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Introduction

The mechanism of the sound production of most musical instruments is
inherently nonlinear. The thesis focuses on two novel nonlinear models
closely connected to the sound production of some Eastern lutes and grand
pianos. The thesis consists of three parts.

The �rst part of the thesis discusses the termination�string interaction
model. The model simulates the collision of a vibrating string with the rigid
spatial termination located at one of the string's termination points. Three
di�erent examples of the model application are presented and discussed.
The �rst part of the thesis is based on the results presented in Publications I
and II.

The second part of the thesis, which is a summary of results presented
in Publications III, IV (Section �Felt-type model�), and V, explores the
mechanical behaviour and properties of wool felt. The one-dimensional
strain wave propagation through the felt material is considered. In the
grand piano the collision of a felt-covered hammer with a string is a crucial
phenomenon that determines the piano tone and timbre. The proposed
felt model provides a better understanding of the complex hammer�string
interaction [1].

In the last part of the thesis the main conclusions and discussion are
presented. Below introductions to the �rst and the second part of the thesis
follow.

String vibration against a rigid termination

The investigation of the boundary conditions of a vibrating string is a very
important problem in musical acoustics. It is well known that the funda-
mental frequency of the string is strictly determined by the type of the
string termination. Usually, the changing of the tone caused by the shape
and curvature of the string support is negligible because the size of the ter-
mination is much less than the string's speaking length. But there exists a
group of lutes, which are mainly used in China, Japan, and India, where the
collision of a vibrating string with a rigid spatial obstacle is crucial to the
desired tonal quality. The spatial extent of these bridges along the direction
of the string may be up to 2% of the string's speaking length.

Lutes such as the shamisen, biwa, sitar, tambura, or veena have a very
distinctive sound, which can be described as buzzing. This overtone-rich
tonal quality is strictly determined by the string termination [2, 3]. Ex-
amples of the string terminations discussed here are shown in Figs. 1.7 and
1.9. A similar structural mechanism is not unknown in Western instruments
either. The treble strings of a grand piano usually terminate at the capo
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d'astro [4]. The V-shaped cross-section of the capo d'astro has a parabolic
curvature, although the area to which the string rapidly touches while vi-
brating is small in relation to the string's speaking length. In Publication I
it is shown that the capo d'astro has a noticeable e�ect on the piano tone
formation.

Much e�ort has been devoted to modelling the dynamics of a vibrating
string with a distributed unilateral constraint during the past decades. Over
the years many authors have solved this problem using di�erent approaches.
The problem was considered by Schatzman [5], Burridge et al. [6], and
Cabannes [7], who used the method of characteristics and assumed that
the string does not lose energy when it hits an obstacle. Krishnaswamy
and Smith [8], Han and Grosenbaugh [9], Bilbao et al. [10, 11], and Taguti
[12, 13] used a �nite di�erence method to study the string interaction with
the curved bridge. Vyasarayani, et al. [14] described the movement of the
sitar string with a set of partial di�erential equations. Rank and Kubin
[15], Evangelista and Eckerholm [16], and Siddiq [17] used a waveguide
modelling approach to study the plucked string vibration with nonlinear
limitation e�ects. The geometry of the string terminations for the sitar,
veena, and tambura was considered by Raman [18]. Hall concluded that
a possible explanation of the phenomena of the missing modes [19] is the
complex interaction of the string with the bridge.

A novel and relatively simple model of termination�string interaction is
presented in the �rst part of the thesis. A number of simplifying assump-
tions are introduced. The string is assumed to be non-dispersive lossless
ideal string, and the termination is always assumed to be absolutely rigid.
Despite these assumptions it is hoped that the application of the proposed
model would clarify the physics behind the termination�string complex non-
linear interaction.

Deformation wave propagation in piano hammer felt

More in-depth understanding of the complex process of the piano hammer�
string interaction [1] requires a better knowledge of the mechanical prop-
erties of the felt that coats the heads of piano hammers. The aim of the
second part of the thesis is to explore the mechanical and acoustical fea-
tures of one of the oldest microstructured material known to man. The
felt is a textile fabric. It is produced of randomized �bres that are tightly
matted together. It can be made of natural �bres such as wool or synthetic
�bres such as acrylic. Felt is used widely from the automotive industry to
the construction of musical instruments. Some applications of felt include
vibration isolation, air �ltering, and interior décor. In piano manufacturing
felt has been used for almost two centuries. For instance, the piano string
dampers are made using felt and, of course, the felt made of wool is a unique
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and indispensable coating material of piano hammers.
A description of the novel model of wool felt that is derived in Publica-

tions III and V is presented. The advanced model involves a one-dimensional
nonlinear constitutive equation of microstructured felt based on the experi-
mental results of testing piano hammers [1, 20]. The evolution of the form of
a one-dimensional pulse propagating through a nonlinear felt medium is in-
vestigated in the context with the initial and boundary value problems. The
rate of the attenuation of a propagating pulse is estimated and discussed.
Dispersion analysis of the corresponding linear problem is provided, and it
is shown that for certain values of physical parameters the negative group
velocity will appear.
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1 String vibration against a rigid termination

This part of the thesis, which is a summary of the results presented in
Publications I and II, focuses on the model that describes the complex string
motion, whose displacement is unilaterally constrained by a rigid string
termination. In addition, three di�erent examples of the model application
are discussed.

1.1 Vibration of a string with ideal supports

In order to explore only the e�ect of the in�uence of a rigid termination on
the string motion, we eliminate the possible contribution that the lossy and
dispersive wave propagation may introduce to this nonlinear problem. This
is the reason why the ideal �exible string description is considered. The
wave equation for the linear and lossless �exible ideal string is in the form

∂2u

∂t2
= c2∂

2u

∂x2
, (1.1)

where u is the string displacement, c =
√
T/µ is the speed of the travelling

waves on the string, T is the tension, and µ is the linear mass density of the
string [21]. It can be shown that (1.1) may be satis�ed by superposition of
non-dispersive travelling waves ur(t−x/c) and ul(t+x/c) moving in either
direction along the string emerging from the plucking or excitation point
x = l

u(x, t) = ur

(
t− x

c

)
+ ul

(
t+

x

c

)
. (1.2)

These two waves ur and ul are simply a translation of the waves induced
by the excitation from the point x = l to other segments of the string [21].
At the point x = l it holds that ur(l, t) = ul(l, t) = u(l, t).

The ideal supports of the string terminations are described by the bound-
ary values u(0, t) = u(L, t) = 0, here L is the speaking length of the string.
The travelling waves ur(t−x/c) and ul(t+x/c) re�ect from each end of the
string. The wave ur(t − x/c) propagating to the right at the point x = L
creates the wave ul(t + x/c) = −ur(t − x/c) moving to the left, and the
wave ul(t + x/c) propagating to the left at the point x = 0 creates the
wave ur(t − x/c) = −ul(t + x/c) moving to the right. This procedure can
be interpreted as equivalent to the digital waveguide approach [22, 23, 24].
The method for modelling the nonlinear termination�string interaction is
explained below.

1.2 Termination�string interaction model

Nonlinear string terminations of stringed musical instruments are usually
located at the far end of the neck (nut) or at the bridge. Similarly, in
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our model, the geometric unilateral termination condition (TC) is located
at one of the two termination points of the string. Figure 1.1 shows the
travelling waves ur and ul, string displacement u(x, t), and the location of
the rigid termination relative to the string. Here it is assumed that the
x-axis is de�ned by the shape and extent of the string at rest.

String

urul

ur ul

U(x)TC

Figure 1.1: Scheme of the string displacement model. The travelling waves ur and
ul, shown for two di�erent time moments (unmarked solid lines), and the forms of
the string (solid lines marked with circles). The position of the TC relative to the
string is shown by the grey formation. The pro�le of the TC is described by the
function U(x).

In order to model the termination�string interaction it is assumed that
the re�ected wave ur(t−x/c) moving to the right appears only at the point
x = x∗, where the amplitude of the string de�ection u(x∗, t) > U(x∗).
The position of this point x∗ is determined by the TC geometry function
U(x) in the following way. Since the termination is rigid, it must hold that
u(x∗, t) = U(x∗), and this condition results in the appearance (addition) of
the re�ected wave

ur

(
t− x∗

c

)
= U(x∗)− ul

(
t+

x∗

c

)
, (1.3)

where the waves ur and ul correspond to any waves that have re�ected
on earlier time moments and are currently located at x = x∗. The pro-
posed method ensures that the amplitude of the string de�ection, which is
determined by (1.2), will never exceed the value U(x). The proposed pro-
cedure produces a reasonable result as long as the function U(x) describing
the string termination geometry is a monotonically growing or descending
function.

Figure 1.2 demonstrates the form of the string in the vicinity of the
geometric termination during the re�ection of the �rst wave u(t + x/c)
only. By using the procedure described above, the string de�ection as a
function of the dimensionless distance along the string is computed for three
succeeding normalized dimensionless (c = 1) moments of time. At the
moment t = t1 the form of the string, shown by the solid line marked with
triangles, is determined only by the travelling wave ul. At the next moment
t = t2 the small segment of the string is in contact with the surface of the
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termination, and the re�ected wave ur(x, t2) has appeared (dashed line).
The corresponding form of the string de�ection is shown by the solid line
marked with rectangles. At the moment t = t3 the string is in contact
with the surface of the termination on the segment closer to the string edge
(x = 0). The form of the string at this moment is shown by the solid
line marked with circles, and the re�ected wave ur(x, t3) is also shown by
the dashed line. Thus, at some moments the string wraps or clings to the
termination surface, and during that time the form of the string on some
segment simply repeats the form of the termination.

0.0 0.2 0.4 0.6 0.8 1.0
Distance along the string x (a.u.)

1.0

0.5

0.0

0.5

1.0

Di
sp

la
ce

m
en

t u
(x
,t
) (

a.
u.

) TC

Figure 1.2: Re�ection of the �rst wave from the termination. The travelling waves
ur and ul (dashed lines) and the form of the string (marked solid lines) are shown
for successive dimensionless moments of times t1 = 0.4 (triangle), t2 = 0.7 (rect-
angle), and t3 = 1.0 (circle). Arrows indicate the direction of wave propagation.

1.3 Grand piano string vibration

1.3.1 Hammer�string interaction

The numerical simulation of the hammer�string interaction is based on the
physical models of a piano hammer described in [1, 20, 25]. These models
are based on the assumption that the woollen hammer felt is a microstruc-
tured material possessing history-dependent properties. The elastic and
hereditary parameters of piano hammers were obtained experimentally by
using a special piano hammer testing device that was developed and built
at the Institute of Cybernetics at Tallinn University of Technology [20].

Like in [26, 27], we have the a system of equations describing the hammer�
string interaction 




dz

dt
= − 2T

cm
g(t) + V,

dg

dt
=

c

2T
F (t),

(1.4)
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where the function g(t) is the form of the outgoing travelling wave created
by the hammer strike at the contact point x = l, c is the speed of a non-
dispersive wave travelling along the string, F (t) is the acting force, T is the
string tension, m, z(t), and V are the hammer mass, the hammer displace-
ment, and the hammer velocity, respectively. The hammer felt compression
is de�ned by w(t) = z(t) − u(l, t). Here the function u(l, t) describes the
string transverse de�ection at the contact point x = l. String de�ection
u(l, t) is calculated by using the knowledge on the outgoing wave g(t) and
the string's mathematical description discussed in Sections 1.1 and 1.2. The
initial conditions at the moment when the hammer �rst contacts the string
are taken as g(0) = z(0) = 0, and dz(0)/dt = V .

The experimental testing of piano hammers demonstrates that all ham-
mers have a hysteretic type of force�compression characteristics. A main
feature of hammers is that the slope of the force�compression characteristics
is strongly dependent on the rate of loading. It was shown in [1, 20, 25] that
nonlinear hysteretic models can successfully describe the dynamic behaviour
of the hammer felt.

According to the three-parameter hereditary model of the hammer pre-
sented in [25], the nonlinear force F (t) exerted by the hammer is related to
the felt compression w(t) by the following expression:

F (w(t)) = Q0

[
wp̂ + α

d(wp̂)

dt

]
. (1.5)

Here the parameter Q0 is the static hammer sti�ness, p̂ is the compliance
nonlinearity exponent, and α is the retarded time parameter.

The continuous variations in the hammer parameters across the entire
compass of the piano were obtained experimentally by measuring an entire
hammer set of recently produced and unvoiced Abel hammers. The result
of those experiments is presented in [20, 25]. A best match to a whole set
of hammers 1 6 n 6 88 is approximated by using

Q0 = 183 e0.045n, (1.6)

p̂ = 3.7 + 0.015n, (1.7)

α = 259.5 + 0.58n+ 6.6 · 10−2n2 − 1.25 · 10−3n3 + 1.172 · 10−5n4. (1.8)

Here the unit for parameter α is ms, and the unit for Q0 is N/mmp̂. The
hammer masses of this set are approximated by

m = 11.074− 0.074n+ 10−4n2, 1 6 n 6 88. (1.9)

The mass of hammer no. 1 (A0) is 11.0 g and the mass of the last hammer
no. 88 (C8) is 5.3 g.

16



1.3.2 Capo d'astro�string interaction

The treble strings of grand pianos usually terminate at the capo d'astro
(capo bar) [4]. The capo d'astro is a part of the piano cast iron frame's
substructure called the agra�e. The shape of the capo d'astro is carved
out of the cast iron and reinforced (coated) with an titanium. The apex of
the V-shaped cross-section pro�le of the capo d'astro de�nes the end of the
speaking length of the string. This rigid termination has an approximately
parabolic form, and it is described here by the function U(x) = (2R)−1x2,
where R is the radius of the capo d'astro curvature at x = 0 (at the apex).
Figure 1.3 presents the scheme of the capo d'astro�string interaction model.

Hammer

String

urul

ur ul

Capo d’astro

Figure 1.3: Scheme of the capo d'astro�string interaction model. The string is
excited by the piano hammer strike. The direction of the hammer strike is shown
by the bold arrow. The parabolic shape of the capo d'astro is shown by the grey
formation. The shape of the string is shown by the solid line marked with circles.
the small arrows indicate the propagation direction of the travelling waves ur and
ul shown for two di�erent time moments.

In this simulation a number of simplifying assumptions regarding the
piano string are introduced. As mentioned above, the string is assumed to
be an ideal �exible string. In addition, the motion of the soundboard and
the bridge are discarded.

The hammer�string interaction is simulated by solving a system of Eqs.
(1.4) for various initial hammer velocities V . The note no. 85 (tone A7,
fundamental frequency f = 3520 Hz) is chosen for the calculations. The
string parameters are the following: the string's speaking length L = 61
mm, the actual distance of the striking point from the nearest string end
(capo d'astro) l = 2.6 mm, the linear mass density of the string µ = 4.2
g/m, the string mass M = 0.26 g, the string tension T = 774.6 N.

The number of strings associated with the grand piano tone A7 is three.
Thus, the acting mass of a hammer de�ned by relation (1.9) for n = 85
is chosen equal to 1/3 of the total hammer mass, resulting in m = 1.8
g. For hammer no. 85 we use the following additional parameters: static
sti�ness Q0 = 8387.4 N/mmp̂, nonlinearity exponent p̂ = 4.975, hereditary
parameter α = 0.5312 ms.

It is concluded in Publication I that the resulting string's movement
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is strongly in�uenced by the termination for approximately the �rst 15�20
interactions (periods). After this time elapses (t ' 6 ms, in the current
case), the vibration of the string terminated at the capo d'astro may be
considered as periodical. This phenomenon can be demonstrated through
the string vibration spectra. Figure 1.4 shows the string motion spectra for
the string that is exited by the piano hammer, where V = 5 m/s.

0 5 10 15 20 25 30 35 40
Mode no.

80
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. l
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el
 (d

B)

t=t0  (linear)
t=t0

t=t1

t=t2

Figure 1.4: Comparison of spectra envelopes computed for successive time mo-
ments: t0 = 0.3 ms, t1 = 3.86 ms, t2 = 6.21 ms. The solid line without marks
shows the spectrum of the string with the ideal support. The marked solid lines
show the spectra of the string that is terminated at the capo d'astro, where R = 15
mm. Hammer striking velocity V = 5 m/s.

At the moment t = t0 (hammer�string contact duration) only a small
di�erence between the spectra of the strings vibrations can be observed.
After this time moment the spectrum of the string with the ideal support
becomes stationary, in other words the spectrum is not time-dependent.
On the contrary, the spectrum of the string terminated at the capo d'astro
continues to change with the progression of time, even after the string starts
to vibrate freely. The e�ect of the TC continues for approximately 6 ms, and
after this time the spectrum becomes stationary as well. These two distinct
vibration regimes, observed in the case where the strings are terminated at
the capo d'astro, are called here the aperiodic and periodic vibration regimes,
respectively. During the aperiodic vibration regime the level of the �rst �ve
modes decreases systematically. The di�erence between the levels of the 4th

mode for the ideally supported string and for the string terminated at the
capo d'astro is equal to 6 dB. Undoubtedly, the transition of energy from
low to high vibration modes is occurring. The power spectrum of the string
vibration is widened by enriching the levels of high frequency vibration
modes. The level of some high frequency vibration modes increases up to
15 dB.
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Figure 1.5: Comparison of spectra envelopes computed for the constant value of
the capo d'astro curvature R = 15 mm and varying the hammer striking velocity
V . The solid line without marks shows the spectrum of the string with the ideal
support. The marked solid lines show the spectra of the string that is terminated
at the capo d'astro.
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Figure 1.6: Comparison of spectra envelopes computed for the constant value of
the hammer striking velocity V = 5 m/s and varying the radius of the capo d'astro

curvature R. The solid line without marks shows the spectrum of the string with
the ideal support. The marked solid lines show the spectra of the string terminated
at the capo d'astro.

Figure 1.5 demonstrates the changing of the string vibration spectrum
with the variation of the amplitude of the string excitation. The results
are presented for the capo d'astro curvature R = 15 mm, and for the time
moment t = 6.21 ms (beginning of the periodic vibration regime). It is
evident that with the increasing of the amplitude of the string vibration the
mean level of high frequency modes increases; this phenomenon con�rms
that the interaction between the termination and the string is nonlinear
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indeed.
The e�ect of the capo d'astro pro�le curvature on the spectra of the

piano string vibration is shown in Fig. 1.6. The result is presented for the
hammer striking velocity V = 5 m/s, and for the time moment t = 6.21
ms (beginning of the periodic vibration regime). By analysing the result
presented in Fig. 1.6 it is concluded that the increasing of the curvature
radius increases the energy levels of the high frequency vibration modes,
and therefore it is possible to quantify the energy transfer from the lower
to the higher partials by using the proposed model.

1.4 Chikuzen biwa string vibration

The Chikuzen biwa is a traditional Japanese short-necked fretted lute, which
is often used in narrative storytelling. The biwa is equipped with a sawari
mechanism shown in Fig. 1.7. The sawari is usually made of bamboo and
it is located at the nut, where it terminates the speaking length of the �ve
silk strings of the biwa.

Figure 1.7: Sawari located at the nut of the Chikuzen biwa neck and �ve strings
made of silk.

1.4.1 String excitation

The biwa string vibration is described here also by Eq. (1.1), i.e. we consider
the biwa string as an ideal. The parameters for the biwa string are taken to
be the same as used by Taguti in [13]. The values of the string parameters
are the following: string's speaking length L = 0.8 m, linear mass density
µ = 0.375 g/m, string tension T = 38.4 N, and the speed of waves travelling
along the string c = 320 m/s. The main tone frequency of such a string
f = 200 Hz.

The string plucking condition is chosen as follows: at a moment t = 0
the force

F (t) = F0αt e
−αt (1.10)
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starts to act on the string at a point x = 3/4L in a vertical direction and
perpendicularly to the string at rest. At a moment t = t0 the force stops
acting on the string, i.e. F (t) = 0 if t > t0. Here the parameter α = 2 ms−1,
the duration of the force action t0 = 2.5 ms, and F0 = 0.96 N.

According to the system of equations (1.4), the outgoing wave g(t) cre-
ated by this force is determined by the continuous function

g(t) =

{
A
{

1− [1 + αt] e−αt
}
, if t < t0,

const = g(t0), if t > t0.
(1.11)

Here the coe�cient A = 2 mm and g(t0) = 1.92 mm.

1.4.2 In�uence of the sawari

The cross-section pro�le of the sawari is approximated by the function

U(x) =




− 1

2R
x2, if x 6 s,

−∞, if x > s,
(1.12)

where s is the extent of the sawari along the string at rest (x-axis), R is the
radius of the sawari curvature at the string termination point x = 0. The
values of the parameters s and R for sawari in Chikuzen biwa are taken
s = 1 cm, and R = 2 m. The surface of the sawari is considered to be
absolutely rigid.
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Figure 1.8: Evolution of the biwa string motion spectrum with the progression of
time, where t0 = 2.5 ms, t1 = 16.4 ms, and t2 = 201.4 ms.

The e�ect of the sawari on the spectral structure of the biwa string vi-
bration is shown in Fig. 1.8. Analysis of the spectral structure of the biwa
string vibration reveals that it undergoes a period of rapid change (aperi-
odic vibration regime), which in this particular case lasts for approximately
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200 ms. It can be shown that after that time period has elapsed the spec-
trum becomes stable (periodic vibration regime). Figure 1.8 shows clearly
that during that time the mean level of the high frequency modes increases
signi�cantly, and the level of some low frequency modes decreases. This
suggests that the vibration energy is being transferred from lower to higher
partials.

1.5 Sitar string vibration

The sitar is a plucked stringed instrument, which is used mainly in Hindus-
tani music and Indian classical music. The instrument descended from a
similar but simpler Persian instrument called the setar. The main strings
of the sitar terminate at the bridge called the jawari. The jawari shown in
Fig. 1.9 has an almost �at cross-section shape, and it is classically made of
animal bone or horn.

Figure 1.9: Jawari, the main bridge of the sitar, and taraf ka ghoraj, the sympa-
thetic string bridge.

1.5.1 String excitation

The string plucking condition is introduced as follows. It is assumed that
from the point x = l = 3/4L outgoing waves emerge, and they have the
following form:

g(t) =




A

(
t

t0

)2

e2(1−t/t0), if 0 6 t 6 t0,

A, if t > t0.

(1.13)

Here A = 1 cm is the amplitude of the outgoing travelling wave and the
duration of the excitation is t = t0 = 4 ms. The selection of the plucking
condition (1.13) ensures that the plucking force acting on the string at x = l
ceases if t > t0 because the time derivative of (1.13) is proportional to the
plucking force; cf. Eq. (1.4). The values of the string parameters are taken
to be the same as in the previous example of the biwa string vibration.
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1.5.2 Jawari geometry

As in Publication II, three mostly �at jawari-like cross-section pro�les of
the string termination are considered. Figure 1.10 shows these pro�les. The
mathematical descriptions of the pro�le shape functions U(x) are provided
below.
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Figure 1.10: Jawari -like TC pro�le geometry for three cases under study. Dotted
vertical lines mark the positions of the characteristic values xa, xb, and xc. Case
1: Linear bridge with a sharp edge. Case 2: Linear bridge with a curved edge;
the dashed line shows the pro�le of Case 1 for comparison. Case 3: Bridge with a
small geometric imperfection; the dashed line shows Case 2 for comparison.

Case 1: Linear bridge with a sharp edge

The function U(x) that describes the pro�le of a �at sitar's jawari-like
bridge is calculated as follows:

U(x) =

{
kx, if x 6 xc,

∞, if x > xc,
(1.14)

where k = tan θ = 0.008 is the slope of the linear function, and where
θ ≈ 0.008 rad ≈ 0.46◦. The value xc = 15 mm marks the coordinate of the
truncation of the linear function with respect to the x-axis.

Case 2: Linear bridge with a curved edge

The pro�le of a jawari bridge with a curved edge is calculated as follows:

U(x) =




kx, if x 6 xb,

1

2R
(x− xb)2, if x > xb,

(1.15)
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where the parameter k has the same value and meaning as in the previous
case. The parameter R = 10 mm is the curvature radius of the corre-
sponding parabolic function f(x) = (2R)−1x2 at its local minimum. The
coordinate xb = 10 mm marks the transition between linear and parabolic
parts of the geometry.

Case 3: Bridge with a geometric imperfection

The bridge in this case is similar to the previous case with the exception of
an addition of a small imperfection in the form of discontinuity in the linear
part of the TC in (1.15). The bridge pro�le geometry for this case can be
expressed in the following form:

U(x) =





kx, if x 6 xa,

kx+ y, if xa < x 6 xb,

1

2R
(x− xb)2 +K, if x > xb,

(1.16)

where the parameters k and R have the same values and meaning as in the
previous cases. The parameter y = 0.11 mm raises the value of the linear
function in the interval x = (xa, xb], where xa = 4 mm and xb = 10 mm.
The constant K = kxb + y is added in order to preserve the continuity of
the form in the vicinity of the point x = xb.

1.5.3 In�uence of the jawari

The in�uence of the jawari on the string vibration is demonstrated through
the use of spectrograms. The spectrograms are calculated by using the
Hanning window of the size 45 ms and the overlap value of 55% of the
window size.

Case 1: Linear bridge with a sharp edge

The spectrogram of the string vibration related to Case 1 is shown in
Fig. 1.11 a. The dashed vertical line corresponds to the duration of the
aperiodic vibration regime t = tnp of the string. It can be seen that during
the aperiodic vibration regime the energy of the low frequency vibration
modes is being transferred to the high frequency modes. This phenomenon
of the spectral widening can be noticed by comparing Figs. 1.11 a and 1.12.

Figure 1.12 shows the spectrogram of the corresponding linear case of the
string with ideal supports where no amplitude limiting TC is present. The
transfer of the energy from lower to higher vibration modes is an indication
of the nonlinear behaviour resulting from the interaction of the vibrating
string and the jawari bridge. In the periodic vibration regime (t > tnp) the
spectrum remains constant.
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Figure 1.11: Spectrogram of the string vibration waveform u(l, t) for (a) Case 1,
(b) Case 2, and (c) Case 3. The transition between the aperiodic and periodic

vibration regimes at t = tnp is shown by the dashed line.

Case 2: Linear bridge with a curved edge

The spectrogram corresponding to Case 2 is shown in Fig. 1.11 b. As can be
seen, the result is similar to Case 1 with the exception of a slightly longer
aperiodic vibration regime.
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Figure 1.12: Spectrogram of the string vibration waveform u(l, t) for the linear
case.

Case 3: Bridge with a geometric imperfection

Figure 1.11 c shows the spectrogram for Case 3. Now the aperiodic vibra-
tion regime lengthens lasting for 300 ms, which is almost two times longer
compared to Case 2. Again, the energy transfer from low frequency to high
frequency modes is visible during the aperiodic vibration regime.

The relatively long aperiodic vibration regime can make playing such
an instrument challenging. The timbre of the instrument can be strongly
in�uenced by the selection of the plucking point and the plucking manner,
which results in an uneven timbre behaviour. This phenomenon makes the
learning to play the sitar more demanding compared to the similar Western
stringed instruments such as acoustic guitar, for example.
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2 Deformation wave propagation in piano hammer

felt

This part of the thesis, which is a summary of the results presented in
Publications III, IV (Section �Felt-type model�), and V, focuses on the me-
chanical and acoustical properties of the wool felt material that is used in
manufacturing piano hammers.

2.1 Wool felt model

The �rst nonlinear dynamical model of piano hammer felt, that takes into
consideration both the hysteresis of the force-compression characteristics
and their dependence on the rate of the felt loading was presented in [1].
The derived model is based on the assumption that hammer felt is a mi-
crostructured material possessing history-dependent properties, i.e. it is a
material with memory.

The constitutive equation of nonlinear microstructured wool felt may be
assumed in the form

σ(ε) = Eεp(t). (2.1)

Here σ is the stress, ε = ∂u/∂x is the strain, u is the displacement, E is
Young's modulus, and p is the nonlinearity parameter.

Following Rabotnov [28], the constitutive equation of the microstruc-
tured wool felt is derived by replacing the constant value of Young's mod-
ulus E in expression (2.1) by a time-dependent operator Ed [1−R(t)∗],
where ∗ denotes the convolution operation, and the relaxation function is
given by

R(t) =
γ

τ0
e−t/τ0 , 0 6 γ < 1. (2.2)

Here the hereditary amplitude γ and the relaxation time τ0 are the hered-
itary parameters of the wool felt. The time history of felt deformation is
assumed to start at t = 0. This means that for the case of one-dimensional
deformation and for any rate of loading the hysteretic felt material is de�ned
by the constitutive equation

σ(ε) = Ed [εp(t)−R(t) ∗ εp(t)] , (2.3)

where the constant Ed is the dynamic Young's modulus. From Eq. (2.3) it
follows that if t � τ0, then one obtains the constitutive equation for the
fast felt compression

σ(ε) = Edε
p(t), (2.4)

and if t� τ0, then one has the constitutive equation for the slow compres-
sion

σ(ε) = Ed(1− γ)εp(t) = Esε
p(t). (2.5)
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In each of these two cases, the loading and unloading of the felt follows the
same path along the stress�strain curve. The quantity Es = Ed(1 − γ) is
the static Young's modulus of the felt material. Both Young's moduli are
physical parameters of the felt material, and their values are 0 < Es < ∞
and 0 < Ed < ∞. For this reason, within the frame of the felt model, the
value of the hereditary amplitude is always γ < 1.

The governing equation of motion, which describes the evolution of the
one-dimensional wave in the felt material, is derived from the classical equa-
tion of motion

ρ
∂2u

∂t2
=
∂σ

∂x
, (2.6)

where ρ is the density of the medium. Substitution of (2.3) in Eq. (2.6) and
elimination of the integral term leads to the equation in the following form,
presented in terms of the displacement u:

ρutt + ρτ0uttt − Ed {(1− γ) [(ux)p]x + τ0 [(ux)p]xt} = 0, (2.7)

where the subscripted indices denote the di�erentiation with respect to the
indicated variable.

One can derive the dimensionless form of Eq. (2.7) by using the dimen-
sionless variables

u⇒ u

l0
, x⇒ x

l0
, t⇒ t

α0
, (2.8)

where

α0 =
τ0

δ
, l0 = cdα0

√
δ, δ = 1− γ, cd =

√
Ed
ρ
, cs = cd

√
δ. (2.9)

Thus, in terms of the dimensionless displacement variable u(x, t) Eq. (2.7)
takes the following form:

[(ux)p]x − utt + [(ux)p]xt − δuttt = 0, (2.10)

and for the strain variable ε(x, t) Eq. (2.7) reads

(εp)xx − εtt + (εp)xxt − δεttt = 0. (2.11)

Several samples of felt pads were subjected to static stress�strain tests.
The average value of the static Young's modulus of the felt pads was es-
timated to be Es = 0.6 MPa. The average value of the felt density was
determined as ρ ≈ 103 kg/m3. By using the realistic values of the heredi-
tary parameters γ = 0.96 and τ0 = 10 µs presented in [20], we obtain

δ = 0.04, Ed = 15 MPa, cs = 25 m/s, cd = 125 m/s. (2.12)

By using these values of material constants, the space scale l0 and time
scale α0 that were used in (2.8) are

l0 = 6.25 mm, α0 = 0.25 ms. (2.13)
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2.2 Linear analysis

2.2.1 Dispersion relation

The peculiar characteristics of the solution of Eq. (2.11) are already revealed
in the linear case, where p = 1

εxx − εtt + εxxt − δεttt = 0. (2.14)

The fundamental solution of this equation has the form of travelling waves

ε(x, t) = ε̂eikx−iΩt, (2.15)

where i is an imaginary unit, k is the wave number, Ω is the angular fre-
quency, and ε̂ is the amplitude. The dispersion law Φ(k,Ω) = 0 of Eq. (2.14)
is de�ned by the relation

k2 − Ω2 − ik2Ω + iδΩ3 = 0. (2.16)

In the case of an initial value problem, the general solution of Eq. (2.14)
has the following form:

ε(x, t) =
1

2π

∫ ∞

−∞
χ(k)eikx−iΩ(k)tdk, (2.17)

where χ(k) is the Fourier transform of the initial disturbance of the strain
prescribed at t = 0. The dependence Ω = Ω(k) can be derived from the
dispersion relation (2.16). In the general case Ω(k) is a complex quantity. In
order to provide dispersion analysis in the context of an initial value problem
and in the complex number domain, we rewrite the frequency Ω(k) in the
form

Ω(k) = ω(k) + iµ(k), (2.18)

where ω = Re(Ω) and µ = Im(Ω). By using this notation, Eq. (2.15) can
be rewritten as follows:

ε(x, t) = ε̂ eikx−iωt+µt = eµt ε̂eikx−iωt. (2.19)

From here it is evident that for the negative values of µ(k) it acts as an
exponential decay function. In other words, the spectral components decay
exponentially as t → ∞ for µ(k) < 0. On the other hand, if µ(k) >
0, then the amplitude of the corresponding spectral component increases
exponentially with the progression of time, and the solution of Eq. (2.14)
becomes unstable.

By taking into account (2.18), the dispersion relation (2.16) takes the
following form:

k2− ik2ω−ω2 + iδω3 +k2µ−2iωµ−3δω2µ+µ2−3iδωµ2 +δµ3 = 0. (2.20)
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The dispersion relation (2.20) can be separated into real and imaginary
parts. A suitable solution of this simultaneous equation with respect to ω
and µ has the following form:





ω(k) =

√
6

12δS

√
3
√

2S4 − 4S2(1− 3k2δ) + 2
3
√

4(1− 3k2δ)2,

µ(k) =
1

12δS

[
3
√

4S2 − 4S + 2
3
√

2(1− 3k2δ)
]
,

(2.21)

where

S =
3

√
2− 9k2δ(1− 3δ) + 3kδ

√
3Q (2.22)

and
Q = 4k4δ − k2(1 + 18δ − 27δ2) + 4. (2.23)

This solution is physically reasonable, because it satis�es the conditions
ω ∈ R, µ ∈ R, and µ 6 0. It can be shown that the solution (2.21) has
three distinct modes of behaviour depending on the value of the parameter δ.
These three regimes correspond to the following values of δ: (i) 0 < δ 6 1/9;
(ii) 1/9 < δ < 1; (iii) δ = 1. A detailed analysis of these three cases is
presented in Publication V. The following text in the thesis will address
only case (ii).
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Figure 2.1: Dispersion curves ω(k) calculated for di�erent values of the material
parameter δ.

Figures 2.1 and 2.2 show examples of the dispersion curves for the case
(ii), where 1/9 < δ < 1. The dispersion curves are continuous functions,
and one can notice that as the parameter δ becomes larger the dispersion
curve ω(k) becomes progressively more similar to the dispersion curve of the
non-dispersive medium, where ω(k) = k, µ(k) = 0. Also, the average value
of the exponential decay function µ(k) becomes progressively smaller with
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the increasing of the value of δ, especially for the larger k values. Figure
2.2 shows that the decay function µ(k) is more or less constant if k > 2.
The limits of dispersion relations ω(k) and µ(k) for large k are

lim
k→∞

ω(k) =∞, (2.24)

lim
k→∞

µ(k) = −1− δ
2δ

. (2.25)
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Figure 2.2: Dispersion curves µ(k) (exponential decay function) calculated for
di�erent values of the material parameter δ.

2.2.2 Phase and group velocities

The phase velocity, which is de�ned as vph(k) = ω/k, can be obtained
from (2.21). The group velocity can be calculated by taking the derivative
vgr(k) = dω/dk. The limits of these velocities for large values of k are

lim
k→∞

vph(k) = lim
k→∞

vgr(k) =
1√
δ

= vα. (2.26)

Taking into account (2.8) and (2.9), one can �nd the relation between the
dimensionless and dimensional values of these velocities. The dimensionless
value of vph = 1 corresponds to the dimensional value Vph = cs, and vgr = vα
corresponds to Vgr = cd.

In Figs. 2.3, 2.4, and 2.5 the phase and group velocities are plotted
against the wave number k. In Figs. 2.3 and 2.5 the regions of normal and
anomalous dispersion can be distinguished. The dispersion plot is divided
between these two regions at the point k = k∗. If k < k∗, it holds that
vph > vgr (normal dispersion), and if k > k∗, it holds that vph < vgr
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(anomalous dispersion). The value of k∗ is a function of the parameter δ.
Numerical analysis shows that the range of the values for k∗ is 0 6 k∗ <

√
3.

The maximum value of k∗ =
√

3 is achieved for δ → 1/9.
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Figure 2.3: Phase and group velocities calculated for δ = 0.15. The vertical
dotted line at k∗ separates the regions of normal and anomalous dispersion. The
horizontal dashed line shows the limit of the velocities for large values of k.
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Figure 2.4: Phase and group velocities calculated for δ = 0.5. The horizontal
dashed line shows the limit of the velocities for large values of k.

For the value of δ > 0.2 it was found that k∗ = 0, and therefore the region
of normal dispersion is completely absent and overtaken by the region of
anomalous dispersion. Comparison of Figs. 2.3 and 2.4 shows a behaviour
di�erence between the group and phase velocities for δ < 0.2 and for δ > 0.2.
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2.2.3 Negative group velocity

Numerical analysis shows that the negative group velocity shown in Fig. 2.5
appears only in the region of normal dispersion if 0 < δ < 0.1345. The
phenomenon of negative group velocity in the microstructured solids was
also considered in Publications IV and V, which discuss the range of the
physical parameters, that lead to the appearance of negative group velocity.
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Figure 2.5: Phase and group velocities calculated for δ = 0.128. The vertical
dotted line at k∗ separates the regions of normal and anomalous dispersion. The
negative group velocity region is located to the left from k∗. The horizontal dashed
line shows the limit of the velocities for large values of k.

It can be shown that as δ → 0.1345 the minimum of group velocity
tends to zero. The existence of negative group velocity in the case of small
values of δ is related to the stress�strain relaxation model in the form (2.3).
In this case the hereditary amplitude γ = 1 − δ is close to its maximum,
and therefore the hereditary features of the wool felt material are expressed
most fully.

The e�ects of negative group velocity and anomalous dispersion are
always masked by the relatively large in�uence of the exponential decay
determined by µ(k). For example, the spectral wave components k that
are associated with the strong anomalous dispersion regime (δ < 0.2 and
k > k∗) are also associated with the largest values of the exponential decay
µ(k) (vide Fig. 2.2). This means that in this particular example, anomalous
dispersion may be expressed only at the beginning of the wave evolution and
only for a short period of time. Most probably, the anomalous dispersion
will be overtaken by the normal dispersion regime, with which much smaller
decay is associated.
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2.3 Wave attenuation

The aim of this section is to study the rate of a strain pulse attenuation as
it propagates along the x-axis through the felt material. This calls for the
solution of the boundary value problem (BVP).

2.3.1 Boundary value problem

The solution to BVP is obtained numerically, by using the �nite di�erence
method (FDM). Instead of Eq. (2.11) a more suitable form of the equation
for the �nite di�erence approximation is considered. This form can be
obtained by integrating Eq. (2.11) over time. This yields

εtt = (εp)xx − γ
∫ t

0
(εp)xx e

ξ−tdξ, (2.27)

where γ = 1 − δ. The BVP is solved over the non-negative space domain
(x > 0). A boundary value of the strain prescribed at x = 0 is selected in
the following form:

ε(0, t) = A

(
t

tm

)3

e3(1−t/tm), (2.28)

where tm de�nes the time coordinate corresponding to the maximum of
a pulse amplitude (peak of a pulse). This form of a pulse is continuous
and smooth. At a pulse front the necessary conditions ε(0, 0) = εt(0, 0) =
εtt(0, 0) = 0 are met. Initially t 6 0, the felt material is assumed to be at
rest, thus ε(x, 0) = εt(x, 0) = 0.

Below the solution to the BVP (2.27), (2.28) is presented and analysed.

2.3.2 Pulse attenuation rate

Figure 2.6 shows the numerical solution of the BVP (2.27), (2.28) for the
linear case, where p = 1. The evolution of the form of a pulse determined by
the boundary value (2.28), where the boundary value parameter tm = 1/2,
is presented for three sequential time moments and for two di�erent values
of the material parameter δ. The dashed lines show the corresponding
decays of the pulses' amplitudes. These decay curves are plotted through
the maxima of the pulses and �tted to the exponential function in the form
e−λnx, where λn is the numerically found exponential decay constant. Here
it is supposed that the dominant fundamental spectral component ω of a
pulse (2.28) is estimated from a rough approximation ωtm ' 1.

In Publication III it is shown that the values of the decay constants λn
calculated numerically and the decay constant λ(ω) taken from the disper-
sion relation are approximately equal. The derivation of the exponential
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decay function (imaginary part of the dispersion relation) in the form λ(ω)
is considered in Publication III. In principle this numerical approach can
be used to verify the decay constant for any speci�c value of tm rather
accurately.
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Figure 2.6: Snapshots of pulses' pro�les shown for time moments t1 = 4.5, t2 =
6.75, and t3 = 9.0, varying the value of the parameter δ. The boundary value
parameter tm = 1/2. The dashed lines show the amplitude decay. For δ = 0.8,
the corresponding amplitude decay function is e−0.08x, for δ = 0.5, the amplitude
decay function is e−0.20x.

2.4 Nonlinear analysis

In this section, the e�ects of the nonlinearity of the wool felt material on the
evolution of an initial disturbance are considered. We examine the in�uence
of the nonlinearity parameter p and the e�ect of an initial pulse amplitude
on the evolution of a symmetrical pulse. The analysis is performed in con-
nection with the numerical solution of the initial value problem (IVP).

2.4.1 Initial value problem

The IVP is solved over the non-negative time domain (t > 0) of the unbound
half-space. The initial value of the strain prescribed at t = 0 is selected in
the following form:

ε(x, 0) = A sech(αx) =
2A

eαx + e−αx
, (2.29)

εt(x, 0) = εx(x, 0) = 0, (2.30)

where A is the amplitude and α is the space parameter.
Below, the numerical solution of the IVP in the form (2.27), (2.29),

(2.30) is presented and analysed.
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2.4.2 In�uence of the nonlinearity parameter p

Figure 2.7 shows two solutions of the IVP (2.27), (2.29), (2.30), where only
the nonlinearity parameter p is varied, while the other parameters are left
constant. The solution of the problem is presented for four sequential time
moments and for two values of the material parameter p.
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Figure 2.7: Snapshot of a pulse pro�le, where δ = 0.5, α = 3, and A = 0.1, shown
for time moments t0 = 0, t1 = 10/3, t2 = 20/3, and t3 = 30/3, calculated for two
di�erent values of the parameter p.

The solution of the problem is symmetric with respect to x = 0, because
the initial value (2.29) is an even bell-shaped function. The half of the
solution where p = 1.3 is plotted to the left side from the axis of symmetry
marked by the dot-dashed line in Fig. 2.7, and the half of the solution where
p = 2.0 is plotted to the right side.

Figure 2.7 shows that the front part of a pulse becomes steeper as it
propagates through the felt material. The process of the pulse steepening is
greater for the felt with a larger value of the parameter p. The accumulation
of this e�ect results in the eventual pulse breaking. This means that a shock
wave will be formed, and the shock wave formation is brought to an earlier
time for the larger values of p. In addition, a strong attenuation of the pulse
amplitude with the progression of time is visible.

2.4.3 In�uence of the initial amplitude

Figure 2.8 shows that the forward-facing slope of a pulse is strongly depen-
dent on the pulse amplitude A. For larger amplitudes the maximum point
or the peak of a pulse propagates faster than its front. This phenomenon
prevails with the increasing of the amplitude of the bell-shaped initial value
disturbance. The accumulation of this e�ect results in the eventual shock
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wave formation. The progressive forward leaning of a propagating pulse can
be explained by the fact that the group velocity is greater than the phase
velocity. Also, these phenomena are related to the nonlinear features of the
felt material.
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Figure 2.8: Normalized snapshots of pulses' pro�les, where α = 3, δ = 0.5, and
p = 1.45, shown for time moments t0 = 0, t1 = 10/3, t2 = 20/3, and t3 = 30/3.
The pro�le starting with initial amplitude A = 0.2 is shown by the solid line. The
pro�le starting with the initial amplitude A = 0.02 is shown by the dashed line.

Similar conclusions of the e�ects of the value of the parameter p and
the initial amplitude A on the strain wave evolution can be drawn for the
numerical solution of the BVP (2.27), (2.28), which is considered in Publi-
cation III.
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3 Conclusions

Below the main conclusions of the �rst and the second part of the thesis
and some �nal remarks are presented.

3.1 Termination�string dynamic interaction

The �rst part of the thesis, which is based on results that are derived in
Publications I and II, introduced a novel model that is capable of reproduc-
ing the nonlinear e�ects of the ideal string vibration caused by the complex
process of interaction between the string and the string termination. The
proposed model is based on the travelling wave solution of the wave equa-
tion, which makes the method numerically reliable and highly stable. The
accuracy of the computing method is determined only by the values of the
discrete time and space mesh steps. The numerical experiments demon-
strated that the lossless string vibrated in two distinct vibration regimes.
In the beginning the string started to interact in a nonlinear fashion with
the termination, and the resulting string motion was aperiodic. After some
time of aperiodic vibration, the string vibration settled in a periodic regime,
where the motion of the string was repetitious in time. The demonstration
of the existence of these two vibration regimes is the main result of the �rst
part of the thesis.

Additionally, the in�uence of the rigid termination on the string vibra-
tion and the resulting changes in the spectral structure were demonstrated
and analysed. The e�ect of the amplitude of the string vibration on the
mean level of high frequency modes was clearly evident, and this con�rmed
that the termination�string interaction was nonlinear indeed. Also, it was
shown that the duration of the aperiodic vibration regime depended on the
cross-section geometry of the termination. It was demonstrated that a mi-
nor geometric imperfection of the shape of the termination cross-section's
pro�le elongated the duration of the aperiodic vibration regime signi�cantly
and produced noticeable changes in the string vibration spectrum. Com-
parison of the resulting spectra in the periodic vibration regime of the linear
and nonlinear cases showed that the interaction of the string with the rigid
termination widened the spectrum by transferring the energy of the low
frequency modes to the high frequency vibration modes.

3.2 Deformation wave propagation in piano hammer felt

The second part of the thesis, which is based on the results derived in Pub-
lications III, IV (Section �Felt-type model�), and V, presented an analysis
of a novel nonlinear felt model. The model equation takes into account the
elastic and hereditary properties of the microstructured felt. It was used
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to study the strain pulse evolution in the one-dimensional case. Linear and
nonlinear analyses of the model were performed.

The numerical solution of the linear boundary value problem was used
to estimate the rate of the amplitude decay of a strain pulse during its
propagation through the felt. It was concluded that in the linear case the
exponential decay constant could be obtained rather accurately by using
dispersion analysis. The result of dispersion analysis also showed that both
normal and anomalous dispersion types could exist in the wool felt material.
It was demonstrated that for some values of the material parameters the
negative group velocity region of the dispersion plot or the restrictive band-
gap region of the dispersion plot (vide Publication V) or both would appear.
Negative group velocity emerged always in connection with the region of
normal dispersion.

The nonlinear e�ects of the general in�uence of the nonlinearity param-
eter p and the amplitude of the initial disturbance were demonstrated. It
was shown that for the higher value of the parameter p the front of an
evolving and propagating pulse became steeper, and this phenomenon was
intensi�ed with the growth of the value of the nonlinearity parameter p. It
was also shown that the front slope of an evolving pulse was strongly deter-
mined by the pulse amplitude. A greater initial amplitude forced the peak
of the wave pulse to propagate faster than the front of the pulse. Therefore,
the accumulation of these nonlinear e�ects was eventually responsible for
the formation of the discontinuity at the pulse front and the appearance of
a shock wave. The most dominating feature of the felt was demonstrated to
be the strong damping e�ect on any wave that was evolving and propagating
through it.

The main results of the second part of the thesis are the following: the
mathematical form of the novel constitutive relation and the equation of
motion for the felt material were derived; the existence of negative group
velocity in the linear case was proved.

3.3 Final remarks

The thesis focused on two nonlinear problems that are closely related to the
processes of sound generation and formation of musical instruments such as
grand pianos and Chikuzen biwas. These processes are the termination�
string interaction and the impact of a piano hammer against the string,
which can be understood trough the detailed modelling of the deformation
propagation in the felt material.

The proposed model of the termination�string interaction is based on a
number of idealized and simplifying assumptions. The string was assumed
to be ideal and the string's termination was assumed to be absolutely rigid.
Despite these assumptions the model clari�ed the underlying process of

39



the evolution of the termination�string dynamics. This simpli�ed approach
showed clearly how the shape of the cross-section pro�le of the termination
in�uenced string vibration.

The analysis of the equation of motion of wool felt gave a fundamental
insight into the mechanical and acoustical features and properties of the
material. The felt coating is the characteristic part of the grand piano
hammers. A good understanding of the wave propagation through the felt
is necessary in order to start to grasp the complex process of the piano
hammer�string interaction.

The results presented in this thesis are in no way �nal or conclusive.
On the contrary, they represent the most basic and fundamental under-
standing of the otherwise complicated sound generation process of the afore
mentioned musical instruments. The results presented in the thesis may be
applied for example in the digital physics-informed sound synthesis of such
musical instruments.
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Abstract

The thesis focuses on two nonlinear problems that are closely related to the
sound production mechanism of musical instruments such as grand pianos,
biwas, and sitars.

The �rst part of the thesis considers the string motion in which the
string displacement is unilaterally constrained by the rigid termination with
an arbitrary cross-section pro�le geometry. A model based on the travelling
wave solution is proposed for simulating the nonlinear interactions between
the vibrating string and the termination. It is shown that the lossless ideal
string vibrates in two distinct vibration regimes. In the beginning the string
starts to interact continuously with the termination, resulting in the aperi-
odic motion of the string. Consequently, the spectrum of the string motion
depends on the amplitude of the string vibration, and its spectral struc-
ture changes continuously with the progression of time. The duration of
the aperiodic vibration regime depends on the geometry of the termination.
After some time of the aperiodic vibration, the string vibration settles in a
periodic regime, where the string motion is repetitious in time.

The second part of the thesis explores the mechanical and acoustical
features of the felt that is used in piano hammer manufacturing. A one-
dimensional nonlinear constitutive relation of the wool felt material is de-
rived based on the experimental data of testing the piano hammers. This
relation enabled deriving a nonlinear partial di�erential equation of motion
with the third order terms that takes into account the elastic and hereditary
properties of the microstructured wool felt. The equation of motion is then
used to study the evolution of the initial disturbance in the felt material.
The physical dimensionless material parameters are established and their
importance in describing the nonlinear e�ects is discussed. The initial and
boundary value problems are considered and the numerical solution describ-
ing the nonlinear wave propagation is provided. It is demonstrated that the
nonlinearity makes the front slope of a propagating pulse steeper, which
causes an eventual breaking of the wave. In addition, the rate of the wave
attenuation in the felt material is estimated. Also, a detailed dispersion
analysis of the corresponding linear problem is provided. It is shown that
both normal and anomalous dispersion types exist in the wool felt mate-
rial and that for certain values of the physical parameters negative group
velocity will appear.

The results presented in the thesis clarify the physics behind the non-
linear sound generation mechanisms of musical instruments such as grand
pianos, biwas, shamisens, and veenas.
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Resümee

Doktoritöö käsitleb kahte mittelineaarset probleemi, mis on lähedalt seotud
selliste muusikaliste instrumentide nagu näiteks tiibklaver, biwa ja sitari
helitekke protsessidega.

Doktoritöö esimeses osas vaadeldakse keele võnkumist olukorras, kus
keele üks otstest on ühepoolselt piiratud jäiga piirajaga, mille ristlõike
kuju võib omada meelevaldset geomeetriat. Mudelit, mis põhineb lainevõr-
randi d'Alembert'i lahendil, kasutatakse keele ja piiraja vahelise mitteline-
aarsust esile kutsuva interakteerumise simuleerimiseks. Doktoritöös näi-
datakse, et kadudeta võnkuv ideaalne keel võngub kahes selgelt eristuvas
võnkumise reºiimis. Võnkumise alguses interakteerub keel piirajaga mit-
telinaarsel moel, mille tulemuseks on keele aperioodiline võnkumine. Siit
järeldub, et keele võnkumise spekter sõltub keele võnkeamplituudist ning
spektri struktuur aperioodilises reºiimis on pidevas muutumises. Aperioo-
dilise võnkereºiimi ajaline kestus sõltub piiraja ristlõike kujust. Peale selle
võnkereºiimi möödumist hakkab keel võnkuma perioodiliselt.

Doktoritöö teine osa uurib villast valmistatud vildi, mida kasutatakse
tiibklaveri haamrite tootmises, mehaanilisi ja akustilisi omadusi. Kasutades
klaveri haamrite uuringutest saadud katseandmeid, koostatakse vildi mater-
jali ühedimensiooniline mittelineaarne olekuvõrrand, mis võtab arvesse nii
mikrostruktuurse vildi elastsed kui ka hüstereetilised omadused. Seda oleku-
võrrandit omakorda kasutatakse liikumisvõrrandi koostamiseks. Matemaati-
liselt on tegu mittelineaarse kolmandat järku osatuletistega diferentsiaalvõr-
randiga. Vildi materjali mittelineaarseid omadusi uuritakse materjali di-
mensioonitute parameetrite abil. Liikumisvõrrandi numbrilise lahendi abil
uuritakse deformatsioonilainete levimise evolutsiooni ühedimensioonilises
seades. Numbriline lahend näitab, et mittelineaarsus muudab vildis leviva
laine frondi järsemaks ning lõpuks on mittelineaarsus vastutav lööklaine
tekkimise eest. Lisaks kvanti�tseeritakse leviva laine impulsi sumbumise
kiirus. Teostatakse üksikasjalik dispersioonianalüüs. Analüüsist selgub, et
lainelevil vildis esinevad nii normaalse kui ka anomaalse dispersiooni tüübid
ning et teatud materjali parameetrite väärtuste juures eksisteerib negatiivne
rühmakiirus.

Doktoritöös esitatud tulemused lisavad selgust selliste muusikariistade
nagu biwa, shamiseni ja tiibklaveri helitekke protsesse kirjeldavasse füüsi-
kasse.
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a b s t r a c t

The dynamic string motion, which displacement is unilaterally constrained by the rigid termination con-
dition of an arbitrary geometry has been simulated and analyzed. The treble strings of a grand piano usu-
ally terminate at a capo bar, which is situated above the strings. The apex of a V-shaped section of the
capo bar defines the end of the speaking length of the strings. A numerical calculation based on the trav-
eling wave solution is proposed for modeling the nonlinearity inducing interactions between the vibrat-
ing string and the contact condition at the point of string termination. It was shown that the lossless
string vibrates in two distinct vibration regimes. In the beginning the string starts to interact in a nonlin-
ear fashion with the rigid terminator, and the resulting string motion is aperiodic. Consequently, the
spectrum of the string motion depends on the amplitude of string vibrations, and its spectral structure
changes continuously with the passage of time. The duration of that vibration regime depends on the
geometry of the terminator. After some time of aperiodic vibration, the string vibrations settle in a peri-
odic regime where the resulting spectrum remains constant.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Investigation of the boundary condition of vibrating string is a
very important problem in musical acoustics. It is well known that
the fundamental frequency of the string is strictly determined by
the type of the string termination. Usually the changing of the tone
caused by the curvature of the string support is negligible, but
there is a family of Japanese plucked stringed instruments (biwa
and shamisen), which sounding is strictly determined by the string
termination [1,2]. These lutes are equipped with a mechanism
called ‘‘sawari’’ (touch). The sawari is a contact surface of very lim-
ited size, located at the nut-side end of the string, to which the
string touches repeatedly, producing a unique timbre of the instru-
mental tone called the sawari tone.

There are other stringed instruments of Indian origin with a
similar bridge design, such as sitar, veena and tambura. The inter-
action of the string with a curved string support creates a peculiar
buzzing sound, which is markedly different from that of known
European plucked string instruments such as guitar and lute. The
geometry of the string terminations for the sitar, veena, and tam-
bura was considered by Raman [3]. Raman concluded that possible
explanation of the phenomena of the ‘‘missing modes’’ is the com-
plex interaction of the string with the bridge [4].

Much effort has been devoted to modeling the dynamics of a
vibrating string with a distributed unilateral constraint during
the past decades. This problem was considered by Schatzman [5],

Burridge et al. [6], and Cabannes [7] who used the method of char-
acteristics, and assumed that the string does not lose energy when
it hits the obstacle. Krishnaswamy and Smith [8], Han and Gro-
senbaugh [9], and Taguti [10] used a finite difference method to
study the string interaction with the curved bridge. Vyasarayani
et al. [11] described the movement of the sitar string with a set
of partial differential equations. Rank and Kubin [12], Evangelista
and Eckerholm [13], and Siddiq [14] used a waveguide modeling
approach to study the plucked string vibration with nonlinear lim-
itation effects.

The present paper describes a physics-based model for simula-
tion of vibrations of piano string, which at one end has the ideal ri-
gid support, and its other end is terminated at a capo bar. The types
of the string support in the piano are different for the bass and tre-
ble notes. All the far ends of the piano strings are terminated at the
bass and treble bridges, which are rather complicated resonant
systems. The nearest ends of the bass and long treble strings begin
at the agraffe that can be considered as an absolutely rigid clamp
termination. However the treble strings of grand pianos start at
the capo bar – the rigid edge of the cast iron frame [15]. These
strings are bent around the capo bar, and their vibration tone de-
pends on the curvature of the capo bar V-shaped section. The same
type of the string support can be seen also on the guitar and some
other musical string instruments.

The aim of this paper is to show the influence of the contact
nonlinearity on the spectral structure of the piano string vibration.
A part of this analysis was presented in [16]. The study is divided
into two stages. Firstly, the mathematical modeling of the
hammer–string interaction enables prediction of the piano string
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motion [17,18]. Secondly, this knowledge is used for appropriate
simulation of interaction of the vibrating string with a capo bar.

The numerical simulation of the hammer–string interaction is
based on the physical models of a piano hammer described in
[19–21]. These models are based on the assumption that the wool-
len hammer felt is a microstructural material possessing history-
dependent properties. The elastic and hereditary parameters of
piano hammers were obtained experimentally using a special pia-
no hammer testing device that was developed and built in the
Institute of Cybernetics at Tallinn University of Technology [21].

In this paper a number of simplifying assumptions regarding
the string and string support are introduced. Thus, the piano string
is assumed to be an ideal flexible string, the coupling of strings at
the end supports is neglected, and the bridge motion is ignored.
We also assume that the right string termination (bridge) is the
ideal rigid support. The left string termination (capo bar, sawari)
is considered here as a rigid but not an ideal support, because we
take into account the curvature of its V-shaped section. Neverthe-
less, we hope that the application of the proposed model will clar-
ify the physics of vibration of the string with nonlinear support.

2. First stage. String with ideal rigid support

2.1. Piano string model

It is assumed that the piano string is an ideal (flexible) string.
The transverse displacement y(x, t) of such a string obeys wave
equation

@2y
@t2 ¼ c2 @

2y
@x2 : ð1Þ

Like in [17,18], we have the system of equations describing the
hammer–string interaction

dz
dt
¼ � 2T

cm
gðtÞ þ V ; ð2Þ

dg
dt
¼ c

2T
FðtÞ; ð3Þ

where function g(t) is the form of outgoing wave created by the
hammer strike at the contact point x = l, c is the speed of a nondis-
persive wave traveling along the string; F(t) is the acting force, T is
the string tension; m, z(t), and V are the hammer mass, the hammer
displacement, and the hammer velocity, respectively. The hammer
felt compression is defined by u(t) = z(t) � y(l, t). Function y(l, t) de-
scribes the string transverse displacement at the contact point
x = l, and is given by [18]

yðl; tÞ ¼ gðtÞ þ 2
X1
i¼1

g t � 2iL
c

� �
�
X1
i¼0

g t � 2ðiþ aÞL
c

� �

�
X1
i¼0

g t � 2ðiþ bÞL
c

� �
: ð4Þ

Here we suppose that the string of length L extends from x = 0 on
the left to x = L. Parameter a = l/L is the fractional length of the string
to the striking point, and b = 1 � a. Parameter a determines the ac-
tual distance l of the striking point from the nearest string end. The
initial conditions at the moment when the hammer first contacts
the string, are taken as g(0) = z(0) = 0, and dz(0)/dt = V.

The physical interpretation of Eq. (4) is simple enough. It de-
scribes the deflection of the string at the contact point that is
determined by the traveling waves moving in both directions along
the string and reflecting back from the string supports. Here the in-
dex of summation i simply denotes the number of reflections.

2.2. Piano hammer model

The experimental testing of piano hammers demonstrates that
all hammers have a hysteretic type of force-compression charac-
teristics. A main feature of hammers is that the slope of the
force-compression characteristics is strongly dependent on the
rate of loading. It was shown that nonlinear hysteretic models
can describe the dynamic behavior of the hammer felt [19–21].
These models are based on assumption that the hammer felt made
of wool is a microstructural material possessing history-dependent
properties. Such a physical substance is called either a hereditary
material or a material with memory.

According to a three-parameter hereditary model of the ham-
mer presented in [20], the nonlinear force F(t) exerted by the ham-
mer is related to the felt compression u(t) by the following
expression

FðuðtÞÞ ¼ Q 0 up þ a
dðupÞ

dt

� �
: ð5Þ

Here the parameter Q0 is the static hammer stiffness; p is the com-
pliance nonlinearity exponent, and a is the retarded time
parameter.

The continuous variations in hammer parameters across the
compass of the piano were obtained experimentally by measuring
a whole hammer set of recently produced unvoiced Abel hammers.
The result of those experiments is presented in [20,21]. A best
match to the whole set of hammers 1 6 n 6 88 was approximated
using

Q0¼183expð0:045nÞ; ð6Þ
p¼3:7þ0:015n; ð7Þ
a¼259:5þ0:58nþ6:6 �10�2n2�1:25 �10�3n3þ1:172 �10�5n4: ð8Þ

Here the unit for parameter a is ms, and the unit for Q0 is N/mmp.
The hammer masses of this set were approximated by

m ¼ 11:074� 0:074nþ 10�4n2; 1 6 n 6 88: ð9Þ

The mass of hammer 1 (A0) is 11.0 g, and the mass of hammer
88 (C8) 5.3 g.

2.3. Numerical simulation for tone A7

The hammer–string interaction is simulated by solving the sys-
tem of Eqs. (2, 3) for various initial hammer velocities. We chose
for calculations the note number n = 85 (tone A7, frequency f =
3520 Hz). The string parameters are the following: the string
length L = 61 mm; the actual distance of the striking point from
nearest string end l = 2.6 mm; the linear mass density of the string
l = 4.2 g/m; the string mass M = 0.26 g; the string tension
T = 774.6 N.

For tone A7 in grand pianos there are three strings per note, the
acting mass of a hammer defined by relation (9) for n = 85 is cho-
sen equal to 1/3 of the total hammer mass, and thus m = 1.8 g. For
the hammer 85 we use the following additional parameters: static
stiffness Q0 = 8387.4 N/mmp; nonlinearity exponent p = 4.975;
hereditary parameter a = 0.5312 ms.

As a result of simulation of a hammer–string interaction we can
find the history of the acting force F(t) and the time dependence of
the outgoing wave g(t) created by the hammer strike, which are
shown in Fig. 1.

At the moment t = t0, which is defined as the duration of con-
tact, the hammer has lost the contact with the string. After this
moment the acting force F(t) = 0 for any time t > t0. Therefore,
according to Eq. (3), the outgoing wave g(t) = const for the mo-
ments t > t0.
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3. Second stage. A string with a nonlinear support

3.1. Capo bar–string interaction

The treble strings of grand pianos usually terminate at a capo
bar, and the apex of a V-shaped section of the capo bar defines
the end of the speaking length of the strings. The V-shaped section
of the capo bar has approximately a parabolic form, and it is de-
scribed here by the function W(x) = (2R)�1x2, where R is the radius
of the capo bar curvature at x = 0.

The proposed model of the capo bar–string interaction is based
on the knowledge of the outgoing wave function g(t) created by the
hammer strike. It is evident that Eq. (1) may be satisfied by combi-
nation of simple nondispersive waves g1(t � x/c) and g2(t + x/c)
moving in either directions along the string from the point x = l
where the string makes contact with the hammer. At this point
g1(t) = g2(t) = g(t). These two waves g1 and g2 are simply translation
of outgoing wave g(t) from the point x = l to the other segments of
the string, and their amplitudes are always positive, because
g(t) > 0 in our case.

These two waves reflect from each end of the string. The wave
g1(t � x/c) moving to the right creates the wave g4(t + x/c) moving
to the left, and the wave g2(t + x/c) moving to the left creates the
wave g3(t � x/c) moving to the right. The scheme of waves propa-
gation along the string is shown in Fig. 2. According to our model,
the string deflection y(x, t) (shown in Fig. 2 by marked solid line) at
any point x and at any time t is simply the resulting sum of wave-
forms g moving in both directions:

yðx; tÞ ¼ g1ðt � x=cÞ þ g2ðt þ x=cÞ þ g3ðt � x=cÞ þ g4ðt þ x=cÞ: ð10Þ

At the right end of the string x = L we have an ideal rigid string
support. The boundary condition y(L,t) = 0 at this end of the string
will be satisfied if the reflected wave g4(t + L/c) = �g1(t � L/c),
therefore this type of string termination is called here the ideal
support (IS) of the string.

However, at the left end of the string the reflection of wave g2(t)
is more complicated. Here we suppose that the capo bar is also
ideal rigid, and thus its surface restricts the amplitude of the string
deflection, when the string moves up. This type of string termina-
tion is called here the nonlinear termination (NT) of the string. We
assume also that the reflecting wave g3(t � x/c) moving to the right
appears only at the point x = x⁄, where the amplitude of the string
deflection y(x⁄, t) P W(x⁄). The position of this point x⁄ is deter-
mined by the V-shape form (W(x)) of the capo bar. At this point
x = x⁄ we must have y(x⁄, t) = W(x⁄), and this condition results in
the appearance of reflected wave g3(t � x⁄/c) = W(x⁄) � y(x⁄, t). Thus
the amplitude of the string deflection, which is determined by Eq.
(10) in vicinity of the capo bar never exceeds the value W(x).

The process of reflection of newly created traveling waves g3

and g4 from the respective ends of the string is described by the
same procedure. The physical interpretation of the functions g3

and g4 determines what we should use for their values: they exist
only because the outgoing wave g at some earlier time has been re-
flected from the string ends. We must mention also that the ampli-
tudes of reflected waves g3(t � x/c) and g4(t + x/c) are always
negative.

A computing method that realizes the calculation of the string
deflection determined by Eq. (10) is based on a digital delay-line
procedure. The numerical application of this method is best ex-
plained by Hall [17] in Appendix A.

In illustrative Fig. 3 we demonstrate the form of the string in
vicinity of the capo bar during the reflection of the single wave
g2(t � x/c) only. Using the procedure described above, the string
deflection as function of the nondimensional distance along the
string is computed for three consequent nondimensional (c = 1)
moments of time. At the moment t = t1 the form of the string is
determined by the traveling wave g2 only. At the next moment
t = t2 the segment (1,2) of the string is in contact with the surface
of the capo bar, and the reflected wave g3(t2) has appeared. This
form of the string is shown by solid line marked with crosses. At
the moment t = t3 the string is in contact with the surface of the
capo bar on the segment (3,4). The form of the string at this mo-
ment is shown by solid line marked with solid circles, and the re-
flected wave g3(t3) is also shown by the dashed line. Thus at some
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moments the string ‘‘clings’’ to the capo bar, and during that time
the form of the string on some segment simply repeats the form of
the V-shaped section of the capo bar.

3.2. String motion spectrum

If the string has the ideal rigid support, then the spectrum of the
string motion exited by the hammer may be calculated directly
from the force history F(t) [17]. The general expression for the
string mode energy level is

Ei ¼ 10 log
2Mx2

i

mV2 A2
i þ B2

i

� �� �
; ð11Þ

where

Ai ¼
sinðiapÞ

ipcl

Z t0

0
FðsÞ cosðxisÞds; ð12Þ

Bi ¼
sinðiapÞ

ipcl

Z t0

0
FðsÞ sinðxisÞds: ð13Þ

Here xi = picL�1 = ix0 is the string mode angular frequency; t0 is the
contact time. After the moment t P t0, when the hammer has left
the string and it vibrates freely, the spectrum of the string vibra-
tions does not change in time.

In our case one end of the string has nonlinear termination.
Consequently, the spectrum of the string motion depends on the
amplitude of the string vibrations, and its spectral structure
changes continuously over time, even after the moment t = t0.

We consider the outgoing wave g(t) generated by the hammer
strike as the initial local disturbance of the string motion, which
creates a sequence of pulses gn (n = 1, 2, 3, 4). Using the procedure,
which describes the capo bar–string interaction, we can determine
and assume the string deflection y(x, t0) as an initial condition of
the string vibration. The initial string velocity v(x, t0) at this mo-
ment can be found using the string displacement y(x, t0 � D) at
some earlier time, where D = ti � ti�1 is the discrete time step of
numerical simulation. Then, the initial string velocity can be deter-
mined as

vðx; t0Þ ¼
@y
@t

����
t¼t0

¼ yðx; t0Þ � yðx; t0 � DÞ
D

: ð14Þ

Now using Fourier analysis we can find the spectrum of the
string vibrations. If

yðx; tÞ ¼
X

i

ðAi cos xit þ Bi sin xitÞ sin
ipx
L

� �
; ð15Þ

with normal-mode frequencies xi = ix0, then

Ai ¼
2
L

Z L

0
yðx; t0Þ sin

ipx
L

� �
dx; ð16Þ

Bi ¼
2

Lxi

Z L

0
vðx; t0Þ sin

ipx
L

� �
dx; ð17Þ

and the string mode energy level Ei of the ith mode is also defined
by Eq. (11).

4. Results and analysis

4.1. Vibration of the string terminated at the capo bar

In the previous Section, the traveling wave functions g were
computed for tone A7, and for various initial hammer velocities.
Now, using the model of the capo bar–string interaction we can
investigate the effect of contact nonlinearity on the string motion,
and on the spectral structure of the piano string vibration.

In Fig. 4 we demonstrate the changes of the string deflection
over time, computed for initial hammer velocity V = 5 m/s, and
for the capo bar curvature R = 15 mm. Here we can compare the
forms of the piano string vibration with and without a capo bar.
At the moment t0 the hammer has just lost the contact with the
string, and the left end of the string had contacted with a capo
bar surface only once. At this moment there is a small difference
between the string forms, shown by solid and dashed lines without
marks. The period of the string vibrations for tone A7 is equal to
T0 = 0.284 ms. Therefore, at the moment t1 the left end of the string
had contacted a capo bar surface 13 times, and at the moment t2

there had been 21 contacts between the string and a capo bar.
The examples of the dynamic string motion are available for

viewing at the supplementary web page of this article [22]. This
computer animation of the string vibration also shows in details
how the string ‘‘clings’’ to the capo bar surface during the first mo-
ments (t < 0.25 ms).

Visual inspection of the string’s movement shows that the influ-
ence of the capo bar is noticeable during approximately first 15–20
interactions between the string and the capo bar. After this mo-
ment (t ’ 6 ms, in our case), vibration of the string terminated at
the capo bar may be considered as periodical, likewise as a vibra-
tion of the string with IS.
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This phenomenon can be observed also through the string
vibration spectra. Fig. 5 shows the spectra corresponding to the
same string vibrations, which are shown in Fig. 4.

At the first moment t = t0 there is only a small difference be-
tween the spectra of the strings vibrations. After this moment
the spectrum of the string with IS, according to expressions (11)–
(13), is the stationary, or not a time dependent spectrum. On the
contrary, the spectrum of the string with NT changes continuously
over time, even when the string vibrates freely. The effect of the
capo bar continues for approximately 6 ms, and after this moment
the spectrum becomes stationary as well. During this time period
the level of first five modes decreases systematically. The differ-
ence between the levels of 4th mode for IS and NT cases is equal
to 6 dB. Undoubtedly, here one can see the energy transition from
low to high modes. The power spectrum of the string vibration is
enriched by spectral components up to very large numbers, and
the mean level of some high modes gains up to 15 dB. The modes
number 22 (t = t0), and number 23 (t = t2) are not shown in Fig. 5
due to their extremely low energy level (less than 90 dB). These
modes are the ‘‘missing modes’’ [4], due to the fact that for our
string the striking point is located approximately at distance
l = L/N, where integer N = 23.

Fig. 6 demonstrates the changing of the string vibration spectra
with variation of the amplitude of the string excitation. The results
are presented for the capo bar curvature R = 15 mm, and for the
time moment t = 6.21 ms. It is evident that with increasing of the
amplitude of the string vibrations the mean level of high modes
grows up, and this phenomenon confirms that the interaction be-
tween the capo bar and the string is indeed nonlinear. For the ham-
mer striking velocity V = 5 m/s the mode number 23 is also the
‘‘missing mode’’.

The effect of the capo bar curvature on the spectra of the string
vibrations is shown in Fig. 7. The results are presented for the ini-
tial hammer velocity V = 5 m/s, and for the time moment
t = 6.21 ms. The mode number 22 (R = 15 mm) is also the ‘‘missing
mode’’, and its energy level is less than 85 dB. Analyzing the results
presented in Fig. 7 we can state, that the increasing of the capo bar
curvature gains the energy of high modes, and thus, with the sug-
gested model it is possible to imitate the energy transfer from the
lower to the higher partials.

4.2. Modeling of sawari mechanism in Chikuzen biwa

Presented approach of modeling capo bar–string interaction can
be successfully applied to other instruments that also have the
strings termination similar to the capo bar in the piano. Taguti in
[1,2] has investigated the string vibration in lutes called biwa and
shamisen which are equipped with sawari, whose physical struc-
ture is a little different but it induces essentially the same nonlin-
ear effect in the string vibrations.

Here we consider the profile of the sawari surface approximated
by function

ZðxÞ ¼ � 1
2R x2; if x 6 s

�1; if x > s

(
ð18Þ

where s is the extent of the sawari along the string length (x-axis), R
is the radius of a sawari curvature at a point x = 0. Values of
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parameter s and R for sawari in biwa are taken s = 1 cm, R = 2 m.
Similarly to capo bar the sawari surface is also considered to be
absolutely rigid.

Biwa string vibration is described also by Eq. (1), i.e. we consider
the biwa string as an ideal flexible. Parameters for the biwa string
are taken from [10], and they are as follows: string length
L = 0.8 m, linear mass density l = 0.375 g/m, string tension
T = 38.4 N, and the speed of a wave traveling along the string
c = 320 m/s. The main tone frequency of such a string f = 200 Hz.

The string plucking condition is chosen as follows: at a moment
t = 0 the force

FðtÞ ¼ F0at expð�atÞ ð19Þ

starts to act on the string at a point x = 3/4L in a perpendicular
direction. At a moment t = t⁄ the force releases the string, i.e.
F(t) = 0 if t > t⁄. Here parameter a = 2 ms�1, duration of the force ac-
tion t⁄ = 2.5 ms, and F0 = 0.96 N.

According to relation (3), the outgoing wave g(t) created by this
force is determined by continuous function

gðtÞ ¼
Af1� ½1þ at� expð�atÞg; if t < t�
const ¼ gðt�Þ; if t P t�

	
ð20Þ

Here the coefficient A = 2 mm, and g(t⁄) = 1.92 mm.
In Fig. 8 we show the results of simulation of the biwa string

motion obtained by using the proposed NT string interaction mod-
el, and the form of g function, presented above. The solid line
marked with circles shows the string form at a moment
t = t0 = 2.1 ms. At this moment the force defined by relation (19)
is still acting on the string and will do so for the next 0.4 ms. The
string has not touch the sawari surface yet (the period of strings
vibration T0 = 5 ms). The next string form is presented for a mo-
ment t = t1 = 16.4 ms. Before that moment the string has interacted
with the sawari by touching it for 3 times, and the corresponding
form of the string is shown by solid line marked with triangles.
At the moment t = t2 = 201.4 ms the string has interacted with
the sawari for 40 times, and the corresponding form of the string
is marked by solid line with crosses. The dashed lines marked with

triangles and crosses show the forms of the string vibrations in ab-
sence of sawari at all.

By studying Fig. 8, one can notice that with the passage of time
the distinct sharp edge (discontinuity in slope) is appearing on the
curve displaying the string deflection. At the moment
t = t1 = 16.4 ms the sharpening is barely visible (point marked by
letter a), but with every new interaction of the string with the sa-
wari it becomes more distinguishable. After 40 interactions
(t = t2 = 201.4 ms) the sharp edge is clearly visible (point marked
by letter b), and entirely formed.

The example of the dynamic motion of biwa string is available
for viewing at the supplementary web page of this article [22].
The computer animation shows in detail the formation, evolution,
and sharpening of the biwa string form.

Effect of sawari on the spectral structure of the biwa string
vibration is shown in Fig. 9.

The first spectra envelope is shown for the time moment
t = t⁄ = 2.5 ms. At this moment the force defined by relation (19)
has released the string, which means that the spectrum of the
string with IS, according to (11)–(13) is a stationary spectrum. By
observing the dynamic motion of the biwa string one can see that
by the moment t = t⁄ the string has not yet touched the sawari sur-
face, which means that the spectra for the moment t = t⁄ shown in
Fig. 9 corresponds both for the string vibration with sawari and
without it. Other two spectra are calculated for the time moments
t1, t2 corresponding to the same string vibrations, which are shown
in Fig. 8.

Analysis of spectral structure of biwa string vibrations shows
that it undergoes a period of rapid change, which lasts approxi-
mately for 200 ms. After that time the spectra becomes stable.
Fig. 9 shows clearly that during that time mean level of high modes
grows up significantly and level of some low frequency modes de-
creases. This suggests that energy is being transferred from lower
to higher partials.

Presented results and conclusions are in good agreement with
experimental data obtained by Taguti [2]. Similarly to Taguti’s con-
clusions we also can state that sawari effect on the produced tone
(string vibration) can be observed in two aspects: the sawari inten-
sifies higher partials and prolongs their duration.

5. Conclusions

The computing method presented in this paper was capable of
reproducing nonlinear effects of the string vibrations caused by
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the complex interaction between the string and the string support.
The model is based on the traveling wave solution which makes
the method numerically reliable and highly stable. The accuracy
of the computing method is only determined by the values of the
discrete temporal and spatial steps, which were chosen to obtain
the suitable description of the initial local disturbance of the
string’s motion, and the resolution of the computational grid was
selected to be fine enough to account for the relatively small extent
of the bridge compared to the string’s length. This meant that the
model was capable of predicting the string’s motion for extensive
periods of time without becoming unstable.

The effect of the amplitude of the string vibrations on the mean
level of high modes was clearly evident, and this was to confirm
that the capo bar and the sawari are indeed the nonlinear string
terminations. The influence of the curvature of rigid contact sur-
face on the string vibrations and resulting changes in spectral
structure over some period of time after string excitation was
clearly demonstrated. The theoretical and experimental studies
of the sawari mechanism’s action on the string vibrations discussed
by Taguti [1,2,10] has been verified. In addition it was shown that
the ideal lossless string terminated at sawari or capo bar vibrates in
two distinct vibration regimes. In the beginning the string starts to
interact in a nonlinear fashion with the bridge, and the resulting
string motion is aperiodic. After some time of aperiodic vibration,
the string vibration settles in a periodic regime, where the dynamic
motion of the string is repetitious in time.

Presently, current model describing the motion of the string
with nonlinear support is still idealized and far from complete.
Among other things, we use a very simple boundary condition
for the string at the bridge. Further, we will attempt to include
more realistic loading of the string terminated at the bridge.

Concerning the influence of the capo bar curvature on the piano
string vibration one can state that effect appears stronger for hard
hammer blows and for the last treble strings where the position of
the striking point is close enough to the apex of a V-shaped section
of the capo bar. Our theoretical model was confirmed also by
exploration of some pianos, which had a harsh voicing in treble. Vi-
sual inspection of the capo bar of these instruments revealed that
the surface of the edge of the cast iron frame was damaged and had
defects. It meant that at such points the curvature of the surface
was extremely large, therefore nonlinear effects arose. After the
treatment of the damaged surface the sounding of the treble notes
was significantly improved. For this reason manufacturers of grand
pianos should produce each cast iron frame very accurately, and
carefully process the surface of the edge.
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ABSTRACT

This paper considers dynamic string motion in which the
displacement is unilaterally constrained by the termination
condition with an arbitrarily chosen geometry. A digital
waveguide model is proposed for simulating the nonlin-
earity inducing interactions between the vibrating string
and the contact condition at the point of string termina-
tion. The current work analyzes the resulting string mo-
tion influenced by the contact conditions with mostly flat
but slightly curved geometries. The effect of a minute im-
perfection of the termination condition on the string vibra-
tion is investigated. It is shown that the lossless string vi-
brates in two distinct vibration regimes. In the beginning
the string starts to interact in a nonlinear fashion with the
bridge, and the resulting string motion is nonperiodic. The
duration of that vibration regime depends on the geome-
try of the bridge. After some time of nonperiodic vibra-
tion, the string vibration settles in a periodic regime. Pre-
sented results are applicable for example in the physics-
based sound synthesis of stringed musical instruments, such
as the shamisen, biwa, sitar, tambura, veena or even the
bray harp and the grand piano.

1. INTRODUCTION

In numerous musical instruments the collision of a vibrat-
ing string with rigid spatial obstacles, such as frets or a
curved bridge, are crucial to the tonal quality of the pro-
duced sounds. Lutes such as the shamisen, biwa, sitar, tam-
bura or veena have a very distinctive sound which can be
described as buzzing. The form of the bridge used in these
instruments is quite different from that usually found in
most stringed instruments, since the profiles of the bridges
are slightly curved, almost flat (see Fig. 1). The spatial
extent of the bridges along the direction of the string is rel-
atively large compared to the speaking length of the strings
themselves [1].

A similar mechanism is also not unknown in Western in-
struments. The treble strings of a grand piano usually ter-
minate at the capo bar (capo d’astro). The V-shaped sec-

Copyright: c©2013 Dmitri Kartofelev et al. This is
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tion of the capo bar has a parabolic curvature, and although
the area to which the string rapidly touches while vibrating
is small compared to the string’s speaking length, it was
shown by Stulov and Kartofelev [2] that the capo bar has a
noticeable effect on the piano tone formation.

Also the Medieval and Renaissance bray harp has small
bray-pins which provide a metal surface for the vibrating
string to impact, increasing the upper partial content in the
tone and providing a means for the harp to be audible in
larger spaces and in ensemble with other instruments [3]. It
is evident that for realistic physically informed modeling of
these instruments such nonlinearity inducing interactions
need to be examined and simulated accurately.

Raman was the first to study the effect and identify the
bridge as the main reason for distinctive sounding of the
tambura and veena [4]. Over the years many authors have
solved this problem using different approaches [3], [5] –
[15]. An overview and comparison of the existing methods
that are proposed for modeling the interaction between the
termination and the string are presented by Vyasarayani, et
al. in [3].

Figure 1. Jawari, the main bridge of the sitar and taraf ka
ghoraj, the sympathetic string bridge.

The aim of the current paper is to model the vibration
of the string which is unilaterally constrained at one of
the points of string termination. Dynamic motion of the
plucked ideal string against the termination condition (TC)
with three different profile geometries are simulated and
obtained results are examined. In addition, a method for
quantifying the effect of minute geometric imperfections
of the mostly flat bridge on the string vibration is provided.

Although the cases examined here are for bridges with
mostly flat profile geometries, the obtained conclusions hold
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to some degree for cases where the bridge profile geome-
tries are more versatile, cf. [2].

Compared to the previously published work, we propose
a new and relatively simple approach for modeling the non-
linear bridge-string interaction and consequently the dy-
namic motion of the entire string. In this work the pro-
posed model is demonstrated using physical parameters
that are obtained from a Chinese lute biwa, thus present-
ing an applied approach.

2. IDEAL STRING

For analyzing the phenomenon of interest, it is sufficient to
describe the dynamic motion of the string using the ideal
string. Phenomena such as losses or dispersion are dis-
carded. We consider the wave equation for the linear and
lossless flexible string:

∂2u

∂t2
= c2

∂2u

∂x2
(1)

with u(0, t) = u(L, t) = 0, where L and u(x, t) are the
speaking length and the displacement of the string, respec-
tively. In (1) the value c =

√
T/µ is the speed of the

traveling waves on the string, where T is the tension and µ
is the linear mass density of the string [16].

String parameters for all the calculations in the current
paper are the same as used by Taguti in [8]. Taguti inves-
tigated a biwa string with the following parameters: string
length L = 0.8 m; linear mass density µ = 0.375 g/m;
string tension T = 38.4 N. From here it follows that the
speed of the traveling waves along the string is c = 320 m/s
and the fundamental frequency of such a string is f0 = 200
Hz.

3. STRING EXCITATION

The string plucking condition can be introduced as follows.
We assume that at the point x = l = 3/4L the emerging
traveling wave is of the form

u(l, t) =




A

(
t

t0

)2

e2(1−t/t0), if 0 6 t 6 t0,

A, if t > t0.

(2)

In (2) A = 1 cm is the amplitude of the outgoing traveling
wave and the duration of the excitation is t = t0 = 4 ms.
Selection of the plucking condition (2) ensures that the
plucking force acting on the string point x = l ceases if
t > t0 (time derivative of (2) is proportional to the pluck-
ing force) [2].

It can be shown that (1) may be satisfied by superposition
of nondispersive traveling waves ur(t − x/c) and ul(t +
x/c) moving in either directions along the string emerging
from the plucking point x = l. At this point ur(l, t) =
ul(l, t) = u(l, t). These two waves ur and ul are simply
a translation of the plucking condition (2) from the point
x = l to other segments of the string [16].

In the case of ideal rigid string termination where no TC
is present, the boundary value u(0, t) = u(L, t) = 0 is sat-
isfied if the wave ur(t−x/c) propagating to the right at the

point x = L creates the wave ul(t+x/c) = −ur(t−x/c)
moving to the left and the wave ul(t+x/c) propagating to
the left at the point x = 0 creates the wave ur(t− x/c) =
−ul(t + x/c) moving to the right. This procedure can be
interpreted as equivalent to the digital waveguide approach
[17, 18, 19].

It follows that for the current model the string displace-
ment u(x, t) at any point x of the string and for all time
instants t is simply the resulting sum of waveforms ur and
ul moving in both directions

u(x, t) = ur

(
t− x

c

)
+ ul

(
t+

x

c

)
. (3)

The method for modeling the bridge-string interaction is
explained in Sections 5 and 6.

4. BRIDGE GEOMETRY

Slightly curved bridges of the lutes mentioned in Section 1
are usually located at the far end of the neck. Similarly the
geometric contact condition (TC) is located at the termina-
tion point of the string. Figure 2 shows the traveling waves
ur and ul, string displacement u(x, t), and the location of
the rigid termination (bridge) relative to the string.

String

urul

ur ul

U(x)TC

Figure 2. Scheme of the string displacement model. The
traveling waves ur and ul (solid lines), and the forms of
the string (solid lines marked by circles). Position of the
TC relative to the string is shown using gray formation.

4.1 Case 1: Linear bridge with a sharp edge

The function U(x) that describes the profile of a flat bridge
is calculated as follows

U(x) =

{
kx, if x 6 xc,

∞, if x > xc,
(4)

where k = tan θ = 0.008 is the slope of the linear function
where θ ≈ 0.008 rad ≈ 0.46◦. Value xc = 15 mm marks
the coordinate of the truncation of the linear function.

4.2 Case 2: Linear bridge with a curved edge

The profile of a bridge with a curved edge is calculated as
follows

U(x) =




kx, if x 6 xb,

1

2R
(x− xb)2, if x > xb,

(5)

where the parameter k has the same value and meaning
as in the previous case. Parameter R = 10 mm is the
curvature radius of the corresponding parabolic function
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f(x) = (2R)−1x2 at its minimum. Coordinate xb = 10
mm marks the transition between linear and parabolic parts
of the geometry.
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Figure 3. Termination condition geometry for the cases
under study. Solid vertical lines mark the positions of the
characteristic values xa, xb and xc. Case 1: linear bridge
with a sharp edge. Case 2: linear bridge with a curved
edge, the dashed line shows the profile of the case 1 for
comparison. Case 3: bridge with a small geometric imper-
fection, the dashed line shows the case 2 for comparison.

4.3 Case 3: Bridge with a geometric imperfection

The bridge in this case is similar to the previous case with
the exception of an addition of small imperfection in the
form of discontinuity in the linear part of the TC in (5).
The bridge profile geometry for this case can be expressed
in the following form

U(x) =





kx, if x 6 xa,

kx+ y, if xa < x 6 xb,

1

2R
(x− xb)2 +K, if x > xb,

(6)

where the parameters k and R have the same value and
meaning as in the previous cases. Parameter y = 0.11
mm raises the value of linear function in the interval x =
(xa, xb] where xa = 4 mm and xb = 10 mm. Constant
K = kxb + y is presented in order to preserve continuity
of the form in vicinity of the point x = xb.

The TC geometries presented in (4) - (6) are shown in
Fig. 3.

5. BRIDGE-STRING INTERACTION MODEL

In order to model the bridge-string interaction we assume
that the reflecting wave ur(t − x/c) moving to the right
appears only at the point x = x∗, where the amplitude of
the string deflection u(x∗, t) > U(x∗). The position of
this point x∗ is determined by the TC geometry U(x) in
the following way. Since the termination is rigid we must
have u(x∗, t) = U(x∗), and this condition results in the
appearance (addition) of reflected wave

ur

(
t− x∗

c

)
= U(x∗)− ul

(
t+

x∗

c

)
, (7)

where the waves ul and ur correspond to any waves that
have reflected on earlier time moments and are currently
located at x = x∗. The proposed method ensures that the
amplitude of the string deflection, which is determined by
(3), will never exceed the value U(x).
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Figure 4. Reflection of the first wave from the termina-
tion. The traveling waves ur and ul (dashed lines), and the
forms of the string (solid lines marked by signs) shown for
consequent nondimensional moments of times t1 = 0.4
(triangle); t2 = 0.7 (diamond); t3 = 1.0 (circle).

In Fig. 4 we demonstrate the form of the string in vicin-
ity of the geometric termination during the reflection of the
first wave ul(t+x/c) only. Using the procedure described
above, the string deflection as a function of the nondimen-
sional distance along the string is computed for three con-
sequent normalized nondimensional (c = 1) moments of
time. At the moment t = t1 the form of the string (solid
line marked by triangles) is determined only by the travel-
ing wave ul. At the next moment t = t2 the small segment
of the string is in contact with the surface of the termina-
tion, and the reflected wave ur(x, t2) has appeared (dashed
line). The corresponding form of the string deflection is
shown by solid line marked with diamonds. At the mo-
ment t = t3 the string is in contact with the surface of
the termination on the segment closer to the string edge
(x = 0). The form of the string at this moment is shown
by solid line marked with circles, and the reflected wave
ur(x, t3) is also shown by the dashed line. Thus at some
moments the string wraps or clings to the termination, and
during that time the form of the string on some segment
simply repeats the form of the termination.

6. NUMERICAL IMPLEMENTATION

The bridge-string interaction model and the ideal string vi-
bration are implemented numerically by using discrete t-x
space with the time mesh ∆t and the space mesh ∆x. Val-
ues for the ∆t and ∆x are selected so that

c
∆t

∆x
= 1, (8)

where c =
√
T/µ. Selection of the step-sizes ∆x and ∆t

according to (8) ensures maximum accuracy of the result
for any given resolution of the computational grid. Thus,
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the transmission of the traveling waves ur and ul with re-
spect to the points of the discrete t-x space are

ur(xn, tm) = ur(xn−1, tm−1), (9)

ul(xn, tm) = ul(xn+1, tm−1), (10)

where the index n = 0, . . . , N corresponds to the discrete
space points and the index m = 0, . . . ,M corresponds
to the discrete time points. Values of the corresponding
coordinates x and t in (9) and (10) can be calculated as
x = xn = n∆x and t = tm = m∆t, respectively.

In order to satisfy the boundary condition at the right side
of the string, namely u(L, t) = 0, the mechanism pre-
sented in Sec. 3 is used. For every successive time moment
tm

ul(xN , tm) = −ur(xN , tm−1), (11)

where xN = N∆x = L.
The effect of the geometric TC on the string vibration can

be implemented numerically as follows. According to Sec.
5 the traveling wave ur only appears in the vicinity of the
bridge at the discrete point xn = x∗n where the amplitude
of the string deflection u(x∗n, t) > U(x∗n). Thus, for every
successive time moment tm and for all x∗n

ur(x∗n, tm) = ur(x∗n, tm)−∆u, (12)

where ∆u = u(x∗n, tm) − U(x∗n). Expression of the form
(12) is more suitable for the iterative numerical scheme
used to generate the result compared to the expression (7)
shown in Sec. 5. Finally, when the aforementioned opera-
tions are conducted the final form of the string’s displace-
ment with respect to the discrete computational grid takes
the form

u(xn, tm) = ur(xn, tm) + ul(xn, tm). (13)

Numerical parameters selected to calculate the presented
results are: ∆x = 0.985 mm, ∆t = 3.077 µs, number
of spatial points N = 816, including spatial points dedi-
cated for the bridge NTC = 25, number of the time points
M = 130000, from here it follows that the temporal sam-
pling rate is 325 kHz. The relevant part of the computer
code written using the Python programming language is
available for examination at the supplementary web page
of this article [20].

7. RESULTS AND DISCUSSION

Figure 5 shows the time series of the string deflection u(l, t)
computed at the plucking point x = l. Visual inspection of
the string deflection u(l, t) reveals that for all the presented
cases the strings vibrate in two distinct regimes. The strong
influence of the bridge on the string’s motion is noticeable
for a certain period of time, and its duration depends on the
bridge geometry. During this time prolonging for t = tnp
the string vibrates in nonperiodic regime. One can clearly
see that after the moment t = tnp the behavior of the de-
flection u(l, t) becomes seemingly highly periodic. Closer
examination reveals that the string’s displacement is actu-
ally still slightly changing and therefore is not absolutely

periodic (string continues to interact with the bridge) but
the change is small and can be neglected. This regime is
called here the periodic vibration regime. It must be noted
that this almost periodic vibration regime is possible only
when the bridge profile is mostly flat and the string is con-
sidered ideal and lossless.
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Figure 5. Time series of the string deflection u(l, t) for
the cases 1, 2, and 3. Nonperiodic and periodic vibration
regimes are separated by vertical lines corresponding to the
time moment t = tnp.

Table 1 shows the corresponding durations of the non-
periodic vibration regimes tnp for the cases under study.
In addition, the corresponding number of string deflection
u(l, t) periods Pnp are shown.

tnp (s) Pnp

Case 1 0.13 26
Case 2 0.16 32
Case 3 0.30 60

Table 1. The duration and the number of the string deflec-
tion periods of the nonperiodic vibration regime.

The transitions between the nonperiodic and periodic re-
gimes presented in Fig. 5 are also visible in the spectro-
grams presented in Fig. 6. All spectrograms are calculated
using the Hanning window of the size 45 ms and the over-
lap value 55% of the window size. The animations of the
simulated string vibration terminated against the bridges
with profile geometries described in (4) – (6), are avail-
able for download on the supplementary web page of the
current article [20].

7.1 Case 1: Linear bridge with a sharp edge

Spectrogram of the signal related to the case 1 is shown in
Fig. 6 a. Dashed vertical line corresponds to the duration
of the nonperiodic vibration regime tnp of the string. It can
be seen that during the nonperiodic vibration regime the
energy of the lower vibration modes is being transferred to
the higher modes. This effect of spectral widening can be
noticed when comparing Figs. 6 a and 7. Figure 7 shows
the spectrogram of the corresponding linear case where no
amplitude limiting TC is applied. Transfer of the energy
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from lower to higher vibration modes is a sign of nonlin-
ear behavior resulting from the interaction of the vibrating
string and the bridge. This phenomenon is similar to the
slapped bass effect [6] and the nonlinear limitation of the
string amplitude by the damper in the part-pedaling effect
in the grand piano [21, 22]. In the periodic vibration re-
gime (t > tnp) the spectrum remains constant which is an
expected result (cf. Fig. 5).
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Figure 6. Spectrogram of the signal u(l, t) for the cases:
a) case 1, b) case 2 and c) case 3. The transition between
nonperiodic and periodic vibration regimes at t = tnp is
shown using dashed line.

7.2 Case 2: Linear bridge with a curved edge

The spectrogram corresponding to the case 2 is shown in
Fig. 6 b. As can be seen the result in this case is similar to
the case 1 with the exception of the 30 ms longer nonperi-
odic vibration regime.

7.3 Case 3: Bridge with a geometric imperfection

Figure 6 c shows the spectrogram for the case 3. Now the
nonperiodic vibration regime is 300 ms long, which is al-

most two times longer compared to the case 2. Again, the
energy transfer from lower to higher modes is visible dur-
ing the nonperiodic vibration regime.
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Figure 7. Spectrogram of the signal u(l, t) for the linear
case (no TC).

Relatively long nonperiodic vibration regime in connec-
tion with the properties of nonlinear dynamic systems can
make playing such an instrument challenging. The timbre
of the instrument can be very strongly influenced by the
selection of the plucking point and the plucking manner,
which results in uneven timbre behaviour. This effect is
present for example in the sitar, and it makes the learning
to play the sitar more complicated compared to the similar
Western instruments.

Figure 8 shows four periods of the string deflection u(l, t)
during the periodic vibration regime, where the interac-
tion of the string with the bridge is minimal. Figure 8
presents a comparison of all nonlinear cases 1 – 3 to the
corresponding linear case. Nonlinear cases are rendered
almost identical for t > tnp. This result is explained by
the fact that the selected contact condition profiles defined
by (4) - (6) have linear sections near to the string termina-
tion point (x = 0). With the progression of time this linear
section of the bridge trims the effects of the other (non-
linear) sections of the geometry, thus eventually rendering
the periodic string vibrations for all nonlinear cases almost
identical.
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Figure 8. Four periods of the string displacement u(l, t)
for the nonlinear cases 1, 2 and 3 are shown using solid
line (all identical). Corresponding linear case (no TC) is
shown using dashed line.
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In addition to the aforementioned results it was noted that
a small glide and shift of the fundamental frequency f0
(and consequently the frequencies of all the other modes,
because fi = if0 where i is the mode number) of the other-
wise harmonic vibration is present. This effect appears for
all presented cases and only during the nonperiodic vibra-
tion regime after which the frequency slides back to normal
(i.e. f0 = 200 Hz). Emergence of this effect is explained
by the effective shortening of the speaking length of the
string due to the spatial extent of the bridge and the inter-
action of the string with the bridge.

7.4 String vibration spectrum in the periodic
vibration regime

After the period of nonperiodic vibration regime has passed,
the string enters the periodic vibration regime. The spec-
trum of the string vibrations for any time instant of intrest
is computed using Fourier analysis. If

u(x, t) =
∑

i

(Ai cosωit+Bi sinωit) sin

(
iπx

L

)
, (14)

with normal-mode angular frequencies ωi = iω0, where
ω0 = 2πf0 and i is the mode number, then

Ai =
2

L

∫ L

0

u(x, t) sin

(
iπx

L

)
dx, (15)

Bi =
2

Lωi

∫ L

0

v(x, t) sin

(
iπx

L

)
dx, (16)

where v(x, t) is the velocity of the string. It follows that
the string mode energy Ei of the ith mode is defined by

Ei =
Mω2

i

4

(
A2

i +B2
i

)
, (17)

where M = µL is the total mass of the string. And the
mode energy level is defined as

ELi = 10 log10

(
Ei

E0

)
. (18)

Fourier analysis using (18) shows that the spectra of cases
1, 2 and 3 are almost identical for t > tnp (cf. Fig. 8).
As mentioned earlier this result is explained by the fact
that the selected contact condition profiles defined by (4) -
(6) have linear sections near to the string termination point
(x = 0). Figure 9 shows the comparison of the spectrum
of the linear case (no TC) with those of the nonlinear cases
1, 2 and 3. The spectrum of the linear case is shown for
the time interval t = (t0,∞) and the nonlinear cases are
shown for the time interval t = (tnp,∞).

Results from spectrogram analysis shown in Fig. 6 are
confirmed here by calculations made using (18) and the
resulting spectrum is shown in Fig. 9.

Widening of the spectra compared to the linear case and
the transfer of energy from lower to higher vibration modes
is visible. Relative level of some higher modes grow up to
25 dB. This means that resulting tone of the musical instru-
ment that is equipped with the rigid, slightly curved bridge

which influences the string vibration is completely differ-
ent from that of an instrument having a regular bridge.
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Figure 9. Stationary spectrum of the string vibrations for
t > tnp. Spectra corresponding to the nonlinear cases 1, 2
and 3 are shown using circles (all identical). Linear case
(no TC) is shown using triangles.

8. CONCLUSIONS

This article introduced a model that simulates the vibration
of an ideal string terminated against a bridge with an arbi-
trary geometry. Additionally, a method for modeling the
effect of minute geometric imperfections of the bridge ge-
ometry on the string vibration was presented. It was shown
that the lossless string vibrates in two distinct vibration re-
gimes. In the beginning the string starts to interact in a
nonlinear fashion with the bridge, and the resulting string
motion is nonperiodic. After some time of nonperiodic vi-
bration, the string vibration settles in a almost periodic re-
gime, where the dynamic motion of the string is repetitious
in time.

The duration of the nonperiodic vibration regime depends
on the geometry of the termination. It was concluded that
minor imperfection of the bridge profile geometry elon-
gate the duration of the nonperiodic vibration regime and
produce noticeable changes in the evolution of the tim-
ber in the nonperiodic regime of vibration. The resulting
spectrum in the periodic regime is identical for all non-
linear cases studied. Comparison of the resulting spectra
in the periodic vibration regime of the linear and nonlin-
ear cases showed that the interaction of the string with the
rigid bridge widens the spectrum by transferring energy
from lower to higher vibration modes.
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ysis of the part-pedaling effect in the piano,” J. Acoust.
Soc. Am. vol. 126, no. 2, pp. EL49–EL54, 2009.
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Abstract The natural wool felt is becoming increasingly popular and important as a resource material in
various applications. In this study, a constitutive equation that describes the deformation wave propagation in
the felt material is derived using a hysteretic piano hammer model. A nonlinear partial differential equation
with third-order terms that takes into account the elastic and hereditary properties of a microstructured felt is
used to study a pulse propagation in the one-dimensional case. The boundary value problem is considered,
and the numerical solution describing the strain wave propagation is provided. It is shown that the speed of a
deformation wave increases with the growth of its amplitude. Also, the nonlinearity makes the front slope of
a pulse steeper, which causes the eventual breaking of a pulse. The solution of the linear problem is analyzed,
and the rate of the wave attenuation in the felt material is estimated.

1 Introduction

The felt is likely to be the oldest textile fabric known to man. It is made using wool or other animal fibers
by tightly matting them together. Nowadays, wool felt with its unique cellular structure is being used for a
wide variety of applications: vibration isolation, sound absorption, noise reduction, filtering, etc. For almost
two centuries, the felt has been widely used in the piano manufacturing. For instance, felt pads are used for
vibration isolation between vibrating strings and the cast iron frame. Piano dampers are made using wool felt,
and of course, the piano hammers are coated with two or several layers of felt.

The first constitutive framework proposed as a mathematical model of the hammer felt was worked out by
Ghosh [1], who considered the force–compression characteristic of the felt obeying the power law

F = Au p̂, A = const, (1)

where F is the acting force, and u is the felt compression. Experimental static testing of different hammers by
Hall and Askenfelt [2] demonstrated that for voiced piano hammers, the values of parameter p̂ ranging from
2.2 to 3.5 give a good approximation of dependence (1). According to Hertz’s law, the force acting on two
Hookean bodies gives p̂ = 3/2. The values of p̂ different from 3/2 indicate the non-Hookean felt properties.

D. Kartofelev (B) · A. Stulov
Institute of Cybernetics, Tallinn University of Technology, Akadeemia 21, 12618 Tallinn, Estonia
E-mail: dima@cs.ioc.ee
Tel.: +372-55668475
Fax: +372-6204151

A. Stulov
E-mail: stulov@ioc.ee
Tel.: +372-5187079
Fax: +372-6204151

71



D. Kartofelev, A. Stulov

More in-depth information about properties of the hammer felt was presented by Yanagisawa et al. [3] and
by Yanagisawa and Nakamura [4,5]. Their dynamic experiments demonstrated very important properties of
the felt: The nonlinear force–compression characteristic, strong dependence of the slope of the loading curve
on the rate of loading, and the significant influence of hysteresis, i.e., the loading and unloading of the felt, are
not alike. The existence of these phenomena requires that the felt is understood as a microstructured material
possessing history-dependent properties, or in other words, is a material with memory.

The aim of the current paper was to derive and present a mathematical model that describes the deformation
wave propagation in the felt material using the hysteretic piano hammer model. The problem is studied for
the one-dimensional case. The presented model takes into account the elastic and hereditary properties of the
microstructured wool felt.

2 Compression properties of piano hammer felt

The first dynamical model of the piano hammer felt, which takes into consideration both the hysteresis of the
force–compression characteristics and their dependence on the rate of felt loading, was presented in [6]. Fol-
lowing Rabotnov [7], this new nonlinear hysteretic model of the felt was proposed by replacing the parameter
A in expression (1) with a time-dependent operator F0[1−R(t)∗], where ∗ denotes the convolution operation,
and the relaxation function was given by

R(t) = γ

τ0
e−t/τ0 . (2)

Thus, instead of the simple relation (1), the four-parameter hysteretic model of the felt was derived in [6] in
the form

F(u(t)) = F0

⎡
⎣u p̂(t) − γ

τ0

t∫

0

u p̂(ξ)e(ξ−t)/τ0 dξ

⎤
⎦ . (3)

Here, the instantaneous stiffness F0 and the nonlinearity exponent p̂ are the elastic parameters of the mate-
rial, and hereditary amplitude γ and relaxation time τ0 are the hereditary parameters. The history of the felt
deformation is assumed to start at t = 0.

An experimental investigation of the compression characteristics of the piano hammer felt was carried
out using a special piano hammer testing device [8,9]. The device was designed for measuring the force and
compression histories during a hammer strike against a rigid surface. The aim of these experiments was a
verification of the hysteretic model in the form (3), and the determination of the hammer felt parameters.

Figure 1 displays the compression characteristics obtained experimentally. Force–compression curves are
presented for three different rates of loading by combining the force and compression histories presented in [9].

Fig. 1 Comparison of measured data and numerical simulations of force–compression characteristics of the piano hammer. The
arrows show the directions of the compression and decompression branches. The symbols denote measured data for hammer strik-
ing velocities: 1.31 m/s (diamonds) (contact time tc = 1.7 ms); 1.00 m/s (triangles) (tc = 2.0 ms); 0.74 m/s (bullets) (tc = 2.5 ms).
The solid lines are the corresponding curves obtained numerically
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The arrows indicate the direction of compression and decompression processes. The solid lines represent the
numerical simulation of the experiment, using the four-parameter hysteretic model of the felt in the form (3).

The experimental results presented in Fig. 1 are typical for all measured hammers. A significant influence
of hysteresis can be seen clearly in the hammer felt characteristics. The hysteresis leads to the behavior where
the loading and unloading of the felt do not follow the same path. This indicates that the energy is dissipating
due to viscous damping or frictional losses caused by fiber slippage effects. Moreover, the slope of the force–
compression characteristics increases with the growth of the rate of impact, and the contact time is decreased
by a stronger strike, exactly like the model of the hysteretic hammer predicts. Thus, we may state that the
constitutive four-parameter hysteretic model of the felt describes the dynamic features of piano hammers fairly
well and is consistent with the results from experiments presented in [3–5].

The continuous variations in the hammer felt parameters versus key number N were obtained in [9] by
numerical simulation of the experimental data for a whole piano hammer set. A best match to the whole set of
hammers was approximated using

p̂ = 3.7 + 0.015 N , 3.72 � p̂ � 4.98, (4)

γ = 0.9894 + 0.000088 N , 0.9895 � γ � 0.9972, (5)

τ0 = 2.72 − 0.02 N + 0.00009 N 2, 1.65 � τ0 � 2.70, (6)

F0 = 15,500 e0.059 N , 16,440 � F0 � 2,787,300 (7)

for hammer number 1 � N � 88. Here, the unit for relaxation time τ0 is µs, and the unit for the instantaneous
stiffness F0 is N/mm p̂.

The presented regular dependencies of the piano hammer parameters on the key number can be used as a
tool for systematical exploration of the process of the hammer–string interaction, or they can be useful for the
purpose of improvement of the technological process of the piano hammer manufacturing.

In this study, the aforementioned knowledge regarding the hammer felt compression is used to develop the
wool felt model.

3 Wool felt model

In order to analyze the influence of hereditary felt features on the behavior and form of the waves traveling
through the felt, the propagation of plane one-dimensional longitudinal wave in an unbounded half-space is
considered. The classical equation of motion is in the form

ρ
∂2u

∂t2 = ∂σ

∂x
, (8)

where u is the displacement, σ is the stress, and ρ is the density.
The constitutive equation of microstructured wool felt is derived in a similar manner as the hammer felt

model was obtained above. Instead of relation (1), we assume and propose

σ(ε) = Eε p(t). (9)

Here, ε = ∂u/∂x is the strain, and E is Young’s modulus, and p is the nonlinearity parameter. Because
this approach is based on the piano hammer model, we are limited to describe only the compression wave
propagation (ε(x, t) � 0).

Following Rabotnov [7] once again, we obtain the constitutive equation of microstructured wool felt
by replacing the constant value of Young’s modulus E in expression (9) by a time-dependent operator
Ed [1 − R(t)∗], with the relaxation function in the form (2). This means that for the case of one-dimensional
deformation and for any rate of loading, the hysteretic felt material is defined with the aid of the constitutive
equation

σ(ε) = Ed
[
ε p(t) − R(t) ∗ ε p(t)

]
, (10)

where the constant Ed is the dynamic Young’s modulus of the felt. From Eq. (10), it follows that if t � τ0,
then we obtain the constitutive equation for the fast felt compression,

σ(ε) = Edε p(t), (11)
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and if t � τ0, then we have constitutive equation for the slow compression,

σ(ε) = Esε
p(t). (12)

In these two cases, the loading and unloading of the felt occurs in the similar manner. Quantity Es = Ed(1−γ )
is the static Young’s modulus of the felt material.

Substituting (10) in Eq. (8) and eliminating the integral term lead to the equation in the following form:

ρ
∂2u

∂t2 + ρτ0
∂3u

∂t3 − Ed

{
(1 − γ )

∂

∂x

[(
∂u

∂x

)p]
+ τ0

∂2

∂x∂t

[(
∂u

∂x

)p]}
= 0. (13)

The analysis of Eq. (13) was reported in [10] where it was shown that the second term of Eq. (13) is
significantly smaller compared to the other terms for any reasonable rate of the felt loading (up to 10 m/s).
This fact corresponds to the inequality u � τ0|ut |, and therefore, the three-parameter model of the felt was
derived in [10]. Neglecting the second term of (13), and comparing the new form of Eq. (13) with Eq. (8), one
can assume another form of constitutive equation of microstructured wool felt,

σ(ε) = Es

[
ε p + α0

∂(ε p)

∂t

]
, (14)

where

α0 = τ0/δ, δ = 1 − γ. (15)

Equation (14) is a nonlinear modification of the well-known Kelvin–Voigt model.
Further, this study will consider the equation of motion in its full form (13). The dimensionless form of

the equation is obtained by using the nondimensional variables that are introduced by relations

u ⇒ u/ l0, x ⇒ x/ l0, t ⇒ t/α0, (16)

where

l0 = cdα0
√

δ, cd = √
Ed/ρ, cs = cd

√
δ. (17)

Thus, Eq. (13) in terms of the nondimensional displacement variable u(x, t) takes the following form:

[
(ux )

p]
x − utt + [

(ux )
p]

xt − δuttt = 0, (18)

and for the strain variable ε(x, t)

(ε p)xx − εt t + (ε p)xxt − δεt t t = 0. (19)

Several samples of felt pads made of the same material that is used in piano hammers manufacturing were
subjected to the static stress–strain tests. The average value of the static Young’s modulus of the pads was
estimated to be Es = 0.6 MPa. The average value of the felt density was ρ = 103 kg/m3. For realistic results,
one should select the values of hereditary parameters γ and τ0 as follows: γ = 0.99 and τ0 = 20µs. This
selection results in the following values of material constants:

δ = 0.01, Ed = 60 MPa, cs = 25 m/s, cd = 250 m/s. (20)

Using those values of material constants, the space and time scales l0 and α0 used in (16) are

l0 = 50 mm, α0 = 2 ms. (21)
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4 Linear case and dispersion relations

Peculiar characteristics of wave propagation in the wool felt are revealed already in the linear case p = 1,

εxx − εt t + εxxt − δεt t t = 0. (22)

The fundamental solution of this equation has the form of traveling waves,

ε(x, t) = ε̂eiκx−iωt , (23)

where i is the imaginary unit, κ is the wavenumber, ω is the angular frequency, and ε̂ is an amplitude. The
dispersion law Φ(κ, ω) = 0 of Eq. (22) is defined by the relation

iδω3 − ω2 − iκ2ω + κ2 = 0. (24)

In the case of the boundary value problem, the general solution of Eq. (22) has the following form:

ε(x, t) = 1

2π

∞∫

−∞
Θ(ω)eiκ(ω)x−iωt dω, (25)

where Θ(ω) is the Fourier transform of the boundary value of the strain prescribed at x = 0,

Θ(ω) =
∞∫

−∞
ε(0, t)eiωt dt. (26)

In case of the initial value problem, the general solution of Eq. (22) has the following form:

ε(x, t) = 1

2π

∞∫

−∞
χ(κ)eiκx−iω(κ)t dκ, (27)

where χ(κ) is the Fourier transform of an initial disturbance of the strain prescribed at t = 0,

χ(κ) =
∞∫

−∞
ε(x, 0)eiκx dx . (28)

The dependencies κ = κ(ω) and ω = ω(κ) are derived from dispersion relation (24). In general case, κ
and ω are complex quantities. In order to provide the dispersion analysis in context with a boundary value
problem, we rewrite the wavenumber κ(ω) in the form

κ(ω) = k(ω) + iλ(ω), (29)

where k = Re(κ) and λ = Im(κ). Using this notation, expression (23) can be rewritten as follows:

ε(x, t) = ε̂ei(k+iλ)x−iωt = e−λx ε̂eikx−iωt . (30)

From here, it is clear that for positive values of λ it acts as an exponential decay constant for the spectral
components of the wave that is propagating along the positive direction of the space axis. In other words,
spectral components decay exponentially as x, t → ∞ for λ(ω) > 0. On the other hand, if λ(ω) < 0, then
the amplitudes of the spectral components grow exponentially as they propagate further along the positive
direction of the x-axis. In the latter case, the solution of linear Eq. (22) becomes highly unstable for t � 0.
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5 Dispersion analysis

As discussed above, in order to study the wave propagation along the x-axis, one needs to solve the dispersion
relation (24) against wavenumber κ . The solution is in the form

κ(ω) = ω
√

1 − iδω√
1 − iω

. (31)

For real values of k and λ, the dispersion relation (24) takes the following form:

k2 + 2ikλ − λ2 − ik2ω + 2kλω + iλ2ω − ω2 + iδω3 = 0. (32)

In order to study real and imaginary parts separately, the system of equations in the form
{

k2 − λ2 + 2kλω − ω2 = 0

2kλ − ω(k2 − λ2) + δω3 = 0
(33)

is solved and analyzed. Solutions with respect to k and λ are

k(ω) = L M
(√

1 + M2 − 1
)−1/2

, (34)

λ(ω) = L
(√

1 + M2 − 1
)1/2

, (35)

where

L = ω

√
1 + δω2

2(1 + ω2)
, M = (1 − δ)ω

1 + δω2 . (36)

The frequency dependencies k(ω) = Re(κ) and λ(ω) = Im(κ) of dispersion relation (24) are displayed in
Fig. 2 for the various values of the material parameter δ. Parameter δ can have values on the interval δ = [0, 1].

If δ = 1, then from (34) and (35) one can find

k(ω) = ω, λ(ω) = 0. (37)

This real valued nondispersive case is evident from the study of expression (10). Because γ = 1 − δ = 0,
it follows that R(t) = 0, and instead of Eq. (10), we are left with the constitutive equation in the form (11).
This form is not dependent on the rate of the felt loading. In fact, Eq. (11) describes a usual elastic material,
in which the wave propagates without attenuation.

In case of ω → ∞, it is easy to see that k(ω) → ω
√

δ and that

lim
ω→∞ λ(ω) = 1 − δ

2
√

δ
. (38)

For large frequencies, the exponential decay constant λ depends only on the parameter δ.

Fig. 2 Dispersion relations k(ω) and λ(ω) for various values of parameter δ in range [0.0, 1.0] with step 0.1
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Fig. 3 Phase velocity as a function of frequency for various values of the parameter δ in range [0.0, 1.0] with step 0.1

Fig. 4 Group velocity as a function of frequency for various values of the parameter δ in range [0.0, 1.0] with step 0.1. The
maximum of vgr for δ < 1 is shown by a dashed line

The phase velocity is defined as vph(ω) = ω/k, and it takes the following general form:

vph =
√

2(1 + ω2)(N − δω2 − 1)

(1 − δ)ω
, (39)

where

N =
√

(1 + ω2)(1 + δ2ω2). (40)

The frequency dependence vph(ω) for various values of parameter δ is shown in Fig. 3. In case of δ = 1, the
phase velocity becomes vph(ω) = 1 [cf. relationship (37)]. For large frequencies, the phase velocity has a
limit

lim
ω→∞ vph(ω) = 1√

δ
. (41)

Taking into account (16) and (17), the range of dimensional values of the phase velocity is cs � vph < cd .
The group velocity, which is defined as vgr(ω) = dω/dk = (dk/dω)−1, takes in this case the following

general form:

vgr = 2(1 + ω2)2
√

2(1 + δ2ω2)
(
N − δω2 − 1

)3/2

ω(1 − δ)[(1 + 3δ2)ω4 − (2N + 2δN − 3δ2 − 5)ω2 − 4(N − 1)] , (42)

where N is defined by relation (40). The frequency dependence vgr(ω) for various values of the parameter
δ is presented in Fig. 4. In case of δ = 1, the group velocity vgr(ω) = 1 [cf. relationship (37)]. For large
frequencies, the group velocity has the same limit as the phase velocity has,

lim
ω→∞ vgr(ω) = 1√

δ
. (43)
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Fig. 5 Comparison of group and phase velocities for a single value of the parameter δ = 0.5. The dashed line shows the limit for
the large frequencies

The essential difference between the behavior of phase and group velocities is that the phase velocity is a
monotonic function of frequency, while the group velocity has a maximum. The maximum of different values
of δ is located on the dashed line shown in Fig. 4. A comparison of the two velocities for a single value of
δ is presented in Fig. 5. In the wool felt, the group velocity is larger than the phase velocity for any positive
frequency. This means that the felt is a material with anomalous dispersion. This fact is true for δ < 1 because
as mentioned above, if δ = 1, then vgr = vph = 1, and we have nondispersive case.

6 Numerical solution of the boundary value problem

The aim of this study was to analyze the one-dimensional deformation (strain) wave propagation inside the felt
material along the x axis. This calls for the solution of the boundary value problem of Eq. (19). A boundary
value of the strain prescribed at x = 0 is selected in the following form:

ε(0, t) = A

(
t

t0

)3

e3(1−t/t0), (44)

where t0 defines the time coordinate corresponding to the maximum of a pulse amplitude. This form of a
pulse is continuous and smooth. The front of a pulse satisfies the necessary conditions ε(0, 0) = εt (0, 0) =
εt t (0, 0) = 0.

The solution to this problem is obtained numerically by applying the finite difference method. A more
suitable form of Eq. (19) for the finite difference approximation can be obtained by integrating Eq. (19) over
time. This yields

εt t = (ε p)xx − γ

t∫

0

(ε p)xx eξ−t dξ, (45)

where γ = 1 − δ. Initially (t � 0), the felt material is assumed to be at rest, thus ε(x, 0) = εt (x, 0) = 0.
Further, the solution of the boundary value problem (45), (44) is presented and analyzed.

6.1 Linear case

Figure 6 shows the numerical solution of the boundary value problem (45) and (44), with the nonlinearity
parameter p = 1. A pulse propagates through the felt material in the direction of the x-axis. The form of a
pulse determined by the boundary value (44) is presented for three sequential time moments, and for three
different values of parameter δ. The dashed lines show corresponding decays of pulse amplitudes. These curves
are plotted through the pulses’ maxima.

The numerical results presented in Fig. 6 are calculated for a pulse with boundary value where the parameter
t0 = 1/2. The additional calculations were also repeated for the boundary values where t0 = 1 and t0 = 1/3.
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Fig. 6 Snapshots of the pulses’ profiles shown for time moments t = 4.5, t = 6.75, and t = 9.0, varying the parameter δ. The
boundary value parameter t0 = 1/2. The dashed lines show the amplitude decay. For a pulse 1 (δ = 0.8), the corresponding
amplitude decay function is e−0.08x ; for a pulse 2 (δ = 0.5), the amplitude decay function is e−0.20x ; for a pulse 3 (δ = 0.2), the
amplitude decay function is e−0.32x

Table 1 Comparison of exponential decay constants λ for different values of parameter δ and frequency ω

δ t0 ω λ(ω) λnum |λ(ω) − λnum|
0.2 1 1 0.246 0.304 0.058

1/2 2 0.493 0.321 0.172
1/3 3 0.632 0.361 0.271

0.5 1 1 0.142 0.184 0.042
1/2 2 0.254 0.201 0.053
1/3 3 0.300 0.214 0.086

0.8 1 1 0.053 0.068 0.015
1/2 2 0.087 0.077 0.010
1/3 3 0.099 0.082 0.017

Here, we suppose that the fundamental spectral component ω of a pulse (44) is estimated from relationship
ωt0 	 1. This is a rough approximation, but below, it is shown that the resulting numerical calculations are in
agreement with the dispersion analysis.

Table 1 displays the parameter δ, the boundary value parameter t0, the corresponding value of frequency
ω, the value of λ(ω), the value of exponential decay constant λnum, and the absolute value of the difference
between λ and λnum. We conclude that the results presented in Table 1 for all values of δ are sufficient enough
to confirm that the values of numerically calculated decay constants λnum and the exponential decay constant
λ defined by relation (35) are approximately the same. This means that in principle this approach can be used
to verify the decay constants for any specific value of t0 rather accurately.

6.2 Nonlinear case

In this section, the effects of the nonlinearity of the wool felt model on the wave propagation are considered.
We examine the influence of the nonlinearity parameter p, and the effect of an initial pulse amplitude A on
the evolution of the wave form during its propagation through the felt material.

Figure 7 shows the numerical solution of the boundary value problem (45) and (44). The solution of
the problem is presented for three sequential time moments, and for three different values of the nonlinearity
parameter p. In this example, the amplitude A = 0.1 of the boundary value is a constant for all cases presented.

In Fig. 7, it is possible to see that the front of a pulse becomes steeper as it propagates through the felt
material. This pulse steepening increases with the growth of the value of the parameter p. It means that the
group velocity is larger than the phase velocity. This phenomenon confirms our conclusion that the felt is a
material with anomalous dispersion (vide Fig. 5).

The effect of an initial pulse amplitude A on a pulse evolution is presented in Fig. 8. The numerical solution
is presented for three sequential time moments, and for three different values of the initial amplitude A of
the boundary value (44). It is possible to see that a forward-facing slope of a pulse is strongly dependent on
the pulse amplitude A. For larger amplitudes, the maximum point or the crest of a pulse (shown by bullets)
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Fig. 7 Evolution of a nonlinear pulse (t0 = 1/2, A = 0.1) for three sequential time moments t = 2, t = 3, and t = 4. Material
parameters selected δ = 0.2, p = 1.5 shown by solid line, p = 1.25 shown by dashed line, p = 1.0 (linear case) shown by
dotted line. Results are normalized

Fig. 8 Evolution of a nonlinear pulse (t0 = 1/2) for three sequential time moments t = 2, t = 3, and t = 4. Material parameters
selected δ = 0.2, p = 1.5, initial amplitude A = 0.1 shown by solid line, A = 0.06 shown by dashed line, A = 0.02 shown by
dotted line. Bullet show the position of maximum. Results are normalized

propagates faster than the front of a pulse. Accumulation of this effect results in the eventual pulse break-
ing. This means that eventually the shock wave will be formed. To simulate this phenomenon, our numerical
scheme must be adjusted to the purpose of description of the propagation of discontinuities on the wave front.
A detailed analysis of this problem is in progress.

The progressive forward leaning of a propagating pulse can be explained by the fact that the group velocity
is larger than the phase velocity. Also, this phenomenon is related to nonlinear features of the felt material and
increases with the increase of the amplitude of the initial boundary disturbance.

The animations of the simulated wave pulses propagation through the felt discussed in Sect. 6 are available
for viewing at the supplementary Web page of this article.1

7 Conclusions

We have derived a nonlinear constitutive equation of microstuctured wool felt based on the experimental results
of piano hammers testing. Using this model, the boundary value problem that describes the propagation of
deformation waves in the felt material is considered in the current study. In case of the linear felt-type material,
the dispersion analysis of the model is carried out, and the dependencies of the phase and group velocities on
the felt parameters are obtained. It is shown that the group velocity is always larger than the phase velocity,
and therefore, the wool felt is a medium with anomalous dispersion.

The numerical solution of the linear boundary value problem is used to estimate a strain pulse amplitude
decay during its propagation through the felt. It is shown that in the linear case the decay constants may be
obtained rather accurately by using dispersion analysis.

1 Supplementary web page of the article: http://www.cs.ioc.ee/~dima/feltdeform.html.
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A strain pulse propagation in nonlinear felt is also considered. The general influence of the nonlinear
parameter p on a pulse evolution is investigated. It is concluded that the front of a pulse becomes steeper as
it propagates through the felt material and that this pulse steepening increases with the growth of the value of
the parameter p.

The effect of an initial pulse amplitude A on the nonlinear wave propagation is simulated. It is shown that
for larger amplitudes the maximum point or the crest of a pulse propagates faster than the front of a pulse.
This is related to the fact that the group velocity is larger than the phase velocity and confirms our assumptions
about the felt as a medium with anomalous dispersion.

It is revealed that the front slope of a pulse is strongly determined by a pulse amplitude A. Such a process
results in the formation of the shock wave, which is directly caused by the nonlinear features of the micro-
structured felt material. The originality of the presented model is expressed in the fact that the parameter p that
describes the felt nonlinearity may be any real number >1, including the noninteger values. The solution of the
novel wave Eqs. (18) and (19) reflects many physical effects as demonstrated in this paper. In conclusion, we
may state that the wool felt is a strongly dissipative and dispersive nonlinear medium, with a strong damping
effect.
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Abstract – Waves with negative group velocity (NGV) were discovered in optics by Sommerfeld
and Brillouin, and experimentally verified in many cases, for example in left-handed media. For
waves in solids, such an effect is described mostly in layered media. In this paper, it is demon-
strated that in microstructured solids, waves with NGV may also exist leading to backwards pulse
propagation. Two physical cases are analysed: a Mindlin-type hierarchical (a scale within a scale)
material and a felt-type (made of fibres) material. For both cases, the dispersion analysis of
one-dimensional waves shows that there exists certain ranges of physical parameters which lead
to NGV. The results can be used in dispersion engineering for designing materials with certain
properties.

Copyright c© EPLA, 2013

Introduction. – In general, wave motion is charac-
terised by the group velocity cg and the phase velocity cph
which typically have the same direction. However, there
are cases for which the phase and group velocities differ
by signs (i.e., are in opposite directions) within certain
frequency ranges. In general terms, this means a negative
group velocity (NGV) which indicates that the peak of the
pulse propagates backwards.

Such a phenomenon was first considered by Sommer-
feld [1] and Brillouin [2] for waves in a Lorentzian medium
as a mathematical possibility in dispersion analysis. Man-
del’shtam [3] showed that NGV may appear in crystal
lattices. Garrett and McCumber [4] revisited the ideas
of Sommerfeld [1] and Brillouin [2] and showed that the
phenomenon described by them may be observed and is
therefore physical.

In optical materials NGV are a direct consequence of
classical interference between different frequency compo-
nents in a gain-assisted anomalous dispersion region [5].
The gain-assisted anomalous dispersion is due to changes
in the refractive index. Such a situation may appear in
atomic cesium vapor cells [5] or, in general terms, in left-
handed media (LHM) with negative refractive index [6].

(a)On a leave from Institute of Cybernetics at Tallinn University
of Technology - Tallinn, Estonia, EU; E-mail: tanelp@cens.ioc.ee

LHM is actually a result of the left-handed relationship
between the electric field, magnetic field and propagation
vector [6]. It has been shown that NGV was observed in a
Lorentz dielectric modelled by an oscillator where the os-
cillator strength was negative [7]. Such a result is directly
related to the original studies of Sommerfeld [1] and Bril-
louin [2]. McDonald [8] showed that a gas with two closely
spaced spectral lines of angular frequencies can be mod-
elled like a medium with negative oscillators which give
rise to the gain.
In solids, waves with NGV have been studied mostly

for layered media. For Lamb waves, which appear in
a material composed of solid-liquid-solid layers (for ex-
ample, glass-water-glass), NGV appears near cut-off fre-
quencies (at which cph is divergent) of certain propagation
modes [9]. The conditions which govern NGV are related
to the acoustic impedance ratio. In laminated compos-
ite (carbon/epoxy, glass/epoxy, etc.) circular cylindrical
shells it is the ratio of radius to thickness of layers which
can alter the pattern of the group velocity spectra [10].
Mandel’shtam [3] has attributed NGV in a crystal lattice
to periodically varying parameters (density, permittivity).
On the other hand, the dispersion relation for longitudinal
waves in elastic solid cylinders, known as the Pochhammer
equation, displays also NGV depending on the value of the
Poisson ratio [11].
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The attention to waves with NGV has increased in the
context of metamaterials which are engineered with a pur-
pose to create effective macroscopic behaviour. The idea
is to use small inhomogeneities to control dispersive effects
and that is why sometimes the notion of dispersion engi-
neering is used [12]. The first metamaterials were electro-
magnetic [13] but presently there is a considerable interest
in acoustic metamaterials [14–16] which permit sound fo-
cusing and confinement.
These studies show that various structural inhomo-

geneities may lead to NGV. Phononic crystals may be
built by placing elastic or fluid inclusions inside a different
fluid or elastic matrix which results in a negative refractive
index [16]. It is possible to build materials with certain
resonators within each unit cell [14,16]. Then it is possible
to get a negative refractive index or even a negative mass
density [16] or an effective negative dynamic modulus [14].
It is possible to build also periodically loaded transmission
lines with a negative refractive index [12].
Finally it must be noted that although NGV leads to

backward propagation, the causality principle is not vi-
olated. This has been analysed in detail by Toll [17] for
general dispersion relations and by Dogariu et al. [5] in the
context of NGV. It has also been shown experimentally
by Gehring et al. [18] that although the peak of the pulse
propagates backward, the energy flow is always forward.
In this paper we demonstrate that in microstructured

solids in which several microstructures exist, cases of NGV
can also be observed. The mathematical models of wave
propagation studied here are either of a Mindlin-type [19]
or felt-type materials [20]. After our straightforward stud-
ies reported in [21], we discovered that the detailed disper-
sion analysis may lead to NGV. The results of this analysis
are reported in this paper. It is shown that only in case
of special combinations of physical parameters such effects
are possible.

Mathematical models. –

Mindlin-type model. We follow the models from
Berezovski et al. [21] derived for multiple microstructures.
Two different models are possible: a hierarchical one (a
scale within a scale) and a concurrent one (two coexis-
tent microstuctures). In both cases, the influence of mi-
crostructures is described by internal variables [22] ϕ1 and
ϕ2. The free energy functions reflect the differences be-
tween these two models. In the case of the hierarchical
microstructure, the free energy function is

W =
1

2
αu2

x +A1uxϕ1 +
1

2
B1ϕ

2
1 +

1

2
C1(ϕ1)

2
x

+A12(ϕ1)xϕ2 +
1

2
B2ϕ

2
2 +

1

2
C2(ϕ2)

2
x (1)

and in the case of the concurrent microstructure it is

W =
1

2
αu2

x +A1uxϕ1 +
1

2
B1ϕ

2
1 +

1

2
C1(ϕ1)

2
x

+A2uxϕ2 +
1

2
B2ϕ

2
2 +

1

2
C2(ϕ2)

2
x, (2)

where α, Ai, Bi and Ci are material constants. The phys-
ical meanings of these parameters are related to bulk (α)
and microstress moduli (Ci), coupling effects (Ai) and the
interactive force (Bi). The subscripts refer to the mi-
crostructure ϕ1 or ϕ2, respectively.
The energy functions (1) and (2), where only the

quadratic terms are kept, correspond to linear stress-strain
relations [23] and they reflect directly the coupling: in
(1) the coupling is consecutively between ux and ϕ1 and
between ϕ1 and ϕ2; in (2) the coupling is in parallel
between ux and ϕ1 and between ux and ϕ2 (and not di-
rectly between ϕ1 and ϕ2). In such a way, both these
energy functions can be considered as basic for multiple
microstructures with different coupling effects.
The corresponding governing equations derived from the

Euler-Lagrange equations are

ρutt = αuxx +A1(ϕ1)x, (3a)

I1(ϕ1)tt = C1(ϕ1)xx −A1ux −B1ϕ1 +A12(ϕ2)x, (3b)

I2(ϕ2)tt = C2(ϕ2)xx −A12(ϕ1)x −B2ϕ2, (3c)

and

ρutt = αuxx +A1(ϕ1)x +A2(ϕ2)x, (4a)

I1(ϕ1)tt = C1(ϕ1)xx −A1ux −B1ϕ1, (4b)

I2(ϕ2)tt = C2(ϕ2)xx −A2ux −B2ϕ2, (4c)

respectively.

Felt-type model. The governing equation of motion
which describes the propagation of a 1D strain wave
(pulse) in a felt-type material is derived from the classical
equation of motion

ρutt = σx (5)

by assuming that the stress σ is governed by a power-law
with a time-dependent operator

σ(v) = Ed

[
vp(t)− ε

τ0
exp(−t/τ0) ∗ vp(t)

]
, (6)

where v = ∂u/∂x is the strain, ε is the hereditary (hys-
teretic) amplitude, τ0 is the relaxation time, Ed is the
dynamic Young modulus and p is the compliance nonlin-
earity parameter describing physical properties of the ma-
terial [20,24]. Here ∗ denotes the convolution integral with
the exponential kernel function. Equation (6) is a mod-
ification of the well-known Kelvin-Voigt model proposed
specifically for a felt-type material [25].
This leads to the nonlinear dimensionless equation in

terms of displacement

[(UX)p]X − UTT + [(UX)p]XT − δUTTT = 0, (7)

where δ = 1 − ε is related to the stress relaxation and
U = u/τ0(ρδ/Ed)

1/2, X = x/τ0(ρδ/Ed)
1/2, T = tδ/τ0

are the dimensionless displacement, coordinate and time,
respectively. The special case if δ = 1 means that ε = 0
and all hereditary properties cease.
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Fig. 1: Dispersion curves of eq. (9) (solid lines) and eq. (10)
(dashed lines) for cA1 = cA2 = cA12 = 0.4c0, c1 = 0.5c0, c2 =
0.3c0.

The dispersion analysis of harmonic waves is possible
for the simplest linearised version of eq. (7). This can be
easily achieved for p = 1. Then the linear form of eq. (7) is

UXX − UTT + UXXT − δUTTT = 0. (8)

Dispersion analysis. –

Mindlin-type model. The dispersion relations for the
hierarchical and concurrent multiscale models [21] are

(c20k
2 − ω2)(c21k

2 − ω2 + ω2
1)(c

2
2k

2 − ω2 + ω2
2)

− c2A12ω
2
2k

2(c20k
2 − ω2)

− c2A1ω
2
1k

2(c22k
2 − ω2 + ω2

2) = 0 (9)

and

(c20k
2 − ω2)(c21k

2 − ω2 + ω2
1)(c

2
2k

2 − ω2 + ω2
2)

+ c2A2ω
2
2k

2(c21k
2 − ω2 + ω2

1)

− c2A1ω
2
1k

2(c22k
2 − ω2 + ω2

2) = 0, (10)

respectively. The parameters are defined as

c20 =
α

ρ
, c21 =

C1

I1
, c22 =

C2

I2
, c2A1 =

A2
1

ρ0B1
,

c2A2 =
A2

2

ρB2
, c2A12 =

A2
12

I1B2
, ω2

1 =
B1

I1
, ω2

2 =
B2

I2
.

(11)
Here c0 is the velocity in the macrostructure, cAi reflects
the velocity change due to the coupling, ci are character-
istic velocities of the microstructures and ωi are charac-
teristic frequencies.
The characteristic set of dispersion curves for both cases

is shown in fig. 1. In both cases three branches of curves
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Fig. 2: (Colour on-line) Phase (dashed lines) and group velocity
(solid lines) curves against wave number (top plot) and and
against frequency (bottom plot) of eq. (9) for cA1 = cA12 =
0.4c0, c1 = 0.5c0, c2 = 0.3c0.

appear: one acoustic branch (bottom curves) and two op-
tical branches (upper curves). It is clear that while the
asymptotic behaviour of both models is similar there are
differences in the region of moderate wavelengths, which
is the area where NGV can emerge. Further we focus on
wave motion in a solid which possesses the hierarchical
microstructure.
The phase (cph = ω/k) and group velocity (cgr =

∂ω/∂k) curves for eq. (9) are plotted in fig. 2. The top
panel represents the velocity curves against the dimen-
sionless wave number and the bottom panel against the
dimensionless frequency.
The upper optical branch (blue lines) first approaches

to the velocity c1/c0 and then to the c0. The lower opti-
cal branch (red lines) approaches the same values but in
different order —first to the velocity c0 and then to the
velocity c1/c0.
The asymptotic velocities for the acoustic dispersion

branch (black lines) are [(c20−c2A1)/c
2
0]

1/2 in the long-wave
limit and c2 in the short-wave limit. In the area of mod-
erate wavelengths (i.e., the dimensionless wave number is
in the range 1 � kc0/ω1 � 3) the asymptotic value of the
group velocity is [(c21 − c2A12)/c

2
0]

1/2.
Phase velocity against the dimensionless frequency

curves have also been plotted in the bottom panel of
fig. 2 where it can be seen that the transition from long-
wave velocity to short-wave velocity is much faster in
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Fig. 3: (Colour on-line) Phase (dashed lines) and group velocity (solid lines) curves against wave number of eq. (9) (left plot)
and phase velocity curves against frequency (right plot) for cA1 = 0.4c0, cA12 = 0.6c0, c1 = 0.5c0, c2 = 0.3c0.
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Fig. 4: (Colour on-line) Phase (dashed lines) and group velocity (solid lines) curves against wave number of eq. (9) (left plot)
and phase velocity curves against frequency (right plot) for cA1 = cA12 = 0.8c0, c1 = 0.7c0, c2 = 0.3c0.

the frequency domain than in the wave number domain
(fig. 2).
NGV will emerge in the case of the hierarchical

model (9) when c1 < cA12 as is the case in fig. 3. Math-
ematically this happens because the asymptotic velocity
[(c21 − c2A12)/c

2
0]

1/2 becomes imaginary. Making use of the
relations (11) we can rewrite this limiting velocity as

1

I1

(
C1 −

A2
12

B2

)
. (12)

This allows us to write down the condition for NGV in
terms of material parameters as

A2
12

B2
> C1, (13)

which means that the emergence of NGV is related to
the coupling effects between the two scales (parameters A
and B) and the microstrain of the second microstructure
(parameter C).
In fig. 3 it is possible to see that the middle optical curve

also approaches to the value [(c21−c2A12)/c
2
0]

1/2 in the very
long-wavelength limit. The behaviour of the phase veloc-
ity curves against the dimensionless frequency has been
plotted for reference in the right plot of fig. 3 where it can
be seen that in the case of NGV there is frequency region
where the phase speed is multi-valued. These regions are
related to the frequencies where the group velocity changes
from positive to negative and vice versa.

It is also known that the optical branches are related
to non-propagating oscillations (cf. lattice theory [26]).
In the case of the hierarchical microstructure with disper-
sion relation (9) two optical branches can be very close
to each other (cf. fig. 1) at certain frequencies. This
can be considered as a pre-resonant situation at which
these non-propagating oscillations are coupled resulting in
NGV. This is also the reason for the multi-valued nature
of the phase velocity.

Another case of NGV is plotted in fig. 4 where a band
gap can be seen. This band gap disappears when the ve-
locity c2 becomes larger. Since c22 = C2/I2 it may be
speculated that the material parameters of the second mi-
crostructure are most significant in the emergence of NGV.

Finally, we note that NGV does not emerge in case of
the concurrent model (10). It is easy to see in fig. 1 that
the limiting velocities for the acoustic dispersion curve is
c1 in the moderate-wavelength region and c2 in the short-
wave limit. The middle optical curve approaches the same
lines of asymptotic velocities in different order [21].

Felt-type model. The dispersion relation for the felt-
type material is

iδω3 − ω2 − ik2ω + k2 = 0. (14)

It is clear that the imaginary part of the complex solu-
tion of eq. (14) in the current case corresponds to the ex-
ponential decay of amplitudes which are important when
wave profiles are analysed. Here the group and phase
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Fig. 5: Group and phase velocities of the felt model for the δ = 0.13 (top row) and δ = 0.06 (bottom row). Group velocities
are plotted using solid lines, corresponding phase velocities using dashed lines.
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Fig. 6: (Colour on-line) Pulses for the NGV and the positive group velocity (PGV) normalised with respect to velocities to
facilitate comparison (a) and the corresponding phase plots (b). Parameters are cA1 = 0.4c0, cA12 = 0.6c0, c1 = 0.5c0, c2 = 0.3c0
for NGV and cA1 = 0.4c0, cA12 = 0.6c0, c1 = 0.7c0, c2 = 0.3c0 for PGV.

velocities are calculated from the real valued solution of
omega.

Depending on the value of the parameter δ four distinct
cases of dispersion can be identified. NGV will emerge
when 0 � δ < 0.135 [20]. Figure 5 depicts examples of
NGV for the two cases of the felt-type model. It is easy
to recognise that the behaviour of the felt-type model is
similar to the Mindlin-type model; especially to the case
depicted in fig. 4. When δ > 0.135 then NGV disappears;
when δ = 1 the dispersionless relation between the fre-
quency and wave number follows.
The existence of NGV in case of small values of δ hints

that emergence of NGV in the case of felt-type model is

related to the stress-relaxation of the material. Note also
the similarity of curves depicted in fig. 5 with those in
fig. 3 and fig. 4.

Discussion. – We have demonstrated that in the case
of solids, NGV can appear in microstructured materials.
Here the cases of the hierarchical Mindlin-type model and
the felt-type models are considered. Based on the anal-
ysis of phase and group velocities it is shown that NGV
exist in a certain range of physical parameters. In the case
of a material with two microstructures (a scale within a
scale) it is shown that the emergence of NGV is related
to the coupling effects between the two scales. In the
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case of two concurrent microstructures there will be no
such an effect. In the case of a felt-type material, the
emergence of NGV depends on the parameter δ which
is related to stress relaxation in such a microstructured
material.

The general influence of NGV on pulse shapes is not
very strong similarly to the behaviour of pulses in opti-
cal media [5,18]. It must be noted that in optics NGV
is usually space dependent but here NGV is observed at
certain wave numbers if the physical conditions are sat-
isfied (see condition (13)). We solved system (3) numer-
ically using the pseudo-spectral method [27] for an input
of a pulse-type (sech2) excitation. Such an excitation has
a wide spectrum of frequencies and the excitation is cho-
sen such that the dominant frequencies are in the region
of NGV (see fig. 3). The results are shown in fig. 6 for
a pulse moving to the right —profiles in fig. 6(a) and the
corresponding phase plots in fig. 6(b). The profile cor-
responding to NGV has shifted some frequencies to the
left (slowing down) while in case of the positive group
velocity (condition (13) not satisfied) this effect caused
by dispersion is much weaker. The expected asymme-
try of the pulse which is also demonstrated in [28] for a
general case, is well demonstrated in both cases. In gen-
eral terms, the results are similar to those in optics (see
fig. 6 in [5] and fig. 2 in [18]). A detailed analysis of wave
profiles including harmonic pulses and wave packets is in
progress.

Although both cases analysed above are related to mi-
crostructured materials, the physical mechanisms which
cause the emergence of NGV, are different. In the case
of a Mindlin-type hierarchical microstructure the mech-
anism is based on coupling effects (parameter A12), in
the case of a felt-type material the phenomenological
stress-strain relation models the relaxation effect while
the scale of the microstructure is not taken into account.
However, the stress-strain relation (6) explains the be-
haviour of the felt-type materials reflecting the influence
of fiber-to-fiber forces in the macrolevel. The possibil-
ity of the existence of NGV in microstructured materi-
als broadens the ideas of dispersion engineering [12] to be
used, for example, in designing negative refractive acoustic
media [15].
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