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1 Introduction
1.1 Background and Motivation
By 2030, the 6th Generation (6G) of mobile networks is expected to integrate the terres-trial, aerial, and maritime communications into a heterogeneous network that is robust,reliable, with ultra-low latency for massive connectivity. In this regard, cutting edge tech-nologies such as tera-Hertz and millimeter waves communication, Intelligent reflectingsurfaces (IRS), artificial intelligence (AI)/machine learning (ML), non-orthogonal multipleaccess (NOMA), block-chain, tactile Internet, small cells communication, fog/edge com-puting, quantum communication/quantum machine learning (QML), etc., are the primekey technologies in the realization of beyond 5G (B5G) and 6G communications.

The massive deployment of devices to support the future networks’ use-cases willrealize advanced services such as smart traffic, smart homes, environmentmonitoring andcontrol, virtual reality (VR)/virtual navigation, telemedicine, digital sensing, high definition(HD), condition-based maintenance, and full HD video transmission in connected dronesand robots. IoT devices are predicted to reach 25 billion by the year 2025, therefore,to create such IoT environments, wireless connectivity is not an option, it is imperative.Therefore, the number of wireless IoT devices sustaining the continued growth of theIoT ecosystem requires more spectrum or efficient ways of using the available spectrum.However, it is very challenging for the existingmultiple access techniques to accommodatesuch dense deployment of complex systems [2].
The fifth generation of mobile networks brings into play several service verticals suchas Massive Machine Type Communications (mMTC), Ultra-Reliable Low Latency Commu-nications (uRLLC), and enhanced mobile broadband (eMBB) communications. However,contrary to previous generations ofmobile technologywhere the primary focuswas to en-able human-to-human communications, these verticals focus on enabling industrial com-munications [3]. In this regard, the demand for dense deployment, reliable, secure, lowlatency connectivity becomes obvious.
For example, uRLLC is one of the biggest game-changers which serve the new appli-cations that require a response in fractions of a second. Examples of such applicationsinclude autonomous vehicles where the vehicles will be able to respond 10 to 100 timesfaster than over the existing cellular networks. Vehicle to everything (V2X) is the termused to describe the communication network where the vehicles will be able to meetsuch demands. V2X will be enabled along with intelligent transportation systems that willenhance smart traffic management. Other applications under uRLLC include industrialautomation etc [4]. eMBB represents the evolution of the current 4G networks but withfaster data rates and hence better user experience. eMBB is considered the enabler ofimmersive VR and AR applications. eMBB is intertwined with uRLLC as it enhances thereal-time traffic alerts, high-speed internet access, streaming real-time video as well asplaying games involving 3D 4K video [5]. Similarly, the mMTC aims at increasing the num-ber of connected devices per human. Contrary to 4G LPWAN that could support up to

60,680 devices per square kilometer, mMTC is estimated to support a minimum connec-tion density of 1 million devices per square kilometer. In this thesis, the focus is given tomMTC due to its capacity to support massive IoT applications [6, 7].
mMTC is enabled by both licensed IoT technologies (e.g., Narrow-Band IoT (NB-IoT) [6]and unlicensed technologies (e.g., LoRa). Both types are categorized as low power widearea networks (LPWAN), aiming at servicing devices located in hard-to-reach areas, withminimum human intervention. However, in contrast to unlicensed technologies, licensedtechnologies reuse the existing cellular infrastructure and are, therefore, more economi-
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cal and advantageous for cellular telecommunication operators and thus also for the endcustomers.The current 5G deployments implement orthogonal multiple access (OMA) schemeswhich provide orthogonality in terms of frequency resources. However, for massive IoTtechnologies (i.e., NB-IoT and LTE-M), theseOMAschemes are not able to reach the capac-ity demand for supporting 52,000 devices per cell. This is because themeager spectrum isexpected to accommodate a such number of transmitting devices per base station [8–10].Consequently, uplink inter-cell interference is a major challenge for such a massive num-ber of devices competing in a dense network, while ensuring that at the same time therequired quality of service (QoS) to NB-IoT UEs can be delivered.Additionally, the 5G broadband and 5G new radio (NR) capabilities bring the possibilityof massive connectivity support of up to 1,000,000 devices per square kilometer [11, 12].In this regard, proactive scheduling and advanced multiple access techniques to supportsuch dense deployment become of great significance. Like in LTE numerology, NB-IoTsupports Orthogonal Frequency DivisionMultiple Access (OFDMA) and Single Carrier Fre-quency Division Multiple Access (SC-FDMA) in downlink and uplink, respectively. NB-IoTcan be deployed in-band or in the guardband of the LTE spectrum; it can also occupythe spectrum of legacy Global System for Mobile Communication (GSM) technology (i.e.standalone). In these three modes, the NB-IoT system bandwidth is of a maximum of
200 kHz. In this limited bandwidth, NB-IoT supports 15 kHz or 3.75 kHz spacing on theuplink, in which different user equipment (UEs) can occupy single or several frequencyslots (tones) [13]. This narrow bandwidth motivates the need for implementing novel ra-dio resources management (RRM) techniques to provide maximum-possible data rateswith minimum possible bit error rates (BER) performance. In particular, network slicingis proposed to support the futuristic diverse and heterogeneous architectures needed forrobust dense networks where the network operators will be able to deploy only the func-tions necessary to support particular customers and particular market segments. In gen-eral, network slicing is similar to software-defined networking (SDN) and network func-tions virtualization (NFV) which facilitate networks toward software-based automation.In this regard, the one-size-fits-all design philosophy applied in existing networks is notviable anymore; therefore, the SDN and NFV enhance the network partitioning into vir-tual elements that enable the flexible orchestration of physical networks for a particularservice segment [14].
1.2 Challenges in Wireless Communication
It can benoted that key players in the telecommunications ecosystemespecially those rep-resenting IoT network providers, devicemanufacturers, users, and federal regulators iden-tified spectrum-related challenges such as ensuring the availability spectrum and counter-acting the impact of interference that is caused by the massive IoT deployments. Addi-tionally, the modern communication network is shifting to new design paradigms drivenby the strong need to improve Key Performance Indicators (KPIs) required by emergingwireless applications, specifically, the quality of user experiences (QoEs), and proactivelyavoid any disturbances that affect the service availability.For example, the NLOS due to multipath, users’ mobility and inter-cell interferencefrom the users from adjacent cells affect the quality of the desired received signal, sim-ilarly, the orthogonal multiple access techniques fail to reach the expected cell capacityperformance, therefore, it is necessary to study the novel radio resources managementand the non orthogonal multiple access (NOMA) techniques to increase the users’ per-formance and spectrum efficiency. An overview of the factors affecting the quality of the
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received signal hence requiring the novel radio resources management approaches forefficient spectrum management is depicted in Fig. 1 and are discussed in what follows.
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Figure 1: Radio Resource Management especially interference management as enabler for efficient
spectrum utilization

1.2.1 Limited Energy
One of the major challenges of wireless communication is energy efficiency. This is be-cause the wireless connected devices are mainly deployed for use cases that involve mo-bility, therefore, the devices need to be powered by a battery when transmitting throughthe access points such as base stations. Similarly, for mMTC applications, the rapidlychanging of channel conditions, and the massive connectivity affect the overall energyconsumption because the devices are forced to utilize the maximum transmit power, orre-transmissions to counteract the bad channel conditions, and interference. Further-more, the power amplifiers, and signal processing cause energy consumption costs; inthis regard, it is essential to propose energy-efficient mechanisms to enhance battery life.
1.2.2 Multipath Propagation
Multipath propagation happens when the transmitted signal from the source is spread inseveral paths due to objection between the transmitter and the receiver, i.e., as indicatedat Base Station 1, in Fig. 1. In this regard, it is imperative to ensure proper mechanismsat the receiver that mitigate the impact of multi-path transmissions by compensating losson the transmitted signal and equalizing the multiple-received signals to recuperate the

17



desired information. In this regard, novel techniques such as intelligent reflecting surfaces(IRS) also termed Reconfigurable intelligent surfaces (RISs) are being used to enhance thelink performance [15].
1.2.3 Radio Spectrum Limitations
One of the common resources that enable wireless communication is the radio spectrum.The licensed spectrum is expensive, hence the network operators are obligated to per-form efficient spectrummanagement approaches to guarantee that regardless of the lim-ited frequency resources, the available frequencies are utilized with minimum possibleinterference between the same operator’s adjacent base stations, as well as between dif-ferent operators. Therefore, it is crucial to implement spectrum sharing schemes that areresource-efficient and also guarantee the expected quality of service requirements. Forexample. mMTC, eMBB and uRLLC need efficient spectrum management to allocate theradio resources accordingly as indicated on the right side in Fig. 1.
1.2.4 Interference-Limited Systems
In scenarios where the interference is so high and dominant that the noise is almost neg-ligible, the overall Signal-to-Interference plus Noise Ratio (SINR) at the receiver is so smallthat it is impossible to decode the signal and reconstruct the desired information. There-fore, it is necessary to characterize all forms of interference that can degrade the qualityof communications by guaranteeing the SINR maximization through the design of the in-terference mitigation techniques to satisfy the expected transmission KPI. For example,the IoT user in Base Station 2 experiences interference (dashed lines), from adjacent basestation 3 in Fig. 1, similarly, a given user can experience multiple interfering signals fromseveral users from adjacent cells.
1.2.5 User Mobility
On top of multipath fading, the support for user mobility is very important to enhancethe quality of experience; however, when a mobile user moves from one base stationto another, there should be a seamless handover process between the consecutive serv-ing base stations. Therefore, it is necessary to propose efficient schemes that take intoaccount the channel variations created by user mobility to guarantee the user’s expectedquality of service and quality experience for the corresponding applications and use cases.For example, the user fromBase station 2 to Base station 1 in Fig 1 should experience seam-less handover process with expected quality of service.
1.2.6 Noise-Limited Systems
To guarantee the expected quality of service, the transmitting user must be in an accept-able SINR condition. In this regime, the system is required to have a minimum noise levelwhich can then guarantee higher SINR, hence better transmission possibilities. The sourceof noise can either be internal or external, therefore, it is critical to design systems thatare robust to all forms of noise to satisfy the required KPI.
1.2.7 Multiple Access Techniques
In wireless communications, it is vital to propose efficient multiple access techniques thatcan meet stringent requirements such as low latency, massive connectivity, spectral ef-ficiency, fairness, required high throughput, reliability, etc. Therefore, it is necessary tomap the physical resource block or the resource units (i.e., for NB-IoT), as shown with theRadio Resource Management Block in Fig.1, to guarantee the maximum possible number
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of connected users. Both the orthogonal and non-orthogonal multiple access techniquesneed to be well characterized to respond to the growing demand for massive connectivityfor the current 5G and future 6G networks.It should be noted that there are even more challenges (i.e., related to security andprivacy, flexible duplexing, directional beamforming, passive inter-modulation, etc.) how-ever, these are outside of the scope of this thesis. In this regard, it is important to note thatin complex wireless systems especially in heterogeneous networks architecture, severalfactors can simultaneously affect the overall cell performance, i.e., the users can simul-taneously experience multipath and inter-cell interference, in this regard, it is necessaryto design intelligent systems that take into account several factors while decoding the de-sired transmitted signal.
1.3 Problem Statement and Research Questions
The growing demand for dense connectivity and higher data rates to satisfy the expectedrequired connectivity for all the service verticals that are brought by the 5G and beyond5G networks raises the issue of how to efficiently use the meager spectrum resource tosatisfy the above.In essence, the direction towards which the future of wireless communication is mov-ing leads to an unprecedented level of complexity; our vision to overcome this situationis to enable the data-driven paradigm for the design of such networks. In this regard, themain question is not whether the machine learning approaches will be integrated into fu-ture wireless networks, but rather, how and when this integration will take place. Severalleading academic, research, and industry communities support this statement and acti-vated the ITU focus group named Focus Group on Machine Learning for Future Networksincluding 5G (FG-ML5G) [16].Therefore, themain hypothesis formulated for this Ph.D. work is “How the novel data-
driven radio resourcemanagement approaches, especially, for the interferencemanage-
ment techniques, would facilitate the autonomous network management with efficient
utilization of the available spectrum in 5G, and beyond 5G heterogeneous network ar-
chitectures?”.Even though the conventional approaches to resource management, especially for in-terference mitigation, are based on optimization theory techniques, it is necessary to im-plement suitable mathematical models for a particular problem, i.e. tractable to bestcharacterize the proposed solutions based on information theory. However, even whenthis is done, the optimal solutionwill inevitably depend on the systemparameters, i.e., thereceiver’s sensitivity, the users’ location, the connection density, slow/fast fading channelvariations, etc. When any of these parameters change, the optimization problem needs tobe reformulated again, in this regard, it becomes very challenging to implement in real-time applications, especially in heterogeneous wireless network architectures. Further-more, with dense deployments of wireless networks to support mMTC applications, thereis an opportunity to utilize the amount of available network data to implement the novelapproaches that utilize artificial intelligence (AI) to enable the data-driven real-time radioresource management techniques especially to counteract the impact of interference forthe dense deployment of mMTC in wireless networks.

Considering the heterogeneous network architectures, the limited radio resources i.e.,power, spectrum for several service verticals with diverse performance requirements in agiven 5G physical network, in co-existence with legacy networks, this Ph.D. thesis intendsto answer the following research questions:
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• RQ1: How are the orthogonal multiple access techniques intended to accommo-
date the massive connectivity of IoT use cases impacted by inadequate interfer-
ence management techniques in heterogeneous network architectures?

• RQ2: Is it possible to proactively perform the data-driven radio resource manage-
ment techniques to enhance the cell performance, with user’s minimum-possible
energy consumption while guaranteeing the expected quality of service require-
ments?

• RQ3: Are the novel approaches such as non-orthogonal multiple access (NOMA)
sufficient to reach the expected cell performance for mMTC applications, consid-
ering the impact of inter-cell interference from the neighboring cells, and the com-
plexity of successive interference cancellation (SIC) at the receiver?

• RQ4: Since radio access network (RAN) slicing proves to be efficient for sharing
and orchestration of networks, how is it possible to accommodate the massive
connectivity of mMTC connections with diverse service requirements in a given
slicewhile guaranteeing the expected performance as per service level agreement
(SLA) templates?

1.4 Contributions of the thesis
To respond to the above questions, the following contributions are presented in this the-sis:

• An in-depth literature review: It is performed to understand the state of the art inboth telecommunication standards, and the research in the direction of radio re-source management, especially the interference management techniques for mas-sive connectivity in legacy, 5G, and beyond 5G wireless networks [6] (Publication
I).

• The design of a novel interference management scheduler: A novel interferencemanagement scheme that utilizes a cooperative strategy in amulti-cell network hasbeen studied, different network topology (i.e., micro-cell and Macro-cell architec-tures) have been explored and the corresponding interference impact is mitigatedaccordingly. Contrary to existing works, the proposed scheme computes the in-terference weights between users from adjacent cells and selects the best group ofusers withminimum impact of inter-cell interference, hence allocating the availableradio resources for the corresponding transmissions [17] (Publication II).
• The novel inter-cell and intra-call interference management scheme for the orthog-onalmultiple access (OMA) techniques is proposed: With the proposed cooperativescheduler, the theoretical framework along with resource management scheme isdeveloped to mitigate the impact of inter-cell interference for dense connectivity.Furthermore, the power allocation strategy is implemented to minimize the overalluser’s energy consumption while guaranteeing the SINR threshold to satisfy the ex-pected quality of service. In constrast to existing works, the proposed scheme theo-retically analyses the systemmodeling by taking into account the impact of massiveconnectivity and interference constraints for OMA systems, hence scheduling theresources to optimize the overall user’s performance [18] (Publication III).
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• Interference-aware scheme: Considering the limited computation complexity ofmMTCusers, the novel interference-aware scheme is proposed for the non-orthogonalmultiple access (NOMA): The novel interference management technique is devel-oped for the NOMA scheme to counteract the impact of both co-channel and inter-cell interference to enhance the UE performance. Additionally, power allocationwas performed to further reduce the energy consumption. Contrary to existingworks, the proposed NOMA scheduler takes into account the inter-cell interferenceand the reduced user’s complexity that hinders the successive interference cancel-lation (SIC) at the receiver, hence utilizing different power coefficients to facilitatethe decoding of the desired information [19] (Publication IV) .
• The radio access network (RAN) slice scheduler is proposed: The novel proposedscheduler utilizes machine learning to classify the users according to their channelconditions and predict their future transmission patterns that enhance the schedul-ing performance of a given RAN slice. In contrast to existing cooperative schedulersthat share the scheduling tables for each scheduling instants hence causing theoverhead on X2 interface, the proposed scheduler utilizes the users classificationand prediction, hence reducing the number of shared scheduling tables for users’future transmissions (Publication V, Under review).

1.5 Thesis Organization
Chapter 2 presents the related works, it details standard evaluation, limitations, and theproposed solutions to the interference management problems. Chapter 3 presents theproposed Cooperative scheduler to mitigate the impact of massive interference in theOMA scheme. Chapter 4 presents the interference problem formulation and proposedsolution for the NOMA scheme to enhance the cellular connectivity. Chapter 5 presentsthe machine learning (ML)-enabled scheduler to maximize the overall throughput of theRAN slice for beyond 5G networks. Finally, the last chapter concludes the thesis by an-swering the research questions and suggesting directions for future work.
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2 State of the Art
This section is based on our work "Narrowband Internet of Things (NB-IoT): From Physi-
cal (PHY) and Media Access Control (MAC) Layers Perspectives; CB Mwakwata, H Malik,MM Alam, Y Le Moullec, S Parand, S Mumtaz; Sensors 19 (11), 2613", [6].
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Figure 2: Evolution of 3GPP’s wireless networks, from 2G to beyond 5G networks

2.1 A Brief Overview of the Evolution of Cellular Communication
Wireless communication systems evolved through several standards in thepast fewdecadesfrom the introduction of the first generation (1G) mobile network in the early 1980s. Therapid developments are due to the growing demand of connected users for different use-cases. Unlike in 1G where the technology involved only analogy switching to support onlyvoice services, the second generation (2G) of mobile communication systems introduceda new digital technology for wireless transmission also known as Global System forMobilecommunication (GSM). In the early 1990s, with relatively higher data rates as comparedto 1G, 2G was able to support the newer services such as short message services (SMS)and email [20].In the early 2000s, further enhancements were done on top of the existing 2G thatyield to the third generation (3G) of mobile networks. Technologies such as UniversalMobile Terrestrial / Telecommunication Systems (UMTS) and the support for video callingwere introduced. Furthermore, High-Speed Downlink Packet Access (HSDPA), and High-Speed Uplink Packet Access (HSUPA), were later introduced to enhance the achieved datarates. In the 2010s, the IEEE introduced the fourth generation (4G) of mobile networkswhich is the enhanced version of 3G networks, with even higher data rates, and capa-ble to handle more advanced multimedia services. 4G design supports the backward andforward compatibility with legacy and even newer generations, thus facilitating easier de-ployment and upgrades. Contrary to previous generations, 4G supports the simultaneoustransmission of voice and data which significantly improves data rate. Moreover, complexmodulation schemes and carrier aggregation techniques are also possible to multiply up-link/downlink capacity [21].The fifth-generation (5G) and beyond 5G mobile networks increase the demand for
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connectivity thanks to the available use cases to support both human-to-humanandmachine-to-machine communications. However, unlike in legacy technologies, 5G and beyond 5Gnetworks bring into play service verticals such as massive machine-type communications(mMTC), enhancedmobile broadband (eMBB), and the ultra-reliable low latency commu-nications (uRLLC). These verticals have different quality of service (QoS) requirements bututilize the same physical infrastructure [22].
For example, according to InformationHandling Services (IHS) technology forecast, theInternet of Things (IoT) market is expected to grow to billions of devices by 2020. Mas-sive connections are expected to respond to different IoT use cases such as smart city,smart wearable, smart home, etc. For these applications, latency-insensitive devices canbe positioned in hard-to-reach areas and do not require high throughput or frequent re-porting. Therefore, to cope with such tremendous IoT trends, the Third-Generation Part-nership Project (3GPP) introduced the Narrow-band Internet of Things (NB-IoT) standardas a communication technology enabler. NB-IoT is categorized as one of the licensed Low-PowerWide-Area Networks (LPWAN) cellular technologies based on Long-Term Evolution(LTE) with long-range and low cost. In the LPWAN category, there exist other licensedtechnologies, i.e., Long-Term Evolution Category M1 (LTE-M), and unlicensed technolo-gies, i.e., Long Range (LoRa), SigFox, Ingenu, etc., but they are not the focus of this thesissince they are not based on licensed cellular technology.
Fromall the previous and current telecommunication standards, interference has provedto be the major contributor to the performance degradation [23]. Furthermore, due tothe co-existence of different technologies, the need to re-use frequencies among differentcells becomes indispensable hence the inter-cell interference (ICI) among adjacent cellsbecomes a critical problem. Generally, there are three ways to manage interference. Thefirst one is by providing orthogonality to the radio resources used by interfering users sothat interference can be avoided [24]. The second one is by treating the interference asnoise which is effective and practical only when weak interference is considered. And thethird mitigation technique involves decoding interference by exploiting the structure ofinterference signals, which is rarely used in current systems due to its high computationalcomplexity [25]. The overview of the wireless standard evolution from 2G to beyond 5Gnetworks as well as the proposed interference management techniques is presented inFig. 2

2.2 Challenges inWireless Communication for DensemMTCDeployment
Realizing the need and potential for new communication ways, 3GPP started a feasibilitystudy on cellular system support for ultra-low complexity and low throughput IoT solutionreferred to as cellular IoT. In May 2014, Huawei and Vodafone proposed the NarrowbandMachine to Machine (NB-M2M) to 3GPP as a study item to cope with the IoT marketneeds. Additional telecommunication industrial players got interested and later in thesame year, Qualcomm proposed narrowband orthogonal frequency division multiplexing(NB-OFDM). In May 2015, 3GPP merged the two proposals (i.e., NB-M2M and NB-OFDM)and formed the Narrowband Cellular IoT (NB-CIoT). Eight months later, Ericsson proposedthe Narrowband Long-Term Evolution NB-LTE. In September 2015, 3GPP included all pro-posals as a work item for Release 13. The key difference between NB-CIoT and NB-LTEwas the number of reused legacy LTE network resources to support interoperability. InJune 2016 NB-IoT was recognized as a new clean slate radio access technology (RAT). Onlyfurther improvements were allowed and implemented thereafter. An overview of mMTCstandard evolution, where several key players of telecommunication contributed to freez-ing NB-IoT in 3GPP Release 13 for massive connectivity is shown in Fig. ??.
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In this regard, this section presents the mMTC technology, specifically detailing NB-IoT design changes from Release 13 until today that enabled the massive IoT connectionswith the corresponding solutions to respond to the adopted NB-IoT objectives. In gen-eral, the analysis is also valid for LTE-M but with small specifications when different. Theenhancement features are classified following the objectives that are presented in thereleases which would make it easier for the readers to refer back to the official 3GPP doc-uments [26–32].
2.2.1 Release 13 Enhancements
3GPP introduced the following techniques in NB-IoT Release 13 to enable cellular massiveIoT deployment for diverse use cases with low power, low complexity, and hence low cost.The introduced features and their corresponding objectives are as follows.
2.2.1.1 Mode of Operation With the limited bandwidth requirement, NB-IoT can be de-ployed in three different modes i.e., standalone, in-band, and guard-band. In in-band andguard-band modes, NB-IoT occupies one PRBs of 180 kHz in the LTE spectrum both in thedownlink and uplink. It can also be allocated as standalone where it occupies the 200 kHzbandwidth by “refarming” the GSM spectrum. These flexible deployment possibilities en-able fast integration and coexistence with legacy LTE and GSM systems.
2.2.1.2 Multi-Tone Transmission Support To reach the massive device deployment ob-jective, NB-IoT introduces the allocation of Resource Units (RU) to multiple User Equip-ment (UE) contrary to LTEwhere thewhole resource block is allocated to a single UE in theuplink. In this regard, tones (frequency domain) with different duration are allocated toUEs. For the uplink transmission, each tonemay either occupy 3.75 kHz or 15 kHz of trans-mission bandwidth based on the SC-FDMA scheme; for downlink NB-IoT uses 15 kHz oftransmission bandwidth with OFDM scheme as LTE. With 15 kHz spacing, NB-IoT can ded-icate either single-tone (8 ms) or multi-tone (3 tones, 6 tones, and 12 tones) to differentUEs with the duration of 4 ms, 2 ms, and 1 ms, respectively. On the other hand, the 3.75kHz spacing supports only single-tone allocation to different users with 48 subcarriers of32 ms duration [33–35].
2.2.1.3 Complexity and Cost Reduction Techniques NB-IoT is required to have low com-plexity to reach the low-cost objective to facilitate massive connections. The featuresthat were implemented to reach this objective include relaxed base-band processing, lowmemory storage, and reduced radio-frequency (RF) components. In this regard, the sys-tem bandwidth is set as narrow as 180 kHz with reduced frequency and time synchroniza-tion requirements. Also, NB-IoT uses the restricted BPSK and QPSK modulation schemeswith only one antenna support both in uplink and downlink transmission.
2.2.1.4 Power Reduction Method NB-IoT devices are intended to have a 10 years bat-tery life to support massive deployment with limited human intervention. In this regard,two features i.e., Power Saving Mode (PSM), (from Release 12), and extended Discontinu-ous Reception (eDRx) (new feature from Release 13) were supported. These features areintended to extend the UE’s battery longevity as follows:In PSM, theNB-IoT device is configured to completely sleepwhile remaining registeredonline but cannot be reached by the base station signaling. In Release 13, the device can bein PSMmode for approximately up to about 413 days. In eDRX, the device is in an inactive
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mode for a fewminutes to a few hours only. In both cases, the partial or complete inabilityto receive and send different signals enhance the battery life longevity; however, choosingeither PSM, eDRX or both depends on the corresponding use-case requirement. In thisregard, the device can be synchronized to wake up from these modes by either Real-TimeClock (RTC), triggering from sensors, or both.
2.2.1.5 Physical Channels and Signals NB-IoT adopts the same frame structure as LTE,with 1024 hyper frames, consisting of 1024 frames that contain 10 sub-frames of two slotswith a duration of 0.5 ms each in the time domain. Similarly, in the frequency domain,NB-IoT contains 12 sub-carriers of 7 OFDM symbols mapped in each slot. In addition tothat, when NB-IoT uses the 3.75 kHz spacing on the uplink, 48 sub-carriers are used witha slot duration of 2 ms.The following channels and signals are used in the uplink:

• Narrowband Physical Random Access Channel (NPRACH).
• Narrowband Physical Uplink Shared Channel (NPUSCH).
• Demodulation Reference Signal (DMRS).

And the following are in the downlink frame:
• Narrowband Physical Downlink Shared Channel (NPDSCH).
• Narrowband Physical Downlink Control Channel (NPDCCH).
• Narrowband Reference Signal (NRS).
• Narrowband Primary Synchronization Signal (NPSS).
• Narrowband Secondary Synchronization Signal (NSSS).
• Narrowband Physical Broadcast Channel (NPBCH).
In general, NPRACH is used by UEs to perform initial access to the network, requesttransmission resources, and reconnect to the base station after a link failure. NPDSCHand NPUSCH are used to carry the downlink and uplink data packets transmissions, re-spectively. DMRS is used for uplink channel estimation accuracy. The UE acquires MasterInformation Block (MIB) from NPBCH and System Information Block (SIBs) from the NPD-CCH. The definedMIB and SIB are broadcasted once during 640ms and 2560ms intervals,respectively. The timing of the remaining SIBs is configured in SIB1-NB. NRS is used for cellsearch and initial system acquisition. NPSS and NSSS are used by the UE for their fre-quency and timing synchronization with the base station. Due to overhead schedulinggaps in NPDCCH, the downlink and uplink peak data rates are 250 kb/s and 2267 kb/s,respectively, [28, 35–38].

2.2.1.6 Coverage Enhancement Method NB-IoT is designed to enhance coverage forthe applications that are in hard-to-reach areas such as deep indoors and basements. Inthis regard, NB-IoT delivers an additional coverage of 20 dB as compared to the legacyLTE system. This corresponds to 164 dB of MCL. To enhance its coverage, NB-IoT uses upto 128 and 2048 re-transmissions in uplink and downlink, respectively. Hence, this makesNB-IoT suitable for use cases that are latency insensitive as it can tolerate up to 10 secondsof transmission delay.
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2.2.2 Release 14 EnhancementsAfter the implementation of Release 13 features, studies erupted along with field trialsthat revealed the need for further enhancements to improve the quality of service as wellas user experience. In this regard, 3GPP introduced further enhancement features to NB-IoT.The enhancements features in Release 14 include positioning update, multicast ser-vices, and a new UE output power class in which the NB-IoT system throughput, mobility,service continuity, and non-anchor carrier operation are improved [39,40].
2.2.2.1 ImprovedPositioning Technique 3GPPRelease 14 introduces an indoor advancedpositioning method of observed time difference of arrival (OTDOA) for NB-IoT to enhanceUE position measurement of cell identity (CID). In the OTDOA method, the UE measuresthe times of arrival (ToAs) of positioning reference signals (PRSs) received from differenttransmitters to a reference node’s PRS transmission to form the reference signal time dif-ference (RSTD) measurements. In enhanced CID, the measurement requirements includethe base station receive (Rx) and transmit (Tx) time difference, reference signal receivedpower (RSRP), and reference signal received quality (RSRQ).
2.2.2.2 Multicast Services Themain objective of thismechanism is to optimize resourcesas well as transmission latency by addressing the data to a group of UEs at the same timerather than sending it multiple times to separate devices.Therefore in Release 14,Multimedia BroadcastMulticast Services (MBMS) is supportedthrough single-cell point-to-multipoint (SC-PTM). In general, SC-PTM is an efficient dy-namic mechanism for optimal radio resource usage as it allows broadcast or multicastservices to a specific group based on real-time traffic load and user requirements. SC-PTMuses NPDSCH by mapping Single-cell MBMS Control Channel (SC-MCCH) and Single-CellMBMS Traffic Channel (SC-MTCH) that carry control and data traffic to the physical layerscheduled by using the downlink control information (DCI).
2.2.2.3 NewPower Class forNarrowband-IoTUser Equipment Insteadof the twopowerclasses of Release 13 (i.e., 20 dBm and 23 dBm), in Release 14, the maximum allowed de-vice’s output power is reduced to 14 dBm. This has led to coverage relaxation of 9 dB thatcorresponds to 155 dB MCL as compared to 164 dB MCL and hence reduces the drainedcurrent. Technically, the use of the new power class facilitates the use of small coin-cellbatteries and hence can be suitable for limited-size devices and applications that need asmall battery. The compensation of the reduced NB-IoT power is achieved by increasingthe NB-IoT transmission time to maintain the same energy per bit as the UE in Release 13achieves. The newly introduced power class allows the serving base station to acquire thedevice power class during the establishment of the connection.
2.2.2.4 New Transport-Block-Size Support Contrary to Release 13 where NB-IoT sup-ports relatively low data rates (250 kb/s and 226.7 kb/s in downlink and uplink, respec-tively), 3GPP Release 14 introduces a new NB-IoT device category which supports the im-proved data rates by enhancing the Transport Block Size (TBS) to 2536 bits. These datarates can be reached thanks to the ability to support a second Hybrid Automatic RepeatRequest (HARQ) process. This second HARQ is useful for enhancing the reliability of thelink for the UEs that experience favorable channel conditions. Implementation of this op-tional second HARQ process results in throughput gain as it reduces the overhead causedby NPDCCH scheduling gaps.
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2.2.2.5 Multicarrier Operation To enable the massive NB-IoT deployment, in Release14, NB-IoT can monitor paging and perform random access on non-anchor carriers. Withthis feature, one or more non-anchor carriers are added to the anchor carrier to carry outthe synchronization and mobility measurements by using the NRS. Non-anchor carriersshould also perform random access or paging when needed. Therefore, paging occasionsand hence paging load will be spread over the anchor and non-anchor carriers, and allcarriers can then monitor paging.
2.2.2.6 User EquipmentMobility Enhancement For the use cases that involvemobility,the temporary loss of radio interface impacts the system to a degree that can degrade linkperformance in terms of transmission errors. In this regard, 3GPP Release 14 introducesthe possibility of Radio Resource Control (RRC) re-establishment for NB-IoT UE that sup-ports data transfer via the control plane, i.e., the UE will try to re-establish the connectionon that cell and resume the data transfer. This new RRC re-establishment feature hidesthe temporary loss of the radio interface to the upper layers.
2.2.3 Release 15 Enhancements
On top of all the enhancements that were introduced in Releases 13 and 14, the follow-ing improvements were introduced in Release 15 to satisfy the fast adoption of massivedeployment with further improved quality of service.
2.2.3.1 Latency Reduction In Release 15, NB-IoT supports new features to further re-duce the transmission delay as well as to further reduce the power consumption dissi-pated during long transmission requirements.In this regard, the NB-IoT UE is now able to support the physical layer Scheduling Re-quest (SR) which is a special physical layer message to request the network to send theaccess grant (DCI format 0) so that the UE can transmit the uplink data. Also, NB-IoT usesawake-up (Wu) signal to wake up themain receiver. This signal is transmitted in idlemodeonly when the UE is required to decode the physical downlink control channel on pagingoccasions. Therefore, power consumption reduction with the wake-up signal technique islarger when the UEwakes up from deep sleepmore frequently (i.e., for shorter DRX/eDRXcycles). Also, significant power consumption reduction is achieved even when a commonwake-up signal is used for a group of UEs. Quick RRC release and early data transmissionduring random access channel (RACH) procedure are supported to reduce the UE trans-mission latency and hence power consumption.
2.2.3.2 Semi-Persistent Scheduling To enable better support of voice messages for thecorresponding use cases, in Release 15, the Semi-Persistent Scheduling (SPS) feature isintroduced. In general, SPS is comprised of persistent scheduling for initial transmissionsand dynamic scheduling for re-transmissions. The base station assigns specific resourceunits to be used for NB-IoT UE voice messages with specific intervals to save control planeoverhead and hence optimize the radio resource usage. By principle, the base stationpre-configures the UE with the Radio Network Temporary Identifier (SPS-RNTI) which isused to specifically differentiate one NB-IoT UE from another or one radio channel fromanother. This SPS enables the NB-IoT data reception at a regular configured periodicity.
2.2.3.3 Small Cell Support To further improve the capacity as well as coverage, in Re-lease 15, NB-IoT supports small cell deployments. The downlink power to be reused for
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NB-IoT small cells is specified in section 16.2.2 of TS 36.213 [41]. In general, NB-IoT UE isnot allowed to transmit more power than the configured maximum power, even if theconfigured power is lower than UE’s maximum capability. This is done to avoid interfer-ence.On the other hand, to extend the IoT connectivity, especially in remote and rural areasfor use cases such as agriculture, logistics, and environmental monitoring, NB-IoT is nowable to support up to 100 km range. According to Ericsson, this could be achieved with asoftware upgrade only, without any changes in the existing NB-IoT hardware [42].
2.2.3.4 Enhanced User Equipment Measurements Like in legacy LTE systems, UE mea-surements are critical since the corresponding reporting ismainly used to characterize thereference signal of a given bandwidth.In Release 15, UE measurements are improved in a way that only NSSS additionally toNRS is defined for radio resource management measurement enhancement. This meansthat NRS is determined by the resource elements that carry NSSS in the NSSS occasionsthat the UE measures, through which the cell search and initial cell acquisition are im-proved.
2.2.3.5 Time Division Duplex (TDD) Support In Release 15, a new feature of TDD sup-port is introduced with a new TDD frame structure (type 2). For both 3.75 kHz and 15kHz spacing, some specified restrictions are introduced i.e., only a normal cyclic prefix issupported for NB-IoT transmission. To support some of the TDD configurations with fewdownlink sub-frames, some of the system information (SI) can be transmitted on non-anchor carriers. In this way, the UE will have reduced system information acquisition andsearch time, and hence reduced UE differentiation and access control [1, 6, 40].
2.2.4 Release 16 Enhancement
3GPP and many industrial players are involved in ongoing discussions for Release 16 en-hancements. The agenda includes the following objectives with their corresponding so-lutions.
2.2.4.1 Grant-Free Access Most of the power consumption takes place during the NB-IoT UE active time, i.e., during Tx and Rx. In Release 16, the UEwill be expected to transmitduring RRC-Idle mode throughMsg3 (RRC connection request) without an access grant. AUE in RRC connectedmode can transmit data without grant or with the simplified control-less grant. A further enhancement is on reducing NB-IoT signaling overheadwhile guaran-teeing the needed quality of service. These features will reduce both power consumptionand latency. In Release 16, it is also proposed to further study other signal waveforms (i.e.,FDMA) that require less orthogonality with more relaxed timing advance (TA) alignmentas compared to SC-FDMA.
2.2.4.2 Simultaneous Multi-User Transmission The introduction of new schemes willenable simultaneous multi-user transmissions by using a shared resource in the time andfrequency domains, such as Code divisionmultiplexing (CDM), andmulti-user multiple in-puts multiple outputs (MU-MIMO), without increasing the number of antennae at the UE.In this regard, more dynamic access can also be achieved through enhanced base stationreceiver for detection ofmultiple users that are using the same resource unit as cluster andhence be able to schedule them effectively. This is because, for the last releases, NB-IoT
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UE uses the static or semi-static configuration of more resources for the unexpected ap-plication traffic handling. Similarly, the introduction of NB-IoT transmission without grantwill cause a collision of data packets so dynamic handling of multiplexing is necessary.
2.2.4.3 Enhanced GroupMessageMechanism In Release 16, there should be more en-hancements to support downlink commands between user groups and group RNTIs. Thisis becauseMBMSwhichwas proposed in Release 14 is only efficient for large size downlinkcommandmessage transmission and requiresmany UEs to be deployed. For example, theapplication layer common message can be very small but sent to many UEs under a smallgroup of UEs hence making MBMS not efficient for such applications.
2.2.4.4 Inter-RAT Idle-Mode Mobility For applications such as smart tracking of logis-tics that involve mobility, the NB-IoT UE may still need to be accessible even when movedto the area served by other base stations.In this regard, 3GPP should introduce the new feature for NB-IoT UE support for inter-RAT mobility during idle mode. The mentioned feature is introduced along with optionalhandover support during connected mode through procedure simplification i.e., withoutdedicated signaling for measurement control and report. This is because handover helpsto reduce system information reading time.
2.2.4.5 Network Management Tool Enhancement to Improve UE Differentiation NB-IoT UE is expected to be able to perform differentiation according to maximal tolerabledelay per service to optimize the radio resource usage. This is because, in the last release,the UE can be differentiated according to trafficmodel (periodic communication indicator,periodic time, scheduled communication time, traffic profile) and battery indication.
2.2.5 Release 17 enhancements
The primary objective of Release 17 is to improve the 5G system performance, increasethe support for new use cases and verticals, and provide ubiquitous connectivity in di-verse deployment conditions and scenarios. In general, Release 17 is the gateway towards5G Advanced where AI/ML-based solutions will be used to introduce intelligent networkmanagement and solve multi-dimensional optimization issues concerning real-time andnon-real-time network operation. The features include the following [43]:
2.2.5.1 Reduced-capability user equipment (RedCap UE) With additional benefits suchas improved latency and the capability to operate in NR frequency bands ranging up to52GHz, RedCapUEwill fulfill service functionalities between the relaxedmassivemachine-type communication (mMTC) and highly stringent URLLC requirements,
2.2.5.2 Non-terrestrial networks (NTN) To complement the terrestrial networks (i.e.,NB-IoT and LTE-M) for remote areas coverage over the sea and land where terrestrial cov-erage is absent, NTN topologies based on low Earth orbit (LEO) and geosynchronous orbitsatellites are introduced. They will facilitate MBB and massive IoT services from Rel-17onwards.
2.2.5.3 Enablers for network automation for 5G To improve the network automation,the 3GPP addressed several functionalities such as data collection from UE for analyticsgeneration especially to ensure that slice SLA is guaranteed. Additional functionalities
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such as Multiple network data analytics function (NWDAF) Instances in one PLMN includ-ing hierarchies, enabling real-time or near real-time NWDAF communication, NWDAF-Assisted UP Optimization, Interaction between NWDAF and AI Models were addressed.
2.2.5.4 Support for Industrial IoT To cope with the growing demand for mMTC applica-tions, the 3GPP introduced the support enhanced Time-Sensitive Networking (TSN), withfeatures such as Uplink Time Synchronization, UE-UE time-sensitive communication (TSC),Exposure of Time Synchronization services for activation/deactivation, support for PTPtime sync and use of Survival Time for Deterministic Applications in 5G
2.2.5.5 Enhancement of support for edge computing in 5GC The intended enhance-ments include the dynamic insertion of traffic offloading capabilities, seamless change ofapplication server serving the UE, providing local applications with information on e.g.the expected QoS of the data path, supporting PSA change when the application does notsupport notifications of UE IP address change. These features are introduced to forwardsome UE application traffic to the applications/contents deployed in Edge Computing En-vironment hence improving the support for edge computing in 5G networks.
2.2.5.6 Architectural enhancements for 5G multicast-broadcast services 3GPP intro-duced the features to enhance the 5G architecture for general 5Gmulticast and broadcastcommunication services, supporting transparent IPv4/IPv6 multicast delivery, softwaredelivery over wireless, group communications, and IoT applications, V2X applications, etc.
2.3 Radio Resource Management in mMTC
In 2G systems, the used frequencies were low band, hence the achieved coverage rangewas relatively large in this regard, the inter-cell interference was not a major concernhence, the frequency reuse technique was enough to mitigate the inter-cell interference.In 3G systems, the transmission technique is based on code divisionmultiple access wherethe frequency reuse of factor one was allowed. In these systems, all the UEs use the samefrequency resource but with different pseudo-random codes. The inter-cell interferenceis experienced by UEs that have the closest possible emitted powers, in this regard, powercontrol and spreading were proposed as the interference mitigation technique.In 4G cellular systems, the orthogonal frequency division multiplexing (OFDM) is usedto efficiently utilize the available spectrum, however, the inter-cell interference is still amajor challenge. In this regard, the coordination schemes such as fractional frequencyreuse (FFR) are proposed to further reduce inter-cell interference. Additional inter-cell in-terference mitigation such as coordinated multipoint (CoMP) and almost blank subframe(ABS) was proposed as part of the enhanced inter-cell interference coordination (eICIC)technique where the radio resources as controlled employing time coordination betweenmicro and macrocells.The heterogeneous nature of the 5G and beyond networks and the need to supportdiverse use cases bring into play the advanced access techniques such as self-organizednetworks, directional beamforming, etc., however, despite these advancements, inter-cell interference is a major challenge, especially between the small cell mmWave radiosand macro-cell radios. In this regard, it is trivial to propose the inter-cell interferencemanagement techniques that are robust and resource-efficient to guarantee the expectedquality of service for all the co-existing technologies.
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Several works have addressed the cell performance constraints and proposed the cor-responding techniques to enhance the expected QoS. For example,
In [8] the authors studied the factors that affect cell data rate and proposed a radioresource allocation algorithm that takes into consideration the repetition factor for eachuser, time offset, and quality of service (QoS) constraints. In [44], the authors studiedthe impact of interference between NB-IoT and LTE in a coexisting network scenario; thepresented analysis shows that the reduced complexity of NB-IoT user equipment (UE)makes them prone to carrier frequency offset, which significantly increases interferencecaused by radio frequency (RF) impairments.
In [45], the authors intended to minimize the total energy consumption subject to thecomputation capacity and execution latency limits. They obtained an optimal transmitpower and computation resource allocation based on the Karush-Kuhn Tucker (KKT) con-ditions. Their results showed that the total energy consumption for both NOMA and OMAschemes increases with the number of NB-IoT user equipment (UEs). However, whencompared to OMA, NOMA reduces the total energy consumption by 53.23%. Critically, itshould be noted that the authors neglected the impact of inter-cell interference (ICI).
In [46], the authors derived an uplink system model for the NB-IoT IoT system. Theirresults reveal that the actual channel frequency response (CFR) is not a simple Fouriertransform of the channel impulse response, due to sampling rate mismatch between theNB-IoT user and LTE base station. Consequently, they proposed a new channel equaliza-tion algorithm by deriving the effective CFR. In addition, they analytically derived interfer-ence to facilitate the co-existence of NB-IoT and LTE signals.
In [47], the authors investigated the downlink performance of NOMA with randomlydeployed cellular users. From the presented analytical formulations, it is shown that theNOMA scheme leads to significant performance gains in terms of ergodic sum rate. How-ever, the allocated power and the targeted data rate could directly influence the outageperformance, i.e., if the allocated power is lower than the required power for successfultransmission, the UE will suffer from the outage.
In [48], the authors dealt with the connection densitymaximization problem in NB-IoTnetworks by using NOMA. The authors used the bottom-up power filling algorithm andproposed item clustering heuristic approach which allows any number of devices to bemultiplexed per sub-carrier. It should be noted that the authors suggested multiplexingany number per sub-carrier without considering the impact of ICI, which is a potentialthreat to meeting the performance requirements of NB-IoT’s massive connectivity.
In [49], the authors proposed two cooperative relaying schemes i.e. ON/OFF - full-duplex relaying (ON/OFF - FDR), andON/OFF - half-duplex relaying (ON/OFF -HDR) schemes.Either of the proposed schemes is applied to the cell center user (with good channel con-ditions) to help relay the direct NOMA transmissions on the downlink of cell edge users.In this regard, the ON/OFF relaying decision depends upon the quality of direct and relaylinks from the base station to the cell edge user. From the results, it is shown that the pro-posed cooperative scheme significantly improves the outage performance and the sumrate of both cell-center and cell-edge users. However, for mMTC devices such as in theLPWAN category, relaying of information leads to an increase in device complexity andcost, which is the limitation for most massive IoT use-cases.
In [50], the authors proposed a novel resource allocation technique for NOMA, basedon cooperative cellular networks. In their proposed framework, the NOMA users withgood channel conditions act as group heads, hence can relay information to NOMA userswith bad channel conditions. Despite the gains of the proposed scheme for high com-plexity devices, it should be noted that the reduced complexity of NB-IoT devices, power-
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saving mode, and extended discontinuous reception (eDRx) make relaying of information(i.e. at the low complexity device) unfeasible.
In [51], the authors proposed a power-domain NOMA scheme for the NB-IoT systemsto improve the massive connectivity by allowing UEs to simultaneously access one sub-carrier. At the same time, the authors formulated a joint subcarrier and power allocationproblem for both orthogonal and non-orthogonal transmissions to maximize the connec-tion density. Their results showed that NOMA improved the number of connections byup to 87% compared to orthogonal schemes in the single-tone mode. Similarly, NOMAimproved the number of connected devices as compared to multi-tone mode orthogonalschemes by 24%. Even though the NOMA approach provided enhancements over single-tone and multi-tone OMA schemes.
Similarly, radio access network (RAN) slicing is proposed as a technique to orchestratethe RAN network utilizing network virtualization and softwarization for 5G and beyondnetworks. In this regard, several works have studied different aspects as follows;
In [52], the authors studied RAN slicing for massive connectivity of IoT applicationsby optimizing the random access (RA) procedure to maximize the success probabilitiesand improve service multiplexing of mMTC and uRLLC traffic to save unnecessary energyconsumption.
In [53], the authors adopted reinforcement learning to dynamically tune the discon-tinuous reception parameters to enhance the radio resource control (RRC) layer in theRAN environment by implementing their proposed architecture which is built on an open-source software platform (OAI) to create, modify and delete slices in the RRC layer to sat-isfy the diverse service requirements needed for IoT devices.
In [54], the authors investigated network slicing in virtualized wireless networks tosolve the spectral efficiency problem by proposing a resource allocation algorithm to en-hance uRLLC reliability. Even though the authors focused on eMBB and uRLLC, their workprovides a framework suitable for allocation problems as compared to adaptive particleswarmoptimization (APSO), equal power allocation (EPA), and equal sub-carrier allocation(ESA).
In [55], the authors revisited their previously proposed functional framework for thenext generation RAN slice management to incorporate the recently specified principlesand features of the new service-basedmanagement architecture in 3GPP Release 15 spec-ifications. Furthermore, the authors presented the specific management object classesand attributes to enhance the provisioning of RAN slices and the applicability of the over-all functional framework and information models in an illustrative next-generation RANarchitecture. Specifically, the models are used to represent the manageable aspects ofa sliced next-generation RAN operated by a neutral host provider and how the proposedfunctional framework operates through two examples: one illustrating the provisioning ofa new RAN slice and another describing how the configuration of already activated RANslices is modified in response to traffic demand variations.
In [56], the authors investigated the feasibility of the non-orthogonal RAN resourceallocation on the uplink transmission of mMTC, eMBB, and URLLC from a common basestation. Their study shows that the proposed heterogeneous non-orthogonal multipleaccess (H-NOMA) that involves UEs with heterogeneous service requirements can leadto significant performance improvement as compared to traditional orthogonal slicing.The enhancements are enabled by the capability of H-NOMA to provide service isolation,hence ensuring required performance thresholds for all services by leveraging their het-erogeneous reliability requirements.
Moreover, several topics related to service level agreement (SLA) and the correspond-

32



ing radio resourcemanagement techniques have been discussed in [57,58]. The possibilityof using machine learning techniques to enhance the RAN slicing is presented in [59–61].It should be noted that new advancements have beenmade to realize the goal of mas-sive IoT under cellular technologies. For example, proactive techniques such as intelligentreflecting surfaces, that enhance the IoT links to the corresponding access point (AP) bycounteracting the high pathloss, are introduced in [62]; the improved links are then ex-ploited to better optimize the offloading of computations from the AP to the mobile edgecomputing (MEC) server. Similarly, proactive radio resource scheduling using machinelearning techniques [63].
2.4 Scheduler Design for mMTC
Since it is trivial to guarantee the expected quality of service while providing fairness toall applications accessing the channel at a given frame in the wireless network, it is nec-essary to design the efficient radio resource schedulers that will be used according to thethroughput performance, and intended priority by the service provider.Scheduling algorithms, which distribute the available resources to the competing usersthat require to connect to the network have proved to be the key contributors to the qual-ity of service provision in wireless networks, especially with the limited available radioresources to support a particular application. It should be noted that a large number oftraffic scheduling algorithms have been proposed in the literature, however, the upcomingmassive connectivity of IoT use-cases with different service requirements, the scarcity ofresources, and critical delay requirements have rendered the adaptation of these sched-ulers very challenging.Scheduling algorithms need to achieve fairness, efficiency and guarantee the expectedquality of service for the scheduled users. Examples of classical schedulers are presentedbelow.
2.4.1 Classical Schedulers
One of the prominent schedulers in wireless networks is Round Robin (RR). The RR assignsequal portions of packet transmission time to each user in a circular order. RR utilizesthe first come first served principle, where all the users are assigned to radio resourcesregardless of their channel conditions, is on a first-come-first-served basis. Best channelquality indicator (CQI) scheduler is another scheduling scheme where the users with highCQI value have a higher chance to be served, and vice versa is also true. Unlike the bestCQI scheduler, Proportional Fair (PF) Scheduler assigns the radio resources to users basedon the level of desired fairness and experienced channel quality. PF aims at achieving abalance betweenMaximizing the cell throughput and fairness, by letting all users achievea minimum quality of service. Max-Min scheduler targets at Maximizing the minimum oftheUE throughputwhere it allocates the radio resources to guarantee the equalminimumthroughput for all users. More available classical schedulers can be found in [64–66]
2.4.2 Cooperative Scheduler
In the coexistence of 5G, beyond 5G, and legacy wireless networks, the design of novelscheduling schemes that can guarantee the expected quality of service by taking intoconsideration not only fairness, the efficiency of the scheduled users, but also the over-all cell and adjacent cells performance becomes trivial. This is because inter-cell inter-ference from adjacent cell users has proved to be the cause of significant performancedrop. Therefore, cooperative scheduling and data-driven scheduling that takes into ac-count the inter-cell interference impact, and utilizes machine learning algorithms to clas-
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sify the users accordingly, becomes of great necessity. In this regard, this thesis proposesnovel cooperative scheduling frameworks to enhance the cell performance for the OMAand NOMA schemes accordingly.
2.5 Conclusion on the State of the Art
As it can be seen in the previous chapters, radio resourcemanagement in cellularmMTC isvery critical, especially interferencemanagement for both orthogonal andnon-orthogonalapproaches to satisfy the corresponding expected quality of service requirements. Even-though several techniques are proposed to enhance the overall cell performance, less at-tention has been given to mitigating the inter-cell interference and intra-call interferencein heterogeneous network architecture, with diverse service requirements. In this regard,this Ph.D. thesis focuses on radio resource management, specifically, interference man-agement techniques utilizing proactive scheduling to minimize interference to maximizecell performance.The next chapter covers the proposed inter-cell interference management techniqueutilizing cooperative scheduling that is adapted for the massive connectivity of mMTC ap-plication. The overall focus is given on the interference reduction for the orthogonal mul-tiple access techniques and adaptive power allocation to further reduce the unnecessaryuser’s energy consumption.
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3 Proposed Cooperative Scheduling in OMA Systems
This chapter presents our proposed cooperative schedulingmethod that can be utilized tomitigate the impact of inter-cell interference. Contrary to existing works, the cooperatingbase stations share their corresponding scheduling tables to be used to compute the inter-ference weights, hence the radio resource scheduling is performed to the users with min-imum impact of interference at a given transmission frame. In essence, the cooperativescheduling reduces the impact of inter-cell interference, and the performed power alloca-tion based on users’ channel conditions minimizes the unnecessary energy consumption.

This chapter is based on the following publications:

• C.B. Mwakwata, M.M. Alam, Y. Le Moullec, H. Malik, S. Pärand; Cooperative Inter-ference Avoidance Scheduler for Radio Resource Management in NB-IoT Systems;2020 European Conference on Networks and Communications.
• C.B. Mwakwata, O. Elgarhy, Y. Le Moullec, M.M. Alam, S. Pärand, I. Annus; Inter-cellInterference Reduction Scheme for Uplink Transmission in NB-IoT Systems; 2021International Wireless Communications and Mobile Computing (IWCMC), 400-405

3.1 Proposed Cooperative Scheduling Method
Cooperative radio resource scheduling is considered in which three base stations are con-nected to communicate before the final resource allocation decision. The centralized co-operative scheduler is considered as the unit that receives the scheduling tables from co-operating base stations. At each base station, the UE channel parameters are observed,and for the cell edge users, their channel parameters are shared together with schedul-ing tables to the cooperative scheduler. The scheduler then computes the interferenceweights by taking into consideration i) one transmitting user and ii) one interfering userusing the same radio resource from each base station. The users that have the minimumimpact of interference are then selected and sharedwith the base stations to be scheduledat a given frame. When the base stations receive the list of these users and the availableresources, power allocation is performed to reduce the unnecessary energy consumptiondue to excessive transmit power allocation for the cell edge users. The overview of theproposed scheme is shown in Algorithm 1. We also selected and implemented additionalscheduling schemes i.e. proportional fair, max-min, best CQI, and round-robin as bench-marks. We fixed 10 UEs from each of the cooperating base stations and compare theperformance of each scheduler.For channel quality (CQI) estimation, our proposed scheme implements the Okumura-Hata channel model for small-medium cities. For power allocation, each base station as-signs different transmit powers to their corresponding UEs such that good channel con-dition UEs are allowed to use a maximum transmit power of 14 dBm, UEs with moderateCQI are allowed to use a maximum transmit power of 20 dBm, and UEs with bad CQI areallowed to use the full maximum transmit power of 23 dBm. Compensating the reducedNB-IoT TX power (i.e. 14 dBm) is achieved by increasing the NB-IoT transmission time tomaintain the same energy per bit like that of the UE with the maximum TX power (i.e. 23
dBm). Finally, power allocation is performed by considering the UE minimum and maxi-mum power constraints as discussed in the proposed solution.In our proposed cooperative scheduling method the base stations share (over the X2-interface) the channel quality information (CQI) (i.e. SNR, location, path-loss, cell ID, ex-pected payload, etc.), for the devices (UE) to be scheduled for the next radio frame. The
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proposed scheduler then uses this information to calculate the interference possibilitiesamong shared UEs. The calculated interference values are hence used as input to the in-dividual base station. Proactive scheduling is then performed by providing the availableresources to UEs whose impact in terms of inter-cell interference is the lowest.The proposed method comprises three main parts i.e. collection center, computingcenter, and scheduling center. The collection center receives and registers the schedulingtables from the individual base stations. The computing center computes the inter-cellinterference between UEs. The scheduling center makes the final decision about the UEsthat have the best throughput performancewhen scheduled in the same slots. The systemunder study is considered to be a small andmedium sized city based on theOkumura-Hatachannel model.
PL = A+B log(d)+C (1)

where A, B andC depend on the antenna height and the frequency.
A = 69.55+26.16 log( f c)−13.82 log(hb)−a(hm) (2)

B = 44.9−6.55 log(hb) (3)
where f c and d are given in MHz and km, respectively, a andC depend on environmentalfactors, and hb and hm are heights for the base-station and UE, respectively.The interference impact is based on the SINR which is calculated as shown in Equation(4).

SINRDL
k,n =

pk,n|hk,n|2
∑

M
m=1 ωn,m pm,n|hC

m,n|2 +N0B
(4)

where SINRDL
k,n , k, pk,n, and |hk,n|2 are the down-link signal to interference-plus-noise ratio,the transmit power, and channel response of user n frombase station k, respectively. ωn,m,

pm,n, and |hC
m,n|2 are the power classes, transmit power, and channel response of user mfrom base station n, respectively. N0B is the channel noise which is considered constant.The proposed scheduler functions as follows: it receives the scheduling tables from theindividual base stations and then checks for inter-cell interference; if there is interference,it checks the interference weight with all the other UEs to be scheduled in the same radioframe. If the UEs have the best throughput performance, it forwards that combination(UE identities) to be used by the individual base stations. The flowchart of the proposedinter-cell interference-avoidance algorithm for the NB-IoT system is as depicted in Fig. 4.

3.2 Simulation Setup
Extensive system-level simulations are performed to analyze the proposed method, asdepicted in Fig.3. The simulation setup is considered close to the one presented in [1];however, it is well adapted to fit the NB-IoT system. The NB-IoT UEs are considered fixedand hence the impact of Doppler spread on UE mobility is negligible. This suits well theuse cases such as smart grid, smart water, smart gas metering, smart waste management,etc. [6].The Round-Robin algorithm, as presented in [67], is used to compare the performanceof the proposed algorithm. In Round-Robin, each eNB assigns the radio resources toUEs ina first-come-first-served way. That is, the first detected UE is given the available resourcesregardless of the impact of interference it may cause/face.
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Table 2: Main simulation parameters for the proposed cooperative strategy for NB-IoT system [1]

Simulation ParametersName Value(a) Transmit power of base station, UE (dBm) 46 , 23(b) Modulation scheme BPSK(c) Carrier frequency (MHz) 900(d) Receiver Thermal Noise density (dBm/Hz) −174(e) No. cooperating base station 3(f) Interference Margin (dB) 0(g) Channel model Okumura Hata(h) Effective Noise Power (dBm) d + q + f + 10log(r)(i) Required / calculated SINR (dB)(j) Receiver sensitivity h + i(k) MCL (dB) a - j(l) Modulation scheme BPSK(m) No. of antenna support per UE 1(o) Height of base station, UE (m) 100, 1(p) Radius of a cell 1 km(q) Noise figure of base station, UE 9, 5 dB(r) Occupied System bandwidth (kHz) 180

For the interference-aware scheduling algorithm to better function, it is crucial to per-form proper estimation of channel parameters to effectively sort out the UEs under possi-ble interference. This is achieved by fixing the base stations and UEswhile evaluating theircorresponding channel conditions based on the definedmodel. The important simulationparameters are as presented in Table 2 [42].
3.3 Cooperative Scheduling with Power Allocation to Mitigate ICI
3.3.1 Problem formulation
The NB-IoT uplink system has four possible resource unit configurations to choose from,here we employ the single tone resource unit configuration mode of deployment (i.e.one tone per user); however, the analysis can be replicated for other resource config-urations. The tone bandwidth is given by B0 = B/X , where B is the available systembandwidth and X is the resource unit spacing (i.e. for NB-IoT uplink, B = 180 kHz, and
X = 15 kHz or X = 3.75 kHz). The index set for the available resource units is denoted as
z = {1,2, . . . ,Z}. Let Kc be the set of users belonging to cell c, where the number of cellsisC, i.e. c = {1,2, . . . ,C}, and k is the user index; thus, a user k in cell c will be denoted as
kc. The achievable rate of user k belonging to cell c on a given resource unit z is denotedby Rz

kc
= B0 log2(1+ SINRz

kc
) where SINRz

kc
is the signal to interference plus noise ratioexperienced by user k belonging to cell c on a given resource unit z, and is given as:

SINRz
kc
= az

kc

( |hz
kc,c|

2Pz
kc

∑l ̸=c,l∈C ∑ j∈Kl
|hz

jl ,c
|2Pz

jl
az

jl
+Pn

) (5)
where |hz

kc,c|denotes user kc’s channel gain on resource unit z to its ownbase station in cell
c, and Pz

kc
denotes user kc’s transmission power on resource unit z. In the denominator,the interference term comes fromother cells l, with a group of usersKl within the cell. We
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use j as the interference user index, thus a user j in cell l will be denoted as jl . Moreover,
|hz

jl ,c
| denotes the channel gain of an interfering user, belonging to cell l, jl on resourceunit z to the base station of cell c, and Pz

jl
denotes the interfering user jl ’s transmissionpower on resource unit z. Binary variables are used for scheduling: variable az

kc
denotesthe resource unit occupancy coefficient such that az

kc
= 1 if the resource unit z is used byuser kc, and az

kc
= 0 otherwise. Pn is the noise power at the receiver.The optimization goal is to minimize the inter-cell interference experienced by user kfrom adjacent cell users. The problem can either be modeled as the interference experi-enced by user k on a given resource unit, or, in order to avoid using the two binary vari-ables, the problem can be modeled as minimizing the interference on the resource unitsof cell c, which is a realistic assumption since we adopted the full buffer model, where Iz

cis the interference on resource unit z in cell c. The objective function can be expressed as:
min ∑

c∈C
∑
z∈Z

Iz
c (6)

Substituting the interference Iz
c , the objective function becomes:

min ∑
c∈C

∑
z∈Z

∑
l ̸=c,l∈C

∑
j∈Kl

|hz
jl ,c
|2Pz

jl
az

jl
(7)

subject to:
SINRz

kc
≥ ϑkc,min (8)

which is a constraint in order to satisfy the required quality of service (QoS), whereϑkc,minis the minimum acceptable SINR that user kc can have to satisfy the QoS,
az

kc

( |hz
kc,c|

2Pz
kc

∑l ̸=c,l∈C ∑ j∈Kl
|hz

jl ,c
|2Pz

jl
az

jl
+Pn

)
≥ ϑkc,min (9)

0≤ Pz
kc

az
kc
≤ Pmax,∀c ∈C,∀k ∈ Kc,∀z ∈ Z (10)

where Pmax is the maximum allowed transmit power per device.
∑

k∈Kc

az
kc
≤ 1,∀z ∈ Z,c ∈C. (11)

The above constraint guarantees that, within the same cell, a resource unit can onlybe occupied by one user at a given time.
3.3.2 Problem solution
It can be noted that the proposed optimization problem in this work is amixed binary inte-ger non-linear programming (MBINP) problem. The variables to be optimized are az

kc
and

Pz
kc

az
kc
which are very difficult to solve. In this regard, we apply a step-wise algorithm [58]for resource unit and power allocation. The algorithm follows three main steps: the firststep initializes the transmit power, the second step performs the resource unit allocation,and the third step optimizes the power allocation.

• Step One: transmit power initialization

To perform the resource unit allocation, we need to establish an initial transmit power.For our analysis we choose one of the following two methods:
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1. setting the initial transmit power equal to the maximum allowed power per device,i.e. Pmax, or
2. we set the transmit power equal to a required power, calculated from the relationgiven by the minimum required SINR and average interference power, or maximumtolerated interference level if either is available for the use case or scenario.
Regarding the first option, the transmit power of the user is set to the maximum al-lowed power for the device.For the second one, we have a known interference level, e.g average, tolerable, thresh-old, etc. We define this level at Inz

kc
. We can compute the transmit power by performingthe following procedure:The SINR for a generic user kc with a known noise and interference level, Inz

kc
, is givenby:

SINRz
kc
=
|hz

kc,c|
2Pz

kc

Inz
kc

(12)
The transmit power can be calculated as:

Pz
kc
=

Inz
kc

SINRz
kc

|hz
kc,c|2

(13)
By using the minimum acceptable SINR per user, we have an inequality:

Pz
kc
≥

Inz
kc

ϑkc,min

|hz
kc,c|2

(14)
Thus, we take the lowest acceptable transmit power, i.e. the equality case:

Pz
kc
=

Inz
kc

ϑkc,min

|hz
kc,c|2

(15)
• Step two: resource unit allocation

After step one, the optimization problem can be written as a function of the resourceunit allocation binary variable only, for a fixed transmit power, thus no power constraint:
min ∑

c∈C
∑
z∈Z

∑
l ̸=c,l∈C

∑
j∈Kl

|hz
jl ,c
|2Pz

jl
az

jl
(16)

subject to:
SINRz

kc
≥ ϑkc,min (17)

∑
k∈Kc

az
kc
≤ 1,∀z ∈ Z,c ∈C. (18)

It can further be seen that the optimization problem is a 0-1 assignment integer linearprogramming problem about az
kc
. To obtain the solution, we use the cooperative schedul-ing scheme which is discussed later on in Section 3.3.3.

• Step three: transmit power allocation

41



After performing the resource unit allocation, the result will have several interfering userson each resource unit. Moreover, these interfering users on a specific resource unit arenot interfering with other users on any other resource unit because of the OMA scheme;i.e., intra-cell interference can be ignored. Thus, the transmit power allocation for the op-timization problem, to minimize interference, can be solved for each resource unit sepa-rately because the solutions for each resource unit are independent from each other [58].Thus, the problem will be solved per resource unit having one interfering user per cell,then this can be repeated for all the other resource units which are occupied by interfer-ing users.In order to follow the above approach, we reformulate the problem. The new problemhas one user per cell interfering with each other. The optimization problem is to find thepower allocation among interference users as in [68,69].The optimization problem, after the resource unit allocation step, can be written as:
min ∑

c∈C
∑

l ̸=c,l∈C
|hl,c|2Pl (19)

subject to:
SINRc ≥ ϑc,min (20)

0≤ Pc ≤ Pmax,∀c ∈C. (21)
where |hc,c|2 is the channel gain of the user from cell c to its base station c, Pc is thetransmit power of this user belonging to cell c, |hl,c|2 is the channel gain of the interferinguser belonging to cell l to the base station c, andPl is this interfering user’s transmit power.The SINR for the user belonging to cell c on a given resource unit is given as:

SINRc =
|hc,c|2Pc

∑l ̸=c|hl,c|2Pl +Pn
(22)

The constraint (20) is not linear. In the following steps, we linearize this constraint .We start by substituting 22 in 20.
|hc,c|2Pc

∑l ̸=c|hl,c|2Pl +Pn
≥ ϑc,min (23)

where ϑc,min is the minimum required SINR to satisfy the required quality of servicefor the user belonging to cell c.By doing cross multiplication
|hc,c|2Pc ≥ ϑc,min

(
∑
l ̸=c
|hl,c|2Pl +Pn

) (24)
and equivalently,

−|hc,c|2Pc +ϑc,min

(
∑
l ̸=c
|hl,c|2Pl

)
≤−ϑc,minPn (25)

By expanding for c = 1,2, . . . ,C the inequalities become:
c = 1 :−|h1,1|2 p1 +ϑ1|h2,1|2 p2 +ϑ1|h3,1|2 p3+,

. . . ,+ϑ1|hC,1|2 pC ≤ ϑ1Pn
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c = 2 :−|h2,2|2 p2 +ϑ2|h1,2|2 p1 +ϑ2|h3,2|2 p3+,

. . . ,+ϑ2|hC,2|2 pC ≤ ϑ2Pn

c = 3 :−|h3,3|2 p3 +ϑ3|h1,3|2 p1 +ϑ3|h2,3|2 p2+,

. . . ,+ϑ3|hC,3|2 pC ≤ ϑ3Pn

... etc, which can be written in matrix form such as
Ãp̃≤ c̃ (26)

This can be solved by linear programming solutions in Matlab.
3.3.3 Implemented OMA Algorithm

Algorithm 1 OMA
1: procedure Generate UE parameters ▷ using Okumura Hata channel model
2: k← |hz

kc,c|
2

3: while Pz
kc
̸= 0, j ̸= i do

4: SINRz
kc
← az

kc

( |hz
kc,c
|2Pz

kc
∑l ̸=c,l∈C ∑ j∈Kl

|hz
jl ,c
|2Pz

jl
az

jl
+Pn

)

5: return SINRz
kc

▷ along with other channel parameters
6: procedure Share to the scheduler ▷ to compute interference weights
7: while Inz

kc
=
|hz

kc,c
|2Pz

kc
ϑi,min

−Pn do
8: select_the_UEs_ f rom_each_cell
9: return k ▷ UE IDs for available resources
10: procedure Power Allocation
11: Inz

kc
ϑkc,min

|hz
kc ,c
|2 ← p

12: while constraint 14 is satisfied do
13: calculate_Rate_Rk

14: return Rk

For fairness analysis, we use the Jain’s fairness index [70], which is given as:

f (R1,R2, . . . ,Rk) =

[
∑

K
k=1 Rk

]2

K ∑
K
k=1(Rk)2

(27)
whereK is the total number of UEs under analysis and Rk is the instantaneous UE datarate of user k. With this metric, the fairness is highest when the index value is equal to 1and the lowest when it is equal to 0.Additionally, the non-orthogonal multiple access (NOMA) scheme is considered to bethe promising technique to provide capacity enhancement of above 100,000 devices percell Contrary to the OMA approach, the NOMA approach gives the possibility to simulta-neously superpose multiple devices in a given available radio resource by allocating dif-ferent power coefficients or codes to enable the successive interference cancellation (SIC)
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at the receiver. In this regard, NOMA brings an exponential increase in device support ascompared to OMA, but at the cost of increased receiver complexity.Despite the advantages that NOMA brings to 5G and B5G networks, it is still unclearif it can be implemented in low-power IoT devices. This is because NOMA involves super-position coding (SC) and SIC at the transmitter and receiver, respectively, which are highlycomputationally complex for mMTC applications.Furthermore, for both OMA andNOMA approaches, if the radio resources are not wellmanaged, the massive connectivity will lead to massive interference, which will severelydegrade the performance of legacy, 5G, and B5G network systems. In this regard, thefollowing chapter discusses our proposed approach adapted for NOMA systems.
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4 Proposed Cooperative Scheduling in NOMA Systems
This chapter presents the proposed non-orthogonal multiple access (NOMA) schedulingfor radio resource management in massive machine type communications. Contrary toexisting works, the proposed NOMA scheduling method mitigates the impact of intra-celland inter-cell interference through cooperation with adjacent base stations for radio re-source management. Considering reduced complexity that hinders the performance ofsuccessive interference cancellation (SIC) at the receiver, we consider offloading the SICat the corresponding base stations. Additionally, power allocation is performed to reducethe unnecessary user’s energy consumption caused by exhaustive repetitions. Finally, thecell performance gains, complexity, and the fairness of the proposed scheduling methodare discussed and included in the corresponding appendix.

This chapter is based on the following publication:

• C.B. Mwakwata, O. Elgarhy, M.M. Alam, Y. Le Moullec, S. Pärand, K. Trichias, K. Ra-mantas; Cooperative Scheduler to Enhance Massive Connectivity in 5G and Beyondby Minimizing Interference in OMA and NOMA; 2021 IEEE Systems Journal.
4.1 System Model and Problem Formulation for NOMA
We consider a system of x transmitting users served by cooperating base stations, andx={1,2, . . . , X} be its index set of users. We consider M to be a positive, maximum numberof devices that can be supported per sub-carrier. z = {1,2, . . . ,Z} represents the index ofthe resource units. xc represents the cell c’s UEs, and C, i.e c = {1,2, . . . ,C}, representsthe number of cells used in simulation. Therefore, the signal to interference plus noiseratio of the NOMA user xc at unit z is given as:

SINRz
xc,NOMA = az

xc

(
|hz

xc,c|2Pz
xc

Iz
c +σN

)
(28)

where Iz
c is the total interference experienced by user xc from the co-allocated interferingusers i and users l from adjacent cells, which is given as

Iz
c = ∑

i ̸=k,i∈M
|hz

i,c|2Pz
i az

ic + ∑
l ̸=c,l∈C

∑
q∈Ql

|hz
ql ,c|

2Pz
ql

az
ql

(29)
As was also the case for OMA, we aim to minimize the ICI at user xc from users ql , andinterference from the NOMA users i of the same cell assigned to the same resource unit.The objective function can therefore be expressed as:

min ∑
c∈C

∑
z∈Z

(
∑

i̸=k,i∈M
|hz

i,c|2Pz
i az

ic + ∑
l ̸=c,l∈C

∑
q∈Ql

|hz
ql ,c|

2Pz
ql

az
ql

) (30)
subject to;

az
xc

(
|hz

xc,c|2Pz
xc

Iz
c +σN

)
≥ ϑxc,lim (31)

0≤ Pz
xc az

xc ≤ Pmaxm,∀c ∈C,∀xc ∈ X ,∀z ∈ Z. (32)
where Pmaxm is the maximum allowed power per device.

∑
xc∈X

az
xc ≤ 1,∀z ∈ Z,c ∈C. (33)
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∑
xc∈X

az
xc ≤M,∀i ∈M∀z ∈ Z,c ∈C. (34)

It can be seen that the objective function is a combinatorial optimization problem and ishence difficult to solve. In this regard, the proposed solution is presented as follows.
4.2 Proposed Solution for NOMA in NB-IoT Systems
To solve the NOMA problem we follow the same steps as in OMA. Firstly, we set an initialinterference power for all the users. Secondly, we perform the scheduling for all the users.Finally, we implement the power allocation to further reduce the interfering powers atthe desired receiver. The initial interference power will be allocated as we did for OMA.However, the channel allocation problem in equation 30 will have two assumptions:

• The power is not a variable,
• There are no power constraints.

Therefore, we perform power allocation after the channel assignment. We rewrite theoptimization problem in a similar way to that of OMA, i.e. by working per resource unitsince there is no interference from adjacent resource units; however, we have to add theNOMA interference users in a given resource unit. Since in the OMA we had one user perresource unit per cell, therewas noneed to add a subscript for the resource unit. However,because of NOMA,we havemore than one user, thus, we defineMc as the group of NOMAusers per cell per resource unit, and xc is a user in cell c that belongs to Mc, and we omitthe resource unit index. In this regard, the optimization goal becomes:
min ∑

c∈C
∑

xc∈Ml

(
∑

l ̸=c,l∈C
∑

q∈M
|h j

l,c|2P j
l + ∑

y̸=xc,y∈Mc

|hz
c,c|2Py

c
) (35)

where h j
l,c is the channel gain from user j, belonging to cell l and the NOMA group

Ml within the cell, on cell c. P j
l is the power of this user. These two terms represent theintercell interference from all the NOMA users of other cells. As for the NOMA part; hz

c,cis the channel gain of NOMA user y belonging to the same group Mc.subject to:
SINRz

xc,NOMA ≥ ϑc,lim (36)

0≤ Pz
xc ≤ Pmaxm,∀c ∈C. (37)

The SINRz
xc,NOMA is then given as:

SINRz
xc,NOMA =

( |hz
xc,c|2Pz

xc

∑l ̸=c ∑ j∈Ml
|h j

l,c|2P j
l +σN

+∑y̸=xc,y∈Mc |hz
c,c|2Py

c

) (38)

which can be solved in the same way as for OMA. However, the number of inequali-ties will be larger. Moreover, this equation does not take into account the SIC effect onremoving interference from other NOMA users within the same cell in the same resourceunit. The effect of the SIC can be included in the inequalities by simply putting zero forthe NOMA interference users within the same cell as the main user after passing through
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the SIC. The constraint (36) is not linear; in this regard, we start by substituting equation38 into eqn. 36, hence linearize as follows;
( |hk

c,c|2Pk
c

∑l ̸=c ∑ j∈Ml
|h j

l,c|2P j
l +σN

+∑y ̸=xc,y∈Mc |hz
c,c|2Py

c

)
≥ ϑc,lim (39)

|hk
c,c|2Pk

c ≥ ϑc,lim
(
∑
l ̸=c

∑
j∈Ml

|h j
l,c|2P j

l +∑
y ̸=xc,y∈Mc

|hz
c,c|2Py

c +σN
) (40)

|hk
c,c|2Pk

c −ϑc,lim
(
∑
l ̸=c

∑
j∈Ml

|h j
l,c|2P j

l

)

−ϑc,lim
(

∑
y̸=xc,y∈Mc

|hz
c,c|2Py

c
)
≥ ϑc,limσN (41)

equivalently,
−|hk

c,c|2Pk
c +ϑc,lim

(
∑
l ̸=c

∑
j∈Ml

|h j
l,c|2P j

l

)

+ϑc,lim
(

∑
y̸=xc,y∈Mc

|hz
c,c|2Py

c
)
≤ ϑc,limσN (42)

Substituting c = 1,2, . . . ,C equation becomes:
c = 1,k = 1 :−|h1

1,1|2 p1
1 +ϑ1,min

(
|h1

2,1|2 p1
2 + |h2

2,1|2 p2
2 + ...

+|h1
3,1|2 p1

3 + |h2
3,1|2 p2

3 + ...,

. . . ,+|h1
C,1|2 p1

C + |h2
C,1|2 p2

C + ...
)
+

ϑ1,min
(
|h2

1,1|2 p2
1 + |h3

1,1|2 p3
1+,

. . . ,+|hM1
1,1|2 pM1

1

)
≤ ϑ1,limσN

c = 1,k = 2 :−|h2
1,1|2 p2

1 +ϑ1,min
(
|h1

2,1|2 p1
2 + |h2

2,1|2 p2
2 + ...

+|h1
3,1|2 p1

3 + |h2
3,1|2 p2

3 + ...,

. . . ,+|h1
C,1|2 p1

C + |h2
C,1|2 p2

C + ...
)
+

ϑ1,min
(
|h1

1,1|2 p1
1 + |h3

1,1|2 p3
1+,

. . . ,+|hM1
1,1|2 pM1

1

)
≤ ϑ2,limσN

c = 2,k = 1 :−|h1
2,2|2 p1

2 +ϑ2,min
(
|h1

1,2|2 p1
1 + |h2

1,2|2 p2
1 + ...

+|h1
3,2|2 p1

3 + |h2
3,2|2 p2

3 + ...,

. . . ,+|h1
C,2|2 p1

C + |h2
C,2|2 p2

C + ...
)
+

ϑ2,min
(
|h2

2,2|2 p2
2 + |h3

2,2|2 p3
2+,

. . . ,+|hM2
2,2|2 pM2

2

)
≤ ϑ3,limσN

...
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etc. The above expansion can be shorten as a matrix of the following form:
B̃q̃≤ ṽ (43)

In this regard, equation 42 can be solved by linear programming solutions in Matlab. Al-gorithm 2 presents the proposed implementation of the NOMA approach; simulation pa-rameters are presented in Table 2, unless specified otherwise.
4.3 Complexity Analysis
As seen in Algorithm 2, from line 1 to line 5 the algorithm computes the channel param-eters for all users attached to the corresponding base stations. This operation has a com-putation cost of O(n). Then from line 6 to line 14, there is the nested while or for-loopsuch that in the first loop, the interference weight is analyzed, and users (i.e., which havelower interference impact on each other) are superposed at a given sub-carrier. In thesecond loop, the transmit power is allocated to users to reduce unnecessary energy con-sumption. This operation has the computation cost of O(n2). From line 16 to the end ofthe algorithm, we evaluate the achieved user performance and the computation cost is
O(n). In this regard, the computation complexity becomes:

O(n+n2 +n) (44)
Thus, the computational complexity of our proposed algorithm is O(n2), i.e. quadraticcomplexity.If we analyze the computation complexity in the single form (i.e., without consideringthe interference impact), from line 1 to line 5 the algorithm computes the channel param-eters for all users attached to the corresponding base stations. The operation still has acomputation cost of O(n). However, from line 6 to line 14, we will have only one whole orfor-loop to allocate different power coefficients to NOMA users to enable the SIC at thereceiver. This operation has a computation cost of O(n). From line 16 to the end of thealgorithm, we evaluate the achieved user performance and the computation cost remains

O(n). In this regard, if we do not consider interference reduction, then the computationcost becomes O(n+n+n) = O(n).Therefore, the complexity overhead of our proposed scheme (O(n2) vs. O(n)) is anacceptable trade-off, given the performance enhancements brought by the interferencereduction.The cooperative scheduling method follows the implementations as for OMA how-ever, for the NOMA, each base station classifies the UEs into three groups based on theirchannel parameters, i.e., good, moderate, and bad UEs. We assume that we have twomain sources of interference i.e., NOMA interference from users that are simultaneouslyallocated at a given resource unit at a given time slot, and the ICI from other users trans-mitting at the same resource unit but from adjacent cells. Then the scheduling tables fromeach base station are shared with the cooperative scheduler. After receiving the tables,the scheduler selects one UE from each group of users to be simultaneously superposedat a given resource unit.In this regard, a maximum number of 3 UEs can simultaneously occupy a given re-source unit at a given time slot. The scheduler computes the best combination of UEs forall the available resource units before sharing the respective allocation of slots within aframe to the base stations. Additionally, the scheduler performs the power allocation toreduce the impact of co-channel interference as well as ICI. During power allocation, weassume the power constraints for each group as follows: good channel users Pconst = 14
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dBm, moderate channel users Pconst = 20 dBm, and bad channel users Pconst = 23 dBm.Different power coefficients are assigned to users to successfully perform SIC at the re-ceiving base station. We assume that the good channel users are close to their servingbase station and hence can be given lower power constraints, and vice-versa is true forbad channel users. An overview of the proposed cooperative schedulingmethod for OMAand NOMA is presented in Fig. 5.In general, unlike the joint processing in coordinatedmulti-point (CoMP) in LTE systemswhere a UE at the cell-edge is served by two ormore base stations to improve signals qual-ity and increase throughput [71], in our proposed cooperative scheduling method eachbase station serves its users. The simulation parameters are similar as presented in [18],with some modifications adapted for the NOMA. The overview of the followed steps ishighlighted in Algorithms 1 and 2. We also selected additional scheduling schemes i.e.proportional fair (PF),max-min, and round-robin as benchmarks for comparison purposes.
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Figure 5: Proposed radio resource management scheduling exploiting the NOMA scheme in NB-IoT
systems. Each cooperating base station (BS1 to BS3) share their respective scheduling tables for
their future transmission. Then ICI is avoided by allocating resources to UEs whose impact in terms
of interference is the lowest among the UEs. Then the base stations implement the OMA or NOMA
scheme for their corresponding choice of strategy

One of the main goals of mMTC is to support a higher connection density of up tobillions of devices per square kilometer [68,72] for beyond 5G networks. The aim of eMBBis to deliver peak data rates of up to 20 Gbps, peak spectral efficiency of up to 30 bps/Hzand 15 bps/Hz on the downlink and uplink, respectively, maximum tolerable latency of 4ms, and high energy efficiency with seamless mobility support. Finally, uRLLC provides up
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Algorithm 2 Implemented NOMA Algorithm
1: procedure User Equipment Creation ▷
2: xc← |hz

xc,c|23: while Pz
xc ̸= 0, j ̸= i do

4: Equation(38)
5: return SINRz

xc

6: procedure Share the scheduling tables
7: while Inz

xc =
|hz

xc,c|2Pz
xc

ϑi,min
−σN do

8: compute_the_best_combination_o f_UEs
9: Divide_the_UEs_in_three_groups
10: Superpose_One_UE_ f rom_each

group_in_a_given_subcarrier
11: while Pz

xc ̸= 0 do
12: allocate_power_according_to_constraint :
13: 0 < Pz

xc ≤ Pmaxm,∀c ∈C

14: return xc

15: procedure Evaluate
16: while Iz

cϑc,lim
|hz

xc,c|2
← p do

17: calculate_Rate_Rk18: calculate_Energy_Consumption
19: return Rxc ,energy

to only 1 ms user-plane latency, reliability of 1−10−5 success probability for transmitting
32 bytes in 1 ms with 0 ms mobility interruption time. In this regard, it is very challengingto support this diversity of service requirements under the same physical infrastructurewithout interrupting the services that are simultaneously running on the same network.

To cope with such a challenge, RAN slicing has been proposed as one of the enablersof network orchestration by flexibly customizing and managing the base stations utiliz-ing softwarization and virtualization to support a multi-service-multi-tenant architecture[69]. In this regard, a RAN slice can be characterized by particular QoS requirements thatnecessitate a particular system behavior to support specific applications. For example,user equipment (UE)with reduced capabilities (REDCAP) operating under 5GNR Light [73],or narrow-band IoT (NB-IoT) can be served by a slice with radio access that is up to 10 sec-onds delay-tolerant with very limited or no mobility. On the other hand, Cat-M UEs canbe served by a slice that guarantees mobility support for applications such as smart logis-tics [74, 75].
Radio resource scheduling is one of the most proposed approaches to enable optimalresource usage and to enhance themassive connectivity ofmMTCUEs. However, if the ra-dio resources are notwell managed, themassive connectivity causesmassive interferencebetween UEs that are competing for the available radio resources in the heterogeneousnetwork. One of the promising techniques to enable better scheduling by minimizingthe inter-cell interference and guaranteeing the required QoS is the use of a cooperativescheduler as seen in previous chapters.
However, sharing of the scheduling tables increases the overhead in the X2 interface,and the shared data need the brute-force computation to select the best pair to be sched-uled at given radio resources. Therefore it is necessary to study the proactive data-driven
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approaches that can reduce the computational complexity, proactively classify and pre-dicts the next transmissions to enable proactive scheduling.It should be noted that less attention is given to how the machine learning techniquescan be used to classify and predict the users’ transmission characteristics, hence enhanc-ing the scheduling of RAN slices. In this regard, the next chapter studies the applicabilityof machine learning algorithms adapted to slice scheduling to increase the number ofconnected devices per slice, while providing the expected QoS requirements according toshared SLA.
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5 Exploiting Machine Learning for RAN Slice Scheduling in Be-
yond 5G Communication

In this chapter, the radio access networks (RAN) slice scheduling is developed tomaximizethe cell performance and the number of the connected devices to support the massiveconnectivity in 5G and beyond wireless networks. The machine learning algorithms areused to perform the users’ classification based on their channel conditions, and predictionfor their future transmission patterns to enhance the scheduling. Unlike traditional coop-erative scheduling which involves sharing of scheduling tables through X2 interface hencecausing overhead, in this work, machine learning is used to predict the users’ transmis-sion patterns hence avoiding exchange of tables for every scheduling frame to reduce theoverhead. Similarly, the classification and prediction helps to perform the radio resourcescheduling to the users whose channel conditions can guarantee the successful transmis-sions in their next allocations.
This chapter is based on the following publication:

• C.B. Mwakwata, M.M. Alam, Y. Le Moulec; mMTC Users Classification Empower-ing Predictive Cooperative Scheduler in RAN Slicing for 5G and Beyond Networks;
Submitted

5.1 Problem Formulation
We consider a multi-cell network structure where several UEs are transmitting to theircorresponding base stations. In this scenario, adjacent base stations simultaneously re-ceive the unwanted signals transmitted by adjacent cell UEs. In this regard, inter-cell in-terference in terms of transmit power is experienced. We assume the scheduling is per-formed for a given slice; however, the analysis can be replicated for several slices. Let
z = {1,2, . . . ,Z} be the index of the resource units. xc represents the cell c’s UEs, andC,i.e c = {1,2, . . . ,C}, is the number of cells used in the simulation. The achieved data rateof a given slice is derived from the Shannon formula of cell capacity given by

RSLC = BSLClog(1+SINRSLC) (45)
where RSLC is the achieved rate of a given slice based on the shared service level agree-ment (SLA). BSLC is the allocated bandwidth for a given slice in order to satisfy the ex-pected QoS, given by

BSLC =
B
µ

(46)
where B is the overall system bandwidth, and µ is the bandwidth splitting coefficient thatdepends on the SLA. Finally, SINRSLC is the achieved signal to noise plus interference ratioof the allocated UE, given by

SINRSLC =
|hz

xc,c|2Pz
xc

∑l ̸=c,l∈C ∑q∈Ql
|hz

ql ,c|2Pz
ql a

z
ql +σN

(47)
where |hz

xc,c|2 represents the channel gain of the transmitting UE, and Pz
xc is the transmit-ting power of the allocated UE, which is subject to maximum allowed power constraintper each transmitting UE given by

0≤ Pz
xc ≤ Pmaxm,∀c ∈C. (48)
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Therefore, we aim to maximize the sum rate of the of the system by maximizing therate of each allocated slice while guaranteeing the expected QoS of each slice. In thisregard, the sum rate maximization problem can be represented as:
max ∑

c∈C
∑
z∈Z

az
xc log

(
1+

|hz
xc,c|2Pz

xc

∑l ̸=c,l∈C ∑q∈Ql
|hz

ql ,c|2Pz
ql a

z
ql +σN

) (49)
Subject to:

SINRSLC ≥ ϑxc,SLC (50)
i.e.,

az
xc

( |hz
xc,c|2Pz

xc

∑l ̸=c,l∈C ∑q∈Ql
|hz

ql ,c|2Pz
ql a

z
ql +σN

)
≥ ϑxc,SLC (51)

0≤ Pz
xc az

xc ≤ Pmaxm,∀c ∈C,∀xc ∈ Xc,∀z ∈ Z. (52)

∑
xc∈Xc

az
xc ≤ 1,∀z ∈ Z,c ∈C (53)

where ϑxc,SLC is the SINR constraint to satisfy the required QoS of a given slice. It is con-sidered that only the UEs above this threshold can guarantee successful transmission.

5.2 Proposed Users Classification and Prediction method to Enhance the
Scheduler

As it is seen above, the problem is of a mixed binary integer non-linear programming na-ture, i.e. it is very challenging to maximize the sum-rate while minimizing the level ofacceptable interference for the scheduled UE to satisfy the expected QoS requirement. Inthis regard, we apply the solutions to minimize the interference between allocated UEs.Then to optimize the allocation matrix, we implement the machine learning schemes,hence allocating the resources based on classification and prediction. Finally, we performpower allocation to further minimize the unnecessary energy consumption of the trans-mitting UEs. The corresponding discussion of the machine learning and the enhancedscheduler setup are presented in the following sub-sections.To begin with, the IoT UEs’ channel parameters data are collected from a live 5G net-work; in our case in Haapsalu, Estonia. Then data processing is performed to eliminatethe coverage holes where no actual communication parameters data was collected. Next,we run different machine learning algorithms to classify the UEs according to their cor-responding channel parameters. We deploy several machine learning algorithms on theprocessed data sets to classify the users in different clusters to enhance the UE schedul-ing; several output parameters such as minimum classification errors, true response vsprediction response, etc. are used to judge the quality of the classification performance.For the above specific data set, we present the best-performing algorithms as comparedto all possible lightweight ML algorithms. From the analysis, it can be noted that ratio-nal quadratic Gaussian Process Regression (GPR) performs better than the fine GaussianSupport VectorMachine (SVM) when compared to the perfect prediction on the collectedsamples. Then, based on the collected insights from both classification and regression al-gorithms, the intra-slice scheduler was designed to predict the periodicity and buffer sizefor the next scheduling frames.
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5.2.1 Intra-Slice SchedulingSince our objective is to optimize the performance of massive IoT slices, the simulation isperformed to map the collected real-time channel parameters to enhance the number ofconnected devices by predicting the UE periodicity and expected buffer size for the nextframe. In this regard, unnecessary radio resources are released to support other slices thatrequire higher bandwidth and/or transmission time slots. From the allocated and releasedresources, the performance of the network is analyzed to evaluate the effectiveness of theproposed algorithm in comparison to traditional scheduling algorithms that utilize fixedradio resources for a given expected QoS requirement. It should be noted that the inter-slice scheduling is out of scope for this work, but will be included in our future outlook.The overall proposed framework is presented in Fig 6 and summarized below.
• The optimization parameter is selected in the Network Slice Sub-net ManagementFunction (NSSMF)which acts as the brain of the slice, where slice function selection,configuration, and coordination are originated.
• The NSSMF decides to instantiate, scale, terminate, or move the slice based on thecommands it receives from theNetwork SliceManagement Function (NSMF), whichreceives the translation of related service requirements from the CommunicationService Management Function (CSMF).
• Then themachine learning algorithm is applied to the collected data fromeither the

5G network. Based on the nature of the data, UE or network parameters cleaningis performed because some might be missing due to coverage holes or temporaryUE disconnection from the network.
• The classification and prediction are performed on the data to give the knowledgeon the behavior of UE hence the controller and the RAN scheduler coordinate andcooperate to allocate the optimal radio resources to the massive IoT slice to satisfythe required quality of service.
• When the allocated UEs are allocated to transmit on the network, either the UE orthe network parameters aremonitored and the performance is evaluated; in case ofa completely new parameter or a significant change in current collected values, thechanged parameter is injected back to be used in the machine learning to decidewhether it can bring more enhancements to the slice performance in terms of UEenergy consumption, throughput, number of connected devices etc.

5.2.2 Machine Learning Enabled Cooperative SchedulerOur starting point is a cooperative scheduler designed to mitigate the impact of inter-cell interference caused by transmitting users from adjacent cells. The overall schedulingframework and its settings are presented in [29]. This scheduler comprised of sharingthe scheduling tables between the base stations to mitigate the inter-cell interference byproactively allocating the radio resources to the users combinations that result in min-imum possible interference to maximize the expected quality of service requirements.However, significant overhead was experienced in the X2 interface due to the need forinformation sharing between the base stations. In the current paper, we deploy the ma-chine learning framework presented in Fig. 6 to perform the prediction of the base sta-tions next transmission capabilities within a given slice. In doing so, the machine learningscheme is run in all the cooperating base stations for clustering not only the current trans-missions but also the prediction of the corresponding upcoming transmissions of a givenset of UEs in a given slice.
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For example, given the learned transmission pattern and the SINR distribution, a cer-tain number of UEs can tolerate a 10 ms delay for a small packet size transmission thatcan occupy less bandwidth as compared to a set of UEs that require a 1 ms delay for thesame packet size. In this regard, latency-sensitive UEs can occupy and release a givenradio resource faster and let the slice be used by the latency insensitive UEs while thetransmission periodicity is being monitored.The simulation is performed in MATLAB to adapt different scheduling frameworksbased on SINR, and the simulation parameters as used in [27]. We adapt the schedul-ing on the traditional and cooperative OMA schemes; however, for comparison purposes,the cooperative NOMA scheme is also considered to further compare the performancegains. In the current work, the machine learning framework is not adapted on the NOMAscheme due to its already existing computational complexity when performing the suc-cessive interference cancellation for the UE allocated at the same radio resources.
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6 Conclusion
This Ph.D. thesis has answered the research question presented in chapter I as follows:

RQ1. How are the orthogonal multiple access techniques intended to accommodate
the massive connectivity of IoT use cases impacted by inadequate interference man-
agement techniques in heterogeneous network architectures? By taking both intra-celland inter-cell interference as constraints while formulating the objective functions, anddesigning the systems that utilize the real-time channel parameters during systemmodel-ing. In this thesis, we have studied the impact of massive connectivity in the interference-limited environment for the orthogonal multiple access techniques and proposed the co-operative scheduling framework that reduces the impact of both intra-cell and inter-cellinterference to satisfy the expected users’ quality of service. In this regard, the proposedframework improved throughput increased the number of connected devices per cell withreduced users’ energy consumption.

RQ2. Is it possible to proactively perform the data-driven radio resource manage-
ment techniques to enhance the cell performance, with the user’s minimum-possible
energy consumption while guaranteeing the expected quality of service requirements?Yes, it is possible. We implemented the data-driven scheduling, where the cooperatingbase stations share their corresponding scheduling tables before performing the finalscheduling decision, this helped in avoiding unnecessary energy consumption to userswhose channel conditions do not permit successful transmissions. While doing so, theavailable radio resources are given to users with better channel conditions hence reduc-ing the number of repetitions that normally drain the devices’ energy.

RQ3. Are the novel approaches such as non-orthogonal multiple access (NOMA) suf-
ficient to reach the expected cell performance for mMTC applications, considering the
impact of inter-cell interference from the neighboring cells, and the complexity of suc-
cessive interference cancellation (SIC) at the receiver? The reduced receiver complex-ity to minimize the overall cost of mMTC devices hinders the performance of successiveinterference cancellations at the receiver. In this thesis, we centralized the schedulingby firstly grouping the users based on their channel conditions (i.e., bad, moderate, andgood), then simultaneously allocating one user from each group at a given radio resource.Additionally, we implemented different power coefficients to users to help in decoding therespective powers hence retrieving the corresponding information.

RQ4. Since radio access network (RAN) slicing proves to be efficient for sharing and
orchestration of networks, how is it possible to accommodate the massive connectivity
of mMTC connections with diverse service requirements in a given slice while guaran-
teeing the expected performance as per service level agreement (SLA) templates? Byusing the machine learning algorithms, it is possible to cluster the users and predict theircorresponding transmission patterns. In this regard, the SLA templates can be dynami-cally adapted by scheduling the users to satisfy the required quality of service of a givenslice. It is necessary to choose themachine learning algorithms according to the nature ofthe collected data and adapt the scheduling framework accordingly. For example, if thedata contains exhaustive data labels, it is better to use deep learning algorithms to findthe relationship between different channel parameters and how these patterns affect thenetwork performance. In our work, we used reinforcement learning because the amountof available data was limited. However, it can be noted that, depending on the natureof the data, possibility to interpret, speed of training, etc., different machine learning al-
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gorithms can be applied on either user or network data to enhance the RAN schedulingfor massive connectivity support of massive IoT slice. It is observed that the ML-enabledscheduler outperforms the benchmark scheduling schemes significantly.
In general, the overall results in this thesis show that the proposed NOMA scheme ismore spectrum efficient than OMA as it supports more than twice the number of con-nected devices for the same number of available resources. Furthermore, other networkperformance metrics such as throughput, user’s energy consumption, and fairness areanalyzed, discussed, and compared for both the OMA and NOMA schemes. Furthermore,the reduced impact of interference and the proposed power allocation techniques reducethe average energy consumption per device hence are more suitable for massive IoT de-ployments as it enhances the device’s battery life longevity.Our future outlook aims to implement advanced techniques such as intelligent reflect-ing surfaces (IRS), directional beamforming, and deep learning approaches to increase thecell capacity for themassive IoT devices in 5G and beyond networks. Furthermore, our fu-ture work includes inter-slice scheduling by proactive interference mitigation approachestomaximize the spectrumefficiency formassive IoT applications that require differentQoSunder heterogeneous slice configurations to be aligned with 6G flagship projects [76–78].For example, the ubiquitous smartwireless connectivity is critical for future large-scaleindustrial tasks, services, assets, and devices. Very significantly improved connectivityneeds to be unlocked through novel spectrum combinations and the fully autonomousmanagement of the underlying network resources by applying online AI at multiple de-cision layers. Furthermore, novel data-driven techniques to support Grant Free Non-Orthogonal Multiple Access (GF-NOMA), multi-agent Deep Reinforcement Learning, End-to-End (E2E) Slicing, Integrated Access Backhaul (IAB), Industrial Virtual Assistant (IVA),Simultaneous Localization and Mapping (SLAM) need to be explored for beyond 5G net-works.
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Abstract
Scheduling inRadioResourceManagement forMassiveMachine-
Type Communications
The increase in the number of connected devices to support different service verticals forlegacy, 5G, and beyond wireless networks with limited radio resources necessitates theimplementation of novel radio resource management techniques. This is because, as thenumber of users increases the impact of interference also increases, hence guaranteeingthe expected quality of service under traditional approaches becomes impossible.

For example, the legacy and current 5G deployments utilize the orthogonal multipleaccess techniques that assign orthogonality in terms of frequency and time, in this re-gard, reaching the expected number of connected devices, especially for the massivemachine-type communications became very challenging. Similarly, even in beyond the5G networks, the non-orthogonal multiple access techniques fail to reach the expectedquality of service requirements. The main reasons for limited cell performance are Lim-ited Energy, multipath propagation, spectrum limitations, interference-limited systems,user mobility, security, privacy, support for multiple access techniques (i.e., duplexing),etc.
Furthermore, the current conventional approaches to resource management, espe-cially for interference mitigation are based on optimization theory techniques, therefore,it is necessary to implement the suitable mathematical models for a particular problem,i.e. tractable to characterize the proposed solutions based on information theory. How-ever, even when this is done, the optimal solution will inevitably depend on the systemparameters, i.e., the receiver’s sensitivity, the users’ location, the connection density,slow/fast fading channel variations, etc. In this regard, when any of these parameterschange, the optimization problem becomes obsolete, hence causing a significant com-plexity on the real-time realizations, especially in heterogeneous wireless network archi-tectures.
Additionally, with dense deployments of wireless networks to support the massivemachine-type communications, it is necessary to utilize the amount of available networkdata to implement the novel approaches that implement artificial intelligence (AI) to en-able the data-driven real-time radio resourcemanagement techniques especially to coun-teract the impact of interference for the dense deployment networks. One of the mostimportant mechanisms to manage the stringent radio resource management is throughscheduling, therefore, it is necessary to design efficient radio resource schedulers that willguarantee the throughput performance and acceptable fairness by the service provider.It should be noted that scheduling algorithms, which distribute the available resources tothe competing users that require to connect to the network have proved to be the keycontributors to the quality of service provision in wireless networks, especially with thelimited available radio resources to support a particular application. A large number oftraffic scheduling algorithms have been proposed in the literature, however, the upcom-ing massive connectivity of internet of things with different service requirements and thescarcity of resources, have rendered the adaptation of these schedulers very challenging.
In this regard, this Ph.D. thesis focuses on advances of radio resource management,specifically, interference management techniques by employing proactive scheduling tominimize interference hence maximizing the overall cell performance. For example, wedesign the novel interference management scheduler that utilizes a cooperative strategyin a multi-cell network. Then, we propose the novel inter-cell and intra-call interferencemanagement scheme for the orthogonal multiple access techniques, additionally, by con-
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sidering the limited computation complexity of connected users, the interference-awarescheme is proposed for the non-orthogonalmultiple accesswith a power allocationmech-anism to reduce the devices’ energy consumption. Finally, we propose the radio accessnetwork slice scheduler that utilizes machine learning algorithms to classify the users ac-cording to their channel conditions and predict their future transmission patterns thatenhance the scheduling performance of a given slice.In general, the proposed scheduler enhances the cell performance accordingly. Forthe proposed OMA and NOMA schedulers, the results show enhancements up to 58%,75%, and 100% in terms of user’s data rates, energy consumption, and connection density,respectively.
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Kokkuvõte
Raadioressursside Planeerimine Massiivse Masin-masin Tüüpi
Kommunikatsiooni Korral
Aasta-aastalt suureneb sideseadmete hulk, mis võimaldavad nii viienda põlvkonna mo-biilside (5G), kui ka sellele eelnevate ning järgnevate traadita side standarditel baseeru-vate teenuste toimimist. Piiratud raadioressursside hulk koos aina suureneva sidesead-mete arvuga tekitab vajaduse uudsete raadioressursi haldamise meetodite järgi. Kasvavraadioseadmete arv toob tahtmatult endaga kaasa ka suureneva häirete hulga, muutestraditsiooniliste meetoditega teenuse kvaliteedi tagamise võimatuks.

Kaasaaegsetes 5G- kui ka sellele eelnevates sidesüsteemide generatsioonides kasu-tusel olevad ortogonaalsed raadioressursi jaotamise tehnoloogiad (orgthogonal multipleaccess, OMA) kasutavad ortogonaalsuse printsiipi nii sageduslikus- kui ka aegruumis, etteenindada ära vajalikul hulgal kliente. Vaatamata antud meetodite kasutusele muudabsuurenev sideseadmete, eriti massiivse masin-masin tüüpi suhtluse (massive machine-type communications, mMTC) seadmete arv traadita võrgu teenindamise aina keeruka-maks. Sarnaselt eelnevale, ei suuda ka 5G’le järgnevates generatsioonides kasutatavadmitte-ortogonaalsed ühispöörduse tehnoloogiad (non-orthogonal multiple access, NO-MA) tagada oodatud teenusekvaliteedi taset. Piiratud jõudlus tuleneb mitmekiirelisestlevist, piiratud energiahulgast ja -raadiospektrist, vastastikuste häirete mõjust seadmete-le, kasutajate liikuvusest, turvalisuse- ja privaatsusnõuetest, ühispöörduse tehnoloogiatetoetusest jne.
Traditsionaalsed ressursihaldusemeetodid põhinevadoptimeerimisteoorial, nende ka-sutamisel rakendatakse sobilikke matemaatilisi mudeleid vastavalt konkreetse probleemiiseloomule. Sellisel juhul aga sõltub optimaalne lahend mitmetest erinevatest süsteemiparameetritest nagu näiteks vastuvõtja tundlikkus, kasutaja asukoht, sideseansside sage-dus, sidekanali parameetrid jms. Mõne eeltoodud parameetri muutuse mõjul muutub kaantud optimeerimisprobleemi lahend mittekasutatavaks, see omakorda tõstab keerukustreaalajasüsteemides rakendamisel, esmajoones heterogeensetes traadita sidevõrkudes.Laiaulatuslikku masin-masin suhtlust võimaldavates traadita andmesidevõrkudes on see-ga vaja rakendada kogu sidevõrgu parameetrite kohta olemasolevaid andmeid, et arenda-da ja kasutada uudseid tehisintellektil (artificial intelligence, AI) baseeruvaid ressursihal-duse meetodeid. Eelmainitudmeetodid võimaldavad rakendada reaalajalist andmepõhistraadioressursside haldust eesmärgiga vähendada häirete mõju suure seadmetihedusegaraadioside võrkudes.
Üks olulisimaid raadioressursside haldamise mehhanisme on sideseansside planeeri-mine/jaotamine (scheduling). Seetõttu on vajaliku läbilaskevõime ning sideseansside õig-lase jaotamise saavutamiseks vaja luua efektiivseid raadioressursi plaaneerijaid (schedu-ler).
Ajakava planeerimise algoritmid on osutunud peamiseks osaks traadita sidevõrkudeteenusekvaliteedi tagamisel. Esmajoones on need algoritmid olulised olukordades kusraadioressursid on tugevalt piiratud, tagades nõutud teenuse kvaliteedi läbi kasutajateraadioressursside ümber jaotamise. Kuigi erialakirjanduses on välja pakutud mitmeid eri-nevaid võrguliikluse planeerimise algoritme, on nende rakendamine raskendatud asjadeinterneti (internet of things, IoT) tulekuga, seda esmajoones suurenenud ressursside nap-puse ning varasemast erinevatele, teenustele kehtestatud nõuete tõttu. Käesolev dokto-ritöö keskendub raadioressursside haldamise meetodite arendamisele. Täpsemalt käsitle-takse häirete halduse meetoditele milledes rakendatakse ennetavat toimingute ajastust,et maksimeerida sidevõrgu üleüldist jõudlust.
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Näiteks loodi uudne häirete haldamise planeerija, mis kasutab ära kärgvõrkude koos-tööstrateegiat. Järgnevalt pakuti välja uudne kärjesisese ning kärgede vahelise häirehal-duse süsteem ortogonaalsete -ühispöördusmeetodite jaoks. Võttes arvesse ühendusesolevate seadmete piiratud arvutusvõimsust, pakkuti välja häireteadlik süsteem mitte -ortogonaalse ühispöörduse ja võimsuse jaotamise korral, et vähendada antud seadme-te energiatarvet. Viimasena pakuti välja raadiojuurdepääsuvõrgu (radio access network,RAN) võrguviil plaanur, milles on rakendatudmasinõppe algoritme jamis klassifitseerib si-devõrgu kasutajaid vastavalt sidekanali tingimustele ning prognoosib nende tulevasi trans-missiooniaegu ning -mustreid. Antud lahendus võimaldab suurendada konkreetse juurde-pääsuvõrgu võrguviilu toimingute ajastamise sooritust.Tulemustest saab järeldada, et väljapakutud plaanur suurendab sidevõrgu jõudlust:näiteks väljapakutud OMA ja NOMA plaanurid suudavad pakkuda kuni 58%, 75% ja 100%paranemist. Viimast siis vastavalt seadme edastuskiiruses, energiatarbes ning loodavateühenduste ruumilises tiheduses.
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Abstract: Narrowband internet of things (NB-IoT) is a recent cellular radio access technology
based on Long-Term Evolution (LTE) introduced by Third-Generation Partnership Project (3GPP)
for Low-Power Wide-Area Networks (LPWAN). The main aim of NB-IoT is to support massive
machine-type communication (mMTC) and enable low-power, low-cost, and low-data-rate
communication. NB-IoT is based on LTE design with some changes to meet the mMTC requirements.
For example, in the physical (PHY) layer only single-antenna and low-order modulations are
supported, and in the Medium Access Control (MAC) layers only one physical resource block
is allocated for resource scheduling. The aim of this survey is to provide a comprehensive overview
of the design changes brought in the NB-IoT standardization along with the detailed research
developments from the perspectives of Physical and MAC layers. The survey also includes an
overview of Evolved Packet Core (EPC) changes to support the Service Capability Exposure Function
(SCEF) to manage both IP and non-IP data packets through Control Plane (CP) and User Plane (UP),
the possible deployment scenarios of NB-IoT in future Heterogeneous Wireless Networks (HetNet).
Finally, existing and emerging research challenges in this direction are presented to motivate future
research activities.

Keywords: narrowband; IoT; PHY; NB-IoT; MAC; deployment; survey; mMTC; 5G

1. Introduction

According to Information Handling Services (IHS) technology forecast, the Internet of Things
(IoT) market is expected to grow to billions of devices by 2020 [1]. Massive connections are expected
to respond to different IoT use cases such as smart city, smart wearables, smart home, etc. [2].
For these applications, latency-insensitive devices can be positioned in hard-to-reach areas and do
not require high throughput or frequent reporting. Therefore, to cope with such tremendous IoT
trends, the Third-Generation Partnership Project (3GPP) introduced the Narrowband Internet of
Things (NB-IoT) standard as a communication technology enabler. NB-IoT is categorized as one of
the licensed Low-Power Wide-Area Networks (LPWAN) cellular technologies based on Long-Term
Evolution (LTE) with long range and low cost. In the LPWAN category, there exist other licensed
technologies, i.e., Long-Term Evolution Category M1 (LTE-M), and unlicensed technologies, i.e., Long
Range (LoRa), SigFox, Ingenu, etc. [3–7], but they are not the focus of the current work since they are
not based on cellular technology.

Sensors 2019, 19, 2613; doi:10.3390/s19112613 www.mdpi.com/journal/sensors
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The term Narrowband refers to NB-IoT’s bandwidth of maximum 200 kHz thanks to which it
can coexist either in the Global System for Mobile Communications (GSM) spectrum or by occupying
one of the legacy LTE Physical Resource Blocks (PRBs) as in-band or as guard-band. Since it coexists
in the LTE spectrum, NB-IoT follows the legacy LTE numerologies as it uses Orthogonal Frequency
Division Multiplexing (OFDM) and Single-Carrier Frequency Division Multiple Access (SC-FDMA)
in the downlink and uplink transmission schemes, respectively. Some modifications in the physical
(PHY) and medium access control (MAC) layers are implemented to support the long-range massive
machine-type (mMTC) connections with low power, low data rates, low complexity, and hence
low cost. However, despite its low complexity, this new radio access technology (RAT) delivers
better performance in terms of the supported number of devices, and coverage enhancements for
latency-insensitive applications with maximum coupling loss (MCL) of about 20 dB higher than LTE
(i.e., 164 dB) [5–11].

With flexible deployment as well as the possibility to implement over-the-air (OTA) firmware
upgrades, many telecommunication operators across the globe (as shown in Figure 1) deployed
NB-IoT to test its practical feasibility on diverse use cases with real-life trials such as connected sheep
in Norway [12], smart metering and tracking in Brazil [13], NB-IoT at sea in Norway [14], smart city in
Las Vegas, USA [15], etc. The trials are enabled by different NB-IoT software and hardware solutions
from different chip or module vendors such as Skyworks [16], Media tek [17], Neul (Huawei) [18],
Quectel [19], Nordic Semiconductors [20], Intel [21], Sequans [22], Qualcomm [23], Siera wireless [24],
Samsung [25], Altair [26], U-Blox [27], and so on.
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Figure 1. The geographical representation of countries with the ongoing NB-IoT real-life deployments
for diverse use cases (May 2019).
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The availability of such commercial off-the-shelf solutions speeds up the adoption of NB-IoT.
For this reason, numerous studies addressing segmented enhancement criteria including survey
articles emerged to analyze NB-IoT performance and implementation. Table 1 presents, in a nutshell,
the main differences and similarities between this survey and the other existing ones by displaying the
key focus features.

Table 1. Summarized comparison of this survey’s contribution with respect to the existing surveys.

Survey The Third Generation Partnership Project Layers Deployment Strategies

[Ref] Rel 13 Rel 14 Rel 15 Rel 16 Physical Media Access Control

[28] 2017 X
[29] 2017 X X
[30] 2017 X
[31] 2017 X
[32] 2018 X
[33] 2019 X X

This survey X X X X X X X

For example, in [32], the authors surveyed the development path of MTC and elaborated the
NB-IoT evolution in Release 13. Similarly, in [28], the authors discussed the Release 13 features and
compared its performance with respect to other communication technologies such as LTE-M, SigFox,
Lora and Wireless-Fidelity (WiFi), etc. In [29,30], the authors gave an overview of NB-IoT Release 14;
however, in [30], the authors elaborated more on the expectations for NB-IoT Release 15 agenda.
In [31], the authors presented a survey on the NB-IoT downlink scheduling issues by highlighting
the associated scheduling process in terms of offset index selection. In [33], the authors surveyed
the uplink and downlink performance evaluation of NB-IoT systems by analyzing the main causes
of latency, trade-off between throughput and free resources, channel occupancy etc. with respect to
Release 13 and Release 14 updates.

In contrast to the above surveys, this paper presents:

• A comprehensive survey of NB-IoT, from Release 13 to the ongoing Release 16 prospects.
• An all-inclusive overview of the state of the art of PHY and MAC layers by addressing the key

improvement concerns in terms of challenges and the corresponding potential solutions.
• The possible NB-IoT deployment strategies for synchronous and asynchronous network structures

in HetNet scenarios to foster the NB-IoT coexistence with legacy technologies as well as with the
fifth generation (5G) networks.

• Discussion on the open research challenges to motivate future research directions.

To the best of the authors’ knowledge, this is the first survey that covers broadly these
above-mentioned contributions and hence will facilitate the reader’s knowledge related to NB-IoT
from standardization, ongoing research, and its practical implementation.

The rest of this paper is organized as follows: Section 2 discusses NB-IoT standards by elaborating
the key design changes and the related ongoing enhancements. Section 3 presents the state of the art
of NB-IoT protocol stack by detailing the PHY layer and MAC layer features. Section 4 discusses the
open research questions and their potential solutions, and the conclusion is drawn in Section 5.

2. Narrowband-IoT Standard and Releases

Early in 2014, the LPWAN market rapidly developed thanks to the emergence of IoT. Realizing
the need and potential for new communication ways, 3GPP started a feasibility study on cellular
system support for an ultra-low complexity and low throughput IoT solution referred to as cellular
IoT. In May 2014, Huawei and Vodafone proposed the Narrowband Machine to Machine (NB-M2M) to
3GPP as a study item to cope with the IoT market needs. Additional telecom industrial players got
interested and later the same year Qualcomm proposed narrowband orthogonal frequency division
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multiplexing (NB-OFDM). In May 2015, 3GPP merged the two proposals (i.e., NB-M2M and NB-OFDM)
and formed the Narrowband Cellular IoT (NB-CIoT). Eight months later, Ericsson proposed the
Narrowband Long-Term Evolution NB-LTE. In September 2015, 3GPP included all proposals as a work
item for Release 13. The key difference between NB-CIoT and NB-LTE was the number of the reused
legacy LTE network resources to support interoperability. In June 2016 NB-IoT was recognized as
a new clean slate RAT. Only further improvement changes were allowed and implemented thereafter.

In this regard, this section presents the main NB-IoT design changes from Release 13 until
today that enabled the massive IoT connections with the corresponding solutions to respond to the
adopted NB-IoT objectives. The enhancement features are classified following the objectives that
are presented in the releases which would make it easier for the readers to refer back to the official
3GPP documents [8,9,34–38].

2.1. Release 13

3GPP introduced the following techniques in NB-IoT Release 13 to enable cellular massive IoT
deployment for diverse use cases with low power, low complexity, and hence low cost. The introduced
features and their corresponding objectives are as follows.

2.1.1. Mode of Operation

With the limited bandwidth requirement, NB-IoT can be deployed in three different modes i.e.,
standalone, in-band, and guard-band, as depicted in Figure 2. In in-band and guard-band modes,
NB-IoT occupies one PRBs of 180 KHz in LTE spectrum both in the downlink and uplink. It can also be
allocated as standalone where it occupies the 200 KHz bandwidth by “refarming” the GSM spectrum.
These flexible deployment possibilities enable fast integration and coexistence with legacy LTE and
GSM systems.

Inband allocation (180 kHz) Guardband allocation (180 kHz)

Standalone allocation (200 kHz)

NB-IoT PRB

LTE Spectrum LTE Spectrum

GSM spectrum

Figure 2. Narrow band Interet of Things (NB-IoT) Flexible Allocation inside Long-Term Evolution
(LTE) spectrum (in-band and guard-band) and when refarming the Global System for Mobile
Communications (GSM) spectrum (standalone).

2.1.2. Multi-Tone Transmission Support

To reach the massive device deployment objective, NB-IoT introduces the allocation of Resource
Units (RU) to multiple User Equipment (UE) contrary to LTE where the whole resource block is
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allocated to a single UE in the uplink. In this regard, tones (frequency domain) with different duration
are allocated to UEs. For the uplink transmission, each tone may either occupy 3.75 kHz or 15 kHz
of transmission bandwidth based on the SC-FDMA scheme; for downlink NB-IoT uses 15 kHz of
transmission bandwidth with OFDM scheme as LTE. With 15 kHz spacing, NB-IoT can dedicate either
single-tone (8 ms) or multi-tone (3 tones, 6 tones, and 12 tones) to different UEs with the duration of
4 ms, 2 ms, and 1 ms, respectively. On the other hand, the 3.75 kHz spacing supports only single-tone
allocation to different users with 48 subcariers of 32 ms duration [11,39,40].

2.1.3. Complexity and Cost Reduction Techniques

NB-IoT is required to have low complexity to reach the low-cost objective to facilitate massive
connections. The features that were implemented to reach this objective include relaxed base-band
processing, low memory storage, and reduced radio-frequency (RF) components. In this regard,
the system bandwidth is set as narrow as 180 kHz with reduced frequency and time synchronization
requirement. Also, NB-IoT uses the restricted BPSK and QPSK modulation schemes with only one
antenna support both in uplink and downlink transmission.

2.1.4. Power Reduction Method

NB-IoT devices are intended to have a 10 years battery life to support massive deployment with
limited human intervention. In this regard, two features i.e., Power Saving Mode (PSM), (from Release
12), and extended Discontinuous Reception (eDRx) (new feature from Release 13) were supported.
These features are intended to extend the UE’s battery longevity as follows:

In PSM, the NB-IoT device is configured to completely sleep while remaining registered online
but cannot be reached by the base station signaling. In Release 13, the device can be in PSM mode for
approximately up to about 413 days. In eDRX, the device is in an inactive mode for a few minutes to
a few hours only.

In both cases, the partial or complete inability to receiving and sending different signals enhance
the battery life longevity; however, choosing either PSM, eDRX or both depends on the corresponding
use-case requirement. In this regard, the device can be synchronized to wake up from these modes by
either Real-Time Clock (RTC), triggering from sensors, or both.

2.1.5. Physical Channels and Signals

NB-IoT adopts the same frame structure as LTE, with 1024 hyper frames, consisting of 1024 frames
that contain 10 subframes of two slots with a duration of 0.5 ms each in the time domain. Similarly,
in the frequency domain, NB-IoT contains 12 subcarriers of 7 OFDM symbols mapped in each slot.
In addition to that, when NB-IoT uses the 3.75 kHz spacing on the uplink, 48 subcarriers are used with
a slot duration of 2 ms.

The following channels and signals are used in the uplink:

• Narrowband Physical Random Access Channel (NPRACH).
• Narrowband Physical Uplink Shared Channel (NPUSCH).
• Demodulation Reference Signal (DMRS).

And the following are in the downlink frame:

• Narrowband Physical Downlink Shared Channel (NPDSCH).
• Narrowband Physical Downlink Control Channel (NPDCCH).
• Narrowband Reference Signal (NRS).
• Narrowband Primary Synchronization Signal (NPSS).
• Narrowband Secondary Synchronization Signal (NSSS).
• Narrowband Physical Broadcast Channel (NPBCH).
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In general, NPRACH is used by UEs to perform initial access to the network, to request
transmission resources, and to reconnect to the base station after a link failure. NPDSCH and NPUSCH
are used to carry the downlink and uplink data packets transmissions, respectively. DMRS is used
for uplink channel estimation accuracy. The UE acquires Master Information Block (MIB) from
NPBCH and System Information Block (SIBs) from the NPDCCH. The defined MIB and SIB are
broadcasted once during 640 ms and 2560 ms intervals, respectively. The timing of the remaining
SIBs is configured in SIB1-NB. NRS is used for cell search and initial system acquisition. NPSS and
NSSS are used by the UE for its frequency and timing synchronization with the base station. Due to
overhead scheduling gaps in NPDCCH, the downlink and uplink peak data rates are ~250 kb/s and
~2267 kb/s, respectively, [34,40–43].

2.1.6. Coverage Enhancement Method

NB-IoT is designed to enhance coverage for the applications that are in hard-to-reach areas such
as deep indoors and basements. In this regard, NB-IoT delivers an additional coverage of 20 dB as
compared to the legacy LTE system. This corresponds to 164 dB of MCL. To enhance its coverage,
NB-IoT uses up to 128 and 2048 retransmissions in uplink and downlink, respectively. Hence, this
makes NB-IoT suitable for use cases that are latency insensitive as it can tolerate up to 10 seconds
transmission delay.

2.2. Release 14 Enhancements

After the implementation of Release 13 features, studies erupted along with field trials that
revealed the need for further enhancements to improve the quality of service as well as user experience.
In this regard, 3GPP introduced further enhancement features to NB-IoT.

The enhancements features in Release 14 include positioning update, multicast services, and a new
UE output power class in which the NB-IoT system throughput, mobility, service continuity and
non-anchor carrier operation are improved [29,30].

2.2.1. Improved Positioning Technique

3GPP Release 14 introduces an indoor advanced positioning method of observed time difference
of arrival (OTDOA) for NB-IoT to enhance UE position measurement of cell identity (CID). In OTDOA
method, the UE measures the times of arrival (ToAs) of positioning reference signals (PRSs) received
from different transmitters with respect to a reference node’s PRS transmission to form the reference
signal time difference (RSTD) measurements. In enhanced CID, the measurement requirements include
the base station receive (Rx) and transmit (Tx) time difference, reference signal received power (RSRP),
and reference signal received quality (RSRQ).

2.2.2. Multicast Services

The main objective of this mechanism is to optimize resources as well as transmission latency
by addressing the data to a group of UEs at the same time rather than sending it multiple times to
separate devices.

Therefore in Release 14, Multimedia Broadcast Multicast Services (MBMS) is supported through
single-cell point-to-multipoint (SC-PTM). In general, SC-PTM is an efficient dynamic mechanism for
optimal radio resource usage as it allows broadcast or multicast services to a specific group based on
real-time traffic load and user requirement. SC-PTM uses NPDSCH by mapping Single-cell MBMS
Control CHannel (SC-MCCH) and Single-Cell MBMS Traffic CHannel (SC-MTCH) that carry control
and data traffic to the physical layer scheduled by using the downlink control information (DCI).
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2.2.3. New Power Class for Narrowband-IoT User Equipment

Instead of the two power classes of Release 13 (i.e., 20 dBm and 23 dBm), in Release 14,
the maximum allowed device’s output power is reduced to 14 dBm. This has led to coverage
relaxation of 9 dB that corresponds to 155 dB MCL as compared to 164 dB MCL and hence reduces
the drained current. Technically, the use of the new power class facilitates the use of small coin-cell
batteries and hence can be suitable for limited-size devices and applications that need a small battery.
The compensation of the reduced NB-IoT power is achieved by increasing the NB-IoT transmission
time to maintain the same energy per bit as the UE in Release 13 achieves. The newly introduced
power class allows the serving base station to acquire the device power class during the establishment
of the connection.

2.2.4. New Transport-Block-Size Support

Contrary to Release 13 where NB-IoT supports relatively low data rates (~250 kb/s and ~226.7 kb/s
in downlink and uplink, respectively), 3GPP Release 14 introduces a new NB-IoT device category which
supports the improved data rates by enhancing the Transport Block Size (TBS) to 2536 bits. These data
rates can be reached thanks to the ability to support a second Hybrid Automatic Repeat Request
(HARQ) process. This second HARQ is useful for enhancing the reliability of the link for the UEs that
experience favorable channel conditions. Implementation of this optional second HARQ process results
in throughput gain as it reduces the overhead caused by NPDCCH scheduling gaps.

2.2.5. Multicarrier Operation

To enable the massive NB-IoT deployment, in Release 14, NB-IoT can monitor paging and perform
random access on non-anchor carriers. With this feature, one or more non-anchor carriers are added
to the anchor carrier to carry out the synchronization and mobility measurements by using the NRS.
Non-anchor carriers should also perform random access or paging when needed. Therefore, paging
occasions and hence paging load will be spread over the anchor and non-anchor carriers and all
carriers can then monitor paging.

2.2.6. User Equipment Mobility Enhancement

For the use cases that involve mobility, the temporary loss of radio interface impacts the system to
a degree that can degrade link performance in terms of transmission errors. In this regard, 3GPP Release
14 introduces the possibility of Radio Resource Control (RRC) re-establishment for NB-IoT UE that
supports data transfer via the control plane, i.e., the UE will try to re-establish the connection on that
cell and resume the data transfer. This new RRC re-establishment feature hides the temporary loss of
the radio interface to the upper layers.

2.3. Release 15 Enhancements

On top of all the enhancements that were introduced in Releases 13 and 14, the following
improvements were introduced in Release 15 to satisfy the fast adoption of massive deployment with
further improved quality of service.

2.3.1. Latency Reduction

In Release 15, NB-IoT supports new features to further reduce the transmission delay as well as to
further reduce the power consumption dissipated during long transmission requirements.

In this regard, the NB-IoT UE is now able to support the physical layer Scheduling Request (SR)
which is a special physical layer message to request the network to send the access grant (DCI format
0) so that the UE can transmit the uplink data. Also, NB-IoT uses a wake-up (Wu) signal to wake up
the main receiver. This signal is transmitted in idle mode only when the UE is required to decode
the physical downlink control channel in paging occasions. Therefore, power consumption reduction
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with the wake-up signal technique is larger when the UE wakes up from deep sleep more frequently
(i.e., for shorter DRX/eDRX cycles). Also, significant power consumption reduction is achieved
even when a common wake-up signal is used for a group of UEs. Quick RRC release and early
data transmission during random access channel (RACH) procedure are supported to reduce the UE
transmission latency and hence power consumption.

2.3.2. Semi-Persistent Scheduling

To enable better support of voice messages for the corresponding use cases, in Release 15,
Semi-Persistent Scheduling (SPS) feature is introduced. In general, SPS is comprised of persistent
scheduling for initial transmissions and dynamic scheduling for retransmissions. The base station
assigns specific resource units to be used for NB-IoT UE voice messages with specific interval to save
control plane overhead and hence optimize the radio resource usage. By principle, the base station
preconfigures the UE with the Radio Network Temporary Identifier (SPS-RNTI) which is used to
specifically differentiate one NB-IoT UE from another, or one radio channel from another. This SPS
enables the NB-IoT data reception at a regular configured periodicity.

2.3.3. Small Cell Support

To further improve the capacity as well as coverage, in Release 15, NB-IoT supports small cell
deployments. The downlink power to be reused for NB-IoT small cells is specified in section 16.2.2
of TS 36.213 [44]. In general, NB-IoT UE is not allowed to transmit more power than the configured
maximum power, even if the configured power is lower than UE’s maximum capability. This is done
to avoid interference.

On the other hand, to extend the IoT connectivity especially in remote and rural areas for use
cases such as agriculture, logistics, and environmental monitoring, NB-IoT is now able to support up
to 100 km range. According to Ericsson, this could be achieved with a software upgrade only, without
any changes in the existing NB-IoT hardware [45].

2.3.4. Enhanced User Equipment Measurements

Like in legacy LTE systems, UE measurements are critical since the corresponding reporting is
mainly used to characterize the reference signal of a given bandwidth.

In Release 15, UE measurements are improved in a way that only NSSS additionally to NRS
is defined for radio resource management measurement enhancement. This means that NRS is
determined by the resource elements that carry NSSS in the NSSS occasions that the UE measures,
through which the cell search and initial cell acquisition are improved.

2.3.5. Time Division Duplex (TDD) Support

In Release 15, a new feature of TDD support is introduced with a new TDD frame structure (type 2).
For both 3.75 kHz and 15 kHz spacing, some specified restrictions are introduced i.e., only a normal
cyclic prefix is supported for NB-IoT transmission. To support some of the TDD configurations with
few downlink subframes, some of the system information (SI) can be transmitted on non-anchor
carriers. In this way, the UE will have reduced system information acquisition and search time,
and hence reduced UE differentiation and access control [30,46,47].

2.4. Release 16 Enhancement Prospects

3GPP and many industrial players are involved in ongoing discussions for Release 16
enhancements. The agenda includes the following objectives with their corresponding solutions.
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2.4.1. Grant-Free Access

Most of the power consumption takes place during the NB-IoT UE active time, i.e., during Tx
and Rx. In Release 16, the UE will be expected to transmit during RRC-Idle mode through Msg3 (RRC
connection request) without access grant. A UE in RRC connected mode can transmit data without
grant or with the simplified control-less grant. A further enhancement is on reducing NB-IoT signaling
overhead while guaranteeing the needed quality of service. These features will reduce both power
consumption and latency. In Release 16, it is also proposed to further study other signal waveforms
(i.e., FDMA) that require less orthogonality with more relaxed timing advance (TA) alignment as
compared to SC-FDMA.

2.4.2. Simultaneous Multi-User Transmission

The introduction of new schemes will enable simultaneous multi-user transmissions by using
a shared resource in the time and frequency domains, such as Code division multiplexing (CDM),
and multi-user multiple inputs multiple outputs (MU-MIMO), without increasing the number of
antennae at the UE. In this regard, more dynamic access can also be achieved through enhanced base
station receiver for detection of multiple users that are using the same resource unit as cluster and
hence be able to schedule them effectively. This is because, for the last releases, NB-IoT UE uses the
static or semi-static configuration of more resources for the unexpected application traffic handling.
Similarly, the introduction of NB-IoT transmission without grant will cause a collision of data packets
so dynamic handling of multiplexing is necessary.

2.4.3. Enhanced Group Message Mechanism

In Release 16, there should be more enhancements to support downlink command between user
groups and group RNTIs. This is because MBMS which was proposed in Release 14 is only efficient
for large size downlink command message transmission and requires many UEs to be deployed.
For example, the application layer common message can be very small but sent to many UEs under
a small group of UEs hence making MBMS not efficient for such applications.

2.4.4. Inter-RAT Idle-Mode Mobility

For applications such as smart tracking of logistics that involve mobility, the NB-IoT UE may still
need to be accessible even when moved to the area served by other base station.

In this regard, 3GPP should introduce the new feature for NB-IoT UE support for inter-RAT
mobility during idle mode. The mentioned feature is introduced along with optional handover
support during connected mode through procedure simplification i.e., without dedicated signaling
for measurement control and report. This is because handover helps to reduce system information
reading time.

2.4.5. Network Management Tool Enhancement to Improve UE Differentiation

NB-IoT UE is expected to be able to perform differentiation according to maximal tolerable delay
per service to optimize the radio resource usage. This is because, in the last release, the UE can be
differentiated according to traffic model (periodic communication indicator, periodic time, scheduled
communication time, traffic profile) and battery indication.

Section 2 has presented the NB-IoT standard and the corresponding enhancements from Release 13
until today. It has highlighted the main design changes and the corresponding further enhancements,
i.e., deployment flexibility, physical channels and signals, positioning, multicast, new power classes,
improved data rates, multicarrier operations, mobility support, improved scheduling, NB-IoT small
cell support etc.
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3. Narrowband-IoT: Protocol Stack

This section presents the NB-IoT protocol stack based on state of the art of the PHY and MAC
layers to identify the knowledge gap and define future research directions. NB-IoT adopts the same
protocol stack as the legacy LTE. However, some design changes in both PHY and MAC layers were
introduced to support the massive long-range connections with up to additional 20 dB MCL than in
legacy technologies such as LTE, GSM, and GPRS. Those changes are described in what follows.

3.1. Physical Layer

On the physical layer, NB-IoT adopts the same numerologies as legacy LTE along with OFDM and
SC-FDMA signal waveforms in downlink and uplink, respectively. However, the resource scheduling
unit in NB-IoT is the subcarrier (or tone) instead of PRB, to foster the network scalability by serving
multiple UEs in a 180 kHz bandwidth. The downlink and uplink frame structures are as depicted in
Figures 3 and 4, respectively.

#0 #1 #2 #3 #4 #5 #6 #7 #8 #9

NPBCH NPSS/NSSS NPDCH/NPDSCH

DCI 0 and DCI 1 

B) NPDSCH

Reserved for LTE NRS

A) NPDCCH

1 Radio Frame (10Subframes)

Data

Figure 3. NB-IoT Downlink Frame Structure: subframe number 0 carries the Narrowband Physical
Broadcast Channel (NPBCH), 1 to 4, and 6 to 8 carry the Narrowband Physical Downlink Control
Channel (NPDCCH)/Narrowband Physical Downlink Shared Channel (NPDSCH), and 5 and 9 carry
the Narrowband Primary Synchronization Signal (NPSS)/Narrowband Secondary Synchronization
Signal (NSSS) (A) When the subframe is carrying control channels and (B) when the subframe is
carrying data.

In general, the base station uses DCI to specify the scheduling information for a downlink/uplink
transmission in NB-IoT. Then NB-IoT UE learns the deployment mode (standalone, in-band, or
guard-band) as well as the cell identity through its initial acquisition, and it figures out which resource
elements are already used by LTE. This is the way by which the UE can map NPDCCH and NPDSCH
symbols to available resource elements. For example, in the downlink, NPDCCH is transmitted by
aggregating the narrowband control elements (element 0 and element 1) where element 0 is occupied in
subcarrier 0 to 5 and element 1 occupies subcarrier 6 to 11 in a subframe. The elements are determined
by the type of DCI which is carried by NPDCCH to deliver scheduling command. Either two DCIs can
be multiplexed in one subframe, or one DCI can be mapped in one subframe, corresponding to the
aggregation level used [48]. However, NPDCCH, NPDSCH, and NRS cannot be mapped to the already
occupied resource elements for LTE signals such as cell-specific reference symbols (CRS) and LTE
physical downlink control channel (PDCCH). When NB-IoT UE receives NPDCCH which carries DCI,
it decodes it and uses the device’s scheduling feature (k0) to know the delay over which it will start to
receive NPDSCH. The scheduling information is used to identify the allocated resources over NPDSCH
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and NPUSCH, respectively. In each NPDCCH, a maximum of two DCIs can be transported, and each
UE can receive up to one DCI. The time interval between two successive NPDCCH opportunities is
referred to as an NPDCCH period (PP) [48].

In the state of the art, different works have proposed solutions to the challenges that occur in PHY
layer features, such as initial cell acquisition and synchronization, random access, channel estimation,
error correction, and co-channel interference, as summarized in Table 2.

12 tones (1ms)

B) NPUSCH (3,75 kHz spacing)  

3 Tones (4ms) 1 Tone (8ms)

A) NPUSCH (15 kHz spacing)

6 tones (2ms)

10 ms 

180 kHz 
180 kHz 

2 ms 

NPRACH

Figure 4. NB-IoT Uplink Frame Structure, (A) when 15 kHz spacing is used with different
tone-allocation possibilities with slot duration of 0.5 ms and (B) when 3.75 kHz is used only single-tone
allocation is supported with 4 times longer slot duration (2 ms).

Table 2. Articles on the proposed PHY layer enhancement techniques.

Feature Article Technique Used Enhancement Criteria Limitation

Cell
Acquisition

[49] Maximum-Likelihood (ML)
NPSS detector

Average latency reduction
for timing synchronization

It is a computationally
complex detection method

[50] Cell search and initial
synchronization algorithm

Time and frequency
synchronization by using
NPSS and NSSS with
two-stage time domain
NPSS correlation

mobility and new NB-IoT
transmit power are not
considered which have
a direct impact on inter-RAT
camping and the detected
SNR, respectively

[51]

Non-orthogonal spectral
efficient frequency division
multiplexing (SEFDM)
waveform and an
overlapped sphere decoding
(OSD) detector

Resource optimization by
the use of less bandwidth
with better data rates
compared to OFDM signal
waveform

The proposed method
would lead to sampling rate
mismatch, carrier frequency
offset and also will need to
raise the computation
complexity to NB-IoT UE

[52]
New synchronization signal
structure with Zadoff-Chu
conjugates

Minimization of timing
errors due to
low-complexity NB-IoT
frequency offset

If the same model is used
for uplink synchronization it
might lead to estimation
errors if mobility is involved
in NB-IoT

[53]
NPRACH detection and
time-of-arrival estimation
for NB-IoT system

Enhancement on cell
acquisition and channel
estimation accuracy

The algorithm might not
work for multi-tone
allocation. Also, frequency
hopping may raise power
consumption as well as
device complexity

[54]
Receiver algorithm for
NPRACH timing advance
estimation and detection

Modeling the detection
threshold to satisfy the
NPRACH performance by
lowering the probabilities of
false alarm

The paper did not explain
how receiver sensitivity can
affect the NPRACH
detection
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Table 2. Cont.

Feature Article Technique Used Enhancement Criteria Limitation

Cell
Acquisition

[55] Mathematical modeling of
NB-IoT performance

Throughput enhancement
and NPRACH optimization
by the use of repetition
number, NPRACH
preamble transmission per
second and intersite
distance

The work did not include
some parameters such as the
impact of mobility and how
the achieved MCL for
different coverage classes
can impact the repetition
assignment

[56] NPSS and NSSS frequency
diversity reception

Time and frequency
synchronization for cell
search improvement

Alternative switching of
NPSS and NSSS may require
additional control
commands which may lead
to higher device complexity

Random Access

[57] Configurable signal
propagation model

System performance
analysis in terms of number
of supported devices, BER
performance, preamble
retransmissions, etc.

The impact of preamble
retransmission on the
overall transmission latency
is not considered

[58]
Mathematical evaluation of
RACH preamble
transmission

Analysis of NB-IoT
transmission delay by using
periodicity, start time,
number of repetitions,
number of preamble
attempts and random access
response window

Their model used minimum,
intermediate, and maximum
values for simulation which
is so deterministic.
However, it could be better
to use random distribution
to characterize NB-IoT
realistic channel variations

[59]
Random Access with
differentiated barring
(RADB) algorithm

Minimization of random
access collision

Not resource efficient
method since it does not
include the impact of
scheduling in different tone
configurations

[60]
New frequency hopping
pattern of NPRACH
preamble

Time-of-arrival estimation
by the use of all the hopping
distances

It only used a small cell
scenario, if applied in dense
NB-IoT network, estimation
by considering all hopping
distances may lead to
system overhead and
possible interference

Channel
estimation

[61] Frequency tracking
algorithm

Frequency synchronization,
as well as channel
estimation for NB-IoT
systems

More pilot signals, are used.
This increases the overhead
and hence can degrade the
spectral efficiency

[62] Timing advance (TA)
adjustment

Preamble sequence
decoding by means of round
trip estimation for coverage
enhancements (on the sea)

It might not work for
applications that do not
involve a direct line of sight
such as in dense urban
environment

[63] MCS and coverage level
optimization

Mobility effect on different
coverage levels and how
MCS affect paging
performance

The channel model does not
include other factors such as
the effect of repetition,
multipath, different Tx
power for NB-IoT UEs as
well as carrier frequency
offset and inter-RAT
operability

[64] New iterative algorithm for
NB-IoT transmission scheme

NB-IoT error correction by
using cryptographic
redundancy and error
correcting code

The channel estimation
model to characterize
NB-IoT transmission is not
good, because some errors
might be due to intersymbol
interference and others due
to intercarrier interference
however the model does not
explain
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Table 2. Cont.

Feature Article Technique Used Enhancement Criteria Limitation

Interference
mitigation

[65] Channel Equalization
algorithm

Intersymbol Interference
mitigation by the
phase-shifted channel
frequency responses (CFR)
to conquer the sampling
mismatch between NB-IoT
and base station

The proposed model did not
consider the NPSS and
NSSS impact ON time and
frequency synchronization

[66]
Mathematical model for
sample duration in LTE and
NB-IoT system

Interference and close-form
interference analysis due to
sampling mismatch between
NB-IoT and base station

The model is computational
complex when implemented
in NB-IoT systems

3.1.1. Cell Acquisition and Synchronization

NB-IoT UE goes through the same process as LTE UE where to camp on a cell, it goes through
frequency and timing synchronization to obtain the center carrier frequency as well as the allocated
slot and frame timing used for the cell acquisition. In general, if MIB and SIB are properly decoded, cell
ID, a subframe number, scheduling information, and system bandwidth can be detected successfully.
In NB-IoT, the low complexity of devices may lead to poor synchronization and cell acquisition
performance, especially due to carrier frequency offsets and poor channel estimation capacity.
The following are the papers that have proposed different solutions to optimize the initial cell
acquisition and initial synchronization procedure.

In [49], the authors presented a Maximum-Likelihood (ML) NPSS detector which is based on
frequency domain cross-correlation metrics by using an overlap-save method. Their method achieves
an average timing synchronization latency of 140 ms for the in-band deployed mode with SNR of
−12.6 dB. Their proposed method showed a 34% reduction of the energy that is required for NPSS
detection. However, their work showed only how much energy could be reduced with respect
to the autocorrelation NPSS detection methods. It could be better to show how much of the total
device’s energy is consumed by their proposed computationally complex detector, i.e., it could be
more realistic to include analysis in terms of reduction with respect to the energy consumed during
time synchronization but also in terms of energy optimization over the total device consumption.

In [50], the authors presented an algorithm for initial synchronization and cell search.
The proposed algorithm uses NPSS for timing acquisition and initial Carrier Frequency Offset (CFO)
estimation called the two-stage time domain NPSS correlation. They also used NSSS sequences for
the cell ID and frame timing. Their proposed algorithm showed that under extremely low SNR and
different fading conditions, NB-IoT could provide the required performance and could also quickly
camp on the cell, if any. However, practical experiments are still needed to prove the feasibility of
these simulations especially on how the newly introduced NB-IoT power class and actual channel
variations could have an impact on the detected SNR at the base station.

In [51], the authors presented an NB-IoT framework by using an advanced signal waveform
called non-orthogonal spectral efficient frequency division multiplexing (SEFDM). This waveform
uses less bandwidth as compared to OFDM waveform. The designed signal could improve the data
rate without the need for more bandwidth. At the base station, the minimum Euclidian norm search
detector is used for better error correction. The simulation results reveal that the proposed advanced
signal waveform could achieve 25% improvement on data rate as compared to the OFDM signal
waveform. The work also proposed an overlapped sphere decoding (OSD) detector which reduces the
computation complexity as compared to the single sphere decoding detector while guaranteeing
the needed performance. However, the model does not explain the impact of CFO due to the
non-orthogonality of the subcarriers on the received signal.
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In [52], the work investigated the downlink synchronization signal design and proposed
the novel general synchronization signal structure with a couple of Zadoff-Chu (ZC) conjugated
sequences in order to remove the potential timing errors caused by large frequency offsets. Their new
synchronization signal structure demonstrated better functionality with the frequency offset tolerance
of up to 40 kHz. However, the model does not explain the number of samples per symbol involved in
synchronization operation and decision.

In [53], the random access preamble is discussed based on the design of NPRACH for single-tone
frequency hopping only. It introduces the new single-tone frequency hopping random access signal
used by NPRACH in NB-IoT systems. It further explains the design rationale and proposes some
possible receiver algorithms for NPRACH detection and ToA estimation. The simulation results show
that NPRACH performance is improved. However, the paper did not discuss the impact of massive
interference which may result in lower received Signal Interference plus Noise Ratio (SINR) at the base
station such that the lower the SINR the lower the detection probability of NPRACH. In addition to that
the higher the number of devices the higher probability of NPRACH preamble collision. So lower SINR
detected at base station and higher collision probability both affect NPRACH detection negatively.

In [54], the authors described a NPRACH design as specified in 3GPP in standard in Release 13.
They proposed a receiver algorithm for the NPRACH timing advance estimation as well as detection.
The simulation results for the NPRACH detection shows that if one preamble sequence is transmitted,
the detection threshold should be set between 55% to 70% of the average value to satisfy the desired
NPRACH performance at the lowest SNR. The results also showed that at 5 and 11 preamble sequence
transmission, the detection threshold should be 50% and 35% of the average value, respectively. It is
noted that increasing the detection threshold lowers the false alarm probability, which leads to an
increased likelihood of misdetection.

In [55], the authors provided a mathematical model of an NB-IoT network in order to predict
the optimum performance with a specific configuration of some design parameters (i.e., repetition,
number of the preamble in NPRACH per second, coverage classes and intersite distance). The paper
analyzes the effects of parameter choice in outdoor, indoor, and deep indoor. The work finally proposes
how to choose the optimal configuration i.e., by providing the highest throughput, as well as success
probability higher than minimal success probability with minimal one being of 90%. The work showed
that even though the success probability has a maximum limit, it can still be altered by modifying the
number of repetitions to enhance the coverage or the system capacity in terms of throughput.

In [56], the authors presented the NB-IoT frequency diversity (FD) reception for NPSS as well
as NSSS. In the reception mode, the NB-IoT UE alternatively receives the NPSS and NSSS in time
domain radio frame by switching the received signals transmitted in different resource blocks in the
frequency domain. Their simulation results show that using the proposed FD reception could improve
the detection probability by 16% more than without applying the frequency diversity. Additionally,
using FD with precoding vector switching (PVC) transmit diversity, achieves 90% of physical cell ID
detection (PCID) probabilities at the average SNR of 0 dB with maximum carrier offset of 70 kHz.
The method also achieves 97% of PCID detection probability without consideration of frequency
carrier offset.

3.1.2. Random Access Procedure

Like in LTE, NB-IoT random access (RA) is intended for initial UE uplink synchronization through
which the UE acquires its unique UE ID used for communication with the base station. RA is also
used to regain the lost UE access due to the long state of inactivity which has led to the loss in
uplink synchronization. In NB-IoT, RA faces several challenges as seen on the research discussions;
some solutions to improve the RA performance have been proposed as described in what follows.

In [57], the authors presented the random access procedure (RAP) model and analyzed the system
performance by taking into consideration the configurable signal propagation model, a number of
supported users per cell, and the RAP configuration parameters. The paper used the contention-based
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random access with Msg3 collisions instead of Msg1 collision (as multipath transmission) for the
random access procedure. The proposed model results show the impact of the parameters (Msg3
transmission mode, Msg3 modulation and coding scheme (MCS), power control schemes and power
ramping step) in the single-tone and multi-tone transmissions Bit Error Rate (BER) performance.
The results are presented in terms of the total number of preamble transmission success, preamble
retransmissions and lost preamble attempts. The work concludes that Msg3 must be considered in
the random access procedure analysis, the transmission mode as well as MCS, and for better system
performance and fairness distribution of UEs in the cell, it is better to configure power control correctly.

In [58], the authors analyze NB-IoT transmission delay as well as mathematical evaluation of the
probability of success for the random access procedure preamble transmission. The analysis is based on
three scenarios; scenario one uses minimum values of parameters, scenario two uses the intermediate
values, and scenario three uses maximum parameter values. The used parameters are NPRACH
periodicity, start time, number of repetitions, number of preamble attempts, and random access
response window size. The average delay analysis was performed such that k preamble sequences are
mapped in n subcarriers. The preamble collision occurs when multiple UEs send preamble sequences
in the same subcarrier. A successful preamble attempt occurs when only one UE sends the preamble
to a given subcarrier.

In [59], the authors investigated a random access optimization algorithm and summarized
the NPRACH feature and hence designed random access with differentiated barring (RADB) for
NB-IoT system. It is observed that the RADB could solve the preamble request conflict caused by
massive NB-IoT UEs and hence provide reliable random access for latency-sensitive devices. However,
the authors did not consider the problems of channel resource distribution and resource use rate.

In [60], the authors designed a new frequency hopping pattern of NPRACH preamble which uses
all feasible hopping distances for a given number of subcarriers. It is seen that their proposed pattern
was compatible with standards that is keeping the same NPRACH structure with only very small
changes (hopping in the standard is allowed only between the subcarriers of the same resource group).
Their simulation where they adopted their first traffic model which deploys 3000 devices, 48 ms and
40 ms of NPRACH preamble and periodicity, respectively, show that the proposed hopping pattern
could improve the ToA estimation without additional system overhead.

3.1.3. Channel Estimation and Error Correction

Like in LTE systems, NB-IoT system performance depends to some extent on the quality of the
channel estimation. However, for NB-IoT systems massive deployment, the poor quality of channel
estimates is highly influenced by the low complexity of the UEs that can lead to misdetection of
some signals, frequency offset, phase noise, passive intermodulation (PIM) on the device level, etc.
To address the challenges that affect the channel estimation as well as to improve the quality of error
correction to ensure the required performance with the low complexity, several works have proposed
some solutions, as summarized in the following paragraphs.

In [61], the authors presented an NPSS detection method whose timing metric is composed of
symbol-wise autocorrelation and a dedicated normalization factor in an in-band downlink NB-IoT
system. The authors proposed a novel low-power algorithm for frequency tracking by the use of
more pilot signals as compared to the LTE system. Their algorithm is implemented to compensate
for the accumulated frequency offset during the NB-IoT transmission of NB-IoT. Their proposed
frequency tracking algorithm delivers high estimation efficiency in terms of Minimum Mean Square
Error (MMSE), the probability of correct cell acquisition, etc. However, their study did not elaborate on
what could be the impact of mobility and inter-RACT support in the cell search procedure for NB-IoT.

In [62], the authors presented a practical coverage test on the ocean; it is shown that the proposed
solution (where the base station decides whether the compensated round trip delay is short or long
enough to decode the preamble sequence) was done by considering NPRACH design and hence the
authors proposed their solution which considers the TA adjustment. Their proposed solution proved
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that NB-IoT coverage could reach as far as 35 km. However, the paper does not elaborate on the
solution feasibility in environments without line of sight.

In [63], the work provided optimization cases for NB-IoT downlink in terms of MCS. The work
also provided the optimization cases of coverage level (CL) by taking into consideration the RACH
success rate with different driving speeds of NB-IoT devices in a commercially deployed network.
Their results show that the base station paging success rate is decreased as the adjacent cell interference
increases. However, the decrease in MCS improves paging performance. Coverage level 0 is the best
choice for NB-IoT use cases that involve mobility, whereas coverage level 1 and 2 are mostly for fixed
location NB-IoT use cases.

In [64], the author presented an iterative algorithm for NB-IoT transmission procedure.
The simulation results in terms of BER and blocks error rate (BLER) show that by use of concatenated
error correcting codes or cryptographic redundancy and error correcting code, the algorithm improves
the NB-IoT coverage and reduces the overall NB-IoT power consumption. The modification of additional
correction of low reliable bits could demonstrate the error correction of the damaged messages by the
noisy transmission and hence can reduce the repetition number. However, this work did not discuss how
effective the algorithm is when taking into consideration different channel conditions, payload sizes, as
well as different repetition numbers with respect to device signal quality.

In [67], the authors considered the presence of random phase noise of the received signals mainly
caused by oscillators impairments in both the transmitting and receiving sides and how to lower
the mean square error (MSE) estimates. They presented the sequential MMSE channel estimation
method that could be implemented in NB-IoT systems. Their model shows that if random phase noise
is considered during channel estimation, it is possible to improve the detected SNR by up to 1 dB.
However, the model is assumed to be uniformly distributed hence does not present the real-time
channel which is randomly changing over time.

3.1.4. Co-Channel Interference

NB-IoT being deployed in the existing LTE spectrum, co-channel interference may occur between
NB-IoT and LTE UEs. This is due to several reasons such as sampling rate mismatch, inter-PRB
interference due to power leaking between NB-IoT and LTE PRBs, etc. To mitigate the impact of
co-channel interference in the NB-IoT/LTE coexistence scenario, the following works have addressed
the problems and proposed potential solutions.

In [65], the authors proposed the design guidance for channel equalization that can be used
for 5G networks. The proposal set some assumptions such that the currently most used algorithms
in cyclic prefix—OFDM system for pilot design, channel estimation, equalization, synchronization,
and system performance analysis may no longer be applicable to NB-IoT systems. Their mathematical
modeling demonstrated that channel equalization coefficients for NB-IoT UE are a set of phase-shifted
CFR combination and not a simple Fourier Transforms of the channel impulse responses. This is the
consequence of sampling rate mismatch between NB-IoT user and base station.

In [66], the authors established a comprehensive system model for in-band and guard-band
NB-IoT by considering sample duration. They derived the mathematical expressions of received LTE
and NB-IoT signals and analyzed the close-form interference power on LTE signal from adjacent
NB-IoT signal. It is observed that the sample duration of NB-IoT significantly impacts the desired
signal as well as interference on LTE UE; this is due to mismatched sampling rate between NB-IoT UE
and the base station. Their proposed system model and derivations match the simulations, hence can
be used for coexistence analysis for NB-IoT system.

Summary: This subsection has addressed the state of the art of NB-IoT PHY layer protocol.
The main focus was set on different approaches to improve cell acquisition process, random access
process, channel estimation, and interference mitigation. The next subsection focuses on MAC layer
features by addressing the corresponding challenges and potential solutions.
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3.2. Media Access Control Layer

Handling retransmissions (HARQ), multiplexing, random access, timing advance, choice of
transport block formats, priority management, and scheduling are the tasks executed by the MAC
layer. The discussion on this part focuses on features such as radio resource management, link
adaptation, coverage, and capacity improvement, power, and energy consumption reduction, as
summarized in Table 3.

Table 3. Articles on proposed MAC layer enhancement techniques

Feature Article Technique Used Enhancement Limitation

Resource
allocation

[68] Resource blanking Interference cancellation by
resource blanking

The proposed technique
may lead to performance
degradation in terms of
spectral efficiency, especially
for NB-IoT massive
deployment.

[69] Iterative algorithm by
a cooperative approach

Radio resource management
in terms of scheduling index,
repetition number and
interference

The proposed solution is
sub-optimal hence it does
not provide maximum
achievable performance in
terms of maximum rate and
capacity

[70] Scheduling algorithm
Efficient resource allocation
by reducing the NPDCCH
periods

Mobility is not considered
and reducing NPDCCH
period could lower the
channel estimation quality
hence may degrade the
performance by unrealistic
channel estimation

[71]

Resource allocation
technique by extending
the specific PRB for
paging traffic offload

power consumption
reduction for NB-IoT UE
during paging loading and
offloading

The use of specific PRB for
paging offloading is not an
efficient use of the existing
resource blocks. Also,
the model is not applicable
in standalone mode.

[72] NB-IoT scheduling
algorithm

Interference analysis for 15
kHz LTE coexistence with
3.75 kHz guard-band
NB-IoT

Emptying the LTE resource
is not efficient resource use.
Also, the model is not
applicable for the
standalone mode of
deployment

Link
adaptation

[73] NB-IoT basic scheduler
algorithm

Optimal resource usage by
considering an average
device delay and processing
time

The scheduler did not
consider semi-persistent
scheduling, especially for
inter-RAT networks

[31]

Offset index selection
and UE specific and
common search spaces
for NB-IoT dense
networks

Cell capacity enhancement
by means of optimal
scheduling

Did not consider the
number of sessions that each
device has to transmit with
respect to different
requirements and use cases

[74]

Link adaptation
algorithm by using the
mathematical
expression of Shannon
theorem

Coverage enhancement by
characterizing SNR,
repetition number and
NB-IoT supported
bandwidth

The work did not consider
the impact of channel state
information on UE link
adaptation

[75]
Two-dimensional
NB-IoT dynamic link
adaptation algorithm

Optimization of repetition
number by dynamically
adjusting MCS to ensure
better BLER and BER
performance

the model does not
encompass the effect of
speed and the deployment
of the optional HARQ
process to ensure better
channel modeling
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Table 3. Cont.

Feature Article Technique Used Enhancement Limitation

Coverage
and capacity

[11]

NB-IoT coverage
comparisons in different
scenarios for 15 kHz and
3.75 kHz spacing

The channel estimation
impairments, carrier offset
as well as mobility with
respect to different
configurations are not
considered for the claimed
170 dB of achieved MCL of
NB-IoT

[76]

Preconfigured access
scheme and the joint
spatial and code domain
scheme

capacity and spectral
efficiency improvement

It can only be applicable in
small cell configurations
when NB-IoT is deployed in
large scale, preconfiguring
access for different require

[77] Control plane small data
transmission scheme

Effective data transmission
enhancement by
transmitting small packets
in RRC connection set up

This scheme may results in
NB-IoT signaling overhead
due to Radio Resource
Control (RRC) connection
setup process encompassed
with small data

[10]

UE coverage and
capacity simulation
measurement based on
real operators network
parameters

NB-IoT enhanced coverage
measurements by the use of
real network configuration
parameters

Optimal repetition number
for NB-IoT devices is not
considered, with additional
penetration loss, it does not
explain the additional
repetition requirement to
enhance the coverage while
guaranteeing the required
performance

[78]
Low Earth Orbit (LEO)
satellite to extend
NB-IoT coverage

NB-IoT Coverage extension
beyond LTE achieved link
budget

The work did not consider
the impact of repetition
number on extended
coverage as well as time and
frequency synchronization
that can lead to sampling
rate mismatch as well as
carrier frequency offset for
low-end NB-IoT modules

Power
management

[79] Practical power
measurement

Power consumption
analysis for NB-IoT by
varying payloads and
repetition numbers, I-eDRx
and PSM

Using two devices is not
representative massive
NB-IoT devices in the
because different chips have
different power
consumption depending on
the enabled features such as
inter-RAT support that can
affect the overall device
consumption

[80] Prediction-based
energy-saving algorithm

Reduction of power
consumption by reducing
the scheduling request
procedure

The solution is not optimal
because it reduces
scheduling request without
considering the device
requirement with respect to
channel parameters

[81] Semi-Markov chain for
energy evaluation

Energy consumption and
delay requirement
evaluation for NB-IoT
systems by considering the
four states, namely power
saving mode, idle mode,
RACH procedure,
and transmission mode

The model does not include
the energy consumption
during transition between
the four mentioned modes
and it does not include the
impact of repetition on the
device power consumption
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3.2.1. Radio Resource Allocation

In NB-IoT, resource allocation is the key feature to ensure the expected massive connections in
a cell. Tone allocations, PRBs, repetition number options, power configurations, subframes, or time
slots, etc. must be optimized to maximize performance with minimum possible resources. Since
NB-IoT is intended for low rate, less frequent time insensitive applications but with the required
performance metrics, better radio resource management will ensure the optimal resource usage for
expected throughput, spectral efficiency, and coverage enhancement.

In [68], the authors discussed the impact of interference for partial deployment of NB-IoT such that
if one PRB is used for NB-IoT in some of the cells, that same PRB could be used for LTE in other cells
for the in-band mode of NB-IoT operation. In such a deployment, possible co-channel interference may
appear between NB-IoT UE and LTE UE. The authors modeled the partial deployment in percentile
such that 100%, 75%, 50%, 25% represent the percentage of cells where NB-IoT enabled. Their results
were analyzed by means of cumulative density functions (CDF) of respective SINR detected and
maximum coupling loss achieved. The work demonstrates possible NB-IoT interference between
NB-IoT and another NB-IoT UEs from adjacent cells and between NB-IoT and LTE from the adjacent
cell. The simulation is performed for the in-band mode of operation where both NB-IoT and LTE UEs
share the same PRB. They proposed the PRB blanking i.e., blanking the resources that are used by
NB-IoT to not be used by LTE, not even being used for CRS. Blanking of these resources will omit
the interference from LTE UEs and will result in NB-IoT only access to this PRB. However,the paper
did not consider the performance degradation due to reduced available radio resources after when
resource blanking is applied.

In [69], the authors formulated an analytical model to characterize the maximum achievable data
rate, then investigated the impact of intercell interference in a multicell environment (for in-band
and standalone scenarios), and finally proposed an iterative algorithm which uses cooperative
approach which takes into consideration the overhead of control channels, repetition number, intercell
interference as well as time offset. The proposed sub-optimal solution ensured better radio resource
allocation, which raised the data rate by 8% and reduced the overall device energy consumption by
17% with respect to the non-cooperative approach.

In [82], the authors presented preliminary results of RSSI and detected SNR by developing
a DORM (integrateD cOmpact naRrowband platforM) node which was deployed on a university
campus to test its practical feasibility in different indoor scenarios.Their SNR and RSSI values were
observed to be in the range of 18 dB to 23 dB and −65 dBm to −70 dBm, respectively, which shows
its suitability for indoor coverage. The RSSI and SNR values variations are considered to be due to
different elevations that the nodes are, with respect to the serving base station. However, the paper
does not explain the channel estimation and measurements quality and their impact on the achievable
throughput, moreover their paper does not cover the outdoor deployment and the impact of repetition
on the overall devices’ energy consumption when devices are located in different indoor environments.

In [70], the authors introduced the NB-IoT radio access strategy in detail and studied the NB-IoT
scheduling problem. Their primary objective is to lower the number of used radio resource while each
device’s data requirement can still be satisfied. They furthermore formulated the NB-IoT scheduling
problem and proposed an efficient algorithm to overcome such a problem. Their simulation results
show that they could minimize the number of NPDCCH periods (NPs) used to satisfy each device’s
data requirement.

However, the repetition number is given according to the distance between the base station and
the device. It could be better to use real-time channel parameters or MCS or BLER value to schedule
the respective downlink channels to the devices. This is because, within the same distances, devices
may experience different signal attenuation due to different factors such as fading, non-line of sight,
line of sight, indoor placement, outdoor placement, underground placement, etc. Therefore, there is
still an open space for practical deployment to analyze the effectiveness of the different downlink and
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NB-IoT scheduling schemes which considers the device’s simplicity, modulation schemes, channel
conditions, and delay requirement for specific use cases.

In [71], the paper proposed a new resource allocation technique by extending the paging resource
that will be specific for paging traffic offload. The authors noted that the new paging PRB could
lower power consumption which is mostly used to load and offload the paging load. Also, the work
proposed the selection scheme based on UE identity (ID) that is used to balance the load between the
paging resource blocks. The simulation results show that power consumption reduction and resource
optimal usage are of 80% and 30.5%, respectively. This work considered adding other PRBs for paging
monitoring; however, the authors do not demonstrate the trade-off between the newly introduced
scheme and the UE complexity requirements.

In [83], the authors proposed an enhanced access reservation protocol (ARP) that allows
the device to transmit a fraction of a preamble sequence by providing an analytical model that
captures the performance of ARP in terms of the false alarm, misdetection, and collision probabilities.
They mathematically analyze the trade-off between the misdetection and the collision probabilities.
The drawback of this protocol is that with massive NB-IoT deployment, altering the configuration of
the protocol may result in detection performance degradation which can lead to huge packet loss.

In [72], the authors analyzed the impact of interference when the 15 kHz LTE system coexists
with a guard-band NB-IoT system with 3.75 kHz subcarrier separation. Their simulation results
demonstrated that it is desirable that the scheduler of the LTE system empties the neighboring RBs
of the NB-IoT system and allocates resources if possible. The authors then proposed an NB-IoT
scheduling method for the LTE system to improve the performance of the studied NB-IoT system.
Their results showed that if emptying is not done, at 103 BER there is 1 dB drop of SNR as compared to
when emptying of RBs is done.

3.2.2. Link Adaptation

Like in LTE, NB-IoT link adaptation involves adaptive modulation and coding schemes as well
as adaptive power allocation. However, the modulation schemes are limited to QPSK to enable low
complexity and hence reduce the overall power consumption. To extend the coverage and increase the
link reliability, a repetition number of up to 128 times is introduced. In the literature, it is seen that
NB-IoT link adaptation has several issues; potential solutions are also proposed, as summarized below.

In [31], the author formulated the scheduling issue such that the resource assignment must be in
a specific format taking into an account reserved signaling resources and capabilities of the NB-IoT UE.
They proposed a solution that incorporates two parameters which are (i) offset index selection (k0) and
(ii) UE specific and common search space configuration. The offset index selection was chosen because
with the limited k0 and varying size of payloads, it is critical to adapt the scheduling process for high
resource use to accommodate more devices at the same time. Additionally, UE specific and common
search space configuration were chosen because it decides the timing of NPDCCH and NPDSCH for
different UEs, hence it can consequently improve the overall scheduling efficiency.

In [73], the authors presented a basic NB-IoT scheduler for NB-IoT system and analyzed the
enhancements on average delay, optimal resource usage, and processing time. The proposed algorithm
demonstrated that shorter NPDCCH period selection may reduce the UE average delay and optimize
the overall system resource usage. Also, the model shows that the scheduling delay (k0) should be
determined before the allocation of subcarriers. However, the model does not elaborate the type of
configuration used since the choice of configuration such as single tone or multi-tones have a direct
impact on periodicity and transmission delay and hence can directly impact the system performance.

In [74], the authors analyzed NB-IoT repetition number and bandwidth allocation and proposed
analytic expressions based on SNR, bandwidth, and energy per bit that can be derived from Shannon
theorem in order to characterize the impact of the repetition number as well as bandwidth allocation
to different UEs. Additionally, their work proposed an algorithm for link adaptation. The algorithm
exploits resource unit number, repetition as well as bandwidth. Their results show that reducing
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bandwidth and performing repetitions could enhance the coverage. However, the work did not
consider the actual impact of channel parameters as well as NB-IoT UE impairments such as CFO
which may lead to transmission errors.

In [75], the authors proposed a new NB-IoT link adaptation scheme with the consideration of the
repetition factor. They claim that their proposed two-dimensional scheme is composed of Inner Loop
Link Adaptation that copes with BLER by periodically adjusting the repetition number and outer loop
link adaptation which coordinates the MCS and repetition number. This is because 20 dB coverage
enhancement beyond LTE can be achieved by the repetition of transmitted data. So, in this work, they
proposed an algorithm that dynamically chooses MCS and repetition number based on estimated
real-time channel state information (CSI). However, their algorithm does not elaborate on the different
NB-IoT power classes and to which range their respective coverage could be enhanced.

3.2.3. Coverage and Capacity

NB-IoT support for extended coverage of up to 164 dB of maximum coupling loss is to enable the
technology to be used for cellular IoT services, especially for applications that are in hard-to-reach areas.
Its narrow bandwidth and support for repetition are the key features to enable the enhanced coverage.

In [10], the authors simulated and analyzed the NB-IoT wide-area rural deployment and deep
indoor urban deployment by using the network parameters of one metropolitan operator. Their work
showed that NB-IoT devices could still transmit and receive data at an MCL of 167dB, which is 3 dB
higher than the 3GPP’s 164 dB of MCL limit set. Furthermore, in different indoor scenarios, even
with an addition of 30 dB as penetration loss, NB-IoT had better outage probabilities as compare to
another LTE LPWAN technology (eMTC). For outdoor and light indoor conditions with an additional
10 dB penetration loss and an average intersite distance of 2.8 km, NB-IoT had less than 0.1% of outage
probability. However, despite the varying additional penetration losses of 10 dB, 20 dB and 30 dB, their
simulation does not consider the impact of features such as mobility, CFO, lower power class on the
achieved MCL.

In [11], the authors showed that for the maximum number of repetitions (128 times), with 15 kHz
and 3.75 kHz subcarrier spacing, coverage of up to 170.2 dB MCL and 174.2 dB MCL could be achieved,
respectively. The work concluded that the evaluations show that NB-IoT could provide up to 20 dB
coverage enhancement in various deployment scenarios as compared to legacy LTE. Similarly, the work
did not study the impact of mobility and weak channel estimation quality to the achieved MCL.

In [76], the authors proposed two less complex scheduling schemes (compared to brute-force)
that can be used NB-IoT. The first proposed scheme is called the preconfigured access scheme and the
second is the joint spatial and code domain scheme. Their simulation performance results (spectrum
efficiency, number of active devices as well as low collision rate achieved) by the two low complex
schemes were found better when compared to the ones that can be achieved by the brute-force scheme.

In [78], the authors proposed a specific unidirectional system to study the coverage enhancement
by using satellite network i.e., LEO constellation. Their proposed model with the mathematical
derivations shows that NB-IoT could achieve the 20 dB more than LTE achieved MCL and could still
operate according to Release 13 standards. From their results, it is seen that the packet error rate (PER)
of the transmitted signal is distorted by Doppler spread. However, the model does not consider the
clock synchronization between NB-IoT device and satellite, which can lead to performance degradation
especially caused by the CFO or the sampling rate mismatch. Additionally, the work did not consider
the maximum achievable throughput when their system is employed to comment on the effectiveness
of the techniques as compared to terrestrial NB-IoT deployment.

3.2.4. Power and Energy Management

The NB-IoT reduced complexity is intended to reduce the power consumption in different modes.
PSM and eDRX are the implemented features dedicated to foster the long-lasting battery life.
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In [79], the authors presented the NB-IoT power measurement. Their measurements were set in
such a way that NB-IoT transmission consumes 716 mW when at 23 dBm with a power efficiency of
37%. DL control and data signals consume 213 mW, idle-mode-eDRx and PSM consumes 21 mW and
13 µW, respectively. In general, according to their empirical measurements, it is shown that the power
consumption is 10% lower than the 3GPP estimates. During measurements, parameters such as time
domain repetition, I-eDRx, and PSM were taken into consideration. To characterize each component
in the proposed model, several test cases such as Tx power, UL, and DL data rates, I-eDRx, and PSM
were used and all parameters except one at a time were fixed. Their results showed that the NB-IoT
devices power consumption is independent of the subcarrier spacing. However, the total ON time of
the devices is in many cases defining the overall battery life. As their remark, the data rates do not
directly impact the power consumption, but it has a major direct impact because it defines the overall
device ON time. If the transmitting interval is 1 h, the device achieves only 2.5 weeks of battery life.
Increasing the duration to 24 h, the lifetime of the device increases to 12.8 years in PSM.

In [80], the authors proposed a prediction-based energy-saving mechanism to reduce energy
consumption by decreasing the number of scheduling request procedures. Their proposed scheme
showed that it could reduce the NB-IoT active time from 5% to 16% for the medium and bad channel
quality and achieve from 10% to 34% battery saving in different scenarios as compared to 3GPP
consumption simulation specifications in [43].

In [81], the authors developed a semi-Markov chain with power saving mode, idle mode, random
access, and transmission mode to study the energy requirement and delay performance for NB-IoT.
It is noted that for massive synchronous connections, extra power is drained in random access and
transmission states due to collisions. The paper further proposes an energy optimization model based
on a priori method that takes into consideration the PSM duration as well as power consumption.
The results demonstrate that for optimal energy and delay requirement, it is important to set the higher
RACH transmission number to accommodate more delay on the UE. However, their optimization
model did not consider the power consumption during the transition of different states, because when
the UE is required to perform several sessions per day, it might go through several transitions that have
a significant effect on power consumption. Furthermore, the mode does not include the small data
transmission scheme during RRC connection as proposed in the updated standards. However, with
the introduction of the new power class in NB-IoT Release 14, there is a need for practical experiments
to evaluate the new coverage classes. With lower transmit power, the SNR detected at the base station
becomes lower hence the device will need to perform more repetitions to enhance coverage.

3.3. Upper Layers

Although the focus of this paper is mainly on the features regarding PHY an MAC layers, it is
still imperative to address some enhancements, challenges, and potential solutions to the upper layers.
Especially the changes that are implemented in Evolved Packet Core (EPC) by adding the Service
Capability Exposure Function (SCEF) to manage both IP and non-IP data packets [84].

Control and User Plane Optimization

To support massive end-to-end device connectivity with extremely low complexity and reduce the
transmission signaling, NB-IoT implements new small data transmission procedures based on Cellular
IoT (CIoT) Evolved Packet System on both Control Plane (CP) and User Plane (UP). These transmission
procedures support small bursts of data efficiently while guaranteeing the long-range coverage as
compared to legacy GPRS [85,86]. In this regard, NB-IoT is can support more than one data path in CP
for the transmission of user data which is carried by the signaling messages managed by the Mobile
Mobility Entity (MME) as shown in Figure 5. The procedures are optimized to efficiently support the
small data transfer as follows:

• Mandatory CP CIoT EPS;
• Optional UP CIoT EPS.
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CP CIoT EPS optimization encapsulates the data packets in Non-Access Stratum (NAS) by using
control plane signaling messages. In this regard, this procedure is mandatory. Compared to the
conventional SR procedure, the NB-IoT UE skips some steps required for each data transfer hence this
optimization procedure best fits the short data transmission or reception.

On the other hand, UP CIoT EPS optimization requires the RRC connected mode to get the scheduled
radio resources as well as Access Stratum (AS) between the UE and the network. This mode uses the
newly introduced connection to Suspend and Resume procedures. Connection suspend procedure helps
to retain the network context so that the UE can resume the connection when traffic is available. Retaining
the context helps the UE and the network to skip the AS and RRC reconfiguration in each data transfer.
Since it uses user plane, the UP CIoT EPS is suitable for both small and large transactions.

Mobile 
Mobility Entity 

(MME)

Serving 
Gateway 

(SGW)

Packet Data 
Network 
GateWay

 (PDN GW)

Service Capability 
Exposure 

Function (SCEF)NB-IoT UE

Evolved Packet Core (EPC)

Application 
server

eNodeB

Figure 5. Representation of NB-IoT IP and Non-IP data path: Blue line displays the IP data path in UP
mode (as Legacy LTE), Red line displays the non-IP data path in CP mode, and dashed-line displays
the IP data path in CP mode.

Furthermore, the UE in Service Request procedure (an LTE procedure used by the UE and base
station to transmit or receive data in RRC idle state) is required to be in a connected state in order
for base station to allocate the radio resources. For NB-IoT this SR is optional; however, NB-IoT UE
that supports UP optimization needs also to support SR. For example; if the NB-IoT UE wants to
transmit the uplink data in idle state, it will send the random access preamble through which the base
station and UE will establish RRC connection and UE will be allocated with the radio resources for
data transfer. After a certain period of inactivity, the base station initiates the release procedure.

Similarly, for UE downlink data reception, if the UE is in DRX mode, the UE regularly listens
to downlink signaling and if the UE notices the paging message, it will perform the SR procedure as
described in uplink data transmission. Additionally, if the UE is in PSM mode, it will be completely
inaccessible until it initiates the same SR procedure for the uplink grant or by using Tracking Area
Update (TAU).

There are works that are addressing the upper layers such as [77], where the authors proposed an
efficient small data transmission scheme by using CP procedure. The proposed scheme enables the
devices to transmit data packets through the RRC connection setup procedure when the device is in
idle mode. This process reduces the signaling overhead caused by the security setup process and data
radio bearer setup process. However, a suggestion could be to analyze the power consumption during
this small data transmission and compare its effectiveness to when the same data is transmitted during
the UP procedure.

Summary: This section discussed PHY layer features, highlighting the corresponding enhancements
on cell acquisition procedure, random access channel estimation, and interference mitigation. It then
addressed the MAC layer enhancements regarding resource allocation, link adaptation, coverage and
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capacity, and power management. It further addressed the upper layers changes related to cellular IoT
evolved packet system optimization through user and control planes to enhance the small data packets
transmissions for end-to-end massive connectivity.

4. Narrowband-IoT Possible Deployment Strategies

This section proposes potential deployment strategies for NB-IoT massive deployments by
considering the NB-IoT support for small cells in heterogeneous network scenarios.

HetNets are effective network deployment strategies in which small cells are incorporated in
macrocells with the objective of improving performance in terms of capacity, coverage, and spectral
efficiency. In general, the macrocells are characterized by higher transmit power and broader range as
compared to small cells. When smalls cells are overlaid in macrocells, interference becomes a concern,
especially to small cell edge users. Several techniques for interference cancellation, estimation and
coordination that involve frequency hopping, frequency reuse, power control etc. have been proposed;
however, the performance trade-offs for the proposed techniques for macrocells and small cells are
still challenging [87–90].

Similarly, NB-IoT is expected to coexist with the currently deployed legacy LTE as well as the
forthcoming 5G networks. This questions the existing interference management techniques i.e., are they
applicable to the newly deployed technology since NB-IoT is expected to support different power
classes while maintaining the low complexity which can severely affect the channel estimation quality
and hence interference estimation quality. In NB-IoT coexistence with the legacy cellular networks,
the possible deployment scenarios are as follows:

• Synchronous NB-IoT deployment in all small cells;
• Asynchronous NB-IoT deployment in all small cells;
• Synchronous NB-IoT deployment in small cells and Macrocells;
• Asynchronous NB-IoT deployment in small cells and LTE in macrocells.

These scenarios, as shown in Figure 6, are detailed in what follows.

NB-IoT/LTE macrocell

NB-IoT/LTE macrocell UE

NB-IoT/LTE UE

NB-IoT/LTE small cell

NB-IoT/LTE small cell

NB-IoT small cell

NB-IoT small cell

NB-IoT small cell UE

Figure 6. Summary of NB-IoT deployment strategies. For example, when NB-IoT is deployed in
macrocell and LTE in small cell, when LTE is in macrocell and NB-IoT is in small cells, when NB-IoT
is in macrocell and small cells support both NB-IoT and LTE, and when LTE is in macrocell and
LTE/NB-IoT is in small cells
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4.1. Synchronous NB-IoT Deployment in All Small Cells

This is the NB-IoT deployment strategy which is enabled in all the small cells by using the same
physical resource blocks. All the small cells are synchronized in such a way that with the same
PRBs, all the NB-IoT UEs are using the transmit power that is configured regardless of its maximum
transmitting power capacity. This means that even though NB-IoT devices might support different
power classes such as 14 dBm, 20 dBm, or 23 dBm, the NB-IoT devices will only be configured to use
the minimum allowed transmit power in order to avoid causing the co-channel interference to other
UEs using the same radio resources.In this strategy, power control may be the key feature to ensure
the required performance. However, cell edge UEs may still suffer from the interference problem.
This interference may highly be increased due to the low channel estimation quality of NB-IoT UEs
associated by its reduced computational complexity.

4.2. Asynchronous NB-IoT Deployment in All Small Cells

This deployment strategy is employed in such a way that NB-IoT is enabled in all small cells by
using different physical resource blocks. This implementation may avoid the interference between
NB-IoT UEs from different small cells; however, this may result in co-channel interference between
NB-IoT and LTE UEs that are using the same radio resources. When deploying under this strategy,
it is imperative to implement proper frequency planning as well as proper power configuration for
NB-IoT devices. As seen from the state of the art, some works have proposed blanking of the radio
resources to the adjacent cells for the resources that are already occupied by NB-IoT even in the cells
that NB-IoT is not enabled. However, blanking of the resources is a wastage of resources, so, there
should be some other means such as frequency hopping to avoid wastage of resources (blanking) as
well as to mitigate interference.

4.3. Synchronous NB-IoT Deployment in Small Cells and Macro Cells

In this strategy, NB-IoT is enabled in the small cells as well as in macro cell on the same PRBs.
Macrocell UEs are configured to use higher transmit power as compared to small cell UEs while
keeping the same PRBs for NB-IoT while others left for legacy LTE. Possible co-channel interference
may occur in small cell edge UEs if the UEs are scheduled on the same resource units. The impact may
further increase for UEs under mobility which might require the use of handover for smoothing the UEs
transition from one serving cell to another. From our review, no work has addressed the interference
cancellation mechanism for such a case. It is imperative to employ the existing geographical planning,
frequency reuse, frequency hopping, and power control while considering the low complexity but
high coverage range NB-IoT.

4.4. Asynchronous NB-IoT Deployment in Small Cells and LTE in Macrocells

In this strategy, NB-IoT uses separate PRBs between small cells and macro cells. This means that
one or more PRBs are used for small cells and different PRB(s) for the macrocells. If the PRBs are
not well planned, NB-IoT users from adjacent cells (using the same resource units) may suffer from
interference. Also, LTE users that are using the same resource elements may interfere with small cell or
macro cell UEs. Different transmit power control configurations may be used to control interference.

The choice of the deployment strategy depends on several factors such as use-case requirements,
environmental conditions, equipment quality, etc. It is imperative to implement better interference
estimation, mitigation or management techniques that will ensure better performance and spectral
efficiency for the massive NB-IoT deployment in coexistence with other technologies.

Summary: This section has presented the possible NB-IoT deployment strategies by considering
the NB-IoT support for small cells in coexistence with legacy LTE in HetNet scenario.

The following section presents the open research challenges to motivate future research directions.
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5. Open Research Questions and Discussion

5.1. Battery Life

PSM and eDRx were introduced in NB-IoT Release 12 and 13 to lengthen the NB-IoT devices’
battery life. Moreover, the most recent updates require the UE to be able to transmit during RRC-idle
mode which will reduce the required ON time for data transmission. However, devices experiencing
bad channel conditions due to hard-to-reach areas will require to perform several retransmissions per
session, which will drain the device’s energy and hence shortens the battery life. Similarly, devices that
require a relatively large number of reporting sessions per day will consume more energy, which makes
energy management a concern. As seen in Section 3, most of the proposed algorithms are power
hungry because most of the power is consumed during transmission and reception. Therefore, energy
harvesting alternatives such as solar, biogas, vibrations, etc. that will lengthen the NB-IoT device
battery life should be introduced to complement or replace frequent battery charging.

5.2. Radio Resource Management

5.2.1. Tones Allocation.

As seen in the literature, most of the articles consider single-tone allocation for the simplicity
in the simulation, thus, multi-tone allocation is not well studied. This causes a knowledge gap in
the effectiveness of different tone-allocation possibilities. Moreover, for guard-band, in-band and
standalone it is still not clear about the respective performance metrics that could be achieved in
terms of throughput, coverage range, interference robustness etc. This restricts to a certain extent
the optimal choice of deployment for a large number of devices with the required performance.
Furthermore, different frame structures, especially for TDD configurations, are not discussed even
though NB-IoT is required to support TDD. Therefore, optimal resource use techniques must be
proposed that incorporate repetition, mobility, tones allocation, etc. for efficient spectrum usage.

5.2.2. Interference Mitigation

Interference prediction, estimation, cancellation, and coordination techniques for NB-IoT become
a challenge. This is because of the sharing of spectrum resources between NB-IoT and legacy LTE.
Similarly, with NB-IoT being deployed in a small cell or macrocell scenarios in heterogeneous networks,
interference becomes a concern. Several works have tried to address this by means of resource
blanking, power control, or better uplink and downlink scheduling schemes and frequency and
timing synchronization, etc. However, it is still challenging to incorporate the NB-IoT features such as
repetition, low complexity (which affects channel estimation quality), and mobility in deploying the
already existing LTE interference management techniques. As seen in the possible NB-IoT deployment
scenarios above, there is still a need for deploying effective schemes that will ensure better NB-IoT
performance without degrading the LTE performance [91,92].

5.3. Mobility Management

As seen in Section 2, most of the simulation works have ignored the mobility impact of NB-IoT
channel modeling. However, for use cases that involve movement, Doppler shift has to be taken
into consideration during channel estimation, which might slightly increase the device complexity to
support handover and other mobility features such as the support for inter-RAT mobility during idle
mode [93,94]. The increase in NB-IoT UEs mobility makes the channel suffer from fast varying channel
conditions, due to which adaptive transmission schemes that might involve channel estimation, error
correction, etc. must be implemented.

Therefore, applying intelligent/adaptive algorithms that are low power and optimal for repetition
number, yet mobility-aware, is of great importance. The algorithms could involve low-power frequent
CSI reporting, early data transmission by using both user and control plane in either Msg 3 or Msg 4.
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5.4. Latency

NB-IoT latency tolerance is set to 10 ms. This is due to its support for use cases of UEs that are
in environments with bad channel conditions [95–97]. Initial cell acquisition, frequency, and timing
requirements, RACH transmission, half duplex mode of transmission and several repetitions that are
performed during transmission are some of the features that play part in the overall data transmission
delay. Several works are trying to reduce the timing requirement so as to reduce transmission latency
of devices; however, most of the works have not addressed delay by taking into consideration the
massive congestion that is expected for the IoT networks, processing delays due to low complex
devices, queuing delays, propagation delays especially with long-range feature, as well as errors and
error recovery.

However, early data transmission schemes and the second NB-IoT HARQ process for devices
that have good channel conditions are among the features that can be used to reduce the transmission
latency and improving the transmission link performance. However, only a handful of research articles
have discussed the effectiveness of these processes when applied in NB-IoT.

5.5. Semi-Persistent vs. Dynamic Scheduling

Most of the NB-IoT literature addresses dynamic uplink and downlink scheduling by studying
the scheduling of logical channels and signals. There are still very few NB-IoT studies about the
effectiveness of Semi-Persistent Scheduling schemes (SPS) even though SPS helps to reduce the
NPDCCH overhead as compared to dynamic scheduling. It provides the NB-IoT UEs with longer
allocated resources (more than one subframe) so that the NB-IoT device will not need the frequent
downlink assignment as well as an uplink grant which is delivered by NPDDCH for each subframe.
However, for applications that involve mobility or fast varying channel conditions, how is this
scheduling scheme going to be effective knowing that NB-IoT has poor channel estimation capabilities
as compared to LTE?

5.6. Random Access

Massive NB-IoT modules that try to request the radio channel resources at the same time for
uplink data transmission may suffer from random access preamble collision. This is caused by several
factors such as detection inaccuracy that may not satisfy the detection threshold, the high probability
of false alarm, etc. Several works have proposed random access preamble detection algorithms
(i.e., random access with differential barring etc.) and others have developed mathematical models
to characterize the preamble transmissions in order to improve the NPRACH success rate and
better time-of-arrival estimation and other NPRACH performance improvements. However, it is
still unclear which scheme is effective for massive deployment, since most of the proposed schemes
do not consider the heterogeneous network architecture, channel estimation impairments, or realistic
channel conditions [98,99].

5.7. Timing Advance (TA)

When the base station responds to NB-IoT UEs about RRC connection request, it incorporates
the TA command to be used for NB-IoT UE terminal data uplink transmission timing (i.e., to
time-synchronize the UEs to the base station and help to compensate the propagation delays). However,
for NB-IoT UE, the TA adjustment accuracy of the signaled timing advance with respect to the prior
uplink transmission may highly be affected by the massive number of NB-IoT devices contending
for the access. This is because the base station may need to correct some UE timing while for
other NB-IoT UEs that had already transmitted NPRACH could receive the random access response
which is not intended for them. Some works have addressed the receiver algorithms for NPRACH
TA estimation as well as detection timing advance adjustment decoding schemes to improve the
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estimation but the NB-IoT receiver sensitivity and weak channel estimation quality still negatively
affect the TA adjustment.

5.8. Cell Search and Initial Synchronization

NPSS and NSSS are two signals based on frequency domain Zadoff-Chu sequence that are
used for NB-IoT time and frequency synchronization to the base station. According to NB-IoT
standard, NPSS and NSSS may not be transmitted on the same antenna port hence NB-IoT initial
synchronization may rely on NPSS only. The challenge is that the imperfect channel conditions may
severely affect the cell camping procedure as a small CFO may result in a phase shift to a received
frequency domain sequence which as a consequence may degrade the cell search and synchronization
performance. To improve this, frequency diversity techniques should also be used for NPSS and NSSS
reception improvement.

5.9. Unified NB-IoT Testing Tool

Since NB-IoT is a promising technology, there should be a unified testing tool used as a reference to
verify if the produced products comply with the standards. Taking Bluetooth as an example, for better
compatibility towards different available products from handsets to car kits, Profile Tuning Suite (PTS)
software is used to automate the compliance testing to specific Bluetooth function. So, to support
compliance with standards and hence backward compatibility and interoperability, what is the testing
tool to validate if different available products will fit standards? Similarly, for simulation purposes,
most of the works choose the parameters that can generate results easily. If there is a concrete simulation
model that takes into account the major NB-IoT features and incorporating all the possibilities from
repetition number allocation, mobility selection, modulation and coding scheme, real-time channel
variations, etc. it would be easier to get realistic modeling for different scenarios.

5.10. Backward Compatibility and Interoperability

A ten-year telecommunication generation is characterized by different changes in releases and
updates. In order to reach their lifespan as compared to what the standards stipulate, NB-IoT devices
should operate for around ten years with a single battery charge. Whenever new releases or updates
are introduced, backward compatibility and interoperability should be possible. Apparently, the device
complexity is set as low as possible; will these simple devices (hardware) support hard and robust
algorithms that will be implemented by over-the-air upgrades/updates to satisfy the demands of
future NB-IoT use cases?

Summary: This section has presented the open research questions regarding battery life, radio
resource allocation, cell search, and initial acquisition procedures, mobility management, latency,
random access, etc., as summarized in Table 4, in order to motivate future research directions. The next
section concludes the paper.

Table 4. Open Research Questions related to the physical layer, MAC layer, and standard.

Physical Layer MAC Layer Standard

Radio resource management Timing advance adjustment Support for small cell

Frequency and time
synchronization

Dynamic scheduling and
semi-persistent scheduling TDD support

Random access Latency Antenna diversity

Channel estimation Power management Mobility and handover support

Error correction Network throughput More efficient group messages

Link adaptation Control packet overhead Multicarrier operation

Interference mitigation Control plane small data
transmission

Network management tool for UE
differentiation
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6. Conclusions

Due to the fact that most of the existing works are segmented and only consider one or two
releases in their corresponding studies or simulations, this paper has presented a comprehensive
overview of NB-IoT standard from Release 13 to Release 16 prospects to enhance and enable more
realistic research. It further presented the detailed current state of the art of NB-IoT based on the
ongoing discussion on NB-IoT protocol stack along with the related contributions and analyzed the
knowledge gaps by using NB-IoT standard as a benchmark. It is observed that most of the articles focus
on improving one or few features while neglecting others,it could be better to display the trade-offs
between the improvement feature and the neglected ones, i.e., performance trade-off between PHY
and MAC layer when one feature is changed in either of the layers, the impact of repetition on overall
energy consumption, CFO on channel estimation quality etc. This paper also presented the NB-IoT
deployment strategies to highlight the coexistence possibilities with other legacy technologies i.e., LTE,
by considering the NB-IoT support for small cells in HetNet scenarios. Lastly, it discussed the open
research challenges and the future common research focus on NB-IoT i.e., battery life, optimal resource
usage, handover support during mobility, transmission latency, scheduling, etc. To the best of the
author’s knowledge, this is the first survey that covers broadly these mentioned contributions and
hence this work will help the researchers get most of the needed information to accelerate their research
by finding the relevant information and sources for deeper exploration of the research concepts as well
as finding possible solutions.
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Abstract—The design changes on the physical (PHY) layer, i.e.
the limited system bandwidth of one physical resource block
(PRB), single antenna support, lower-order modulations, etc.
inhibit the mapping of traditional long term evolution (LTE)
radio resource management techniques to narrowband internet
of things (NB-IoT) systems. Consequently, possible interference
due to massive connectivity may severely degrade the expected
system performance.

In this regard, we propose an interference avoidance schedul-
ing algorithm for NB-IoT systems. The algorithm entails a
cooperative strategy in which the base stations share their
respective scheduling tables which are then used to compute the
interference for future transmitting user equipment (UEs). The
computed interference values are then used as input to individual
base station schedulers to perform scheduling. Each base station’s
scheduler then allocates the radio resources to the UEs with the
lowest possible interference.

Extensive simulations are carried out to analyze the perfor-
mance of our proposed algorithm and compare it to the conven-
tional Round-Robin scheduling scheme. The results show that our
proposed algorithm provides up to 36% throughput improvement
to the NB-IoT UE as compared to Round-Robin. Similarly, for
the same device’s locations, the UEs are experiencing relatively
better maximum coupling loss (MCL) which results in lower
repetition numbers per coverage class.

Index Terms—NB-IoT, LPWAN, Interference Avoidance, Re-
source Scheduler, Radio Resource Management, mMTC

I. INTRODUCTION

Narrow-Band Internet of Things (NB-IoT) is one of the
enablers of the IoT use-cases such as environmental moni-
toring, smart gas metering, smart grids, smart water metering,
smart waste management, etc. These use-cases are normally
associated with different sensors installed in a fixed location
to facilitate the corresponding expected services with low or
no human intervention. The diversity of use-cases enforces
different UE requirements including reporting circle, energy
efficiency, payload size, nature of traffic, etc. For example, in
a small-medium sized city, it is expected to have an average
of 40 devices per household equipped with sensors to service
different applications [1]. In this regard, such massive connec-
tions demand proactive radio resource management techniques
to offer the required quality of service to the corresponding
applications.

To cope with the growing demand for IoT use-cases, the 3rd
Generation Partnership Project (3GPP) introduced the NB-IoT
as a licensed IoT cellular technology to support the massive
Machine-Type connections (mMTC). NB-IoT is a variant of
the Long Term Evolution (LTE) with reduced complexity
to enable low-cost devices. NB-IoT is classified as a Low-
Power Wide-Area Networks (LPWAN) technology intended to
enhance coverage for IoT use-cases especially for applications
in hard-to-reach areas.

As per 3GPP, the design changes are as follows; NB-IoT’s
system bandwidth is a maximum of 200 kHz and can offer
peak data rates of 250 kbps and 226.7 kbps in downlink and
uplink, respectively. NB-IoT performs up to 128 repetitions
to enable extended coverage, can tolerate a delay of up to
10 s during its transmissions, utilizes low order modulations
i.e. Binary Phase Shift Keying (BPSK), support up to 52000
devices per cell and can transmit at maximum coupling loss
(MCL) of 164 dB. More design changes are presented in [2].

Despite the advantages they bring, these changes hinder the
effective implementation of traditional radio resource man-
agement techniques to NB-IoT systems because i) supporting
massive devices with merely 200 kHz of radio resources is
challenging even with low payload transmission, and addi-
tionally ii) when NB-IoT is deployed in in-band, guard-band
or stand-alone mode, the limited system bandwidth hinders
the traditional techniques such as carrier aggregation, inter-
cell interference coordination (ICIC) with physical resource
block (PRB) muting, etc. This is because PRB muting means
shutting down the complete NB-IoT system bandwidth, and
ICIC involves power and frequency partitioning between the
competing/interfering base stations. Similarly, the Network
Assisted Interference Cancellation and Suppression (NAICS)
technique is no longer applicable. With NAICS, the network
is required to provide the UEs with additional information on
scheduled transmissions and hence enhance the performance
of the receiver; however, NAICS is not a spectrum efficient
technique and requires a complex receiver for interference
mitigation [3]. Therefore, it is necessary to propose novel radio
resource management techniques adapted to NB-IoT systems.

Previous studies such as [4] proposed an interference mitiga-
tion algorithm by considering the coexistence between NB-IoT
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and LTE; the proposed algorithm uses the channel frequency
response (CFR) to mitigate the sampling mismatch between
the NB-IoT UE and the base station / enhanced Node-B (eNB).
The authors of [5] proposed an algorithm that leverages the
average device delay and processing time to optimize NB-IoT
resource management through basic scheduling. In [6], the
authors presented a novel interference aware resource man-
agement for NB-IoT. Power control in a cooperative manner
was proposed to minimize the interference impact. In [7], the
authors proposed an algorithm to enhance the cell capacity;
the optimal scheduling involves offset index selection and UE
search spaces in NB-IoT networks. In [8], the authors proposed
a link adaptation algorithm to enhance coverage; the algorithm
uses a mathematical analysis of Shannon theorem. In [9], the
authors proposed a link adaptation scheme that dynamically
adjusts the maximum coupling loss (MCS) to optimize the
block error rate (BLER) and Bit Error Rate performance.

However, the existing state of the art does not consider yet
the inter-cell interference avoidance strategies to cope with
the growing demand of IoT use-cases under stringent radio
resources.

In this regard, we propose an inter-cell interference-
avoidance scheduling algorithm to optimize the usage of lim-
ited NB-IoT radio resources and enhance the overall through-
put. Our algorithm relies on the utilization of a cooperative
strategy between NB-IoT’s base stations by sharing the ex-
pected scheduling tables among themselves in advance. Each
base station then computes the possible inter-cell interference
that may arise between the prospective devices during their
transmissions. The tables along with the computed interfer-
ence information are then used as input to local schedulers.
Proactive scheduling is then performed, avoiding to assign
devices whose interference impact can lower the expected
throughput. A Round-Robin algorithm is used as a benchmark
and exhaustive simulations are performed. The results show
that our proposed algorithm enhances the device achievable
throughput up to 36% and reduces the number of repetitions
per coverage class.

To the best of the authors’ knowledge, this is the first work
that entails the cooperative interference avoidance strategy to
optimize the radio resources usage for NB-IoT systems.

The rest of the paper is organized as follows; section
II presents our proposed cooperative interference-avoidance
scheme, section III presents the simulation and performance
evaluation, and section IV concludes the paper.

II. PROPOSED COOPERATIVE INTERFERENCE-AVOIDANCE
STRATEGY FOR NB-IOT SYSTEM

In our proposed cooperative strategy the base stations share
(over the X2-interface) the channel quality information (CQI)
(i.e. SNR, location, path-loss, cell ID, expected payload, etc.),
for the devices (UE) to be scheduled for the next radio
frame. The proposed scheduler then uses this information to
calculate the interference possibilities among shared UEs. The
calculated interference values are hence used as input to the
individual base station. Proactive scheduling is then performed
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Fig. 1. Proposed cooperative interference-avoidance strategy for NB-IoT
system

by providing the available resources to UEs whose impact in
terms of inter-cell interference is the lowest.

The proposed scheduler comprises three main parts i.e.
collection center, computing center, and scheduling center. The
collection center receives and registers the scheduling tables
from the individual base-stations. The computing center com-
putes the inter-cell interference between UEs. The scheduling
center makes the final decision about the UEs that have the
best throughput performance when scheduled in the same
slots. The system under study is considered to be a small and
medium sized city based on the Okumura-Hata channel model
whereby the UE path-loss model can then be expressed as in
Equation (1), [10].

PL = A+B log(d) + C (1)

where A, B and C depend on the antenna height and the
frequency.

A = 69.55 + 26.16 log(fc)− 13.82 log(hb)− a(hm) (2)

B = 44.9− 6.55 log(hb) (3)

where fc and d are given in MHz and km, respectively, a
and C depend on environmental factors, and hb and hm are
heights for the base-station and UE, respectively.

The interference impact is based on the SINR which is
calculated as shown in Equation (4), [11].
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SINRDL
k,n =

pk,n|hk,n|2∑M
m=1 ωn,mpm,n|hC

m,n|2 +N0B
(4)

where SINRDL
k,n , k, pk,n, and |hk,n|2 are the down-link

signal to interference-plus-noise ratio, the transmit power, and
channel response of user n from base station k, respectively.
ωn,m, pm,n, and |hC

m,n|2 are the power classes, transmit
power, and channel response of user m from base station n,
respectively. N0B is the channel noise which is considered
constant.

The proposed scheduler functions as follows: it receives
the scheduling tables from the individual base stations and
then checks for inter-cell interference; if there is interference,
it checks the interference weight with all the other UEs to
be scheduled in the same radio frame. If the UEs have the
best throughput performance, it forwards that combination
(UE identities) to be used by the individual base stations.
The flowchart of the proposed inter-cell interference-avoidance
algorithm for the NB-IoT system is as depicted in Fig. 2.

III. SIMULATION AND PERFORMANCE EVALUATION

TABLE I
MAIN SIMULATION PARAMETERS FOR THE PROPOSED COOPERATIVE

STRATEGY FOR NB-IOT SYSTEM [12]

Simulation Parameters
Name Value
(a) Transmit power of base station,
UE (dBm)

46 , 23

(b) Modulation scheme BPSK
(c) Carrier frequency (MHz) 900
(d) Receiver Thermal Noise density
(dBm/Hz)

−174

(e) No. cooperating base station 3
(f) Interference Margin (dB) 0
(g) Channel model Okumura Hata
(h) Effective Noise Power (dBm) d + q + f + 10log(r)
(i) Required / calculated SINR (dB)
(j) Receiver sensitivity h + i
(k) MCL (dB) a - j
(l) Modulation scheme BPSK
(m) No. of antenna support per UE 1
(o) Height of base station, UE (m) 100, 1
(p) Radius of a cell 1 km
(q) Noise figure of base station, UE 9, 5 dB
(r) Occupied System bandwidth
(kHz)

180

1) Simulation Setup: Extensive system-level simulations
are performed to analyze the proposed approach, as depicted
in Fig.1. The simulation setup is considered close to the one
presented in [12]; however, it is well adapted to fit the NB-IoT
system. The NB-IoT UEs are considered fixed and hence the
impact of Doppler spread on UE mobility is negligible. This
suits well the use cases such as smart grid, smart water, smart
gas metering, smart waste management, etc. [1].

The Round-Robin algorithm, as presented in [13], is used
to compare the performance of the proposed algorithm. In
Round-Robin, each eNB assigns the radio resources to UEs
in a first-come-first-served way. That is, the first detected UE

Start

Inter-cell 
Interference 

Exist?

Compute 
interference  

The best  
throughput?

Send the 
combination to 

individual 
base-stationAllocate the 

available 
resources and 
update the 

tables

Receive the 
scheduling 

tables

Yes

N o

Yes

N o

End

U E  
ID.

SN R LOC PAYL

U E1

U E2

U E3

U E  
ID.

SN R LOC PAYL

UE1

UE2

UE3

U E  
ID.

SN R LOC PAYL

U E1 3 5 4

U E2 2 2 5

U E3 2 3 5

The output of 
interference 

calculation is the 
list of UE 

combination and 
their associated 

interference

Sorting out the 
U E combination 
that has the best 

throughput 
performance

The scheduling tables from 
individual base stations

Fig. 2. Flowchart of our proposed NB-IoT inter-cell interference avoidance
algorithm

is given the available resources regardless of the impact of
interference it may cause/face.

For the interference-aware scheduling algorithm to better
function, it is crucial to perform proper estimation of channel
parameters to effectively sort out the UEs under possible inter-
ference. This is achieved by fixing the base stations and UEs
while evaluating their corresponding channel conditions based
on the defined model. The important simulation parameters
are as presented in Table I [14].

2) Simulation Results: In Fig. 3, it can be observed that
with the Round-Robin approach, the maximum achievable
throughput per device is 60 kbps. The devices located at the
center of the cell experience better throughput as compared to
those towards the edge. This is due to the low path-loss which
increases when moving from the center. It is also observed that
the devices on the cell edge experience relatively high inter-
cell interference as compared to those located at the center.
Consequently, the achieved throughput is very low on the
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edges of the cell.
In Fig. 4, with our proposed approach, it is observed that

the overall UE throughput has relatively raised and the devices
located at the center of the cell can experience a throughput
of up to 80 kbps. Similarly, as the devices get farther from
the center, the throughput drops; this is due to the increase
in the experienced path-loss. The overall relative increase in
throughput as compared to the Round-Robin algorithm is due
to avoidance of interference and hence the NB-IoT UEs could
guarantee better transmission with minimum errors.

Figure 5 presents the NB-IoT UE’s maximum achievable
throughput over the three cells. It is observed that the UEs
that are exactly at the center of the cell can achieve an average
throughput of about 250 kbps. This peak value corresponds
to the 3GPP proposed framework as presented in [14] which
is used during system modeling. However, some UEs that are
exactly at the center of the cell can experience relatively lower
throughput compared to UEs at a distant location. This is due
to the inter-cell interference that these UEs may experience
when scheduled at the same time.

Figure 6 presents the NB-IoT UE’s maximum achiev-
able throughput over the three cells after implementing the
interference-aware scheduling algorithm. It is observed that
the maximum achievable total NB-IoT UE throughput over the
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three cells is 350 kbps, while gradually decreasing as UEs are
located far from the center. (Please note that 3GPP has given
250 kbps, but in our simulation, we considered that the impact
of control channel overhead is negligible). However, this peak
value is only possible when the impact of interference is
considered negligible. As moving farther from the cell center,
the throughput uniformly drops due to shadowing, fading and
increase in path-loss.

Figure 7 presents the comparison of the cumulative distri-
bution function (CDF) of achievable throughput for the two
approaches under study. For the same number of devices per
cell, it can be observed that the proposed approach outer-
performs the Round-Robin approach and about 50 percentile
of devices are experiencing almost twice the minimum achiev-
able throughput.

Figure 8 presents the comparisons of MCL between our
proposed approach and Round-Robin, it is observed that for
the same device locations under the three coverage classes
(i.e. MCL = 144 dB, MCL = 158 dB and MCL = 164 dB) the
devices are served with relatively lower MCL as compared to
the Round Robin approach. This is due to reduced interference
impact and hence improving the receiver sensitivity. As a
result, our approach makes the devices experience a relatively
lower number of repetitions in all coverage classes, as shown
in Fig. 9.

In general, it is observed that significant system gains in
throughput and repetition reduction per coverage class are
achieved when our proposed algorithm is used.

IV. CONCLUSION

This paper has presented a novel inter-cell interference
aware scheduling algorithm for NB-IoT systems. Our proposed
scheme utilizes the information shared in advance between the
cooperating base stations to compute the interference weight,
and hence schedules UEs with the minimum possible inter-
ference for the next transmissions. Unlike previous studies,
our scheme considers the NB-IoT devices reduced complexity
which may lead to poor channel estimation. Exhaustive simu-
lations are carried to analyze the performance improvements of
our approach. It is observed that our approach could guarantee
a throughput improvement up to 36% as compared to the
conventional Round-Robin approach. Furthermore, maximum
achievable total NB-IoT UE throughput over the three cells is
around 350 kbps for devices at the cell center; however, as the
UE moves far from the center, the throughput relatively drops
due to channel variations and inter-cell interference impact on
cell edge UEs. It is also observed that our proposed approach
serves UEs at the same positions with better MCL as compared
to the conventional scheme hence can reduce the number of
repetitions per coverage class. The future outlook involves
further studies on dynamic traffic models, energy efficiency,
latency and mobility analysis for NB-IoT systems.
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Abstract—In this paper, we propose an inter-cell interference
(ICI) minimization scheme for uplink transmission in the narrow-
band internet of things (NB-IoT) systems. We first establish
the theoretical ICI problem formulation and propose its cor-
responding solution for the orthogonal multiple access (OMA)
NB-IoT system. Based on the theoretical formulation, we design
a cooperative radio resource scheduler that reduces the impact
of ICI and allocates transmit powers to reduce the energy
consumption to the scheduled users in a multi-cell scenario. We
compare the performance of the proposed scheme with that of
some benchmark OMA schedulers. The results show that the
proposed technique significantly reduces the impact of ICI and
hence is more suitable for the massive connectivity of the NB-IoT
system. For example, the users operating under the proposed
approach experience up to 50% reduced energy consumption
when compared to the best channel quality indicator (CQI)
scheme. Furthermore, 30% and 35% improvements in terms
of achieved user’s data rates are obtained as compared to the
MaxMin and round-robin schemes, respectively.

Index Terms—NB-IoT, LPWAN, Inter-cell interference mini-
mization, mMTC, Cellular IoT, ICI.

I. INTRODUCTION

Massive machine-type communications (mMTC) is one of
the fifth-generation (5G) service verticals which is designed to
support high-density internet of things (IoT) connections [1],
[2]. Even-though mMTC is enabled by licensed and unlicensed
IoT technologies, in this work, our focus is on licensed
technologies, specifically, Narrow-Band IoT (NB-IoT).

NB-IoT is derived from the long term evolution (LTE)
technology; however, its system bandwidth is of a maximum of
200 kHz, with 15 kHz or 3.75 kHz sub-carrier spacing on the
uplink. More details about NB-IoT system-level specifications,
design changes, and standards are presented in [3].

Work supported by Tallinn University of Technology Development Program
2016-2022 (2014-2020.4.01.16-0032), Estonian Research Council (PRG667),
European Union’s Horizon 2020 Research and Innovation programme (951867
and 668995). The authors also thank Telia Estonia for their cooperation.

Due to its narrow system bandwidth and overall reduced
complexity, it is very hard to map the traditional radio re-
sources management (RRM) techniques to the NB-IoT system.
For example, NB-IoT is expected to accommodate up to 52000
simultaneously transmitting devices per cell [4]. Therefore, the
question is ”how to effectively use this stringent available
bandwidth to serve such dense networks and concurrently
reduce inter-cell interference (ICI)?” Indeed, if inter-cell inter-
ference is not managed, severe degradation of the quality of
service (QoS) for such dense deployments becomes inevitable
[5], [6].

Simultaneously, the number of IoT use-cases grow rapidly,
and the ongoing massive IoT deployment needs to operate for a
very long time with as low power consumption as possible. In
this regard, energy consumption becomes a critical issue. The
NB-IoT standard provides discontinuous reception (eDRX)
and power-saving mode (PSM) operations to save devices’
energy. But, how to further reduce the transmission energy
while ensuring the required quality of service is still an open
issue. It should be noted that the focus of this work is on
cooperative scheduling to minimize ICI; The interested reader
can refer to [7]–[9] for different power control schemes that
can be used in 5G systems.

Recent studies have addressed various related key issues;
e.g. in [5] the authors studied the factors that affect cell data
rate and proposed a radio resource allocation algorithm that
takes into consideration the repetition factor for each user, time
offset, and quality of service (QoS) constraints. In [10], the
authors studied the impact of interference between NB-IoT and
LTE in a coexisting network scenario; the presented analysis
shows that the reduced complexity of NB-IoT user equipment
(UE) makes them prone to carrier frequency offset, which
significantly increases interference caused by radio frequency
(RF) impairments.

In [11], the authors derived an uplink system model for the
NB-IoT IoT system. Their results reveal that the actual channel
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frequency response (CFR) is not a simple Fourier transform of
the channel impulse response, due to sampling rate mismatch
between the NB-IoT user and LTE base station. Consequently,
they proposed a new channel equalization algorithm by deriv-
ing the effective CFR. In addition, they analytically derived
interference to facilitate the co-existence of NB-IoT and LTE
signals.

The reduced complexity of the NB-IoT UEs necessitates
the implementation of novel techniques to guarantee the re-
quired QoS. The above-proposed techniques are examples of
improvements in the NB-IoT system. However, the impact of
ICI is not well studied although it has proved to be the main
cause of performance degradation in legacy and recent cellular
technologies.

Therefore, in contrast to the above studies, the new contri-
butions presented in this paper are:

• First, the theoretical ICI minimization problem is pre-
sented, and its corresponding solution is proposed.

• Second, a novel cooperative scheduler is proposed to
reduce the ICI impact and hence improve the QoS.

• Third, power allocation is implemented for the scheduled
users to reduce unnecessary energy consumption while
guaranteeing the required QoS.

Finally, the proposed performance enhancements are evaluated
and compared to proportional fair (PF), max-min, best channel
quality indicator (Best CQI), and round-robin (RR) schedulers.

To the best of the authors’ knowledge, this is the first work
that proposes the ICI minimization scheme for the NB-IoT
uplink system.

The rest of the paper is organized as follows: Section
II presents the problem formulation and proposed solution.
Section III presents the proposed cooperative scheduler and
simulation setup. Section IV presents the numerical results
and discussion. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION AND PROPOSED SOLUTION

A. Problem formulation
The NB-IoT uplink system has four possible resource unit

configurations to choose from, here we employ the single tone
resource unit configuration mode of deployment (i.e. one tone
per user); however, the analysis can be replicated for other
resource configurations. The tone bandwidth is given by B0 =
B/X , where B is the available system bandwidth and X is the
resource unit spacing (i.e. for NB-IoT uplink, B = 180 kHz,
and X = 15 kHz or X = 3.75 kHz). The index set for the
available resource units is denoted as z = {1, 2, . . . , Z}. Let
Kc be the set of users belonging to cell c, where the number
of cells is C, i.e. c = {1, 2, . . . , C}, and k is the user index;
thus, a user k in cell c will be denoted as kc. The achievable
rate of user k belonging to cell c on a given resource unit z is
denoted by Rz

kc
= B0 log2(1 + SINRz

kc
) where SINRz

kc
is

the signal to interference plus noise ratio experienced by user
k belonging to cell c on a given resource unit z, and is given
as:

SINRz
kc

= azkc

( |hz
kc,c

|2P z
kc∑

l �=c,l∈C

∑
j∈Kl

|hz
jl,c

|2P z
jl
azjl + Pn

)
(1)

where |hz
kc,c

| denotes user kc’s channel gain on resource unit
z to its own base station in cell c, and P z

kc
denotes user kc’s

transmission power on resource unit z. In the denominator,
the interference term comes from other cells l, with a group
of users Kl within the cell. We use j as the interference
user index, thus a user j in cell l will be denoted as jl.
Moreover, |hz

jl,c
| denotes the channel gain of an interfering

user, belonging to cell l, jl on resource unit z to the base
station of cell c, and P z

jl
denotes the interfering user jl’s

transmission power on resource unit z. Binary variables are
used for scheduling: variable azkc

denotes the resource unit
occupancy coefficient such that azkc

= 1 if the resource unit
z is used by user kc, and azkc

= 0 otherwise. Pn is the noise
power at the receiver.

The optimization goal is to minimize the inter-cell inter-
ference experienced by user k from adjacent cell users. The
problem can either be modeled as the interference experienced
by user k on a given resource unit, or, in order to avoid
using the two binary variables, the problem can be modeled
as minimizing the interference on the resource units of cell
c, which is a realistic assumption since we adopted the full
buffer model, where Izc is the interference on resource unit z
in cell c. The objective function can be expressed as:

min
∑

c∈C

∑

z∈Z

Izc (2)

Substituting the interference Izc , the objective function be-
comes:

min
∑

c∈C

∑

z∈Z

∑

l �=c,l∈C

∑

j∈Kl

|hz
jl,c

|2P z
jl
azjl (3)

subject to:

SINRz
kc

≥ ϑkc,min (4)

which is a constraint in order to satisfy the required quality
of service (QoS), where ϑkc,min is the minimum acceptable
SINR that user kc can have to satisfy the QoS,

azkc

( |hz
kc,c

|2P z
kc∑

l �=c,l∈C

∑
j∈Kl

|hz
jl,c

|2P z
jl
azjl + Pn

)
≥ ϑkc,min (5)

0 ≤ P z
kc
azkc

≤ Pmax, ∀c ∈ C, ∀k ∈ Kc, ∀z ∈ Z (6)

where Pmax is the maximum allowed transmit power per
device. ∑

k∈Kc

azkc
≤ 1, ∀z ∈ Z, c ∈ C. (7)

The above constraint guarantees that, within the same cell, a
resource unit can only be occupied by one user at a given
time.
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B. Proposed solution
It can be noted that the proposed optimization problem in

this work is a mixed binary integer non-linear programming
(MBINP) problem. The variables to be optimized are azkc

and
P z
kc
azkc

which are very difficult to solve. In this regard, we
apply a step-wise algorithm [12] for resource unit and power
allocation. The algorithm follows three main steps: the first
step initializes the transmit power, the second step performs
the resource unit allocation, and the third step optimizes the
power allocation.

• Step One: transmit power initialization
To perform the resource unit allocation, we need to establish
an initial transmit power. For our analysis we choose one of
the following two methods:

1) setting the initial transmit power equal to the maximum
allowed power per device, i.e. Pmax, or

2) we set the transmit power equal to a required power,
calculated from the relation given by the minimum
required SINR and average interference power, or maxi-
mum tolerated interference level if either is available for
the use case or scenario.

Regarding the first option, the transmit power of the user is
set to the maximum allowed power for the device.

For the second one, we have a known interference level,
e.g average, tolerable, threshold, etc. We define this level at
Inz

kc
. We can compute the transmit power by performing the

following procedure:
The SINR for a generic user kc with a known noise and

interference level, Inz
kc

, is given by:

SINRz
kc

=
|hz

kc,c
|2P z

kc

Inz
kc

(8)

The transmit power can be calculated as:

P z
kc

=
Inz

kc
SINRz

kc

|hz
kc,c

|2 (9)

By using the minimum acceptable SINR per user, we have
an inequality:

P z
kc

≥ Inz
kc
ϑkc,min

|hz
kc,c

|2 (10)

Thus, we take the lowest acceptable transmit power, i.e. the
equality case:

P z
kc

=
Inz

kc
ϑkc,min

|hz
kc,c

|2 (11)

• Step two: resource unit allocation
After step one, the optimization problem can be written as

a function of the resource unit allocation binary variable only,
for a fixed transmit power, thus no power constraint:

min
∑

c∈C

∑

z∈Z

∑

l �=c,l∈C

∑

j∈Kl

|hz
jl,c

|2P z
jl
azjl (12)

subject to:
SINRz

kc
≥ ϑkc,min (13)

∑

k∈Kc

azkc
≤ 1, ∀z ∈ Z, c ∈ C. (14)

It can further be seen that the optimization problem is a 0-1
assignment integer linear programming problem about azkc

. To
obtain the solution, we use the cooperative scheduling scheme
which is discussed later on in Section III.

• Step three: transmit power allocation
After performing the resource unit allocation, the result will
have several interfering users on each resource unit. Moreover,
these interfering users on a specific resource unit are not inter-
fering with other users on any other resource unit because of
the OMA scheme; i.e., intra-cell interference can be ignored.
Thus, the transmit power allocation for the optimization prob-
lem, to minimize interference, can be solved for each resource
unit separately because the solutions for each resource unit are
independent from each other [12]. Thus, the problem will be
solved per resource unit having one interfering user per cell,
then this can be repeated for all the other resource units which
are occupied by interfering users.

In order to follow the above approach, we reformulate the
problem. The new problem has one user per cell interfering
with each other. The optimization problem is to find the power
allocation among interference users as in [13], [14].

The optimization problem, after the resource unit allocation
step, can be written as:

min
∑

c∈C

∑

l �=c,l∈C

|hl,c|2Pl (15)

subject to:
SINRc ≥ ϑc,min (16)

0 ≤ Pc ≤ Pmax, ∀c ∈ C. (17)

where |hc,c|2 is the channel gain of the user from cell c
to its base station c, Pc is the transmit power of this user
belonging to cell c, |hl,c|2 is the channel gain of the interfering
user belonging to cell l to the base station c, and Pl is this
interfering user’s transmit power.

The SINR for the user belonging to cell c on a given
resource unit is given as:

SINRc =
|hc,c|2Pc∑

l �=c|hl,c|2Pl + Pn
(18)

The constraint (16) is not linear. In the following steps, we
linearize this constraint as per [15].

We start by substituting 18 in 16.

|hc,c|2Pc∑
l �=c|hl,c|2Pl + Pn

≥ ϑc,min (19)

where ϑc,min is the minimum required SINR to satisfy the
required quality of service for the user belonging to cell c.

By doing cross multiplication

|hc,c|2Pc ≥ ϑc,min

(∑

l �=c

|hl,c|2Pl + Pn

)
(20)
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and equivalently,

−|hc,c|2Pc + ϑc,min

(∑

l �=c

|hl,c|2Pl

)
≤ −ϑc,minPn (21)

By expanding for c = 1, 2, . . . , C the inequalities become:

c = 1 : −|h1,1|2p1 + ϑ1|h2,1|2p2 + ϑ1|h3,1|2p3+,

. . . ,+ϑ1|hC,1|2pC ≤ ϑ1Pn

c = 2 : −|h2,2|2p2 + ϑ2|h1,2|2p1 + ϑ2|h3,2|2p3+,

. . . ,+ϑ2|hC,2|2pC ≤ ϑ2Pn

c = 3 : −|h3,3|2p3 + ϑ3|h1,3|2p1 + ϑ3|h2,3|2p2+,

. . . ,+ϑ3|hC,3|2pC ≤ ϑ3Pn

...
etc, which can be written in matrix form such as

Ãp̃ ≤ c̃ (22)

This can be solved by linear programming solutions in Matlab.

III. PROPOSED COOPERATIVE SCHEDULER AND
SIMULATION SETUP

Algorithm 1 Proposed scheme
1: procedure GENERATE UE PARAMETERS � using

Okumura Hata channel model
2: k ← |hz

kc,c
|2

3: while P z
kc

�= 0, j �= i do
4: SINRz

kc
← azkc

( |hz
kc,c

|2P z
kc∑

l�=c,l∈C

∑
j∈Kl

|hz
jl,c

|2P z
jl
az
jl
+Pn

)

5: return SINRz
kc

� along with other channel
parameters

6: procedure SHARE TO THE SCHEDULER � to compute
interference weights

7: while Inz
kc

=
|hz

kc,c
|2P z

kc

ϑi,min
− Pn do

8: select the UEs from each cell

9: return k � UE IDs for available resources
10: procedure POWER ALLOCATION

11:
Inz

kc
ϑkc,min

|hz
kc,c

|2 ← p

12: while constraint 10 is satisfied do
13: calculate Rate Rk

14: return Rk

A cooperative strategy is considered in which three base sta-
tions are connected and communicate before the final resource
allocation decision. The centralized cooperative scheduler is
considered as the unit that receives the scheduling tables from
cooperating base stations. At each base station, the UE channel
parameters are observed, and for the cell edge users, their
channel parameters are shared together with scheduling tables
to the cooperative scheduler. The scheduler then computes
the interference weights by taking into consideration i) one
transmitting user and ii) one interfering user using the same

radio resource from each base station. The users that have
the minimum impact of interference are then selected and
shared with the base stations to be scheduled at a given frame.
When the base stations receive the list of these users and the
available resources, power allocation is performed to reduce
the unnecessary energy consumption due to excessive transmit
power allocation for the cell edge users. We adopt simulation
parameters as presented in [16], unless specified otherwise.
The overview of the proposed scheme is shown in Algorithm
1. We also selected and implemented additional scheduling
schemes i.e. proportional fair, max-min, best CQI, and round-
robin as benchmarks. We fixed 10 UEs from each of the
cooperating base stations and compare the performance of
each scheduler.

For channel quality (CQI) estimation, our proposed scheme
implements the Okumura-Hata channel model for small-
medium cities. For power allocation, each base station assigns
different transmit powers to their corresponding UEs such that
good channel condition UEs are allowed to use a maximum
transmit power of 14 dBm, UEs with moderate CQI are
allowed to use a maximum transmit power of 20 dBm, and
UEs with bad CQI are allowed to use the full maximum
transmit power of 23 dBm. Compensating the reduced NB-
IoT TX power (i.e. 14 dBm) is achieved by increasing the NB-
IoT transmission time to maintain the same energy per bit like
that of the UE with the maximum TX power (i.e. 23 dBm).
Finally, power allocation is performed by considering the UE
minimum and maximum power constraints as in Equation 11.

For fairness analysis, we use the Jain’s fairness index [17],
which is given as:

f(R1, R2, . . . , Rk) =

[∑K
k=1 Rk

]2

K
∑K

k=1(Rk)2
(23)

where K is the total number of UEs under analysis and Rk

is the instantaneous UE data rate of user k. With this metric,
the fairness is highest when the index value is equal to 1 and
the lowest when it is equal to 0.

IV. NUMERICAL RESULTS AND DISCUSSION

This section presents the obtained numerical results which
are used for evaluating the performance metrics of our pro-
posed scheme.

A. Achieved data rates

Fig. 1 presents the UE achieved data rates. It can be
noted that with the proposed scheme, the UEs achieve better
data rates than when using the RR and MaxMin scheduling
schemes. This is because the MaxMin scheduling scheme
tries to maximize the minimum average data rates and hence
allocates more resources to UEs experiencing bad channel con-
ditions, even though the channel conditions are not favorable
for transmission. In this regard, UEs with better channel con-
ditions are left without resources, hence the negative impact
on the overall system throughput. This is not the case for the
RR scheduling scheme where the UEs receive the available
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Figure 1. Comparison of UE achieved data rates between our proposed
scheme and other scheduling schemes as benchmarks

resources despite their channel conditions. The downside of
RR is when the assigned UE does not have the capacity to
transmit due to bad channel conditions; this yields to a drop
in overall system data rates.

For example, 50% of UEs under our proposed scheme
experience up to 70 kbps while those under the RR and the
MaxMin scheduling schemes achieve 50 kbps. On the other
hand, the Best CQI scheduling scheme performs better than
the other scheduling schemes because it only allocates the
available resources to UEs that are experiencing relatively best
channel conditions. The downside of Best CQI is that it does
not include UEs that experience bad channel conditions; as a
consequence, UEs from cell edge fall into outage. PR follows
after Best CQI in terms of throughput performance, this is
because it pursues the maximum rate by assigning resources to
UEs with the highest priority. For cell edge users, our proposed
scheme outperforms the benchmark schemes because it takes
into consideration the impact of ICI which is the bottleneck
of performance for these users.

B. UE energy consumption

Fig 2 presents the UE energy consumption. With the pro-
posed scheme, the average experienced energy consumption
per UE is the lowest. This is due to the reduced impact
of ICI and power allocation to the UE to be scheduled. In
this regard, the proposed scheme maximizes SINR, and with
better SINR, the UE is considered to experience better channel
conditions and therefore gets the available resources for the
uplink transmissions with minimum possible repetitions. For
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Figure 2. Comparison of UE energy consumption between our proposed
scheme and other scheduling schemes as benchmark

example, 50% of UEs under our proposed scheme consumes
60% less in terms of energy consumption as compared to
BCQI.

Contrary to the MaxMin scheduling scheme which pursues
to maximize the minimum rate (mainly experienced by cell
edge UE) by allocating more resources the these UEs which
generally use maximum transmit power to counteract the
impact of the bad channel conditions. In this context, the
UE under the Best CQI achieves relatively lower energy
consumption than RR and PF scheduling schemes. BCQI
allocates resources to UEs with best channel conditions and
hence the needed transmit power becomes lower than for
UEs at the cell edge. Since PF aims to maximize the rate of
priority UEs regardless of their channel conditions, the energy
consumption increases due to the utilization of maximum
power for the uplink transmission.

C. UE fairness

Fig. 3 presents the UE fairness for different scheduling
schemes. It can be noticed that since most of the schedulers
take into account the channel conditions of UEs in order
to assign the radio resources, their corresponding fairness
increase with the increase in SINR values. This is not the
case for the RR scheduling scheme. Since Best CQI pursues
to maximize the overall system throughput by considering the
UEs with best channel conditions, it automatically excludes
all other UEs with relatively bad channel conditions; as a
result, it has the lowest fairness index. On the other hand,
the RR scheme performs better than the other benchmark
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Figure 3. Comparison of Fairness Index between our proposed Scheduler and
other existing schedulers

scheduling schemes since it allocates the UE regardless of its
channel condition. Our proposed scheme appears in between
other scheduling schemes; this is because it considers both
the UEs with bad channel conditions and the UEs with good
channel conditions, and allocates the resources to these UEs
by selecting the pair that will yield minimum ICI impact
and allocates powers to these UEs regardless their channel
conditions.

Overall, it can be observed that the users operating under
the proposed approach experience up to 50% of reduction of
energy consumption when compared to the best CQI scheme,
thanks to the reduced ICI impact and power allocation. Sim-
ilarly, 30% and 35% improvements are achieved in terms
of user achieved data rates as compared to MaxMin and
round-robin schemes, respectively. Additionally, the proposed
approach achieves a higher fairness index as compared to Best
CQI and PF especially when users are experiencing lower
signal to interference plus noise ratio (SINR)

V. CONCLUSION

In this paper, we have presented an inter-cell interference
minimization scheme for massive NB-IoT connectivity. The
cooperative scheduling and power allocation are proposed to
minimize the impact of ICI and reduce the unnecessary energy
consumption for the allocated UE. Moreover, we analyzed
and compared the performance of our proposed scheme with
respect to other scheduling schemes i.e. PR, RR, Best CQI,
and MaxMin benchmarks. Overall, the reduced impact of
ICI significantly improves the performance of both cell edge

users and cell center users. Additionally, the transmit power
allocation minimizes the overall energy consumption for both
cell center and cell-edge users.

Our future outlook involves studying the complexity of the
proposed scheme and its implementation complexity when
using non-orthogonal multiple access (NOMA)
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Abstract—The fifth-generation (5G) and beyond 5G (B5G) wire-
less networks introduced massive machine-type communications
(mMTC) to cope with the growing demand of massive Internet
of Things (IoT) applications. However, the heterogeneous char-
acteristics of massive IoT and diverse quality of service (QoS)
requirements may lead to severe interference that could degrade
the expected QoS of the cellular ecosystem. Therefore, this article
studies the impact of interference caused by mMTC connections.
We theoretically model the intercell interference (ICI) minimiza-
tion problem for the existing orthogonal multiple access (OMA)
technique and propose its corresponding solution. Furthermore, we
jointly solve the ICI and the cochannel interference minimization
problem for the IoT users when the nonorthogonal multiple access
(NOMA) technique is used. For the proposed OMA and NOMA
schemes, we design a cooperative scheduler to reduce the impact
of such interference. The results show that our proposed schemes
provide up to 58%, 75%, and 100% more improvements in terms
of user’s data rates, energy consumption, and connection density,
respectively.

Index Terms—Intercell interference (ICI), massive machine-
type communication (MMTC), narrow-band IoT (NB-IoT),
nonorthogonal multiple access (NOMA), orthogonal multiple
access (OMA).

NOMENCLATURE

Mathematical Symbols

σN Receiver’s noise power.
ϑxc,lim SINR threshold for user kc to satisfy its
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ϑc,lim SINR threshold to satisfy the QoS for the
UE in cell c.

azic Allocation matrix of user i at cell coccupying
subcarrier z.

azql Channel occupancy matrix of user ql at sub-
carrier z

azxc
Allocation matrix of user xc at subcarrier z

hj
l,c Channel gain from user j, belonging to cell

l and the NOMA group Ml within the cell,
on cell c.

hj
l,c Channel gain from user j, belonging to cell

l and the NOMA group Ml within the cell,
on cell c

hy
c,c Channel gain of NOMA user y belonging to

the same group Mc

hz
i,c Channel gain of the coallocated interfering

user i at cell c on subcarrier z
hz
ql,c

Channel gain of user ql at cell c
hz
xc,c

Channel gain of user ql to the base station c
at subcarrier z

hc,c Channel gain of the transmitting user c at
base station c

hql,c Channel gain user ql at cell c
Izc Interference on resource unit z in cell c
P j
l Power of the NOMA user y belonging to the

same group Mc

P z
i Power of the coallocated interfering user i at

subchannel z
P z
ql

Interference power caused by user ql at sub-
carrier z

P z
ql

Transmission power of the interfering user ql
at resource unit z

P z
xc

Transmission power of user kc’s at resource
unit z

Pmaxm Maximum power that can be used by the user
for its transmissions.

SINRz
xc,NOMA User xc’s SINR at subcarrier z under NOMA

approach.
SINRz

xc
SINR of user xc attached to cell c at subcar-
rier z.

Other Acronyms
3GPP 3rd generation partnership project.
5G 5th generation.
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AP Access point.
AV s Autonomous vehicles.
B5G Beyond 5th generation.
CCI Cochannel interference.
CoMP Coordinated multi point.
CQI Channel quality indicator.
eDRX Extended discontinuous reception.
eMBB Enhanced mobile broadband.
FDR Full duplex relaying
HDR Half duplex relaying.
ICI Intercell interference.
IoT Internet of things.
KKT Karush–Kuhn Tucker.
LPWAN Low-power wide area network.
LTE −M Long term evolution MTC.
M2M Machine to machine.
mMTC Massive machine-type communications.
NB − IoT Narrowband Internet of things.
NOMA Nonorthogonal multiple access.
NR New radio.
OMA Orthogonal multiple access.
PD Power domain.
QoS Quality of service.
RF Radio frequency.
SC Superposition coding.
SIC Successive interference cancellation.
UE User equipment.

I. INTRODUCTION

UNLIKE the previous mobile technology generations where
the primary focus was to enable human-to-human commu-

nications, the fifth-generation (5G) focuses equally on enabling
industrial communications by means of service verticals such
as massive Internet of Things (IoT), mission-critical communi-
cations, and enhanced mobile broadband (eMBB) communica-
tions.

It is predicted that by the end of 2023, the number of connected
devices needed for supporting the massive IoT deployment will
reach 15 billion [1]. Such growth in connectivity will also
address the requirements of use cases such as utility monitoring,
health care IoT applications, autonomous vehicles (AVs) con-
trolling, and mission-critical applications [2], [3]. In this regard,
this article focuses on solving the interference challenges that
are brought by the dense deployment of wireless IoT devices in
order to enhance the IoT connectivity.

Legacy noncellular commercial technologies such as Wi-Fi,
and Bluetooth low-energy (BLE) have limited coverage ranges,
which hinders the massive deployment of IoT use cases. This
is because these technologies only support short-range wireless
access for a few hundred devices [4]. Therefore, to cope with
the growing demand for massive connectivity for wide-area
coverage, the 3rd generation partnership project (3GPP) intro-
duced massive machine-type communications (mMTC). mMTC
is enabled by licensed IoT technologies (e.g., narrow-band IoT
(NB-IoT) [5], and unlicensed technologies (e.g., LoRa) [6]. Both
of these technologies are categorized as low power wide area

networks (LPWAN), aiming at servicing devices located in hard-
to-reach areas, with minimum human intervention. However,
in contrast to unlicensed technologies, licensed technologies
reuse the existing cellular infrastructure and are, therefore more
economical and advantageous for cellular telecommunication
operators.

The current 5G deployments implement orthogonal multiple
access (OMA) schemes which provide orthogonality in terms
of frequency resources. However, for massive IoT technologies
(i.e., NB-IoT and LTE-M), these OMA schemes are not able to
reach the capacity demand for supporting 52,000 devices per
cell. Additionally, the 5G broadband and 5G new radio (NR)
capabilities bring the possibility of massive connectivity support
of up to 1 000 000 devices per square kilometer [7], [8]. In
this regard, proactive scheduling and advanced multiple access
techniques to support such dense deployment become of great
significance.

The nonorthogonal multiple access (NOMA) scheme is con-
sidered to be the promising technique to provide capacity en-
hancement of above 100 000 devices per cell [9]. Contrary to
the OMA approach, the NOMA approach gives the possibility to
simultaneously superpose multiple devices in a given available
radio resource by allocating different power coefficients or codes
to enable the successive interference cancellation (SIC) at the
receiver [10]. In this regard, NOMA brings an exponential
increase in device support as compared to OMA, but at the cost
of increased receiver complexity [11].

Despite the advantages that NOMA brings to 5G and B5G
networks, it is still unclear if it can be implemented in low-power
IoT devices. This is because NOMA involves superposition
coding (SC) and SIC at the transmitter and receiver, respec-
tively, which are highly computationally complex for mMTC
applications [12].

Furthermore, for both OMA and NOMA approaches, if the
radio resources are not well managed, the massive connectivity
will lead to massive interference, which will severely degrade the
performance of legacy, 5G, and B5G network systems. That is
why our work proposes an interference mitigation framework to
enhance the cell performance of the OMA and NOMA schemes
in a multicell scenario. The main contributions presented in this
article are as follows.

1) First, we explicitly formulate the massive interference
problem for the OMA and NOMA schemes and propose
the corresponding solutions to optimally schedule the
radio resources and hence reduce the massive interference.

2) Second, we propose a cooperative scheduling strategy
to minimize massive interference for the OMA and
NOMA schemes by sharing the scheduling tables be-
tween the base stations to increase the overall network
capacity.

3) Third, we present the performance enhancements obtained
with our proposed approaches and compare the results
with existing OMA and NOMA techniques.

To the best of the authors’ knowledge, this is the first work that
presents a framework to mitigate massive interference caused
by massive connectivity of IoT deployment for both OMA and
NOMA techniques in 5G and B5G networks.
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The rest of the article is organized as follows. Section II
presents the related works. Section III presents the analysis
of OMA in mMTC systems. For system modeling, we use
the NB-IoT system to represent 5G mMTC technology [13].
Section IV presents the analysis of NOMA in mMTC systems.
Section V presents the design of the proposed scheduler to
mitigate the impact of intercell interference for both OMA
and NOMA schemes. Section VI presents the simulation setup,
the performance evaluation and achieved enhancements for the
OMA and NOMA schemes. The concluding remarks of the
article are given in Section VII.

II. RELATED WORKS

Several works have studied the OMA/NOMA schemes and
their suitability in 5G and B5G systems. For example, in [14],
the authors intended to minimize the total energy consumption
subject to the computation capacity and execution latency limits.
They obtained an optimal transmit power and computation re-
source allocation based on the Karush–Kuhn Tucker (KKT) con-
ditions. Their results showed that the total energy consumption
for both NOMA and OMA schemes increases with the number
of NB-IoT user equipment (UEs). However, when compared to
OMA, NOMA reduces the total energy consumption by 53.23%.
Critically, it should be noted that the authors neglected the impact
of intercell interference (ICI).

In [15], the authors investigated the downlink performance
of NOMA with randomly deployed cellular users. From the
presented analytical formulations, it is shown that the NOMA
scheme leads to significant performance gains in terms of er-
godic sum-rate. However, the allocated power and the targeted
data rate could directly influence the outage performance, i.e.,
if the allocated power is lower than the required power for
successful transmission, the UE will suffer from the outage.

In [16], the authors dealt with the connection density maxi-
mization problem in NB-IoT networks by using NOMA. The au-
thors used the bottom–up power filling algorithm and proposed
item clustering heuristic approach which allows any number of
devices to be multiplexed per subcarrier. It should be noted that
the authors suggested multiplexing any number per subcarrier
without considering the impact of ICI, which is a potential threat
to meeting the performance requirements of NB-IoT massive
connectivity.

In [17], the authors proposed two cooperative relaying
schemes, i.e., ON/OFF—full-duplex relaying (ON/OFF—FDR),
and ON/OFF—half-duplex relaying (ON/OFF—HDR) schemes.
Either of the proposed schemes is applied to the cell center
user (with good channel conditions) to help relaying the direct
NOMA transmissions on the downlink of cell edge users. In this
regard, the ON/OFF relaying decision depends upon the quality
of direct and relay links from the base station to the cell edge
user. From the results, it is shown that the proposed cooperative
scheme significantly improves the outage performance and the
sum rate of both cell-center and cell-edge users. However, for
mMTC devices such as in the LPWAN category, relaying of
information leads to an increase in device complexity and cost,
which is the limitation for most massive IoT use-cases.

TABLE I
SUMMARIZED COMPARISON OF CONTRIBUTIONS BETWEEN THIS WORK AND

THE EXISTING LITERATURE

In [18], the authors proposed a novel resource allocation
technique for NOMA, based on cooperative cellular networks. In
their proposed framework, the NOMA users with good channel
conditions act as group heads, hence can relay information to
NOMA users with bad channel conditions. Despite the gains of
the proposed scheme for high complexity devices, it should be
noted that the reduced complexity of NB-IoT devices, power-
saving mode, and extended discontinuous reception (eDRx)
make relaying of information (i.e., at the low complexity device)
unfeasible.

Additionally, new advancements have been made in order
to realize the goal of massive IoT under cellular technologies.
For example, proactive techniques such as intelligent reflecting
surfaces, that enhance the IoT links to the corresponding access
point (AP) by counteracting the high pathloss, are introduced
in [19]; the improved links are then exploited to better optimize
the offloading of computations from the AP to the mobile edge
computing (MEC) server. Similarly, proactive radio resource
scheduling by means of machine learning techniques [20], and
modern link-level adaptation by means of novel interference
management approaches are being explored [20]. However,
these techniques are not in the scope of this article. Table I
presents the comparisons between contributions of this work
and the existing literature.

The next section explores the OMA approach and presents
the proposed solution to mitigate the massive interference that
is caused by the dense deployments of IoT devices in a multicell
scenario.

III. ANALYSIS OF OMA IN MMTC SYSTEMS

A. System Model and Problem Formulation for OMA Scheme

For the analysis, we use NB-IoT since it is a long-range
promising technique for 5G massive connectivity that currently
uses OMA techniques for resource unit scheduling.

Before delving into the details, observe that the notations and
abbreviations used in the mathematical analyzes throughout the
article are summarized in Appendix A.

We assume that z = {1, 2, . . . , Z} represents the index of
the resource units. xc represents the cell c’s UEs, and C,
i.e., c = {1, 2, . . . , C}, represents the number of cells used in
simulation. Therefore, the signal to interference plus noise ratio
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of user xc in cell c at unit z is given as

SINRz
xc

= azxc

(
|hz

xc,c
|2P z

xc∑
l �=c,l∈C

∑
q∈Ql
|hz

ql,c
|2P z

ql
azql + σN

)

(1)
where |hz

xc,c
| is the channel gain of user xc at resource z to

the base station in cell c, P z
xc

is the transmission power of
user xc at resource z. l represent the interfering cells, with the
group of users Ql and q represents the index of that user. |hz

ql,c
|

represents the channel gain of user ql on unit z attached at cell
c, and P z

ql
represents the transmission power of user ql at unit z.

azxc
represents the channel allocation matrix, i.e., azxc

= 1 when
the resource is in use, and azxc

= 0 otherwise. σN denotes the
receiver’s noise power.

In this regard, we aim to minimize the ICI at user k in order
to improve the detected SINR to satisfy the expected quality of
service. Hence, the optimization problem becomes

min
∑

c∈C

∑

z∈Z

∑

l �=c,l∈C

∑

q∈Ql

|hz
ql,c
|2P z

ql
azql (2)

subject to

SINRz
xc
≥ ϑxc,lim (3)

whereϑxc,lim is the user xc’sSINR threshold to satisfy its QoS

azxc

(
|hz

xc,c
|2P z

xc∑
l �=c,l∈C

∑
q∈Ql
|hz

ql,c
|2P z

ql
azql + σN

)
≥ ϑxc,lim (4)

0 ≤ P z
xc
azxc
≤ Pmaxm, ∀c ∈ C, ∀xc ∈ Xc, ∀z ∈ Z (5)

where Pmaxm is the maximum power that a given device can
use for its transmission

∑

xc∈Xc

azxc
≤ 1,∀z ∈ Z, c ∈ C. (6)

B. Proposed Solution for the OMA Scheme

From the above analysis, the formulation represents a mixed
binary integer nonlinear programming (MBINP) problem, with
azxc

and P z
xc
azxc

which are very difficult to solve. Therefore,
a step-wise algorithm is used as presented in [21], in order to
perform the resource unit and power allocation. The proposed
algorithm will implement three main steps as follows.

1) First: initializing transmit power
We aim to set the initial transmit power equal to a required

power, which is a function of the SINR threshold to satisfy the
required QoS. In this regard, interference level, e.g., average,
tolerable, threshold, is already known from the statistics of the
channel conditions. Hence, we denote this level as Inz

xc
and

compute the initial transmit power as follows:

SINRz
xc

=
|hz

xc,c
|2P z

xc

Inz
xc

. (7)

The transmit power becomes

P z
xc

=
Inz

xc
SINRz

xc

|hz
xc,c
|2 . (8)

Considering the SINR threshold, the inequality becomes

P z
xc
≥ Inz

xc
ϑxc,lim

|hz
xc,c
|2 . (9)

Therefore, the lowest acceptable transmit power to satisfy the
QoS can be presented as

P z
xc

=
Inz

xc
ϑxc,lim

|hz
xc,c
|2 . (10)

1) Second: resource allocation
Since the power is already initialized, the optimization prob-

lem becomes

min
∑

c∈C

∑

z∈Z

∑

l �=c,l∈C

∑

q∈Ql

|hz
ql,c
|2P z

ql
azql (11)

subject to

SINRz
xc
≥ ϑxc,lim (12)

∑

xc∈Xc

azxc
≤ 1,∀z ∈ Z, c ∈ C. (13)

Now the equation represent a 0-1 assignment problem, hence,
we implement the cooperative scheduling scheme as presented
in Section V.

1) Third: power allocation
We ignore the impact of intracell interference, thanks to

the use of OMA scheduling scheme. However, the intercell
interference from adjacent cells’ users is experienced at each
resource units, therefore we solve the interference problem for
each resource unit. In this regard, we assume that, implementing
optimal transmit power will reduce unnecessary energy con-
sumption per user.

Therefore, the optimization goal becomes

min
∑

c∈C

∑

l �=c,l∈C
|hl,c|2Pl (14)

subject to

SINRc =

(
|hc,c|2P t

c∑
l �=c|hl,c|2Pl + σN

)
≥ ϑc,lim (15)

0 ≤ P t
c ≤ Pmaxm, ∀c ∈ C (16)

where |hc,c|2 and |hl,c|2 are the channel gains of transmit-
ting user, and interfering user, respectively. P t

c and Pl are the
transmit powers of of transmitting user and interfering user,
respectively.

Since constraint (15) is nonlinear, we therefore make it linear
as follows:

|hc,c|2P t
c ≥ ϑc,lim

(∑

l �=c

|hl,c|2Pl + σN

)
(17)

equivalently

−|hc,c|2P t
c + ϑc,lim

(∑

l �=c

|hl,c|2Pl

)
≤ −ϑc,limσN . (18)
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Algorithm 1: Proposed OMA Scheme.
1: procedure User equipment creation � applying

Okumura-Hata model
2: k ← |hz

xc,c
|2

3: while P z
xc
�= 0, j �= i do

4: Equation(1)
5: return SINRz

xc

6: procedure SHARE THE SCHEDULING TABLES

7: while Equation(10) do
8: compute_the_best_combination_of_UEs
9: return xc

10: procedure OPTIMAL POWER ALLOCATION

11: Inz
xcϑxc,lim

|hz
xc,c|2

← p

12: while Inz
xcϑxc,lim

|hz
xc,c|2 ← p do

13: calculate_Rate_Rk

14: return Rk

Performing the inequality expansion for c = 1, 2, . . . , C

c = 1 : −|h1,1|2p1 + ϑ1|h2,1|2p2 + ϑ1|h3,1|2p3
+, . . . ,+ϑ1|hC,1|2P t

c ≤ ϑ1σN

c = 2 : −|h2,2|2p2 + ϑ2|h1,2|2p1 + ϑ2|h3,2|2p3
+, . . . ,+ϑ2|hC,2|2P t

c ≤ ϑ2σN

c = 3 : −|h3,3|2p3 + ϑ3|h1,3|2p1 + ϑ3|h2,3|2p2
+, . . . ,+ϑ3|hC,3|2P t

c ≤ ϑ3σN .

...
The above expansion follows a matrix form which can be

shortened as

Ãp̃ ≤ c̃. (19)

In this article, Algorithm 1 presents the simulation implementa-
tion with additional procedures as discussed in Section V.

Since the OMA approaches employ orthogonality when allo-
cating the available resources, most of the 5G mMTC systems
fail to reach the cell capacity target as specified in the standard
due to the limited available spectrum.

To overcome this limitation, the NOMA scheme presents
significant advantages regarding spectrum efficiency, hence it is
a promising technique to accommodate massive IoT applications
for beyond 5G networks [22].

A generic architecture presenting the principles of the OMA
and NOMA schemes in 5G networks is shown in Fig. 1. As can be
seen, the OMA scheme allocates orthogonal physical resource
blocks (PRB) to different user equipment (UE) transmitting at
a given time slot. The NOMA scheme allocates a given PRB to
multiple UEs, with different power coefficients or codes in order
to guarantee the successful decoding of data at the receiver.

The next section studies the NOMA approach and proposes
the corresponding solution in order to mitigate the cochannel
and intercell interference in a multicell scenario.

Fig. 1. Generic architecture representing the OMA and NOMA schemes
over 5G networks. In the OMA scheme, every UE is provided with a unique
physical resource block at a given time. In the NOMA scheme, multiple UEs
are superposed in a given resource block but with different power coefficients
or codes to enable the superposition coding and the SIC at the transmitter and
receiver, respectively.

IV. ANALYSIS OF NOMA IN MMTC SYSTEMS

A. System Model and Problem Formulation for NOMA Scheme

We consider a system of x transmitting users served by
cooperating base stations, and x={1,2,..., X} be its index set
of users. We consider M to be a positive, maximum number of
devices that can be supported per subcarrier. z = {1, 2, . . . , Z}
represents the index of the resource units. xc represents the cell
c’s UEs, and C, i.e., c = {1, 2, . . . , C}, represents the number
of cells used in simulation. Therefore, the signal to interference
plus noise ratio of the NOMA user xc at unit z is given as

SINRz
xc,NOMA = azxc

(
|hz

xc,c
|2P z

xc

Izc + σN

)
(20)

where Izc is the total interference experienced by user xc from
the coallocated interfering users i and users l from adjacent cells,
which is given as

Izc =
∑

i�=k,i∈M
|hz

i,c|2P z
i a

z
ic
+

∑

l �=c,l∈C

∑

q∈Ql

|hz
ql,c
|2P z

ql
azql . (21)

As was also the case for OMA, we aim to minimize the ICI at
user xc from users ql, and interference from the NOMA users i
of the same cell assigned to the same resource unit. The objective
function can therefore be expressed as (22)

min
∑

c∈C

∑

z∈Z

⎛
⎝ ∑

i�=k,i∈M
|hz

i,c|2P z
i a

z
ic
+
∑

l �=c,l∈C

∑

q∈Ql

|hz
ql,c
|2P z

ql
azql

⎞
⎠

(22)
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subject to

azxc

(
|hz

xc,c
|2P z

xc

Izc + σN

)
≥ ϑxc,lim (23)

0 ≤ P z
xc
azxc
≤ Pmaxm, ∀c ∈ C, ∀xc ∈ X, ∀z ∈ Z (24)

where Pmaxm is the maximum allowed power per device.
∑

xc∈X
azxc
≤ 1,∀z ∈ Z, c ∈ C (25)

∑

xc∈X
azxc
≤M, ∀i ∈M∀z ∈ Z, c ∈ C. (26)

It can be seen that the objective function is a combinatorial
optimization problem and is hence difficult to solve. In this
regard, the proposed solution is presented as follows.

B. Proposed Solution for NOMA Scheme in NB-IoT System

To solve the NOMA problem we follow the same steps as in
OMA. First, we set an initial interference power for all the users.
Second, we perform the scheduling for all the users. Finally, we
implement the power allocation to further reduce the interfering
powers at the desired receiver. The initial interference power will
be allocated as we did for OMA. However, the channel allocation
problem in (22) will have the following two assumptions:

1) the power is not a variable;
2) there are no power constraints.
Therefore, we perform power allocation after the channel

assignment. We rewrite the optimization problem in a similar
way to that of OMA, i.e., by working per resource unit since
there is no interference from adjacent resource units; however,
we have to add the NOMA interference users in a given resource
unit. Since in the OMA we had one user per resource unit per
cell, there was no need to add a subscript for the resource unit.
However, because of NOMA, we have more than one user, thus,
we define Mc as the group of NOMA users per cell per resource
unit, and xc is a user in cell c that belongs to Mc, and we omit
the resource unit index. In this regard, the optimization goal
becomes (27)

min
∑

c∈C

∑

xc∈Ml

⎛
⎝ ∑

l �=c,l∈C

∑

q∈M
|hj

l,c|2P
j
l +

∑

y �=xc,y∈Mc

|hz
c,c|2P y

c

⎞
⎠

(27)
wherehj

l,c is the channel gain from user j, belonging to cell l and

the NOMA group Ml within the cell, on cell c. P j
l is the power

of this user. These two terms represent the intercell interference
from all the NOMA users of other cells. As for the NOMA part;
hz
c,c is the channel gain of NOMA user y belonging to the same

group Mc. subject to

SINRz
xc,NOMA ≥ ϑc,lim (28)

0 ≤ P z
xc
≤ Pmaxm, ∀c ∈ C. (29)

The SINRz
xc,NOMA is then given as (31) shown at bottom

of the next page, which can be solved in the same way as
for OMA. However, the number of inequalities will be larger.

Moreover, this equation does not take into account the SIC effect
on removing interference from other NOMA users within the
same cell in the same resource unit. The effect of the SIC can
be included in the inequalities by simply putting zero for the
NOMA interference users within the same cell as the main user
after passing through the SIC. The constraint (28) is not linear; in
this regard, we start by substituting (30) into (28), hence linearize
as follows:

SINRz
xc,NOMA =

⎛
⎜⎝

|hz
xc,c
|2P z

xc∑
l�=c

∑
j∈Ml

|hj
l,c|2P

j
l +σN

+
∑

y �=xc,y∈Mc
|hz

c,c|2Py
c

⎞
⎟⎠ (30)

⎛
⎜⎝

|hk
c,c|2P k

c
∑

l�=c

∑
j∈Ml

|hj
l,c|2P

j
l +σN

+
∑

y �=xc,y∈Mc
|hz

c,c|2Py
c

⎞
⎟⎠ ≥ ϑc,lim (31)

|hk
c,c|2P k

c ≥ ϑc,lim

⎛
⎝∑

l �=c

∑

j∈Ml

|hj
l,c|2P

j
l +

∑

y �=xc,y∈Mc

|hz
c,c|2P y

c + σN

⎞
⎠ (32)

|hk
c,c|2P k

c − ϑc,lim

⎛
⎝∑

l �=c

∑

j∈Ml

|hj
l,c|2P

j
l

⎞
⎠

− ϑc,lim

⎛
⎝ ∑

y �=xc,y∈Mc

|hz
c,c|2P y

c

⎞
⎠ ≥ ϑc,limσN (33)

equivalently

− |hk
c,c|2P k

c + ϑc,lim

⎛
⎝∑

l �=c

∑

j∈Ml

|hj
l,c|2P

j
l

⎞
⎠

+ ϑc,lim

⎛
⎝ ∑

y �=xc,y∈Mc

|hz
c,c|2P y

c

⎞
⎠ ≤ ϑc,limσN . (34)

Substituting c = 1, 2, . . . , C equation becomes

c = 1, k = 1 :

− |h1
1,1|2p11 + ϑ1,min

(
|h1

2,1|2p12 + |h2
2,1|2p22

+ · · ·+ |h1
3,1|2p13 + |h2

3,1|2p23

+ · · · , . . . ,+|h1
C,1|2p1C + |h2

C,1|2p2C + · · ·
)

+ ϑ1,min

(
|h2

1,1|2p21 + |h3
1,1|2p31+,

+, . . . ,+|hM1
1,1 |2pM1

1

)
≤ ϑ1,limσN

c = 1, k = 2 :

− |h2
1,1|2p21 + ϑ1,min

(
|h1

2,1|2p12 + |h2
2,1|2p22
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TABLE II
MAIN SIMULATION PARAMETERS FOR THE PROPOSED COOPERATIVE

SCHEDULING STRATEGY [25]

+ · · ·+ |h1
3,1|2p13 + |h2

3,1|2p23

+ · · · , . . . ,+|h1
C,1|2p1C + |h2

C,1|2p2C + · · ·
)

+ ϑ1,min

(
|h1

1,1|2p11 + |h3
1,1|2p31

+, . . . ,+|hM1
1,1 |2pM1

1

)
≤ ϑ2,limσN

c = 2, k = 1 : −|h1
2,2|2p12 + ϑ2,min

(
|h1

1,2|2p11 + |h2
1,2|2p21

+ · · ·+ |h1
3,2|2p13 + |h2

3,2|2p23

+ · · · , . . . ,+|h1
C,2|2p1C + |h2

C,2|2p2C + · · ·
)
+ ϑ2,min

(
|h2

2,2|2p22 + |h3
2,2|2p32+, . . . ,+|hM2

2,2 |2pM2
2

)
≤ ϑ3,limσN

... etc.
The above expansion can be shorten as a matrix of the fol-

lowing form:

B̃q̃ ≤ ṽ. (35)

In this regard, (34) can be solved by linear programming solu-
tions in MATLAB. Algorithm 2 presents the proposed imple-
mentation of the NOMA approach; simulation parameters are
presented in Table II, unless specified otherwise.

C. Complexity Analysis

As seen in Algorithm 2, from line 1 to line 5 the algorithm
computes the channel parameters for all users attached to the
corresponding base stations. This operation has a computation
cost of O(n). Then from line 6 to line 14, there is the nested
while or for-loop such that in the first loop, the interference
weight is analyzed, and users (i.e., which have lower interference
impact on each other) are superposed at a given subcarrier. In
the second loop, the transmit power is allocated to users in order
to reduce unnecessary energy consumption. This operation has
the computation cost of O(n2). From line 16 to the end of
the algorithm, we evaluate the achieved user performance and
the computation cost is O(n). In this regard, the computation
complexity becomes

O(n+ n2 + n). (36)

Thus, the computational complexity of our proposed algo-
rithm is O(n2), i.e., quadratic complexity.

If we analyze the computation complexity in the single form
(i.e., without considering the interference impact), from line 1
to line 5 the algorithm computes the channel parameters for all
users attached to the corresponding base stations. The operation
still has a computation cost of O(n). However, from line 6 to
line 14, we will have only one whole or for-loop to allocate
different power coefficients to NOMA users to enable the SIC
at the receiver. This operation has a computation cost of O(n).
From line 16 to the end of the algorithm, we evaluate the achieved
user performance and the computation cost remains O(n). In
this regard, if we do not consider interference reduction, then
the computation cost becomes O(n+ n+ n) = O(n).

Therefore, the complexity overhead of our proposed scheme
(O(n2) versus O(n)) is an acceptable tradeoff, given the perfor-
mance enhancements brought by the interference reduction.

In the next section, we present the proposed cooperative
scheduler that is used to minimize the previously studied impact
of massive interference for both OMA and NOMA schemes.

V. PROPOSED COOPERATIVE SCHEDULER

We consider cooperation between base stations in order to
enhance the interference minimization by sharing the scheduling
tables, which contain the channel parameters of UEs to be
scheduled. For example, during OMA scheduling, the scheduler
computes the interference possibilities for each UE by consid-
ering the inter-cell interference that is caused by UEs that are
allocated at the same resource at a given time. Furthermore, we
assume that the impact of cochannel interference is negligible,
i.e., by orthogonality, hence the main impact of interference is
ICI. To reduce such impact of ICI, we utilize the shared schedul-
ing tables to compute the best combination of UEs that have
the minimum impact of interference. From the retrieved best
combination, each base station allocates the available resource
unit at a given time slot for its corresponding UE. For the NOMA
approach, each base station classifies the UEs into three groups
based on their channel parameters, i.e., good, moderate, and bad
UEs. We assume that we have two main sources of interference,
i.e., NOMA interference from users that are simultaneously
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Algorithm 2: Proposed NOMA Scheme.
1: procedure User Equipment Creation �
2: xc ← |hz

xc,c
|2

3: while P z
xc
�= 0, j �= i do

4: Equation(30)
5: return SINRz

xc

6: procedure SHARE THE SCHEDULING TABLES

7: while Inz
xc

=
|hz

xc,c|2P z
xc

ϑi,min
− σN do

8: compute_the_best_combination_of_UEs
9: Divide_the_UEs_in_three_groups

10: Superpose_One_UE_from_each
group_in_a_given_subcarrier

11: while P z
xc
�= 0 do

12: allocate_power_according_to_constraint :
13: 0 < P z

xc
≤ Pmaxm, ∀c ∈ C

14: return xc

15: procedure EVALUATE

16: while Iz
cϑc,lim

|hz
xc,c|2 ← p do

17: calculate_Rate_Rk

18: calculate_Energy_Consumption
19: return Rxc

, energy

allocated at a given resource unit at a given time slot, and the
ICI from other users transmitting at the same resource unit but
from adjacent cells. Then the scheduling tables from each base
station are shared with the cooperative scheduler. After receiving
the tables, the scheduler selects one UE from each group of users
to be simultaneously superposed at a given resource unit.

In this regard, a maximum number of three UEs can simul-
taneously occupy a given resource unit at a given time slot.
The scheduler computes the best combination of UEs for all the
available resource units before sharing the respective allocation
of slots within a frame to the base stations. Additionally, the
scheduler performs the power allocation to reduce the impact of
cochannel interference as well as ICI. During power allocation,
we assume the power constraints for each group as follows:
good channel users Pconst = 14 dBm, moderate channel users
Pconst = 20 dBm, and bad channel users Pconst = 23 dBm.
Different power coefficients are assigned to users to successively
perform SIC at the receiving base station. We assume that the
good channel users are close to their serving base station and
hence can be given lower power constraints, and vice-versa
is true for bad channel users. An overview of the proposed
cooperative strategy for OMA and NOMA is presented in Fig. 2.

In general, unlike the joint processing in coordinated multi-
point (CoMP) in LTE systems where a UE at the cell-edge is
served by two or more base stations to improve signals quality
and increase throughput [23], in our proposed cooperative ap-
proach each base station serves its own users. The simulation
parameters are similar as presented in [24], with some modifi-
cations adapted for the NOMA approach. The overview of the
followed scheme is highlighted in Algorithms 1 and 2. We also
selected additional scheduling schemes, i.e., proportional fair

Fig. 2. Proposed radio resource management scheme exploiting the NOMA
scheme in NB-IoT systems. Each cooperating base station (BS1 to BS3) share
their respective scheduling tables for their future transmission. Then ICI is
avoided by allocating resources to UEs whose impact in terms of interference
is the lowest among the UEs. Then the base stations implement the OMA or
NOMA scheme for their corresponding choice of strategy.

(PF), max–min, and round-robin as benchmarks for comparison
purposes.

Furthermore, we adapt the Okumura–Hata channel model for
small-medium cities as presented in [26]. And we use Jain’s
fairness index to analyze the fairness of the studied schemes.

It should be noted that, even though the measure of fairness is
generally subjective, we assume that if a system reaches fairness,
then all the connected devices should achieve individual fairness.
In this regard, the Jains’ fairness index provides quantitative in-
sight into the overall system fairness; however, it can not identify
the UEs that are unfairly treated. Entropy could also be used to
categorize the fairness performance among the studied schemes;
however, its effectiveness regarding fairness measurements is
not clear yet [27].

Furthermore, in an adequate fairness model, especially for
low complexity IoT devices such as NB-IoT in massive con-
nectivity scenarios, long-term fairness is more important due
to the scarcity of the radio resource. In this regard, throughout
this article, the fairness analysis is performed at the end of the
allocation life cycle.

For performance evaluation, the parameters used in the sim-
ulation are presented in Table II. We consider three cooperating
base stations, as shown in Fig. 2. We perform scheduling for each
slot in a given total scheduling frame consisting of 10 time-slots,
and 12 resource units (subcarriers). For the OMA approach, only
1 UE can occupy a given resource unit, at a given time slot in a
given base station. This yields a capacity limit of 10 UEs per base
station for the total scheduling frame. However, for the NOMA
approach, up to 3 UEs can occupy a given resource unit at a given
time slot in a given base station. This yields a capacity limit of
30 UEs per subcarrier within a total scheduling frame. It should
be noted that with increased system bandwidth the number of
connected devices exponentially increases.
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Fig. 3. Comparison of UE energy consumption between OMA and NOMA
schemes.

VI. PERFORMANCE EVALUATION

We perform the analysis for 1000 iterations; for each iteration,
the UEs are randomly distributed across each cell in order to
calculate the channel parameters at different positions. We select
a set of transmitting UEs from all base stations and another set of
interfering UEs from adjacent cells at a given time slot. For the
OMA scheme, we consider the set of interfering UEs as the UEs
having the same time slot but from adjacent cells. For NOMA,
however, we consider the interfering set as the UEs from adjacent
cells transmitting at the same time slot, and UEs transmitting at
the same time slot but from the same cell. We compute different
performance metrics and the results are as presented in the next
section.

Some of the simulation parameters may impact the results
significantly. For example, increasing the number of users per
cell increases the number of interfering users and hence can
lower the actual performance as compared to the expected one.
In this regard, it is advisable to set the expected quality of service
requirement for the serving base station and for the served users.
Similarly, as the radius of the cell increases, the experienced
path-loss at the user increases; in this regard, it is advisable
to follow the base station settings from the telecommunication
operator as the benchmark for the scenario under study.

Fig. 3 presents the UE energy consumption for OMA and
NOMA with the proposed scheme against the benchmark
schemes. It can be noted that the OMA scheme experiences
relatively lower energy consumption as compared to the NOMA
scheme. For example, 50% of UEs under the proposed OMA
experience about 40% and 75% lower energy consumption
than MaxMin and Round Robin, respectively. Similarly, for
NOMA, our proposed scheme achieves lower energy consump-
tion as compared to the traditional power domain NOMA (PD
NOMA). The energy consumption enhancements are enabled
by the reduced impact of intercell interference and the optimal
power allocation that reduces the excessive transmission power
while guaranteeing the expected QoS at the transmitting users.
Furthermore, the reduced interference impact maximizes the

Fig. 4. Comparison of UE achieved data rates for OMA and NOMA schemes.

SINR, hence relatively reduces the number of repetitions at the
transmitting UEs.

For example, the MaxMin scheme maximizes the minimum
achieved QoS by allocating more resources to cell-edge users,
this approach causes UEs to use maximum transmit power
which yields more energy consumption. On the other hand,
Round Robin implements a first-come first-saved strategy while
allocating resources to UEs; while doing so, cell edge UEs
suffer from uncontrolled massive interference from adjacent
cells hence increases the transmit power to counteract the ICI.

On the other hand, traditional PD NOMA simultaneously
allocates the same available resources to a given number of
UEs, when the ICI is not well managed these UEs suffer from
both the co-channel interference as well as interference from
adjacent cell UEs. In this regard, the impact of interference at a
given subcarrier is more significant, hence the UEs are forced
to use the maximum allowed power to transmit which leads to
excessive energy consumption.

Our proposed NOMA scheme takes into account both the
co-channel interference and ICI; in this regard, UEs are better
scheduled and their transmit power is optimized. In doing so,
the overall energy consumption is reduced.

Fig. 4 presents the achieved UE data rates. From the analysis
of the results, our proposed scheme outperforms both the Round
Robin and Maxmin schemes. Contrary to the MaxMin scheme
that favors the UEs under bad channel conditions, and Round
Robin that operates under a first-come-first-served strategy, our
proposed scheme considers the UEs in both good and bad
channel conditions by allocating different power coefficients to
avoid interference. By doing so, the UEs under our proposed
scheme, especially under the OMA approach achieve relatively
higher throughput. It should be noted that the OMA approach has
fewer UEs per resource unit, therefore experience a low impact
of interference which leads to higher achieved throughput.

It is observed that, with our proposed approach, more than
50% of the UEs achieve above 120 kbps, however, Round
Robin and the MaxMin scheduling schemes achieve only 70
and 105 kbps, respectively. On the other hand, the UEs under the
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Fig. 5. Comparison of the total number of devices that can be connected in a
given scheduling frame for OMA and NOMA schemes.

Fig. 6. Comparison of the degree of fairness for OMA and NOMA schemes.

proposed NOMA scheme achieve an average of 40 kbps higher
than the UEs under traditional PD NOMA. The enhancements
are due to the controlled ICI impact, as well as limiting the
number of UEs that can be superposed at a given subcarrier.

Fig. 5 presents the number of connected devices for OMA
and NOMA schemes, at the cell center and the cell edge. It
can be noticed, our proposed NOMA scheme outperforms the
OMA schemes by more than double for both cell-center users
as well as for cell-edge users. Similarly, our proposed NOMA
scheme outperforms the traditional NOMA scheme in terms of
connected UEs by up to 21%. These enhancements are achieved
thanks to the minimized ICI impact, enhanced by the cooperative
scheduling between the adjacent base stations. Contrary to the
OMA schemes, the overall connectivity enhancements for the
NOMA schemes are due to the possibility of superposing mul-
tiple UEs in the same tone. For example, in the OMA scheme,
only one UE can occupy one or multiple tones at a given uplink
scheduling frame.

Fig. 6 presents the UE fairness when our proposed scheme is
compared to other scheduling schemes from literature. During
the fairness analysis, the simulated SINR range was based on

real-time SINR values from IoT sensors; the SINR values range
from −5 dB (i.e., lowest SINR) to 35 dB (highest SINR).
Since most of the schedulers consider the channel parameters
before attributing the radio resources to UEs, the higher SINR
values trigger the increase in scheduling fairness. Our proposed
NOMA scheme outperforms the traditional PD scheme and
OMA schemes hence is more suitable for massive connectivity
in dense networks. With proactive scheduling (avoiding ICI) and
optimal power allocation, the same available resources can be
used for devices at the cell edge and devices at the cell center.

On the other hand, the Round Robin scheme outperforms
the benchmark OMA schemes by allocating resources to UEs
regardless of their channel condition. For example, our proposed
OMA scheme lags behind both Round Robin and MaxMin
schemes; this is due to its selection process which incurs pri-
oritization, and as a consequence, results in lower fairness. If
these schemes are implemented in practical systems, the fairness
measurements shown above can help to compensate the devices
that are treated unfairly (low fairness index) in the previous
allocation step and improve the targeted QoS in the current
allocation step.

The potential drawback of our proposed strategy is that as
the number of cooperating base stations increase, the back-haul
delay increases. Similarly, with the increased number of devices
per cell, the sharing of scheduling tables may generate potential
delays. Additionally, our proposed approach necessitates high
synchronization between cooperating base stations in order to
ensure real-time end-to-end performance. In this regard, it may
increase the computational complexity at the base stations. In
this regard, it is necessary to implement strong computing ma-
chines with real-time synchronization clocks at the base stations
and utilize high-speed links between the base stations in order to
ensure the feasibility of our proposed schemes in real systems.

VII. CONCLUSION

In this article, we analyzed the impact of massive interference
due to massive connectivity in 5G and B5G networks. We
proposed the corresponding solutions for the OMA and NOMA
approaches to enhance the users’ and cell performance. To
assess our proposed approach, we compared it with benchmark
schemes from the literature. The simulation results show that the
proposed NOMA scheme is more spectrum efficient than OMA
as it supports more than twice the number of connected devices
for the same number of available resources. Furthermore,
other network performance metrics such as throughput, user’s
energy consumption, and fairness are analyzed, discussed, and
compared for both the OMA and NOMA schemes. In general,
the reduced impact of interference and the proposed power
allocation techniques reduce the average energy consumption
per device hence are more suitable for massive IoT deployments
as it enhances the device’s battery life longevity. Our future
outlook involves analyzing the complexity tradeoff that our
proposed scheme will influence at the base station. Similarly,
we aim to study the flexible duplexing technique in order to
efficiently use the available spectrum to further enhance the mas-
sive connectivity of IoT devices for 5G and beyond networks.
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Abstract— Radio resource management in the frames of radio access network (RAN) slicing is an emerging research
topic. The advancements in RAN scheduling taking into account the users’ expected quality of service (QoS) and
interference management both in orthogonal and non-orthogonal multiple access (OMA, NOMA) techniques lead to
challenging open research problems for massive machine-type communications (mMTC) in 5G and beyond networks.
In this paper, we introduce machine learning (ML)-based mMTC users classification and prediction to minimize the impact
of interference within a RAN slice. The applied ML algorithms enhance the scheduling performance by utilizing the user
equipment (UE) periodicity and buffer size requirement for their next transmissions.
The predictive algorithm results show that the allocation of radio resources for the future scheduling frame can reduce
the unnecessary packet transmissions and enhance the management of slices by providing the best slice configuration
for the network at a given scheduling frame. This yields reduced energy consumption with better data rates according to
the service level agreement (SLA) of a given slice. As compared to benchmark traditional OMA and cooperative OMA, our
ML-enabled scheduler increases throughput by 100% and 50%, decreases energy consumption by two to three times, and
increases the number of supported devices by 60% and 23% and 160% and 50% for cell center and cell edge, respectively.
It attains comparable throughput and number of supported devices than cooperative NOMA, but with three times lower
energy consumption and without the cooperative communication overheads.

Index Terms— RAN Slicing, Machine Learning, mMTC, 5G Scheduling, beyond 5G networks

I. INTRODUCTION

The fifth-generation (5G) and beyond 5G mobile net-
works are designed to cope with the increasing demand
for connectivity to support use cases requiring human-to-
human and machine-to-machine communications [1]. How-
ever, unlike legacy technologies, 5G and beyond 5G net-
works bring into play specific service verticals, namely mas-
sive machine-type communications (mMTC), enhanced mobile
broadband (eMBB), and ultra-reliable low latency communi-
cations (uRLLC) [2]. These verticals have different quality
of service (QoS) requirements but utilize the same physical
infrastructure [3].
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For example, one of the main goals of mMTC is to support
a higher connection density of up to billions of devices per
square kilometer [4], [5] for beyond 5G networks. eMBB aims
to deliver peak data rates of up to 20 Gbps, peak spectral
efficiency of up to 30 bps/Hz and 15 bps/Hz on the downlink
and uplink, respectively, maximum tolerable latency of 4 ms,
and high energy efficiency with seamless mobility support [6].
Finally, uRLLC provides up to only 1 ms user-plane latency,
reliability of 1− 10−5 success probability for transmitting 32
bytes in 1 ms with 0 ms mobility interruption time [7]. In this
regard, it is very challenging to support this diversity of service
requirements under the same physical infrastructure without
interrupting the services that are simultaneously running on
the same network.

To cope with such a challenge, RAN slicing has been
proposed as one of the enablers of network orchestration by
flexibly customizing and managing the base stations utilizing
softwarization and virtualization to support a multi-service-
multi-tenant architecture [8]. In this regard, a RAN slice can
be characterized by specific QoS requirements that necessitate
a particular system behavior to support a given application.
For example, user equipment (UE) with reduced capabilities
(REDCAP) operating under 5G NR Light [9], or narrow-band
IoT (NB-IoT) can be served by a slice with radio access that
is up to 10 seconds delay-tolerant with very limited or no
mobility. On the other hand, Cat-M UEs can be served by a
slice that guarantees mobility support for applications such as
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smart logistics [10], [11].
The recent literature discusses the advancement of RAN

slicing to support massive connectivity utilizing different tech-
niques as follows. In [12], the authors studied RAN slicing
for massive connectivity of IoT applications by optimizing
the random access (RA) procedure to maximize the success
probabilities and improve service multiplexing of mMTC and
uRLLC traffic to save unnecessary energy consumption.

In [13], the authors adopted reinforcement learning to
dynamically tune the discontinuous reception parameters to
enhance the radio resource control (RRC) layer in the RAN en-
vironment by implementing their proposed architecture which
is built on an open-source software platform (OAI) to create,
modify and delete slices in the RRC layer to satisfy the diverse
service requirements needed for IoT devices.

In [14], the authors investigated network slicing in virtual-
ized wireless networks to solve the spectral efficiency problem
by proposing a resource allocation algorithm to enhance
uRLLC reliability. Even though the authors focused on eMBB
and uRLLC, their work provides a framework suitable for
allocation problems as compared to adaptive particle swarm
optimization (APSO), equal power allocation (EPA), and equal
sub-carrier allocation (ESA).

In [15], the authors revisited their previously proposed
functional framework for the next generation RAN slice man-
agement to incorporate the recently specified principles and
features of the new service-based management architecture in
3GPP Release 15 specifications. Furthermore, the authors pre-
sented the specific management object classes and attribute to
enhance the provisioning of RAN slices and the applicability
of the overall functional framework and information models in
an illustrative next-generation RAN architecture. Specifically,
the models are used to represent the manageable aspects
of a sliced next-generation RAN operated by a neutral host
provider and how the proposed functional framework operates
through two examples: one illustrating the provisioning of a
new RAN slice and another describing how the configuration
of already activated RAN slices is modified in response to
traffic demand variations.

In [16], the authors investigated the feasibility of the non-
orthogonal RAN resource allocation on the uplink transmis-
sion of mMTC, eMBB, and URLLC from a common base
station. Their study shows that the proposed heterogeneous
non-orthogonal multiple access (H-NOMA) that involves UEs
with heterogeneous service requirements can lead to signif-
icant performance improvement as compared to traditional
orthogonal slicing. The enhancements are enabled by the
capability of H-NOMA to provide service isolation, hence
ensuring required performance thresholds for all services by
leveraging their heterogeneous reliability requirements.

Moreover, several topics related to service level agreement
(SLA) and the corresponding radio resource management
techniques have been discussed in [17], [18]. The possibility
of using machine learning techniques to enhance the RAN
slicing is presented in [19]–[21].

Radio resource scheduling is one of the most proposed
approaches to enable optimal resource usage and to enhance
the massive connectivity of mMTC UEs. However, if the

radio resources are not well managed, the massive connectivity
causes massive interference between UEs that are competing
for the available radio resources in the heterogeneous network.
One of the promising techniques to enable better scheduling
by minimizing the inter-cell interference and guaranteeing the
required QoS is the use of a cooperative scheduler where the
adjacent base stations cooperate to schedule their UEs for their
respective transmissions as presented in [22], [23].

However, sharing of the scheduling tables increases the
overhead in the X2 interface, and the shared data need the
brute-force computation to select the best pair to be sched-
uled at given radio resources. Therefore, it is necessary to
study the proactive data-driven approaches that can reduce the
computational complexity as well as proactively classify and
predicts the next transmissions to enable proactive scheduling.

It should be noted that less attention is given to how the ma-
chine learning techniques can be used to classify and predict
the users’ transmission characteristics, hence enhancing the
scheduling of RAN slices. In this regard, our work studies in
detail the applicability of machine learning algorithms adapted
to slice scheduling to increase the number of connected de-
vices per slice, while providing the expected QoS requirements
according to shared SLA.

Therefore, in contrast to the previous studies, this work
presents the following contributions.

• First, we study the feasibility of different machine tech-
niques to enhance the intra-slice scheduling of massive
IoT RAN slices by using real-time data that is collected
from a live 5G network , and select the most suitable one
for our data set.

• Second, we implement the selected machine learning
algorithm on a given set of network parameters to classify
and predict the common patterns that can enhance the
slice scheduling.

• Third, we perform intra-slice UE scheduling for the
massive IoT RAN slice to enhance the management and
performance by predicting the transmission periodicity
and the required buffer size based on the collected real-
time data.

• Finally, we evaluate the performance enhancements by
comparing our proposed ML-enabled scheduler with
benchmark traditional OMA as well as cooperative OMA
and NOMA schemes.

To the best of the authors’ knowledge, this is the first work
that studies the applicability of available machine learning
algorithms on collected real-time 5G networks parameters to
enhance the scheduling of RAN slices for 5G and beyond 5G
networks.

The rest of the paper is organized as follows: Section II
presents the system modeling. Section III presents the pro-
posed machine learning-enabled scheduler. Section IV presents
the numerical results and discussion. Finally, concluding re-
marks are drawn in Section V.

II. SYSTEM MODELING

1) Problem Formulation: We consider a multi-cell network
structure where several UEs are transmitting to their corre-
sponding base stations. In this scenario, adjacent base stations
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simultaneously receive the unwanted signals transmitted by ad-
jacent cell UEs. In this regard, inter-cell interference in terms
of transmit power is experienced. We assume the scheduling
is performed for a given slice; however, the analysis can be
replicated for several slices. Let z = {1, 2, . . . , Z} be the
index of the resource units. xc represents the cell c’s UEs,
and C, i.e c = {1, 2, . . . , C}, is the number of cells used
in the simulation. The achieved data rate of a given slice is
derived from the Shannon formula of cell capacity given by

RSLC = BSLC log(1 + SINRSLC) (1)

where RSLC is the achieved rate of a given slice based on
the SLA. BSLC is the allocated bandwidth for a given slice
in order to satisfy the expected QoS, given by

BSLC =
B

µ
(2)

where B is the overall system bandwidth, and µ is the band-
width splitting coefficient that depends on the SLA. Finally,
SINRSLC is the achieved signal to noise plus interference
ratio of the allocated UE, given by

SINRSLC =
|hz

xc,c|2P z
xc∑

l ̸=c,l∈C

∑
q∈Ql
|hz

ql,c
|2P z

ql
azql + σN

(3)

where |hz
xc,c|2 represents the channel gain of the transmitting

UE, and P z
xc

is the transmitting power of the allocated UE,
which is subject to maximum allowed power constraint per
each transmitting UE given by

0 ≤ P z
xc
≤ Pmaxm,∀c ∈ C. (4)

Therefore, we aim to maximize the sum rate of the system
by maximizing the rate of each allocated slice while guaran-
teeing the expected QoS of each slice. In this regard, the sum
rate maximization problem can be represented as:

max
∑

c∈C

∑

z∈Z

azxc
log
(
1+

|hz
xc,c|2P z

xc∑
l ̸=c,l∈C

∑
q∈Ql
|hz

ql,c
|2P z

ql
azql + σN

)

(5)
Subject to:

SINRSLC ≥ ϑxc,SLC (6)

i.e.,

azxc

( |hz
xc,c|2P z

xc∑
l ̸=c,l∈C

∑
q∈Ql
|hz

ql,c
|2P z

ql
azql + σN

)
≥ ϑxc,SLC (7)

0 ≤ P z
xc
azxc
≤ Pmaxm,∀c ∈ C,∀xc ∈ Xc,∀z ∈ Z. (8)

∑

xc∈Xc

azxc
≤ 1,∀z ∈ Z, c ∈ C (9)

where ϑxc,SLC is the SINR constraint to satisfy the required
QoS of a given slice. It is considered that only the UEs above
this threshold can guarantee successful transmission.

2) Proposed Solution: As it is seen above, the problem is of
a mixed binary integer non-linear programming nature, i.e. it is
very challenging to maximize the sum-rate while minimizing
the level of acceptable interference for the scheduled UE to
satisfy the expected QoS requirement. In this regard, we apply
the solutions to minimize the interference between allocated
UEs, as proposed in [22]. Then to optimize the allocation
matrix, we implement the machine learning schemes, hence
allocating the resources based on classification and prediction.
Finally, we perform power allocation to further minimize the
unnecessary energy consumption of the transmitting UEs. The
corresponding discussion of machine learning and the en-
hanced scheduler setup are presented in the following section.

III. PROPOSED APPROACH FOR USERS CLASSIFICATION
AND PREDICTION

To begin with, the IoT UEs’ channel parameters data are
collected from a live 5G network; in our case in Haapsalu,
Estonia, for which the heat map is shown in Fig. 1. Then
data processing is performed to eliminate the coverage holes
in areas where no actual communication parameters data was
collected. Next, we run different machine learning algorithms
to classify the UEs according to their corresponding channel
parameters (i.e., time stamp, latitude, longitude, EARFCN,
NRSSI, NRSRP, NRSRQ, NSINR, Tx Power, etc.). Depending
on the parameters that are needed for the system design, one
can choose what parameters to be used as input parameters and
which ones as output parameters. For our proposed scheduler,
we used time stamp, latitude, longitude, EARFCN, NRSSI,
NRSRP, Tx Power, NRSRQ, as input parameters and NSINR,
as output parameter (i.e., we later use NSINR values for
setting the performance threshold during MATLAB simula-
tions). We deploy several machine learning algorithms on the
processed data sets to classify the users in different clusters
to enhance the UE scheduling; several output parameters such
as minimum classification errors, true response vs. prediction
response, etc. are used to judge the quality of the classification
performance. For the above-specified data set, we present
the best-performing algorithms as compared to all possible
lightweight ML algorithms. From the analysis presented later
in Section IV-A, it can be noted that rational quadratic Gaus-
sian Process Regression (GPR) performs better than the fine
Gaussian Support Vector Machine (SVM) when compared to
the perfect prediction on the collected samples. Then, based on
the collected insights from both classification and regression
algorithms, the intra-slice scheduler was designed to predict
the periodicity and buffer size for the next scheduling frames.

A. Intra-Slice Scheduling
Since our objective is to optimize the performance of

massive IoT slices, the simulation is performed to map the
collected real-time channel parameters to enhance the number
of connected devices by predicting the UE periodicity and
expected buffer size for the next frame. In this regard, un-
necessary radio resources are released to support other slices
that require higher bandwidth and/or transmission time slots.
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NB-RSRP
     -125 -- -95 dBm
     -95 -- -85 dBm
     -85 -- -75 dBm
     -75 -- -22 dBm

Fig. 1. The heat map representing the data collection campaign in Haapsalu town, Estonia. The channel parameters that were collected from
NB-IoT UE include: time stamp, latitude, longitude, EARFCN, NRSSI, NRSRP, NRSRQ, NSINR, Tx Power, etc.

From the allocated and released resources, the performance
of the network is analyzed to evaluate the effectiveness of the
proposed algorithm in comparison to traditional scheduling al-
gorithms that utilize fixed radio resources for a given expected
QoS requirement. It should be noted that inter-slice scheduling
is out of scope for this work, but will be included in our future
outlook.

The overall proposed framework is presented in Fig 2 and
summarized below.

• The optimization parameter is selected in the Network
Slice Sub-net Management Function (NSSMF) which
acts as the brain of the slice, where slice function
selection, configuration, and coordination are originated.

• The NSSMF decides to instantiate, scale, terminate or
move the slice based on the commands it receives from
the Network Slice Management Function (NSMF), which
receives the translation of related service requirements
from the Communication Service Management Function

(CSMF).
• Then the machine learning algorithm is applied to the

collected data from the 5G network. Based on the nature
of the data, UE or network parameters cleaning is per-
formed because some might be missing due to coverage
holes or temporary UE disconnection from the network.

• The classification and prediction are performed on the
data to give the knowledge on the behavior of UE hence
the controller and the RAN scheduler coordinate and
cooperate to allocate the optimal radio resources to the
massive IoT slice to satisfy the required quality of service.

• When the UEs are allocated to transmit on the network,
either the UE or the network parameters are monitored
and the performance is evaluated; in case of a completely
new parameter or a significant change in current collected
values, the changed parameter is injected back to be
used in the machine learning to decide whether it can
bring more enhancements to the slice performance in
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Fig. 2. The proposed framework that utilizes machine learning to perform the user clustering and prediction to enhance the RAN slice scheduling
for 5G and beyond networks

terms of UE energy consumption, throughput, number of
connected devices, etc.

B. Machine Learning Enabled Cooperative Scheduler

Our starting point is a cooperative scheduler designed
to mitigate the impact of inter-cell interference caused by
transmitting users from adjacent cells. The overall scheduling
framework and its settings are presented in [22]. This sched-
uler is comprised of sharing the scheduling tables between the
base stations to mitigate the inter-cell interference by proac-
tively allocating the radio resources to the users’ combinations
that result in minimum possible interference to maximize
the expected quality of service requirements. However, to
reduce the overhead in the X2 interface due to the need for
information sharing between the base stations, we deploy the

machine learning framework presented in Fig. 2 to perform the
prediction of the base stations’ next transmission capabilities
within a given slice. In doing so, the machine learning scheme
is utilized in all the cooperating base stations for clustering not
only the current transmissions but also the prediction of the
corresponding upcoming transmissions of a given set of UEs
in a given slice, hence reducing unnecessary exchange of UEs
which can not successfully transmit in next frame. The overall
scheduler can be visualized as in Fig. 3.

For example, given the learned transmission pattern and the
SINR distribution, a certain number of UEs can tolerate a 10
ms delay for a small packet size transmission that can occupy
less bandwidth as compared to a set of UEs that require a 1 ms
delay for the same packet size. In this regard, latency-sensitive
UEs can occupy and release a given radio resource faster and



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

gNB 3

gNB 2

gNB 1

ClusterClusterUE Clusters from gNB3

ClusterCluster
UE Clusters from gNB2

ClusterClusterUE Clusters from gNB1

X2

X2

X2

Clustering 
and 
prediction 
output from 
gNB 3

Clustering 
and 
prediction 
output from 
gNB 2

Clustering 
and 
prediction 
output from 
gNB 1

Radio Resource 
Scheduler with 

Interference 
Cancellation

UE1

UE2

UE3

for gNB1

for gNB2

for gNB3

The scheduler 
computes the 

best combination 
of UEs to 

simultaneously 
transmit at a 
given frame

IoT actuator

IoT camera

IoT car

UEs with different 
transmit powers 
coefficients are 

then allocated at 
a given slot

Fig. 3. The proposed ML-enabled scheduler that utilizes the machine learning output (i.e. users classification and transmission prediction) from
the cooperating base stations to allocate the radio resources to the UEs with minimum possible interference

let the slice be used by the latency insensitive UEs while the
transmission periodicity is being monitored.

The simulation is performed in MATLAB to adapt different
scheduling frameworks based on SINR, and the simulation
parameters as used in [24]. We adapt the scheduling on
the traditional and cooperative OMA schemes; however, for
comparison purposes, the cooperative NOMA scheme is also
considered to further compare the performance gains. In the
current work, the machine learning framework is not adapted
to the NOMA scheme due to its already relatively high
computational complexity when performing the successive
interference cancellation for the UE allocated at the same radio
resources.

The next section presents the performance enhancements
when ML is used in RAN scheduling. Furthermore, the
scheduling schemes are compared and the improvements are
displayed, and additional discussion is given on the complexity
analysis when machine learning is used.

IV. PERFORMANCE EVALUATION

A. Evaluation of Classification and Prediction Accuracy
We implement supervised learning algorithms (i.e., the algo-

rithms analyze the input parameters and provide the function
which represents the relationship between input and output
parameters). For assessing classification performance, we use
minimum classification error (MCE) since it is the most
commonly used criterion for pattern classification which tries
to reduce the overall classification error when classifying a
given group of network parameters [25]. For example, from
the analysis, it is seen that rational quadratic Gaussian Process

Regression (GPR) performs better than the fine Gaussian
support vector machine (SVM) when performing regression.
This is due to the nature of the collected data. It should be
noted that, with different data set, different machine learning
algorithms might perform better; however, for our analysis,
the focus is on how the machine learning algorithms could
give better insights to different data types to enhance the UEs’
scheduling.

Furthermore, the Fine Gaussian SVM experiences a Root
Mean Square Error (RMSE) of 0.453; however, the Rational
Quadratic GPR experiences an RMSE of 0.28. In this regard,
it is evident that the Rational Quadratic GPR is the candidate
machine learning algorithm for the data we collected from the
5G network. However, it should be noted that, depending on
the application, the training time becomes a critical constraint
because providing higher accuracy means increasing the train-
ing time needed to fine-tune the selected parameters.

Another criterion used to assess the performance of the
machine learning is prediction error performance as seen in
Fig. 4 and Fig. 5. It can be noted that the predictions are
evenly distributed around the perfect prediction line; in this
regard, the Rational Quadratic GPR better predicts the UE
parameters as compared to SVM, hence can be used for their
next scheduling enhancements by allocating the resources to
UE based on the predicted transmission patterns.

In general, the choice of the machine learning algorithm
for either classification or prediction depends on the nature of
the data set, the computation power of the system, the overall
acceptable training time by the system, accuracy of the given
output, number of features, the possibility to interpret, etc.
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Fig. 4. Performance of Fine Gaussian SVM in terms of predicted
response vs. true response

For example, from our study, the size of the collected data
is small due to the limited number of deployed 5G networks,
with limited IoT devices operating under cellular networks
for the specific trial use-case. In this regard, it is imperative to
choose the algorithms with low variance and higher bias. For
the studies which include big data sets with a higher number
of observations, it is imperative to apply algorithms with low
bias and with high variance such as Kernel SVM, K-Nearest
Neighbors (KNN), etc.

B. Complexity analysis of Proposed Scheme
In our study, we use the prediction accuracy to decide

which machine learning algorithm is to be used for which
scenario for the massive IoT slice. Additionally, the total
training time is used as a very critical scheduling constraint
because longer training times are acceptable for delay-tolerant
applications, and shorter training times are essential for delay-
sensitive applications. In this regard, we analyze the experi-
enced trade-off between prediction accuracy and total training
time for massive IoT slices to enhance intra-slice scheduling.
Therefore, from the presented machine learning algorithms in
our study, we chose the Rational Quadratic GPR as the best
candidate to cluster and predict according to the collected data
set.

When analyzing the computational complexity of the pro-
posed schemes, it should be noted that in machine learning,
this is somewhat subjective because machine learning com-
plexity mainly refers to the number of features implemented
in a given predictive model and whether that model is linear,
nonlinear, logarithmic, exponential, etc. However, the overall

computation complexity of the scheduler is presented in [22].

C. Evaluation of the ML-enabled Scheduler Performance

-35 -30 -25 -20 -15 -10 -5 0 5 10

True response

-35

-30

-25

-20

-15

-10

-5

0

5

10

P
re

d
ic

te
d
 r

e
sp

o
n
se

Predictions: Rational Quadratic GPR

Observations
Perfect prediction

Fig. 5. Performance of Rational Quadratic GPR in terms of predicted
response vs. true response

We consider that the radio resources are allocated to the
UE for their corresponding future transmissions. Based on
the UE clusters, the radio resources are allocated accordingly,
i.e., latency-sensitive UEs are given the radio resources within
a sub slice that accommodate higher bandwidth but with
shorter transmission times, and fewer supported repetitions,
and latency-insensitive UEs are given less bandwidth but with
longer transmission times, and more repetitions. In this regard,
contrary to the orthogonal approach of fixed radio resources
to accommodate all UE types, in our proposed framework, the
total available bandwidth for massive IoT slice is dynamically
sub-divided to support diverse UE requirements into different
sub-slices.

The overall description and simulation parameters of the
benchmark schedulers and their thorough analysis are pre-
sented in [22].

In Fig. 6, it can be seen that the ML-enabled scheduler
attains near identical throughput performance than the coop-
erative NOMA scheduler. This is due to the possibility of
classifying the UEs based on their channel parameters, hence
proactively scheduling to mitigate interference and optimize
the throughput performance. It should be noted that this
comparable throughput performance is achieved without the
communication overheads (for the exchange of scheduling
tables) needed in cooperative NOMA. On the other hand,
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Fig. 6. Comparison of UE achieved data rates between the ML-enabled
scheduler and benchmark OMA and NOMA scheduling schemes

the ML-enabled scheduler provides approximately 100 %
improvement in terms of throughput as compared to the
traditional OMA scheduler presented in the literature, and up
to 49.2 % throughput improvement as compared to the cooper-
ative OMA scheduler that utilizes the cooperative scheduling
between the base stations to mitigate the impact of the inter-
cell interference.

In Fig. 7, it can be seen that the ML-enabled scheduler
yields lower energy consumption as compared to all other
benchmark schedulers thanks to the classification and predic-
tion that enhances the scheduling by allocating the resources to
UE only when needed, hence preventing unnecessary energy
consumption especially when the UE channel conditions do
not permit successful transmissions hence triggering more re-
transmissions. It can be noted that the UEs under the ML-
enabled scheduling experience up to 3 times less energy
consumption as compared to the cooperative NOMA sched-
uler, and 2 to 3 times less energy consumption as compared
to the cooperative OMA and traditional OMA schedulers,
respectively.

Finally, Fig. 8 presents the number of connected devices
when the ML-enabled scheduler is used. It can be noted
that our proposed ML-enabled scheduler outperforms both the
traditional OMA and cooperative OMA schemes by 60% and
23%, in terms of the number of connected UE for cell-center
users and by almost 165% and 50% respectively, for the cell-
edge users.

Additionally, it can be noted that our proposed ML-enabled
scheduler performs slightly below (−7%) the achieved capac-
ity of the cooperative NOMA scheduler for the cell center
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Fig. 7. Comparison of the average UE energy consumption per trans-
mission between the ML-enabled scheduler and benchmark traditional
OMA scheme and cooperative OMA and NOMA scheduling schemes

users and performs slightly better (10%) than the proposed
NOMA scheme for the cell edge users. It should again be
kept in mind that those slightly lower and higher results
are achieved without the communication overheads for the
exchange of scheduling tables used in cooperative NOMA.
These overall enhancements are achieved thanks to the clas-

sification and prediction that is provided by machine learning
to enhance the overall scheduling by proactively allocating
the radio resources according to the predicted transmission
patterns to minimize the risks of UE falling into the outage.

V. CONCLUSION

This work studied the feasibility of a machine-learning
algorithm to enhance the RAN slice scheduling for beyond 5G
networks. From the analysis, it can be noted that, depending on
the nature of the data, possibility to interpret, speed of training,
etc., different machine learning algorithms can be applied on
either UE or network data to enhance the RAN scheduling
for massive connectivity support of massive IoT slices. It
is observed that the ML-enabled scheduler outperforms the
benchmark scheduling schemes significantly. When compared
to traditional OMA and cooperative OMA, our ML-enabled
scheduler increases throughput by 100% and 50%, decreases
energy consumption by 2 times to 3 times, and increases the
number of supported devices by 60% and 23% and 160%
and 50% for cell center and cell edge, respectively. Our ML-
enabled scheduler attains comparable throughput and number
of supported devices than cooperative NOMA, but with 3
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times lower energy consumption and without the cooperative
communication overheads.

Our future outlook aims to implement advanced techniques
such as intelligent reflecting surfaces (IRS) and directional
beamforming and deep learning approaches to increase the
cell capacity for the massive IoT devices in 5G and beyond
networks. Additionally, our future study includes inter-slice
scheduling to maximize the spectrum efficiency for massive
IoT applications that require different QoS under heteroge-
neous slice configurations.
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