
Tallinn 2021

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Vladimir Nitsenko 775488IDDR

CREATING A PROTOTYPE FOR THE

PAYMENT METHOD AGGREGATOR

Diploma thesis

Supervisor: Toomas Lepikult

 PhD

Tallinn 2021

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Vladimir Nitsenko 775488IDDR

MAKSEMEETODITE AGREGAATORI

VEEBIRAKENDUSE PROTOTÜÜBI

LOOMINE

Diplomitöö

Juhendaja: Toomas Lepikult

 PhD

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Vladimir Nitsenko

14.04.2021

4

Abstract

This diploma thesis is about analysing and creating a prototype of the new web

application for a company providing payment method aggregator service. The problems

that need to be solved in the new application comparing to an old one are bad

performance, high infrastructure costs, slow and expensive scalability, outdated user

interface and poor usability.

The main purpose of this thesis is to analyse possible solutions, bring functional and

non-functional requirements and create a functional prototype of web application that

can handle the forementioned complexities and provide reliable up-to-date user

experience.

In the current diploma thesis, the architecture of the existing system and software

deficiencies were described, the requirements of the new application analysed, the

suitable technology was chosen, and the functional prototype created. The results of

prototype evaluation are described and possible improvements to the system

functionality and security are presented.

The outcome of the diploma thesis is considered successful as the offered prototype

provides solutions for the highlighted problems, as well as possibility to use the

prototype as a base and continue working on the web application to create a fully

commercially profitable product, that implements both customer needs and appropriate

security and flexibility requirements.

This thesis is written in English and is 37 pages long, including 8 chapters, 20 figures

and 2 tables.

5

Annotatsioon

Maksemeetodite agregaatori veebirakenduse prototüübi loomine

Antud diplomitöö käsitleb uue veebirakenduse prototüübi analüüsimist ja loomist

maksemeetodite koondamisteenust pakkuva ettevõtte jaoks. Probleemid, mis tuleb uues

rakenduses lahendada võrreldes vanaga, on ebapiisav jõudlus, suured

infrastruktuurikulud, aeglane ja kallis mastabeeritavus, aegunud kasutajaliides ja kehv

kasutatavus.

Selle lõputöö põhieesmärk on analüüsida võimalikke lahendusi, tuua funktsionaalsed ja

mittefunktsionaalsed süsteemi nõuded ja luua veebirakenduse funtsionaalne prototüüp,

mis suudab toime tulla eelmainitud ülesannetega ja pakub usaldusväärset ajakohast

kasutuskogemust.

Lõputöö käigus oli kirjeldatud olemas oleva süsteemi arhitektuur ja kaardistatud

tarkvara kitsaskohad, analüüsitud uue veebirakenduse nõuded, valitud sobiv tehniline

lahendus ja loodud veebirakenduse prototüüp. Samuti on töös käsitletud prototüübi

testimise tulemusi ning toodud võimalikud süsteemi funktsionaalsuse ja turvalisuse

parendused tulevikus.

Disainitud süsteemi arhitektuur ja koostatud funktsionaalne prototüüp on aluseks

arendustöö jätkamiseks täislahenduse loomise nimel ja kogu vajaliku äri- ja

süsteemiloogika lisamiseks ja rakendamiseks.

Diplomitöö tulemus loetakse edukaks, kuna loodud prototüüp pakub lahendusi

esiletõstetud probleemidele ning võimaluse jätkata tööd veebirakenduse arendamisel, et

luua täielikult ärikasutatav kasumlik toode, milles oleks arvestatud nii klientide

soovidega kui tänapäeva turvalisuse ja paindlikkuse nõuetega.

Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 37 leheküljel, 8 peatükki, 20

joonist, 2 tabelit.

6

List of abbreviations and terms

API Application Programming Interface, an interface that defines

interactions between multiple software applications

.NET Cross-platform open source developer platform for building

different types of applications

3D Secure A protocol designed to be an additional security layer for online

credit and debit card transactions

AJAX Asynchronous JavaScript and XML, used for data exchange

with the server and updating the page without having to refresh

it

B2B Business-to-Business

Back-end Application and database that work on the server to deliver

information to the user

Bearer token A cryptic string, usually generated by the server in response to a

login request

CI/CD Combined practices of continuous integration and continuous

delivery of the software

COVID-19 Coronavirus disease SARS-CoV-2

CSS Cascading Style Sheets, the language used to style an HTML

document

CVC Card Verification Code, security code located on the payment

card

Development roadmap Initiatives, epics and features in the software engineering

pipeline, a high-level snapshot of project major objectives

DevOps A set of practices that combines software development and IT

operations

Endpoint The location from which it is possible to access the remote

server resources

End-user A person who ultimately uses or is intended to ultimately use a

product

Front-end Application that works in user’s Web browser and refers to UI

GET HTTP request type to retrieve a resource from the server

HTML HyperText Markup Language, the standard markup language for

Web pages

7

HTTP Hypertext Transfer Protocol, a protocol which allows the

fetching of network resources

HTTPS Hypertext Transfer Protocol Secure, signals the browser to use

an added encryption layer to protect the network traffic

Idempotent /

Idempotency

HTTP method is idempotent if an identical request can be made

several times in a row while leaving the server in the same state;

an idempotent method does not have any side-effects (except for

keeping statistics)

IaaS Infrastructure as a service

IBAN International Bank Account Number

iframe HTML iframe is used to display a web page within a web page

IT Information Technology

JavaScript / JS Web programming language

JSON JavaScript Object Notation, a lightweight data-interchange

format

JSONP JSON with Padding, enables sharing of data bypassing same-

origin policy, which disallows running JavaScript code fetched

from outside the page's originating site

MVC Model-View-Controller, a software design pattern commonly

used for developing user interfaces

npm The package manager for the Node JavaScript platform,

provides modules and manages dependencies

OAuth Industry-standard protocol for authorization

On-premise software / server Installed and runs on computer(s) on the premises of the

organization using the software/server

ORM Object-Relational Mapping, programming technique for

converting data between relational databases and object-oriented

programming languages

PaaS Platform as a service

PCI DSS Payment Card Industry Data Security Standard

RAM Random-access memory, a form of computer memory that can

be read and changed in any order, typically used to store

working data and machine code

REST Representational State Transfer, architectural style for providing

standards for information exchange

RESTful application An application that follows REST style and principles

RSA RSA (Rivest–Shamir–Adleman) is an algorithm used to encrypt

and decrypt messages

SaaS Software as a service

8

Service-level agreement /

SLA

A commitment between a service provider and a client

SOAP Simple Object Access Protocol, a messaging protocol

specification for exchanging structured information

SQL Structured Query Language, a domain-specific language

designed for managing data in a relational database

TLS/SSL The standard technology that uses encryption for keeping an

internet connection secure and safeguarding any sensitive data

that is being sent between two systems

UI User interface

URL Uniform Resource Locator, a web address

WCAG Web Content Accessibility Guidelines, a set of

recommendations for making Web content more accessible for

people with disabilities and user-agents

Web Messaging API allowing documents in Web browser to communicate with

one another across different source domains, e.g. between a

parent document and an iframe

Widget A web page or web application that is embedded as an element

of a host web page, but which is substantially independent of the

host page, having limited or no interaction with the host

9

Table of contents

1 Introduction ... 13

1.1 The background .. 13

1.2 The problem and the goal ... 14

1.3 Methodology ... 14

2 Existing solution description ... 16

2.1 Current high-level architecture ... 17

2.2 Functional and usability deficiencies ... 17

2.3 Non-functional deficiencies .. 18

3 Product requirements ... 19

3.1 Functional requirements ... 19

3.2 Non-functional requirements .. 19

4 Software development technologies .. 21

4.1 Java ... 21

4.1.1 Spring .. 22

4.2 Python ... 23

4.2.1 Django ... 23

4.2.2 Flask .. 24

4.3 C#.. 25

4.3.1 ASP.NET MVC ... 25

4.3.2 ASP.NET Core .. 25

4.4 Front-end frameworks .. 27

4.5 Infrastructure .. 28

4.6 The choice of technologies ... 28

5 Prototype creation .. 31

5.1 High-level architecture ... 32

5.2 Widget initialization ... 35

5.3 Widget rendering .. 39

5.4 User confirmation ... 43

6 Prototype evaluation .. 45

10

7 Further improvements ... 47

8 Summary .. 49

References .. 50

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 52

11

List of figures

Figure 1. Existing high-level architecture. ... 17

Figure 2. ASP.NET MVC and ASP.NET Core trends. .. 26

Figure 3. Web application frameworks peak performance comparison. 30

Figure 4. Prototype model steps. .. 31

Figure 5. New high-level architecture. ... 32

Figure 6. OAuth 2.0 token request. .. 33

Figure 7. OAuth 2.0 token response. .. 34

Figure 8. Example of Bearer token usage... 34

Figure 9. Application flow diagram. .. 35

Figure 10. Widget initialization request. .. 37

Figure 11. Widget initialization response. .. 38

Figure 12. Payment page request example. .. 39

Figure 13. Widget getWidgetData request example. .. 40

Figure 14. Payment page credit card desktop view. ... 40

Figure 15. Payment page validation example. .. 41

Figure 16. Payment page PayPal desktop view. ... 42

Figure 17. Payment page mobile view and help text example. 43

Figure 18. Payment page confirmPaymentData request. ... 44

Figure 19. Payment page load speed test. ... 46

Figure 20. WCAG evaluation results. .. 46

12

List of tables

Table 1. WidgetStates table columns. .. 38

Table 2. Payment page request fields. .. 39

13

1 Introduction

The growth of internet users has accelerated dramatically in last two decades. This is

driven by Internet connection cost affordability and rapid development of web

applications and services that make our life easier and help to save one of our most

valuable resources – time. According to statistics of World Bank percentage of the

population using internet grew from 6.5% in 2000 to almost 50% in 2017 [1].

Since the start of COVID-19 pandemic, even if that has occurred within a context of

stagnant or contracting overall retail, the market share of online retail against offline has

increased more rapidly all over the world [2]. This is a strong sign of ever-increasing

digitalization, that makes customers more and more comfortable using Internet services

and e-commerce solutions.

E-commerce providers compete between each other to make their web applications

faster and simpler, improve intuitiveness and usability, and provide stability and

security. User-friendly and reliable web service is more attractive for users and potential

customers, so it is in direct correlation with image, profits and overall success of an

enterprise.

1.1 The background

The company X that provides B2B solutions has a variety of products for web

marketplaces. There are out-of-the-box configurable applications that help to organize

the checkout process for retail customers of e-stores. The web application, that is

viewed in this thesis and needs to be reworked, offers the functionality of payment

method aggregator. This is a service through which e-commerce merchants can process

their payment transactions. The solution allows merchants to accept debit and credit

cards, bank transfers, mobile payments, e-wallets and offer slicing of the payable

amount into parts for retail customers. Merchants can benefit from a set of payment

methods but have only one direct integration with the payment aggregator, without

having to setup a merchant account with a bank or card association and eliminating the

need to maintain dozens of integrations with forementioned institutions. As payment

aggregator processes and stores payment card data there is no need for a merchant to be

PCI DSS compliant, because the aggregator is fully responsible this.

14

1.2 The problem and the goal

The existing payment method aggregator does not meet current web application

standards anymore. There are significant downsides in performance and usability, which

are described in detail in the next chapter. It is worth mentioning that similar payment

solutions are offered by wide range of competitors. In order to maintain the

attractiveness of the payment method aggregator solution offered by the company X it

was decided to rewrite the web application front-end and back-end parts.

The goal of this thesis is to analyse and choose software development technology stack

and infrastructure, and to create a prototype for the new web application. The main

purpose of the prototype is to provide a solution so that payment methods widget will

load quickly, and UI will be intuitive for the end-user, application will be capable of

handling high loads and provide security according to market standards and industrial

requirements. The prototype could then be taken as a baseline for further development

and implementation of the full range of business and system logic.

1.3 Methodology

For prototyping and developing a new web application the approach must be systematic.

This will help to design and build a software that not only meets the expectations of

stakeholders and customers in efficient, cost-effective and quality way, but is also

understandable for current and future developers and product owners.

In this diploma thesis the author analysed existing solution and its deficiencies,

described functional and non-functional product requirements for the new application.

A set of software technologies and infrastructure possibilities were analysed, and the

most suitable programming language, frameworks and infrastructure platform was

chosen based on their advantages, community size and current company engineers

expertise.

Software prototyping is the creation of an incomplete version of the required software

and typically it simulates a few aspects of the final solution. Author described

architecture, mock-ups and data exchange examples of the new web application. The

functional prototype was created for both front-end and back-end applications, and it

provides the basic functionality and user interface, which will be further developed into

15

complete solution by the company team. Prototype was tested to satisfy product

requirements in performance, WCAG compliance and UI usability. The summary of the

results of prototyping a new payment methods aggregator web application finalizes the

diploma thesis scope.

16

2 Existing solution description

The company and existing payment methods aggregator product considered in this

thesis offers an individual approach to its customers, meaning that the product

enhancements and improvements are developed according to merchants’ needs. The

product manager is in tight contact with company’s customers – e-commerce merchants,

figuring out and negotiating requirements for new features, and once agreed they are

added to the development roadmap.

There are several possible alternative payment aggregator solutions provided by third

parties. Some of them are PayPal, Worldpay, Ingenico, Amazon Payments, Braintree,

Stripe, Adyen, CyberSource, Square, Authorize.net. The company customers are large

and middle enterprises, which are not satisfied with existing market solutions and need

exclusive request proposal approach. This is the reason why customers would like to

continue using the product, rather than switch to one of the forementioned existing

solutions.

There is a number of deficiencies in the current web application that need to be resolved

with a new solution. There are functional and usability issues along with non-functional

severities.

17

2.1 Current high-level architecture

The diagram in Figure 1 illustrates high-level architecture and main interaction points of

the current system.

Figure 1. Existing high-level architecture.

2.2 Functional and usability deficiencies

▪ Widget layout is outdated: elements, fields and logos position and design are not

following current market standards.

▪ There is no possibility to load merchant CSS to fully override default styles.

▪ There are too much manual actions for end-user: must select card brand, enter

card holder name, switch between month and year fields for card expiry.

▪ Selection of the payment method is inconvenient, as user must click the small

radio button, that is especially annoying while using small screen devices.

18

▪ Field values entered by the user are not validated on the fly, but only when user

clicks Continue or Pay button.

▪ UI checksum validation of payment card or IBAN numbers is missing.

2.3 Non-functional deficiencies

▪ Application uses JSONP technique, which is vulnerable to the data source

replacing the innocuous function call with malicious code [3].

▪ Back-end service is built to use SOAP technology for data exchange. Comparing

with REST architecture, SOAP is not easily scalable, it has worse performance

and data is not cacheable, also output data is restricted to XML only.

▪ Merchant configuration data is loaded from the database and processed, and

external services requests are performed while loading the widget, this means

end-user waiting can be long enough due to server-side execution time. The time

that user is waiting for a payment page to be shown has critical importance, it

should be as fast as possible, otherwise transaction can be abandoned by the

buyer.

▪ Application is hosted at physical infrastructure, that means slow and expensive

scalability, as servers’ capacity cannot be always increased on demand and we

need to wait for example for delivery of an additional RAM.

▪ Current application and its libraries are created in older versions of .NET

framework and use older third-party libraries, some of them cannot be updated

without a major code refactoring.

▪ In the next few years, a system can potentially become a legacy one, this would

mean higher maintenance costs and lower software engineers motivation to work

on that project.

▪ The look of current front-end is outdated, which can raise doubts in the online

store customer, transaction can be abandoned.

19

3 Product requirements

The software requirements specification consists of functional and non-functional

requirements. It describes features and functionalities of the target system. It may also

include a set of use cases which describes user interactions that the software must

provide to the user for perfect usability.

Functional requirements provide a list of rules about how a product must behave,

description of its features and functions. Non-functional requirements can also be called

“quality attributes”, they describe operation capabilities and constraints of the system.

Service-level agreement is often a part of non-functional requirements.

3.1 Functional requirements

▪ Widget loading time must be below 200ms.

▪ User must have an option to scan his payment card to simplify entering of card

number and expiry.

▪ Card type must be determined automatically from the card number.

▪ Card holder’s name must be prefilled from shopping cart billing address.

▪ Web page should be WCAG 2.0 compliant – readable by screen readers so that

disabled people can use the widget.

▪ Input fields must be validated and not allow illegal characters.

▪ Payment card and IBAN numbers must be validated in UI using their checksum.

▪ Wrong user inputs must be highlighted with a text below the invalid field.

▪ UI must support translations depending on user’s browser language settings.

▪ UI must display information about the status and loading indicator while user is

waiting for action to be processed.

▪ Widget styles must be customizable via custom merchant CSS.

▪ There must be a checkbox to save payment card details, so user does not have to

fill them next time.

3.2 Non-functional requirements

▪ UI must have responsive design and fit well on various desktop and mobile

devices.

20

▪ Application must be stable not less than for 1000 concurrent users.

▪ Data exchange between client and server must be done using HTTPS.

▪ OAuth2.0 authorization must be implemented in back-end service.

▪ Queries from client to server must be done via asynchronous calls without

reloading the widget.

▪ Application must be accessible via REST.

▪ Sensitive data (card number, CVC) must be encrypted for transferring via

network.

▪ Customer payment card data must be securely stored in the database.

▪ All data validation must be performed in both UI and server-side.

21

4 Software development technologies

There are more than 270 popular programming languages [4] that have been used

significantly in the near past or are widely spread nowadays and accurate in software

development. It can be a challenge when it comes to choosing technologies to be used in

the new web application. Every technology and programming language has its own

specification, community support, advantages and disadvantages.

According to Stack Overflow1 developer survey, that is conducted yearly from 2011 [5],

the 10 most used technologies among professional developers in the year 2020 were

JavaScript, HTML/CSS, SQL, Python, Java, Bash/Shell/PowerShell, C#, TypeScript,

PHP and C++ [6]. The most popular back-end programming languages from them are

Java, Python, C++ and C# [7]. C++ will not be considered in this scope as it is not

commonly used for web application development, but rather for games, device drivers,

high-performance scientific software, embedded programs, windows client applications,

libraries and compilers for other programming languages [8].

A framework is software that provides an extensible and standardized way to build and

deploy applications. It is a universal, reusable software environment that provides

particular functionality as part of a larger software platform to facilitate the

development of software applications, products and solutions. Depending on the

framework, they may include tools, compilers, libraries, support programs, APIs and

other components to enable easy and standardized development of an application or

system.

4.1 Java

Java is a class-based, object-oriented programming language that is designed to have as

few implementation dependencies as possible. It is a general-purpose programming

language intended to let application developers “write once, run anywhere”

1 Stack Overflow is a public platform located at www.stackoverflow.com that serves 100 million

developers and technologists every month, making it one of the 50 most popular websites in the

world [9].

22

meaning that compiled Java code can run on all platforms that support Java without the

need for recompilation. The syntax of Java is similar to C and C++ but has fewer low-

level facilities than either of them. The Java runtime provides dynamic capabilities such

as reflection and runtime code modification [10].

4.1.1 Spring

The most popular Java web frameworks are Spring, GWT and JSF [11], from which

Spring Framework is the most widely used by professional developers [12]. There are

Spring Boot, Spring MVC and Spring Cloud components of Spring framework

available.

Due to scalability and microservices requirement for the new web application the Spring

Cloud can be considered as possible primary technology to use. The main advantages

and disadvantages of this are described as follows.

Advantages and features [13]:

▪ distributed/versioned configuration;

▪ service registration and discovery;

▪ routing;

▪ service-to-service calls;

▪ load balancing;

▪ Circuit Breakers;

▪ global locks;

▪ leadership election and cluster state;

▪ distributed messaging;

▪ integrates well with popular PaaS providers like Cloud Foundry, Amazon Web

Services and Azure [10].

Disadvantages [14]:

▪ can be only used with Java – software developers in the team would first need to

learn Java and then Spring Cloud, which creates a high learning curve;

▪ sometimes it adds unnecessary dependencies during deployment which increases

its binary size;

23

▪ lack of content in the official documentation.

4.2 Python

Python is an interpreted, object-oriented, high-level programming language with

dynamic semantics. Its high-level built in data structures, combined with dynamic

typing and dynamic binding, make it very attractive for Rapid Application

Development, as well as for use as a scripting or glue language to connect existing

components together. Python's simple, easy to learn syntax emphasizes readability and

therefore reduces the cost of program maintenance. Python supports modules and

packages, which encourages program modularity and code reuse. The Python interpreter

and the extensive standard library are available in source or binary form without charge

for all major platforms and can be freely distributed. Since there is no compilation step,

the edit-test-debug cycle is incredibly fast [15].

The most popular web development frameworks for Python as of the year 2020 are

Django and Flask [16].

4.2.1 Django

Django is a high-level Python web framework that enables rapid development of secure

and maintainable websites. It takes care of much of the hassle of web development, so a

developer can focus on writing the application without needing to reinvent the wheel –

with the help of available packages. Django framework is free and open source, has a

thriving and active community, great documentation and many options for free and

paid-for support. Django is a thriving, collaborative open source project, with many

thousands of users and contributors. It has evolved into a versatile framework that is

capable of developing any type of website [17]. The main advantages and disadvantages

of this are described below [18].

Advantages:

▪ the main focus is on the fast development of complex and large projects;

▪ scalability, security;

▪ ORM support for MySQL, Oracle, Postgre and NoSQL databases;

▪ it has own internationalisation system for supporting multilingual websites;

24

▪ built-in support for Caching, AJAX, forms;

▪ there is administration interface to maintain user activities;

▪ testing is made easy with the use of a lightweight web server.

Disadvantages:

▪ software developers in the team would first need to learn Python and then

Django, which creates a high learning curve;

▪ it is too monolithic framework;

▪ everything in it is based upon ORM.

4.2.2 Flask

Flask is a micro web framework written in Python. It is classified as a microframework

because it does not require particular tools or libraries. It has no database abstraction

layer, form validation, or any other components where pre-existing third-party libraries

provide common functions. However, Flask supports extensions that can add

application features as if they were implemented in Flask itself [19]. The main

advantages and disadvantages of this are listed as follows [20].

Advantages:

▪ scalability;

▪ simple development;

▪ flexibility;

▪ modularity, efficiency, testability;

▪ performance.

Disadvantages:

▪ software developers in the team would first need to learn Python and then Flask,

which creates a high learning curve;

▪ not standardized;

▪ few built-in tools, need to have many custom components and extensions;

25

▪ all developers should have very high competence level to be able to produce

hight quality code as Flask is not standardized.

4.3 C#

C# (pronounced "see sharp") is a general-purpose, multi-paradigm programming

language encompassing static typing, strong typing, lexically scoped, imperative,

declarative, functional, generic, object-oriented class-based and component-oriented

programming disciplines. C# was developed around 2000 by Microsoft as part of its

.NET initiative [21]. C# has its roots in the C family of languages, so it is immediately

familiar to C, C++, Java, and JavaScript programmers. Since its origin, C# has added

features to support new workloads and emerging software design practices [22].

The most popular web application development frameworks that provide C# are

ASP.NET MVC and ASP.NET Core [23].

4.3.1 ASP.NET MVC

ASP.NET MVC is a web application framework developed by Microsoft that

implements the MVC pattern. It is no longer in active development with the last final

release dated 28.11.2018 [24].

ASP.NET offers three frameworks for creating web applications: Web Forms,

ASP.NET MVC and ASP.NET Web Pages. All three frameworks are stable and mature,

and web applications can be created with any of them. These ASP.NET frameworks are

based on the .NET Framework and share core functionality of .NET and ASP.NET.

They offer a login security model based around membership, and all three share the

same facilities for managing requests, handling sessions, and other parts of the core

ASP.NET functionality [25].

4.3.2 ASP.NET Core

ASP.NET Core is the successor of ASP.NET MVC. It is a cross-platform, high-

performance, open-source framework for building modern, cloud-enabled, Internet-

connected apps. ASP.NET Core integrates seamlessly with popular client-side

frameworks and libraries, including Blazor, Angular, React, and Bootstrap [26].

26

Stack Overflow queries rate, that is reflected in Figure 2, shows the rapid growth of

ASP.NET Core popularity from the year 2016 when the first version of .NET Core was

released. Trends also show the rapid declination in ASP.NET MVC questions amount

on Stack Overflow platform. From the end of 2018 year ASP.NET Core questions share

exceeded ASP.NET MVC with the last continuing to decline. Microsoft Corporation,

the developer of the frameworks of .NET family, continues to actively work on and

enhance .NET Core. There are already 7 versions of .NET Core released from 2016

[27]. The next major release of .NET Core following 3.1 is .NET 5. ASP.NET Core 5 is

based on .NET 5, but retains the name "Core" to avoid confusing it with ASP.NET

MVC 5 [28].

Figure 2. ASP.NET MVC and ASP.NET Core trends.

Advantages [26]:

▪ new Kestrel web server, higher performance than ASP.NET MVC;

▪ easy to develop cross-platform web applications – has built-in support;

▪ IDE Visual Studio available for Windows and Mac, lightweight Visual Studio

Code can also be used;

▪ rapidly growing popularity and community;

▪ cloud-ready, supports microservices;

27

▪ modularity via NuGet, it manages to include only needed libraries;

▪ the code is open-source – increases community contribution and collaboration.

Disadvantages:

▪ software developers in the team are proficient with .NET Framework and

ASP.NET MVC – the use of ASP.NET Core will require little to moderate time

for additional learning;

▪ documentation of some new features or changes could be insufficient in

comparison to mature and long-history ASP.NET MVC.

4.4 Front-end frameworks

Front-end is sometimes named also as client-side. This means that the code runs in a

Web browser on the user’s computer in order to provide enriched user interface

interaction and dynamic data retrieval from the server. The front-end framework is

usually a set of JavaScript libraries, that help creating applications in a standardized,

modular and strongly typed1 way. In order to decrease the time and bandwidth

consumed by downloading the code and style files into user’s browser, minification of

the front-end application is very commonly used. This is the process of removing

unnecessary characters, comments, and shortening function and variable names in

JavaScript, CSS or HTML code without changing the way that it works.

From the perspective of front-end application development, the most popular and

widely used frameworks among professional software developers are jQuery, React.js,

Angular, ASP.NET, Express, ASP.NET Core, Vue.js, Spring, Angular.js, Flask and

Django. Also Node.js, Pandas and React Native are very commonly used together or in

addition to the mentioned frameworks [6].

The designed application will have minimal front-end capabilities, there is a need for

secure and stable, but lightweight and simple approach.

1 Strongly typed programming language is the one where variables and other data structures can be

declared to be of a specific type, like a string or a boolean, and there are strict checks of the validity

of their values. This isn’t possible in pure JavaScript, which is loosely typed.

28

4.5 Infrastructure

Information technology infrastructure is a combination of hardware and software

components needed for the operation and management of enterprise IT services and

environments. There are various ways of organizing infrastructure that will provide

required capabilities and support deployment, running and monitoring the application.

First of all, there is an option to create and maintain infrastructure on-premise. This

means servers are owned by the development company and it will be responsible for

establishing, configuring and maintaining them.

Another option is to delegate infrastructure management to the professional third-party

– an enterprise which, for overall effectiveness, specializes on providing and

maintaining essential equipment, components, data, policies, processes, human

resources and external contacts.

The third option that is considered in this thesis is Cloud Computing. Various types of

clous services, like IaaS, PaaS, SaaS or even private clouds, are continuously growing

and according to the forecast for 2022 Cloud Computing industry size will double in

comparison to the year 2018 [29]. Cloud infrastructure and services are commonly

provided out-of-the-box, so it takes much less resources and effort to prepare

infrastructure and connect services according to needs of specific project or enterprise.

Web applications have to be quickly scalable depending on the number of concurrent

users and the load. It should be possible to deploy infrastructure and applications, adjust

capacity and performance, connect monitoring tools and make changes rapidly and cost-

saving. Because of fluctuating and increasing web services and e-commerce demand

due to COVID-19 [30], forementioned is especially important to maintain

competitiveness in current market realities.

4.6 The choice of technologies

The software development company has implemented project policies, that include

development practices, programming languages and infrastructure providers. The

current solution is developed using ASP.NET MVC on C#. The team consists of senior

29

engineers that specialize in C# and .NET development with the focus on back-end

engineering.

Even though C# stands on the third place among the three most popular back-end

programming languages, it is chosen to be the web service programming language for

the new web application. The reason for that are company policies, existing team

engineering expertise, and limited human and time resources, that would make new

technologies high learning curve unreasonable. Summarizing all these facts it is rational

to continue using C# and .NET also for the new application.

For serving the front-end part of web application Node.js with a set of npm packages

will be used as it provides modularity and is supported by a large developer community.

For automation of common tasks, like minification or testing, Gulp will be used. The

company has engineers that specialize in both frameworks so it will be straight forward

to smoothly continue working on the project after prototype is ready.

Cloud infrastructure will be used to host both front-end and back-end of the designed

web application, as there is a need for quick scalability due to varying seasonal loads,

and pricing model that will depend on consumed capacities. Rapid infrastructure

deployment and ongoing configuration can be supported by DevOps department that

already exists in the company. According to company policies Microsoft Azure Cloud

will be used as IaaS, SaaS and PaaS provider.

The chart in Figure 3 shows the results of cloud performance tests for various

frameworks [31]. ASP.NET Core is located on the 7-th place in composite performance

scores table. Despite there are more performant frameworks, ASP.NET Core is the only

one from forementioned mostly used, that we can see between the 20 best web

frameworks in the year 2021. This confirms the sustainability and top performance that

is extremely essential in the century of ever evolving technologies. The new ASP.NET

Core application will incorporate REST and requests and responses will be handled in

JSON format.

30

Figure 3. Web application frameworks peak performance comparison.

There is a need for a new widget database, which would be the most performant to have

it also in Azure. For this Azure SQL Database will be used. The code-first approach,

which allows to define data model using C# classes and attributes, will simplify the

development process, make further CI/CD easier and help to automate database schema

changes via automatic migrations.

31

5 Prototype creation

Prototyping is the process of developing an incomplete working version of a product or

system that has to be engineered. The prototype model requires that before carrying out

the development of actual software, a working prototype of the system should be built

[32].

The functional prototype is created in co-operation with the company product manager

and business representatives of key company customers. The prototype model,

displayed in Figure 4 and rounded with green, is used for prototype development. After

the prototype version is accepted by product manager and the key company customers

the development of the full product can be incorporated into the development roadmap

and engineering team can continue working on the full implementation using iterative

development model.

Figure 4. Prototype model steps.

32

5.1 High-level architecture

The Figure 5 diagram was created based on the analysis in previous chapters. It

describes the high-level architecture of the system after the new web application will be

implemented.

Figure 5. New high-level architecture.

Upon a request from the merchant’s web page, the new Node.js application serves a

minified widget web page, JavaScript library, stylesheets, icons and other resources. In

order to prevent any JavaScript of the host page to access end-user’s PCI relevant data

like card number or CVC, the payment widget is encapsulated in an iframe preventing

access to this data via JavaScript. This enables a shop to bypass PCI DSS requirements

as no sensitive payment card data can be accessed by the host page. The form within the

iframe will internally handle saving of payment data to the payment aggregator’s

33

database for further processing. To provide an easy integration experience to merchants,

the injection of the iframe and the result handling are done by the JavaScript library

served by the new Node.js application. The communication from the widget to the host

page is implemented based on Web Messaging. A message is posted from the iframe to

the parent using a window.postMessage() call with the targetOrigin parameter specified,

so that it limits cross-domain messaging to only two involved domains – host page and

widget domains.

The purpose of widget ASP.NET Core application is to handle all actions that are

directly connected with widget. For example, to trigger widget initialization and save

gathered data, and to retrieve basic widget settings.

Each request to the widget back-end ASP.NET Core application must be done using the

HTTPS protocol with TLS/SSL, requests must also have Authorization header with the

OAuth 2.0 Bearer token specified. The token can be obtained as a separate request to

the new widget REST API “token” endpoint with the username and the password.

Another possibility is to get the token with the first server-to-server request including

the username and the password to the request. Once the token is expired the merchant

can refresh it or obtain a new one.

The following figures show an example of separate OAuth 2.0 bearer token request

(Figure 6) and response (Figure 7), and the usage of Authorization header with the

token for making further API requests (Figure 8).

Content-Type: application/x-www-form-urlencoded

Authorization: Basic Og==

User-Agent: PostmanRuntime/7.26.10

Accept: */*

Cache-Control: no-cache

Postman-Token: ad5519cf-cdc3-4eb1-97bf-31361aaba2f1

Host: localhost

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 73

grant_type=password&username=test_vladimir&password=Test
_vladimir1&scope=

Figure 6. OAuth 2.0 token request.

34

{

 "access_token":
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJNSSI6IjEiLCJ1c2V
ybmFtZSI6InRlc3RfdmxhZGltaXIiLCJIb3N0IjoibG9jYWxob3N0Iiwi
aXNzIjoiaHR0cHM6Ly9sb2NhbGhvc3QvUG1nLkhvc3QuUmVzdEFwaSIsI
mF1ZCI6IlBtZy5Ib3N0LlJlc3RBcGkiLCJleHAiOjE2MTkyOTM3MDcsIm
5iZiI6MTYxOTI5MDEwN30.Ub5zOTzXHDh-
pzaawXLDLAAo7Ba31oCInhM8nvEOTbU",

 "token_type": "bearer",

 "expires_in": 3599,

 "refresh_token":
"m2wHcnQfXYmeWb_4b4D7QlfQetnKKuTw1PjTHWWpMKXI-
6_eOvbg04U1OFP90hxYB4fBBWpBdIh-BvpUTDwwBrAlMXd-
08LhGwSitYjXoWnL8-
65bN1QLCicjUtsEYsI8ONtZ0o0lvtD0QyR5SQQTotQYxQgcrULyWwSW3Q
E7awxgl9oC3AUNM3WC6n5Pl8qWnWH3hShHwXUhfjPp__rBjD8Fz_8IqyZ
SVgtyruqb5ZY_e8ADkCAWRBweZyqdDJpbkxnBA"

}

Figure 7. OAuth 2.0 token response.

Content-Type: application/json

Authorization: Bearer
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJNSSI6IjEiLCJ1c2Vy
bmFtZSI6InRlc3RfdmxhZGltaXIiLCJIb3N0IjoibG9jYWxob3N0Iiwia
XNzIjoiaHR0cHM6Ly9sb2NhbGhvc3QvUG1nLkhvc3QuUmVzdEFwaSIsIm
F1ZCI6IlBtZy5Ib3N0LlJlc3RBcGkiLCJleHAiOjE2MTkyOTM3MDcsIm5
iZiI6MTYxOTI5MDEwN30.Ub5zOTzXHDh-
pzaawXLDLAAo7Ba31oCInhM8nvEOTbU

User-Agent: PostmanRuntime/7.26.10

Accept: */*

Cache-Control: no-cache

Postman-Token: 94b3a003-531a-4657-88e8-a486901a59f5

Host: localhost

Accept-Encoding: gzip, deflate, br

Connection: keep-alive

Content-Length: 39

Figure 8. Example of Bearer token usage.

The application flow diagram reflected in Figure 9 shows simplified the 4 stages of the

whole payment aggregator process. In the context of this thesis the first 3 stages are

covered and prototyped as they reflect the flow of the new web application.

35

Figure 9. Application flow diagram.

5.2 Widget initialization

Widget initialization is the process of retrieving merchant settings and generation of

available payment methods that will be offered to the shopper. When this is done, the

payment methods data is stored in the Widget database and is available for fast widget

rendering once needed. Initialization of the widget must be done prior to rendering the

widget page. The merchant can call initialization whenever it is reasonable to initiate

36

data preparation. The good time for this could be the moment when shopper logges into

the web store or adds the first item to his shopping cart.

Available payment methods depend on several factors: merchant settings, store and

shopper geographical location, shopper credit behaviour and risk profile, and many

more. In case merchant would like to offer a possibility for payment slicing, the user’s

risk profile must be evaluated at an external provider, also a query to partly payments

provider should be executed in order to get possible options based on the shopper’s

personal data, shopping cart and risk profile. All these operations and external calls may

take time depending on the number of external calls and availability of third-party

services. That is why it is so important to trigger initialization beforehand and not on the

widget rendering, creating redundant waiting time for the shopper.

Initialization is triggered by the merchant as JSON-formatted server-to-server request to

the “initialize” endpoint of the new widget Core application. It may include the desired

payment methods, customer data and the widget version, as shown in Figure 10.

37

{

 country:"UK",

 culture:"en-GB",

paymentMethods:"MasterCard,Visa,Apple
Pay,PayPal,Sepa",

 version:"1.0"

 billingCustomer:{

 firstName:"Steven",

 lastName:"Smith",

 customerId:"100014",

 email:"smith@email.com",

 dateOfBirth: "1983-02-15",

 debitorNumber: 1000141,

 address:{

 streetName:"Baker Street",

 streetNumber:"5",

 postalCode:"778004",

 city:"London",

 country:"UK"}

 },

 shippingCustomer:{

 firstName:"Steven",

 lastName:"Smith",

 customerId:"100014",

 email:"smith@email.com",

 dateOfBirth: "1983-02-15",

 debitorNumber: 1000141,

 address:{

 streetName:"Baker Street",

 streetNumber:"5",

 postalCode:"778004",

 city:"London",

 country:"UK"}

 }

}

Figure 10. Widget initialization request.

Web service retrieves merchant widget settings from the widget database and responds

with the data that can be later used for rendering the widget. The response (Figure 11)

contains generated widget identifier, initialization URL, successful operation marker,

but may also contain access token or any additional resources and custom scripts, that

will be used in widget rendering step.

38

{

 "widgetId": "208877be-03b3-42f9-a925-144763bbeb36",

 "success": "True",

 "initalizationUrl":
"https://www.gateway.com/widget/1.0/208877be-03b3-42f9-
a925-144763bbeb36",

 "accessToken": "Bearer <token>",

 "resources":
"https://www.gateway.com/widget/1.0/merchant/resources",

 "scripts":
"https://www.gateway.com/widget/1.0/merchant/scripts.js"

}

Figure 11. Widget initialization response.

After the mentioned widget initialization response, the application sends a request to the

existing Transactions API in order to proceed with data analysis and payment methods

preparation, which typically takes a few seconds but can also take a while. Transaction

API responds with JSON-formatted dataset and widget Core API stores data in the

WidgetStates table of the widget database under the widget id that was generated

before. The structure of WidgetStates table is given in the Table 1.

Table 1. WidgetStates table columns.

Field Data type Description

Id guid Widget initialization identifier

MerchantId int Merchant identifier

Request nvarchar[1000] Widget rendering request

State nvarchar[max] JSON data for rendering the widget

PaymentId int Saved payment data identifier

UserAgent nvarchar[max] User's web browser user-agent

CreateDate datetime2 Entry creation date and time

UpdateDate datetime2 Entry update date and time

After data needed for widget rendering is stored into WidgetStates table, and when the

shopper would like to pay for items in his cart, the merchant web page should send a

request to render the payment widget in iframe inside the host page.

39

5.3 Widget rendering

Widget rendering is a simple and quick process consisting of the following steps.

The Figure 12 shows the GET request to widget Node.js application to load minified

HTML, JavaScript and CSS files in an iframe inside the online store host page.

https://init.gateway.com/widget/?r={"clientDomain":"https://www.merchant.com/
","initializationUrl":"https://www.gateway.com/widget/1.0/208877be-03b3-42f9-
a925-
144763bbeb36/","resourcesUrl":"https://www.gateway.com/widget/1.0/merchant/re
sources","paymentServiceUrl":"https://www.gateway.com/payment/1.0/","placeHol
der":"innerElement","frameDimensions":"800x600","onContentResized":"","automa
ticResize":"true","widgetTitle":""}

Figure 12. Payment page request example.

The fields listed in the Table 2 can be used for the forementioned request.

Table 2. Payment page request fields.

Field Description Optional

clientDomain Merchant's domain name

initializationUrl Widget initialization endpoint URL

paymentServiceUrl Payment service URL for saving payment data

placeHolder The host page container element ID where payment

page will be rendered

resourcesUrl Custom widget resources for specific merchant if any x

paymentSuccessCallback JS method that executes after the successful payment

data confirmation

x

paymentErrorCallback JS method that executes after the payment data

confirmation returned an error

x

frameDimensions The payment page frame height and width x

cssUrl Custom merchant stylesheet file location x

renderErrorCallback JS method that executes after unseccessful widget

rendering

x

automaticResize The content of the widget page will respond to the

parent page resize and vice versa

x

widgetTitle The widget iframe title x

onContentResized JS function triggered when the widget content is

resized

x

https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d
https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d
https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d
https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d
https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d
https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d
https://init.gateway.com/widget/?r=%7b%22clientDomain%22:%22https://www.merchant.com/%22,%22initializationUrl%22:%22https://www.gateway.com/widget/1.0/208877be-03b3-42f9-a925-144763bbeb36/%22,%22resourcesUrl%22:%22https://www.gateway.com/widget/1.0/merchant/resources%22,%22paymentServiceUrl%22:%22https://www.gateway.com/payment/1.0/%22,%22placeHolder%22:%22innerElement%22,%22frameDimensions%22:%22800x600%22,%22onContentResized%22:%22%22,%22automaticResize%22:%22true%22,%22widgetTitle%22:%22%22%7d

40

When the HTML page and JavaScript library is loaded into user’s Web browser it sends

getWidgetData JSON-formatted request to the initializationUrl, as shown in the Figure

13, to widget Core API in order to retrieve available payment methods and settings, that

were prepared in the widget initialization step.

{

 widgetId:"208877be-03b3-42f9-a925-144763bbeb36"

}

Figure 13. Widget getWidgetData request example.

A payment page will be rendered based on the received data, so that shopper can choose

the preferred payment method and enter all needed payment and personal data

depending on the selected method.

Figure 14 illustrates the new UI design of the payment page in case credit card is

selected as a payment method; the card brand is detected automatically.

Figure 14. Payment page credit card desktop view.

41

Figure 15 shows an example of the card number field validation and the error message

that informs user about what is actually happened.

Figure 15. Payment page validation example.

42

The example of another selected payment method information text is illustrated in the

Figure 16.

Figure 16. Payment page PayPal desktop view.

43

Figure 17 displays a mobile view of the payment page – the size and position of buttons,

logos and fields are automatically adjusted according to user’s screen size.

Figure 17. Payment page mobile view and help text example.

5.4 User confirmation

After the shopper has entered payment details and pressed Continue button, the payment

page triggers the confirmPaymentData request to widget API which securely stores

payment details via Transactions API into the Main database, using RSA encryption.

Figure 18 shows the JSON-formatted request example.

44

{

 "paymentMethod":"Visa",

 "paymentDataCard": {

 "cardNumber": "4166676667666746",

 "expirationMonth": "11",

 "expirationYear": "2023",

 "cvc": "555",

 "cardHolder": "Steven Smith" }

}

Figure 18. Payment page confirmPaymentData request.

When payment details are stored the merchant can trigger the payment authorization

request to Transactions API in order to proceed with the reservation or debiting of the

order amount on the shopper’s bank account. During authorization Transactions API

sends requests to external providers depending on the payment method and payer risk

level. In case of need an external provider can initiate 3D Secure check to confirm that

payment card is used legally. External verification and payment amount reservation

process is not covered by this thesis as the system logic is already implemented in the

existing Transactions application.

45

6 Prototype evaluation

Prototyping allows us to quickly build an initial product design and basic functionality

based on ideas and general product requirements. When initially created, software

functional prototype should be then evaluated by company customers and product

managers. This will provide a highly valuable feedback and help to mitigate the risk of

the product development moving in the wrong direction and consuming too much

resources.

The prototype developed and overviewed in this diploma thesis was sent for preliminary

evaluation to the product manager and 3 key customers of the company.

The evaluation consisted of the following main categories:

▪ user interface design general assessment;

▪ usability assessment;

▪ fields validation testing;

▪ main functional flow testing;

▪ payment page performance testing;

▪ WCAG compliance testing.

Based on evaluators’ feedback the payment page user interface design, usability and

validation correspond with customers’ needs. The UI development can be continued

based on agreed product requirements taking stakeholders suggestions in consideration.

Payment page performance testing was conducted based on user interface interaction

speed and widget loading time. The Figure 19 shows the Developer Tools output for the

widget loading. Multiple tests show the variation of loading time from 105 to 142 ms,

but it is always less than maximum possible 200 ms.

46

Figure 19. Payment page load speed test.

WCAG compliance test was done using AChecker website located on

https://achecker.ca/checker/index.php. The Figure 20 illustrates the results of web

accessibility evaluation.

Figure 20. WCAG evaluation results.

The prototype evaluation showed good results from performance and usability

perspective, and was approved by management and key customers for further product

implementation.

The forementioned evaluation steps must be repeated once prototype will be enhanced

or after each product development iteration.

https://achecker.ca/checker/index.php

47

7 Further improvements

Despite the fact that prototype was evaluated successfully, the upcoming product

developed on the base of current prototype will need additional enhancements.

Payment page must offer a possibility of scanning the card if shopper is using a mobile

device. This will simplify entering the payment card’s number and expiry and make

overall user experience more interactive. The company should consider using a security-

proven third-party library to save development time and use the most up-to-date

features.

The card holder’s name can be prefilled from the logged in customer shopping cart, so

that the payer would not need to enter billing name manually. However, this

requirement might need confirmation, that it is legal to prefill any of the user’s payment

data. Another option is to provide the user a possibility to store all payment credentials

in the payment aggregator, so they can be used for the next payment without a need to

re-enter them.

Payment page user interface must support translations. The merchant’s host page can

extract the user’s Web browser current culture and pass it along with widget

initialization request. Widget Core should be able to retrieve translations either from a

static resource, using Azure Functions or third-party translation service. This is essential

functionality to be implemented as company customers are located around the globe and

obviously shoppers as well.

In order to provide additional security layer, the shopper’s payment data can be

encrypted using a JavaScript library before transmitting it to the widget API. To

implement this kind of encryption, widget Core API should return an RSA public key in

an initialization response, so that data can be further encrypted in user’s browser.

During execution of confirmPaymentData request the payment data would be decrypted

server-side using an RSA private key to be able to process the data as needed.

Shopper will not always end up paying for his shopping cart items. Some shoppers will

abandon their purchasing process due to various reasons. It would be reasonable to

introduce a clean-up process that will weekly delete unrealized widget initialization data

from the widget database.

48

Company might need to develop a new reporting application or database procedure, that

will create and export widget initialization reports. For making administration routines

easier it is reasonable to implement a new administration application that will provide

access to such reports. All reports and logs should not contain any sensitive data like

payment card number or CVC.

Idempotency should be implemented into widget ASP.NET Core REST application.

This will grant the fact that requested operation will be performed only once even in

case of multiple identical requests.

49

8 Summary

The main goal of this thesis was to gather required information, choose software

development technology stack, analyse and create a functional software prototype of the

new web application for payment methods aggregator.

The company and the product background were described in the introductory part. The

used methodologies, problems and goals were defined before moving to any analytical

part of the work. The current high-level architecture and known system deficiencies

were figured out and listed in the existing solution description chapter. The next stage of

the work was to analyse and provide product requirements for the new web application.

Undoubtedly also very important was to analyse most used and performant software

development technologies and infrastructure possibilities for smooth development,

deployment and running the prototype and software that will be based on it.

The software functional prototype is the result of the work done in scope of the current

thesis. The chapter dedicated to prototype creation described the architecture together

with security aspects, and specific process stages with examples of information

exchange between front-end and server-side applications.

Essential was to evaluate the created prototype to decide about reliability, usability and

perspectives of continuing work on the full product. There is a number of possible

improvements, so that implementing some of them the second prototype version could

be released. The proposed enhancements could be also implemented once the full

product development will be started in case the second prototype version would be

redundant.

The goal of this diploma thesis was fully achieved, and the outcome is considered

successful – the suitable technical solution was chosen, and the functional prototype of

web application created. The prototype provides the base for further implementation of

all needed business and system logic and development of the full flexible, sustainable

and profitable solution. The functional prototype will be used for product development

and the fully functional business usable product delivery will be planned according to

the company needs and resources.

50

References

[1] Individuals using the Internet [WWW]

https://data.worldbank.org/indicator/IT.NET.USER.ZS?end=2019&start=1990&view=chart&ye

ar=2020 (22.04.2021)

[2] United Nations, March 2021, “COVID-19 and e-commerce”, pp 39-43 [Online]

https://unctad.org/system/files/official-document/dtlstict2020d13_en_0.pdf (22.04.2021)

[3] JSONP [WWW] https://en.wikipedia.org/wiki/JSONP (22.04.2021)

[4] TIOBE Programming Community Index Definition [WWW] https://www.tiobe.com/tiobe-

index/programming-languages-definition (17.04.2021)

[5] Stack Overflow Annual Developer Survey [WWW]

https://insights.stackoverflow.com/survey (17.04.2021)

[6] 2020 Developer Survey - Most Popular Technologies [WWW]

https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-

markup-languages-professional-developers (17.04.2021)

[7] TIOBE Index for April 2021 [WWW] https://www.tiobe.com/tiobe-index/ (17.04.2021)

[8] Welcome back to C++ [WWW] https://docs.microsoft.com/en-us/cpp/cpp/welcome-back-to-

cpp-modern-cpp?view=msvc-160 (17.04.2021)

[9] Stack Overflow – About [WWW] https://stackoverflow.com/company (17.04.2021)

[10] Java (programming language) [WWW]

https://en.wikipedia.org/wiki/Java_(programming_language) (17.04.2021)

[11] Best Java Frameworks [WWW] https://www.jrebel.com/blog/best-java-frameworks

(17.04.2021)

[12] 2020 Developer Survey - Correlated Technologies [WWW]

https://insights.stackoverflow.com/survey/2020#correlated-technologies (17.04.2021)

[13] Spring Cloud Features [WWW] https://spring.io/projects/spring-cloud#overview

(17.04.2021)

[14] Spring Cloud Reviews & Product Details [WWW] https://www.g2.com/products/spring-

cloud/reviews#reviews (17.04.2021)

[15] What is Python? Executive Summary [WWW] https://www.python.org/doc/essays/blurb

(17.04.2021)

https://data.worldbank.org/indicator/IT.NET.USER.ZS?end=2019&start=1990&view=chart&year=2020
https://data.worldbank.org/indicator/IT.NET.USER.ZS?end=2019&start=1990&view=chart&year=2020
https://en.wikipedia.org/wiki/JSONP
https://www.tiobe.com/tiobe-index/programming-languages-definition
https://www.tiobe.com/tiobe-index/programming-languages-definition
https://insights.stackoverflow.com/survey/
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers
https://insights.stackoverflow.com/survey/2020#technology-programming-scripting-and-markup-languages-professional-developers
https://www.tiobe.com/tiobe-index/
https://docs.microsoft.com/en-us/cpp/cpp/welcome-back-to-cpp-modern-cpp?view=msvc-160
https://docs.microsoft.com/en-us/cpp/cpp/welcome-back-to-cpp-modern-cpp?view=msvc-160
https://stackoverflow.com/company
https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.jrebel.com/blog/best-java-frameworks
https://insights.stackoverflow.com/survey/2020#correlated-technologies
https://spring.io/projects/spring-cloud#overview
https://www.python.org/doc/essays/blurb

51

[16] The State of Developer Ecosystem 2020 – Python [WWW]

https://www.jetbrains.com/lp/devecosystem-2020/python (17.04.2021)

[17] Django introduction [WWW] https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Django/Introduction (17.04.2021)

[18] Advantages & Disadvantages of Django [WWW]

https://www.codingninjas.com/blog/2020/12/11/advantages-disadvantages-of-django

(17.04.2021)

[19] Flask (web framework) [WWW] https://en.wikipedia.org/wiki/Flask_(web_framework)

(17.04.2021)

[20] Advantages and disadvantages of using Flask as a web framework [WWW]

https://www.quora.com/What-are-the-advantages-and-disadvantages-of-using-Flask-as-a-web-

framework (17.04.2021)

[21] C Sharp (programming language) [WWW]

https://en.wikipedia.org/wiki/C_Sharp_(programming_language) (17.04.2021)

[22] A tour of the C# language [WWW] https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-

csharp/ (17.04.2021)

[23] The State of Developer Ecosystem 2020 – C# [WWW]

https://www.jetbrains.com/lp/devecosystem-2020/csharp (17.04.2021)

[24] ASP.NET MVC [WWW] https://en.wikipedia.org/wiki/ASP.NET_MVC (17.04.2021)

[25] ASP.NET overview [WWW] https://docs.microsoft.com/en-us/aspnet/overview

(17.04.2021)

[26] Introduction to ASP.NET Core [WWW] https://docs.microsoft.com/en-

us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-5.0 (17.04.2021)

[27] .NET Core and .NET 5 Support Policy [WWW]

https://dotnet.microsoft.com/platform/support/policy/dotnet-core (18.04.2021)

[28] What's new in .NET 5 [WWW] https://docs.microsoft.com/en-us/dotnet/core/dotnet-five

(18.04.2021)

[29] Cloud Computing Market Share [WWW] https://www.t4.ai/industry/cloud-computing-

market-share (19.04.2021)

[30] E-commerce in the time of COVID-19 [WWW] https://www.oecd.org/coronavirus/policy-

responses/e-commerce-in-the-time-of-covid-19-3a2b78e8 (19.04.2021)

[31] Web Framework Benchmarks [WWW]

https://www.techempower.com/benchmarks/#section=data-r20&hw=cl&test=composite

(20.04.2021)

[32] Prototype Model [WWW] https://www.javatpoint.com/software-engineering-prototype-

model (23.04.2021)

https://www.jetbrains.com/lp/devecosystem-2020/python
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django/Introduction
https://www.codingninjas.com/blog/2020/12/11/advantages-disadvantages-of-django
https://en.wikipedia.org/wiki/Flask_(web_framework)
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-using-Flask-as-a-web-framework
https://www.quora.com/What-are-the-advantages-and-disadvantages-of-using-Flask-as-a-web-framework
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
https://www.jetbrains.com/lp/devecosystem-2020/csharp
https://en.wikipedia.org/wiki/ASP.NET_MVC
https://docs.microsoft.com/en-us/aspnet/overview
https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-5.0
https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-core?view=aspnetcore-5.0
https://dotnet.microsoft.com/platform/support/policy/dotnet-core
https://docs.microsoft.com/en-us/dotnet/core/dotnet-five
https://www.t4.ai/industry/cloud-computing-market-share
https://www.t4.ai/industry/cloud-computing-market-share
https://www.oecd.org/coronavirus/policy-responses/e-commerce-in-the-time-of-covid-19-3a2b78e8
https://www.oecd.org/coronavirus/policy-responses/e-commerce-in-the-time-of-covid-19-3a2b78e8
https://www.techempower.com/benchmarks/#section=data-r20&hw=cl&test=composite

52

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis

I Vladimir Nitsenko

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for

my thesis ”Creating a Prototype for the Payment Method Aggregator”,

supervised by Toomas Lepikult

1.1. to be reproduced for the purposes of preservation and electronic publication

of the graduation thesis, incl. to be entered in the digital collection of the

library of Tallinn University of Technology until expiry of the term of

copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of

Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection

Act or rights arising from other legislation.

14.04.2021

	Author’s declaration of originality
	Abstract
	Annotatsioon Maksemeetodite agregaatori veebirakenduse prototüübi loomine
	List of abbreviations and terms
	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 The background
	1.2 The problem and the goal
	1.3 Methodology

	2 Existing solution description
	2.1 Current high-level architecture
	2.2 Functional and usability deficiencies
	2.3 Non-functional deficiencies

	3 Product requirements
	3.1 Functional requirements
	3.2 Non-functional requirements

	4 Software development technologies
	4.1 Java
	4.1.1 Spring

	4.2 Python
	4.2.1 Django
	4.2.2 Flask

	4.3 C#
	4.3.1 ASP.NET MVC
	4.3.2 ASP.NET Core

	4.4 Front-end frameworks
	4.5 Infrastructure
	4.6 The choice of technologies

	5 Prototype creation
	5.1 High-level architecture
	5.2 Widget initialization
	5.3 Widget rendering
	5.4 User confirmation

	6 Prototype evaluation
	7 Further improvements
	8 Summary
	References
	Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation thesis

