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Abstract 

This study examines the realm of database manipulation and detection techniques in 

iOS devices. It highlights the significance of understanding how data is stored, 

modified, and potentially manipulated within mobile device databases. The paper 

emphasizes the importance of detecting data manipulation, the complexities involved 

in recovering truthful data, and the prevalence of jailbroken devices as a challenge in 

digital forensics. The findings underscore the need for reliable and irrefutable digital 

evidence in legal proceedings, as the admissibility of evidence can greatly impact the 

outcome of a case. The research explores various techniques and tools used to detect 

manipulation traces, ensuring the integrity and completeness of digital evidence.  

The study revealed that databases in iOS devices can be manipulated to such an extent 

that the detection of such manipulations becomes extremely challenging, if not entirely 

indistinguishable. The concept of corrupting the database like "Ghost messaing", as 

explored in this study, represents a novel and previously unexplored area of 

investigation. "Ghost messaging" refers to the phenomenon where messages or data 

records exist transiently within a mobile device's memory or temporary storage but are 

not permanently stored in the device's database. Furthermore, the research underscores 

the necessity of continuous research and development to stay ahead of evolving 

manipulation techniques employed potentially being employed. 

 

 

This thesis is written in English and is 58  pages long, including 10 chapters, 33 figures 

and 3 tables. 
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Annotatsioon 

iOS-i andmebaaside manipuleerimise meetodite  analüüs 

Antud uuring analüüsib andmebaaside manipuleerimise ja tuvastamise tehnikaid iOS 

seadmetes. Artikkel rõhutab andmete manipuleerimise tuvastamise tähtsust, tõese 

andme tuvastamise keerukust ning jailbroken seadmete levimusest tulenevat 

väljakutset digitaalses kohtuekspertiisis. Uurimistöö rõhutab usaldusväärse digitaalse 

tõendi vajadust õigusprotsessides, kuna andmete tõesus võib oluliselt mõjutada 

kohtuistungi tulemust. Uurimustöö analüüsib erinevaid tehnikaid ja tööriistu 

manipulatsioonide tuvastamiseks, tagades digitaalse tõendi terviklikkuse ja täielikkuse. 

Uurimustöö näitas, et iOS seadmetes saab andmebaase manipuleerida sellisel määral, 

et selliste manipulatsioonide tuvastamine muutub äärmiselt keeruliseks, kui mitte 

täiesti eristamatuks.  

Uurimustöös analüüsitakse ka "ghost messaging" kontseptsiooni st andmebaaside 

korrupeerimist, mis esindab varasemalt uurimata valdkonda. "Ghost messaging" all 

mõistetakse olukorda, kus sõnumid või andmeread eksisteerivad ajutiselt RAM mälus, 

kuid need ei salvestu püsivalt seadme andmebaasi. Lisaks rõhutab uurimustöö pideva 

arendustöö vajadust, et olla manipuleerimistehnikate arengutest sammuke eespool. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 58 leheküljel, 10 peatükki, 33 

joonist, 3 tabelit. 
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1 Introduction 

Mobile phones have become integral to our society, and their importance cannot be 

overemphasised. They have revolutionised the way we communicate, access 

information, and carry out daily tasks. Mobile phones are personal and can store 

significant amounts of data, including contacts, messages, photos, videos, location 

data, browsing history, and app usage data. As such, they have become a valuable 

source of information for a wide range of applications, from improving user 

experiences and personalising advertising to providing evidence in legal and 

investigative contexts. The data collected from mobile devices can become an 

important source of digital evidence. Mobile data includes any data of probative value 

generated by an application or transferred to the smartphone by the user [1]. Data 

retrieved can offer contextual clues about the user, such as whom the user knows and 

has communicated with, locations visited, and which activities were performed with 

the phone. The presence of such data can lead the user to apply manipulative techniques 

to update or delete data. Often without any ill intentions, but simply eliminating 

exposure of personal data. The user may also intentionally make changes to the data to 

hide involvement in criminal activities as an anti-forensic technique to mislead the 

forensic investigations [2]. These actions can be reversed under certain conditions, or 

there will be traces left from these actions that can lead the forensic investigations. The 

recovery of data records is dependent on database behaviour based on database settings, 

triggers and commands received from the application. Data records or parts of records 

are sometimes stored in multiple databases and can therefore be cross-referenced to 

each other. In this study, two different types of data are considered; data that the user 

can manipulate from the graphical user interface (GUI) of the device like date & time, 

delete data records, change personal information, and data that cannot be manipulated 

through the GUI like metadata of records or images, interactions with the device also 

known as life-data and the device interactions with the network that can only be 

accessed with a jailbroken phone with root access. This research aims to present data 

manipulation possibilities in iOS mobile phones and analyse the possibilities of 

detection through evidential traces. 
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1.1 Novelty and scope 

This research analyses different data and database manipulation techniques and ways 

to detect or recover manipulated data. Manipulation of mobile data refers to data 

modification, fabrication and deletion. Data acquired from the mobile device can have 

immense effects in legal and criminal cases. It is relied upon for this data to be accurate 

and a true representation of events; however, under certain conditions, the validity of 

data should be strongly considered, especially when the device has already been 

jailbroken. It is inevitable that offenders also adapt to high-tech criminal activities and 

acquire knowledge on how to exploit mobile phones for their own benefit. This study 

aims to highlight that manipulations of data are not always detectable by forensic tools. 

While a manual inspection of raw data can provide a better indication that manipulation 

has occurred, recovery from a logical extraction is unlikely at the hands of a seasoned 

criminal. The extraction of allocated data records is quite straightforward, but acquiring 

deleted records can be difficult with the additional complexity of knowing “what” or 

“if” something has been deleted. When should the forensic examiner know to be critical 

enough to conduct a more advanced investigation? Forensic investigations are often 

under time pressure, and thus the case must bring a reasonable amount of doubt that 

data has been manipulated to conduct a more thorough analysis. To what extent deleted 

data can be recovered is dependent on the acquired device image. In many cases, only 

an encrypted logical image of the device is acquired; it is very difficult to detect any 

possible data manipulation or recover deleted data from the encrypted logical image. 

Full-file system acquisition gives access to much greater data and possibilities for 

deleted data recovery to an extent. While the physical acquisition or bit-by-bit copy of 

the device could potentially recover more records, it will be out of the scope of this 

study. To gain access to the full file system, the device must be jailbroken for root 

access. Jailbreaking is not only used for forensic purposes. Some users may prefer to 

jailbreak their mobile devices for advanced customisation [3]. The root access to the 

phone does not only permit read rights on files but also write rights. This may be 

beneficial in forensics or intelligence gathering, but most importantly having write 

rights on a full-file system allows data or database manipulation for anti-forensic 

purposes.  
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In mobile devices, SQLite is typically the database of choice. Extensive research has 

already been conducted in recovering deleted SQLite records in controlled experiment 

settings. This study will apply the existing knowledge to an iPhone 6s with iOS 12.1.3. 

Although the research is primarily done on one iOS version, the concept is expected to 

apply to other iOS versions, including Android devices. Databases store data as 

records, cache or logs.  It was observed that not all databases have the same behaviour; 

this behaviour is dependent on SQLite pragma settings, database triggers and 

commands received from the application itself. This behaviour will be observed under 

different scenarios, and databases will be categorised based on different parameters. 

This analysis will help to understand how data in certain databases are more volatile 

and susceptible to data loss and how it may affect the recovery of deleted records in 

terms of database manipulations and understanding the traces of detection. Some 

existing research is done on this topic but fails to consider different types of databases, 

leading to false positive or false negative detection results. Mobile devices are 

considered “live systems” that continuously update and receive information; every 

interaction with the device is recorded, known as “pattern-of-life” data. As long as the 

mobile remains connected to the network, it continuously exchanges data through 

several communications protocols. It is essential to recognise that each acquisition will 

be different.  

1.2 Research question 

To what extent can data be manipulated from GUI? 

To what extent can data be manipulated in jailbroken iPhone through a command line 

interface?  

How to detect manipulations? 

What determines the extent of data recovery? 

How reliable is data extracted from jailbroken iPhone? 
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1.3 Outline of the thesis  

This thesis is divided into the following chapters:   

Chapter 2 – Background information on mobile forensics and iOS. 

Chapter 3 – Literature review of existing research on the topic 

Chapter 4 – Presents the applied methodology. 

Chapter 5 – SQLite Forensics 

Chapter 6 – Manipulating data through GUI 

Chapter 7 – Manipulation techniques and manipulation detection in iOS database.  

Chapter 8 – Summary 

Chapter 9 – Conclusion 

2 Background information 

This section intends to provide ample background information on the topics of mobile 

forensics and iOS. It aims to offer a relevant understanding of mobile forensic 

investigations' principles, methodologies, and challenges, specifically focusing on iOS 

devices.  

2.1 Mobile Forensics 

Mobile forensics refers to the field of digital forensics that deals specifically with 

extracting, analysing, and preserving digital evidence from mobile devices [4]. It 

involves collecting and examining data from various types of mobile devices, such as 

smartphones, tablets, and wearable devices, to investigate and gather evidence related 

to criminal activities or other legal matters. Mobile forensics plays a crucial role in 

uncovering relevant information and evidence stored on mobile devices. Part of that is 

to ensure the reliability of the data acquired; is it a true representation of events and has 

not been tampered with. To ensure the admissibility of digital evidence in court, it is 

essential that the digital forensic investigator follows agreed steps and procedures for 
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device seizure, acquisition, examination, analysis and reporting. Maintaining a proper 

chain of custody is crucial for establishing the integrity and authenticity of digital 

evidence. This involves documenting the evidence's handling, transfer, and storage 

from the time of acquisition to its presentation in court. There are several standard 

operating procedures (SOP) and guidelines for this procedure. European Committee 

for Standardization (CEN) has developed a “complete end-to-end forensic 

investigation chain for mobile devices”, which was approved by its members on 

22.02.2022 - the CWA 17865:2022 standard [5]. Estonia is one of the countries that 

have accepted it. Since crime has no borders, this new standard aims to unify the 

investigative process across law enforcement in different countries [5]. While the CWA 

standard gives some guidelines, it does not mandate a specific method or a tool and 

will give a wide action plan dependent on the examining officer’s experience. It could 

be argued that the standard is a little too vague and unspecific in some aspects related 

to mobile device seizure and evidence handling.  

The CWA standard highlights that the quality of the forensic image of mobile devices 

holds exceptional importance for the overall evidential value of the forensic 

examination [5]. Logical acquisitions or encrypted backup of mobile device data may 

yield limited success in recovering application and user data. Full file system logical 

acquisitions provide a broader spectrum of collected data, log files and the possibility 

to recover deleted data from transaction files like wal files. The physical acquisition 

offers a bit-by-bit copy or a snapshot of the data contained within a mobile device, 

granting examiners the ability to extract additional artefacts from the device's memory. 

These artefacts may include deleted data or system log files that might not have been 

automatically decoded by forensic tools. The acquisition speed and the extraction 

process's duration are crucial factors that need to be carefully weighed against the type 

and volume of data anticipated to be recovered.  

While it is recognized that it is not possible to totally preserve all evidence of mobile 

phones, its forensic value must not be changed during the process [5]. Since the mobile 

device is what is known as a "live system", it is continuously exchanging and gaining 

data; its numerous sensors are recording spacial awareness data, and all interactions 

with the device are recorded. Many digital forensics standard operating procedures 

(SOP) and guidelines recognise the added complexities of mobile investigations but 
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demand the same requirements as in digital forensics.  Engaging with live systems will 

unavoidably lead to data alterations, heightening the likelihood of unintentional 

modifications by the forensic investigator. Moreover, this principle applies not only to 

on-site investigations but also extends to laboratory environments during post-

acquisition analysis [6]. The device must be jailbroken first to acquire a full file system 

image; this action will make permanent changes to the device. Gruber et al. (2023) 

argue that when viable alternatives are lacking, forensic examiners may opt for an 

invasive approach to ensure more complete evidence collection and refrain from calling 

jailbreaking contamination as the modifications to the device are on purpose and 

modified objects are considered irrelevant or less relevant than the ones gained [6]. 

This statement is true to an extent. However, it is for a reason that mobile devices seized 

from a crime scene are advised not to be turned off and it becomes more so when 

potential anti-forensic techniques are harnessed. Jailbreaking will reboot the device and 

can cause data loss, cause database transaction file commits, and hide or obfuscate 

traces of anti-forensic techniques, etc. Jailbreaking does permit access to a greater 

volume of data; while jailbreaking itself may not be considered contamination. The 

process of jailbreaking will inevitably lead to contamination in the subtractive form 

[6]. Therefore, the acquisition should always be conducted from least invasive to more 

invasive. Further, Gruber et al. (2023) state that the forensic community should strive 

to develop methods for identifying digital contamination [6]. Understanding how and 

what kind of data is stored on the device and what actions can evoke change in data is 

a big part of identifying digital contamination. The field of mobile forensics is further 

complicated by the continuous development of new operating systems (OS), updates 

and new devices altogether [7]. This requires immense continuous research and 

proficiency to conduct mobile forensic investigations.  

2.2 Background on iOS  

In order to effectively perform a forensic examination on an iOS device, it is imperative 

to thoroughly comprehend its internal components and underlying mechanisms. This 

understanding is pivotal in grasping the intricacies and critical aspects involved in the 

forensic process. It enables investigators to ascertain the types of data that can be 

acquired, identify the precise storage locations of relevant data, and determine the 
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appropriate methods and techniques to employ in accessing and extracting the desired 

information [8]. 

iOS is a mobile operating system that is based on the Mac OS X operating system. It 

is considered a variant of the BSD UNIX kernel and utilizes the Mach kernel XNU, 

which is built upon the Darwin OS [9]. The architecture of iOS is structured in layers, 

with the lower layers consisting of the Core Services Layer and Core OS layer. These 

layers handle essential services and functions. On the upper layers, the Media and 

Cocoa Touch layers provide the user interface (UI) and core graphics capabilities [8]. 

This layered architecture allows for the separation of different functionalities within 

the iOS system. This layered approach also enables developers to interact with specific 

layers and utilize the appropriate APIs and frameworks based on their application 

requirements. Ultimately, the layered architecture of iOS promotes a well-structured 

and scalable system, contributing to the overall robustness and functionality of the 

operating system [8]. 

 

2.2.1 iOS File System 

In iOS, the default file system used for persistent storage of data files is the Apple File 

System (APFS) [10]. APFS was introduced in 2016 with iOS 10.3 as a replacement for 

the previous Hierarchical File System Plus (HFS+). It is specifically designed and 

optimized for solid-state drive (SSD) storage, offering improved file system 

fundamentals and performance [10]. One notable feature of APFS is its built-in 

encryption, which operates at the file system level, providing strong data security for 

iOS devices. This encryption ensures that data stored on the device remains protected 

and inaccessible without the proper authorisation [9]. 

The APFS filesystem is, by default, configured as two logical partitions: the system 

partition and the user data partition [8]. The system partition contains the operating 

system and all the native applications already preloaded on the iPhone. The system 

partition is mounted as read-only. Jailbreak can gain full execute and write access on 

all partitions of iOS. The system partition may contain information about jailbreak; 

otherwise, little evidentiary details can be obtained from the system partition [8]. The 

user data partition is stored in the /private/var directory on the device (Figure 1). It 
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contains user-created data. Most evidentiary information is found in this partition, 

particularly within the /mobile directory. 

 

 Figure 1 - User data partition 
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2.2.2 Jailbreaking  

Apple designed the iOS platform with security as its core. Apple has full control over 

its hardware, software and services that are designed to work together for maximum 

security [11]. During the boot-up process a secure boot chain system, also known as a 

chain of trust, is employed to ensure that only trusted code is loaded onto the device. 

When a device is turned on, the device processor executes the Boot ROM code. This 

code is written on a hardware level and cannot be changed. Within the Boot ROM code 

resides the public key of the Apple root certificate authority (CA). This public key is 

used to decrypt and verify the integrity of the next stage in the boot process. At each 

stage of the boot process, the integrity and authenticity of the next stage are checked, 

ensuring that it is properly signed by Apple. The objective of a jailbreak is to break this 

chain somewhere to escalate privileges to gain and maintain root access on the device 

[12].  

This research will concentrate on the semi-tethered Chekra1n jailbreak as it will be 

used later. Chekra1n targets an unpatchable flaw in the Boot ROM [11]. It is 

unpatchable as it is within the hardware itself. The vulnerable phones will remain 

vulnerable to this exploit no matter the iOS version. As it is semi-tethered, the phone 

will be able to boot up after a restart and can be used normally but will require to be 

jailbroken again with computer to continue using root privileges or third-party 

applications. The vulnerability is exploited in the DFU (Device Firmware Update) 

mode also known as recovery mode [11]. 

3 Related work 

The following section describes some existing research in database manipulation 

techniques and how to detect traces of possible manipulations.  
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Pieterse, Olivier and Heerden introduce an evaluation framework to detect data 

manipulations in smartphones [2]. They propose a generic process or a set of conditions 

for data manipulation to modify, fabricate or delete data on a smartphone. Four steps 

are proposed; the smartphone has to be jailbroken for root access, the application's 

SQLite database must reside on the smartphone, the method of the manipulation should 

be decided: direct or off-device and lastly requires a manual reboot. Altering 

smartphone data in this manner can be viewed as an attack on integrity, availability, 

and authenticity and they illustrate it using an attack tree (Figure 2) [2].  

 

An attack tree is a structured and methodical way to describe various attacks against a 

system. The goal of the attack tree is the "manipulation of data". Intermediate goals are 

deletion (deletion of all data and deletion of specific data), modification and fabrication 

and sub-goals describe the required steps to accomplish each intermediate goal [2]. All 

of these actions leave various traces on smartphones that can aid in detecting and 

identifying any tampering or alteration of smartphone data. By examining and 

analyzing these traces collectively, it is possible to create a clear picture of any 

modifications made to the data and determine the extent and nature of the manipulation. 

As such, these traces can play a critical role in forensic investigations aimed at 

uncovering any suspicious or illegal activity related to smartphone data. For detecting 

Figure 2 - Attack tree for smartphone data manipulation [2] 
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data manipulations in databases, Pieterse et al. introduce the Evaluation Framework. 

They describe 10 distinct indicators that each produce either positive [true] or negative 

[false] results (Figure 3). In an equation with all positive indicators divided by all 

indicators give a manipulation score that will be plotted on a probability scale from 0 

to 1. While this is one way to analyse potential manipulations, it has some limitations.  

They do not consider that databases can have different behaviour to actions like a 

reboot and database deletion/recovery. Their research analyses only one iOS database, 

the sms.db database. The sms.db will be analysed in later parts of this thesis as it was 

found to have unique characteristics specifically to these actions. The suggested 

indicators do match the sms.db database but not most other databases. Most databases 

in iOS 12.1.3 do not require a reboot to recreate a database, this would lead false 

negative results based on this evaluation framework. This discrepancy can also be due 

to different iOS versions having updated database settings. Further, it can be criticised 

that more positive indicators do not necessarily mean a higher probability of data 

manipulation. The likeliness should be individually analysed based on the indicator. 

They also do not consider that timestamps can be manipulated in a jailbroken mobile 

device. 

Figure 3 - Evaluation framework to identify manupulated smartphone data [2] 
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Albano et al wrote a study on constructing a false digital alibi in Android OS [13]. 

Despite their research on Android, this is just as applicable to iOS. Their work was 

aimed to highlight how it could be possible to artificially create a false digital alibi. 

Digital evidence can play a pivotal role in determining the conviction or acquittal of a 

suspect. One of the previous studies [14] emphasized the need for caution by courts 

when assessing digital evidence's admissibility and probative value. The study 

highlighted that individuals, regardless of their level of expertise, can utilize software 

automation to generate digital traces on a computer. These traces can be virtually 

identical to those produced by regular user activity, making them difficult to distinguish 

through post-mortem analysis [13]. The utilization of automation can be exploited to 

fabricate a false digital alibi, creating a collection of seemingly "reliable" digital 

evidence. They state that any unwanted traces produced by the tools were simply 

removed during the sanitization process. This is highly relevant in this study as the 

automation that is being referred to is a similar set of commands and techniques applied 

in this paper, just scripted and automated.  

The consideration of database behaviour and SQLite pragma settings as a decisive 

element in the recovery of deleted data has been relatively limited in the existing body 

of research papers. Christian Meng and Harald Baier go in-depth into SQLite pragma 

settings that affect the erasure behaviour of data records and how that relates to data 

recovery [15]. They introduce a tool, “bring2lite”, and discuss its superiority compared 

to other recovery tools available. However, the tool is also limited to recovering within 

the database files; once the data record is rewritten by new data or the database is 

vacuumed or truncated, recovery is no longer possible. bring2lite primarily focuses on 

data recovery within the Write-Ahead Log (WAL) file and unallocated space within 

the SQLite database file. They define the relevant pragmas as secure_delete, 

auto_vacuum and journal_mode [15]. They describe in detail how these parameters 

affect database behaviour and thus data recovery. While they recognise auto_vacuum 

as an important pragma parameter in their experiments, they have set auto_vacuum to 

0 (none) in all of the experiments. It would be interesting to see how auto_vacuum 

"incremental" or "full" would test out in bring2lite tool. They also do not consider 

scenarios in which databases could be checkpointed by events like a reboot or 

application commands.  
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4 Methodology  

The aim of this study is to analyse the intended functions of iOS databases, specifically 

how data is recorded, edited, and deleted while considering SQLite pragma settings, 

triggers and other factors affecting database behaviour. This serves as a pre-study for 

the main focus, which is examining how these databases can be manipulated and 

detected. This research adopts an experimental research methodology to achieve its 

objectives. 

4.1 Experiment design   

Experimental research involves the deliberate manipulation of variables in a controlled 

setting to study cause-and-effect relationships. In this study, will be conducted 

experiments to simulate various scenarios related to data manipulation in iOS 

databases, by controlling the variables, like SQLite pragma settings, and systematically 

manipulating them to observe the effects on data storage, editing, and deletion. This 

experimental approach aims to gain a deeper understanding of the potential 

manipulation techniques within iOS databases, including how manipulations could be 

detected. Additionally, it seeks to highlight the potential problems that may arise if 

these manipulations go undetected. 

4.2 Experiment Configuration 

The experiments are conducted on an iPhone 6s running on iOS 12.1.3.  To ensure a 

clean slate, the device is initially subjected to a factory reset, resetting all settings to 

their default values. In order to gain access to the file system and perform extractions, 

the device is subsequently jailbroken using the Checkra1n jailbreak tool. Once 

jailbroken, the Cydia application is installed, which provides an OpenSSH server 

package. This package is utilized for the manual extraction of the database files. 

OpenSSH also enables a Secure File Transfer Protocol (SFTP) connection, allowing 

for a visual representation of the file system. This connection is utilized for live analysis 

of data transactions by observing date/time modifications to the databases and changes 

in file sizes. It is important to note that all records on the device are artificially created 

for the purpose of this study. File manipulations are carried out using a command line 
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interface Terminal. iOS does not come with an extensive set of pre-installed tools. 

However, unlike Android, iOS includes the sqlite3 program as a built-in component 

[3].  

The scope of this research is limited to the private/var/mobile directory, which houses 

a significant amount of user data with forensic relevance. All databases within this 

directory are extracted using a bash script for subsequent analysis. While the most 

common file extensions for SQLite databases are .sqlite, .sqlite3, .db, .db3, .s3db, and 

.sl3 [16], it is worth noting that SQLite allows for flexibility in file extensions or even 

no extension at all. Therefore, file filtering is conducted based on the initial bytes of 

the file represented in hexadecimal format. The extracted databases from iOS 12.1.3 

are studied based on the pragma settings, triggers and unique behaviour recognised by 

observing the databases in different situations. While the behaviours stemming from 

applications in databases is outside of the scope in this study, it presents how important 

it is to study each iOS version as these often have critical importance in how data could 

be recovered. 

After the preliminary study on databases, various experiments are conducted to explore 

data manipulation through the graphical user interface (GUI)  in an iPhone and the 

Terminal command line interface. Chapter 7 delves into the exploration of creating a 

false digital alibi inspired by Albano et al's research [13]  and by modifying data records 

and manipulating databases to the extent that they no longer store data in their 

conventional form, while still allowing the application to function as intended.  

5 SQLite Forensics 

SQLite forensics involves analysing SQLite databases to extract and interpret relevant 

information for investigations. SQLite database is a popular choice in a wide range of 

applications, including iOS and Android mobile devices, making it a valuable source 

of information in mobile forensics [16]. From a forensic perspective, it is crucial to 

grasp the underlying mechanisms of data storage within mobile device databases and 

comprehend the implications when data is deleted or modified. The process of 

extracting forensic data from iOS devices through logical extraction relies significantly 
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on the organisation of data within the file system, particularly in the form of SQLite 

database files [7]. The following chapter will provide fundamentals of SQLite database 

functions and relevant aspects of database forensics and provide an analysis of iOS 

databases.  

The complete state of the SQLite database is contained in a single file on a disk called 

“the main database file”. In SQLite database, the data in transaction is written to a 

temporary journal or WAL file. This is to ensure data integrity and the possibility of 

rollback in case of potential write errors.  

5.1 SQLite file structure 

At the logical level, data is organized and stored in tables, following a row and column 

format. However, from a physical perspective, the data is actually stored in pages 

organised in B-tree structure.  

When a database is created, certain configurations that cannot be changed afterwards 

must be adjusted; they are written to the header of the database [15]. The header 

consists of the first 100 bytes of the file in hexadecimal representation and contains 

metadata about the database, such as format, page size and certain pragma settings 

parameters [16] (Figure 4). The first page of the database contains the database header 

and the master table. 

 

The database header provides valuable information about the parameters and settings 

of the database. The first 16 bytes of the database file hold the SQLite file signature. 

Every valid SQLite database begins with in hexadecimal: 53 51 4c 69 74 65 20 66 6f 

72 6d 61 74 20 33 00 as presented in Figure 4. Table 1, shows additional information 

that is stored in the SQLite database header. 

Figure 4 - sms.db header 
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Offset Description sms.db 
0 The header string SQLite format 3 
16 The database page size in bytes 4096 
18 File format write version (02 - wal, 01 - legacy journal) wal 
19 File format read version (02 - wal, 01 - legacy journal) wal 
28 Size of the database file in pages 65 
52 The page number of the largest root b-tree page when in auto 

or incremental vacuum, 0 otherwise 
0 - false 

64 True (non-0) for incremental-vacuum mode. False (0) 
otherwise 

0 - false 

96 SQLITE_Version_number 3024000 

Table 1 - SQLite file header 

 

The header is followed by the SQLite master table, which holds essential information 

about the tables and index schemas of the database [15]. SQLite stores data in B-tree 

pages, which are similar to other database systems. The B-tree structure allows for 

efficient searching and sorting of data. In a database, the data is divided into fixed-size 

pages, which are typically 4 kilobytes or more accurately 4096 bytes in size [17]. Each 

page can contain multiple rows of data, along with their corresponding columns. When 

data is inserted into a table, it is distributed across multiple pages based on the 

underlying storage structure. The pages are allocated dynamically to accommodate the 

data, and as the amount of data grows, additional pages may be allocated to ensure 

sufficient storage capacity [17]. 

5.2 Data recovery 

For time and resource reasons typically, the SQLite does not delete database records 

instantly, but they are marked for deletion until an event that will commit the changes 

and data is “deleted”.  Based on the database settings it is determined what happens to 

the deleted data next. Some databases will store deleted data for a certain period of 

time. For example, the iOS Photos app will store deleted data for another 30 days in a 

deleted folder until it becomes unavailable for the user or is recovered during this time. 

While in other application databases the data becomes immediately unavailable to the 

user and recovery is only possible through previous backup or specialised tools. In 
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many cases, this means that the index for that data is lost, but data hangs around there 

until it gets written over by new data. In the field of recovering deleted SQLite records, 

there are both commercial and open-source tools available. Despite specialised 

recovery tools, the recovery is still dependent on the SQLite database settings, how 

much time has passed and if the phone has been rebooted in the meantime.  The quality 

of the forensic image of mobile devices holds exceptional importance for the overall 

evidential value of the forensic examination [5]. There are several parameters that 

affect how data is stored and erased from the database.  

 

5.2.1 Journal mode 

The journal file is used to maintain database integrity and to record changes made to 

the database so that they can be rolled back in the event of failure. The journal_mode 

pragma determines how the journal file is used. There are different journal_mode 

options: DELETE, TRUNCATE, PERSIST, MEMORY, WAL and OFF [17].  

When the SQLite database is set to a WAL journal mode, two files .db-wal and .db-

shm files are also created additionally to the main database file. Write-Ahead Log 

(WAL) file is a form of a cache or a roll-forward journal that records data that has been 

committed but not yet written to the main database [18]. In WAL mode the database 

engine does not touch the database file when new data gets recorded, edited or deleted 

but instead gets stored in a separate WAL file. Data remains in the WAL file until it 

gets committed by the checkpoint event. The checkpoint occurs automatically once the 

WAL file reaches a certain size, by default, it is 1000 pages. Until the checkpoint 

occurs, the main database file does not contain the most recent information.  

Forensically it would be very important to analyse the main database files separately 

from WAL files as the main database file could contain information that has been 

assigned to be deleted or edited but not yet committed to the main database file [19]. 

Which after the commit would be lost. The WAL files can get very large and can 

contain data from a long period and thus cannot be ignored in the investigations. The 

WAL files are difficult to read without a specialised tool that can parse the WAL files, 

but some forensic tools automatically process the WAL risking with loss of data. One 

such way for this to happen is when a main database file is opened and closed in an 
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extracted full file system copy the device, the .db-wal and .db-shm files disappear as 

they get automatically merged into the main database file [19]. This is a permanent 

change within this extraction; data gets written over to the main database. As a side 

note this does not happen inside the devices’ file system but only when the files are 

extracted from the device. For the merge to happen these 3 files (.db, .db-wal and .db-

shm) must be inside the same folder. Many forensic tools incorporate the associated 

WAL file as a part of the analysis process, to identify as many unmerged and unique 

records as possible and do not allow the merge process to happen.  

One challenge in investigations is to identify that there are missing records within the 

database. The SQLite database table uniquely identifies each row with a key, known 

as primary key (PK). The numbering starts with a value "1" and autoincrements with 

every record that is created. If the PK numbers don’t run contiguously, it is a good 

indication that some records have been deleted [19]. Since data is recorded 

consecutively generally the timestamps of deleted records fall between the existing 

records. It can give some idea of when data was recorded. This is true in most cases 

even when date and time have been manipulated by the user, but there are anomalies 

to this as well like when calls are made to a phone that is in flight mode or the phone 

is in a low signal area [19]. 

The remaining journal modes in SQLite are regarded as legacy journals and primarily 

serve as roll-back journals [20]. In these modes, when a data write occurs in the main 

database file, the old record is retained in the corresponding -journal file until the 

transaction is finalized. The specific types of journal modes, namely DELETE, 

TRUNCATE, PERSIST, and MEMORY, determine the behavior of the -journal file 

after the data records have been committed to the main database file. During the 

analysis of iOS, it was observed that all -journal files were configured in the DELETE 

mode. In the DELETE mode, the rollback journal is deleted at the end of each 

transaction. This means that when a delete operation is performed, it automatically 

triggers the transaction to commit, resulting in the deletion of the rollback journal [20]. 
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5.2.2 SQLite pragma 

The database behaviour is highly dependent on SQLite database settings known as 

PRAGMA settings. These commands often determine how data is stored on the 

database, its transactional files, and how data is erased.  This paper will concentrate 

only on the PRAGMA settings that have potential forensic implications. Before a 

database file is created, among other settings pragmas like secure delete, auto vacuum 

and journal mode must be selected.  

 

secure_delete 

SQLite provides a delete command to the user, in which a user can choose which 

records will be deleted. The secure_delete pragma is used to control how content is 

deleted from the database. By default, when content is deleted, it is typically marked 

as unused rather than immediately erased from the database files. When the 

secure_delete setting is enabled, deleted content in SQLite databases is overwritten 

with a sequence of 0 byte values [20]. The secure_delete pragma can be configured off 

(0), on (1) and FAST (2). By default, the secure_delete option is turned off to enhance 

performance by minimizing CPU cycles and disk writes [20]. Applications that wish 

to avoid leaving forensic traces after content is deleted or edited should enable the 

secure_delete pragma or run the VACUUM command after the delete or update. The 

FAST setting is an intermittent setting between “on” and “off”. When secure_delete is 

set to “FAST” SQLite will overwrite deleted content with zeros only if doing so does 

not increase the amount of disk writes (I/O) [20].  

 

auto_vacuum 

As mentioned, when content is deleted from an SQLite database, the content is usually 

not erased from the database, but the space is marked as being available for reuse. 

When large amounts of data are deleted, it leaves behind empty space, or “free” 

database pages, making the database file much larger than strictly necessary [20]. 

Running the command "VACUUM" will rebuild the database file so that each table 

and index is stored contiguously, effectively writing over previous content and 

preventing traces of deleted content from being recovered by forensic analysts, and 

thus reducing the size [20]. This does not however change the primary key value of the 
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data record but simply reorganises data within the database. There are 3 different types 

of vacuuming parameters: "none" (0), Full (1) and Incremental (2). The default setting 

for auto-vacuum is "none" or disabled. When auto-vacuum is disabled, and data is 

deleted from the database, the file size remains unchanged. However, the space 

previously occupied by the deleted data becomes available for storing new data. If the 

database is in full auto-vacuum mode, the deleted data is moved to the bottom of the 

page and removed at commit. It does not however defragment the database, in fact, it 

can be made worse since the file is moved around in a database. The VACUUM 

command would defragment the database. The incremental mode the auto-vacuum is 

enabled but must be activated by the application. 

 

5.3 iOS database analysis 

This chapter will analyse in depth what possibilities there are to recovering deleted data 

and which database settings can affect the possibilities of recovery. All databases on 

the user partition private/var/mobile directory will be pulled and categorised based on 

the SQLite database settings and analysed based on data volatility. This is relevant as 

in some databases a reboot can cause a commit on a database and cause loss of data. 

Forensic investigations are typically time-limited and while in some cases it might be 

possible to recover deleted records - if there is no knowledge of them there is no 

knowledge to look for them. Not every database might leave traces of data erasure. 

Further it will also be analysed to which extent can the database settings be manipulated 

to either as an anti-forensic technique or as a forensic technique to make databases 

more stable thought out the investigation (latter is still a hypothesis, I fear its not too 

useful as its possible only after phone is jailbroken and therefore no longer reasonable).  

This section is a preliminary investigation of iOS 12.1.3 databases to analyse how 

different databases function and store data. This is relevant as data storage is a complex 

process where parts of data or traces of actions are written to multiple databases. 

Understanding how specific databases are intended to function will help understand 

how anti-forensic techniques can be implemented and, more importantly, how to detect 

them.  
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This analysis considers all databases from the user partition or /var directory since most 

of the user-created data records are located there. From the /var directory, all databases 

are extracted through bash script to a local computer for analysis. Every SQLite 

database starts with the same 16 bytes in hexadecimal, which also translates to "SQLite 

format 3." in binary; this is the file signature of  SQLite databases. This can be seen in 

Figure 5 with a red line 

   

A script was written to extract all SQLite databases and it's accompanying journal files 

(Figure 6). The script looks for the file signature, and if it matches, it will also look for 

its accompanying journal files and extracts them to a new folder. All together, 457 files 

were extracted, out of which 189 were databases and the rest were journal files. The 

information can be gained from the file header to analyse which journal modes have 

Figure 5 - SQLite file header 

Figure 6 - Script to extract all SQLite files and its journal files 
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been used. If the value at offset 18 and 19 in hexadecimal representation is "02", the 

file is in WAL journal mode; if it is "01", it is in legacy journal mode. The value 

presents the file format read and write version [17]. To sort the databases, a script was 

made to look for the value at these offsets (Figure 7). The blue line in Figure 5  presents 

that both bytes are "02" and the "CallHistory.storedata" database in WAL mode. To 

emphasise the importance of journal mode, it determines how most recent data is stored 

and greatly affects the recovery of the records. It was determined that out of 189 

databases, 151 were in WAL mode, and 38 were in legacy journal mode.  

 

Most of the legacy -journal databases were not updated often or databases that provided 

some functions, for example, the emoji.db contains all emojis that can be used in chat 

functionality.  

There are no databases with iOS secure delete turned on. Several 3rd party messaging 

applications like Telegram, WhatsApp, Snapchat, Discord and ProtonMail were 

installed, but neither of them had secure delete pragma turned on. Then, it was observed 

what auto-vacuum modes were used. First, a script was made to determine if 

"PRAGMA auto_vacuum;" equalled 0 (Figure 8). It was found that 39 out of 151 

databases were in auto_vacuum = 0 mode. This script was repeated for other modes. 

There were 21 databases with auto_vacuum = 1 mode and 91 were in auto_vacuum = 

2 mode. This information is relevant when data records are recovered from the WAL 

file.  

 

Figure 7 - Script to determine if database file is in WAL mode 
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6 Manipulating data through GUI 

This chapter will analyse how data can be manipulated through the graphical user 

interface (GUI) without jailbreak in iOS. The actions are generally limited to the 

functionalities provided by the application. Detection of missing records is generally 

relatively easy to tell, and recovery depends on database parameters. The analysis of 

data traces from WAL in this section is conducted manually in hexadecimal 

representation without any specialised forensic tools. The database is viewed with DB 

Browser for SQLite. 

6.1 Deleting data 

The recovery of deleted data is dependent on database settings and possible triggers. In 

this section is observed two separate cases where the record is created, deleted, and 

then the device is rebooted (Figure 9). A scenario is created where the user aims to 

make the data unrecoverable. At the end of each case, the traces of the user's actions 

left in the device are analysed. The device is factory reset for this experiment to ensure 

no previous database manipulations are applied. The database header is analysed using 

a script with the most relevant parameters. These databases are chosen to illustrate how 

database settings and behaviour matter in a forensic investigation. It is not always 

possible to recover data from the WAL file or recovery is more complicated. 

 

Figure 8 - script to determine if auto_vacuum = 0 
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6.1.1 Case 1 - call records 

Scenario: The user makes a Facetime call to phone number +372 501 6463, deletes the 

call through the GUI application and reboots the device. A potential connection to this 

phone number is being investigated. The call records are primarily being recorded in 

CallHistory.storedata database in var/mobile/Library/CallHistoryDB. Below is 

attached an SQLite database header analysis (Figure 10).  

 

Expectations: It was observed that a reboot of the device causes a Checkpoint event 

on the CallHistory.storedata database and the -wal file gets committed to the main 

database. This is an unusual behaviour; presumably, the database gets a force 

wal_checkpoint() or wal_checkpoint(TRUNCATE) command from its application 

when the database connection is closed and thus rebooted. There are no SQLite pragma 

settings to perform this operation automatically. As the database is in incremental 

vacuum mode, the file size will be reduced to reclaim any unused space at a checkpoint 

(Figure 10). Since all of the indexed data records are committed to the database after 

Data record is 

created 

Data record is 

deleted 

Device is 

rebooted 

Figure 9 - scenario illustration 

Figure 10 - CallHistory.storedata header analysis 
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the checkpoint event, the file size is reduced to zero. Therefore, if a data record were 

made and deleted before it was committed to the main database, it could be 

unrecoverable from the wal file.  

Analysis: At the time of the investigation, it can be observed that the 

CallHistory.storedata-wal file size is 0 bytes (Figure 11); therefore the -wal file has 

been recently committed and reduced in size. Since the wal file is empty, recovery can 

only be attempted from the main database file CallHistory.storedata.  

 

When the database is opened with DB Browser for SQLite, there is no record of the 

phone number in the ZCALLRECORD table where all call records are recorded. Since 

in this table is recorded metadata related to the call, this information is effectively lost. 

The phone number gets also recorded in the same database in another table called 

ZHANDLE, which records all phone numbers contacted or received together with the 

unique Z_PK primary key. From this table can be determined how many times the 

phone number has been contacted and can roughly set the timeframe based on the 

existing call records. It is determined that this number has been called only one time.  

Under the var/mobile/Library/CoreDuet folder there is another powerful database 

called interactionC.db that could help recover recent calls. In the table ZCONTACTS 

is recorded all contact numbers or accounts even if all interactions with a specific 

contact are deleted. This table records when the first and last messages were sent and 

when the first and last calls were received or answered, including the total interaction 

Figure 11 - CallHistory.storedata files 

Figure 12 - interactionC.db 



37 

count with a contact. From Figure 12 can be found that it was an outgoing call made 

on 11.05.2023 at 17:13 to the number +372 5016 463.  

Conclusion: CallHistory.storedata has some unique characteristics presumably derived 

from the native Telephony application for calling. If there was another database with 

similar characteristics that checkpoint at reboot and data are recorded only in one 

database and the application does permit deletion through GUI, permanently deleting 

data could be possible through GUI.  

6.1.2 Case 2 - sms records 

Scenario: The user sends a message to phone number +372 501 6463, deletes the 

message through the GUI application and reboots the device. A potential connection to 

this phone number is being investigated. The messages records are primarily recorded 

in sms.db database in var/mobile/Library/SMS folder. Below is attached an SQLite 

database header analysis received with a script (Figure 13).   

 

Figure 13 - sms.db 
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Expectations: As it can be seen from the Figure 13 sms.db is in wal journal mode with 

auto vacuum none. The wal file is intact, and a straightforward process is expected in 

recovering data records through the wal file.  

Analysis: sms.db has a lot of triggers that seem to be affecting how deleted records are 

managed within the database. In this case, this seems to be primarily for statistical 

purposes. The trigger is used to remove the content and most of the metadata at delete 

within the database but keep the count of the records deleted in another table. A 

database write is made as a result of the record being deleted. This does not hinder or 

aid in data recovery; the chances of recovery depend on the wal file. Reboot will not 

affect sms.db nor its journal files.  

In the table "handle" is recorded all unique phone numbers or contact accounts received 

or sent from, but unlike in CallHistory.storedata, the sms.db does not store contact 

records together with Z_PK values. Therefore, based solely on sms.db can be detected 

that the +372 501 6463 does exist in the table "handle", but the potential timeframe 

cannot be identified. Because in sms.db the auto vacuum is turned off (none) even after 

the checkpoint event the -wal file will never get empty (Figure 14). The data remains 

in the database without indexes until it gets overwritten by new data. When analysing 

the -wal file in hexadecimal representation the phone number +372 501 6463 can be 

identified multiple times. This is because of the numerous database indices that store 

this data. Most forensic tools that have the ability to read WAL files could recover 

deleted message records.  

 

Conclusion: Recovering deleted data records can be a relatively straightforward case 

when employing appropriate forensic tools that are capable of analysing wal files and 

unallocated space within the database files.   

Figure 14 - sms.db files 
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6.2 Time manipulations  

Creating a correct timeline of events is essential in any forensic investigation. In iOS 

the system time is by default automatically set but the date and time can be adjusted 

from the GUI. Depending on the forensic tool used the detection of time manipulations 

from simple logical acquisition is not always possible. For example, Magnet Axiom 

does not record the original primary key number and assigns its own Item ID for each 

unique artifact recovered. This does not consider the true chronological order of events. 

The records can either be sorted by Item ID or data record date, which can create an 

incorrect timeline.  

In iOS databases the timestamps are recorded in "Mac absolute time", also called 

"CFAbsoluteTime" and "Cocoa Core Data timestamp". The time is measured in 

seconds or nanoseconds and the Mac absolute time is measured from 01.01.2001, 

GMT. The more commonly used Unix timestamp or Unix epoch time is measured in 

seconds since 01.01.1970. While most databases and files in iOS use Mac absolute 

time, some files like recents.db use Unix timestamp, it is not always consistent. 

Timestamps are given in UTC time; date and time must be converted to local time.  

To identify if the time is set automatically or manually at the time of the acquisition, 

can be seen from the com.apple.timed.plist file under /var/db/timed folder. There are 

two variables TMAutomaticTimeOnlyEnabled and TMAutomaticTimeZoneEnabled; 

if they are both set to "true" the time and time zone is set automatically (Figure 15).  

 

iOS gets the corrected time over Apple’s Network Time Protocol (NTP) server and is 

repetitively synchronizing the time offset of system time relative to the server time. 

This can be seen from the CoreTime.log file in /var/mobile/Library/Logs/CoreDuet 

Figure 15 - com.apple.timed.plist 
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folder (Figure 16). CoreTime.log file shows the set system time in readable date and 

time format and the continuous synchronization process of the device matching its own 

Real Time Clock (RTC) time and Coordinated Universal Time (UTC) [11]. The server 

time is set in UTC time written in Mac absolute time.  

 

 

The system time can be compared to the server time to detect if they appoint at the 

same time. In Figure 16, the system time is set as 01.01.2023 00:25:35 in UTC +2, and 

the server time converted from Mac absolute time is 01.01.2023 01:25:37 in UTC +2. 

There is a 1-hour difference between them. This is an indication that system time is set 

1 hour earlier than the server time. In Figure 17 can be observed a CoreTime.log file 

where there is a conflict in time; a past date is turned into an earlier date.  

 

 

 

These two examples may or may not be evidence of data tampering. Changing date and 

time is a functionality provided by the operating system. It becomes an illicit behavior 

if by changing the time the user tries to cover up the order of events as an anti-forensic 

technique. The CoreTime.log file keeps a record of one day, after which the file is 

archived under /var/mobile/Library/Logs/CrashReporter/Retired folder for up to 7 

Figure 16 - CoreTime.log system vs server time 

Figure 17 - CoreTime.log time manipulation 
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days. The CoreTime.log can be cross-referenced with other data records in case a 

manipulation of time is suspected but only for up to 7 days.  

In the following Figure 18 is a screenshot from CallHistory.storedata. ZDATE column 

shows the system time, these values will be compared to the server time.  

 

The closest timestamp in CoreTime.log will be chosen for the call record. This leaves 

some variability when exactly the times were changed. 

 

Table 2 - System time compared to server time from CoreTime.log 

 

Based on the results from Table 2, we can be sure that at least the call records with 

Z_PK 63, 64 and 65 have been turned 27 minutes backwards and Z_PK's with 62 and 

66 are likely in correct time (Table 3).  

 

Nr System time UTC +2 Server time in Mac 
absolute time  (UTC) 

Server time UTC +2 Time difference 

1 01.01.2023 13:27:09 694265229.758649 01.01.2023 13:27:09 0 

2 01.01.2023 13:06:25 694265612.7223855 01.01.2023 13:33:32 0:27:07 

3 01.01.2023 13:11:32 694265919.069291 01.01.2023 13:38:38 0:27:06 

4 01.01.2023 14:26:55 694268815.5969685 01.01.2023 14:26:55 0 

Figure 18 - CallHistory.storedata time manipualtion 
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Z_PK Date/Time 

63 01.01.2023 13:33:25 

64 01.01.2023 13:36:03 

65 01.01.2023 13:39:27 

Table 3 - Corrected times 

 

An interesting observation was made regarding the timestamps of iMessages, which 

consistently reflected the correct time even when the system time was manipulated. 

iMessages are timestamped using Apple's NTP server time. Therefore, during forensic 

analysis, it is crucial to avoid converting the timestamps of iMessages as they are 

already recorded in the accurate time. 

7 Manipulation techniques in iOS database 

The preceding chapter delved into the analysis of data recovery and detection from 

unmanipulated databases with their intended functionalities. This chapter analyses how 

databases can be manipulated to behave differently than originally intended to 

potentially undetectable lengths. Jailbreaking is not only used for forensic purposes; 

some users may prefer to jailbreak their mobile devices for advanced customisation 

[3]. The root access to the phone does not only permit read rights on files but also write 

rights. This may be beneficial in forensics or intelligence gathering but most 

importantly having write rights on a full file system allows data or database 

manipulation for anti-forensic purposes. If the seized mobile device is already 

jailbroken, acquiring data is much easier for the forensic examiner [3]. The aim of these 

experiments is to present how little specialised knowledge is required to manipulate 

databases, and there is no requirement for specialised tools. Users who are accustomed 

to jailbroken phones often possess a higher level of familiarity and knowledge about 

the iOS operating system. This familiarity stems from their experience in modifying 

and customizing their devices beyond the manufacturer's intended boundaries. As a 

result, these individuals may have a deeper understanding of iOS internals, system 
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vulnerabilities, and alternative methods of app installation and system manipulation. In 

the context of criminal activities, it is evident that offenders continuously evolve their 

techniques to engage in high-tech criminal acts [3]. Jailbreaking, which was initially 

considered a niche activity, has attracted the attention of individuals involved in various 

forms of illegal activities. These offenders leverage their familiarity with jailbroken 

devices and their knowledge of iOS to engage in sophisticated, technology-driven 

criminal endeavours [3]. 

Different scenarios will be carried out to illustrate different manipulation techniques in 

jailbroken phones and what traces could be observed from these actions. All 

experiments are conducted through SSH connection to the device through the 

command line interface. iOS does not come with many tools installed on its system. 

Unlike Android, iOS is equipped with the sqlite3 program pre-installed [3]. This 

program enables direct access to the SQLite database, allowing for the modification of 

existing data, the creation of new data, and the selective removal of specific or all data. 

Detection of any manipulation, particularly when performed by a root user, should lead 

to the exclusion of the mobile data records from the list of admissible evidence. As 

demonstrated by these examples, detection is not always feasible or straightforward or 

can be reversed by a reboot that will recreate the database file. In this case, investigators 

find a database with fewer records than expected when compared to the other records 

on the device. 

7.1 Manipulating iOS data records 

In jailbroken phones, users have elevated privileges and can access the underlying 

system files and settings, including the ability to manipulate data through the 

command-line interface (CLI). This opens up additional possibilities for directly 

interacting with the SQLite database and performing data manipulation operations. By 

Figure 19 - INSERT, UPDATE, DELETE 
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leveraging the CLI tools available on a jailbroken device, such as sqlite3, users can 

execute SQL statements like INSERT, UPDATE, and DELETE directly on the SQLite 

databases with SSH connection to the mobile phone (Figure 19). This allows for more 

granular control over the data stored in various applications and system components. 

By modifying data, a criminal can attempt to create a false alibi by tampering with 

timestamps, location information, or communication records [13].  

This can create a misleading digital trail that may support their fabricated alibi and 

complicate the investigation process. There are 2 approaches for doing this: direct or 

off-device [2]. In the off-device approach databases are extracted to a computer, 

manipulated and moved back to the file system. In the direct approach data is 

manipulated on the device with an SSH communication channel to a computer. The 

following methods will be presented to illustrate how data manipulation and the 

creation of false alibis can be achieved (Figure 20). This could also be automated by 

using a scripted program as studied by Albano et al [13]. When users utilize iMessages 

or FaceTime with end-to-end encryption, the records of these communications are not 

Figure 20 - Database record update 
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included in the network records provided by the network service provider. However, 

since the mobile network service providers offer 4G or 5G services used by mobile 

devices during these activities, they can track and record data usage and location 

information. 

The following example demonstrates how easily data manipulation can be performed. 

A database CallHistory.storedata is opened. The aim is to manipulate the 

ZCALLRECORD of a data record where Z_PK is 4 from "Estonia" to "FINLAND". 

The manipulation in the example was intentionally presented in capslock for better 

visual representation (Figure 21). Its purpose is to illustrate how effortlessly data 

manipulations can be carried out, and when nothing appears suspicious or out of the 

ordinary, it can be perceived as accurate and truthful data. In certain situations, 

fabricating a false digital alibi may seem less suspicious at first than when the user has 

performed a factory reset on their device or intentionally destroyed their mobile or SSD 

storage. 

  

 

 

 

 

Figure 21 - manipulated data viewed from DB Browser 
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7.2 Manipulating database behaviour 

It has been covered previously how database pragma settings and triggers affect 

database behaviour. This paper has emphasized the need for a deeper understanding of 

iOS versions and their functionality. When the database has been manipulated to 

behave in ways it is not intended to, it becomes necessary for investigators to carefully 

analyze both the behaviour and the data. In real-life scenarios, such manipulation 

would lead to the dismissal of the evidence once manipulation has become apparent. 

In this section, we will perform three experiments to investigate different aspects of 

database manipulation. These experiments include selectively storing chosen content 

in the database, utilizing pragma commands for specific purposes, and creating triggers 

to control database behaviour. 

 

7.2.1 Manipulating database tables 

Now, the manipulation of database tables will be explored by deleting a specific table 

within the database. This action guarantees that any subsequent records created will 

not be stored, and the corresponding data will be dropped (Figure 22) effectively 

corrupting the database. A command "DROP table ZCALLRECORD;" removes the 

database table within CallHistory.storedata.  

 
Figure 22 - DROP table ZCALLRECORD 
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This leads to an interesting situation where the -wal file recognises a record being 

made, the file modification timestamp gets updated, but neither records a phone 

number nor creates an additional row with a new Z_PK number. Next, a hex dump of 

CallHistory.storedata-wal database was inspected, and also no records of this phone 

number were stored. However, calls can still be made and received, and unlike in "ghost 

messaging" explored later in this paper, these calls cannot be viewed from the GUI. 

Thus, presumably not even stored in RAM memory. Yet, interactionC.db database does 

record this record this call. At this particular moment, two calls were placed to both 

"Mary Jane" and "Jane Doe" (Figure 23). A reboot will not recreate the table 

ZCALLRECORD within the database.  

 

Next, it will be analysed whether forensic tools can detect any call records. Two 

different tools were used, the iPhone Backup Extractor and Magnet Axiom, and neither 

of them were able to recover any call records originating from ZCALLRECORD table. 

Magnet Axiom is unable to recreate the data records from other databases like the 

interactionC.db. The database as it is seen, and it is lacking the table ZCALLRECORD.  

 

7.2.2 PRAGMA commands 

Pragma settings must be configured at the time of database creation. Only one pragma 

setting can be changed later in the database: changing auto_vacuum from incremental 

to full, as vacuum pragma recreates a new duplicate file. However, any valid pragma 

command can be made through the command line interface. Deleted records can be 

recovered as long as they remain within the WAL file or in the unallocated space of 

the database. Through the sqlite3 command line program the WAL file can be force 

Figure 23 - interactionC.db 
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checkpointed to commit the WAL file to the main database file and then be truncated 

to minimise the size.  

 

 

An sms.db database was chosen for this experiment as it has auto vacuum turned to 

"none", which disables the automatic vacuuming feature. This means that the database 

will not automatically reclaim unused space or rearrange data to reduce file size. As a 

result, the database file may grow in size over time. Any deleted records could 

potentially remain in the database for a very long time before they get overwritten 

(Figure 24).  

 

Under normal circumstances, based on the sms.db parameters, the -wal file should 

never get to a size of 0 bytes. Data within the -wal file will be overwritten by data 

already committed. This is a very small indication in a very complex system, most 

likely not a very reliable detection method.  

The command "PRAGMA wal_checkpoint(TRUNCATE);" forces a checkpoint event 

on the database and commits the -wal file into the main database (Figure 25). The 

truncate command will reduce the file size; since all records from the -wal file were 

committed the size of the -wal file will get to 0 bytes (Figure 26).  

Figure 24 - sms.db before force commit 

Figure 25 - PRAGMA wal_checkpoint(TRUNCATE) on sms.db 
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7.3 Deleting databases - “Ghost messaging” 

Just as it is possible to make changes to the data records in a database, it is possible to 

delete or change files. Deleting a database involves removing the database file and any 

related journal files or directories, which can be accomplished without affecting the 

functioning of the underlying operating system. In most cases, a new database file 

together with its journal files is recreated at the time when the first data record is 

recorded in the database. This removes all of the data related to that application. The 

unique  Z_PK primary key number starts again from “1”, and the WAL file will contain 

only the most recent record.  

However, it was observed that not every database will recreate the file at first data write 

and will require a reboot to recreate the database files. An example of such a database 

is sms.db, which is responsible for storing SMS/iMessage records and data from certain 

third-party messaging applications like WhatsApp. Until a reboot recreates the 

database files messages can be sent and received, but no data record gets recorded. 

When there is no existing database to store the data, it is simply dropped or discarded.  

 

 

Accessing the device's graphical user interface (GUI) can recent messages be viewed 

as they are temporarily retrieved and stored by the device's RAM memory (Figure 27). 

Figure 27 - "Ghost messaging" 

Figure 26 - sms.db after wal_checkpoint(TRUNCATE) 
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However, these records will no longer be visible once the device is rebooted. A reboot 

will recreate a new database together with its journal files, and the database will contain 

no data records. The peculiarity of this behaviour most likely lies within the application 

database handler. The detailed explanation for this behaviour is beyond the scope of 

this thesis, as it focuses solely on observing and documenting the observed behaviour. 

This scenario illustrates that a form of “ghost messaging” is possible.  

Next, it will be examined how forensic tools perceive this manipulated data. The 

anticipated outcome is that these messages will remain undetected. Forensic tools 

typically search for the presence of a database, and in cases where no database is found, 

they cannot provide any information. For the forensic investigator, the absence of an 

expected database like sms.db clearly indicates database manipulation, but it is the 

recovery of this evidence that they are most concerned about.  

 

 

First, iPhone Backup Extractor is used to make a backup of the device. Nevertheless, 

the iPhone Backup Extractor fails to identify the sms.db database, resulting in the 

absence of any retrieved messages (Figure 28). Furthermore, in the Expert mode, no 

SMS folder is generated at all. Next, Magnet Axiom is used, but it results in an identical 

result, no recovered artefacts (Figure 29). Therefore, it can be concluded that "ghost 

messages truly remain undetected by forensic tools. Until these messages remain in the 

RAM memory, only manual extraction of the live device is possible to gain access to 

this data; once the device is rebooted, this data is permanently lost. 

Figure 28 - no messages detected by iPhone Backup Extractor  
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7.4 Creating database triggers 

Database triggers are special database objects that are associated with tables or views 

and are executed automatically in response to certain events or actions. They allow you 

to define custom logic that is automatically executed when specific database operations 

occur. Database triggers can be made to drop saved records, manipulate them 

automatically for example every timestamp, add new records and so on. It would be 

possible to keep the mobile system time in the correct time, but for example, every sms 

sent or received will be timestamped a few hours earlier. In below is created a scenario 

where all deleted records ROWID, text, account and date will be saved to a new table 

called saved_data.  

Figure 29 - no messages detected by Magnet Axiom 

Figure 30 - database trigger 
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7.5 Detecting through bash history 

Any command given through the Bash command line interface is recorded in Bash 

history. The Bash history is a log of user commands [21]. By default, there are no 

commands stored in Bash history on iOS devices. While it may be a great way of 

detecting possible manipulations, this approach has many weaknesses.  

• It records only commands given through the command line. Any change made 

through other programs like Secure File Transfer Protocol (SFTP) tools will not 

be recorded in Bash history. This includes whether the change is made in the 

command line but through another program like SQLite.  

• For a successful detection, it is required to have an unaltered log file. Bash 

history in a jailbroken phone is easy to access through the command line and to 

clear history.  

• The commands are recorded without timestamps by default; having commands 

without timestamps can give an idea of what has been done but lack contextual 

evidence as to "when" it was done. With a simple command the Bash history 

can be made to start recording commands with timestamps, but this will have 

little value in forensic investigations after the mobile device has been seized.  

Having commands stored in iOS bash history in itself would not be a crime, some users 

who have decided to jailbreak their device for advanced customisation may incorporate 

iPhones command line. However, it could be a hint that the user has more technical 

knowledge and therefore potential to manipulate data. Analysing Bash history in 

computers may yield more meaningful results as the command line interface is 

available by default, but the same weaknesses remain.  

Below is the presented a Bash history (Figure 31) from the actions shown in Figure 20. 

It can be seen that a CallHistoryDB directory has been entered, the user has started 

sqlite3 session and lastly the user has obsereved the Bash history. There are no 

timestamps or history of SQLite commands. While iOS and Mac OS X are both based 

on the same Unix system, iOS has considerably less packages installed  
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7.5.1 Detecting Jailbreak 

Based on the conducted experiments, the significance of detecting prior jailbreaking 

on the mobile device cannot be overstated. From previously jailbroken devices is easier 

to acquire data but most jailbreaks on iOS currently available are semi-tethered or semi-

untethered jailbreaks [3]. This means that after each reboot, the device must be re-

jailbroken for continued root rights. The prevalence of this happening is very high. 

Further, a user could intentionally attempt to remove traces of jailbreak. Based on the 

conducted experiments, the significance of detecting prior jailbreaking on the mobile 

device cannot be overstated. The determination of whether the mobile device has been 

jailbroken can significantly impact the reliability of the data [13]. It is important to 

consider that a user who is accustomed to a jailbroken iPhone possesses a greater 

familiarity and deeper knowledge of iOS [3]. However, in order to gain access to the 

data in the complete file system, the forensic examiner may need to perform their own 

jailbreak, which could potentially overwrite any traces of prior jailbreaks. Several 

methods still exist for detecting whether a mobile device has been jailbroken. These 

techniques can help forensic examiners identify signs of jailbreaking and assess the 

integrity of the device's data. The presence of unauthorized files serves as a distinct 

indicator of a jailbroken device (Figure 32). Identifying such files is a telltale sign that 

the device's operating system has been modified, allowing for the installation of 

applications or system alterations beyond the restrictions imposed by the manufacturer.  

 

Figure 31 - bash history 

 Figure 32 - Cydia, an unauthorised application 
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Unauthorised files may include custom system binaries, third-party applications not 

available through official app stores, or modifications to system settings. Detecting and 

analyzing these unauthorised files is crucial in determining whether a device has 

undergone jailbreaking. In var/ directory can be identified the checkra1n.dmg 

mountable disk image file (Figure 33).  

 

8 Summary 

The challenges addressed in this paper show how in relatively simple ways the data or 

databases can be manipulated ja while detection may be possible it illustrates the need 

for greater knowledge and understanding of iOS systems. Databases have different 

settings and parameters that affect the way data is stored and handled within the 

database. This research sheds light on lesser-explored methods of data manipulation 

that have received limited attention in the past. It explores concepts of not only deleting 

data to hide traces but ways to avoid data storage in databases altogether. It highlights 

how data or databases can be manipulated even with relatively simple techniques with 

no specialised tools, posing significant challenges in digital forensic investigations. 

While detecting potential instances of manipulation may be possible, recovering 

deleted data is a more complex and challenging task. Deleted data may not be easily 

recoverable, as it can be overwritten or fragmented, making it challenging to 

reconstruct a complete picture of the original information. In some cases, exploring 

previous backups may be beneficial in hopes of recovering some lost data. 

Data obtained from mobile phones play a crucial role in digital forensic investigations, 

serving as a significant component of the overall evidence. The wealth of available 

Figure 33 - checkra1n.dmg 
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smartphone data offers a well-defined snapshot of user activities and events. By 

examining this data, forensic investigators can gain valuable insights into a user's 

interactions, communications, internet browsing history, location information, and 

other relevant information. Such data acts as a valuable resource for reconstructing 

events, establishing timelines, and supporting the investigation process. However, as 

this study presents, any data gathered from mobile devices should be critically verified 

and analysed. Evidence can be cross-referenced to one another for additional reliability. 

By comparing and correlating multiple pieces of evidence, investigators can strengthen 

their confidence in the findings and conclusions drawn from the investigation. Remote 

traces often hold greater probative value compared to local traces in the digital forensic 

investigations [13]. For instance, call and location data obtained directly from a mobile 

service provider is considered more reliable and verifiable than data derived solely 

from the device itself. This research was limited to only full file system extraction, but 

a more thorough physical acquisition could potentially recover more deleted or 

manipulated records. This research puts data records gathered from jailbroken mobile 

devices under serious question. Chapter 7 shows how data can be manipulated in ways 

not always detectable by forensic tools. Digital forensic investigations typically do not 

perform investigations on live raw data and unless a reasonable amount of suspicion is 

caused such data manipulations may remain undetected. The case is further 

complicated by the amount of knowledge required to know in detail how different 

applications store data in databases. Every iOS update or new iPhone model could be 

vastly different from the previous. 
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9 Conclusions 

The paper brings attention to the intricate nature of data manipulation and underscores 

the inherent difficulties of recovering accurate and unaltered data. It sheds light on the 

complex processes and techniques that malicious actors could employ to manipulate 

data, potentially to indistinguishable extents. It underscores the need for robust forensic 

methodologies, advanced tools, and expert knowledge to effectively investigate and 

analyze digital evidence in the face of these challenges.  Jailbroken devices, however, 

pose unique challenges to the irrefutability of digital evidence. It may determine either 

conviction or acquittal of a suspect.  

Future work can build on this research by establishing more connections to database 

behaviour and the identification of manipulated data. These experiments should be 

conducted on other versions of iOS and on Android, especially on the "ghost 

messaging" capabilities. The findings presented in this research hold potential value 

for forensic tool creators in the development of automated tests to detect manipulation 

traces. By understanding the various methods of data manipulation explored in the 

study, forensic tool creators can leverage this knowledge to design algorithms and 

techniques that can automatically identify and flag potential manipulation indicators. 

 

 



57 

10 References 

 

[1]  H. Pieterse, M. Olivier and R. van Heerden, “Evaluating the Authenticity of 
Smartphone Evidence,” 2017. [Online]. Available: 
https://doi.org/10.1007/978-3-319-67208-3_3. [Accessed 17 04 2023]. 

[2]  H. Pieterse, M. Olivier and R. van Heerden, “Detecting Manipulated 
Smartphone Data on Android and iOS Devices,” 2019. [Online]. Available: 
https://doi.org/10.1007/978-3-030-11407-7_7. [Accessed 26 04 2023]. 

[3]  Y.-T. Chang, K.-C. Teng, Y.-C. Tso and S.-J. W. Wang, “Jailbroken iPhone 
Forensics for the Investigations and Controversy to Digital Evidence,” 
Department of Information Management, Central Police University, 2015. 

[4]  A. Al-Dhaqm, S. Abd Razak, R. A. Ikuesan, V. R. Kebande and K. Siddique, 
“A Review of Mobile Forensic Investigation Process Models,” 2020. [Online]. 
Available: https://ieeexplore.ieee.org/abstract/document/9160916. [Accessed 
15 03 2023]. 

[5]  CEN Workshop Agreement, “CWA 17865:2022; Requirements and 
Guidelines for a complete end-to-end mobile forensic investigation chain,” 
CEN, 2022. 

[6]  J. Gruber, C. J. Hargreaves and F. C. Freiling, “Contamination of digital 
evidence: Understanding an underexposed risk,” 2023. [Online]. Available: 
https://www.sciencedirect.com/science/article/pii/S2666281723000021. 
[Accessed 10 05 2023]. 

[7]  S. S. Shimmi, G. Dorai, U. Karabiyik and S. Aggarwal, “Analysis of iOS 
SQLIte Schema Evolution for Updating Forensic Data Extraction Tools,” 
2020. 

[8]  R. Tamma, H. Skulkin, H. Mahalik and S. Bommisett, Practical Mobile 
Forensics - Fourth Edition, Packt, 2020.  

[9]  S. Garg and N. Baliyan, “Comparative analysis of Android and iOS from 
Security viewpoint,” Computer Science Review, 2021. 

[10]  Apple inc, “Developer Documentation,” [Online]. Available: 
https://developer.apple.com/documentation/technologies. [Accessed 01 03 
2023]. 



58 

[11]  Apple inc., “Support Documentation - iPhone,” [Online]. Available: 
https://support.apple.com/iphone. [Accessed 30 03 2023]. 

[12]  Z. A. M. Burgos, “Jailbreak Vulnerability & Mobile Security Updates,” 2018. 

[13]  P. Albano, A. Castiglione, G. Cattaneo, G. De Maio and A. De Santis, “On the 
construction of a False Digital Alibi on the Android OS,” in Third 
International Conference on Intelligent Networking and Collaborative 
Systems, Fisciano, Italy, 2011.  

[14]  A. De Santis, A. Castiglione, G. Cattaneo, G. De Maio and Ianulardo, Springer, 
2011. 

[15]  C. Meng and H. Baier, “bring2lite: A Structural Concept and Tool for Forensic 
Data Analysis and Recovery of Deleted SQLite Records,” Elsavier, Germany, 
2019. 

[16]  Y. Liu, M. Xu, J. Xu, N. Zheng and X. Lin, “SQLite Forensic Analysis Based 
on WAL,” 2017. 

[17]  SQLite, “Database File Format,” [Online]. Available: 
https://www.sqlite.org/fileformat.html. [Accessed 02 05 2023]. 

[18]  SQLite, “Write-Ahead Logging,” 2018. [Online]. Available: 
https://www.sqlite.org/wal.html. [Accessed 04 04 2023]. 

[19]  S. Punja and I. Whiffin, “Missing SQLite Record Analysis,” 2021. 

[20]  SQLite, “PRAGMA Statements,” [Online]. Available: 
https://www.sqlite.org/pragma.html. [Accessed 13 05 2023]. 

[21]  J. Hance and J. Straub, “Use of Bash History Novelty Detection for 
Identification of Similar Source Attack Generation,” IEEE 19th International 
Conference on Trust, Security and Privacy in Computing and Communications 
(TrustCom), 2020.  

[22]  S. Nemetz, S. Schmitt and F. Freiling, “A standardized corpus for SQLite 
database forensics,” Elsavier, 2018. 

 



59 

 


