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1
I N T R O D U C T I O N

“Clouds are not spheres, mountains are not cones, coastlines are
not circles, and bark is not smooth, nor does lightning travel in a
straight line.” – Benoit B. Mandelbrot [1].

The subject matter of this thesis concerns with trying to make sense of the
chaotic and random physical world. Classical physics often reduces practical

problems into the most simple models – as example, planets and asteroids
orbiting the sun can be treated as point masses and their trajectories predicted
by integration of the Newton’s laws – basic equations of motion. The problem
of the movement of planets is seemingly solved. While the equations are known,
the integration and method of calculation is understood and trivial, the resulting
trajectories can be incredibly complex and in extreme cases (unstable planetary
models) may look, to a human, completely chaotic. Even our Solar system has
chaotic properties [2, 3]. It has been found that this is often the property of
nonlinear systems of differential equations – a set of equations with reasonable
parametrisation can produce deterministically chaotic results that have fractal
properties [4]. While differential equations offer a precise representation of local
changes at small scales, they do not provide much insight into the the resulting
large-scale or long-term structures.

Complex large scale phenomena can also arise from interactions at small scales.
Take the percolation problem. Here, randomly distributed minerals in rock
formations form large fractal clusters – a web of connected resources. This is
of importance in hydrology and oil pumping [5]. In the study of ferromagnetism,
fractal clusters of atoms with similar spin (called domains) form below the Curie
temperature [6]. It turns out that near their critical points these very different
physical phenomena can be characterised by the same laws.

Another area of interest is turbulent flow – here, energy applied at the largest
length scales divides into flows of smaller and smaller scale until reaching the
point of dissipation due to viscosity. The energy spectrum at different length
scales of the turbulent flow follows a power law, this is called the Kolmogorov
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energy spectrum [7]. From this, one can derive that weak-turbulent gravity waves
produce a random surface with fractal properties [8, 9]. As we will see, isolines
of the stream function of two-dimensional turbulent flow can be connected back
to the percolation problem and are of importance in understanding diffusion
and mixing [10]. Random surfaces or potentials in different phenomena can be
described by the same laws; another example would be random deposits of silicate
– they yield a fractal surface [11]; fractals can be found in the shape of mountain
ranges and coastlines [12, 13].

Small scale or local interactions yield complicated fractal structures at wide
range of scales. These vast structures interact with each other producing new
phenomena. Precipitation can be characterised as a spatial-temporal fractal
[14, 15] and in case it interacts with the fractal structure of a river basin, the flow
rate of the river can be described as the intersection between these two structures.
Hurst, in his study of the river Nile, showed that its flow rate is correlated at very
long timescales that can be described by a power law [16], and so has fractal
properties.

But how to describe this chaos and randomness that can be found everywhere?
Every physical system and every model is different and unique. It is of
great interest to find common properties across different systems, fundamental
laws that span different areas of physics, laws that describe and explain this
complexity.

The work described in this thesis studies these kind of properties: in
publication [P1], we calculate the fractal dimensions of two-dimensional
correlated percolation clusters (the hull and the unscreened perimeter); we
develop a method to efficiently and accurately calculate these exponents using
Monte-Carlo methods in paper [P2]; and finally, we look into the moving
intersections of physical fractal sets in paper [P3].

In the following chapter, we start off by defining what we mean by a fractal
and introduce the fractal dimension. In sections 2.1-2.2 we give a mathematical
definition of self-similar random processes, describe the commonly used models,
investigate their spectral properties and show how they form fractal structures.
In section 2.3 we describe the work done in [P3] by connecting the dynamic
intersections of fractals to self-similar processes. In sections 2.4-2.5 we define
the percolation problem, how it relates to critical phenomena and the concept of
universality, and how self-similar processes can be mapped into the correlated
percolation problem; in section 2.6 we describe the work done in [P1] –
calculation of the scaling exponents of two-dimensional correlated percolation
clusters (the cluster hull and the unscreened perimeter).

For many properties investigated there is no known analytical form or they
are only known at limited points in the parameter space; sometimes the derived
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values and relations are based on conjecture and circumstantial evidence. Due
to this the research relies heavily on Monte-Carlo calculations – this method
offers a way to statistically test the results and also calculate the searched scaling
exponents where analytical form is not known. The problems encountered
and techniques applied for the Monte-Carlo methods, from random number
generation, self-similar process synthesis to data analysis, are described in
sections 3.1-4.1. And finally, in section 4.2, we describe the work done in [P2] –
the method used to efficiently and accurately extract the scaling exponents from
the generated percolation clusters.

Most of the work is connected to investigating statistical properties of random
surfaces – this is known as statistical topography [17].
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2
F R A C TA L S , S E L F - S I M I L A R I T Y A N D P E R C O L AT I O N

How long is the coast of Britain? On this seemingly simple question
elaborated Mandelbrot in his seminal 1967 paper [12]. It turns out that when

measuring the length of a coast L we get different results for different lengths λ
of a measuring stick (also known as measuring by compass). It appears we can
not really characterise the length of a coast with a single number. When plotting
the measurements against the compass size on a log-log graph, a curve appears
that is linear through many scales. From this one can conjecture the following
relation [18]:

L(λ) =Mλ1−D λmin < λ < λmax, (2.0.1)

where M and D are constant for the given coast and (λmin, λmax) specify the
interval where the equation holds. It was found thatD varies from place to place
(ranging from 1 to 1.25), and for the west coast of Britain we have approximately
D ≈ 1.25.

Mathematicians have generalised the idea of dimension of a set, leading to
dimension numbers that can be fractional. Suppose we have a set of points F in
d-dimensional space. Kolmogorov proposed to measure the dimension number
of the set F as

DK = − lim
λ→0+

logNλ
log λ

, (2.0.2)

where the covering numberNλ is the minimum number of d-dimensional hyper-
cubes of side λ needed to cover the set of points F [19]. Clearly, in 3-space
primitive structures like a point, a straight line, a plane or a cube would produce
integer values (correspondingly 0, 1, 2 and 3) – in these trivial cases the covering
dimension Dk is equal to the topological dimension of the structure. We call
structures with covering dimension different from the topological dimension as
fractals.
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A physical fractal is of finite size and so has a lower and upper scaling range
(λmin, λmax). All the points of F fit into a single box of size λmax, so we have
Nλmax = 1. Below that, we should have

Nλ '
(
λmax

λ

)D
λmin < λ < λmax. (2.0.3)

This relation is used to measure the fractal dimensions using the box counting
algorithms [20]. Suppose we have a section of a curve and we cover it with boxes
of size λ. We can estimate the total length L(λ) then as

L(λ) ' λNλ ' λ
(
λmax

λ

)D
∝ λ1−D. (2.0.4)

This is the same analytical relation as was conjectured in equation (2.0.1) and
suggests that the coast of Britain is a fractal.

Extracting a d-dimensional ball of radius a < λmax from the set Fwhile fixing
the box size to λmin gives us another scaling relation:

M(a) '
(

a

λmin

)D
λmin < a < λmax (2.0.5)

which can also be used to define the fractal dimension (called the mass fractal
dimension). This relation is used in [P1] and [P2] to calculate the fractal
dimensions of the percolation cluster hull and the unscreened perimeter. This
calculation is usually complicated by the finiteness of the samples measured –
the deviations from the limit to infinity are called finite size effects. A method to
overcome these is the subject of [P2].

Aside from the Kolmogorov dimension (2.0.2) or the mass dimension, other
definitions have been proposed. One of the mathematically more rigorous and
general is the Hausdorff dimension [21, p. 31]. Fortunately, very often, and
especially for physical fractals, the dimension numbers of the various definitions
coincide. A rigorous treatment of the fractal dimension theory can be found in
[21].

When we take an intersection of two fractal sets of points F1 and F2 with
corresponding fractal dimensionsD1 andD2, the resulting set of points F1 ∩ F2
is also a fractal, with the fractal dimension of the intersection given [22] as

D = D1 +D2 − d. (2.0.6)
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It is possible to combine two fractal sets where the equation above produces a
negative fractal dimension number [23]. These intersections are not fractals but
rather sparse sets of points. Mandelbrot suggests to use negative values as a
measure how “empty” the given set is. Potential negative fractal dimension is
encountered in [P3].

While the coastlines found in nature are inherently random, one can also
synthetically construct fractal structures that appear very regular and, to a human
eye, appear to contain smaller and smaller copies of the base structure. This is
called self-similarity. Examples of these models would be the Koch curve [24]
and the Sierpiński carpet [25–27]. Self-similarity is a general property of fractals.
Random fractals are also self-similar and this can be rigorously defined in terms
of statistical distributions. An example of a random fractal signal {t, f(t)} is the
fractional Brownian motion - a model for self-affine fractals, discussed in section
2.1 and used extensively in [P3]. Here, the self-similarity can be described in
terms of the curve containing affine valleys and hills, on top of which there are
smaller valleys and hills, and so on.

Very often the structure can not be described by a single dimension number,
rather, the dimension number changes from one area into another – these systems
are called multi-fractals [28] – an example is available by returning to the length
of coastlines problem where the dimension number varies from coast to coast.

Fractal properties can be found in many physical structures, like geographical
(length of coastlines, shape of mountain ranges, river deltas, sand dunes),
biological (trees, cauliflowers, blood vessels) [29], distribution of minerals in the
ground and percolation phenomena [5], distribution of galaxies in the universe
[30], distribution of dark matter [31], weather patterns [14, 15, 32], turbulence
[8, 9, 33, 34] and mixing in turbulent flow [10]. Another area where fractality
can be found are chaotic non-linear systems – fractal structures can be created
by systems of differential equations. Signals that are self-affine can be found in
many places (like the flow rate of the river Nile [16]) and are often called 1/f-
like noises. Even stock market indexes are found to be multi-fractal [35, 36]. We
investigate self-similar random processes in the next section in more detail.

2.1 self-similar processes

In this section we proceed to give a more strict definition of self-similarity,
its delta variance, the fractional Brownian motion and the power spectral
connection.

We denote by X(t) a random process (also called random function) {Xt}t∈R,
where Xt are real valued random variables related by some joint distribution
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functions. We call higher-dimensional real valued random processes {Xt}t∈Rn

random surfaces or random potentials.

We write X(t) ' Y(t) if the two random processes X(t) and Y(t) have the
same finite joint distribution functions. We say that a random process X(t) is
self-similar if for any |a| > 0 there exists b > 0 so that

X(t) ' bX(at) . (2.1.1)

If the process X(t) is non-trivial and satisfies a condition of stochastic continuity
(continuity with probability one), the constant b can be rewritten by introducing
an exponent H as

X(t) ' |a|−H X(at) (2.1.2)

with H > 0 [37]. This is also the usual definition given for self-similar random
functions. The function X(t) is also zero at t = 0 almost surely (a.s. – with
probability one) [38]. Aside from non-triviality it also makes sense to further
assume that

〈
|X(1)|2

〉
< ∞. Here 〈·〉 denotes mathematical expectation (for

physical systems also known as the ensemble average). Clearly, a non-trivial self-
similar process is not stationary.

The parameter H is known as the scaling exponent, as the Hurst exponent, as
the Hölder exponent and sometimes values likeα = 2H are used. In the context of
non-trivial self-similar processes, the valueHmust be constrained by 0 < H < 1
[38, 39] (we get X(t) = 0 a.s. when H = 0 and X(t) ∝ t a.s. in case H = 1). If
one looks at two consequent increments of the process, then with H = 0.5 the
sign of the two increments is completely random. WithH < 0.5 the signs tend to
be opposite and with H > 0.5 the signs tend to be the same – so H characterises
zero, negative or positive correlation of the increments.

We say that a self-similar random process X(t) has stationary increments if for
any given t0 we have

X(t0 +∆t) −X(t0) ' X(∆t) . (2.1.3)

Many physical random processes have stationary increments – how much the
value of some quantity statistically changes in a given interval does not depend
on the value of the time. A natural example of this kind of self-similar process
would be that of the Brownian motion B(t) of a particle due to thermal agitation.
Approximated as a Gaussian process, the variance of relative Brownian motion
(also known as Brownian noise) is given as

〈
[B(t2) −B(t1)]

2
〉
= 2D0 |t2 − t1| , (2.1.4)
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where D0 is the diffusion coefficient [19, p. 988].
We say that a process has self-similar increments when

X(t+∆t) −X(t) ' a−H [X(t+ a∆t) −X(t)] (2.1.5)

and if X(t) = 0 a.s. then the process is self-similar satisfying (2.1.2) [40].
We can derive the covariance of a mean zero self-similar process with

stationary increments:

〈X(t)X(s)〉 = 1

2

{
|t|2H + |s|2H − |t− s|2H

}〈
|X(1)|2

〉
. (2.1.6)

A random process with stationary increments can be described by another
quantity – its delta variance ∆X(∆t):

∆X(∆t) ≡
〈
[X (t+∆t) −X(t)]2

〉
. (2.1.7)

For processes with stationary increments and constant mean ∆X(∆t) is equal to
the variogram of the process:

2γ (s, t) = ∆X(s− t) . (2.1.8)

For a self-similar process with stationary increments we consequently get

∆X(∆t) = |∆t|2H
〈
|X(1)|2

〉
(2.1.9)

and
〈X(t)X(s)〉 = 1

2
[∆X(t) +∆X(s) −∆X(t− s)] . (2.1.10)

Qualitatively, the delta variance describes how much the function should
typically change given distance. It can also be interpreted as the squared height of
the characteristic features of the given length. If we interpret the random process
as a sum of hills (or valleys) on top of bigger hills on top of even bigger hills etc,
then the height of the hill (or valley) h should be a function of the length of the
hill λ as h ∼ λH.

A Gaussian process is defined by its covariance function and mean – hence
a mean zero Gaussian process with stationary increments is completely defined
by the delta variance function. A Gaussian process that follows (2.1.9) is known
as fractional Brownian motion. It is self-similar and with stationary increments.
Comparing equations (2.1.4) and (2.1.9) it is easy to see that the regular Brownian
motion is fractional Brownian motion withH = 0.5 [39]. Equivalently, fractional
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Brownian motion BH(t) can also be defined through a Weyl integral over the
Brownian noise B(s) [40]:

BH(t) =
1

Γ
(
H+ 1

2

)
{∫0

−∞
[
(t− s)H−1/2 − (−s)H−1/2

]
dB(s)

+

∫t
0

(t− s)H−1/2 dB(s)

}
. (2.1.11)

Fractional Brownian motion is extensively used as a model for self-similar
processes and fractal surfaces.

Fractional Brownian motion curve {t,BH(t)} is an affine fractal, with the
fractal dimension (both box and Hausdorff) given as

df = d−H, (2.1.12)

where d is the dimension of the motion (d = 2 for a curve) [41]. Self-similar
functions and surfaces are often called self-affine. Self-affine random surfaces, in
the context of physical systems with a limited scaling range, are also called rough
surfaces.

In terms of delta-variance we define fractional Brownian surfaces as Gaussian
random surfaces having isotropic delta variance

∆X(∆r) ∝ |∆r|2H . (2.1.13)

It is also possible to define fractional Brownian surfaces in a different fashion as
an integral of a surface of fractional Brownian noise [40, 42]. This model however
does not have stationary increments and so is less useful at modelling physical
systems.

Fractional Brownian motion processes were applied for the Monte-Carlo
calculations in [P3].

2.2 the spectral connection

We now look at spectral aspects of self-similar processes. From [43] the Fourier
transform of a function f(t) is

f̂(ω) ≡ F[f] (ω) =

∫∞
−∞ f(t) e−itωdt (2.2.1)
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and the inverse transform of f̂(ω) is

F−1
[
f̂
]
(t) =

1

2π

∫∞
−∞ f̂(ω) eiωtdω. (2.2.2)

This integral diverges for fractional Brownian motion as it is not stationary.
However, it is possible to work with a truncated subsection of the function

fT (t) =

f(t) , |t| < T ,

0, |t| > T .
(2.2.3)

A Fourier transform exists for the truncated function and we can define the power
spectrum of a random process X(t) as

S [X](ω) = lim
T→∞

〈
1

2T
|F[XT ](ω)|2

〉
, (2.2.4)

where XT are T-truncated instances of X(t). It turns out that this converges for
the fractional Brownian motion as T →∞ [44]. Further, suppose that

S[X] (ω) = cω−2H−1 (2.2.5)

with 0 < H < 1. It can be shown ([21, p. 169-173] and [43, p. 206-215]) that
X(t) then has a power law delta variance ∆X(τ) = C |τ|2H, where the relation
between constants c and C is given as

c = −
πC

2 sin π(2H+1)
2 Γ(−2H)

. (2.2.6)

The converse has also been shown in [44] – fractional Brownian motion has
power law power spectrum defined by (2.2.5).

For the isotropic case the power law power spectrum can also be extended into
higher-dimensional random potentials:

S[X](ω) ∝ |ω|
−2H−d , (2.2.7)

where d is the dimension of the surface X.
Another interesting property is that the derivative of a random function X(t)

with power law power spectrum S[X] = cω−2H−1 has a power law power
spectrum S[X ′] = cω−2H+1. This is easy to see as the Fourier transform of
a derivative is [45]

F
[
f ′
]
= iωF[f] (2.2.8)
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and so the power spectrum transforms as

S
[
X ′
]
(ω) = lim

T→∞
〈
1

2T
|iωF[XT ](ω)|2

〉
= cω−2H+1.

This all of course assumes that the function has a derivative (which is hard to
define for self-similar processes). Each derivation increases the exponent by 2.
Conversely, integration of a random function with power law power spectrum
results with the exponent being decreased by 2. This idea is visited later in section
3.3 for generation of random processes for Monte-Carlo simulations – instead of
generating the process itself it turns out to be easier to generate the difference
function which can be integrated to yield the desired output.

Noises with power law power spectrum are also known as 1/f-like noises, that
is they follow a power spectrum S[X] (f) ∝ 1/fγ. These noises can be found in
many areas [28].

Power law power spectrum can also be found in turbulence. We have the
Kolmogorov energy spectrum (γ = 5/3, H = 1/3), weak-turbulent surface
gravity waves (γ = 7/2, H = 5/4, [8, 9, 46]) and weak-turbulent surface capillary
waves (γ = 19/4, H = 15/8, [33, 47, 48]). It is reasonable to conclude that the
random potentials and surfaces caused by turbulence have fractal properties.

For a Gaussian self-similar processes with power law delta-variance the
exponent H within (2.2.5) is constrained between 0 < H < 1, only in this
parameter range do they coincide. Equation (2.2.5) inherently has no problem
with values ofH that are outside this range. An example of such a random process
is the increment process of fractional Brownian motion (where H < 0). So the
class of processes with power law power spectrum is wider. Functions withH > 1
on the other hand are almost trivial, they are asymptotically monotonous. Self-
similar processes at parameters H = 0 and H = 1 are defined as being almost
surely trivial, while by the spectral definition they are not.

Physical systems are finite. The definition of a self-similar process as a model
assumes infinite scaling. Suppose we have a Gaussian random process with power
law power spectrum only within a given range (ωm,ω0):

S[X] (ω) ∝ ω−2H−1 ωm < ω < ω0 (2.2.9)

and outside this range the energy falls off quickly. With λ0 ≡ ω−1
0 and

λm ≡ ω−1
m , we conjecture that the delta variance is also a power law within

a range of scales, given by

∆X(λ) ∝ |λ|2H λ0 � λ� λm, 0 < H < 1. (2.2.10)
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This relation has been shown for the Fourier series expansion (and its power
function) of a periodic random function [19, p. 986]. As the Fourier transform
can be defined through the limit of the Fourier series the relation should apply
here.

The power law power spectrum with negative H is connected to correlated
percolation, as described in section 2.5. The spectral view is also used to motivate
a simulation method in section 3.5.

2.3 self-affine fractals and fractal dynamics

Fractals are not necessarily isotropic – that is they may scale at different rates in
different directions. These fractals are called self-affine [49, 50]. The fractional
Brownian motion curve or surface {x,BH(x)} is a self-affine fractal. It is
characterised by the delta-variance, indicating how the height of a section of the
curve |BH(x2) −BH(x1)| typically scales compared to the length |x2 − x1|: we
have

|BH(x2) −BH(x1)| ∼ |x2 − x1|
H 0 < H < 1. (2.3.1)

A useful model to study self-affine fractals is the family of self-affine Sierpiński
carpets [25, 26, 49, 51]. For the two-dimensional case, these fractals are composed
of self-similar elements where a given element’s width and height a,b are related
by an exponent H as a ∼ bH. The role of the parameter H is here the same as
in the case of the fractal curve of fractional Brownian motion – it describes how
the self-similar elements of the fractal scale in different dimensions. Self-affine
Sierpiński carpets are used in [P3].

The physical world is often not static. This also applies to fractals. For example,
the surface profile of water due to weak-turbulent gravity waves is a function
of time. The isolines of the vector potential of two-dimensional turbulent flow
change in time. Here, fractality extends into the time dimension – we can look at
these phenomena as self-affine spatial-temporal fractals.

Another dynamical aspect can be found in the moving intersections of fractal
structures. An example of this would be a river flow – it can be interpreted as
an integral of the intersection of rainfall with the river basin (both of which are
fractal structures).

Studying these moving intersections of fractal sets was the subject of [P3]. The
author’s original contribution to the knowledge of physics is the discovery that
the measure of the intersections of moving fractal sets is itself a fractal function.
We restate this here as follows.

Suppose that we have two sets of points F1 and F2, with either only F1 or both
F1 and F2 being fractal, with corresponding fractal dimensions D1 and D2. We

18



also assume that at least one of the sets is finite, that is it is contained in some
ball of radius r. We may move the set F1 in some direction n̂, so that

F1(t) = {x+ tn̂ |x ∈ F1 } . (2.3.2)

The fractal dimension D of the intersection F1(t) ∩ F2, given that the two sets
are statistically independent, is given by equation (2.0.6). The set F2, if it is
fractal, must have isotropic scaling in all directions. The set F1 may be self-affine
in the direction n̂ with the affine behaviour described by the parameter H (or
H = 1 for a self–similar fractal). In such a case the measure of the intersection
M[F1(t)∩ F2](t) is itself a self-affine function, with its scaling exponent h given
as

h =
D

2H
. (2.3.3)

This self-affine scaling is limited by the scaling ranges of the intersecting fractals.
Once the movement distance is above the scaling length of a fractal, its fractal
dimension is reduced to that of a point or for self-affine two-dimensional fractals,
first that of a line. The result presented here was extensively tested by the author
using Monte-Carlo calculations.

The derivation of the relation in [P3] is not mathematically rigorous, however,
it is supported by the Monte-Carlo simulations – various intersections of fractal
structures were tested: by intersecting percolation clusters, self-similar and self-
affine Sierpiński carpets, fractional Brownian motion curves; intersections were
tested between two fractals structures and also by basic geometric shapes (lines,
balls) with a fractal structure.

The author’s derivation in [P3] was motivated, as a generalisation for all
fractals, by the derivation by supervisor Jaan Kalda for the specific case of
intersecting a self-affine function with a moving line. The analytical derivation
was done for the simplified case of self-similar fractals.

One of the unanswered questions in [P3] is what happens when the fractals
have unisotropic scaling in directions perpendicular to that of movement, or if
both sets are self-affine in the direction of movement.

Another interesting aspect to further study would be what happens when the
fractal dimension of the intersection is negative. This should result in negative
values of h.

Aside from giving the analytical relation, this result gives descriptive insight
into the processes of the physical world. The flow rate of the river Nile, famously
studied by Harold Edwin Hurst [16], can be interpreted as an integral quantity of
the fractal structure of precipitation over its drainage basin, and as confirmed by
the analytical relation we have found, is self-affine. Similarly, the stock market
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index indicates the integral output of the economy. Naturally, these phenomena
are more complicated in detail but the author believes that their fundamental
quality can be described by this result.

2.4 percolation and critical phenomena

Percolation refers to the movement and filtering of fluids and gases through
porous materials. In the physical world the most obvious examples are the
filtering and movement of ground water and pumping of mineral oil or natural
gas from porous rock deposits.

Percolation theory studies the properties of these materials through various
models, many of which are constructed the following way: we place finite
geometric objects (points, line segments, balls, etc) into either a lattice (which
can be regular or random) or continuous space. We say that two objects are
connected if the distance between them is less than some λ0. As objects connect
together, they form clusters of various shapes. A cluster is said to be infinite if
it connects from one end of the lattice to the other. We can then say that the
material becomes conductive. In case the placement of objects into the model
lattice is random, the emergence of the infinite cluster depends on the lattice site
occupation probability p and one can find the lowest site occupation probability
value pc where the infinite cluster appears almost surely (in the limit of the lattice
size a → ∞). The value of the pc, called the percolation threshold, depends on
the dimensionality and type of the lattice.

Near the percolation threshold pc, interesting phenomena starts to happen.
For one, the formed clusters are fractal and their scaling can be characterised by
a fractal dimension. This threshold is a critical point – it causes a second-order
phase transition from the material being non-conductive into conductive. Aside
from the power law scaling of the cluster mass, many properties of the model
show scaling behaviour proportional (in the main singular component, in the
limit of lattice size L→∞ and when |p− pc|� 1) to the value |p− pc|[∼], where
exponents [∼] (usually denoted by the Greek alphabet α,β, . . .) are called critical
exponents. Examples of these include the probability of a lattice site belonging
to the infinite cluster

P∞(p) ∝ |p− pc|
β θ(p− pc) (2.4.1)

or the correlation length
ξ(p) ∝ |p− pc|

−ν , (2.4.2)
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which characterises the size of the cluster distribution – it indicates the maximum
size of clusters that can be found.

The remarkable thing is that while the value of pc depends on the lattice
type, there is numerical and experimental evidence that the fractal scaling and
critical exponents only depend on the dimension of the percolation lattice. This
is called universality of the scaling exponents. Various critical phenomena,
from ferromagnetic transition through the Curie temperature to the conductivity
of porous rocks can be placed into universality classes where seemingly
unconnected physical systems display the same mathematical scaling laws (with
values of the exponents depending on the class).

Aside from percolation, there are other discrete lattice phase transition models.
These include the Ising model and the q-state Potts model. The percolation
problem corresponds to a limit of the Potts model for q→ 1 [52].

An overview of the percolation theory and contemporary problems can be
found in [19, 53–55].

2.5 correlated percolation

In the simplest probability model, the lattice sites are occupied independently
with a given probability p. This is called uncorrelated percolation. In case the
model contains long-range correlations in the occupation of lattice sites, we start
to speak of correlated percolation and the scaling and critical exponents start to
change. In physical materials these distortions are usually in the form of defects
and their effects are subject to active research [56].

As per universality small changes in the lattice structure should not affect
the scaling exponents. It can be shown that small correlations which decay
at sufficient speed (against the characteristic cluster size ξ) do not affect the
behaviour of the system [57]. This is called the Harris criterion.

Suppose that each lattice site has the value θi ∈ {0, 1}, where 0 denotes
unoccupied and 1 denotes occupied. The ensemble average 〈θi〉i is then the
global occupation probability p. Assuming that the lattice is stationary, we
describe the occupation correlation function as

cθ
(
xi − xj

)
=
〈
θiθj

〉
− p2. (2.5.1)

Alternatively, we can denote the occupation probability pi of a lattice site as a
random number (with p = 〈pi〉i), with correlation function given as

cp
(
xi − xj

)
=
〈
pipj

〉
− p2; (2.5.2)
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and calculate the occupation site values θi as

θi = θ(pi − r) , (2.5.3)

where r is a random variable uniformly distributed in [0, 1] and θ(x) is the
Heaviside step function. One can show that cθ(ρ) ≡ cp(ρ) ≡ c(ρ) . While
not sufficient to describe all statistical properties, it is believed that the two-point
correlation function c(ρ) contains enough information to determine the critical
exponents [19].

From now on we define correlated percolation as percolation where the
correlation function follows the algebraic relation

c(ρ) ∝ |ρ|2H , H < 0. (2.5.4)

Site occupation probability pi can be described by a continuous random potential
X, where the value of pi is taken at coordinate xi:

pi = θ(X(xi) − r) . (2.5.5)

It can be shown [19, p. 986] that in case we have an isotropic and stationary mean
zero Gaussian random potential with power-law power spectrum as per equation
(2.2.9), the correlation function is also a power law, given by

c(ρ) ∝ ρ2H, λi � ρ� λm, H < 0. (2.5.6)

The Harris criterion can be used [19, p. 979] to derive the value of H where
the model still belongs to the universality class of uncorrelated percolation –
it is H < −1/ν where ν is the exponent in equation (2.4.2). For values of
−1/ν < H < 0, the scaling exponents are functions ofH and we consider this to
be the class of correlated percolation. In case of two-dimensional percolation it
means that forH < −3/4 the correlations do not affect the critical exponents – in
such a case the model belongs to the universality class of uncorrelated percolation.
Note that the derivation of the Harris criterion is not mathematically rigorous,
while it is supported by numeric evidence.

Equation (2.5.5) allows us to map a random potential into percolation model.
Given that mountain ranges are self-affine fractals, one can look at lakes or
coastlines as isosets of level water, hence coastlines can be modelled as the edges
of a percolation cluster.
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As another application of the percolation model, for incompressible turbulent
flow, the velocity field can be defined as a curl of the scalar vector potential

v(r, t) = ∇×Ψ(r, t) ; (2.5.7)

one can further limit the model into a two-dimensional time-independent flow
as Ψ(x,y, t) = ψ(x,y) ẑ – here one can study diffusion as movement of tracers
along the isolines of the vector potential ψ(x,y) [10].

For positive values of 0 < H < 1 we get an infinite cluster at any probability.
While there is no longer a phase transition, the fractality of the clusters remains
and their scaling exponents can still be calculated.

2.6 scaling of two-dimensional correlated percolation
clusters

While the percolation cluster is a fractal, other fractal structures can be derived
from it: the hull and the unscreened perimeter (see [P1, fig. 4]).

The hull of a percolation cluster is formed by the outside edges of the cluster.
This quantity is of importance in the investigation of turbulent diffusion [10]. Its
value for the case of two-dimensional uncorrelated percolation is dh = 7/4 [58].

The unscreened perimeter excludes lattice nodes from the hull that can not be
accessed by a ball that is slightly larger than the lattice site size. Its value for the
two-dimensional uncorrelated percolation is dp = 4/3 [59, 60].

The subject of [P1], and the author’s original contribution to the knowledge
of physics was the numeric calculation of these exponents dh = dh(H) and
dp = dp(H) for correlated percolation and clusters formed from self-similar
surfaces (rough surfaces) depending on the parameter −3/4 < H < 1 (see [P1,
fig. 6]). This calculation was done using Monte-Carlo methods. The results can
bee seen in [P1, fig. 13].

An overview of previous results can be found in [19, 61]. It is known exactly
that dh(0) = 1.5 [62, 63]. This was confirmed by the calculations.

The calculations ran into convergence problems aroundH = −3/4 andH = 1

for the hull and the unscreened perimeter, and around H = 0 for the unscreened
perimeter. The reasons for the lack of convergence of the unscreened perimeter
at H = 0 is without a good answer. The bad convergence at the edges of the
theoretical scaling range is most likely caused by the distortions in the random
potential used to construct the percolation clusters due to the simulation method
and the finiteness of the simulation lattice.

The behaviour of the scaling exponents can be approximated by a stepwise
linear function of H. However, the results of the Monte-Carlo calculations show
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a clear divergence from the linear behaviour. This certainly warrants further
study. This was previously also observed in [64].

24



3
O N S I M U L AT I O N O F R A N D O M P R O C E S S E S

For Monte-Carlo investigation of statistical properties of self-similar
processes one has to generate a vast number of the realisations of the given

process with the specified properties, measure them each separately, and then
in the end aggregate the result. Generation of self-similar processes is hard
due to long-range correlations. Various methods have been developed. Some
generate the exact process as specified by mathematical definition, some generate
random processes that maintain a desired property like the power law delta
variance, some exploit the idea of self-similarity and division of scales in a direct
fashion. Aside from accuracy, one also has to consider computational costs –
some algorithms are much faster than others. Creation and optimisation of the
software for simulations is an essential component of research.

3.1 random number generation

Monte-Carlo calculations are used to determine the value of some quantity
through stochastic sampling of a search space. When determining an expectation
of a value whose distribution has a long tail, many samples are necessary to
reduce the variance and error bars. Further, the samples have to be truly
random (or random enough) so that correlations between samples do not start to
compromise the result. There are many algorithms that generate pseudo-random
numbers on computers but one has to choose wisely between performance and
randomness. A good algorithm to generate random bit sequences allows one to
get random numbers of uniform distribution. For the generation of Gaussian
random processes and potentials one needs to generate random independent
values of normal distribution – these can be calculated from values of uniform
distribution.

The author used the Mersenne Twister random number generator by Makoto
Matsumoto and Takuji Nishimura [65] – knows as the MT19937. The author
also tested the ranlux generator [66] which has theoretically proven properties
in terms of randomness and long term correlations but found no discernible
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difference (aside from speed) when calculating the fractal dimension of the hull
of a percolation cluster. A much weaker algorithm (standard C rand) was also
tested and produced a clearly incorrect result at larger grid sizes – correlations in
the random number sequence started to affect the result. For [P3] and subsequent
work the author developed a random process generation software library1. Here,
a more efficient variation of the Mersenne Twister was used – SFMT (SIMD
oriented Fast Mersenne Twister) [67]. This generator makes use of the vectorised
calculation units present in modern x86 family processors.

Generation of normally distributed independent random numbers can be done
by the use of the Marsaglia polar method [68] which generates two independent
normally distributed values x,y from two uniform random values u1,u2:

x =
√
−2 lnu1 cos 2πu2, y =

√
−2 lnu1 sin 2πu2 with 0 < u21 + u

2
2 < 1.
(3.1.1)

Unfortunately, the implementation in the GNU Scientific Library – GSL
[69] discards the second value and so almost halves the performance.
Modern implementation in the c++11 standard library contain reasonable
implementations of both the MT19937 and the Marsaglia polar method. However,
one can get much higher generation speeds by the use of the Ziggurat algorithm
[70]. A variation of this was implemented for the random process generation
library. This is a rejection sampling method where the area under the probability
distribution curve is divided into horizontal slices of equal area but only on the
positive side of the distribution. One can select a slice with uniform distribution.
Next, each slice is divided into two – a rectangular area and the area by the curve.
Again, uniform random sampling can be used to place the generated number –
98% of them fall into the rectangular area. Here, separate bits from a generated 64-
bit random bit sequence can be used for selecting the slice and the first rejection
sampling double precision coordinate. Outside the rectangular area a second
random number is generated which is tested against the probability distribution
function in a standard rejection sampling fashion. If the number falls out of the
probability curve, a new number is generated and the test on the horizontal slice
is repeated. The sign of the resulting value can be selected by a random bit as
normal distribution is symmetric. The tail of the normal distribution has to be
handled separately, see [70] for more details.

The speed of the Ziggurat based normal distribution sampling is impressive –
over four times the speed of the GSL and three times over the speed of the c++11
standard library.

1 libfbm – http://mare.ee/indrek/libfbm/
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Aside from vertical scaling on a single CPU core, Monte-Carlo calculations
can also be scaled horizontally spreading them over a cluster of machines and
CPU cores. Most of the calculations can be done completely independently
and only the results have to be aggregated separately. For [P1], a computation
cluster at CENS2 was used. In the modern world cloud based computer resources
could be used instead – here computer processing power can be bought quickly,
conveniently and with huge capacity.

3.2 stationary gaussian random processes

Gaussian random processes can be described by only two functions – the expected
value of each coordinate in the process (usually taken as zero) and the two-point
covariance function. We are interested in the generation of fractional Brownian
motion (one-dimensional) and also fractional Brownian surfaces.

We say that a Gaussian process is stationary and isotropic when the covariance
function between the two points does not depend on the coordinates of the points
but rather only on the distance between the points, so that

Cov(Z(x) ,Z(y)) ≡ ρ(|x−y|) , (3.2.1)

where ρ is the covariance function. An isotropic process looks the same in each
direction. We note here that the fractional Brownian motion as defined in section
2.1 is not stationary, while it is isotropic.

The most direct way to generate processes of multivariate normal distribution
is to use Cholesky decomposition on the covariance matrix, that is use the
decomposition

Σ = AAT . (3.2.2)

The covariance matrix is positive semi-definite by definition so such a
decomposition must exist. And given a vector of independent normally
distributed values z = (z1, . . . , zN)

T , an instance of the field with the given
covariance matrix Σ and mean µ simply follows from

Z = µ+Az. (3.2.3)

While this method is straightforward and exact, taking the Cholesky
decomposition of a very large matrix is impractical. A 1000 × 1000 two-
dimensional random process would yield a million by million (N = 1000000)

2 Centre for Nonlinear Studies at Tallinn University of Technology
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covariance matrix. Also, for computations this method requires (N+ 1) ·N/2
multiplications and additions.

A more efficient generation method is described in [71, 72] to generate
stationary Gaussian processes. As said, the fractional Brownian motion is not
stationary. However, with a few tricks we can overcome this deficiency.

For a one-dimensional isotropic and stationary Gaussian process the
covariance matrix Σ is a Toeplitz matrix (diagonal-constant matrix) ant it is
completely characterised by its first row (c1, . . . , cN). A second, 2N × 2N
circular covariance matrix S is assembled by embedding the covariance matrix
Σ within it in a circular fashion, so that the first row of the matrix S is

c =

(
c1, . . . , cN,

cN−1 + cN
2

, cN−1, . . . , c1

)
. (3.2.4)

The circular matrix S can be decomposed into

S = FΛF∗, where Λ = diag (F∗c) ; (3.2.5)

here F is the discrete Fourier transform in matrix form (with F∗ being the
conjugate transpose – the inverse discrete Fourier transform) and Λ is the
diagonal matrix of eigenvalues [73]. If the eigenvalues are all non-negative, we
can write a decomposition for the matrix S as S = FΛF∗ = FΛ1/2

(
FΛ1/2

)∗.
We recognise here the matrix A from (3.2.2). Hence, to generate samples of the
random process, all we need to do is first calculate the eigenvalues by performing
a 2N sized one-dimensional inverse discrete Fourier transform on the vector c
(using a fast Fourier transform algorithm) and then for each sample take 2N
complex values whose components are independent normally distributed random
values, multiply them correspondingly with the square roots of the eigenvalues
and then take the Fourier transform of the number sequence. The result is two
independent number sequences – one in the real component and the other in the
imaginary component – taking a subsection of length N yields us a sample of
the random process with covariance given by Σ. Alternatively, we could split the
number sequence into two subsections of length N, however, we must keep in
mind that these two sequences are not independent from each other.

For higher-dimensional cases a similar arrangement but with a higher-
dimensional Fourier transform can be used, see [72] for more details. For fast
Fourier transform the free FFTW3 [74] library provides very good performance
(with complexityO(n logn)). For optimal performance the lattice size 2N should
be kept a power of two.

It was mentioned that for all this the eigenvalues of S must be non-negative.
There is more here – only in such a case is the matrix S non-negative definite
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and so is a covariance matrix. It can easily happen that for the given covariance
matrix Σ, the resulting circular matrix S is not positive semi-definite. In such a
case what can be done is to modify the circular vector c by adding appropriate
elements in the middle to try to make S positive-definite. This is a rather vague
instruction but good results can be achieve on a case by case basis. This approach
is further described in [71, 72, 75].

3.3 fractional brownian motion and surfaces

Fractional Brownian motion is not stationary. However, its increment process,
called the fractional Gaussian noise

X(t) = BH(t+ 1) −BH(t) (3.3.1)

is. The covariance function for n-dimensional fractional Gaussian noise is given
as

ρ(r) =

n∏
i=1

1

2

[
|ri − 1|

2H − 2 |ri|
2H + |ri + 1|

2H
]

, 0 < H < 1, (3.3.2)

see [42] for more details. For the one-dimensional case a noise with this
covariance can be generated and then integrated – result is a sample of exact
fractional Brownian motion. This method was used for generating the reflection
surfaces in [P3].

Unfortunately, this approach does not work for higher-dimensional cases –
here a slightly different method is applied as described in [75] which produces
random Gaussian processes with power law delta variance. First, how do we
define fractional Brownian motion in higher dimensions? We seek random
processes whose variogram is a power law. To get here, we first need to define a
stationary covariance ρ(r):

ρ(r) =


c0 − |r|2H + c2r

2, 0 6 |r| 6 1;
β(R−|r|)3

|r|
, 1 6 |r| 6 R;

0, |r| > R.

(3.3.3)

Here R > 1 and c0, c2, β are chosen so that ρ is twice differentiable and positive
(see [75] for more detail). In the range 1 6 |r| 6 R the function ρ takes the role of
the elements inserted in the middle of the vector c in the previous section to make
the circular matrix S positive semi-definite. The basic idea here is to simulate a
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stationary Gaussian process with correlation function c0− |r|2H+ c2r
2 in a ball

of radius 1. At the edges of the ball and and the rest of the simulation grid the
correlation function is modified to result in a non-negative definite circular matrix
S.

The resulting process within the ball of radius 1 follows delta variance

1

2
Var(Z(x) −Z(y)) = |x−y|2H − c2 |x−y|

2 . (3.3.4)

This is not yet quite what we want. Post-processing is applied to the process to
remove the second term in the following way:

Z∗ (x) = Z(x) +
d∑
i=1

xi2c2Xi, (3.3.5)

where Xi are independent normally distributed random values. The resulting
function has a power law delta variance:

1

2
Var (Z∗(x) −Z∗(y)) = |x−y|2H . (3.3.6)

The covariance of this process however is different from the canonical fractional
Brownian motion:

Cov(Z∗(x) ,Z∗(y)) = c0 − |x−y|2H + c2

(
|x|2 + |y|2

)
. (3.3.7)

3.4 direct use of fast fourier transform

The fast Fourier transform can be directly applied to generate random processes
with power law delta variance at 0 < H < 0.5.

Suppose we have an N-periodic number sequence x [k] so that x[k] =

x[k mod N]. Its discrete Fourier transform is

x̂[κ] = FN {x} [κ] =

N−1∑
n=0

x [n] e−i2πκn/N (3.4.1)

and the inverse transform is

x[k] = F−1
N {x̂} [k] =

1

N

N−1∑
κ=0

x̂ [κ] ei2πkκ/N. (3.4.2)
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The periodogram of this number sequence is

PN {x} [κ] =
1

N
|FN {x} [κ]|2 (3.4.3)

and we denote the expectation of the periodogram as

SN {x} [κ] = 〈PN {x} [κ]〉 . (3.4.4)

The autocovariance of an N-periodic sequence x[k] is

rN{x} [k] =
1

N

N−1∑
n=0

x [n] x [n+ k] . (3.4.5)

This can be reinterpreted as a circular discrete convolution. With x− [k] = x [−k]

,
rN{x} [k] =

1

N

(
x− ∗ x

)
[−k] , (3.4.6)

In frequency domain a convolution can be represented as multiplication. Also as
x [k] is real we have the symmetry FN {x} [κ] = FN {x} [−κ], so we get

FN{rN{x}} [κ] =
1

N
|FN {x} [κ]|2 = PN {x} [κ] . (3.4.7)

In other words the autocovariance and the periodogram are Fourier transform
pairs. The sample delta variance is

∆ {x} [k] =
1

N

N−1∑
i=0

(x [n] − x [n+ k])2 . (3.4.8)

This can be tied to the sample autocovariance and the periodogram:

∆ {x} [k] = 2rN {x} [0] − 2F−1
N {PN {x}} [k] (3.4.9)

and conversely the periodogram can be derived from the given sample delta
variance:

PN {x} [κ] = FN {rN {x} [0]}−
1

2
FN

{
∆ {x} [k]

}
[κ] . (3.4.10)

Note that rN {x} [0] in this expression is a constant function and so its Fourier
transforms only affects the κ = 0 component of the periodogram. The ensemble
average periodogram is then

SN {x} [κ] = FN {〈rN {x} [0]〉}− 1
2
FN

{〈
∆ {x} [k]

〉}
[κ] . (3.4.11)
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We assume that as a random process x[n] has stationary increments. Then the
ensemble averaged sample delta variance is equal to the ensemble delta variance:

〈
∆ {x} [k]

〉
=

〈
(x [k] − x [0])2

〉
. (3.4.12)

We want this function to be a power law. However, it also has to be symmetric,
that is

〈
∆ {x} [k]

〉
=
〈
∆ {x} [−k]

〉
. This is achieved by the following periodic

function:

〈
∆ {x} [k]

〉
=

(k mod N)2H , k mod N < bN/2c
(N− k mod N)2H, otherwise

. (3.4.13)

From the previously derived equations we get

SN {x} [κ] = FN

{
〈rN {x} (0)〉− 1

2

〈
∆ {x} [k]

〉}
[κ] . (3.4.14)

We want the resulting function to have zero mean, hence the κ = 0 component
of the averaged periodogram must be 0 and so we define

FN {〈rN {x} (0)〉} [κ] =

FN
{
1
2

〈
∆ {x}

〉}
[0] , for κ=0 ;

0, otherwise.
(3.4.15)

We conclude that the function SN {x} [κ] can be easily calculated from the given
periodic delta variance. There is, however, one more limitation. The power
spectrum can not be negative. We have found that the proposed periodic function
does produce positive power spectrum for one-dimensional cases in the range
0 < H 6 0.5. For values above H > 0.5 one has to modify the periodic delta
variance function for longer distances – this in effect reduces the length at which
the power-law delta variance is true. For the one-dimensional case the author
could find functions that follow the power law delta variance at length N/4 for
H = 0.95. Unfortunately, this was done by process of random trial by error –
the author is not aware of an analytical solution to this problem. The method
described should also be applicable to higher dimensions.

We now know what the expectation of the periodogram must be. If we were
to generate the function in Fourier space, then what would the components be?
The process we generate is Gaussian with zero mean. Each component of the
resulting function is a weighted sum of a finite number of frequency domain
components. This can only be if those components themselves are all Gaussian.
They should also be with mean zero, complex and we know their average squared
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magnitude (the power spectrum SN {x}). Also, as the sequence is real, we must
have FN {x} [κ] = FN {x} [−κ]. We choose (c.f. [76])

FN {x} [κ] =

√
1

2
SN {x} [κ] [N(0, 1) + iN(0, 1)] , (3.4.16)

where N(0, 1) are independent normally distributed values. What is left is to
take an inverse fast Fourier transform of this number sequence to produce two
instances of the random process that exactly follows our specified delta variance
law up to length N/2.

What was described here is very similar to what was done in [75] and described
in the previous section – we apply the desired property of the random process
up to some length, but farther from that we modify the covariance function
so that the resulting covariance matrix wholly is positive semi-definite. So the
desired property exists within a range of lengths in the generated process and
only diverges at greater lengths.

3.5 use of spectral self-similarity and division of scales

A completely different approach to simulating self-similar noises is to make
use of the self-similarity at different scales directly. As per [19], we can divide
the random process Ψ(x) into components where each component represents a
specific scaling length λ:

Ψ(x) =
∑

λi=2iλ0

Ψλ(x) , (3.5.1)

where the component Ψλ(x) is defined by the partial sum

Ψλ(x) =
∑

1/2<|k|λ<1

Ψke
ik·x; (3.5.2)

here Ψk are the Fourier series coefficients at wave vector k of the process Ψ(x):

Ψ(x) =
∑
k

Ψke
ik·x. (3.5.3)

There are various ways to approximate the components (3.5.2). In [P1] this
was done for the two-dimensional case by a function of a grid of overlapping
cones where each cone had diameter λ and height λHR(−1, 1), where R(−1, 1)
are independent uniform random values in the range (−1, 1). The author tried
variations of this method – by using random values of normal distribution instead
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of uniform, to add multiple generated noises together (to make the generated
surface Gaussian), to offset the various layers by random offset, to offset each
cone by random but limited offset, to have the characteristic lengths for each
layer to be more gradual (so that λi = αi, α < 2). None of these modifications
were found to affect the resulting extracted fractal dimensions.

Another advantage of this approximate method is that it allows for values of
H < 0 – this is not possible for self-similar noises by definition.

Alternatively, in a different approach to our approximate layers of coned grids,
the division of scales is also achieved by the wavelet synthesis. The author made
heavy use of wavelets to verify and analyse the scaling exponents of the generated
noises in [P3], but did not experiment with noise synthesis with wavelets. More
details about wavelets for self-similar processes can be found in [77, 78].

3.6 other methods and references

Various approximate methods have been used in the past, among them
the turning bands [79] and midpoint displacement [80]. In [61] 1+1-
dimensional simulation was used for two-dimensional random process – here
two-dimensional noise is generated by adding corresponding components of two
one-dimensional noises:

Ψ(x,y) = Ψ1(x) +Ψ2(y) . (3.6.1)

In [76] “power law noise” is generated directly through Fourier transform.
While the resulting noise is certainly random, using a power law periodogram
does not capture the properties of self-similar noise, especially as H starts to
approach 1. The method produces somewhat more reasonable approximation
at small or negative values of H.

3.7 mapping of a random potential into land and sea

Given a random two-dimensional process X(x,y), we can fix the “sea-level” at
h0, and define a set of points {{x,y} |X(x,y) > h0 } as land and the rest of the
points as sea. Due to universality, we can then look at a connected piece of land
as a two-dimensional percolation cluster. If the random process follows power
law power spectrum with −3/4 < H < 0, connected clusters of land correspond
to correlated percolation clusters. Further, using equation (2.5.5), we can map the
random potential into a regular percolation lattice. This was the method used
in [P1] to generate percolation clusters for Monte-Carlo calculations – a random
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potential was generated as described in the previous sections and it was mapped
into a percolation cluster, whose fractal properties were then measured.
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4
C A L C U L AT I O N O F S C A L I N G E X P O N E N T S

Suppose we are given samples of a random processes and we want to
determine whether they are self-similar, and in case they are, what is the

value of the scaling exponent. And also we are interested in the range of the
power law scaling. This problem needed a solution for [P3] where we transformed
one random process into another by method of calculating the mass of a moving
intersection of a fractal surface with a line or even another fractal structure.

The first idea would be to make direct use of the delta variance relation (2.1.9).
This, however, failed miserably. We are dealing with finite sections of fractals, cut
out with some algorithm in a quantised lattice. The resulting random processes
contain trends and geometric biases which we have difficulty modelling and
describing. The power law scaling only happens within a limited range but also
its amplitude varies within the context of a sample. All in all, a different approach
was needed.

The second idea would be to use the spectral properties, that is equation (2.2.5).
A very naive approach is to calculate the periodogram and fit a line through it.
This approach was used in the early days of self-affine process research, but even
binning the periodogram components to get a saner fit of the line does not yield
accurate results. Another question is, whether one can even get an accurate
reading from a single finite sample of the random process. While fractional
Brownian motion is ergodic [81], one may still need quite a long stretch of it
to determine the exponent with high confidence.

If a single periodogram does not work, perhaps we can work with the
expectation of the periodogram (3.4.4) – it would be the finite and discrete
equivalent of the continuous power spectrum. But is the expectation of the
periodogram even a power law, given that the process we measure actually is
self-similar? A result in [43] states that the expectation of the periodogram of N
samples from a discrete time process x [k] with power spectrum S{x} (θ) is

SN {x} [κ] =

∫π
−π
FN(θ− 2πκ/N)S{x} (θ)dθ, (4.0.1)
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Figure 1 – Log-log plot of the expectation of the periodogram for fractional Brownian motion
at sample counts N = 1024 and N = 65536. Dotted line is the corresponding power law for
the given H.

where FN is the Fejer kernel

FN(θ) =
1

2π
· sin2 (Nθ/2)
N sin2 (θ/2)

. (4.0.2)

As can be seen in figure 1 the expectation of the periodogram for a random process
with power law power spectrum does not form a straight line with the slope
of the line determined by the exponent H in a log-log plot for larger values of
H (appearing as H = 0.5 for H > 0.5). The periodogram just is not a good
approximation of the power spectrum. For small or negative values ofH it might
give a reasonable approximation. The reason is that the finite Fourier transform
assumes that the function is periodic, while with H > 0.5 the random process
tends to follow a trend for long stretches. Author also tried modifications of the
function (like subtracting a linear function) to “make” it periodic, but these efforts
did not yield reasonable results.

When the analysed noises contain distortions, both direct delta-variance and
spectral methods fall short. The wavelet method is designed to bypass global
trends in the signal and so should produce very good results for this application.
Next, we look how it can be used to analyse self-similar noises.
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4.1 the wavelet method

First, we look at some basic ideas of the wavelet theory. We say that f ∈ Lp(R)

if ∫
R

|f(t)|p dt < +∞. (4.1.1)

Suppose we have some function Ψ ∈ L1(R) ∩ L2(R). From this, we create
another, parametric function

Ψλ,τ(t) =
1√
λ
Ψ

(
t− τ

λ

)
, (4.1.2)

where parameter λ > 0 scales and parameter τ translates the original function.
Function Ψ is called the mother wavelet, and the family of functions Ψλ,τ are
called the daughter wavelets. Given a function f ∈ L2(R), the scalar product
〈f,Ψλ,τ〉 characterises the contribution of the daughter wavelet into function f.
We define another function through this scalar product as

W[f](λ, τ) = 〈f,Ψλ,τ〉 =
∫

R

f(t)Ψλ,τ(t)dt. (4.1.3)

Function W[f] is called the continuous wavelet transform of function f

using the wavelet Ψ. The continuous wavelet transform W[f] indicates how
much the wavelet Ψ resonates with function f at the given scale (against
the scaled frequencies contained in the wavelet) and position. In case∫

R
1
|ν|

|F[Ψ] (ν)|2 dν <∞, an inverse transform also exists:

f(t) =

∫∞
0

∫
R

W[f](λ, τ)Ψλ,τ(t)dτ
dλ

λ2
. (4.1.4)

A plotted visualisation of |W[f](λ, τ)|2 (usually, as a coloured map) is known as
the scalogram. While the Fourier transform characterises only the frequency
distribution of a function, the wavelet transform gives us an idea also about the
location where the signal resonates with the wavelet.

It makes sense to choose wavelets that have a compact support (the range of
points where Ψ is nonzero is bound) as it simplifies calculation. Further, some
functions work better as wavelets than others, depending on the application –
the capacity to isolate the frequency (scale) and location varies from function to
function. Examples of the continuous wavelets that are widely used would be the
Mexican hat wavelet (also called the Ricker wavelet, with compact support) [82]
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and the Shannon wavelet (without compact support) [83]. Wavelets are used for
signal analysis, image compression and solving PDE-s (see [84] for an overview).

There also exists a discrete wavelet transform (and corresponding fast wavelet
transform) that can be efficiently applied on discrete data series – here we need
an orthonormal system of wavelets

Ψj,k(t) = 2
j/2Ψ

(
2jt− k

)
j,k ∈ Z (4.1.5)

so that
〈
Ψj,k,Ψl,m

〉
=

1, when j = l,k = m

0, otherwise.
(4.1.6)

Finding such wavelets is rather involved and is done through multiresolution
analysis. The most famous discrete wavelets are the Daubechies family of
wavelets (enumerated based on the number of base coefficients, with D2, D4,
D6, ...; where D2 is the Haar wavelet) [84].

Another important property of theDN Daubechies wavelets is that they have
been constructed to have N/2 vanishing moments, that is

〈tm,Ψ〉 = 0, 0 6 m 6 N/2. (4.1.7)

In such a case the polynomial components of the analysed signal are not
represented in the wavelet transform coefficients. For analysing signals this is
a very useful property as it excludes trend lines or polynomial distortions in the
signal that may be caused by external factors, instrumentation, finiteness of the
process or due to simulation lattice geometry in Monte-Carlo calculations.

Next, we follow [78] for applying the wavelet transform to analyse self-similar
noises. Given a self-similar random process X(t) (satisfying equation (2.1.2)) we
should have for the wavelet transform a similar relation

W[X(t)](λ, τ) 'W
[
|a|−H X(at)

]
(λ, τ) . (4.1.8)

Substituting |a|−H X(at) into (4.1.3) yields

W[X](aλ,aτ) ' |a|H+1/2
W[X](λ, τ) . (4.1.9)

Next, we make use of the averaged transform over all the translations with a fixed
scale:

W[X](λ) ≡ lim
T→∞ 1

2T

∫T
−T

W[X](λ, τ)dτ. (4.1.10)
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For an ergodic self-similar process, this is actually the expectation. In case it
converges, we should have

W[X](aλ) = |a|H+1/2W[X](λ) ; (4.1.11)

this can only be if
W[X](λ) ∝ λH+1/2. (4.1.12)

For the discrete wavelet transform we can simply take the arithmetic mean
of the wavelet coefficients at the given scale as estimate of the expectation. For
Monte-Carlo simulations one can calculate the average coefficients over many
samples, plot them on a log-log graph, and conclude that in any place where the
graph is linear the process is self-similar with parameter H that can be extracted
from the slope of the line.

The method outlined was extensively used in [P3] for estimating the scaling
exponents of the produced noises and yielded superior results compared to all
other tested methods. The author found that the D4 wavelet did not work as
well as D6-D12. Author also used the Mexican hat wavelet through numeric
integration and found that it also produced acceptable results. The method was
also tested on noises with negative H and was found to work in such a case.

4.2 fractal scaling exponents and finite size effects

The previous methods can be applied to self-affine curves and surfaces. We now
turn our attention into calculating the scaling exponents of self-similar fractals.
In Monte-Carlo calculations this is done by generating fractals, measuring their
size (radius or diameter of the smallest ball that contains them) and mass (in a
regular lattice, the number of sites occupied), and trying to relate these quantities
as per equation (2.0.5). As there can be a lot of variation, millions of instances of
fractals must be generated to arrive at a consistent result. Further, one must pick
a good method how to fuse and average several measurements together as each
may have a different size value.

For the application of calculating the scaling exponents of two-dimensional
correlated percolation cluster hull, the following method was used in [P1]: we
use quantised lattice sizes (x ∈ {8, 16, 32, . . . , xmax}) and generate a correlated
or self-similar random potential as per the parameterH; then we set the sea-level
so that the centre lattice site is land. We then trace the percolation cluster hull
from this site until it reaches the edges of the lattice and measure its length. If
the hull makes a loop instead of reaching the edge, we discard the sample and
start over. This is repeated millions of times for the given lattice size x and the
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average length L(x) is calculated. If the hull is a fractal, the expectation of L(x)
should scale as

〈L(x)〉 ∝ xdh(H). (4.2.1)

Alternatively, we may use a periodic lattice but only use hulls that penetrate the
edge of the lattice. The calculation of the unscreened perimeter can be done in a
similar fashion.

We could now plot the data points on a log-log graph, fit a straight line
against the points and use its slope as the resulting fractal dimension value.
Unfortunately, for lower values of x the calculated average diverges significantly
from the predictions. This is known as the finite size effect – the finite size of the
lattices affects the result. We are interested in the exponent in the limit x → ∞.
The calculation capacity of modern computers does not allow one to calculate at
infinite size as that would require infinite computer memory and CPU capacity.

The finite size effects have the following causes: the lattice fine structure that
affects the scaling at finite lengths (discussed in [85–87]), the limited size of the
lattice (and how we determine the diameter of the fractal), and errors from the
approximation of the statistical model of the lattice occupation. The analytical
formulae for the distortions depend on the lattice type and the specifics of the
calculation method. It would be nice to have a general method that compensates
for these problems.

The author’s contribution to the knowledge of physics involved the testing,
verification and publishing of a general method to compensate against the finite
size effects in the context of Monte-Carlo calculations [P2]. This method was
developed by the author’s supervisor Jaan Kalda and first used in [61]. The
method makes a series of constraining assumptions about the measured quantity,
but also provides a way to test these assumptions. We outline the gist of the
method here.

First, we note that the mass of a fractal can be measured in different ways.
Aside from simply counting the number of occupied sites, for the hull, we might
count the number of sites that are connected to only one other site. This quantity
should also behave according to equation (4.2.1). Samples of these quantities can
be found in [P1, fig. 9] and [P2, fig. 2]. In case of Monte-Carlo calculations,
where we control all the variables, it is very easy and computationally efficient
to calculate these different measurements – they come for free.
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Suppose that we findm different ways to measure the fractal. Next, we assume
that these different measurements of the hull length (or the mass of the measured
fractal) have the form

〈
Lj(x)

〉
=

m∑
k=1

Ajkx
αk +∆j(x) , j = 1 . . .m; (4.2.2)

where αk > αk+1 are the m main scaling exponents (with dh = α1) and ∆j(x)
represent the remainder of the finite size effects. We further assume, that within
the scope of the Monte-Carlo calculations, the values of ∆j(x) are small enough
to be statistically insignificant. The coefficients Ajk, for a fixed exponent index
k, are different – the different ways of measuring the fractal structure provide us
with further information and data for model fitting.

After calculating all the Lj(x), we could use some sort of maximum likelihood
estimator to calculate the unknown parameters Ajk and αk, assuming that
∆j(x) ≈ 0. The author tested the Levenberg-Marquardt algorithm [88, p. 801]
which does work. However, these methods require a good idea about the initial
values of the searched parameters and can easily get stuck in local minima. It is
hard to tell if you have the correct result.

The developed method reduces this complicated multi-dimensional search for
the best set of parameters into a one-dimensional search on a constructed fitness
function, where we test the shape of the fitness function (requiring it to have
exactly m distinct minima) and the fitness of the result by measuring the width
of these minima.

The method was applied in [P1] and in general produced very good results.
However, as discussed in section 2.6, problems were encountered at some points
of the scaling exponents where clearly the form (4.2.2) did not apply.
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5
C O N C L U S I O N S A N D F U R T H E R W O R K

In this work we have studied the statistical topography of self-affine random
potentials: properties of two-dimensional correlated percolation clusters by

use of Monte-Carlo calculation [P1]; developed a method to efficiently perform
Monte-Carlo calculations to determine the scaling exponents of fractals [P2]; and
investigated the properties of signals resulting from intersections of moving or
evolving fractal sets by deriving an analytical result and testing it numerically
[P3].

The inherent randomness of these processes means that the laws we find are
statistical, they characterise the average behaviour; we can state where a typical
system might evolve to – but are quite limited when working with a single sample.

The happy circumstance of universality means that varied physical systems
of disordered media follow the same kind of laws, with variance only in values
of parameters. Universality divides into classes; and the task of physicists is to
analyse the behaviour for each class and tabulate the values of the parameters.
This was the subject of [P1] – finding the scaling exponents of the hull and the
unscreened perimeter of percolation clusters for the universality class of two-
dimensional correlated percolation and rough surfaces. The results were clear
for a range of parameters, confirming previous conjecture and numerical results.
However, at specific points of H = −3/4, H = 1 for the hull and also at
H = 0 for the unscreened perimeter, the calculations failed to converge. The exact
reasons for this were left unanswered. Is the convergence inherently slow at these
parameters or was it caused by the calculation method or the lattice structure or
the inaccuracy of the statistical model used to generate Monte-Carlo samples? We
can blame some of the problems to finite size effects, our calculations do simulate
a system of limited size. The analytical results are usually taken in the limit of
the process scaling range approaching infinity; however, we must recognise that
most real physical systems are actually finite. Could we find universal laws for
finite scaling?

While the scaling exponents as functions of the parameter H have been
conjectured to be step-wise linear functions, the calculations clearly show a
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statistically significant deviation from linear behaviour. It would be interesting
to find an analytical relation instead of only relying on numerics.

In [P2] we developed a method to efficiently perform Monte-Carlo calculations.
These types of calculations can take a lot of computational resources; the method
greatly improves the practicality of Monte-Carlo methods. Also, getting a
reliable result requires testing the result against a mathematical model; this is
incorporated into the method. The method overcomes a certain type of common
finite-size effects encountered in these kind of Monte-Carlo calculations. While
very powerful, it still failed in [P1] at certain parameter points. The method is
general and one should be able to apply it in varied areas.

Monte-Carlo calculations involve a lot of technical work; in this thesis we have
described many of these details including on how to generate samples of random
structures corresponding to the assumed statistical model, to analysing fractal
signals to determine the scaling parameters.

The work done in [P3] investigated the signals generated by finite intersections
of moving fractal sets, or a fractal set intersecting with a primitive geometrical
object (a point, a line, a plane, etc.). We found that these signals are self-affine
and derived an analytical relation describing their scaling exponent as a function
of the fractal dimension of the intersection and the self-affine properties of the
intersecting fractals. The derived relation was numerically tested by various
types of constructed fractal sets.

Further, this relation was initially motivated by the integral reflection of light
from a self-affine fractal surface as a function of reflection angle. It would
be interesting to extend this approach and apply the derived relation to the
problem of integral reflections from a dynamical surface (for example, due to
weak-turbulent gravity waves). This would result in a spatial-temporal fractal
structure that has different self-affine scaling in multiple dimensions. For Monte-
Carlo calculations to numerically verify any kind of result, one would also need to
develop a method to accurately and efficiently simulate these kind of structures.

While the author believes that the derived result is correct, it would be
interesting to see a mathematically rigorous proof. The derived relation also
allows self-affine behaviour only in the direction of movement, assuming
isotropic self-similarity in other directions, and by only one of the structures. A
generalisation to treat all cases should be possible.

A moving ball of radius r intersecting with a fractal structure appears, at
movement lengths greater than r, as a point. The resulting fractal dimension of
such intersection is negative. While untested, the derived relation for the scaling
exponent of the resulting noise should also work in this case.
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Monte-Carlo simulations provide a stable environment to test statistical models
and properties, however, a quantitative application of the found relation in the
physical world, outside of simulation, would be interesting.

In nature, random fractal structures caused by complex phenomena interact
and produce new behaviour. So, the derived relation, while being analytical, also
gives descriptive insight into the functioning of nature.

45





B I B L I O G R A P H Y

[1] B. B. Mandelbrot. The Fractal Geometry of Nature. Freeman, New York, 1982.

[2] J. Laskar. Large-scale chaos in the Solar System. Astronomy and Astrophysics,
287:L9–L12, 1994.

[3] W. B. Hayes. Is the outer Solar System chaotic? Nature Physics, 3(10):689–
691, October 2007.

[4] S. H. Strogatz. Nonlinear Dynamics and Chaos. CRC Press, May 2018.

[5] P. R. King, S. V. Buldyrev, N. V. Dokholyan, S. Havlin, Y. Lee, G. Paul, H. E.
Stanley, and N. Vandesteeg. Predicting oil recovery using percolation theory.
Petroleum Geoscience, 7(S):S105–S107, March 2001.

[6] A. Kreyssig, R. Prozorov, C. D. Dewhurst, P. C. Canfield, R. W. McCallum,
and A. I. Goldman. Probing Fractal Magnetic Domains on Multiple Length
Scales in Nd2Fe14B. Physical Review Letters, 102(4):047204, January 2009.

[7] A. N. Kolmogorov. The local structure of turbulence in incompressible
viscous fluid for very large Reynolds numbers. Proceedings of the USSR
Academy of Sciences, 30:299–303, 1941.

[8] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov. Weak turbulence
of gravity waves. Journal of Experimental and Theoretical Physics Letters,
77(10):546–550, May 2003.

[9] A. I. Dyachenko, A. O. Korotkevich, and V. E. Zakharov. Weak Turbulent
Kolmogorov Spectrum for Surface Gravity Waves. Physical Review Letters,
92(13):134501, April 2004.

[10] M. Isichenko and J. Kalda. Statistical topography, II. Two-dimensional
transport of a passive scalar. Journal of Nonlinear Science, 1(4):375–396, 1991.

[11] J. Fossum, H. Bergene, A. Hansen, B. O’Rourke, and G. Manificat. Self-affine
crossover length in a layered silicate deposit. Physical Review E, 69(3):036108,
March 2004.

47



[12] B. B. Mandelbrot. How long is the coast of britain? Statistical self-similarity
and fractional dimension. Science (New York, N.Y.), 156(3775):636–8, May
1967.

[13] G. Dietler and Y.-C. Zhang. Fractal aspects of the Swiss landscape. Physica A:
Statistical Mechanics and its Applications, 191(1-4):213–219, December 1992.

[14] S. Lovejoy and B. B. Mandelbrot. Fractal properties of rain, and a fractal
model. Tellus A, 37A(3):209–232, May 1985.

[15] S. Lovejoy and D. Schertzer. Multifractals, universality classes and satellite
and radar measurements of cloud and rain fields. Journal of Geophysical
Research, 95(D3):2021, 1990.

[16] H. E. Hurst. Long Term Storage Capacity of Reservoirs. Trans. Am. Soc. Civ.
Eng., 116:770–799, 1951.

[17] J. M. Ziman. Models of Disorder: The Theoretical Physics of Homogeneously
Disordered Systems. Cambridge University Press, 1979.

[18] L. F. Richardson. General Systems Yearbook, volume 6 (139). 1961.

[19] M. B. Isichenko. Percolation, statistical topography, and transport in random
media. Rev. Mod. Phys., 64(4):961, 1992.

[20] J. Feder. Fractals. Springer US, Boston, MA, 1988.

[21] K. Falconer. Fractal Geometry. John Wiley & Sons, Ltd, Chichester, UK,
September 2003.

[22] B. B. Mandelbrot. Fractals in physics: Squig clusters, diffusions, fractal
measures, and the unicity of fractal dimensionality. Journal of Statistical
Physics, 34(5-6):895–930, March 1984.

[23] B. B. Mandelbrot. Negative fractal dimensions and multifractals. Physica A:
Statistical Mechanics and its Applications, 163(1):306–315, February 1990.

[24] H. von Koch. Sur une courbe continue sans tangente, obtenue par une
construction géométrique élémentaire. Arkiv för matematik, astronomi och
fysik, 1, 1904.

[25] W. Sierpiński. Sur une courbe cantorienne qui contient une image
biunivoque et continue de toute courbe donnée. C. R., 162:629–632, 1916.

[26] C. McMullen. The Hausdorff dimension of general Sierpiński carpets.
Nagoya Math. J., 96:1–9, 1984.

48



[27] Y. Gui and W. Li. A random version of McMullen-Bedford general Sierpiński
carpets and its application. Nonlinearity, 21(8):1745–1758, August 2008.

[28] B. B. Mandelbrot. Multifractals and 1/f Noise. Springer New York, New York,
NY, 1999.

[29] A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo,
G. Serini, L. Preziosi, and F. Bussolino. Percolation, Morphogenesis, and
Burgers Dynamics in Blood Vessels Formation. Physical Review Letters,
90(11):1–4, March 2003.

[30] L. Pietronero. The fractal structure of the universe: Correlations of galaxies
and clusters and the average mass density. Physica A: Statistical Mechanics
and its Applications, 144(2-3):257–284, August 1987.

[31] C. Chacón-Cardona, R. Casas-Miranda, and J. Muñoz-Cuartas. Multi-fractal
analysis and lacunarity spectrum of the dark matter haloes in the SDSS-DR7.
Chaos, Solitons & Fractals, 82:22–33, January 2016.

[32] R. Ray, M. H. Khondekar, K. Ghosh, and A. K. Bhattacharjee. Scaling and
nonlinear behaviour of daily mean temperature time series across India.
Chaos, Solitons & Fractals, 84:9–14, March 2016.

[33] A. Pushkarev and V. Zakharov. Turbulence of capillary waves: theory and
numerical simulation. Physica D: Nonlinear Phenomena, 135(1-2):98–116,
January 2000.

[34] A. S. Lanotte, S. K. Malapaka, and L. Biferale. On the vortex dynamics in
fractal Fourier turbulence. The European Physical Journal E, 39(4):49, April
2016.

[35] B. B. Mandelbrot and R. L. Hudson. The (mis)Behaviour of Markets: A Fractal
View of Risk, Ruin and Reward. Profile Books, 2004.

[36] M. Lee, J. W. Song, J. H. Park, and W. Chang. Asymmetric multi-fractality in
the U.S. stock indices using index-based model of A-MFDFA. Chaos, Solitons
& Fractals, 97:28–38, April 2017.

[37] J. Lamperti. Semi-stable stochastic processes. Transactions of the American
Mathematical Society, 104(1):62–62, January 1962.

[38] W. Vervaat. Sample Path Properties of Self-Similar Processes with Stationary
Increments. The Annals of Probability, 13(1):1–27, February 1985.

49



[39] P. Embrechts and M. Maejima. An introduction to the theory of self-
similar stochastic processes. International Journal of Modern Physics B,
14(12n13):1399–1420, May 2000.

[40] B. B. Mandelbrot and J. W. Van Ness. Fractional Brownian Motions,
Fractional Noises and Applications. SIAM Review, 10(4):422–437, October
1968.

[41] S. Orey. Gaussian sample functions and the Hausdorff dimension of level
crossings. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
15(3):249–256, 1970.

[42] H. Qian, G. M. Raymond, and J. B. Bassingthwaighte. On two-dimensional
fractional Brownian motion and fractional Brownian random field. Journal
of Physics A: Mathematical and General, 31(28):L527–L535, July 1998.

[43] M. B. Priestley. Spectral analysis and time series. 1981.

[44] P. Flandrin. On the spectrum of fractional Brownian motions. IEEE
Transactions on Information Theory, 35(1):197–199, 1989.

[45] D. C. Champeney. A Handbook of Fourier Theorems. Cambridge University
Press, Cambridge, 1987.

[46] A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov. Numerical
simulation of surface waves instability on a homogeneous grid. Physica
D: Nonlinear Phenomena, 321-322:51–66, 2016.

[47] V. E. Zakharov and N. N. Filonenko. Weak turbulence of capillary waves.
Journal of Applied Mechanics and Technical Physics, 8(5):37–40, 1971.

[48] Y. Pan and D. K. P. Yue. Direct Numerical Investigation of Turbulence of
Capillary Waves. Physical Review Letters, 113(9):094501, August 2014.

[49] B. B. Mandelbrot. Diagonally self-affine fractal cartoons. Part 3: "anomalous"
Hausdorff dimension and multifractal "localization". In Fractals in Physics:
Proceedings of the Sixth Trieste International Symposium on Fractals in Physics,
pages 463–480, Trieste, 1985. Elsevier Science Ltd.

[50] B. B. Mandelbrot. Self-Affine Fractals and Fractal Dimension. Physica Scripta,
32(4):257–260, October 1985.

[51] T. J. Bedford. Crinkly curves, Markov partitions and dimension. Phd,
University of Warwick, 1984.

50



[52] C. Fortuin and P. Kasteleyn. On the random-cluster model. Physica,
57(4):536–564, February 1972.

[53] D. Stauffer and A. Aharony. Introduction to Percolation Theory. Taylor &
Francis, London, 1992.

[54] B. Bollobas and O. Riordan. Percolation. Cambridge University Press,
Cambridge, 2006.

[55] N. Araújo, P. Grassberger, B. Kahng, K. Schrenk, and R. Ziff. Recent advances
and open challenges in percolation. The European Physical Journal Special
Topics, 223(11):2307–2321, October 2014.

[56] J. Zierenberg, N. Fricke, M. Marenz, F. P. Spitzner, V. Blavatska, and
W. Janke. Percolation thresholds and fractal dimensions for square and cubic
lattices with long-range correlated defects. Physical Review E, 96(6):062125,
December 2017.

[57] A. B. Harris. Effect of random defects on the critical behaviour of Ising
models. Journal of Physics C: Solid State Physics, 7(9):1671–1692, May 1974.

[58] H. Saleur and B. Duplantier. Exact Determination of the Percolation Hull
Exponent in Two Dimensions. Phys. Rev. Lett., 58(22):2325–2328, 1987.

[59] T. Grossman and A. Aharony. Structure and perimeters of percolation
clusters. Journal of Physics A: Mathematical and General, 19:L745–L751,
1986.

[60] T. Grossman and A. Aharony. Accessible external perimeters of percolation
clusters. J. Phys. A: Math Gen, 20:L1193–L1201, 1987.

[61] J. Kalda. Statistical topography of rough surfaces: ”Oceanic coastlines” as
generalizations of percolation clusters. EPL (Europhysics Letters), 84(4):46003
(6pp), 2008.

[62] J. Kondev and C. L. Henley. Geometrical Exponents of Contour Loops on
Random Gaussian Surfaces. Physical Review Letters, 74(23):4580–4583, 1995.

[63] J. Kondev, C. L. Henley, and D. G. Salinas. Nonlinear measures for
characterizing rough surface morphologies. Physical Review E, 61(1):104–
125, 2000.

[64] J. Kalda. Description of random Gaussian surfaces by a four-vertex model.
Phys. Rev. E, 64(3):020101(R), 2001.

51



[65] M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation, 8(1):3–30, January 1998.

[66] M. Lüscher. A portable high-quality random number generator for lattice
field theory simulations. Computer Physics Communications, 79(1):100–110,
1994.

[67] M. Saito and M. Matsumoto. SIMD-Oriented Fast Mersenne Twister: a 128-
bit Pseudorandom Number Generator. In Monte Carlo and Quasi-Monte
Carlo Methods 2006, pages 607–622. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[68] G. Marsaglia and T. A. Bray. A Convenient Method for Generating Normal
Variables. SIAM Review, 6(3):260–264, July 1964.

[69] M. Galassi. GNU Scientific Library Reference Manual (3rd Ed.). 2009.

[70] G. Marsaglia and W. W. Tsang. The Ziggurat Method for Generating Random
Variables. Journal of Statistical Software, 5(8):1–7, 2000.

[71] C. R. Dietrich and G. N. Newsam. Fast and Exact Simulation of Stationary
Gaussian Processes through Circulant Embedding of the Covariance Matrix.
SIAM Journal on Scientific Computing, 18(4):1088–1107, July 1997.

[72] A. T. A. Wood and G. Chan. Simulation of Stationary Gaussian Processes
in [0, 1]d. Journal of Computational and Graphical Statistics, 3(4):409–432,
December 1994.

[73] G. H. Golub and C. F. Van Loan. Matrix Computations (Johns Hopkins Studies
in the Mathematical Sciences). 4th edition, 2012.

[74] M. Frigo and S. Johnson. The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, February 2005.

[75] M. L. Stein. Fast and Exact Simulation of Fractional Brownian Surfaces.
Journal of Computational and Graphical Statistics, 11(3):587–599, September
2002.

[76] J. Timmer and M. König. On generating power law noise. Astronomy and
Astrophysics, 300:707, 1995.

[77] C. Heneghan, S. Lowen, and M. Teich. Two-dimensional fractional Brownian
motion: wavelet analysis and synthesis. Proceedings of the IEEE Southwest
Symposium on Image Analysis and Interpretation, 1996., pages 213–217, 1996.

52



[78] I. Simonsen, A. Hansen, and O. Nes. Determination of the Hurst exponent
by use of wavelet transforms. Physical Review E, 58(3):2779–2787, September
1998.

[79] Z.-M. Yin. New methods for simulation of fractional Brownian motion.
Journal of computational physics, 127(1):66–72, 1996.

[80] M. A. Stoksik, R. Lane, and D. Nguyen. Practical Synthesis of Accurate
Fractal Images. Graphical Models and Image Processing, 57(3):206–219, May
1995.

[81] W. Deng and E. Barkai. Ergodic properties of fractional Brownian-Langevin
motion. Physical Review E, 79(1):011112, January 2009.

[82] J. W. J. Hosken. Ricker wavelets in their various guises. First Break, 6(1):24–
33, 1988.

[83] C. Cattani. Shannon wavelets theory. Mathematical Problems in Engineering,
2008.

[84] I. Daubechies. Ten Lectures on Wavelets. Society for Industrial and Applied
Mathematics, January 1992.

[85] R. Ziff. Correction-to-scaling exponent for two-dimensional percolation.
Physical Review E, 83(2):020107, February 2011.

[86] A. Aharony and J. Asikainen. Fractal dimensions and corrections to scaling
for critical Potts clusters. Fractals, 11(supp01):3–7, February 2003.

[87] J. Asikainen, A. Aharony, B. B. Mandelbrot, E. Rausch, and J.-P. Hovi. Fractal
geometry of critical Potts clusters. The European Physical Journal B -
Condensed Matter, 34(4):479–487, August 2003.

[88] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd
edition, 2007.

53



A C K N O W L E D G E M E N T S

The work presented in this thesis was performed at the Centre for Nonlinear
Studies (CENS) in the Institute of Cybernetics at the Tallinn University of

Technology (TTÜ). I would like to thank my supervisor professor Jaan Kalda for
his continued support and encouragement to finish this work.

I would also like to thank my brother Marek Mandre and the Department of
Computer Engineering at TTÜ for providing computational resources.

This work was supported by Estonian Science Foundation Grant No. 7909,
Estonian Science Targeted Project No. SF0140077s08, and EU Regional
Development Fund Centre of Excellence TK124.

The scientific methods, mathematical techniques and probability theory
studied during the course of this work were applied at Starship Technologies to
develop mapping and localisation technology for self-driving delivery robots.

54



A B S T R A C T

on statistical topography of self-affine sets

The work in this thesis investigates fractal structures and is divided into
three published articles.

The percolation problem studies clusters formed by randomly connected small
objects (or cavities in porous rocks). Once the probability of a location being
occupied by an object is increased above a critical threshold, an infinite cluster
forms, and connectivity property of the material goes through a second order
phase transition. The connected clusters, near criticality, are fractal, and can
be characterised by fractal dimension numbers. Further fractal objects can be
derived from a cluster – for the two-dimensional percolation its outline, called
the hull of the cluster, and the outline of the cluster that excludes narrow
gaps, called the unscreened perimeter. The percolation problem also exhibits
universality, small random distortions in the cluster structure do not change the
fractal dimension numbers or other critical exponents.

Long-range correlations in object placement can change the universality class
meaning the fractal dimension numbers change. We assume a correlation
function c(ρ) ∝ |ρ|2H (−3/4 < H < 0) and perform a Monte-Carlo calculation
to determine the fractal dimensions of the hull and the unscreened perimeter. The
model can be further generalised to include self-similar processes as generating
functions of the percolation clusters extending the calculation range to −3/4 <

H < 1.
Monte-Carlo calculations of the fractal scaling exponents (called the fractal

dimensions) are generally done using a finite simulation lattice. The finiteness
of the calculation causes distortions in the result called finite-size effects. We
develop a method to compensate for a common form of these finite-size effects in
Monte-Carlo calculations. The method makes a series of assumptions, while also
providing a framework to test them. A way to calculate the statistical uncertainty
of the result is also provided. We test the method by calculating the fractal
dimension of the hull of the two-dimensional uncorrelated percolation clusters
and show that it provides superior results at small lattice sizes (corresponding to
computational needs of the calculation) compared to traditional method.

Finally, we investigate finite intersections of moving fractal sets. The mass
of such intersection, as a function of relative movement between the two sets, is
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found to be self-affine and an analytical relation for its scaling exponent is derived.
The formula is tested in a Monte-Carlo fashion on a series of synthetically
generated fractals intersecting with a moving line or each other.

56



K O K K U V Õ T E

eneseafiinsete hulkade statistilisest topograafiast

Käesolev töö uurib fraktaalsete objektide omadusi ja on jagatud kolme
avaldatud artikli vahel.

Perkolatsiooniprobleem käsitleb juhuslikult paiknevate väikeste objektide (või
poorses kivis olevate tühimike) kokkupuutest tekkivate struktuuride (klastrite)
omadusi. Kui ühendava objekti esinemise tõenäosus materjali igas punktis tõuseb
üle teatud kriitilise piiri, öeldakse, et tekib lõpmatu klaster, ja materjali läbilaskvus
läbib faasisiirde. Antud kriitilisel piiril on tekkinud klastrid fraktalid ja neid
saab iseloomustada fraktaalse dimensiooninumbriga. Klastritest saab tuletada
ka täiendavaid fraktaalseid struktuure – kahedimensionaalse perkolatsiooni
korral moodustab klastrite äär (koorik) fraktaalse joone; lisaks eemaldades
koorikust kitsad eendid, tekib uus struktuur, mida kutsume väliseks perimeetriks.
Perkolatsiooniprobleemile on omane ka universaalsus – häired ühendavate
objektide esinemise struktuuris, mis on oma distantsilt (korrelatsiooni kauguselt)
piiratud, ei mõjuta dimensiooniarve ega teisi kriitilisi eksponente.

Kui ühendavate objektide paiknemises esineb pikaulatuslikke korrelatsioone,
muutub tekkinud klastrite universaalsusklass – fraktaalsed dimensiooninumbrid
muutuvad. Antud töös uurime korrelatsioonifunktsiooni c(ρ) ∝ |ρ|2H

(−3/4 < H < 0) ja teeme Monte-Carlo arvutuse, et leida kahedimensionaalse
perkolatsiooniklastri kooriku ja välise perimeetri fraktaalsed dimensiooni-
numbrid sõltuvalt parameetrist H. Mudelit saab lisaks üldistada kaasates enese-
sarnased protsessid ja laiendades arvutusvahemiku intervalli −3/4 < H < 1.

Monte-Carlo arvutused sooritatakse mudelil, mis moodustab regulaarse
struktuuri ja lõpliku suurusega võre. Antud arvutusmudeli lõplik suurus
põhjustab tulemuses moonutusi, mida nimetatakse lõpliku suuruse efektiks. Me
töötame välja meetodi nende moonutuste modelleerimiseks ja lõpmatu klastri
dimensiooniarvu täpseks arvutuseks. Antud meetod eeldab otsitud suuruselt
mitmeid omadusi, samas pakub ka viisi nende omaduste olemasolu kontrollida
ja annab lisaks tulemuse statistilise määramatuse. Me katsetame antud meetodit
arvutades kahedimensionaalse ilma korrelatsioonideta perkolatsiooniklastri
kooriku fraktaalse dimensiooninumbri ja näitame, et antud meetod annab palju
täpsema tulemuse võrreldes klassikalise meetodiga väikestel arvutusmudeli
suurustel (mis vähendab vastavalt ka arvutusmahukust ja aega).
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Lisaks uurime lõpliku suurusega fraktaalsete struktuuride lõigete omadusi
juhul kui antud struktuurid liiguvad teineteise suhtes. Antud lõigete mõõt kui
funktsioon kahe struktuuri suhtelisest positsioonist on eneseafiinne ja me leiame
teda iseloomustava eksponendi analüütilise kuju. Antud valemit katsetame
erinevate sünteetiliselt genereeritud fraktaalsete struktuuride lõikel kas joonega
või omavahel kasutades Monte-Carlo meetodit.
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Abstract. We calculate the scaling exponents of the two-dimensional correlated percolation cluster’s hull
and unscreened perimeter. Correlations are introduced through an underlying correlated random potential,
which is used to define the state of bonds of a two-dimensional bond percolation model. Monte-Carlo
simulations are run and the values of the scaling exponents are determined as functions of the Hurst
exponent H in the range −0.75 ≤ H ≤ 1. These results are required by a range of applications (e.g.
two-dimensional turbulent transport), for which the scaling exponents are expressed via the hull’s fractal
dimension.

1 Introduction

The world around us is chaotic and seemingly random,
but one can still find regularities. Take mountain ranges –
these irregular jagged structures may seem intractable to
analysis, but often display an interesting property – they
look the same at different length scales – they are self-
similar. This phenomenon is not limited to the surface fea-
tures of planets, but is also found in many other places –
deposited metal films [4], ripple-wave turbulence [5], crack
fronts in material science [6–8], cloud perimeters [9], pas-
sive tracers in two-dimensional fluid flows [10–13], etc.

The analysis of these physical systems is often re-
duced to determining the scaling exponents characterizing
the rough surfaces involved. For example, the convective-
diffusive transport of a passive scalar in a random two-
dimensional steady flow is determined by the scaling expo-
nents of the isolines of the underlying stream-function [12].
Another example is provided by the invasion percolation
in fracture landscapes: the scaling laws describing the in-
vasion process depend on the fractal dimensions of the
underlying landscapes [14,15].

The aim of this paper is to numerically calculate the
values of the scaling exponents of the hull and the un-
screened perimeter (defined in the next section) depend-
ing on the roughness parameter H . In Section 2, we start
off by giving an overview of the concepts used – rough
surfaces and percolation clusters, what we mean by corre-
lations, and a mapping between the two classes of models.
Numeric calculations are done through the Monte-Carlo
simulations using the two-dimensional bond percolation
model; the procedure is described in Section 3. Interpre-
tation of the resulting data requires overcoming the finite

a e-mail: indrek@mare.ee

size effects and the convergence problems, which is the
subject of Section 4. Finally, Section 5 provides a brief
summary of the results and a future outlook for the stud-
ies of the statistical topography of random surfaces.

2 Overview

Rough surfaces. Let ψ(x, y) ≡ ψ(r) be the height or po-
tential of a self-similar random two-dimensional surface.
We define the roughness exponent H – also known as the
Hurst exponent – through the surface height drop at dis-
tance a = |a| [16]:

〈
[ψ(r) − ψ(r + a)]

2
〉

∝ |a|2H
, (1)

where angular braces denote averaging over the coordinate
r (or also over an ensemble of surfaces). This scaling law
assumes that a0 ≤ |a| ≤ a1, where a0 and a1 are the lower
and upper cut-off scales, and 0 ≤ H ≤ 1. Relation (1)
also describes self-similarity – the height of a “hill” on the
surface is a power law of its diameter, so hills at different
scales have the same proportions.

A more generic description, which is not limited to
the positive values of H , can be given through the power
spectrum Pk [17]. We assume that

〈ψk〉 = 0, 〈ψkψk′〉 = Pkδk+k′ , (2)

and define the spectral density Pk as a power law:

Pk ∝ |k|−2H−2
, for |k| � a−1

0 . (3)

This also allows us to conveniently divide the “multiscale”
potential ψ(r) into a sum of “monoscale” functions,

ψ(r) =
∑

λi=2iλ0

ψλi(r), (4)
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Rough surfaces (H > 0) Correlated surfaces (H < 0)

Fig. 1. The potential (4) is made up of components with dif-
ferent amplitudes. The amplitude of a component of scale λ
is proportional to λH . For H > 0 the wider “hills” start to
dominate the landscape and once H ≥ 1 only the widest “hill”
matters. Conversely, for H < 0 local fluctuations start to gain
in influence and once H < −0.75 the wider hills lose any influ-
ence on the scaling exponents of the surface.

Fig. 2. An example of a two-dimensional correlated random
potential (here for H = 0 and so Dh = 1.5 [1,2]) with isolines
separating the area into “land” and “sea”. The correlations
specified by H > −1 lead to potentials that are similar to
1/f -like noise as opposed to uncorrelated “completely” random
potentials (at H = −1) that resemble white noise (constant
power spectrum) [3].

where each component in the sum represents a function
with a single characteristic length. The effect of the pa-
rameter H on the amplitude of the “monoscale” compo-
nents of the “multiscale” potential can be seen in Figure 1.

The random potential ψ can be also characterized
through a correlation function (covariance, assuming
〈ψ(x)〉 = 0)

C(a) = 〈ψ(x)ψ(x + a)〉 . (5)

Indeed, for potentials conforming to (3), it is a power law

C(a) ∝ |a|2H a0 � |a| � a1, (6)

which is valid for the range −3/4 ≤ H ≤ 0.
With a specific height h, the random potential defines

a set of isolines ψ(r) = h (see Fig. 2 for an example).
The height h can be interpreted as the “sea level”. So, a
single isoline can be looked at as the coastline of an island
or a lake. The coastline is also a self-similar structure,
and one can quickly run into difficulties when trying to

Fig. 3. Examples of regular percolation lattices. Square lattice
site model to the left and square lattice bond model to the
right. Largest clusters have been circled.

measure its length – the result depends on the size of
the measuring stick used [18]. The parameter that best
characterizes isolines is their scaling exponent – also called
their fractal dimension Dh – which is a fractional number.
The length of a coastline can then be given through

〈L(λ)〉 ∝ λ1−Dh , (7)

where λ is the size of the measuring stick. Dh is a nontriv-
ial function of the underlying surface’s Hurst exponent:

Dh = Dh(H). (8)

Alternatively, we can take two points at a distance a on
a coastline, and calculate the length of the line between
them, assuming a fixed measuring stick λ = λ0:

〈L(a)〉 ∝ aDh . (9)

The percolation problem is concerned with the struc-
tures that form by randomly placing elementary geometri-
cal objects (spheres, sticks, sites, bonds, etc.) either freely
into continuum, or into a fixed lattice (Fig. 3). Two ob-
jects are said to communicate, if their distance is less than
some given λ0, and communicating objects form bigger
structures called clusters. Percolation theory studies the
formation of clusters and their properties. The more inter-
esting aspect is when and how is an infinite cluster formed.
This depends on the lattice site occupation probability η.
The minimum site occupation probability when an infinite
cluster appears is called the percolation threshold ηc. Near
this probability, the percolation model displays a critical
behavior and long-range correlations.

Percolation theory is used to study and model a wide
variety of phenomena: from a fluid flow in a porous
medium to thermal phase transitions and critical behavior
in magnetism with dilute Ising models.

Several structures can be identified in conjunction with
a percolation cluster. For example, the cluster itself, the
hull and the unscreened perimeter (Fig. 4). Aside from
these, many others are known such as the oceanic coast-
line [19], the backbone, the chemical (shortest) distance,
etc. Near the percolation threshold, all of these structures
are fractals and can be characterized by scaling exponents.

Looking at a percolation cluster and an isoline of a
random potential, we can identify similar structures: one
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Fig. 4. An example square bond percolation cluster. The clus-
ter is made up of the bold segments, the zig-zag is the hull and
the dashed line is the unscreened perimeter.

can look at the percolation cluster as an island and its
hull as the coastline of the island. This idea will be fleshed
out in more precise terms farther below, where a mapping
between the two models is described.

One very important and useful aspect about the scal-
ing exponents is a phenomenon known as universality [17]
– within specific universality classes, the scaling exponents
take the same value across different percolation models.
More specifically, they are invariant to small fluctuations
or distortions in the lattice structure (for instance, de-
caying exponentially to distance). This means that the
scaling exponents for both the random square bond lat-
tice, and the random square site lattice are the same: both
models belong to the same universality class of the two-
dimensional uncorrelated percolation.

Correlated percolation. Percolation lattice does not
need to be completely random, but can entail certain cor-
relations. Here we describe the percolation lattice through
an infinite set of random variables θi which are unity
at occupied sites and zero at empty sites (i denotes the
site number). Then we can characterize the correlations
through the correlation function

cθ(xi − xj) = 〈θiθj〉 − p2, (10)

where p = 〈θi〉 is the site occupation probability.
Alternatively [20], correlations can be brought into the

percolation model by assigning each lattice site a random
number pi ∈ [0, 1] where 〈pi〉 = p. The site values are then
calculated as

θi = Θ(pi − ri), (11)

where Θ(x) is the Heaviside step function and {ri} are
independent random variables uniformly distributed in
[0, 1]. The correlation function is

cp(xi − xj) = 〈pipj〉 − p2 (12)

and putting (11) into (10) yields us cθ(a) = cp(a) ≡
c(a) [17].

We are interested in algebraically decaying correlations
so that

c(a) ∝ |a|2H
, H ≤ 0. (13)

It is believed [17] that the scaling exponents are deter-
mined by the two-point correlation function. This means

S 12

m1

m3

m2

m3

S 12

m2

m1

Fig. 5. Mapping between the random surfaces and the perco-
lation problem. The bond between two maxima m1 and m2 is
connecting, if the saddle point S12 on them is above the flood
level. So, saddle points are mapped into percolation bonds.

that we have a range of universality classes identified by
the parameter H . One can show that at H < −3/4, the
model belongs to the universality class of uncorrelated
percolation [20,21]. However, in the range −3/4 ≤ H ≤ 0,
the correlations do affect the scaling exponents. We con-
jecture that the short-range (local) deviations in the per-
colation lattice do not affect the scaling exponents, and
so they are only dependent on the long-range correlations
expressed through H and not on the fine structure of the
percolation lattice. For H > 0, we can argue this by ob-
serving that the short-range fluctuations have less impact
on the value of the random potential than the long-range
correlations and can be diminished by simply scaling the
model (see below on the mapping between the random
potential and the percolation model).

There exists a simple mapping between the rough
surfaces and the percolation model [22,23]. According to
it, the local maxima of the potential define the lattice sites
and the lattice bonds are obtained by drawing fastest-
ascent paths from all the saddle points (Fig. 5). The sur-
face ψ(x) is “flooded” at a given level h and a bond i is
left connecting if the saddle point xi on it is above the
water (is land), that is when ψ(xi) ≥ h. As a result, we
get an irregular two-dimensional lattice; recall that as per
universality, small distortions of the lattice should not af-
fect the resulting scaling exponents. With this mapping,
we can relate the islands formed at flooding to the result-
ing clusters, and their coastlines to the hulls of the said
clusters. Also, if the surface correlation function (5) is a
power law (6), then so is the correlation function (10) for
the percolation model (13), where the parameter H is the
same. Due to universality, the scaling exponents of the
matching structures are also the same.

The scaling exponents are of interest in many applica-
tions so, there is a need to calculate their values depend-
ing on the underlying surface’s roughness parameter H .
In Figure 6, we can see the known results (numeric and
analytic), and also interpolations and conjectures for the
range −3/4 ≤ H ≤ 0. Our next task is to run simulations
to numerically shed light on these gray areas (the scaling
exponents of the hull and the unscreened perimeter). As
these exponents behave the same way for the both prob-
lems of rough surfaces and correlated percolation, we can
calculate them using the model which is the most conve-
nient from the numerical point of view.
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unscreened perimeter

total coastline
(set of all the bonds)

oceanic coastline

Fig. 6. Known results, conjectures and interpolations for the
scaling exponents as functions of the Hurst exponent H . While
these functions can be approximated as linear functions, they
are in fact non-trivial.

3 Monte-Carlo simulations

Generation of percolation clusters. We calculate the
scaling exponents using the model of correlated two-
dimensional bond percolation on square lattices. Our first
task is to generate said percolation models so that they
conform to the correlation function (13). For this, we first
generate random potentials with the requested roughness
H . We take the “flood level” as the value of the poten-
tial at some starting location x0, so that h = ψ(x0), and
use it to map the random surface model into one of the
percolation models. This is done by overlaying the per-
colation lattice on the rough surface and calculating the
bond values using the Heaviside step function as

θi = Θ (ψ(xi) − ψ(x0)) . (14)

This approach is similar to the one described by equa-
tion (11) and preserves the correlation exponent: while it is
slightly different from the maxima-saddle point mapping,
the differences are observable only at the smallest scales
(of the order of the bond length); one can expect that these
short-scale differences do not affect the scaling exponents.
Indeed, it has been shown that in the case of uncorrelated
percolation lattices, such short-scale differences leave the
scaling exponents intact [20]; it is natural to conjecture
that the same universality holds also for the correlated
percolation problem with H > −0.75 (c.f. Sect. 2). Using
the potential as the underlying model allows us to get the
results in the parameter range −0.75 ≤ H ≤ 1.

To generate random potentials, we exploit for-
mula (4). We generate different components (layers) of
the potential for different lengths and sum them up. The
i-th layer ψλi(r) is formed by a grid of cells, where the grid
cell side length is 2i, and at the center of each cell j we
place a cone of height rj2

iH , where rj is an independent
uniform random variable in the range [−0.5, 0.5] (Fig. 7).
The cones have a diameter of 3λi, so the resulting overlap
yields a smoother potential. However, the overlap or the
shape used (cone, in this case) does not significantly af-
fect how fast the results converge to the asymptotic power
laws. So, one can choose a shape more optimized for the

α

Fig. 7. For the i-th layer ψλi(r) in (4), we divide space into a
grid of cells with side length of λi = 2i (λ0 = 1). At the center
of each cell j, a cone is placed with height αj = rj2

iH , where
rj is an independent uniform random variable in the range
[−0.5, 0.5]. The cones have a diameter of 3λi and so overlap.

a

a

Fig. 8. Calculating the length of a hull for size a. We start
from the center of a a× a box and dynamically calculate bond
values as we trace the hull until reaching the side of the box.
We discard hulls that make a full circle. The box sizes picked
are a = 8, 16, 32, . . . , 1024, . . .

speed of numerical calculations (for instance, one could
use a simple block or a cylinder). The number of layers re-
quired depends on the value of H . For example, at H = 0,
we can work with i = 0 . . . 30.

Gathering data is a matter of generating percola-
tion clusters of different sizes and tracing the structures
of interest within these. For the hull, this is done in the
following way. We constrain ourselves to a a× a box, and
start to dynamically trace the hull from the center point
x0 until it reaches any sides of the box (Fig. 8). Hulls that
make a full circle are discarded. To get additional data,
we also trace backwards from the center, so that the both
ends of the hull reach the box’s sides. We do this millions
of times for differently sized boxes a = 8, 16, . . . , 1024, . . .
While for some cases, the range of values a = 8, 16, . . . , 512
is sufficient, slow convergence in some regions of H forces
us to use larger lattices. However, the size is limited by
computational resources and in our case it was not prac-
tical to go over a = 2048.

Once we have a hull, we want to measure its size
(length). While the easiest way would be to just sum the
number of segments in the trace line, it is also possible
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sides
ends

bonds
hull

lines

Fig. 9. Counting the size of the hull can be done in many
ways. One can simply count the number of segments (hull), the
number of bonds the hull touches from both sides (sides), the
total number of bounds the hull touches (bonds), the number
of times a single bond sticks out (ends), or the number of times
the hull forms a straight line of 4 segments (lines). All of these
scale with the same power law.

to determine the size by other properties (Fig. 9). All of
these properties scale with the same power law. We can
denote the size of a single hull as Li(aj), where i indicates
the property. As this is different for each individual hull,
we find the average value

Li(aj) = 〈Li(aj)〉 , (15)

and as per equation (9), this should scale as a power law
with the exponent Dh. However, the scaling is asymptotic
(a → ∞), so for finite a, there are sizable deviations called
finite size effects. These come from the geometry and finite
size of the lattice. Using (9), we can estimate the exponent
as

D̃h

(√
ajaj−1

)
 ln2

L(aj)

L(aj−1)
(aj = 2aj−1). (16)

Plotting this for the uncorrelated percolation (Fig. 10),
we can see how the different properties converge towards
the value Dh = 7/4. The finite size effects are strongly
manifested for the smaller lattices.

4 Data analysis

To calculate the scaling exponents from the data, the
following assumptions are made:

1. the mathematical expectation for each property can be
described as an infinite series

Li(a) =

∞∑

μ=1

Aiμa
αiµ , αi(μ+1) < αiμ, (17)

where i = 1, . . . ,m;

1.75

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

10 100 1000

hull
bonds

ends
lines
sides

Fig. 10. Convergence of the hull properties for the uncorre-
lated percolation (towards Dh = 7/4 = 1.75).
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generated
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Fig. 11. Covariance of a potential versus the power law x2H .
Here S marks the length at which the covariance starts to
diverge from the power law.

2. αiμ ≡ αμ for μ = 1, . . . ,m;
3. the leading terms in the sum are linearly independent

(det ‖Aμi‖ �= 0).

After these assumptions, we apply a variation of the least
squares method described in [24] and previously used
in [19]. The method works if the assumptions made are
correct (the method also validates them) and yields us
the value α1, which is the scaling exponent we are looking
for. So, the reason why we counted all the different prop-
erties for the hull (Fig. 9), is that they are necessary for
this method.

For the unscreened perimeter, a similar approach is
taken. The unscreened perimeter is obtained by taking a
hull but pruning it from “fjords”.

Convergence problems. In some areas the calcula-
tions are hindered by very slow convergence. Let parame-
ter S represent the length at which the covariance of the
generated potential starts to differ from that of the ideal
|a|2H law:

S = 3 × 2s−1, (18)

where s indicates the smallest-scale layer index (Fig. 11).
When S decreases (by adding bottom layers), local
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Fig. 12. Convergence of a property of the unscreened perime-
ter at H = 0 (towards theoretically known Du = 1.5) for dif-
ferent values of parameter S.
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Fig. 13. Scaling exponents of the hull and the unscreened
perimeter as functions of the Hurst exponent H . Data points
for the positive side of Du are not plotted as to avoid clutter.

fluctuations start to gain in influence compared to those
of the long-range correlations. This causes a strong finite-
size effect and the scaling exponents behave as if H was
smaller (Fig. 12). Conversely, when increasing S, the scal-
ing exponents can initially behave as ifH was greater than
it really is.

To get over these distortions, one could calculate for
bigger lattice sizes. But often this is not an option as con-
vergence can be very slow and computational resources are
limited. Another way would be to manually find the op-
timal layer configuration that minimizes distortions. This
is the approach we took and yielded good results for the
hull (aside from the values H = −0.75 and H = +1.00).
However, the convergence of the unscreened perimeter is
very sensitive to changes in the layer configuration and for
most data points did not yield clear results.

The results can be seen in Figure 13 and Table 1.
The hull behaves as expected. While it did not yield clear
results at H = −0.75 and H = 1.00, the extrapolations
provided seem to indicate that it terminates at 7/4 and 1

Table 1. Numeric results for the hull and the unscreened
perimeter (0.95 confidence).

H Dh Du

1.0000
0.8750 1.0862 ± 0.0008 1.0862 ± 0.0022
0.7500 1.1565 ± 0.0010 1.1565 ± 0.0011
0.5000 1.2820 ± 0.0008 1.2820 ± 0.0011
0.2500 1.3958 ± 0.0014
0.0000 1.5000 ± 0.0013

−0.1875 1.5676 ± 0.0018
−0.3750 1.6295 ± 0.0019 1.4261 ± 0.0018
−0.5625 1.6906 ± 0.0014 1.3837 ± 0.0023
−0.7500

respectively. Due to the convergence problems, the results
for the unscreened perimeter are not as clear. However,
one can say that at least that the result do not contradict
the analytical findings and support the applicability of a
nearly-linear interpolation between the points Du(0) =
1.5 and Du(−3/4) = 4/3.

5 Conclusion

We have run Monte-Carlo simulations to determine the
scaling exponents of the hull and the unscreened perimeter
as functions of the Hurst exponent in the range −0.75 ≤
H ≤ 1. For this, we first generated random potentials con-
forming to the required correlation function by summation
of component potentials of different characteristic lengths
and mapping the potential into percolation models. Hulls
and unscreened perimeters were traced from these models,
and their lengths calculated for different scales. A varia-
tion of the least squares method was used to obtain the
values of the exponents.

The results confirm the previously known data in the
range 0 ≤ H ≤ 1 and also the conjectures for the behavior
in the range −0.75 ≤ H ≤ 0, see Figure 13. The particu-
lar results regarding the fractal dimension Dh(H) of hulls
confirm that for 0 ≤ H ≤ 1, the 4-vertex model (i.e. the
rough surfaces in 1+1-dimensional geometry) [25] belongs
to the same universality class as the isotropic Gaussian
self-affine surfaces (assuming the respective equality of
the Hurst exponents). Indeed, comparing the numerical
results of reference [25] and those of the current study
shows that for the entire range of 0 ≤ H ≤ 1, the values
of Dh(H) coincide within the uncertainties of ca 10−3.
An important consequence is that the conjecture about
the super-universality of the loop correlation exponent
xl(H) ≡ 1

2 [1,2] (which has been exploited in several stud-
ies, cf. [26–29]) is clearly rejected: this conjecture implies
Dh(H) = 3

2 − H
2 , which falls well beyond the uncertainty

margins of the present simulation results (for instance, at
H = 1

2 , the conjectured value 5
4 falls far from the range of

1.2820 ± 0.0008).
The obtained results are valuable for a range of practi-

cal applications (such as the turbulent transport in quasi-
stationary velocity fields), for which the scaling exponents
have been analytically expressed via the fractal dimension
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of the hull. As a future outlook, our method can be applied
to calculate other scaling exponents of the correlated per-
colation problem and statistical topography, such as the
fractal dimensions of the clusters (oceanic coastlines), per-
colation backbone, etc. It can be also extended to study
the scaling laws of the transport on quasi-stationary ve-
locity fields.

This work was supported by Estonian Science Targeted Project
No. SF0140077s08 and Estonian Science Foundation Grant No.
7909.
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Abstract. Monte-Carlo simulations are routinely used for estimating the scaling exponents of complex
systems. However, due to finite-size effects, determining the exponent values is often difficult and not
reliable. Here, we present a novel technique of dealing with the problem of finite-size scaling. This new
method allows not only to decrease the uncertainties of the scaling exponents, but makes it also possible to
determine the exponents of the asymptotic corrections to the scaling laws. The efficiency of the technique
is demonstrated by finding the scaling exponent of uncorrelated percolation cluster hulls.

1 Introduction

Determining the scaling exponents from the finite-size
simulation data is a very common task in the physics of
complex systems. In particular, this technique is widely
used in the context of phase transitions, surface rough-
ening, turbulence, granular media, etc. (cf. Refs. [1–3]).
Typically, such finite-size Monte-Carlo studies involve ex-
trapolation of the simulation data towards infinity. Un-
less there is some theoretical understanding about the
functional form of the finite-size corrections to the asymp-
totic scaling laws of the particular system, such an extrap-
olation carries a risk of underestimating the uncertainties.
In some cases, it may be helpful to increase the compu-
tation time and system size, and optimize the simulation
scheme (cf. Ref. [4]). However, this is not always feasi-
ble, because the convergence to the asymptotic scaling
law may be very slow (cf. Ref. [5]). Additional difficul-
ties arise, when one needs to determine the exponents of
the finite-size correction terms (cf. Ref. [6]), or when the
asymptotic power law includes a logarithmic pre-factor.

In what follows, we describe a novel technique for de-
termining scaling exponents from the finite-size simula-
tion data. First, we describe in which form the scaling law
is expected to hold, and review the traditional method.
Then, we introduce the basic idea which allows us to im-
prove qualitatively the precision of the finite-size Monte-
Carlo studies, the idea of studying simultaneously mul-
tiple physical quantities that asymptotically scale with
the same exponent, but have different finite-size correc-
tion terms. After that, we describe the novel method to
analyze Monte-Carlo simulation data for extracting the
scaling exponents and the finite-size correction terms. Fi-
nally, we provide an example application of the technique

a e-mail: indrek@mare.ee

and find the scaling exponent of the uncorrelated percola-
tion cluster hulls. A comparison is offered with the naive
application of fitting to the asymptotic scaling law with-
out considering the finite-size correction terms.

2 The asymptotic scaling law

Let us consider a system (possibly idealized, modeling a
real one), which is characterized by its size x, assuming
that the smallest possible value of x plays the role of the
unit length.

Further, suppose that the mathematical expectation of
a certain physical quantity scales as:

〈L (x)〉 ∝ xα, x � 1; (1)

here, the angular braces denote averaging over the full
ensemble of the model systems. The Monte-Carlo simu-
lations can be used to estimate the values of the mathe-
matical expectation (1) for several system sizes x1 < x2 <
. . . < xn, denoted as:

Li ≡ L (xi), i = 1 . . . n, (2)

and the variances of them as σ2
i ; the bar over a symbol

denotes averaging over a set of Monte-Carlo simulations.
Then, a least-square fit can be used to obtain the scaling
exponent α (cf. Ref. [2]). However, it is often difficult to
estimate the uncertainty of the obtained result, because
the magnitude of the finite-size corrections Δ within

〈L (x)〉 = Axα + Δ (x) , (3)

is unknown. Of course, one can plot lnLi versus ln xi and
determine such a crossover point i = k that for i ≥ k, the
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data points lay within their statistical uncertainties on a
straight line. Then, only the data points with i ≥ k will be
used for finding the exponent α. However, one can easily
underestimate the adequate value of k, because the statis-
tical fluctuations just happen to compensate the finite-size
corrections Δ. On the other hand, taking excessively large
values of k would inflate the variance of the outcome. Fi-
nally, in some cases, the decay rate of the corrections Δ
can be very slow, so that the method outlined above will
fail at the first step – there is no linear range of the graph.

To resolve these problems, we are going to make a se-
ries of assumptions. Later, we will see that the method
we develop here also validates these assumptions as it is
applied and so the assumptions do not have to be tested
externally.

First, we assume a more complex scaling law for the
mathematical expectation of the physical quantity L, in
the form:

〈L (x)〉 =

∞∑

k=1

Akxαk , (4)

assuming that the most significant (in the sense of con-
tributing to the Li) members of the sum come first. The
greatest of the exponents αk is the α we are looking for.
We separate m first members and rewrite the sum as:

〈L (x)〉 =

m∑

k=1

Akxαk + Δ (x) . (5)

This form for the finite-size correction terms has been used
previously (cf. Ref. [7]).

Second, we assume that the contribution of Δ to Li

is smaller than their statistical fluctuation.
Now, we can apply the least-squares fit to search for

the 2m parameters, Ak and αk, k = 1 . . .m. However,
there are a few problems. Unless we have some underly-
ing idea about the parameters, the least-squares search is
complicated – m of the parameters are non-linear and the
search space is huge with many local minima. We need at
least n ≥ 2m+1 data points, all at different system sizes –
increasing computational complexity. Also, we cannot be
sure the assumptions we have made so far are actually
correct (aside from the chi-square test that is designed to
test data probability rather than the model).

3 Different physical quantities

Our method is designed to resolve these problems; it will
work, if the following third condition is satisfied.

Third, we assume that it is possible to find more
than one physical quantity with similar scaling behav-
ior. So, we assume that instead of having just one quan-
tity, we can define m distinct (linearly independent in
the finite scale) quantities, the mathematical expectations
〈Lj〉 (j = 1 . . .m) of which asymptotically scale using the
same exponent α, but also have the same exponents αk

(k = 1 . . .m, so we have the same number of exponents as
physical quantities) for the finite-size correction terms:

〈Lj (x)〉 =

m∑

k=1

Ajkxαk + Δj (x) , j = 1 . . .m. (6)

We denote Lij ≡ Lj (xi) with corresponding covariances
Σikl = Cov (Lik, Lil); these covariances can be easily
calculated during the Monte-Carlo simulations. For each
system size, we then have a covariance matrix Σi =
(Σikl)kl , i = 1 . . . n; with corresponding inverse matri-

ces Wi = Σ−1
i = (wikl)kl. A least-squares fit can now be

done by minimizing

n∑

i=1

m∑

j,k=1

(
Lij −

m∑

l=1

Ajlx
αl

i

)
wijk

(
Lik −

m∑

l=1

Aklx
αl

i

)
,

(7)
which at minimum is of chi-square distribution with nm−
m2−m degrees of freedom. We have reduced the necessary
calculation complexity as we now only need n ≥ m+2 dif-
ferent system sizes. Further, the distinct physical quanti-
ties that scale using the same exponents can be calculated
from the same system instance within the Monte-Carlo
simulations.

The minimization problem is still non-linear in m pa-
rameters and now with total of m2 + m parameters. We
found it yields well to the Levenberg–Marquardt algo-
rithm, given proper initial values. However, with inade-
quate initial values, it can still lead to inconsistent results
and local minima.

It is trivial that more data should yield a better result.
The third assumption shows how to get this data and how
it is done at no extra computational cost. Next, we look
into how to consistently apply this “free” data to yield
better results.

4 Description of the method

To simplify the problem we rewrite equation (6) in matrix
form, with L = (〈Lj (x)〉) , A = (Ajk) , X = (xαk) , Δ =
(Δj (x)), and derive

L = AX + Δ,

X = A−1L − A−1Δ = BL + δ, (8)

where B = A−1 and δ = −A−1Δ. A single row from this
equation is:

xαk =

m∑

j=1

Bkj 〈Lj (x)〉 + δk, k = 1 . . .m. (9)

We remark here that as Δj are small, so are the δk.
We now attempt to find the parameters Bkj by treat-

ing this as a least-squares fitting problem. For this, we
construct a function:

S (d) =

n∑

i=1

(
xd

i −∑m
j=1 CjLij

)2

s2
i

. (10)
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The weighting factor s2 is simply the variance of the ex-
pression within the parentheses:

s2
i = Var

⎛
⎝xd

i −
m∑

j=1

CjLij

⎞
⎠ =

m∑

kl=1

CkClΣikl. (11)

We minimize the function S (d) in relation to the parame-
ters C1, . . . , Cm. Aside from the weighting factor s2, that
depends on the values Ck, this is a simple linear-least-
squares problem. We found that by initially setting Ck

to 1 and iteratively running the linear-least-squares algo-
rithm, then near the minima of S (d) the function value
converges in three or four iterations.

Considering the assumptions made, it is clear that near
d = αk the function S (d) should have a minimum. Con-
versely, if the function S (d) has exactly m clear minima,
our assumptions about the scaling law must be correct and
values of αk are exactly where S (d) has minima. Hence,
we have found a way to extract the values αk from the
function S (d).

For statistical testing, the vectors (Li1, . . . , Lim),
i = 1 . . . n must be of multivariate normal distribution.
Satisfying this, at minima the function S (d) is of chi-
square distribution with n − m − 1 degrees of freedom.
Consequently, just as with (7), we must have n ≥ m + 2.
To accept the exponents αk as significant, a chi-square
test must be performed: at minima the function S (d) has
to satisfy the relation

S (αk) ≤ χ2
n−m−1 (p) , (12)

where χ2
dof (p) is the quantile at p of the chi-square distri-

bution with n − m − 1 degrees of freedom (dof).
Aside from the exponents αk, we can also find their

uncertainties Δαk from:

S (αk ± Δαk) = S (αk) + χ2
1 (p) . (13)

Here, we are making use of the constant chi-square bound-
ary as the confidence limit – Δαk is determined by
the width of the dip at the minimum of S (d), at level
S (αk) + χ2

i (p).
In case we are uncertain about the results, we can al-

ways revert back to (7). We found that when doing so,
the parameters derived using the above described novel
method perform flawlessly as initial values for this non-
linear minimization problem and results yielded by the
classical but complex (7) are the same.

Compared to (7), where we have a nonlinear multidi-
mensional minimization problem, the novel method con-
tains a linear one-dimensional search. This gives us consis-
tent results as we do not have to deal with local minima.
Furthermore, each of the correction exponents is statisti-
cally tested separately, instead of one big sum in (7) – we
have found that this excludes invalid results that would
otherwise pass.

5 Example application

As an example of the techniques described, we calcu-
late the scaling exponent of the hull of the uncorrelated

Fig. 1. Square bond percolation lattice. Bonds (bold solid line
segments) are randomly placed into the lattice. Clusters are
formed by bonds that are connected to each other. The largest
cluster in the center is illustrated with its hull (the zig-zag line)
and the unscreened perimeter (the dotted line).

percolation cluster. The percolation problem deals with
the structures that form by randomly placing elementary
geometrical objects (spheres, sticks, sites, bonds, etc.) ei-
ther freely into continuum, or into a fixed lattice (Fig. 1).
Two objects are said to communicate, if their distance
is less than some given λ0, and communicating objects
form bigger structures called clusters. Percolation theory
studies the formation of clusters and their properties. The
more interesting aspect is when and how does an infi-
nite cluster form. This depends on the lattice site occupa-
tion probability. The minimum site occupation probability
when an infinite cluster appears is called the percolation
threshold. Near this probability, the percolation model dis-
plays critical behavior and long-range correlations. For the
square bond percolation model we use here, this critical
probability is p = 0.5.

Percolation theory is used to study and model a wide
variety of phenomena, for example fluid flow in a porous
medium [8], thermal phase transitions and critical behav-
ior in magnetism with dilute Ising models [9].

Several structures can be identified in conjunction with
a percolation cluster. For example, the cluster itself, the
hull and the unscreened perimeter (Fig. 1). Aside from
these, many others are known such as the oceanic coast-
line [5], the backbone or the chemical (shortest) distance.
Near the percolation threshold, all of these structures are
fractals and can be characterized by scaling exponents.

In this example, we concentrate on the scaling ex-
ponent of the hull of uncorrelated percolation clusters.
The exact value of this scaling exponent is known,
dH = 1.75 [10,11].
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bonds
segs
ends
sides

Fig. 2. Some of the different physical quantities that scale
with the same exponent as the hull.

First, we identify the different physical quantities
(from here on, the properties of the hull) that scale to-
gether with the hull. They are (see Fig. 2):

– bonds – the number of distinct bonds the hull touches,
– segs – the number of segments in the hull zig-zag,
– ends – the number of distinct bonds touched by the

hull that have no connections on one end,
– sides – the number of distinct bonds that are touched

by the hull from both sides,
– lines – the number of occurrences of four straight seg-

ments in the hull,
– corners – the number of times bonds form corners in

the hull,
– ones – the number of unset bonds by the hull that have

exactly one set bond connected to them,
– twos – the number of unset bonds by the hull that have

exactly two set bonds connected to them,
– threes – the number of unset bonds by the hull that

have exactly three set bonds connected to them.

It is possible to visualize how the scaling of these proper-
ties converges towards the dH = 7/4. From (1),

Lij 	 Cx
d̃j

i , L(i+1)j 	 Cx
d̃j

i+1, (14)

where C is some constant. Dividing these two equations
yields us:

L(i+1)j

Lij
	 x

d̃j

i+1

x
d̃j

i

⇒ d̃j 	 ln
L(i+1)j

Lij

/
ln

xi+1

xi
. (15)

In simulations one often takes xi+1 = 2xi, and placing the
intermediate exponent at

√
xi+1xi, we get:

d̃j

(√
xixi+1

)
= ln2

L(i+1)j

Lij
, (xi+1 = 2xi) . (16)
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Fig. 3. Convergence of the scaling exponents of the hull prop-
erties towards dH = 1.75.

The convergence of the nine studied properties towards
the value dH = 1.75 can be seen in Figure 3. The finite-
size effects are well pronounced for small system sizes. This
data is practically unusable for the simple model (3) –
there is no linear range for the data values and any at-
tempt will fail at the chi-square test.

Some of the properties converge faster than others.
Our method is designed to work even with the very slowly
converging properties. Hence, to show its efficacy, out of
the nine studied, we have selected the five worst converg-
ing properties for what follows (sides, threes, bonds, twos,
ones).

We run a Monte-Carlo simulation to gather data (the
values Lij and Σijk where i = 1 . . . n and j, k = 1 . . .m;
n ≥ m + 2). This is done by tracing instances of hulls
within the confines of a system-sized box (Fig. 4). The
system sizes used were 8, 16, . . . , 256. At each system size
4.2× 106 different hulls were generated and their proper-
ties counted.

Once we have the data, we try out different variations
of m physical quantities and find an instance of S (d) that
matches our requirements (has m clear minima that all
satisfy the chi-square test with n − m − 1 degrees of free-
dom). One such combination (with m = 4) can be seen
in Figure 5. The rightmost peak is at the exponent α we
are looking for and we can determine its statistical uncer-
tainty using relation (13).

The number of exponents extractable is unknown, so
different values of m must be tested. The chi-square test
at the peaks may fail if the statistical uncertainty in Lij is
comparable to Δj (xi) within equation (6). In such a case
we must discard simulated data from the smallest sys-
tem and possibly run Monte-Carlo simulations for an ad-
ditional larger system. When discarding smaller systems,
the constitution of the first m members in equation (6)
may change – some members may only be significant for
the smaller systems. When that happens we may lose one
or more of the minima and have to decrease m. Parame-
ter m also determines the number of degrees of freedom
for the overall system (as we take n = m+2), hence while
increasing m will decrease the contribution of the leftover
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Fig. 4. Monte-Carlo simulation system instance for scale
length xi. We start from the center (marked by a dot) of an
xi × xi box (for simplified bond coordinates we use 45 degrees
rotated lattice) and trace the hull until it reaches an edge. Bond
values are calculated dynamically on the way (from a simple
boolean random generator for the uncorrelated percolation).
We reject hulls that make a loop and so don’t reach an edge.
Various hull properties are counted (for Lij) and their cross-
multiplications are calculated (for Σijk). This is repeated for
millions of times for a single system size and the resulting data
is aggregated. Finally, Lij and Σijk are calculated.
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Fig. 5. A sample uncorrelated percolation hull exponent fit-
ting function S (d) using four different properties (m = 4)
of the percolation cluster hull (twos, segs, sides, ends). The
dips in the graph correspond to the exponents in (6). For
this particular example, they are α1 = 1.7494 ± 0.0019, α2 =
0.756 ± 0.018, α3 = −0.04 ± 0.16 and α4 = −1.73 ± 0.75.

finite-size correction terms to the error (systematic error),
it may at the same time slightly increase the purely sta-
tistical uncertainty of the results.

We can now compare the results from using the simple
model (Eq. (3)) against the one with m different proper-
ties (Eq. (6)). Results can be seen in Table 1. The method
offers correct results (within the confines of the statistical

Table 1. Results comparing fitting to the simple model (3)
versus the novel method (ΔdH is the difference between the
calculated and the known value). Only first 6 data points at 8,
16, . . . , 256 are used. LSQ N – regular least squares fitting
against model (3) with one hull property and N system sizes.
MLSQ M – method described in this paper, with M different
hull properties and M +2 system sizes (as M increases so does
the system’s degrees of freedom, hence the uncertainty grows).
Uncertainties are given with 0.95 confidence. Note that none of
the LSQ results passed the chi-square test. The novel method
offers consistent and accurate results.

Name Smallest ΔdH Largest ΔdH

1 LSQ 3 1.7299 ± 0.0066 1.653 ± 0.031
2 LSQ 4 1.720 ± 0.011 1.619 ± 0.044
3 MLSQ 2 1.7491 ± 0.0011 1.7488 ± 0.0011
4 MLSQ 3 1.7492 ± 0.0017 1.7492 ± 0.0017
5 MLSQ 4 1.7494 ± 0.0019 1.7492 ± 0.0018

uncertainty), high precision (small uncertainty) and con-
sistent results (each accepted S (d), that is each combina-
tion of hull properties, yields similar results).

To be fair the gathered data is actually unusable for
the simple model. This is due to the finite-size correction
terms. To make use of the simple model (3), we would
have to gather data at much larger system sizes. To reach
similar results (low statistical error) to the novel method
would demand vastly greater computational costs.

Aside from the scaling exponent of the hull, we have
also tested the method to calculate the exponents of
the unscreened perimeter dU = 4/3 and the cluster
dC = 91/48 and obtained similar results to what has been
demonstrated above; the novel algorithm performed flaw-
lessly for all the cases. Finally, we have also studied the
case of correlated percolation, when the scaling exponents
depend on the roughness (Hurst) exponent H , so that
dH = dH (H). It is analytically known that dH (0) =
1.5 [12]; we have used our method to recover this result
with a high degree of precision [13].

In earlier studies [7,14,15], the correction term ex-
ponents have been conjectured theoretically. When com-
pared to these studies, our results confirm the presence of
the simple correction terms (resulting from how we deter-
mine the diameter of a cluster and also from constant off-
sets to the measurements of hull properties). The inherent
correction exponents described in those papers attributed
to percolation cluster scaling have not been found here.
The most likely explanation is that they were statistically
insignificant.

6 Conclusion

A novel and universal method of determining the scal-
ing exponents via finite-size Monte-Carlo simulations has
been devised1. The method can be applied, if it is possible
to find m ≥ 2 distinct quantities with equal asymptotic

1 An implementation can be found at https://code.

google.com/p/perc2/, see the ‘calc’ utility.
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scaling exponents. The basic idea is to exploit the equality
of the exponents of finite-size correction terms within the
different physical quantities.

As an example, we have used the method to find the
scaling exponents of the uncorrelated percolation cluster
hulls. Here, the method offered consistent results and in-
creased the accuracy of the scaling exponent estimates.
The method has also been used previously in various con-
texts in the field with good results (cf. Refs. [5,13]).

The method is particularly useful when the conver-
gence to the asymptotic scaling law is slow as it vastly re-
duces computational costs compared to traditional meth-
ods. We can make use of small system sizes that with
traditional methods yield erroneous results or fail alto-
gether. Also, the method is extremely useful, if it is nec-
essary to find the exponents of the finite-size correction
terms.

This work was supported by Estonian Science Founda-
tion Grant No. 7909, Estonian Science Targeted Project
No. SF0140077s08, and EU Regional Development Fund Cen-
tre of Excellence TK124.
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Abstract – Intersection of a random fractal or self-affine set with a linear manifold or another
fractal set is studied, assuming that one of the sets is in a translational motion with respect to
the other. It is shown that the mass of such an intersection is a self-affine function of the relative
position of the two sets. The corresponding Hurst exponent h is a function of the scaling exponents
of the intersecting sets. A generic expression for h is provided, and its proof is offered for two
cases —intersection of a self-affine curve with a line, and of two fractal sets. The analytical results
are tested using Monte Carlo simulations.
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There is a wide spectrum of problems which can be re-
duced to finding and studying intersections of fractal sets.
For instance, rain intensity is a multifractal function of
space and time [1,2]; rainfall at a given point on Earth’s
surface is a time-integral of this function —a measure of
the intersection of the rain intensity field with a line, paral-
lel to the time axis. Next, the Doppler absorption spectra
depend on how many points of the flow move with a certain
velocity in a certain direction; in the case of fully turbulent
flows, velocity is a self-affine function of coordinates: the
problem is reduced to finding the number of intersection
points of a self-affine curve and a straight line. Further, it
has been shown that silicate clay deposits, when drying,
collapse into a self-affine surface; in the case of fractal de-
posits, the dry surface height is defined by the size of the
intersection of the fractal with a vertical line [3].

While the list of examples could be further extended, we
stop after providing just one more example which is dis-
cussed in more detail: reflection of light from surfaces with
non-smooth gradients. More specifically, we consider sur-
faces with fractional Brownian (fB) gradient components;
an example of such surfaces is provided by a free water sur-
face in the case of fully developed wave turbulence [4,5].

Suppose a collimated beam of light falls onto a two-
dimensional surface described by its height z = z(x, y),
such that the gradient components ∂xz = f(x, y) and
∂yz = g(x, y) are fB functions, so that

〈
[f (x, y) − f (x′, y′)]

2
〉

∝
[
(x − x′)

2
+ (y − y′)

2
]H

, (1)

and the same scaling law holds for g(x, y). Here, angu-
lar braces denote averaging over an ensemble of surfaces,
and H is the Hurst exponent, 0 < H < 1. Let us assume
that the lower cut-off scale of this scaling law is unity, and
that the gradient components become smooth below that
scale. Furthermore, we assume that the wavelength of the
incident light is much smaller than one. The functions f
and g define a two-dimensional random self-affine surface
(the gradient surface) u = f(x, y), v = g(x, y) in four-
dimensional space x,y,u,v. The propagation direction of
incident light from a point on the surface z is determined
by its gradient components at that point. Therefore, the
intensity of light reflected at a given direction from the en-
tire surface z is proportional to the number of intersection
points N of the gradient surface with a two-dimensional
linear manifold u = u0, v = v0. This number is a random
function of the propagation direction, N = N(u, v) — the
light intensity fluctuates as the observation direction is
changed. We will show that the function N(u, v) can be
described by another Hurst exponent h = h(H):

〈
[N (u, v) −N (u′, v′)]

2
〉

∝
[
(u − u′)

2
+ (v − v′)

2
]h

. (2)

We start by deriving the dependance h = h(H) for
the case of a fB curve intersecting with a line in two-
dimensional space. Let us consider a finite-length segment
x ∈ [0, L] of a fB curve u = f(x) with zero mean. Then,
typically, the curve varies from u ∼ −LH to u ∼ LH (here
“∼” means “is of the order of”). The fractal dimension
of the fB curve is 2 − H [6], and the dimension of its
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intersection with a line u = u0 is df = 1 − H [7,8]. The
intersection at level u = 0 is also known as the zero set.

Since the lower cut-off scale is unity, the number of in-
tersection points at some fixed u0 is estimated as N(u0) ∼
Ldf = L1−H . Let us denote the change in the number of
intersection points when changing from “altitude” u0 to
u0+∆u as ∆N(∆u) ≡ N(u0)−N(u0+∆u). We now make
use of a scale-decomposition of the function f(x) by in-
troducing coarse-grained functions Fa(x) =

∑
2i≥a f2i(x),

where f2i(x) are the scale components that can be ob-
tained, for instance, via a forward and reverse Fourier
transform of f(x), where only the wavelengths between
2i−1 and 2i are kept. Let us denote the number of in-
tersection points of the line u = u0 with the coarse-
grained curve u = Fa(x) as Na(u0) ∼ (L/a)1−H and the
change in the intersection points due to displacement ∆u
as ∆Na(∆u) ≡ Na(u0)−Na(u0 +∆u). As we increase the
level difference ∆u, the line u = u0 + ∆u will cross from
time to time the extrema of the function u = Fa(x). By
each crossing, the number of intersections Na(u0+∆u) will
change by two —increase in the case of a minimum, and
decrease in the case of a maximum. When ∆u ≪ aH , that
is it is well below the vertical characteristic scale, these
changes are purely incidental — they are caused by un-
correlated extrema that are separated by large distances.
Therefore, at ∆u ≪ aH , the value ∆Na(∆u) is a com-

pound Poisson process, that is ∆Na(∆u) =
∑P (∆u)

i=1 Di,
where {P (∆u) : ∆u ≥ 0} is a Poisson process with rate
λ, and {Di : i ≥ 1} are independent random values drawn
with equal probability from {−2, +2}. The variance of
the compound Poisson process [9] is λ∆u

〈
D2

〉
; but as

∆Na(∆u) has zero mean, we conclude that
〈
∆Na (∆u)2

〉
= 4λ∆u

(
∆u ≪ aH

)
. (3)

We estimate the density of extrema for Na as λ ∼
(L/a) /LH = L1−Ha−1 —the number of peaks is L/a
and they are distributed quasi-homogeneously in the range
−LH to LH . We note that eq. (3) can also be used to es-
timate the scaling exponent for displacements below the
lower cut-off scale of f(x), that is for ∆u ≪ 1, we obtain
a super-universality h(H) = 1/2.

Around each intersection point with the coarse-grained
curve, the line u = u0 also intersects with the fine-
scaled structure f(x) − Fa(x). But as the intersection
points with the coarse-grained curve are typically spaced
at greater distances than a, the number of intersections
with the fine-scaled structure around each such point are
uncorrelated (as correlations in the fine-scaled structure
only extend to distances around a). We denote the av-
erage number of such intersections around each point as
na ∼ a1−H and conclude that the total number of in-
tersections with the whole curve u = f(x) is N(u0) ∼
naNa(u0) ∼ a1−HNa(u0). As we move the intersecting
line from level u0 to u0 + ∆u, the number of intersections
with u = f(x) changes. When the displacement ∆u is
smaller than aH , the contributions from the fine-scaled

intersections are highly correlated, but at displacement
∆u ≫ aH they are basically uncorrelated. Consequently,

∆N (∆u) ∼ a1−H∆Na (∆u)
(
∆u ≫ aH

)
. (4)

At the marginally applicable limit ∆u = aH , eqs. (3) and
(4) combine into

∣∣∆N
(
aH

)∣∣ ∼ a1−H
∣∣∆Na

(
aH

)∣∣ ∼ L
1−H

2 a
1−H

2 . (5)

To estimate |∆N(∆u)|, we choose a = ∆u1/H , yielding

|∆N (∆u)| ∼ L
1−H

2 ∆u
1−H
2H , (6)

and so the scaling exponent h for the intersection of a fB
curve and a moving line is

h =
1 − H

2H

(
1 ≪ ∆u ≪ LH

)
. (7)

It should be noted that for H < 1
3 , this equation yields

h > 1. Result h > 1 means that large-scale fluctuations
are so strong that the gradients of large-scale components
dominate over the gradients caused by small-scale fluctua-
tions. In that case, eq. (2) would yield the Hurst exponent
h = 1. However, using wavelet or Fourier analysis, it is
possible to generalize eq. (2) and reveal scaling laws with
h > 1.

Returning to the case of the intensity of light reflected
by the sea surface, where we have an intersection of a self-
affine surface and a flat surface in 4D space, the scaling
law (2) can be derived in a similar fashion, resulting in
h = 2−2H

2H , where 2 − 2H is the fractal dimension of the
intersection studied.

We have run a series of Monte Carlo simulations to test
the result (7). At each calculation point H we gener-
ated 1000 fractional Brownian curves f (x) with length
L = 227 [10–12]. Samples of the intersection functions
N(u) can be seen in fig. 1. The data was analyzed using
the continuous wavelet transform and the Mexican hat
wavelet [13]. The results follow the predicted relation-
ship h = 1−H

2H quite closely except at greater values of
H (fig. 1(d)). The discrepancy is due to distortions in
the function N(u) —as LH grows, the density of intersec-
tions falls and the function N(u) starts to experience large
ranges where it is of constant small value (see fig. 1(c) for
a sample N(u) at H = 0.7). This is a finite-size effect —to
overcome it one would have to calculate at much greater
length L. We also did some calculations for H < 1/3. The
results were as expected with h > 1.

We now turn our attention to general statistically self-
similar fractal sets. It is easy to imagine that the interac-
tions (changes in the intersection) of a line and a random
fractal set at displacements well below the lower scaling
length of the fractal are completely random. We have also
found, that for the intersections of a fB curve or surface
with a line or a plane, the analytically derived scaling ex-
ponents all came out as h = df/ (2H), where df is the
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(a) H = 0.35, h ≈ 0.93. (b) H = 0.5, h = 0.5.

(c) H = 0.7, h ≈ 0.21.
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(d) h = h (H).

Fig. 1: (a)–(c): sample functions of N (u) for various H ;
(d) Monte Carlo results for the scaling of the intersection of
a fractional Brownian curve and a moving line, solid line is the
predicted value.

fractal dimension of the intersection. Considering all this,
one can conjecture that this relation also applies to inter-
sections of general random fractals. We proceed to make
this claim more specific.

Let us have two fractal sets F and X with corresponding
fractal dimensions dF and dX . Let the set X be translat-
able in some direction û, with the position identified by
coordinate u. Further, we assume that it is self-similar and
with finite scaling range [1, L]. This set may also have a
topological dimension that is equal to its fractal dimen-
sion (for example, it may be a simple line or a plane). We
assume that the fractal set F is random, that is it is only
statistically self-similar (we will clarify the nature of this
randomness further along the way). Let the fractal F have
the same scaling range as X in the directions perpendicu-
lar to û but let it be possibly self-affine in the direction û
with scaling range

[
1, LHû

]
.

We denote the fractal dimension of the intersection of
the two sets as df (for many cases df = dF + dX − D,
where D is the dimension of the surrounding space). As
the set X moves, the total fractal mass of this intersection
M(u) (the number of points, the surface area, the volume,
or other such measure that is suitable for the given frac-
tal depending on its topological dimension) will change.
We fix u = u0 and denote this change at translation to
u = u0 + ∆u as ∆M(∆u) ≡ M(u0) − M(u0 + ∆u). We
conjecture that the function M(u) is fractional-Brownian-
motion–like, that is it can be described by

〈
∆M (∆u)

2
〉

∝ |∆u|2h
, (8)

with the Hurst exponent h as

h =
df

2Hû
, (9)

where Hû describes the scaling of the fractal F in the
direction û (Hû is unity for a self-similar fractal set).

We will now continue with a derivation leading to this
result for the case of self-similar fractals (with Hû = 1).
For this we will first approximate the fractals by the use of
a ball cover —this results in a “coarse-grained” version of
the fractal at a specific grain size. Then, we will derive how
M(u) scales at movements either much smaller or much
greater than the length used at the ball cover. Finally, we
bring these two estimates together to yield the exponent h.

In case the set F is self-similar, the fractal mass of the
intersection F ∩ X can be estimated as M(u0) ∼ Ldf ,
where df = dF + dX − D. Let us assume that we
can find minimal covers for both sets F and X with D-
dimensional closed balls of diameter a, where 1 ≪ a ≪ L.
The number of balls in either cover can be estimated as
NF(a) ∼ (L/a)dF and NX (a) ∼ (L/a)dX .

At a location where two balls, each from a different set,
intersect, the fractal sets themselves usually intersect, with
the average fractal mass of the intersection (assuming F
is random, for example the balls can’t be globally aligned)
estimated as ma ∼ adf . The total number of such inter-
sections is Na(u0) ∼ M(u0)/ma ∼ (L/a)df . We move the
set X in the direction û by distance ∆u. This will cause
the cover of the set X also move. As a ball from that cover
moves, it penetrates or exits balls covering the standing
set F . As a result, the value Na(u0) will increase or de-
crease by one. We denote the total change in the number
of intersecting balls as ∆Na(∆u) ≡ Na(u0)−Na(u0+∆u).

In case the movement is much greater than a, that is
a ≪ ∆u ≪ L, a moving ball that is penetrating a standing
ball will exit it. We assume that F is random in such a way
that the masses of the sub-fractals contained in individual
standing balls separated by distances much greater than
a are uncorrelated. In such a case

∆M (∆u) ∼ ma∆Na (∆u) (a ≪ ∆u ≪ L) . (10)

In case the movement is much smaller than a, that is
∆u ≪ a, a moving ball that is intersecting a standing ball
will rarely exit it. Also, it has very little chance to inter-
act with other standing balls or the correlations in their
placement (defined by the structure of the fractal). With
small movement individual moving balls have no chance
to interact with the fractal structure of the ball cover.
And assuming the fractal F is random, that is the balls
are not globally aligned, we can ignore their interactions
as a group. In such a case the change in the number
of balls intersected can be approximated as a compound

Poisson process, that is ∆Na(∆u) =
∑P (∆u)

i=1 Di, where
{P (∆u) : ∆u ≥ 0} is a Poisson process with rate λ, and
{Di : i ≥ 1} are independent random values drawn with
equal probability from {−1, +1}. The variance of the com-
pound Poisson process is λ∆u

〈
D2

〉
; but as ∆Na(∆u) has

zero mean, we conclude that

〈
∆Na (∆u)

2
〉

= λ∆u (∆u ≪ a) . (11)
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 1  10  100  1000  10000

hc
=0.446±0.002 (0.448)hh
=0.390±0.002 (0.375)hs
=0.442±0.002 (0.446)ha1
=0.367±0.001 (0.365)ha2
=0.586±0.002 (0.591)hm
=0.682±0.004 (0.680)

Fig. 2: Wavelet based scaling exponent fitting for the inter-
sections of random percolation cluster (hc) and hull (hh); the
randomized Sierpiński carpet (hs); the self-affine randomized
Sierpiński carpet (ha1 and ha2); and the intersection of a per-
colation cluster with a deterministic Sierpiński carpet (hm).
Results for different fractals have been moved up or down to
fit on the same graph. Uncertainties are given with 0.95 signif-
icance. The predicted values h = df/ (2H) are in parentheses.
Only filled points were used for the fits.

We now estimate the Poisson process rate λ. At dis-
placement ∆u the moving balls cover the volume VX ∼
NX (a)aD−1∆u ∼ LdX aD−1−dX ∆u. Assuming the stand-
ing balls are distributed quasi-homogeneously (the frac-
tal F is random), their density per volume of space is
ρF ∼ NF(a)/LD ∼ LdF−Da−dF . The number of balls
encountered during movement ∆u must then be N∆u ∼
ρFVX ∼ Ldf a−1−df ∆u. The rate of balls encountered is
λ ∼ N∆u/∆u ∼ Ldf a−1−df .

At the marginally applicable limit ∆u = a of the two
expressions (10) and (11), we estimate the change in the
mass as

|∆M (a)| ∼ ma

√
λa1/2 ∼ Ldf/2adf /2. (12)

Since the ball cover size a can be freely chosen between
1 and L, we can pick a = ∆u, confirming conjecture (8)
with the Hurst exponent h = df/2.

For the case Hû �= 1, one would have to take into ac-
count that the correlations in the self-similar structure of
the fractal scale at a different rate in the direction û.

The intersection of two fractals may have a dimension
less than 0. Previously, it has been interpreted as how
“empty” the intersection is [8,14]. In eq. (9) this would
result in negative h. This is not necessarily a pathological
case, as a negative h can be used when instead of (8) the
scaling is given through the Fourier power spectrum, that

is through the relation
〈
|ψk|2

〉
∝ |k|−2h−1

. However, we

have not tested this numerically.
To test the relation (9) we ran Monte Carlo simula-

tions for the following cases: two-dimensional random
bond percolation cluster and hull intersected with a hor-
izontal line, with predicted hc = (91/48 + 1 − 2) /2 and

hh = (7/4 + 1 − 2) /2 for the cluster and hull respec-
tively; randomized 3 × 3 Sierpiński carpet [15–19] (with
one cell cleared randomly at each construction step) in-
tersected with a horizontal line, with predicted hs =
(log3 8+1−2)/2; self-affine randomized 4×3 Sierpiński car-
pet (with one cell cleared randomly at each construction
step) intersected with vertical and horizontal lines, with
the carpet’s box dimension d4×3 = log3

(
31−log4 311log4 3

)

and predicted scaling exponents ha1 = log3 11/4
2 log3 4 and ha2 =

d4×3+1−2
2 log4 3 ; percolation cluster intersected with a deter-

ministic 3 × 3 Sierpiński carpet, with predicted hm =
(91/48 + log3 5 − 2) /2. The results from the Monte Carlo
simulations are all very close to the predicted values
(fig. 2). As we increased calculation lattice sizes we saw
improvement across the board, indicating that the small
discrepancies are due to the finite size effects.

To conclude, it is now easy to see that the flow rate
of the river Nile, famously studied by Harold Edwin
Hurst [20], is an integral quantity of the fractal structure
of precipitation [1,2] over its drainage basin, and as con-
firmed by the analytical relation we have found, is self-
affine. This analytical relation should be applicable in
both predictive and descriptive capacity for many prob-
lems, from the matter distribution of the universe to the
formation of 1/f -like noise in semiconductor devices.
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[15] Sierpiński W., C. R. Acad. Sci. Paris, 162 (1916) 629.
[16] McMullen C., Nagoya Math. J., 96 (1984) 1.

[17] Bedford T. J., Crinkly curves, Markov partitions and
dimension, PhD, University of Warwick (1984).

[18] Peres Y., Math. Proc. Cambridge Philos. Soc., 115
(1994) 437.

[19] Gui Y. and Li W., Nonlinearity, 21 (2008) 1745.
[20] Hurst H. E., Trans. Am. Soc. Civ. Eng., 116 (1951)

770.

10012-p5





C U R R I C U L U M V I TA E

personal data

Name Indrek Mandre
Date and place of birth 22.02.1979, Tallinn, Estonia
Nationality Estonian

contact information

Address Tallinn University of Technology,
Department of Cybernetics,
Akadeemia tee 21B,
12618 Tallinn,
Estonia

Web http://www.mare.ee/indrek/
Phone +37256210348
E-mail indrek(at)mare.ee

education

2008 – 2010 Tallinn University of Technology
MSc cum laude, Engineering Physics / Applied
Mathematics

1997 – 2001 Tallinn University of Technology
BSc cum laude, Informatics

language competence

Estonian native
English fluent

85



professional employment

2015 – Starship Technologies, Senior Developer
2003 – 2008 Skype, Senior Developer
2000 – 2003 Trigger Software / TELE2, Web Developer

defended theses

• 2010, Fractal dimensions of correlated percolation, MSc, supervisor PhD
Jaan Kalda, Tallinn University of Technology, Faculty of Science, Institute
of Physics, Institute of Cybernetics

• 2001, PHP to Java translator, BSc, supervisor PhD Jaak Henno, Tallinn
University of Technology, Faculty of Information Technology

publications

• I. Mandre, J. Kalda. Monte-Carlo study of scaling exponents of rough
surfaces and correlated percolation. The European Physical Journal B,
83(1):107-113 (2011)

• I. Mandre, J. Kalda. Efficient method of finding scaling exponents from
finite-size Monte-Carlo simulations. The European Physical Journal B,
86(2):56 (2013)

• I. Mandre, J. Kalda. Intersections of moving fractal sets. EPL (Europhysics
Letters), 103(1):10012 (2013)

conference presentations

• I. Mandre, J. Kalda. Intersections of moving fractal sets (poster). STATPHYS
25, Seoul, Korea, 2013

patents and patent applications

• Communication system, US 8345581 B2

• Instant messaging activity notification, US 20080201438 A1

• Synchronising contacts, US 7743024 B2

86



• Method and system for delivering messages in a communication system,
US 8275841 B2

• Method and system for autonomous or semi-autonomous delivery,
WO2017064202

• Method, device and assembly for map generation, WO2017076928

• Device and method for autonomous localisation, WO2017076929

• Method and system for calibrating multiple cameras, WO2018046617

87



E L U L O O K I R J E L D U S

isikuandmed

Nimi Indrek Mandre
Sünniaeg ja -koht 22.02.1979, Tallinn, Eesti
Kodakondsus Eesti

kontaktandmed

Aadress Tallinna Tehnikaülikool,
Küberneetika instituut,
Akadeemia tee 21B,
12618 Tallinn,
Eesti

Www http://www.mare.ee/indrek/
Telefon +37256210348
E-post indrek(at)mare.ee

haridus

2008 – 2010 Tallinna Tehnikaülikool
MSc cum laude, tehniline füüsika /
rakendusmatemaatika

1997 – 2001 Tallinna Tehnikaülikool
BSc cum laude, informaatika

keelteoskus

eesti keel emakeel
inglise keel kõrgtase

88



teenistuskäik

2015 – Starship Technologies, vanem arendaja
2003 – 2008 Skype, vanem arendaja
2000 – 2003 Trigger Software / TELE2, arendaja

kaitstud lõputööd

• 2010, Fractal dimensions of correlated percolation, MSc, juhendaja PhD
Jaan Kalda, Tallinna Tehnikaülikool, Matemaatika- ja loodusteaduskond,
Küberneetika instituut

• 2001, PHP to Java translator, BSc, juhendaja PhD Jaak Henno, Tallinna
Tehnikaülikool, Infotehnoloogia teaduskond

avaldatud artiklid

• I. Mandre, J. Kalda. Monte-Carlo study of scaling exponents of rough
surfaces and correlated percolation. The European Physical Journal B,
83(1):107-113 (2011)

• I. Mandre, J. Kalda. Efficient method of finding scaling exponents from
finite-size Monte-Carlo simulations. The European Physical Journal B,
86(2):56 (2013)

• I. Mandre, J. Kalda. Intersections of moving fractal sets. EPL (Europhysics
Letters), 103(1):10012 (2013)

ettekanded konverentsidel

• I. Mandre, J. Kalda. Intersections of moving fractal sets (poster). STATPHYS
25, Seoul, Korea, 2013

patendid ja patenditaotlused

• Communication system, US 8345581 B2

• Instant messaging activity notification, US 20080201438 A1

• Synchronising contacts, US 7743024 B2

89



• Method and system for delivering messages in a communication system,
US 8275841 B2

• Method and system for autonomous or semi-autonomous delivery,
WO2017064202

• Method, device and assembly for map generation, WO2017076928

• Device and method for autonomous localisation, WO2017076929

• Method and system for calibrating multiple cameras, WO2018046617

90




	List of publications
	1 Introduction
	2 Fractals, self-similarity and percolation
	2.1 Self-similar processes
	2.2 The spectral connection
	2.3 Self-affine fractals and fractal dynamics
	2.4 Percolation and critical phenomena
	2.5 Correlated percolation
	2.6 Scaling of two-dimensional correlated percolation clusters

	3 On simulation of random processes
	3.1 Random number generation
	3.2 Stationary Gaussian random processes
	3.3 Fractional Brownian motion and surfaces
	3.4 Direct use of fast Fourier transform
	3.5 Use of spectral self-similarity and division of scales
	3.6 Other methods and references
	3.7 Mapping of a random potential into land and sea

	4 Calculation of scaling exponents
	4.1 The wavelet method
	4.2 Fractal scaling exponents and finite size effects

	5 Conclusions and further work
	Bibliography
	Acknowledgments
	Abstract
	Kokkuvõte
	Appendixes
	Publication I
	Publication II
	Publication III

	Curriculum Vitae
	Elulookirjeldus
	Blank Page

