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Introduction

Accurate and consistent quantification of sea level variation is of utmost importance for
monitoring, forecasting, and planning of marine activities. In recent years, higher
accuracy in sea level variations in both time and space dimensions has become important
for various applications. For instance, improving our understanding of ocean weather
and processes through the study of mesoscale and sub-mesoscale eddies requires a more
accurate measurement of sea level variation that remains consistent over time (Durand
et al.,, 2010; Bian et al., 2023). In addition, in the fields of navigation and marine
engineering, an accuracy of a few centimetres is required, especially for determining the
under-keel clearance as vessels enter into ports and shallow sea areas (Orseau et al.,,
2021; Zhang et al., 2022). Several sources of sea level data are available, including
hydrodynamic models (HDM), tide gauges (TG), satellite altimetry (SA), Global Navigation
Satellite Systems (GNSS) tide buoys and airborne laser scanning (ALS), each with its own
set of advantages and disadvantages. Therefore, it is intuitive to realize that in order to
obtain better accuracy and consistency from coastal to offshore requires the
development of methodologies to synergize these data sources.

Previous studies have attempted to integrate sea level sources (Saraceno et al., 2008;
Cheng et al., 2012; Chang et al., 2023), but their full potential was often limited by the
absence of a common vertical reference datum. Advancements in sea level measurement
technology, including improved accuracy and higher resolution, along with modelling,
now paves the path so that instantaneous sea level modelling and forecasting can be
achievable within accuracies of less than a few centimetres from coastal to offshore.
Although several studies undertook extensive evaluations and comparative assessments
between the sea level data sources for various purposes (Featherstone and Filmer, 2012;
Ophaug et al., 2015; Schall et al., 2016; Andersen et al., 2018; Varbla et al., 2020 and
2021; Mostafavi et al., 2021 and 2023; Afrasteh et al, 2021 and 2023), there is a limited
focus on integrating them for the determination of instantaneous enhanced dynamic
topography (Slobbe et al., 2013).

In this research, the Baltic Sea region is chosen as a case study, where the objective of
realizing chart datum with a standard uncertainty of less than 5 cm has been already
initiated (Agren et al., 2023). Although the synergy of data sources enables achieving
higher accuracy, combining sea level sources still poses complexities due to several
limitations, including: i) various spatial and temporal resolutions, ii) utilization of
different vertical reference datums, and iii) diverse errors arising from the method of
data collection (Jahanmard et al., 2022a and 2023a).

Tide gauge data stands out as the most historical and reliable source for representing
sea levels in coastal areas, which often considered as the 'true' sea level (Adebisi et al.,
2021). However, there are some limitations to their usage, including: i) TGs tend to have
limited spatial coverage, primarily representing coastal areas, and their spatial
distribution is often uneven and incomplete; ii) challenges may arise from the absence
of a consistent vertical datum, especially when integrating TG measurements from
multiple locations across different countries or communities; and iii) TGs measure
relative sea level with respect to a fixed point on land called the TG benchmark, which in
certain locations may be affected by vertical land motion, e.g. due to glacial isostatic
adjustment (GIA). The TG benchmarks are usually connected (with different accuracies)
to a national height network. Additionally, TG data may contain errors stemming from
instrumentation, maintenance, and human factors, as well as biases caused by vertical



datum shifts or the lack of precise vertical reference unification among countries
(Pytharouli et al., 2018; Gruber et al., 2022).

On the other hand, HDMs are capable of deriving sea level continuously, both spatially
and temporally. This makes them ideal for integrating and consolidating various sea level
datasets from the coast to offshore. However, HDMs have also some limitations,
including: i) often lacking a well-defined vertical reference datum, whereas sea level
derived from HDMs cannot be explicitly described in a 3D coordinate system (Slobbe et al.,
2013); and ii) HDMs are driven by mathematical equations, which may contain errors
stemming from computational errors, limitations in model resolution and parameterization
schemes, time steps and modelling discretization, topography, and uncertainties in
boundary conditions and forcing inputs (Hieronymus et al., 2017; Mardani et al., 2020).
These limitations can introduce biases in HDMs compared to observations, both spatially
and temporally (Jahanmard et al., 2023a).

In addition, SA is one of the most effective sea level determination techniques, which
has seen significant technological advances over the last few decades. The basic concept
is that the altimeter sends and receives radar pulses along the satellite's trajectory to
measure the range. By knowing the altitude of the satellite above a reference ellipsoid,
based on its orbit computation with respect to a geocentric reference frame, then sea
surface height (SSH, i.e. the sea level relative to the reference ellipsoid) is determined by
the difference between the altitude and the range (Figure 1). The reference ellipsoid is a
mathematical approximation of the Earth's shape that is used in geodesy and satellite
altimetry for its simplicity and to facilitate precise calculations and measurements.
The extensive global coverage of SA measurements provides a fundamental resource for
a wide range of applications, such as regional and global climate studies (Srinivasan and
Tsontos, 2023) and marine gravity field (Li et al., 2022). Nevertheless, SA has some
limitations, including: i) several instrumental and geophysical corrections are required to
be applied to improve the range, some of which may be degraded by approaching land
and inhomogeneity of radar backscattering; ii) sufficient spatial resolution, while lacking
the required temporal resolution (e.g., Sentinel-3A has spatial along track resolution of
300 m and temporal resolution of 27 days); and iii) on approaching the coastal areas, the
satellite signal can become contaminated by terrains causing inaccurate sea level
measurements. With the latest missions and retracking algorithms, SA can achieve the
resulting SSH accuracy up to 2—3 cm in the open ocean and up to 4 cm in coastal regions
(Abdullah et al., 2023).

Sea surface topography can also be captured via the ALS technique by emitting laser
pulses and registering returned reflections from the sea surface (Jahanmard et al.,
2022c). The high pulse repetition rate, low beam divergence, and relatively slow platform
speed enable covering a wide swath (from the nadir perpendicular to the flight direction).
The dense and highly accurate 3D point cloud retrieved from the LiDAR sensor allows
investigating sea surface variations and wind waves (Walsh et al., 1985). Although ALS
observations are able to provide the most accurate instantaneous sea surface topography,
this technique is relatively expensive compared to alternative approaches and is not
suitable for long-term or continuous monitoring.

The shipborne GNSS data is also used for the determination of sea surface height
(Nordman et al., 2018; Varbla et al. 2021). Installing a GNSS receiver on a ship is relatively
straightforward, but deriving SSH from GNSS observations presents several challenges,
such as determining geometrical connections between the GNSS antenna and the actual
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sea surface. Additionally, retrieving sea surface from shipborne GNSS data lacks a
necessary spatial and temporal resolution.

Synergizing diverse data sources for developing a seamless sea level determination
system from coastal to offshore is challenging due to the use of different vertical
reference surfaces and data sources with varying resolutions. To address this challenge,
the key component that links and unifies all data sources is a geoid model as an
equipotential surface of the Earth’s gravity field. The geoid model represents the shape
of the equipotential ocean surface under the influence of the gravitational attraction and
Earth’s rotation, in the absence of other influences such as winds and tides. This
reference surface should ideally be used as the zero for sea level and allows the
determination of dynamic topography (DT), which represents the realistic sea level
variation. The SSH derived from various data sources, such as SA, GNSS, and ALS can be
converted into DT using a suitable geoid model (see Figure 1).
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Figure 1. Schematic representations of the interrelation between various data sources,
hydrodynamic parameters, and vertical reference surfaces. Refer to the main text body for the used
symbols and abbreviations [from Publication IV].

Several global geoid models are available, such as the Earth Gravitational Model
EGMO08, yet they do not meet the required accuracy and spatial resolution for the
determination of the realistic and accurate DT. For this purpose, high-resolution regional
geoid models offer more practical solutions (Agren et al., 2016; Ellmann et al., 2019).
Regional geoid models are derived through inserting terrestrial gravity measurements
and global geopotential models into modified Stokes’ formula (Stokes, 1849; Ellmann,
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2005; Sjoberg & Bagherbandi, 2017). In many study areas, determining DT using
high-resolution geoid models can be still challenging because of limited access to these
models and the advanced measurements and expertise required for their development.
However, notable achievements are observed in some regions and countries in the
development of accurate geoid models for land and sea. For instance, the collaboration
among Baltic Sea countries has resulted in the determination of a high-resolution geoid
model known as NKG2015 (Agren et al., 2016). This model facilitates advancements in
marine studies and applications.

Dynamic topography represents a realistic quantification of the sea level variations
with respect to an equipotential surface of Earth’s gravity field, thus enabling better
guantification and understanding of ocean currents, circulations, and heat and salinity
transport (Wunsch and Stammer, 1998; Johannessen et al., 2014; Morrow et al., 2023).
This parameter can be determined from two approaches: oceanographic and geodetic.
In the geodetic applications, the calculation of the DT from SA measurements is obtained
by subtracting the geoidal height N from the SSH, as follows:

DTy = SSHgy — N = H,,p,;; — (Range + Cor) — N. (1)

where H,,.pi¢ is the satellite’s altitude, Range represents the distance between the
satellite and sea surface, and Cor represents various atmospheric, geophysical, and
instrumental corrections.

For the oceanographic applications, DT is determined from physical ocean models or
HDMs. Although HDMs use spherical coordinates (latitude ¢, longitude A, vertical
component z) in their setup, they implicitly use a vertical datum that is adopting the
constant geopotential W (Hughes and Bingham, 2008). Thus, the term DT is appropriate
for modelled sea level; however, the value of Wis often undisclosed, which indicates that
there may be an offset required when compared to the geoid. This offset varies
depending on the different HDMs and the selected zero reference point used for the
height system of interest.

It is also important to note that HDMs can contain errors stemming from the model
compilation setup, including input forcings, uncertainty in boundary conditions,
bathymetry, modelling discretization, limitations in model resolution, and
parameterization schemes. Therefore, the difference between HDM and observed data
can be formulated by a combination of a bias due to the difference in zero level and the
modelling errors.

Ideally and conventionally, two steps can be applied for vertical referencing HDMs to
a particular geoid model: i) referring prescribed sea level along the open boundary to the
geoid, and ii) assimilating instantaneous geoid-referenced observations into the HDM
(Slobbe et al., 2013 and 2014). For this purpose, an accurate geoid model covering the
entire HDM’s domain is required. However, the marine geoid models may contain
problematic regions (e.g., due to gravity data voids and/or inaccuracy), where their
errors may reach a few decimetres (Varbla and Ellmann, 2023). While both the geoid and
vertical referencing of the HDM can be realized through an iterative procedure (Slobbe
et al., 2014), attaining a significant accuracy (i.e., a few centimetres) remains uncertain.
This uncertainty is influenced by the chosen data assimilation technique and the
approach adopted to converge toward a realistic DT during successive iterations.

As a result, this study develops two novel approaches. The first approach identifies
the exact difference between HDMs and TG records, which is computed using a dense
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network of geoid-referenced TG records and is assumed to measure the true sea level
(Publications | and Il). The bias is then propagated from coastal to offshore using
conventional interpolation methods, such as linear and inverse distance weighted
interpolation. This approach has some limitations especially on the potential vertical
datum shifts between TGs and uncertainties in error interpolation away from the
stations. On the other hand, the second approach uses machine learning to identify and
predict modelling errors and then derive the bias of HDM’s reference surface
(Publication 1V). For both approaches validation is made using SA data, which is
particularly applicable to verify that the methods work in the offshore areas. A secondary
deliverable of applying the two methods is that the synergy of the different sources
allows in identification the problematic issues with the data sources and also where this
may occur spatially and temporally. To the best of our knowledge, the developed
methods is the first attempt at such a synergized exploration across the entire Baltic Sea.
This study is the first step towards examining realistic dynamic topography, with the
potential for similar developments to be adapted in other marine areas worldwide.

Scope and Objectives

A continuous model of accurate and consistent DT from the coast to the offshore region,
with pre-defined uncertainty bounds, becomes important for various marine
applications and serves as the motivation for this study. As mentioned earlier, various
approaches and data sources derive sea level variations relative to different vertical
references, each with its own limitations and strengths. Therefore, the main objective of
this research is to develop a synergistic integration between sea level sources, utilizing a
geoid reference surface to establish a link between them.

Firstly, in Publications | and Il, the reference bias and modelling errors are treated as
one integral bias in the HDM. Hence, the vertical reference unification and correcting of
the HDM-derived DT are addressed simultaneously using a dense closed-loop network of
geoid-referenced TGs as ground-truth observation.

Publication | represents the first attempt to combine the HDM and TG data by deriving

time-domain bias at the location of TGs followed by determination of spatial-domain bias
using bilinear interpolation. This concept is founded on the assumption that the spatial
variation of the time-domain biases obtained at the TG stations is insignificant, as long
as the HDM exhibits a high correlation with TGs, whereas the TG zero marks are
accurately referred to an identical geoid-based vertical datum. This assumption is tested
in Publication | by comparing two different HDMs and in Publication Il by comparing
different interpolation techniques along with an assessment using the SA-derived DT in
the offshore area.
The primary limitation of the approach used in Publications | and Il is that TG data are
considered as ground-truth. Therefore, if the TG data contain errors or vertical datum
shifts, they can propagate into the corrected HDM. This issue can be addressed by
dividing the difference between modelled and observed DT into two main components:
modelling error and vertical reference bias. A machine learning (ML) strategy was applied
to determine HDM modelling error over time and space. After correcting the HDM, the
vertical reference bias is determined by comparing the corrected HDM with the SA-based
DT. Publication IV focuses on the application of a deep neural network to correct the
HDM and quantifies the vertical reference bias using SA data. The study area in
Publication I is the Gulf of Finland and the northern part of the Gulf of Riga. It is extended
to the entire Baltic Sea region in Publications Il and IV.
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A comparative assessment between data sources in Publications | and IV reveals the
inconsistency between data sources and highlights problematic regions. These regions
demonstrate issues related to the geoid model, SA data, HDM errors, or a combination
of these factors. In Publication IV, the ML-based HDM correction also allows the
determination of the existing vertical datum shift between TGs.

The main objective of this study is to integrate modelled and observed data for the
accurate determination of instantaneous dynamic topography. The corrected HDM has
also been assessed via airborne laser scanning (ALS) observations. A study was conducted
to explore the potential of utilizing dense ALS point cloud sea surface data for retrieving
directional wave parameters. The results of this study were detailed in Publication IIl.

In summary, this study introduces two approaches for correcting HDM:

Method I: utilizing a dense network of geoid-referenced TGs to determine
the HDM bias over the course of time at the location of TGs and then spatially
distributing this bias using interpolation techniques (Publications I and Il).
Method Il: employing a deep neural network to determine the HDM errors
and vertical referencing the HDM by the reference bias derived from
comparison with SA data (Publication IV).

Additionally, this study evaluates the results achieved by correcting the HDM using
ALS point cloud data and, as a secondary topic, presents an approach for retrieving the
directional wave spectrum (Publication IIl).

Therefore, the objectives of this study are listed as follows:

Develop a methodology to correct instantaneous dynamic topography
derived from HDMs and unify the reference surface of the modelled and
observed sea level data from diverse sources with respect to a specific
geodetic reference system (Publications I, Il, and V).

Compare multiple sea level datasets to evaluate the performance of the
corrected HDM and quantify the accuracy and bias of the corrected
instantaneous dynamic topography (Publications Il, and IV).

Identify inconsistencies and significant disparities between the datasets and
the locations and frequency of occurrence (Publications II, and IV).

Employ deep learning techniques to integrate HDM data and TG records,
leveraging physical input variables and causal relationships to address HDM
errors (Publication IV).

Establish a methodology for retrieving directional wave spectra from airborne
LiDAR point cloud data (Publication Il1).

Limitations

The presented investigations have certain limitations that need to be addressed:
1. For Method I (Publications |, 1), there are some limitations:

Adoption of the TG zero in a common vertical reference datum poses
challenges, as it may not be available in most regions, especially when multiple
countries/communities are involved.

The TGs must be rigorously connected to the national vertical datum, as the
TG records may experience vertical datum shifts caused by various factors,
such as natural disasters or insufficient maintenance. These shifts, along with
the individual errors and uncertainties present in different TGs, can propagate
into the corrected model.
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1. The method relies on interpolation techniques, necessitating a dense
closed-loop TG network. As a result, it is more suitable for narrow seas or
gulfs, as the interpolated values may become less reliable with increasing
distance from the TG stations.

2. For Method Il (Publication IV):

I The ML-based HDM correction requires additional efforts to address localized
features that may be overlooked due to model generalization.

Il. The deep neural network used solely relies on temporal causal convolution
layers, which hinders the possibility of spatial feature learning and the
utilization of spatial convolutions. This limitation makes it challenging to
account for ocean features dependent on basin geometry, such as seiches.

3. The Baltic Sea region, which serves as the study area for this research, is a
semi-enclosed sea with its specific characteristics. This region is an ideal study area
for this examination due to its dense network of TGs with a common geoid-based
chart datum and well-developed high-resolution geoid model, HDM, and vertical
land movement model. However, the generalizability of these approaches requires
testing in other regions of the world, where new challenges may arise.

4. In Publication Ill, while the capability to capture 3D point cloud data of sea surface
topography provides deeper insights into surface ocean waves, ALS technology is
relatively expensive compared to alternative approaches.

Structure

The dissertation is structured into sections that define the problem, address the
requirements, and present the solutions in the form of two methods that were
developed. To maintain conciseness, the sections focus on essential details and
findings, while additional explanations are available in the corresponding publications.
The following Section 1 provides the theoretical overview and principles for determining
absolute dynamic topography using diverse sea level sources. In Section 2, the study
area and datasets are reviewed. Section 3 presents the first method that provided to
correct the HDM. This section is organized to express the background theory,
implementation of the method, results, and discussion through a comparative
assessment of available data sources. Section 4 then introduces the second method,
which is based on machine learning strategies. This section provides an overview of the
approach, defines a deep neural network for correcting the HDM, and concludes with
results and discussion. In Section 5, sea surface topography derived from an airborne
LiDAR point cloud is introduced for the evaluation of the corrected HDM, employing a
low-pass filter. Furthermore, high-resolution ALS data also facilitates the determination
of sea state, hence, this section continues by presenting a technique for deriving the
wave spectrum from this dataset. In conclusion, Section 6 provides a comprehensive
discussion and summary to wrap up the thesis.
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Abbreviations

ALES Adaptive Leading Edge Subwaveform

ALS Airborne Laser Scanning

ASL Absolute Sea Level

BSCD2000 Baltic Sea Chart Datum 2000

CERRA Copernicus regional reanalysis for Europe
CMEMS Copernicus Marine Environment Monitoring Service
ConvlD One-dimensional convolutional layer

DL Deep Learning

DT (ocean) Dynamic Topography

ECMWF European Centre for Medium-Range Weather Forecasts
EVRS European Vertical Reference System

ERA5S ECMWEF Reanalysis v5

ESA European Space Agency

FES2014 Finite Element Solution tide model 2014

FFT Fast Fourier Transform

GEBCO General Bathymetric Chart of the Oceans

GIA Glacial Isostatic Adjustment

GNSS Global Navigation Satellite System

HBM-EST Estonian implementation of the HIROMB-BOOS Model
HDM Hydrodynamic Model

HIRLAM High-Resolution Limited Area Model

HYPE Hydrological Predictions for the Environment
IAG International Association of Geodesy

IDW Inverse Distance Weighted

IHO International Hydrographic Organization
JONSWAP Joint North Sea Wave Project

LAT Lowest Astronomic Tide

MAD Median Absolute Deviation

MDT Mean Dynamic Topography

ML Machine Learning

MSL Mean Sea Level

MSS Mean Sea Surface

NAP Normaal Amsterdams Peil

NEMO Nucleus for European Modelling of the Ocean
NKG Nordic Geodetic Commission

NM Nautical Mile

RelLU Rectified Linear Unit

RMSE Root Mean Square Error

RSL Relative Sea Level

SA Satellite Altimetry
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SAR
SMHI
SSH
SWOT
TG
VLM

Synthetic Aperture Radar

Swedish Meteorological and Hydrological Institute
Sea Surface Height

Surface Water and Ocean Topography

Tide Gauge

Vertical Land Motion
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Symbols

ASL

Bias
Biascypm
c

Cor

d

DAC
DTyps
DTupm
DT o

C,Ref
DTHDM
DTHDM@TG

DTrs1
DTs,
DTrg
DTC

E

fs
G(ks,0)
Hmean—tide
Horbit
Htide —free
Hyero-tide
ice_frac
iono

Nmean—tide

Nzero—ticle

0TC

p
PT

q

absolute sea level

bias between modelled and observed data for a certain period
bias of corrected HDM

dimension of the input variable in the DL model

satellite altimetry corrections

dilation of causal convolution layers

dynamic atmospheric satellite altimetry correction

dynamic topography from airborne laser scanning

dynamic topography from hydrodynamic model

dynamic topography from corrected hydrodynamic model

dynamic topography from corrected and unified reference surface
hydrodynamic model

dynamic topography from hydrodynamic model at location of TG
station

relative dynamic topography from tide gauge records

absolute dynamic topography from satellite altimetry
absolute dynamic topography from tide gauge records
dry tropospheric satellite altimetry correction
Instantaneous difference between HDM and TG records
filter size of convolution layers

2D Gaussian filter with kernel size ks and standard deviation o
heights in mean-tide system

satellite’s altitude

heights in tide-free system

heights in zero-tide system

ice fraction variable

ionospheric satellite altimetry correction

number of causal convolutional units

mask for transferring from HDM grid points to TG locations
mean dynamic topography for the period of p

sea level variability for a period of a day

mean sea surface for the period of p

number of observations within a selected time span
number of filters in convolution layers

geoid height, which is relative to a reference ellipsoid
geoid height in mean-tide system

geoid height in zero-tide system

ocean tide satellite altimetry corrections

a certain period of time

pole tide satellite altimetry correction

index of the HDM grid points
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R? coefficient of determination of prediction

Range satellite’s range

RefBias vertical reference bias of hydrodynamic model
RF receptive field of DL model

RMSE root mean square error

RMSE, root mean square error of predicted &

ROC radial orbit error satellite altimetry correction
RSL relative sea level

SDBias spatial-domain bias

SLP sea level pressure variable

SSB sea state bias satellite altimetry correction
SSHy; s sea surface height from airborne laser scanning
SSHg, sea surface height from satellite altimetry
SSS sea surface salinity variable

SST sea surface temperature variable

SWH significant wave height variable

t measurement time instant

to reference epoch

TDBias time-domain bias

Uwind zonal wind speed variable

VLM vertical land motion

Vwind meridional wind speed variable

w sliding window length for determination of TDBias
Wy, Wog potential value and Earth gravity field potential
w_Ekman Ekman pumping velocity variable

WTC wet tropospheric satellite altimetry correction
x DL model input variables

Xinp vectorised input variables

Xre DL model input variables at TG location

X zonal wind stress variable

Y, meridional wind stress variable

£ hydrodynamic modelling errors

é predicted hydrodynamic modelling errors

Mp Precipitation-induced water column variable
Ns steric height variable

3 wind wave elevation

Onap geodetic latitude of NAP

o, geodetic coordinates: latitude and longitude
V16 g, geodetic coordinates of TG stations

D distance between two geodetic coordinates
w vector of inverse distance weight
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1 Derivation of Ocean Dynamic Topography

Several sea level data sources are available, each referring to a different vertical reference
datum, and this diversity in reference datums complicates the integration between
datasets. Therefore, adopting a particular geoid surface as an intermediate vertical
reference datum presents a viable solution for integrating various sea level measurement
approaches (Slobbe et al., 2014). The geoid surface represents the shape of the ocean
surface influenced by gravitational attraction and Earth’s rotation, excluding other
factors like winds and tides. It is important to note that the geoid serves as a stable and
static vertical reference datum, remaining constant over time, unlike Tidal datums, and
it should ideally be considered as the zero reference for sea level measurements.
Therefore, sea levels referenced to a geoid surface provide a physically meaningful and
realistic measure of ocean dynamics known as DT. This section provides an overview and
background theory of the DT derivation from various approaches. The study area and
datasets used in this study will be introduced in Section 2.

1.1 Observations of Dynamic Topography

The most common observation techniques that provide instantaneous sea levels are tide
gauge (TG) and Satellite altimetry (SA) datasets. Both sources offer complementary
observations and are necessary to observe the complete spectrum of ocean dynamic
processes (Cheng et al., 2012; Andersen et al., 2018). Satellite altimetry offers a time
series over a sufficiently long period and adequate spatial resolution in open sea areas,
however, lacks the required temporal resolution. Significant progress in coastal altimetry
over the past decade also enables the observation of sea levels closer to the coast, with
improved accuracy (Adebisi et al., 2021). On the other hand, TG records provide a long
historical time series with sufficient temporal resolution. However, TG stations are
spatially sparse, and their spatial coverage is limited to the coastal boundary.

The sea level obtained from SA observations is known as the absolute sea level (ASL),
which is referenced to the Earth’s centre of mass and remains unaffected by VLM.
Contrastingly, TG stations are land-bounded and measure sea level relative to a nearby
benchmark in the national vertical datum. Therefore, TG records is referred to as relative
sea level (RSL), which includes both ASL and VLM accordingly (Woppelmann et al., 2007):

RSL = ASL — VLM. (2)

Derivation of the DT from SA observation relies on a geoid model, where the accuracy
of the determined DT is contingent upon the accuracy of the utilized geoid model
(Equation 1). At TG stations, instantaneous DT is directly measured if the TG zero mark
coincides with a geoid-based chart datum (Jahanmard et al., 2022a). Otherwise, by
utilizing nearby benchmarks with GNSS observations and a geoid model, one can derive
DT from TG measurements, where the accuracy depends on the availability of reliable
ties to the benchmark and geoid model at the TG location (Woodworth et al., 2015;
Filmer et al., 2018). The TG and SA datasets used in this study are detailed in Subsections
2.3 and 2.4, respectively.
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1.2 Geoid-based Vertical Datum

A height system definition comprises essential components: an origin, a vertical reference
surface of the zero level, and a specific type of height measurement (Heiskanen and
Moritz, 1967). The vertical reference datum of marine areas, including TGs, commonly
relies on a chart datum, which typically represents tidal observation such as lowest
astronomic tide (LAT) and mean sea level (MSL), or a physical model like the geoid as
their reference surface (IHO, 2020). The tidal datums are most customarily used by
several countries; however, they are no longer an ideal approach as they can vary over
different time spans, whereas depending on the country/community, the sea level data
may be referred to different definitions of vertical datums (Jahanmard et al., 2021a).
For instance, this issue can lead to inconsistencies and incompatibilities in the Baltic Sea
region (the study area for this research; described in Subsection 2.1), which is surrounded
by nine countries. Therefore, pan-regional integration is essential in order to study this
dynamic marine area effectively.

While tidal datums are based on sea level variations for a certain time span,
geoid-based datums are realized using geoid models with a typical standard uncertainty
of few centimetres. The use of a geoid-based datum offers the advantage of a stable
reference surface, allowing for a seamless transition of the chart datum from land to
offshore as well as enabling vertical datum unification between countries/communities
(Schwabe et al., 2020; Ke et al., 2020).

The Baltic Sea countries have adopted national realizations of the European Vertical
Reference System (EVRS), which defines the vertical datum as an equipotential surface
where the Earth’s gravity field potential remains constant:

WO = WOE = COTlSt., (3)

and is set at the level of the Normaal Amsterdams Peil (NAP). Note that the EVRS
is in the zero-tide permanent tide with reference epoch 2000.0 (lhde et al., 2002).
The differences between the national height systems range from a few millimetres up to
a few centimetres (Varbla et al., 2022). Due to the significant influence of glacial isostatic
adjustment (GIA) in this region (described in Subsection 1.3), the NKG2016LU VLM model
is employed to adjust observations to the common reference epoch t, = 2000.0 (Vestgl
et al, 2019).

Similarly, considerable efforts have been made to establish the Baltic Sea Chart Datum
2000 (BSCD2000) as a unified geoid-based chart datum (Liebsch et al., 2023) for
hydrographic surveying, engineering, nautical charts, and sea level measurement in all
countries surrounding the Baltic Sea. Consequently, the BSCD2000 also enables the
establishment of a seamless height reference framework compatible with the national
height systems (listed in Table 1) of the surrounding countries (Schwabe et al., 2020;
Varbla et al., 2022).
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Table 1. National height systems complying with BSCD2000, along with their regional geoid models
and permanent tide systems.

Country National height systems National geoid model = Permanent tide system
Denmark  DRV90 DKgeoid12 tide-free system
Estonia EH2000 EST-GEQID2017 zero-tide system
Finland N2000 FIN2005N00 zero-tide system
Germany DHHN2016 GCG2016 mean-tide system
Latvia LAS2000,5 Lvi4 zero-tide system
Lithuania LASQO7 LIT15G zero-tide system
Poland PL-EVRS2007-NH PL-geoid-2011 zero-tide system
Sweden RH2000 SWEN17_RH2000 zero-tide system
Russia BHS77 (Kronstadt) -- mean-tide system

1.3 Vertical Land Motion

Tide gauges measure sea levels relative to fixed benchmarks on land and include any
vertical land motions. The VLM values are not spatially constant, and to ensure accurate
determination of the DT observed at coasts and comparability with SA measurements,
it is necessary to consider the VLM correction for TG records (Santamaria-Gémez et al.,
2012; Woppelmann and Marcos, 2016; Pfeffer and Allemand, 2016).

Note that the VLM can be categorized into non-linear and linear motions. Non-linear
VLM is influenced by various factors, such as tectonics, groundwater depletion, dam
building, and settling of landfills, which have relatively short spatial scales and are
challenging to model and account for (Raucoules et al., 2010; Fokker et al., 2018; Denys
et al,, 2020). The most important VLM in terms of rates is the GIA due to response of the
solid Earth’s surface to periods of glacier and polar cap loading/unloading, which is
commonly expressed as a spatially dependent linear trend (Ostanciaux et al., 2012).

In the Baltic Sea region (study area; described in Subsection 2.1), vertical motions
observed in Fennoscandia are primarily attributed to GIA, resulting in a mean sea level
retreat as the crust rises faster than the sea level (Steffen and Wu, 2011). Therefore, the
VLM must be compensated for TG records to the common reference epoch t, using a
land uplift model as follows:

DTrg(@, A, t) = DTgps (@, A, t) + VLM (@, 4) - (t — to), (4)

where DTgg; is obtained relative TG records, and DTy represents VLM-mitigated DT
derived from TGs (i.e., absolute sea level). The most recent official VLM model used in
the Baltic Sea region is NKG2016LU model (Vestgl et al., 2019).

Figure 2 shows the difference between relative and absolute DT measured by Spikarna
TG station, located in the west of the Bothnian Sea (denoted in Figure 3), with a land
uplift rate of 8.94 mm/year according to the NKG2016LU model. The station exhibits a
long-term linear sea level trend of —6.7 mm/year for relative DT and 2.2 mm/year for
absolute DT, indicating a significant influence of VLM at this location.
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Figure 2. Relative and absolute DT from Spikarna station, located in the northwest of the Bothnian
Sea, along with their linear trend [from Publication Il].

Note that the geoid also rises in the Baltic Sea region due to the VLM and mass
redistribution, however, the values of the geoid rise is relatively small (Figure 3).
The maximum geoid rise in the northern part of the Baltic Sea region is approximately
0.6 mm/year, relative to reference epoch 2000.0, then the geoid rise would be 1.4 cm
for 2021. Since DT refers to the difference between SSH and the geoid height, the geoid
rise needs to be considered in precise applications (Jahanmard et al., 2022a and 2023a).

10

NKG2016LU (mm/year)

Figure 3. Rate of the vertical land movement (colormap) and geoid rise (dashed isolines) in the Baltic
Sea region according to NKG2016LU. Black triangle denotes the location of Spikarna TG station.
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1.4 Permanent Tide Systems

The time-averages of the gravitational forces exerted by the Sun and Moon, which give
rise to tidal forces leading to ocean and earth tides, are not zero (Ekman, 1989; Makinen
and Ihde, 2009). To address the permanent deformation caused by the permanent tide,
the Earth’s geometric shape (crust or topography) is described using two concepts:
tide-free and mean-tide; whereas the gravity field is described using three concepts:
tide-free, zero-tide, mean-tide (Makinen, 2021). Therefore, it is important to harmonize
the permanent tide system of the datasets used.

In the tide-free system, all direct (i.e., tide-generating potential) and indirect
(i.e., the deformation potential of the Earth) effects of the Sun and Moon are eliminated.
In the mean-tide system, the permanent effect on the Earth’s shape is considered,
representing the long-term average shape under tidal forces. The SSH measured by SA is
in the mean-tide system, as the tidal corrections do not remove the permanent tide
(Mé&kinen and lhde, 2009). Therefore, since the mean-tide system is the most physically
meaningful case for oceanographers and comparison with SA observations, all datasets
are transformed to this permanent tide system.

In the International Association of Geodesy recommended (IAG, 1984) zero-tide
system, the direct effect of tides is removed, but the indirect effects are retained. This
results in the gravity field being generated solely by the Earth’s masses and the
centrifugal force (Makinen and Ihde, 2009). Regional gravimetric geoid models (e.g.,
NKG2015) are explicitly stated to be in the zero-tide system, which must be transformed
into the mean-tide system before applying to SSH.

The transformations between the normal height differences and geoid height
between the aforementioned permanent tide systems are presented by Ekman (1989).
Since, TG records in the Baltic Sea region refer to NAP, they are transferred from the
zero-tide to the mean-tide system accordingly (Varbla et al., 2022):

Hmean—tide ((P) = Hzero—ticle ((p) + 0.2954(Si1’12 ((P) - Sinz (‘pNAP))f (5)

where @py4p is the latitude of NAP (52°22' 53”) and the units are in meters. For Danish
TGs that are in the tide-free system:

Hmean—tide ((p) = Hticle—free ((P) + 0.2954}/(Si1’12 ((P) - Sinz (‘pNAP))f (6)

where the coefficient y = 0.7. Similar to Eq. 5, the conversion of geoidal heights to the
mean-tide system is as follows:

Nmean—tide (QD) = Nzero—tide (QD) - 0.2954(Si1’12 (QD) — sin? (¢NAP))/ (7)

The values of the conversion from the zero-tide and tide-free system to the mean-tide
system are shown in Figure 4, according to Equations (5) and (6).
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Figure 4. Differences of heights in the zero-tide and tide-free system and the mean-tide system in
the Baltic Sea region, latitude from 54° to 66°.

1.5 Dynamic Topography Modelling

Hydrodynamic models are considered one of the most valuable sea level data sources
due to their high resolution in both time and space, allowing for extensive spatial and
temporal data coverage from coast to offshore. Nevertheless, they are not devoid of
limitations, particularly in sea level determination, which is the main focus of this study.
The foundation of HDMs lies in the governing equations of fluid dynamics, which are
based on fundamental principles of physics, particularly the laws of conservation of mass,
momentum, and energy. The most common set of equations used is the Navier-Stokes
equations, the analytical solution of which is often extremely challenging. Thus, numerical
methods and mathematical techniques, involving the discretization of continuous
equations into a set of discrete equations, are employed to approximate and solve these
equations. Hence, HDMs may contain modelling errors arising from assumptions,
approximations, time steps and modelling discretization, limitations in model resolution,
and parameterization schemes. Additionally, the models may have modelling errors
inherited from various input sources, such as topography, atmospheric forcings, and river
discharge (Mardani et al., 2020).

The second and important limitation is that HDMs typically lack a well-defined vertical
reference surface, which hinders direct integration with other sea level data sources.
In HDMs, it is common to set up the model using a spherical coordinate system with
latitude, longitude, whereas vertical coordinates (z- height) are derived from the
bathymetry dataset. However, the bathymetry is often considered as a control variable
in the calibration process (Slobbe et al., 2013). Regardless of the vertical coordinate
system utilized in the model, there will always be an implicit z coordinate for sea level
determination.

It is important to note that since the models’ dynamics are based on the assumption
that gravity acts in the z-direction, the surface of the constant z represents surfaces of
constant geopotential W (Hughes and Bingham, 2008). Consequently, the sea level
derived from HDMs can be referred to as dynamic topography (DTypu). However,
the potential values (W;) of the HDMs’ reference surface are still undisclosed, and the
determination of the reference surface in HDMs is challenging due to the presence of
modelling errors. In this regards, two approaches for correcting HDM relative to a
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well-defined geodetic reference frame are presented in this study, which are described
in Section 3 (see Publications | and Il for more details) and Section 4 (see Publication IV
for more details). The HDM datasets used in this study are detailed in Subsections 2.6.

1.6 Mean Dynamic Topography

The time-mean dynamic topography (MDT) can be derived by subtracting the geoid
height from the time-mean sea surface (MSS) or calculated using ocean models based on
estimated distributions of temperature, salinity, currents, etc. (Ekman and Makinen,
1996; Filmer et al., 2018). The former is the geodetic approach that is determined from
TG records and SA data from the geodetic methods; the latter is the oceanographic
approach that is computed from a global or regional ocean model. Therefore, in geodetic
approach, the MDT for the period of p is:

MDT, (¢, 4) = MSS,(¢,2) — N(op, 1), (8)
and in oceanographic approach, the MDT is determined as follows:
1
MDTp (‘P' A) = ;Z?=1 DTHDM (‘P’ A! t)' (9)

Oceanographers are interested in MDT knowledge in order to study the ocean’s
geostrophic currents and ocean transports (e.g., Marshall et al., 1997; Krauss et al., 1991;
Bingham et al., 2008; Armitage et al., 2018; Mintourakis et al., 2019; Knudsen et al., 2021;),
and geodesist aim to unify or analyse height datums globally or locally (e.g., Rummel,
2002; Woodworth et al.,, 2012; Featherstone and Filmer, 2012; Slobbe et al., 2014;
Afrasteh et al., 2023). In Publication I, the two approaches are employed to evaluate the
HDM correction by comparing SA data and the corrected HDM. Additionally, the vertical
reference bias of the HDM is determined by comparing geodetic and oceanographic
MDTs in Publication IV.
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2 Study Area, Data Sources and Preprocessing

Sea level datasets are gathered from various sources to determine the accurate absolute
DT from coast to offshore area. In this dissertation, the Baltic Sea region is selected as
the study area, and the instantaneous determination of DT is realized by correcting a
high-resolution HDM by a network of TGs and utilizing the geoid as an intermediate
reference surface. The corrected HDM is examined by the DT derived from the separation
between SA data and a high-resolution geoid model. By comparing geodetic and
oceanographic MDTs, it is possible to determine the vertical reference bias of the HDM
relative to the EVRS (with the reference point of NAP and the reference epoch of 2000.0).
The synergistic integration of data sources and approaches also facilitates the
identification of problematic regions related to HDM, TG vertical datum shifts, SA data,
and geoid model.

2.1 Study Area

The HDM correction and vertical reference unification is investigated in the Baltic Sea
region, which is characterized as a micro-tidal semi-enclosed water body located in
Northern Europe and surrounded by nine countries. The sea area is divided onto several
sub-basins often defined by their geometry and bathymetry (see Figure 5 for the location
Baltic Sea and its’ sub-basins). Some of these sub-basins are often only slightly
inter-connected (Lehmann and Hinrichsen, 2000).

An estuarine type of environment exists in this sea area, the freshwater flows from
the numerous rivers of the surrounding countries, whilst the salty water from the Atlantic
Ocean often intrudes through the narrow connection with the North Sea via the Danish
Straits. This often leads to the formation of the strongly stratified water column, with the
Baltic Sea being the world’s second-largest estuarine water mass with an area of
ca. 377,000 km? and average depth of 55 m. It is also quite common in the winter months
for the Baltic Sea to become ice-covered, especially in the northern and eastern sections
and also along coastal areas (Lepparanta and Myrberg, 2009).

The Baltic Sea is frequently chosen as an ideal research site for investigating global
climate and environmental changes, thanks to extensive long-term monitoring programs
on land and at sea (Reusch et al., 2018). Furthermore, owing to its semi-enclosed nature,
surrounded by densely populated and highly industrialized countries, the Baltic Sea is
highly sensitive to anthropogenic influences. This region is also considered to be one of
the busiest maritime traffic areas in the world (Rytkonen et al., 2002). These characteristics
make it necessary to have a realistic and continuous sea level data from coastal to
offshore.

The Baltic Sea is a well-suited study area for evaluating the proposed methods due to
the availability of key resources such as the high-resolution Nemo-Nordic model (Hordoir
et al., 2019; Karna et al.,, 2021), a dense network of well-established TG stations with a
common geoid-based reference datum (i.e., BSCD2000), a high-resolution geoid model
NKG2015 (Agren et al., 2016), and an accurate land uplift model NKG2016LU (Vestgl
et al, 2019).
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Figure 5. Baltic Sea region and its bathymetry sourced from GEBCO 2022 gridded bathymetry data?.
The dense network of used tide gauges is denoted by red circles.

Some general characteristics can be seen for both baroclinic and barotropic forces
play a major role in the dynamics of the Baltic Sea. In general, the surface salinity
decreases from west to east (ranging from 5 to 7 PSU) being influenced by freshwater
river runoff and net precipitation, and exchange with saline water from the North Sea
through the Danish Straits (Kniebusch et al., 2019). This often results in multi-structured
seasonal and permanent thermocline and halocline at various depths (Liblik and Lips,
2019). Due to this layered structure, direct atmospheric forcing primarily affects the
upper layer, which typically has a thickness of 40-80 meters (Soomere and Quak, 2013).
For the bottom layer advection and mixing play a major role.

Winds over the Baltic Sea have a seasonal pattern. However, the dominant wind
direction in this area is southwest, but it is quite common for northerly winds to also be
prevalent (Soomere and Keevallik, 2001). The winter and autumn seasons tend to have
the strongest winds and highest waves (Jakimavicius et al., 2018). Winds play an essential
role in this region, causing the occurrence of free oscillations known as seiches, which
can significantly contribute to sea level extremes (Suursaar et al., 2002).

For waves in general the long-term average significant wave height in the Baltic Proper
is 1-1.5 m (Rdamet and Soomere, 2010; Bjoérkqvist et al., 2018). For other sub-basins,
such as the Gulf of Finland, where ALS surveys were performed, it can be around
0.5-0.8 m, and the maximum significant wave height is 3.8 m with a return period of
100 years. However, the maximum significant wave height at the western entrance of
the Gulf of Finland may reach values comparable with extreme wave heights in the Baltic
Proper (about 10 m) during severe storms (Soomere et al., 2008). The geometry and
bathymetry of the northern Baltic Proper can influence wave direction, particularly

1 https://www.gebco.net/data_and products/gridded bathymetry data/ [accessed 7 August 2023]
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towards the Gulf of Finland. Consequently, wave periods in the gulf may be comparable
to those in the Baltic Proper. Notably, there can be a deviation of up to 50° between wind
and wave directions in the gulf (Pettersson et al., 2010). An examination of wind, waves,
and surface currents reveals that wind and surface waves predominantly govern surface
drift (Delpeche-Ellmann et al., 2021). Moreover, wind waves can also play a noticeable
role in contributing to extreme sea levels (Staneva et al., 2016).

Currents in the Baltic Sea are mainly the result of four factors: wind stress at the sea
surface, surface pressure gradients, horizontal gradients of thermohaline density,
and tidal forces. Furthermore, the currents are influenced by Coriolis acceleration,
topography, and friction, resulting in the formation of a general cyclonic circulation in
this stratified system; however, this circulation can vary within the different layers.
Up- and downwellings are also common in the Baltic Sea especially in the summer
months. Winds blowing predominantly parallel to the coast from favourable directions
induce up- and downwelling, which often results in vertical water displacement and
mixing (Lehmann and Myrberg, 2008; Delpeche-Ellmann et al., 2017). Also, the internal
(baroclinic) Rossby radius that defines the size of meso-scale circulation cells (meso-scale
or synoptic eddies) varies from a radius of 1-10 km (Alenius et al., 1998). Unlike many
global sea areas, astronomical tides in the Baltic Sea are negligible, less than 10 cm,
due to its limited co-oscillation with the open ocean. However, under resonance
conditions, locally generated tides may still play a role, and as a result, tidal variations
could become noticeable (Weisse et al., 2021).

Several components affect the sea level in the Baltic Sea. For a long-term effect,
the global sea level change (due to thermal sea water expansion and melting of glaciers)
will influence the sea level. Whilst changes in temperature, precipitation and evaporation
are mostly influenced on a decadal time scale. It has also been suggested that
temperature and precipitation may contribute for 15% of the sea level variability in
winter and approximately 35% in summer (Hinicke and Zorita, 2006).

Short-term influences (yearly, seasonal, daily, etc.), variations in the water balance are
mainly occurring due to water exchange in the Danish Straits. For instance, saltwater
intruding (driven by atmospheric conditions) from the Atlantic (Major Baltic inflow) may
lead to notable sea level changes. As an example, the Baltic inflow in 1993 increased the
mean sea level by 70 cm within 21 days (Matthdus and Lass, 1995). River runoff also
affects the water balance, with the biggest freshwater contributor being the Neva River
located on the eastern end of the Gulf of Finland (Myrberg and Soomere, 2013).
The decrease in sea ice days also contributes to the sea level in the Baltic Sea (Rosentau
et al., 2017). Localized events, occurring on much shorter time frames, such as weeks,
days, and even hours, can impact sea levels. Most of these events are influenced by
meteorological factors, e.g. particularly strong, anisotropic winds in the Baltic Sea
(Soomere, 2003). For example, storm surges and coastal upwellings are quite prevalent
in the Baltic Sea with a more or less seasonal trend (Suursaar and Sooaar, 2007;
Delpeche-Ellmann et al., 2017). These drastic short-term sea level changes that can occur
show the importance of obtaining accurate instantaneous DT measurements that are
necessary to record and predict these incidents.
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2.2 The Geoid Model

The official NKG2015 geoid model, the most recent high-resolution geoid model for the
Baltic region (Agren et al., 2016), is employed for the determination of DT derived from
SA data. The model was developed by the Nordic Geodetic Commission with spatial
resolution of 0.01° x 0.02° and reference epoch of 2000.0. The NKG2015 coverage
extends from 23°N to 73°N latitude and from 0°E to 34°E longitude. The geoid model was
determined based on the least-squares modification of Stokes’ formula with additive
corrections (LSMSA) up to degree and order 300 using the GOCE/GRACE geopotential
model. The geoid model is shown in Figure 6. The standard deviation of the NKG2015 in
agreement with the control GNSS/levelling data is 2.85 cm.
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Figure 6. The NKG2015 geoid model in the zero-tide system.

The NKG2015 geoid heights are relative to the GRS80 reference ellipsoid. Accordingly,
in this study, the GRS80 ellipsoid is adopted, and if necessary, the SA data (that could
initially refer to some other reference ellipsoid, e.g. Topex/Poseidon) are transformed to
this reference surface. Note that the NKG2015 model is in the zero-tide system, however,
the officially released online model? contains a ‘hybrid permanent tide system’
correction, making it directly applicable to GNSS data. Therefore, this correction should
be removed first, then the geoid model in the mean-tide system can be determined by
Equation (7). In addition, the rate of geoid rise also needs to be accounted for due to the
GlA-induced geoid rise in this region (Vestgl et al., 2019; see also Figure 3).

2 https://www.isgeoid.polimi.it/Geoid/Europe/NordicCountries/nordic_baltic countries g.html
[accessed 7 August 2023]
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2.3 Tide Gauge Records

Tide gauge data serve as a base for correcting the HDM, which provides geoid-referenced
sea level observations and can be considered as the ground-truth data (in Method 1);
as it is the most accurate source of high-temporal-resolution sea level variation, but may
include errors and vertical datum shifts (in Method Il). In this regard, hourly TG records
were obtained from nine Baltic Sea countries: Estonia3, Latvia® Lithuania®, Poland®,
Germany’, Denmark?®, Sweden®, Finland®, and Russia®’. Figure 5 shows the location of
TG stations marked by red circles (see the Publications I, Il and IV for more details about
the used stations).

Since the Baltic Sea is under a strong influence of the GIA induced land uplift, it is
essential to reduce TG benchmarks into a common time-epoch using a vertical land uplift
model. In this region, this can be accomplished using the NKG2016LU model for the
reference epoch 2000.0 (Vestgl et al., 2019). In addition, the common geoid-based chart
datum BSCD2000 has been adopted to unify the reference surface of TG benchmarks in
the Baltic Sea region with the reference point of the NAP (Schwabe et al.,, 2020).
Therefore, according to the BSCD2000, the TG zero marks are consistent with their
respective national height systems in the EVRS, with the exception of the Russian station,
as indicated in Table 1. Given that the EVRS is a zero tidal system, it is essential to
transform TG benchmarks to the mean-tide system before comparing them with the
HDM sea level. Two exceptions exist for German and Danish stations, which employ
mean-tide and tide-free systems, respectively.

In conclusion, to compare spatially distributed TG records with the HDM in terms of
absolute values, the records need to be transformed into the mean-tide system using
Equations (5) and (6). Furthermore, it is necessary to correct the TG readings to a
common reference epoch of 2000.0 through the application of Equation (4) and the
utilization of the NKG2016LU VLM model (see also Figure 3). Method | requires that
missing TG data be addressed, and TG records be completed. Therefore, a machine
learning (ML) based approach was employed to fill the gaps in TG data using
neighbouring stations (Jahanmard et al., 2021b). In Method II, the only requirement is to
account for the reduction of vertical land motion to a reference epoch. To determine
HDM'’s reference bias using a network of TG data, it is essential to have a common
geoid-based chart datum and to transform TG records to the mean-tide system.

3 http://www.ilmateenistus.ee/meri/vaatlusandmed/kogu-rannik/kaart/ [accessed 7 August 2023]
4 https://www.meteo.lv/hidrologija-datu-meklesana/ [accessed 7 August 2023]
5 http://gamta.lt/ [accessed 7 August 2023]

6 https://imgw.pl/ [accessed 7 August 2023]
7 https://www.bsh.de/ [accessed 7 August 2023]

8 https://kyst.dk/soeterritoriet/maalinger-og-data/vandstandsmaalinger/ [accessed 7 August 2023]
9 https://www.smhi.se/data/oceanografi/ladda-ner-oceanografiska-observationer/ [accessed 7
August 2023]

10 https://en.ilmatieteenlaitos.fi/download-observations [accessed 7 August 2023]

11 http://www.emodnet-physics.eu/Map/DefaultMap.aspx [accessed 7 August 2023]
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2.4 Satellite Altimetry Dynamic Topography

Satellite altimetry is a widely recognized remote sensing technique employed for acquiring
sea level measurements with respect to a reference ellipsoid across offshore and coastal
region. The altimeter calculates the range by transmitting and receiving radar pulses
along the satellite’s path. By determining the accurate position and altitude of the
platform in a geocentric reference frame, the SA mission derived SSH can be calculated
by Equation (1).

In this study, the Sentinel-3A mission was employed to obtain along-track SSH
observations, which were used to assess the HDM correction and ascertain the vertical
reference bias of HDM. The trajectories of the Sentinel-3A mission over the Baltic Sea are
visible in Figures 16 and 26. The SSH measurements operate in SAR mode based on the
ALES+SAR retracker algorithm with a cycle period of 27 days and a spatial resolution of
300 m in high frequency data rate (20 Hz). The Synthetic Aperture Radar (SAR) mode is
designed for high along-track resolution over flat surfaces, facilitating increased
independent measurements in various areas including sea-ice thickness, coastal waters,
ice sheet margins, land, and inland waters. The ALES+SAR is an empirical retracker
developed as part of the ESA Baltic SEAL project and validated to assess its effectiveness
in estimating sea level from signals acquired by the Sentinel-3A SAR altimeter (Passaro
et al., 2022).

The determination of DT from SA data is performed by applying Equation (1) and the
NKG2015 geoid model within the mean-tide system and utilizing an identical reference
ellipsoid; where the atmospheric, geophysical, and instrumental corrections are embedded
in the joint correction (Cor) term:

Cor = WTC + DTC + iono + SSB + DAC + OTC + SET + PT + ROC, (10)

where WTC  wet tropospheric correction;
DTC  dry tropospheric correction;
iono ionospheric correction;
SSB Sea state bias correction;
DAC  dynamic atmospheric correction;
OTC  ocean tide corrections;
SET solid Earth tide;
PTC pole tide correction;
ROC radial orbit error correction;

Given the focus on instantaneous DT in this study, Equation (10) is employed with the
exclusion of DAC and OTC corrections. Note also that the instantaneous TG readings do
not contain these terms either. The SA data was sourced from Baltic+ SEAL datasets®?
(Passaro et al., 2021) for Publication Il and from EUMETSAT data centre?®3 for Publication
V.

Satellite altimetry data may also include gross errors and outliers resulting from
factors such as land contamination and the presence of sea ice (Mostafavi et al., 2023).
The treatment of the SA data errors and outliers is conducted after the determination of
DT and the removal of the geoid variation from SSH. Therefore, to mitigate errors arising

12 http://balticseal.eu/data-access/ [accessed 7 August 2023]
13 https://www.eumetsat.int [accessed 7 August 2023]
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from land contamination, data points located within 5 km of the coastlines were
excluded. Then, the gross errors beyond the £3 m range were eliminated, as DT variation
exceeding 3 m is physically impossible in the study area and can distort the statistical
parameters of SA data for detecting outliers. Finally, for each pass and cycle, outlier data
is detected and removed by applying a moving median with a sliding window of one
degree along the latitude and a threshold of three times the local scaled median absolute
deviations. Figure 7a shows the data screening for a sample pass and cycle.
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Figure 7. An illustration of the data screening for SA data: a) SA-derived DT for Cycle No. 63 (24-
Sep-2020 09:42) and Pass No. 272 (denoted in b) and detected outliers. c) the clean SA data is
represented in blue, and smoothed DT by applying the wavelet filtering method is shown in red. The
frequency contents of the SA data are displayed in panel (d) [from Publication 1V].

The 300 m spatial sampling rate of SA enables the derivation of a robust DT through
the application of wavelet filtering to eliminate high-frequency features, including noise.
These high frequency signals observed from the SA can be examined in future studies to
determine their importance. For the purpose of this study, focused on validating the
corrected HDM with a one-nautical-mile resolution, it is important to note that the model
cannot accurately represent sea level variations with wavelengths shorter than about
10 km. Figure 7c shows a comparison between the cleaned and filtered SA data, and
Figure 7d demonstrates the efficacy of high-frequency wavelength removal.

2.5 Airborne Laser Scanning point cloud

Airborne Laser Scanning (ALS) is a remote sensing technology that enables high-resolution
mapping through active ranging. In this technique, a LiDAR (Light Detection and Ranging)
sensor mounted on an aircraft emits short laser pulses and records the returning
reflections from the Earth’s surface. While measuring the distance from the sensor to a
surface with signal return time, the sensor’s position and direction on the aircraft are
determined using a GNSS device and an inertial measurement unit. Therefore,
the captured point cloud is accurately mapped with regard to desired coordinate system.

This technique is primarily employed for topographic mapping on dry lands with a
vertical accuracy of 10 to 15 cm, depending on the measured surface and setup
configuration (Hodgson and Bresnahan, 2004). However, ALS has advanced over the
years and is now also used for marine applications, offering similar accuracy for sea
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surface measurements (e.g., Sutherland et al., 2018; Varbla et al., 2021; Jahanmard et al.,
2022c; Baker et al., 2023).

The capabilities of ALS, including its high pulse repetition rate, utilization of slow
platform speed, and low beam divergence (resulting in a small-size and crisp footprint),
enable the capture of dense and highly accurate point cloud data of the sea surface
across a wide swath along the flight direction. As the ALS point cloud is accurately
georeferenced by GNSS with respect to a reference ellipsoid, this technique provides
precise observations of the instantaneous SSH surface, which can then be transformed
into DT using a suitable marine geoid model. Furthermore, this technique is able to
record high-frequency features of the sea surface due to its spatial resolution
(e.g., 1 x 1 m), which makes it a valuable tool for measuring a wide range of waves.
Publication Il explores this dataset to retrieve the wind waves’ parameters and their
directional power spectral density.

The dataset used in this study was obtained from a marine ALS survey conducted on
May 10, 2018, in the Gulf of Finland. This survey was performed using the Cessna Grand
Caravan 208B aircraft operated by the Estonian Land Board. The aircraft was equipped
with a LiDAR scanning system, RIEGL VQ-1560i, which operated with a pulse repetition
rate of 1 MHz at a wavelength of 1064 nm. The dataset, along with more details, is
available in Varbla et al. (2020). Figure 8 displays the location and a portion of the
ALS-derived SSH surface from the 6th profile of this dataset that is used in this study.
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Figure 8. Image of the sea surface topography derived from ALS (first 1 km of the trajectory from

west) with respect to the reference ellipsoid GRS-80 (left panel), and location of the flight trajectory
on 10 May 2018, at 9:30 UTC in the Gulf of Finland (right panel).

The measured data corridor is about 1000-1200 m wide. In this study, the central
500 m wide data-strip is used, whereas the poor-quality data at the edges are disregarded
(Varbla et al., 2021). The horizontal resolution is 1 m, which enables the extraction of
surface features by a minimum wavelength of 5 m by considering 5 grid points to
accurately define a feature without aliasing. Therefore, the highest wave frequency that
may be observed is 3.5 rad/s, which makes it possible to derive wind waves from this
dataset (e.g., Walsh et al., 1985; Jahanmard et al., 2022c; Baker et al., 2023). This is
described in Section 5 and with more details in Publication III.

2.6 Hydrodynamic Model

Hydrodynamic models play a pivotal role in comprehending ocean dynamics, predicting
natural disasters, assessing human impacts and climate change effects, designing
resilient infrastructure, and optimizing shipping routes. Numerical modelling offers
valuable insights into complex processes, including circulation patterns, sea level,
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temperature, and salinity variations, stratification, and their impact on pollutant
transport and water quality in the water body.

This numerical modelling relies on the Navier-Stokes equations, which are informed
by meteorological and hydrological data to simulate the real world. HDMs are usually
sufficient at features that the actual observations are limited, which is their resolutions
in time and space from coast to offshore. However, there is no guarantee that HDMs do
not deviate from reality due to potential modelling errors stemming from modelling
limitations and uncertainties in inputs (Axell and Liu, 2016). Errors in HDMs can originate
from factors such as bathymetry, temporal discretization, spatial resolution limitations,
parameterization schemes, computational errors, and uncertainties in boundary
conditions and forcing data (Mardani et al., 2020). In addition, HDMs typically lack a well-
defined vertical reference datum, which is an obstacle to express uniquely the sea level
derived from HDMs in a 3D coordinate system (Slobbe et al., 2013).

Two hydrodynamic models were selected to investigate the methodologies for
determining realistic absolute DT by integrating observed and modelled sea levels.
In Publication I, Nemo-Nordic model* (Hordoir et al., 2019; Kirna et al., 2021) with a
horizontal resolution of 2 NM and HBM-EST model®> (Lagemaa et al., 2011) with a
resolution of 0.5 NM were sourced for the period spanning 2014 and 2015 (see Publication
| for more details regarding the HDMs). The spatial coverage of HBM-EST model is shown
in Figure 9. In Publications Il and IV, assimilated Nemo-Nordic model with a horizontal
resolution of 1 NM was employed for the entire Baltic Sea region during the periods from
December 2016 to April 2020 and from December 2016 to June 2021, respectively.
The spatial domain of the Nemo-Nordic model is the Baltic and North Sea (see Figure 9).
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Figure 9. Nemo-Nordic model domain covers the Baltic Sea and the North Sea. The model domain
of HBM-EST is denoted by a solid-line rectangle.

14 https://www.smhi.se/ [accessed 7 August 2023]
15 http://emis.msi.ttu.ee/download/ [accessed 7 August 2023]
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The Nemo-Nordic model (NEMO NSO1) was obtained from the Swedish Meteorological
and Hydrological Institute'® (SMHI). This model is a 3D high-resolution ocean model of
the Baltic and North Seas. It is based on the Nucleus for European Modelling of the Ocean
(NEMO) ocean engine, which is a set of ocean modelling tools supported by a large
community. The Nemo-Nordic model is used for both research and operational
applications, including forecasting sea level, water temperature, salinity, velocity,
sea ice concentration, and thickness (Hordoir et al., 2019; Karnd et al., 2021). The model
provides a 60-hour forecast every 6 hours through data assimilation of available
observations. For this purpose, the meteorological forecast model Arome, the forecast
model from ECMWEF, and river data from the hydrological model HYPE are employed.

The Nemo-Nordic model has a horizontal resolution of 1 NM and uses a z* grid
configuration with 56 vertical levels. However, the obtained dataset contains only
surface parameters. The layer thickness is 1 m at the surface, increasing to 10 m at a
depth of 75 m and 24 m at a depth of 700 m. The model uses GEBCO-2014'" bathymetry
data, with the ambiguous vertical reference surface assumed to be the mean sea surface.

The model has two open boundaries, located in the English Channel (meridionally) and
between Scotland and Norway (zonally). The sea level data along the open boundaries
are prescribed from the CMEMS Northwestern Shelf forecast model.

The model uses SI3 sea ice model (NEMO Sea Ice Working Group, 2019) and landfast
ice parametrization. The Nemo-Nordic is forced with the 3 km HIRLAM atmospheric
forecast model data (Undén et al., 2002). River discharge data is derived from the E-HYPE
daily mean (Arheimer et al., 2012). It has been shown that wind waves play a significant
role in contributing to extreme sea levels (Staneva et al., 2016 and 2017). However,
to our knowledge, Nemo-Nordic does not incorporate wind waves into its calculations.
For more details about the model setup, please refer to Hordoir et al. (2019) and Karna
et al. (2021).

16 https://www.smhi.se/data/ladda-ner-data/ladda-ner-fran-gribarkiv/nemo-bs01 [accessed 7
August 2023]
17 https://www.gebco.net/data_and products/gridded bathymetry data/ [accessed 7 August 2023]
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3 Method I: Geoid-referenced Tide Gauges as Ground Truth

The implementation of BSCD2000 has unified the vertical reference for the extensive
network of TGs along the coastline of the Baltic Sea. BSCD200 is the geoid surface with
the zero level through the NAP (Schwabe et al., 2020). Using NKG2015 geoid model to
derive DT from SA data enables a comparison with the TGs on a consistent equipotential
reference surface. However, the reference surface of the HDM remains undisclosed, and
the presence of modelling errors complicates the determination of this reference
surface.

To integrate data sources, the HDM should be reduced to the same reference surface
as observations, then the modelling errors can be treated by comparing with observed
data. On the other hand, the modelling errors distort the accurate determination of the
HDM'’s reference surface. Thus, as a primary step in the presence of a dense network of
geoid-referenced TGs, the modelling errors and HDM'’s vertical reference bias can be
considered as one integral bias. As a result, the HDM can be corrected using TG records
for the narrow and limited Baltic basins. For the sake of consistency between sections
and methods, minor adjustments have been applied to some equations and figures, as
compared to the initial publications. For more detailed information, please refer to
Publications I and II.

3.1 Theoretical Principles for Bias Computation

The difference between HDM and TG records illustrate temporal and spatial variations
(see Figure 10). Temporal variations of the bias range from —20 cm to 50 cm, covering
frequencies from high (e.g., half-day and daily) to low (e.g., seasonal and annual cycles).
In addition, the HDM has a roughly 20 cm shift with respect to the TG records due to the
difference in zero level, which also changes under influence of the HDM errors.
The difference between HDM and TG records is determined as follows:

E(‘PTci: Arg t) = DTypu ((pTGi' 16, t) — DTy (‘PTci' 16, t). (11)

To correct the HDM, its bias is classified into time-domain bias (TDBias) and
spatial-domain bias (SDBias). The TDBias is initially obtained by comparing HDM and
TG records, and subsequently, the SDBias is determined using interpolation techniques.
Utilizing a backward moving average method with a window length of w to determine
the TDBias helps filter out high frequencies that are not of interest and also effectively
eliminates potential spike errors in the TG records. Therefore:

TDBias(prg, Arg,t) = %Zf;u—w) (E((pTGi,/lTGi, t)) (12)

In this study, window length of 6-hour is used (see Publication | and Il for more
details). Given the strong correlation that is observed between the Nemo-Nordic model
and the TG records, it can be inferred for each time instant that the determined biases
at stations do not have drastic changes by moving away from the TG stations.
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Figure 10. Difference between the Nemo-Nordic model and tide gauge records: a) time series at
three sample stations. Location of the stations are denoted in Figure 12. b) Fast Fourier transform
(FFT) of the records shown in panel (a). Please note that the HDM data until April 2020 were
accessible for Method | [Modified from Publication IV].

Based on the limited distance between the network of TGs in the study domain,
the TDBias at each time instant can be propagated using an interpolation technique.
Therefore, the SDBias can be obtained as follows:

SDBias(p,A,t) = Interp(q)m, Are TDBias(prGi, 16, t), o, /1), (13)

where Interp is an interpolation operator, and the SDBias is estimated at the HDM’s
grid points. Finally, the corrected HDM is determined as follows:

DTSpm (9,4, 8) = DTypu (@, 4,t) — SDBias(¢, 4, t). (14)

Several interpolation techniques were examined, such as linear, inverse distance
weighted, and thin plate spline, the results of which are detailed in Publication II.
The differences between the use of different interpolation methods are negligible.
For conciseness, only the results of the inverse distance weighted (IDW) method are
presented in the sequel.

As a result, the corrected HDM can be evaluated using the DT derived from SA
observations to assess the effectiveness of the HDM correction approach. Moreover,
comparing all DT data sources in a common geodetic reference frame can reveal
inconsistencies and highlight problematic regions requiring further investigation.
Figure 11 shows a flowchart of the methodology for correcting HDM and comparing data
sources.
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Figure 11. Flowchart of the HDM correction using a dense network of geoid-referenced TG records
and comparative assessment of the datasets [from Publication Il].

3.2 Hydrodynamic Model Correction

This method considers that the TG records represent the true absolute sea level relative
to a common geoid surface. Therefore, Equation (12) was applied to obtain the
TDBiases at 73 TG stations along the Baltic coastline. Figure 12a shows the spatial
distribution of the TDBias for an arbitrary time instant (i.e., 5 June 2019, 12:00).
The root mean squared error (RMSE) between the HDM and TG records, before and
after correction, is calculated as follows:

(15)

2
)

RMSE((pTGi:ATGi) = \/% D=1 (E(¢Tci:/1Tci: t) - Bias(‘/’rci:)trci))

where n is the number of observations within the selected time span, and Bias
represents the average of the differences over the entire time period for each station:

Bias(p,A) = % t=1(E(<p,/1, t)). (16)

Figure 12b and 12c illustrate the RMSE and Bias at the stations for original and
corrected HDM. The corrected HDM at the stations can be computed using Equation (14)
by employing TDBias instead of SDBias. The RMSE of the Nemo-Nordic model after
correction is reduced by approximately a factor of three at the stations, which is within
the range of 1 to 6 cm. The Bias of the original HDM with respect to TGs varies from
13 cm to 25 cm, which is reduced to zero after correction. The average of the Bias is
18.6 cm, with a standard deviation of 2.5 cm.
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Figure 12. Comparing the HDM with the network of TGs. a) DT of the Nemo-Nordic model at a
specific time instant (e.g., 5 June 2019, 12:00), along with the corresponding TDBias. b) RMSE of
original and corrected HDM at TG stations. TG stations are numbered clockwise, starting from the
easternmost Estonian TG station, as indicated in (a) for some stations. c) Bias of the HDM with
respect to TG records.

The results demonstrate that the 6-hour window employed in Equation (12) effectively
eliminates biases between HDM and TG records, and the remaining errors are limited to
a standard deviation of 5 cm (see Publication | regarding the window selection). A larger
window results in a larger post-correction RMSE and may not effectively eliminate
systematic errors. Conversely, employing a smaller window can introduce high-frequency
noise into spatial interpolation, and as a result, decrease the reliability of the interpolated
TDBias by increasing the distance from TG stations.

Using Equation (14) requires propagating the TDBias over the HDM grid points at
each time step. In Publication Il, it has been demonstrated that the variability resulting
from different interpolation methods is negligible (around 1.3 cm), and the IDW
interpolation effectively interpolates the TDBias over the grid points for each time step.
Therefore, the surface of the HDM bias (l.e., SDBias) can be determined as follows:

[ _ 2%, Wi(p,A) TDBias(p;Aut)
SDBias(¢,A,t) = S Wile.) , V(p,A) # (¢, 1), (17)

where W represents the vector of inverse distance weight, computed by measuring the
distance D of each grid point from the TG stations:

1

As a result, the corrected HDM is obtained using Equation (14). Figure 13 illustrates
the original and corrected HDM for a sample time instant (i.e., 5 June 2019, 12:00), along
with the corresponding SDBias. The SDBias varies spatially from 11 cm to 28 cm for
this time instant, with the largest bias occurring along the Swedish coastline and
decreasing eastward. The notable observation in this figure is the abrupt variation in the
SDBias near some stations. This variation may imply a potential vertical datum shift at
these stations; however, the IDW interpolation method has effectively damped this error
in the vicinity of the stations.
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Figure 13. HDM correction for 5 June 2019, 12:00. a) instantaneous DT derived from the original
Nemo-Nordic model, b) the corresponding SDBias obtained from 73 TG records, and c) corrected
DT based on Equation (14).

3.3 Comparative Assessment of HDM Bias Estimates Using Satellite
Altimetry

The corrected HDM, particularly in offshore regions, can be validated using SA data as an
independent data source. Hence, conducting a comparative assessment between sea
level data sources with both the original and corrected HDM can reveal the performance
of the HDM correction process and highlight discrepancies among sea level measurement
techniques.

For this purpose, the instantaneous DTs derived from the original/corrected HDM are
extracted at the coordinates of the SA data points using bilinear interpolation in space
and linear interpolation in time, corresponding to the time of SA. The SA data was
available for the period from January 2017 to June 2019, including the winter months.
The Bias between the HDM and SA data is determined along the SA tracks using Equation
(16), where the E is the difference between the original/corrected HDM and SA
measurements. Figure 14 shows the Bias of the original and corrected HDM with respect
to SA data against the SA passes and cycles, along with the interquartile range to
demonstrate the variability of the differences. In this figure, it can be observed that the
HDM correction can reduce the HDM’s reference surface to the specified geoid surface.

In Figure 14a, passes showing a significant Bias are situated in the vicinity of the
coastline, which SA data are affected by land contamination, or located in the eastern
part of the Gulf of Finland, where the geoid model lacks accuracy and contains an
unrealistic undulation due to the gravity data voids (Varbla et al., 2023). This figure also
demonstrates a reduction in the variability of differences between HDM and SA after
applying the HDM correction. A significant reason can be seen in Figure 14b, where the
original HDM demonstrates a seasonal discrepancy compared to the SA measurement,
which is almost eliminated in the corrected HDM. During the winter months, both the
Bias and interquartile ranges of the corrected HDM increase, which can be attributed to
the presence of ice coverage in the northern and eastern parts of the Baltic Sea. In sea
ice conditions, SA measurements include sea ice freeboard and are not accurate sea level
measurements for comparison with HDM data. Therefore, the winter months should be
discarded in this comparison.
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Figure 14. Existing Bias between the original and corrected HDM with respect to the SA
measurements against the SA passes in (a) and cycles in (b). The bars demonstrate the distance
between the first and third quartiles [Modified from Publication Il].

Since the instantaneous SA measurements are utilized (meaning the DAC and OTC
corrections are not applied), the temporal average of SA data does not precisely
represent the MDT. Hence, the mean of SA data across cycles is denoted as CycleMDT,
and it is derived through an inverse-variance weighted average (please see Publication
Il for more details). Figure 15 illustrates the CycleM DT along a selection of sample tracks
extracted from the SA data, the original and corrected HDM, and nearby TGs. It is
observed that the original HDM deviates from the SA and TG data by approximately
19 cm, which is due to the HDM'’s vertical reference bias relative to the specified geoid
surface.

Figure 15 also shows the negligible (spatial) variation of the corrected HDM in
comparison to the original HDM, which indicates that the instantaneous corrections have
effectively eliminated modeling errors and the HDM'’s reference level has almost
coincided with an equipotential surface. Therefore, the discrepancy of HDM can be
categorized into two components: HDM modelling errors and vertical reference bias,
which is tackled in the following section.

The significant discrepancy between the corrected HDM and SA measurement for pass
number 414 (Figure 15e) indicates problems with the geoid model in the eastern part of
the Gulf of Finland. The substantial undulation of the DT derived from SA data is not
realistic for such a limited area. This unrealistic variation is also noticeable in Figure 14a,
especially around Bornholm Island (i.e., latitude 54° to 56°) and in the Bothnian Sea
(i.e., latitude 60° to 64°).
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Figure 15. CycleMDT derived from the SA data, original and corrected HDM, and nearby TG records.
The location of the selected passes is shown in the top-right panel [Modified from Publication II].

Spatial distribution of the Bias between the original/corrected HDM and SA data are
shown in Figure 16 to highlight problematic areas. The Bias is determined at the
SA data points, where the along-track data are gridded by latitude interval of 900 m
(i.e., three observations at each cycle) and Bias is obtained with a threshold of 95% data
presence. Comparison between the original and corrected HDM illustrates the average
spatial correction. Note that the HDM correction in this method is forced by the network
of TG observations, which might contain vertical datum shift. The mean of the Biases
with respect to SA data after correction is almost zero with a standard deviation of
2.4 cm.

Furthermore, Figure 16b emphasizes problematic regions where the discrepancy
between the corrected HDM and SA data is significant. Four regions showing noticeable
patterns are indicated by green dashed rectangles. However, further investigations are
necessary for discussing the sources of errors in other regions. The Bias in the Bothnian
Bay arises from winter months when SA measurements are disrupted by ice coverage.
The noticeable Biases observed in the eastern part of the Gulf of Finland, Bothnian Sea,
and around Bornholm Island can be attributed to issues with the geoid model (Figure 15a
and e; see also Jahanmard et al., 2022b).
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Figure 16. Spatial distribution of the Bias of the a) original and b) corrected HDM with respect to
SA-derived DT. Green dashed rectangles denote noticeable patterns of differences [Modified from
Publication Il].

As a result, the instantaneous absolute DT can be derived through the correction of
HDM using a network of geoid-referenced TG records. Therefore, a realistic MDT for a
certain time period, which represents the corresponding ocean circulation patterns, can
also be determined by calculating the temporal mean of the corrected DT. Figure 17
presents a comparison between the original and corrected annual MDTs, accompanied
by the corresponding observed MDTs from TGs. For consistency in colour scales,
the original MDT has been adjusted downward by 18.6 cm, which corresponds to the
average Bias relative to the TG records. The corrected MDTs demonstrate enhanced
consistency with observed MDTs at TG stations, and a noticeable change in the MDT
patterns can be observed in 2019. Note that by reducing the period of MDT, such as to
seasonal or monthly intervals, the discrepancy between the corrected and original MDT
becomes more evident.

It is worth mentioning that the HDM correction using a closed-loop network of
geoid-referenced TGs and interpolation techniques is vulnerable to any presence of tilts
in height datums (caused by systematic errors in levelling data; Featherstone et al., 2012;
Afrasteh et al., 2023) or vertical datum shifts among stations. For instance, in Figure 17,
the MDT of a station situated in the middle of the Gulf of Riga displays a spike difference
relative to the HDM, as well as its neighbouring stations. This discrepancy indicates a
datum shift in the zero level of the TG records. Additionally, an eastward tilt in the zero
level of TGs in the Bothnian Sea can be inferred by comparing HDM and TG data (refer to
Figure 12c; Swedish and Finnish TG stations are highlighted in green and red colour,
respectively), which is further supported by comparing the corrected HDM with SA data
(see Figure 16b).
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Figure 17. Annual mean dynamic topography shown for the original Nemo-Nordic model in the top
row and the corrected HDM in the bottom row, along with the corresponding TG-based MDTs
marked by circles. The original HDM has been adjusted by —18.6 cm to use consistent colour scaling
with the corrected HDM for each year [Modified from Publication Il].

In the following Section, an ML-based approach is used to eliminate the HDM
modelling errors, in which the method is independent of the absolute values of TG
records and can address the TG-related bias and errors by generalizing the HDM
correction. Then, correcting HDM allows accurate determination of the vertical reference
bias between HDM and the geoid surface of interest using SA measurements. Therefore,
the HDM correction can also be performed in the absence of a common geoid-based
reference for TG readings. Moreover, the ML-based approach can resolve the limitations
of the interpolation, such as the necessity of a closed-loop network of TG stations and
the uneven distribution of stations along the coastlines.
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4 Method llI: Application of Machine Learning

Asinferred and mentioned above, the difference (E) between the modelled and observed
DT (derived from Equation 11) includes two components: i) HDM modelling errors that
canvary in a wide range of frequency, and ii) a bias due to difference between zero levels
that is a constant value over time and space. Therefore:

E(p, A, t) = €(p, A, t) + RefBias, (19)

where ¢ represents the HDM errors and RefBias is the bias between the HDM's
reference surface and geoid surface of interest. The former, which is due to the modelling
limitations, can be predicted across model domain by a deep learning (DL) model; and
the latter is accurately determined by comparing the corrected HDM with the DT derived
from SA measurements. For this purpose, a multivariate temporal causal convolutional
network is employed. Note that the observations may also contain errors and biases, and
the DL model has the capability to mitigate the influence of errors by generalizing the
pattern it learns across different time periods and locations.

The fundamental idea is that the HDM modelling errors can be predicted based on
temporal causal relationships between spatio-temporal input variables and computed
errors in the TG stations. It is also expected that the DL model can be generalized
spatially. Figure 18 presents the flowchart of Method Il for correcting the HDM and
comparing the sea level data sources.

‘ TG records (DTr¢) ‘ HDM (DTypm)
[
| HDM error € (Target) | | Input Variables (x) ‘ ‘ SA data (DTs,) ‘
I I
v v
| Train DL model and hyperparameter tuning ’--'--‘>| DL Model: & = f(x) |
I
3
Corrected HDM DTy, (0, A, t) ) RefBias
[ I
¥
Vertical referencing HDM to a common vertical
datum with observations, DT15 l’f Iflf (p, A, t)

A 4 l A 4

Evaluating the corrected HDM, and highlighting inconsistencies between datasets

Figure 18. Flowchart of Method Il for the HDM correction and vertical referencing it to a common
vertical datum, as utilized for both SA and TG observations [Modified from Publication IV].

4.1 Deep Neural Network for Modelling Error Prediction

Tide gauges present continuous and high-frequency measurements of sea level, which
are historically the most reliable source of sea level variations in a wide range of temporal
features. However, they may suffer from datum shifts or even lack a common vertical
datum to combine sea level records from multiple locations. Comparing the HDM-based
DT with TG records at station locations on an hourly basis allows for the detection of
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HDM errors (&) across various frequencies (see Figure 10). Therefore, the HDM errors
that will be served as the target values for the DL model training is obtained as follows:

g(t) = (DTHDM@TGi(t) - DTTGi(t)> — Bias;, (20)

where Bias is computed by Equation (16), and DTypyerc, represents DT derived from
the HDM at the nearby i-th TG station, which is obtained as follows:

DTypmere; () = median(M;(, 1) - DTypu (9, 4, 1)), (21)

where M; is a mask for i-th station, employed to extract HDM time series within a limited
radius (e.g., 5 km) around the station. Accordingly, the input variables are also determined
for each station by the M;:

xTGi(c, t) = median(Mi(<p, A) - x(p,2,c, t)), (22)

where c represents the dimension of the input variable (or channel). The input variables
are described in Subsection 4.1.2.

The DL model is trained by a set of TG records for the available period to predict the
HDM errors over the HDM grid points. Therefore, the predicted HDM errors is obtained
from a pre-trained model as follows:

Xinp(C,t,q) = Vec(x (p, 2, c, t)),

£(q,t) = DLModel (xinp (c,t, q))
E(p, A t) = Vec 1(4(q, b)) * G(ks, 0),

!
’

(23)

where G is a 2D Gaussian filter with a kernel size of ks = 5 nautical miles and a standard
deviation of 0 = 2.5 nautical miles. This spatial filter is applied to suppress potential
high-frequency noises that may arise from the individual determination of HDM errors
at each grid point. By utilization of spatio-temporal input variables, the predicted HDM
errors £(q, t) can be calculated, where q are the indices of the HDM grid points within
the study domain. The operator Vec() is employed for vectorization, and the symbol *
represents the convolution operation.

Finally, the corrected HDM (DTS p,,) is obtained based on the Equations (11) and (19)
as follows:

DTI-(I:DM (‘P' A! t) = DTHDM (‘P' A! t) - é(‘P' A, t)' (24)
Thus, by determining the Ref Bias through the comparison of DTy, and DT derived

from SA observations and a specific geoid model, the reference surface of the corrected
HDM can be unified with the observations as follows:

DTSR (9,2, t) = DTGy (@, 4, t) — Ref Bias. (25)

Figure 19 depicts the procedure of the HDM correction and its vertical referencing
using the pre-trained DL model, TG records, and SA measurements.
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Figure 19. Utilizing the DL model to correct HDM dynamic topography and vertical reference the
HDM to a specific geodetic reference frame [Modified from Publication IV].

During the DL training process, it’s important to consider that TG stations are spatially
sparsely distributed. This characteristic of TG observations hinders effective feature
learning across the spatial dimension in machine learning approaches. Nevertheless,
their high-resolution time series enables feature learning over the course of time using
causal convolutional layers. The absence of the feature learning across spatial dimensions
can lead to overfitting in this aspect, which requires controlling the DL model’s
generalization. Hence, employing a spatial-sample splitting strategy can effectively
address this issue.

In this approach, a set of 50 tide gauge stations are used and partitioned into three
subsets: 16 stations for training, another 16 for validation, and a remaining 18 for the
test set (see Figure 22a). Therefore, the DL model will undergo training using the training
set, while the model’s spatial generalization will be controlled by the validation set, and
the test set (along with the validation set) is used for evaluating the model’s
performance. The performance of the DL model is statistically examined by RMSE and
R-Squared estimates, which are computed as follows:

RMSE, = \/%Z?zl(é((p,)l, t) — £(@, 4,1)?, (26)
and

R2=1-— Tre1GleAt)—e(p.A1))? _
nzl(s((p,/l,t)—% () s((p,/l,t))

(27)

where ¢ is the actual HDM errors (target) at the measurement point (¢, 4), and &
represents the predicted HDM errors using the DL model.

4.1.1 Deep Learning Model Structure

A multivariate DL model employing a stack of dilated causal convolutional layers is
utilized to predict the HDM errors (). The network is inspired by WaveNet (Oord et al.,
2016), which is also used in a wide range of fields, such as ocean wave height prediction
(Lou et al., 2022), wind speed forecasting (Rathore et al., 2021), and dynamic topography
forecasting (Rajabi-Kiasari et al., 2023).

The DL model consists of k blocks of causal convolutional units, each containing two
convlD layers with parameters: filter size (fs), number of filters (nf), and dilation (d).
The convlD layer includes two trainable parameters: weights and biases, which are
learned during training. Incorporating rectified linear unit (ReLU) activation functions
after the convlD layers enable the model to learn complex relationships between the
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inputs and the output by adding nonlinearity to the model. The utilization of batch
normalization layer between the convlD and RelLU layers enhances accuracy and
accelerates the training process. The utilization of batch normalization layer between the
convlD and ReLU layers enhances accuracy and accelerates the training process (Bjorck
et al., 2018), and the inclusion of a dropout layer enables the prevention of overfitting
and encourages the network to learn more robust and generalized representations (Baldi
and Sadowski, 2013).

The internal structure of the DL model and the causal convolution blocks are shown
in Figure 20. After passing through the convolutional units, the feature tensors are then
input into the fully connected layers to compute the HDM errors using the final
regression layer.

Target:

‘ Dropout 1x1 Conv.

Hidden Layer
Dilation =8 ““11U
Hidden Layer, No
Dilation =4
Hidden Layer, 4
D":(:'O” =2 ~ Causal conv. Block
Hidden Layer .
Dilation =1 [] Sequential input variables
Inputs | [] causal conv. hidden Layers
nputs layer: A A
P v L Xy Xep Xy [] Fully connected Layers
Time ! Receptive Field 1 [] Target time series (HDM error)

Figure 20. Internal structure of the DL model with k = 4, fs = 2, and nf = 16 for simplicity in
display. The causal convolution blocks are shown on the right-hand side [from Publication 1V].

Table 2 presents a summary of the DL model used and the selected hyperparameters.

By employed k = 5 blocks of the causal convolutional unit with fs of 6 and nf of 32,
the receptive field RF of the DL model is 156 time-steps (i.e., 6.5 days), accordingly:

RF=(fs—1)-(2F-1) + 1. (28)
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Table 2. Summary of the DL model and the chosen hyperparameters for training, with default values
applied to the remaining parameters. C, T, and B represent dimensions of channel, time, and batch,
respectively.

Layers Output shape Learnable parameters #
Causal_conv_block (k = 1) 32(C) x1(T) x 1(B)  Weights: 7488  Offset: 64
fs:6,nf:32,andd: 1 Bias: 64 Scale: 64
Skip_conv1D 32(C) x1(T) x 1(B)  Weights: 224
fs:6,nf:1,and d: 1 Bias: 32
Causal_conv_block (k = 2~5) 32(C) x 1(T) x 1(B)  Weights: .
fs:6,nf:32, and d: 21 49152 gcf:?:tzi‘?
Bias: 256 '
Fully_connected_1 32(C) x 1(T) x 1(B)  Weights: 1024
Bias: 32
Layer_normalization_1 32(C) x 1(T) x 1(B)  Offset: 32
Scale: 32
Dropout (probability of 0.2) 32(C) x 1(T) x 1(B) -
Fully_connected_2 16(C) x 1(T) x 1(B)  Weights: 512
Bias: 32
Layer_normalization_2 16(C) x 1(T) x 1(B)  Offset: 16
Scale: 16
Fully_connected_out 1(C) x 1(T) x 1(B) Weights: 16
Bias: 1
Regression_output 1(C) x 1(T) x 1(B) --
Number of layers: 49 Number of epochs: 200
Total learnable parameters: 59553 Loss function: 0.5MSE (default)
Optimizer: Adam Learning rate: 0.001

mini-batch size: 4

4.1.2 Spatio-temporal Input Variables

To reconstruct € across the HDM domain, identifying relevant spatio-temporal input
variables (x) is essential. For selecting the variables, following key factors must be
considered: i) relevance to the physical processes, ii) predictive capability for generalizing
to new data, especially within the spatial domain, iii) channel availability, iv) data
dimensionality, and v) addressing concerns related to regularization and overfitting.

In this study, sixteen spatio-temporal variables are sourced to predict the HDM errors
over time and space. The variables are listed in Table 3 and include oceanic and
atmospheric parameters, as well as some computed variables, all of which are obtained
from the Nemo Nordic or other data sources. Further details regarding the variables and
their calculations are detailed in Publication IV.

Prior to being fed the variables into the model, they were normalized. This normalization
process enhances stability and facilitates faster convergence during training, which is
particularly important when utilizing the Adam optimizer. In addition, in the following
Subsection, a feature selection process is employed to identify variables that have
significant contribution to the reconstruction of the HDM errors. As mentioned above,
to avoid spatial overfitting, this feature elimination process is essential. However, deep
learning approaches can reduce the impact of unrelated input variables and enhance
generalization through feature learning (Sun et al., 2020).
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Table 3. List of the input variables used for feature selection.

Sourced resolution

Variable units " Dataset
Temporal Spatial

1 Zonal wind (Uwind) m/s Hourly 1NM Nemo-Nordic
2 Meridional wind (Vwind) m/s Hourly 1NM Nemo-Nordic
3 Seasurface temperature (SST) °C Hourly 1NM Nemo-Nordic
4 Sea surface salinity (SSS) psu Hourly 1NM Nemo-Nordic
5 Ice fraction (Ice_frac) % Hourly 1NM Nemo-Nordic
6  Zonal wind stress (Xj) Pa Computed hourly at the HDM grid points
7  Meridional wind stress (Yy) Pa Computed hourly at the HDM grid points
8  Ekman pumping (w_Ekman) m/s Computed hourly at the HDM grid points
9  Sea surface pressure (SLP) Pa 3-hourly  5.5km  CERRA8
10 Precipitation water col. (1) cm Hourly 0.25° ERA519
11 Significant wave height (SWH) m Hourly 2 km Baltic Sea Wave Hindcast?0
12 Semi-diurnal tide (M2) cm  Computed hourly at  FES201421
13 Diurnal tides cm  the HDM grid points
14 Low tides cm
15 Steric height changes (1) cm  Computed hourly at the HDM grid points from

monthly observations at BY15 station?2
16 Sea level variability (msdDT,,) cm  Computed hourly at the HDM grid points

4.1.3 Feature Selection

To ensure the robustness of the DL model in predicting HDM errors, excluding irrelevant
input features that could cause overfitting is essential. For this purpose, a wrapper-type
sequential feature elimination algorithm is employed to systematically eliminate and sort
variables through multiple iterations (Guyon and Elisseeff, 2003). The algorithm starts by
training the model with the set of all variables and then progressively removes individual
variables based on specific elimination criteria. The criterion is a combination of the
RMSE, (cf. Equation 26) from both training and validation sets.

The iterations of the feature elimination process are illustrated in Figure 21, which
started with ‘none’, indicating the inclusion of all variables (see Table 3). In the second
iteration, the algorithm removed the ‘ice_frac’ variable due to its lack of contribution to
the HDM errors reconstruction at various locations. Furthermore, the utilization of
‘ice_frac’ is observed to cause overfitting at the training locations, as evidenced by the
decline in the performance of the DL model on the validation set. The iterations continue
until all variables have been removed from the set of input variables.

The results of all feature elimination steps are shown in Figure 21 sequentially from
left to right, where the x-axis indicating the variable that is removed. The blue and red
lines correspond to the RMSE, values of the training set and validation set, respectively.
This visual representation facilitates the detection of overfitting, evident when the RMSE
of the training set exceeds that of the validation set. To mitigate the influence of random
variations in the iterations, the training process is repeated five times, and the average
RMSE was adopted as the elimination criterion. Dotted lines in the figure show one

18 https://doi.org/10.24381/cds.622a565a [accessed 7 August 2023]
19 https://doi.org/10.24381/cds.adbb2d47 [accessed 7 August 2023]
20 https://doi.org/10.48670/moi-00014 [accessed 7 August 2023]

21 https://www.aviso.altimetry.fr/ [accessed 7 August 2023]

22 https://sharkweb.smhi.se/ [accessed 7 August 2023]

51


https://doi.org/10.24381/cds.622a565a
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.48670/moi-00014
https://www.aviso.altimetry.fr/
https://sharkweb.smhi.se/

standard deviation for both the training and validation sets, derived from the five training
repetitions.
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Figure 21. Sequential feature elimination for selecting optimal input variables. Variables are
removed stepwise from left to right based on the elimination criterion. The solid blue and red lines
are the average RMSE, resulting from five repeats of the training processes, with dotted lines
representing one standard deviation from the average. The green line represents the R-Squared
result of each elimination iteration. The variable set of the best solution is highlighted in blue font
[from Publication IV].

According to Figure 21, the best set of variables includes: ‘msdDT,,’, m¢’, ‘Uwind’,
‘Vwind’, ‘Diurnal tides’, ‘Low tides’, and ‘SLP’, where the RMSE;, is 3.5 cm for both the
training and validation sets and the R-Squared is 0.79. Note that additional new variables
can be included in Table 3, and the feature elimination process can be repeated. While
this approach is essential for training a spatially generalized DL model in this study,
it could potentially lead to the exclusion of variables with localized effects or make the
addition of localized variables more challenging.

4.1.4 Deep Learning Model Performance

The performance assessment of the DL model is conducted through the calculation of
RMSE, and R-Squared values at all TG stations, including training, validation, and test
sets. The structure of the DL model is outlined in Subsection 4.1.1, and the model is
trained using the selected variables (as described in Subsection 4.1.3) on 16 training
stations highlighted in blue in Figure 22a.

Figure 22b demonstrates the performance of predicted HDM errors based on
Equations (26) and (27). The mean RMSE, and R-Squared values are 3.4 cm and 0.79,
respectively. The training set shows a performance of 3.2 cm and 0.82, while the
combination of validation and test set demonstrates a performance of 3.5 cm and 0.77.
Evident patterns of significant RMSE, values are noticeable at some regions, such as the
Gulf of Riga and Southwest of the Baltic Sea. These patterns may indicate issues with the
DL model (e.g., the need for additional variables and the requirement to optimize
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hyperparameters), TG problems (e.g., errors, vertical datum shifts over time, and the TG
location compared to HDM data points; as TGs are utilized as truth values for evaluating
DL model performance), and/or localized HDM errors that might not be considered
during the generalization.

R-Squared
07 08 09

@ Training set

© Validation set
@ Testset 7
i RMSE (cm)

Figure 22. DL model performance. a) Location of tide gauge stations utilized in this study and their
division into training, validation, and test sets. b) Performance of HDM error prediction at the tide
gauge stations. Triangles and circles represent RMSE and R-Squared values, respectively, using
separate colourbar [Modified from Publication IV].

The residuals between the target and predicted HDM errors (see Figure 23) imply that
the DL model and input variables do not effectively address the high-frequency
components (Daily and shorter periods) of the HDM errors. Hence, the significant RMSE,
values in specific regions indicate that the remaining HDM errors could be attributed to
localized high-frequency events, such as resonance and seiche. Not only are these events
not simulated by HDM modeling, but they also pose a challenge for the DL model to
accurately predict the corresponding errors using input variables.

For instance, at station 10, resonance with the barotropic 5-hour seiche period of the
Gulf of Riga can lead to amplitude growth in Parnu Bay (Suursaar et al., 2002). In addition,
the bathymetry and unique geometry of the Gulf of Riga (particularly at its main entrance
Irbe Strait) induce distinct oscillations within this basin (Jonsson et al., 2008). These
localized high-frequency oscillations degrade the performance of the DL model during
the process of generalization. Similarly for station 23 in Eckernforde Bay, seiche-like
oscillations strongly influence DT variations (Friedrichs et al., 1995) and cause challenges
for predicting HDM errors. Station 45 is situated in an archipelago area; therefore, the
HDM may have localized issues there that the generalized DL model for the entire Baltic
Sea is not able to predict.

Figure 23 also presents the time series of actual and predicted HDM errors, along with
their residuals and corresponding FFT for three sample stations 10, 26, and 31. At station
10, the HDM errors vary from —40 to 40 cm, while the residuals (i.e., remaining errors
after HDM correction) range from —20 to 20. This pattern of HDM errors being reduced
by a factor of at least two is replicated in other stations. Note that the DL model
effectively estimates low-frequency HDM errors, such as annual and seasonal cycles.
Nonetheless, additional efforts are needed to address high-frequency errors.
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Figure 23. Time series of the actual (¢) and predicted HDM errors (€) at three sample stations (10,
26, and 31) in top row, residuals are in middle row, and the FFT of actual HDM errors and residuals
in the bottom row [from Publication 1V].

4.2 Vertical Reference Bias

The vertical Reference bias (RefBias) is the height difference between the potential
surface (W,) of the HDMs’ reference surface and a particular geoid model.
The determination of RefBias allows for the adjustment of a HDM’s zero level to
a well-defined geodetic reference. Consequently, a direct comparison between modeled
and observed DTs is facilitated in terms of absolute values. Additionally, the use of a
common reference datum enables the systematic combination of various sources of sea
level with a consistent physical definition.

The RefBias can accurately be computed by taking the spatial median of the
remaining bias, referred to as Bias.ypy, between the corrected HDM and observed DT,
as follows:

RefBias = spatialMedian(Bias.ypu (@, 1)). (29)

Figure 24a shows histograms of the differences between the original/corrected HDM
and TG records. The results indicate that the HDM correction not only successfully
reduced the standard deviation of the HDM errors but also aligned the remaining errors
after the HDM correction to a normal distribution. Therefore, the Bias.ypy determined
both from TG stations and SA data points is represented in the Figure 24b histograms.

The Bias.ypy should ideally remain constant since both modeled and observed DT
are referenced to the equipotential surface of the Earth. However, it is apparent that
Bias ypy values vary from 5 to 25 cm in the SA data points and from 13 to 21 cmin the
TG stations. This variation arises from errors in several factors such as TG zero marks,
geoid model, and near-coast SA measurements. Therefore, the RefBias of the
Nemo-Nordic model relative to TG and SA datasets is obtained as 16.2+1.6 cm and
18.1+2.9 cm, respectively. SA dataset offers a more robust estimation of the RefBias
due to its extensive spatial coverage compared to the TG stations. The RefBias can be
improved in accuracy by removing problematic areas from the analysis, resulting in a bias
of 18.31.9 cm.
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Figure 24. Bias between HDM and observations. a) Histogram of the difference between
original/corrected HDM and TG measurements. b) Histogram of the Bias.ypy With respect to the
TG and SA data [Modified from Publication 1V].

4.3 Comparative Assessment

The correction and vertical referencing of the HDM are implemented as shown in Figure
19, aiming to calculate instantaneous absolute DT. A comparison of the instantaneous
DT before and after the correction is presented in Figure 25 for a certain time instant
(e.g., 18 August 2019, 10:00). In this figure, the original HDM is reduced by the RefBias
to visualize solely the improvements resulting from the application of the ML-based
correction to the HDM. The HDM error (&) in this figure illustrates the values and pattern
of the HDM correction for the corresponding time instant, with range of from 5 to 16 cm.
The range and pattern of the HDM error vary over the course of time.
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Figure 25. A sample time instant of HDM correction for 18-Aug-2019, at 10:00. a) original Nemo-
Nordic model reduced by Ref Bias, along with TG readings and SA measurement (pass No. 272 and
cycle No. 48) at the corresponding time instant, b) predicted HDM error based on Equation (23),
c) the corrected HDM, and d) along the SA track comparison between modelled and observed DTs
[Modified from Publication 1V].

Figure 25d shows the differences between the original/corrected HDM along the SA
track and observed DT measured by SA and nearby TGs. In this example, two significant
discrepancies are observed between the corrected HDM and SA data, in the southern
Baltic Sea (latitude 54° to 57°) and the Bothnian Sea (latitude 60° to 62°). Further
investigations are required to provide a precise explanation for the former. However,
it can more likely be imputed to an issue with the geoid model. The latter is due to
deficiencies in the geoid model in this area. (Jahanmard et al., 2022a and 2023b; Varbla
and Ellmann, 2023; Mostafavi et al., 2023). It can be inferred that such an enormous DT
variation in the limited area is not realistic; and since these variations can be observed
constantly over the SA cycles, the discrepancies can be attributed to the geoid model
(see also Figure 15, Figure 16, and Figure 26).
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Figure 26. Spatial distribution of the a) Bias of the original HDM, b) Bias of the corrected HDM,
¢) RMSE of the original HDM, and d) RMSE of the corrected HDM [from Publication 1V].

The Bias and RMSE of the differences between the original/corrected HDM and
observations are presented in Figure 26. Both Bias and RMSE demonstrate a significant
improvement in the corrected HDM. The Bias of corrected HDM (similar to Figure 16)
reveals the problematic areas where inconsistencies are evident among various data
sources. Three significant problematic areas are marked, the associated reasons and
sources of errors were discussed above and Subsection 3.3. The spatial distribution of
the RMSE before and after applying HDM correction (shown in Figure 26c and d)
demonstrates the performance of the DL model in post-processing the HDM-derived DT.
The spatial average of the RMSE for the original HDM is 7.6 cm and 6.5 cm with respect
to TGs and SA data points, respectively. While these values for the corrected HDM are,
respectively, 3.4 cm and 4.1 cm, which indicates a significant improvement in the
modelled DT. However, more effort is still needed to address high-frequency errors,
particularly in the Gulf of Riga. Moreover, the corrected HDM exhibits an average increase
in the correlation coefficient compared to the TG records, rising from 0.93 to 0.98.

Figure 26b also displays the spatial distribution of the Bias between the TG records
and corrected HDM, which indicates the shift between TG zero-mark relative to the
HDM's reference surface. It is observed that the Biases along the coastlines of Finland
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and Estonia are negative, while they are almost always positive along the Swedish
coastline. This indicates that there could be a tilt from west to east between TG zero
marks and HDM'’s reference surface. Moreover, the spike variations observed in the
Bias, which do not align with neighbouring stations, indicate the presence of a vertical
datum shift in those stations, such as stations with IDs 22, 25, 31, and also TG stations 42
to 44.

Figure 27 illustrates the spatial variations of the monthly mean of the HDM errors for
the period from January 2017 to June 2021. This figure implies that a seasonal variation
was not considered in the original model. The monthly mean error reaches its highest
positive values during Spring (March, April, and May) and its lowest, negative values
during Autumn (September, October, and November). The seasonal variation of the HDM
errors may arise from a combination of factors, including the seasonal changes in wind
patterns, freshwater runoff and ice melting, and steric effect.
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Figure 27. Monthly mean of the HDM errors (€) for the period from January 2017 to June 2021.
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5 Airborne LiDAR Measurements

The unique horizontal resolution of the ALS dataset allows for the retrieval of a
broadband of spatial scales of sea surface processes. However, unlike SA measurements,
which are regularly collected at a fixed repeat cycle, this measurement technique can
only provide a snapshot of the sea surface topography at a specific time instant. Hence,
although the ALS technique cannot consistently capture long-term sea surface variability
or be available at all desired times, it can serve as a valuable observation method for
gaining insights into high-frequency processes in both near-shore and offshore areas.
Furthermore, ALS observations can serve as an additional data source for investigating
problematic regions through conducting of ALS surveys over marine areas.

This section aims to demonstrate (i) the potential use of ALS observations for
validating corrected HDM-derived DT and (ii) the utilization of ALS point clouds to
determine the sea state parameters and directional power spectral density of wind
waves. To compare ALS point cloud data with HDM data, the first step is transforming
the ALS-derived SSH into DT using the geoid model, as follows:

DTALS = SSHALS —N. (30)

To eliminate high-frequency sea surface fluctuations from DT, a low-pass filter is
applied. In this study, a wavelet filter was applied to separate the high-frequency wind
waves that are not considered in the HDM computations. Note that the HDM has a
horizontal resolution of one nautical mile, meaning it can accurately depict only features
larger than 5 NM (i.e., 9.26 km). Figure 28a illustrates a comparison between DTs derived
from ALS and original/corrected HDM along the flight track at the observation epoch (i.e.,
10 May 2018, at 9:30). Since the flight direction changed in the middle of the track, this
figure presents the first 21 km of the track, during which the flight azimuth was 71.2°.
The comparison indicates that the ALS observations validate the corrected HDM.
Nevertheless, the HDM offers a smoother surface compared to the ALS results, which
can be due to the HDM'’s lower spatial and temporal resolutions.
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Figure 28. Decomposing ALS data and comparing with HDM. a) DT derived from ALS and
original/corrected HDM along the flight track observation epoch 10 May 2018, at 9:30. b) FFT of
the ALS profile along the track, along with the low-passed filtered signal (shown in panel a). c) High-
frequency signal recorded by ALS, which indicates the wind-generated wave fluctuations, and its
FFT in panel (d).
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Figure 28b displays the FFT of the ALS profile before (grey line) and after (dark blue)
applying the wavelet filter, which eliminates fluctuations with wavelengths less than
1 km. The residual between the ALS profile and filtered signal reveals wind-generated
waves, which is shown in Figure 28c and will be discussed in Subsection 5.1.

Figure 29 overlays sea surface topography from the ALS campaign and the corrected
HDM to reveal discrepancies. Note that the HDM surface is inherently smoother than ALS
observations due to its limitations in spatial and temporal resolution. Therefore,
the corrected HDM exhibits good agreement with ALS observations, yielding an RMSE of
1.8 cm. To calculate the RMSE between the HDM and ALS point cloud, the corrected HDM
data were extracted at the coordinates of ALS data points using bilinear interpolation in
space and linear interpolation in time.
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Figure 29. Overlay of DTs from the ALS point cloud and the corrected HDM at the observation epoch,
in L-EST97 coordinate system.

5.1 Directional Wave Spectrum??

High-resolution ALS data acquisition (1 x 1 m) enables the determination of the
wavenumber spectrum, defining wave propagation direction and wavelength (Hwang
et al., 1998; Walsh et al., 1985). This section introduces the retrieval of directional
wave spectra from the ALS point cloud as a potential source of wind wave observations
over a wide area (please see Publication Ill for mere details).

Figure 30 displays the steps and flowchart for obtaining directional wave spectra and
wave parameters from airborne LiDAR point cloud. For this purpose, the ALS data are
segmented into limited areas (1x1km) to compute the directional wavenumber
spectrum since wave direction may change due to variations in wind regime and water
depth. As a scale of 10 km and 30 min or longer may be desirable for considering
homogeneous (i.e., spatial invariance) and stationary (i.e., temporal invariance) wave
processes for field observations, the statistical stability of the computed wave spectra

23 The symbols used in this section are not included in the table of Symbols to avoid the use of non-
conventional symbols in wave theory and potential symbol-conflict with other sections.
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should be examined. Moreover, in this study, rather than using 2D FFT, 1D periodograms
of wave records are determined in various directions. This approach enables the
examination of the statistical stability of wave spectra for each direction, especially when
the record lengths vary due to the ALS limited data corridor width. Therefore, the wave
record &(x) (similar to Figure 28c) are extracted for 12 azimuthal directions, from 0° to
165° with a 15° step.
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Figure 30. Flowchart of the retrieval of directional wave spectra from the ALS point cloud [Modified
from Publication Ill].

Therefore, the wavenumber power spectral density of a stationary process is
computed by averaging 1D periodograms for each direction of interest (Bartlett, 1948;
Welch, 1967). For this purpose, the discrete Fourier transform Y, of the wave records
&(x) is determined as follows:

—2mimn

Y = Xn=1 fne—ikmmixé'x =8xYn-1én€ N (31)

where N is the number of samples with sampling interval of x, and k is the wavenumber
vector with a size of m:
_ 2mim

fp =22, m=12,...,N. (32)

As a result, the one-sided wavenumber power spatial density yg of wave record &(x)
for a selected direction 6 is determined as follows:

2
2nN6x

Xo(k) = V|2, (33)

Before applying Equation (31), using a cosine taper data window is beneficial for
mitigating discontinuities at the two endpoints of the records (Liu and Frigaard, 1999).
In addition, to maintain consistent wavenumber resolution across different directions,
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zero padding was applied to both ends of the wave profiles. Eventually, the directional
wavenumber power spectral density function X is obtained as follows:

X(k,0) = = %1 xo,(K), (34)

where s represents the number of samples required to satisfy the statistical stability of
the wave spectral density. In this regard, a random sampling is used to produce parallel
wave spectra for each direction. To determine the required number of samples,
an experiment was conducted to assess the statistical stability of X(k,8) for various
sample sizes. This experiment was repeated R = 100 times for s values from 1 to 1000,
and for each s, the standard error SE of the spectrum’s peaks X (k,, ) as a criterion of the
statistical stability is determined as follows:

p - /zil(xi(f;p,e)—u)z, (35)

where u is the mean of R repetitions of the experiment. Figure 31 shows the results of
this experiment for direction 75° as an example. By considering all directions, a sample
size of 300 was deemed suitable for the current study.
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Figure 31. Statistical stability of the wave spectral density. a) Standard errors (Equation 35) against
various sample sizes for a selected fragment and wave direction 75°. b) Wavenumber spectra
corresponding to the sample size of 300 [from Publication IIl].

Because the measurements have been taken on a moving platform, the wavenumber
spectra are calculated using the encountered wavenumber (k,). Therefore, the Doppler
effect can introduce a shift between the computed and true wavenumber (Ak). Hence,
the wavenumber should be adjusted according to the aircraft’s speed (v,) and the angle
of difference between the flight direction and the wave spectrum (a) as follows (Walsh
et al., 1985):

Al = YLK o4 Ak = k, — k, (36)

vg-cos(a)

where d represents water depth, which is approximately 70 m in the study area, and g
is the acceleration of gravity. The aircraft’s speed was ca. 62 m/s, and the flight azimuth
was 71.5°, which changed slightly along the flight track.
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To determine frequency wave spectra S(w) from Equation (34), one can employ the
dispersion relation, which defines the relationship between wave frequency w and
wavenumber k:

w = \/kg - tanh(kd). (37)

The frequency spectrum represents the distribution of wave energy over frequency at
a fixed location, while the wavenumber spectrum represents this distribution over
wavenumber or wavelength. Since wave frequencies propagate at different speeds,
the dispersion relation links the wavenumber spectrum and frequency spectrum.
As a result, the frequency spectrum can be determined as follows:

S(,0) = X(k(w),6) - £, (38)

Therefore, calculating the wavenumber power spectral density for 12 directions from
each segment of the ALS point cloud (Equation 34) enables the determination of
directional frequency power spectral density, as illustrated in Figure 32. The peak of wave
energy is observed at 8; = 72°, representing the dominant wave direction. This direction
almost agrees with measurements from a nearby buoy?* (approximately 40 km from the
ALS profile) and the WAM model?®, which recorded dominant directions of 86.5° and
82.5°, respectively. Also, the ALS-derived peak period (T, = 21/ w,)) is 3.63 s, compared

to 3.65 s measured by the buoy and 3.56 s by the model.
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Figure 32. Frequency wave spectrum for a segment in the middle of the ALS track: a) in different
direction, b) in the dominant direction. The power spectral density derived from the ALS point cloud,
the buoy, and the WAM model is compared in panel (b) [Modified from Publication Iil].

In Figure 32b, the wave spectrum of the dominant wave direction retrieved from the
ALS data is compared with the JONSWAP standard wave spectrum related to the sea
state measured by the buoy and WAM model. This comparison demonstrates a good
agreement among the various techniques used for measuring the sea state. Moreover,
the significant wave height of the ALS measurement can theoretically be defined based
on the zero moment (m,), which represents the area under the spectral curve, using the
formula SWH = 4\/m_0. Thus, it is evident that there is also a good agreement among

24 Suomenlahti wave buoy, obtained from: https://ilmatieteenlaitos.fi [accessed 7 August 2023]
25 https://doi.org/10.48670/moi-00014 [accessed 7 August 2023]
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data sources in terms of SWH, with a value of 0.6 m for ALS data, compared to 0.65 m
for the buoy and 0.64 m for the model. Also, the peak period (T,) derived from ALS point
cloud is 3.63 s, compared to 3.65, and 3.56 s for the buoy, and WAM model, respectively.

The wavelength corresponding to the peak period, as derived from Equation (34),
is 20.55 meters. This value represents deep water conditions for the sea state by
considering a depth of 70 m. Therefore, the dominant wave directions and wavelengths
of each ALS point cloud fragment are computed and illustrated in Figure 31.
The computed wavelengths vary between 17.9 and 25.1 m (which is 21.3 m on average)
along the trajectory, decreasing towards the eastern direction.
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Figure 33. Dominant wave directions and wavelengths derived from ALS point cloud along the flight
trajectory. The background contour represents the bathymetry obtained from GEBCO_2020
[Modified from Publication IlI].

Besides, a comparison of wave parameters derived from the LiDAR-based method and
WAM model is illustrated in Figure 34. The model has a temporal resolution of hourly
data and a spatial resolution of one nautical mile. For comparing two datasets,
the WAM model obtained the coordinates of the fragments’ centres at ALS flight time
(i.e., 9:35 UTC) via bilinear interpolation in space and linear interpolation in time. This
figure shows that the wave parameters derived from ALS data are supported by the
modelled estimations along the flight trajectory. The mean and standard deviation of
differences are a) 0.2 and 0.1 s for the peak period, b) -0.09 m and 0.03 m for the SWH,
and c) -0.5° and 10.0° for dominant wave direction, respectively. Note that the WAM
model produces smoother results, which could be attributed to limitations in the model’s
resolution and the wind model used to force the wave model. Additionally, ALS-derived
parameters are based on instantaneous observations and the results are sensitive to
local conditions.

The modelled parameters are also compared with the buoy data at the location of the
buoy for a duration of 24 hours, as shown in the figure. This comparison shows the
performance of the model relative to buoy observations with a mean and standard
deviation of -0.1 and 0.23 s for the peak period, =0.12 and 0.05 m for the SWH, and
10.0° and 7.4° for the wave direction, respectively.
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Figure 34. Comparing wave parameters peak period (top row), significant wave height (middle
row), and wave direction (bottom row) derived from ALS point cloud and the WAM model.
Comparison between the model and buoy observations for a period of 24 hours are also
demonstrated [Modified from Publication IIl].

The results show that the possibility of retrieving directional power spectral density
and wave parameters from ALS point cloud. For this purpose, the wavenumber spectra
are computed from 12 directions using the periodogram method and a random sampling
approach to satisfy the statistical stability of the spectra. Compared to the previous
studies (e.g., Hwang et al., 2000a and b), this study introduces a method for retrieving
the directional wave spectrum for each small ALS data fragment (i.e., 1 x 1 km), regardless
of the angle between the dominant wave and flight directions, in a stand-alone manner.

Although ALS technology may be somewhat expensive compared to some alternative
sensors, such as wave buoys, pressure sensors, and satellites, it provides the capability
to capture 3D point cloud data from the spatial wave field. This capability offers a deeper
insight and a better understanding of surface ocean waves, which is essential in the
context of our changing climate and advancements in marine engineering and shipping.
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6 Discussion and Concluding Remarks

6.1 Summary of Results

The vertical reference unification between the hydrodynamic models (HDMs) and
observations facilitates the accurate and comprehensive determination of absolute
dynamic topography by integrating diverse data sources. This unification has the
potential to enhance the effectiveness of data assimilation for accurate sea level
forecasting. Moreover, accurate and consistent sea level data are always important for
understanding ocean weather and supporting applications like marine engineering,
coastal management, optimal route planning based on under-keel clearance criteria in
shallow waters, and autonomous shipping navigation.

In this dissertation, Section 1 reviewed various approaches and considerations for
deriving dynamic topography (DT). Section 2 reviewed the study area and datasets used
in this study. Among the different sea level data sources, HDMs are distinguished by their
high spatial and temporal resolutions. However, they often lack a well-defined vertical
reference datum, which hinders direct combination with other sea level data sources. In
addition, HDMs are prone to modelling errors due to numerical limitations. Therefore,
vertical referencing HDM and combining observed and modelled DT within a unified
vertical reference system can enhance modelling and forecasting capabilities. However,
modelling errors hinder the accurate determination of vertical reference in HDM.
Conversely, the absence of a common vertical reference system between HDM and
observations poses challenges in effectively identifying and rectifying modelling errors.

This study presented two approaches for correcting and vertical referencing of HDMs
in Sections 3 and 4. In both approaches, a geoid surface is employed as an intermediate
vertical reference datum. Since the geoid is an equipotential surface of Earth’s gravity
field, hence a physically meaningful reference surface for the determination of sea level,
which can also be used seamlessly from land to offshore. In the geodetic applications,
geoid surfaces are modelled by using gravity data. HDMs inherently utilize a similar
concept for their reference surface, with simulated sea levels being relative to a
geopotential reference surface. Therefore, utilizing high-resolution geoid models as a
common reference surface for both observations and modelled sea level data is
beneficial in establishing an integrated measurement system.

Section 3 discussed Method | used to correct HDM through a dense network of
geoid-referenced TG records. In this approach, TG readings were considered as
ground-truth and the HDM bias was determined in the location of TG stations. Then,
the biases were propagated from stations into HDM grid points using interpolation
techniques. This method is practical when dense network of TG stations is accurately in
a common geoid-based chart datum. Additionally, because the model is directly
corrected by the TGs, any errors in the TG records or zero marks can propagate into the
corrected HDM. However, the corrected HDM demonstrates a good agreement with SA
measurements. Furthermore, the method enabled the identification of inconsistencies
between data sources and problematic areas, which can be explored in further research
to improve the models used in this comparative assessment.

Certain shortfalls of Method | became the motivation to develop Method Il using
machine learning strategies, which were presented in Section 4. For this purpose,
a multivariate deep neural network was introduced to predict HDM modelling errors,
followed by an adjustment of HDM's reference surface using SA observations. Input
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variables for predicting HDM errors were chosen using a wrapper feature selection
method, and these selected inputs (‘msdDT,,’, ns’, ‘Uwind’, ‘Vwind’, ‘Diurnal tides’,
‘Low tides’, and ‘SLP’) were generalized for the entire Baltic Sea. However, localized
high-frequency HDM errors still require attention.

The DL model accurately predicted HDM modelling errors with RMSEs of 3.2 cm
(R-Squared: 0.82) for the training set and 3.5 cm (R-squared: 0.77) for the test set.
Nevertheless, addressing remaining HDM errors in specific areas, such as the Gulf of Riga
and the entrance of the Baltic Sea, requires further efforts. Once the HDM was corrected
by predicted HDM errors, the vertical reference bias of the HDM relative to the geoid
model was determined as 18.3+1.9 cm using SA measurements by excluding problematic
areas.

Therefore, the instantaneous absolute DT was determined through a DL-based HDM
correction and SA measurements. The corrected HDM presents a notable improvement
relative to TG readings with an RMSE of 3.4 cm and a correlation coefficient of 0.98,
in contrast to the original HDM, which had an RMSE of 7.6 cm and a correlation
coefficient of 0.93. The RMSE of the corrected HDM in offshore was examined by SA
measurement, which exhibited an improvement on average from 6.5 cm to 4.1 over the
entire Baltic Sea. Moreover, the comparative assessment highlighted problematic areas,
such as the eastern part of the Gulf of Finland, the Bothnian Sea, and southwest of the
Baltic Sea (Bornholm), as well as possible vertical datum shifts between the network of
the TG stations.

This study developed a methodology to correct instantaneous dynamic topography
derived from the HDM with respect to the common vertical datum in the Baltic Sea
region. The method also involved the unification of the reference surface among various
sea level data sources, which enabled us to compare modelled and observed sea level
data in terms of dynamic topography across time and space. Therefore, quantifying the
accuracy and bias of the corrected instantaneous dynamic topography also allowed us
to identify inconsistencies between datasets and problematic areas for further
investigations. The presented methodology can be adopted in other marine areas
worldwide to harmonize sea level measurements from different sources and approaches
and achieve an appropriate level of accuracy in datasets.

6.2 Key Conclusions Presented for Defence

e All used diverse sea level datasets were transferred to a common vertical reference
surface with consistent physical meaning (geoid: equipotential surface of Earth’s
gravity field), zero reference level (NAP), reference epoch (2000.0), and permanent
tide system (mean-tide system).

e Two methods were developed to correct HDM-derived instantaneous sea level:
i) employing a dense network of geoid-referenced TGs, in which model discrepancies
from observations are propagated spatially via conventional interpolation methods;
and ii) utilizing a DL model to investigate HDM modelling errors without considering
vertical reference bias, thereafter, addressing the RefBias by SA data and a geoid
model.
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Method I:

The method demonstrated that using a network of geoid-referenced TG records
allows for a direct evaluation of the HDM-derived DT based on TG readings. It is also
possible to spatially interpolate the discrepancies from stations to offshore areas
when a close loop of TGs with limited distances is available.

Based on a frequency analysis, it was observed that the HDM bias varies temporally
with both high- and low-frequency components, along with spatial variations.
Hence, to achieve uncertainties less than 5 cm across the Baltic Sea region, bias
correction with a maximum window length of 6 hours is necessary.

The corrected HDM demonstrates an average RMSE of 2.5 cm compared to TG
records and a zero-bias agreement with SA data and RMSE of 2.4 cm for period of
form January 2017 to June 2019.

Method II:

The DL model accurately predicted HDM errors with RMSEs of 3.2 cm (R-squared:
0.82) for the training set and 3.5 cm (R-squared: 0.77) for the test set. Nevertheless,
addressing remaining HDM errors in specific areas, such as the Gulf of Riga and the
entrance of the Baltic Sea, requires further efforts.

The vertical reference bias (RefBias) of the HDM relative to the NKG2015 geoid
model was determined to be 18.1+2.9 cm using SA measurements. This bias
can be refined for accuracy by excluding problematic areas, resulting in a bias of
18.3+1.9 cm.

In contrast to the original HDM, which had an RMSE of 7.6 cm and a correlation
coefficient of 0.93, the corrected HDM presents a notable improvement relative to
TG readings with an RMSE of 3.4 cm and a correlation coefficient of 0.98. The RMSE
of the corrected HDM in offshore was examined by SA measurements, which
exhibited an improvement on average from 6.5 cm to 4.1 over the entire Baltic Sea.
The corrected HDM reveals vertical datum shifts between the network of TG stations
and highlights that the TG benchmarks at Latvian, Estonian, and Finnish stations are
below the reference surface of the HDM.

A comparative assessment in both methods identified problematic areas, including
the eastern part of the Gulf of Finland, the Bothnian Sea, and the southwest of the
Baltic Sea (Bornholm). These issues were attributed to the accuracy of the geoid
model in the marine area, where the geoid model quality is questionable due to
marine gravity data voids.

Airborne LiDAR point cloud can serve as an additional observation data source for
investigating problematic regions.

The corrected HDM was also compared with the ALS point cloud at a specific time
and location in the Gulf of Finland, revealing a strong agreement with an RMSE of
1.8 cm.

The ALS point cloud data demonstrated the potential to observe sea state and
retrieve directional wind wave spectra. This technique provides an observational
approach to capture the spatial wave field, offering a deeper insight and a better
understanding of surface ocean waves.
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6.3 Recommendations for Further Research

Future research can explore various aspects of this study, including enhancing the
performance of the DL model, investigating problematic areas to mitigate sources of
errors, studying land/sea datum unification by comparing mean dynamic topography
from both geodetic and oceanographic approaches, examining the circulation system
of the Baltic Sea through the corrected HDM, and exploring applications such as
accurate spatio-temporal sea level nowcasting and forecasting, as well as determining
near-real-time under-keel clearance in navigation. The DL model performance has the
potential to improve by collaborating with model developers and acquiring a better
knowledge of the physical model outputs. In addition, including feature learning from
spatial dimensions can improve the DL model performance. The DL model can also be
employed in real-time alongside the hydrodynamic model to post-process the physical
ocean model output, correcting the modelled dynamic topography using observed sea
levels, and providing feedback to refine the physical ocean model.

Moreover, research can be conducted on the corrected HDM to investigate the
circulation of the Baltic Sea in shorter time periods, such as seasonal circulations. The DL
model has shown potential to reduce modelling errors of instantaneous DT with respect
to observations with a high level of accuracy. The corrected DT can also reveal variations
in other ocean parameters within the Baltic Sea, such as temperature and salinity.
This can be particularly insightful at the entrance of the Baltic Sea, where saline water
inputs from the North Sea interface with the freshwater inputs from the north and east
of the Baltic Sea.

The study area utilized in this research was equipped with a favourable data set, with
an essential component being the existence of a dense network of TGs around the Baltic
Sea. In many marine areas, where such a dense network of TGs doesn’t exist, which may
make the implementation of the methods described challenging. A possible solution that
can be explored is an adaption of the present methods. Instead of the TGs acting as the
‘ground truth’, it may be possible to utilize multi-mission SA with TG data in machine
learning strategies, so that the SA measurements may also serve as ‘ground truth’ data.
As SA data lack sufficient temporal resolution, the utilization of this method requires
relying on the spatial variability of the DT for training the DL model, in contrast to the
temporal variability considered in this study. With the advent of the Surface Water and
Ocean Topography (SWOT) mission, new opportunities can arise for employing DL
models to learn patterns from the observed surface of DT, which the DL model can also
be used for correcting HDM. The SWOT data offers one of the most detailed views of the
sea surface topography.
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Abstract

Developments Towards Deriving Realistic Dynamic
Topography by Synergizing High-Resolution Geoid with Sea
Level Data

Synergistic integration of various sea level sources (tide gauges, satellite altimetry and
hydrodynamic models — HDM, etc.) is important for many marine and engineering
applications to achieve the required accuracy from coastline to offshore. The data fusion
amongst the different sources, however, can be challenging due to: (i) varying spatial and
temporal resolutions, (ii) the utilization of different vertical datums, and (iii) various
sources having their own measurement/modelling errors. The geoid (the equipotential
surface of Earth’s gravity field) is presently the best and most realistic vertical datum that
can be utilized to represent sea level variations. Expressing sea level variation relative to
the geoid yields realistic ocean dynamic topography estimates from coast to offshore.
Accordingly, this study demonstrates that realistic dynamic topography can be achieved
by synergizing the various sea level sources by means of mathematical and computing
algorithms.

Hydrodynamic models are one of the important sources of sea level data due to their
spatio-temporal resolution, however, they are limited by a vertical datum bias and also
by modelling errors. Two methodologies to improve HDMs are explored in this study.
The first method determines and eliminates the HDM datum bias with respect to the
actual sea level by using a dense network of geoid-referred tide gauges, hence serving as
the ground truth. The TG data at the coast is compared to the initial HDM values and the
determined bias is eliminated by employing different interpolation methods (e.g., linear,
thin plate spline regression and inverse distance weighted). The second method employs
a deep learning model, that is trained to find the inter-relations between a group of input
spatio-temporal variables and HDM modelling errors at the locations of tide gauges.
So that once these HDM modelling errors are corrected it becomes possible to confirm
the HDM offshore improvements by using satellite altimetry data. Both methods were
examined in the Baltic Sea region.

The vertical datum bias of the HDM was calculated to be 18.3%1.9 cm, then to be
eliminated. The deep learning model application shows promising potential in identifying
HDM modelling errors. When compared to tide gauges and satellite altimetry data the
corrected HDM significantly improved the RMSE of instantaneous dynamic topography
from 7.6 and 6.5 cm to 3.4 and 4.1 cm, respectively. Satisfactorily, the HDM correlation
coefficient with respect to tide gauge data improved from 0.93 to 0.98. A comparative
assessment between sea level sources revealed inconsistencies and problematic regions,
such as the eastern Gulf of Finland, Bothnian Sea, and southwestern Baltic Sea.
Although a preliminary investigation attributed most errors to the geoid model, further
investigations are needed to address inconsistencies in the participating datasets.
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Liihikokkuvote
Merepinna realistliku diinaamilise topograafia saavutamine
tappisgeoidi ja meretaseme andmete kooskasutamisel

K&rge ruumilise ja ajalise lahutatavuse tottu on hidrodinaamilised mudelid tks olulisi
meretaseme andmestikke, kuid neile on paraku ka omane vertikaaldaatumi
sistemaatiline nihe ja modelleerimisvead. Kdeolevas uurimistdos kasutatakse kahte
HDM-i parendamise metoodikat. Esimene meetod tuvastab ja elimineerib HDM-i
nihkevaartused tegeliku merepinna suhtes. Selleks kasutatakse veemdddujaamade
vorku, mille médtmistulemuste lahtepinnaks on Ghtne geoidimudel. Veemdddujaamade
andmeid rannikul vorreldakse algse HDM vaartustega, misjarel tuvastatud nihe
elimineeritakse erinevate interpoleerimismeetodite (nt lineaarne, dhukese plaadi splaini
regressioon ja kaalutud péérdkaugus) abil. Teine meetod kasutab siivadppe mudelit, mis
on treenitud leidma veemdddujaamade asukohtades vastastikuseid seoseid ruumilis-
ajaliste  sisendmuutujate  ja  HDM-i  modelleerimisvigade  vahel. HDM-i
modelleerimisvigade parandamise jargselt on vdimalik HDM-i tdiustusi tdestada
satelliitaltimeetria avamere mootmisandmetega. Modlemat meetodit rakendati
Ladnemere piirkonnas.

HDM-i vertikaaldaatumi nihkeks saadi 18,31£1,9 cm, misjarel see elimineeriti. SlivaGppe
mudeli rakendamine on paljutdotav HDM modelleerimisvigade tuvastamiseks. Vorreldes
veemdddujaamade ja satelliitaltimeetria m66tmise andmetega parandas korrigeeritud
HDM markimisvadrselt dinaamilise topograafia keskruutvigade vaartuseid vastavalt
7,6 -> 6,5 cm ning 3,4 -> 4,1 cm. Ka paranes HDM-i ja veem&G6dujaamade andmete
korrelatsioonikoefitsient 0,93-It 0,98-le. Meretaseme andmestike vérdlev hindamine
viitas probleemsetele piirkondadele Soome lahe idaosas, Botnia meres ja Ladnemere
edelaosas. Kuigi esialgne uurimine omistas enamiku vigadest geoidimudelile, on
osalevate andmestike ebakd&lade kdrvaldamiseks vaja tdiendavaid uuringuid.
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ARTICLE INFO ABSTRACT

Keywords: Accurate and compatible sea level data are now more important than ever before, especially in semi-enclosed sea
Sea 1eV_el areas that are highly exploited and surrounded by many countries, such as the Baltic Sea. Obtaining accurate sea
Dynamic topography level data is however, not only hindered by resolution deficiencies and systematic and random errors from the
Hydll'ogeodesy various available sources (e.g. satellite altimetry (SA), tide gauges (TG), hydrodynamic models (HDM), etc.), but
Vertical reference datum . . . . - . .

Baltic sea most importantly by variations in and insufficient knowledge of the vertical reference datums. This study
Gulf of Finland demonstrates that by incorporating the geoid (equipotential surface of the earth, that represents a stable vertical

datum) along with a network of tide gauges and hydrodynamic models it is possible to obtain accurate and
realistic sea level data.

A simplified method is developed that calculates the bias between TG and HDM and identifies an optimum
time period to be utilized, given the associated accuracy required. A bias period of 0-6 h results in a standard
deviation of less than 5 cm at all participating TG stations. The method is tested in the estuarine water body of
the Gulf of Finland (in the eastern section of the Baltic Sea). Results show that without the bias correction, the
mean dynamic topography from a westerly to easterly direction along the gulf, varied from —12.7 to —8.2 cm (a
difference of 4.5 cm) whilst after bias correction the model varied from 18 cm to 25.4 cm (a difference of 7.4 cm).
Both these scenarios demonstrate an increasing eastward trend. Nevertheless, a major difference in quantifica-
tion exists and to a first approximation, this may vary by as much as a factor of almost 2. The analysis also
intrinsically identified critical areas where drastic changes in dynamic topography occur and the associated
seasons. Thus, the utilization of more stable vertical reference, such as the geoid, displays promising results, that
essentially allows better quantification of more realistic parameters (e.g. sea level trends, extreme value analysis
etc.). In addition, it allows identification of hydrodynamic modelling imperfections and that a coherent
compatibility with other sources of sea level data (e.g. SA, Global Navigational Satellite Systems etc.) is now
possible. This accuracy and conformity in sea level data are urgently required for a comprehensive understanding
of climate change, marine engineering and navigation applications.

1. Introduction These sources have different resolutions (in both space and time) and

dissimilar or unknown vertical reference datums.

Various applications such as navigation, engineering and climate
studies now require accurate and reliable sea level data, with sub-
decimetre accuracy and most importantly, a static and internationally
recognized vertical reference datum (Gator, 2008; Omstedt and Hans-
son, 2006). Obtaining accurate sea level data, however, can be chal-
lenging, for various sources such as tide gauges (TG), satellite altimetry
(SA), shipborne and airborne Global Navigation Satellite Systems
(GNSS) profiles and hydrodynamic models (HDM) are often utilized.

* Corresponding author.
E-mail address: vahidreza.jahanmard@taltech.ee (V. Jahanmard).
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Out of all the available sources, HDM tends to provide the best spatial
and temporal resolution relative sea level changes. They are based on a
series of Navier-Stokes mathematical equations, that are driven by
meteorological and hydrological data that attempt to model reality
(Lehmann, 1995; Ophaug et al., 2015). The marine areas in actuality can
be unpredictably turbulent and thus revealing modelling imperfections.
The most relevant and alarming limitation though, is that the HDM
vertical reference datum is often inconsistent and undisclosed (Slobbe
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et al., 2014).

On the other hand, TG data due to their reliability, long time span of
data history and availability of temporal resolution are often assumed in
many studies to portray the ‘true’ sea surface. The spatial coverage of TG
tends to be limited to the coastal boundary, thus not representable for
the offshore areas. It is also quite common for the vertical reference
datum of marine areas (and thus TG) to refer to a chart datum, that most
commonly represents tidal observation (e.g. some historic mean sea
level (MSL), lowest astronomic tide (LAT), etc.) or a physical model such
as the geoid (IHO, 2020). The tidal observation method is most
customarily utilized by many countries for their definition of chart
datum. This however, is not anymore an ideal method, for the derived
chart datum can vary over different time span and depending on the
country/community the sea level data may be referred to differently
defined vertical datums. For instance, the Baltic Sea countries use
several different vertical reference datum definitions (Schwabe et al.,
2020) and in such a dynamic marine area where integration is essential,
this can create inconsistency and incompatibility in the sea wide marine
research.

Instead it is applicable and now common that TG stations are inter-
connected through a national height network by high-precise level-
lings (Kollo and Ellmann, 2019; Slobbe et al., 2014). In the past, precise
levellings were exclusively used for defining a nationwide or continental
vertical datum. Currently, many countries consider instead development
and implementation of a gravity-based height reference system, e.g.
(Ellmann et al., 2020; Li et al., 2016; Véronneau and Huang, 2016),
where the definition of vertical datum is realized through geoid (i.e. the
shape of the equipotential ocean surface under the influence of the
gravity and rotation of Earth alone) modelling. The geoid represents the
vertical datum, the natural “zero”, so to speak, for physically meaningful
heights and depths, and also to the tide gauge readings. Note also that
the sea level variations with respect to the geoid yields dynamic
topography (DT). The advantage of the geoid is that (unlike to scarcely
located levelling benchmarks) it is a continuous equipotential surface,

Time-domain variations
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hence it can be used for GNSS based heighting not only in land, but also
offshore. The geoid is static, it is not “wavering” over time (unlike MSL)
and represents the natural vertical datum that should ideally be used as
zero for the tide gauge readings. In this regard, the Baltic Sea Chart
Datum 2000 (BSCD2000) is being implemented in this region as a
geodetic reference system based on the European spatial and vertical
reference systems (i.e. ETRS89 and EVRS2000) to unify chart datum of
the Baltic Sea countries (Schwabe et al., 2020). Thus, it is more appli-
cable to validate the different data and model sources against the geoid
referred TG data (Liebsch et al., 2002; Varbla et al., 2020a; and 2020b).
This validation should identify any bias between sources with respect to
the vertical datum in addition to other systematic and random errors.

Thus, considering both the advantages and disadvantages of TG and
HDM it appears logical to synergize the two data sources. As a result,
focus of this study is on exploring the use of a more static and appro-
priate vertical reference frame such as the geoid, for validating the HDM
results. A somewhat similar approach has been examined to realize the
geoid as the vertical height reference and for storm surge modelling in
the Dutch part of the North Sea (Slobbe et al., 2014; and 2013).

As mentioned above the difference between TG measurements and
HDM often results in a bias. The significance of the bias between HDM
and the vertical datum is frequently overlooked. This bias includes both
model errors (e.g. mathematical approximations, uncertainty in initial
and boundary conditions, etc.) and also vertical reference differences.
This can essentially be composed of high- and low-frequency compo-
nents. It is expected that the low-frequency component to compose of
the vertical datum differences, thus being to some degree almost con-
stant. This however is not always the case, for the bias can change with
time and space. In this study a deeper exploration is made with quan-
tifying the bias especially with respect to both the time-domain and
space-domain. Quantification of the bias is a major component in cor-
recting the HDM results to a more accurate and realistic DT estimates.

Once the bias correction is implemented in the HDM a Mean Dy-
namic Topography (MDT) can be calculated in any offshore location,
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Fig. 1. Inter-relations between hydrodynamic parameters and involved principal data types (satellite altimetry, tide gauges, hydrodynamic and geoid models) and
the different vertical reference datums. For the used symbols and abbreviations please refer to the main text body.
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which illustrates realistic changes in mean sea level values, extreme
values, geostrophic currents etc. Note that the MDT is usually considered
to be the difference between the mean sea surface and the geoid (Fig. 1).
There are two ways in which the MDT can be calculated. Firstly by a
geodetic approach, whereby knowledge of the mean sea surface (MSS) is
derived from satellite altimetry or tide gauges records referred to a
precise geoid model. The second and ocean approach utilizes HDM
based sea level data (Idzanovic et al., 2017). In this study we shall utilise
a combined approach for we are not only interested in the DT at the
coastal area but also extending in the offshore. This is to our knowledge,
the first attempt of such a synergized exploration in the study area
(Baltic Sea) and it is expected that similar forthcoming developments
can be adapted internationally.

The eastern section of the Baltic Sea, the Gulf of Finland is used as a
case study due to availability of a high density network of tide gauges,
whose zero mark is referred to the geoid based national vertical datum
(Kollo and Ellmann, 2019). The study area is also surrounded by three
countries (Finland, Estonia and Russia) thus it is a very active and dy-
namic marine area. The vertical datum for Estonian tide gauges is
EH2000 and the national height system in Finland is N2000, which both
coincide with the BSCD2000. These characteristics make it an ideal area
for testing out the method. It is the intention in this paper, to demon-
strate the importance of incorporating of a static vertical reference
surface such as the geoid into the marine applications and research.

This study utilizes eighteen TG stations along with two regional HDM
(Nemo-Nordic and HBM-EST) for the Baltic Sea to examine: (i) the time
and spatial domain changes of the bias in between the TG readings and
the corresponding HDM estimates, (ii) development of a robust method
that can be used for correction of the derived bias, that also retains the
accuracy required and (iii) the contribution that correction of the bias
has on the results in terms of instantaneous DT and MDT, not only at the
TG locations but also in the offshore domain.

The organization of the present study is as follows. In Sec.2, the
developed methodology is explained. In Sec. 3 the study area Gulf of
Finland, Baltic Sea is described. In Sec.4, the different data sources
utilized are highlighted, and the method of bias determining is explored.
Sec. 5 presents the results of the bias and corrected HDM. A discussion
on the method implemented and the results are presented in Sec. 6.
Section 7 summarizes the main results and relevance of the paper.

2. General methodology

Several different sources of sea level data exist that are referred to
different reference surfaces. Satellite altimetry and GNSS buoys both
derive sea surface heights (SSH) that refer to geodetic reference ellip-
soid. The TG records are usually given with respect to the geoid based
vertical datum, yielding the near-shore dynamic topography (DT)
values. Hence, at locations with coordinates (¢, 1) the ellipsoid referred
SSH is obtained as follows (cf. also Fig. 1).

SSH(¢,2) =DT($,2) + N(,2) (€))

where N is a ‘static’ geoid height referred to a geodetic reference
ellipsoid.

Conversely, HDM often provides sea level variations with respect to
an arbitrary vertical datum. Essentially, these are equivalent to DT, but
not referred to the geoid. Due to this similarity, we denote the HDM
derived sea level variations as DTypy. One of the most common vertical
reference datums utilized by HDMs is the MSL (its exact definition can
vary amongst models). The MSL is usually calculated from repeated SSH
measurements for a suitable time period (Kakkuri and Poutanen, 1997).
Thus many of the available sources tends to refer to a time changing
vertical reference datum (e.g. LAT, MSL). It should be noted that the
selected time span to calculate MSL may affect the estimation of this
vertical reference. For most applications this ever-changing vertical
datum is not sufficiently accurate and reliable. Instead, as mentioned
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above, the focus of this study utilizes a static vertical reference surface
such as the equipotential surface of the geoid to be utilized for referring
the HDM data.

This study intends to calculate accurate DT anywhere offshore by
correcting the HDM embedded sea level estimates. Therefore, the bias of
HDM’s dynamic topography (DTxpy) can be corrected by the network of
TG records.

In practice, the HDM model bias is usually determined as the dif-
ference between the mean value of HDM at the tide gauge location
(DTupmarc) and TG records within a certain time interval. Thus the
dynamic topography bias is obtained as follows:

Biasupyarc =DTr6 — DT upyate 2)

where DTr¢ is the mean of dynamic topography during a certain time
period (could also be a time instant) at the TG location. In previous
studies (Lagemaa et al., 2011), the backward moving average (BMA)
method (a simple low-pass filter) had been commonly used to correct the
low-frequency bias of models, whereas the high-frequency DT fluctua-
tions (e.g. period less than 7 days) were ignored by accepting some error.
In this study we will show how the Biasypmars estimates change by
selecting different filter sizes, whereas this bias becomes unstable
beyond certain threshold. In order to obtain Biasgpmarg, the previous
studies compared the low-frequency part of the HDM time series with
the near-coast TG records. Therefore, the time-domain bias (TDBias) at a
m-th TG station is obtained from the following equation:

o1 o RN
TDBias,, (i) a1 Z[DTTG,,,(I +J) = DTupyara, (i+))] , i >k 3)
=

where i is the time index (i.e. in this study, 2014.01.01 00:00 denotesi =

1),j is a counter for summation, and k is the window-size of BMA, which
will be investigated in the time-domain bias section (Sec. 4.3). The term
of DTypparc is the DTypy at the closest HDM node to the TG station. In
the case k = 0, the instantaneous bias (TDBias_) is calculated, which is
the HDM exact bias with respect to the TG records. The corrected DTypu
near m-th TG station (DT{{j};7¢) at the time instant ¢ is computed as
follows:

DTypvara, (1) = DTupuarc, (1) + TDBias,(t) 4

In order to select proper sample size (k) to correct the model, the
residual standard deviation (ResidSD) is examined to determine
DT are With required uncertainty. The ResidSD for different k can be
obtained as follows:

n 2
SIS

n—k—1

ResidSD,, (k) = 5)

where n is the total number of data at a particular location (e.g. n = 2 x
365 x 24 = 17520 for two years hourly DT data). In this equation, the
ResidSD is calculated based on the selecting windows-size of BMA. For
instance, n — (14 x24) = 17184 data instances are used to calculate the
ResidSD of the corrected model by k = 14 days. The term of ¢ is the
residual value of DT{f}, 1 With respect to the TG records, and € denotes
the mean of ¢ (both depend on moving window k), which is calculated as
follows:

_ 1 - 1 - R corr .
€,(k) = Z Enj=—7 Z [DT’IG,,, () = DTypyars, (Jﬂ (6)
n—k =k n—k st

The ResidSD can be utilized to assess the quality of TDBias correction
by different windows of the BMA method. Moreover, we will show why
we favor using instantaneous TDBias correction (k = 0) rather than a
low-frequency correction (e.g. k = 14 days) in the time-domain bias
section (Sec. 4.3).

Note that the calculated TDBias by Eq. (3) is realistically applicable
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Fig. 2. Flowchart of the spatio-temporal correction of DTypy by using a network of geoid related tide-gauges.

near individual TG station. To calculate the bias in the offshore area a
linear interpolation in between the dense network of TG stations is
employed, especially since the tide gauge stations are located on either
side of the gulf. Such a method may not always perform well at the open
sea, therefore more offshore data are needed to obtain and confirm the
accurate SDBias at the open sea. Hence, the spatial-domain bias (SDBias)
can be numerically estimated (e.g. using a standard linear interpolation)
inside the TG network loop (DT} a1, ) at hourly instances t,

SDBias(¢, A,1) = interp [y, , g, » TDBias,(t) . ¢ , 4] @

and subsequently, the DT{{}}, is computed anywhere offshore with co-
ordinates (¢, 1) as follows:
DT (. 2,1) = DTypws (b, 2,t) + SDBias(, 2,1) , t > t(k) ®)

The schematic chart of the methodology applied to obtain DT}, (at
the HDM grid-points) is shown in Fig. 2. According to this process, the

Fig. 3. Location of the used tide-gauges (Table 1) in the study area (Gulf of Finland). The inset contains the location of the study area (enclosed by the red rectangle)

in the Baltic Sea region.
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HDM is examined near the tide gauge stations in the time domain, where
the TG records are valid. The result allows to assess the pattern of the
TDBias and determine the acceptable ‘k’ for this bias.

3. Study area

The Baltic Sea (BS) is a micro-tidal, semi-enclosed sea located in
northern Europe and bounded by nine coastal countries (Fig. 3). An
estuarine type of environment exists whereby large freshwater input
from continental rivers and salty water intrusions from the Atlantic
Ocean through the narrow connection (via Danish Straits) with the
North Sea leads to the formation of the strongly stratified water column.
The average water depth of the BS is approximately 52 m. It is usual in
the winter months for parts of the BS to become ice-covered, especially
in the northern and eastern sections. The dominant wind direction in
this area is south-westerly however it is quite common for northerly
winds to also be prevalent (Soomere and Keevallik, 2001). The winter
and autumn seasons tend to have the strongest winds and highest waves
(Jakimavicius et al., 2018).

There exist several components that affect the sea level in this water
body. In terms of a long-term effect it is expected that the global sea level
change (due to thermal sea water expansion and melting of glaciers) will
influence the Baltic Sea level. The variation in temperature, precipita-
tion and evaporation is expected to mostly influence on a decadal time
scale. There are suggestions that temperature and precipitation may
account for 15% of the sea level variability in winter and as much as 35%
in summer to (Hiinicke and Zorita, 2006).

For short term influences (yearly, seasonally, daily etc.) variation in
the water balance caused by water exchange in the Danish Straits e.g.
saltwater intrusions from the Atlantic (Major Baltic Inflow) that are
driven by atmospheric conditions may cause drastic sea level changes.
For example, in 1993 within 21 days the inflow raised the mean sea level
by 70 cm (Matthaus and Lass, 1995). The last major intrusion occurred
in December 2014 (Schimanke et al., 2014). As expected, river runoff
also affects the water balance, with the biggest freshwater contributor
being the Neva river located on eastern side of the Baltic Sea (Myrberg
and Soomere, 2013). The decrease in sea ice days is also expected to
change the dynamics of the sea level in the Baltic sea (Rosentau et al.,
2017). There are some localized events that affect the sea level on much
shorter time frame, for example in terms of weeks, daily and even
hourly. Most of these events tends to be influenced by the meteorolog-
ical factors especially the winds that can be strongly anisotropic in the
Baltic Sea (Soomere, 2003). For instance, storm surges (Suursaar and
Sooadr, 2007) and coastal upwellings (Delpeche-Ellmann et al., 2017)
are quite prevalent in the Baltic Sea with a more or less seasonal trend.

The focus of this study is on the Gulf of Finland (cf. Fig. 3) which is in
the easternmost section of the Baltic Sea. The gulf is a narrow and
elongated sea with a length of approximately 400 km and width varying
from 48-135 km. The mean water depth is around 37 m (maximum
depth is 123 m). Water exchange occurs with the adjacent basin through
an interplay of estuarine and wind-driven processes and also frequent
storm waves generated in the open sea that penetrate into the gulf.
Therefore it is expected that many of the components affecting sea level
in the Baltic Sea mentioned above will also influence the gulf.

An overall cyclonic type circulation exists with a surface import
along the Estonian coast and an export along the northern Finnish coast
(Myrberg and Soomere, 2013). There also exists evidence of cross
shore-transport occurring at particular locations that are influenced by
the winds, underlying layers dynamics and coastal upwellings that
frequent mostly during the summer months (Delpeche-Ellmann et al.,
2018; and 2017; Soomere et al., 2011). These dynamics also expected to
spatially influence the short-term sea level variability.

Strong westerly winds are known for increasing water levels espe-
cially in the eastern section where it creates a tilt of water surface
(Pindsoo and Soomere, 2020). For instance for the years 2014-2017 the
mean sea surface topography increases eastwards in the gulf by
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approximately 10 cm (Kollo and Ellmann, 2019). There are thoughts
that a change in the wind regime (wind direction and storminess) may
be influencing the mean sea level and extreme maxima found in the
easternmost sections of the Gulf with a rate of 8-10 mm/yr. For instance,
extreme events such as storm surges may be more prominent in the
coastal areas e.g. St. Petersburg area and Parnu Bay area (Fig. 3) and in
the low-lying areas such as the west Estonian bays (Suursaar and Soodar,
2007). These extreme events are expected to occur on a shorter time
scale.

Therefore, there exist many suggestions and thoughts with respect to
the changes occurring in the Baltic Sea mean and extreme sea level and
even water volume. With the changing wind patterns, sea ice days
combined with vertical land crust movements has led to various point of
view in the changes that takes place in different parts of the BS. Thus, the
method to be explored in this study may bring some clarity to realisti-
cally quantifying the sea level estimates.

4. Method and data
4.1. Geoid referred tide gauge data

A network of 14 + 4 Estonian and Finnish tide gauge stations were
utilized for obtaining the hourly in-situ sea level data (see Fig. 3 and
Table 1). The zero marks of the utilized Estonian TG stations coincide
with a recent high-resolution (0.01 x 0.02 arc-deg) regional geoid
model EST-GEOID2017 (Ellmann et al., 2020). The geoid model is fitted
to the national realization of the EVRS vertical datum, EH2000, the zero
level of which is the Normaal Amsterdams Peil (NAP) and complies with
BSCD2000. The Finnish TG records are converted from the national
“theoretical mean sea level” standard (FMI, 2020a) into the national
height system N2000, which is the Finnish realization of the EVRS and
coincides with BSCD2000 as well. Further principles on processing of TG
data can be obtained from Kollo and Ellmann (2019).

Land uplift due to postglacial rebound (PGR) increases northwards
from 0.2 (Haademeeste, TG-12) to 3.5 mm/year (Turku, TG-18) to 1.7
mm/year (Hamina, TG-15) according to model NKG2005LU (Agrcn and
Svensson, 2007). For the sake of rigorousity, the tide gauge records were
corrected for this vertical displacement.

Thus, all TG records express DT with respect to the geoid model.
The Estonian TG network are operated by the Estonian Environmental
Agency (EEA, 2020) and can be sourced from: http://ilmateenistus.ee.
The Finnish TG data were obtained from the Finnish Meteorological
Institute tide gauge network data (FMI, 2020b) and can be sourced from
https://ilmatieteenlaitos.fi. The characteristics of the used TG stations
are represented in Table 1.

A comparison between the annual 2014 and 2015 TG data reveals
that, on average, the 2015 mean sea level (MSL) within the study area
increased by 21 cm, and the standard deviation (SD) by 5 cm from 2014
to 2015. This denotes large inter-annual sea level variability, possibly
depending on the factors that influence the water balance (e.g. Baltic
inflows, storminess, presence of sea ice etc.). In general, the SD remains
within 18-29 cm, whereas the larger SD is expected to be associated
with the rougher sea conditions at individual TG stations. Higher annual
SD may thus hint at the stormier years. The smaller SD estimates may
also reveal sea sheltered locations of certain tide gauges. This possibly
signifies the rapidly changing sea conditions, which, as mentioned in the
introduction, the TG records can reflect these conditions only at the near
shore, however offshore conditions are expected to be different. Hence
the TG stations standalone cannot serve as the reference dataset, and
instead, a reliable HDM can be used offshore.

4.2. Hydrodynamic model
The two HDM utilized in this study were the Nemo-Nordic developed

by Swedish Meteorological and Hydrological Institutes (Hordoir et al.,
2019) which was obtained in forecast mode, and the HBM-EST
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Table 1
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The Estonian and Finnish TG stations are listed from 1 to 14 and 15 to 18, respectively (cf. Fig. 3). The MSL refers to EVRS vertical datum.

TG No. TG Name Longitude arc-degree Latitude arc-degree MSL2014 [cm] SD 2014 [cm] MSL2015[cm] SD 2015 [cm]
TG-01 Narva-Joesuu 28.0421 59.4690 15.3 23.4 38.5 28.8
TG-02 Kunda 26.5417 59.5210 12.6 22.0 36.0 27.1
TG-03 Loksa 25.7072 59.5844 13.7 21.4 35.3 26.3
TG-04 Rohuneeme 24.7912 59.5589 8.5 21.2 30.7 25.5
TG-05 Pirita 24.8208 59.4688 8.3 20.9 28.8 25.3
TG-06 Dirhami 23.4969 59.2084 8.4 20.5 29.4 24.8
TG-07 Haapsalu 23.5274 58.9580 8.3 21.8 30.3 27.0
TG-08 Heltermaa 23.0471 58.8655 12.8 21.3 36.6 25.0
TG-09 Ristna 22.0551 58.9212 8.9 20.1 28.9 24.7
TG-10 Virtsu 23.5112 58.5722 9.7 22.1 31.2 27.0
TG-11 Parnu 24.4778 58.3865 11.1 25.5 35.3 30.6
TG-12 Haademeeste 24.4636 58.0374 10.6 23.7 30.7 27.6
TG-13 Roomassaare 22.5037 58.2172 8.4 20.6 29.0 25.1
TG-14 Ruhnu 23.2635 57.7835 14.3 22.1 33.8 25.9
TG-15 Hamina 27.1792 60.5627 11.0 223 33.5 28.6
TG-16 Helsinki 24.9562 60.1536 9.2 19.8 30.0 25.6
TG-17 Hanko 22.9765 59.8228 8.1 18.7 27.3 23.8
TG-18 Turku 22.1005 60.4282 6.6 18.4 25.5 23.8
Table 2 the Baltic and the North Sea, that is based on the NEMO ocean engine. A

able

Basic properties of the Baltic Sea HDM set-ups (cf. Hordoir et al., 2019; Lagemaa
et al., 2011).

Nemo-Nordic HBM-EST
Atmospheric forcing Combination of hourly ECMWF LLO1 and HIRLAM
Arome data
Horizontal grid 2NM 0.5 NM
resolution
Vertical grid 56 50
resolution
Temporal resolution One hour One hour
Open boundary ECMWEF forecast data NOAMOD*"
forcing
Ice modelling Yes (LIM3) Yes
River runoff HYPE HBV
Vertical datum Not specified Not
specified
Grid nodes in study 2952 10507

area

# NOrth Atlantic MODel; a storm surge model.

developed by the Marine Systems Institute (Lagemaa et al., 2011) which
was in operational mode and obtained from the Estonian Marine area
Information System (EMIS): http://emis.msi.ttu.ece. The main model
characteristics of two HDMs are compared in Table 2.

The Nemo-Nordic is a three-dimensional ocean-ice coupled model of
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nonlinear explicit free surface method is utilized, with a time-splitting
approach that computes a barotropic and a baroclinic mode, as well as
the interaction between them. A horizontal resolution of 2 nautical miles
was utilized and a z-vertical coordinate system whereby the vertical
resolution is adapted to the physical properties of the Baltic and North
seas. There exist 56 vertical levels with the upper levels each having a
thickness of approximately 3 m.

The boundary conditions play a vital role in the prediction of sea
level data. For Nemo-Nordic, two open boundaries are utilized: a
meridional one in the western part of the English Channel and a zonal
one set between Scotland and Norway. In terms of the atmospheric
forcings a combination of hourly European Centre for Medium-Range
Weather Forecasts data (ECMWF LLO1, 9 km) and Application of
Research to Operations at Mesoscale data (AROME, 2.5 km) was uti-
lized. River discharge data were obtained from Hydrological Predictions
for the Environment (HYPE) and sea ice data from Louvain-la-Neuve sea
ice model (LIM3) (Hordoir et al., 2019). Nemo-Nordic data is available
with an hourly time step. The bathymetry of the model was obtained
from the General Bathymetric Chart of the Oceans (GEBCO-2014) Grid.
The actual vertical datum used to represent the sea level in the models is
however not exactly specified. We will show that the HDM used vertical
datum is changing both temporally and spatially. Due to need for the
actual absolute values it becomes imperative to reduce the zero of
models to a stable vertical reference datum. Fig. 4 (left) shows the
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Fig. 4. Comparing dynamic topography DTupy of Nemo-Nordic (left) and HBM-EST (right) models that referred to the different vertical reference surfaces at an
arbitrary time instant:15 Mar 2014 15:00 UTC. The red values refer to the DTypyarc nearby TG stations, whereas the black values are the corresponding DTrg

referred to the EVRS vertical datum.
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modelled DTypy of this model in an arbitrary time instant over the study
area.

The HBM-EST model is currently used for mostly operational sea
level forecast in Estonian marine water and plays a crucial role in the
short-term prediction of the sea level in marginal seas and coastal areas.
The core of the model system is a 3-dimensional baroclinic eddy-
resolving circulation model. This model provides horizontal resolution
of 0.5 nautical miles. This model is divided into 50 vertical layers, with
the thickness of each layer 4 m in the upper 80 m, and slowly increasing
towards the greater depths. The temporal resolution of the model is 1 h.
The HBM-EST atmospheric forcings are sourced by the high-resolution
limited area model (HIRLAM) with hourly time step and horizontal
resolution of 22 km. The open boundary of the HBM-EST model is
located at the Danish Straits, i.e. the western edge of the Baltic Sea. The
daily data from the river runoff model HBV (Hydrologiska Byréns Vat-
tenbalansavdelning) is used for freshwater inflow (Funkquist and
Kleine, 1999; Lagemaa et al., 2011). Fig. 4 (right) shows the simulated
DTypy of HBM-EST at an arbitrary time instant over the study area.

4.3. Time-domain bias approach

In order to determine the differences between the DTypy and DTy,
the model grid point located closest to the TG stations are selected and
extracted to produce the DTypyare time-series. This was performed for
all 18 used TG stations. An example of time-series and the difference
between them (instantaneous TDBias according to Eq. (3)) are shown in
Fig. 5 at the easternmost Narva-Joesuu station. Observe that this bias is
actually not constant, it varies from 0 to 100 cm and -80-30 c¢cm in Nemo-
Nordic and HBM-EST model over the years 2014-2015, respectively.
Notice also sudden peaks of the TDBias estimates, whereas the season-
ality of the bias is obvious with peaks in the winter and spring seasons.
This may reflect problems with sea-ice modelling or atmospheric forc-
ings in the Nemo-Nordic and also the fact that the HBM-EST is in
operational model with some quality controls being performed using
certain in-situ TG stations.

As can be seen in Fig. 5, the instantaneous TDBiasi_, of the models
has both a high- and low-frequency components. Previous studies have
also observed the bias in models to exist and have usually solved the
problem by focusing on the low-frequency part of the TDBias by utilizing
the moving average method as a low-pass filter that uses a particular
time period (Lagemaa et al., 2011; Varbla et al., 2020a).

We examine this period further by employing an autocorrelation
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function as a useful tool for periodicity detection and finding time
dependent patterns that can be utilized to calculate a proper moving
average window ‘k’ for this method (cf. Eq. (3)). The autocorrelation is
calculated as a function of the time-lag (z) which can be expressed as
follows:

R (1) :E[x, xf J 9)
where E denotes the expected value operator of time series x, whereas x
is the standardized of error of HDM with respect to the tide gauge station
(i.e. TDBias, where k = 0). The asterisk denotes complex conjugation.

The autocorrelation of the error for the two models has been illus-
trated in Fig. 6, which shows that the time series of error have two main
periods: 2-week and daily. These periodic can possibly be due to the
short-term unpredictability of some periodic phenomena that models
are unable to account for. Although the longer periods of error (e.g.
seasonal period can be seen more in the Nemo-Nordic model) may have
the same reason, they can also illustrate the problem of models due to
the use of unrealistic vertical reference surface. In the present study, we
investigate the ResidSD of low-frequency correction by different
window-size of BMA (cf. Eq. (5)). Therefore, according to Fig. 6, the 2-
weeks can be the largest suitable window-size for low-frequency
correction, and selecting the k larger than 2-week will result in an
additional bias in the corrected model. In this sense, the calculated 2-
week is an optimal compromise between the accuracy and computa-
tional effort.

Fig. 7 illustrates the smoothed dynamic topography (left column)
with a 14-days BMA method, the low-frequency bias (TDBias-14 days) Of
models (middle column), and corrected models versus TG records near
the 4 stations. The corresponding average ResidSD for Nemo-Nordic and
HBM-EST models are 4.8 cm and 7.1 cm, respectively. Examination of
the difference between the smoothed tide gauge records and HDM (low-
frequency bias) shows several interesting characteristics: (i) that the
TDBy_14 days is not constant during the time, thus the large value of ‘k’
such as seasonal and annual bias-correction could be very erroneous if
ever applied, (ii) From the Nemo-Nordic model an under-estimation
trend is observed whilst for HBM-EST an over-estimation is present
and (iii) the high-frequency component of the signal is not present, thus
important characteristics related to the immediate/rapid dynamics at a
location in time may be lost. This detail is very important for some ap-
plications (e.g. navigation, storm surges prediction etc.).

Whilst application of only the low-frequency bias produces
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Fig. 5. An example of DTrg, DTypy from Nemo-Nordic (left) and HBM-EST (right) in location of Narva-Joesuu station (top). The instantaneous TDBias between HDM

and TG are shown in bottom.
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Fig. 6. The autocorrelation of TDBiasy_o (instantaneous difference between TG and HDM) of Nemo-Nordic (left) and HBM-EST (right) at the Narva-Joesuu TG
station. The observed peaks suggest a periodicity in the TDBias,_o. Two dominant periods, P1 and P2, are identified in both models.

reasonable results for some application, we observed that there still exist
some discrepancies. The calculated ResidSD is still too large for the
aimed accuracy (5 cm) and the high frequency component is now
smoothed out.

The magnitude of the TDBiasi—_14dqs also varies amongst the
different TG stations (Fig. 8). The bias of HBM-EST model for the
different stations is more concentrated than Nemo-Nordic model. This
hints towards a better spatial performance of the HBM-EST model in the
study area. Notice that in the Nemo-Nordic model the Narva-Joesuu and
Parnu stations appears to have a larger ResidSD than other TG stations
(Fig. 9). It also reveals that not only a TDBias exists but also that of a
spatial-domain bias (SDBias). This comparison is also useful for
providing spatial distribution of the stations that may require further
investigation.

Figs. 7 and 8 show that the ResidSD between corrected model and the
actual TG observation can represent the quality of TDBias correction
near the tide-gauge stations. The question still remains on determining
the appropriate time period (window-size) that should be used for
allowing the required accuracy. Hence, Fig. 9 illustrates this criterion
(Eq. (5)) and the mean of residual values versus using different time
interval ‘k” for all the stations.

Fig. 9 displays that in order to correct the models with high precision
(uncertainty less than 5 cm), the window-size of BMA should be selected
smaller than 6-h. Thus, it is reasonable to prefer an instantaneous
approach (k = 0) since it does not require much more effort in terms of
computational capabilities and allows better precision. It should be
noted that a 6-h filtering window is also a reasonable quantification
especially under storm events, when the water level changes rapidly and
this is reflected at the tide gauges stations located at the coast but not
always reflected by the hydrodynamic models. This is to be examined in
future studies.

Fig. 9 also displays that the mean of residual for window-size longer
than 14-days does not equal to zero and this was also showed in Fig. 7
(right) with large ResidSD being present even after the TDBias correc-
tion. Thus, a TDBias correction with k > 14 days appears to be inaccurate
and imprecise. Hence the 14 days is the longest time period for the
averaging that can be allowed. Thus, we have identified an appropriate
time period that can be utilized for the TDBias and its associated errors.
Note that with a low-frequency bias correction approach, whilst
appropriate for many forecasting studies and other applications, some
useful details are still lost concerning the high frequency component.
Thus, in this study we explore an instantaneous TDBias (exact bias,
where k = 0) approach to calculate corrected DT} a1, -

5. Results

So far, the TDBias is valid only near the coast in the vicinity of the TG.

This bias however is expected to change from the TG locations in an
along-shore and offshore directions due to changing sea conditions. Due
to the dense network of tide gauges available and their locations (on
either side of the gulf) a reasonable assumption can be that the bias of
the models more or less changes linearly in spatial directions. Hence-
forth a spatial linear interpolation between the TG stations can provide a
suitable estimation of a spatial-domain bias (SDBias) in the offshore
areas. The method is not perfect, but it allows a first approximation of
the offshore bias over the entire study area. Based on SDBias the
resulting DT}, was also calculated for each time step correlating with
the model setup. The instantaneous (exact) TDBias estimates at the
eighteen TG stations (Fig. 3) have been utilized to obtain spatial inter-
polation to the offshore areas. Examples of the results obtained for the
SDBias and DT}fj}, are now presented below.

5.1. Spatial-domain bias correction

The SDBias were computed for all grid nodes of the model and from
these calculations the corrected models are determined by Eq. (8). An
example of DTypy, SDBias and the DT}, for both HDMs, at a particular
time-instant (15 Mar 2014, 15:00 UTC) is shown in (Fig. 10).

At this time instant the winds were mostly blowing from the north-
east (Fig. 10) so it is intuitively expected that a higher sea level will
occur on the Estonian coast. Both models (uncorrected and corrected,
Fig. 10) and the DTy data display more or less this trend. Observe,
however, that from the uncorrected model DTypy results (Fig. 10a and
d) it is quite visible that the vertical reference datum differs between the
two models. Thus, emphasizing once more the need for the models to
have a common vertical reference datum. Also observe that, the dis-
crepancies change spatially due to varying SDBias (Fig. 10b and e). Such
observations were also displayed in Sec. 4.3, for all the TG stations but
now similar patterns are also shown for the offshore areas.

For this time instant, the magnitude of SDBias for Nemo-Nordic is
larger on Estonian side (41.4 cm, TG-03 (Loksa) than on the Finnish side
(18.7 cm, TG-16 (Helsinki)). Whilst for the HBM-EST model the DTy, is
larger on the on Finnish side (—33 cm, TG-16 (Helsinki) than that of the
Estonian side (8.4 cm, TG-03 (Loksa)). In this example the SDBias of both
models display different trends on both coasts. This emphasized the
complexity of the two different model configurations (e.g. atmospheric
forcing, boundary conditions etc.) for it was shown in Sec. 4.3 that
Nemo-Nordic model tends to underestimate and HBM-EST model
overestimate the actual DT. Thus it is expected that on some occasions
the trend of the bias between both models to differ. Regardless, after the
SDBias correction has been applied the DT{fJ}, of both models (Fig. 10c
and f) are quite similar with some slight differences and most impor-
tantly they now refer to a common vertical datum.

The DT{J;, of both models whilst now visually quite similar also



V. Jahanmard et al.

100 | ' TG-01: Narva-Joesuu
——Tide Gauge
~——Nemo-Nordic
= | ——HBM-EST
€
S 50 k
g
: \ /H\f v /
Vi iy
/
= \ \/\/ \ \ / \W
-50 \}
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date
100 TG-06: Dirhami |
|——Tide Gauge
| ———Nemo-Nordic|
- |——HBM-EST
E =0
g
: /
< 0 N N
= / A L\/\¢ /\
) ,\_/,\AV \J WA N
| . V
-50 i
Jan 2014 Jul2014  Jan2015  Jul2015  Jan 2016
Date
100 H TG-14: Ruhnu
|—Tide Gauge
|~ Nemo-Nordic|
T |——HBM-EST
)
g /ﬁ
>4
[ i\
x
= / 3 I /
e W\Vv\f\j \/\_fU Hﬂ/
-50 U
Jan 2014 Jul 2014 Jan 2015  Jul2015  Jan 2016
Date
100 - : Helsinki |
|——Tide Gauge
| ——Nemo-Nordic|
= |——HBM-EST
S, 50
>
3
<
£ 1o — /‘vﬂf f
= %\ J
o \ u/\/\ \/\/\j ! [\f\ /
-50 [
Jan 2014 Jul 2014 Jan 2015  Jul2015  Jan 2016
Date

60 T
40 . '\ e //
£ T TS
5 v
> 20
3
0
; Y
8
Q -20
=
-40
60 | I |
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date
60
401\ 1A | [
g \,m/wi'/\\/\/\/k\/ \/“-/\"’\ ~\./
%, 20
o
0
EE
1%
8 =
Q -20 ;: i
=
-40
-60 s : !
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date
60
/1

——

60 | I |
Jan2014  Jul2014  Jan2015 Jul2015  Jan 2016
Date

60
40 A f
0 f/\ﬂ/«\‘
a | /\f/w\// 2
o \/W
-60 > 2 s
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date

Corrected DT [cm] Corrected DT [cm] Corrected DT [cm]

Corrected DT [cm]

Continental Shelf Research 222 (2021) 104421

200 T
ResidSD
150 || Nemo-Nordic: 6.5 cm
HBM-EST: 9.9 cm
100 |
50 I
of
-50 -
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date
1907 ResidSD
Nemo-Nordic: 4.6 cm
100 || HBM-EST: 5.8 cm
50 -
ok
50}
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date
15011 ResidSD
Nemo-Nordic: 4.5 cm
100 || HBM-EST: 6.3 cm
50
ok
-50
Jan2014  Jul2014  Jan2015 Jul2015  Jan 2016
Date
1507 ResidSD
Nemo-Nordic: 3.7 cm
100 || HBM-EST: 6.3 cm
50
ok
-50
Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016
Date

Fig. 7. The low-frequency time-domain correction of model with the k = 14 — day backward moving average method: The low-frequency record of TG and models
(left column), low-frequency bias (middle column, the zero line denotes the TG record as reference), and instantaneous records of TG and corrected models using the
14-day BMA method (right column). Each row represents a tide gauge station: Narva-Joesuu, Dirhami, Ruhnu, and Hamina (from top to bottom respectively). For
their locations see Fig. 2. ResidSD is standard deviation of error between DT}, and DTrg.

showed some slight differences. Comparison of these differences
(Fig. 11a) shows that the DT}, of the two models yield relatively small
differences with respect to each other on 15 Mar 2014 15:00 UTC (cf.
Fig. 10). The average spatial standard deviation of discrepancies be-
tween two model (in the same mesh grid that contains 2952 nodes) is
5.7 cm with a range from —35 to 5 cm. Note that this time-instant was
deliberately chosen to show, that the largest discrepancy between the
two models occurs in the west entrance of the gulf. This may be a result
of the challenging conditions of the archipelago area, which is situated
north-west from the anomaly in question, or due to some feature that is
under/overestimated in set up of one of the models (see Table 2).

Fig. 5).

It should be noted that the distribution of spatial discrepancy be-
tween models changes in time. Examination of the average spatial
standard deviation during the years 2014-2015 shows that the average
spatial SD remains within 0.5-7.0 cm (Fig. 11b). It is important to note
that the highest differences occur in the winter and spring months
(Fig. 11b). These differences between the Nemo-Nordic and the HBM-
EST and the times and location that they occur gives useful hints on
possible improvements that can be made in the HDM model set up (e.g.
sea ice modelling, atmospheric forcings). Similar observations were also
made with the TDBias calculated for Narva-Joesuu station (Sec. 4.3,
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The seasonal snapshots at random time instances highlight some
particular interesting features (Fig. 12 and Fig. 13). Firstly, from a sea-
sonal perspective the DT{, of both models agree reasonably well and
show major improvements from the DTypy. For instance, the isolines of
the corrected model (Figs. 12 and 13 (right)) agree much better than that
of the uncorrected model (Figs. 12 and 13 (left)). This is also highlighted
in Fig. 11b where a maximum average spatial SD of 7 cm was achieved,
with the summer months showing the lowest difference, whereas the
largest differences are attributed to the winter season.

Secondly, the bias to DT ratio in Nemo-Nordic is two (i.e. four times
larger than the HBM-EST ratio 0.47), and this makes the shape of SDBias
(the quality of interpolation) more important in the DT correction.
Hence, the models with a lower bias to the DT ratio provides better DT
estimates.

Thirdly, and as expected, the DT varies seasonally and this is
emphasized in Figs. 10, 12 and 13, where the range at Narva-Joesuu
station (Figs. 10 and 12) varied from 31.1 ¢cm in Mar, 12 cm in Jul, —3.8
cm in Oct, and 90.1 cm in Jan. Whilst this just emphasizes particular
time instances it is possible that calculation of a seasonal DT will illus-
trate some of the seasonal patterns and ranges that may exist (see Sec.
5.2). These snapshots also display the importance of the atmospheric
forcings and possibly sea ice days which obviously influences the DT.
Fig. 12 (right) and Fig. 13 (right) also display that the unidirectional and
persistent winds can affect the sea level heights to tilt from one side of
the gulf to opposite one. The anisotropy of the winds (in terms of
magnitude and direction) can also display a variety of different sea level
trends spatially. Thus, having stable vertical reference datum can actu-
ally allow deeper insight into some of the issues with the HDM

10

modelling. This can be performed iteratively using a combination of
different sources.

To demonstrate the areal correlation between the deviation of the
bias and variation of the corrected DT, the spatial distribution of the
standard deviation (SD) of SDBias as well as corrected DT of both models
are illustrated in Fig. 14. As can be seen, the HBM-EST has a bigger
variation in SDBias than Nemo-Nordic (top-left), which can imply that
Nemo-Nordic provides more precise results than HBM-EST. Moreover,
both HDMs provide bigger dispersion in the bias on the Estonian side
than the Finnish side, which is worth considering from the perspective of
modelling. By comparing the spatial distribution of the standard devi-
ation of the corrected DT, almost similar isoline and magnitude can be
seen in the open sea area.

According to Fig. 14, the standard deviation of SDBias almost in-
creases in a southerly direction, while the standard deviation of cor-
rected DT increases from the west to the east direction. However, the
higher standard deviation of the bias is coincident with the larger
variation of the corrected DT in some places, such as the Narva-Joesuu
and Pérnu TG stations where the rivers discharge to the sea.

5.2. Mean dynamic topography

So far knowledge on the TDBias and SDBias allows us to calculate
DTiff, and as a result of temporal averaging we can also obtain the Mean
Dynamic Topography (MDT). Recall the DT represents the sea level that
deviates from the geoid. Since the ocean is influenced by winds and tides
the DT is expected to vary on different time scales and spatially. It is
expected however that persistent or semi/persistent dynamics pattern
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characteristics would be revealed by the MDT over different time scales
(seasonal, annual etc.).

The uncorrected and corrected MDT for different time periods (bi-
annual, annual, seasonal) are calculated for the years 2014-2015 using
the DTypy and DT, for each MDT gridpoint with location ¢, 4,

> DTwpu (¢, 4,1)

MDTypy(¢, 4,1) = > o
MDTS (o, 2 1) = 2mimt D iioia (s 4:1) .

n

respectively, where n denotes the total number of involved hourly time
instances t. For instance, n =2 x 365 x 24 = 17520 for two years

11

hourly DT data.

The MDT estimates will be compared with previous studies of
MDTarg in the study area using tide gauge data only (Kollo and Ellmann,
2019). This time scale of two years is perhaps too short to reasonably
identify any semi-persistent seasonal or annual trends. It instead allows
evaluation of the success of model correction and agreement between
both used HDM.

To illustrate the effect of having a stable vertical reference datum
(the geoid) the MDTypy of uncorrected models are compared to MDTE(5},
in Figs. 15 and 16. In both models, the MDT increases from southwest to
northeast with obvious variations with respect to each other. Exami-
nation of the MDT{J[, also displays a general increase from west to east,
however there is intrinsically major difference between the patterns and
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shape between that of the MDTupy and MDT§, (Figs. 15 and 16).
MDTarg studies at individual tide gauge stations performed by Kollo and
Ellmann (2019) also showed similar results to that of the corrected
MDTgJ;, (Fig. 16). After correction the range of difference between
MDTiff, of Nemo-Nordic and HBM-EST decreases to 5 cm with a stan-
dard deviation of 0.5 cm, which signifies a good agreement between the
two corrected models (Fig. 16c).

The method is of course an approximation. Observe in Fig. 16 around
Hiiumaa island (longitude 23°, latitude 59°-59.5°) there is an unrea-
sonably sharp DT anomaly. This is due to the SDBias value being larger
relative to the uncorrected DTypy. As a consequence, the shape of
interpolation function affects the DT{f}, pattern, especially in the Nemo-
Nordic model (Fig. 12). This shows that the linear interpolation method
utilized for SDBias estimation by Eq. (7) may not always be sufficient.

Longitudinal variations of MDT are illustrated by a simple transect
along the gulf, see Fig. 17. As can be seen, the corrected MDT{jf), of both
models increases eastwards with the relatively same pattern, with a
difference between them of less than 1 cm. The MDT slope more or less
represents the outward circulation of the gulf from east to west direction
on the Finnish side (Myrberg and Soomere, 2013). Similar patterns have
also been observed in Kollo and Ellmann (2019) using only tide gauge
data. Moreover, Pindsoo and Soomere (2020), who examined the
extreme water levels, also observed an increasing trend in the eastern

12

section.

Whilst the MDT shows an increasing trend to the easternmost side of
the gulf, there appears however to be a sharp change around longitude
25.5° within the vicinity of tide gauge station (TG-4) Rohuneeme and
(TG-3) Loksa (on the Estonian side) northwards to the Finnish coast. It is
also noticeable that the uncorrected models MDTypy, gradient remains
unnoticed (is smoothed out). Thus, this Loksa-Helsinki “bottleneck”
(denoted by the red rectangle in Fig. 17) needs to be confirmed by
further analysis in the offshore domain. This can be accomplished by
incorporating by an analysis of long-term satellite altimetry SSH data-
series.

Further examination of the seasonal MDT of the transect in 2014
(Fig. 17) shows that during the winter and spring season the largest
change with respect to other seasons in gradient occurs from west to east
(this change is around 2.5 cm in winter and 3.5 cm in spring). This
seasonality highly suggests that both atmospheric forcings (e.g. winds)
and precipitation trends (e.g. snow melt, river discharge) may
contribute to this increase on the extreme eastern section of the gulf.

As show above the gulf is known for having seasonal dynamics that
shall influence the DT (Sec. 3). Thus, the seasonal MDT shows a varia-
tion from season to season and from year to year (Fig. 18, cf. Table 1).
Notice that in 2014 the MDT was much lower in the winter season than it
was in 2015. In the 2014/2015 ice season the maximum ice extent was
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recorded to be one of the lowest ever since 1957, thus the lack of sea ice
may have contributed to the increased MDT in 2015. Also, in December
2014 one of the strongest Major Baltic Inflow (MBI) occurred (since
1951) in the Baltic Sea and it was observed that it took approximately 9
months for it to propagate into the gulf (Liblik et al., 2018). The effect
this would have had directly or indirectly on the sea level variability is
still unclear. Nevertheless, the decrease of sea ice combined with
storminess and perhaps MBI may have influenced the increase in sea-
sonal MDT observed in 2015.

6. Discussion

Although HDM provide reasonable trends of the dynamics of the
ocean, the question remains on their accuracy and thus reliability (i.e.
precision vs accuracy). In this study we have shown that by calculating
the difference between dynamic topography (DT) at land bounded TG
(fitted to the geoid) and HDM data we can essentially obtain a combined
bias (consisting of SDBias and TDBias) that changes spatially and
temporally. The results displayed both a high- and low-frequency
components. The reasoning for this combined bias depends on the
HDM model configuration and most importantly vertical reference
datum issues (Slobbe et al., 2014).

Previous studies have adopted a method that corrects for the low

13

frequency TDBias component over a particular period using an aver-
aging method (e.g. backward moving average (Lagemaa et al., 2011)).
Our detailed examination on the TDBias for both HDM shows that using
an averaging period of 0-6 h results in a standard deviation of less than
5 cm at all TG stations (Fig. 9). A longer time period can also be utilized,
however exception stations of Narva-Joesuu and Parnu displayed an
increased standard deviation of 5-10 cm. One of the possible reasons for
these stations having such a lower accuracy, could be attributed to the
fact that these stations are located in such coastal geomorphology areas,
that are often influenced by local short-term storm surges episodes (Sec.
3). Thus, the HDM models may experience some difficulty in forecasting
the DT at these locations.

Thus, to a first approximate we adopted an instantaneous TDBias
correction that accounts for both high- and low-frequency components
of the TDBias. The analysis shows that the corrected DT}, results yield
quite different quantities compared to that of the uncorrected DTypu
(Figs. 15-17). For instance, the MDTypy range from west to east
(Fig. 17) in the uncorrected model was from —12.7 cm to —8.2 cm (a
maximum difference of 4.5 cm) whilst in the corrected model
MDT{ varied from 18 cm to 25.4 cm (a maximum difference of 7.4
cm). This is almost a factor of two difference. The MDTf, results from
west to east of the gulf show similarity in quantification of values with
previous work performed by Suursaar and Sooddr (2007), who
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investigated coastal tide gauges along the Estonian coast over the period
1842-2005. Even though there was a difference in quantification, both
MDTgh, and MDTypy show that the highest value of MDT is in the
southeast of the gulf, which is a well known feature also observed in
other studies (Kakkuri and Poutanen, 1997; Kollo and Ellmann, 2019;
Pindsoo and Soomere, 2020; Wolski et al., 2014).

Correction of the HDM also allowed not only quantification of more
realistic DT values but we were able to actually identify the specific
areas where the steepest MDT change occurs i.e. the Rohuneeme and
Loksa (Fig. 17, red rectangle) and also the potential season that this may
occur i.e. the winter and spring season. With the latter hinting of
properties of the wind, sea ice days and possible precipitation playing a
major role in the high MDT in the east of the gulf. These results, though
based on a short period (two years), still demonstrate that the patterns
and changes observed (seasonally, yearly, etc.) can potentially be
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utilized (especially using a long time series of data) as indicators of
possible drivers of climate change and identification of critical areas. As
a result, the newest contribution of this present study is that we can now
quantify realistic values of MDT not only limited to the tide gauge lo-
cations but also for the offshore area.

The DTff},results (Fig. 16), although rational intrinsically, revealed
some of the improvements that can be applied in the method. For
instance, the use of a TDBias_, (instantaneous correction) may poten-
tially be problematic for some localized events (e.g. wave setup, wave
run up, coastal upwellings, etc.) that influence the coastal area but may
not be affected in the offshore domain. This however can be resolved by
the utilization of other data sources to validate the offshore DT values (e.
g. GNSS buoy and satellite altimetry). Also, implementation of a larger
averaging period e.g. 6-24 h may be more realistic in the TDBias
correction during stormy events.
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Due to the availability of TG data both on the Estonian and Finnish
coast (with a distance between them 48-135 km), for determination of
SDBias we adopted a linear interpolation method, that is performed for
the offshore areas. The method whilst appropriate and performs well
showed on some occurrences obvious discrepancies. As was illustrated
in Fig. 16¢ (around longitude 23°) where an obviously erratic DT
anomaly was present, due to an interpolation problem. In such cir-
cumstances the availability of offshore sea level data would be useful for
assisting with the method. Thus, the SDBias interpolation method can be
improved for future studies.

15

The analysis of the present study also indirectly revealed potential
(spatial and temporal) problems in the HDMs which can be improved for
future forecasting. For example, comparison of the DT, (Fig. 11)
showed possible locations of discrepancies and also the times of larger
standard deviation of HDM error. This hints of potential improvements
in the models (e.g. due to better sea ice modelling, precipitation, at-
mospheric forcings etc.). Essentially the method described in this study
can be utilized for any given HDM model and provided that tide gauge
records and accurate high-resolution geoid model are available. Thus
using a static vertical reference frame such as the geoid provides more
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accurate results and thus improves the applicability and efficiency of
using HDM.

One of the major advantages of HDM’s vertical datum to be referred
to the geoid is that the results can now be utilized to incorporate with
GNSS sensor equipped buoys and satellite altimetry datasets. This can be
used both as a collective dataset or as validation of the data sources in
the offshore domain. Thus, the space-borne data-points act as offshore
reference points, i.e. a sort of offshore tide-gauge stations. Note that
these in-situ GNSS and SA datasets are usually expressed with respect to
a reference ellipsoid, thus the sea surface heights are derived (Fig. 1).
For determining the DT-s a high resolution and accurate marine geoid
model is required, see Eq. (1). Thus the developed method can be
applied for identifying and eliminating the HDM biases offshore,
yielding adequate DT estimates over the area of interest. Hence the
involvement of these additional datasets can be improved by the
developed method. It is also expected, that with new and emerging
satellite missions (such as Sentinel 3, Sentinel 6, Surface Water and
Ocean Topography (SWOT)) future developments are expected to occur
in this direction. One of the key components however, to incorporate
these emerging sea surface height data sources shall be knowledge on a
high resolution and accurate marine geoid.

Adaptation to the geoid not only allows better DT estimates but it
also allows accuracy and compatibility to the vertical datum between
the offshore and onshore. This is very useful for marine engineering,
navigation and climate studies. There is an urgent need for accurate
dynamic topography data. For instance, in shipping the under-keel
clearance (UKC) of vessels should be within half-decimetre accuracy.
Also, with respect to climate studies, it is essential not only to know the
trends of rising sea level and extreme events but also to obtain accurate
estimates of these rates and to refer calculations to a common interna-
tional vertical datum. Moreover, half-decimetre accurate sea surface
data indirectly provide information on the Earth’s gravity field that can
be used to improve marine geoid solutions (Varbla et al., 2020a).

The method presented in this study is the first step in potentially
adopting an integrated approach for determining accurate DT offshore.
This method can potentially be applied in other study areas. There exist
future improvements that can be made especially related to the HDM
bias modelling and the incorporation of other sea level data in the ma-
rine areas and better interpolation methods.

7. Concluding remarks

This study demonstrated that utilization of the geoid as a static
vertical reference datum for hydrodynamic models provides more
realistic dynamic topography estimates DTf}, than the original DTypy.
Whereby the difference without and after the HDM bias corrections can
improve the MDT estimates by as much as a factor of two. The developed
method utilized land bounded tide gauge records, i.e. excluding offshore
reference points. The extension of this method to the offshore by future
inclusion of GNSS sources and satellite altimetry data allows a sub-
stantial and accurate sea level database to be obtainable with the key
components. However, to incorporate these emerging sea surface height
data sources shall be knowledge on a high resolution and accurate ma-
rine geoid.

The question of the availability and access to the marine geoid
models remains. Since most countries have established and are aiming at
a gravity-based height reference system where the vertical datum is
realized through geoid modelling, it would be an advancement and shall
soon be implemented internationally. The Baltic Sea region countries
have already developed a common geoid model NKG2015 (Agren et al.,
2016), that covers the entire Baltic Sea. In fact, currently the Baltic Sea
Chart Datum 2000 (BSCD2000) is officially being adopted for Baltic Sea.
It is based on the European Vertical Reference System (EVRS) defini-
tions, to which many national height systems are already linked. The
height reference surface of BSCD2000 is the equipotential surface of the
Earth’s gravity field, i.e. a marine geoid model (Schwabe et al., 2020).
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The availability of such a regionally unified reference system enables
other marine data products (such as hydrodynamic models) to be
referred to the same geoid based vertical datum, thus allowing consis-
tency and accuracy amongst the various sea level sources. Hence, this
study demonstrated a glimpse of the possible forthcoming benefits that
can be obtained by now adapting to the geoid, especially with the
growing inter-relationships between various disciplines (e.g. oceanog-
raphy, geodesy, hydrography, geophysics etc.).
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ARTICLE INFO ABSTRACT

Keywords: One of the major factors preventing utilization of realistic sea-level data is that various sources are referred to
Sea level inconsistent vertical reference datum (VRD). This study presents a methodology for deriving instantaneous and
Geoid

realistic sea level data from the coastal to offshore areas of the Baltic Sea, by synergizing different sources of
sea level data (tide-gauge (TG), hydrodynamic model (HDM) and satellite altimetry (SA)). The key component
being the geoid that links the VRD of these different sources.

HDMs are known to be a representable source of sea level data, however their VRD is often undisclosed.
Therefore, they are often spatially and temporally biased with respect to in-situ data. This study demonstrates
that by using geoid-referenced TG data that represents ‘realistic’ sea level it is possible to correct HDM,
by deriving and applying a spatial bias correction. Three interpolation methods (linear, thin plate spline
regression, and inverse distance weighted) are examined to derive the corrected HDM. The results showed
an improvement with respect to TG data, and the annual mean dynamic topography of corrected HDM was
improved by a factor of almost 1.5. Examination of the Sentinel-3A satellite along-track data also confirms
the corrected HDM data to be more accurate. The methodology applied also identified problematic locations
of HDM, SA and geoid data along with unreliable TG. This accuracy and conformity in sea level data are
urgently required for a comprehensive understanding of climate change, marine engineering and navigation
applications, which can be achieved by adapting the uniquely defined geoid for the vertical reference datum.

Hydrodynamic modelling
Vertical reference datum
Hydrogeodesy

Baltic sea

1. Introduction

A continuous model of accurate sea level from the coast to the
offshore area with pre-defined uncertainty bounds becomes imperative
for many applications, such as navigation, marine engineering, and
climate studies. With better than sub-decimetre accuracy now required,
the challenges of obtaining such an accurate model are hindered not
only by the spatial and temporal resolution of the various sea level
sources (e.g., tide gauges (TG), hydrodynamic model (HDM), shipborne
and airborne Global Navigation Satellite Systems (GNSS) profiles, and
satellite altimetry (SA)) but also foremost by inconsistencies in the
vertical reference datums used amongst these sources (Slobbe et al.,
2014; Jahanmard et al., 2021).

Hydrodynamic models, whilst capable of successfully simulating a
continuous model of relative sea level, are often flawed by two major
factors. The first and most relevant to this study is that, in many
hydrodynamic models, there is insufficient knowledge of the vertical
reference datum used (Afrasteh et al., 2021; Slobbe et al., 2014).
Secondly, the HDMs are driven by mathematical equations with input
sources from other models (e.g., atmospheric, river discharge, sea-ice
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dynamics, etc.). Moreover, models contain underlying assumptions and
approximations in the relevant model set-up (e.g., boundary conditions,
parametrization and discretization techniques, etc.; Kérné et al., 2021;
Khanarmuei et al., 2021; Hieronymus et al., 2017; Zhang et al., 2016).
These factors often result in many HDMs being systematically biased
(both spatially and temporally) relative to observations.

Previous studies have examined the bias correction of HDM with
respect to salinity and temperature (Chang et al., 2021), as well as
climate models (Aung et al., 2016; Giorgi, 2019). However, the spatial
and temporal bias correction related to the sea level parameter has
often been overlooked. Although the HDM-derived sea level does not
correspond to the in-situ observations, its simulations still represent
an acceptable trend of sea level. A simple and reasonable approach
that has been utilized by many studies is by calculating the correlation
and standard deviation between HDM sea level and land bounded TGs
(i.e., assuming the TGs refer to some defined datum) to demonstrate
model assessment (Hordoir et al., 2019; Kdrni et al., 2021). Some
applications also derived a bias correction by computing the difference
of HDM with the TG records that refer to a desired vertical reference
(Varbla et al., 2020a; Mostafavi et al., 2021). The problem becomes
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complex, for numerous applications (e.g., determining realistic absolute
sea level rise, climate studies, engineering design, etc.) now require
accurate sea level not only in the coastal domain (i.e., within the
vicinity of TG) but also in the offshore domain.

Considering that the HDM sea level bias varies both spatially and
temporally (with high and low-frequency components; Jahanmard
et al., 2021), this makes it challenging to obtain accurate and consistent
sea level data from the coast to offshore. In Jahanmard et al. (2021),
biases of the model with respect to a dense network of geoid-referenced
TGs were hourly extended to the offshore using a linear interpolation
method. Nevertheless, the performance of the bias correction in the
offshore area remained unclear. This signals the need for a solution
that also corrects the HDM data in the offshore zone so that a consistent
and realistic vertical datum is utilized. Motivated by these challenges,
the focus of this study is to demonstrate a novel method that corrects
the HDM bias both in the coastal and offshore area using a consistent
and realistic vertical datum and to demonstrate the applicability of this
towards improving other related studies.

Hydrodynamic models are however not the only source of sea level
data, and as mentioned above, there are other sea level sources, such
as tide gauges, with defined vertical datum. Tide gauges are known
historically for being one of the most reliable and accurate sources
of sea level data, due to the long-time span of data collection along
the earth’s coastline. As a result, TG data are often considered as
representative of the ‘true’ sea level (Jahanmard et al., 2021; Cipollini
et al., 2017).

Nevertheless, there are three important limitations in using this
source: (i) as mentioned above, the spatial coverage of TG tends to
be constricted to the coastal boundary and thus not ideally repre-
sentable for the offshore areas. (ii) As TGs usually measure relative
sea level (i.e., relative to the land where the TG stations are stationary
positioned), they are influenced by the vertical land movement that
may occur (e.g., glacial isostatic adjustment). This signifies that, in
areas affected by any land deformation, there is a need for relevant
corrections to be applied in order to derive the ‘true’ sea level vari-
ation. Moreover, (iii) the vertical reference datum of marine areas
is commonly referred to a chart datum, which is based on either a
tidal observation (e.g., some historic mean sea level (MSL), lowest
astronomic tide (LAT), etc.), theoretical mean sea level models (e.g., as
it was used in Finland recently), or a physical model such as the
geoid (Schwabe et al., 2020). Whilst sufficient to a certain degree
based on the application, most of these chart datums may vary over
different time periods. Also depending on the country/community, the
sea level data may be referred to differently defined vertical datums.
For instance, the Baltic Sea countries utilize several different vertical
reference datum definitions (Table A.1) and in such a dynamic marine
area where integration is essential, this can create inconsistency and
incompatibility. As a result, this study proposes utilizing a common
and static vertical reference, such as the geoid as a more reasonable
approach.

The geoid is a shape of the equipotential ocean surface under
the influence of the gravity and rotation of Earth alone. Therefore,
it would be more or less a static vertical datum (unlike MSL which
wavers over time) and represents the natural “zero”. Note that the
geoid can vary due to mass redistribution, however, this variation is
usually negligible. The maximum value for the geoid rise in the Baltic
Sea is around 0.6 mm/year (due to postglacial rebound; Kakkuri and
Poutanen, 1997). Thanks to precise GNSS levelling, it is possible to
transfer a network of TG stations to a common geoid-based vertical
datum. Thus, it is more applicable to validate the different data and
model sources against the geoid-referenced TG data rather than using
various and MSL-based chart datums (Liebsch et al., 2002; Varbla et al.,
2020a,b). This validation should identify any bias between sources
with respect to the vertical datum in addition to other systematic and
random errors. Thus, it seems pragmatic to use the reliable TG records
(that are referred to some stable and realistic vertical datum) to fit the
HDM associated sea level data to a common vertical datum (Nordman
et al., 2018; Jahanmard et al., 2021).

Ocean Modelling 180 (2022) 102124

The geoid-referenced sea level data now allows us to derive auto-
matically dynamic topography (DT), which is physically meaningful
and better quantification of a more realistic sea level (Jahanmard
et al,, 2021). As a result, the mean dynamic topography (MDT) can
be calculated, which is the difference between the mean sea surface
and the geoid (Fig. 1). Note that there are basically two approaches to
calculate the MDT. First and foremost, by a geodetic approach, whereby
knowledge of the mean sea surface (MSS) is derived from SA or TG
records referred to a precise geoid model (IdZanovic¢ et al., 2017). The
oceanographic approach (second) utilizes solely HDM-derived sea level
data (Ophaug et al., 2015). In this study, we shall utilize a combined
approach that employs both geodetic and oceanography methods, since
we are interested in the DT not only in the coastal area but also
continuing into the offshore. This is, to our knowledge, the first attempt
of such a synergized exploration in the entire Baltic Sea, and it is
expected that similar forthcoming developments can be adapted in
other marine areas worldwide.

Based on the challenges/problems outlined above, we examine the
Baltic Sea region to demonstrate an innovative and improved method
that incorporates various sea level sources along with a high-resolution
geoid to obtain a more realistic and accurate DT. This study area is
ideal for such a demonstration due to the presence of a dense network
of TGs with a common geoid-based vertical reference datum. Baltic
Sea is a semi-enclosed sea, which is also fortunate to have an accurate
geoid model, a realistic postglacial land uplift model, SA data that have
been specially corrected for the area specific marine conditions, a three-
dimensional HDM, and an agreement between nine coastal countries
towards having a common marine chart datum (i.e., the Baltic Sea
chart datum; Agren et al., 2016; Ellmann et al., 2019; Vestol et al.,
2019; Schwabe et al., 2020). Therefore, a synergy of HDMs and TG
records along with other data sources, such as satellite altimetry and
marine geoid model, is expected to yield high-resolution realistic DT
both temporally and spatially. In addition, we shall demonstrate that
the method applied can also reveal the accuracy or deficiencies of the
different data sources utilized.

Thus, the core component of this study is the development of a
methodology that reduces the fluctuating zero level of HDM to a geoid-
based vertical reference. For this purpose, the bias of the HDM is
corrected by utilizing a TG network comprising 73 stations. Such an
approach was first utilized in Jahanmard et al. (2021) using a simple
linear approach to distribute the bias spatially. This approach, however,
may be flawed because of a lack of validation in the offshore area
and an insufficient assessment of the bias interpolation sensitivity.
This study reduces these flaws by now including a wider sea area
and denser TG network that allows the examination of three different
interpolation approaches: (i) triangulation-based linear interpolation,
(ii) thin plate spline regression, and (iii) inverse distance weighted.
The best-derived results are then evaluated and validated by utilizing
the SA data (Sentinel-3A) with respect to the NKG2015 geoid model.
This validation becomes most relevant in the offshore areas, where the
largest uncertainty is present.

One of the most pertinent advantages of using an identical and
stable vertical datum amongst the various data sources is that accurate
DT can now be determined. The method applied also significantly
contributes to identifying (i) aspects of HDM modelling that require
improvement (ii) SA problematic issues and (iii) aspects/locations of
the geoid modelling that require improvements.

The organization of the present paper is as follows. First, the de-
veloped and general methodology is outlined. Next, the data sources
are highlighted: (i) geoid-referenced tide gauge network, (ii) Nemo-
Nordic HDM model, (iii) NKG2015 geoid model, and (iv) Sentinel-3A
satellite altimetry data. The HDM bias correction method is described in
both time and spatial domains. Then, the difference between corrected
models and SA data as well as the results are presented. Finally,
a discussion on the results and method is described, followed by a
summary that concludes the paper.



V. Jahanmard, N. Delpeche-Ellmann and A. Ellmann

Ocean Modelling 180 (2022) 102124

~Time-domain variations (e.g., in TG location)

Time span (e.g., annual, seasonal, etc.)

1SA data
Satellite ; ‘

A
IWR.NATY

AR

Instantaneous sea surface

gl |=
| [ |fweoo_ | ________
S ©
< e =
‘é‘ g Tide gauge
— B1AR [ Snapshot
e = = T
B Vo Dlinigis
DTSA DTH[‘M HDM@TG
— —  |or SDBias ¥
SSH MDT

N: ‘Static’ geoid height

--------- HDM derived Inst. sea surface

Mean sea surface (MSS)

HDM zero level

Fig. 1. Inter-relation between sea surface data sources (i.e. satellite altimetry, tide gauges, and hydrodynamic model), the different vertical reference datums and the hydrodynamic

parameters. For the used symbols and abbreviations please refer to the main text body.

2. General methodology

In this study, different techniques and approaches are employed to
derive the sea level from the coast and offshore. As mentioned above,
one of the major challenges in obtaining accurate DT is that various
data sources refer to various vertical reference datums. Apart from
making it difficult to compare datasets, this inconsistency also leads to
errors, particularly when inter-country/community issues arise. Thus,
this section now describes an overall view of the method used to refer
the vertical datum of the various sources to that of a static and common
vertical datum, such as the geoid (i.e., the equipotential surface of the
earth). Three principal sources of data that shall be utilized are TG, SA,
and HDM data.

Fig. 1 illustrates the inter-relations between these data sources and
the hydrodynamic parameters of interest in both the spatial and time
domain. Recall that the TG data can be referenced to different chart
datums (e.g., MSL, LAT, etc.). In the study area, the Baltic Sea Chart
Datum 2000 (BSCD2000) is adopted as a geodetic reference system to
unify chart datum between the surrounding countries. The chart datum
is based on the common geodetic standards for height system (Euro-
pean Vertical Reference System; EVRS) and spatial reference system
(European Terrestrial Reference System; ETRS89) in Europe. The zero
level of BSCD2000 is in agreement with the Normaal Amsterdams Peil
(NAP), and the chart datum coincides with the geoid surface (Schwabe
et al.,, 2020). As previously discussed, the sea level variations with
respect to the geoid surface yield dynamic topography (DT), which
is more physically meaningful than sea level relative to other vertical
datums (e.g., MSL, LAT; which may vary depending on definitions).

Tide gauge records, however, reflect the nearshore DT from a
relative perspective (i.e., sea level variations relative to land). On the
other hand, satellite altimetry (SA) measures the absolute sea level (that
is, without regard to vertical land motion) in both coastal and offshore

areas. The satellite-derived sea surface height (SSH ) is relative to a
geodetic reference ellipsoid (e.g., GRS 80), which can be converted to
DT, as follows:

DT, (9, 4) = SSHg (9, 4) = N(p, ) ®

where N is the ‘static’ geoid height, a separation from the reference
ellipsoid. In this study, NKG2015 as the most recent official geoid
model over the Baltic countries is employed (/c\gren et al., 2016).

Hydrodynamic models typically lack a well-defined vertical refer-
ence. As such, it is not straightforward to express the model-derived
sea levels in a 3D coordinate system. Since the model dynamics assume
zero horizontal gravity components, we denote the original (raw) HDM-
derived sea level as DTy p,,. Despite knowing that the raw HDM is not
exactly expressed relative to a geoid because the bathymetry used and
prescribed sea levels along the open boundaries have not been referred
to the geoid (Slobbe et al., 2013).

Therefore, since the vertical reference of the HDM is still unknown,
the study focuses on determining accurate HDM-derived DT, particu-
larly in the offshore area. In this regard, the primary objective of this
study is the development of a method to correct the DTy p,, utilizing
a stable height system reference surface (a geoid). In doing so, a geoid-
referenced TG network is employed to determine and correct the bias of
DTy pyy with respect to DTy at the location of TGs. The HDM biases
are distributed to the offshore using an interpolation technique, and
then the corrected HDM is examined through the DT,

As mentioned above, due to dissimilarity in the vertical reference
datums used by the DTy p,, and DTy, it is expected that a difference
exists. This difference however changes both temporally and spatially
and it is quantified in this study as a bias. Due to the characteristics of
this bias, it was necessary to first derive a time-domain bias (TDBias)
followed by a spatial-domain bias (SDBias). Note that firstly the TDBias
is determined by identifying the closest HDM grid point to that of the
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TG location. The difference is then calculated between the time-mean
value of HDM at the TG location (DT pyserg) and DTy within a cer-
tain time interval. The backward moving average method is commonly
used to correct the temporal bias of models (Jahanmard et al., 2021;
Lagemaa et al., 2011):

0

> DTy prera, (i + )= DTrg, i+ Di >k (2)
=k

T DBias,, (i) = %H )
where m denotes a specific TG station, and k is the window length of
the moving average. In this formulation, i is the index of time vector
(ordinal number) that according to the temporal resolution of HDM
and TG records, is increasing hourly. Obviously, the small amount of
k yields the high-frequency error between the model and TG; and the
k = 0 represents the instantaneous bias which is applicable for extreme
cases. In this study, we require an uncertainty of less than 5 cm in order
to obtain accurate sea level data. Thus, from previous studies a window
length of less than 6-h is recommended (Jahanmard et al., 2021). To
obtain the uncertainty of TDBias in each TG station, the root mean
square of errors is obtained from residuals (e, which is the difference
between the corrected model and raw model at the location of TG due
to including the moving average filter in Eq. (2)) as follows:

Z;‘:k+l (emy — gm)2
k
where n is the number of observations at the mth station, and k, as
before, is the window length of the backward moving average, which
should be removed from the beginning of records for determining
RMSE.

The TDBias is valid only near the coast in the vicinity of the TG
location. To achieve the bias through the offshore area (i.e., SDBias),
an interpolation between the dense network of TG stations is employed:

RMSE,, ,(HDM,TG) =

3)

n—

SDBiasy (¢, A1) = interpy[@rq, Ay, T DBias (1), @, 4] 4

where interpy is the interpolation operator, whereas X indicates the
type of implemented interpolation technique. The ¢, and Ap; are
the vector of latitude and longitude of the employed TG stations,
respectively. The SDBias is computed on the grid nodes of the model
with vectors of latitude ¢ and longitude A. Therefore, the corrected
HDM is calculated accordingly:

DT}y (@ 4.0) = DTy pyy (9, A.1) = SDBias (. A.1) ©)
The DTEDM represents coastal and offshore values with respect to

the geoid model. The various interpolation techniques (such as linear,
inverse distance weighted, and thin plate spline) will be performed to
determine the SDBias (see Section 4.2) and the corrected model will be
assessed using DT . Note that the DT, values are often accompanied
by outliers and another bias related to the TG records is also calculated
(see Section 3.4). The schematic roadmap of the implemented method-
ology to correct the model and compare the various correction methods
is shown in Fig. 2.

3. Data sets
3.1. Tide gauge dynamic topography

In this study the TG data serves as the foundation of accurate sea
level data particularly with respect to deriving the time-domain bias
(i.e., TDBias Eq. (3)). The TG data were compiled from various sources
around the Baltic Sea countries (see Table A.1). After performing
quality and reliability checks, a robust network of 73 stations (from
nine countries) along the coastline of the Baltic Sea was chosen. This TG
dataset consists of hourly in-situ sea level data for the period December
2016-April 2020 (see Fig. 3 and Table A.1). Since different Baltic
countries use different vertical datums it is essential to transfer all TG
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records to an identical common vertical datum (i.e., the Baltic Sea
Chart datum). The Estonian, Danish, and Swedish TGs are available
with respect to their own national reference frames that are EH2000,
DVR90, and RH2000, respectively. The remaining countries TG records
are referred to the TGZ (except Finnish TGs that are referred to the
theoretical mean sea level) that have been transferred by adding the
individual conversion values. The value and reference of these conver-
sion values and national reference frame that comply with BSCD2000
are listed in Table A.1. By these conversions, all stations are set down
on a common European Vertical Reference System with an identical
zero level of NAP. The permanent tide system of TG readings is the
zero-tide system except for Germany, Russia, and Denmark, which are
in the mean-tide and tide-free system (cf. Table A.1).

Since the Russian national height system (BHS77, Baltic Height
System 1977) has not changed to the European Vertical Reference
System, the zero level is shifted by adding + 19 cm to this TG station
(Sacher, 2019). This offset value is an approximate difference between
the Kronstadt (i.e., former zero level) and NAP.

To harmonize the permanent tide system of the TG records (speci-
fied in Table A.1) with the HDM and SA data, TG data are transferred
to the mean-tide system by conversion algorithms provided by Ekman
(1989). Tide gauge readings originally are relative to the TG zero mark,
and then the records are reduced to the national height datums by near
benchmark (e.g., BSCD2000 conversions). In the Baltic Sea, TGs’ bench-
mark refers to NAP (EVRF2000, zero permanent tide system). In order
to transform the records to the mean permanent tide system, the sepa-
ration between the benchmarks and NAP height (AH) need to be trans-
ferred from the zero-tide to the mean-tide system. Thus (Ekman, 1989):

AH,, = AH, +29.6 - (sin® @ —sin® oy 4p) = AH, + C,,, cm 6)
also for non-tide national datums (e.g., Denmark, y = 0.7),
AH,, = AH, +29.6 -y - (sin® o — sin® @y 4p) = AH, + C,,, €M @

where ¢y is the geodetic latitude of TGs’ benchmark, and ¢y 4p is the
latitude of NAP (52°22'53” in the European Terrestrial Reference
System 1989). Therefore, the conversion to the mean permanent tide
system (C,,,,) will be added to the BSCD2000 correction, and finally,
TG records are corrected as follows (and the same for C,,,,):

DT16,einsae = PT16 00 140 T Coam ®

In addition, TGs measure relative sea level, and since in the study the
absolute sea level is required, the vertical land motion (VLM) must
be taken into account. Especially in the Baltic Sea where the stations
are strongly affected by VLM due to the glacial isostatic adjustment.
Accordingly, the land uplift increases from near zero in the southern
part of the Baltic Sea to about 10 mm/year in the northern part (Vestgl
et al., 2019). Fig. 4 shows the difference between long-term trends of
relative and absolute sea level in an example station (Spikarna station,
TG id 52) in the north of the Bothnia Sea. In this station, the relative
(with respect to the land mounted TGZ) sea level trend is strongly
negative (—6.7 mm/year), while the absolute (with respect to the centre
of the earth) sea level trend is positive (2.2 mm/year) in this area
(Madsen et al., 2019).

It should be noted that whilst the TG measurements are one of the
most reliable sources of sea level data, they may contain gross errors
or temporal gaps. Since these data deficiencies can disturb or decrease
the quality of each analysis especially for obtaining hourly TDBias (see
Eq. (2)), it was necessary to identify and fill the gaps in the time series.
The missing TG data have been simulated by k-nearest stations using a
linear least square regression method, which results in the estimated DT
with an uncertainty of 3.5 cm on average. Also, TG data screening was
performed by removing spikes with residuals larger than three standard
deviations.
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Fig. 3. Location of used tide gauge stations (yellow circles, numbered clockwise starting from the eastmost Estonian tide gauge station as shown in black in some stations) from
nine countries around the Baltic Sea and ground tracks of Sentinel-3A (blue lines). See Table A.1 for more details.
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Fig. 4. Sea level trend relative to land (99% CI [-7.1,—-6.3]; black) and absolute values (99% CI [1.8, 2.6]; blue) derived from Spikarna station (TG-52), where CI is confidence

interval. The NKG2016LU calculated land-uplift is 8.94 mm/year in this station.

3.2. Hydrodynamic model

Nemo-Nordic is a three-dimensional coupled ocean-sea ice model
of the Baltic and North Sea (Hordoir et al., 2019) that was developed
by the Swedish Meteorological and Hydrological Institute (SMHI) and
originally based on the NEMO-3.6 ocean engine (Nucleus for European
Modelling of the Ocean). In this study, we utilize a data assimilated
version of the Nemo-Nordic model with an hourly temporal resolution
and a horizontal resolution of 1 nautical mile for the period 3 December
2016-15 April 2020. The data were obtained from SMHI (SMHI, 2021)
and are expected to provide sea level predictions at a higher level of
quality than previous models used in the study area due to model setup
settings and data assimilation techniques employed (Hordoir et al.,
2019; Kirni et al., 2021).

A major feature of Nemo-Nordic compared to other HDM models
used in the Baltic Sea is that two open boundaries are utilized: a merid-
ional one in the western part of the English Channel and a zonal one
located between Scotland and Norway. The sea level, temperature and
salinity boundary conditions are obtained from ECMWF (the European
Centre for Medium-range Weather Forecasts) data in the operational
mode (Hordoir et al., 2019). The model also uses a nonlinear explicit
free surface method with a time-splitting approach that computes a
barotropic and a baroclinic mode, as well as the interaction between
them. Nemo-Nordic uses a buoyancy-extended k-¢ turbulence model,
and NEMO-3.6 is two-way coupled with the ice model LIM3.6. The at-
mospheric forcing is sourced from HIRLAM C11 (High-Resolution Lim-
ited Area Model) in operational mode (present model). The river dis-
charge data are derived as daily means from Hydrological Predictions
for the Environment (E-HYPE). Bathymetry data utilized in the model
was sourced from the General Bathymetric Chart of the Oceans (GEBCO-
2014) (Hordoir et al., 2019).

In Hordoir et al. (2019) a statistical comparison between measured
and modelled sea level at different tide gauges in the Baltic and North
seas was performed. This however was restricted to only a few stations
located in the Baltic Sea for an 18-month period from July 2011 to 31
December 2012. Their results showed a high correlation between model
and observations and a negative bias in terms of the representation of
the low frequencies in the North Sea. For the rest of the Baltic Sea, how-
ever no major bias was identified. This study now considers a greater
number of stations and from Fig. 5 which displays the sea level of the
HDM at a specific time instant it is quite noticeable that a difference
exists in HDM (denoted by red colour map at the location of TGs).

Therefore, the objective of this study is to evaluate and correct the
Nemo-Nordic sea-level by using a geoid-referenced tide gauge network
that now consists of 73 tide gauge stations. Note, however, that the

Nemo-Nordic vertical datum is not explicitly specified. As a result, we
shall show in this study why the utilization of the geoid is a better
approach.

3.3. Geoid model

The NKG2015, the most recent high-resolution (0.01 x 0.02 de-
grees) geoid model over the Baltic countries was developed by the
Nordic Geodetic Commission in a long-term project that began in
2011 (/u\gren et al., 2016). This model is based on the least-squares
modification of Stokes’ formula with additive corrections (LSMSA) in
the framework of a remove-restore procedure. The standard deviation
of this model in the 1-parameter fit to GNSS/levelling is 2.85 cm (1.5-
2.0 cm on land). The coverage of the NKG2015 is from the latitude of
23N to 73N and the longitude of OE to 34E. The geoid model refers to
the GRS80 ellipsoid (ETRF2000 frame, epoch 2000.0). Note that the
official NKG2015 model (that is released online) contains a ‘hybrid
permanent tide system’ (i.e., a non-tide conversion has been added
to the model to be able to use it directly for GNSS measurement).
Therefore, in this study, we used the original one (NKG2015_zt), which
is a pure zero-tidal model. In order to be able to use the NKG2015
for determining DT with SA data, the geoid model is transferred to
mean-tide system as follows (Varbla et al., 2022):

N = NKG2015_zt
+(0.29541 (sin? @ — sin> gy 4 p) + 0.00042(sin*
—sin* (pNAP)) 9

where ¢y 4p is the latitude of NAP, and this equation is expressed in
units of the metre.

3.4. Satellite altimetry data

Satellite altimetry (SA) is a well-known space technique used for
measuring sea level data both in the offshore and coastal areas. One
of the major advantages of SA that shall be employed in this study
is that it tends to be a major source of data capture in the offshore
areas compared to the TG data that are limited to coastal areas. In
this study, we employed the Sentinel-3A (S3A) high frequency (20 Hz)
along-track sea level measurements that operates in SAR mode and is
based on ALES + SAR (an adapted retracking algorithm from Baltic+
SEAL datasets Passaro et al., 2021). The data are captured at an across
track resolution of 1.64 km and an along-track resolution of 300 m
(Desjonqueres et al., 2010). This dataset has been specially corrected
for the coastal and sea ice conditions of the Baltic Sea and was obtained
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Fig. 5. Dynamic topography of the non-corrected Nemo-Nordic model (DT} ),) and the TG reading (DT, circle markers) at an arbitrary time instant: 31 January 2018 21:00

UTC. The red colour bar shows the difference between model and TG data.

from http://balticseal.eu/data-access/. The time period from January
2017 to June 2019 (33 cycles, with a repeat period of 27 days) which
covers 39 passes over the Baltic Sea (see Fig. 3) is examined.

3.4.1. Satellite altimetry corrections

From the precise knowledge of the satellite orbit height (H ;) and
the SA range (R) determination (using retracking waveforms) several
other corrections (atmospheric and geophysical) are applied to derive
the sea surface height (SSH). Eq. (10) displays the algorithm that was
implemented by default to the Baltic+ SEAL products (Passaro et al.,
2021):

SSHyg =H,, — (R+WTC + DTC + iono + SSB + DAC
+ SET + PT + ROC) (10)

where S.SHpg is obtained by default from the S3A data (Baltic+ SEAL
project), which referred to Topex/Poseidon reference ellipsoid. The wet
tropospheric (WTC), dry tropospheric (DTC), and ionospheric (iono)
are atmospheric propagation corrections due to radar pulse passing
through Earth’s atmosphere. Sea state bias (SSB), dynamic atmospheric
correction (DAC), solid Earth tide (SET), along with pole tide (PT) are
classified in the geophysical corrections, which refer to the systematic
geophysical effects that can be modelled and corrected. The radial orbit
error (ROC) is a new correction that was derived and is based on
multi-mission cross-calibration to ensure a consistent combination of
all different altimetry missions (Bosch et al., 2014).

Since we will compare the SA data reduced for DAC with HDM data
that does not, the default DAC correction must be cancelled by adding
it back to the SSHpg. Similar approach was also performed in other
studies (Madsen et al., 2019; Rautiainen et al., 2020; Passaro et al.,
2021). Note that the ocean tide corrections (OT) are not included in
the SSHpyg (Eq. (10)), since the tides in the Baltic Sea are generally

small (less than 10 cm) (Samuelsson and Stigebrandt, 1996). All other
geophysical corrections (i.e., SET and PT) remain to obtain identical
measurements with TG records and HDM.

The DTg, is formed by referencing the SSHpgg to a geoid model
(i.e., NKG2015). The SA data are referred to the Topex/Poseidon
reference ellipsoid (ITRF2008, mean permanent tide system). Hence, in
the case that the geoid height N (Eq. (9)) is to be used together with SA
data, the S.S Hgg and N must be referred to the same reference ellipsoid
and coordinate system. For this purpose, the SA data were transformed
to the GRS80 and ETRF2000 through three steps: (i) conversion of
the SA data to geocentric coordinates (X, Y, Z), (ii) transformation
of the data from ITRF2008 to ETRF2000 (Altamimi, 2018), and (iii)
converting back the data to the geodetic coordinate according to the
GRS80 reference ellipsoid. Finally, the DT'g, is computed accordingly:

DT, (9. 4.1) = (SSHpg (. . 0)+ DAC (@, 2. D)+ Ry f o (@, 4.1)— N (9. 1)
an

where A, is the conversion values from Topex/Poseidon reference
ellipsoid (ITRF2008) to the GRS80 (ETRF2000).

3.4.2. Satellite altimetry outlier removal

Outliers may be present in the SA data due to land contamination,
presence of industrial infrastructure (wind turbines, platforms, etc.),
turbulent waters, etc. especially near the coast. As a result, a three-
step data screening procedure was applied for the outlier removal:
(i) Obvious outliers that are outside of the +3 m range were removed.
According to time-history of other sources, DT, larger than +3 m is
physically impossible and distorts the SA statistical parameters.

This is followed by, (ii) a moving median with a window length
of 1 NM was applied along the tracks, and the SA data more than
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Fig. 6. An example of the second (a) and third (b) step of data screening process on the Sentinel-3A Pass No.55 and Cycle No.35. The residuals between SA observations and LS

spline curve are shown in subplot (c).

four local scaled MAD (median absolute deviation) away from the local
median within the sliding windows have been deleted as the coarse
random errors (shown in red marker in Fig. 6a). And finally (iii) the
DTy, of each track was filtered by 3 standard deviation (i.e., outside
of the 99.7% confidence interval) from the least-square (LS) spline
approximation (shown in red marker in Fig. 6b). To determine the LS
spline curves for each track, a piecewise quadratic polynomial with g
knots was applied accordingly:

ngA/(x)=aoj+alj(p+azj<p2, j=12....9 (12)

where j denotes the index of knots and q is the number of polynomial
pieces (Neitzel et al., 2019). This approximation allows the DTy, to
approach the coast fairly as much as the SA data is available. Note
that the value of g varies for each pass and cycle depending on the
ground-track length and instantaneous sea surface shape. Therefore, the
number of polynomial pieces (q) was calculated using an optimization
method to minimize residual standard deviation (ResidSD) for each
pass/cycle. For this purpose, the ResidSD is determined accordingly:

ResidSD = [¢%)]

where ¢ and ¢ are the residual between the SA data and LS spline curve
and mean of residuals, respectively. The ResidSD is obtained over the n
data points along-track (blue dots in Fig. 6b).

Fig. 7 shows all ResidSDs according to Eq. (13) based on compilation
of all the passes (Fig. 7a) and all the cycles (Fig. 7b). According to
Fig. 7a, the large ResidSD amounts belong to short ground tracks that
are within the vicinity of land (i.e., Pass No. 44-1, 158-2, 425-1, 500-1,
625-2, and 756). It also can be observed that Bothnia Bay (i.e., Pass
No. 197-2, 311-2, 386-1, 425-2, and 739-2) has a large dispersion in
the ResidSD, which can be due to sea ice conditions in the winter
months. The median of ResidSD for all passes and cycles is 3.6 cm.
This examination of the SA data proves that the SA data are reasonably
consistent and can be used for validation of DTI_(;DM. It also hints
and identifies possible problematic (time-wise) cycles. For instance,
periodic pattern is evident with an increase in the late winter and early
spring (cycles 14, 28, 29, 41) which indicates a greater dispersion of SA
observations in theses seasons (see Fig. 7b).

3.4.3. Cycle mean dynamic topography

To give a better assessment of the model’s performance in the
offshore, the cycle-mean of DT (CycleMDT) was obtained along the SA
tracks. Since the cycle period of S3A is 27 days, the CycleMDT can
make a contrast with hourly MDT of the HDM and TGs. Moreover, it
is possible to reduce the contribution of low-quality cycles (i.e., cycles
with high ResidSD, according to Fig. 7) by using weighted mean:

€, DT (¢, A,i) .w;(Pass)

CycleM DT (@, A,Cycle) = el 14)
Y w(Pass)

with

w;(Pass) = N S (15)

Resid S D(Pass, i)

where C is the number of SA Cycles (i.e., C = 33 for the period Jan-
uary 2017-June 2019), and ResidSD is the residual standard deviation
according to Fig. 7. The CycleMDT was also determined for the HDM
and TG data similar to SA (that is, at the time of SA cycles using a
linear interpolation and similar weight (Eq. (15)) used for SA). The
HDM data were extracted at the coordinates of the SA data points via
bilinear interpolation.

4. Method for examining time and spatial domain biases
4.1. Time-domain bias approach

As mentioned above, a difference in various sources of sea level is
expected at similar locations due to: (i) the dissimilarity in the vertical
reference datum utilized and (ii) the limitations of the methods em-
ployed in capturing sea level. Given that we have taken the perspective
of the TG data represents the ‘truth’ within the coastal area, then to
obtain the difference between DT of the HDM and TG records, the
closest grid point of HDM to the TG locations (less than 4 km in
most stations) are selected and extracted to produce the DTy pyerc
time-series for all 73 used stations. Thus, this difference referred to
as TDBias is determined according to Eq. (2) by using a 6-h moving
average filter that gives an uncertainty of less than 6 cm with respect
to the TG records, cf. Fig. 8b. For instance, TDBias time series for
three TG stations are shown in Fig. 8a. As can be observed, the bias
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Fig. 7. The standard deviation of the residuals (ResidSD) of the Sentinel-3A over the Baltic Sea for the period 2017-2019 (Cycle No. 13-45) against (a) the pass number (all

passes are shown in Fig. 3), as well as (b) cycle number. The vertical axes are presented on a logarithmic scale. The format of pass numbers is

“{Pass No.}-x”, in which the x

increments from the first part of the ground track that the satellite passed (i.e., southern part for ascending and northern part for descending tracks) according to the number of

times that SA pass is interrupted by land.

is not constant in time, and it varies from around —20 to 30 cm. It
is also apparent that the TDBias behaves periodic, and the seasonality
of bias is obvious with crest and trough in the spring and autumn
seasons, respectively. The peaks in spring may be due to problems with
river runoff or atmospheric forcings, which may serve as significant
indicators of possible improvements for modellers.

The statistic parameter of TDBias for all stations (during the period
December 2016-April 2020) along with the correlation of raw Nemo-
Nordic data with TG records in the course of time are illustrated in
Fig. 9. It is evident that the mean of TDBias at TG stations varies
spatially between 5 and 16 cm with the highest values mostly occurring
in the western side of the Gulf of Bothnia (Fig. 9a) and also at some
distinct locations along the coast of the Baltic Sea (e.g., TG ids: 16,
28, 29, and 45) or due to their locations (e.g., mouth of river etc.)
that causes them to be in disharmony with adjacent stations. Observe
however that in these areas of higher bias the HDM and TG data are
highly correlated (Fig. 9¢). This hints that the HDM simulates similar
dynamics as TG, thus the issues with the vertical datum or possibly even
TG corrections are the major component contributing to the higher bias.
Also observe in Fig. 9 that the model has larger standard deviation
(10 cm) with respect to individual TGs in the Gulf of Riga (TG id 14)
and in the eastern part of Gulf of Finland (TG id 73; see Fig. 9b). Since
the surrounding TG are lower in standard deviation, this could indicate
also possible issues with the TG data (e.g., insufficient corrections
applied).

4.2. Spatial-domain bias approach

Since the DTy are only valid near the coast in the vicinity of the
stations, computing the bias of all HDM grid points directly by Eq. (2)
is not an ideal approach. Instead, given a set of TDBias for a given time
instant, a spatial interpolation can be employed to distribute HDM bias

over the study area. This aims to fit a surface (i.e., SDBias) that will
best represent the spatial HDM bias. To obtain SDBias, the interpolation
method and distance between the TG stations play key roles. The spatial
interpolation is calculated based on the bias calculated between HDM
and TG data at the location of stations. However, a valid DTIE py i the
open sea is indeed strongly dependent on the HDM’s performance in
terms of high correlation between model and observations (i.e., truth).

In this study, the Nemo-Nordic model was corrected using three
interpolation methods: (i) linear (Lin), (ii) thin plate spline regression
(TPS), and (iii) inverse distance weighted (IDW). However other meth-
ods (e.g., Kriging and Least-Squares Collocation) are also commonly
used in similar studies. Here, three selected interpolations with differ-
ent interpolating approaches were used to demonstrate the sensitivity
of the HDM correction method to the SDBias, and we will show that the
methods provide less than a few centimetres variations in SDBias. To
exclude possible instantaneous errors such as spikes in the TG records,
a 6-h filtering window was applied as mentioned in Section 4.1. As
a result, the TDBias;_s_;, yields a RMSE of 2.7 cm on average (see
Fig. 8), which are suitable for interpolation process. The exception is
for thin plate spline regression method where the instantaneous TDBias
was used.

The linear interpolation (Lin) can serve as a first approximation
of the offshore bias (assuming the bias changes linearly over space;
Jahanmard et al., 2021). The second approach, TPS, is a spline-based
technique that arises from consideration of the integral of the square
of the second derivative. Regarding this method, it is expected that the
possible TG reading defect between stations (relative to nearby stations)
is moderately relaxed. The TPS regression yielded an RMSE of 2.5 cm
on average over time and at the location of the TGs after comparing
corrected HDM and TG records.

The third used interpolation method is inverse distance weighted
(IDW), whereby data points (stations) closer to the grid points have
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Fig. 9. (a) Mean and (b) standard deviation of the T DBias;_¢_j,,, and (c) correlation between TG records and Nemo-Nordic model in the 73 used stations along the coastline of

the Baltic Sea for the period December 2016-April 2020.

more effect than those which are further away. In this regard, the
weighted mean is employed accordingly:

Y, w; (¢, A TDBias;

: a6)
Z,-:l w; (@, )

SDBias;py (¢, 4) = . Vg, D) # (. 4)

with

w; = . 17)
Di(p, ), ((Pis /1,') )2

The subscript i denotes the TG stations, m is the number of stations
(i.e., m =73), and D is a distance measurement operator, which is used
to measure distances on a sphere.

As an example, Fig. 10a shows the computed SDBias using the above
methods for a particular time instant (31 January 2018 21:00 UTC; see
Fig. 5 for DTy py). In this figure, a spatial variation of model bias
has been illustrated. All three methods show a more or less similar
trend and range (11-26 cm), and as expected the trace of triangles’

edges are visible in the Lin interpolation method. Generally speaking,
in all three interpolation methods the largest bias is associated to the
western section of the Baltic Sea and also at some localized areas (due
to certain TG quality issues). To evaluate the similarity and difference
of those methods in the course of time, Fig. 10b represents standard
deviation of range of three methods during December 2016—April 2020.
Observe that in most areas the variation of the difference between
methods is less than 2 cm. The largest difference occurs in the Gulf
of Riga (TG id 14) where the range of three methods has the highest
standard deviation of 4.2 cm in the course of time (see Fig. 10b).
This also coincides with Fig. 9b that showed the same TG station also
having a higher standard deviation and lower correlation than others
surrounding it.

By correcting all grid data for the bias, the corrected HDM (DTI‘; o)
is obtained (Eq. (5)). In the following, the methods were compared
with SA data, and as a result, although corrected HDMs show more
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Fig. 10. (a) SDBias of Nemo-Nordic model for an arbitrary time instant: 31 January 2018 21:00 UTC by using linear interpolation (Lin), thin plate spline regression (TPS), and
inverse distance weighted interpolation (IDW). (b) Standard deviation of range of those methods in the course of time from December 2016 to April 2020.
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Fig. 11. Raw (left) and corrected (right) Nemo-Nordic dynamic topography by inverse distance weighted (IDW) interpolation method over the Baltic Sea for an arbitrary time
instant: 31 January 2018 21:00 UTC. The circle markers indicate location of used TGs to correct HDM.

or less similar results and RMSE with respect to the DT ,, we selected
the IDW method as a preferred method to be used for correcting the
model. Following this the IDW method for HDM correction is shown
in all the calculations, however, we will also show in Section 5.2
that the differences between methods with respect to SA data are
barely noticeable in the offshore area. The DTIfIj py and raw HDM for
the time instant (see Fig. 10a for SDBias) are presented in Fig. 11.
After correction, the pattern of dynamic topography has not changed
noticeably, but the range of DTIS py has been shifted and narrowed
to 5-78 cm, while the range of raw HDM was 20-100 cm at this time
instant. To verify if the corrected HDM data are reliable and accurate
enough, validation in the offshore areas was necessary and this was
performed in this study by utilizing SA along-track data.

To illustrate the model changes in the time period of interest, the
time-mean and temporal standard deviation of SDBias are shown in
Fig. 12. The mean of SDBias for 41 months demonstrates that the HDM
bias is roughly 10 cm with a higher value in the western Baltic Sea.
This bias varies by more than 7 cm in the course of time (Fig. 12 right),
which implies that long-term bias corrections (e.g., the mean of a year)
are incapable to improve the model accuracy with respect to the TG
data (Fig. 8a illustrates the same point). The spatial standard deviation
of the mean SDBias (Fig. 12a) is roughly 1.3 cm. This unnoticeable
amount of the spatial bias variation could indicate that the HDM uses

more or less an equipotential surface of the Earth’s gravity field as its
reference, and using the term DT}, is an acceptable assumption. It
is also noticeable in this figure that some stations may have zero-level
problems or the HDM may not be able to simulate regional effects such
as river runoff.

5. Results
5.1. Mean dynamic topography

By utilizing a network of geoid-referenced TG data along the Baltic
Sea coastline, it was possible to derive a corrected hydrodynamic
model dynamic topography (DTI-C;DM)' This variable now represents
sea level variations with respect to a more realistic ‘zero’ level being
that of the geoid. As a result of this, it is possible to obtain a realistic
Mean Dynamic Topography (MDT), over different time scales (seasonal,
annual, etc.) that can reveal the persistent or semi-persistent dynamical
patterns. Note that the HDM’s high temporal and spatial resolution is
its advantage for this purpose compared to other datasets. The MDT is
determined for different time period.

Fig. 13 illustrates the (annual) MDT for the raw and corrected HDM
along with the MDT of used TGs that are shown in circles with the
same colour bar at the location of stations. Particular characteristics are
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Fig. 12. The spatial distribution of the temporal mean (left) and standard deviation (right) of SDBias of Nemo-Nordic model for period of December 2016 to April 2020. The

circle markers indicate location of used TGs.
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Fig. 13. Annual mean dynamic topography (MDT) of original (top row) and corrected (bottom row) Nemo-Nordic model along with MDT of selected TG records in the same color
bar scale. The black and blue values in top row refer to the raw model MDT and the TG (also corrected model) MDT at some stations, respectively.

observed, for instance: (i) the raw HDM over-estimates the TG records,
thus the actual values are lower; (ii) in general similar patterns of
MDT is observed however there exist at particular areas a difference in
patterns and trends and (iii) localized areas shows slight inconsistency
in a few stations (e.g., TG id 16; as also mentioned in Section 4.1 and
Fig. 9, where the TDBias of each station is compared to the adjacent
stations) that had a higher standard deviation but lower correlation.
In general, the corrected MDT (like raw HDM) exhibits a spatial
pattern, with the largest MDT in the north of the Gulf of Bothnia

and eastern section of the Gulf of Finland. This is the expected trend
in the Baltic Sea (Madsen et al., 2019) which are due to freshwater
accumulation and wind forces (Soomere and Quak, 2013). The annual
MDT however shows much more variation in the corrected MDT than
the original model. For instance, in 2019 the range of MDT is reduced
almost from 37.0 (55.0-18.0) to 29.0 (46.0-17.0) cm, and the difference
between the north (north of Bothnia Bay) and south (north of Poland)
of the Baltic Sea has been reduced roughly 25 percent. This difference
is especially noticeable in the Gulf of Bothnia, in all three years. Recall
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that in the Gulf of Bothnia the highest bias was applied whether this
application of a higher bias is suitable, requires further examination.
For it is possible that (i) in Gulf of Bothnia (especially in its northern-
most part — Bay of Bothnia) many of the TG are not exactly located
at the coast but may be located more inland in riverways. So, even
though they may reflect the trend of sea level, their actual value may
not reflect that of the coastal sea area as was captured by the models
and (ii) issues with TG corrections, that are unknown at the time of this
study (e.g., offsets, vertical land movement corrections etc.). To verify
however if the corrected HDM data are reliable and accurate enough,
especially in the offshore areas and in the areas of higher variation in
trends, a validation with SA data is performed (Section 5.2).

5.2. Validation in the offshore areas

The SA data provide an independent source of validation of the
corrected HDM, especially in the offshore. Thus, we validated the
raw/corrected HDMs in order to show and compare the performance
of the developed methods in the offshore. However, several studies
have shown that SA data may still be biased even after corrections
are applied (e.g., Mostafavi et al., 2021) and an accuracy of 2-5 cm
is achievable with the SA-Sentinel 3A data. We utilize the SA along-
track sea level profiles that are compared with similar profiles extracted
from the HDM. The corrected model was evaluated using SA data via
two approaches in the offshore areas: (i) calculation/comparison of
the along-track SA bias with respect to the raw/corrected HDM data
(Fig. 14), and (ii) comparison of the CycleMDT of various datasets as
defined in Section 3.4 (see Eq. (14)). In both approaches we are going
to show the variation of inconsistency between HDM and SA data.

For the first approach, the SA bias with respect to each HDM data
is determined accordingly:

Y (DT g4, = DTS )
Biasg, = — LA 18)
n
where n is the number of SA data along the track and DTE, by, 1S

the corrected model. For obtaining the DT} j,, along each pass in the
desired cycle, the HDM data have coincided temporally and spatially
with the SA data points with linear interpolation.

Fig. 14 shows the bias of S3A with respect to the raw HDM (in
black) and corrected HDM (in green, blue, and red for Lin, TPS,
and IDW method, respectively) versus the SA passes (Fig. 14a) and
cycles (Fig. 14b). The comparison using all passes and cycles shows
that: (i) with all three interpolation method the differences are almost
negligible (that is, the model correction is insensitive to the interpola-
tion method); (ii) The SA data agrees better with the corrected HDM
(median of SA bias is roughly —1.5 cm) compared to the uncorrected
(median of SA bias —13.2 cm); (iii) the scatter plot of the bias (Fig. 14c,
which shows the median of the bias for the corrected HDM) identifies
some passes with large biases, such as the eastern part of the Gulf of
Finland with a bias of over 5 cm. These passes are however similar
to the areas of higher standard deviation of SDBias (Fig. 12 right).
Moreover, (iv) a seasonal trend is evident in the bias of the raw HDM
relative to SA (as also observed in Fig. 8a relative to TG records)
whereas it disappears for the corrected HDM (Fig. 14b).

The regions with a large bias require further examination, and this
was performed using the CycleMDT approach. Thus, for the second ap-
proach of validation, a comparison with CycleMDT (see Eq. (14)) of all
available data sources. The term CycleMDT is selected to make a con-
trast with MDT. CycleMDT is the average of n cycles of instantaneous
SA observations, which is expected to be very close approximation to
MDT.

Fig. 15 demonstrates CycleMDT along the three SA passes: pass
no. 272, 55, and 414. According to this figure, a comparison of
raw/corrected HDM, TG records, and SA data reveals that: (i) before
examining the corrected HDM, the TG records and SA profiles have
mostly coincided, whereas the raw HDM does not, (ii) compared to raw
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HDM, corrected HDM is more consistent in magnitude as well as spatial
trend with SA profiles and TG records, and (iii) the corrected HDM for
Pass No. 414 (located in the eastern section of the Gulf of Finland)
displays a more stable DT compared to SA. Results in this area indicate
that utilizing SA data along with the geoid model (i.e., NKG2015)
leads to an unrealistic DT value that fluctuates widely. This strongly
suggests problems with the geoid model due to insufficient coverage of
marine gravity data and validation in such locations (/o\gren et al.,
2016).

5.3. Identifying areas of large discrepancy

A comparison of point-to-point SA data and HDM for the entire
Baltic Sea allows a broader overview for identifying problematic areas
especially in the offshore areas (Fig. 16). This figure shows a point-to-
point difference between CycleMDT of the SA data and raw (Fig. 16a) or
corrected Nemo-Nordic model (Fig. 16b). This reveals possible inconsis-
tencies between various data sources and also highlights regions with
problems, especially offshore. In this study, different datasets are used:
TG, HDM, SA, geoid model, and land uplift model, each of which has
its own uncertainty in different conditions and regions. For instance,
the SA data may contain artificial bias even after applying geophysical
and atmospheric corrections.

Fig. 16a (top) clearly demonstrates the differences between HDM
and SA data with an average of 11.1 cm with the highest bias occurring
in the northern and eastern sections of the Baltic Sea (approx. 30.0 cm).
The SA data confirm the corrected HDM with a bias of 0.1 cm, however
a large difference (greater than 7.0 cm) between the corrected model
and SA data is noticeable in the Gulf of Finland (as observed in Fig. 15
and Pass No. 414). The reasons for this bias requires further evaluation
for future studies. The centred root mean square error (CRMSE) of
the HDM before and after correction are 2.2 and 2.4 cm, respectively.
Basically, the spatial comparison of differences between HDM and SA
results shows the method decreases the HDM bias by roughly 11.0 cm
in the offshore area.

Fig. 16 also highlights problematic areas amongst the different
sources of data. For instance, there is a high discrepancy between SA
and HDM (in both the raw and corrected models; shown in black) in the
eastern part of the Gulf of Finland, possibly because of the geoid model
deficiencies. Nearshore contaminated SA data are mostly observed in
the north and centre of the Baltic Sea.

6. Discussion

The methodology employed in this study demonstrated that by
utilizing a dense network of TG data that are referred to the geoid
it is possible to correct the HDM bias (both temporally and spatially).
Applying this bias correction allowed computation of a corrected HDM
whose sea level data are now referred to the geoid and thus more
or less realistic both at the coast and in the offshore domain. To
evaluate whether the corrected HDM MDT results were reliable and
accurate enough, the validation using SA data played an essential role
in assessing this, especially in the offshore domain.

The method employed entailed initially identifying the temporal
bias and then using this temporal bias along with three interpolation
techniques, to obtain the spatial bias in the HDM. Examination of the
temporal bias (HDM-TG), which considers data points mainly at the
coast, revealed a mean bias with a range of 5.3 to 15.9 cm (that is,
the HDM tended to overestimate the results) along the Baltic Sea coast
(Fig. 9). The largest bias values occur in the Gulf of Bothnia (especially
the western side) and in some other localized areas that appear to
be TG location dependent. Interestingly the correlation between HDM
and TG was high in these areas (i.e., >0.92). In-addition the standard
deviation of the temporal bias also revealed that in most TG locations a
value that varied from 7-9 cm. There were however a few TG locations
with a standard deviation of 10 cm, and these were located of at
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Fig. 14. Along track Sentinel-3A bias with respect to the raw/corrected Nemo-Nordic
the median value of the bias for corrected HDM by IDW on each pass.

model against the (a) pass number and (b) cycle number (or month). Subplot (c) illustrates
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Fig. 15. Comparison of raw/corrected Nemo-Nordic model with the SA data (Sentinel
column denotes the location of each passes and vicinity TGs.

the easternmost section of the Gulf of Finland at the Russian TG of
Kronstadt (TG id 73, cf. Fig. 3) and also in the Estonian TG station
in the Gulf of Riga at the Ruhnu station (TG id 14, cf. Fig. 3). This
higher standard deviation may indicate issues with the vertical datum
at these stations. These results however strongly suggest that the bias
calculated between the HDM and TG consists of a combination of
vertical reference issues between the HDM and TG. In addition, possible
problems with TG (perhaps corrections applied, or location of TG) and
HDM modelling errors may be present as was observed in Jahanmard
et al. (2021). Most pertinent is that these results highlight, spatially the
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-3A) and TG records via CycleMDT (i.e., mean of 33 cycles) in three example pass. The left

critical areas/locations that require further examination/improvements
both with the HDM and TG data.

To obtain the spatial bias three different interpolations methods
were employed (linear, IDW and TPS) and in general results of all
methods displayed similar patterns especially in the southwestern Baltic
Sea (Fig. 10). As expected, three methods provide a stable SDBias with
standard deviation of less than 2 cm in the vast majority of areas
(Fig. 10b). The IDW method however displayed a more realistic trend
than others (Fig. 10). In Jahanmard et al. (2021) a linear interpolation
method was utilized for the Gulf of Finland, however this showed



V. Jahanmard, N. Delpeche-Ellmann and A. Ellmann

32

(cm)

Diff (Raw HDI, SA)

2500 Bias: 11.1 cm

£ 2000 | CRMSE: 2.2 cm
3

Q1500

8

< 1000

<

o

2]
=]
=]

o

5 10
Diff (Raw HDM, SA) (cm)

15 20 25 30

SAdata points

Ocean Modelling 180 (2022) 102124

23

Diff (Corrected HDM, SA) (cm)

[Bias: 0.1 em
CRMSE: 2.4 cm

. s N
S a o
S o ©
& & &

3
=]
S

o

-5 0 5
Diff (Corrected HDM, SA) (cm)

10 15 20

Fig. 16. Point to point comparison of CycleMDT of the Sentinel-3A data and Nemo-Nordic model: (a) raw model and (b) corrected model via a network of the 73 geoid referred
TG records for period of January 2017 to June 2019. Bottom row indicates the histogram of these top row residuals. CRMSE is centred root mean square error that indicates with

red line.

peakiness at the edges as was seen in the results of this study. Instead,
now for this study, the IDW method displays an improvement that
can be applied. The IDW method can further be improved for it also
showed some localized discrepancy that were most likely influenced
by the problems with TG data (Fig. 10). This is so for in this study the
assumption was made of the TG data being ‘the truth/most realistic’.
Whilst this assumption seems to perform reasonably well, the results
have revealed that some TG may have some problems (e.g., location
not ideal, corrections applied). Thus, the interpolation methods applied
should be applied with care and checks performed with other datasets
on the validity of results.

In general, the corrected HDM MDT showed an improvement (com-
pared to uncorrected MDT) in that the high and low frequency biases
(e.g., difference between reference level, seasonal bias, etc.) are elimi-
nated by this correction, and the HDM is corrected on the scale factor
of almost 1.5 in many parts of the BS, whereby the uncorrected MDT
tended to overestimate the results. Given that the original HDM at the
location of stations and TG records are more or less highly correlated
(Fig. 9¢), it was to some degree expected that a comparison of the raw
and corrected HDM would show similar patterns. In general, this was
the case, for most areas of the Baltic Sea showed similar patterns as
calculated in other studies (e.g., Madsen et al., 2019). However the
western side of the Gulf of Bothnia showed an unexpected variation
compared to the raw HDM (with a difference of 5 cm from western
to eastern side). This displayed, that correcting the model for the bias
may also change the overall pattern of the MDT. To access whether
the corrected HDM results were accurate or reliable, a validation was
performed using the Sentinel-3A along-track satellite data.

This validation on whether the corrected HDM was accurate or
realistic, especially in the offshore areas, was employed by comparing
SA along-track data with that of the raw and corrected HDM. This
comparison showed that the corrected HDM was more compatible with
SA than the uncorrected HDM (Figs. 14, 15), with a bias of 0.1 cm for
corrected now existing versus that of 11.1 cm for uncorrected HDM.
Whilst the SA agreed better with corrected HDM, the higher differences

still existed in the Gulf of Finland region. Previous SA studies suggested
that in the Baltic Sea a RMSE of 4-7 cm can be expected (Rautiainen
et al., 2020; Mostafavi et al., 2021). Thus, to ascertain exactly what
may be occurring in the Gulf of Finland requires further examination,
for it could be a combination of HDM errors, SA and TG related
problems. Further examination of the SA along-track profiles in this
region revealed possible problems in geoid modelling due to sparseness
of gravity data that may have affected results (Fig. 15 (Pass No. 414),
Fig. 16). In Varbla et al. (2020a) this specific location was also found to
have possible geoid modelling issues. In this study we employed the use
of SA for validation, but it is possible for future studies to employ use
of GNSS applications (Varbla et al., 2020a) or Airborne Laser scanning
can be employed (Varbla et al., 2020b).

Thus, the applied methodology appears to perform reasonably well
in deriving a more realistic MDT. The method however can be improved
for comparison with HDM and SA data identified several key areas
that require further investigation, such as Gulf of Finland, that may
be affected by TG, SA, HDM or geoid modelling issues. This study
assumed that TG as representative of the truth, the results however
have shown that some TG may not be ideally located (e.g., installed at
the mouth of rivers) or that may have had wrongly applied corrections,
and this require further examination. For obtaining TG data from
different countries/authorities with different protocol of measurements
and instrumentation may also have errors that may be unknowingly
introduced. Since the results of this study were highly dependent on
the bias calculated, it is essential that: (i) TG data are consistent and
accurate as can be and (ii) the computed bias needs to be valid in the
offshore areas.

This study was possible due to the dense network of TG in the
Baltic Sea and the agreement on employing the geoid based Baltic
Sea Chart Datum. Hence, it is expected that similar approach can be
applied in other marine areas. Utilization of the geoid as a vertical
datum allows more realistic dynamic topography calculations and it is
also more compatible with other sources of data. To some degree it is
expected that deriving a corrected HDM may also lead to changes in the



V. Jahanmard, N. Delpeche-Ellmann and A. Ellmann

Table A.1
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List of tide-gauge stations from 01 to 73. The national reference frames and geoid model complying with BSCD2000 along with the reference of data providers are indicated for
each country. The conversion values and land-uplift correction are listed for each individual station as well.

TG TG Latitude Longitude BSCD2000 NKG2016LU TG TG Latitude Longitude BSCD2000 NKG2016LU

id name (arc-degree) (arc-degree) conv.value (mm/year) id name (arc-degree) (arc-degree) conv. (mm/year)
(cm) value (cm)

1. Estonia Data provider emodnet-physics.eu

Datum EH2000 (zero-tide system) Ref. of conversion values -

Geoid model EST-GEOID2017 32 Rodby 11.3500 54.6500 000.0 0.23

Data provider EEA (2021) 33 Rodvig 12.3728 55.2542 000.0 0.62

Ref. of conversion values Ellmann et al. (2019) 34 Dragor 12.6833 55.6000 000.0 0.91

01 Narva-Joesuu 28.0421 59.4691 000.0 1.70 7. Sweden

02 Kunda 26.5417 59.5210 000.0 2.35 Datum RH2000 (zero-tide system)

03 Loksa 25.7072 59.5845 000.0 2.74 Geoid model SWEN17-RH2000

04 Pirita 24.8208 59.4689 000.0 2.85 Data provider SMHI (2021)

05 Paldiski 24.0493 59.3508 000.0 3.02 Ref. of conversion values -

06 Dirhami 23.4969 59.2084 000.0 3.09 35 Helsingborg S. 12.6870 56.0446 000.0 1.22

07 Haapsalu 23.5274 58.9580 000.0 272 36 Barsebick 12.9033 55.7564 000.0 1.05

08 Heltermaa 23.0471 58.8656 000.0 2.85 37 Skanor 12.8294 55.4167 000.0 0.77

09 Ristna 22.0552 58.9212 000.0 3.46 38 Ystad Sjov 13.8257 55.4227 000.0 0.79

10 Roomassaare 22.5038 58.2172 000.0 2.25 39 Simrishamn 14.3578 55.5575 000.0 0.89

11 Virtsu 23.5113 58.5723 000.0 223 40 Karlshamn S. 14.8213 56.1542 000.0 1.44

12 Parnu 24.4820 58.3875 000.0 1.71 41 Kalmar Sj6v 16.3888 56.6713 000.0 1.93

13 Héddemeeste 24.4636 58.0375 000.0 1.41 42 Oskarshamn 16.4781 57.2750 000.0 2.68

14 Ruhnu 23.2635 57.7835 000.0 1.50 43 Olands N. U. 17.0972 57.3661 000.0 2.73

2. Latvia 44 Visby 18.2844 57.6392 000.0 2.88

Datum LAS2000,5 (zero-tide system) 45 Vastervik Sjov 16.6747 57.7482 000.0 3.32

Geoid model EST-GEOID2017 46 Arko 16.9607 58.4843 000.0 4.34

Data provider LVGMCL (2021a) 47 Landsort Norra 17.8589 58.7689 000.0 4.62

Ref. of conversion values ~ LVGMCL (2021b) 48 Loudden Sjov 18.1373 59.3413 000.0 5.34

15 Salacgriva 24.3536 57.7553 —484.0 1.21 49 Forsmark 18.2108 60.4086 000.0 6.75

16 Skulte 24.4094 57.3158 —485.0 0.88 50 Bonan Sjov 17.3186 60.7384 000.0 7.26

17 Daugavgriva 24.0233 57.0594 —485.0 0.74 51 Ljusne Sjov 17.1452 61.2067 000.0 7.91

18 Meérsrags 23.1328 57.3347 —484.0 1.09 52 Spikarna 17.5311 62.3633 000.0 8.94

19 Kolka 22.5928 57.7372 —483.0 1.63 53 Lunde Sj6v 17.8764 62.8865 000.0 9.21

20 Ventspils 21.5344 57.3956 —483.0 1.56 54 Skagsudde S. 19.0119 63.1906 000.0 9.48

21 Liepaja 20.9994 56.5156 —483.0 0.85 55 Holmsund S. 20.3331 63.6803 000.0 9.51

3. Lithuania 56 Furudgrund 21.2306 64.9158 000.0 9.44

Datum LAS07 (zero-tide system) 57 Stroméren S. 22.2383 65.5497 000.0 9.12

Geoid model LIT15G 58 Kalix-Storén 23.0961 65.6969 000.0 8.90

Data provider EPA (2021) 8. Finland

Ref. of conversion values BOOS (2021) Datum N2000 (zero-tide system)

22 Klaipeda 21.0811 55.7302 —487.4 0.23 Geoid model FIN2005N00

4. Poland Data provider FMI (2021a)

Datum PL-EVRF2007-NH (zero-tide system) Ref. of conversion values FMI (2021b)

Geoid model PL-geoid-2011 59 Kemi 24.5153 65.6734 8.60

Data provider IMGW-PIB (2021) 60 Oulu 25.4182 65.0403 8.30

Ref. of conversion values BOOS (2021) 61 Raahe 24.4071 64.6663 8.71

23 Gdynia 18.5552 54.5177 -491.3 0.00 62 Pietarsaari 22.6896 63.7086 8.95

24 Leba 17.5505 54.7634 -491.3 0.20 63 Vaasa 21.5712 63.0815 ) 8.79

25  Ustka 16.8538 54.5880 -491.4 013 64  Kaskinen 21.2148 623440 ~ According to g5y

26 Kolobrzeg 15.5534 54.1866 —490.2 —-0.06 65 Mintyluoto 21.4634 61.5944 EMI . 7.44

27 Swinoujscie 14.2543 53.9084 —491.5 -0.18 66  Rauma 21.4258 61.1335 f":l"e““)" 6.81

able

5. Germany 67 Foglo 20.3848 60.0319 5.70

Datum DHHN92 (mean-tide system) 68 Turku 22.1005 60.4283 5.41

Geoid model GCG2016 69 Hanko 22.9766 59.8229 4.16

Data provider BSH (2021) 70 Helsinki 24.9562 60.1536 3.69

Ref. of conversion values BOOS (2021) 71 Porvoo 25.6251 60.2058 3.44

28 Greifswald 13.4461 54.0928 —-500.0 —-0.09 72 Hamina 27.1792 60.5628 3.04

29 Sassnitz 13.6431 54.5108 —-500.0 0.09 9. Russia

30 Warnemiinde 12.1033 54.1697 -500.0 0.00 Datum BHS77 (mean-tide system)

31 Travemiinde 10.8722 53.9581 —-500.0 —-0.12 Geoid model -

6. Denmark Data provider emodnet-physics.eu

Datum DVR9O0 (tide-free system) Ref. of conversion values Sacher (2019)

Geoid model DKgeoid12 73 Kronstadt 29.7500 59.9667 +19.0 1.40

dynamics of the marine area (e.g., salinity, temperature, circulation).
The focus of this study however has been on achieving a realistic
sea level component that is comparable with other sources of data.

For future studies it is possible to examine in an iterative approach
the corrected HDM results with other components of the HDM model
(e.g., currents, salinity etc.). Consequently, the results of this study
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demonstrate progress toward the utilization of a more realistic DT that
has a valuable contribution to marine engineering and climate studies.

7. Concluding remarks

This study has demonstrated a methodology that allows derivation
of realistic dynamic topography both in the coastal and offshore areas
of the Baltic Sea. This was possible by the synergizing of tide gauge,
hydrodynamic and satellite altimetry data, with the geoid being the
key component that linked the vertical reference datum amongst them.

In most areas of the Baltic Sea the trend of the corrected DT
agreed reasonably well with the general dynamics of the study area
and also that of other studies. The annual mean dynamic topography
of corrected HDM was improved by a factor of almost 1.5 (for exam-
ple 2019, the uncorrected MDT was 50 cm and after correction was
35 cm in the Gulf of Bothnia). In such a busy and dynamic marine
environment of the Baltic Sea, realistic DT allows better application
on quantification for marine engineering (e.g., pipeline construction,
offshore infrastructure etc.) and climate studies application.

Incidentally however the methodology allowed identification of: (i)
potential problematic areas and seasons of HDM models that requires
improvement; (ii) tide gauges that may not be reliable for various rea-
sons (e.g., location not ideal for representing the coastal environment
or questionable corrections that may have been applied); (iii) areas of
satellite altimetry along-track passes that may be challenging even after
outlier removal and (iv) areas that geoid model were not adequately
represented.

Thus, the methodology shows an advancement and improvement
towards our understanding of the marine environment and also the
data sources being utilized. In addition, the assimilation of observed sea
levels (from tide gauge, satellite altimetry, etc.) into a hydrodynamic
model requires that the model refers to the same vertical reference
datum as the observed sea levels. Hence, this vertical reference uni-
fication between model and observations enables possibilities to have
a more effective implementation of the data assimilation technique for
modelled dynamic topography and enhances HDM performance. The
method however can be improved for the satellite altimetry to confirm
particular questionable areas (e.g., eastern part of the Gulf of Finland).
The validation in the offshore areas using satellite altimetry showed
promising results. Thus, in future studies the utilization of other sources
of offshore sea level data such as GNSS surveys and buoys and airborne
laser scanners can also be explored. In addition, it is possible for future
studies to use the results of the corrected HDM to improve on other
data components of the HDM (e.g., currents, salinity etc.) in an iterative
approach.
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Increasing magnitude and frequency of extreme events (e.g., floods, waves, storms), along with the demands of
shipping (e.g., increasing vessel sizes) and marine engineering (e.g., intensified port development), can
compromise operations and result in economic and human loss. Consequently, a re-examining and better un-
derstanding of the sea surface topography and, in particular, surface ocean waves is now imperative. Quantifying
surface ocean waves’ properties can often be a complex procedure based on the source of measurements and the
technique used. For instance, airborne laser scanning (ALS) can provide a high-resolution dataset of 3D spatial
sea surface topography with a point cloud density around 6 p/m? and vertical accuracy of 5-15 cm, from which
properties of surface waves can be derived. This study explores a novel method to enhance ALS-derived direc-
tional spatial wave spectrum by sampling from the point cloud and adjusting the standard error. As a result, wave
parameters such as significant wave height, peak period, wavelength, and dominant wave direction can be
obtained. The method was tested in the eastern section of the Baltic Sea. The wave spectra retrieved from ALS
were validated with a nearby wave buoy, wave model and an alternative direct geometrical method from a
previous study. These comparisons demonstrated good agreement with the significant wave height and peak
period having mean differences of 0.10 m and 0.0's; 0.09 m and 0.2s; 0.20 m and 0.8 s compared with the buoy,
wave model and direct method, respectively. The ALS-detected dominant wave direction varied from 60.0° to
97.0°, whereas the corresponding estimates for the buoy and reginal wave model were 86.5° and 78.9°-83.8°,
respectively.

2005; Bondur et al., 2016; Soomere, 2022) to obtain the parameters and
power spectra of sea waves. Nevertheless, derivation of the surface
waves’ properties can be a complex procedure. Recent technological

1. Introduction

Retrieval of the spatial spectra of sea surface waves, which tend to

change under the influence of various factors (e.g., wind, water depth,
fetch, vessels), is essential for solving numerous fundamental and
applied problems of modern oceanology (Phillips, 1980; Monin and
Krasitsky, 1985; Bondur, 2004). In particular, monitoring waves is
essential for the safety and performance analysis of vessels and marine
structures (Chen et al., 2021; Abaei et al., 2018; Jahanmard et al., 2015).
Moreover, measuring and understanding ocean waves’ properties also
contribute to the quantification of coastal processes (erosion and sedi-
ment transport), as well as the validation and calibration of wave models
and relevant sensors (Vieira et al., 2020). Various sources of in situ
measurements (e.g., wave buoys and pressure sensors), remote sensing
(satellite imagery and altimetry, airborne laser scanning — ALS, etc.),
and wave models are often employed (Huang and Chen, 1998; Sun et al.,

* Corresponding author.
E-mail address: vahidreza.jahanmard@taltech.ee (V. Jahanmard).
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advances in wave measurement sources also require a deeper
re-examination of the methods employed. Thus, this study developed a
method applicable for an airborne LiDAR (light detection and ranging)
acquired dense 3D point cloud to determine the parameters of ocean
surface waves.

Airborne laser scanning technology has advanced over the years to
provide high-resolution mapping using active ranging, where the LiDAR
sensor emits short laser pulses and registers returning reflections from a
surface. Such a technique is primarily used for dry land topography
mapping, and its vertical accuracy is estimated at 5-15 cm depending on
the measured surface and configuration during the time of acquisition
(Huising and Gomes Pereira, 1998; Sande et al., 2010). Several studies
that have used ALS for marine applications (Gruno et al., 2013; Zlinszky
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et al., 2017; Sutherland et al., 2018; Varbla et al., 2021) have demon-
strated that similar accuracy can also be achieved for sea surface mea-
surements. An improved characteristic is that modern LiDAR systems
can provide high-quality data regardless of marine conditions (Varbla
et al., 2021). The high pulse repetition rate, low beam divergence (i.e.,
yielding a small and crisp footprint), and slow platform speed of ALS
enable covering a wide swath by deflecting laser pulses from the nadir
perpendicular to the flight direction (Zlinszky et al., 2017). As a result, a
dense and highly accurate 3D point cloud of the sea surface is generated
using the active ranging. This allows the determination of the wave-
number spectrum that defines waves’ propagation direction and wave-
length (Hwang et al., 1998; Walsh et al., 1985). In addition, using a
combination of active ranging, passive imaging, and video recording,
the properties of breaking waves and white cap coverage can also be
established (Hwang et al., 1998).

It is challenging to infer the directional distribution of waves from
typical in situ wave measurements positioned at a single location (such
as pitch-and-roll buoys or wave gauge arrays; Hwang et al., 2000a).
Instead, the ALS-captured 3D point cloud of ocean surface topography
could be a more reliable data source. This study focuses on ALS data to
obtain a directional wave spectrum. Previous studies estimated the
directional wavenumber spectrum using a 2D fast Fourier transform
(FFT) on an ALS data segment with an implicit homogeneous process
assumption (Sutherland et al., 2018; Hwang et al., 2000a). For example,
in Hwang et al. (2000a, 2000b), nine segments of the ALS track (each
segment covering an area of 0.25 x 1.5km) were combined to retrieve
the one-directional spatial wave spectrum along the flight direction, in
which the wave field was quasi-steady (i.e., the wave variation could be
ignored along the 14 km long stretch). An alternative approach utilized
by Vrbancich et al. (2011) and Varbla et al. (2021) directly employs the
measured sea surface geometry to derive waves’ properties. The latter,
however, can be time-consuming and cannot be fully automated, thus
introducing a human factor to data processing.

Note that the sea surface is described by quickly changing random
variations. According to the stochastic theory of turbulence, it is possible
to model the sea surface as a horizontally homogeneous and stationary
random field by selecting sufficient spatial and temporal scales. For
wave field observations, the scale in the order of 10 km and 30 min or
longer may be desirable for considering homogeneous (i.e., spatial
invariance) and stationary (i.e., temporal invariance) processes,
respectively (Hauser et al., 2005; Goda, 2000). However, the wave
conditions in the strong current shear or near coastal areas (shallow
water waves) can be very inhomogeneous (Goda, 2000). Also, with
rapidly advancing technologies (e.g., satellite, ALS, etc.) that collect
data at varying spatial and temporal scales, it becomes necessary to
re-explore traditional methods with these new specifications.

Contrary to often used satellite images (such as high-resolution
(0.65-1m) QuickBird and Ikonos satellite images; Bondur et al.,
2016), the data corridor width limitation of ALS point clouds can be
challenging for deriving sea surface wave parameters (good quality data
are obtained within a kilometre). Thus, the required statistical stability
of the wave parameters is not easily obtained, whereas this limitation
has not been addressed in earlier studies (Huang et al., 2012; Sutherland
et al., 2018). As a result, this study shows an alternative new approach
developed for deriving sea waves’ parameters and power spectral den-
sity using ALS.

Instead of using 2D FFT (Romero and Melville, 2010; Lenain and
Melville, 2017), the method developed in this study uses averaging of
one-dimensional periodograms for each direction of interest, allowing to
derive the spectral estimate of a stationary process (Bartlett, 1948;
Welch, 1967). With such an approach, wave parameters can be retrieved
using the spatial limitations of the ALS data (particularly considering the
limited data corridor width), where 2D FFT may be an obfuscation
rather than a recovery of information. The method employed in this
study also corrects for the Doppler effect (due to relative flight speed and
direction) on the retrieved spectra in each wave direction.
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As a result, the spatial wave spectrum, which portrays the energy of
the wave components relative to the wavenumber, can be determined in
various directions. Also, by using the dispersion relationship, the fre-
quency wave spectrum can be derived (Bondur et al., 2016). This
transformation from the spatial domain to the frequency domain enables
comparisons with buoy observations, a well-established method for
measuring wave characteristics over time, thus providing a basis for data
validation. The results are also compared with the WAM (cycle 4.6.2)
wave model for the Baltic Sea (sourced from: https://copernicus.eu) and
an alternative method from a previous study (Varbla et al., 2021).
Therefore, this study demonstrates a reconstruction of the directional
wave spectrum using ALS-derived point cloud data.

The paper is structured as follows. First, the study area and the
employed dataset are described in Section 2. Next, in Section 3, the
method is outlined in three steps: (i) determining the power spectral
density of the extracted signal, (ii) providing a robust spatial wave
spectrum and addressing the homogeneous wave condition, and (iii)
deriving frequency wave spectrum. Sections 4 and 5 present and discuss
the computational and validation results. Also, a comparison between
measured wave characteristics, buoy observations, and the WAM model
is demonstrated. The paper concludes with a brief summary in Section 6.

2. Case study

The developed methodology will be presented using ALS survey data
collected in the Gulf of Finland, located in the easternmost section of the
Baltic Sea (Fig. 1). For demonstrating the benefits and applicability of
the developed approach, theoretical principles shall first be outlined in
Section 3, supported by the results using the described dataset.

The Gulf of Finland is a narrow and elongated basin with a length of
approximately 400 km and a width varying from 48 to 135km. The
mean water depth of the gulf is around 37 m (maximum depth is 123 m).
In the study area, the average depth is around 70 m, which satisfies the
deep-water condition based on the linear wave theory. In the Gulf of
Finland, the wave characteristics include: (i) mean significant wave
heights (SWH) of around 0.5-1.0 m (Nikolkina et al., 2014), and (ii) the
extreme wave height and period of around 6 m and 8-11 s, respectively,
at the entrance of the gulf, and correspondingly 4 m and 6-8s in its
eastern part (Raamet et al., 2010). The geometry and bathymetry of the
northern Baltic Sea can steer the wave and current direction, especially
into the gulf. The wind and wave direction difference in the gulf can also
be up to 50° (Pettersson et al., 2010). In semi-sheltered seas, such as the
Gulf of Finland, small changes in the wind direction can lead to signif-
icant spatio-temporal variations in the wave climate (Najafzadeh et al.,
2021). An examination of wind, waves, and surface currents shows that
wind and surface waves largely govern surface drift (Delpeche-Ellmann
et al., 2021).

A marine ALS survey was performed on 10.05.2018 in the Gulf of
Finland (Fig. 1) by employing the Estonian Land Board’s survey plane
Cessna Grand Caravan 208B mounted RIEGL VQ-1560i LiDAR Scanning
System. The system operated with a pulse repetition rate of 1 MHz at the
wavelength of 1064 nm. An operational flight altitude of around 1200 m
yielded ca 1000-1200 m wide sea surface height (SSH) data corridor and
LiDAR footprint diameter of 0.3 m. The average point cloud density was
estimated at 2.9 p/m? (6.2 p/m? for the central 100m of the swath).
Varbla et al. (2021) reconstructed from these ALS measurements
instantaneous SSH grids (to reduce data noise and improve subsequent
data processing performance), one of which is now employed in this
study (cf. Fig. 1; the open-access data is available from Varbla et al.,
2020). The central 500 m wide data corridor is used here, neglecting
poorer quality data at the edges. The data spatial resolution is 1m,
which allows extracting wave profiles in various directions with a
sampling interval from 1 m (for directions 0° and 90°) to 1.4 m (for 45°
and 135°, using linear interpolation). These data represent the basis for
testing the developed method.
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Fig. 1. The study area and ALS flight trajectory over the Gulf of Finland on 10.05.2018 at around 09:35 UTC. The colours of the trajectory show the geometry-based
mean wave heights (averaged within fragments’ boundaries) derived by Varbla et al. (2021). Isolines depict significant wave heights of the WAM wave model at
09:00 UTC. Coloured arrows show wave and wind directions during the ALS survey at the closest observation stations.

3. Method
3.1. Directional spatial wave spectrum
ALS point cloud datasets usually extend over vast distances, thus

making it unfeasible to use such data directly. Hence, the division of
point clouds into several fragments can be an initiative to (i) extract

wave profiles with almost the same length in all directions, (ii) eliminate
the influence of very low-frequency sea level variations and geoid slope
to achieve pure wave profiles (i.e., with Gaussian distribution and zero
mean in all directions), and (iii) keep stable wave direction that may
change over longer distances due to spatial variations in wind regime
and water depth.

Here, the fragmentation was performed by 1 x 1 km squares. Fig. 2
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Fig. 2. a) The reconstructed 1 x 1 m resolution ALS point cloud in terms of SSH values, and b) a sample 1 x 1 km point cloud fragment (the rectangular NS and EW
coordinates are given in the Estonian Lambert-EST97 map projection coordinate system). Black lines mark the wave profile directions that cross the fragment’s center
(the centre is henceforth named a sample point). In ¢), an example wave profile (;7) is shown in the east-west direction (¢ = 90°). Inset d) shows a schematic of grided
ALS data (black dots) and resampling in different directions (red dots).
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sub-plots (a) and (b) show the used ALS dataset and an example frag-
ment, respectively. Sea surface height profiles were then extracted for
directions (denoted ) from 0° to 165° with a 15° step. Note that the
shortest profile (roughly perpendicular to flight direction) is ca 500 m in
length, which is sufficient to derive the peak wavenumber in the study
area. The construction of wave profiles from such SSH data requires the
vertical reference to be transferred from the reference ellipsoid (e.g.,
GRS80) to the sea surface by subtracting the fraction mean SSH (SSH)
from ALS measured instantaneous SSH:

n=SSH — SSH €]

where 7 denotes the wave surface. The mean SSH was determined for all
profiles separately. An example of the derived wave profile is presented
in Fig. 2c.

Possible outliers in the wave records were detected by discarding
data points with a high changing rate (i.e., the difference between 7(x;)
and 5(x;_1), which was estimated over a single wave profile) exceeding

+3-fold standard deviations (estimated separately for each profile). The

discarded wave records were filled in by using spline interpolation.
Moreover, resampling using linear interpolation was employed to in-
crease the sampling frequency of wave records (directions other than
0° and 90°) to keep the peak wavenumber (k) of the 1D spatial spectra
apart from the aliasing frequency. As a result, the minimum sampling
frequency of the used wave records is thus 0.7 m™, which is suitable for
the case study. Note that the Nyquist frequency for this sampling rate is
0.35m’}, corresponding to the wavelength of 2.86 m.

Using the periodogram method (Kawauchi et al., 2009), the spatial
wave spectrum can be determined by employing the derived profiles.
However, it is essential to note here that long enough wave profiles are
required to determine a stable wave spectrum of a homogeneous pro-
cess. Otherwise, the resulting wave spectrum may be unsatisfactory as
two nearby profiles may give highly varying results due to the
randomness of the sea waves.

Before applying the discrete Fourier transform (DFT), it may be
desirable to modify the discontinuities at the records’ two endpoints by
using a cosine taper data window (Liu and Frigaard, 1999):

1 1 X
5(1—005 Oﬂ.x) .OSxS%

Xo

9X,

1.004 Xy <x< 1—0"

W(x)= (2)
X,
1 107 (x — 1—0”) ox,
—[14+cos————|,——<x<Xp

Xo

where X, is wavelength equal to the length of the wave profile (esti-
mated separately for each direction 6). Therefore:

7 =n(x) e W(x) (€))

Note that the sampling interval (6x; i.e., data spatial resolution) and
length of the wave profile differ for each direction. Such a variation
leads to different wavenumber resolutions in the 1D spectra, which
makes it challenging to represent the directional spectrum. Hence, zero
values were added to the two ends of wave profiles to facilitate equal
wavenumber resolution. The number of added zero values to each end
was defined as half of the difference between the required length of each
direction (N) and the length of the obtained wave profiles. The param-
eter N was computed for each direction as follows:

Nr
N=-L
ox

(4)

where Nr is the target length of the wave profile with a sampling interval
of 1 m. Here, a target length of 1200 m was selected based on the min-

Ocean Engineering 266 (2022) 112694

imum length that keeps all data. The DFT for spatial wave records is then
computed for each direction as:

N N
Y, = ’],neﬂk,,,no‘x&x —ox Z rl/,,e’“y’\?m ©
n=1 =1
with
2mm
km*w ym=1,2,...,N ©

where term k is the wavenumber vector with a size of m (note that k =
27/4, where 4 is wavelength). As a result, the one-sided spatial spectrum
is determined as:

2 2
=5——|¥u 7
271N5)c‘ | )

X (k)

Fig. 3 illustrates the derived spatial wave spectrum of fragment
No.20 (refer to Fig. 2 for its location), where the 1D spectra are
computed for 12 directions (values between selected directions were
approximated via linear interpolation). Notice that there appears to be
no difference between the computed wave directions and their opposite
directions (i.e., @ and 0+ 180). Hence, more information is required to
distinguish between these two angles than a single snapshot of the sea
surface (shown in Fig. 2b), such as a meteorological station measured
wind direction in that region. In Section 4, the wind rose of nearby
stations is used to compare and identify the wave direction.

As mentioned above, the short length of wave profiles obtained from
ALS (for example, ca 527 m for 0° and 1000 m for 90° azimuthal di-
rection) is insufficient to reach a stable power spectral density function.
In Fig. 3, one such poor estimate of the directional spectrum is
demonstrated that cannot be interpreted for determining wave param-
eters. Thus, in this study, a more robust approach was developed to
derive the spatial wave spectrum, which relies on augmenting the wave
spectrum by accumulating wave information from parallel profiles
(allowed by the high-resolution ALS point cloud), where the final results
are obtained by averaging periodograms (Bartlett, 1948).

3.2. Enhancement of the directional spatial wave spectrum
Using a single ALS wave profile (in each direction) may not provide

satisfactory results due to the randomness of the sea waves and the
constraint of ALS spatial coverage (recall, in this study, a 500 m wide
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Fig. 3. Spatial wave spectrum of sea waves in various directions for fragment
No.20 (i.e., a 1 x 1 km area).
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data corridor is used). Hence, there is a need to include more informa-
tion about sea surface variations to determine a more reliable spatial
wave spectrum. For this purpose, the spectrum computations were
repeated by selecting random (using random sampling method) sample
points (i.e., elementary events) within a pre-defined data sampling area
of an initial point cloud fragment (e.g., fragment No.20 as shown in
Fig. 2b). In this study, the size of the sampling area was defined as
300 x 300 m (notice the red square in Fig. 4), whereby the area was
centred at the centre of an initial point cloud fragment. This procedure is
demonstrated in Fig. 4 for fragment No.20, where the i-th moving
sample point is selected by random coordinate increments Ay; and Ax;.
In other words, based on the initial point cloud fragment, a new set of
randomly selected moving fragments was defined. Note that the moving
fragments retrieve sample wave records over the whole ALS point cloud
dataset (cf. Fig. 2a), as was described in Section 3.1.

The random sampling was conducted until stable sample size n was
obtained, where n denotes the number of times a spatial wave spectrum
was generated based on a moving point cloud fragment. As a result, a
robust spatial wave spectrum can be obtained with a desirable standard
error (SE) based on the central limit theorem:

X0 =25 4k) ®

An experiment with R = 100 sample sets (where a sample set consists
of n sample points) was constructed to determine the SE and to show the
ability of the method to determine the directional power spectral density
by averaging parallel wave profiles. As the spectrum’s peak X(k;),
associated with the peak wavenumber, has the highest sensitivity and
variability, the maximum SE can be expected to occur in peak wave-
number (i.e., k,). Therefore:

9)

where y is the mean of the estimated 100 values of X(k;). This experi-
ment was conducted for n values from 1 to 1000, as shown in Fig. 5.
Here, the sample points were selected randomly within the area of
300 x 300 m. Alternatively, the sample points can also be selected using
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Fig. 4. An example of a moving fragment (blue square) by picking i-th moving
sample point (with coordinate increments Ay; and Ax; relative to the initial
sample point) within the data sampling area (red square) of an initial target
fragment (black square).
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equal spacing, which requires the determination of an optimal spacing
for all directions. Such a method can be explored in future studies.

The described experiment is demonstrated in Fig. 5a for fragment
No.20 that uses various sample sizes n of the point cloud in the direction
0 = 75°. It can be noticed that the SE decreases rapidly until the sample
size reaches 100 samples, whereby the mean spectrum’s peak appears to
stabilize when n > 100. According to the presented results (also
considering the region and sea state during the ALS survey), the sample
size of 300 can provide a spatial wave spectrum with a SE of less than
0.01 m? e m/rad, which is roughly 5% of the X(k,). Thus, the sample size
of 300 was determined suitable for the current study. In Fig. 5b are
shown (with red colour) all R = 100 generated sample sets’ spectrums
(according to Eq. (8), where n = 300) and the mean of these (with blue
colour). It is apparent that the peak wavenumber (k,) remains similar for
all sample sets, whereas more significant variation can be seen for other
wavenumber values. Note that the experiment was also conducted in
other directions, resulting in similar outcomes. Thus, only the 75° azi-
muth example is shown here.

It is essential to note that to have a meaningful comparison between
SEs associated with various sample sizes n (cf. Fig. 5a), the peak
wavenumber (k,) was selected according to the largest n (i.e., 1000) and
used as a constant to determine the X(k,). Furthermore, due to the
sensitivity of the spectrum’s peak, it is necessary to reduce SE to
determine a stable dominant wave direction. Since the dominant wave
direction also influences neighbouring directions, a large SE may cause
significant variation in various iterations’ determined dominant wave
directions. Therefore, the developed method can provide a solution for
determining homogeneous sea wave condition from ALS data to obtain a
robust spatial wave spectrum.

Since the measurements were conducted on a moving platform, the
spatial spectrum is calculated based on the derived/encountered
wavenumber (k.). Thus, there is a shift between the computed and true
wavenumber due to the Doppler effect (Ak). The wavenumber is cor-
rected by considering aircraft speed (v,) and direction relative to the
chosen wave profile (Walsh et al., 1985):

Ak:dg.tanhkd/k 10

Vg ® COS [i
and

Ak=k, —k an

where d is water depth (roughly 70 m), and y is the angle between flight
and wave direction. The flight speed was approximately 62 m/s, and for
fragment No.20, the flight azimuth was 71.5° (directions may vary
slightly between fragments). Since Ak is small, a two-step estimation can
be performed using computed k (i.e., k.) as a first approximation (Walsh
et al., 1985). Then, a better estimate of k is obtained by Eq. (11). In the
second iteration, Ak is determined by substituting the estimated k into
Eq. (10).

3.3. Frequency wave spectrum

Contrary to the afore-described spatial wave spectrum, the frequency
wave spectrum is used more commonly and is easier to interpret for
engineering applications. In this regard, the conversion from spatial
spectra to frequency spectra can be valuable. Such a conversion can also
enable comparisons with well-proven in situ (such as an offshore buoy)
data, thus allowing validation of the ALS-derived results.

The frequency spectrum S(w) of wave amplitude portrays the dis-
tribution of wave energy at a single point over the angular frequency w.
On the other hand, the spatial spectrum X (k) represents the distribution
of waves at a given time over the wavenumbers k. These two approaches
have different physical senses and rely on different measurement tech-
niques. Hence, to link the two domains (spatial and temporal) of the sea
waves, the dispersion relationship can be used (Goda, 2000):
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Fig. 5. a) Standard error (SE) of the mean spectrum’s peak associated with sample size for fragment No.20 in a selected direction 75°. The SE was determined from
100 sample sets. In b) is shown the associated spatial wave spectrum for n = 300.

w = +/kg e tanhkh

where g is the acceleration of gravity, and h water depth. In deep water
(where h > 0.51), Eq. (12) can be simplified to:

w=1/kg
The well-known relation between the angular frequency @ and wave
period T is:

12)

13)

T=2n/w (14)

Considering the requirement that an equal amount of wave energy
must be contained in the corresponding intervals of Ak and Aw, the
dispersion relationship allows the derivation of the correlation between
the spatial and frequency wave spectra (Bondur et al., 2016) as:
dk(w)

dw

In addition, SWH can theoretically be estimated from the obtained
spectrum:

S(0) =X(k(w)) ® 1s)

SWH =4/mq (16)

where my is the zero moment (the area under the spectral curve):

my= / S(w)dw = / X(k)dk a7
0 0

In this study, the JONSWAP standard wave spectrum (cf. Goda,
2000) was used to compare a nearby buoy observed SWH and peak wave
period to the ALS-derived frequency wave spectrum.

The developed method for obtaining wave parameters from airborne
LiDAR point cloud is summarized in Fig. 6 flowchart.

4. Results

The distribution of wave energy in various directions of each frag-
ment was determined according to the robust wave spectra method
described in Section 3.2. Two nearby wind gauges (Vaindloo and Porvoo
Kalbadagrund stations; cf. Fig. 1 for their locations) were used to
distinguish between the opposite directions of waves (as indicated in
Section 3.1). Fig. 7a illustrates the spatial wave spectrum for the point
cloud fragment No.20 in various directions from 0° to 165° with an
increment of 15°, where it is aligned with wind direction (Fig. 7b). It can
be observed in Fig. 7a that the peak of wave energy occurred in the
direction of about 75°, which represents the dominant wave direction. A
more detailed dominant wave direction of 72° can be estimated by

Flight trajectory and point cloud computations using
standard workflow (cf. Gruno et al., 2013; Julge et al., 2014)

!

Sea surface reconstruction via spatial interpolation
(cf. Varbla et al., 2021)

!

Segmentation of the Wave parameters:
reconstructed sea surface SWH, peak period, etc.

(Fig. 2a) T
i

Frequency wave

Fragment selection spectrum S(w) by Eq. 15
(e.g., No.20) i
{ Spatial wave spectrum X(k)

Extract wave profiles n(x)
from various directions

!

Determine spatial wave
spectrum y (Fig. 3)

by Eq. 8, and correct the
effect of Doppler shifting

Sample size
n=300

Pick the next random
sample point within the
sampling area (Fig. 4)

Fig. 6. Schematic flowchart of the method for retrieving spatial wave spectrum
from an airborne LiDAR point cloud.

fitting a curve on the spectrum’s peaks (dashed line in Fig. 7a). This
direction almost agrees with the Suomenlahti wave buoy direction of
86.5° (sourced from: https://ilmatieteenlaitos.fi; notice in Fig. 1 that the
buoy is roughly 40 km from the profile) and 82.5° determined by the
WAM model at the time of the ALS campaign. The ALS-derived peak
wavenumber k is 0.31 rad/m, and the corresponding peak wavelength
(4 = 2r/k) is 20.6 m.

As discussed in Section 3.3, the dispersion relationship enables the
transformation of the spatial wave spectrum to the frequency spectrum.
Fig. 8a presents the directional frequency wave spectrum corresponding
to the spatial spectrum in Fig. 7a. It can be observed that the peak fre-
quency of the existing wave condition is well captured. The peak fre-
quency and period of the dominant wave direction are 1.73 rad/s and
3.63 s, respectively. Buoy observed peak period of 3.65 s and the model-
obtained 3.56 s are in good agreement with the ALS-derived value.
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Fig. 8. a) Directional frequency wave spectrum of fragment No.20 in various directions and b) comparison between ALS-derived wave spectrum and standard wave
spectrum of the Suomenlahti wave buoy and the model-obtained wave parameters.

In Fig. 8b, the ALS-derived frequency wave spectrum is compared to
the JONSWAP standard wave spectrum related to the buoy measured
and WAM model determined SWH and peak period of the dominant
wave direction. In general, there appears to be a good agreement

between them. The SWH computed from fragment No.20 in the domi-
nant direction (03 = 72°) is 0.60 m (cf. Eq. (16)). This value appears to
agree well with wave heights (cf. Fig. 1) derived by an alternative
approach that reconstructs the waves’ geometry (Varbla et al., 2021),

Fragment No.
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Fig. 9. The derived dominant wave directions and wavelengths (1) of the ALS point cloud fragments (see Fig. 2) along with bathymetry data (GEBCO_2020; sourced

from: https://gebco.net).



V. Jahanmard et al.

suggesting that the obtained SWH represents the actual geometry well.
The corresponding values from buoy observations and the WAM model
are 0.65m and 0.64 m, respectively. The slight discrepancy between
ALS-derived value and buoy observations could be caused due to the
distance between the buoy and the flight trajectory (refer to Fig. 1).
Fig. 8b also shows that the wave direction is well-identified relative to its
opposite direction. Due to Doppler shifting and flight direction, if the
opposite direction were selected, the measured peak period would
deviate from the buoy and WAM model by moving to the left.

The derived dominant wave directions and wavelengths along the
flight trajectory are presented in Fig. 9. As can be seen, the dominant
directions fluctuate between fragments. Such differences could be
caused by a specific physical phenomenon (such as variation in the
wind, currents, or water depth), or computational errors, which require
further research. The estimated peak wavelengths vary between 17.9
and 25.1m along the trajectory. On average, the wavelengths are
around 21.3m.

Fig. 10 compares the ALS-derived wave parameters with the hourly
WAM wave model (spatial resolution of one nautical mile). The model
data were extracted at the coordinates of the fragments’ centres at 9:35
UTC (i.e., the ALS flight time) via bilinear interpolation. In addition, the
modelled wave parameters at the location of the Suomenlahti wave
buoy are also compared. The uncertainty of the hourly model data
relative to the buoy observations during 24 h (i.e., on 10 May 2018) is
also marked in the figure. These values for the peak period, SWH, and
dominant wave direction are 0.23 s, 0.05m, and 7.4°, respectively. The
comparison also reveals a mean difference between modelled wave
parameters and observations, which equal correspondingly —0.1s,
—0.12m, and 10.0°.

According to the comparison in Fig. 10, the LiDAR-based method
appears to be well supported by the modelled estimates along the flight
trajectory with a mean difference (MD) and residual standard deviation
(ResidSD) of a) 0.2s and 0.1s for the peak period, b) —0.09 m and
0.03m for the SWH, and ¢) —0.5° and 10.0° for dominant wave
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Fig. 10. Comparison between ALS-derived, buoy observed, and WAM model-
based wave parameters: a) peak period, b) significant wave height, and c)
dominant wave direction. The vertical bars indicate the estimated uncertainty
of the WAM model at the location of the wave buoy.
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direction, respectively (cf. Table 1). Note that the ALS-derived results
are more scattered than the WAM model data because the former is
based on instantaneous observations that contain sampling variation.
Since the ALS data represents an instantaneous sea state, it can be
concluded that ALS-derived data products are more sensitive to local
conditions and hence more realistic. Also, since ECMWF’s ERA5 wind
model with an hourly output and spatial resolution of 0.28° (i.e., 16.8
nautical miles) is used to force the wave model, the model variation
appears smoother than ALS results due to the limitation of the wind
model resolution (Lindgren et al., 2021; Hersbach and Dee, 2016). The
values of Fig. 10 are also listed in Table 1 and compared additionally
with the direct geometrical method provided by Varbla et al. (2021).
The results of Varbla et al. (2021) are assumed to represent mean waves.
For comparability, the wave heights and periods were transformed to
SWH (SWH = 1.56 ¢ H) and peak period (Tp ~ 1.2 e T), respectively.

Finally, Fig. 11 shows a comparison between ALS-derived spectrum
and model-based standard wave spectrum for fragments No.13 and 28,
suggesting in general a rather good agreement. According to Fig. 10, the
retrieved spectrum shows the best SWH match with the wave model for
fragment No.13, while Tp agrees poorly. On the other hand, notice that
the opposite is true for fragment No.28 (cf. Fig. 10).

5. Discussion

This study demonstrated that different methods can be employed to
obtain parameters and power spectra of sea waves using an ALS-
measured 3D point cloud. One of the challenges of using ALS data
with existing wave theory has been the spatial limitations. For instance,
at best, ALS can provide accurate along-track data where the across-
track data corridor is at the scale in the order of a kilometre. Never-
theless, a scale in the order of 10 km of the random field of surface waves
is typically required to satisfy statistical stability. This study showed that
a spatial wave spectrum could be obtained utilizing the periodogram
method and discrete Fourier transform (using a snapshot of SSH in a
1 x 1km area). The results, however, proved to be unsatisfactory and
unstable due to the randomness of the sea surface (Fig. 3). Note that PSD
is meant for homogenous wave profiles.

Therefore, a robust spatial wave spectrum method was developed
that uses random sampling for selecting sample points within a pre-
defined data sampling area to determine a more reliable spatial wave
spectrum (see Section 3.2). It was revealed (Fig. 5a) that the standard
error improves significantly by increasing the sample size. This allowed
examining the homogeneity condition and retrieval of long enough
wave profiles to reach a stable power spectral density function for ALS-
measured point clouds. The random sampling method involves more
information about the desired irregular random sea waves by adding
parallel wave profiles instead of increasing the spatial length of the
profile. Note that the sample points may also be selected using equal
spacing and this method can be explored in future studies.

In this study, a sample size of 300 was estimated sufficient to achieve
a standard error of less than 5% of the spectrum’s peak in any direction.
Hence, the directional spatial wave spectrum was computed by
employing a sample size of 300 (see Fig. 7), which in comparison to
Fig. 3, provides an improved stable spectrum utilizing limited spatial
coverage of ALS data. Such a directional spectrum can allow the
detection of the dominant wave direction, which corresponds to the
maximum wave energy. Similarly, the peak wavelength of around
20.6m in the dominant wave direction could be detected (see an
example in Fig. 7).

The computed spectrum of the dominant wave direction was vali-
dated using data from a nearby buoy. Since ALS and buoy use different
measurement techniques resulting in different physical quantities, the
spatial wave spectrum of ALS data was transformed to the frequency
wave spectrum using the dispersion relationship. Such a transformation
made the two datasets comparable (Fig. 8). The ALS-derived significant
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Table 1
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Obtained wave parameters: peak period (s), significant wave height (m), and dominant wave direction (°) by using the presented method, WAM model, and direct
geometrical (Varbla et al., 2021) method. The MD =+ ResidSD of each dataset with respect to (w.r.t.) other sources are also presented.

No. Latitude Longitude ALS-derived WAM model Varbla et al. (2021)

T, SWH 04 T, SWH 04 T, SWH 0a
01 59.8070 25.7622 3.9 0.57 71.0 3.6 0.66 78.9 2.8 0.72 81.5
02 59.8099 25.7802 3.7 0.55 88.0 3.6 0.66 79.2 2.9 0.77 81.2
03 59.8126 25.7982 3.8 0.53 71.0 3.6 0.65 79.4 29 0.72 76.7
04 59.8155 25.8162 4.0 0.56 82.0 3.6 0.65 79.6 2.9 0.70 77.8
05 59.8184 25.8341 3.8 0.54 59.0 3.6 0.65 79.9 2.8 0.67 77.7
06 59.8211 25.8521 3.7 0.54 90.0 3.6 0.65 80.1 3.0 0.81 75.4
07 59.8238 25.8701 4.0 0.56 97.0 3.6 0.65 80.4 2.9 0.80 72.9
08 59.8266 25.8881 3.8 0.58 74.0 3.6 0.65 80.6 2.9 0.75 75.9
09 59.8291 25.9061 3.8 0.58 78.0 3.6 0.65 80.8 3.0 0.81 75.4
10 59.8317 25.9240 3.8 0.60 71.0 3.6 0.65 80.9 3.0 0.81 77.9
11 59.8344 25.9420 3.8 0.60 90.0 3.6 0.65 81.1 3.1 0.84 77.9
12 59.8373 25.9600 3.8 0.61 77.0 3.6 0.65 81.3 3.0 0.83 79.3
13 59.8397 25.9780 3.8 0.62 78.0 3.6 0.65 81.5 3.0 0.78 80.5
14 59.8426 25.9960 3.8 0.62 79.0 3.6 0.65 81.6 29 0.78 77.3
15 59.8454 26.0140 3.8 0.61 81.0 3.6 0.65 81.8 3.0 0.86 79.1
16 59.8485 26.0321 3.9 0.57 91.0 3.6 0.65 82.0 3.0 0.78 83.4
17 59.8514 26.0501 3.7 0.59 74.0 3.6 0.64 82.1 3.1 0.84 79.9
18 59.8540 26.0681 3.7 0.60 64.0 3.6 0.64 82.2 3.1 0.84 77.5
19 59.8569 26.0861 3.8 0.59 60.0 3.6 0.64 82.4 3.0 0.77 81.8
20 59.8598 26.1041 3.6 0.60 72.0 3.6 0.64 82.5 3.0 0.78 81.4
21 59.8617 26.1221 3.6 0.56 85.0 3.6 0.64 82.6 3.0 0.81 83.7
22 59.8635 26.1401 3.6 0.55 87.0 3.6 0.64 82.7 3.1 0.78 85.5
23 59.8647 26.1580 3.6 0.55 83.0 3.5 0.64 82.8 2.9 0.73 86.6
24 59.8660 26.1760 3.5 0.55 81.0 3.5 0.63 82.8 2.9 0.81 85.6
25 59.8675 26.1939 3.7 0.53 62.0 3.4 0.63 82.9 2.9 0.70 83.9
26 59.8690 26.2119 3.7 0.53 76.0 3.4 0.63 83.0 2.9 0.72 83.3
27 59.8707 26.2298 3.6 0.52 91.0 3.4 0.63 83.0 3.0 0.72 85.5
28 59.8722 26.2478 3.4 0.50 72.0 3.4 0.63 83.1 29 0.70 83.5
29 59.8740 26.2658 3.6 0.51 83.0 3.4 0.62 83.2 2.9 0.70 85.9
30 59.8757 26.2837 3.5 0.50 92.0 3.4 0.62 83.3 29 0.69 84.2
31 59.8772 26.3017 3.4 0.51 93.0 3.4 0.62 83.3 2.8 0.66 89.0
32 59.8784 26.3197 3.5 0.50 94.0 3.4 0.62 83.4 3.0 0.77 88.5
33 59.8799 26.3376 3.6 0.50 79.0 3.4 0.62 83.5 2.9 0.70 89.2
34 59.8816 26.3556 3.5 0.50 97.0 3.4 0.61 83.5 2.9 0.70 88.3
35 59.8826 26.3735 3.7 0.49 88.0 3.3 0.61 83.6 29 0.63 88.5
36 59.8839 26.3915 3.6 0.50 92.0 3.3 0.61 83.6 29 0.70 91.0
37 59.8845 26.4094 3.6 0.49 90.0 3.2 0.60 83.7 2.9 0.67 91.5
38 59.8859 26.4274 3.7 0.48 93.0 3.2 0.60 83.7 2.6 0.63 92.4
39 59.8885 26.4454 3.6 0.46 95.0 3.2 0.60 83.8 2.8 0.63 91.2
Mean of the 39 fragments 3.7 0.55 81.5 3.5 0.64 82.0 2.9 0.75 82.8
w.r.t. ALS-derived results - - - -0.2 0.09 0.5 -0.8 0.20 1.2

+0.1 +0.03 +10.0 +0.2 +0.04 +9.3

w.r.t. WAM model 0.2 —0.09 —-0.5 - - - —-0.6 0.11 0.7

+0.1 +0.03 +10.0 +0.1 +0.05 +4.1
w.r.t. wave buoy (cf. Fig. 1) 0.0 —-0.10 -5.0 -0.2 —-0.01 —4.5 -0.7 0.10 -3.7
Ty SWH 04 +0.1 +0.04 +10.4 +0.1 +0.02 +1.4 +0.1 +0.06 +5.1
3.7 0.65 86.5

wave height and peak wave period were 0.60 m and 3.63 s, respectively,
whereby the corresponding buoy-observed control values were 0.65 m
and 3.65s. The measured wind speed (7 m/s on average) and direction
(from the east) were quasi-steady 24 h before the ALS campaign. These
results reveal a good agreement, given that there was a distance of about
40 km between the buoy and ALS flight trajectory (Fig. 1).

The results were also compared with the WAM model along the flight
trajectory (Fig. 10). This comparison represents an almost good agree-
ment between the model and ALS-derived wave parameters with a
(spatial) mean difference of 0.09m for the SWH, 0.2s for the peak
period, and 0.5° for the dominant wave direction (see Table 1). The most
variation between the ALS results and the WAM model appears in the
dominant wave direction estimates. Hence, it is essential to consider that
the WAM model provides generalized information about the wavefield,
whereas more realistic ALS-derived results are more sensitive to local
conditions representing instantaneous sea state. Note also the difference
between the WAM model and buoy data (at the buoy location), which is
0.10 m for the SWH, 0.9 s for the peak period, and 2.2° for the dominant

wave direction (cf. Fig. 10).

In Varbla et al. (2021) study, the parameters of surface waves were
derived directly from the ALS-measured sea surface geometry. The
determined significant wave heights (for the dataset also used in this
study) were estimated to be around (on average) 0.75m, peak period
2.9, and wave directions 83°. Statistical comparisons with the results of
this study are presented in Table 1. Comparison with the developed
method shows systematic differences in significant wave heights and
peak periods of around 0.20 m and 0.8 s by average, respectively, which
could be due to the different methods employed. However, it should be
noted that the significant wave heights estimated by the Varbla et al.
(2021) direct method and the method employed in this study agree
equally well with the wave buoy and WAM model, although the sys-
tematic differences are opposite signed (cf. Table 1). Also, the wave
directions estimated by Varbla et al. (2021) appear to show slightly
better agreement with the wave buoy and WAM model than this study’s
results.

In addition to the wind-generated surface waves, Varbla et al. (2021)
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Fig. 11. The ALS-derived spectrum compared to the model-based and buoy-
obtained (cf. Fig. 1 for buoy location) standard wave spectrum for fragments
No.13 and 28 on a logarithmic scale.

showed that the ALS measurements for another nearby flight trajectory
also detected lower frequency swells in the background. Most interest-
ingly, these swells with wavelengths of approximately 30-40 m and
wave heights of 0.05-0.12m had a wave direction that differed from
surface wind waves by roughly 40°. Since the portion of swell waves in
this dataset is small, these waves are not clearly detectable in the wave
spectra. However, two peaks in Fig. 8b around the frequency of 1.1 rad/s
suggest the existence of these waves. The first and second swell waves
are identified in the spectra with directions from around 195° and 165°
(directions are established based on the Doppler shifting and relation to
the peaks in Fig. 8b), where the wavelengths are 57 m and 157 m,
respectively. The WAM model provides the direction and wave height of
the primary swell wave to be 221° and 0.01 m, respectively, and the
secondary swell wave height to be approximately zero.

The developed approach provides the directional PSD of the sea
waves by considering the entire wave frequency content using the
random sampling method, while the direct method suggested by Varbla
et al. (2021) yields wave heights and -lengths through data filtering in
predefined directions, whereas wave randomness was not considered. In
the direct method, the desired wave directions are determined by
relying on visual inspection.

Hwang et al. (2000a, 2000b) presented a wave spectrum utilizing 2D
FFT with ALS data over an area of around 0.25 x 1.5 km. Comparatively
speaking, the developed method detects the dominant wave direction by
addressing the ALS spatial coverage limitation (which results in insuf-
ficient lengths of wave profiles) using a random sampling technique,
while Hwang et al. (2000a, 2000b) combined nine segments (i.e.,
0.25 x 14 km, where the flight had been aligned approximately with the
wave direction) to compute the one-dimensional wavenumber spec-
trum. They also examined buoy data to show that the wave climate was
quasi-steady during the flight, making the spatial wave spectrum
determination feasible. In the present study, the directional wave
spectrum is obtained for each fragment (which allows us to determine
wave parameters such as wave direction) regardless of the angle be-
tween the dominant wave and flight directions. Thus, the developed
approach presents significant methodological improvements.

6. Conclusions
This study showed that it is possible to retrieve frequency content

and power spectral density from ALS-measured 3D point cloud of SSH by
using the periodogram method and a random sampling approach. Wave
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parameters, such as the dominant wave direction, significant wave
height, and peak wave period, can be obtained. For instance, in the
presented example of fragment No.20, the measured dominant wave
direction was 72°, significant wave height 0.60 m, and peak wave period
3.63 s. Compared to the other methods utilizing ALS (e.g., Hwang et al.
(2000a, 2000b) or a direct reconstruction of the wavefield geometry),
the method proposed in this study showed that the procedure could
retrieve directional wave spectrum accurately for each segment of ALS
point cloud stand-alone, which yields the dominant wave direction and
other wave parameters. The random selection approach was used in this
study to examine the assumption that the wave field is homogeneous
over spatial scales without involving other data sources. Future studies
can explore using non-random equal spacing selection instead of
random selection to reduce the complexity of the method.

Although ALS technology can be somewhat expensive compared to
some alternative sensors (e.g., wave buoys, pressure sensors, satellites),
it has significant benefits, such as portability, fast 3D data acquisition
over vast distances, and most importantly, the potential to provide dense
point cloud datasets with high measurement accuracy. The ALS tech-
nology could thus be of interest to industry, government, and research.
The 3D data capture of the spatial domain also allows a deeper insight
into a better understanding of the surface ocean waves, which is
necessary for our changing climate and advances in marine engineering
and shipping.
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This study demonstrates the use of machine learning strategies to examine and quantify the bias that often exists
in sea level data from hydrodynamic models. The sea level bias is considered to consist of two components: (i)
hydrodynamic modelling errors due to numerical modelling limitations, and (ii) a bias related to the difference
between vertical datums. The goal is to accurately quantify these components, enabling the determination of
absolute dynamic topography from coastal to offshore areas. The method is tested in the Baltic Sea employing a
synergy of hydrodynamic models, tide gauges, and satellite altimetry.

Firstly, a multivariate deep neural network approach inspired by WaveNet is used to identify and quantify
hydrodynamic modelling errors. A wrapper-type sequential feature elimination algorithm identifies seven rele-
vant variables out of the initially considered sixteen for training the deep leaning model in the Baltic Sea region.
The model is trained using sixteen tide gauge records. As a result, the model predicts hydrodynamic modelling
errors with a root mean squared error of 3.2 cm and 3.4 cm, and an R-Squared value of 0.82 and 0.77 for the
training and test sets, respectively. Comparing the predicted and observed errors reveals localized areas where
other sea level dynamics, such as seiches in the Gulf of Riga, may be of interest but were not incorporated into the
deep learning model. Secondly, once the hydrodynamic modelling errors are quantified, the method allows for
the determination of the vertical reference bias by comparing known and reliable observations, such as tide
gauge and satellite altimetry data. The vertical reference bias is calculated to be 18.1 + 2.9 cm.

The method significantly improves the accuracy of dynamic topography, resulting in an average root mean
squared error of 4.1 cm compared with satellite altimetry and a correlation of 0.98 compared with tide gauges.
This approach presents a novel way to integrate modelled and observed dynamic topography using machine
learning techniques for enhancing our understanding and its applications.

1. Introduction

The synergy of various sources of sea level data, such as tide gauges
(TG), satellite altimetry (SA), hydrodynamic models (HDM), Global
Navigation Satellite Systems tide buoys, and airborne laser scanning, is
vital to understand the marine environment in the expanding blue
growth economy. This synergistic combination of diverse data sources
allows determination of accurate and precise sea level from coast to
offshore. This accuracy and consistency are of utmost importance for a
wide range of applications, including navigation (Orseau et al., 2021),
climate change (Magnan et al., 2022; Bian et al., 2023), engineering
(Bitner-Gregersen et al., 2013), coastal management (Tebaldi et al.,
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2021; Parker et al., 2023). The fusion of these sea level sources is not
that straightforward, for several limitations exist such as: (i) different
spatial and temporal resolutions; (ii) different vertical reference datums
are utilized, and (iii) different errors are present based on the method of
data collection (Jahanmard et al., 2022).

Hydrodynamic models tend to ideally be one of the best sources,
especially in their extensive spatial and temporal data coverage. How-
ever, they are not perfect, and their major shortfalls can be grouped into
two main categories. Firstly, HDMs often use an unknown/unspecified
vertical datum, which leads to a vertical reference bias when compared
to other sources, such as TG and SA data (Slobbe et al., 2013; Jahan-
mard et al., 2022). Secondly, HDMs are based on mathematical
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equations that rely on various inputs, models (e.g., atmospheric, river
discharge), assumptions, and approximations (e.g., boundary condi-
tions, parametrization, and discretization techniques).

The reference bias and modelling error are however quite different in
nature. For simplicity, several studies have explored the HDM sea level
bias as one bias component. For instance, Jahanmard et al. (2021, 202.2)
and Mostafavi et al. (2023) showed that by using TG data as the realistic
‘ground truth’ along with interpolation methods, it is possible to derive
the bias at the coastal areas and extend it to the offshore, where the
offshore domain was validated by SA observations. These results were
promising with an accuracy of within 5 cm being established. It, how-
ever, did not exactly quantify the vertical reference bias of models or the
bias associated with the modelling errors. Note that the method
employed in these previous studies was mainly possible because an
existing dense network of geoid-referenced TGs. The geoid, an equipo-
tential surface of Earth’s gravity field, plays a key role in linking and
unifying all data sources, enabling the derivation of dynamic topog-
raphy (DT). As a result, DT is the instantaneous sea level relative to a
particular geoid surface and represents a realistic quantification of water
level variations (more details in Section 2).

This study aims to explore the discrepancies between HDM-based sea
levels and observations in both time and space in a deeper manner. In
this regard, we categorized them as mentioned above into two compo-
nents that consist of HDM modelling errors and a bias resulting from the
difference in vertical reference datums. In this study, the former will be
determined using machine learning methods and TG records, and the
latter will be obtained by comparing SA observations and the corrected
HDM. The reference bias enables the unification of the vertical reference
surfaces of the data sources for further integration and investigations.

Recently, machine learning strategies have been widely employed in
various ocean applications, including data assimilation, forecasting, and
gap filling (Brajard et al., 2020; Zhang et al., 2020; Arcucci et al., 2021;
Meng et al., 2021; de Siqueira and de Moraes Paiva, 2021; Buizza et al.,
2022; Cheng et al., 2023). In this study, a deep learning (DL) model is
employed to predict HDM modelling errors, which utilizes stacks of
dilated causal convolutional layers inspired by WaveNet (Oord et al.,
2016). Various DL structures, including different configurations of the
long short-term memory (LSTM) and other recurrent neural network
(RNN) models (Hochreiter and Schmidhuber, 1997; Connor et al., 1994;
Che et al., 2018), were tested for this application. Notably, the causal
convolution outperformed the others in terms of performance. The ad-
vantages of the selected model include learning in the temporal
dimension while maintaining temporal causality between input vari-
ables and output, as well as more efficient capture of long-range de-
pendencies in data compared to other tested models. This approach
allows us to investigate the frequency contents of HDM errors and
discover causal relationships between HDM errors and input variables.
Also, as TG records are considered the most reliable time series for
representing the temporal variation of sea level, the DL model is trained
using TGs. However, the spatial sparsity of TG stations hinders feature
learning over space and the application of spatial convolutions. Hence, it
is necessary for the DL model to generalize effectively over the spatial
dimension. This can be attained by carefully selecting appropriate
training and test sets and ensuring the model’s robustness to spatial
variations during the training process.

Once the HDM modelling errors have been predicted, the corrected
HDM is determined by mitigating the predicted errors from the original
HDM sea level. Thus, the vertical reference bias can be determined by
comparing the corrected HDM and SA data, where SA data has been
corrected for a particular geoid model. SA data has been proven to be an
accurate and reliable source of absolute sea level measurements from
coastal to offshore areas (Abdalla et al., 2021).

Our study aims to accomplish the following objectives: (i) intro-
ducing a DL model to predict the HDM errors, resulting in the correction
of HDV, (ii) identifying the important input variables that influence the
error prediction, (iii) determining the reference bias between the

Ocean Modelling 186 (2023) 102286

corrected HDM and observations using both SA and TG data, and (iv)
conducting a comparative assessment between data sources to identify
both the consistencies and inconsistencies. The method will be tested
using the Nemo-Nordic model (Hordoir et al., 2015, 2019; Karna et al.,
2021) over the Baltic Sea.

The study area is ideal for this examination due to its dense network
of TGs with a common geoid-based Baltic Sea chart datum BSCD2000
(Schwabe et al., 2020). In addition, the availability of a high-resolution
geoid model NKG2015 facilitates the derivation of SA-based dynamic
topography (Agren et al., 2016). The land uplift model NKG2016LU is
also utilized to adjust the relative TG readings to the common reference
epoch of 2000.0 (Vestgl et al., 2019). Note that the method can be
applied to other regions worldwide in a similar manner.

The present paper is organized as follows. The background theory is
presented in Section 2, then the method is outlined in Section 3. Next,
the presented method is employed for an application in Section 4, and
the results are presented in Section 5. Finally, a brief summary concludes
the paper.

2. Background theory

Hydrodynamic models typically lack a well-defined vertical refer-
ence (Slobbe et al., 2013; Jahanmard et al., 2022). Consequently, the
first question queried is which reference surface is being used to model
sea levels. HDMs are typically set up using spherical coordinates (lati-
tude ¢, longitude 2, vertical component); however, regardless of the
specific vertical coordinate system employed, there is an implicit ver-
tical coordinate z in the model. It is important to note that surfaces of
constant z do not accurately reflect distance from the Earth’s centre.
Instead, they represent surfaces of constant geopotential W (Hughes and
Bingham, 2008). Therefore, we can use the term "dynamic topography"
to refer to the modelled sea levels (DTypy).

Note that HDM'’s reference surface is frequently misconstrued as
coinciding with the mean sea surface (MSS) (Slobbe et al., 2013).
Indeed, the model’s vertical reference surface can coincide with a geoid
model, which is determined through the use of gravity data and the
application of Stokes’ formula. The separation between MSS and a sur-
face of constant geopotential (i.e., the geoid surface) represents the
mean dynamic topography (MDT), which allows for the computation of
surface geostrophic currents.

A more accurate implementation of geoid geometry in HDMs results
in differences at the 0.5 % level and is not a significant source of error in
modelling (Kantha and Clayson, 2000; Hughes and Bingham, 2008).
Another source of error in HDMs is the discrepancy in vertical datums
used for height parameters, such as bathymetry and open boundary sea
levels. This issue is addressed through an extensive calibration and
validation process (Cea and French, 2012). Additionally, HDMs can
contain errors stemming from topography, computational errors, time
steps and modelling discretization, limitations in model resolution and
parameterization schemes, and uncertainties in boundary conditions
and forcing inputs (Mardani et al., 2020).

In this study, we aim to perform post-processing HDM-derived sea
levels to minimize the level of errors, and then apply vertical referencing
to reduce the HDM’s reference surface to a well-defined geodetic
reference frame. By considering DT as the ground-truth dynamic
topography that is obtained from a reliable source (e.g., TG, SA), the
following relation can describe the HDM-derived dynamic topography:

DT (¢, A,t) = DTypy (@, A, 1) — E(, 4,1) (D)

where E is the discrepancy between the modelled DT and the ground-
truth sea level, which includes both the HDM modelling errors and a
constant bias resulting from differences in zero levels between the
HDM’s reference surface and a particular geoid surface. Hence, E should
be divided into two terms as follows:
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E(p,A,t) = €(@,A,1) + RefBias 2)

where ¢ is the HDM modelling error, which vary over time and space.
This term occurs due to errors and limitations in the modelling. The
second term, RefBias, is a constant value that is the difference between
the geopotential surface of the HDM and a particular geoid model used
for the observations. In this study, the former term will be addressed by
employing a DL model to predict the HDM errors based on the TG
readings (Section 3.1), and the latter term will be tackled through a
comparison between the corrected HDM and SA data (Section 3.2). Note
that TG readings, used as ground-truth sea level for training the DL
model, may contain errors and biases compared to the actual reality.
However, the DL model is able to mitigate the errors through its
generalization ability along with using adequately long time series from
multiple locations.

Fig. 1 shows a schematic view of the interrelation between data
sources and parameters used. Note that a stable and common vertical
reference surface is required to make various data sources comparable in
terms of absolute dynamic topography (Jahanmard et al., 2022). In this
regard, computing RefBias and utilizing geoid-referenced observations
can make everything consistent for combining sea level measurements
from different sources.

The method for predicting the HDM errors and referencing HDM to a
common vertical frame with other observations was investigated in the
Baltic Sea region. This semi-enclosed sea provides an ideal study area
due to the availability of the Nemo-Nordic model, a dense network of
TGs with a common geoid-based vertical reference datum, a high-
resolution geoid model NKG2015, and an accurate postglacial land up-
lift model NKG2016LU. The Baltic Sea has frequently served as a
research site for investigating global climate and environmental
changes, benefiting from extensive long-term marine and land-based
monitoring programs (Reusch et al., 2018). This area is classified as
low-salinity brackish water with a salinity range between 5 and 7 PSU,
which is influenced by freshwater inputs from river runoff and net
precipitation, as well as the exchange with saline water from the North
Sea (Kniebusch et al., 2019). In addition, the coastal areas in this region
may experience the formation of ice cover during winter.

There are four main mechanisms that cause currents in the Baltic Sea:
wind stress on the sea surface, sea level atmospheric pressure gradient,
horizontal density gradient resulting from temperature and salinity
differences, and tidal forces. In addition, the shallow depth, averaging
ca. 54 m, results in a notable damping effect on currents due to bottom
friction (Soomere and Quak, 2013). The impact of astronomical tides on
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Fig. 1. A schematic diagram of interrelation between different data sources,
hydrodynamic parameters and vertical reference surface.
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the Baltic Sea is generally insignificant because of its limited
co-oscillation with the open ocean. Nevertheless, locally generated tides
may still contribute, and under resonance conditions, the resulting
tide-induced sea level variations could become noticeable (Weisse et al.,
2021). The Baltic Sea consists of several basins with several periodic
dynamical processes in time scales from 1 h to 1-2 days, including
seiches (less than 40 h) and inertial oscillations (Jonsson et al., 2008;
Soomere and Quak, 2013). In the upcoming sections, we will provide a
detailed explanation of our methodology applied in this study area.

3. Method

In this section, we describe the methodology employed for predicting
the HDM modelling error using a multivariate DL model and the
determination of the vertical reference bias (RefBias). In this regard, we
used a multivariate time series prediction with the causal convolutional
network to estimate the HDM modelling error ¢ with respect to the TG
series, for which the formulations and the DL model used are described
in Section 3.2. The input variables are represented in Sections 4.1 and
4.2. The determination of the RefBias is described in Section 3.3, and the
application of the present method and its evaluation are explained in
Section 3.4. Fig. 2 shows the flowchart of this study.

3.1. HDM modelling error

Tide gauges provide continuous and high-frequency sea level mea-
surements, and they are the most reliable and accurate estimate of sea
level variations (Woppelmann et al., 2006). Consequently, comparing
hourly HDM data with TG records at station locations enables the
identification of high- and low-frequency HDM errors € with respect to
observed sea levels. Although TG records provide enhanced temporal
resolution, they are spatially scattered and unevenly distributed. On the
other hand, SA observations offer more satisfactory spatial coverage,
especially in offshore areas. Nevertheless, their repeat cycles (e.g., 27 for
Sentinel-3A) are relatively large to effectively capture high-frequency
HDM errors.

It should be noted that TGs typically measure water levels relative to
nearby tide gauge benchmarks, which are connected to national height
systems. These benchmarks may be either part of the height reference
network or only connected imprecisely (Varbla et al., 2022). Therefore,
TG records may contain biases from vertical datum shifts or lack a
precise vertical reference unification between countries or communities.
To minimize this bias in our HDM error computation, the temporal mean
of differences between HDM and TG records for the entire time period at
each station (Bias) should be eliminated from the HDM error. As a result,
the HDM error €, which serves as the target values for DL training, is
determined for the i-th station as follows:

[ TG records (0Tr) | HDM (DTypnr) ‘

‘ HDM errors ¢ (Target) |

Variables (x) |

|

Trained DL Model
& = DLModel(x)

Corrected HDM
SA data (DTs) DTpm (9,2, t)
Determination of RefBias

Vertical referencing HDM to a common vertical
datum with observations, DTyga? (9,4, )
3

| Evaluating the corrected HDM, and highlighting ‘

Train DL model and | __J_
hyperparameter tuning

—

i

ies between datasets

Fig. 2. Flowchart of the methodology for HDM correction and vertical refer-
encing to a common vertical datum as used for SA and TG observations.
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&i(t) = (DTupsarc, (1) — DTrg, (1)) — Bias; 3)

where i indicates the index of stations, DTypm@rtc is the HDM sea level
series at the TG station, and obtained as follows:

DTypuar, (t) = median(H; (¢, 4)-DTupu (¢, 4, 1)) (€]

where H; is a binary matrix with the same size as the HDM grid, which is
used to select HDM data within a small radius (e.g., 5 km) around the i-th
station. In this regard, the median operator is applied to average the
selected values of the HDM around the TG station. The same H is also
applied to the input variables, enabling the extraction of variables at the
TGs’ locations for DL model training process.

In Eq. (3), removing the Bias from the HDM error ¢ is justified
because the reference surface of HDMs is generally stable (Afrasteh
et al., 2021, 2023). Even a slight erroneous tilt in the HDM’s vertical
reference can lead to significant water fluxes that must be in equilibrium
with open boundary inputs. Therefore, these artificial fluxes can cause
instability in modelling, which modelers usually remedy through model
calibration.

3.2. Utilizing deep learning model for predicting HDM errors

The HDM error ¢ is expected to consist of different components that
are most likely to be predictable both in time and space. Hence, pre-
dicting modelling errors is possible to investigate through convolutional
neural networks that have been successfully applied in various appli-
cations, such as reconstructing sea surface dynamics (Fablet et al.,
2023), oceanic eddy detection (Du et al., 2019), predicting sea levels
(Liu et al., 2020; Rajabi-Kiasari et al., 2023), and forecasting wave fields
(Bai et al., 2022). In this study, we utilized a DL model with temporal
dilated causal convolution layers inspired by WaveNet (Oord et al.,
2016), which is also employed in a wide range of fields, such as ocean
wave height prediction (Lou et al., 2022), wind speed forecasting
(Rathore et al., 2021), and nonlinear system identification (Yuan et al.,
2023).

Unlike ordinary convolutions, causal convolution is unidirectional
(1D), which is particularly used in time series analysis and can effi-
ciently model sequences in a causal manner. In this convolutional
operation, the learnable parameters (i.e., weights and biases) are trained
to predict the current moment using historical information within the
receptive field length (R). By dilation that refers to the spacing between
filter elements in a convolutional layer, the receptive field can be
expanded without significantly increasing the number of parameters or
computational cost. Therefore, dilated causal convolution layers are
employed in this study, and the advantage of it over conventional con-
volutions is their ability to maintain temporal causality. As a result, the
DL model can be trained at the TG locations to capture dependencies
between the spatiotemporal variables and HDM errors, and conse-
quently, to be used over the HDM domain.

The DL model consists of k blocks of causal convolutional units. Each
block contains two convlD layers with a filter size (fs), nf number of
filters, and a dilation (d). This layer has two learnable parameters:
weights and biases, which are trained during the training process. To
enable the model to learn complex relationships between the inputs and
output, Rectified Linear Unit (ReLU) activation functions are incorpo-
rated after the convlD layers. This introduces non-linearity to the
model. The utilization of batch normalization between the convlD and
ReLU layers enhances accuracy and accelerates the training process
(Bjorck et al., 2018). Additionally, incorporating a dropout layer helps
prevent overfitting and encourages the network to learn more robust
and generalized representations (Baldi and Sadowski, 2013). Table 1
presents a summary of the block.

Fig. 3 illustrates the internal structure of the DL model used in this
study on the left, while the right side shows the causal convolution
blocks. For simplicity, the internal structure is shown with values of fs,
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Table 1

Summary of causal convolution blocks used in the DL model. Output shape in-
dicates the dimension of layer output in channels (C), time steps (T), and batches
(B).

Layers

Output shape Learnable parameters #

Conv1D (Dilated causal 32(C) x (T) x 1 Weights: 6 x (num_inp) x

conv.) (B) 32
Bias: 1 x 32

Batch normalization 32(C) x I(T) x 1 Offset: 32 x 1

(B) Scale: 32 x 1
ReLU activation function 32(C) x (T) x 1 -

(B)
Dropout (probability of 0.2) 32(C) x 1(T) x 1 -

(B)

Convl1D (Dilated causal 32(C) x 1(T) x 1
conv.) ®)
Batch normalization 32(C) x 1(T) x 1

Weights: 6 x 32 x 32
Bias: 1 x 32
Offset: 32 x 1

(B) Scale: 32 x 1
ReLU activation function 32(C) x 1(T) x 1 -

(B)
Addition 32(C) x 1(T) x 1 -

(B)

Filter size fs: 6
Number of filters nf: 32
Dilation d: 2 ~

nf, and k set to 2, 16, and 4, respectively. Following the k blocks, the
feature maps, with a receptive field of R, are fed into the fully connected
layers. These fully connected layers also possess two learnable param-
eters: weights and biases, which are also fine-tuned during the training
process.

Table 2 represents the summary of the entire DL model used and the
selected hyperparameters. In this study, we employed 5 blocks of the
causal convolutional units, whit values of fs and nf set to 6 and 32,
respectively. Consequently, the receptive field of the DL model is
calculated as R = (fs — 1)(2k — 1) + 1 = 156 (equivalent to 6.5 days).

It should be noted that due to the sparse nature of the TG observa-
tions, feature learning over the spatial dimensions is disrupted, which
results in the DL model being unable to learn in the spatial dimensions.
However, incorporating spatiotemporal input variables (described in
Sections 4.1 and 4.2) and utilizing causal convolutions to effectively
learn from temporal dimensions with a fixed receptive field enables us to
develop a DL model capable of training at TG locations and operating
across the entire study domain. Therefore, it is essential to generalize the
model across spatial dimensions and eliminate irrelevant variables. For
this purpose, an effective spatial sample splitting strategy enables us to
prevent overfitting and obtain a generalized DL model for predicting e.
In this study, 50 stations (shown in Fig. 4) are utilized, which are divided
into a training set of 16 stations, a validation set of 16 stations, and a test
set of 18 stations. Note that the model is trained over the temporal
dimension, and selection of equal size for training and validation set
allows better to control the model’s generalization across spatial di-
mensions through a feature selection. Additionally, the goal was to use a
minimal number of TG stations for training, demonstrating the model’s
ability to predict HDM errors in situations where a dense network of TGs
is not accessible. The test stations serve only for evaluating the DL
model’s performance with unseen data.

3.3. Vertical reference bias

The vertical Reference bias (RefBias) represents the difference be-
tween the vertical reference surface of the corrected HDM and a
particular geoid surface. Determining the RefBias enables us to reduce
the zero level of a hydrodynamic model to a well-defined geodetic
reference system. As a result, the modelled and observed DTs can be
efficiently compared in terms of absolute values, and a common refer-
ence surface enables the synthesis various sea level sources with
consistent physical definitions. For this purpose, the RefBias is computed
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Fig. 3. Internal structure of the DL model used on the left, and the causal convolution blocks on the right.

Table 2
Summary of the DL model and selected hyperparameters for training. Default
values were used for the other parameters.

Layers Output shape Learnable parameters #

Causal_conv_block (k = 1) 32(C) x 1(T) x 1(B) Weights: 7488
Bias: 64
Offset: 64
Scale: 64
Weights: 224
Bias: 32
Weights: 49,152
Bias: 256
Offset: 256
Scale: 256
Weights: 1024
Bias: 32
Offset: 32
Scale: 32
32(C) x 1(T) x 1(B) -

16(C) x 1(T) x 1(B) Weights: 512
Bias: 32
Offset: 16
Scale: 16
Weights: 16
Bias: 1

1(C) x 1(T) x 1(B) -

Skip_convlD 32(C) x 1(T) x 1(B)

Causal_conv_block (k = 2~5) 32(C) x 1(T) x 1(B)
Fully_connected_1 32(C) x 1(T) x 1(B)
32(C) x 1(T) x 1(B)

Layer_normalization_1

Dropout (probability of 0.2)
Fully_connected_2

Layer_normalization_2 16(C) x 1(T) x 1(B)
Fully_connected_out 1(C) x 1(T) x 1(B)

Regression_output

Number of layers: 49

Total learnable parameters: 59,553
Optimizer: Adam

mini-batch size: 4

Number of epochs: 200

Loss function: 0.5MSE (default)
Learning rate: 0.001

as follows:

RefBias = median(bias_op(@ s Aobs)) 5)

where the median operator is employed as a robust statistic to determine
the bias arising from differences between reference surfaces, and bias_op
is:

1 &

bias-op(@ops: Aobs) = o Z(DTIL-;DM (@ovs: Aovs: tors) — DTons(@,A4,1))  (6)
=1

where DT, represents the corrected HDM obtained by applying the
predicted ¢ to the original HDM, DTqps is the observed dynamic topog-
raphy relative to the desired geodetic reference, and Q is the number of
observations within the selected time span. Therefore, the bias_op refers
to the remaining bias between the observations and the corrected HDM
at the observing points (@obs,hops)- In this study, SA observations are
utilized to determine RefBias due to their well-distributed spatial
coverage. Therefore, the DTs, relative to a particular geoid model is

Southern
Baltic Proper

® TG stations (training set)
© TG stations (validation set)

@ TG stations (test set)

\

10 x 13
15" E 20°E 25 E o

Fig. 4. Study area (Baltic Sea) and the locations of the tide gauge stations used
in the study (numbered clockwise starting from the Eastmost Estonian tide
gauge station, as denoted in some stations). The stations have been split into
training, validation, and test sets. The location of the Gotland deep BY15 is also
indicated by a black square.

determined as follows:

DTg4(@, 2, 1) = SSHsa (¢, A1) — N(op, ) @)

where SSHg, is the SA-based sea surface height relative to a reference
ellipsoid, and N is the geoid height. In this study, NKG2015, which is a
high-resolution geoid model with resolution of 0.01°x0.02° (Agren
et al., 2016), is used to determine geoid height N. This regional geo-
potential model has been determined through a least-squares modifi-
cation of Stokes’ formula with additive corrections, resulting in a static
reference surface that exhibits a standard deviation of 2.9 cm with
respect to GNSS/levelling data. Note that the geoid model must be
transformed to the mean permanent tide system before applying Eq. (7).
For more details, we refer to Jahanmard et al. (2022).
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3.4. Application of HDM correction and referencing

The DL model described above is trained using the training set. The
selection of the input variables will be discussed in Section 4. Further-
more, the hyperparameters have been optimized through multiple trial
and error iterations, with the details already reported in Section 3.2
(Tables 1 and 2). By leveraging the pre-trained DL model, it becomes
possible to determine the HDM modelling errors ¢ using the spatio-
temporal input variables, as follows:

x¢(c,1,p) = Vec(x(c,t,9,4))

&(p, 1) = DLModel (x/(c, 1, p))
€(p, A1) = Vec ' (2(p, 1)) * G(ks, 0) (8)

where operators Vec(.) and Vec™!(.) are used to flatten variables x and
reshape the predicted HDM errors ¢ on the spatial dimensions, respec-
tively (see Fig. 5). Therefore, x; represents the input variables to the DL
model, which the pre-trained model is denoted by DLModel. To suppress
potential high-frequency noises that may arise from the individual
determination of HDM errors at each grid point, a Gaussian spatial filter
is also applied on the predicted HDM errors € with a kernel size of ks = 5
nautical miles and a standard deviation of ¢ = 2.5 nautical miles.
Symbol * denotes the convolution operation, c is the dimension of the
input variables/channels, and p represents the index of HDM grid data
points within the study domain when the spatial dimensions are flat-
tened by Vec operator. The performance of the DL model with respect to
the TG records is evaluated using the root mean squared error (RMSE)
and coefficient of determination (R?), calculated as follows:

[
é > @) - el ©

R—=1-— _ @) —e) (10)
3271 (e(i) — mean(e(0)))*

where Q is the number of samples within the designated time span. The
RMSE and R-Squared estimates are determined for each TG station, and
the performance of the training, validation, and test sets is determined
by averaging the results across stations in each set. For final evaluation,
the validation and test sets are merged as a test set. Finally, the corrected

HDM, DTSy, is computed accordingly:

DTG (@, 24,1) = DTupu (@, 2, 1) — €, 2, 1) (11)

Therefore, the RefBias would be accurately determined as per Eq. (5).
As a result, the vertical referencing of the HDM is performed as follows:

DTjjpit (¢, 4,1) = DT, (0,4, 1) — RefBias (12)

Fig. 5 illustrates the procedure of the HDM correction and its vertical
referencing using the DL model and TG and SA observations.

In the Baltic Sea region, the common geoid-based chart datum
BSCD2000 has been established to enhance the effective utilization of
GNSS methods for accurate navigation and offshore surveying

&

DLModel

2, t)

Vec™! (¢)|

Channels: x(c, t, ¢, 1) xs(c,t,p)
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(Schwabe et al., 2020). The BSCD2000 based zero marks of TG stations
are rigorously connected to the EVRS based national height systems, also
coincide with the geoid surface with the reference point of the Normaal
Amsterdams Peil (NAP). The NKG2015 geoid model used along with SA
data for RefBias determination is also based on the EVRS. This suggests
that the RefBias associated with the TG records is expected to be similar
to the one determined through SA observations, with a small margin of
error (to be discussed in Section 5.2).

Note that the network of the TG stations may contain vertical datum
shifts, and the marine geoid utilized may incorporate error and prob-
lematic regions (Jahanmard et al., 2022; Varbla and Ellmann, 2023).
Therefore, this unification of the vertical reference between different
sources of sea level allows for the determination of accurate dynamic
topography and facilitates the investigation of inconsistencies between
data sources. Furthermore, the corrected HDM enables the establish-
ment of a link across the sea to connect TG zero marks, in the absence of
a common height reference amongst TG stations or between countries
(Afrasteh et al., 2021, 2023; Wang et al., 2023).

After applying the HDM correction, we also assess the remaining bias
(SB) and root mean square error (SRMSE) at the observation points
across time. The SB indicates how closely the corrected HDM fits the
observations spatially, revealing static inconsistencies between the
datasets. The SRMSE is a measure of the temporal variations between the
modelled and observed data. Therefore:

1 Q

Z (DTS (@onss 20ms 1) = DT 045 (9 0pss Ao 1))

SB(@ops: Aovs) = 0
i=1

" Re, - )2
(DTZ}’;A/{ (Ponss Aovss 1) = DT obs (@ opys Aovs l))

M

1
0

1

SRMSE(@ g Aovs) = $
(13)

where Q is the number of observations, and the equations are applied at
the locations of all the SA and TG observations.

4. Datasets and input variables

The developed approach will be presented using the Nemo-Nordic
model (Hordoir et al., 2019; Karna et al., 2021), fifty TG stations, and
Sentinel-3A satellite altimetry data over the Baltic Sea region for the
period of December 2016 to June 2021.

4.1. Hydrodynamic model

The hydrodynamic model was developed by the Swedish Meteoro-
logical and Hydrological Institute (SMHI). It is a 3D coupled ocean-sea
ice model of the Baltic and North Sea, which is based on the NEMO-
4.0 ocean engine (Nucleus for European Modelling of the Ocean). The
model sea level is hourly with horizontal resolution of 1 nautical mile
(NM). Nemo-Nordic uses a bathymetry obtained from the global GEBCO
dataset (GEBCO-2014) and has two open boundaries: a meridional
boundary in the English Channel between Brittany and Cornwall, and a
zonal boundary between Scotland and Norway. The model uses SI® sea
ice model (Karnd et al., 2021) and forced with the HIRLAM atmospheric

Absolute Dynamic Topography

&e, A1)

Fig. 5. Implementation of the DL model for correcting the HDM dynamic topography and vertical referencing to a particular geodetic reference frame.
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forecast model data (Undén et al., 2002). River discharge data is derived
from the E-HYPE daily mean (Arheimer et al., 2012). It has been
demonstrated that wind waves significantly contribute to extreme sea
levels (Staneva et al., 2016, 2017). However, to the best of our knowl-
edge, Nemo-Nordic does not consider wind waves in its calculations.

4.2. Tide gauge data

Tide gauge data serves as a base for determining the HDM modelling
error (g). Therefore, it is important to carefully inspect and correct TG
records to ensure their accuracy. In this study, hourly TG data are ob-
tained from seven Baltic Sea countries, which are listed in detail in
Table A.1 and the location of stations is indicated in Fig. 4. The TG zero
marks are consistent with their national height systems complying with
BSCD2000 (Schwabe et al., 2020). Since the BSCD2000 is a common
geoid-based chart datum amongst the Baltic countries, TG readings can
be directly expressed as dynamic topography DTrg.

The Baltic Sea region is under a strong influence of the glacial
isostatic adjustment (GIA) induced land uplift (Vestgl et al., 2019). It is
therefore necessary to reduce TG readings into a common time-epoch
through a vertical land uplift model. This has been achieved by using
the NKG2016LU model for the reference epoch 2000.0 (Varbla et al.,
2022). In addition, the TG zero marks must also be transformed to the
mean permanent tide system. For more information about the TG
treatment for this study, we refer to Jahanmard et al. (2022).

Fig. 6 shows the discrepancies (E) between the HDM and TG records
according to Eq. (2) at three sample stations. This figure shows the
combination of the HDM error and reference bias. Observe that: (i) E
changes in time but the pattern of change is the similar at the high-
lighted stations. Similar pattern was also observed for all stations and
(ii) the Biases used in Eq. (3) are relatively consistent at different TG
stations. This indicates that the used TGs are referenced to a common
reference surface, and as a result, the HDM modelling errors (¢) are
accounted for in Eq. (3). However, in this method, it is not necessary for
the TG stations to have a common reference surface. This approach can
also be employed to reference accurately the TG zero marks to a com-
mon reference surface through the corrected HDM, even without
requiring a pre-existing common reference (cf. Afrasteh et al., 2021).

By removing the Biases, the frequency contents of the HDM error can
be obtained using the Fast Fourier Transform (FFT), as shown in Fig. 6b.
This figure emphasizes that the HDM error (e) at different TG stations
representing various sub-basins in the Baltic Sea consists of: (i) both
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high- and low-frequency components, (ii) the variations ranging from
half-day to annual errors, (iii) a consistent pattern observed across all
stations, and (iv) almost similar amplitude observed (1-4 cm). The
importance of these findings suggests that similar HDM errors can be
reflected more or less at different stations.

4.3. Satellite altimetry

The method implemented using the DL model should also have the
capability to predict the modelling error not only at other stations but
also in the offshore domain. As a result, the method can also be validated
using satellite altimetry sea level data. In addition, satellite data is uti-
lized to obtain the RefBias by Eq. (5).

In this study, high frequency (20 Hz) along-track sea level mea-
surements from Sentinel-3A satellite were utilized. These measurements
operate in SAR mode based on the ALES+SAR retracker. The dataset is
downloaded from the EUMETSAT data centre (https://www.eumetsat.
int). The SA mission retrieves the instantaneous sea surface height
with a cycle period of 27 days and a spatial resolution of 300 m. To
compare other sea level sources with SA data, the HDM and TG data are
interpolated bilinearly in space to the SA data points and linearly in time
to the SA time epoch to unify the time and location of measurements.
Standard geophysical and atmospheric corrections have already been
applied to the data. For more details, we refer to Jahanmard et al.
(2022).

The satellite-based dynamic topography DTss is determined ac-
cording to Eq. (7) and the NKG2015 geoid model. Note that the geoid
rise regarding GIA also needs to be considered for the Baltic Sea region.
The maximum geoid rise in the study domain is 0.6 mm/year in the
Northern part of the Bothnian Sea (Kakkuri and Poutanen, 1997).

The satellite altimetry data also may contain enormous errors and
outliers due to land contamination, sea ice, etc. (Mostafavi et al., 2023).
These outliers were eliminated from the SA observations. For this pur-
pose, the data points within 5 km from the coastlines are removed to
diminish the land contamination errors. In addition, a moving median
with a sliding window of one degree along the latitude and a threshold of
three local scaled median absolute deviations are applied to detect the
outlier data during each pass and cycle.

Considering the difference in horizontal resolution between the
Nemo-Nordic and SA data sampling (300 m), it is desirable to filter out
high-frequency fluctuations from the DTs,. For this purpose, variations
with a wavelength shorter than 10 km were filtered from the along-track
SA data using a wavelet filter. Fig. A.1 shows the original and post-
processed along-track SA signals for a sample pass and cycle.

4.4. Data consistency and dataflow

Datasets used in this study include Nemo-Nordic model, TG records,
Sentinel-3A radar altimetry measurements, NKG2015 geoid model,
NKG2016LU land uplift model and the corresponding geoid rise due to
the strong influence of GIA in the region of interest, and spatiotemporal
input variables that will be discussed in the following Subsection.
Table 3 summarizes the spatial and temporal resolution of the datasets.

Hourly TG records are corrected for GIA vertical land motion using
NKG2016LU and with the reference epoch of 2000.0. Consequently, TG
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Fig. 6. (a) Discrepancy between the Nemo-Nordic and three tide gauges. The

locations of the tide gauges are shown in Fig. 4. (b) Frequency contents of the
corresponding signals.

Table 3

Spatial and temporal resolution of data sources in this study.
Datasets Resolution

Spatial Temporal

Nemo-Nordic model 1NM Hourly
TG records at location of stations Hourly
Sentinel-3A 300 m along the tracks 27 days
NKG2015 0.01°x0.02° -
NKG2016LU; geoid rise 0.08°x0.16° -
Input variables see Table 4
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records are compared with their nearby hourly HDM-derived sea levels
to serve as the training target for the DL model. The HDM values at TG
locations are extracted using Eq. (4), and the same H;s are used for
extracting the variables (see Section 4.1) to serve as the DL inputs in
training process.

Pre-trained DL model are employed to predict the HDM errors across
entire HDM domain using spatiotemporal variables. For this purpose,
the spatial and temporal resolutions of the variables are unified with the
HDM through linear interpolations.

The RefBias between the reference surface of the corrected HDM and
a particular geoid surface is determined by comparing the corrected
HDM with DT derived from SA measurements. A secondary check was
also made by comparison of the corrected HDM with TG data. Since
HDMs benefit from using an equipotential surface as their vertical
reference and a static bathymetry dataset in their configuration, RefBias
is a constant value over the study domain and in time. To determine DT
from SA data by Eq. (7), the NKG2015 geoid model and geoid rise model
are computed at SA data points via bilinear interpolation. Therefore, the
comparison for the determination of RefBias between the corrected HDM
and SA-derived DTs is conducted at the SA data points and their corre-
sponding time instants, where the corrected HDM is interpolated bili-
nearly in space and linearly in time to the location and time of SA
measurements.

4.5. Spatiotemporal channels for DL model

In order to reconstruct the HDM error at the location of TGs and then
outstretch the DL model to all HDM grid points in the study domain, the
identification of relevant spatiotemporal channels (input variables) is
essential. Important considerations for channel selection encompass: (i)
relevance to the physical processes, (ii) predictive power for general-
izing to new data, particularly in the spatial domain, (iii) availability of
the channels, (iv) dimensionality of the data, and (v) addressing regu-
larization and overfitting concerns.

The objective of training the DL model is to predict the HDM error (¢)
over the space at each time step. In this regard, sixteen spatiotemporal
variables are introduced as input variables for the DL model. The vari-
ables consist of oceanic and atmospheric parameters and some
computed variables, and they are obtained from the Nemo Nordic or
other data sources. In Section 4.2, we will explain a feature elimination
process that allows identifying which variables contribute to the
reconstruction of the HDM errors. Although deep learning approaches
can reduce the impact of unrelated input variables and enhance gener-
alization through feature learning (Sun et al., 2020), this feature elim-
ination process is essential in this study to avoid overfitting in the spatial
dimensions.

The variables obtained directly from the Nemo-Nordic include zonal
and meridional wind components (U and Vwind), sea surface tempera-
ture (SST), sea surface salinity (SSS), and ice fraction (Ice-frac). Other
variables are retrieved from different sources, which are interpolated
bilinearly in space and linearly in time to maintain consistency in terms
of dimensionality.

In addition to the wind components, the wind stress (X; and Y;) and
Ekman pumping velocity (w-Ekman) are determined to explore poten-
tial relationships between the HDM error and these variables. It is rec-
ommended to use the wind stresses utilized by the HDM as a driving
force in the momentum equations based on the bulk formulae used.
However, in this study, the wind stresses are derived by multiplying a
coefficient with the square of the wind speed in both the zonal and
meridional directions, given the unavailability of the wind stresses used
by the HDM. The w-Ekman is calculated by dividing the curl of the wind
stress by the product of water density and the Coriolis parameter (Gill,
1982).

Sea surface pressure (SLP) data, known as a significant driver of sea
level variations (Weisse et al., 2021), is downloaded from the CERRA
dataset. Additionally, the mean total precipitation rate is obtained from
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the ERAS dataset to estimate the water column induced by precipitation
(np) at the grid points. To account for the contribution of wind waves in
the HDM modelling error, the significant wave height (SWH) of the
Baltic Sea was obtained from the wave model WAM. Although there is a
relatively high correlation between wind components and wave height,
the SWH variable is included, and the DL model is allowed to evaluate
the significance of these variables (describe in Section 4.2). It is also
important to note that the challenge persists in the reconstruction of
wave properties within the nearshore, archipelago regions, and narrow
sub-basins (Soomere, 2023). Other used variables are introduced in the
following Subsections.

4.6. Astronomical tides

The impact of astronomical tides on the Baltic Sea is typically
considered minor due to limited co-oscillation with the open ocean.
However, locally generated tides can still contribute, and under reso-
nance conditions, the resulting variations in sea level induced by tides
could become more noticeable. The prescribed sea levels along the
Nemo-Nordic’s open boundaries contain tides, but the local tidal po-
tential effect is not included in the modelling. One could remove the
tides from observations (i.e., TG and SA data) and HDM, while in this
study, the tides are retained as they are, and tides variables are fed to the
DL model.

In this study, eight tidal constitutions, namely M2, O1, K1, S1, P1,
Mf, Mm, and Ssa, are employed based on tidal analysis on TG records.
The sea level induced by these constituents is determined on HDM grid
points as follows:

1,(¢, 2,1) = foH cos (et + (Vo +u), — Ge) as

where f.H,, 0., and G, are the amplitude, angular velocity, and phase of
harmonic constituent c, respectively. (Vo -+ u). connects the local time
basis to the positions of the Sun, Moon, and Earth. The amplitudes and
phases are retrieved from the FES2014 global ocean tides atlas (Carrere
et al., 2015). The tidal series were computed at the grid points. To
reduce the number of input channels, the series are divided into three
variables: semi-diurnal (M2), diurnal (O1, K1, S1, and P1), and low tides
(Mf, Mm, and Ssa).

4.7. Steric effect

Steric sea level changes occur as a result of variations in the density
of the water column, leading to its expansion/contraction. The mean
steric height, along with the additional barotropic contribution associ-
ated with bottom pressure, are essential components of mean dynamic
topography (Siegismund et al., 2007). However, models that utilize the
Boussinesq approximation, such as NEMO, conserve volume rather than
mass and do not appropriately represent the steric height in modelling
(NEMO Consortium, 2023). Although this approximation does not pose
a significant error in the calculated flow field of the model, it is essential
to consider the significant contribution of steric changes to local varia-
tions in dynamic topography over seasonal and climatic time scales.

The correction for net expansion/contraction can typically be
addressed by incorporating the steric height into the water level pre-
scribed at the open boundary (Slobbe et al., 2013). As we do not have
access to the Nemo-Nordic setup and this correction is undisclosed to us,
the steric height changes (ns) can be considered as a potential input
variable for predicting the HDM error. The absence of this correction in
the HDM becomes more questionable, given the annual period displayed
in Fig. 6b.

The steric height at a specific location is completely determined by
the temperature and salinity profiles. It can be calculated directly from
3D models using the parameters available at vertical nodes. Neverthe-
less, given the obtained Nemo-Nordic dataset for this study includes only
sea surface parameters, the observed salinity and temperature in the
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Table 4
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List of the input variables used for feature selection. The selected features for the final DL model training are indicated in bold, as described in Section 4.2.

Variable units  Sourced resolution
Temporal  Spatial

Data source

1 Zonal wind (Uwind) m/s Hourly 1NM Obtained from Nemo-Nordic dataset

2 Meridional wind (Vwind) m/s Hourly 1 NM

3 S ea surface temperature (SST) °C Hourly 1NM

4 Sea surface salinity (SSS) psu Hourly 1NM

5 Ice fraction (Ice-frac) % Hourly 1 NM

6 Zonal wind stress (X;) Pa Computed at the HDM grid points with an hourly temporal resolution using U and Vwind

7 Meridional wind stress (Y;) Pa

8 Ekman pumping (w-Ekman) m/s

9 Sea surface pressure (SLP) Pa 3-hourly 5.5 km Copernicus: 10.24381/cds.622a565a

10  Precipitation water col. (n,) cm Hourly 0.25° MTPR is downloaded from Copernicus: 10.24381/cds.adbb2d47
11 Significant wave height (SWH) m Hourly 2 km Copernicus; 10.48670/moi-00014

12 Semi-diurnal tide (M2) cm Computed at the HDM grid points  Aviso: https://www.aviso.altimetry.fr/

13 Diurnal tides cm with an hourly temporal resolution

14 Low tides cm

15  Steric height changes (n,) cm Monthly profiles of S and T are downloaded from SHARKweb: https://sharkweb.smhi.se/

16 Sea level variability (msdDT>4) cm

Computed

water column at station BY15 (denoted in Fig. 4) were used to estimate
1ns. The steric effect variation is low-frequency, and the calculated vari-
ation can be applied uniformly across the entire study domain. There-
fore, the steric height variable was determined as follows:

0
1

=== [ Ap(T.5)-d 15

1,(1) o 7[ (T, S)-dz (15)

where pg is the reference density, and the density variation Ap is
determined by the observed temperature and salinity, in accordance
with the equation of state described by Gill (1982). The computed time
series of 1 is utilized for all grid points.

4.8. Resonant oscillation

The Baltic Sea is also known for its local oscillatory modes that can
amplify variations in sea level (Jonsson et al., 2008). Upon initial ex-
amination of the HDM error, it is evident that certain locations, such as
the Eastern part of the Gulf of Finland and the Gulf of Riga, exhibit a
higher standard deviation. This increased deviation can be attributed to
the resonance effect.

The frequency analysis of the HDM error (Fig. 6) indicates that a
period of approximately one day is a common occurrence in these re-
gions. In addition, in Parnu Bay (station 10; located Northeast of the Gulf
of Riga), there is also an observed period of approximately about 6-h in
the HDM error, which could be related to the barotropic 5-h seiche
period in the Gulf of Riga (Suursaar et al., 2002).

It is challenging to include the resonance effect and seiche as inputs
for the DL model because the model cannot extract spatial features
effectively (cf. Section 3.2), and these effects heavily rely on the ge-
ometry of the basins. Nevertheless, an innovative variable is defined as
follows:

msdDTsy(p, 3, 1) = MSD(DTypu (0, A, 1), 24)-5(p, 2) (16)

where msdDT54 is the moving standard deviation MSD of the HDM-based
dynamic topography, using a 24-hour window size. The moving stan-
dard deviation can provide information about the amplitude of varia-
tions, and the growth of the amplitude can be inferred from an
increasing msdDT24. A location-based modification E(q;,l) was also
applied to assist the DL model in focusing on desired locations. This
parameter is the normalized mean squared of the daily standard devi-
ation of DTypy over the designated time span, as shown in Fig. A.2. This
represents a form of spatial normalization aimed at regulating the
impact of this variable across different locations.

As a result, the sixteen introduced spatiotemporal variables are

summarized in Table 4. Prior to being fed into the model, the input
variables were normalized. This normalization process enhances sta-
bility and facilitates faster convergence during training, which is
particularly important when utilizing the Adam optimizer.

4.9. Feature selection

To ensure the robustness of the DL model for HDM error prediction,
selecting variables that contribute to accurately predicting the target
and excluding irrelevant variables that can potentially lead to overfitting
during training is essential. By doing so, we can develop a more
generalized DL model that considers the spatial dimension and gain
insights into the sources of HDM error.

For this purpose, a wrapper-type sequential feature elimination al-
gorithm was utilized to systematically eliminate variables in each iter-
ation (Guyon and Elisseeff, 2003). The algorithm begins by training with
a subset of variables and then removes a variable based on an elimina-
tion criterion. This criterion is a combination of the RMSEs from both the
training and validation sets, as described in Eq. (9). Since the objective
of this feature selection is spatial generalization, the training and vali-
dation sets are defined as indicated in Fig. 4.

Fig. 7 illustrates the iterations of the feature elimination process. In
the first iteration, the model is trained using all variables listed in
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Sequential Feature Elimination

Fig. 7. Sequential feature elimination for selecting the best set of input vari-
ables. The variables are removed stepwise from left to right based on the
elimination criterion. The solid blue and red lines represent the average RMSE
resulting from five repeats of the training processes, with dotted lines indicating
one standard deviation from the average. The green line represents the R-
Squared result of each elimination iteration. The variable set of the best solu-
tion is highlighted in blue font.
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Table 4, denoted by 'none’ elimination. This initial training results in an
RMSE of 3.57 cm and an R-Squared value of 0.78, which the RMSE
serves as the elimination criterion. The iteration reveals an RMSE of
3.45 cm for the training set and 3.74 cm for the validation set, indicating
overfitting. The model performs well on the training locations but
struggles to effectively generalize to unseen data from other locations.

In the next iteration, sixteen DL models were trained, with each
training process involving the elimination of one variable. Results
demonstrate that removing the ’ice-frac’ variable leads to improved
model performance, resulting in an RMSE of 3.55 cm. By removing the
variable, the next iteration will proceed with the remaining variables,
and the next candidate for elimination is determined. These iterations
continue until all variables have been removed from the set of DL model
inputs.

Fig. 7 shows the results of all elimination iterations sequentially from
left to right. The bars in the figure represent the resulting RMSE for each
iteration, with the x-axis indicating the variable that is removed. The
blue and red lines represent the RMSEs of the training set and validation
set, respectively. This visual representation allows for the identification
of overfitting, where the RMSE of the training set is higher than that of
the validation set. To account for random variations in the elimination
iterations, each training process was repeated five times, and the
average RMSE was used as the elimination criterion. Dotted lines are
included in the figure to represent one standard deviation for both the
training and validation sets, based on the five repetitions of training.

Based on the results shown in Fig. 7, we have selected a set of
important variables that demonstrate the lowest RMSE, highest R-
Squared, and avoid overfitting. It is observed that by removing ‘w-
Ekman’ from the remaining variables, the DL model demonstrates the
best performance with an RMSE of 3.5 cm for both the training and
validation sets and an R-Squared of 0.79. As a result, the DL model can
be generalized over the spatial dimension via the following input vari-
ables: ‘msdDTsy4’, ‘05", ‘Uwind’, ‘Vwind’, ‘Diurnal tides’, ‘Low tides’, and
‘SLP’. Note that other new variables can also be added to Table 4 and the
feature elimination process can be repeated. However, for this study, we
will proceed with the selected variables mentioned.

Given the possible limitations of the sequential feature selection/
elimination approach, such as assuming feature independence and
sensitivity to elimination order, alternative methods like evaluating all
feature combinations (e.g., using genetic algorithms) can also be pref-
erable. Hence, the features were also explored using the multi-objective
optimization algorithm NSGA-II to find the optimal feature combina-
tion, which the number of features, RVMSE, and (1 — R?) are used as the
objectives to determine the Pareto front. In this study, since the optimal
combination of features obtained using NSGA-II resembled that ach-
ieved through the sequential elimination method, only the sequential
method is presented as the result of feature selection.

While this approach is necessary to train a spatially generalized DL
model in this study, it may result in the removal of variables with
localized effects, such as ice fraction, which predominantly occurs in the
Northern and Eastern parts of the Baltic Sea. It is important to note that
retaining localized variables may introduce challenges in model gener-
alization. Nevertheless, we have specifically examined the ice fraction
variable in locations where it occurs, and it has been excluded again
during the feature elimination process, which suggests that the ice
fraction variable does not contribute to predict the ¢, and the HDM
works well under the ice condition.

5. Results and discussion
5.1. HDM error prediction

The DL model for predicting the HDM error is constructed based on
the architecture outlined in Section 3.2 and input variables described in

Sections 4.2. The model is trained using 16 stations and evaluated on all
stations (indicated in Fig. 4) for 4.5 years. The progress of the DL model
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s
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Fig. 8. Performance of the HDM error prediction at available TG stations. The
RMSE values are indicated by triangles, and the R-Squared values are indicated
by circles, with different colourbars representing the magnitude of the metrics.

training with 200 epochs is illustrated in Fig. A.3.

Fig. 8 illustrates the performance assessment of the HDM error pre-
dictions at various locations using the RMSE and R-Squared metrics,
according to Egs. (9) and (10). The average values for RMSE and R-
Squared are 3.5 cm and 0.79, respectively. It is evident that some regions
have significant RMSE values, such as the Gulf of Riga and Southwest of
the Baltic Sea. Higher RMSE values may indicate issues with the HDM
error prediction and DL model, such as some variables that were not
considered in the analysis, and/or TG problem, for even though the
observed HDM modelling error (Eq. (3)) considers the TG data to be
perfect. In reality, the TG can still have some errors associated with
vertical datum or the location of TG compared to HDM points (e.g.,
within archipelagos or complex coastal areas).

In addition, the prediction residuals indicate that the remaining er-
rors are associated with high-frequency components, suggesting that the
inclusion of additional input variables specific to these locations may be
necessary. For instance, at station 10, resonance with the barotropic 5-h
seiche period of the Gulf of Riga can result in amplitude growth in Parnu
Bay (Suursaar et al., 2002), which the DL model was unable to accu-
rately predict in terms of the corresponding HDM error. Furthermore,
the unique geometry of the Gulf of Riga and the bathymetry at its main
entrance, the Irbe Strait, lead to distinct oscillations in this basin
compared to other locations, resulting in deviations in the predicted
error when generalizing the DL model (Jonsson et al., 2008). Similarly,
at Eckernforde Bay TG23, sea level variation is strongly characterized by
seiche-like oscillations (Friedrichs and Wright, 1995). Also, station 45 is
located in the archipelago area, where the HDM may not exhibit the
same performance as it does in other locations. These observations
indicate that the DL model provides reasonable results but also high-
lights the areas where localized dynamics may be occurring, indicating
high complexity in terms of resonance effects, seiches, and bathymetry
(Otsmann et al., 2001; Jonsson et al., 2008).

To illustrate the performance of the DL model, the predicted (¢) and
actual time series of the HDM error(e) along with the prediction re-
siduals are shown in Fig. 9 for three sample stations (10, 26, 31).
Observe that the HDM error (g) varied from —40 to +40 cm at station 10
located in Parnu Bay, Gulf of Riga. The residuals, representing the
remaining error after applying the DL model, range from —20 to 20 cm
for this station. Also, based on the FFTs presented in the bottom row, it is
evident that the DL model was unable to perfectly predict the high-
frequency errors in this station. This figure also demonstrates that the
high-frequency error is relatively more prominent in this station, as well
as in other stations within the Gulf of Riga, compared to other locations.
At station 26 located on the Southern Swedish coast, the HDM error was
within the range of —20 to 20 cm, and the residuals is reduced to the
range of —10 to +10 cm. The range and pattern observed at station 26
are similar at station 31, which is in the Northern part of the Baltic Sea.
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Fig. 9. Time series of both the actual (target, €) and predicted HDM error (¢) at three sample stations (10, 26, and 31). Residuals of the predictions are depicted by
the red lines. Frequency contents of the actual HDM error, along with the residuals, are illustrated in the bottom row.

As aresult, the DL model was able to reduce the range of HDM errors by
a factor of at least two. It is important to note that the DL model applied
in this study is successful in estimating the low-frequency HDM errors,
including annual and seasonal cycles. However, further efforts are
required to address the high-frequency errors.

5.2. Derived reference bias using SA and TG

The utilization of the DL model allows the prediction of the HDM
modelling errors (e) from coast to offshore. Once this modelling error
was determined, the HDM model could be corrected (Eq. (11)). The
corrected HDM permits an accurate determination of the RefBias be-
tween HDM's reference surface and a particular geodetic reference
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Fig. 10. (a) Histogram of difference between the HDM and TG records (according to Eq. (1)), before and after the HDM error correction. (b) Histogram of the bias_op
(Eq. (6)) at the locations of the TG stations (red), and at the SA data points (blue). The spatial distribution of the bias relative to the TG records are shown in panel c.
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surface according to Eq. (5). Therefore, the RefBias is determined using
the SA observations within a certain standard deviation as described in
Section 3.3. Also, as a secondary control the RefBias was also calculated
using the TG data.

Firstly, we present histograms in Fig. 10a that illustrate the differ-
ence between the HDM and TG records (E from Eq. (1)) before and after
the HDM correction for three sample stations. For instance, before the
HDM correction, the median absolute deviation (MAD) for stations 10,
26, and 31 were measured at 7.8 cm, 5.5 cm, and 5.6 cm, respectively.
However, after the correction, these values reduced to 4.5 cm, 2.3 cm,
and 1.8 cm, respectively. The performance of the DL model at these
stations was shown in Fig. 8. The histogram of E values vividly illustrates
the improvement of the HDM-based dynamic topography, and it is
important to note that the remaining errors in the corrected HDM follow
a Gaussian distribution. As a result, the average of the remaining errors
in the corrected HDM reflects the reference bias between the HDM and
the observation (i.e., SA or TG) at the location (@ops,Aops), as described in
Eq. (6).

Fig. 10b illustrates the histogram of the bias_op at TG stations in red
and at the SA data points in blue. The values of bias_op vary from 5 to 25
cm in the SA data points and from 13 to 21 cm in the TG stations. Ideally,
the bias_op should be a constant value since both the modelled and
observed sea levels are referenced to equipotential surfaces. However,
due to errors in factors such as TG zero marks, geoid model, and SA
measurements near the coast, the results were scattered. Therefore, the
median of all the bias_op values is an appropriate calculation to repre-
sent the vertical reference bias between the HDM and observations,
referred to as RefBias according to Eq. (5). The calculated RefBias of the
Nemo-Nordic model relative to the TG and SA datasets is calculated as
16.2 + 1.6 and 18.1 + 2.9 cm, respectively.

Fig. 10c also displays the spatial distribution of the bias_op for the TG
stations, highlighting the pattern of high and low bias relative to the
corrected HDM. It is observed that the zero marks of TGs along the
coastline of Finland and Estonia are positioned lower than the reference
surface of the HDM. The presence of high values in some stations that do
not harmonize with the nearby stations suggests a possible vertical
datum shift in those TG stations, such as stations 22, 25, 31, and even
stations 42 to 44. The absolute value of this bias in the Estonian TGs on
the Gulf of Finland gradually increases from West to East. The spatial
distribution of the remaining bias between the HDM and SA data will
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also be presented in the following subsection (Fig. 12b).

Due to the extensive spatial coverage of the SA data compared to the
TG stations, the reference bias of the Nemo-Nordic relative to the Eu-
ropean vertical reference system (RefBias) has been calculated as 18.1 +
2.9 cm. Consequently, by adjusting the Nemo-Nordic model by shifting
it by this value, it becomes possible to establish a unified vertical
reference surface for all data sources. As a result, comparing the values
of different sea level sources in terms of absolute dynamic topography is
accomplished.

5.3. Comparative assessment

The determination of the RefBias facilitates the unification of the
vertical reference surface between HDM dynamic topography and ob-
servations. Therefore, the HDM correction employed can be evaluated,
and different data sources can be compared to identify any in-
consistencies between them.

The instantaneous corrected HDM is obtained according to Fig. 5.
The original Nemo-Nordic dynamic topography is also adjusted by
RefBias to maintain the same scale for comparison. Fig. 11 depicts the
RefBias-mitigated Nemo-Nordic and corrected HDM along with a pass of
SA observation and TG readings for a specific time instant and using the
same colourbar. This figure shows the improvement of the HDM after
applying the correction. The map of HDM error represents the values
and pattern of the correction used for this specific time, which ranges
from 5 to 16 cm. This range and pattern vary over time. It can be
observed that the corrected HDM exhibits good agreement with the SA
and TG data compared to the original HDM.

The left panel also shows discrepancies along the SA track (pass No.
272 and cycle No. 48). Notable incompatibility between the corrected
HDM and SA data has occurred between latitudes of 54° and 57° This
could be attributed to a part of the HDM error that the DL model was
unable to resolve, or existing errors in the SA data or geoid model used.
The former is a possibility if the HDM has a specific type of error in this
area that cannot be explained by the input variables. The latter is also
possible because the SA pass falls in the vicinity of the coastline,
particularly around the latitude of 57°

Another significant discrepancy between the HDM and SA data in
Fig. 11 (left panel) is observed between latitudes of 60° and 62° This
discrepancy is attributed to the poor accuracy of the geoid model
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Fig. 11. A snapshot of the absolute dynamic topography for a specific time instant (18-Aug-2019 10:00) to demonstrate the HDM correction by predicted HDM error
(&, presented in the inset figure) using the DL model, and a comparison between the original Nemo-Nordic that shifted by the RefBias and the corrected HDM. The TG
and SA (pass No. 272 and cycle No. 48) observations at this specific time are also demonstrated. The left panel shows this comparison along the SA track. The colour

maps used are from (Crameri, 2018).
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(Jahanmard et al., 2022; Varbla and Ellmann, 2023; Mostafavi et al.,
2023). Because this large variation of DT in such a limited area is not
feasible, and this variation is consistently observed across all cycles of
SA observations. The significant discrepancy between the corrected
HDM and TG readings at latitude 62.5° is more likely due to an existing
vertical datum shift in this station rather than an issue with the HDM, as
can also be observed in Fig. 10c.

Fig. 12 illustrates the spatial distribution of two metrics: the
remaining bias (SB) and the deviation of the HDM from observations
(SRMSE), as determined by Eq. (13). These values are computed for both
the original and corrected Nemo-Nordic model, and a comparison be-
tween two models reveals notable improvements in the corrected HDM.
Fig. 12a shows the bias between the HDM and observed data, which
includes the RefBias along with a spatial bias that was corrected by the
DL model. The RefBias is indicated by the white colour in the colourbar,
allowing for a direct comparison of the existing spatial bias patterns with
panel b.
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Fig. 12b highlights remaining inconsistencies and problematic re-
gions after the correction process, in which three major problematic
regions are marked with red rectangles: the Eastern part of the Gulf of
Finland, the Bothnian Sea, and the Southwest of the Baltic Sea (Born-
holm). These regions demonstrate a remaining bias exceeding +7 cm,
which is relatively large when considering it as an average over a period
of ca. 4.5 years. The first two regions have been identified as areas in
which the geoid model shows inaccuracies, which is consistent with the
findings of recent studies (Jahanmard et al., 2022; Varbla and Ellmann,
2023; Mostafavi et al., 2023). Also, as described in Fig. 11, the signifi-
cant inconsistency observed in the southwest of the Baltic Sea requires
further investigation to determine the source of the error.

Fig. 12c and 12d illustrate the spatial distribution of the root mean
square error (SRMSE) for the original and corrected HDM, respectively.
The average deviation of the original HDM from all data points is 7.6 cm
with respect to TGs and 6.5 cm with respect to SA data. While these
values are significantly reduced to 3.5 cm for TGs and 4.1 cm for SA data

Fig. 12. (a) Spatial bias of the Nemo-Nordic model compared to the SA and TG observations based on Eq. (13). (b) Spatial bias of the corrected HDM. The white
colour in (a) and (b) has been set on their RefBias relative to SA observations. SRMSE of original and corrected HDM based on Eq. (13) is demonstrated in (c) and (d),

respectively.
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after applying the DL-based HDM correction. The corrected model also
shows an average increase in correlation coefficient with TG records,
from 0.93 to 0.98.

6. Summary and concluding remarks

This study presented a method that utilizes a deep learning multi-
variate causal convolutional network to estimate hydrodynamic
modelling errors that are often associated with imperfections in the
models. Quantification and identification of these HDM modelling er-
rors, further allowed quantification of the vertical reference bias that
exists in hydrodynamic models. The basic concept is that the modelling
errors are predictable and characterized through causal relationships
with the input variables, which are expected to extend spatially.

The DL model was trained using data from sixteen tide gauge sta-
tions, and to validate the results, another sixteen stations were used to
assess the model’s ability to generalize in the spatial dimension. The
vertical reference bias is expected to be constant both in space and time,
so once the modelling errors are determined, the vertical reference can
be calculated using satellite altimetry.

As a result, the DL model followed by feature selection identified
seven main input variables for predicting modelling errors: sea level
pressure, diurnal and low tides, zonal and meridional wind, steric
height, and sea level variability. The selected inputs were generalized
for the entire Baltic Sea, but by examining areas with high RMSE, the
results also identified localized phenomena causing local errors in the
HDM that need to be addressed. The DL model effectively predicted the
HDM error (g) with the RMSE of 3.2 cm and 3.4 cm for the training and
validation sets, respectively. Additionally, R-Squared values of 0.82 and
0.77 were obtained for the training set and validation set, respectively.
However, additional efforts are required to relax the remaining errors in
certain identified areas, such as the Gulf of Riga and the entrance of the
Baltic Sea where seiches may be present and that the DL model was not
able to replicate. It is worth noting that the selected variables could be
further improved by collaborating with the Nemo-Nordic current de-
velopers and using the HDM outputs, such as wind stresses that the
model used for its forcing and computed steric height from the HDM
output. By doing so and acquiring a better knowledge of the physical
model outputs, one can enhance the performance of the DL model and
simplify the interpretation of feature selection.

The reference bias was calculated using both tide gauge and satellite
altimetry data. The calculated reference bias of the Nemo-Nordic model
relative to the tide gauge data is 16.2 + 1.6 cm, and relative to the
satellite altimetry data is 18.1 + 2.9 cm.

Quantification of both the modelling errors and reference bias now
allowed accurate calculation of HDM dynamic topography. The DL-
based corrected Nemo-Nordic model indicates agreement with the
fifty tide gauge records, with an RMSE of 3.5 cm and a correlation co-
efficient of 0.98 compared to the original HDM with an RMSE of 7.6 cm
and a correlation coefficient of 0.93 for the period of December 2016 to
June 2021. In addition, the RMSE of the corrected HDM compared to the
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14

Ocean Modelling 186 (2023) 102286

satellite altimetry measurement is noticeably improved on average from
6.5 cm to 4.1 cm across the Baltic Sea. The utilization of different sources
of data also allowed identification of problematic areas, for instance in
the Eastern part of the Gulf of Finland and the Bothnian Sea which may
be attributed to geoid modelling problems. Whilst Southwest of the
Baltic Sea (Bornholm) requires further investigation to determine the
source of the error.

This study demonstrated a promising improvement in the determi-
nation of absolute dynamic topography by integrating the hydrody-
namic model, tide gauge, satellite altimetry, and marine geoid model.
The unification of the vertical reference between the model and obser-
vations enhances the effectiveness of data assimilation, enabling the
integration of various data sources to accurately determine the absolute
dynamic topography. This accuracy and consistency in sea level data are
urgently required for a comprehensive understanding of climate change,
marine engineering, coastal management, and navigation applications
(including optimal routes and autonomous navigation). Further studies
can be conducted to address and improve the problematic regions by
incorporating informative variables into the deep learning model.
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Fig. A.3. Training progress of the DL model for each mini-batch (size: 4), including a smoothed version. Learning loss function is half of the mean squared error as

default. Performance on the validation set is also presented in black circles.

Table A.1

List of tide-gauge stations from 01 to 50 along with used national reference frames that comply with BSCD2000. The number of hourly NaN values for the period of

December 2016 to June 2021 is also expressed.

ID Name (Country) Datum Location NaNs D Name (Country) Datum Location NaNs
01 Narva-Joesuu (EE) EH2000 (59.47, 28.04) 0 26 Simrishamn (SE) RH2000 (55.56, 14.36) 0
02 Kunda (EE) EH2000 (59.52, 26.54) 0 27 Kungsholmsfort (SE) RH2000 (56.11, 15.59) 0
03 Loksa (EE) EH2000 (59.58, 25.71) 203 28 Oskarshamn (SE) RH2000 (57.28, 16.48) 0
04 Pirita (EE) EH2000 (59.47, 24.82) 0 29 Visby (SE) RH2000 (57.64, 18.28) 284
05 Paldiski (EE) EH2000 (59.35, 24.05) 698 30 Landsort norra (SE) RH2000 (58.77, 17.86) 40
06 Dirhami (EE) EH2000 (59.21, 23.50) 0 31 Forsmark (SE) RH2000 (60.41, 18.21) 0
07 Heltermaa (EE) EH2000 (58.87, 23.05) 388 32 Ljusne sjov (SE) RH2000 (61.21, 17.15) 217
08 Roomassaare (EE) EH2000 (58.22, 22.50) 0 33 Spikarna (SE) RH2000 (62.36, 17.53) 364
09 Virtsu (EE) EH2000 (58.57, 23.51) 0 34 Ratan (SE) RH2000 (63.99, 20.90) 0
10 Parnu (EE) EH2000 (58.39, 24.48) 0 35 Furudgrund (SE) RH2000 (64.92, 21.23) 0
11 Salacgriva (LV) LAS2000,5 (57.76, 24.35) 0 36 Kalix-storén (SE) RH2000 (65.70, 23.10) 166
12 Daugavgriva (LV) LAS2000,5 (57.06, 24.02) 0 37 Kemi Ajos (FI) N2000 (65.67, 24.52) 0
13 Mersrags (LV) LAS2000,5 (57.33, 23.13) 0 38 Oulu Toppila (FI) N2000 (65.04, 25.42) 0
14 Kolka (LV) LAS2000,5 (57.74, 22.59) 0 39 Raahe Lapaluoto (FI) N2000 (64.67, 24.41) 0
15 Ventspils (LV) LAS2000,5 (57.40, 21.53) 0 40 Pietarsaari Leppaluoto (FI) N2000 (63.71, 22.69) 0
16 Liepaja (LV) LAS2000,5 (56.52, 21.00) 0 41 Vaasa Vaskiluoto (FI) N2000 (63.08, 21.57) 0
17 Gdynia (PL) PL-EVRF2007-NH (54.52, 18.56) 0 42 Kaskinen Adskér N2000 (62.34, 21.21) 0
18 Leba (PL) PL-EVRF2007-NH (54.76, 17.55) 78 43 Pori Mantyluoto K. (FI) N2000 (61.59, 21.46) 0
19 Ustka (PL) PL-EVRF2007-NH (54.59, 16.85) 0 44 Rauma Petijés (FI) N2000 (61.13, 21.44) 0
20 Kotobrzeg (PL) PL-EVRF2007-NH (54.19, 15.55) 2682 45 Turku Ruissalo S.(FI) N2000 (60.43, 22.10) 0
21 swinoujs'cie (PL) PL-EVRF2007-NH’ (53.91, 14.25) 0 46 Foglo Degerby (FI) N2000 (60.03, 20.38) 0
22 Sassnitz (DE) DHHN2016' (54.51, 13.64) 5808 47 Hanko Pikku Kolalahti (FI) N2000 (59.82, 22.98) 0
23 Warnemiinde (DE) DHHN2016 (54.17,12.10) 5808 48 Helsinki Kaivopuisto (FI) N2000 (60.15, 24.96) 0
24 Hesnaes (DK) DVR90 (54.82,12.13) 0 49 Porvoo Emasalo V. (FI) N2000 (60.21, 25.63) 0
25 Skanor (SE) RH2000 (55.42, 12.83) 224 50 Hamina Pitajansaari (FI) N2000 (60.56, 27.18) 0
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