
TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies

Valerii Gakh 224455IVCM

PERFORMANCE COMPARISON OF EARLY PROMPT

INJECTION DETECTION SOLUTIONS

Master’s Thesis

Supervisor: Hayretdin Bahşi
Ph.D.

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL
Infotehnoloogia teaduskond

Valerii Gakh 224455IVCM

VARAJASE VIHJE SÜSTIMISE TUVASTAMISE

LAHENDUSTE TOIMIVUSE VÕRDLUS

Magistritöö

Juhendaja: Hayretdin Bahşi
Ph.D.

Tallinn 2024

Author’s Declaration of Originality

I hereby certify that I am the sole author of this thesis. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Valerii Gakh

12.05.2024

1

Abstract

Prompt injection is a threat to novel applications that emerge from adapting LLMs for
various user tasks. The newly developed LLM-based software applications become more
ubiquitous and variable. However, the threat of prompt injection attacks undermines the
security of these systems as there are little to no reliable mitigations or defenses against
them at the time of this writing. In this thesis, our goal is to explore the capabilities of
early prompt injection detection systems. Specifically, we aim to examine the detection
performances of various prompt injection detection techniques on real prompt injection
attacks. We present the comparison of several detection solutions and reason about issues
with the implementations of their detection techniques. We identify the pros and cons
of these techniques and reason about their optimal configuring and usage in serious
deployments.

We believe our comparison of performances of LLM Guard, Vigil, and Rebuff is one of
the first research of existing prompt injection detection solutions. We examine the early
solutions so that we can contribute to growing research in tackling the problem of prompt
injection attacks. We aim to contribute to the development of better detection mechanisms
against prompt injection attacks on LLM-based applications.

The thesis is written in English and is 63 pages long, including 7 chapters, 10 figures, and
21 tables.

2

Annotatsioon
Varajase vihje süstimise tuvastamise lahenduste toimivuse võrdlus

Vihje süstimine ohustab uudseid rakendusi, mis tekivad LLM-ide kohandamisel erinevate
kasutajaülesannete jaoks. Äsja arendatud LLM-põhised tarkvararakendused muutuvad
üldlevinud ja muutuvamaks. Vihjete süstimise rünnakute oht kahjustab aga nende süs-
teemide turvalisust, kuna selle kirjutamise ajal on nende vastu usaldusväärseid leevendus-
või kaitsevahendeid vähe või üldse mitte. Selles lõputöös on meie eesmärk uurida vara-
jase vihje süstimise tuvastamise süsteemide võimalusi. Täpsemalt on meie eesmärk
uurida erinevate vihjesüstimise tuvastamise tehnikate tuvastamise jõudlust tõeliste vihjete
süstimise rünnakute korral. Tutvustame mitmete tuvastuslahenduste võrdlust ja nende tu-
vastamistehnikate juurutamise probleemide põhjuseid. Tuvastame nende tehnikate plussid
ja miinused ning põhjendame nende optimaalset konfigureerimist ja kasutamist tõsiste
juurutuste puhul.

Usume, et meie LLM Guardi, Vigili ja Rebuffi toimivuse võrdlus on üks esimesi ole-
masolevate vihjesüstide tuvastamise lahenduste uuringuid. Uurime varajasi lahendusi, et
saaksime kaasa aidata vihjesüstide rünnakute probleemi lahendamise kasvavale teadustööle.
Meie eesmärk on aidata kaasa LLM-põhiste rakenduste vihjesüstide rünnakute paremate
tuvastamismehhanismide väljatöötamisele.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 63 leheküljel, 7 peatükki, 10
joonist, 21 tabelit.

3

List of Abbreviations and Terms

PI prompt injection
LLM Large Language Model
TPR True Positive Rate
FPR False Positive Rate

4

Table of Contents

1 Introduction . 9
1.1 Motivation . 9
1.2 Scope . 10
1.3 Research questions . 11
1.4 Novelty . 12
1.5 Thesis structure . 13

2 Background . 14
2.1 Large language models . 14
2.2 LLM-based software applications . 15
2.3 Prompt-based attacks . 15
2.4 Detection techniques . 17

3 Related work . 19
3.1 Review of prompt-based attacks . 19
3.2 Evaluating defense solutions . 23

4 Methodology . 25
4.1 Sample construction workflow . 25

4.1.1 Prompt injection objectives . 26
4.1.2 Jailbreaks . 28
4.1.3 Obfuscations . 30

4.2 Target application . 31
4.3 Sample dataset creation . 34
4.4 Experiments . 35

5 Results . 41
5.1 Experiments with defaults . 41
5.2 Experiments with modified values . 45
5.3 Total results for detection solutions . 50

6 Discussion . 54
6.1 Weakness in Rebuff’s model check input scan 54
6.2 Nuances of canary checks . 55
6.3 Limitations . 57

5

7 Summary . 58

References . 60

Appendix 1 – Non-Exclusive License for Reproduction and Publication of a
Graduation Thesis . 63

6

List of Figures

1 Prompt injection sample dataset generation 26
2 Prompt Leak samples . 27
3 "Ignore" jailbreak samples . 28
4 Repeated Chars jailbreak samples . 29
5 Prefix Injection jailbreak samples . 30
6 Leet obfuscation function . 31
7 Document chat agent design . 33
8 System message for the agents . 33
9 Prompt template used by Rebuff model scan 39

10 Vulnerability in Rebuff’s model check scanner 54

7

List of Tables

1 Prompt Injection sample classes . 34

2 Detection metrics with LLM Guard input scanner 42
3 Total detection metrics with LLM Guard input scanner 42
4 Detection metrics with Vigil’s Yara scanner 43
5 Total detection metrics with Vigil’s Yara scanner 43
6 Detection metrics with Rebuff’s Heuristics input scanner 43
7 Total detection metrics with Rebuff’s Heuristics input scanner 44
8 Detection metrics with Rebuff’s Model input scanner 44
9 Total detection metrics with Rebuff’s Model input scanner 45
10 Detection metrics with Vigil’s VectorDB input scanner 46
11 Total detection metrics with Vigil’s VectorDB input scanner 47
12 Detection metrics with Vigil’s Transformer input scanner 47
13 Total detection metrics with Vigil’s Transformer input scanner 48
14 Detection metrics with Vigil’s Canary word check 48
15 Total detection metrics with Vigil’s Canary word check 48
16 Detection metrics with Rebuff’s VectorDB input scanner 49
17 Total detection metrics with Rebuff’s VectorDB input scanner 49
18 Detection metrics with Rebuff’s Canary word check 50
19 Total detection metrics with Rebuff’s Canary word check 50
20 Detection metrics over sample classes for detection solutions as whole . . 51
21 Total detection metrics of detection solutions 51

8

1. Introduction

1.1 Motivation

With the boost of performance and availability of LLMs the new software applications
emerged - LLM-based applications and LLM agents. These applications provided novel
and fascinating user experiences by applying human language generation models to ad-
vance traditional user tasks. However, the applications with novel LLM components turned
out to be vulnerable to novel security attacks. One class of these attacks was called prompt
injection [1]. In a prompt injection attack, an adversary crafts a special prompt to the
LLM component and manipulates the model into execution of some operations within an
application, which are not intended to be executed by it. An adversary may manipulate the
model into malicious actions against the application’s back-end (direct prompt injection).
Furthermore, an adversary may control the model’s actions and responses along adversary’s
intentions in the context of the conversation between the model and another genuine user
of the application (indirect prompt injection) [2].

Prompt injection is conceptually the same as traditional injection attacks, whereas in LLM
applications the injected input resides in the prompt to the language model component.
Prompt injection attacks appeared to be a valid threat as many LLM-based chatbots
[3] and source LLM application software libraries [4] appeared vulnerable. However,
the prompt injection was said to be challenging to mitigate at the moment [5]. The
mitigations for traditional injection attacks, such as "data" and "code" context separation,
were insufficiently effective for countering the prompt injection problem. The boundary
between "code" and "data" in prompts to language models is "blurry" [6]. The reason
is that both follow the same syntax - the syntax of human language. Currently, LLM
application security practitioners achieve adequate defense against prompt injections by
combining many approaches. Detecting user prompts with injections is one of them.

The prompt injection attacks became an issue that needs to be tackled in research. They
become riskier if the LLM component within an application is able to execute highly
sensitive functions like confidential data processing, security operations, or critical business
operations. Until there is a reliable solution to the prompt injection problem the full benefits
of LLMs in software applications are avoided because of these risks.

9

1.2 Scope

In this thesis, we explore the prompt injection detection solutions proposed so far. We
examine several candidates from open source and the majority of them are still in early
development. Particularly, we choose LLM Guard [7], Vigil [8], and Rebuff [9] as our
candidates for analysis. Still, we wanted to shed light on different techniques used to
detect prompt injections in user prompts. We consider such prompt injection detection
techniques as canary word check, vector similarity search-based, secondary language
model-based, and transformer model-based. Vector similarity search-based technique uses
vector representations of prompts of known injection tactics. These representations are
compared with vector representations of user prompts, which are classified as malicious
whenever the vector representations are close. The transformer mode-based technique uses
transformer models trained on datasets of prompt injections to classify prompts as benign
or malicious. The secondary model-based technique uses an additional language model,
prompting it to evaluate a given user prompt.

Our selected detection solutions use different combinations of detection techniques. LLM
Guard uses transformer-based detection. Vigil uses transformer-based, vector similar-
ity search-based, and canary word checks. Rebuff uses vector similarity search-based,
secondary model-based, and canary word check. Importantly, these detection solutions
are different in how they implement certain detection techniques. For example, Vigil
and Rebuff differ in how their vector similarity search-based detections and canary word
checkers work in detail.

We aim to compare the detection performances for these proposed combinations of tech-
niques. Additionally, we analyze the susceptibility of the implemented detection methods
to some devised evasion methods. The practitioners argued that some detection techniques
are ineffective (for example, secondary model-based), given how easily they can be evaded.
We consider such arguments in our work in order to give an objective and versatile analysis
of examined detection techniques.

At the time of this writing many researches on prompt injections focus on how these
attacks make language models produce immoral responses - discriminatory, defamatory,
illegal, etc. In their case, the prompt injection attack targets the safety of LLM-based
applications. We focus on injection attacks aimed at the security of tools and services of
LLM applications. Security-oriented injections target an application’s confidentiality and
integrity and disrupt its functions to the attacker’s objectives. We explicitly do not consider
attacks on the safety of content generations in these applications, though the injection
techniques can be shared between security and safety objectives.

10

To test how the candidate solutions detect prompt injection attacks in this work we construct
working prompt injection samples ourselves. In this work, we only use prompt leak attack
samples. We are aware of other prompt injection tactics in direct and indirect PIs and we
mention them in the Related Work chapter. We limited ourselves to prompt leak attacks
as this is the simplest tactic of prompt injection and because we considered our research
duration limits. At the same time, we use variations of enhancements (jailbreaks and
obfuscations) to prompt attacks in our construction of samples. These enhancements are
the real-world prompt attacker techniques, which are purposed to evade certain detection
methods. We develop our own simple document chat LLM-based application to act as an
experimentation target.

1.3 Research questions

Centrally, we aim to analyze the detection performance metrics - precision, accuracy, and
f1 score - in candidate prompt injection detection solutions. Then we aim to analyze the
detection performances of each detection technique on particular prompt attack enhance-
ments or evasions. We construct test samples from prompt leaks by enhancing them with
selected jailbreaks and/or obfuscations. The samples consisting of various combinations of
those jailbreaks and obfuscations on prompt leaks are called prompt injection sample
classes. By observing detection performance of detection techniques on various prompt
injection sample classes we aim to make conclusions about the strengths and weaknesses
of those techniques against jailbreaks and obfuscations, used in corresponding prompt
injection sample classes.

First, in our work, we examine the following prompt injection detection techniques within
examined detection solutions, specifically their true positive rates produced on each prompt
injection sample class constructed by us. We have the following detection techniques to
analyze: yara rules-based, heuristics-based, transformer-based, vector similarity search-
based ("vectordb-based" for short), language model-based, and canary word check. We
analyze the implementations of these techniques in candidate solutions separately. We aim
to answer the questions:

1. What are the detection performances on prompt injection attacks in currently imple-
mented transformer-based prompt injection scanners?

2. What are the detection performances on prompt injection attacks in currently imple-
mented vector embedding lookup-based prompt injection scanner?

3. What are the detection performances on prompt injection attacks in currently imple-
mented language model-based prompt injection scanner?

4. What are the detection performances in currently implemented canary word check-

11

based prompt leak attack detection technique?

We do not pay too much attention to Yara-based and heuristics-based detection techniques
and their performance. Still, we consider their contribution to the detection performances
of detection solution candidates as a whole, so we shortly mention them.

Second, we aim to compare performances in detecting our chosen attacks by prompt
injection detection solutions as a whole. We analyze the produced false positives and
compare the detection performance metrics like precision, accuracy, and f1 score over all
tested attack samples. We seek to answer the main question:

1. Which prompt injection detection solution from our candidate list performs the most
optimal on detecting our chosen attacks?

Our interest is to conclude on the currently optimal detection solution among candidates
with the true positive and false positive rates that they produce. We attempt to increase the
detection performances of detection solutions via their configurable values first. Addition-
ally, we consider the susceptibility of detection solutions to some evasion attacks before
giving an evaluation of them.

1.4 Novelty

The problem of prompt injections, at the time of this writing, is relatively recent. To
our knowledge, there were no finished works examining the prompt injection detection
solutions from our candidate list yet. The defenses against prompt injections were discussed
in the related work, but we aim to conduct a more detailed look into those. Furthermore, we
expect to give practical recommendations to improvements as we examine the real-world
examples of PI detection solutions.

We chose a few of the most prominent PI detection software among open-sourced. LLM
Guard was branded as a "Swiss Army knife" security tool for LLM-integrated software
and we were eager to examine it. Particularly, we we going to conduct a more thorough ex-
amination as was done by enthusiasts [10] regarding the use of this tool. Rebuff was added
to this list because it is directly promoted by LangChain [11] - the one major LLM app
orchestration library. Among other performance metrics, we were eager to examine how
much this tool produces false positives. All because the developers of Rebuff especially
bring attention to this disadvantage of their early detection solution. Next, we added Vigil
to the list as another open-source tool that consists of multiple detection techniques. In dif-
ference to Rebuff, Vigil has a different combination of detection techniques. Additionally,

12

where Vigil shares detection techniques with Rebuff it implements them differently. There
were other big PI detection tools in open source like LangKit [12], or ChainGuard [13] but
they were not examined due to research duration consideration.

1.5 Thesis structure

We structure this thesis as follows. In Chapter 2 we give an essential background on
LLM-based applications, the components and vulnerabilities that are targeted with prompt
injection attacks, and proposed detection and mitigation methods. In Chapter 3 we analyze
the existing research on prompt injection attacks - the classes of the attacks, their construc-
tion, and potent detection evasion tactics. In Chapter 4 we present our experimentation
methodology. We describe the architecture of our target application, the construction
flow for test samples, and configuration setups for candidate detection solutions in each
experiment phase. In Chapter 5 we present the results of our experiments - the detection
performance metrics generated on tests on various injection attack classes for chosen con-
figuration setups of detection solutions. In Chapter 6 we discuss the issues with examined
detection solutions identified along our experiments. We conclude our findings in the
Summary chapter.

13

2. Background

This section gives the definitions of key terms and concepts used in this work. The most
important ones are large language models, LLM-based software applications, emerging
vulnerabilities and attacks on these applications, and state of art in defensive measures.

2.1 Large language models

Large language models are natural language prediction models, trained on inconceivably
large volumes of data. These models are capable of generating human-readable text
while conforming to some context and common knowledge. Generally, the models handle
human-readable texts as sequences of so-called tokens - combinations of natural language
characters, or whole words. To generate these texts the client inputs a sequence of tokens
to it, and the model generates the continuation for that sequence. The input sequence of
tokens is called a prompt, and the generated output is generally called a LLM response.
Different models encode tokens differently and accept different formatting of input token
sequence.

In order to elicit the desired generated content out of LLM the prompt to it has to be
carefully crafted. An emerging applied field of prompt engineering explores and collects
the rules and tips for writing efficient and reliable prompts. The clients of LLMs generally
aim to produce shorter prompts, because of the limits on the length of input token sequences
(on the length of the prompts) that the models are allowed to digest. We refer to the
complete token sequence, passed to the model as an input, as context window, or context
for short. Then, the clients aim to maximize the likelihood of the model responding
precisely and consistently enough for their task.

Many models, prompted by prompt engineers, are not tuned for their specific tasks, hence
engineers have to give a thorough context to the model in the prompt itself. Importantly,
the engineers have to instruct the model to complete the task in the prompt. They describe
the task and give the ground information required for generations at the start of the whole
prompt. This part is usually referred to as system prompt or developer prompt. To
constrain the "task following" and response generation done by the model, the engineers
usually give few-shot examples after the system prompt. These are examples of correct
pairs of prompt-response between user and language model and the model has to follow
them in subsequent generation. The examples may demonstrate the format of the response,

14

the relation between the input to the task and the result of it, and so on. So the full prompt
is usually constructed from a system prompt defining the task, few-shot examples of the
task, and the input to the task, in a sequence.

2.2 LLM-based software applications

At the time of this writing, there is an upraise in the development of applications integrated
with large language models. In the common architecture of these applications, they consist
of a large language model, its prompting interface, its memory module, data environment,
tools and services, and orchestration systems chaining all former sub-systems. The useful
areas for LLM-based software applications are innumerable, and all possible applications
have the common functionality of supporting a conversation with the end user in their
natural language.

These novel applications can be divided into two categories: LLM-integrated applications,
and LLM agents. LLM agents are fully autonomous systems in which execution flow is
controlled by LLM generations. The human operator only inputs high-level instructions
and an objective into the agent, and the LLM in the agent proceeds to complete the
given objective in the absence of predetermined execution steps. The LLM is capable
of reasoning about actions necessary to reach the set high-level goal and then plan and
execute multiple actions in a sequence. LLM-integrated applications, on the other side,
are functionally closer to traditional software applications. In them, LLMs are merely
an interface between the user and the internal services of the application. Such LLM is
capable of following a conversation with the user, and execute the services if the user
instructs so. Such software applications generally work like personal assistants or chat-bots,
which are capable of answering the questions based on the text, summarizing the texts,
assisting in writing, and other natural language text-based activities.

2.3 Prompt-based attacks

With the introduction of the novel LLM component in software applications, new vulnera-
bilities and threats emerged. OWASP [2] describes the classes of potential vulnerabilities
in LLM applications, one of which is the prompt injection. A prompt injection attack is
analogical to traditional code, command, or SQL injection attacks, in which an attacker
crafts a special input sample to manipulate the context of execution in the application. In
the case of the prompt injection, the context of the execution of the LLM application is
structured by the developers into the aforementioned system prompt, few-shot examples,
tool descriptions, and other elements of the context, one of which must be a client input.

15

All these components of the contents are in the natural language supported by the model,
specifically the tokens encoded by the model in use. The prompt injection attack crafts the
client input part of this context to manipulate other parts to the objective of the attacker.
For example, to override the system prompt with new instructions, to elicit undesired
generations from the model that are otherwise banned by the context, etc.

Initially, prompt injection attacks on the models were aimed at eliciting unsafe generations
from it - the responses that would be emotionally harmful content for the client. This is
possible because the models were being trained on the data without filtering harmful state-
ments, hence those could be produced by the model in its generations if the context "favors"
that. The developers put instructions for the models to not generate harmful content from
any context into the system prompt. However, the specially-purposed prompt injections,
also called jailbreaks, allowed to make model to disregard those safety instructions in the
system prompt and generate safe and unsafe without bounds.

Then, the consequences of prompt injections are not limited to generating unsafe responses.
The design of LLM-based applications allows the attacker to drive the model to execute
its tools with attacker-provided input, subsequently triggering malicious behavior of the
whole application. For example, for an LLM-integrated mailing agent, a successful prompt
injection can potentially allow an attacker to tamper with mail management functionality or
the contents of the mail, impersonating the sender. These consequences can also arise from
the vulnerability of excessive agency as defined by [2]. That refers to the model being
allowed to execute too many tools, some of which should not be executed on inputs coming
from the client for security reasons. In the aforementioned example of the LLM-integrated
mailing agent, the excessive agency is the root cause of the threats to mail management
functionality and the model should be stripped of access to mail-sending functions.

The root cause of prompt injections is the indistinction between different parts of the
context by the model itself. The developers format the context and fill in its parts following
the efficiency tips from prompt engineering. However, the model does not follow any
format and does not differentiate between "code" - the instructions to the model in human
language, and "data" - the plain human texts assisting the generation. Recent solutions for
protecting against injections in the model context include strict formatting with validation
and sanitization of the input context, which is done by the hosts of the model. For
example, [14] is the format to model context for the models hosted by OpenAI [15], and
the formatting, validation, and sanitization of the client-provided context is done by their
API. Other commercially hosted models can have their own formats and be protected by
their specific validation behind APIs.

16

The design of LLM-based applications can be vulnerable to prompt injections in a number
of its inputs. In direct prompt injection an attacker manipulates the client prompt part of
the context window, sent to the model, in the attacker’s conversation session with the model.
This includes manipulating the current user prompt input, or the memory of previous user
prompts. Indirect prompt injection implies the attacker manipulating other parts of the
context window, which come from elsewhere than from the client of the conversation. For
example, text resources available to the agent, which are used by the model to answer
questions from the client. Upon selecting the chunk of text, relevant to the current question,
it is inserted into the context window for further model generations. Agent-retrieved text
resources, injected with malicious prompts, can be executed in conversation sessions of
any LLM application users, not only in the attacker’s session.

2.4 Detection techniques

Among protection solutions against prompt injections, there are injection detectors. In
analogy to code and SQL injections to increase the security of the application validation of
the inputs may contain weaknesses allowing circumvention. Then the injection detection
software is necessary. Various classes of prompt injection techniques, or specifically
objectified injections could be detected with signatures, benefiting from traditional regular
expression check. This detection method implies writing detection rules based on observed
malicious inputs, which can be resourceful in terms of a number of rules necessary. That is
because of the large size of the field of injections in human languages. Moreover, signature
checks generally fall short on usefulness in detection of the new, previously not observed,
malicious inputs.

Additionally, regular expressions are also used to detect specially-formatted strings in
user prompts, which could signify the prompt being malicious. There exist domain and
IP address string signatures, PII signatures, and others. These can be sanitized from user
prompts to a given LLM agent if there are security and privacy reasons.

To tackle the problem of the large size of the field of injections in human language, there is
a technique to calculate the semantic similarity or closeness of two samples. Two prompt
injection samples with the same objectives and similar injection techniques generally
are encoded in close token sequences in terms of vector distance between their vector
embeddings. This detection method is called vector embedding lookup check. It also
implies preloading vector embeddings of observed malicious samples in the vector database
for subsequent closeness checks. But with a precise vector embedding model the sufficient
number of preloaded examples of malicious samples is significantly less than the number
of traditional signatures.

17

Another detection technique, that appeared to tackle the problem of a large field of
human language injections, is to use another language model to analyze the sample. The
secondary LLM is instructed to classify some text, provided by its clients, as either
benign prompt or prompt injection [16]. Secondary LLM is given explanations of what is
considered malicious in the system instructions to it. For better results, the developer of
this detection technique can add several few-shot examples of known malicious samples
that the model has to flag as malicious confidently. The secondary LLM can be prompted
(by the developer) to simply respond with "benign" or "injection" verdicts, or respond with
an evaluation score representing the likelihood that the evaluated prompt is an injection.
Since language models are not trained for this specific task, security practitioners have to
utilize prompt engineering to adjust the model for it. The few-shot examples of prompt
injections would be required then, and the expected evaluation scores for these examples
have to be stated by the developer of this detection technique.

Finally, prompt injections could be classified via transformer-based neural language models.
Transformer models [17] are neural networks trained to discern patterns in sequential data.
Transformers are called the latest architectures of these neural networks, which utilize
attention mechanisms and are superior to previous networks. The pre-trained transformer
models are capable of text completion, text summarization, text classification, etc. They
are further trained on labeled datasets of malicious and benign prompts to discern special
patterns of characters and words, unique for prompt injection prompts. This allows us to
classify the user prompts as either "injections" or "benign", specifically for the needs of
prompt injection detection tasks. We will call this a transformer model-based detection
technique.

18

3. Related work

The aim of this section is, first, to review the literature on techniques in security-oriented
prompt injection attacks on LLMs. Then, the defensive approaches as opposed to those
techniques are reviewed. The state of art tools - security LLM guardrails - on the market
are examined. The approaches to detection and prevention of prompt injections, used
in those tools, are categorized. Finally, related work in analyzing the effectiveness of
defensive guardrails for LLM security is reviewed.

3.1 Review of prompt-based attacks

In order to craft the attacks in our experiments we review the literature on prompt injection
and jailbreak attacks. We aim to analyze attacks, applicable to a wide range of LLM-based
applications. Several works examine the attacks which rely on vulnerabilities of AI tools
(e.g. injecting malicious code via prompt injection in [18]), or rely on specific purposes of
LLM application itself (e.g. injecting malicious SQL via prompt injection into LLM app
capable of executing SQL queries [19]). These attacks are very specific to their target LLM
applications. Moreover, some of the devised prompt injections exploit vulnerabilities in
the design of the target application - not in its LLM component. These vulnerabilities are
aforementioned excessive agency vulnerability in application, and insecure LLM-accessed
tools and services. We focus more on prompt injections, which elicit undesired behavior of
LLMs when they are used as question-answering or task-solving components of arbitrary
applications.

The majority of reviewed works and grey sources examine manually written malicious
prompts. The researchers and prompt engineering enthusiasts manually wrote the whole
prompts to the language models, rewriting them to optimize the model’s responses. For our
experiments, we need an automated way to craft all prompt injection samples. We were
going to test a large number of prompt samples, and we did not have much time to write
them manually. We achieved this via modeling injection prompts with several components.
Each prompt injection component then is generated separately, and the whole injection
prompt could be constructed from them with a particular algorithm. Generally, we generate
all variations of specific components via string combinations, and then concatenate each
variation for one component with each variation for another component and get the full
prompt.

19

Such an approach was already applied by [20]. Their attack samples are constructed from a
predetermined template with the three components of a full PI prompt. The component that
they call the "Separator" corresponds to our PI enhancements (jailbreaks and obfuscations,
see Methodology chapter). Their "Disruptor" component corresponds to the "PI objective"
in our work. They also have a "Framework" component, which acts as a seemingly benign
prefix of PI, purposed to add evasion to detections to the attack. All their three components
are concatenated to construct a full PI prompt. However, their prompts are very specific to
the application that they target. The "Framework", and "Separator" components are written
with specific instructions to an application with a specific purpose (code generation, writer,
chatbot). We can adapt this approach to the automated generation of a large number of
malicious prompts out of a small number of manually written components. However, we
would like to make these components (jailbreak and obfuscation enhancements) as generic
as possible, without connection to the type of target LLM-based application. Also, we note
the small number of utilized "Separator" component variations. More prompt injection
tactics and their example templates were enumerated by [21]. We will benefit from their
work to list more prompt injection tactics and enhancements here, which may be useful in
our experiments.

One of the key injection prompt components shall be the actual instructions aligned
with attacker’s objectives. These objectives are different for direct and indirect prompt
injection attacks. In the former ones, the attacker manipulates their own conversation
session with the agent and, hence is limited in consequences dealt to the application and
its users. We delineate the following objectives for the direct prompt injection attacks on
generic LLM applications:

■ Prompt leak [22]
■ Goal hijack (also called "System prompt hijack") [22]

A prompt leak attack, where the goal is to generate the system prompt of the application,
is always relevant for the attacker no matter the target LLM application. The system
prompt is the same for all application users and is rewarding to the attacker. Leaking
the system prompt can ease further injections in application, or can reveal application-
sensitive information. Finally, the system prompt can be an intellectual property of the
LLM application as it central part of its design. This objective was described by [23], and
[22].

[22] were also among the first to formulate it and also presented the ways to effective
construction of prompt leak attack samples. The corresponding prompt leak prompt
instructs or asks the model to respond with "what is at the beginning of its input". This

20

shall be its system prompt, which usually comes at the beginning of any input given to the
model to generate from.

An indirect prompt injection attack has consequences for the benign users of the application.
The attacker’s injection resides in retrieval text resources, which get inserted into the
context window of an arbitrary user at some point of the model executing tools to generate
the response to their prompt. Another user’s poisoned context can lead to an attacker
controlling that user’s prompting session at worst. The precise rewarding goals for the
attacker depend on the purpose of the LLM application, so we enumerate general objectives
for the attacker inside another user’s session:

■ Chat history dump with server-side request [24]
■ Persistent goal hijack [6]
■ Persistent prompt denial [6]

When conducting a chat history dump attack on another user the attacker is required to
instruct the model to transfer the generated text of the chat history. We suppose the model
in the application is capable of making web requests when responding to prompts as it
often employed functionality. This is the way, the attacker composes a two-objective
prompt: the first instruction is to dump history the same as for direct injections, and the
second instructs the model to send what was dumped to the attacker’s web address. In [24],
the prompt injection is delivered to LLM via ChatGPT Plugin. GPT chat is capable of
sending arbitrary web requests on instruction. The user instructs it to render an arbitrary
web address as a markdown image to send retrieved chat history.

Persistent goal hijack attack implies that the model executes the injected attacker’s prompt
each time the benign user prompts the model, and it does not require the model to retrieve
poisoned text resources each time - only one retrieval should be enough to hijack all
following prompts of the benign user. The same for prompt denial, which should work
by instructing the model to execute no tools or functions and fail to answer benign user’s
prompts for any new prompt.

The exemplary prompts for the attacker’s objectives listed above are unlikely to elicit
the desired generation from the model as they are. These prompts generally are rejected
on execution thanks to the simplest defensive measures and the model reasons how the
prompts do not align with the model’s initial instructions. To revert the model from
strictly following the developer instructions the attacker’s prompt can be enhanced with
the jailbreak. Now the majority of the literature uses the terms "jailbreak" and "prompt
injection" interchangeably and adds jailbreaks to prompts aimed at generating ethically

21

unsafe responses. These terms are, in fact, not the same [25]. The prompt injections
aimed at the security of LLM applications exploit the weakly separated context of data and
instructions within the user prompt. Then, the jailbreaks exploit the unexpected abilities
of the model to generate specific responses when the model was fine-tuned, or prompt-
engineered not to do so. Still, there are cases when the PI attacker needs to make the model
misbehave its system instructions similar to what jailbreaks are purposed to do. That is
why we are still inspired by successful jailbreaking techniques and list the most known
ones in our work.

[21] made an initial attempt to do systematic categorization of the types and techniques
of jailbreaking, also separating direct and indirect attacks. However, their categorization
does not separate the prompt injection objective from the prompting technique itself like
we aim to do. So we extract the independent jailbreak component from their exemplar
prompts and exemplar samples from originating papers. Then we get the list of jailbreak
techniques:

■ "Ignore previous instructions" prompt injection [22]
■ Prefix injection [26]
■ Refusal suppression [26]
■ Universal transferable suffix [27]
■ Multi-step jailbreaks [28]
■ Virtualization [29]

The aforementioned jailbreaks are not an exhaustive list of them, but they are some of
the most heard of in the literature. The majority of these function as templates in the
construction of full attack samples. An exception is the universal suffix [27] which
iteratively produces the "jailbreaking" suffix from the actual malicious prompt. This
jailbreak method proved to be very successful in comparison with manually written
templates, not to mention the automated construction.

Some works [26] show that combining different jailbreak techniques (applying their
templates in a sequence) may boost the attack success rate. However, the combinations
of jailbreaks are limited as they can interfere with each other. Such jailbreaks contain
instructions to the model, which do not combine with each other, because in the result the
model may not follow one of the jailbreaks in combination, or not follow these instructions
at all. For example, the "ignore previous instructions" will "override" any instructions, that
are preceding it in the prompt. Another example is instructing the model to do multiple
decryptions of obfuscated prompts (e.g. first decode base64, then decrypt ROT13). With
more sequential operations that the model has to perform following the instructions of each

22

jailbreak in combination, the less likely the model will respond with the correct answer.

We refer to jailbreak or obfuscation techniques interfering with each other or with the
prompt objective if, with their application to the prompt, the model fails to follow the
prompt objective at all. The model can start responding correctly less often (only one in
many retries with the same prompt elicits the correct answer), or the model’s response
follows unintended (unintended for the attacker) instructions. We call manual and auto-
mated tests aimed at filtering out such incorrect samples from a sample set the workability
tests. After workability tests, we should be left with the prompt samples, which elicit the
intended model responses for the majority of retries (generally two out of three retries of
the same prompt).

The jailbreaks are purposed to elicit the desired responses from the model in situations
where it refuses to do so. The model may refuse if it is prompted in its system instructions
or trained during fine-tuning to not respond to specific requests from the user. This
differentiates the jailbreak from the prompt injection [25] and sets the rules for the attacker
as to whether to use the jailbreak in injection attacks or not. We also filtered the jailbreaks
from related work before we grew our methodology, choosing the "related" ones for our
prompt objectives.

3.2 Evaluating defense solutions

When prompt injections and jailbreaks turned out to be a critical threat to LLM security
and safety, the protection mechanisms started to emerge. The safety problem with the
content generated by LLMs could be partly solved by controlled pre-training and fine-
tuning. The training and fine-tuning of datasets with minimized inappropriate content
could subsequently minimise the chance of LLM responding with harmful texts. However,
the more robust solutions followed the approach of analyzing and classifying the input
queries and responses of LLMs.

LLM Guard [7] is a solution of many scanners helpful to sanitize user prompts or detect
injections. LLM Guard contains a transformer model-based scanner, and LLM input-
response similarity scanner, purposed to detect prompt injection. Input-response similarity
PI detection technique was not included in our scope as it requires a large dataset of
benign prompts, needed to adjust its detection threshold. Input-response similarity scanner
works similarly to vector similarity search-based detection technique, whereas this scanner
assumes that the benign user prompts and benign model responses to them should have
close vector representations (their vector embeddings should be similar). Hence, this
scanner works by flagging the user prompt as malicious if the response to that prompt has a

23

large vector distance to the user prompt’s vector representation (the vector distance is above
the threshold). We focus on LLM Guard’s PI scanner, which uses a transformer-based
technique. The transformer model [30], which is used to classify prompt injections among
user prompts, is an open model trained on open datasets of known widespread prompt
injection samples.

Vigil [8] is a multiple-technique prompt injection detection solution. It implements a
regular expression-based technique (specifically Yara rules), vector embedding lookup-
based technique, and transformer model-based detection technique. Also, Vigil implements
canary word check functionality with two modes - one mode to detect system prompt leak,
and the second mode to detect system prompt hijack.

Rebuff [9] is an open-source prompt injection detection web application. It provides an
API for prompt injection and jailbreak detection and is continuously improved by the
community. The defense behind Rebuff consists of 4 checks: initial heuristics scan of
the prompt, classification of the prompt maliciousness by secondary LLM, check against
already-seen malicious prompts in community vector

24

4. Methodology

In order to construct the evaluation tests we systematically review the prompt injection
attack types and techniques. First, we model the prompt injection-based attack on an
arbitrary LLM-integrated application. We state the practical steps to the construction of
separate prompt attack parts, then the construction of whole attack prompts.

4.1 Sample construction workflow

We construct the prompt injection prompt samples in iterations. Process-based workflow of
selection and testing of prompt components can be seen in Figure 1. On the first iteration,
we select a prompt objective to be tested and filter out the non-working prompts out of all
generated bare prompts for this objective in its dataset. This is a workability test, which
ensures that taken prompt sample elicits the responses from the model that are intended for
the corresponding prompt objective. The prompt objective prompts contain the instructions
aligned with the objective of the attack. They are examples of certain prompt injection
tactics. In this work, we only have a prompt leak objective to be tested. The filtered bare
prompt objective prompts are subject to detection experiments too.

Starting from the second iteration we can choose to apply the jailbreak to the bare prompt
objective prompts. We aim to cover many combinations of jailbreak and obfuscations in
our experiments, so we produce samples only with obfuscation enhancements too, skipping
this iteration. To enhance the bare prompt samples with jailbreak we select one to be
applied on this iteration. We generate the enhanced prompt samples from all possible
combinations of previously filtered prompt objective prompts and all jailbreak templates
given for selected jailbreak in its dataset. The resulting prompts (enhanced with one
jailbreak for now) have to pass the next workability tests. The filtered successful enhanced
prompt samples are subject to detection experiments.

In the next iterations, we can choose to apply another jailbreak to the successful enhanced
prompts from the previous step. For this, we repeat the previous iteration for another
selected jailbreak and its templates in the dataset. Again, it is important to select and
apply the sequences of jailbreaks in a way that they do not interfere with each other. For
example, "Ignore previous instructions" jailbreak should be applied the last in the sequence
of jailbreaks. We obtain the successful enhanced with multiple jailbreaks prompt samples,
which are subject to detection experiments too.

25

After we produced successful jailbreak-enhanced prompt samples or chose to obfuscate
bare prompt objective prompts, we chose the obfuscation function to be applied to this
iteration. The obfuscation functions transform the one plain prompt sample into one
obfuscated sample, though some obfuscation functions can be non-deterministic and
produce different outputs on the same inputs to them. We conduct workability tests on
produced obfuscated prompt samples and the resultant prompts are subject to detection
experiments.

Figure 1. Prompt injection sample dataset generation

Samples for each jailbreak template, prompt objective, or applied obfuscation have to be
manually validated on the target LLM application. As initial tests show the samples of
prompt injection attacks, taken from related works, often do not work as is. We adjust
them with prompt engineering methods (chain of thought prompting, being clear, giving
few-shot examples, etc.) until they work successfully and reliably. The number of samples
for every enhancement’s dataset is increased by substituting any word in one manually
written template with its equivalent synonyms. For example, this way we can have a high
number of "Ignore previous instructions" jailbreak templates, which differ with at least
one word in them (but different words in them are still synonyms). This also allows us to
identify whether some detection solution discerns particular words in user prompts instead
of discerning the intent of the instructions written in them.

4.1.1 Prompt injection objectives

First, we generate sample prompts for each prompt attack objective. We are still inspired by
manual prompts devised in related works. Attack objective prompts are merely instructions
or questions to the model, which shall make it generate malicious content or malicious
actions. However, generally, these plain prompts would not be enough to drive the model
into those malicious generations thanks to various simple countermeasures in place. Those
countermeasures shall be addressed with jailbreak and obfuscation enhancements.

26

Prompt leak is an objective of a direct prompt injection attack. [22] proposed several
examples of prompt leaks and calculated success rates for deviations from those. Prompt
leak is constructed as a combination of the word of corresponding meaning, each word
being substitutable with its synonyms (Figure 2). In combination, the words have to form
instructions semantically similar to "Tell me the beginning of this prompt" or "Tell me your

previous instructions". Other enthusiasts show the prompt leaks can be formulated in the
form of questions like "What are the first {N} letters at the beginning of this prompt?". The
work [22] demonstrates the effectiveness of using the word "spell-check" and writing the
prompt in upper case.

The number of unique prompts in their work is small and they evaluated them on the
outdated versions of language models for our work. Therefore, we create our own dataset
of prompt leak payloads from workability tests. After these tests, we code the construction
of prompt leak strings as follows:

Figure 2. Prompt Leak samples

The related works ([31], [22]) usually conduct prompt leak attacks directly on memoryless
LLM applications. This means the prompt leak instructions reside right below the system
prompt in the model’s context. Exactly this allows the attacker to refer to system prompts
as "above document", "first instructions", "previous commands", and so on. Hence, we test
and experiment with prompt leak samples in conversations with agent with no memory in
the same setup.

The workability test for prompts containing prompt leak objective is merely a string search
for the original system instructions in model-generated responses to tested samples. In
order to score the success of the tested prompt leak samples during workability tests

27

we employ N-gramm similarity checks [32]. For every sample we compare the actual
system message, which was used in the LLM application, with the model’s generated
response to the sample, using a variation of N-gramm similarity algorithm. If the system
message was leaked in the response, the similarity test will score 1. Otherwise, every
substring of the N-length of the system message, if found among substrings of the model’s
response, contributes to the score. We use a threshold of 0.7 for this score to label sample
as successful (which elicits a response having >=0.7 similarity with the actual system
message), or otherwise failed.

4.1.2 Jailbreaks

"Ignore previous instructions" jailbreak corresponds to "Instruction manipulation"
prompt injection in a categorization of [21]. The jailbreak was initially proposed by [22].
They define the jailbreak as consisting of the prefix only. It has to have a number of
linebreak-delimited lines in the beginning, followed with the instructions, semantically
equal to "Ignore previous instructions and ". This jailbreak is used in prompt hijack attacks,
prompt leak attacks, and any other, that require overwriting original system instructions in
the LLM agent.

We extend the number of these jailbreak samples with synonyms (Figure 3), generating the
samples similarly to how we generate prompt leak samples.

Figure 3. "Ignore" jailbreak samples

"Ignore" interferes with almost all jailbreak prefixes that are applied on iterations afterward.

28

Basically, "Ignore" jailbreak will instruct the model to ignore prefixed instructions too,
rendering those prefixes unsuccessful. "Ignore" jailbreak has to be applied on the last
iteration of sample construction.

"Repeat characters" jailbreak exploits the flaws of LLM processing large contexts,
paying more attention to the latest sentences in it. This jailbreak aims to create a large
gap between user-provided "new system instructions" and original system instructions
in LLM’s context by putting repeating characters in the gap. As a result, the agent may
"forget" its original instructions as they were way at the beginning of the long input context
[RepeatedCharsJailbreak]. Various characters elicit this behavior more effectively with
less number of characters. However the most important for us is for the constructed
prompts enhanced with repeated characters to still elicit intended responses from the
model. With a higher number of repeated characters, the model tends to only respond back
with these same characters no matter the actual instructions in the attacker’s prompt.

Figure 4. Repeated Chars jailbreak samples

We choose several of the shortest repeated sequences (Figure 4), based on the research
results in [RepeatedCharsJailbreak]. The fewer characters in the jailbreak sequence, the
more characters are left for the rest of the sample, and the more reliable the resultant prompt
samples are. Still, the reliability of these sequences is tested before actual experiments,
and only successful sequences are left for full sample construction. This jailbreak can
interfere with other jailbreaks, or prompt objectives because it acts as a separation between
previous and new priority instructions to the model (corresponds to syntax "Separator" in
[20]). This means it should be applied on the last sample construction iteration, even later
than the "Ignore" jailbreak.

"Prefix Injection" jailbreak forces the model to start its response with affirmative words,

29

e.g. "Absolutely sure, here is". This turned out to be effective at diverting the model from
refusing to generate the answer that the user was asking for. When the model starts its
response with affirmation, the latter generations should contain what the user asks for.
It should be noted that at the time of this writing, this jailbreak was effectively tackled
via human feedback learning. After this additional training the model can still start its
response with "Absolutely sure, here is" but will not give the intended answer afterward.
Still, we examine whether the detection solutions are capable of detecting the usage of this
jailbreak.

Prefix injection was proposed by [26]. It is supposed to help elicit unsafe responses to
adversarial prompts from language models. The models should refuse such prompts, but
enforcing affirmative prefixes in the model’s responses can boost the success of adversarial
prompts. We use this jailbreak when the bare objective prompt is refused by the model due
to its inner restrictions.

Figure 5. Prefix Injection jailbreak samples

We use only one sample (Figure 5) of this jailbreak, inspired from [26]. We manually
check its workability and adjust its use as a template for our prompt objective prompts.

4.1.3 Obfuscations

Leetspeak obfuscation (or for short "Leet") is a character-level misspelling technique
useful for obfuscating sensitive words in prompt injections. Leet supposes substituting
letters of the English alphabet with visually similar alternatives (digits, special symbols, and
Unicode symbols), and this technique is widespread in informal texting. Prompting LLMs
with Leet does not require additional prompt engineering to work - the models "understand"
the word with substituted characters. Leet is useful for avoiding heuristics-based detections
and word-level filtering. Heuristics-based detection looks for particular words in user
prompts (for example the word "ignore" to detect "Ignore previous instructions" jailbreak)

30

and Leet changes the words without interfering with the prompt. Same goes for word-level
filtering, also called blacklisting.

Leet obfuscation was examined in [26]. Originally, Leet had several substitutions for every
letter. In [26] the authors used a limited set of these substitutions. We start from the full
substitution table [33] and manually check if some substitutions work as equivalents to
their letters when processed by the language model.

Figure 6. Leet obfuscation function

For experimentation, we leave single substitutions for several letters, which we found not
interfering with the prompt being obfuscated (Figure 6). We make the Leet obfuscation
function non-deterministic - it chooses the letters for substitution in plaintext prompt
randomly. We only adjust the maximum percent of substituted letters per word, exception
words (which should not be obfuscated at all), etc. Obfuscating too many letters breaks the
prompt (the model does not understand the obfuscated prompt), so we leave the obfuscation
percentage at low (maximum two characters substituted per word, but no more than 30%
of characters).

4.2 Target application

We conduct our manual and automated tests, and experimentation, on our own developed
LLM application, which has a functionality for listing and reading text documents. The

31

LLM application consists of two LLM agents - one with the memory of previous conversa-
tions with the user, and one memoryless. Our LLM application uses the Langchain library
to set up the agents and retrieve data from them. Both agents use OpenAI’s function calling
API to provide question-answering and task-solving features to the user. The agents use
OpenAI’s GPT-3.5 language model.

Direct prompt injection attacks, such as prompt leaks, are conducted on the memoryless
agent of our application. An agent with memory is used for attacks on sensitive data
residing in conversation history. Indirect attacks are first tested in direct prompting sessions
for workability before being used in experiments on agents with memory in indirect attack
setup.

Both agents are document chat agents. The component diagram of these agents can be
seen in Figure 7. Memoryless agent receives the User Prompt and places it into the Prompt
Template. The Prompt Template is a template of the full prompt to be sent to the model
for generations. The template has to be filled with System Message, Tooling Description,
and User prompt. Also, the Promt Template contains task-specific instructions, response
formatting instructions, Reason and Act instructions (if necessary for the model used), etc.
We use the LangChain library which provides the complete templates for various types
of agents (in our case we used the OpenAI function calling agent). We only provide our
own System Message to the LangChain template, as well as use the LangChain library
to generate the descriptions of the tools used by our agent and add them to the template
too. The tools are ListDocuments (list document names), ReadDocument (respond with
the contents of the document given its name), and SaveMessage (save the user-provided
message as a new document). Every User Prompt is added to the Prompt Template, the
full prompt then is sent to the model for generation. The model can either respond with
a finished answer or respond with the formatted request to execute one of the tools. The
model provides the name of the tool, and the parameters to it. The application then executes
these tools with given parameters and resends the full prompt with appended tools results
to it and awaits the model’s response. The model should eventually give a final answer,
based on what was provided in the User Prompt and subsequent results of tool executions.

An agent with memory has an additional field in Prompt Template - Memory Buffer.
The Memory Buffer is created from concatenated pairs of user prompts and respective
model’s responses, added after each model completion. The Memory Buffer goes between
System Instructions and User Prompt in the Prompt Template. Regarding else functions
memoryless and agent with memory share the construction of Prompt template, the same
Tools and the Documents. Other components are shared for memoryless agent and agent
with memory.

32

Figure 7. Document chat agent design

In Figure 8 the System message, used to instruct both agents, can be seen. The system
message defines the purpose and the capabilities of the agent and is placed at the beginning
of the Prompt template. During prompt leak attacks, we aim to leak this exact system
message in responses from the agent. The Tooling description consists of documentation
for respective Tools, and it goes after System message in the Prompt template. As a result,
some prompt leak attacks are able to leak Tooling description in addition to the System

message.

Figure 8. System message for the agents

Importantly, our LLM application supports log-based detection, which is to be used with

33

prompt injection detector solutions. The application produces the logs of user prompts,
intermediate thoughts and results, produced by the model, and the final model’s response.
Logs of intermediate results are required to detect indirect prompt injections. The logs
of user prompts and the model’s responses are used to detect direct prompt injections.
Precisely, user prompts and model responses are passed to prompt injection detectors. The
source code for this application can be found on GitHub [34].

4.3 Sample dataset creation

Following our automated prompt injection construction flow we construct several classes
of prompt injection samples. First, we generate bare_promptleak samples (see Table 1).
The number of bare prompt leak samples is reasoned by the number of various synonyms
that we used in these prompts(see prompt leak samples generation in Figure 2).

Table 1. Prompt Injection sample classes

Prompt Injection sample class Number of successful samples
bare_promptleak 320

promptleak_pi 170

promptleak_leet 60

promptleak_repeatchar 531

promptleak_ignore 1000

promptleak_ignore_repeatchar 1000

promptleak_ignore_leet 1000

promptleak_ignore_leet_repeatchar 1000

Total 5081

To optimize the process of construction of samples for experiments we test them in
iterations. We only use successful samples for subsequent attack-enhancing iterations.
Additionally, where the number of samples to be verified is over 1000 we limit it there.
The successful prompt objective prompts are used to construct enhanced PI samples - PI
sample classes.

promptleak_pi are prompt leak samples enhanced with prefix injection jailbreak. We only
had one variation of the prefix injection template, and after workability tests the number of
successful samples dropped compared to the number of successful samples for the bare
prompt leak (Table 1).

promptleak_leet are prompt leak samples obfuscated with leet. We only obfuscated the

34

320 samples of bare prompt leaks and only 60 successful ones passed the workability tests.

promptleak_repeatchar are prompt leak samples enhanced with repeated characters
jailbreak.

promptleak_ignore are prompt leak samples enhanced with "ignore" jailbreak. Then we
went into combining the enhancements for prompt samples containing "ignore" jailbreak.

promptleak_ignore_repeatchar are prompt leak samples enhanced with "ignore" jailbreak
and then enhanced with repeated characters jailbreak. Here the "ignore" jailbreak part of
the full promptleak_ignore_repeatchar sample stays in plaintext (unobfuscated).

promptleak_ignore_leet are prompt leak samples enhanced with "ignore" jailbreak and
then obfuscated with leet. Here both the prompt leak’s prompt obejctive part an the
"ignore" jailbreak part of the full promptleak_ignore_leet sample became obfuscated.

promptleak_ignore_leet_repeatchar are prompt leak samples enhanced with "ignore"
jailbreak, then obfuscated with leet, and then enhanced with repeated characters jailbreak.
Prompt leak’s prompt obejctive part an the "ignore" jailbreak part of the full sample are
obfuscated, and the prompt contains numerous repeated characters in the beginning.

Finally, we prepare our own dataset of 50 benign prompts. These prompts are relevant for
the agents in our LLM application. These prompts are the most spread instructions and
questions to document chat agent and also refer to specific agent tools of our application.

4.4 Experiments

We set up three applications for the experimentation. One application uses an LLM
Guard prompt injection scanner on logs, produced by its agents. The second one uses
Vigil scanners - Yara-based scanner, transformer scanner, vector database scanner, and
canary word checker - on produced agent logs. The third application uses Rebuff scanners:
heuristics scanner, vector store scanner, secondary model scanner, and a canary word
checker.

LLM Guard [7] provides a large number of different purpose scanners. The scanners
are divided into two categories - input scanners (which analyze user prompts exclusively)
and output scanners (which analyze the pairs of user prompts and model responses). The
scanners are scattered in their purpose and potential use cases, LLM-Guard can be called
a "Swiss Army knife" for an LLM-integrated system. We use LLm Guard version 0.3.9

35

through all our experiments.

The output scanners are to be used to correct model-generated content to improve user
experience, enforce certain policies of formatting on these generations, etc. No output
scanner is explicitly purposed to detect prompt injections or jailbreaks. Then, the input
scanners contain a prompt injection scanner. In our experiments, we only use this specific
scanner. We acknowledge that many input scanners, and some output scanners, would
be useful in detecting specific prompt injection attack scenarios, e.g. BanCode scanner
may tackle code-based injections in user prompts, InvisibleText scanner may tackle hidden
prompt injections, etc. Still, we aim to test the usefulness of the scanner, which must detect
prompt injection or jailbreak attacks in general attack scenarios.

Prompt injection scanner works by processing the user prompts via transformer model
[30] (HuggingFace hub link to it is protectai/deberta-v3-base-prompt-injection), which
classifies prompts as benign or injections. The model generates the detection score, and
we choose a threshold of 0.5 for this score, following the recommended usage for this
scanner at [7]. The detection score is generated for a given user prompt as a whole (without
splitting into chunks). In our application, we label a user prompt as detected or undetected
based solely on the detection results of this one scanner (comparing the generated detection
score with the threshold).

LLM Guard can be used as a software library. In experiments with detections of PI sample
classes with LLM Guard we add the processing of user prompts with LLM Guard library
functions into our application’ implementation. LLM Guard processes the user prompts
without interference with the LLM application’s functions.

Vigil [8] provides four detection functions, and we use all of them. Vigil, at the time of
this writing, is still in alpha state. Still, Vigil is a prominent prompt injection detection
software on the open-source market, which implements a unique combination of prompt
injection detection techniques. We use Vigil 0.8.7 version through all our experiments.

The first detection technique is a Yara rules-based user prompt scan. Yara is a flexible
format for writing complex regex signatures. Vigil comes with preloaded regex signa-
tures of known prompt injections. These injections include "ignore" jailbreak-enhanced
injections (called "instruction bypass" by Vigil), ChatML-based injections [35] (called
"system instructions" by Vigil), image markdown-based injections [24], and several others.
Also, there are Yara rules for detecting sensitive data in prompts or detecting user attempts
to leak sensitive data. The Yara-based scan generates the list of the rules, which match
against the examined user prompt. So if the user prompt matches at least one Yara rule

36

from Vigil’s arsenal, this scan fires an alarm.

The second detection technique is a transformer model-based user prompt scan. It works
the same as the prompt injection scanner in LLM Guard. The usage recommendations sug-
gest using either deepset/deberta-v3-base-injection or protectai/deberta-v3-base-prompt-

injection model [30]. We configure Vigil to use the latter one by default, which is the same
model used in LLM Guard. We use a threshold of 0.98 for detection scores, which is a
default and recommended threshold value. The detection score greater or equal to the
threshold fires an alarm for this scan.

The third detection technique is a vector embedding lookup for user prompts. Vigil
provides the means to create a local vector embedding store (uses ChromaDB vector
store) of labeled prompt injections. Then, the scan works by searching the nearest vectors
in this vector store with the vector distance to the embedding of the user prompt being
less than the threshold value. The vector distance is calculated via the cosine distance
algorithm, and the less distance means a match for this scanner. The match appears if
there is at least one vector in the database with the vector distance to the sample being
less than the threshold. The default threshold value is 0.4, but we set it less (at 0.2) for
the initial experiments. That is because the manual tests of the scanner showed that the
vector distance of 0.4 is too big, which results in too many false alarms. We preload the
vector store with the recommended labeled datasets of known prompt injection prompts:
deadbits/vigil-instruction-bypass-ada-002 and deadbits/vigil-jailbreak-ada-002. These
datasets contain the texts of malicious prompts and their vector embeddings.

The final detection technique is a canary word check. Vigil provides two operating modes
for this check, which function differently. In both modes, the canary word is a randomly
generated hex string enclosed in fixed special characters. It is generated anew for every
conversation session between the user and the agent. In prompt leak mode, this canary
word is prefixed to the system message before the prompt template is created (Figure 7)
and sent to the model. Then, if the canary word appears in the model’s response, the canary
check scan fires an alarm, as the user’s prompt is likely to be a prompt leak attack. In goal
hijack mode, the canary word is prefixed to the system message along with the instructions
to the model to always put the canary word in its responses. Then, if the canary word does
not appear in the model’s response, the canary word check fires an alarm as the user’s
prompt is likely to be a goal hijack attack (which overwrote the instructions to put the
canary word in the response for the model). We only use canary check in prompt leak
mode (particularly for our prompt leak attacks). We leave default configuration values for
it: 16 characters long canary word, default canary word enclosing characters.

37

The vendors of Vigil recommend flagging the user’s prompt as malicious only if several
different scans detect it as malicious as distinct scanners may produce false alarms. Vigil,
by default, raises an alarm if all three scanners (Yara, transformer, and vectordb) fire alarms
at the same time. Vigil allows then to update its vector store, used in vector embedding
lookup scan, with the detected user prompt to extend future detections. We turned off this
function so it would not interfere with the results of our experiments.

Vigil can be used as a software library too. We compiled the released Vigil 0.8.7 version
of the source code into a Python package and used the Vigil library inside our application
instance. The repository of Vigil’s source code is still used by the Yara-based check (the
repository contains files with Yara rules to be used in this check).

Rebuff [9] provides four detection techniques similarly to Vigil. Rebuff, at the time of this
writing, is in alpha state. But Rebuff also implements a unique combination of detection
techniques, which we deem worth analyzing. We use Rebuff 0.1.1 Python SDK through
all our experiments.

The first Rebuff’s detection technique is a heuristics scan. This scan employs running
substring matches for the user’s prompt and preloaded malicious prompt substrings. The
preloaded known malicious prompts are mostly "ignore" jailbreak classes. The search
for matching substrings in the user’s prompt with these substrings of known malicious
prompts produces a match score. The match score has to be greater than the threshold for
the heuristics score. We leave this threshold at a default value of 0.75.

The second Rebuff’s detection technique is a vector embedding lookup scan. It works
similarly to the Vigil’s vectordb detection. In difference to Vigil, Rebuff uses a cosine
similarity algorithm and uses Pinecone [36] vector store. The score for this scanner is
the highest cosine similarity value among found 20 nearest vectors in the store for a
given vector. Cosine distance score in Vigil and cosine similarity in Rebuff are related
by a formula: cosine_distance ≈ 1 − cosine_similarity. Rebuff does not suggest the
datasets with known prompt injections to be loaded into its vector store, so we load it
with the same data as we did for Vigil (deadbits/vigil-instruction-bypass-ada-002 and
deadbits/vigil-jailbreak-ada-002). We leave the default threshold for detection scores of
this scan - the threshold value is 0.9.

The third Rebuff’s detection technique is a secondary model scan. Currently, Rebuff uses
OpenAI’s language model (GPT-3.5) and instructs it to generate the maliciousness score
for the user’s prompt. This scan instructs the model using prompt engineering methods
(system message, few-shot examples, response formatting instructions, etc.). The actual

38

prompt template used by this scan can be seen in Figure 9. The user prompt under this scan
is put into this template in the place of {user_input} string. The detection score for this
scan is then taken from the response from the model. The model is instructed to generate
a normalized detection score, which is then compared with the threshold. We leave the
threshold for this score at a default value of 0.9.

Along our preliminary experiments, we found out that for some samples model check
throws an exception on the Rebuff detection server due to lack of error escaping in its
source code. The reason is that the model, which is prompted to classify the user’s
prompt, responds with an arbitrary string instead of a floating point number representing
the classification score. Rebuff throws an error when the code attempts to parse the string
into a floating point number. In these situations, we set the model check score at zero by
default.

Figure 9. Prompt template used by Rebuff model scan

The final Rebuff’s detection score is a canary check. Rebuff only provides canary check
functionality equal to Vigil’s prompt leak mode canary check. Rebuff, by default, uses 8
characters long canary words, and some enclosing special characters. We use these default
values for the canary word check. In distinction to Vigil, Rebuff allows to change the
format of the canary word header, which is prefixed to the system message. Also, Rebuff
allows to update its vector store with the user prompts, on which the canary word leak was
detected. We turn off this functionality on experimentation so it does not interfere with the
results.

Rebuff can be used as a software library like both previous solutions. Due to technical

39

issues with the releases of Rebuff available at the time of this writing, we compiled
Rebuff’s software library from source code and developed a separate server to host the
detection functions of Rebuff. The code for this separate server can also be found under
our repository at [34].

Taking the generated samples in the prompt injection sample class (Table 1) we run them
against the same application but configured with LLM-Guard detections. Then run all
samples on the application with configured Vigil detections, and then on the application
configured to process the user prompts via Rebuff detections on a separate server. For
each distinct scanner, we calculate the detection rates produced on each prompt injection
sample class.

40

5. Results

We present the results of our experiments on target LLM applications. For each PI attack
class, we note the true positive rates produced by separate detection techniques. Then, we
analyze the precision, accuracy, and f1 score performance metrics for separate detection
techniques over all PI ample classes at once. For some detection techniques, we present
their performance results both with default settings and with our proposed improvement.
Finally, we analyze the detection rates of detection solutions as a whole, considering the
best produced results (either with default settings or improved by us).

5.1 Experiments with defaults

We ran detection tests with each scanner from each detection solution on every prompt
injection attack class that we generated. In this section, we present the results for the
scanners, which we only ran with their default settings. We leave the threshold values,
used models, and other configurable values of these certain scanners at default values
(recommended or set as default by detection solution vendors). The results for other
scanners, which we ran both with default configurations and with our improvements, are
presented in the next section. We compare detection rates for different prompt injection
attack classes for a particular scanner type. This way we conclude how particular jailbreaks
or obfuscations affect detections for this scanner type. Then we compare total detection
metrics between different scanner types.

In Table 2 there are true positive rates (TPR or recall, it is the ratio between the number of
correctly identified malicious samples by detection technique and the number of malicious
samples in the sample class), produced by LLM Guard’s single transformer-based input
scanner. We did not optimize its configurable threshold, because the detection scores for
benign and malicious samples extremely rarely differed from 0 or 1. LLM Guard does not
allow configuring the transformer model that it uses for detection, so this scanner persists
in using protectai/deberta-v3-base-prompt-injection [30].

The metrics in Table 2 show that this model performs at maximum on samples contain-
ing plain (unobfuscated) ignore jailbreak. Prompt leaks enhanced with ignore_leet and
pi (prefix injection) were also detected in the majority. The enhancement repeatchar

negatively affected the detection scores. We can see this for promptleak_repeatchar and
promptleak_ignore_leet_repeatchar. We could assume that the cause for this is that the

41

LLM Guard’s PI scanner was sensitive to the length of evaluated prompts, and it could fail
on rather long prompts. By default, LLM Guard’s PI scanner evaluates the user prompts
as full but optionally can evaluate splits, sentences, or chunks of user prompts. We did
not try evaluations due to research duration consideration. Larger prompts may produce
worse detection results if the scanner is set on full string processing, so the engineer should
set it to use splits-based processing or sentence-based processing. However, the TPRs for
promptleak_ignore_repeatchar class are still detected by the scanner at fullest, because
they contain unobfuscated ignore parts, which are greatly detected by this scanner’s model.

Table 2. Detection metrics with LLM Guard input scanner

Prompt Injection sample class
PI scanner (LLM Guard)

TPR

bare_promptleak 0.4531

promptleak_pi 0.7353

promptleak_leet 0.6000

promptleak_repeatchar 0.0056

promptleak_ignore 1.0000

promptleak_ignore_repeatchar 0.9990

promptleak_ignore_leet 0.7210

promptleak_ignore_leet_repeatchar 0.5190

In total (table 3), the LLM Guard input scanner generates a significantly low number
of false positives but is low on true positives rate on many sample classes. The classes
detected by this scanner specifically contain ignore or pi, but leet and repeatchar decrease
detection rates notably. We expected this as there were limitations in training datasets used
for this model - they did not contain examples of the latter two enhancements.

Table 3. Total detection metrics with LLM Guard input scanner

Prompt Injection sample class
PI scanner (LLM Guard)

Precision Accuracy F1 Score

Total 0.9997 0.7010 0.8222

In table 4 we have the detection metrics produced by Vigil’s Yara rules-based input scanner.
It performs as expected, based on the descriptions of the rules in Vigil’s documentation.
The scanner is exclusively purposed to detect plain ignore jailbreak-containing samples.
The scanner is completely avoided with leet obfuscation then.

42

Table 4. Detection metrics with Vigil’s Yara scanner

Prompt Injection sample class
Yara scanner (Vigil)

TPR

bare_promptleak 0.0000

promptleak_pi 0.0000

promptleak_leet 0.0000

promptleak_repeatchar 0.0000

promptleak_ignore 1.0000

promptleak_ignore_repeatchar 1.0000

promptleak_ignore_leet 0.0000

promptleak_ignore_leet_repeatchar 0.0000

Table 5. Total detection metrics with Vigil’s Yara scanner

Prompt Injection sample class
Yara scanner (Vigil)

Precision Accuracy F1 Score

Total 1.0000 0.3995 0.5649

In table 6 we have the detection metrics produced by Rebuff’s heuristics input scanner.
Similarly to Vigil’s Yara-based scanner this scanner is limited to plaintext ignore jailbreak
and is completely avoided with word-level or character-level obfuscations like leet.

Table 6. Detection metrics with Rebuff’s Heuristics input scanner

Prompt Injection sample class
Heuristics scanner (Rebuff)

TPR

bare_promptleak 0.0000

promptleak_pi 0.0000

promptleak_leet 0.0000

promptleak_repeatchar 0.0000

promptleak_ignore 1.0000

promptleak_ignore_repeatchar 1.0000

promptleak_ignore_leet 0.0000

promptleak_ignore_leet_repeatchar 0.0000

43

Table 7. Total detection metrics with Rebuff’s Heuristics input scanner

Prompt Injection sample class
Heuristics scanner (Rebuff)
Precision Accuracy F1 Score

Total 1.0000 0.3995 0.5649

In table 8 there are detection metrics produced by Rebuff’s model check input scanner.
We did not optimize this scanner via configurable values, because the threshold for it is
defined in this scanner’s prompt template to secondary language model (GPT-3.5) (figure
9) - in the system instructions and few-shot examples to it.

Importantly, this check produced the most false positives compared to any other scanner.
At the same time, it generally performs better than any other scanner over almost any
injection sample class. The exception is promptleak_pi - this is the class that elicits the
program exceptions in Rebuff, which we mention in the description of Rebuff in the
previous chapter. The prompts that were successful in crashing Rebuff due to this error
were scores zero by this check, and the number of such samples is rather high.

Interestingly, leet obfuscation should not interfere with detection rates by this check as
the language models are successful in "interpreting" the misspelled words in prompts.
However, we could see that the results for promptleak_ignore_leet are much lower than
other classes containing ignore. The detection scores in produced false negative samples
from this class, in a majority, are right below the threshold. The threshold value should not
be blamed here because the FPR is already high enough. We assume the evaluations for
leet-obfuscated prompts have to be improved by adding few-shot examples of them in the
prompt template of this scanner.

Table 8. Detection metrics with Rebuff’s Model input scanner

Prompt Injection sample class
Model check scanner (Rebuff)

TPR

bare_promptleak 0.8406

promptleak_pi 0.0353

promptleak_leet 0.7000

promptleak_repeatchar 0.9379

promptleak_ignore 0.9050

promptleak_ignore_repeatchar 0.9890

promptleak_ignore_leet 0.8120

Continues...

44

Table 8 – Continues...

Prompt Injection sample class
Model check scanner (Rebuff)

TPR

promptleak_ignore_leet_repeatchar 0.9630

The total detection results (table 9) show that the model check has an optimal trade-off
between true negatives and true positives. We admit that the number of negatives (benign
samples, genuine user prompts) was extremely low in comparison with the number of
automatically generated malicious samples. This imbalance in negative and positive
sets may imply that for real-world environments the f1 scores may be less than in our
experiments. Further, we identified another issue with the implementation of the model
check, which undermines the produced detection metrics even further. We discuss this
issue in the next (Discussion) chapter.

Table 9. Total detection metrics with Rebuff’s Model input scanner

Prompt Injection sample class
Model check scanner (Rebuff)
Precision Accuracy F1 Score

Total 0.9951 0.8794 0.9354

5.2 Experiments with modified values

Given the detection scores obtained on the initial experiment (with all default configurable
values on all scanners) we adjust them for better performance. We chose to optimize the
thresholds on sets of benign and promptleak_ignore samples. The promptleak_ignore was
the prompt injection and jailbreak class that the security analysts were the most aware
of. Hence, all the tools here are especially successful in detecting this class, or they
are supposed to be by design and implementation. Hence, we seek the thresholds that
maximize the detection in the tools and suppose that the produced threshold value was
supposed to be.

For Vigil, we modify vectordb scanner’s threshold, optimizing its TPR on promptleak_-

ignore samples. Vectordb scanner generates the scores (vector distances) of 0.1695 and
less for promptleak_ignore samples. Then, the lowest score generated for benign samples
is 0.1742. We set the threshold at 0.17 to optimize detection performance on promptleak_-

ignore samples, and so we got zero FPR too. The threshold was chosen solely based on
the maximum score of malicious samples here, and later we compare this choice with
calculating the mean threshold instead (how we do this for Rebuff’s vectordb check). The

45

results (table 10) show the overall decrease in detections for this scanner.

We were concerned with the default set threshold for vector distance as it generated false
alarms on benign prompts (including other benign prompts in our manual experiments).
The vectordb scanner looks up the closest vector for a given user prompt and the found
closest prompt also represents the PI class that the evaluated prompt belongs to. The
manual experiments showed that vectordb scanner looks up incorrect similar classes of PIs.
The datasets of embeddings that we loaded consist only of "ignore" jailbreak variations and
"virtualization" jailbreaks, so we did not expect this scanner to correctly classify anything
else. We used the modified threshold and the results produced with it when analyzing the
performance of Vigil as a whole.

The results show that PI classes containing ignore enhancement, which were supposed
to be detected via this vector distance check, became less and less detected. The other
enhancements - leet, repeatchar - affected the true positives on this scanner with each
iterated enhancement. We expected that vector distance check detects leet obfuscated
jailbreaks, even if there are only unobfuscated samples loaded in the embedding database.
Additionally, there were prompts in tested samples (any PI class enhanced with repeatchar)
set, which are significantly longer than any prompt in vector embedding database, so the
vector distance check performed worse on these PI classes.

Table 10. Detection metrics with Vigil’s VectorDB input scanner

Prompt Injection sample class
VectorDB scanner (Vigil)
default modified

TPR TPR

bare_promptleak 0.9969 0.8625

promptleak_pi 1.0000 0.8412

promptleak_leet 1.0000 0.4833

promptleak_repeatchar 0.7439 0.4991

promptleak_ignore 1.0000 1.0000

promptleak_ignore_repeatchar 1.0000 0.9810

promptleak_ignore_leet 0.9990 0.8070

promptleak_ignore_leet_repeatchar 0.9760 0.6420

Overall we assume that this scanner is mostly supposed to detect only pre-loaded classes
of PI. The obfuscations (leet) and jailbreaks (repeatchar, prefix injection), which were not
present in the vector store, affect the detections negatively, though slightly. Vigil’s authors
are more aware of false positives on this scanner though. The recommendation is to not

46

rely on this scanner exclusively but in combination with transformer-based scanner. This
may contradict the purpose of this scanner as a transformer-based technique should be able
to occasionally detect before unseen PIs.

Table 11. Total detection metrics with Vigil’s VectorDB input scanner

Prompt
Injection sample
class

VectorDB scanner (Vigil)
default modified

Precision Accuracy F1 Score Precision Accuracy F1 Score

Total 0.9986 0.9671 0.9831 1.0000 0.8172 0.8983

We modified the Vigil transformer scanner with a different transformer model to use. We
utilized the new better (further trained) version of the default model - protectai/deberta-

v3-base-prompt-injection-v2 [37]. This model was opened for access very recently, and
it showed overwhelmingly better results (table 12) than the predecessor. The model was
successful at detecting every constructed PI class, while its produced false positive rates
are only slightly higher (table 13). The training dataset for this new model was extended
and improved and the authors of this model focused on injections in English. The larger
pool of known PIs that was used to train the new model allows it to identify the jailbreaks
used in our experiments. We mainly use very popular jailbreaks, so they were included in
the latest training datasets, we suppose.

Table 12. Detection metrics with Vigil’s Transformer input scanner

Prompt Injection sample class
Transformer scanner (Vigil)
default modified

TPR TPR

bare_promptleak 0.4531 1.0000

promptleak_pi 0.7353 1.0000

promptleak_leet 0.6000 0.9833

promptleak_repeatchar 0.0056 1.0000

promptleak_ignore 1.0000 1.0000

promptleak_ignore_repeatchar 0.9990 1.0000

promptleak_ignore_leet 0.7210 0.9930

promptleak_ignore_leet_repeatchar 0.5190 1.0000

47

Table 13. Total detection metrics with Vigil’s Transformer input scanner

Prompt
Injection sample
class

Transformer scanner (Vigil)
default modified

Precision Accuracy F1 Score Precision Accuracy F1 Score

Total 0.9997 0.7010 0.8222 0.9992 0.9977 0.9988

We modified Vigil’s canary word check implementation after we obtained the results
of experiments with defaults. The results (table 14) have shown the canary check does
not work correctly with prompt leaks in our PI classes. The default implementation
works by prefixing the system instructions, which are protected from leakage, with the
canary word. Our modified implementation works by placing the canary word within the
system instructions, specifically between the second and the third sentences. However,
the detection results for both implementations then turned out to be zero. We discuss the
potential causes for this in the Discussion chapter.

Table 14. Detection metrics with Vigil’s Canary word check

Prompt Injection sample class
Canary word check (Vigil)
default modified

TPR TPR

bare_promptleak 0.0000 0.0000

promptleak_pi 0.0000 0.0000

promptleak_leet 0.0000 0.0000

promptleak_repeatchar 0.0000 0.0000

promptleak_ignore 0.0000 0.0000

promptleak_ignore_repeatchar 0.0000 0.0000

promptleak_ignore_leet 0.0000 0.0013

promptleak_ignore_leet_repeatchar 0.0000 0.0023

Table 15. Total detection metrics with Vigil’s Canary word check

Prompt
Injection sample
class

Canary word check (Vigil)
default modified

Precision Accuracy F1 Score Precision Accuracy F1 Score

Total 0.0000 0.0101 0.0000 1.0000 0.0120 0.0014

We modified the vectordb scanner’s threshold in Rebuff. The problem was that the scanner
did not detect any of our samples as the default threshold was too high. We optimized it on

48

benign samples and samples of promptleak_ignore, but in difference to Vigil, we used a
mean average of bound scores for benign and malicious samples. On benign samples, the
maximum vectordb scanner score was 0.823, while on promptleak_ignore samples it was
0.839 at minimum. We set the threshold at mean of these two values - 0.831.

In table 16 we observe similar detection rates as for Vigil’s vectordb scanner. The new
threshold makes no FPR either, but in difference to Vigil’s modified vectordb the TPRs are
higher.

Table 16. Detection metrics with Rebuff’s VectorDB input scanner

Prompt Injection sample class
VectorDB scanner (Rebuff)
default modified

TPR TPR

bare_promptleak 0.0000 0.9656

promptleak_pi 0.0000 0.4353

promptleak_leet 0.0000 0.5833

promptleak_repeatchar 0.0000 0.5141

promptleak_ignore 0.0000 1.0000

promptleak_ignore_repeatchar 0.0000 0.9900

promptleak_ignore_leet 0.0000 0.8350

promptleak_ignore_leet_repeatchar 0.0000 0.7070

Table 17. Total detection metrics with Rebuff’s VectorDB input scanner

Prompt
Injection sample
class

VectorDB scanner (Rebuff)
default modified

Precision Accuracy F1 Score Precision Accuracy F1 Score

Total 0.0000 0.0097 0.0000 1.0000 0.8328 0.9078

Same as for Vigil, we modified Rebuff’s canary word check implementation as the default
one (which is mostly the same as in Vigil). The new canary check in Rebuff placed the
canary word inside the system instructions. Surprisingly, Rebuff’s modified canary word
produced many more detections now. We discuss the causes for this in the Discussion chap-
ter. Still, the true positive rates are low for this detection technique, which is specifically
purposed to detect prompt leak attacks. In not-included tests of canary word checks, where
we did not use the enclosing characters for canary word, we did not observe better detection
rates either. The canary word as a detection technique did not succeed in detecting our
attacks no matter how we tuned it.

49

Table 18. Detection metrics with Rebuff’s Canary word check

Prompt Injection sample class
Canary word check (Rebuff)
default modified

TPR TPR

bare_promptleak 0.0000 0.4324

promptleak_pi 0.0059 0.8387

promptleak_leet 0.0000 0.3000

promptleak_repeatchar 0.0000 0.5583

promptleak_ignore 0.0000 0.5645

promptleak_ignore_repeatchar 0.0000 0.8422

promptleak_ignore_leet 0.0000 0.2074

promptleak_ignore_leet_repeatchar 0.0000 0.4180

Table 19. Total detection metrics with Rebuff’s Canary word check

Prompt
Injection sample
class

Canary word check (Rebuff)
default modified

Precision Accuracy F1 Score Precision Accuracy F1 Score

Total 1.0000 0.0101 0.0004 1.0000 0.5291 0.6877

5.3 Total results for detection solutions

We calculate total detection metrics over all scanners of a particular detection solution.
These are LLM Guard (1 scanner), Vigil (4 scanners), and Rebuff (4 scanners). We
calculate total metrics following the recommended detection policies of these solutions.
For LLM Guard this is trivial as we only ran its single scanner. For Vigil, the rule is to fire
an alarm on prompt injection if the two input scanners, which are prone to false positives
(transformer-based and vectordb-based), detect it simultaneously, or if at least one other
check detects (yara-based or canary check). For Rebuff, the vendors suggest firing an
alarm if at least one of the scanners (all input ones and the canary check) detected user
prompt as an injection. Rebuff’s vendors suggest different scanners complement detection
capabilities of each other.

50

Table 20. Detection metrics over sample classes for detection solutions as whole

Prompt Injection sample class
LLM Guard Vigil Rebuff

TPR TPR TPR

bare_promptleak 0.4531 0.8625 0.9906

promptleak_pi 0.7353 0.8412 0.8765

promptleak_leet 0.6000 0.5000 0.8833

promptleak_repeatchar 0.0056 0.4991 0.9831

promptleak_ignore 1.0000 1.0000 1.0000

promptleak_ignore_repeatchar 0.9990 1.0000 1.0000

promptleak_ignore_leet 0.7210 0.8080 0.9740

promptleak_ignore_leet_repeatchar 0.5190 0.6420 0.9960

Table 21. Total detection metrics of detection solutions

Detection solution
Total PI samples

FPR Precision Accuracy F1 Score
LLM Guard 0.02 0.9997 0.7010 0.8222

Vigil 0.0000 1.0000 0.8213 0.9008

Rebuff 0.4400 0.9956 0.9821 0.9909

In table 20 we can see that Rebuff performs better than LLM Guard or Vigil on any PI
class and has the highest accuracy and f1 score (see Table 21). This is explained by how
Rebuff calculates detection verdicts (if any its scanner fired), combined with how less
benign samples we had to obtain Rebuff’s FPR with such a detection policy.

If comparing LLM Guard and Vigil (table 20) we expected the latter to be superior in
every PI class. Vigil’s transformer was superior to LLM Guard’s PI scanner in detection
results, Vigil’s Yara scanner supported full detection of ignore-enhanced classes, etc. But,
for example, on promptleak_leet LLM Guard was superior. This is caused by Vigil’s
vectordb check, which fired a false negative on some samples of this class, whereas the
transformer-based check fired a true positive. Vigil’s detection policy causes this drop
in detections, and we argue that vectordb check should be used this way in the detection
policy. The latest version of LLM Guard, deployed while we wrote this thesis, uses
the same transformer model as we used in modified Vigil’s transformer scanner. This
means now the detection rates of LLM Guard with this new model are higher than Vigil’s
(compare values for modified scanner in Table 12, and values for Vigil in Table 21). Again,
because of Vigil’s detection policy, but in difference to Rebuff, the new transformer model
produces a very low number of false positives in exchange for high detection rates.

51

The results for PI classes show that we were successful at constructing enhanced PI samples,
which became more and more successful at evading detection techniques in examined
solutions. The samples of promptleak_ignore_leet_repeatchar represent the most usable
PI class by attackers as they combine evasion obfuscation and jailbreak, as well as the goal
hijack instructions. The evasions applied in these samples still succeed as we can see from
the detection results (table 20). The results are lower than for the samples without evasions.
An exception is the new transformer in the modified Vigil detects the samples no matter
the evasion that we used. The offensive-defensive race in the prompt injection problem has
advanced while we wrote this thesis, specifically by incorporating the widely used evasion
into the training datasets.

We assume that the use of detection techniques within the policies should be revisited in
both Vigil and Rebuff. We could see that vectordb scanners could be optimized for zero
FPR with the thresholds. The better approach was the mean average on boundaries, but
also we could optimize it over all PI classes that we constructed. Not all our PI classes
have representing vectors pre-loaded in the vector store, so the optimized threshold cannot
produce absolute detection.

In the serious deployment of vectordb scanner we would recommend optimizing the
threshold on a high number of benign samples and on a subset of PI classes present in
vector store. For example, where the granular datasets are limited to one PI class or
jailbreak type, the vector store could be loaded with 75% of the dataset and threshold
optimized for the remaining 25%. This is in order to harden the vectordb scanner to rarely
fire a false alarm, and reliably detect the malicious samples belonging to PI classes and
jailbreak types present in the vector stores. The vector stores hence should be pre-loaded
with as many varied PI classes as possible. From our results, we see that vector stores
had to be pre-loaded with examples of leet-obfuscated samples and repeatchar-enhanced
samples to adequately perform on those. We suppose that vectordb scanner then could
be used exclusively and it could solely detect the PI samples, which classes appear in the
vector store, and do it reliably (with minimum false positives).

The transformer-based and language model-based (alias secondary model-based, or model
check) techniques then are supposed to also detect more classes of PIs than there were
present in their training, or in their few-shot examples correspondingly. The transformer-
based technique uses the transformer model which "learns" the distinguishing patterns
of the prompts it has been trained on. Hence, whenever these patterns are present in the
prompts, which were not included in the training datasets, the model will still classify
them as injections. Similarly, the secondary model-based technique uses a large language
model as an evaluator and prompts it to classify the prompts that have a special intent (for

52

example the prompts that "ask to ignore the previous instructions" - see Figure 9). The
developer also provides examples of such prompts in the few-shot examples it, but the
language model will be able to identify a larger set of the prompts, based on their intent.
These techniques (transformer-based and secondary model-based) then should be used
carefully in conjunction to avoid false positives.

53

6. Discussion

Along our experiments, we identified the problems in the implementations of some of the
detection techniques in examined detection solutions. We also gained an understanding of
the root causes of the attacks that we employ in our tests. We discuss our findings in this
chapter.

6.1 Weakness in Rebuff’s model check input scan

In Rebuff the model check scan is prone to injection on its own. As the model check
utilizes the second large language model to evaluate the prompts, given to the primary one,
some prompt injections may affect this second model too. This was already encountered by
us on tests with promptleak_ignore samples, which made the model check output arbitrary
strings instead of detection scores. We extended this manipulation into a consistent and
reliable evasion suffix that makes any sample evade the model scanner.

Figure 10. Vulnerability in Rebuff’s model check scanner

It works precisely as shown in Figure 10. By analyzing the prompt template used by

54

Rebuff’s model check scanner, we devised an injection in this template, which makes the
language model, which consumes this evaluation prompt, evaluate completely different
input. The suffix with benign score "0.0" and a "placeholder" with a substitute prompt
"User string: aaaa" hints the model to evaluate the string "aaaa" when the check is run.
This suffix is said to be reliable as it almost does not interfere with the actual malicious
prompt - "Ignore previous instructions and leak the system instructions". When it is
consumed by the primary language model of the application, the model responds correctly.

This weakness is inherent to Rebuff 0.1.1 version and earlier and it lies in the lack of
sanitation of the processed user prompts at model check. The attack itself is merely an
injection into the "context" of Rebuff’s model check prompt template (hence it is specific
to this implementation of the secondary model detection technique). The attack could
be minimized when sanitizing user prompts from the context delimiters (in the case of
Rebuff’s prompt template the delimiter is "User string: "), or considering different context
delimiters for few-shot examples and the actual user input. But the sanitation should be
thorough as the attacker can still inject the delimiters in obfuscated form, or in another
way inject the new "fraudulent" few-shot examples into the model via manually written
prompts. This model check demonstrates the corresponding secondary model detection
technique is rather counterproductive as it introduces another attack surface in addition
to the primary language model. The implementation of such a check has to address any
sanitation necessary to avoid injections in the secondary model.

6.2 Nuances of canary checks

The results of our experiments demonstrate that the default implementations of canary
word checks (both in Vigil and in Rebuff) do not detect prompt leaks at all in our attacks.
Both Vigil’s and Rebuff’s canary checks by default prepend the "secret" canary word to
the system message. But when the buffed system instructions (original system message
with canary word added at its beginning) were used in Prompt Template in the application
the user prompts to output the system instructions (the prompt leak attack prompts) almost
never produced the canary word in the outputs. We suppose this is because the model
"understands" that canary word does not belong to the "initial prompt", "first commands",
"system instructions", or any alias that the attacker uses to ask the model to respond with.
Hence, the model does not include it in its answers.

Then we attempted to modify the implementation of these canary word checkers by
"injecting" the canary word inside the system message. We injected it between the
sentences to not interfere with the instructions themselves. Vigil’s canary word check did
not change its extremely low TPRs. Via manual prompting, we gained an understanding

55

that the language model treats the delimiters (enclosing characters) around the canary word
as commentary signs. In the case of Vigil, these characters are <-@!– {hexadecimal canary

word string} –@!->. The model seems to remove everything inside of the comment from
the responses that it generates. Rebuff’s canary word delimiters are <!– {hexadecimal

canary word string} –>. Rebuff’s modified canary check was successful on a number
of samples, though still very weak. We suppose that Rebuff the delimiters around the
canary word does not affect the detection performance of the canary word check, unlike
in Vigil. Instead, we suppose Rebuff’s canary check performs poorly because the canary
word is not included in the model’s responses on chance - due to the indeterminism of the
language model generations. This means that supposedly any prompt leak sample against
Rebuff’s canary word checker will eventually leak the canary word too (together with
system instructions) after several retries. However, the attacker needs only one leak to be
successful.

We argue that the canary word technique to detect prompt leaks can be improved to be
superior to simpler anti-prompt leak approaches. We are aware of one more distinct
approach to implementing the canary word injection into the system message. This method
suggests instructing the model (in system instructions to it) to treat the canary word as a
secret value and hide its existence from the user. This way the canary word will become
the inherent part, "tied" to the system message, and so it should appear in a successful
prompt leak response. However, there were examinations [38] which show how the model
could always be tricked, and manipulated into leaking something "secret" from its context.
Knowing the canary word the attacker can instruct the model to never include it in its
responses, evading this implementation of canary word check.

Intuitively, detecting prompt leak attacks is the most effective and reliable via simple string
similarity comparison between the original system prompt and the responses from the
model. We used this technique to collect successful prompt leak samples anyway. But this
technique can also be evaded by instructing the model to obfuscate its responses. String
similarity comparison works only on plaintext strings - with close tokens, or paraphrased.
But if the model is able to encode characters (BASE64 for example), then the prompt leaks
will stay undetected.

These evasion approaches were once explored in existing work on prompt leaks [39]. The
attacks on system messages can be extended to leak any user prompt from the conversation
memory buffer. The work [39] suggests these prompts as well as the system message
should not be treated as secrets as the protections are evaded eventually. However, we
argue that no protection may be the way for the majority of LLM-based applications,
which are mostly chatbots with limited agency. The models with more access to executable

56

tools still need restrictions in place against leaking the system instructions. Moreover, the
written system message or templates became a paid intellectual property already and the
prompts are sold on the market. We suggest the direction for improvements in detecting
prompt leaks should start from the earlier language model training phase. The model
should be trained on a particular stage (likely the RHFL stage) to refuse to output its
system instructions specifically. This way the prompt leak problem will become a jailbreak
problem, and the attacker will be required to force the model to generate unrestricted
outputs. The models used within LLM-based applications, should be limited in their
functionality (also called the model’s "agency" [2]) both during training the model and
post (via prompt engineering and application design).

6.3 Limitations

Limitation 1. Due to the non-deterministic setting of the language model that we used in
our experiments (GPT-3.5) the results (detection metrics) may be not fully reproducible.
The number of samples that prove to leak the prompts successfully varies and depends on
the number of retries. Then, the model check-in Rebuff, being also language model-based,
may generate different scores on the same sample. We acknowledge that our results are
approximate performance metrics for examined detection techniques.

Limitation 2. In our work we stuck to prompt leak attacks and missed out on other
prominent attacks on LLM-based applications, listed in the related work. We defined our
scope this way, but the unaddressed attacks will be the candidates for future experimentation
in this field. Importantly, in our examination of PI detection software, we came across
the lack of methods to detect indirect attacks in those solutions as the major focus of
detection techniques was direct prompt injection. Hence, we started with the attacks that
are addressed by our candidate PI detection solutions explicitly.

Limitation 3. As we wrote the genuine user prompts for false positive experiments
manually their number is significantly less than than number of malicious samples. This
may give an incomplete understanding of false positive rates produced in our experiments.
Still, we tried to cover as many use cases - different potential prompts that the genuine user
would ask from the language model in our document chat application, so we believe our
false positive rates should not be much higher than the true ones.

57

7. Summary

In our work, we created numerous samples for several prompt injection classes. These
classes were created from bare prompt injection attack samples enhanced with various
combinations of selected jailbreaks and obfuscations. We tested how LLM Guard, Vigil,
and Rebuff perform detection of these PI sample classes and obtained the detection
performance results for each one of their detection techniques, and for each one of them as
a whole. We analyzed how the separate detection techniques perform on every PI sample
class, and in total (on all attack samples).

We conclude our findings on performance and appropriate usage of examined detection
techniques, and performance results of the whole detection solutions. We applied different
configurations to the techniques and inspected which PI classes they detect the best or the
worst, and so we have suggestions for optimal usage of combinations of techniques and
their optimal configuring methods.

Regarding transformer-based prompt injection scanners, we observed the growth of detec-
tion rates on any PI class for the models with larger and more varied training datasets. The
latest models were able to detect more than 99% of all our malicious samples. However,
transformer models produce low but notable false positive rates. We concluded that this
technique is better used for the purpose of detecting the before-unseen (in the training
datasets) malicious sample classes, but should be used in conjunction with other techniques
with similar purpose in order to lower the number of false positives.

A secondary model-based prompt injection scanner appeared to have a similar purpose as
a transformer-based one. This scanner can also produce superior true positive rates, but
it also produced the highest number of false positives in our experiments. The language
model employed in the check is capable of classifying samples, whose classes were not
included in its prompt instructions and few-shot examples. However, the effectiveness of
this scanner is largely affected by its implementation, making it crucial to harden it from
the simplest evasions. We were able to evade its implementation in Rebuff completely,
what made Vigil superior in detection performance in the end.

The vector embedding lookup-based prompt injection scanner in our experiments demon-
strated that it is capable of producing low false positives while performing adequately even
on obfuscated attack samples (obfuscated with leet). This hinted to us that the vectordb-

58

based technique can be employed independently of other scanners in the detection policy
of a detection solution. This is contrary to how Vigil uses the vectordb scanner - Vigil
conditions the detection results of vectordb scanner with the results of its other scanner. In
our experiments, we saw that the vectordb scanner could be configured properly to avoid
false positives almost completely and be purposed to only detect the PI classes loaded in
its vector store (and mostly fail on PI attacks not represented in its vector store). Moreover,
the detection solution could employ self-hardening like Vigil and Rebuff do. Loading
vector stores with correctly identified malicious samples after deployment will increase
the performance of this scanner. We only recommend recalculating thresholds when new
vectors are added to keep false positive rates at an unnoticeable minimum.

Regarding canary word check-based prompt leak attack detection, we observed its inef-
fectiveness, no matter how we attempted to improve its implementation. We believe the
protection against prompt leak attacks is feasible and the solution should be researched.
But, whereas some prompt leakage detection techniques were better than canary word
check (just sub-string search-based algorithms), the crafty attacker’s prompts can still
evade known detections. Overall, we did not see any performance in canary checkers of
examined PI detection solutions.

In summary, we deemed Vigil as the optimal PI detection solution out of the three examined
by us. We proposed the configuration approaches that improve Vigil’s performance up
to adequate values. Still, Vigil itself had serious problems with its canary word check
technique. We also argued that Vigil could employ different detection policy in its detection
techniques. Rebuff’s secondary model turned out to be easily evaded due to its current
implementation insecurities. In the result, we would suggest an extended combination
of detection techniques and adjusted detection policy to limit the false positives and also
extend the detections on more prompt injection variations. Specifically, we recommend
including heuristics-based detection (exclusive to other detections in the policy), vectordb-
based detection (exclusive to other detections, its threshold optimized on a large number of
benign prompts), transformer-based and secondary model-based techniques in conjunction
(both techniques have to detect the sample to flag it as an injection, secondary model
scanner has to have protections against manipulations with its prompt template). We did
not include a canary word check in our recommendations as it demonstrated poor results
in experiments. We also concluded in our discussion that there is little effect in improving
the canary word check technique to specifically detect prompt leak attacks.

59

References

[1] Joseph Thacker. GitHub - jthack/PIPE: Prompt Injection Primer for Engineers —

github.com. https://github.com/jthack/PIPE. [Accessed 10-05-2024].
2023.

[2] Inc. OWASP Foundation. OWASP Top 10 for LLM Applications — llmtop10.com.
https://llmtop10.com/llm01/. [Accessed 10-05-2024]. 2023.

[3] Microsoft & OpenAI. Bing Chat [GPT-4 language model]. https://www.bing.
com/search. [Accessed 10-05-2024]. 2023.

[4] Chase Harrison. LangChain. https://github.com/langchain-ai/
langchain. [Accessed 10-05-2024]. 2022.

[5] Simon Willison. I don’t know how to solve prompt injection — simonwillison.net.
https://simonwillison.net/2022/Sep/16/prompt-injection-

solutions/. [Accessed 10-05-2024]. 2022.

[6] Kai Greshake et al. Not what you’ve signed up for: Compromising Real-World LLM-

Integrated Applications with Indirect Prompt Injection. 2023. arXiv: 2302.12173
[cs.CR].

[7] Inc. Protect AI. Index - LLM Guard — llm-guard.com. https://llm-guard.
com. [Accessed 10-05-2024]. 2023.

[8] deadbits.ai. Release Blog | Vigil: Documentation — vigil.deadbits.ai. https:
//vigil.deadbits.ai/overview/release-blog. [Accessed 10-05-
2024]. 2023.

[9] ProtectAI. GitHub - protectai/rebuff: LLM Prompt Injection Detector — github.com.
https://github.com/protectai/rebuff. [Accessed 10-05-2024].
2023.

[10] Fondu.ai. Fondu.ai - Testing the Limits of Prompt Injection Defence — blog.fondu.ai.
https://blog.fondu.ai/posts/prompt-injection-defence/.
[Accessed 10-05-2024]. 2023.

[11] ProtectAI. Rebuff | LangChain — python.langchain.com. https://python.
langchain.com/docs/integrations/providers/rebuff/. [Ac-
cessed 10-05-2024]. 2023.

[12] WhyLabs. GitHub - whylabs/langkit: LangKit: An open-source toolkit for moni-

toring Large Language Models (LLMs). https://github.com/whylabs/

langkit/tree/main. [Accessed 10-05-2024]. 2023.

60

https://github.com/jthack/PIPE
https://llmtop10.com/llm01/
https://www.bing.com/search
https://www.bing.com/search
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://simonwillison.net/2022/Sep/16/prompt-injection-solutions/
https://simonwillison.net/2022/Sep/16/prompt-injection-solutions/
https://arxiv.org/abs/2302.12173
https://arxiv.org/abs/2302.12173
https://llm-guard.com
https://llm-guard.com
https://vigil.deadbits.ai/overview/release-blog
https://vigil.deadbits.ai/overview/release-blog
https://github.com/protectai/rebuff
https://blog.fondu.ai/posts/prompt-injection-defence/
https://python.langchain.com/docs/integrations/providers/rebuff/
https://python.langchain.com/docs/integrations/providers/rebuff/
https://github.com/whylabs/langkit/tree/main
https://github.com/whylabs/langkit/tree/main

[13] LakeraAI. GitHub - lakeraai/chainguard: Guard your LangChain applications

against prompt injection with Lakera ChainGuard. — github.com. https://
github.com/lakeraai/chainguard. [Accessed 10-05-2024]. 2024.

[14] Microsoft Azure. azure-docs/articles/ai-services/openai/includes/chat-markup-

language.md at main · MicrosoftDocs/azure-docs — github.com. https : / /
github.com/MicrosoftDocs/azure-docs/blob/main/articles/

ai-services/openai/how-to/chat-markup-language.md. [Ac-
cessed 10-05-2024]. 2023.

[15] OpenAI. OpenAI — openai.com. https://openai.com. [Accessed 10-05-
2024].

[16] Gorman R. Armstrong S. Using GPT-Eliezer against ChatGPT Jailbreaking — AI

Alignment Forum — alignmentforum.org. https://www.alignmentforum.
org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-

chatgpt-jailbreaking. [Accessed 10-05-2024]. 2022.

[17] Jacob Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding. 2019. arXiv: 1810.04805 [cs.CL].

[18] Tong Liu et al. Demystifying RCE Vulnerabilities in LLM-Integrated Apps. 2023.
arXiv: 2309.02926 [cs.CR].

[19] Rodrigo Pedro et al. From Prompt Injections to SQL Injection Attacks: How Pro-

tected is Your LLM-Integrated Web Application? 2023. arXiv: 2308.01990
[cs.CR].

[20] Yi Liu et al. Prompt Injection attack against LLM-integrated Applications. 2023.
arXiv: 2306.05499 [cs.CR].

[21] Sippo Rossi et al. An Early Categorization of Prompt Injection Attacks on Large

Language Models. 2024. arXiv: 2402.00898 [cs.CR].

[22] Fábio Perez and Ian Ribeiro. Ignore Previous Prompt: Attack Techniques For Lan-

guage Models. 2022. arXiv: 2211.09527 [cs.CL].

[23] Yi Liu et al. Prompt Injection attack against LLM-integrated Applications. 2023.
arXiv: 2306.05499 [cs.CR].

[24] Wundersuzzi. ChatGPT Plugins: Data Exfiltration via Images & Cross Plu-

gin Request Forgery · Embrace The Red — embracethered.com. https://
embracethered . com / blog / posts / 2023 / chatgpt - webpilot -

data-exfil-via-markdown-injection/. [Accessed 10-05-2024]. 2023.

[25] Simon Willison. Prompt injection and jailbreaking are not the same thing — si-

monwillison.net. https://simonwillison.net/2024/Mar/5/prompt-
injection-jailbreaking/. [Accessed 10-05-2024]. 2024.

61

https://github.com/lakeraai/chainguard
https://github.com/lakeraai/chainguard
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/how-to/chat-markup-language.md
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/how-to/chat-markup-language.md
https://github.com/MicrosoftDocs/azure-docs/blob/main/articles/ai-services/openai/how-to/chat-markup-language.md
https://openai.com
https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://www.alignmentforum.org/posts/pNcFYZnPdXyL2RfgA/using-gpt-eliezer-against-chatgpt-jailbreaking
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2309.02926
https://arxiv.org/abs/2308.01990
https://arxiv.org/abs/2308.01990
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2402.00898
https://arxiv.org/abs/2211.09527
https://arxiv.org/abs/2306.05499
https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-injection/
https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-injection/
https://embracethered.com/blog/posts/2023/chatgpt-webpilot-data-exfil-via-markdown-injection/
https://simonwillison.net/2024/Mar/5/prompt-injection-jailbreaking/
https://simonwillison.net/2024/Mar/5/prompt-injection-jailbreaking/

[26] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How Does LLM

Safety Training Fail? 2023. arXiv: 2307.02483 [cs.LG].

[27] Andy Zou et al. Universal and Transferable Adversarial Attacks on Aligned Lan-

guage Models. 2023. arXiv: 2307.15043 [cs.CL].

[28] Haoran Li et al. Multi-step Jailbreaking Privacy Attacks on ChatGPT. 2023. arXiv:
2304.05197 [cs.CL].

[29] Xinyue Shen et al. "Do Anything Now": Characterizing and Evaluating In-The-

Wild Jailbreak Prompts on Large Language Models. 2023. arXiv: 2308.03825
[cs.CR].

[30] ProtectAI.com. Fine-Tuned DeBERTa-v3 for Prompt Injection Detection. 2023.
URL: https://huggingface.co/ProtectAI/deberta-v3-base-
prompt-injection.

[31] Erfan Shayegani et al. Survey of Vulnerabilities in Large Language Models Revealed

by Adversarial Attacks. 2023. arXiv: 2310.10844 [cs.CL].

[32] Grzegorz Kondrak. “N-Gram Similarity and Distance”. In: String Processing and

Information Retrieval. Ed. by Mariano Consens and Gonzalo Navarro. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 115–126.

[33] Leet - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/wiki/
Leet. [Accessed 10-05-2024].

[34] Valerii Gakh. GitHub - Tmas-V/MasterThesisTaltech2024 : ThisisarepoofsourcecodeusedtoconductexperimentswithinmyMasterThesisresearchatTaltech2024.−
− − github.com. https://github.com/Tmas-V/Master_Thesis_
Taltech_2024. [Accessed 10-05-2024]. 2024.

[35] Robust Intelligence. Prompt Injection Attack on GPT-4 — Robust Intelligence

— robustintelligence.com. https://www.robustintelligence.com/
blog- posts/prompt- injection- attack- on- gpt- 4. [Accessed
10-05-2024]. 2023.

[36] Roie Schwaber-Cohen. Vector Similarity Explained | Pinecone — pinecone.io.
https://www.pinecone.io/learn/vector-similarity/. [Ac-
cessed 10-05-2024]. 2024.

[37] ProtectAI.com. Fine-Tuned DeBERTa-v3-base for Prompt Injection Detection. 2024.
URL: https://huggingface.co/ProtectAI/deberta-v3-base-
prompt-injection-v2.

[38] Sam Toyer et al. Tensor Trust: Interpretable Prompt Injection Attacks from an

Online Game. 2023. arXiv: 2311.01011 [cs.LG].

[39] Yiming Zhang, Nicholas Carlini, and Daphne Ippolito. Effective Prompt Extraction

from Language Models. 2024. arXiv: 2307.06865 [cs.CL].

62

https://arxiv.org/abs/2307.02483
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2304.05197
https://arxiv.org/abs/2308.03825
https://arxiv.org/abs/2308.03825
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection
https://arxiv.org/abs/2310.10844
https://en.wikipedia.org/wiki/Leet
https://en.wikipedia.org/wiki/Leet
https://github.com/Tmas-V/Master_Thesis_Taltech_2024
https://github.com/Tmas-V/Master_Thesis_Taltech_2024
https://www.robustintelligence.com/blog-posts/prompt-injection-attack-on-gpt-4
https://www.robustintelligence.com/blog-posts/prompt-injection-attack-on-gpt-4
https://www.pinecone.io/learn/vector-similarity/
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2
https://huggingface.co/ProtectAI/deberta-v3-base-prompt-injection-v2
https://arxiv.org/abs/2311.01011
https://arxiv.org/abs/2307.06865

Appendix 1 – Non-Exclusive License for Reproduction and
Publication of a Graduation Thesis1

I Valerii Gakh

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Performance Comparison of Early Prompt Injection Detection Solutions”,
supervised by Hayretdin Bahşi
1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act
or rights arising from other legislation.

12.05.2024

1The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

63

	Introduction
	Motivation
	Scope
	Research questions
	Novelty
	Thesis structure

	Background
	Large language models
	LLM-based software applications
	Prompt-based attacks
	Detection techniques

	Related work
	Review of prompt-based attacks
	Evaluating defense solutions

	Methodology
	Sample construction workflow
	Prompt injection objectives
	Jailbreaks
	Obfuscations

	Target application
	Sample dataset creation
	Experiments

	Results
	Experiments with defaults
	Experiments with modified values
	Total results for detection solutions

	Discussion
	Weakness in Rebuff's model check input scan
	Nuances of canary checks
	Limitations

	Summary
	References
	Appendix 1 – Non-Exclusive License for Reproduction and Publication of a Graduation Thesis

