = 0.

W(y1)

28

3 Reordering Derivatives

In this chapter we introduce reordering derivatives. If we consider our overall goal of op-
erational semantics, then the Antimirov reordering derivatives that we define here can
be seen as a very limited form of operational semantics. The main limitation or differ-
ence compared to usual operational semantics is that here we do not include machine
states. Therefore, considering regular expressions to be programs over an alphabet of in-
structions and the Antimirov reordering derivatives to be operational semantics, in this
chapter we do not know what a given program computes. Instead, we know how the pro-
gram computes. By this we mean that the Antimirov reordering derivatives give us the
possible ways (sequences of instructions; words) how the program may execute. But this
precisely tells us how instructions may be reordered during execution, and, as we saw in
Chapter(l] such reordering of instructions can be responsible for the relaxed behaviour in
some memory models.

Intuitively, the notion of language derivatives that we covered in Section[2.7]is about
(strict) prefixes and suffixes of words in a language. What we do here is just change the
notion of prefix and suffix—we are interested in prefixes and suffixes of words when con-
sidered as representatives of traces.

We define a non-standard interpretation of regular expressions as trace-closed lan-
guages. Then we define the reordering language derivatives and generalise the Brzozowski
and Antimirov (syntactic) derivative operations to match the non-standard interpretation
of regular expressions. As was the case before, these generalisations of Brzozowski and
Antimirov derivatives can also be used for constructing an automaton from a regular ex-
pression. It is not the case, in general, that the resulting automaton is finite as it must
accept a non-regular language in general. We show that, for a class of regular expres-
sions, called star-connected expressions, the set of Antimirov reordering derivatives is
finite modulo certain equations. This also tells us, as expected, that the non-standard
interpretation of star-connected expressions is a regular language.

We also develop a refinement of the Antimirov reordering derivative operation to al-
lows us to more precisely keep track of how an expression is derived along a word. With
this refinement in mind, we define a stronger version of (scattering) rank [32] which we
call uniform (scattering) rank and show that languages defined by star-connected expres-
sions have finite uniform scattering rank. Finally, we show that, if an expression defines a
language with finite uniform scattering rank, then the refined Antimirov reordering deriva-
tive operation can be used to construct a finite automaton from the expression. This con-
struction does not require any quotienting, instead it relies on truncation to make the
state set finite.

3.1 Prefixes and Suffixes of Representatives of Traces

As mentioned in our introduction to Mazurkiewicz traces in Section[2.3] when I = 0, then
the free partially commutative monoid Z*/Nl* is isomorphic to the free monoid X*. Thus
the language derivatives described in Section[2.7)are (implicitly) for the case where I = 0.
The derivative of a language L along a word u is the set of words v such that uv € L, i.e.,
u is a prefix and v is a suffix of a word in L (or, some word in L can be factored as uv).
Here we are interested in what the (word) prefixes and suffixes of a trace, represented as
a word, should be.

We start with a small example. Let £ =4 {a,b,c} and I =4 0. We will now look at the
word abc, the trace [abc]' and the corresponding dependence graph (abc)p. Since the
independence relation is empty, the equivalence class of abc is the singleton set {abc}.

29

Equivalently, the dependence graph (abc)p of the trace [abc]! is a linear order with abc
as its sole linearisation. Omitting the transitive edge from a to ¢, we can draw the graph
as follows.

a—>ph—c

The word abc can be factored as abc = uv where u = a and v = bc. Hence we have [abc) =
[a]” e [bc]! where e denotes multiplication in £* /~'*. Now, the dependence graphs of u
and v can be drawn as follows (where we have drawn boxes around both dependence
graph to separate them).

a b— ¢

By adding the missing edges from (a)p to (bc)p between the dependent letters, we indeed
get back (abc)p. The fact that abc can be factored as uv tells us that D,{abc} = {bc}.
Since equivalence classes are singletons here, we can identify [abc) with {abc} and [bc]!
with {bc}. Thus we could also say that D,[abc]’ = [bc]'.

Similarly, the word abc can be factored as abc = uv where u = ab and v = ¢. Hence we
have [abc]! = [ab]’ 8 [c]' and the dependence graphs of (ab)p and {c)p can be drawn as
follows.

a———p c

Again, we also have that [abc]’ = [ab]’ ¢ [c]!. Since the word abc can be factored as uv, we
have that D,,{abc} = {c}. We could also say that D [abc]’ = [c]'.

Note that, if u = b, then there is no word v such that uv = abc, i.e., b is not a prefix of
abc. Thus Dy{abc} = 0. The same applies for u = c.

We now take I to be the least independence relation such that aZc¢ and bIc. The
dependence graph (abc)p according to the new independence relation is the following.

a——p

With the new independence relation we also have that [abc]! = [a]! e [bc]!, but now the
equivalence class corresponding to [bc]’ is {bc,ch}. We also have [abc])' = [c]' o [ab]) =
[ab]) e [c]' where [ab]! = {ab}. Yet another factorisation is [abc)' = [ac]’ e [b]! where
[ac]l = {ac,ca}. The last factorisation can be drawn as dependence graphs in the fol-
lowing way.

We can see that in all of the above factorisations of [abc] as [u]’ o [v)! the prefix [u] cor-
responds to a downwards-closed subgraph of {abc)p, i.e., if a letter a is in the prefix, then
so is any D-predecessor of it. This is true in general—a prefix of a trace is a down-set.
Here are some examples of prefixes (shown by the thick line) corresponding to the above
factorisations.

30

Corresponding to these pictures, we would like to say, for example, that D,[abc]’ =
[bc]! and D.|abc]! = [ab]'. In this chapter, we develop the machinery to do so, operating
with words and word languages (representing traces) instead of working with traces or
equivalence classes directly. For this reason, we consider the idea of prefixes (and suf-
fixes) up to reordering. In other words, we consider u to be a reordering prefix of z when
[u]! @ [v]! = [z]! for some (reordering suffix) v. We now develop notation to describe such
prefixes on words rather than traces.

For aword vay’ such that via, we know that a is a minimal letter of vav' and we consider
a to be a reordering prefix of vay’ with vv' as the corresponding suffix since vay’ ~* aw/
with a as a (strict) prefix and v/ as the suffix. For the same reason we consider u to be a
reordering prefix of vy’ when vIu. If ' ~™* u and v u, then vuy’ ~* T y'v/. Thus
we also consider u’ to be a reordering prefix of viv’. Note that, if a is a reordering prefix
of z, then, by irreflexivity of I, this a is the first a of z. We can also scale this idea further
to the case vuv'u’v"’ where vIu and v I /. We then have vuv'u/ v ~"* u/ w'v' .

We now make precise the idea described in the previous paragraph. We call this I-
scattering. This is just a way to describe a selection of letter occurrences of u in z subject
to certain constraints.

uvy' ~

Definition 3.1. Foralln € N,uj,...,u, € X", vo €X* . vi,...,vu_1 €XT,v, EX¥ zETF,
UL, ooy lly AZD>VO, ..,V =df 2= VUV ... UpV, AVI.Vj <ivjlu.

We also say that the word u; ...u, can be (strictly) scattered in z (according to I and
with degree n) as z = vou vy ... u,v,. Note that only vg and v, are allowed to be the empty
word. An important consequence of the above definition, reflecting its prefix-suffix as-
pect, is the following lemma.

Lemma3.2. Foralln € Nuy,...,u, €EX v EX*vi,...,vy_1 EXT v, €X* 7 €XF,
ifur,...,un <\Z2>V0,..., v then 2~ uy . upvg .. . vy
Thus, if we have uy,...,u, <z>vg,..., v, then we know that the word u; ...u, is a

prefix of z when considered as traces.

We often use underlined letters as the notation to visualise the scattering of u in z.
More precisely, we underline the factors u; in z. Continuing with the independence alpha-
bet from above where £ =¢¢ {a,b,c} and alc, bIc, we have that cacbc is a valid scattering
(with u; = a, up = band vg = vi = vo = ¢) since c/a and ccI b. The scattering cacbc is not
valid since here vy = ¢ and u; = ach, but ¢ D c. Similarly, the scattering cacbc is not valid
because here vo = cac and uy = b, butaDb.

31

Definition 3.3. For all u,v,z € ¥*,

1. u<zp>v =gt MEN U,Uy, V0, .., Vy U =U] ... U A\V=(...Vy N
UL, ..., Uy AZD> V0, ...y Vps
2. u~<AzB>v =g W.u~d AW <z

3. u~<z>~v =g V. u~ U AW <z VAV S

In all three cases, we talk about u being a prefix and v being a suffix of z, up to re-
ordering. We also say that u is scattered in z with the residual (unselected letters) v. The
difference of the three lies in the reordering of the letters of and v. In the first case, the
letters of u (resp. v) must appear in the same order in z as they do in u (resp. v). In the
second case, we allow for the letters of u to be scattered (or to occur) in z according to
an equivalent word i/, i.e., the letters of u can be scattered in a reordered fashion. In the
third case, we also allow to reorder v.

Continuing with the same independence alphabet from above, take z =4¢ ccabac. Then
we have ca <1z > cbac since c,a<1z0> €, ¢, bac, i.e., 7 = €ccabac. We also have ac ~<1z>
chac, justified by the same scattering, since ac ~* ca. (We do not have ac <1 z1> chac as
we have to preserve the ordering of letters in the prefix part in this case and thus the
only candidates are ccabac and ccabaac, but neither of those is a valid scattering and the
suffix is not cbac.) By reordering the letters of the suffix, we also have ac ~<1z >~ bacc,
witnessed by the same scattering, since chac ~™ bacc.

A useful property of scatterings is that (a prefix) u and (a suffix) v can be scattered in z
in at most one way. In other words, if u <1z > v, then the number n and the words u; and
vj are uniquely determined. Furthermore, equivalent words result in the same scattering.

Lemma 3.4. Forany u,v,z € ¥*,

1. u<zbB>v <~ dmeNuy,...,upvo,. ., Vg =1Uuy...uUy N\
V=v... Vy AUL, ... Uy IZD> V0, ..., Vy;

2. u~<zD>v — I u~d A <Az vy
3 u~<dz>~v = AWV u~ A <z AV A

We also mention that, if u is a reordering prefix of z, i.e., u ~<1z>v for some v, then the
corresponding scattering is obtained by underlining (one by one) the minimal occurrences
of the letters of u in z.

Later, we will be interested in the degree n of scattering (the number of u; blocks in
z). Thus we also define degree-bounded versions of scattering, i.e., we allow at most N
underlined subwords in z. These become relevant in Section[3.4

Definition 3.5. Forall u,v,z€ X* and N € N,
1. u<yzDv =af SN UL .o Uy, VO, ey Ve Uy Uy <IZD> VO, Vs
2. u~<yzb>v =4 I .u~"u AN <y z v
3. u~<dyzbev =g V. u~T U A <y zs VAV~

Finally, we have that scattering (as described above) together with reordering both in
the prefix and suffix corresponds to trace-prefix and trace-suffix.

32

Proposition 3.6. For all u,v,z € X*,uv~* 7 <= u~<iz>~v.
Proof.

e <——: Sinceu~<1z>~v,thereexist u’ andv' such thatu~"u’, v/ ~*vand u’ <1z>v'.
By Lemma we have /v ~* 7 and thus uv ~'* 7.

e —: By induction on z.

- Case z = €: It must be that both u = € and v = €. We have e ~<1 e >~ E.

- Case z = az’: We have uv ~"* az’. The first (occurrence of) @ in uv is either in u
orinv.
If a € u, then exist u;, u, such that u = w;au, and u; I a. Thus (uu,)v~"* 7 and
by i.h. we have wju, ~<17' >~v. Thus a(uu,) ~<taz' >~ vis a valid scattering
and we get u~<1z>~v.
If a € v, then exist v;, v, such that v = v;av, and uv; I a. Thus u(v;v,) ~* 7 and
by i.h. we have u ~<17' 1>~ vv,. Since ul a, we have that u ~<taz’ >~ a(v;v;)
is a valid scattering and thus u ~<1z>~v. O

To emphasise, the < direction also holds when we consider reordering only in the
prefix (u ~<1z>v) or no reordering at all (u<1z>v).

3.2 Trace-Closing Semantics of Regular Expressions

We now define a non-standard word-language semantics of regular expressions that di-
rectly interprets an expression E as the trace closure [[E]]’ of its standard word-language
interpretation [E].

We have already noted that [{a}]! = {a}, [0]' =0, [LUL')! = [L) U[L')) and [1]' = 1.
Crucially, for general 1, we do not have [L- L)' = [L]'-[L'). For example, with £ =4
{a,b} and al b, we thus have [{a}]! = {a}, [{b}) = {b} whereas [{ab}]! = {ab,ba} #
{ab} = [{a}]'-[{b}]!. Hence we need a different concatenation operation, one that would
concatenate {a} and {b} as {ab,ba} when alb.

Definition 3.7.
1. The I-reordering concatenation of words -/ : £* x £* — 22(X*) is defined by
£ z vV =d4f {v}

u -18 =df {Lt}
aulbyv =4 {a}- (- bv)U{b|aulb}-(au-'v)

2. The lifting of I-reordering concatenation to languages is defined by

L' =g\ J{u'v|ueLAveLl}

Note that {b | aulb} acts as a test: it is either @ or {b}. (We can also consider {a} -
(u-!bv) toinclude a trivial test, i.e., {a | tt} - (u-! bv).) This makes the definition of au -/ by
biased towards its left argument: a can always occur as the first letter of a word in au -/ by,
but for b we require that aul b.

Example 3.8. Let X =4 {a,b} and alb. Then a ! b = {ab,ba}, aa-' b = {aab,aba,baa},
a - bb = {abb,bab,bba} and ab - ba = {abba}. The last example shows that although
I-reordering concatenation is defined quite similarly to the shuffle product of words, it is
different. For example, we have baba € ab LU ba.

33

An important property of the I-reordering concatenation u -/ v, as demonstrated by the
following proposition, is that the reordering occurs at the “boundary” between u and v
but not within the words 1 and v, i.e., the ordering of letters (letter occurrences) in u and
v is preserved.

Proposition 3.9. Forany u,v,z€X*, z€u-'v <= u<z>v.
Proof.
e —: By induction on z.

- Casez=¢:Thenitmust bethatu =eandv=¢€. We have e <€e> €.
- Casez=ua7: fu=au, thenz €u''v, and, by i.h. we have i/ <17 > v. Thus
au’ <az >vis a valid scattering.

Otherwise, it must be that v = av/ and ula. We have 7 € u-'V/, and, by i.h.
we have u <17 > V. Since ul a, we have that u <az’ > av' is a valid scattering.

e <—: By induction on z.

- Casez=¢:Thenitmustbethatu =candv=¢. Wehavee cel¢.
- Casez=a7: fu=au, thenu' <7 >v, and, by i.h. we have 7/ € i’ -/ v. Thus
also az’ € au’ .

Otherwise, it must be that v = av' and ula. We have u <z >/, and, by i.h.
we have 7 € u-! V. Since ul a, we also have az € u -l av'. O

The I-reordering concatenation of closures of languages computes the closure of the
ordinary concatenation of the languages. In comparison to the previous proposition, here
we first reorder “inside” u and v and then do the reordering concatenation.

Proposition 3.10. For any languages Land L', [L- L'} = L]/ T [L']!.
Proof. For any w € L*,

welL-U') <= JucLyvel . w~"u
= JucLyvel u~<aw>~v

— uelLvel VvV eX u~lu nvl VAW <wsy

— ueLvel Ve u~u vV Aawed IV
) Vel wed !V
—well) L), O

The above proposition also tells us that the closure [_]’ is a monoid morphism from
(29, 1) to {LCX* |L=[L)'}, 1), i.e., from word languages to trace-closed word
languages.

Evidently, if I = 0, then the reordering concatenation coincides with the ordinary con-
catenation: u-®v={uv} and L-°L' = L-L'. For I = £ x X, which is forbidden in indepen-
dence alphabets, as I is required to be irreflexive, it is shuffle: u-Z*%v = uLuv. For general

34

1, it has properties similar to concatenation. In particular, we have the following.

(L~1L/) I — L-I(L/~IL”)

1L = L

L1 = L

0L = 0

Lo = 0
Li'ury = L'UuL!L
(ruiL = UlLur’IL

We also have the following weak interchange law familiar from the concurrent Kleene
algebra theory introduced in [33].

(LywiLy) H(LywLy) € (L' L) w(Ly ' L)

We now have the necessary ingredients to introduce the non-standard semantics of
regular expressions.

Definition 3.11. The trace-closing semantics [_]' : RE — 22(Z*) of regular expressions is
defined recursively by

[a]' =4 {a}
0

o) =4
[E+F) =« [EIUIF]
[y =a 1

[EF]" =« [E]'/[F]
[EX]' =4 wX1U[E]'IX

Compared to the standard semantics of regular expressions, the difference is in the
handling of the EF case (and consequently also the E* case) due to the cross-commutation
that happens in concatenation of traces and must be accounted for by -/

With I = 0, we fall back to the standard interpretation of regular expressions: [E]? =
[E]. For I a general independence relation, we obtain the desired property that the se-
mantics delivers the trace closure of the language of the expression.

Proposition 3.12. Forany E, [E]! = [[E]}'.
Proof. By induction on E.
o Casea: [a] = {a} = [{a}]' = [[a]]"
* Case 0: [0]" =0 = [0]' = [[0]}".
e Case E + F: By i.h. we have [E]! = [[E]]! and [F]! = [[F]]’. Thus,
[E+F) = [E) UF]) = [[ED O [F]) = [[EJU[FI} = [[E +F])".
o Case I: [1]' =1=[1]' = [[1]}".

e Case EF: Byi.h.wehave [E]' = [[E]] and [F]' = [[F]}]'. Thus, by Proposition[3.10}
we have

[EF) =[]/ [F) = [[ED) [[F]) = [[E] - [F]) = [[EF])".
e Case E*: By i.h. we have [E] = [[E]]".

35

- [E*]F C[[E*])': Let w € [E*]. By definition of [E*]/, there exists n € N such
that w is a word of the n-th -/ power of [E]!,i.e., w € [E]/ /... T[E]". Byi.h.
we have w € [[E]]’ /... ' [[E])". By repeated application of Proposition [3.10]
we getw € [[E]-...- [E])f C [[E*]).

- [[E*])F € [E*]*: Let w € [[E*]) . By definition of [E*], there exists n € N such
that w is in the closure of the n-th power of [E], i.e., w € [[E] -...- [E]]". By
repeated application of Propositionwe have w € [[E]}! ... T [[E])'. By
i.h.wegetwe [E]' /... T[E]' C [E*]". O

3.3 Reordering Derivatives

We are now ready to generalise the Brzozowski and Antimirov constructions to trace clo-
sures of regular languages. To this end, we switch to what we call reordering derivatives.

3.3.1 Reordering Derivative of a Language

Let (X,1) be a fixed independence alphabet. We generalise the concepts of (semantic)
nullability and derivative of a language to reorderable part and reordering derivative of a
language.

Definition 3.13. The I-reorderable part of a language L wrt. a word u is defined as
RIL=g {veL|viu}
and the I-reordering derivative along u is defined as
DIL=g{veZ|Fz€L.u~az>v}.

By Proposition[3.9} we can equivalently say that D/L = {v |3z € L.z € [u)' ' v}. For a
single-letter word a, we get DLL = {vv, | viav, € LAv;Ia} ={v|3z€ L.z €alv}. That
is, we require some reordering of u (resp. a) to be a prefix, up to reordering, of some word
zin L with v as the corresponding suffix. (In other words, we allow reordering of letters
within u and across u and v, but not within v.)

Example 3.14. Let X =4 {a,b,c} and alb.

Since eIb and al b, but abD b, we have R! {€,a,ab} = {€,a}. Another observation is
that R, and RL, give the same result, i.e., Rl {€,a,ab} = {€,a}.

For the derivative we consider the language L =¢4¢ {abacab}. What is D{,L? By defini-
tion, it is the set of words v such that b ~<iabacab > v, i.e., for each such v there must
exist a u such that b ~™ u and u <tabacab > v. In this case u = b and b can be scattered in
abacab as abacab. Since scatterings are unique, this is the only valid scattering and thus
DJL = {aacab} (while D,L = 0). We can see that DL = 0 since there is no valid scatter-
ing of ¢ in abacab (since both a D c and b D ¢). We do have DéabcL = {ab} witnessed by
the scattering abacab.

In the special case I = 0, we have ROL =L, R%L = {e | L4} for any u # ¢, and DL =
D,L. In the general case, the reorderable part and reordering derivative enjoy the follow-
ing properties.

Lemma 3.15. For any languages L, L' and for any u € ©*, if L C L', then R\L C RIL' and
DILCDIL.

36

Lemma 3.16. Forevery L,
1. RLL = L; for every u,v € *, RI(RIL) =Rl L;
2. forevery u,u’ € ¥, if £(u) = X(u), then RLL =R, L.

Thus, reorderable part is a (right) monoid action and, furthermore, the reorderable
part R.L is determined by X(u), the set of letters that occur in u. We will later also need
to extend R to subsets of X: by R L, we mean R.L where u is any enumeration of X.

Lemma 3.17. For every L,
1. DLL = L; for any u,v € ¥, D}(D}L) = D! L;
2. for any u,u’ € X* such that u ~* u', we have D! L = D' L.

Thus, reordering derivative is also a (right) monoid action. Moreover, it is a trace
monoid action.

Proposition 3.18. Forevery L,

1. forany u € £*, D, ([L)") = [DLL]';
if L is closed (i.e., [L]' = L), then, for any u € £*, D! L is closed and D,L = D! L;

2. forany u,v € £*, uv € [L]! iffv € [DLL]%;

3. foranyu € ¥*, u e [L]!iff (DLL)4;

4. (L = {& | L4}U Uyex{a} - D).
Proof. We show (1).

DL = {veX*|3zeLuv~'z}

= {veXf|IzeLu~<dz>~v}
= [{ver*|FzeLu~<z>v}
= [DiL)!

O

Example 3.19. Let £ =4 {a,b} and alb. Take L to be the regular language [(ab)*]. We
already noted (in Proposition[2.1) that the language

L) = {u e =" | |uly = |ulp}
is not regular. For any n € N,
DL.L={d"} L=[a"(ab)"]

whereas

D,,n([L]’) ={d"} I [L}I ={ueX"||uly=|ulp+n}
We can see that [L]! has infinitely many derivatives, none of which are regular, and L has
infinitely many reordering derivatives, all regular.

Example 3.20. In Example[2.13|we saw that for £ =4t {a, b},
E =4 1+a(l+b(1+a))+b(1+a(l+b))

and L =4 [E] we have D,L = {€,b,ba} and D,L = {€,a,ab}. We now take alb and this
results in D!L = {€,b,ba,bb} and DiL = {€,a,ab,aa}.

We can see that L = {€,a,ab,aba,b,ba,bab}. Now, b € D!L is witnessed by both
ab € Land ba € L; bb € D! L is witnessed only by bab € L. Similarly, a € D} L is witnessed
by both ab € L and ba € L; aa € D}, is witnessed by aba € L.

37

3.3.2 Brzozowski Reordering Derivative

The reorderable parts and reordering derivatives of regular languages turn out to be reg-
ular. We now show that they can be computed syntactically, generalising the classical
syntactic nullability and Brzozowski derivative operations [20].

Definition 3.21. The I-reorderable part and the Brzozowski I-reordering derivative of an
expression are given by functions R/, D’ : RE x £ — RE and R/, D’ : RE x £* — RE defined
recursively by

Rlb =4 ifalbthenbelse0 DIb =4 ifa=bthenlelse0
RIO =4 O DI0 =4 0O
RI(E+F) =4 RIEE+RLF DI(E+F) =4 DLE+DLF
RIT =4 1 DI1 =4 0
RL(EF) =a (RLE)(RLF) DL(EF) =4 (D4E)F + (RLE)(DyF)
RUE*) =4 (RLE)* DL(E*) =ar (RLE)"(DLE)E*
RIE =4 E DIE =4 E
R{mE —df R{;(RQE) DiaE —=df Dfl(D{lE)

The expression RLE is just E with all occurrences of letters dependent with u replaced
with 0. The definition of D! is more interesting. Compared to the classical Brzozowski
derivative, the nullability condition E 4 in the EF case has been replaced with multiplica-
tion with the reorderable part RLE, and the E* case has also been adjusted accordingly.

Example 3.22. LetX =4 {a,b,c},alc,blcand E =4 a+ ba+ ca. We have the following.

RIE = Rla+R.(ba)+R.(ca)
= 0+ (Rip)(Rla) + (Ric)(Rla)
= 0400+c0
= 0
RIE = Rla+RL(ba)+R.(ca)
— 4+ (RIB)(Rla) + (RLO)(Rla)
= a+ba+0a
= a+ba
DIE = DLa+D.(ba)+Dl(ca)
= 1+ ((D{b)a+ (R(b)(D}a)) + ((Dhe)a+ (Rhe)(Dha))
= 14(0a+401)+ (0a+cl)
= 1l+4c¢

Note that without reordering (equivalent to taking 7/ = 0) we have D,E = 1.

The functions R/ and D on expressions compute their semantic counterparts on the
corresponding regular languages.

Proposition 3.23. Forany E,
1. forany a € ¥, RL[E] = [RLE] and DL [E] = [DLE];

2. forany u € ¥*, RL[E] = [RLE] and D! [E] = [DLE].

38

Proof.

1. Both claims by induction on E. We only show a few selected cases. First, we con-
sider RL[E] = [RLE].

e Case b: If al b, then we have
Rulb] = {z € {b} | z1a} = {b} = [b] = [Reb].
If a Db, then we have
Ri[b] = {z € {b}|zla} =0 = [0] = [RLD].
e Case EF: Byi.h. we have RI[E] = [RLE] and RL[F] = [RLF]. We have

RI[EF]

{zeX*|ze€ [EF|Azla}

{zezf | ze € [E] ANzp € [F] NzelaNzpla}
{22 |z € RUE] Azy € RUF])
(RGIED) - (RE[F])

= [RIE]-[RLF]

= [RUEF)].

Next, we consider D! [E] = [DLE].
e Case b: If a = b, then we have
D![p] =D.a] = {v € X*|a~<ta>v} =1=[1] = [DLa] = [DLp].
If a # b, then we have
DI[p] = {v € X* |a~<1br>v} =0 = [0] = [D.b].
e Case EF: By i.h. we have D! [E] = [D!E] and D [F] = [D!F]. We have

DIIEF] = {vyv,|vav, € [EF|Av/1a}
= {eerzs|eae, € [E|Nejlanzy € [F]} U
{zefifr | ze € [E] Azefila N fiafr € [F]}
= {vezs|ve € DL[E] Az € [F]} U
{zevs | ze € RE[E] Avy € DLIF]}
— (DLED) - [FTU (RLIE]) - (DLIF)
— [DLE]- [F]URLE] - [DLF]
)

2. Both claims by induction on u. The corresponding statement from (1) is used in the
step case. O

The trace-closing interpretation of expressions corresponds to the Brzozowski reorder-
ing derivative D’ in the following sense. More precisely, it corresponds to the automaton
induced by the Brzozowski reordering derivative that we describe next.

Proposition 3.24. Forany E,

1. foranya € X, ve Xt ave [E]l <= ve[DLE],;

39

2. foranyu,v € 2*, uv € [E])} < v e [DLE];
3. foranyu e ¥*, u € [E]! <= (DLE);.
Proof.
1. By propositions[3.12] [3.18} (1) and[3.23} (1), we have the following equivalences:

av e [E]! av € [[E])

v e D[[E])
ve [Di[E])
ve [[DLE])
v € [DLE]L.

ety

2. By induction on u (and utilising (1) in the step case).
3. Follows from (2) for u and &. O

As with the classical Brzozowski derivative, we can use the reordering Brzozowski deriva-
tive operation to construct deterministic automata. For an expression E, take OF =4
{DIE |uex*), ¢f =4t E, FE =4 {E' € QF | E'4}, SEE' =4 DLE' for E' € QF. By
Prop05|t|on thls automaton accepts the closure [E]’. But even quotiented by the
full Kleene algebra theory, the quotient of QF is not necessarily finite, i.e., we may be
able to construct infinitely many different languages by taking reordering derivatives.

For the expression from Example we have D!, ((ab)*) = d"(ab)*, so it hasinfinitely
many Brzozowski reordering derivatives even up to the Kleene algebra theory. This is only
to be expected, as the closure [[(ab)*ﬂ’ is not regular and cannot possibly have an accept-
ing finite automaton.

Example 3.25. In Example[2.17)we saw that for £ =4 {a,b} and
E=41+a(l+b(1+a))+b(1+a(l+b))
we have D,E = 1+ b+ ba. We now take alb and this results in the following.

D/E

D’1+D’(a(1+b(1+a)))+D§,(b(1+a(1+b)))
= 0+ ((Dha)(1+b(1 +a))+ (Ria)(Di(a+b(1+a))))

((D’b)(a(1+b)) + (Ryb)(Dy(a+a(l+b))))
= 0+(1(1+b(1+a))+o(Dg(a+b(1+a))))

+(0(1 +a(1+b)) +b(DL(a+a(1+b))))
= 1+b(1+a)+b(D’(a+a(1+b)))
= 1+4b(14a)+b(DLa+ ((DLa)(1+b)+ (RLa)(DL(1+b))))
= 1+b(1+a)+b(1+ ((1+b)+0(DI(1+b))))
= 1+4+b(1+a)+b(1+b)
= 1+b+ba+b+bb

This reflects what we saw in Examplewhere D![E] = {€,b,ba,bb}. There we ob-
served that b € D! [E] was witnessed by both ab and ba. Here we can see that b indeed
occurs twice in the result.

It can be shown that szb = 14a-+b. Notethatin Example-we had D, E =1+a.
Similarly, it can be shown that D’ E =b,butin Examplewe had D,,E =0.

40

3.3.3 Antimirov Reordering Derivative

Like the classical Brzozowski derivative that was optimised by Antimirov [10], the Brzo-
zowski reordering derivative construction can be optimised by switching from functions
on expressions to multivalued functions or relations.

Definition 3.26. The Antimirov I-reordering parts-of-derivative of an expression along a
letter and a word are given by relations -/ C RE x X x RE and —/* C RE x £* x RE
defined inductively by

E —! (a,E") F —! (a,F")
a—'(a,1) E+F—='(a,E") E+F —!(a,F)

E —!(a,E") F —! (a,F") E —! (a,E)
EF —!' (a,E'F) EF —! (a,(RLE)F") E* —!(a,(RLE)*E'E™)

E =" (uw,E"Y E' —!(a,E")
E —!* (¢,E) E — (ua,E")

Here R is defined as before. Similarly to the Brzozowski reordering derivative from
the previous subsection, the condition E 4 in the second EF rule has has been replaced
by multiplication with RLE, and the E* rule has also been adjusted accordingly.

Example 3.27. In Example we saw that for £ =4 {a,b,c}, alc,bIcand E =g a+
ba + ca we have DflE = 1+ c. Again, with the Antimirov derivatives we have a choice.

a—'(a,1)
ca—! (a,(Rle)l
a—'(a,1) ba+ca—! (a,(Rlec)l)
a-+ba+ca—' (a,1) a+ba+ca—'(a,(RLe)l)

Since RIc = ¢ we have a + ba +ca —! (a,c1). Note that we also have a derivation which
follows the summand ba, namely, we can derive a + ba + ca —' (a,01).

The following proposition shows that the Antimirov reordering parts-of-derivative of
an expression E collectively compute the semantic reordering derivative of the language
[E]. In other words, each E’ such that E —/ (a, E") gives a part of the (semantic) reorder-
ing derivative of [E].

Proposition 3.28. Forany E,
1. foranya € X, DI[E] = U{[E'] | E = (a,E")};
2. forany u € ¥, DL[E] = {[E'] | E = (u,E")}.

We also have that the trace-closing interpretation of expressions corresponds to the
Antimirov reordering parts-of-derivative in the following sense. More precisely, it corre-
sponds to the automaton induced by the Antimirov reordering parts-of-derivative that we
describe next.

Proposition 3.29. Forany E,

1. foranya € X, ve Xt ave [E) <= 3E'E ! (a,E')Nve[E];

M

2. foranyu,v € 2*, uv € [E)} < 3IE'.E =" (w,E")Av € [E'];

3. foranyu e £*, u € [E] < 3E".E - (u,E')NE'}.

Proof.
1. By Propositions (1) and (1), we have the following equivalences:
av e [E] av € [[E])
v € Dg[[E])
v € [Dy[E])

ve [U{[E] | E ' (a,E)})
ve W(E) | E - (a,E")}
ve {[E') | E ! (a,E")}

3E'.E ! (a,E')Av e [E'].

1reeeey

2. By induction on u (and utilising (1) in the step case).
3. Follows from (2) for u and &. O

Like the classical Antimirov construction, the reordering parts-of-derivative of an ex-
pression E give a nondeterministic automaton by QF =4 {E' | 3u € T*.E —'* (u,E")},
gt =4t E, FE =4 {E' € QF |E'4}, E' —E (a,E") =4 E' —! (a,E") for E',E" € QF. This
automaton accepts [[Eﬂ’ by Proposition but is generally infinite, even when quo-
tiented by the full Kleene algebra theory.

Revisiting Example again, (ab)* must have infinitely many Antimirov reordering
parts-of-derivatives modulo the Kleene algebra theory since [(ab)*]! is not regular and
cannot have a finite accepting nondeterministic automaton. More specifically, the ex-
pression (a0)*((al)...((a0)*((al)(ab)*))...) = da*(ab)* is its single reordering part-of-
derivative along b".

However, if quotienting the Antimirov automaton for E by some sound theory (a the-
ory weaker than the Kleene algebra theory) makes it finite, then the Brzozowski automa-
ton can also be quotiented to become finite.

Proposition 3.30. Forany E,

1. foranya € X, DIE =Y {E' | E ! (a,E")};

2. foranyu € X*, DIE =Y {E' | E =" (u,E")}
(using the semilattice equations for 0, +, that 0 is zero for -, and distributivity of - over +).
Proof.

1. By induction on E. We only show a few cases.

e Case b with a = b: There is exactly one E’ such that b —! (a,E’), namely
E' = 1. Thus we have:

Dib=Dla=1=Y {1} =Y{E'| b~ (a,E')}.
e Case b with a # b: There is no E’ such that b — (a,E"). Thus we have:
Dib=0=Y0=Y{E'|b—'(a,E)}.

42

e Case EF: By i.h. for E and for F we have D'E = Y {E' | E —! (a,E’)} and
DIF =Y{F'|F —! (a,F")}. Thus we have:

DL(EF) = (DLE)F+ (RLE)(DLF)
= (XY{E'|E = (a,E")})F + (RLE)(X{F' | F =" (a,F")})
= Y{E'F|E—!(a,E")}+X{(RLE)F'|F ! (a,F")}
= Y{E'|EF —! (a,E')}.
2. By induction on u (utilising (1) in the step case). O

Corollary 3.31. If some sound quotient of the Antimirov automaton for E (accepting [[E]]’)
is finite, then also some sound quotient of the Brzozowski automaton is finite.

Example 3.32. In Example[3.20] we saw that for £ =g4¢ {a,b}, alb and
E =4 1+a(l+b(1+a))+b(1+a(l1+b))

we have b € D! [E] witnessed both by ab € [E] and ba € [E]. We now show that we have
two derivations for E —! (a,E’) such that b € [E"].

a—!(a1)
a(l+b(1+a)) = (a,1(1+b(1+a)))
a(14+b(1+a)) +b(1+a(1+b)) =! (a,1(1+b(1+a)))
1+a(l+b(1+a))+b(1+a(l1+b)) = (a,1(14+b(1+a)))

a—!(a1)
a(14b) = (a,1(1+b))
1+a(1+b) = (a,1(1+b))
b(1+a(1+b)) = (a,(RLL)(1(1+5)))
a(l+b(1+a))+b(1+a(1+b)) = (a,(RLH)(1(1+b)))
1+a(1+b(1+a))+b(1+a(l1+b)) = (a,(RLH)(1(1+5)))
As RLb = b, we have 1(1+b(1+a)) =1+b+baand (RLp)(1(1+b)) = b+ bb.

3.3.4 Automaton Finiteness for Star-Connected Expressions

Looking at the rules in Definition it is clear that to have E —/ (a,E’) the letter a
must occur in the expression E. Furthermore, if this occurrence of a is not under a star,
then that particular occurrence is replaced with 1 in E’ and the resulting expression E’
is smaller than E. Thus, if E does not contain a star, then we can apply the rules only a
certain number of times, after which there are no more letters left in the result and none
of the rules apply. This means that the set of Antimirov reordering parts-of-derivative of
such E is finite. The rule for E*, however, allows the resulting expression E' to be larger
than E* and thus E* is problematic for obtaining finiteness.

We now show that for star-connected expressions (Definition these are expres-
sions where the language of the expression under a star is connected) we obtain finiteness
of the set of Antimirov reordering parts-of-derivative (modulo suitable equations). We do
this by first showing that the parts-of-derivative of E* are of a certain form (modulo some
equations). We then show that for a star-connected expression we can bound the size of

43

this form. Finally, we show that all constituents of this form come from a finite set deter-
mined by the original expression E. Thus the set of parts-of-derivative of a star-connected
expression (modulo certain equations) is finite.

Lemma 3.33. If a language L is connected, then for any u € £+, R (D/L) C 1.

Proof. Let v € RL(DLL). By definition of R, we have vIu. Since L is connected and
Ve D{,L, if v#£ €, then aD b for some a € uand b € v. But then it is not the case that v u.
Thus it must be that v = €. O

Lemma 3.34. For any E, if [E] C 1, then either E =0 or E = 1 (using the equations
involving 0 and 1 only (e.g.,0+1 = 1 and 0* = 1 etc.) and that 0 is zero).

Lemma 3.35. For any E, E' and u € X7, if [E] is connected and E —'* (u,E’), then
RIE" =0 or RLE' = 1 (using the equations involving 0 and 1 only and that 0 is zero).

Proof. From E —!* (u,E’) by Proposition|(3.28] [E'] C D![E]. Hence by Lemma|3.33} we
get [RLE'] = RL[E'] C R(D}[E]) C 1. By Lemma(3.34] RLE’ = 0 or RIE' = 1. O

Next is an observation about the interaction of reorderable part R’ and the Antimirov
derivative: if we can obtain an expression by deriving a reorderable part of E, then we
can obtain the same expression by first deriving E and then taking the reorderable part
of the result.

Lemma 3.36. For any E, E', u and a, if R,E —! (a,E'), then there exists E" such that
E —!(a,E")and RIE" = E'.

Proof. By induction on the derivation R.E —! (a,E’). O
This enables us to have the following development for E' when E* —!* (u, E').

Lemma3.37. Forany E, E' andu € ¥, if E* —!* (u,E'), then there existn € N, Ey, ... E,,
0CXy,....X, CZanduy,...,u, € such that u~"u, ...u, and

E'= (R, E)" (R, EV) (R E)" ... (Rk, En) (Ry, E)”

where = uses only associativity of - and, furthermore, we have: X;_| = X; UX(u;), X, = 0
and E —* (u;, E;) for all i.

Lemma 3.38. Forany E, E' and u € ¥*, if [E] is connected, E* —'* (u,E’) and, for the
development of E' from the previous lemma, we have X;_| = X; for some i, then Rg(iEi =0

or Rf(iEi = 1 (using the equations involving 0 and 1 only, and that 0 is zero).

Proof. We have X(u;) C X;_| = X;. From E —'* (u;, E;), by Lemma either R, E; =0
or Rl E; = 1. Therefore also Ry E; = 0 or R} E; = 1. O

Lemma 3.39. Forany E, E' and u € ©*, if [E] is connected and E* —* (u,E"), then there
existn <|X|, Ey,...,E,and 0 C Xy, ..., X, C X such that

E' = (R, E)" (R, EV) (R E)" ... (Rk, En) (RY, E)”

and X;_1 D X; for alli (using, in addition to the equations mentioned in the lemmata above,
unitality of 1 and the equation F* - F* = F*).

Proof. From Lemmata [3.37 noting that at most |X| of the inclusions X;_; D X; can
be proper. O

44

Definition 3.40. The functions (_)~",(_)7* : RE — Z(RE) are defined by

a—t =4 {1}

07t =g 0
(E+F)*)+ =df E-tTUF—t

1+ =4 0

(EF)H+ =4t Eﬁw,{F}UU{Rg((EH*) F—t | 0cCXx QZ}
(E9)7" =4t {(REE)" (R, E1)(RY,E)*... (R En) (R E)* |
n> 0,0 CX; C E,Xl',l 2X,X, = Q,El’ c E_H'}

E7* =4 {E} UE™™T

Proposition 3.41. Forany E, E' and u € ¥, if E —'* (u, E'), then there exists E” such that
E' =E" and E" € E™* (using only the equations mentioned in the above lemmata).

Proposition 3.42. If E is star-connected, then a suitable sound quotient of the state set
{E"| Ju € T*. E = (u,E")} of the Antimirov automaton for E (accepting [E]") is finite.

Proof. By Lemma [3.39] for a star-connected expression E, we only need to consider
n < |Z| in the definition of (E*)~* for Proposition to hold. This restriction makes
the set E* finite. O

3.4 Uniform Scattering Rank of a Language

We proceed to defining the notion of uniform scattering rank of a language and show that
star-connected expressions define languages with uniform scattering rank.

3.4.1 Scattering Rank vs. Uniform Scattering Rank
The notion of scattering rank of a language (a.k.a. distribution rank, k-block testability)
was introduced by Hashiguchi [32].

Definition 3.43. A language L has (I-scattering) rank at most N if
Vu,vuv € [L)) = Tz € L.u~<yz>~v.

We say that L has rank if it has rank at most V for some N € N. If it does, then, for the
least such N, we say that L has rank N. The only languages with rank 0 are ® and 1. If a
nontrivial language L is closed, it has rank 1: for any uv € [L]I, we also have uv € L and
u<luv > g,v. Still, having rank 1 does not imply that the language is closed: if al b, then
L =4¢ {ab} has rank 1 but its closure is [L])! = {ab,ba}.

Having rank is a sufficient condition for regularity of the trace closure of a regular lan-
guage. But it is not a necessary condition.

Proposition 3.44 (Hashiguchi [32]). (cf. [60, Prop. 6.3.2]) If a regular language L has rank,
then [L)! is regular.

Proposition 3.45. There exist regular languages L such that [L}’ is regular but L is without
a rank.

Proof. Consider ¥ =g4¢ {a,b}, alb. The regular language L =4 [[(ab)* (a* + b*)] is without
arank, since, for any n, we have (ab)" € L and a"b" € [L]! while the smallest N such that
a" ~<ly (ab)" >~ b" is n. Nonetheless, [L]! = £* = [(a+b)*] is regular. O

45

We wanted to show that a truncation of the refined Antimirov automaton (which we
define in Section is finite for expressions whose language has rank. But it turns out,
as we shall see, that rank does not quite work for this. For this reason, we introduce a
stronger notion that we call uniform scattering rank.

Definition 3.46. A language L has uniform (I-scattering) rank at most N if
Vw € [L]. 3z € L. Vu,v.w = uv = u~<y >~ .

The difference between the two definitions is that, in the uniform case, the choice of
z depends only on w whereas, in the non-uniform case, it depends on the particular split
of wasw = uv, i.e., for every such split of w we may choose a different z.

Lemma 3.47. If L has uniform rank at most N, then L has rank at most N.

The converse of the above lemma does not hold—there are languages with uniform
rank greater than rank. Furthermore, there are languages that have rank but no uniform
rank.

Proposition 3.48. Let X =4 {a,b,c}, alband
E =4 a*b*c(ab)*(a* + ")+ (ab)" (a" + D")ca*b*.
1. The language [E] has rank 2.

2. The language [E] has no uniform rank.

Proof. Note that ¢ behaves like a separator in this independence alphabet—although a
and b are independent, neither a nor b commutes with ¢. Thus the a's and b’s before
(after) a ¢ in a word must stay before (after) that ¢ in any equivalent word.

It can be seen that words in [E]’ are of the form w;cw, where w; and w, consist of
some number of a’s and b's, i.e., [E]! = [(a+b)*c(a+b)*].

1. Let uv € [E]'. We have to find u1,us and vo, v1, vy so that ujus ~* u, vovivy ~* v,
voluy, vovi Lup and vouviupvy € [E]. There are two cases to consider: either c is
in the suffix v or it is in the prefix u.

e Casec €v: Letx,y € X* be such that v = xcy. Take uy =q¢ 7, (1), us =g (1),
vo =g € and vi =g¢ 7, (x). Letk =4¢ ||a, [=at |y|p and m =4¢ min(k, 1) and take
V2 =gt Tp(x)c(ab)™a*~"b! ™. Since u consists of only a’s and b's and a I b, we
have

1

ujuy = T, (u)m, (1) ~* u.

I

Since x and y consist only of a's and b’s, we have 7, (x)m, (x) ~"* x and similarly

(ab)™a*=mpl=™ ~1* y. Thus, we also have

mak—mbl—m ~

voviva = EM,(x) 7 (x)c(ab) ™ xey = .

Altogether, we have
makfmblfm

Vouviupvy = €M, (1) 7, (x) 7, () 70 (x)c(ab)

and thus
vouviupvy € [a*b*c(ab)*(a* +b")].

46

Since €1 m,(u) and em,(x) I 7y (u), we have that vo I u; and vovy I up. Hence
Ix I*
Uy~ uiuvovivy ~ vouiviusva.

We note that vou;viupv; is a scattering when u; # €, up # € and vy # €. If this
is not the case, then we can construct a scattering with degree 1.

e Case ¢ € u: Similar to the previous case. Let x and y be such that u = xcy. Let
k =g |x a | =df |x|;, and m =4¢ min(k,[). Take u; =g4¢ (ab)makimblimcﬂa (),
uy =gt T (), vo =dr €, v1 =dr T (v) and vo =4¢ 7,(v). In this case we have

VoUViUaVy = 8(ab)'"ak7'"blf'"c7ta ()7, (v) 7 () 7, (v)

and also
Ix Ix
Uy~ uiuvovivy ~ vouiviuzva

but we consider the other part of the expression E:
vouviupvy € [(ab)*(a* +b*)ca™b™].

2. Assume [E] has uniform rank at most N. Take

w=ar BN e PN € [E].

By assumption, there exists z € [E] such that,

Yu,vow =uy = ur~<iy 7>~

Take u =gr a1 and v =g BN Tlea¥ T1HN T, Thus, it must be that for some n < N,
Z2=vou vyuyvy andu=a"t' ~y, .. u,. Since we have N + 1 letters a to divide
into n < N words, at least one u; must consist of more than one a and thus z must

contain two consecutive a’s that are before c.

Take u/ =gr V1N ea¥ ! and v/ =4 BV 1. Again, it must be that for some n < N,
z=vpujVy ...y, and v = VLA)y Note that ¢ must be in one of the u)'s
and thus for all j < i it must be thatV; = €. Hence v, = € and we have N + 1 letters
b to divide into n < N words and thus at least one v§ consists of more than one b.
Thus z must contain two consecutive b’s that are after c.

We can observe that the only words in [E] equivalent to w are V16V +1c(ab)N*!
and (ab)N*lcaV*+1pN*1, Neither of these has both two consecutive a’s before ¢ as
well as two consecutive b's after ¢, so neither qualifies as z. Thus thereis no z € [E]
such that u~<iyz>~vand ' ~<iyz>~V'. O

In the following example we try to give a more visual explanation of the above propo-
sition.

Example 3.49. Just as in Proposition we take X =g4¢ {a,b,c}, alb and
E =4 a*b*c(ab)* (a" + ")+ (ab)" (a" + D")ca*b*.
Observe that a’b*ca’h’ € [E]’, witnessed by a*b*c(ab)? € [E] and (ab)3ca’D’ € [E].
We first consider a’b’c(ab)? € [E]. The word u =4 aaa is scattered in a*b’c(ab)® as

follows.
aaabbbcababab

47

We can see that we need only one underlined block (a word u; in the scattering). In fact,
for any prefix of a word in the equivalence class of a3b>ca’b? which does not include ¢ we
need at most two underlined blocks for the scattering. For example, aab is scattered in
a*b3c(ab)? as follows.

aaabbbcababab

Things change when we consider prefixes that also include the letter c. For example, the
word ' =4 aaabbbcaaa is scattered in a*b3c(ab)? as follows.

aaabbbcababab

In this case we need three underlined blocks. Similarly, we can see that scattering the
word a"b"ca™ in a"b"c(ab)" requires n underlined blocks.

We can also consider the witness (ab)3ca’b® € [E]. This time we require three under-
lined blocks to scatter the word u.

abababcaaabbb

Similarly, we can see that scattering the word a” in (ab)"ca”b" requires n underlined

blocks. On the other hand, we only require one underlined block for the scattering of
/

u.

abababcaaabbb

In fact, for any prefix of a word in the equivalence class of a>b3ca®b® which does include
¢, we need at most two underlined blocks for the scattering. For example, a’b3cabb is
scattered in (ab)3ca’b’ as follows.

abababcaaabbb

For a language L to have rank at most N, the definition requires that, for any word
uv € [L)!, there exists z € L such that the scattering of u in z requires at most N underlined
blocks. For the example above, we choose the witness z based on whether the prefix u
contains the letter c or not.

For a language L to have uniform rank at most N, the definition requires that, for any
word w € [L]I, there exists a z € L such that, for any u, v, if uv = w, then the scattering of
u in z requires at most N underlined blocks. For the example above, we see that, roughly
speaking, one witness is good for those u that include ¢ and the other is good for those
that do not, but neither of them is good for both.

3.4.2 Star-Connected Languages Have Uniform Rank

Star-connected expressions were described in Section Informally, an expression is
said to be star-connected (wrt. D) if star is only used over connected languages. Thus we
can see that the expression

E =g a*bc(ab)* (a" + D)+ (ab)* (a" + b")ca”b*

from Example is not star-connected as it contains (ab)* with alb. However, the
expression
E' =4 (a+b)"cla+b)*

is star-connected and, furthermore, [E]’ = [E']".
Klunder et al. [41] established that star-connectedness is a sufficient condition for a
regular language to have rank, although not a necessary one.

48

Proposition 3.50 (Klunder et al. [41]). Any star-connected language has rank.

Proof (sketch). The language {a} has rank 1. The languages @ and 1 have rank 0. If
two languages L; and L, have ranks at most N; resp. N,, then L; UL, has rank at most
max(Ny,N;) and L; - L, has rank at most N + N,. If a general language L has rank at
most N, then L* need not have rank. For example, for £ =¢4; {a,b}, aIb, the language
{ab} hasrank 1, but {ab}* is without rank. But if L is also connected, then L* turns out to
have rank at most |X|(N + 1). The claim follows by induction on the given star-connected
expression. O

Proposition 3.51 (Klunder et al. [41]). There exist regular languages with rank (and also
with uniform rank) that are not star-connected.

Proof. Consider £ =¢4¢ {a,b}, alb. The language L =4¢ [(aa+ ab+ ba+ bb)*] has rank 1,
in fact even uniform rank 1, because it is closed. We can see that the regular expression
(aa+ab+ba+bb)* is not star-connected, since the language [aa+ab+ ba+ bb] contains
disconnected words ab and ba. But a more involved pumping argument also shows that L
is not star-connected, i.e., there is no star-connected expression E such that L=[E]. O

We will now show that star-connected languages also have uniform rank, by refining
Klunder et al.’s proof of Proposition|3.50} especially the case of the Kleene star.

Let us analyse the case L* where Lis a connected language. Whenw € [L*]/, then there
exists z € L* such that w ~'* z. This further means that there existn € Nand z;,...,z, € L
such that z = z; ...z, where we can require that all z; are nonempty. Since L is connected,
each z; is also connected. If w = uv, then there exist uy,...,u, and vi,...,v, such that
ur~t uy oy, v~ vy Ly, and, for every i, z; ~T* u;v; and, for every j < i,v;lu;. In other
words, u; is the part of z; that belongs to u and v; is the part that belongs to v. In particular,
if u; = € (or z; ~™ v;), then all letters of z; belong to the suffix v, and similarly if v; = € (or
zi ~ u;), then all letters of z; belong to the prefix u. We say that a z; is:

e unmarked (by u) when u; = €;
e partially marked (by u) when u; # € and v; # €;
e completely marked (by u) when v; = €.

We say that a z; is at least partially marked when it is partially or completely marked. An
important property for us is that, if we iterate a closed language L, then any prefix u of a
word w € [L*]! can partially mark at most || of the z; € Linz;...z, € L*.

Lemma 3.52. Forany u,v € X% z1,...,z2, € XV and uy,... u,,v1,...,v, € X* such that
wv~ 7z u~ T g g, vt vy vy, for all i, z; is connected and z; ~ u;v;, and, for
all j <i,v;lu;, then at most || of the words z; can be partially marked (by u);

Proof. If, for some i, we have that z; is partially marked (u; # € and v; # ¢€), then, since
zi ~"* u;v; is connected, there must exist letters @ and b such that a € u;, b € v; and a D b.
Sinceviluiy] ...u,, wehavea € u;y ...u,. Thismeans that, if there are k partially marked
zi, then these z; together must contain at least & distinct letters. O

Should it happen for some i that z; and z; | are both completely marked (v; =v; ;| =€,
i.e., z; ~*u; and zj, 1 ~* u;y1), then z; and z;,| belong to the same block of u in the
scattering u ~<1z>~v. This can potentially help keeping the uniform rank of L* low as
we need less blocks. The same holds for z; and z;. that are unmarked: they belong to
the same block of v. Having words z; that are completely marked interspersed with other

49

types of words z; (for example, having all odd-numbered z; completely marked and all
even-numbered unmarked), in contrast, is not helpful. It could thus be useful to be able
to choose z, n and z1,...,z, in such a way that as many as possible of the z; that are
completely marked are adjacent in z for all splits of w as w = uv.

For example, take ¥ =¢4f {a,b}, al b and L =4 £ = [a+ b]. We now consider two
witnesses for w =g a”b™ € [L*]!. As the first witness we take z =qf w = a™b™ € L* and
as the second witness we take z =¢¢ (ab)™ € L*. Since the words in L are of length one,
then so must be our z;. Furthermore, we have 1 <i < 2m. For the first witness we have
zi=graforl <i<mandz =4 bform+1 <i<2m. For the second witness we have
20i—1 =df @ and zp; =g¢ b for 1 < i < m. In the first case, the letters from u are adjacent
in z for all prefixes u of w (as w = z). In the second case, they can be interleaved with the
letters from v (in the most extreme case u =4 a™ and v =4 b, the words u and v get
scattered into m resp. m -+ 1 blocks in z).

Definition 3.53. For any u € X* and z1,...,z, € X7, we say that u is left-scattered in
Z0,...,2n if there exist uy,...,u,,v1,...,vy € = such that u ~" uy ...u,, zj ~" uv;, for
all j <i,v;Iu;, and, for every completely marked z; (i.e., v; = €), eitheri =1 or z;_; is at
least partially marked (i.e., u;_| # €).

Thus, if u is left-scattered in z,...,z,, then the completely marked z; cannot be in-
terspersed with unmarked z;: the completely marked z; must occur as contiguous blocks
Zhy---527 N Z1,...,2, SUch that k = 1 or z;_ is partially marked. The next lemma ensures
that, if w € [L*]/, then there exists a witness z; ...z, € L* (with z; € L) such that every pre-
fix u of w is left-scattered in zy,...,z,. This property is used in the following proposition
to give a bound on the uniform rank in the case of E*.

Lemma 3.54. Let u,v € £*, z1,...,2, € L1 be such that uv ~™ z;...z,. There exists a
permutation ¢’ =7,... .z, of 6 =4 z1,. . .,z, Such that:

Toziez~ 2

/

2. forany ii,v € ¥* such that iiv = u, the word i is left-scattered in z’l, ey 2y

Proof. By induction on u.

e Case &: The identical permutation ¢’ =4 ¢ has property 1 trivially. It also enjoys
property 2 since € = v implies 7 = v = € and a suitable left-scattering of i in
Z1,--.,2x is formed by taking u; = € and v; = z;. As all u; are empty, there are no
completely marked z; and thus it is a left-scattering.

e Case ua: We have to construct a permutation which satisfies property 1 and also
property 2 (for any prefix of ua). By i.h. for u and av, we have a permutation o’ =
le, ...z, of o satisfying properties 1and 2 (for any prefix of u). From property 2 for
i =gr u and ¥ =¢¢ €, we have that u is left-scattered in 2}, ..., z),. Thus we have that
w2~ Uy, av v, and Vi <, v Tug. This a s the leftmost a
that has not been marked by u in Z ... z),. In particular, it is in one of the v/, say v/,..

Since av~"* v}v},, there exists v,, such that v}, ~'* av}, and also Vj < m, VI a.

Next, we consider what happens when we mark this a in z,. For this we take
u' =4 ul,a. We have z, ~* u/'v"" . To emphasise, we only changed the marking of
the word z},,, everything else is the same. We now check whether the permutation

o’ also satisfies property 2 with u), and v/, i.e., for i =q; ua and v =4 €.

If vi! # €, then 7/, is not completely marked by the prefix ua. Hence ¢’ has property
2 also for the prefix ua.

50

If v/ =€, butm=1o0ru,_1 # €, then ¢’ has property 2 also for the prefix ua.

In the critical case v/, = €, m # 1 and ”;nq = g, we construct a new permutation
0" =4 Z{,...,z), from ¢’ by moving the block of words z,,...,z, (where we pick
I the largest such that v/,V, = &) in front of z;,...,z, | (where we pick k the
smallest such that) ...u, , = €). Moving this block of words rather than just z,
alone ensures that the new permutation ¢ has property 2 also for all prefixes i
of u and not just only for the prefix ii =4 ua. The new permutation ¢’ also has

/ iofi Ix 1 AN / ! I
property 1. Indeed, ¢’ satisfies z1 ...z, ~"* 2] ...2,. Since g, ...z}, | ~'*

/ / /i / "o Iy E) / / / / /
vk...vm/_llu,/nuﬂﬁll./..ullz/and Uy o Uy~ 7z, wehavezy ...z, 1z,,...2;.
Hencez|...z,~"z{...z,. O

Proposition 3.55. If E is star-connected, then the language [E] has uniform rank.
Proof. By induction on E. We only look at the case E*.

e Case E*: By assumption, E is star-connected and [E] is connected. By i.h. [E] has
uniform rank at most N for some N € N. We show that [E*] has uniform rank at
most (|| + 1)N.

Let w € [E*]!. Then exist n and wy,...,w, such thatw € wi /... Tw,, w; € [E]',
and we can also require that w; # €. Since [E] has uniform rank at most N, then,
for every i, there exists a nonempty word z; € [E] such that, for any split of w;
as u;v;, we have u; ~<ly z; >~ v;. We can see that w~" w; ...w, ~™*z,...72,. By
connectedness of [E], all z; are connected.

Take z° =g 27 ...z, where 6° =¢r z7,...,2, is the permutation of 6 = zj,...,z,
obtained by Lemma for u =4¢ w and v =4 €. By Lemma 1), we have
wl* 7z~ 2S Lz = 2°. Thus 2° € [E*] is a witness for w € [E*] .

Next, we show that, for any split of w as w = uv, we have u ~<g|;. 1)y 2° >~ v.

Let w = uv be any split of w. By Lemma 2), u is left-scattered in z7,...,z;.

Thus there exist ug,...,u5,v5, ..., v5 such that u~"uf .. up, v~*v§ .. v, for all i,

n’
Z7 ~*utv?, and, for all j <, Vi Luf. Since uv = w~A* 70, we have u ~<1z° >~ v.

As z7 are nonempty and connected, by Lemma3.52 at most |X| of the z{ can be
partially marked (by u). Each of the partially marked z7 contributes at most N to the
degree of u ~<1z° >~ v, so altogether they contribute at most |X|N.

Since u is left-scattered in 27, ...,z,, between any partially marked z7 and also be-
fore the first and after the last one of them, there are some z; that are completely
marked followed by some z7 that are unmarked. Each such sequence contributes
at most 1 to the degree of u ~<1z° >~ v. If there are less than |Z| partially marked
z?, then these sequences thus contribute altogether at most |Z| to the degree. If
there are exactly |X| partially marked z?, then the z{ after the last of them are all
unmarked, so their sequence belongs to the last v-block generated by the last par-
tially marked z7 and thus contributes 0. Again, these sequences contribute at most
|Z| to the degree.

Altogether, the degree of u ~<1z° >~ v is at most (|Z| + 1)N. O

3.5 Antimirov Reordering Derivative and Uniform Rank

We have seen that the reordering language derivative DiL allows u to be scattered in a
wordz € Las uy,...,u, <\z>vo,...,v, where u~"™u; ...u,. We now consider a version
of the Antimirov reordering derivative operation that delivers lists of expressions for the
possible v, ..., v, rather than just single expressions for their concatenations vy ... v,.

51

3.5.1 Refined Antimirov Reordering Derivative

The refined reordering parts-of-derivative of an expression E along a letter a are pairs
of expressions E;,E,. For any word w = av € [E]’, there must be an equivalent word
z=vjav, € [E]. Instead of describing the words v;v, obtainable by removing a minimal
occurrence of a in a word z € [E], the refined parts-of-derivative describe the subwords
vi, vy that were to the left and right of this a in z: it must be the case that v; € [E;] and
v, € [E,] for one of the pairs E}, E,. For a longer word u, the refined reordering derivative
operation gives lists of expressions Ey, ..., E, fixing what the lists of subwords vy,...,v,
can be in words z = vouv; ... u,v, € [E] equivalent to a given word w = uv € [E]'.

Definition 3.56. The (unbounded and bounded) refined Antimirov I-reordering parts-of-
derivative of an expression along a letter and a word are given by relations —/ C RE x T x
RE x RE, =/ CRE" x L xRE", »/* CREx X* x RE", =4 C RETSNF1 ¥ x REF=NTL
and —4 C RE x X* x RET=N*! defined inductively by

E ! (a;E;E,) F ! (a;F,F)
a—!(a;1,1) E+F ! (a¢;E|,E;) E+F = (a;F,F)

E —! (a;E|,E,) F —! (a;F,F) E —! (a;E|,E))
EF ! (a;E;,E,F) EF —! (a;(RLE)F;,F,) E* —! (a;(RLE)*E;,E,E")

E ' (@ELE) |DA<N E—='(ELE) Ej [T]>0
[E,A=4 (&;RIT E},E,,A) [LE,A=% (&;RITE,,A)

E ! (a;E,E,) E.4 |Al>0 E—!'(a;ELE.) E4 E»4 |I|>0 |A>0
[E,A= (a;RIT,E},A) [E,A=4 (a;RIT,A)

E -l (wT) =4 (a;1)
E =L (6;E) E — (ua;T")

By RET=N*! we mean nonempty lists of expressions of length at most N+ 1. The relations
=1 and —!* are defined exactly as =, and —4 but with the condition |T",A| < N of the
first rule of :>{v dropped. The operation R{, is extended to lists of expressions by applying
R! to every expression in the list.

We have several rules for deriving a list of expressions along a. This is so that we
can truncate the list precisely—only lists of length at most N + 1 can be derived (in the
bounded case).

If E is split into E;, E, (by —) and neither of them is nullable, then, in the N-bounded
case, we require that the given list (I', E, A) is shorter than N + 1 since the new list (this
is RQF,E,,E,,A when deriving along a) will be longer by one. If one of E;, E, is nullable,
not the first resp. last in the list, and we choose to drop it, then the new list will be of the
same length. If both are nullable, not the first resp. last, and we opt to drop both, then
the new list will be shorter by one. They must be droppable under these conditions to
handle the situation when a word z has been split as vou vy ... upvitgy 1 - . . upvy and vy is
further being split as v;av, while v; or v, is empty. If k = 0 and v; is empty, we must join uy
and a into ua. If k # n and v, is empty, we must join a and u; | into auy . If k is neither
0 nor n and both v; and v, are empty, we must join all three of ug, a and uy | into ugaug ;.
The length of the new list of expressions is always at least 2.

52

Proposition 3.57. Forany E,

1. foranya e X, v;,v, € ¥¥,

vilaAvav, € [E] < 3EE,.E - (a;E,E,) Av, € [E]] Av, € [E/];

2. foranyu € X*,n € N,vo € Z*,v1,...,v,_1 €EXT,v, € L%,

Proof.

3z € [E],uty. yun €N u~t uy g Ny, uy 12> 00,V
—
3Eo,...,Eq.E =" (w;Ey,...,E,) AYj.v; € [E]].

: By inductionon E.

Case d’ where d’' # a: vjav, € [d'] = {d'} is impossible.

Case a: Suppose v;av, € [a] = {a}. Thenv; = v, = €. We have a = (a;1,1)
and € € [1] as required.

Case 0: vjav, € [0] = @ is impossible.

Case E; + E;: Suppose vav, € [E| + E>] = [E1] U [E2] and v; I a. It must be
that v;av, € [E;] for one of two possible i. By i.h. for E;,a,v;,v,, there are Ej,
E, such that E; —! (a;E},E,), v; € [E[], vr € [E,] and from which we obtain
Ei+Ey = (¢ ELLE)).

Case 1: vjav, € [1] = 1is impossible.

Case EF: Suppose vjav, € [EF] = [E] - [F] and v; I a. Then v;av, = xy for
some x € [E] and y € [F]. Either (i) there exists v/ such that x = v;av’ and
v, =V'y or (ii) there exists v/ such that y = vav, and v; = xv'.

If (i), then, by i.h. for E,a,v;,V/, there are E;, E, such that E —! (a;E;, E,) and
v; € [E/], V' € [E/]. Thus we have EF —! (a;E;,E,F) and v, =Vy € [E,F].
If (i), then xIa and V' I a, so x € [RLE] and, by i.h. for F,a,V',v,, there are
F},F, suchthat F —! (a; F}, F,), and V' € [F], v, € [F,]. From these we obtain
EF —! (a;(RLE)F,,F,) and v, = xv' € [(RLE)F].

Case E*: Suppose v;av, € [E*] and v; I a. Then v; = xv} and v, = v/.y for some
x,y € [E*] and v},v, such that viav, € [E]. As xIa and v)Ia we have that
x € [RLE*] and, by i.h. for E,a,v},v., we get that there are E;, E, such that
E ! (a;E;,E,) and V] € [E/], V.. € [E,]. We also obtain v, = xv} € [(RLE*)E/]
and v, =,y € [EE*].

: By induction on the derivation of E —! (a;E},E,).

Casea —! (a;1,1) as an axiom: Suppose v;,v, € [1] = 1. Thenv; = v, = £ and
we have €ae = a € [a] and €1 a as required.

Case E| + E; —! (a;E}, E,) inferred from E; —! (a;E;,E,) where i is 1 or 2:
Suppose v; € [E(], v, € [E,]. We apply i.h. to the subderivation, v;,v, and
obtain v; I a and vjav, € [E;]. Thus viav, € [E | U[E2] = [E1 + E3]-

Case EF —! (a;E;,E,F) inferred from E —! (a;E;,E,): Suppose v; € [E/],
vy € [E/F]| = [E/] - [F]. Then v, = xy for some x € [E,] and y € [F]. We
apply i.h. to the subderivation, v;,x and obtain that v; I a and vjax € [E]. As
v, = xy, we have viav, = (viax)y € [E] - [F] = [EF].

53

Case EF —! (a,(RLE)F;,F,) inferred from F —! (a;F;,F,): Suppose that
vi € [(REE)F] = RLE] - [F], vr € [F]- Then v; = xy for some x € RL[E]
and y € [F;], which means xIa and x € [E]. We apply i.h. to the subderiva-
tion, y,v, and obtain that y/a and yav, € [F]. As v; = xy, we have v; I a and
thus vjav, = x(yav,) € [E] - [F] = [EF].

Case E* —! (a;(RLE*)E;, E,E*) inferred from E —! (a; E;, E,): Suppose that
vi € [(RLE*)E|] = RL[E*] - [E(], v» € [E-E*] = [E,] - [E*]. Then v; = xy for
some x € RI[E*] and y € [E|], which means xIa and x € [E*]. Also, v, = zw
for some z € [E,] and w € [E*]. We apply i.h. to the subderivation, y,z and
obtain that y I a and yaz € [E]. As v; = xy and v, = zw, we get that v; I a and
viav, = x(yaz)w € [E*] - [E] - [E*] C [E*].

: By induction on u.

Case &: Suppose & ~* uy...u, and z = vourvy ...u,v, € [E]. As the u; are
nonempty, then necessarily n = 0, which means we have vy € [E]. Also, we
have E —* (&;E) as required.

Case ua: Suppose ua~""uy ...u,, Vi.vj <i. viluiandz=vouivy ... u,v, € [E].
It must be that n > 0 and there must exist k and u;, u, € £* such that uy = w;au,,

vilaforall j <k,alu, alu;foralli>kand g g U

- Ifu; =u, =€, then, asvy_javiIu;foralli > k,wecanapplyi.h.tou,n—1,
V05 Ve v v s VE—2, Vi1V, Vit 15+« + 5 Vs o Ulye e oy U 15 Ut 15 - - U We get
E(), .. 7Ek_z, E’, Ek+1, o Ey such that

E " (wEy,...,Ex_2,E' Epi1,...,Ep)
and v; € [Ej] forall j < k—1, vk_javg € [E'], vj € [Ej] for all j > k.
As vi_1 I a, we can apply 1. to E’, a, vi_1, vi and get E;_1, Ej such that
E' = (a;Er_1,Ey), vi_1 € [Ex_1] and vy € [Ex]. This allows us to infer

E *)1* (ua; RéE(), ey R{,Ek—ZaEk—laEk»Ek+1 yoen ,En).

Asv;laforall j <k—1,wealsohavev; € [RLE;] forall j <k—1.

- If u; # €, u, = €, we note that av; I u; for all i > k and apply i.h. to u,
Ty V0, Ve oy Ve 1y QViey Vi Ty -3 Vs 8o Wl s v ooy Ug— 1, UL, Ut 15 - - -, Up. We get
E(),...,Ek_l,E/,Ek_H,...,En such that

E - (wEy,...,Ex_1,E'\Epy1,...,E))
and v; € [E;] forall j <k, av € [E'], v; € [Ej] forall j > k. As €la,
we can apply 1. to E', a, €, v and get E” | E; such that E' —! (a;E" Ey),
€ € [E"]), v € [Ex]. As € € [E"] tells us that E” 4, we can infer

E =" (ua;R!Ey, ... ,RLE 1, Ep, Exy1,. .. Ep).

Asv;laalso forall j < k, we in fact also have v; € [RLE|] for all j < k.

- The cases u; = €, u, # € and u; # &, u, # € are handled similarly to the
previous case.

54

<=: By induction on the derivation of E —'* (u; Ey, ... ,E,).

e Case E —!* (&;E) as an axiom:
Here n = 0 and Ey = E. Suppose that v € [E]. We have & ~'* € as well as
z=vy € [E] directly.

e Case E —'* (ua;RLEy,...,RLE; 1 E} E,,E11,...,E,) inferred from deriva-
tions E —'* (u;Ey, ...,E,) and Ex —! (a;E},E,):
Suppose that v € [RIEy],...,vi 1 € [RLEx_1], vi € [E/], v, € [E,], and that
Vir1 € [Eks1];---,vn € [En]- From this we also have vyl a,...,vt—1Ia and
vo € [Eol,---vi—1 € [Ex-1]-
By applying (1.<=) to E, a, v;, v, we learn that v; I a and v;av, € [EL].
By applying i.h. to u, n, vo,...,vi_1, viavy, vgr1,...,v, and the subderivation,
we obtainthewords z,u,...,u, € Z* suchthatu~"™u; ... u,, Vi.Vj<i.vjlu,

Vi > k.viav, Tu; and z = vouvy ... vi_1ug (Viav,) g4 1Vis1 - - - Unvn € [E].

1

Now clearly ua ~"* u ... ugaug 1 ...u, and

Z=VOUIV] - . . VR | UgVIAV Ut 1 Vs] - - - UV € [E].

e Case E = (ua;RLEy,...,RLE,_{,E, Eiy1,...,E,) inferred from derivations
E =" (u;Ey,...,E,) and Ey —! (a;E,,E,) with E; 4 whereby k # 0:
Let us now suppose now that vo € [RLEo], ..., vk_1 € [RLE 1], v, € [E,] and
Vie1 € [Exs1],---,vn € [Ey]. From this we also have vy a,...,v_1Ia and
vo € [Eo],---svi—1 € [Ex-1]-
Applying (1.<=) to Ey, a, €, v, we learn that av, € [EL].
Applying i.h. to u, n, vo,...,vgk_1,av,,Vit1,-..,v, and the subderivation, we
obtainz,uy,...,u, € X7 suchthatu~"u; ...u,, Vi.Vj <i. vilu, Vi>k.av,lu;
and z = vouivy ... Vi_1ug(@v) gy 1 Vit 1 - - - Un v € [E].
Now clearly ua ~" uj ... (wxa)uy 1 ... u, and

Z2=vouivy .- Vi1 (Ug@)Vylts 1 Vit 1 - - - UV € [E].
¢ The two remaining cases are treated similarly to the previous case. O

Proposition 3.58. Forany E,
1. foranya € L,v € ¥*, the following are equivalent:
(a) av € [E]";
(b) v;,v, € ZF v~ v, AviTaAviav, € [E];

(c) vy, v, € Z*.
v v, AELE E = (a;EL E) Ay € [E]] Avy € [E/];

(d) vy, v, € Z*.
vev v, AIELE,.E ! (a;E;,E) Av; € [E[]! Av, € [E].

2. forany u,v € L*, the following are equivalent:
(a) uv € [E]%;

(b) Iz € [E]. u~<iz>~v;

55

(c) IneN,vog €X* vi,...,Vvue1 EXZT, v, €T vl v vy A
JEo,...,Ey.E =" (w;Eo,...,Ey) AVj.v; € [E;];

(d) IneNvyeX v,vaa €T vevevy L L. Ty, A
JEo,...,Ey.E =" (4;Eq,...,Ey) AVj.v; € [E;]".

3. forany u € ¥,

ucE] < (u=eNE4)V (u#eN3IEy,E.E =" (u;Ey,E1) NEos NE14).

Proof.

1. (@) <= (b) follows from Proposition|3.6
(b) <= (c) follows from Proposition|[3.57(1).
(c) < (d) follows from Proposition|3.10

2. (a) < (b) follows from Proposition|3.6
(b) <= (c) follows from Proposition 2).
(c) <= (d) follows from Proposition|3.10

3. From (2) for E,u, €. O

We have thus established a correspondence between the trace-closing interpretation
of regular expressions and refined Antimirov reordering derivative. We continue towards
a similar property for expressions defining languages with uniform rank.

Proposition 3.59. Forany E,N € N, u € £*, z € [E],

if
Vi u=uu" = v ~<ayz>v
then
Ix (. .
3Ey,...,En.E =y (w;Eo,...,Ey) AV v; € [[EJ]]
for the unique n, uy, ..., uy, vo, . .., v such that u~"uy .. .u, and uy, . .. ,u, <\z>vo, . .., Vp.

Proof. This is basically a replay of the proof of Proposition 2.—>) with the extra as-
sumption about uniform rank up to u. The proof is by induction on u.

e Casee:Sinceu=¢,itmustbethatn=0inuy,...,u, <<z>vg,...,v,. Hencevg = z.
We take Ey = E and thus have E =4 (¢;E) and vy € [E].

e Case ua: By assumption (for ' = ua, u" = €), we have v such that ua ~<1y 7> v.
Thus we have n, uy,...,up,vo,...,v, such that n <N, ua ~™uy .. .up, vo... vy = v
and ua is scattered in z as follows.

Ulyeooy Uy TV, ..,V

Since ua ~" u; .. .u,, the letter a must be in one of the u;, i.e., there exist k, 1; and

u, such that u, = wjau,, Vi < k.vila,alu, and Vi > k.alu;.

Next, we construct from the above scattering of ua in z a scattering of u in z by
splitting u; into u;, a, u, and considering a to be a v-letter. To construct a valid
scattering, we have four cases to consider: u; = € and u, = €; u; = € and u, # ¢€;
u; # € and u, = €; u; # € and u, # €. We only consider the last case here.

56

Since u; # € and u, # €, we have that the following is a valid scattering of u in z as
alu, and Vi > k.alu;.

ULy ooy U1, UL Upy Uy 15 - U <IZD> VO, ooy Vi—1,, Vi -5 Vi

This scattering, however, has degree n+ 1. By Lemmal[3.4] we know that scatterings
are unique, i.e., if aword u is scattered in a word z, then this is the only way to scatter
u in z. This implies, by the assumption of uniform rank (for ' = u and u” = a), that
n+1<N.

Since the assumption of uniform rank also holds for all prefixes of u, we can apply
i.h.to E, N, u, z. Since the above scattering is the unique scattering of u in z, we
obtain Ey, ...,Ei_1,E’Ey,...,E, such that

E % (wEo,...,Ex_1,E'\Ey,...,E,)

and v € [[E()ﬂ,...,vk,1 S [[Ek,l]],ae [[E/H,Vk S [[Ekﬂ,...,vn S [[En]]

Aselaanda € [E'], we can apply Proposition 1.=)toE', a, €, e to obtain Ej,
E] suchthat E' —! (a;E],E}), € € [E/] and € € [E]]. Thus E|4 and E|4. As u; # €
and u, # € imply |Eo,...,E;_i| > 0and |Ey,...,E,| > 0, we can use the fourth rule
of :>11\, to drop the nullable expressions E; and E, when deriving along a.

Eo,....,Ex_1,E E,... E, =% (;RIEy,... RLE} 1 Ey, ... E))
This allows us to conclude the following.
E =% (ua;RLEy,...,RLE, |, Ey, ... E))
Aswe have v; € [E;] and also v; I a for all j < k, we thus have v; € [RLE|]. O
Corollary 3.60. For any E such that [E] has uniform rank at most N,
1. for any u,v € X*, the following are equivalent:

(a) uv € [E]";

(b) Iz [E]. V' " u=vv" = v ~<yz>~u'v;

(c) In<N,vg €T*vi,....va_1 €EXT v, €XF vl vour v, A
3Eo,...,En.E =% (u;Eo,...,E,) AVj.vj € [Ej];
(d) In<NvoeX*vi,....vu1 €XT v e vevy Lo L Ty, A

JEo,...,Eqn.E =% (w;E,...,En) AV j.v; € [E;]".
2. foranyu € X*,

uc[E)f < (u=eANE})V (u#eNIEy,E\.E =5 (u;Eo,E1) NEoh NE14).

Proof of 1.
(a) = (b) is from E having uniform rank at most N.
(b) = (c) follows from Proposition|3.59
(c) = (d) and (d) = (a) are those from Proposition[3.58|2). O

57

Example 3.61. LetX ={a,b},alb,E =graa+ab+band E, =4 Rf,E =aa+a0+0. There
are two possibilities to derive the expression E along b: either from the summand ab or
from the summand b. Here are the two derivations.

b—' (b;1,1)
ab —! (b;al,1) b—' (b;1,1)
ab+b —! (b;al,1) ab+b—" (b;1,1)
aa+ab+b—' (b;al,1) aa+ab+b—' (b;1,1)
E* =1 (b;E} (al),1E*) E* =1 (bE;1,1E%)

By denoting the left derivation by D,;, and the right one by D;, we can write one of the
refined reordering parts-of-derivative of E* along bb as follows.

Dab 0<2 Dab
E* =b (e;E*) E* =L (b;E}(al),1E*) 1E* =1 (b;1(E}(al)),1E*) 1<2
E* =L (b;E} (al), 1E*) Ej(al),1E* =% (b;E} (al),1(E} (al)), 1E*)

E* = (bb;E} (al),1(E}(al)), 1E*)

In this example we chose N =4¢ 2 and we chose the ab summand both times. The
expression 1(E; (al)) = (aa)*ais not nullable, so we could not have dropped it in the =
rule. From here, we cannot continue by deriving along a third b by again taking it from the
summand ab of E in 1E*, as this would produce another nondroppable 1(E;(al)) and
make the list too long (longer than 3).

If we would choose, for example, the summand b for the second step, then we could
arrive at a list of length one less.

Dab 0<?2 Db
E* 55 (e:E%) E* =) (biEj(a1),1E) 1E* =T (b 1(Ef1),1E*) 1(Ej1)§ 1>0
E* =1 (b;E} (al), 1E*) Ej(al),1E* = (b;Ej(al), 1E¥)

E* =5 (bb;Ej} (al),1E¥)

For example, we are not allowed to establish (for N = 2) that w =4 bbbaaa € [E*]' by
deriving E* along w and checking that we can arrive at Ey, E; with both Ey, E1 nullable as
mandated by z =4 ababab € [E*]. We are allowed to do so because 7’ =4 bbabaa € [E*].

The word z is not useful since, among the splits of w as w = uv, there is u =4¢ bbb,
v =g4f aaa, in which u scatters into z in three blocks as z = ababab (we underline the letters
from u). The full sequence of scatterings corresponding to every split of w is: ababab,

The word Z/, on the contrary, is fine because, for every split of w as w = uv, the word
u scatters into z using at most two blocks. The full sequence is: bbabaa, bbabaa, bbabaa,
bbabaa, bbabaa, bbabaa, bbabaa.

The choice N = 2 suffices for accepting all of [E*]/, since [E*] happens to have uniform
rank 2.

Just as in the non-refined case, the refined Antimirov reordering parts-of-derivative of
an expression E give a nondeterministic automaton by taking the state set to be OF =4
{T'| 3u € £*.E = (u;T)}, the initial state to be g5 =y E, the final states to be F£ =4
{E|E4}U{Ey,E| € OF | Ey4 NE1 4}, and the transitions to be given by I —£ (a;T7) =g
I'=! (¢;T") for I',I" € QF. By Proposition[3.58} this automaton accepts [E]’. It is gener-
ally not finite as OF can contain states I" of any length.

58

Given N € N, another automaton is obtained by restricting Of, F£ and —£ to Q% =4
(T|3uer E—=L (w)}, FE =4 {E|E4}U{Eo,E1 € Q% | Eos NE 14}, T =5 (a;T) =4
=4 (@) for I,T € 0. By CoroIIary if [E] has uniform rank at most N, then
this smaller automaton accepts [E]! despite the truncation. If [E] does not have uniform
rank or we choose N smaller than the uniform rank, then the N-truncated automaton
recognises a proper subset of [E]’. In other words, by increasing N we get a better (regu-
lar) approximation of [E]’, but if [E] does not have uniform rank, then we will not reach
[E]!. Proposition gives an example of this: however we choose N, the N-truncated
automaton fails to accept the word a”b"ca”’b" for n > N. This happens because [E] does
not have uniform rank (and that it has rank 2 does not help).

3.5.2 Automaton Finiteness for Regular Expressions with Uniform Rank

Is the N-truncated Antimirov automaton finite? The statesI” of Qf, are all of length at most
N + 1, so there is hope. The automaton will be finite if we can find a finite set containing
all the individual expressions E’ appearing in the states I". We now define such a set E—*.

Definition 3.62. We define functions (_)"",R,(_)~",(_) 7" : RE - £ (RE) by

anr —=df {1}

07 =4 0
(E4+F)"t =4 E7TUF™T
17F =4 0

(EF)™* =g E“TUF“TUE™t.{F}U{E} F~+*UE"T.F~t
(E*)~+ =4 E“TU{E*}-E”TUE~*.{E*}U
ETT-({E'VET) U (BT {E}) BT

RE =4 {RVE|XCZ}
E*?Jr =4f R(Eer)
E—* =df {E} UE~>+
Proposition 3.63.
1. For any E, the set E—* is finite.
2. Forany E and X, we have (RLE)™* C RL(E7).
3. ForanyE,aand EE,, if E —! (a;E},E,), then E; € RE(E™T) and E, € E™ 7.

4. Forany E,E' X ,a,E} E], if E' € R\ (E™ ") and E' —' (a;E],E}),
then E] € Rk ,(E~") and E|. € RL(E™).
5. Forany E,uand Ey, ...,E,, if E =" (u;Ey,...,E,), thenVj.E; € E7*.

Proposition 3.64. For every E and N, the state set {I" | Ju € £*.E —& (u;T")} of the N-
truncated refined Antimirov automaton for E is finite. If [E] has uniform rank at most N,
then the N-truncated automaton accepts [E].

3.6 Related Work

Syntactic derivative constructions for regular expressions extended with constructors for
(versions of) the shuffle operation have been considered, for example, by Sulzmann and
Thiemann [76] for the Brzozowski derivative and by Broda et al. [19] for the Antimirov

59

derivative. This is relevant to our derivatives since L -/ L is by definition a language be-
tween L-L' and L1 L'. Thus our Brzozowski and Antimirov reordering derivatives of EF
must be between the classical Brzozowski and Antimirov derivatives of EF and E LU F.

Finite asynchronous automata were introduced by Zielonka [80] as a way to charac-
terise recognisable trace languages. It is a theorem that a trace language T is recognisable
if and only if there is a finite asynchronous automaton such that T is the language accepted
by that automaton. Since all recognisable trace languages have a star-connected expres-
sion defining them, we can also construct a finite automaton for every recognisable trace
language given its star-connected expression. Asynchronous automata allow concurrent
execution of independent actions but our construction yields a traditional automaton.

With the reordering derivatives we can construct a (possibly infinite) automaton for
a regular expression E that accepts the closure [E]!. We accomplish this by essentially
having more states and transitions in the automaton when compared to the automaton
obtained by the usual derivative construction. Another possible approach is to change the
way the automaton processes the input word. For example, Nagy and Otto [55] describe
automata with translucent letters. The basic idea is that with each state ¢ is associated a
set of letters 7(g) C X that are considered translucent in g. Translucent letters are invisible
to the machine. Thus in state g we can take a transition labelled a to ¢’ when the current
input word is waw’ with £(w) C 7(q) and a & 1(q), i.e., a is the first letter that is not
translucent. In our terminology we could say that a is the minimal letter of waw' in state g.
It would be more natural for us to associate translucent letters with the alphabet (labels of
the transitions) so that we can directly encode the independence I as translucent letters.
Then the automaton can take a transition labelled a when a is a minimal letter of the
input word according to 1. Thus we can take an automaton for [E] and by modifying
only the transitions to include translucent letters we would get an automaton for [E]’.
As the translucent letters allow us to consider different factorisations of the input word,
we can see the above construction as producing a Z*/Nl*-automaton with the additional
restriction that the transitions are labelled only by the generators of the monoid.

A somewhat similar notion is that of jumping finite automata [54] where the machine
can jump to an arbitrary position in the input word. The languages accepted by such
automata are necessarily closed under permutation.

3.7 Conclusion and Future Work

We have shown that the Brzozowski and Antimirov derivative operations generalise to
trace closures of regular languages in the form of reordering derivative operations. The
sets of Brzozowski resp. Antimirov reordering (parts-of-)derivatives of an expression are
generally infinite, so the deterministic and nondeterministic automata that they give, ac-
cepting the trace closure, are generally infinite. Still, if the expression is star-connected,
then their appropriate quotients are finite. Also, the set of N-bounded refined Antimirov
reordering parts-of-derivative is finite without quotienting, and we showed that, if the lan-
guage of the expression has uniform rank at most N, the N-truncated refined Antimirov
automaton accepts the trace closure. We also proved that star-connected expressions
define languages with finite uniform rank.

In summary, with this work we have established the picture shown in Figure[]

Our motivation for developing these reordering derivatives is to use the Antimirov re-
ordering derivative as a guiding idea for describing operational semantics of relaxed mem-
ory models. Usually, when we consider sequential composition EF of programs E and F,
then, to start executing the program F, we must have already successfully executed the
program E. In the jargon of derivatives, this is to say that for an action from F to become

60

executable, what is left of E has to have become nullable (i.e., one can consider the ex-
ecution of E completed). With reordering derivatives, we can execute an action from F
successfully even when what is left of E is not yet nullable. It suffices that some sequence
of actions to complete the residual of E is reorderable with the selected action of F'. This
is precisely the topic of exploration in Chapter[5

In the definitions of the derivative operations, we only use I in one direction, i.e., we do
not make use of its symmetry. It would be interesting to see which of the results from this
chapter can be generalised to the setting of semicommutations [24]. In fact, in Chapter|[5]
where we develop an operational semantics based on the Antimirov reordering deriva-
tives, we deliberately exclude the requirement that the independence relation must be
symmetric. We do not, however, investigate the same questions as we did in this chapter
for the symmetric case.

E star-connected

Prop.
Prop.

Klunder et al. [41]
Quot of Antim for [E]’ finite [E] has uniform rank

Kleene
Refined Antim for [E] finite [E] has rank
N //@2]
[E] regular

Ochmanski [59]

[E]' = [E']! for some star-conn E’

Figure 1 - Reordering derivatives in relation to earlier results

61

62

4 Normal Forms of Generalised Traces

In this chapter, we consider normal forms for a generalisation of traces where the com-
mutability of a pair of adjacent letters in a word may depend on their left context (this is
the prefix of the pair in the word). We develop both Foata and lexicographic normalisation
for this generalisation. As an example application of this work, we describe an indepen-
dence alphabet for a very simple TSO-like system where the context-dependence of the
independence relation is used to express whether a particular read instruction reads its
value from the shared memory or from the local write buffer.

4.1 Motivation

We have already introduced Mazurkiewicz traces and also the Foata and lexicographic
normal forms in Section Before continuing with the generalisation of traces in this
chapter, we briefly motivate this development by describing our use of normal forms and
also why this kind of generalisation of traces might be useful for us.

In formal languages, the alphabet X is usually treated simply as a collection of symbols.
In applications, on the other hand, the letters of the alphabet typically have some mean-
ing attached to them. In the example in Section [4.5and in Chapter [§] we will take the
alphabet X to be the set of instructions or actions that a machine can execute. Depending
on the particular set of instructions, there may be pairs of instructions a and b that are
independent, i.e., we do not see a semantic difference between executing a first and then
b or the other way around. Words over this alphabet are then seen as program executions
and the independence relation induces an equivalence relation on executions. Some pro-
grams may have several equivalent executions and a Mazurkiewicz trace corresponds to
an equivalence class of executions according to this equivalence relation.

To check that the set of executions of a program satisfy some property, we can of course
check each execution separately. When we know that this particular property is stable un-
der an equivalence relation, then it is sufficient to check a single representative of each
equivalence class. We are interested in the result of an execution and thus prefer equiv-
alence relations where equivalent executions lead to the same result. If the equivalence
relation induced by an independence relation is such, then we can use normal forms as
the representative executions.

A useful property that normal forms may have and that the normal forms we consider
do have is prefix-closedness, i.e., if uv is a normal form, then so is u. Contrapositively, this
says that if u is not a normal form, then there is no v such that uv is a normal form. We will
use this property to cut off search for a representative execution as soon as we discover
that our current execution so far (the prefix) is not in normal form (this can also be seen in
Definition[5.42|where it is only possible to construct executions that are in normal form).

Our development in this chapter is motivated by the fact that, in some cases, an in-
dependence relation might not be expressive enough. More precisely, in Mazurkiewicz
traces, the independence relation is a binary relation on the alphabet and thus it is static.
By this we mean that we cannot have a pair of letters that are independent at some in-
stant, but not in general. The generalisation of traces introduced by Sassone et al. [74]
that we consider in this chapter makes the independence relation depend on a word pa-
rameter representing the context in which the independence of the letters is considered.
This context can be seen as a form of state. This allows us to say that a pair of letters
(or instructions) commute in some context (machine state) but not in others. In the ex-
ample in this chapter we use this feature to construct an independence alphabet where
the meaning (commutability) of a read instruction depends on whether there is a pending

63

write instruction currently in the write buffer.

We develop generalisations of Foata and lexicographic normal forms for these gener-
alised traces and also the corresponding normalisation algorithms and correctness proofs.
A more detailed description of this development which documents the corresponding
Agda [58] formalisation is in Appendix[Al The Agda formalisation itself is available here:
http://cs.ioc.ee/ hendrik/code/phd/isse.zip

4.2 Generalised Mazurkiewicz Traces

There are several generalisations of trace theory. We are considering the generalisation
given by Sassone et al. [74]. In this setting, the essential difference is that independence is
no longer a binary relation but instead it is an assignment of an irreflexive and symmetric
(independence) relation to every word u. More precisely, we assume that we have an
alphabet X and a context-dependent independence relation 7 : £* — (£ x £). The word
parameter to I is the context.

In this chapter, we seek to follow the following lexical convention where reasonable:

e a, b, candd are letters (elements of ¥);
e s, ¢, uand v are words (elements of X*);
e x, yand z are lists of words (elements of X**).

The smallest difference between two equivalent words is that they differ by the order-
ing of a pair of adjacent independent letters.

Definition 4.1. For any u € X*, the words s, s’ € X* are one-step Mazurkiewicz equivalent
in context u, denoted by s~/ s, when there exist a,b € ¥ and t,#' € * such that al, b,
s =tabt' and s’ = tbat’.

Thus the words tabt’ and that’ are equivalent in the context u when the letters a and
b are independent in the context us € X*. Mazurkiewicz equivalence is the reflexive-
transitive closure of the above relation.

Definition 4.2. Forany u € *, two words s, s’ € Z* are Mazurkiewicz equivalent in context
u, denoted by s ~* ', when s = s’ or there exists s” € £* such that s~/ s” and 5" ~[* s'.

A witness of s N{t* s’ can be thought of as a sequence of instructions for transforming s
into s’ by swapping pairs of adjacent independent letters. No letters from u can be involved
in these swaps.

The original motivation for context-dependent independence relation in [74] was to
make the independence relation more expressive or finer. However, without any restric-
tions, the context-dependent independence relation could become too fine. Consider an
alphabet with al; b, c1,,d and ¢ Dy, d. Although we say that a and b are independent in
the empty context, we could argue that they are not. If ¢ and d are independent in the
context ab, but dependent in the context ba, then we can see a difference between ab
and ba and thus the ordering of @ and b (in the empty context) matters.

Definition 4.3. A context-dependent independence relation 7 : £* — #(X x ¥) is said to
be consistent when it is stable under equivalence, i.e., for any u,v € £* and a,b € L, if
al,bandu Né* v, thenal,b.

Definition 4.4. A context-dependent independence relation / : £* — &2(X x X) is said to
be coherent when, for any u € £* and a, b, ¢ € ¥, it satisfies the following conditions:

64

http://cs.ioc.ee/~hendrik/code/phd/isse.zip

1. ifal,b,bl,,candal,c,thenal,c;
2. ifal,b,bl,cand al,c,thenaly c;
3. ifal,b,bl,candal,c,thenal,c.

In generalised traces, the context-dependent independence relation is required to be
both consistent and coherent. The consistency and coherence conditions ensure that a
context-dependent independence relation is sufficiently coarse. This turns out to be nec-
essary for our generalisations of the Foata and lexicographic normal forms and the corre-
sponding normalisation algorithms.

Consistency is a very basic hygiene condition. It just states that equivalent words must
give the same independence relation. This rules out the undesirable behaviour described
above. The coherence conditions are more interesting since they involve different con-
texts. Looking at their shape, we could say that the essence of the coherence conditions
is that, if we have a letter b so that both a and b as well as b and ¢ are independent (in
some context), then b is “independent enough” (wrt. a and ¢), so that the independence
or dependence of a and c is not affected by adding b to or removing it from the end of the
context. The important details in the rules are the contexts. Note that there is no need
for a version of the first coherence condition for extending the context as that is derivable
from the second and third condition.

One way to see the coherence conditions is to say that they are the smallest set of con-
ditions guaranteeing that any choice of three conditions, one from each of the following
three pairs, implies the other three: (al, b, al,.b), (bl,c, bl c), (al,c, al,c). Thisis
with the exception of the choice of the second condition from each pair; from these three
conditions one cannot conclude anything. For example, al, b, b1, ¢ and al,;, c imply not
only al,c and b1, ¢ (both by the first condition), but also a1, b (follows from those by the
second condition).

We illustrate generalised traces with a modification of the example independence al-
phabet we considered in Section[2.3] We now take I to be the least consistent and coher-
ent family of symmetric relations such thatalz b, alzd, bl,d, bl,.d and c1,, d. Explicitly,
this means that we also have b I d (by third coherence condition), al; b, al, d (by second
coherence condition) and c¢ I, d (by consistency). Now abcd has the same equivalence
class as before, but acbd is only equivalent to acdb, leaving adcb and dacb in a different
equivalence class.

We now give some explanation why requiring the coherence conditions of Definition[4.4]
is desirable. Our argument is that without coherence we can have conflicting definitions
of minimal (and maximal) letters in a word. We consider a to be minimal in xay when
xay Nle* av for some v. Before, we also said that a letter a is minimal in a word when it
is possible to commute it past its prefix (x in this case) to the beginning of the word. We
describe normal forms as predicates on words and thus we would like to decide whether
aword is a normal form by just considering this word and not by first having to enumerate
its entire equivalence class.

We can violate condition (1) by taking al. b, aD.b, bD¢c, bl,c, aD¢c and al, c.
(Note that condition (1) would require both b1 ¢ and a I c. Conditions (2) and (3) are
satisfied.) We have ach ~L abc ~L bac ~% bca. We can see that a is a maximal letter as the
equivalence class contains bca. By considering the equivalent word acb, we do not see
this as a D, ¢ and thus a cannot be commuted past its suffix to the end of the word.

We can violate condition (2) by takingals b, al.b,bl.c,bl,c, al: c and a Dy c. (Note
that condition (2) would require a I, c. Conditions (1) and (3) are satisfied.) This means we
have bac ~L abc ~L ach ~L cab ~L cba ~L bca. We consider ¢ to be minimal because of

65

the word cab, but we cannot see this from the word bac itself as a Dj, c. Another anomaly
here is that although a D;, ¢, we still have bac ~% bea.

We can violate condition (3) by taking ale b, aD.b, bl c,bD,c,aD¢ c and al, c. (Note
that condition (3) would require a I c. Conditions (1) and (2) are satisfied.) This means we
have abc ~L. bac ~L bca ~!. cha. We consider a to be minimal because of the word abc,
but we cannot see this from the word cba itself as a D, b.

4.3 Generalised Foata Normalisation

In this section, we describe Foata normal forms for generalised traces and the correspond-
ing normalisation algorithm. We conclude with the correctness proof of the algorithm.

4.3.1 Normal Forms

The Foata normal form of a generalised trace is still a well-formed sequence of well-
formed steps as in the standard case (Section , but we change the well-formedness
condition of steps and sequences to take into account the context-dependence of the in-
dependence relation.

First, we extend the independence relation to words (considered as steps) and letters
by eml, a =q4¢ tt and sbul, a =4¢ sml, a Ab 1, a. Thus sml, a just says that all letters in s are
independent of a in the context u. Note that the context u stays fixed in the definition,
i.e., the letters in s have to be independent of a in the same context u. We also use s ¢D,, a
as the negation of this to say that there exists a letter in s such that s D, a. The relation <
is the strict total order on the alphabet. The function |_| : ** — X* flattens the given list
of words by concatenation.

Definition 4.5. For any u € X*, the set Step(X,1,u) C L* of well-formed steps in context
u is given by:

1. foranya € X, a € Step(X,1,u);

2. foranys e X*anda,b € X,
if sa € Step(X,1,u), a < b and saml, b, then sab € Step(X,1,u).

Thus a well-formed step (in context u) is either a singleton letter or it consists of a well-
formed step to which a new letter is added on the right, which has to be greater than the
previous rightmost letter. The added letter and the step must be independent. This means
that if we have sas'bs” € Step(Z,1,u), then it must be that al, b and a < b. We require the
letters of a step to be independent in the fixed context since we think of a step as a set of
independent letters and thus should be allowed to move the letters freely within a step.
We require the letters to be ordered to have a concrete representation (an enumeration)
of this set as a word.

We now define when a sequence of steps support a letter. Intuitively, if a sequence
of steps x € X** supports the letter a, then either the last step in x contains a dependent
letter or x is empty.

Definition 4.6. Foranya € X, the set Sup(X,1,a) C X** of sequences of steps that support
the letter a is given by:

1. e€Sup(X,1,a);
2. foranyx € " and s € L*, if s D|,| a, then xs € Sup(Z,1,a).
We now define normal forms as sequences of steps where every letter in a step is

supported by the preceding steps.

66

Definition 4.7. The set Foata(X,I) C X** of Foata normal forms is given by:
1. € € Foata(%,1);

2. for any x € Foata(X,I) and s € Step(Z,1, |x]),
if, for every a € s, we have x € Sup(X,1,a), then xs € Foata(X,I).

Thus a Foata normal form is a sequence of steps where every step is well-formed in
the context of its prefix and every letter in a step has a dependent letter in the previous
step (unless it is the first step). When a letter in a step has a dependent letter in the
previous step, then the letter does not “fit” into the previous step and thus it is at its
earliest possible position.

The function emb that embeds a normal form (an element of Foata(X,I)) back to words
is defined as emb x = | x|, i.e., it just concatenates the steps of the normal form.

Continuing with the example independence alphabet from the last subsection, we have
that (abd)(c) is a Foata normal form since we have al; b, als d and b I, d making (abd) a
valid step and a D, c ensuring that the sole letter in the step (¢) is supported. We also have
that (a)(c)(bd) is a normal form since b I, d ensures that the step (bd) is well-formed and
aDgc, ¢cD,b and ¢ D, d provide the requisite support for the letters in (¢) and (bd).

4.3.2 Normalisation

The main ingredient in the normalisation algorithm is a function that takes a normal form
and a letter and inserts the letter into its right place in the normal form. Intuitively, the
correct step for this letter is the leftmost step in the normal form that can be reached
with this letter, starting from the rightmost step. This is because our normalisation algo-
rithm traverses the given input word (from left to right) and inserts each letter into an
accumulating normal form starting from the empty normal form.

We use Agda-like notation for describing the algorithms. Words are represented as
cons- or snoc-lists (List or List>) over an alphabet X. We use <: and <+ for the cons
operation and concatenation of cons-lists (the corresponding snoc-list operations are :>
and +>). A more thorough description of the Agda formalisation is in Appendix[Al

First, we define a function find> parameterised by a decider P? of a predicate P on a
context (a snoc-list) and an element. It splits a given snoc-list xs into two parts, 1s and
rs, so that all of the elements in rs satisfy the predicate and the rightmost element in 1s
violates the predicate.

find> : (V xs x — Dec (P xs x)) — List> X — List> X x List> X
find> P?7 [] =[] , []
find> P? (xs :> x) with P? xs x
find> P? (xs :> x) | yes _ =
let 1s , rs = find> P? xs in 1s , rs :> X
find> P? (xs :> x) | no =xs :>x , []

Given a step and a letter, we can use find> to find the right position of the letter in
the step.

insertStep : Step — X — Step

insertStep s a =
let 1s , rs = find> (\ _ b — a <? b) s in
1s :> a +> rs

Here we use find> with a predicate that ignores the context. The step s is split into 1s
and rs so that everything in rs is greater than a and the rightmost letter in 1s is not. We

67

assume that the ordering relation < is decidable, with <7 as the decider. Hence a <7 b
is either yes (together with a proof of a < b) or no (together with a proof of =(a < b)).
Given a normal form and a letter, we use £ind> to find the correct step for the letter.

insert : Foata — X — Foata
insert x a with find> (\ 'y s — wI? y s a) x
insert x a | 1s , [1 =1s :> ([1 :> a)
insert x a | 1s , rs > r =

let s , rs’ = first rs r in

1s :> insertStep s a +> rs’

Here find> splits the normal form into two parts, 1s and rs, so that all the steps in rs
are independent of a (note the context used) and the rightmost step in 1s is dependent
(or 1sis empty). If rs is empty, then we add a new step to the normal form as 1s supports
the new letter. Otherwise, we insert a into the leftmost step in rs (the function first ex-
tracts the leftmost element in a non-empty snoc-list). We assume that the independence
relation [is decidable. Here wI? y s a decides whether it is the case that S'Ib'J a,i.e.,
whether the letters in s are independent of a in the context |y].

The normalisation function just traverses the input word from the left to the right and
inserts each letter into the correct position in the accumulated normal form.

norm’ : Foata — List ¥ — Foata
norm’ x [] =x
norm’ x (a <: t) = norm’ (insert x a) t

norm : List ¥ — Foata
norm t = norm’ [] t

We continue with our example and look at the evolution of the accumulator as the
word bacd is normalised. First, the letter b is inserted into the empty normal form, re-
sulting in the normal form (b). Next, the letter a is inserted into this normal form, which
resultsin (ab) because of al, b. Next, the letter cisinserted into the result. We have a D, c,
which means that a new step must be added and the result is (ab)(c). We now need to
insert d into the normal form. We have c1,;, d and in addition we also have al;d and b1 d.
This makes the first step the earliest possible step for d and the result is (abd)(c).

4.3.3 Correctness
We have defined the Foata normalisation function, but we have no assurance yet that
it produces well-formed Foata normal forms (i.e., elements of Foata(X,I)). We will now
proceed to show that the function norm constructs a well-formed normal form from the
input word.

We start by showing that inserting a letter (provided that it is independent of the step)
into a well-formed step produces a well-formed step.

Lemma4.8. Foranyu,s € X*anda € X,
if s € Step(X,1,u) and sul, a, then insertStep s a € Step(X,1,u).

To outline what we need to do next, let us look at a small example. Suppose we have
a normal form stuv consisting of steps s, ¢, u, and v, and we wish to insert the letter a
into this normal form. It so happens that a will go into the step . This means that, in-
stead of the old context st, the letters in ¥ must now be independent in the new con-
text s(insertStep t a). Likewise, the letters in v must now be independent in the context

68

s(insertStep t a)u. Furthermore, every letter in v must now be supported by a letter in u
in the context s(insertStep t a).

To show that the independence of letters in a step is preserved during an insert that
inserts a letter into the context, we have the following lemma.

Lemma 4.9. Forany u,s € £¥* anda € £,
if s € Step(X,1,u) and sul, a, then s € Step(X, I, ua).

Next, we are considering the situation where we are inserting the letter a into the
normal form xst and we have determined that ¢ must go into some step in x. We wish to
show that the letters in r are still supported (by something in s) after the insert. We use
PW(1,,s) to express that the predicate I, holds between any pair of letters in s, i.e., the
letters in s are pairwise independent in the context u. The normal form x is considered in
the lemma as the context 1 and b is a letter from the step ¢ that requires the support.

Lemma 4.10. Foranyu,s € X* and a,b,€ X,
ifbl,sa, PW(L,,s), sml,a and s 4D, b, then s ¢D,, D.

This shows that, under suitable conditions, we can add a letter (in this case a) to the
end of the context and still have a dependent letter in the previous step (for step s and
letter b in this case). By consistency of I, we know that this support is then preserved
for any equivalent context. This allows us to show that the function insert preserves the
equivalence class in the following sense.

Lemma 4.11. Foranyx € X** anda € X,
if x € Foata(X,1), then emb (insert x a) ~L* (emb x)a.

The next lemma is similar to Lemma[4.10] which said that we can add a letter to the
context and preserve the dependent pairs of letters between steps. This says a similar
thing for insert.

Lemma 4.12. Foranyx € ™", s € ¥* and a,b € £,
if xs € Foata(¥,1), al|y b, xs & Sup(L,1,b), x ¢ Sup(X,1,b) and xs € Sup(¥,1,a), then
insert xs b € Sup(L,1,a).

This allows us to show that inserting a letter into a normal form again produces a nor-
mal form.

Lemma 4.13. Forany x € X** and a € %, if x € Foata(X,I), then insert x a € Foata(Z,1).

Since the normalisation function just traverses the input word and inserts each let-
ter to the accumulating normal form, we have that the normalisation function produces
elements of Foata(X,1).

Proposition 4.14. For any s € X*, norm s € Foata(X,I).

By now we have shown that norm s produces an element of Foata(X,I). Next, we show
that these indeed are the normal forms. In other words, there is exactly one normal form
for an equivalence class.

The correctness proof of the normalisation algorithm consists of the proofs of the
soundness and completeness properties. By soundness we mean that equivalent words
must get assigned the same normal form. By completeness we mean that any two words
that get assigned the same normal form must be equivalent. With these properties we
have a bijection between the set of equivalence classes and the image of the normalisa-
tion function norm. We will also show that norm is surjective.

The key lemma for completeness is that the result of normalising a word (and then
embedding it) is equivalent to that word, i.e., for every word there exists a normal form.

69

Proposition 4.15. For any s € £*, emb (norm s) ~L* s.

This leads to completeness as norm s = norm s’ of course implies that the embeddings
of the normal forms are equivalent, i.e., emb (norm s) ~L* emb (norm s').

Corollary 4.16. Foranys,s' € X*, if norm s = norm s/, then s ~L* 5'.

To prove soundness of the normalisation algorithm, we first show the commutativity of
the normalisation algorithm for independent letters. We start by showing that the order
in which we insert two independent letters into the same step does not matter.

Lemma 4.17. For any u,s € ¥* and a,b € X, if s € Step(X,1,u), al,; b, sul, a and sul, b,
then insertStep (insertStep s a) b = insertStep (insertStep s b) a.

Next, we show that the order in which we insert two independent letters to a normal
form also does not matter.

Lemma 4.18. Forany x € ¥** and a,b € L,
if x € Foata(X,1) and al .| b, then insert (insert x a) b = insert (insert x b) a.

This implies that it does not matter whether we normalise the word ab or ba when the
letters are independent.

Lemma 4.19. Forany x € ¥** and a,b € L,
if x € Foata(X,I) and al|,| b, then norm’ x ab = norm’ x ba.

Now we can show that normalising two words that differ only by the ordering of a
single pair of adjacent letters gives the same result.

Lemma 4.20. Forany x € X** and s,s" € ©*,
if x € Foata(X,I) and s NI[xJ s', then norm’ x s = norm’ x s'.

This can then be extended to equivalent words.

Lemma 4.21. Foranyx € ¥** and s,s’ € X*,
if x € Foata(X,I) and s NILiJ s', then norm’ x s = norm’ x s'.

This finally implies the desired soundness property.
Proposition 4.22. Forany s,s' € X*, if s~L* ', then norm s = norm s'.

The soundness and completeness proofs give us a certified decision procedure for
checking whether two words are equivalent: first normalise the two words and then check
whether the normal forms are the same.

equivalent? : (s s’ : List X) — Dec (s ~f s’)

equivalent? s s’ with foata-eq? (norm s) (norm s’)

equivalent? s s’ | yes feq = yes (completeness feq)
equivalent? s s’ | no —feq = no (\ eqv — —feq (soundness eqv))

This procedure will either return yes, together with instructions how to turn s into s’
(which letters need to be exchanged), or no, together with a proof that it is not possible
to turn s into s’. Here foata-eq? uses the decidable equality on the alphabet to decide
whether the two normal forms are the same.

Finally, we have that the normalisation function is stable in the sense that normalis-
ing a normal form produces the same normal form. Hence the normalisation function is
surjective, i.e., every normal form is the normal form of something.

70

Proposition 4.23. For any x € £**, if x € Foata(Z,I), then norm (emb x) = x.

Soundness says that words in an equivalence class get assigned the same normal form.
With the above proposition, we also have that there is at most one normal form for an
equivalence class (wrt. to emb), i.e., normal forms are unique.

Corollary 4.24. For any x,y € 2**, if x,y € Foata(Z,I) and emb x ~* emb y, then x = y.

4.4 Generalised Lexicographic Normalisation

In this section, we describe the lexicographic normal form for generalised traces and the
corresponding normalisation algorithm. We conclude with the correctness proof of the
normalisation algorithm.

4.41 Normal Forms

In contrast to Foata normal forms that were sequences of steps, lexicographic normal
forms are just certain elements of £*. Hence the embedding function emb turning normal
forms to words is here the identity function and we omit it.

We consider a list of letters to be a well-formed lexicographic normal form when each
letter in it is in a correct position. Whether a letter is in a correct position is determined
by its prefix, i.e., in a word uav the prefix u determines whether it is correct to follow it
with an a. If itis, then we say that the word u supports a. A word is in normal form if every
letter in it is supported.

Definition 4.25. For any a € X, the set Sup(X,1,a) C L* of words that support the letter
a is given by:

1. e€Sup(X,1,a);
2. foranyueX*and b €k, if bD,a, then ub € Sup(X,1,a);
3. foranyueX*andb € X, ifu € Sup(X,I,a), bl,aand b < a, then ub € Sup(X,1,a).

Hence a letter is supported by a word if either it is the empty word € or the word ends
with a dependent letter or the word ends with an independent letter that is before it in
the ordering and the prefix supports the letter. A sequence of letters is a lexicographic
normal form when every letter in the sequence is supported by its prefix.

Definition 4.26. The set Lex(X,I) C X* of lexicographic normal forms is given by
1. e € Lex(L,1);
2. foranyu e X*anda € X, if u € Lex(X,I) and u € Sup(X,1,a), then ua € Lex(X,1).

We continue with our example independence alphabet and show that abcd is a lex-
icographic normal form. Since € € Lex(X,1) and € € Sup(X,1,a), we get a € Lex(X,1).
Next, we have a € Sup(Z,1,b) since € € Sup(X,1,b), ale b and a < b. Thus we also have
ab € Lex(X,I). We have ab € Sup(X,1,c) since b D, ¢ resulting in abc € Lex(Z,1). Finally,
we get abe € Sup(E,1,d) from € € Sup(E,1,d) by applying condition[4.25](3) three times.
Thus we have abed € Lex(X,1).

Before we wrote sml, a to say that every letter in the word s (that represents a step)
is independent of a in the context u. Here, we will need a variation where, for a letter b
in s, we also consider its prefix in s as part of the context. We extend the independence
relation to words and letters by € I,,a =g¢ tt and sb 1, a =4¢ sI,a AN b1,z a. Note the modified

71

context in b1,;a. When s1, a, then we say that s is a “chain” of independent letters wrt. a.
In this case we can “slide” the letter a through s without changing the equivalence class,
P Ix
i.e., sa~" as.

Anisimov and Knuth'’s characterisation of lexicographic normal forms forbids the “bua”

pattern. Our definition forbids this pattern for the generalised case that we consider here.

Proposition 4.27. Foranyt,u,v € ¥* and a,b € X,
if tbuav € Lex(X,I), al; b and a < b, then u D, a.

The strict total order < on X induces the lexicographic order relation <;,, on *. By
definition, the lexicographic normal form is the least element in its equivalence class wrt.
the lexicographic order <.,. The normal forms we have defined for the generalised case
are also least elements in their equivalence classes.

Proposition 4.28. For any s,t € ¥, if s € Lex(X,I) and s~ t, then s <y . 1.

4.4.2 Normalisation

The main ingredient in the normalisation algorithm is a function that inserts a letter into
its correct position in a list (which is assumed to be a well-formed normal form). Given a
word s and a letter a, the idea is to split s into three parts: sp, s, and s; so that sp ends
with a letter dependent on a (or it is empty), all letters in s~ are independent of and less
than a, and letters in s; are independent of a and the first letter of s; is greater than a (or it
is empty). The idea is that the word sps_ is the longest prefix of s that supports the letter
a.

findPos : List> ¥ — Y — List> ¥ x List> ¥ X List> X

findPos [] a=0,0, 0

findPos (s :> b) a with I? s b a

findPos (s :>b) a lno _=s:>b, [1, [
findPos (s :> b) a | yes _ with findPos s a
findPos (s :>b) a | yes _ | sd , sp , si :> i =

sd , sp, si :>1 :>bDb

findPos (s :> b) | yes _ | sd , sp , [] with b <? a

findPos (s :> b) | yes _ | sd , sp, [1 | no _ =
sd , sp, [1 :>Db

findPos (s :>b) a | yes _ | sd , sp, [1 | yes _ =
sd , sp :>b , []

The function findPos implements the described functionality. Like before, we assume that
the independence relation I and the order relation < are decidable, with deciders I? and
=< 7. The insert function now just plugs the letter between s and s; in the result of findPos.

insert : List> X — Y — List> X
insert s a =
let sd , sp , si = findPos s a in
sd +> sp > a +> si

The normalisation algorithm just traverses the input word letter by letter and inserts the
letters into the accumulating normal form, just as in Foata normalisation.

norm’ : List> ¥ — List ¥ — List> X
norm’ s [] =s
norm’ s (a <: t) = norm’ (insert s a) t

72

norm : String — List> X
norm t = norm’ [] t

We continue with our example and look at what are the intermediate steps when normal-
ising bacd. First, when inserting b into the empty normal form, insert splits it into €, ¢, €
and the result is b. Next, when inserting a, the normal form b is splitinto €, €, b sincea < b
and b I a. The result is ab. When inserting c into ab, the split is ab, €, € and the result is
abc. Finally, when inserting d into abc, the split is €,abc, € and the result is abcd.

4.4.3 Correctness

We have now defined the lexicographic normalisation algorithm. This produces “raw”
normal forms, i.e., just words. We will now show that these words are well-formed normal
forms. We begin with a couple of lemmas exhibiting that findPos behaves as expected. The
first lemma says that findPos just splits the input word.

Lemma 4.29. Forany s € ¥* and a € %, if findPos s a = sp, s, sy, then sps~s; = s.

The next lemma ensures that the s; component in the result of findPos consists of a
“chain” of independent letters wrt. a.

Lemma 4.30. Forany s € £* and a € %, if findPos s a = sp,s<, sy, then s; I, a.

The next lemma ensures that the leftmost letter of s; in the result of findPos is greater
than the letter a. The proposition a <, s; holds when a is less than the first letter of s;.

Lemma 4.31. Foranys c X*,a € X, if findPos s a= _,_,s;, then a <. s;.
The next property is that insert preserves the equivalence class.
Lemma 4.32. Forany s € X* and a € ¥, insert s a~"* sa.

The next lemma ensures that, under certain conditions, the support of a letter is pre-
served when another letter is inserted into the supporting word.

Lemma 4.33. Foranys,t € X* and a,b,c € X, if stc € Sup(X,1,a), tclyb, blyca, b =gy tc,
then sbitc € Sup(X,1,a).

This allows us to say that inserting a letter into a normal form results in a normal form.
Lemma 4.34. Foranys € X* anda €%, if s € Lex(X,I), then insert s a € Lex(X,1).

Thus we get that the normalisation function produces elements of Lex(X,).
Proposition 4.35. Foranyt € X*, normt € Lex(X,I).

By now, we have shown that norm produces an element of Lex(X,I). Next, we show
that these indeed are the normal forms. In other words, there is exactly one normal form
for an equivalence class.

As was the case for Foata normalisation, the correctness proof of the normalisation al-
gorithm consists of the proofs of the soundness and completeness properties. By sound-
ness we mean that equivalent words must get assigned the same normal form. By com-
pleteness we mean that any two words that get assigned the same normal form must be
equivalent. We do things in a slightly different order than what we did for Foata normal
forms: we show soundness as a corollary of uniqueness of normal forms.

The key property for the completeness proof is that the result of normalising a word is
equivalent to that word, i.e., every word has a normal form.

73

Proposition 4.36. Foranyt € X*, normt ~t.

This leads to completeness as norm t = normt' of course implies norm ¢ Né* normt’.

Corollary 4.37. Foranyt,t' € ¥, if normt = normt', thent ~L¢'.

Continuing towards soundness, we first prove the uniqueness of normal forms, i.e., if
two normal forms are equivalent, then they must be the same.

Proposition 4.38. Foranys,s’ € ¥, if s,s' € Lex(X,I) and s ~L* ', then s = 5.

Proof. From the assumptions, by Proposition|[4.28] we have both s <;., s’ and s’ <., s,
from which, by antisymmetry of <., we get s = s’. O

Then we have soundness as a corollary.
Corollary 4.39. Foranyt,t' € X%, ift ~L* ¢/, then normt = norm¢t'.

Proof. Applying Proposition to both ¢ and ¢/, we get norm ¢ ng* norm t'. The result
follows from this by Proposition and Proposition[4.38] O

As normalising a word produces a normal form that is equivalent to the original, then
by unigueness of normal forms we also get the stability of the normalisation algorithm.

Corollary 4.40. Forany s € L*, if s € Lex(X,I), then norm s = s.
An alternative approach to soundness would have been to prove the following lemma.

Lemma 4.41. Foranys € X" anda,b € X,
if s € Lex(X,I) and al; b, then insert (insert s a) b = insert (insert s b) a.

This leads to soundness, stability and uniqueness as in the previous section. Finally,
we can now prove the converses of Proposition[4.27]and Proposition[4.28|showing that a
word with no forbidden patterns is a lexicographic normal form and that the least word
in an equivalence class is the lexicographic normal form.

Proposition 4.42. For any s € X*, if, for every decomposition of s as s = tbuav we have
—(al;b) or ~(a < b) or =(uly,a), thens € Lex(X,I).

Proposition 4.43. Forany s € X%, if, for any t € ¥*, we have s Né*t implies s <[, t, then
s € Lex(Z,1).

4.5 Example: TSO-like Independence Alphabet

Here we will give a small example where generalised traces are needed to describe the be-
haviour of a concurrent system reasonably precisely. The example is from shared-memory
concurrency with write buffers. It is meant to resemble the Total Store Order (TSO) relaxed
memory model of the SPARC family [75].

The machine that we are going to model consists of processors and shared memory
where each processor has a single write buffer. A program consists of lists of read and write
instructions (each list representing a single processor). The execution of a write instruction
proceeds in two stages: the write is first enqueued in the processor’s write buffer and
some time later it is dequeued and written (committed) to memory. The execution of a
read instruction reads the memory “through” the local write buffer: if there is a pending
write to the location of the read, then the read operation reads its result from the latest
pending write to that location, otherwise it reads the value from memory.

74

We think of program executions on this machine as words over an alphabet X of events.
The letters in this alphabet are tuples Proc x Id x Action where Proc (the processor iden-
tifier) and Id (the event identifier) are both natural numbers and Action is a pair Op x Loc
where Op is either R (read), W (write) or C (commit) and Loc is the memory location,
which is also represented as a natural number. In this simple example, we ignore the val-
ues read and written by the events because the independence relation we define does
not consider them.

Two events from different processors are dependent when they access the same mem-
ory location and at least one of them is a write. We do not consider a W event to access
the memory as it only affects the local write buffer. Similarly, an R event only accesses the
memory when it reads its value from memory (and not from the write buffer). Two events
from the same processor are dependent if they are W or R events (we respect the program
order) or both are C events (the buffer is first-in-first-out) or they are a corresponding pair
of a W and C event (this C is the commit of this W event).

We have defined this context-dependent independence relation also in our formali-
sation and shown that it satisfies the consistency (Deﬁnition and coherence (Defini-
tion [4.4) conditions. This allows us to use the normalisation algorithms we have devel-
oped for deciding whether two executions (words over the alphabet) on this machine are
equivalent.

Let us consider the following program where two processors write to variable x and
one of them also reads from x.

P1 P2
(a,a’) [x] :=1 (c,c?) [x] :=2
(b) rl := [x]

We can represent the instructions as events in the following way. As mentioned before,
the execution of write instructions proceeds in two stages. Thus, the events representing
[x] := 1area=1,1,W,1 and d’ = 1,1,C, 1; they share the event identifier as they
correspond to the write and commit stages of the same instruction. The event for the
readrl := [x]isb=1,2,R,1. The eventsrepresenting [x] := 2arec=2,1,W,1and
d=21,C,1.

We consider the possible executions of the first processor to be aa’b and abd’. This is
a consequence of the independence relation: after performing a, the event @’ is pending;
since @’ and b are independent, the processor has a choice which one to perform next. The
second processor can only execute as cc’. The possible executions of the whole program
are all the possible interleavings of an execution from the first processor with an execution
from the second processor. This program has 20 possible executions in total and these are
partitioned into three equivalence classes. This is summarised in the following table.

A consequence of this independence relation is that the executions acc’ba’ and acbc’a’
are equivalent. Interestingly, the two executions only differ by the ordering of b and ¢’.
The equivalence of the two, justified by b and ¢’ being independent in a context containing
a but not @', may seem counterintuitive as b is supposed to read x and ¢’ is supposed to
write to x. It may look as if the value read by b could be affected by ¢’. But this is not so.
The two executions are semantically equivalent because b appears before ¢’ (i.e., in the
presence of a pending write to x) and thus b reads the value of x from the write buffer and
not from memory.

The effect described in the previous paragraph is also visible from the Foata normal
forms in the table. The second one, (ac)(a’)(c’)(b), implies that ¢’ and b are dependent
in the context aca’. The third one, (ac)(bc')(a'), implies that b and ¢’ are independent in
the context ac.

75

Execution Foata Lexicographic
ad'bec’
abad'cc’
ad’ cbc’
abed' ¢!
aca'bc’
acbd'c'
caa’bc’
cabad'c
ad'cc’b
acd'cdb | (ac)(d) (") (D) ad'cc'b
cad'c'b
abec'd'
acbc'd'
cabc'd'
acc'a'b
acc'bd (ac)(bc')(d) abec'd
cac'd'b
cac'bd’
cc'ad'b
cc'abd

(ac)(a'b)(c) ad'bec!

If we were to model this using ordinary traces (without context-dependence), then
we would have to choose whether to set b and ¢’ to be dependent or independent. The
only reasonable choice is to let them be dependent as the equivalence relation induced
by this is a safe approximation of the one above: equivalent executions according to the
new relation are equivalent according to the previous relation. The downside of this is
that there will be more equivalence classes. If we would set b and ¢’ to be independent,
then we would have that aca’c’b and aca’bc’ are equivalent. This does not agree with
the equivalence relation defined above, but more importantly, it does not make sense
semantically as b reads the value of x from memory (instead of the write buffer) and is
thus affected by ¢’.

4.6 Related Work

Traces were introduced into concurrency theory by Mazurkiewicz [52], but they originate
from the enumerative combinatorics work by Cartier and Foata [21]. In particular, Foata
normalization is from that work. The lexicographic normalization was first investigated
by Anisimov and Knuth [9]. These two normal forms and normalization algorithms are
described in many of the standard expositions of trace theory, e.g., [2,[26].

Generalising traces for context-dependent independence has been considered by sev-
eral authors, but with different well-behavedness conditions on independence. Sassone
et al. [74] introduced context-dependent independence as we have considered it. Katz
and Peled [38] introduced conditional independence, considering a coherence condition
that in our setting would amount to al,, b and b I, ¢ implying (a I, c iff a1, ¢). This condi-
tion is equivalent to the conjunction of conditions (1) and (2) of Deﬁnition Droste [28]],
in a work on concurrent automata, again with state-dependent independence, required
what would in this setting amounttoal, b, bl,c, al,, cimplyingal,.b,bl,,c,al,c,i.e.,

76

condition (3) of Definition|4.4|and a little more.

Hoogers et al. [34] developed local traces where independence relates lists of steps
to steps. This is a different setup where coherence conditions like those of Sassone et al.
do not arise, because one only works with contexts of steps, not contexts of individual
letters.

Partial-order reduction (POR) and use of representatives in model-checking, originally
proposed by Godefroid [31] and Peled [64], are in wide use. We mention that dynamic
POR for stateless model-checking of relaxed memory concurrent programs in particular
has been considered by Abdulla et al. [4] and Zhang et al. [79]. In our own previous work
[47], we used Foata normal forms of generalised traces as the representative executions
when we considered memory models of the SPARC hierarchy.

Chou and Peled [23] have formalised standard Mazurkiewicz traces in the context of
formally verifying a partial-order reduction technique in HOL. Yang et al. [78], Aspinall
and Sevcik [11] and Owens et al. [61] pioneered the formalisation of semantics of relaxed
memory models with proof assistants, using HOL, Isabelle/HOL, HOL4.

There are some parallels of Lipton’s theory of reduction (movers) [45] to trace the-
ory, or more precisely, semicommutations [24], where independence is non-symmetric.
Movers have been used in reasoning about relaxed memory concurrency by Bouajjani et
al. [15].

4.7 Conclusion and Future Work

We believe it to be important to exercise care when choosing the semantic domain for
behaviours for a class of concurrent systems. Descriptions of behaviours in terms of an ap-
parently more involved abstraction can sometimes be more precise, yet still as analysable.
In this chapter, we certified two normalisation algorithms for generalised Mazurkiewicz
traces. The example from Section demonstrates that standard Mazurkiewicz traces
are not flexible enough in some circumstances and generalised traces can lead to fewer
equivalence classes. This is good in any situation where one needs to exhaustively check
an equivalence-invariant property on all equivalence classes. In Section [5.7] we will see
how (an extension of) the independence alphabet from Section[4.5]can be used to give a
TSO-like semantics to a simple programming language.

77

78

5 Operational Semantics with Semicommutations

In this chapter, we describe an operational semantics that allows to execute the instruc-
tions of a program in an order that is different from the order given by the program, i.e.,
an instruction might be executed before its preceding instructions have been executed.
The idea is that such an operational semantics can capture some optimisations that a
compiler or a runtime environment might apply to the program. To accomplish this, we
further generalise the Antimirov reordering derivatives from Chapter[3 First, we include
parallel composition in the syntax. Second, we let go of the requirement that an indepen-
dence relation has to be symmetric. Third, we interpret letters of the alphabet as state
transformers and we also include machine states in the rules. Altogether, this enables us
to describe the semantics of a simple While-like language that allows some reordering of
instructions. We then describe how representative executions can be used to alleviate the
combinatorial explosion when computing the set of final states of litmus-tests. Finally, we
consider a few extensions to the operational semantics that can account for more fine-
grained reordering relations. With these extensions we give an operational semantics for
a TSO-like system where a read instruction can read its value from a write instruction ear-
lier in the program that has not yet been executed.

5.1 Motivation

In this chapter, we come back to the example we showed in the Introduction where we
looked at the following program representing the message-passing pattern.

x:=4Ly:=1|r:=yrn:=x

To recollect, here the first thread stores to variable x the result of some computation
(which just happens to be 41) and then sets the variable y to 1 to indicate that it has
finished this computation and the result is now stored in x. The question that interests
us is if it is possible that some other thread at some point sees the new value of y but
the old value of x. In the usual interleaving semantics, which is sequentially consistent,
this is not possible. If, for example, we consider the instructions r| :=y and r;, := x to be
independent enough so that some optimisation could reorder them, then we could end
up with the following program

x:=4Ly:=1|rn:=xr:=y

which under the interleaving semantics can lead to a final state where r; = 1 and r, = 0.

The motivation for this work is that concurrent programs typically are not executed in
the intuitive interleaving fashion. The reason is that both the compilation process and the
hardware itself (during the execution) may change the program slightly so as to make the
program execution more efficient. A reasonable requirement is that these optimisations
are invisible for a single-threaded program. But as we saw in the example above, the
effects of such optimisations may become visible in a concurrent setting.

Our goal in this chapter is to describe the execution of programs in a manner that is
weaker than sequential consistency. In other words, we consider execution of programs
under some weak memory model. In the following, we describe an operational semantics
which is able to capture some optimisations like the one above where two instructions
were reordered. The main idea is that, given a program p;q, we allow, under certain
conditions, to execute an instruction from g even when p is not yet fully executed.

79

5.2 Preliminaries

Before we move on to operational semantics, we briefly describe the differences between
semitraces (that we use here) and Mazurkiewicz traces. We also describe how we repre-
sent programs in this framework.

5.2.1 Semicommutations

Semicommutations [24] are a generalisation of Mazurkiewicz traces where the indepen-
dence relation is not necessarily symmetric. A semicommutation alphabet (X, 8) is a pair
consisting of an alphabet X and an irreflexive relation 6 C X x X, called the semicommu-
tation relation.

We extend the semicommutation 6 to a relation on words and letters by 6(g,a) =4 tt
and 0 (ub,a) =4t 0 (u,a) A0 (b,a).

We write =9 C ¥* x I* for the least relation such that 0(a,b) implies uaby =9 ubav for
all u,v € X* (this corresponds to uabv ~' ubav in Mazurkiewicz traces). Similarly, we write
=9 for the reflexive-transitive closure of = (this corresponds to ~/* in Mazurkiewicz
traces). The relation =9* is the rewriting relation induced by 6.

When 0(u,a), then ua can be rewritten to au, i.e., ua =9 qu and later we will also
say that in this case a can be reordered before u. This (multi-step) rewriting relation is
monotone in 8 in the sense that, if 8 C 0, then u =%* i implies u =9 '. The closure
of a word u under 0, denoted by 0(u), is the set of words it can be rewritten to, i.e.,
0 (u) =qr {v € T* | u =9 v}. Thus we have that 8 C 8’ implies 6(u) C 6’(u). The closure
of a language is defined as (L) =4¢ [U{0(u) | u € L} and, for any L, it satisfies L C 0 (L)
and 6(6(L)) CO(L).

In the case where 6 is also symmetric, we obtain the usual Mazurkiewicz traces. Then,
for a word u, the closure 6 (u) is the equivalence class of u (the trace [u]?).

5.2.2 Programs

We use regular expressions over some alphabet of instructions as the abstract syntax
with which we describe programs. More precisely, here we use regular expressions RE
extended with the shuffle operation. The set RES of regular expressions with shuffle is
given by the grammar:

E:=a|0|E4+E|1|EE|E"|E|E

where aranges over £. We consider expressions E € RES to be programs over an alphabet
¥ of instructions. Multiplication EF stands for sequential composition, addition E + F is
nondeterministic choice, Kleene star E* is iteration and E || F is parallel composition. We
consider O to represent failure and 1 to be the no-op program representing successful
termination. In this chapter, we write E = F to mean that E and F are equal modulo
associativity of multiplication.

The set of machine states is denoted by S. Each instruction a € X is interpreted as a
(partial) state transformer: [a] : S — S. We write [a] o] to say that [a]o is defined. We
often use the following postfix notation for the state transformers: (c)a =4 [a]o. This
extends to words as: (0)€ =4 6 and (0)au =g4¢ ((0)a)u if (¢)al and L otherwise. For
instructions a and b, if 0(a,b), then we allow to execute b before a in their sequential
composition ab.

80

5.3 Reordering Semantics

We consider an execution of a program (from some initial state) to be a sequence of in-
structions that in a sense is allowed by the program. The result of this execution is the
state obtained by applying this sequence of instructions to the initial state. The oper-
ational semantics should specify, given a program and a machine state, what are the al-
lowed executions. This is accomplished by specifying the set of instructions (or instruction
occurrences) in the program from which we are allowed to choose the next instruction to
execute and, for each such instruction, also the program that we are left with after exe-
cuting the instruction. This in turn describes how to construct an (allowed) execution (a
sequence of instructions) of a program. Our goal is to define the rules of the semantics so
that we can also include certain reorderings in the semantics. The general idea is that we
allow reorderings by making more instructions of the program available for execution.

5.3.1 Word Language Interpretation of Programs

Before we turn to operational semantics, we describe a word language interpretation of
programs that is closed under the rewriting relation =% (this interpretation corresponds
to [[_]}1 which is closed under ~'*). This can be seen as an overapproximation of the al-
lowed executions: here we consider all executions that a program might generate and
ignore the question whether these executions are well-defined, i.e., if an execution ap-
plied to the initial state is defined at all. First, we define the “loosened concatenation” of
two words.

Definition 5.1. The 8-reordering concatenation of words -% : £* x £* — 22(X*) is defined
by
€ 0 vV =d4f {v}
ue =df {u}
au¥bv =g {a}-(u-Obv)U{b|6(au,b)}-(au-®v)

and the lifting of 0-reordering concatenation to languages is defined by
LOL =4 UlulviueLavel.

We can see that u-? v is sublanguage of u L v. Similarly to -/, this concatenation op-
eration is also biased towards the left argument: 8 (au, b) is a test for whether to include
the language {b} - (au-? v) in the result.

The 6-reordering concatenation satisfies the following two useful properties. First, it
is monotone in 6.

Lemma5.2. Forany 6, 0 and L,L' CX*,if0 C 6 thenL-9L' CL-9' L.

Second, the closure operation distributes over concatenation in the following way. (Or
we can say that 6 is a monoid morphism from languages to 6-closed languages.)

Lemma 5.3. Forany 6 and L,L' C X*, we have 6(L-L') = 0(L)-? 6(L).
The shuffle operation satisfies a weaker property.
Lemma 5.4. Forany 6 and L,L’ C £*, we have 6(LW L") C (L) 6(L').

Next, we define the word language semantics of programs. We see this as a description
of all the possible ways a program could execute—the words in this interpretation of a
program are those sequences of instructions that could possibly occur as executions of
the program.

81

Definition 5.5. The word language semantics [_]? : RES — 2(X*) of programs is defined
recursively by

g p
E+F° —u [E)ULF]°
e =4 1

[EF]® =« [E]°-°[F]°
[EX]® =4 wuX.1U[E]®-®Xx
[ENF]° =a [E]°wF]°

The interpretation [E]® is monotone in the semicommutation 8 and it is closed under
the rewriting relation =9+

Proposition 5.6. Forany 6, 6', and E € RES, if 6 C 6’, then [E]°® C [E]?".
Proof. By induction on E. We only show two cases here.

e Case EF: Byi.h. we have [E]® C [E]? and [F]® C [F]?". Thus, by Lemma|5.2|we
have: [EF]® = [E]° -° [F]® C [E]®-% [F]°® C [E]? -9 [F]® = [EF]°.

e Case E || F: By i.h. we have [E]® C [E]® and [F]® C [F]?. Thus we have the
following: [E || F]° = [E]® w[F]® C [E]® w[F]® = [E || F]?". O

Proposition 5.7. For any 8 and E € RES, we have 0([E]°) = [E]°.

Proof. By induction on E. We only show two cases here.
e Case EF: By i.h. and Lemma[5.3|we have the following equations.

0([EF]°) = o([E]°° [F]°)
(6([E1°)-° 6([F]°))
(6([ET° - [F]°))
(1E]° - [F]°)
6([E]%)-° 6([F]°)
[E]° 2 [F]°

= [EF]°

0
0
0
0

e Case E || F: Byi.h. [E]® and [F]® are closed and thus by Lemmal5.4we have that
o(IE || F1°) = 6([E]° w[F]°) < 6([E]°) wo([F]°) = [E]° w[F]® = [E || F]°
and by the closure property of 8 we have that 8([E || F]°) 2 [E || F]°. O

Note that although the interpretation [E]? is closed, unlike what we had in Chapter
it is not the case, in general, that it is the closure 8([E]). (Here we write [E] for [E]°.) In
general, we only have 0([E]) C [E]°.

Proposition 5.8./ For any semicommutations 6 and 0’, and E € RES, if 8 C 0’, then
6'([E]°) C [E]°.

Proof. Let u’ € 6/([E]?). Then there must exist u € [E]® such that u =®"* i. By Propo-
sition We have that u € [E]® and by Proposition|5.7|we thus have «’ € [E]?". O

The following example demonstrates that we do not have 6’([E]?) 2 [E]®" in general.

82

Example 5.9. Let X =4 {a,b,c}, 6 =0 and 6'(a,b). Then we have the following.

6'(lab | c]) = 6'([ab]w]e])

= 0'({ab}i{c})

= 0'({abc,ach,cab})
{abc,bac,ach,cab,cba}
{abc,acb,cab,bac,bca,cba}
{ab,ba}wi{c}

[ab]® wi[e]”

[ab ||]

1IN

This mismatch is due to parallel composition. Intuitively, in E || F there are no ordering
constraints between the instructions in E and instructions in F, but with [E] w [F] we
pick an ordering for the pairs of instructions that do not commute. If we only consider
regular expressions E € RE, then we indeed have 6([E]) = [E]°.

Proposition 5.10. For any 6 and ', and E € RE, if 6 C 6/, then 6/([E]®) = [E]?'.
Proof. By induction on E. We only show the case for multiplication.

e Case EF: By Proposition[5.7] Lemma[5.3} the assumption that 8 C ', and, by i.h.,
we have the following equations.

0'(IEF]°)

6'([E]°-° [F1°)
6'(([E1°)-° 6([F1°))
0'(6(

0

(0([E)° - [F]°))

([E]° - [F1°)
0/(E1°) ¥ 0'([F]°)
[£]° - [F]°
[EF]”

O

The above proposition highlights why it might be interesting to use this approach for
the (relaxed) semantics of programs. We think of E € RE as a single-threaded program
and we interpret 8([E]) = [E]? as saying that the “optimisations” described by 6 are
valid (in a sequential context) in the sense that no new behaviour is introduced—for every
execution ' in [E]° there exists u in [E] such that u =% 4/, i.e., u and ' are “equiva-
lent”. At the same time, optimisations valid in a sequential context might not be valid in a
concurrent context in the sense that applying such optimisations to individual threads of
a concurrent program might introduce new behaviours as shown in Example[5.9]

5.3.2 Reorderability

The key idea in the closing interpretation is the use of the 8-reordering concatenation.
The important part of the reordering concatenation was the use of 6(au,b) as a test for
whether to include {5} - (au-% v) in the concatenation au -® bv. Our goal now is to define
the analogue of 6(au,b) for programs. This notion of reorderability is the essential differ-
ence compared to ordinary operational semantics. Intuitively, we would like to say that
executing an instruction a before executing the preceding sequence of instructions u is
valid when we know that both ua and au would lead to the same state.

Definition 5.11. A semicommutation 6 is conservative when, for every a,b € ¥,

0(a,b) = Vo.(0)ab = (0)ba.

83

The equality in the above definition is the Kleene equality: if either side is defined,
then so is the other and they are equal. The motivation for the conservativity condition
on the semicommutation relation is apparent in the following lemma.

Lemma 5.12. For any conservative 6 and u,u’ € £*, if u =% ', then (6)u = (o).

Of course, as a special case of the above lemma, if 0 (u,a), then ua =% gy and thus we
have (o)ua = (0)au. In the context of operational semantics, we consider conservative
semicommutation relations and thus we take 0(u,a) to be the justification which allows
us to reorder a before u in the sequence of instructions ua.

Intuitively, given a program Ea, we would like to find a program E’ such that, for every
execution u of E’, u is also an execution of E and a can be reordered before u. Put another
way, when we reorder a in front of E in the program Ea, we would like to restrict E to
the subprogram E’ and the result of the reordering is aE’. This program E’ corresponds
to the I-reorderable part.

Definition 5.13. The O-reorderable part of a program is given by the function R :
RES x X — RES defined recursively by

R =4 if O(b,a)thenbelse0

ROO =4 O
RI(E+F) =4 REE+RIF
RO1 =4 1

RO(EF) =4 (ROE)(ROF)
RO(E*) =4 (ROE)*
RO(E|F) =a RIE|ROF

Similarly to RflE, we have that RgE just replaces those instructions b in E with O for
which 0(b,a) does not hold.

Example 5.14. Let ¥ =4 {a,b,c} and 6(a,b) and O(c,a). Then
e RY((a| Da(a+b+c)aa*) = (0 1)0(0+0+c)00*;
e RV((a|| a(a+b+c)aa*) = (a|| 1)a(a+0+0)aa*;
e RO((a|| Da(a+b+c)aa*) = (0] 1)0(0+ 0+ 0)00*.

Lemma 5.15. For any semicommutation 6, a,b € ¥ and E € RES, the 6-reorderable part
R? enjoys the following properties:

* RY(RIE) = RI(RYE);
e RYRIE)=RIE.

If we were to extend O-reorderable part to words, i.e., by having RgE =4t E and
RO E =4 R%(RYE), then, by the previous lemma, it would be the case that ROE = Rg<u)E.

Definition 5.16. The relation < C RES x RES is the precongruence on RES generated by
0 <awherea € X.

Thus E < F holds when E is otherwise exactly the same as F except that some of the
instructions in it may have been replaced with 0. We have a + 0 < a + b, but note that
aZa+b. IfE <F,then [E]? C [F]° but the converse does not hold. We have the
following properties for the reorderable part.

84

Lemma 5.17. For any semicommutations 8 and 0’ E,E' c RESanda € X,
1. ROE < E;
2. if0 C 0, thenRE < RYE;
3. ifE = E', thenR?E <RE'.

Importantly, the reorderable part of a program corresponds to the reorderable words
in the word language semantics.

Proposition 5.18. For any semicommutation 6, a € X, u € X* and E € RES, we have that
uc[ROE)® < uc[E]®A6(u,a).

5.3.3 Operational Semantics

With the 6-reorderable part defined we can now define the 6-reordering operational se-
mantics. This is essentially the Antimirov reordering derivative we defined in Section|3.3.3
with some modifications.

Definition 5.19. The 6-reordering single-step reduction of a program is given by the rela-
tion % CSx RES x £ x S x RES:

(0)al
(0,a) =% (a,((0)a, 1))

(0,E) =° (a,(c",E")) (0,F) =% (a, (0" ,F"))
(6,E+F) =% (a,(c’,E")) (0,E+F) =9 (a,(c F))

(0,E) —0 (a,{c’,E")) (0,F) —0 (a,{c’,F"))
(0,EF) =% (a,(c¢’,E'F)) (0,EF) =% (a,(c’,(ROE)F"))

(0,E) =° (a, (0, E"))
(0,E%) 5% (a,(c’,(R(E)*E'E"))

(0,E) =° (a, (0, E")) (0,F) =% (a,(c',F"))
(0.E || F) = (a,(c".E" | F)) (0.E|F)=°(a,(c"E|F))

The key difference with ordinary operational semantics is in the second rule of multi-
plication and the rule for Kleene star. These are the only places where R? is used since
these are the only rules where we consider the instruction we are executing (reordering)
to cross a sequential composition (the “boundary” between two sequentially composed
programs). Another way to say this is that we apply Rg (in the original program E) to
the left context of the instruction a that we are executing. By left context of an instruc-
tion a in program E we mean the part of the program E that is before a wrt. sequential
composition.

Example 5.20. Consider the program ab || (c+d)ef +g. If, for example, we have 6(c,),
—-0(d,e) and (0)el, then we have the following derivation for executing e as the next

85

instruction. The left context of ¢ in this example is ¢ +d.
(Jel
(0,¢) = (e,((0)e, 1))
(0,ef) =° (e,{(0)e,11))
(0,(c+d)ef) =° (e,{(0)e, (c+0)1f))
(0,(c+d)ef+g) = (e,{(0)e, (c+0)1f))

(0.ab || (c+d)ef +g) =P (e.((0)e,ab || (c+0)1f))

The instruction g disappeared from the program since the rules for 4 resolve the nonde-

terminism. The instruction d became 0 since it was before ¢ and reordering e with d was
not justified. More precisely, we have R® (c +d) = ¢ +0 since 6(c,e) and —6(d, e).

The single-step reduction rules respect < and =.
Lemma 5.21. For any semicommutations 8 and 6’, 0,6’ €S, E,E',F ¢ RESanda € X,

1. if (6,E) —° (a,(0’,E")), 8 C 0’ and E < F, then exists F’ € RES such that
(6,F) =% (a,(c',F")) and E' < F';

2. if (0,E) —=? (a,{c’,E")) and E = F, then exists F' € RES such that
(6,E) =% (a,(c’ ,E")) and E' = F'

We also have that the single-step reduction rules commute when the labels commute.
To show this we need a couple of properties. First, the label of the rule is the instruction
that is applied (successfully) to the state.

Lemma 5.22. For any semicommutation 8, a € X, 6,0’ € Sand E ,E’ € RES,
if (6,E) =9 (a,(c’,E")), then (6)al and (c)a = &.

The same derivation can be made from any state where the instruction can be success-
fully applied to the state.

Lemma 5.23. For any semicommutation 8, a € X, 6,0’ € Sand E,E’ € RES,
if(0,E) »° (a,((0)a, E')) and (¢')al, then (', E) —* (a, ("), E")).

If we can make a step from a reorderable part of a program, then we can also make
the same step from the original program.

Lemma 5.24. For any semicommutation 8, a,b € ¥, o € Sand E,E’ € RES,
if (0,RIE) —° (a,((0)a,E")), then there exists E” € RES such that ROE” = E' and
(0,E) =° (a,{(0)a,E")).

If we can make a step with an instruction a and we have 6(a, b), then we can also make
this step from the O-reorderable part (wrt. b) of the program.

Lemma 5.25. For any semicommutation 6, a,b € ¥, 0 € Sand E,E’ € RES,
if (0,E) —° (a,{(0)a,E’)) and 6(a,b), then also (c,RPE) =9 (a,((c)a,RIE")).

If 6(a,b), then we can commute the steps labelled by a and b in the following sense.
Lemma 5.26. For any semicommutation 6, a,b € ¥, 6 € Sand E,E' E", if 6(a,b),
(0,E) =% (a,{(0)a,E")) and ((c)a,E") =° (b,((c)ab,E")),
then exist F', F" € RES such that E” = F”,
(0,E) =% (b,((0)b,F')) and ((0)b,F') —° (a,{(c)ba,F")).

86

The rules we defined above describe how to perform individual steps. We now con-
tinue with executions, i.e., sequences of steps.

Definition 5.27. The O-reordering multiple-step reduction is given by the relation —8* C
S x RES x £* x S x RES:

(0,E) = (a,{c",E")) (0",E") =% (u,(0',E"))
(0,E) = (¢,(c,E)) (0,E) =% (au, (¢’ ,E"))

We say that a word u is an execution of program E from initial state ¢ if there is a
derivation for (c,E) —%* (u, (6, E')). The multiple-step reduction relation is monotone
in the following sense.

Proposition 5.28. For any semicommutation 0,0’,u € ¥*, 6 € Sand E ,E’ F,
if 0 CO,E=<Fand (c,E) =% (u,((c)u,E’), then exists F' € RES such that E' < F'
and (6, F) =0 (u,((0)u, F').

The multiple-step reduction is closed under the rewriting relation (where = refers only
to associativity of multiplication).

Proposition 5.29. For any semicommutation 0, u,u’ € ¥*, 6 € Sand E,E’,
if u =% u' and (c,E) =% (u,{(c)u,E'), then exists E" € RES such that E' = E" and
(0,E) =% (', (o) ,E").

Terminal configurations are those configurations (o, E) where the execution of the
program is allowed to terminate with ¢ as the final state.

Definition 5.30. The nullability (or empty word property) of a program is given by the
function _4 : RES — B defined recursively by

by =g ff

04 =q fFf
(E+F)é =gt E4VF}

17 =g tt
(EF)§ =a E§ANF}

(E")d =ar tt

(ENF)¢ =a E§NF§

Nullability is essentially a special case of 6-reorderability where we require 0(b,a)
for every a € . This means that all letters in the expression would be replaced with 0.
Nullability is stable under < and =.

Lemma 5.31. Forany E,F € RES, if E4, then E < F implies F 4, F < E implies F 4 and
E =F impliesFj.

As aremark, if we would drop the RgE termsin the rulesin Deﬁnitionand add E 4
as a side condition to the second rule of multiplication, then we would obtain the usual
interleaving semantics which does not allow any reorderings. This is essentially the same
as taking 6 = 0.

Definition 5.32. A configuration (o, E) is terminal when E .

We say that an execution u of program E from initial state ¢ is terminal when there is
a derivation along u that ends with a terminal configuration. From Propositions[5.28} [5.29]
by Lemma|5.31, we have as corollaries that terminal executions are also monotone in 6
and closed under rewriting. Terminal executions of a program correspond to the word
language interpretation of the program in the following sense.

87

Proposition 5.33. For any semicommutation 6, E € RESand o € S,
1. foranya € X, v € ¥,

av € [E]® A(0)al <= TE'.(c,E) =° (a,((0)a,E")) Av € [E']°;

2. forany u,v € X¥,

w € [E]® A(0)u) <= 3E'.(c,E) =% (u,((c)u,E")) Ave [E']?;

3. foranyu € X*,

uc[E]® A(o)u) < 3E'.(0,E) =% (u,((c)u,E")) NE'}.

Proof.

1. =: By induction on E. We show two cases.

e Case EF: Here av € [E]? -9 [F]®. Hence there exist x € [E]® and y € [F]°
such that av € x-9y.
If x = ax’, then by i.h. we have (¢, E) =9 (a,{(c)a,E")) and X' € [E']®. Thus
(6,EF) =% (a,{(0)a,E'F)),and,sincev e’ -%y, wehavev € [E']? O [F]° =
[E'F]°.
Otherwise y = ay’ and 8(x,a). By i.h. we have (c,F) —° (a,((0)a,F’)) and
y € [F']%. Thus (c,EF) —° (a,((c)a,(ROE)F’)). We have v € x-? y/. Since
x € [E]® and 6(x,a), we also have x € [RE]®. Thus v € [ROE]® -9 [F']% =
[(RIE)F']®.

e CaseE || F: Hereav € [E]® W [F]°. Hence there exist x € [E]® and y € [F]®
such that av € xLy.
If x = ax’, then by i.h. we have (c,E) =9 (a,((c)a,E’")) and ¥’ € [E']®. Thus
(0,E || F) —° (a,{(0)a,E" | F)). Asv € X Wy, wehavev € [E']° w[F]® =
[E" || F]°.
The other case is symmetric.

1. <=: By induction on the derivation (c,E) =9 (a,{(c)a,E’)). We show two cases.

e Case (0,EF) =9 (a,((0)a, (RYE)F') inferred from (o, F) =9 (a,((c)a,F'):
We have v € [(RZE)F']? and thus there exist x € [ROE]® and y € [F']® such
that v € x-9y. By i.h. we have ay € [F]° and (c)al. Since x € [RZE]Y, we
have that 8(x,a). Thusav € x-® ay C[ROE]® -0 [F]° C [E]®-O [F]® = [EF]°.

e Case (0,E || F) —° (a,{(0)a,E" || F) inferred from (c,E) —° (a,{(0)a,E'):
We have v € [E' || F]? and thus there exist x € [E']? and y € [F]® such that

v € xLWYy. By i.h. we have ax € [E]® and (6)al. Thus we have av € axuy C
[E]° wlF]® =[E || F]°.

2. By induction on u (utilising (1) in the step case).
3. Follows from (2) for u and &. O

Finally, we define the semantic function which, given a program and an initial state,
gives all final states for this program reachable from the given initial state. These are the
final states of all terminal executions.

88

Definition 5.34. The semantic function .#p[_] : RES — S — Z(S) is given by
SolE]o =4t {0’ | (6,E) =% (u,(c’,E"Y) NE'4}.

The semantic function is also monotone in the semicommutation relation. In the spe-
cial case where we exclude parallel composition we get a stronger result.

Proposition 5.35. For any semicommutations 8, 8’ and o € S, if 8 C ', then we have:
1. forany E € RES, #[E]o C Yy [E]o;
2. forany E € RE, if 0’ is conservative, then Sy [E]c = Sy [E]o.

Proof.

1. Follows from Proposition[5.28/and Lemma

2. We show the inclusion #[E] o O .#y [E] 0. By Proposition (3) we know that,
for each ¢’ € 7y [E]o, its corresponding execution «’ is in [E]® and ¢’ = (o).
By Proposition we have 0/([E]®) = [E]®". Thus exists u € [E]® such that
u="9"*1/.Since 6'is conservative, (¢)u = (¢)u’ = ¢’ and thus (c)u|. By Proposi-
tion mw) there exists E” such that (¢, E) —9* (u, ((¢)u,E")) with E” 4. Hence
o' = (o)uc FlE]o. O

In our interpretation 0 represents a stronger memory model and 0’ represents a weaker
memory model. The first item in the above proposition tells us that all final states that we
can observe on the stronger model we can also observe on the weaker model. The second
item tells us that if the weaker model is conservative, then the stronger and the weaker
model are indistinguishable for sequential programs. This is similar to saying that the
weaker model is individually sequentially consistent.

5.3.4 Parallel-Independent Programs

In Proposition [5.35 we saw that for regular expressions (without shuffle) the semantic
function is the same for 0 and 8’ when 8 C 8’ and 0’ is conservative. In other words, when
we exclude parallel composition, then all executions obtained with a weaker semicommu-
tation relation are explainable as executions obtained with a stronger semicommutation
relation. Importantly, this property does not hold when we include parallel composition.
We now illustrate this by considering a special case of parallel programs for which this
property does hold.

Intuitively, two instructions a and b (or instruction instances) are parallel in a program
when they come from the different threads of some parallel composition E || F. For this
discussion, we assume that there is some mechanism which, for a given expression E,
describes the parallel pairs of instructions. For example, this could be a (symmetric) re-
lation on the alphabet which contains all instruction pairs which occur in parallel in this
expression E.

We say here that two instructions a and b are independent when they commute in
both directions, i.e., both 6(a,b) and 6(b,a) hold. We say that a program E is parallel-
independent for 6 when the parallel pairs of instructions in E are independent. The word
language interpretation of parallel-independent programs satisfies the following property.

Lemma 5.36. For any semicommutation 0 and E, F € RES, if E || F is parallel-independent,
then [E]° w [F]° = [E]® -° [F]°.

89

This then guarantees that Proposition holds for any expression that is parallel-
independent.

Proposition 5.37. For any semicommutations 8 and 8’, and E € RES, if 8 C 8’ and E is
parallel-independent for @', then 6'([E]®) = [E]°®".

This in turn guarantees that Proposition holds for any expression that is parallel-
independent. In other words, we have the following proposition.

Proposition 5.38. For any semicommutations 8 and ', 6 € Sand E € RES, if 8 C 6', 6’
is conservative and E is parallel-independent for 6’, then Sy [E] o = Sy [E]o.

This can be interpreted as saying that, for a parallel-independent program, the execu-
tions of the weaker memory model are explainable as executions of the stronger model.

On the other hand, parallel-independent programs might not be very interesting in the
sense that the parallel threads in such a program do not communicate in a meaningful way
with each other. If they would, then this should mean that some parallel instructions are
not independent (for a conservative 6).

Even when a program E is not parallel-independent for 8, we can consider a slight vari-
ation that is. First, we assume we can label the instructions in E in such manner that we
obtain a program E!l such that the parallel instructions relation for E!l is irreflexive. Then
we ccl)lnstruct from 6 a semicommutation relation 6/l such that Ell is parallel-independent
for 61l

Definition 5.39. The parallel extension of 8, denoted by 0”, is defined as

ol (@,b) =at {tt ifa and.b are parallel,
0(a,b) otherwise.

Setting parallel instructions to be independent makes 6/ more permissive than 6 and,
in general, 0 is not conservative even when 6 is. As an alternative to labelling the instruc-
tions in E to obtain E!l, we could also consider including a similar labelling mechanism into
the rules of the semantics.

5.4 Example: While Language

We now take a closer look at the example from the Introduction. We do so by instantiating
the framework we have defined by describing an alphabet of instructions and a semicom-
mutation 6 so that we arrive at an operational semantics for a While-like language which
also allows the final state in question.

We assume to have variables Var (ranged over by x), states S = Var — Z (ranged over
by o), arithmetic expressions AExp (ranged over by a) and Boolean expressions BExp
(ranged over by b). For arithmetic and Boolean expressions we also assume the corre-
sponding evaluation functions [_]aexp : AEXp — S — Z and [_]sexp : BEXp — S — B. By
o [x — v] we mean the state ¢ with the value of variable x updated to v. We also assume
a function vars which computes the set of variables that occur in an expression.

The instructions we consider are assignments, assertions and fences. (Fences are in-
structions meant to forbid the reordering of certain pairs of instructions where one of the
instructions is before the fence and the other is after the fence in the program.)

Instr :=x:=a | b?| fence

90

The semantics of instructions is given by the function [_] : Instr - S — S.

[x:=da] o = ofx— [a]aexp O]
[[b?]] o — o if [[b]]BExp (e}
1 otherwise
[fence]c = o

The semicommutation relation 6 is defined as follows.

O(x:=a,x :=d)

{x}n({¥}Uvars(a)) =0 A
{K}Nn({x}Uvars(a)) =0
= %{Fx} Nvars(b) =0

D
~
=
o |l
2
-
| >
S—
|

Hence two assignments can be reordered if they satisfy the concurrent-read-exclusive-
write property (neither of the instructions writes to a variable that is read or written by
the other instruction). This condition is symmetric. A test can be reordered before an
assignment when the assignment does not write to a variable that is read by the test. This
case is not symmetric: an assignment can never be reordered before a test. All other pairs
of instructions cannot be reordered. This means that nothing can be reordered with the
fence operation and that two tests cannot be reordered either.

With the alphabet of instructions and semicommutation just defined and the opera-
tional rules defined before, we can consider again the example from the Introduction. (In
the example, we write ; for -, skip for 1 and fail for 0.)

x:=4Ly:=1|r:=yrn:=x

The question in the introduction was: is it possible for this program, starting from the
initial state o where each variable is initialised to 0, to end in a state where r; = 1 and
r» = 0 (assuming that all of the variables are distinct)?

We first observe that both 8(x := 41,y := 1) and 6(r := y,r, := x) hold. Either of
these is sufficient for allowing the final state in question. The derivation for the case util-
ising 8(ry :=y,r2 := x) is the following (we have omitted the labels here).

(o, xi=4Ly:=1|r=ynrn=x) —°
(o[— 0], x:=4ly:=1| r :==y;skip) —F
(o[r2 = 0][x — 41], skip;y:=1|| r :=y;skip) —9
(o[ry = 0][x — 41][y— 1], skip;skip || 7 := y;skip) .
(o[r2 = 0][x— 41][y— 1][r1 — 1], skip;skip || skip;skip)

In the first step of the derivation we make use of the fact that 0(r; :=y,r, :=x) and
thus have sz;:x(h :=y) =r; :=Yy. The rest of the derivation did not use any (non-trivial)
reorderings. Since the program skip;skip || skip;skip is nullable, we have reached a
terminal configuration.

The same program with two fences inserted does not allow the final state in question.
If we would try the same derivation as before with the fenced program, we would get the
following derivation. Note that we have =8 (r| := y,fence) and -0 (fence,r; := x).

(o, x:=41;fence;y:=1| ri :=y;fence;r, :=x) —8
(o[ra 0], x:=4l;fence;y:=1]| r :=y;fail;skip)

91

The fence instruction in the second thread became fail since the reordering is not al-
lowed, i.e., szz:x(fence) = fail. The resulting configuration does not lead to a termi-
nal configuration. Similarly, if we would try to execute the fence instruction early, then

we would have the following derivation.

(o, x:=4l;fence;y:=1]| r :=y;fence;rp :=x) —0

(0, x:=4l;fence;y:=1| fail;skip;r, :=x)

SinceRY__..(r1 :=y) = fail, executing the fence early leads again to a configuration from
which no terminal configuration is reachable.

We would get a similar result if we would take the original program (without fences)
and take 6 to be the empty set. This means that we are essentially considering the usual
interleaving semantics.

(o, xi=4Ly:=1|r =yirn:=x) —°

(6lr 0], x:=41;y:=1| fail;skip)

Since no reorderings are allowed in this example, the instruction r; :=ybecame fail, i.e.,
R92:=x(r1 :=y) =fail and, again, the resulting configuration does not lead to a terminal
configuration.

For a slightly different example, we briefly take a look at a program that also includes
a test. This demonstrates that, although an assignment can never be reordered before
a test, it is possible that an assignment can (eventually) be reordered with a preceding

assignment even when there is a test between them. The program is
ri:=x;y:=r||rn:=y(x=0)%x:=41

and the question is whether the final state where r, = 41 is reachable from the initial
state where every variable is initialised to zero. For this to be the case, it must be that the
instruction r, := y reads the value that is written (to a different variable) by the assignment
x := 41 that appears later in the program. A suitable derivation is the following.

(o, r=xyi=r || rni=yx=0)2%x:=41) —°
(o, rii=x;y:=ry || rp :=y;skip;x :=41) —0
(o[x— 41], ri:=x;y:=ry || rp :=y;skip;skip) -0
(o[x+— 41][r — 41], skip;y:=ry || rp :=y;skip;skip) -0
(o[x+— 41][r; — 41][y — 41], skip;skip || r, := y;skip;skip) —0
(o[x > 41][r) — 41][y — 41][r, — 41], skip;skip || skip;skip;skip)

If, for example, we would replace the test (x = 0)? in the second thread with (r, = 0)?
then the final state would not be valid as it is not allowed to reorder (r, = 0)? before

rp =Y.

5.5 Partial-Order Reduction

In the Introduction, we were interested in finding out whether a certain final state is al-
lowed for a given program. The question basically is: how to compute the semantic func-
tion Sy [E] o for given 6, E and 6? We follow a very simple idea: we just enumerate all
possible derivations according to the semantics and collect the final states that we find.
The problem is that, even for very small programs, we can get a very large number of
unique terminal executions. In this section, we describe a method to slightly alleviate this
problem by considering only representative executions when we are calculating the set of
final states.

92

The operational semantics (implicitly) defines a labelled transition system (Its) where
the states are configurations (o, E) and the transitions (together with the labels) are given
by the relation —¢. When we calculate the possible final states for a given program E and
initial state o, then we essentially just explore the Its from the configuration (¢, E) and
collect all the states ¢’ from all the terminal configurations (¢’, E’) that we reach.

It may very well be that in the Its we have paths u and «’ from the initial configura-
tion (o, E) such that u and ' are “equivalent” in the sense that u =-%* u. Thus we have
(6,E) =% (u,((0)u,E")) and (0, E) =9 («, {(c)u’,E")) for some E’ and E”". What we
describe next allows us to say that under certain conditions it is not necessary to further
explore both of the configurations {(c)u,E’) and ((o)u’,E").

5.5.1 Representative Executions

By Proposition|[5.29|we know that the set of executions of a program is closed under the
rewriting relation =%*. In other words, if we have a derivation for (¢, E) —%* (u, (¢’ E")),
6 is conservative and u =% i/, then we also have (¢, E) —%* («', (c’,E")) for some E”
such that E' = E”. Hence we have two different executions u and «’ that take us to con-
figurations with the same state component ¢’ and almost the same program component
(= refers only to associativity of multiplication). As a corollary of Lemma(5.21.(2) we have
that any possible execution of E’ is also an execution of E”. Thus any final state reached
from (o', E’) can also be reached from (¢’ ,E").

In the case where we have explored the Its from (o, E) along the path (execution) u,
we have the following question: is there another path «’ such that u =-%* i’ thus possibly
making further exploration of (¢’,E’) redundant? To resolve this problem we use the
notion of representative executions. The idea is that we will explore a path as long as it is
representative, i.e., as soon as we discover that it is not a representative anymore, then
further exploration is redundant.

Definition 5.40. The set of representatives (wrt. to semicommutation 0) is given by a
predicate N : £* — B which is required to satisfy the following properties:

1. NO(uv) = N (u);
2. =NO(u) = Fu'.u =9 ' ANO(u).

Thus we require that the set of representatives is prefix-closed, i.e., an execution which
is not a representative cannot be extended to a representative one. We also require that
an execution that is not a representative can always be rewritten to a representative one,
i.e., there exists an “equivalent” execution that is a representative. Thus we have the
following proposition.

Proposition 5.41. For any semicommutation 6, representatives N®, E JE' ¢RES, 0,06’ €S
and u € ¥, if 8 is conservative, -N® (u) and (c,E) —%* (u,(c’,E")), then exist u’ and E"
such that u =%/, N (u/'), (6, E) =% (u',(c’,E")) and E' = E".

As a consequence, if we have an execution u leading to a state ¢’, then there is also
a representative execution u’ that leads to the same state. This means that, when we
are exploring the Its (for a conservative 8) by walking down its tree unwinding and we
discover that our current prefix is no longer representative, then we do not have to explore
the subtree ahead: all final states ¢ that we would reach are also reachable by further
exploring .

In fact, we can straightforwardly include such a mechanism into the operational se-
mantics by redefining the multiple-step reduction relation —%* with an additional side
condition in the step case.

93

Definition 5.42. The O-reordering N°-representative multiple-step reduction is given by
the relation —9* C'S x RES x £* x S x RES:

(0,E) =\ (¢,(0,E))

(0,E) =8 (u,(c",E")) (c",E")—° (a,(c",E")) NO(ua)
(0.E) =Y (ua,(c".E"))

If we denote the semantic function defined in terms of the N®-representative reduc-
tion as Ay ¢ [E] o, then we have the following property.

Proposition 5.43. For any conservative 6, E € RES and 6 € S, #[E]c = A e[E] 0.

5.5.2 Normal Forms

We now describe a possible way to implement the predicate N®. The theory of Maz-
urkiewicz traces is a special case of semicommutations and semitraces that we are con-
sidering here. We will use normal forms known from Mazurkiewicz traces to provide an
implementation of N®. Two normal forms common in Mazurkiewicz traces are the lexico-
graphic normal form [9] and the Foata normal form [21].

The difference between semicommutations and Mazurkiewicz traces is precisely the
fact that the independence relation in Mazurkiewicz traces is required to be symmetric.
Although we do not require 0 to be symmetric, we can consider the relation 8¢ which is
the (largest) symmetric subrelation of 6. The relation 6° is an independence relation and
thus induces a (Mazurkiewicz trace) equivalence relation on executions. If 6 is conserva-
tive, then so is 6°.

The normal forms essentially describe which execution of an equivalence class to pick
as a (unique) representative. Hence we take Ne(u) to mean that the execution u is the
normal form in its equivalence class according to the equivalence relation induced by 6°.
Both the lexicographic and the Foata normal form are prefix-closed. Since 6% is symmetric,
every execution in an equivalence class can be rewritten by =%°* to every other execution
in the equivalence class and thus also to the (unique) representative. By monotonicity of
the rewriting relation, the same rewriting can be done also with =-%*. Hence the require-
ments for representatives are satisfied by both Foata and lexicographic normal forms.

By considering the symmetric subrelation 6° we are of course discarding some infor-
mation about pairs of instructions that commute (in one direction). Thus it might be de-
sirable to consider some other implementation of N that can take advantage of this extra
information and could possibly lead to better reduction.

5.6 Extending the Framework

The framework we have defined so far allows us to describe only those reorderings which
are in a sense static, i.e., the reorderings are described by a binary relation on the alphabet
of instructions and that is it. We now look at a couple of extensions of the framework to
consider more fine-grained reorderings.

The first extension we consider accounts for the possibility that a pair of instructions
commute in some machine states but not necessarily in all of them. An example of this
are memory reads and writes whose addresses are not statically determined. If we take
[r1] := 1 to denote a write to a memory location whose address is stored in register (local
variable) ri, then [r1] := 1 and [r2] := 2 could be considered independent in states where
r1 and r, contain different addresses.

94

Another extension is for the possibility that reordering two instructions has an effect
on those instructions. Intuitively, in the program y := 2;x := y we should not reorder the
instructions y := 2 and x := y as the second instruction reads the variable that is written
to by the first instruction and this is a form of data-dependency. In a sequential setting
it is valid to say that the programs y := 2;x := y and x := 2;y := 2 give the same result.
What we will say is that when we reorder x := y before y := 2, then the instruction y := 2
acts on the instruction x := y (from the left) so that it becomes x := 2 and thus the result
of the reordering is x := 2;y := 2. The (right) action of x := y on y := 2 is trivial here.

This kind of reordering allows two threads to have different views of the memory as
a read instruction can read its value from its left context and not from memory. Further-
more, this allows us to forbid “longer” chains of reordering. For example, we can have
0(a,c), 6(b,c) and =6(a, ,c) where ,c is the result of b acting on ¢ (from the left). Thus
we cannot reorder ¢ before ab in the sequence abc although 6(a,c) and 6(b,c).

We also allow to execute instructions in multiple steps. This is described by assigning
to each instruction a a residual program (a continuation) x(a). The idea is that, when we
execute a, we replace it in the program with k(a). In other words, after executing a we
still have to execute x(a).

5.6.1 Operational Semantics in Context
Before we continue with a more precise treatment of the extensions described above, we
first change our setup a bit to allow the extensions mentioned above.

First, here we consider a subset of RES where parallel composition appears only at the
top-level. In other words, we consider expressions

REl .= E | REI || RE!

where E ranges over RE.

Second, we consider the interpretation of instructions to be [a] : S — S, i.e., the state
transformers are not partial anymore. We do introduce an additional predicate o | a to say
that applying the state transformer [a] to o is allowed. We use this predicate to encode
that some instructions actually are partial, i.e., we are not allowed to execute them in
some states. This enables us, for example, to define a test to always denote the identity
state transformer while considering it allowed only in those states where the condition
holds. We extend this to words by 6 | € =¢s tt and o | au =4¢ 6 L a A (0)alu.

Before we used the O-reorderable part of a program to restrict the left context of the
instruction that we were executing. The idea was that all executions of the restricted
left context should allow the reordering needed to execute this instruction early. The 6-
reorderable part essentially discards all executions of the left context that would not allow
the reordering. In this section, we take this even further and consider every execution
of the left context separately. This way we can describe more precisely the reorderings
that we allow as the left context is a single execution and not a program (which would
correspond to a set of executions).

To pick an execution of E € RE (considered as a left context), we just pick a word e
from the word language interpretation of E. In the rules we now have to keep track of
the current context. This is essentially an execution that takes us to the position in the
original program where the subprogram we are currently considering is located.

Where we before (in Deﬁnition had RgE in the rules for sequential composition
and Kleene star, we now pick an execution e of E and extend the context with e for the
inductive step.

95

Definition 5.44. The 0-reordering single-step reduction of sequential programs is given
by the relation ~~® C S x Z* x RE x £ x S x &* x RE:

0(t,a) ola
(o,t,a) ~s0 (a,{(0)a,t,1))
(0,t,E) ~? (a,{c’,',E")) (0,t,F) ~? (a,{c’,',F"))
(0,t,E+F)~9 (a,{(c’,t',E")) (0,t,E+F)~% (a,(c’ t' F"))

(0.1,E) ~° (a,{c' .1 E)) e€[E] (o,1e,F)~"°(a,(c".',F'))
(0,t,EF) ~% (a,(c’,t' \E'F)) (0,t,EF) ~9 (a,(c’,t' F'))

ec[E*] (o,te,E)~? (a,(c',t' E"))
(0,t,E*) ~9 (a,(c’,t' ,E'E"))

With (o, &,E) ~9 (a,(c’,t' E')) we have that ¢’ is an execution of the left context of
a in the program E. Furthermore, E' is the right context of a.

As another remark, here we can see the reason why we have restricted ourselves to
programs as elements of RE!. In a sense, we would like to keep all reordering of instruc-
tions to occur in the base case. In the second rule of multiplication, we pick an execution
e € [E] and this e could later be executed also in a reordered fashion. If E would contain a
parallel composition, then we could miss some possible reorderings because, as we have
seen in Example[5.9] there is a difference between first shuffling and then reordering and
the other way around.

Definition 5.45. The O-reordering single-step reduction of parallel programs is given by
the relation ~¢ C S x REll x £ x S x RE!l:

(0,€,E) ~? (a,(c,1',E"))
(0.E) % (a,(0" 1'E"))

(0,E) ~° (a, (0, E')) (0,F) ~? (a,(0".F'))
(0,E | F)~° (a,(c".E'|| F)) (0,E||F)~?(a,(c"E|F)))

The rules for ~? together allow us to delay the reorderability check until we reach
the base case (a single instruction) as opposed to the rules in Definition|5.19] where this
was treated “on the fly” with RZE in the rules for sequential composition and the Kleene
star. Here in the base case we have already determined both the instruction a we wish to
execute next and the particular execution ¢ leading to it (its left context). The extensions
that we consider next just modify what happens in the base case.

Note that the base case only requires ¢ | a and nothing is said about ¢ | tq, i.e., we
only care about whether we are allowed to execute the instruction a and whether it can
be reordered with its left context 7. The justification for this is that, although we might
have —(o | t), executing ¢ could be allowed in some future state o’ (for example, when
instructions executed by other threads have changed the state so thatr becomes allowed).

Definition 5.46. The 6-reordering multiple-step reduction of parallel programs is given by
the relation ~~* C S x REIl x £* x § x REIl:

<O'7E> 0 (a7 <O'//,E//>) <G”,E”> o 0% (u7 <G/,E/>)
(0,E) %" (¢.(0,E)) (0,E) ~°* (au, (0" E"))

926

It can be shown that there is a correspondence between the old and the new seman-
tics. When we continue with the extensions, then this will not be the case in general.

Proposition 5.47. The semantics given in Definition[5.27 agrees with the semantics given
in Definition in the sense that for every semicommutation 8 and 6,06’ €S, E € RE!
andu € X*,

3E' (0,E) =% (u,(c',E")) NE'§ < 3IE".(0,E) ~®" (u,(c’ E")) NE"}.

5.6.2 Context-Dependent Semicommutation Relation
With this extension we do not consider the semicommutation relation to be a static rela-
tion anymore. For each state ¢, there may now be a separate semicommutation relation.

Definition 5.48. A context-dependent semicommutation 0 is a family of irreflexive rela-
tions, i.e., a mapping S - Z (X x X).

With this modification we also need to modify the conservativity condition to match
the context-dependent semicommutation.

Definition 5.49. A context-dependent semicommutation relation 6 is conservative when,
forevery 6 € Sand a,b € L, we have

0s(a,b) => (6 lab <= o |ba) A (0c)ab= (0)ba.
We extend the context-dependent semicommutation on letters to words and letters.

Definition 5.50. A context-dependent semicommutation relation 6 : S — (X x X) is
extended to 6 : S — Z(X* x X) in the following way.

95(8,61) =qr tt
0 (th,a) =ar O(t,a) A\ Oy (b,a)

Note the use of context (o)z in the case for 65 (tb,a). Since state transformers are
total, (o)t is defined and we can check reorderability in the context ()¢, even if =(c | 7).
For example, we might want to consider executing instructions early from either branch
of a conditional b; p + b; ¢ although exactly one of those is the correct branch in any state
o, i.e., either c [b or GU}. Until we commit to either » or b, we wish to keep both
possibilities.

Similarly to what we had before, we take 05(¢,a) to be the justification for reordering
a before an execution ¢ (its left context).

Lemma 5.51. For any conservative context-dependent 6, c €S, t € ¥* and a € X, we have
05(t,a) = (0 lta < o lat)\(o)ta= (0)at.

To extend the semantics with a context-dependent 6, we modify the rule for the single
instruction (the base case) of Definition to be the following.

05(t,a) ola
(0,t,a) =9 (a,{(0)a,t,1))

The only modification here is that the reorderability check becomes context-dependent.

97

5.6.3 Reordering Actions
We now add the possibility that reordering two instructions might modify them. We for-
mulate this as instructions acting on instructions, i.e., by reordering the instructions a and
b (in the program ab) the instruction b acts on a from the right and the instruction a acts
on b from the left. We include the possibility that these actions might also be context-
dependent.
(o2

Definition 5.52. The left action of letter a on letter b in state o is given by a /b and the

(o2
right action of letter b on letter a in state ¢ is given by a ,/ b.

Since two letters now act on each other when reordered, we also refine the conserva-
tivity condition on 6.

Definition 5.53. A context-dependent semicommutation 6 is conservative when, for ev-
ery o € Sand a,b € £, we have

0s(a,b) = (6 lab < o[b'd)A(0)ab= (0)b'd

(o) (e
whered' =a,/ band b’ =a\b.

We extend the left action to an action of a word on a letter. Similarly, we also extend
the right action to an action of a letter on a word.

Definition 5.54. The left action \,: xS x X — Eisextendedto \,: Z* xSx £ — X and
the right action ,/ : X x S x ¥ — X is extended to ,// : £* X S x £ — ¥* in the following
way.

o
eNa =g a

e =a (b N a)

c
8,/61 =4qf €

c c (o) (o)t
thy/a =4 (1 (b N\ a))(b a)

Ignoring the presence of state-dependence, what we have is a pair of mutual actions
between the free monoids X* and X*. Such pairs of mutual actions between two (generally
different) monoids are considered in algebra in the context of Zappa-Szép products of
monoids and groups [18].

We also have to consider the reordering actions when we look at the reorderability of
an execution and a letter. (We define the general case where 0 is also context-dependent.)

Definition 5.55. A context-dependent semicommutation relation 8 : S — Z(L x X) is
extended to 6 : S — Z(X* x ¥) in the following way.

65 (8,61) =qr tt
(o)t
Qg(tb,a) =4t O (l‘,b Ny a) A 9(6),(b,a)

Importantly, if we can reorder a before t with the context-dependent and conservative
6 and the reordering actions, then the reordering is justified.

Lemma 5.56. For any conservative 0, ¢ €S,t € X* and a € X, we have

05(t,a) = (0 lta = oldt)N(o)ta= (0)dt
(e} (e}
wheret' =t/ aandd =t\,a.

98

To extend the semantics with reordering actions we modify the rule for the single in-
struction (the base case) of Definition to be

Os(t,a) old
(o,t,a) =% (', ((0)d,1',1))

(o2 (o2
whered =tN\yaandt =t a.

5.6.4 Non-Atomic Instructions
Finally, we consider the possibility that some instructions might not be atomic. For ex-
ample, writing an 8-byte value to memory might be implemented as two 4-byte writes.
Another possibility is that the execution of an instruction proceeds in multiple steps. For
example, if the instruction is x := y+z, then in the first step we might determine the value
of the expression y + z, say v, and in the second step we write the value v to variable x in
memory.

The mechanism we use to model this multiple-step execution is to have a function
K : X xS — RE which, given a state ¢ and an instruction a, determines the “continuation”
of executing the first step of a in state o, i.e., an expression which represents the part of
the instruction that we have not yet executed.

Take the example x := y + z from above. We could set things up so that executing
x := y+ z has no effect on the state, but we define its continuation to be the instruction
x :=vwhere v is the value of y+ z in the state ¢. Executing x := v would then update the
state accordingly.

We extend the semantics with “continuations” (and context-dependent 8 and reorder-
ing actions) by modifying the rule for the single instruction of Definition[5.44]to be

0s(t,a) old
(0,t,a) =° (', ((0)d 1", k(d', 0)))

(o2 (o2
where ' =t N\ a and ¢’ =t a. Essentially we just plug the “continuation” of an in-
struction into the program where the instruction used to be. Before we implicitly used a
constant function for x that is always 1.

5.6.5 Extensions and Partial-Order Reduction

In Section[5.5] we described a form of partial-order reduction so that computing the set of
final states .7y [E] o can be less expensive. The situation is more complicated when 0 is
a context-dependent semicommutation relation and we also have to account for the left-
and right-actions and the continuation function x.

We just mention that we could take a similar approach as we took in Section[5.5] First,
we would need to modify the definition of the rewriting relation =%* to account for the
context-dependence of 8, the reordering actions ™\, and /, and the continuation function
k. This way we would relate executions u and «’ in state ¢, denoted by u :sg* o, if u can
be rewritten to i’ in state o according to the context-dependent 8, reordering actions
N\ and ./, and the continuation function k. We could then give the axioms for the set
of representatives similarly to what we did in Definition Namely, we would require
that the set of representatives in state o is prefix-closed (corresponding to[5.40}1) and any
execution u that is not a representative can be rewritten (in state o) to a representative
u' (corresponding to 2), i.e.,u :>g* u'. If the conservativity conditions are satisfied,
then u and u’ lead to the same final state.

99

5.6.6 Context-Dependence of 0 and Actions

It might be that the context-dependent 6 and the reordering actions fit together well
enough so that we do not need to modify the state (from & to (o)¢) when we are checking
05 (tb,a) to determine reorderability of b and a. For this we require three properties.

Definition 5.57. A context-dependent semicommutation 6 and the reordering actions
and / are stable when for any o, t, a, b:

(o)
1. 96<tab \l a) = 9(7(]7,61) = e(c)t(bva);

(o)

(o) c c
2. 05(t,0 \ya)VOs(t,b\a)=bN\a=b\ a

(o) o (o)
3. 05(t,b \a)=bya=b/ a.

What this essentially requires is that, in the sequence tba, if after reordering a before
b, the result can be reordered before ¢, then ¢ does not change the part of the state ¢
which determines the commutativity of a and b and how they act on each other.

We now define a different way to extend a context-dependent semicommutation to
words and letters. The difference is that we do not change the context o to (o)t in the
step case.

Definition 5.58. We extend a context-dependent semicommutation 6 to words and let-
ters in the following way.

ég(e,a) =qf tt
A A~ o
eg(tb,a) =df eg(t,b\a)/\eg(b7a)

We also define a different way to extend the reordering actions to words and letters.
Again, the difference is that we do not change the context.

Definition 5.59. We extend the left and right actions to words and letters in the following
way.
(o2
E_a =4 a
(e2

tha =g t° (b\a)
c
€. a =4 €

h%a =a (12 (bNa)b. a)

Next we show that these definitions are suitable for justification of reorderings when
0 and the reordering actions are stable and 6 is conservative.

Lemma 5.60. For any semicommutation 6 and left action N, if conditions[5.57 1and[5.57 2
are satisfied, then, for any o € S, t € X* and a € ¥, we have that 05 (t,a) implies 05 (z,a).

Lemma 5.61. For any semicommutation 6 and left action ™\, if conditions[5.571and[5.57 2
are satisfied, then, for any ¢ € S, t € £* and a € X, we have that 04 (t,a) implies 04(t,a).

Lemma 5.62. For any semicommutation 6 and left action “, if condition[5.57 2 is satisfied,

(o2
then, forany c € S,t € £* and a € £, we have 0, (t,a) impliest \ a =t g a.

100

Lemma 5.63. For any semicommutation 6 and actions ~\, and ./, if conditions [5.572
and [5.57 3 are satisfied, then, for any 6 € S, t € £* and a € X, we have 0, (t,a) implies
(e}

t/a=t? a.

Proposition 5.64. For any semicommutation 6 and actions ~\ and ,//, if conditions[5.521,
[5.542 and[5.57 3 are satisfied and 6 is conservative, then, forany c € S,t € * and a € %,
we have O, (t,a) implies (c)ta = (o)(t % a)(t ° a).

We have seen that, if the semicommutation and the reordering actions satisfy the sta-
bility conditions, then 65 (r,a) and 6 (,a) are equivalent. Furthermore, we have a con-
servativity result for the reordering actions that do not modify the context. This ensures
that, when we are checking reorderability, we can keep the state o fixed.

5.7 Example: TSO-like Memory Model

We now expand on the context-dependent independence relation described in Section[4.5]
by giving an operational semantics for a TSO-like machine in the sense that we model
write buffers in the system. The machine consists of shared memory and a fixed number
of processors, each with its own local memory. As in Section we have variables Var
(ranged over by x; shared memory), arithmetic expressions AExp (ranged over by a, only
mentioning the local memory of a processor) and Boolean expressions BExp (ranged over
by b, only mentioning the local memory of a processor). The local memory of a processor
is represented as registers Reg (ranged over by r).

In this example, we do not consider the state set S to be a mapping from variables
to values. Instead we take the set of machine states S to be X*, i.e., we consider the
execution itself as the state. Thus we also define the functions mval : Var —+ S — Z and
rval : Proc — Reg — S — Z to view the current state. We assume to have evaluation
functions [_]aexp : AEXp — Proc — S — Z and [_]gexp : BEXp — Proc — S — B that are
defined in terms of these view functions.

The alphabet consists of reads, writes, tests and fences. We also encode processor
identifiers and program order into the alphabet. More precisely, we take ¥ =4 Proc x
N x ¥ where in ¥’ we have:

® R(r,x,v): aread instruction which reads the value v from variable x and stores the
result in local register r. Before execution, the value v is undefined and in program

text we just write r := [x].

e W(x,a): awrite initiate (buffer enqueue) operation which represents a write of the
value of expression a to variable x. In program text, we write [x] := a.

e C(x,v): awrite commit (buffer dequeue) operation which writes the value v to vari-
able x. In program text, we write x — v.

o T(b): atest of Boolean expression b. In program text, we write b?.

F': afence instruction. In program text, we write fence.

We take the ordering relation < on the alphabet X to be the lexicographic order on X
given by <proc, <y and <y where R <yy W <50 C <5v T <5/ F.

101

Next, we define the view functions on o € S = X*. The function mval : Var — S — Z
specifies the current values in shared memory.

mval(x, €) =g O
mval(x,c - (p,i,C(xX' V') =4 ’ ifx=x
’ T ’ mval(x,0) otherwise

mval(x,o - a) =4t mval(x, o)
The function rval specifies the current values in the registers of a processor.

rval(p,r,€) =ar 0

v ifp=p'nr=r
rVCll ,r7(7~ /,i/,R r/,.x/,V/ =
(p.rio-(P,1',R() =t rval(p,r,6) otherwise
rval(p,r,G'OC) —df VVCll([LV, 6)

We say that a processor p has a pending write to variable x when the last write instruction
to xis W(x,a) and not C(x,v).

pending(p,x,€) =qr ff

pending(p,x,0-(p i, W(X',d))) =a (p=p Ax=x")Vpending(p,x,0o)
pending(p,x,0-(p',i',C(xX V))) =a (p#p Vx+#x')Apending(p,x,o)
pending(p,x,0 - Q) =4t pending(p,x,0)

We now continue with the context-dependent independence relation, reordering ac-
tions and the continuation function necessary for the operational semantics. We start
with the continuation function.

K((p7i7W(x7a))7 G) —df (p7ivc(x’[[aﬂAEpr6))
x(a, o) =a 1

Thus we can see that, when executing an instruction [x] := a, we plug in its place in the
program the corresponding commit instruction x — v. Note that C receives the same
program order identifier as W. We also assume that initially a program does not contain
any commit instructions.

The reordering actions are used only on instructions from the same processor. The ,/
action is identity in this example. We define the reordering action \, as follows.

° R(F X v) ifx=X
C(x,v R(¥V.x,1) = B
() N K) =a {R(r’,x’, L) otherwise

a iﬁ =a B

This just says that, if the value of the read instruction is not yet determined, then its value
can be determined from its left context (when there is a suitable C in the context). Next,
we define a semicommutation relation 6 on X'.

Q(C(x’ v)7 R(rlvxlvvl)) =qf tt
Clx,v), W(x.,d)) = tt
T(b), R ,XV)) =a 1 ®s(b)
a, B) =q ff

The interpretation of instructions as state transformers basically just extends the state
o with the new instruction. For read instructions, we may still need to determine the

6
6
6

102

value that is read.

[(p,i,R(r,x,L)Jo =4 o-(p,i,R(r,x,mval(x,0)))
[alo =4 o-a

Tests are the only state transformers that are partial, i.e., we are always allowed to execute
an instruction that is not a test.

G\L(pJ»T(b)) =df [[b]]BExppG
cla =g ftt

With the ingredients defined above, we can now construct executions using the rules
in Definition[5.46|together with the extensions.

Following the definitions given in Section we can also give a context-dependent
independence relation I on X that can be used for partial-order reduction. The subrelation
I is for instructions from the same processor. To emphasise, this is not the symmetric
subrelation 8° that we described earlier. Here we construct a symmetric relation by using
the program order identifiers to keep track of in which way did we check reorderability.

(pi,a) I (pi,d) =¢ p=p Ai=<niNn0(a,ad)Vi=<nino(d, o))

Note that this implies that instructions from the same processor with the same program
order identifier are dependent. This can only be the case for corresponding pairs of W
and C. The subrelation 74 is for instructions from different processors.

(p,i,C(x,v)) Ig (p/vl ,C(.X V)) =df P?ép//\xi’éxl

(p,i,C(x,v)) I& (p/,{,\R(7 X V) =a p#p N(x=x = pending(p',x,0))
(p,i,R(r,xw)) Ig (p/vl 7C(X V)) =df p;«ép’/\(x:x':>pending(p,x7c7))
(paiaa) Ig (pvlva) —df p7ép,

We see that a read and a commit instruction by different processors to the same variable
are independent when the read instruction gets its value from the pending write (i.e.,
from its left context). Finally, we take the context-dependent independence relation on X
to be the following.

alsB=gal’BVallp

As an example, we look at a program similar to what we saw in Section

X =1 =] || 7] :=2

Here the first thread first writes to location x and then reads from location x. The second
thread just writes to location x. Before, in Section we essentially argued that the
executions (here we omit the program order identifier and write the processor identifier
as an index)

Wi (x, 1) . WQ(X,Z) -Cz(x,z) -Ry (rl,x, 1) -Cy (x, 1)
and

Wi(x,1)-Wa(x,2) - Ri(r1,x,1) - Co(x,2) - Ci (x, 1)

are equivalent according to the equivalence relation induced by the context-dependent I.
Indeed, the instructions C,(x,2) and Ry (r1,x, 1) are independent in the context Wi (x, 1) -
W (x,2) since, although they are to the same location, the processor executing the read
instruction also has a pending write to the same location. We can also check that the
second execution is in Foata normal form as

(W1 (x7 1) -Wz(x,Z)) (Rl(rl,x, l) -CQ()C,Z)) (C] (x7 l))

103

The first execution is obtained as follows (where we write ...’ for the state in the
previous configuration).

(e, =L =K || =2 -
(oo Wi(x, 1), x> L= || [K]i=2) =
(... Wa(x,2), x= L= | xe2) S
(c.. Ca(x,2), x— Lirp:=[x] || skip) —!
(...*Ry(r1,x,1), x> 1;skip || skip) —!
(.. Ci(x, 1), skip;skip I skip)
Note that the value read by r| := [x] was determined to be 1 during reordering as

mval(x, Wy (x,1) - Wa(x,2) - Ca(x,2)) = 2.

Finally, we show that this setup allows the relaxed behaviour in the store buffering
example, i.e., that in the program

=Ly =] |)= Lir2 =

it is possible to reach a final state where r; = 0 and r, = 0. One possible derivation is the

following (where we write '..." for the state in the previous step).
(€, b :=Lrn:=p || Dl=Ln=K) =
(...-Wi(x,1), x—= Lirp =1y | b=Lm=k) —f
(...-R1(r1,»,0), x> 1;skip | = Lm=k) —f
(... Wa(y, 1), x— 1;skip | vy Lin=K) =/
(...-Co(y, 1), x+— 1;skip I skip;r:=[x]) -1
(...-Ra(r2,x,0), x+ 1;skip || skip;skip) -1
(...-Ci(x, 1), skip;skip || skip;skip)

The only non-trivial reordering we used was in the second step when we were executing
r1 := [y] with x — 1 as the left context. From the definition of I* we know that these
instructions commute and, since the read is from a different location (y), the reordering
action is trivial.

5.8 Related Work

In this chapter, we have described a small-step operational semantics to execute programs
in a relaxed manner, i.e., to allow more behaviours than sequential consistency [44]. We
chose a presentation of syntax more in the style of Kleene algebra with tests [43]. This is
just to focus on the part that is central to this chapter (the reordering of instructions) and
to abstract from the surface constructions of a concrete programming language. Roughly
speaking, the operational semantics is then given by the Antimirov derivatives [10] of a
regular expression. More precisely, here we build on the Antimirov reordering deriva-
tives we developed in Chapter [3where we extended the Antimirov derivatives to include
the reordering of letters. Here we also included machine states in the rules. Hence the
rules define transitions from configurations to configurations similarly to how structural
operational semantics was defined by Plotkin [64].

The use of an independence relation and reordering derivatives relates this work to
Mazurkiewicz traces [52] and trace languages (or in this case to semitraces [24]). A fur-
ther generalisation of this would be to consider pomset-languages [30]. The notion of
weak sequential composition (that is induced by an independence relation as we have

104

considered here) has also been investigated by Rensink and Wehrheim [70] in the context
of process algebra.

The intended application of this work is to provide a framework for describing relaxed
memory models in an operational manner. There are many earlier works that take an
operational approach to relaxed memory. For example, the description of x86 was given
(also) operationally by Owens et al. [61] and established that x86 follows the Total Store
Order (TSO) memory model by SPARC [75]. An operational description of TSO was given
by Jagadeesan et al. [35]. An operational approach to relaxed memory models as a min-
imalistic core calculus was given by Boudol and Petri [16]. Operational models have also
been developed for POWER [73]] and ARM [67].

Many of the operational descriptions mentioned above make use of (write) buffers.
A simple buffer is just a first-in-first-out queue to delay the execution of some of the in-
structions, e.g., write instructions must pass through the buffer while other instructions
do not. More generally, a buffer can be seen as a “reordering box” [62] and in this case
all instructions are enqueued in the buffer and the order in which enqueued operations
can be dequeued basically defines the memory model. Our approach does not explicitly
use buffers since the left context of an instruction is essentially its buffer (these are the in-
structions that the given instruction will be reordered before). While the work by Boudol
et al. [17] also includes a buffer (a temporary store), it is similar to ours in that they also
have a commutability predicate (which corresponds to 6(u,a) in our setting) to describe
the allowed reorderings in the buffer. In this respect, our approach is even more similar to
the operational semantics by Colvin and Smith [25] where they consider reordering and
forwarding of instructions in the semantics.

5.9 Conclusion and Future Work

We have described an operational semantics that is parameterised by the set of instruc-
tions (the alphabet X) and the allowed reorderings of pairs of instructions (the semicom-
mutation 0). We have shown that the set of executions is closed under the rewriting
relation induced by 9, i.e., if u is an execution of a program and 0 allows to rewrite u to i/,
then /' is also an execution of this program. Furthermore, if 8 happens to be conservative,
then the executions u and ' lead to the same final state. We make use of this fact when
we are calculating the set of final states for a given program as it is sufficient to consider
only those executions that are representative. (This can be used for any property of execu-
tions that is stable under the rewriting relation induced by 6.) We then considered some
extensions to this framework that would allow to describe more fine-grained reorderings.
The central idea for this was to consider the left context of an instruction not as a program
but as an execution as this allows to reason more precisely about which reorderings are
allowed.

An obvious question for future work is: what are the memory models that can be pre-
cisely described in this framework? And what exactly are the details? For example, how is
0 defined for a particular memory model? It is likely that some memory models require
extensions or modifications in addition to those that we already considered in Section[5.6

For example, we might want to include some form of collapsing of conditionals in our
semantics to account for the fact that the conditional in the program

ri=x;ifr=1theny:=1lelsey:=1
might be optimised away so that the program becomes

ri=x;y:=1.

105

One possible solution for this might be to also consider “parallel” execution of conditionals
in addition to what we have considered so far. By this we mean adding a rule that would
look something like this:

(0,p) =° (a,((0)a,p)) (0,9) =’ (a,((0)a,q)) ©'(b,a)
(0,if bthen p else q) =% (a,((0)a,if b then p' else ¢'))

where 0’ is meant to be weaker than 0 but should still forbid reorderings that change
the branch determined by b. With such a rule we can execute early those instructions
that are available for execution in both branches without determining the branch that is
taken eventually. To be more closer to optimising away the conditional we can also include
variations of the above rule where, for example, if p’ and ¢’ are nullable, then the residual
program is 1. We can also include a similar treatment of conditionals in the definition of
the reorderable part: to reorder a before if b then p else g along both branches we
require that a can be reordered with both p and ¢ (according to 8) and with b (according
to 8’). Note that with this approach we would not have to require the left context to
always be a single execution as we did in Definition[5.44

106

6 Example: Multicopy-Atomic ARMv8

In this chapter, we briefly describe an experiment where we put the framework from Chap-
ter[5]to the test by instantiating it to a fragment of the multicopy-atomic ARMv8 memory
model [67]. Hence, our goal is to define an alphabet X of instructions, a semicommuta-
tion relation 0, the reordering actions and the “continuation” function for instructions
so that (for a large number of sample programs) the executions generated are precisely
those allowed by the memory model. It is not our goal here to propose an operational
specification for the ARMv8 memory model. Instead, our focus is on describing how the
framework from the previous chapter can be used for describing memory models and
finding out if it is flexible enough.

We take the axiomatic model of ARMvS8 (given in [67]) as our reference point and de-
scribe what we should say in the operational framework to match the axiomatic descrip-
tion. Ideally, there should be a proof that our translation of this axiomatic model precisely
matches it. We do not provide such a proof here nor do we claim that this translation is
in any way optimal. We do, however, validate our operational description against the
axiomatic model as simulated by the herd tool [8]. For this purpose, we implement a
prototype of our framework and compare its results with the results of herd on a large
number of litmus-tests.

6.1 Abstract Machine

The machine model we consider consists of shared memory (a mapping from addresses
to values) together with a fixed number of processors. We also instrument each memory
location with a counter to keep track of how many writes to that memory location have
occurred. This information is useful, for example, when determining whether two read
instructions read the value written by the same write instruction. Each processor also has
its own local memory (a mapping from registers to values). This altogether is the state set
S in our semantics, i.e., o € S just gives the current shared memory state and the local
memory of each processor. We consider the local memory of a processor to be invisible
to other processors, i.e., processors can only communicate via shared memory.

Multicopy-atomicity requires that, if the effect of an instruction executed by some pro-
cessor becomes visible to some other processor, then it is visible to all processors. Our
abstract machine model seems well-suited for this: if the effect of an instruction becomes
visible to another processor, then the effect must have modified the shared memory and
is thus visible to all processors.

The set of instructions that we consider includes MOV, EOR, AND, ADD, LDR, LDAR, STR,
STLR, DMB. {LD,ST,SY}, and ISB. We also include instructions like CBNZ and CMP, but
we represent them using a generic instruction TEST b which is just a test of the Boolean
condition b.

More concretely, the alphabet consists of instructions augmented with some addi-
tional information. For example, an LDR instruction consists of the target register (where
the result of the load will be stored locally) and an address register (which holds the mem-
ory address from which to load the value). Similarly to the example in Section (5.7, we also
include a field that, if set, contains the result of the load. The ideais that this field might be
set during the reordering phase, i.e., when this LDR is reordered with its left context. After
reordering, if this field is set, then this LDR does not read the shared memory—the result
is already determined (for example, by reading a write early) and the value of this field is
written to the target register. Whether this field is set might also affect the commutability
relation.

107

Another addition is that we allow an instruction to keep track of the address or data
registers of the instructions that it has already been reordered with. For example, we will
see later that whether we can reorder an STR instruction with an earlier instruction de-
pends on the address registers of the instructions that this STR has already been reordered
with.

We also encounter situations where we may have several possible justifications for
reordering two instructions. An example of thisis described inthe (addr | data); rfi
rule that we will see later. We solve this by (speculatively) considering all possibilities and
then later discarding those that turn out to be unjustified. For this reason, we consider
the reordering actions in this section to be nondeterministic and thus describe them by a
relation. For example, we can have a, b\, b',a’ meaning that reordering a and b results
in b’ and @’'. Furthermore, we may have several such pairs b’,d’ for a,b. In this example,
we use the trivial “continuation” function k that is always 1.

Inthe previous paragraph, we said that we may reorder two instructions without know-
ing whether this reordering is justified. To later check whether the reordering was justified
we allow to add constraints to instructions during reordering. We set up the ¢ | a rela-
tion so that executing an instruction in a state where its constraints are not satisfied is not
allowed.

The programs we consider here are just parallel compositions of a fixed number of se-
quential threads, i.e., parallel composition only appears at the top-level of the expression.
This matches the flat layout of the abstract machine.

6.2 From Axiomatic to Operational

We gave a brief introduction to axiomatic models in Section The key ingredient of
axiomatic models is the predicate which determines whether a candidate execution is al-
lowed on the memory model. Importantly, this predicate is used on complete executions.
An operational model, on the other hand, should say how to construct an execution, i.e.,
how a program can be executed on the memory model. The goal of the translation de-
scribed here is to have an operational description that, for a given program, generates a
set of executions that collectively produce precisely the set of final states that is allowed
by the axiomatic model.

Another difference is that in the axiomatic model we can define arbitrary relations on
the events, including events from different processors, and then define the allowed exe-
cutions in terms of these relations, i.e., we have a global view of the execution. What we
try to do with the operational model is much more local: we define the memory model in
terms of the allowed reorderings. More precisely, we define when it is allowed to reorder
an instruction with its left context (thus only referring to instructions from the same pro-
cessor and possibly also to the current state) and what effect this has on the instruction
and the context.

We already hinted at the motivation for left and right actions when we described the
alphabet above: the actions allow us to keep track of the reorderings that have happened
to aninstruction. As a result, we can describe how reordering two instructions can modify
their meaning and also their commutability with other instructions.

When we write 65 (a,b), then we are considering the case where a is before b in pro-
gram order and we wish to reorder b before a. When we omit the ¢ then we mean that
05 (a,b) holds for every c.

Recall that the axiomatic model is given in terms of relations on events representing
instructions. In the cat language of herd, if A and B are relations, then their union is
denoted by A | B, intersection by A & B, relational composition by A; B and transitive

108

closure by A+. The notation [W] denotes identity relations on certain kinds of events (write
events in this case). Hence, the relation addr; po; [W] relates events a and ¢ if there is
an event b such that a and b are in the address dependency relation (addr), b and ¢ are
in the program order relation (po), and c is a write instruction (W).

We now look at the relations used in the axiomatic model and describe briefly how
we would translate these into the operational model. First, we look at the dependency-
ordered-before relation (denoted by dob) which is the union of the following relations.
Informally, we interpret these relations as rules saying that it is not allowed to execute
the instruction b when its left context u is of the form #/au” and the instructions a and
b are in the relation. We describe how to construct the semicommutation 6 and the
reordering actions by saying, for each of the following relations, what we require from
the semicommutation 6 and reordering actions to capture the relation in the operational
model.

e addr: This is a subrelation of po. Let a and b be instructions so that a writes to a
register that is used by b to determine the memory address it operates on. This is
referred to as address dependency and we require =0 (a, b).

e data: This is a subrelation of po. Let a and b be instructions so that a writes to a
register that is used by b to determine the value it writes to local or shared memory.
This is referred to as data dependency and we require =0 (a,b).

e ctrl; [W]:Therelation ctrl is a subrelation of po. Let a, b and ¢ be instructions
so that a writes to a register that is used by a test b and c is a write. We require
—6(a,b) and =0 (b, c) thus constructing a chain of dependencies from a to c.

Alternatively, we could instead require that the left action of the test b on ¢ anno-
tates ¢ with the registers used in the Boolean condition of the test. We then would
also require that, if a write instruction (c) is annotated with a register r, then it can-
not be reordered with an instruction that writes to r.

(In the axiomatic model two events @’ and »’ are in the ctrl relation when &’ is a
read event and &’ is an event in a conditional branch whose condition depends on
the result of a’.)

e ctrl; [ISB]; po; [R]: Letq, b, c and d be instructions so that a writes to a
register used by a test b, ¢ is an ISB instruction and d is a read (that is after ¢ in
program order). We require —8(a,b), =0(b,c) and =0(c,d).

e addr; po; [ISB]; po; [R]: Leta, b, c and d be instructions so that there is
address dependency from a to b, c is an ISB and d is a read. As in the previous
case, we require —6(c,d).

In addition, we require that the left action of b on ¢ annotates ¢ with the registers
used to compute b’s memory address. We then require that an ISB instruction (c)
that has been annotated with a register r cannot be reordered with an instruction
that writes to r. Since a and b are in the address dependency relation, a must write
to r and thus we have —6(a, ,c) where jc is ¢ after reordering with b (i.e., ¢ with
the annotations from b).

e addr; po; [W]:Letaq, b and c be instructions so that a and b are in the address
dependency relation, b and c¢ are in the program order relation and c is a write.
Similarly to the previous case we require that the left action of b on ¢ annotates ¢
with the registers used to compute b's memory address. We then also require that

109

a write instruction that has been annotated with a register r cannot be reordered
with an instruction that writes to r. Thus in this case we have =0 (a, ,c).

e ctrl; coi: Let g, b, c and d be instructions so that a writes to a register used
by a test b and both ¢ and d are write instructions to the same address. By the
ctrl; [W] rule we already have —6(a,b) and =0 (b,c). We also require =05 (c,d)
when in state ¢ the (write) instructions ¢ and d are to the same address, i.e., the
values of their address registers are the same.

Note that for d to be reorderable with its left context, the addr rule requires the
address register of d to be stable, i.e., nothing in the left context of d can write to
its address register. Similarly, the addr; po; [W] rule (for d) requires that nothing
in the left context of ¢ and d can write to the address register of c.

e data; coi: Leta, b and ¢ be instructions so that there is data dependency from a
to b and both b and ¢ are write instructions to the same memory address. By the
data rule we have —0(a,b). Just as in the previous case, we also require =84 (b, ¢)
when in state o the (write) instructions b and ¢ are to the same address.

e (addr | data); rfi: Let a, b and ¢ be instructions so that there is address or
data dependency from a to b, b is a write (with address register addr(b) and data
register data(b)) and c is a read (with address register addr(c)). There is an rfi
edge from b to ¢ when the registers addr(b) and addr(c) hold the same value when
the corresponding instructions are executed and ¢ reads the value written by b.

We allow such b and c to be reordered in the operational model. The subtlety is
that we consider two different justifications for this reordering.

The first justification is that, in the end, there will not be an rfi edge, i.e., addr(b)
and addr(c) will hold different values. In this case we require that the right action
of ¢ on b adds a constraint to b that, when executed, the address register addr(b)
must hold a value not equal to the current value of addr(c).

The other justification is that there will be an rfi edge. In this case we require
that the right action of ¢ on b adds a constraint to b that, when executed, the ad-
dress register addr(b) must hold the current value of addr(c). Furthermore, the
left action of b on ¢ sets the read value of ¢ to be the current value of data(b) and
it also must annotate ¢ with its address and data registers. We then require that ;¢
cannot be reordered with an instruction that writes to the registers it is annotated
with. Thus we have =604 (a, ,c). Since the read value of ¢ is now determined (by
data(D)), the instruction does not access the memory at all.

The two different justifications are possible precisely because we take the reorder-
ing actions to be given by a relation (a multivalued function).

We now consider the barrier-ordered-before relation (denoted by bob) which is the
union of the following relations.

e po; [dmb.fulll; po:Letaandcbeany memoryinstructions (like reads or writes)
and let b be a DMB. SY. We require both -6 (a,b) and —6(b,¢).

Alternatively, we could also require that the left action of b on ¢ annotates ¢ with
the information that it has been reordered with a DMB. SY. Then we would require
that such ,c cannot be reordered with a.

110

e [L]; po; [A]:Letaand b be instructions so that a is a release write and b is an
acquire read. We require —6(a,b).

e [R]; po; [dmb.1ld]; po: Leta, b and c be instructions so thataisaread, bis a
DMB. LD, and c is any memory instruction. We require —6(a,b) and =6 (b,c).

e [A]; po:Letaandb beinstructions so that a is an acquire read and b is any mem-
ory instruction. We require —0(a,b).

e [W]; po; [dmb.st]l; po; [W]:Leta, band cbe instructions so that a and c are
write instructions and b is a DMB. ST. We require =0(a,b) and —6(b,¢).

e po; [L]:Letaand b be instructions so that a is any memory instruction and b is a
release write. We require -0 (a,b).

e po; [L]; coi:Letaq, b and c be instructions so that a is any memory instruction,
b is a release write, and c is a write to the same address. By the previous rule we
have —8(a,b). By the addr; po; [W] rule we know that to execute ¢ early, the
address register of b must be stable. We require that in a state ¢ where b and ¢
write to the same memory address (addr(b) and addr(c) hold the same value) we
have =65 (b,c).

We have informally described what the context-dependent 6 and the reordering ac-
tions should be to represent the dependency-ordered-before and barrier-ordered-before
relations from the axiomatic model. We have currently excluded read-modify-write in-
structions from consideration and thus ignore the atomic-ordered-before relation (de-
noted by aob). The observed-by relation (denoted by obs) is defined in the axiomatic
modelasrfe | fre | coe and thusitisthe union of the read-from, from-read and co-
herence relations between different processors. We will not translate these as we only
consider reordering of instructions and this only happens on an individual processor, not
between processors.

The ordered-before relation ob is defined as (obs | dob | aob | bob)+anditisre-
quired to be irreflexive. Our operational semantics constructs executions in a step-by-step
manner, adding a new letter to a previously constructed execution. Since we forbid re-
ordering of instructions that would have dob or bob edges between them, our executions
should be such that dob and bob edges only go from an earlier instruction in the execution
to a later one. The rfe, fre and coe relations represent communication between differ-
ent processors and, on our abstract machine, this happens only through shared memory.
This means that these edges should also only go from an earlier instruction in the execu-
tion to a later one. Thus we should not be able to construct an execution with a reflexive
ob relation (i.e., one with a cycle along the relations dob, bob, rfe, fre and coe).

The memory model also requires the relation po-loc | fr | co | rf tobe acyclic,
i.e., its transitive closure to be irreflexive. The relation po-1loc represents program order
per location and it relates events that are in program order and to the same memory
location. We interpret the acyclicity condition as saying that we can reorder instructions
to the same location as long as this reordering is not visible in terms of the co, rf and fr
relations. Let a and b be instructions in the po-1loc relation (to memory location x) and
say we reorder a and b (execute b early). What we wish to do next is rule out executions
which would result in the instruction a (which is earlier in the program order) accessing
the memory location x when it holds a later value than what it held when & (which is later
in the program order) accessed it.

m

The only memory operations we consider are reads and writes. If we allowed to re-
order write-write pairs to the same location, then we would violate the above condition
and thus we forbid it. We also do not allow to reorder read-write pairs to the same loca-
tion. We do allow to reorder write-read pairs to the same location (this was one case in
therule (addr | data); rfi). However, this reordering (the reordering action) deter-
mines the value of the read: although the instructions are reordered, the read instruction
reads its value from the write instruction and thus does not access the memory. This pre-
serves program order per location. We also allow to reorder read-read pairs to the same
location. To preserve the desired property we must ensure that the two read instructions
read values that are in agreement with their program order. In other words, we wish to
forbid executions where a write to that memory location occurs between the reordered
reads.

Let @ and b be instructions so that both a and b are read instructions with addr(a) and
addr(b) as their address registers. Similarly to the (addr | data); rfi rule we have
two justifications for reordering a and b.

The first case is that the two instructions end up accessing different memory addresses.
For this case we require the right action of b on a to add a constraint to a saying that, when
executed, the value of addr(a) is different from the current value of addr(D).

The other case is that the two instructions end up accessing the same memory location.
We require that the right action of b on a adds a constraint to a saying that, when executed,
the value of addr(a) is the same as the current value of addr(b). Furthermore, we add a
constraint to a that it must read its value from the same write as b did. (We accomplish
this by checking that no writes have occurred to this location in between. This is why we
instrumented memory locations with write counters.)

6.3 Prototype

We have implemented the part of the ARM memory model described above as a proto-
type in Haskell (available here: http://cs.ioc.ee/ hendrik/code/phd/prototype.
zip).

The prototype contains implementations of the following functions where Arm is the
alphabet (instructions annotated with some additional information) and State is the ma-
chine state.

theta :: State — Arm — Arm — Bool

act :: State — Arm — Arm — [(Arm, Arm)]
sem :: Arm — State — State

allow :: State — Arm — Bool

Thus theta is a context-dependent binary relation on the alphabet, act is the relational
context-dependent reordering action (given as a multivalued function), sem is the inter-
pretation of letters as (total) state transformers and allow is the relation which describes
when an instruction is allowed to execute in a state.

This prototype allows us to take a litmus-test (a small concurrent program in pseudo-
assembly), convert it to an element of RES, and, following the operational rules, collect
all final states by enumerating all possible ways to execute this particular litmus-test from
a given initial state. This allows us to compare the results (the set of final states obtained)
to what is obtained by the memory model simulation tool herd (which is based on the
axiomatic model) on the same litmus-test. We have also implemented the pruning mech-
anism described in Section[5.5]in the prototype. Also, the semicommutation relation and
the reordering actions we have defined for ARM satisfy the conditions given in Defini-

12

http://cs.ioc.ee/~hendrik/code/phd/prototype.zip
http://cs.ioc.ee/~hendrik/code/phd/prototype.zip

tion So far we have compared our prototype with herd on more than 8000 litmus-
tests. The two tools agree on all of these litmus-tests.

6.4 Related Work

A significant part of the research on relaxed memory has been about hardware memory
models. The description of x86 was given both operationally and axiomatically by Owens
et al. [61] and they also showed that it follows the Total Store Order (TSO) memory model
by SPARC [75]. A denotational (and operational) description of TSO together with a full
abstraction result was given by Jagadeesan et al. [35]. A denotational semantics for TSO
based on partially-ordered multisets (pomsets) was given by Kavanagh and Brookes [39].
Park and Dill defined an executable specification of Relaxed Memory Order (RMO) [62] by
SPARC. Both axiomatic and operational models have also been considered for POWER [73]
and ARM [67]. An extensive description of a (generic) axiomatic framework and several
instantiations to different memory models was given by Alglave et al. [8]. Relaxed memory
has also seen much interest in the context of model checking [7, 4, 5].

In addition to hardware memory models, the memory models of (concurrent) pro-
gramming languages have also received attention. Ideally, a language specification should
be precise enough to determine which optimisations are allowed. This in turn determines
how relaxed this particular language is. Perhaps the most prominent of this line of work is
formally describing the C/C++ memory model. The goal is to define a memory model that
is sufficiently relaxed so that it allows common compiler optimisations but still excludes
the unreasonable ones. The C/C++ memory model is given in the axiomatic style. Opera-
tional descriptions of (fragments of) the C/C++ memory model have been considered, for
example, by Nienhuis et al. [57] and Doherty et al. [27]. These operational models stay
very close to the axiomatic specification in the sense that they incrementally construct a
valid axiomatic execution.

A problematic aspect of the C/C++ memory model is that it allows certain undesirable
“out-of-thin-air” executions. The complexity of this issue is witnessed by the fact that,
as it was observed by Batty et al. [12], the “out-of-thin-air” problem cannot be solved
in a simple “per-candidate-execution” way. As the axiomatic models are “per-candidate-
execution”, this has led to the consideration of other methods in addition to axiomatic
models.

An operational approach to the “out-of-thin-air” problem is the promising semantics
by Kang et al. [37] which has also been adapted for ARM [68]. The operational framework
we defined in Chapter[5]allows to execute an instruction early. The promising semantics
allows a thread to promise to do something in the future while allowing other threads to
see the effects of this in advance. Various forms of event structures [77] have also been
considered for the “out-of-thin-air” problem [65 22} 36} [63].

A slightly different concurrency model is considered by Fava et al. [29] who describe
an operational semantics for the combination of weak memory and channel-based pro-
gramming in the Go programming language.

6.5 Conclusion and Future Work

In this chapter, we described how to instantiate our framework from Chapter [5to match
(a fragment of) the multicopy-atomic ARM memory model. We validated a prototype
implementation of our framework instantiation against the herd tool on a large number
of litmus-tests.

The reorderings we include to represent the ARM memory model allow even relatively

113

small litmus-tests to have millions of unique executions. We are only interested in the
result, i.e., the final state an execution produces. Representative executions allow us to
consider a subset of all possible executions of a program. This of course relies on the fact
that the executions we consider equivalent indeed produce the same final state.

We did not prove that our translation of the axiomatic ARM memory model is correct.
It would be very nice to have this proof so that this operational translation could be used
with confidence, even better if this were certified in a proof-assistant.

A similar problem would be to investigate if axiomatic descriptions of relaxed memory
models could be translated into this operational framework in a systematic way, i.e., if it
is the case that, for some well-delineated class of axiomatic models, the corresponding
operational model can be constructed mechanically from the axiomatic model.

114

7 Conclusions and Future Work

7.1 Conclusions

In this dissertation, we have developed a framework for describing operational semantics
where sequential composition of programs is interpreted in a weak manner. This weak-
ness allows to describe certain kinds of relaxed memory models in the framework. This
means that we can instantiate the framework so that it can also produce program execu-
tions that are not sequentially consistent, i.e., it is possible that the result of some exe-
cution cannot be obtained just by interleaving the program-order instruction sequences
of individual threads. To achieve this, our framework allows the execution mechanism
(processors) to modify the order of instructions that is specified by the program. More
precisely, our use of an independence relation makes sequential composition weaker for
certain pairs of instructions and so these pairs lose the ordering constraints otherwise in-
troduced by sequential composition. For example, this means that in certain cases we can
execute a as the first instruction in the program p;a;q.

The framework we have developed has several parameters: the alphabet of instruc-
tions, the semicommutation relation that may be context-dependent, the reordering ac-
tion and the continuation function. As a result, there are many possibilities to tune the
framework by slightly modifying the parameters. Thus we hope that this framework ad-
mits descriptions of several memory models. The framework does not have any reorder-
ings built in and the reorderings that are allowed are controlled by the parameters: when
we take an alphabet of instructions and trivially instantiate the other parameters, then
we obtain sequential consistency.

Since we are interleaving instruction sequences of multiple threads, our approach is
susceptible to the combinatorial explosion problem. The reordering of instructions makes
this even worse. In this work, we were interested in the final states of the executions.
Thus we should check each and every execution to see to what final state it takes us.
We used normal forms as a sound mechanism to eagerly discard some executions from
consideration. While this is quite effective for many of the litmus-tests we consider (even
when the independence relation used for normal forms is smaller than the independence
relation used for constructing the executions), it will run into problems at some point as
the input programs grow.

Overall, we find the operational semantics we have defined based on the Antimirov
reordering derivatives to be quite intuitive, at least when trying to explain or justify why
some program on some memory model can behave in a certain way. Roughly speaking,
at every step of the execution, we just select an instruction from the current residual
program and try to “drag” it to the front for execution. The derivative operation then
tells us what is the new residual program, i.e., what is still left to execute after we have
executed the instruction we chose.

7.2 Future Work

In Chapter [3] we considered reordering derivative operations for a symmetric indepen-
dence relation. It would be good to see which of these results continue to hold or which
modifications are needed when we let go of the assumption that an independence rela-
tion has to be symmetric.

Another question to investigate might be to see what is the relationship between the
reordering derivatives we have defined and Zielonka’s asynchronous automata. It is a
theorem that a trace-closed language is recognisable iff it is recognised by a finite asyn-
chronous automaton. At the same time, a trace-closed language is recognisable iff there

15

exists a star-connected expression with the same closure. For a star-connected expression
we can construct a finite automaton accepting the closure of the language.

In Chapter[4] we developed Foata and lexicographic normal forms for a generalisation
of traces. In Chapter[6] we did not use these generalised normal forms as there we con-
sidered a semicommutation relation and it was context-dependent in a slightly different
way. It would be good to see how to improve this situation.

The type of axiomatic semantics that are often used to describe relaxed memory mod-
els is quite different from the operational approach we have developed here. A useful
direction for further work would be to investigate how to systematically construct an op-
erational description corresponding to a given axiomatic description. It would also be
interesting to consider the opposite direction, i.e., how to proceed from an operational
description to an axiomatic one. This of course raises the question: which memory mod-
els can be represented in the current framework? Investigating the translation between
several axiomatic and operational descriptions can reveal issues and shortcomings and
thus lead to a more refined operational framework with more precise control over the
relaxedness of the system.

16

References

(1]

(2]

(3]

(4]

(5]

(10]

(1]

[12]

[13]

I. J. Aalbersberg and H. J. Hoogeboom. Characterizations of the decidability of some
problems for regular trace languages. Math. Syst. Theory, 22(1):1-19, 1989.

I. J. Aalbersberg and G. Rozenberg. Theory of traces. Theor. Comput. Sci., 60(1):1-82,
1988.

I. J. Aalbersberg and E. Welzl. Trace languages defined by regular string languages.
Theor. Inf. Appl., 20(2):103-119, 1986.

P. A. Abdulla, S. Aronis, M. F. Atig, B. Jonsson, C. Leonardsson, and K. Sagonas. State-
less model checking for TSO and PSO. Acta Inf., 54(8):789-818, 2017.

P. A. Abdulla, M. F. Atig, B. Jonsson, and C. Leonardsson. Stateless model checking
for POWER. In S. Chaudhuri and A. Farzan, editors, Computer Aided Verification -
28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Pro-
ceedings, Part I, volume 9780 of Lecture Notes in Computer Science, pages 134-156.
Springer, 2016.

J. Alglave. A shared memory poetics. PhD thesis, Université Paris Diderot, 2010.

J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded model
checking of concurrent software. In N. Sharygina and H. Veith, editors, Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Rus-
sia, July 13-19, 2013. Proceedings, volume 8044 of Lecture Notes in Computer Science,
pages 141-157. Springer, 2013.

J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, test-
ing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1-
7:74, 2014.

A. V. Anisimov and D. E. Knuth. Inhomogeneous sorting. Int. J. Parallel Program.,
8(4):255-260, 1979.

V. M. Antimirov. Partial derivatives of regular expressions and finite automaton con-
structions. Theor. Comput. Sci., 155(2):291-319, 1996.

D. Aspinall and J. Sevcik. Formalising Java’s data race free guarantee. In K. Schneider
and J. Brandt, editors, Theorem Proving in Higher Order Logics, 20th International
Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Pro-
ceedings, volume 4732 of Lecture Notes in Computer Science, pages 22-37. Springer,
2007.

M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and P. Sewell. The problem
of programming language concurrency semantics. In J. Vitek, editor, Programming
Languages and Systems - 24th European Symposium on Programming, ESOP 2015,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture Notes
in Computer Science, pages 283-307. Springer, 2015.

A. Bertoni, G. Mauri, and N. Sabadini. Equivalence and membership problems for reg-
ular trace languages. In M. Nielsen and E. M. Schmidt, editors, Automata, Languages
and Programming: 9th Colloquium, Aarhus, Denmark, July 12-16, 1982, Proceedings,
volume 140 of Lecture Notes in Computer Science, pages 61-71. Springer, 1982.

17

[14] A. Bertoni, G. Mauri, and N. Sabadini. Unambiguous regular trace languages. In
J. Demetrovics, G. Katona, and A. Salomaa, editors, Algebra, Combinatorics, and
Logic in Computer Science, volume 42 of Collquia Mathematica Societas Jdnos Bolyai,
pages 113-123. North-Holland, 1986.

[15] A.Bouajjani, C. Enea, S. O. Mutluergil, and S. Tasiran. Reasoning about TSO programs
using reduction and abstraction. In H. Chockler and G. Weissenbacher, editors, Com-
puter Aided Verification - 30th International Conference, CAV 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings,
Part I, volume 10982 of Lecture Notes in Computer Science, pages 336-353. Springer,
2018.

[16] G.Boudol and G. Petri. Relaxed memory models: an operational approach. In Z. Shao
and B. C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January
21-23, 2009, pages 392-403. ACM, 20009.

[17] G. Boudol, G. Petri, and B. P. Serpette. Relaxed operational semantics of concurrent
programming languages. In B. Luttik and M. A. Reniers, editors, Proceedings Com-
bined 19th International Workshop on Expressiveness in Concurrency and 9th Work-
shop on Structural Operational Semantics, EXPRESS/SOS 2012, Newcastle upon Tyne,
UK, September 3, 2012, volume 89 of EPTCS, pages 19-33. Open Publishing Associa-
tion, 2012.

[18] M. G. Brin. On the Zappa-Szép product. Communications in Algebra, 33(2):393-424,
2005.

[19] S. Broda, A. Machiavelo, N. Moreira, and R. Reis. Partial derivative automaton for
regular expressions with shuffle. In J. Shallit and A. Okhotin, editors, Descriptional
Complexity of Formal Systems: 17th International Workshop, DCFS 2015, Waterloo,
ON, Canada, June 25-27, 2015, Proceedings, volume 9118 of Lecture Notes in Com-
puter Science, pages 21-32. Springer, 2015.

[20] J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481-494, 1964.

[21] P. Cartier and D. Foata. Problemes combinatoires de commutation et rearrange-
ments, volume 85 of Lecture Notes in Mathematics. Springer, 1969.

[22] S.Chakraborty and V. Vafeiadis. Grounding thin-air reads with event structures. Proc.
ACM Program. Lang., 3(POPL):70:1-70:28, 2019.

[23] C. Chou and D. A. Peled. Formal verification of a partial-order reduction technique
for model checking. J. Autom. Reasoning, 23(3-4):265-298, 1999.

[24] M. Clerbout and M. Latteux. Semi-commutations. Inf. Comput., 73(1):59-74, 1987.

[25] R. J. Colvin and G. Smith. A wide-spectrum language for verification of programs
on weak memory models. In K. Havelund, J. Peleska, B. Roscoe, and E. P. de Vink,
editors, Formal Methods - 22nd International Symposium, FM 2018, Held as Part of
the Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceedings,
volume 10951 of Lecture Notes in Computer Science, pages 240-257. Springer, 2018.

[26] V. Diekert and Y. Métivier. Partial commutation and traces. In G. Rozenberg and A. Sa-
lomaa, editors, Handbook of Formal Languages, Volume 3: Beyond Words, pages
457-533. Springer, 1997.

18

[27] S. Doherty, B. Dongol, H. Wehrheim, and J. Derrick. Verifying C11 programs oper-
ationally. In J. K. Hollingsworth and I. Keidar, editors, Proceedings of the 24th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2019,
Washington, DC, USA, February 16-20, 2019, pages 355-365. ACM, 2019.

[28] M. Droste. Concurrency, automata and domains. In M. Paterson, editor, Automata,
Languages and Programming, 17th International Colloquium, ICALP '90, Warwick
University, England, UK, July 16-20, 1990, Proceedings, volume 443 of Lecture Notes
in Computer Science, pages 195-208. Springer, 1990.

[29] D.S. Fava, M. Steffen, and V. Stolz. Operational semantics of a weak memory model
with channel synchronization. J. Log. Algebr. Meth. Program., 103:1-30, 2019.

[30] J. L. Gischer. The equational theory of pomsets. Theor. Comput. Sci., 61(2-3):199-224,
1988.

[31] P. Godefroid. Using partial orders to improve automatic verification methods. In
E. M. Clarke and R. P. Kurshan, editors, Computer Aided Verification, 2nd International
Workshop, CAV ‘90, New Brunswick, NJ, USA, June 18-21, 1990, Proceedings, volume
531 of Lecture Notes in Computer Science, pages 176-185. Springer, 1990.

[32] K. Hashiguchi. Recognizable closures and submonoids of free partially commutative
monoids. Theor. Comput. Sci., 86(2):233-241, 1991.

[33] T. Hoare, B. Mdller, G. Struth, and I. Wehrman. Concurrent Kleene algebra and its
foundations. J. Log. Algebr. Program., 80(6):266-296, 2011.

[34] P. W. Hoogers, H. C. M. Kleijn, and P. S. Thiagarajan. A trace semantics for Petri nets.
Inf. Comput., 117(1):98-114, 1995.

[35] R. Jagadeesan, G. Petri, and J. Riely. Brookes is relaxed, almost! In L. Birkedal, ed-
itor, Foundations of Software Science and Computational Structures - 15th Interna-
tional Conference, FOSSACS 2012, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1,
2012. Proceedings, volume 7213 of Lecture Notes in Computer Science, pages 180-
194. Springer, 2012.

[36] A.Jeffreyand J.Riely. On thin air reads: Towards an event structures model of relaxed
memory. Logical Methods in Computer Science, 15(1), 2019.

[37] J. Kang, C. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics for
relaxed-memory concurrency. In G. Castagna and A. D. Gordon, editors, Proceed-
ings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, pages 175-189. ACM, 2017.

[38] S. Katz and D. A. Peled. Defining conditional independence using collapses. Theor.
Comput. Sci., 101(2):337-359, 1992.

[39] R.Kavanagh and S. Brookes. A denotational semantics for SPARC TSO. Logical Meth-
ods in Computer Science, 15(2), 2019.

[40] S. C. Kleene. Representation of events in nerve sets and finite automata. In C. E.
Shannon and J. McCarthy, editors, Automata Studies, volume 34 of Annals of Math-
ematics Studies, pages 3-42. Princeton University Press, 1956.

19

[41] B. Klunder, E. Ochmanski, and K. Stawikowska. On star-connected flat languages.
Fund. Inf., 67(1-3):93-105, 2005.

[42] D. Kozen. A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput., 110(2):366-390, 1994.

[43] D.Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427-443,
1997.

[44] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Computers, 28(9):690-691, 1979.

[45] R.). Lipton. Reduction: A method of proving properties of parallel programs. Com-
mun. ACM, 18(12):717-721, 1975.

[46] H. Maarand and T. Uustalu. Operational semantics with semicommutations. Ac-
cepted for publication in J. Log. Algebr. Methods Program.

[47] H. Maarand and T. Uustalu. Generating representative executions [extended ab-
stract]. In V. T. Vasconcelos and P. Haller, editors, Proceedings of the Tenth Workshop
on Programming Language Approaches to Concurrency- and Communication-cEntric
Software, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, volume 246 of
EPTCS, pages 39-48. Open Publishing Association, 2017.

[48] H. Maarand and T. Uustalu. Certified Foata normalization for generalized traces. In
A. Dutle, C. A. Muioz, and A. Narkawicz, editors, NASA Formal Methods - 10th Inter-
national Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018, Proceed-
ings, volume 10811 of Lecture Notes in Computer Science, pages 299-314. Springer,
2018.

[49] H.Maarand andT. Uustalu. Certified normalization of generalized traces. Innovations
in Systems and Software Engineering, 15(3-4):253-265, 2019.

[50] H. Maarand and T. Uustalu. Operational semantics with semicommutations. In
T. Uustalu and J. Vain, editors, 31st Nordic Workshop on Programming Theory, NWPT
2019, November 13-15, 2019, Tallinn, Estonia, Abstracts, pages 40-43. TTU, 2019.

[51] H. Maarand and T. Uustalu. Reordering derivatives of trace closures of regular lan-
guages. In W. J. Fokkink and R. van Glabbeek, editors, 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-
lands, volume 140 of LIPIcs, pages 40:1-40:16. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 2019.

[52] A. Mazurkiewicz. Concurrent program schemes and their interpretations. DAIMI
Rep. PB-78, University of Aarhus, 1978.

[53] J. D. McKnight. Kleene quotient theorems. Pac. J. Math., 14(4):1343-1352, 1964.

[54] A. Meduna and P. Zemek. Jumping finite automata. Int. J. Found. Comput. Sci.,
23(7):1555-1578, 2012.

[55] B. Nagy and F. Otto. Finite-state acceptors with translucent letters. In G. Bel-Enguix,
V.Dahl, and A. O. de la Puente, editors, Proceedings of the 1st International Workshop
on Al Methods for Interdisciplinary Research in Language and Biology (BILC-2011),
pages 3-13. SciTePress, 2011.

120

[56]

[57]

(58]

(59]

H. R. Nielson and F. Nielson. Semantics with applications - a formal introduction.
Wiley professional computing. Wiley, 1992.

K. Nienhuis, K. Memarian, and P. Sewell. An operational semantics for C/C++11 con-
currency. In E. Visser and Y. Smaragdakis, editors, Proceedings of the 2016 ACM
SIGPLAN International Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The
Netherlands, October 30 - November 4, 2016, pages 111-128. ACM, 2016.

U. Norell. Dependently typed programming in Agda. In P. W. M. Koopman, R. Plas-
meijer, and S. D. Swierstra, editors, Advanced Functional Programming, é6th Inter-
national School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lectures,
volume 5832 of Lecture Notes in Computer Science, pages 230-266. Springer, 2009.

E. Ochmanski. Regular behaviour of concurrent systems. Bull. EATCS, 27:56-67,1985.

[60] E.Ochmanski. Recognizable trace languages. In V. Diekert and G. Rozenberg, editors,

[61]

[62]

[63]

[64]

[65]

[66]

[67]

The Book of Traces, pages 167-204. World Scientific, 1995.

S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-TSO. In
S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel, editors, Theorem Proving in Higher
Order Logics, 22nd International Conference, TPHOLs 2009, Munich, Germany, Au-
gust 17-20, 2009. Proceedings, volume 5674 of Lecture Notes in Computer Science,
pages 391-407. Springer, 2009.

S. Park and D. L. Dill. An executable specification, analyzer and verifier for RMO
(relaxed memory order). In C. E. Leiserson, editor, 7th Annual ACM Symposium on
Parallel Algorithms and Architectures, SPAA '95, Santa Barbara, California, USA, July
17-19, 1995, pages 34-41. ACM, 1995.

M. Paviotti, S. Cooksey, A. Paradis, D. Wright, S. Owens, and M. Batty. Modular re-
laxed dependencies in weak memory concurrency. In P. Miiller, editor, Programming
Languages and Systems - 29th European Symposium on Programming, ESOP 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, volume 12075 of Lecture
Notes in Computer Science, pages 599-625. Springer, 2020.

D. A. Peled. All from one, one for all: on model checking using representatives. In
C. Courcoubetis, editor, Computer Aided Verification, 5th International Conference,
CAV '93, Elounda, Greece, June 28 - July 1, 1993, Proceedings, volume 697 of Lecture
Notes in Computer Science, pages 409-423. Springer, 1993.

J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that
permits optimisation and avoids thin-air executions. In R. Bodik and R. Majumdar,
editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 -
22, 2016, pages 622-633. ACM, 2016.

G. D. Plotkin. A structural approach to operational semantics. Technical report,
University of Aarhus, 1981.

C. Pulte, S. Flur, W. Deacon, J. French, S. Sarkar, and P. Sewell. Simplifying ARM con-
currency: multicopy-atomic axiomatic and operational models for ARMv8. Proc. ACM
Program. Lang., 2(POPL):19:1-19:29, 2018.

121

[68]

[69]

[70]

(71]
(72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

C. Pulte, J. Pichon-Pharabod, J. Kang, S. H. Lee, and C. Hur. Promising-ARM/RISC-V: a
simpler and faster operational concurrency model. InK. S. McKinley and K. Fisher, ed-
itors, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
1-15. ACM, 2019.

M. O. Rabin and D. S. Scott. Finite automata and their decision problems. IBM J. Res.
Devel., 3(2):114-125, 1959.

A. Rensink and H. Wehrheim. Weak sequential composition in process algebras. In
B. Jonsson and J. Parrow, editors, CONCUR "94, Concurrency Theory, 5th International
Conference, Uppsala, Sweden, August 22-25, 1994, Proceedings, volume 836 of Lec-
ture Notes in Computer Science, pages 226-241. Springer, 1994.

J. Sakarovitch. On regular trace languages. Theor. Comput. Sci., 52(1-2):59-75, 1987.

J. Sakarovitch. The "last" decision problem for rational trace languages. In I. Si-
mon, editor, LATIN '92, 1st Latin American Symposium on Theoretical Informatics, Sdo
Paulo, Brazil, April 6-10, 1992, Proceedings, volume 583 of Lecture Notes in Computer
Science, pages 460-473. Springer, 1992.

S. Sarkar, P. Sewell, J. Alglave, L. Maranget, and D. Williams. Understanding POWER
multiprocessors. In M. W. Hall and D. A. Padua, editors, Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages 175-186. ACM, 2011.

V. Sassone, M. Nielsen, and G. Winskel. Deterministic behavioural models for concur-
rency. In A. M. Borzyszkowski and S. Sokolowski, editors, Mathematical Foundations
of Computer Science 1993, 18th International Symposium, MFCS’93, Gdansk, Poland,
August 30 - September 3, 1993, Proceedings, volume 711 of Lecture Notes in Computer
Science, pages 682-692. Springer, 1993.

SPARC International Inc and D. L. Weaver. The SPARC Architecture Manual - version
8. Prentice Hall, 1994.

M. Sulzmann and P. Thiemann. Derivatives for regular shuffle expressions. In
A. Dediu, E. Formenti, C. Martin-Vide, and B. Truthe, editors, Language and Au-
tomata Theory and Applications: 9th International Conference, LATA 2015, Nice,
France, March 2-6, 2015, Proceedings, volume 8977 of Lecture Notes in Computer
Science, pages 275-286. Springer, 2015.

G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors,
Petri Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part
11, Proceedings of an Advanced Course, Bad Honnef, Germany, 8-19 September 1986,
volume 255 of Lecture Notes in Computer Science, pages 325-392. Springer, 1986.

Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A framework for
axiomatic and executable specifications of memory consistency models. In 18th In-
ternational Parallel and Distributed Processing Symposium, 2004. Proceedings. IEEE
Computer Society, 2004.

N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction for relaxed
memory models. In D. Grove and S. Blackburn, editors, Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, pages 250-259. ACM, 2015.

122

[80] W. Zielonka. Notes on finite asynchronous automata. Theor. Inf. Appl., 21(2):99-135,
1987.

[81] W. Zielonka. Asynchronous automata. In V. Diekert and G. Rozenberg, editors, The
Book of Traces, pages 205-247. World Scientific, 1995.

123

124

Appendix A Certified Normalisation of Generalised Traces

Here we give a more detailed account of the generalised Foata and lexicographic normal-
isation we developed in Chapter[4 The main difference is that here we stay closer to the
Agda formalisation. The following are the relevant sections from Publication ITl}

In the electronic version, the definitions and lemmas given here also contain a hyper-
link to the corresponding location in the HTML listing of the Agda code. The Agda formal-
isation itself is available here: http://cs.ioc.ee/ hendrik/code/phd/isse.zip

Generalised Mazurkiewicz Traces

We consider the generalisation of traces introduced by Sassone et al. [74]. In this setting
the essential difference compared to ordinary traces is that the independence relation is
no longer a binary relation but an assignment of an irreflexive and symmetric indepen-
dence relation to every word u. More precisely, we assume that we have an alphabet A
and a context-dependent independence relation

I:A—List> A— A — Set

The second parameter to I is for the context. We use cons-lists over A (elements of List
A) to represent strings (String = List A) and snoc-lists (List> A) to represent con-
texts of strings and also (steps of) normal forms. Our notation for list operations follows
the convention that the angle bracket points to the direction where the head element is.
In the formal development, A and I together with their properties are module parame-
ters.

We use both cons- and snoc-lists in the development, as this allows function definition
by structural recursion and proof by structural induction from the correct end of the list
which can be on the left or on the right depending on what is being done in a given situ-
ation. Typically, we want to work somewhere in the middle of a cons-list. We then split
it into two parts, the left half (prefix) being a snoc-list and the right half (suffix) being a
cons-list. Such pairs of snoc- and cons-lists are zippers for the cons-list type.

We seek to follow the lexical convention described below where reasonable:

e a, b, candd are letters;
e s, t,uand v are snoc- or cons-lists;
e ssand tt are snoc-lists of snoc-lists.

Next, we describe the equivalence relation induced by the context-dependent inde-
pendence relation. First we define when two strings differ only by the ordering of two
adjacent independent letters.

Definition A.l. ~ :List A — List> A — List A — Set

aIu+>Sb
s>t<a<:b<:t ~y s><b<:ax<:t

swap

This says that the strings sabt and sbat are equivalent in the context u when the
letters a and b are independent in the context u +> s. The context is represented as a
snoc-list as we usually need to access it from the right while strings are represented as
cons-lists as we usually need to access them from the left. We use <: or for cons, <+ for
cons-append, : > for snoc and +> for snoc-append. We also use a mixed append operation
>+< that takes a snoc- and a cons-list and produces a cons-list. When we need to translate

125

http://cs.ioc.ee/~hendrik/code/phd/isse.zip
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Trace.html#_%E2%88%BC[_]_.swap

between the two representations, we use s2c for snoc-to-cons and c2s for cons-to-snoc
translation.
Mazurkiewicz equivalence is the reflexive-transitive closure of the above relation.

Definition A.2. ~*:List A — List> A — List A — Set

*
— S~V vl t
S u u

reflx S —

* *
s~,t s~,t

swap-transx*

An element of s ~ t can be seen as a sequence of instructions for transforming s into
t by swapping adjacent independent letters. No letters from u can be involved in these
swaps.

In generalised traces the family of independence relations is required to be consistent,
i.e., stable under equivalence:

I-cons:u~pv—al,b—al,b

It is also required to be coherent:

I-col : alyb—blj,c—alpc—al,c
I-co2-e : al,b—bljc—aljc—alyc
I-co2-r : alyb—bljc—alpc—al,c

The e and r suffixes in the name I-co2 refer to extending and reducing the context.
We have suppressed the formal notation for snoc-lists in the contexts here as the usual
“silent” notation for strings is more readable.

We take the same independence alphabet to be our running example as we did in
Chapter[4] Namely, the alphabet A consists of the letters a, b, c, d and the independence I
is the least consistent and coherent family of symmetric relations suchthata I b,aId,
bI,d,bI,.d,c I, d.Explicitly,thismeansthatwealsohaveb I d(byI-co2-r),alyb,
aIyd(byI-co2-e)andcIy,d(byI-cons).

Generalised Foata Normalisation

In this section we describe Foata normal forms for generalised traces and the correspond-
ing normalisation algorithm. We conclude with the correctness proof of the algorithm.

Normal Forms

We represent a Foata normal form as a snoc-list of steps which in turn are snoc-lists of let-
ters. We define Step as a synonym for List> A and Foata as a synonym for List Step.
These are the types of “raw” steps and normal forms.

In order to define well-formed normal forms, we introduce some auxiliary notation.
We define s mI, atobe A11 (\ b — b1I,a) s, expressing that, for every letter b in
s, we have that b and a are independent in the context u. Similarly, we define s ¢D, a
tobe Any (\ b — b Dy a) s, expressing that there is a letter b in s such that b and
a are dependent in the context u. Generally, the proposition A11 P xs holds when the
predicate P holds on every element of the list xs. A proof of Any P xs points to some
element in the list xs that satisfies the predicate P.

A step (in a context u) is considered well-formed if it satisfies the following predicate.

Definition A.3. StepOk:List A — Step — Set

1
StepOk u [a] SHg

126

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Trace.html#_%E2%88%BC[_]*_.refl*
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Trace.html#_%E2%88%BC[_]*_.swap-trans*
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#StepOk.sngl

StepOk u (s:>b) b<a (s:>b)ml,a
StepOk u (s :>Db:>a)

SNnoc

A well-formed step (in a context u) is either a singleton or it consists of a well-formed
step to which a new letter is added on the right, which has to be greater than the previous
rightmost letter. The added letter and the step must be independent.

We now turn to well-formed normal forms. A letter in a step of a Foata normal form
must have a dependent letter supporting it in the previous step. We formalise this by say-
ing that the preceding normal form ss has to support the letter a, written as Sup ss a.
This support is defined asP-ne (\ tt t — t #Dconcat>tt @) s8. Here we use a small
helper P-ne P xs which holds trivially when xs is empty and when xs is non-empty it re-
quiresthatP ys y holds where ys and y are the tail and head of the snoc-list xs. A “raw”
Foata normal form (a list of steps) is well-formed if it satisfies the following predicate.

Definition A.4. FoataOk : Foata — Set

—— empt
FoataOk [] P2y

FoataOk ss StepOk (concat> ss) s A1l (Sup ss) s
FoataOk (ss :> s)

step

Thus a well-formed Foata normal form can either be the empty list of steps or consist
of a well-formed normal form with an added step. This step must be well-formed in the
context of the normal form and every letter in the added step must be supported by the
normal form.

As strings and normal forms are represented by different data types, we need to asso-
ciate to a normal form its string representation. The function emb for embedding a normal
form back into stringsis defined asemb ss = s2c (concat> ss).Inotherwords, it just
concatenates the steps in the normal form.

With our example independence alphabet, we have that (abd) (c) is a Foata normal
form since we have a I b, a Ifj d and b I; d making (abd) a valid step and a D ¢
ensuring that the sole letter in the step (c) is supported. We also have that (a) (c) (bd)
is a normal form since b I,. d ensures that the step (bd) is well-formed and aD; c,cD, b
and ¢ D, d provide the requisite support for the letters in the steps (c) and (bd).

Normalisation
The normalisation algorithm traverses the input string (from the left) and inserts each
letter into an accumulating normal form (from the right). The main ingredient thus is a
function that takes a normal form and a letter and inserts the letter into its right place
in the normal form. Given a normal form nf and a letter a, inserting the letter a into nf
should produce a normal form nf?> such that emb nf’ is equivalent to emb nf <+ [a].
We define a function £ ind> parameterised by a decider P? of a predicate P on a context
(a snoc-list) and an element. It splits a given snoc-list xs into two parts, 1s and rs, so that
all of the elements in rs satisfy the predicate and the rightmost element in 1s violates
the predicate.

Algorithm A.5 (find>).

find> : (V xs x — Dec (P xs x)) — List> X — List> X x List> X
find> P? [1 = [1 , []

find> P? (xs :> x) with P? xs x

find> P? (xs :> x) | yes _ =

127

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#StepOk.snoc
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#FoataOk.empty
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#FoataOk.step
http://cs.ioc.ee/~hendrik/code/phd/isse/Data.Snoc.html#find>

let 1s , rs = find> P? xs in 1s , rs :> X
find> P? (xs :> x) | no _ =xs :>x , []

Given a step and a letter, we use find> to find the right position for the letter in the
step.

Algorithm A.6 (insert-s).

insert-s : Step — A — Step

insert-s s a =
let 1s , rs = find> (\ _ b — a <? b) s in
ls > a +> rs

Notice that we use find> with a predicate that ignores the context. The step s is split
into 1s and rs so that everything in rs is greater than a and the rightmost letter in 1s is
not. We assume that the ordering relation < is decidable, with <7 as the decider. Hence
a <7 bis either yes (together with a proof of a < b) or no (together with a proof of
—(a<Db)).

Given a normal form and a letter, we use find> to find the correct step for the letter.

Algorithm A.7 (insert).

insert : Foata — A — Foata
insert ss a with find> (\ tt t — =mI?7 tt t a) ss
insert ss a | 1s , [] =1s :> ([1 :> a)
insert ss a | 1s , rs > r =

let s , rs’ = first rs r in

1ls :> insert-s s a +> rs?’

Here find> splits the normal form into two parts, 1s and rs, so that all the steps in
rs are independent of a and the rightmost step in 1s is dependent (or 1s is empty). If
rs is empty, then we add a new step to the normal form. Otherwise, we insert a into the
leftmost step in rs (the function first extracts leftmost element in a non-empty snoc-
list). We assume that the independence relation I is decidable, with a decider I7. Here
we use a derived decider mI? for deciding whether a step and a letter are independent in
the given context.

The normalisation function just traverses the input string from the left to the right and
inserts each letter into the correct position in the accumulated normal form.

Algorithm A.8 (norm).

norm’ : Foata — String — Foata
norm’ ss [] = ss
norm’ ss (a <: t) = norm’ (insert ss a) t

norm : String — Foata
norm t = norm’ [] t

We continue with our example and look at the evolution of the accumulator as the
string bacd is normalised. First, the letter b is inserted into the empty normal form, re-
sulting in the normal form (b). Next, the letter a is inserted into this normal form, which
results in (ab) because of a I b. Next, the letter c is inserted into the result. We have

128

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert-s
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#norm

a Dy ¢, which means that a new step must be added and the result is (ab) (c). We now
need to insert d into the normal form. We have ¢ I, d and in addition we also have
aIpjdandb I d. This makes the first step the earliest possible step for d and the result
is (abd) (c).

Correctness
We have now defined the Foata normalisation function, but we have no assurance yet
that it produces well-formed Foata normal forms (i.e., elements of Foata satisfying the
FoataOk predicate). Furthermore, we have no assurance that the elements satisfying
FoataOk indeed are normal forms. We will now proceed to show that the function norm
constructs a well-formed normal form from the input string and that the elements satis-
fying FoataOk are in bijection with equivalence classes of strings.

We start by showing that inserting a letter into a well-formed step gives a well-formed
step.

LemmaA.9 (insert-s0k). V u s a —
StepO0k u s — s mI;a — StepOk u (insert-s s a)

Proof. Since s is a well-formed step, the letters in it are sorted wrt. < and unique (by
irreflexivity of the independence relation). By definition, insert-s splits s into 1s and
rs so that a is less than every letter in rs and a is not less than the rightmost letter in 1s.
We also have that s and a are independent, which implies independence of 1s and rs of
a. This allows us to construct Step0k u (1s :> a +> rs). U

To outline what we need to do next, let us look at a small example. Suppose we have
a normal form stuv consisting of steps s, t, u, and v, and we wish to insert the letter
a into this normal form. It so happens that a will go into the step t. This means that,
instead of the old context st, the letters in u must now be independent in the new context
s(insert-s t a). Likewise, the letters in v must now be independent in the context
s(insert-s t a)u. Furthermore, every letter in v must now be supported by a letter
inuin the context s(insert-s t a).

To show that the independence of letters in a step is preserved during an insert that
inserts a letter into the context, we have the following lemma.

Lemma A.10 (step-ext). V u s a —
Step0k u s — s mIya — StepOk (u :> a) s

Proof. Since s is a well-formed step, we know that for any two distinct letters b and c from
swehaveb I, c. Wealsohaveb I, aandcI,a.UsingI-co2-e, wecanderivebI,.,,c.
This means that pairwise independence of letters in s is preserved in the extended context
and the step is still well-formed. O

Next, we are considering the situation where we are inserting the letter a into the
normal form ss :> s :> t and we have determined that a must go into a step in ss.
We wish to show that the letters in t are still supported after the insert. We use PW I, s
to express that the predicate I, holds between any two letters in s, i.e., the letters in s
are pairwise independent in the context u. The normal form ss is considered here as the
context u and b is a letter from the step t.

Lemma A.11 (¢D-ext-lem). Vu s a b —
bIjsssa - PWI,s — smIja — seDyb — smly..nb — L

129

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert-sOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormalForms.html#step-ext
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.TraceProperties.html#%E2%97%86D-ext-lem

Proof. From the assumptions, we have that there is a letter d in s such that d D, b and
this d must also satisfy d I, a and d I,.>, b. We have derived a version of I-col (named
mI-col) that decreases the context not by a letter but by a step. We use thison s aI, a,
alysssb, s mly.5,band PW I, stoderiveaI,b. WeuseI-co2-rondI,a,al,b,and
d I,.>. btogetd I, b. ThiscontradictsdD, b. O

This shows that, under suitable conditions, we can add a letter to the end of the context
and still have a supporting letter in the previous step. From I-cons, we know that this
support is then preserved for any equivalent context. To show that insert preserves
the equivalence class, we first show that we can “slide” an independent letter past a step
without changing the equivalence class.

LemmaA.12 (slide-step). V u s a —
sml,a — PW I, s — s2c (u +> s :> a) N’E] s2c (u > a +> s)

Proof. The proofis by induction on s. Inthe casewheres = s’ :> b,wehaves’ ul, a,
bI,a PWI,s’ s’ ml,bandwegetb I, s> abyaderivedversion of I-co2-e that al-
lows us to extend the context by a step. This allows us to swap b and a in the string
u +> s’ :>b :> atoobtainu +> s’ :> a :> b and then apply induction hypoth-
esis. O

Lemma A.13 (insert-lem). V ss a —
FoataOk ss — emb (insert ss a) N’E] emb ss <+ [a]

Proof. The proof follows the analysis of ss done by insert. When a new singleton step is
added (ss is empty or ends with a step that supports a), then the two sides are equal and
we are done. When a is inserted into the last step s, then s and a must be independent
and sissplitinto 1s andrs. According to s1ide-step, we canslide a past rs to the end of
the normal form without changing the equivalence class. When ais inserted into an earlier
step, then we use induction hypothesis to slide the letter a from its inserted position to
the beginning of the last step and, since a and the last step must have been independent
to begin with, we can slide it past that step to the end of the normal form. O

Lemma A.14 (sup-insert-lem). V ss s a b —

Foatalk (ss :> s) — a Icgncats(ssi>s) P —

- Sup (ss :>s) b - — Sup ss b — Sup (ss :> s) a —
Sup (insert (ss :> s) b) a

Proof. Since neither ss :> s nor ss support b, we know that insert (ss :> s) bis
thesameas insert ss b :> s.Thusweneedtoshow Sup (insert ss b :> s) a.
Since Sup (ss :> s) a just denotes the existence of a dependent letter in s, we use
#D-ext-lemtoshow thatit cannot be the casethat s mIconcat>ss:>b . Frominsert-lem
we know that this context is equivalent to concat> (insert ss b) and so there must
still be a supporting letter in s after the insert, thus Sup (insert ss b :> s) a. O

Lemma A.15 (insert0k). V ss a — FoataOk ss — FoataOk (insert ss a)

Proof. The proof follows the analysis of ss done by insert. When a letter a is inserted
into a particular step s, then insert-s0k ensures that the resulting step is valid. When
insert goes past a step s with the letter a, then step-ext ensures that the step s
is still valid in the context extended with a and insert-lem ensures that s is valid af-
ter the insert. When insert goes past two steps, s and t, with the letter a, then
sup-insert-lem ensures that all the letters in t are still supported by s in the context
resulting from the insert. O

130

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.TraceProperties.html#%E2%97%BCI-co1
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#slide-step
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insert-lem
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#sup-insert-lem
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#insertOk

Lemma A.16 (norm’0k). V ss t — FoataOk ss — FoataOk (norm’ ss t)
Proof. The proof is by induction on t and just applies insert0k in the step case. O
Proposition A.17 (norm0k). V t — FoataOk (norm t)

The correctness proof of the normalisation algorithm consists of the proofs of the
soundness and completeness properties. By soundness we mean that equivalent strings
must get assigned the same normal form. By completeness we mean that any two strings
that get assigned the same normal form must be equivalent. With these properties we
have a bijection between equivalence classes of strings and elements in the image of the
normalisation function. We also show that the set of elements satisfying the FoataOk
predicate is contained in the image of the normalisation function.

The key lemma for completeness is that the result of normalising a string (and then
embedding it) is equivalent to that string. In other words, every string has a normal form.

Lemma A.18 (nf-exists?’). V ss t —
FoataOk ss — emb (norm’ ss t) N’E] emb ss <+ t

Proof. The proof is by induction on t. In the step case, we use insert0Ok to show that
inserting the first letter of t into ss is a normal form and then apply induction hypothesis.
The equivalence follows from insert-lem. O

Proposition A.19 (nf-exists). V t — emb (norm t) ~ht
Corollary A.20 (completeness). V t t> — norm t = norm t’ — t N’E] t?
Proof. Apply nf-existstobothtandt’.]

To prove soundness of the normalisation algorithm, we first show the commutativity of
the normalisation algorithm for independent letters. We start by showing that the order
in which we insert two independent letters into a step does not matter.

Lemma A.21 (insert-s-commutes). V u s a b —
Steplk u s = alywsb — smlya — selyb —
insert-s (insert-s s a) b = insert-s (insert-s s b) a

Proof. By insert-s0k, we know that insert-s produces well-formed steps. The letters
in a well-formed step are sorted wrt. < and unique. This means that the two ways to
insert the two letters must result in the same step. Hence the order of the inserts does
not matter.]

Lemma A.22 (insert-commutes). V ss a b —
FoataOk ss — a Iconcat>ss P —
insert (insert ss a) b = insert (insert ss b) a

Proof. There are three cases to consider: both letters are supported by ss, only one of
them is, or neither of them is.

In the first case, a new step is added no matter whether we insert a first or b first. Since
a and b are independent and supported by ss, both of them end up in the new step. The
order in which the letters are inserted into the new step does not matter as the result
must agree with the ordering on the alphabet.

In the second case, say that a is the letter supported by ss. When we first insert a
and then b, then a singleton step for a is added. Since a and b are independent and

131

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#normOk'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Norm.html#normOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#nf-exists'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#nf-exists
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#completeness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.InsertStepProperties.html#insert-s-commutes
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.InsertProperties.html#insert-commutes

b is not supported by ss, it must be that b is inserted to some step in ss, i.e., we have
insert (ss :> [a]1>) b = insert ss b :> [a]>.Thisstepisthesamewhere
b would be inserted if it were inserted first. Since a is supported by ss, then insert ss b
must also support a (this follows from sup-insert-1lem) and thus a new singleton step
must be added also in this case.

In the third case, both letters are inserted into ss. Since ss cannot be empty, we take
ss = ss’ :> s. Here we perform another case analysis on into which steps the letters
go. If both gointo s, then we apply insert-s-commutes. If one of the letters, say b, goes
into ss?’ and the other into s, then we argue similarly to the second case: if a is supported
by ss?, thenitis also supported by insert ss’ b, and, if s and b are independent, then
so are insert-s s aand b. Thus the order of inserts does not matter. If both a and b
go into ss?, then we apply induction hypothesis. O

Lemma A.23 (norm’-commutes). V ss a b —
FoataOk ss — a Iconcat>ss b —
norm’ ss (a <: b <: []) = norm’ ss (b <: a <: [])

Proof. This follows from insert-commutes. O

Lemma A.24 (norm’-append). V ss s t —
norm’ ss (s <+ t) = norm’ (norm’ ss s) t

Proof. By induction on s. O

LemmaA.25 (sound~). V ss t t’ —
FoataOk ss — t ~copcat>ss £’ — norm’ ss t = norm’ ss t’

Proof. We have that t and t’ differ only by the ordering of two adjacent independent
letters, i.e., t = uabv and t’ = ubav for some u, v, a and b. The result follows from
norm’ -commutes (norm’ ss u) a b. We use norm’-append twice on both sides to
get the result. O

Lemma A.26 (soundness’). V ss t t’? —

FoataOk ss — t ~} .tsss £’ — norm’ ss t = norm’ ss t’

Proof. By inductionont ~} t7. O

concat>ss
Proposition A.27 (soundness). V t t> — t ~}; t> — norm t = norm t’
The soundness and completeness proofs give us a certified decision procedure for
checking whether two strings are equivalent: normalise the two strings and check whether
the normal forms are the same.

Algorithm A.28 (equivalent?).

equivalent? : (t t’ : String) — Dec (t ~p t7)

equivalent? t t’ with foata-eq? (norm t) (norm t’)

equivalent? t t’ | yes feq = yes (completeness feq)
equivalent? t t’ | no —feq = no (\ eqv — —feq (soundness eqv))

This procedure will either return yes, together with instructions how to turn u into v
(which letters need to be exchanged), or no, together with a proof that it is not possible
to turn u into v. Here foata-eq? uses the decidable equality on the alphabet to decide
whether the two normal forms are the same.

132

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#norm'-commutes
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#norm-append
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#sound%E2%88%BC
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#sound*
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#soundness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#equivalent?

We also have that the normalisation function is stable in the sense that normalising a
normal form produces the same normal form. In other words, every normal form is the
normal form of something.

Proposition A.29 (stability). V ss — FoataOk ss — norm (emb ss) = ss

Proof. This is by induction on the normal form. In the non-empty case, we have to show
that renormalising a step s in the context of the preceding normal form ss? results in
the same step. This is the case since we started with a normal form and thus the step is
well-formed and every letter in the step is supported by the preceding normal form. By
induction hypothesis, we know that renormalising ss’ results in ss’. Since letters from s
are supported by ss?’, this means that no letter from s can be inserted into ss?. Similarly,
all the letters from s fit into the same step. Hence the result is s. O

Finally, we have that two normal forms (more precisely, their embeddings) can be
equivalent only if the normal forms are the same.

Corollary A.30 (nf-unique). V ss ss’ —
FoataOk ss — FoataOk ss’> — emb ss NE emb ss’ — ss = ss’

Proof. This follows from stability and soundness. O

Generalised Lexicographic Normalisation

In this section, we give a characterisation of lexicographic normal forms for generalised
traces and the corresponding normalisation algorithm. We conclude with the correctness
proof of the normalisation algorithm.

Normal Forms
We represent a “raw” lexicographic normal form as a snoc-list of letters (List> A). The
embedding function emb of normal forms into strings is s2c.

We consider a list of letters to be a well-formed lexicographic normal form when each
letter in it is in a valid position. Similarly to the previous section, a letter is in a valid
position in a normal form if it is supported by the preceding normal form.

Definition A.31. Sup:List> A — A — Set

P-ne (\ s’ b —>bDs»a) s
Sup s a

D-sup

Sup s a bIga b<a
Sup (s :> D) a

I-sup

Hence a letter is supported by a (snoc-)list if either the list is empty or ends with a
dependent letter or the tail of the list supports the letter and the head is independent
of and smaller than the letter. A list of letters is a well-formed lexicographic normal form
when every letter in the list is supported.

Definition A.32. Lex0k:List> A — Set

T LexOk s Sup s a
LexOk [1 ™ Lex0k (s :> a)

133

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#stability
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.NormProperties.html#nf-uniq
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#Sup.D-sup
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#Sup.I-sup
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk.nil
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk.snoc

We continue with our example and show that abcd is a lexicographic normal form
(according to our definition). From Lex0k [] and Sup [] a, we get Lex0Ok a. Next, we
get Sup a b from Sup [] b using I-sup and thus get Lex0k ab. We have Sup ab ¢
by D-sup and b D, c, resulting in Lex0k abc. Finally, we get Sup abc dfromSup [] 4
by applying I-sup three times. Thus the list abcd is a well-formed normal form.

We now define what is a “chain” of independent letters wrt. a letter.

Definition A.33. CI:List> A — List> A— A — Set

bIsissa sCl,a
[1CI,a (s :>b)CI,a

When s is a chain of independent letters wrt. a, then we can “slide” a past s, i.e., we
have the following equivalence: emb (s :> a) ~} a <: emb s.

The characterisation of lexicographic normal forms by Anisimov and Knuth [9] forbids
the “bua” pattern. Our definition also forbids this pattern in the generalised case.

Proposition A.34 (LexOk-bua). V t u v a b —
LexOk (t :>b +> u :> a +>v) - altb - a<b — u Cli.sp a — L

Proof. The proof is by induction on v. In the empty case, we have that a is supported by
something since it is the last letter in a normal form. The actual support must come from t
since a is independent of both b and u (in the relevant contexts). This however means that
b < asincethe support for a must have been constructed by I-sup. This contradicts our
assumption. In the case where v is non-empty, we apply induction hypothesis. O

We use the strict total order < on A to define the corresponding lexicographic order
relation on strings, both in the non-strict and strict versions, and prove that it is a total
order.

Definition A.35. =<i.,: String — String — Set

———— hil
[] jLext
b a=b s=pxt
a =< Tt _—Lex eq
a<:sXexb<:t a<:sXiexb<: t

Lemma A.36 (antisym-—=;.,). The relation <., is antisymmetric.

By definition, the lexicographic normal form is the least element in its equivalence class
wrt. the lexicographic order <;.,. Here we show that the normal forms we have defined
are indeed lexicographically smaller than any other string in their equivalence class.

Lemma A.37 (LexOk-lex’). Vu s t —
LexOk (u +> s) — emb s ~; t — emb s <pex t

Proof. The proof is by induction on the strings s and t. If both are empty, then we are
donesince [1 =iz [1.Inthe cases where one is empty and the other is not, we have a
contradiction since equivalent strings must have the same length. In the case where both
are non-empty (a <: emb s andb <: t), we perform case analysis on the head ele-
ments. Ifa < b, thenwe aredone. Ifb < a, then we have a contradiction since b must
be somewhere in emb s (by the equivalence) and the letters before b (including a) must
be independent with it. This creates a forbidden patterninu +> s.Inthecaseofa = b,
we get by induction hypothesis, after moving a to the context u, thatemb s <;., t. O

Proposition A.38 (Lex0Ok-1lex). V s t —
LexOk s — emb s ~[; t — emb s Zpex t

134

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk-bua'
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#_Lex-%E2%89%A4_
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#_Lex-%E2%89%A4_
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#_Lex-%E2%89%A4_
http://cs.ioc.ee/~hendrik/code/phd/isse/Utils.LexOrd.html#Lex-%E2%89%A4-antisym
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk-lex'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#LexOk-lex

Normalisation

The main ingredient in the normalisation algorithm is a function that inserts a letter into
its correct position in a list (which is assumed to be a well-formed normal form). Given a
string s and a letter a, the idea is to split the string s into three parts: sd, sp, and si so
that sd ends with a letter dependent on a, all letters in sp are independent of and less
than a, and letters in si are independent of a and the first letter of si is greater than a.

Algorithm A.39 (findPos).

findPos : List> A — A — List> A X List> A X List> A

findPos [] a=0,0, (0

findPos (s :> b) a with I? s b a

findPos (s :>b) a | no _=s :>b, [1, []
findPos (s :> b) a | yes _ with findPos s a
findPos (s :>b) a | yes _ | sd , sp, si > i =

sd , sp, si :>1 :>Db
findPos (s :> b) yes _ | sd , sp , [] with b <? a
findPos (s :> b) yes _ | sd , sp, [| no _ =
sd , sp, [1 :>Db
findPos (s :>b) a | yes _ | sd , sp, [1 | yes _ =
sd , sp :> b, []

The function findPos implements the described functionality. Like before, we assume
that the independence relation I and the order relation < are decidable, with deciders 17
and <7?. The insert function now just plugs the letter between sp and si in the result
of findPos.

Algorithm A.40 (insert).

insert : List> A — A — List> A
insert s a =
let sd , sp , si = findPos s a in
sd +> sp > a +> si

The normalisation algorithm just traverses the input string letter by letter and inserts
the letters into the accumulating normal form, just as in Foata normalisation.

Algorithm A.41 (norm).

norm’ : List> A — String — List> A
norm’ s [] =5
norm’ s (a <: t) = norm’ (insert s a) t

norm : String — List> A
norm t = norm’ [] t

We continue with our example and look at what are the intermediate steps when nor-
malising bacd. First, when inserting b into the empty normal form, insert splits it into
[1, [1, [1 and the resultis b. Next, when inserting a, the normal form b is split into
(1, [1, bsincea < bandb I a. Theresultisab. When inserting c into ab, the split
isab, [1, [] and the resultis abc. Finally, when inserting d into abc, the split is the
triple [1, abc, L[] and thus the resultisabcd.

135

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#insert
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#norm

Correctness
We have now defined the lexicographic normalisation algorithm. This produces “raw”
normal forms, i.e., just snoc-lists. Next we show that the snoc-lists constructed by the
normalisation function are well-formed normal forms in the sense that they satisfy the
predicate Lex0k. We then show that the strings satisfying Lex0k are in bijection with the
equivalence classes of strings.

We begin with a couple of lemmas exhibiting that f indPos behaves as expected. The
first lemma says that findPos just splits the input string.

Lemma A.42 (findPos-split). V s a —
let sd , sp , si = findPos s a in
sd +> sp +> si = s

Proof. From the definition of findPos it is clear that it does not rearrange the letters in
s (b always stays to the right of the result of the recursive call to findPos). The proof just
follows the analysis of s done by findPos. O

The next lemma ensures that the si component in the result of findPos consists of a
“chain” of independent letters.

Lemma A.43 (findPos-I). V s a —
let sd , sp , si = findPos s a in
81 Clgg+ssp @

Proof. Here the proof also follows the analysis of s done by findPos. When b is added
to the si component in the result, then we know that b and a must be independent.
Induction hypothesis is used when the si component of the result of the recursive call is
non-empty. O

The next lemma ensures that the leftmost letter of si in the result of findPos is
greater than the letter a. The proposition a <first si holds when a is less than the
first letter of si.

Lemma A.44 (findPos-<first). V s a —
let _ , _ , si = findPos s a in
a <first si

Proof. From the definition of findPos we see that when the first letter is added to the
si component, then it must be greater than a since it is not smaller than a and cannot be
equal by irreflexivity of independence. O

We now show that insert preserves the equivalence class in the following sense:
the normalisation algorithm uses insert in the situation where a prefix s has been nor-
malised to nf and the suffix a <: t is yet to be normalised. Then insert will find the
right place for a in nf such that the result of is equivalent tonf :> a.

Lemma A.45 (insert-lem). V s a —
emb (insert s a) NE emb s <+ [a]

Proof. By definition insert plugs the letter a between sp and si. From findPos-I
we get that s1i is a chain of independent letters and thus we can move a past it without
changing the equivalence class. O

The next lemma ensures that under certain conditions the support of a letter is pre-
served when another letter is inserted into the supporting string.

136

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos-split
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos-I
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#findPos-<first
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#insert-lem

Lemma A.46 (slideSup). V s ii i b a —

Sup (s +> ii :> i) a — (ii :> i) CIz b —
bIgirii:zia — b <first (ii :> i) —

Sup (s :> b +> ii :> i) a

Proof. The proof is by induction on Sup (s +> ii :> i) a. The base case is D-sup,
which means that we have i D535 a and we need to show that i Dg.sp+5 45 a. This fol-
lows from I-col and I-cons. In the I-sup case, we have i Ig.,;; a, but we do not
know which is the dependent letter that supports a. If ii is empty, then b is inserted
immediately before i and we construct I-sup using I-co2-r and I-co2-e. In the non-
empty case, we construct the support from induction hypothesis and use I-co2-r and
I-co2-e to show that i and a are still independent when the head of ii is added to the
support. O

Lemma A.47 (insert0k). V s a — LexOk s — Lex0Ok (insert s a)

Proof. The proof follows the analysis of s done by findPos. The result follows from
slideSup and the preceding lemmas about findPos. O

Lemma A.48 (norm’0k). V s t — Lex0Ok s — Lex0Ok (norm’ s t)
Proof. The proof is by induction on t and applies insert0k in the step case. O
Proposition A.49 (norm0k). V t — Lex0k (norm t)

Thus we have that the set of strings which satisfy the predicate Lex0k (i.e., the normal
forms) contains the image of the normalisation function. We continue with the soundness
and completeness properties of the normalisation algorithm. By soundness we mean that
equivalent strings get assigned the same normal form. By completeness we mean that
any two strings that get assigned the same normal form must be equivalent. With these
properties we have a bijection between equivalence classes of strings and the image of the
normalisation function. We also show that the set of strings which satisfy the predicate
Lex0k is contained in the image of the normalisation function.

The key lemma for the completeness proof is that the result of normalising a string is
equivalent to that string. In other words, every string has a normal form.

Lemma A.50 (nf-exists’). V s t — emb (norm’ s t) NyE] emb s <+ t

Proof. The proof is by induction on t. In the step case, we use induction hypothesis to-
gether with insert-1lemto show that inserting the first letter of t into s does not change
the equivalence class. O

Proposition A.51 (nf-exists). V t — emb (norm t) N”E] t

Corollary A.52 (completeness). V t t> — norm t = norm t’ — t ~p v’

Proof. Apply nf-exists to both sides of the equation. O
Continuing towards soundness, we first prove the uniqueness of normal forms.

Proposition A.53 (nf-unique). V s s’ —
LexOk s — Lex0Ok s’ — emb s N’E] emb s’ — s = s’

Proof. By Lex0k-lex we obtain from the assumptions both emb s <;., emb s’ and
emb s’ =Ly emb s, from which, by antisymmetry of <;.x, wehaveemb s = emb s’.
Since emb = s2c isinjective (inverted by c2s), s = s’ follows. O

137

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#slideSup
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#insertOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#norm'Ok
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#normOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#nf-exists'
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#nf-exists
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#completeness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#nf-uniq

Corollary A.54 (soundness). V t t’ — t ~17 t’ — norm t = norm t’

Proof. By nf-exists both t and t’ have a normal form and by assumption these are
equivalent, i.e., we have emb (norm t) N’E] emb (norm t’). The result follows from
this by nf -unique and norm0Ok. O

From uniqueness of normal forms we also get the stability of the normalisation algo-
rithm, i.e., every normal form is the normal form of something. Thus the set of normal
forms is contained in the image of the normalisation function.

Corollary A.55 (stability). V s — Lex0k s — norm (emb s) = s
Proof. This follows from nf-unique, normQOk and nf-exists. O
An alternative approach to soundness would have been to prove the following lemma.

Lemma A.56 (insert-commutes). V s a b —
LexOk s — alsb — insert (insert s a) b = insert (insert s b) a

This leads to soundness, stability and uniqueness similarly to what we did for Foata
normal forms.

Finally, we can now prove the converses of Lex0Ok-1ex and Lex0Ok-bua showing that
the least string in its equivalence class is the lexicographic normal form and that a string
with no forbidden patterns is a lexicographic normal form.

Proposition A.57 (1ex-Lex0k). V s —
(Vt = embs ~[; t— embs =y t) — LexOk s

Proof. By nf-exists we have that emb s NE emb (norm (emb s)). Thus, by as-
sumption, emb s <., emb (norm (emb s)). Atthe same time, by normOk we have
Lex0k (norm (emb s)), from which emb (norm (emb s)) =i.x emb s follows by
Lex0k-1ex. By antisymmetry of <;.,,wehaveemb s = emb (norm (emb s)).Asemb
is injective, this entails s = norm (emb s). Since we have Lex0k (norm (emb s)),
then we also have Lex0k s.]

Proposition A.58 (bua-Lex0k). V s —
(Wtuvab —

t:>b+>u:>a+>v=s—>altb >a~<b—>uCliswwa— 1) —
Lex0k s

Proof. If s = norm (emb s), then the result follows by norm0k. If not, then we can
factor the two as s = tbuav and norm (emb s) = tau’bv’. By nf-exists, we have
emb tbuav ~[; emb tau’bv’. The letter after t is the first position where the two
differ (a # b). WehaveaI;b,u CI;.;;, aandu’ CI;.,, bsincenormhasmovedthem
past each other. If a < b, then we contradict the assumption that there are no forbidden
patternsin s. If b < a, then there is a forbidden pattern in norm (emb s), which is a
normal form and thus, by Lex0k-bua, does not contain a forbidden pattern. O

138

http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#soundness
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#stability
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#lex-LexOk
http://cs.ioc.ee/~hendrik/code/phd/isse/Generalized.Lexicographic.html#bua-LexOk

Acknowledgements

I am very grateful to my supervisor for his care and encouragement during my studies.
Also, | am thankful to my colleagues at the institute for the nice atmosphere they have
provided. | am also grateful to my friends for helping me relax and unwind. Most of all, |
am indebted to my family for my upbringing.

My doctoral studies and the research reported here was supported by the ERDF funded
Estonian national CoE project EXCITE (2014-2020.4.01.15-0018), the Estonian Ministry of
Education and Research institutional grant no. IUT33-13, the Estonian IT Academy pro-
gramme, the ERDF funded Dora Pluss programme, the EU COST action CA15123 (EUTYPES)
and the Estonian Research Council/Campus France Estonian-French research cooperation
programme Parrot.

139

Abstract

Operational Semantics of Weak Sequential Composition

In this dissertation, we propose an operational semantics where the effect of sequential
composition can be relaxed for certain pairs of instructions. This allows, in the program
D; ¢, to start with the execution of g even when p is not yet fully executed. The motivation
for this work is that programs are often executed in a similarly relaxed manner: modern
hardware often allows out-of-order execution and compiler optimisations can also move
code around. When the effects of such optimisations become visible in a system, then
the system is said to have a weak consistency model. This is often referred to as weak or
relaxed memory models.

Our approach is to consider the set of possible instructions as an alphabet and use
an independence relation on the alphabet (as in Mazurkiewicz traces) to describe those
pairs of instructions that can be reordered during execution. We represent programs as
regular expressions over the alphabet of instructions and consider program executions to
be words over this alphabet.

As a first step, we develop reordering derivatives. More precisely, we provide syntac-
tic derivative-like operations, defined by recursion on regular expressions, in the styles
of both Brzozowski and Antimirov, for trace closures of regular languages. Just as the
ordinary Brzozowski and Antimirov derivative operations correspond to the standard in-
terpretation of regular expressions as regular languages, the derivative operations we de-
velop here correspond to a non-standard interpretation of regular expressions as trace-
closed languages. Similarly, these derivative operations can also be used to construct
deterministic and non-deterministic automata, respectively. The trace-closing interpreta-
tion of regular expressions, however, does not yield a regular language in general, hence
these automata cannot be finite in general.

We show that for star-connected expressions the Antimirov and Brzozowski automata,
suitably quotiented, are finite. Furthermore, we also define a refined version of the An-
timirov reordering derivative operation where parts-of-derivative (states of the automa-
ton) are nonempty lists of regular expressions rather than single regular expressions. We
define the uniform scattering rank of a language and show that, for an expression whose
language has finite uniform scattering rank, the truncation of the (generally infinite) re-
fined Antimirov automaton, obtained by removing long states, is finite without any quo-
tienting, but still accepts the trace closure. We also show that star-connected languages
have finite uniform scattering rank.

The operational semantics is then based on the Antimirov reordering derivative. To
accomplish this we add parallel composition to the syntax, we let go of the requirement
that the independence relation has to be symmetric, we thread machine states through
the rules and we interpret letters of the alphabet as state transformers.

Representing executions as words allows the use of normal forms of Mazurkiewicz
traces to alleviate the combinatorial explosion caused by reordering and interleaving the
instruction sequences of different threads. We do this by eagerly discarding non-normal-
form executions.

The specification of some memory models might require us to say that two instruc-
tions are independent in some state but not in others. With this in mind, we also develop
Foata and lexicographic normal forms and corresponding normalisation algorithms for a
generalisation of traces introduced by Sassone et al. and formalise it in Agda. This gen-
eralisation of traces makes the independence relation depend on a word parameter rep-
resenting the left context which can be seen as a form of state. This context-dependent

140

approach can lead to larger equivalence classes. As a consequence, there are also more
non-normal-form executions which can be discarded.

We then further extend the operational semantics to allow more intricate behaviours.
For example, we will say that the semicommutation relation can be context-dependent
(two instructions might commute in some machine state but not in others). We also con-
sider what we call reordering actions. These allow us to describe how the reordering
of two instructions might modify these instructions. We also add the possibility to exe-
cute an instruction in multiple steps. As an experiment, we describe a fragment of the
multicopy-atomic ARMv8 memory model in this framework and validate a prototype im-
plementation of the instantiation of the framework against the memory model simulation
tool herd on a number of litmus-tests.

141

Kokkuvote

Norga jadakompositsiooni operatsioonsemantika

Kaesolevas doktoritods arendame valja operatsioonsemantika, kus jadakompositsiooni
toime teatud k&supaaridel voib olla 16tv ehk mitte tiiesti jarjestikune. See tihendab, et
programmis p;q on voimalik g taitmist alustada juba siis, kui p ei ole veel 16puni taidetud.
Selle t66 ajendiks on asjaolu, et programme sageli tdidetaksegi taolisel I6dval viisil: kaas-
aegne riistvara lubab kaskude taitmist “valjaspool jarjekorda” ning samuti voivad kompi-
laatorid programmikoodi muuta. Kui taolised optimisatsioonid muutuvad slisteemis nah-
tavaks, siis see stisteem jargib norka kooskdlamudelit. Sageli 6eldakse siis, et tegu on ndrga
vOi [6dva malumudeliga.

Selles t66s me kasitleme voimalike kdskude hulka kui tahestikku ning kirjeldame im-
berjarjestatavad kasupaarid séltumatuse seosega sellel tahestikul nagu Mazurkiewiczi jal-
gede teoorias. Programme esitame me regulaaravaldistena sellel tahestikul ning program-
mijooksud on sénad samuti sellel tahestikul.

Esimese sammuna taolise operatsioonsemantika suunas me téotame valja Umberjar-
jestavad tuletised. Teisisonu, me defineerime regulaarkeelte jalgsulundite jaoks nii Brzo-
zowski kui ka Antimirovi stiilis stintaktilised, regulaaravaldistel opereerivad, tuletiselaad-
sed tehted. Nii nagu tavalised Brzozowski ja Antimirovi tuletised vastavad regulaarvaldis-
te harilikule interpretatsioonile regulaarkeeltena, vastavad meie poolt defineeritud (m-
berjarjestavad tuletised regulaaravaldiste ebaharilikule interpretatsioonile regulaarkeelte
jalgsulunditena. Samuti on véimalik ka imberjarjestavaid Brzozowski ja Antimirovi tule-
tisi kasutada regulaaravaldisest deterministliku ja mittedeterministliku automaadi moo-
dustamiseks. Need automaadid aktsepteerivad avaldise keele jalgsulundi. Kuna aga regu-
laarkeele jalgsulund ei ole Uldjuhul regulaarne, ei saa ka need automaadid Uldjuhul olla
16plikud.

Lisaks me n3itame, et piisaval faktoriseerimisel on tarn-sidusate avaldiste Antimirovi
ja Brzozowski automaadid I6plikud. Me defineerime Antimirovi imberjarjestavast tuleti-
sest ka rafineeritud variandi, kus Uksikute avaldiste asemel on tuletise osadeks (automaa-
di olekuteks) mittettihjad avaldiste loendid. Me defineerime ka (ihtlase laotusastaku ning
nditame, et avaldiste korral, mille keelel on |6plik Gihtlane laotusastak, on avaldise karbitud
rafineeritud Antimirovi automaat |6plik, on seda taiesti faktoriseerimata ning aktseptee-
rib avaldise keele sulundi. Karpimine eemaldab automaadist pikad olekud. Lisaks nditame
ka, et tarn-sidusatel avaldistel on 16plik Gihtlane laotusastak.

Meie kirjeldatav operatsioonsemantika pohineb eelnimetatud Antimirovi imberjarjes-
taval tuletisel. Selleks lisame avaldiste hulka paralleelkompositsiooni, loobume néude-
st, et s6ltumatuse seos peab olema siimmeetriline ning pdimime masina olekud tuletise
reeglitesse ja interpreteerime tahti olekuteisendajatena.

Programmijooksude esitamine sonadena voimaldab kisujadade Umberjarjestamisel
ning seejargsel vaheldamisel tekkiva kombinatoorse plahvatuse pehmendamiseks kasu-
tada Mazurkiewiczi jalgede normaalkujusid. Selleks me katkestame programmijooksu ge-
nereerimise niipea, kui markame, et see pole normaalkujuline.

Moningate malumudelite spetsifikatsioon voib nduda, et teatud kasupaarid on lihes
olekus soltumatud, aga teises mitte. Seda silmas pidades laiendame Foata ja leksikograafi-
lised normaalkujud ning vastavad normaliseerimisalgoritmid ka Sassone jt. poolt definee-
ritud jalgede (ldistusele ning formaliseerime need Agdas. See jalgede (ildistus parametri-
seerib soltumatuse seose sOnaparameetriga, mis esitab tahepaari vasakut konteksti. Seda
konteksti saab vaadelda ka kui olekut. Taoline kontekstitundlikkus voib viia suuremate ek-
vivalentsiklassideni. Tulemusena saame rohkem mittenormaalkujulisi programmijookse,

142

mille véime varakult katkestada.

Viimaks laiendame me kirjeldatud operatsioonsemantikat veelgi, et voimaldada ka kee-
rukamate programmikaitumiste esitamist. Naiteks lubame me kontekstitundlikke pool-
kommuteeruvuse seoseid ehk et kdsupaar voib (ihes masina olekus olla imberjarjestatav,
aga teises mitte. Me lubame ka Gimberjarjestamise toimed, mis voimaldavad meil kirjelda-
da, kuidas kasupaari iUmberjarjestamine voib neid kaske muuta. Lisaks lubame me kaske
taita ka mitme sammu kaupa. Selle raamistiku véimekuse proovile panekuks me kirjelda-
me selles osa ARMv8 malumudelist ning valideerime vastava prototiilibi hulgal lakmus-
testidel malumudelite simuleerimistooriista herd suhtes.

143

Curr

iculum Vitae

Personal data

Name

Hendrik Maarand

Date and place of birth 27 October 1988, Tallinn, Estonia
Nationality Estonian

Contact information

Address Department of Software Science, Tallinn University of Technology
Akadeemia tee 21B, 12618, Tallinn, Estonia

E-mail hendrik@cs.ioc.ee

Education

2015-2020 Tallinn University of Technology

Information and Communication Technology, PhD studies

2012-2014 Tallinn University of Technology

Informatics, MSc studies

2008-2011 Tallinn University of Technology

Informatics, BSc studies

Language competence
Estonian native
English fluent
Russian basic

Professional employment

2017-... Department of Software Science, Tallinn University of Technology
2015-2016 Institute of Cybernetics, Tallinn University of Technology

2010-

2015 Proekspert AS

Papers

1.

H. Maarand and T. Uustalu. Certified normalization of generalized traces. Innova-
tions in Systems and Software Engineering, 15(3-4):253-265, 2019

. H. Maarand and T. Uustalu. Reordering derivatives of trace closures of regular lan-

guages. In W. J. Fokkink and R. van Glabbeek, editors, 30th International Conference
on Concurrency Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Nether-
lands, volume 140 of LIPIcs, pages 40:1-40:16. Schloss Dagstuhl - Leibniz-Zentrum
far Informatik, 2019

. H. Maarand and T. Uustalu. Operational semantics with semicommutations. In

T. Uustalu and J. Vain, editors, 31st Nordic Workshop on Programming Theory, NWPT
2019, November 13-15, 2019, Tallinn, Estonia, Abstracts, pages 40-43. TTU, 2019

. H. Maarand and T. Uustalu. Certified Foata normalization for generalized traces.

In A. Dutle, C. A. Munoz, and A. Narkawicz, editors, NASA Formal Methods - 10th
International Symposium, NFM 2018, Newport News, VA, USA, April 17-19, 2018,
Proceedings, volume 10811 of Lecture Notes in Computer Science, pages 299-314.
Springer, 2018

144

5. H. Maarand and T. Uustalu. Generating representative executions [extended ab-
stract]. In V. T. Vasconcelos and P. Haller, editors, Proceedings of the Tenth Work-
shop on Programming Language Approaches to Concurrency- and Communication-
cEntric Software, PLACES@ETAPS 2017, Uppsala, Sweden, 29th April 2017, volume
246 of EPTCS, pages 39-48. Open Publishing Association, 2017

145

Elulookirjeldus

Isikuandmed

Nimi Hendrik Maarand

Silinniaeg ja -koht 27.10.1988, Tallinn, Eesti

Kodakondsus Eesti

Kontaktandmed

Aadress Tallinna Tehnikadilikool, Tarkvarateaduse instituut,
Akadeemia tee 21B, 12618, Tallinn, Eesti

E-post hendrik@cs.ioc.ee

Haridus

2015-2020 Tallinna Tehnikatilikool

Info- ja kommunikatsioonitehnoloogia, doktoriope
2012-2014 Tallinna Tehnikatilikool

Informaatika, magistriope
2008-2011 Tallinna Tehnikatilikool

Informaatika, bakalaureusedpe

Keelteoskus

eesti keel emakeel
inglise keel korgtase
vene keel algtase

Teenistuskaik

2017- ... Tarkvarateaduse instituut, Tallinna Tehnikatlikool
2015-2016 Kiberneetika instituut, Tallinna Tehnikailikool
2010-2015 Proekspert AS

Teadustegevus
Teadusartiklite loetelu on toodud ingliskeelse elulookirjelduse juures.

146

	List of Publications
	Author's Contributions to the Publications
	Introduction
	Preliminaries
	Word Languages
	Regular Languages
	Mazurkiewicz Traces
	Normal Forms

	Properties of Trace Closures of Regular Languages
	Rational and Recognisable Languages of Monoids
	Star-Connected Expressions
	Derivatives of a Language
	Brzozowski Derivative
	Antimirov Derivative

	Small-Step Operational Semantics
	Axiomatic Models

	Reordering Derivatives
	Prefixes and Suffixes of Representatives of Traces
	Trace-Closing Semantics of Regular Expressions
	Reordering Derivatives
	Reordering Derivative of a Language
	Brzozowski Reordering Derivative
	Antimirov Reordering Derivative
	Automaton Finiteness for Star-Connected Expressions

	Uniform Scattering Rank of a Language
	Scattering Rank vs. Uniform Scattering Rank
	Star-Connected Languages Have Uniform Rank

	Antimirov Reordering Derivative and Uniform Rank
	Refined Antimirov Reordering Derivative
	Automaton Finiteness for Regular Expressions with Uniform Rank

	Related Work
	Conclusion and Future Work

	Normal Forms of Generalised Traces
	Motivation
	Generalised Mazurkiewicz Traces
	Generalised Foata Normalisation
	Normal Forms
	Normalisation
	Correctness

	Generalised Lexicographic Normalisation
	Normal Forms
	Normalisation
	Correctness

	Example: TSO-like Independence Alphabet
	Related Work
	Conclusion and Future Work

	Operational Semantics with Semicommutations
	Motivation
	Preliminaries
	Semicommutations
	Programs

	Reordering Semantics
	Word Language Interpretation of Programs
	Reorderability
	Operational Semantics
	Parallel-Independent Programs

	Example: While Language
	Partial-Order Reduction
	Representative Executions
	Normal Forms

	Extending the Framework
	Operational Semantics in Context
	Context-Dependent Semicommutation Relation
	Reordering Actions
	Non-Atomic Instructions
	Extensions and Partial-Order Reduction
	Context-Dependence of and Actions

	Example: TSO-like Memory Model
	Related Work
	Conclusion and Future Work

	Example: Multicopy-Atomic ARMv8
	Abstract Machine
	From Axiomatic to Operational
	Prototype
	Related Work
	Conclusion and Future Work

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Certified Normalisation of Generalised Traces
	Acknowledgements
	Abstract
	Kokkuvõte
	Curriculum Vitae
	Elulookirjeldus

