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1 Introduction

This thesis introduces a profound methodology that seamlessly integrates diverse
domains of expertise, including Electrical Engineering, Computer Science, Software
Engineering, Data Engineering, Energy Engineering, and Mechatronics. This approach
lays the groundwork for advancing sustainable energy solutions, focusing on enabling
the transition to a carbon-neutral future. It leverages the transformative pillars of
digitalization, decentralization, and decarbonization to drive noteworthy progress in how
battery systems are designed and optimized through Artificial Intelligence (Al).

A succinct overview of the three core pillars is provided below, with a more in-depth
explanation to follow in the subsequent chapters:

1. Digitalization is achieved through the implementation of ingenious algorithms
and sophisticated tools within coding and programming environments.

2. Decentralization is realized by seamlessly integrating diverse fields of
knowledge to unlock the synergistic potential between battery technologies
and Al.

3. Decarbonization is driven by a commitment to sustainability and collaborative
efforts toward advancing the energy transition.

As such, the methodology presented serves as a strategic blueprint for future
generations of engineers and scientists, empowering them with the tools and knowledge
to develop scalable, efficient, and environmentally friendly technologies that align with
global sustainability goals. Through its holistic perspective, this thesis opens new avenues
for interdisciplinary collaboration, fostering innovation in pivotal areas to address the
urgent challenges of climate change and energy transition.

1.1 Motivation

In the fast-paced energy industry landscape, the path to achieving the energy transition
is a challenging task that encompasses different topics in the field of science and
technology around the world.

With continuous advances in Al, developing and implementing a methodology in a
Battery Energy Storage System (BESS) is a crucial step to promote sustainability and
mitigate climate change. However, a significant lack of transparency appears during
algorithm design, model resource management, and interpretability, revealing specific
limitations in the reliability, adaptability, and robustness of the different methods
proposed both in industry and academia.

A BESS plays a vital role in ensuring the appropriate deployment of electric vehicles
and engineering technologies for the clean energy transition [1]. It encourages talented
professionals to develop, implement, and evaluate innovative strategies that deliver
foundational framing and optimal solutions [2]. This approach highlights the BESS as an
emerging technology within the realm of electric mobility, adeptly navigating various
challenges and seizing opportunities tied to Al-driven advancements in battery
management, such as smart power electronics, vehicular information, cloud computing,
green mobility, and wireless power transfer [3]. In addition, energy density, fast charging,
and safety issues are identified as the core issues of the operational performance of a
BESS [3]-[5], along with real-time state prediction based on the practical dataset [4],[6].

While data and energy-sharing insights are advancing through real-time status
prediction, health diagnosis, and charging control [3],[7]. There is a notable gap in
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research and industrial fields when engineering perspectives are oriented towards
computational and Al applications, specifically related to management for efficient
market development.

Various strategies have been put forward to establish an optimal energy mechanism
from an engineering perspective. Yet, there emerges a compelling necessity to extend
the focus beyond mere physical entities to encompass virtual ones as well, ensuring
alignment with user criteria and demands, chemical composition, physical properties,
and diverse operational scenarios.

Considering the challenges and emerging opportunities associated with a BESS on
the journey toward energy transition, the author has harnessed his expertise,
capabilities, and visionary drive to integrate diverse fields of knowledge seamlessly.
This convergence propels the rapid advancement of sustainable storage solutions.
It unveils a groundbreaking methodology that explores the synergistic potential between
Al and battery technologies, sparking a catalyst for a transformative and sustainable
revolution.

This thesis presents a dynamic and strategic vision for the energy sector, highlighting
how advancements in energy storage sector are exceeding expectations not only in
Estonia but throughout the European Union. Regarding the broader implications for the
energy storage sector, this modest contribution serves as a catalyst for promoting ties of
collaboration among various private entities. The aim is to establish a foundation for
impactful agreements across multiple domains, including energy storage systems,
sustainability, model versing, Al and interpretability, model resource management
techniques, and high-performance modelling. In addition, the proposed methodology
fulfills the strategic vision of the European Union to achieve the sustainable objectives of
2030 because specialists in the energy field must respond effectively to any eventuality.

1.2 Digital Twin (DT) and current challenges

Digital Twin (DT) is a trending technology that integrates physical and virtual entities to
enhance the design, construction, and operation of complex systems. For the scope of
this thesis, a DT is defined as a dynamic virtual representation of a physical system,
perpetually updated with real-time data. Unlike traditional models, which are often static
and limited to simulation, a DT evolves in parallel with its physical counterpart
throughout its lifecycle, facilitating continuous monitoring, analytics, and optimization.

From the energy perspective discussed in [I] and [Il], the implementation of a DT based
on a BESS is a beneficial asset in terms of safety, efficiency, and reliability, whose
functionalities work in parallel with the real-time operation and engineering mechanisms,
as outlined in the literature review.

Due to the implementation of DT, operational challenges arise in terms of real-time
data and virtual modelling, the foundations of which are encompassed in Data Mining.
Classification, outlier analysis, clustering, and association pattern mining are the four
“super problems” of Data Mining, as reflected in [IV]. Therefore, the distinctive methods
employed in this methodology enable better decision-making, more optimal predictive
capacity, and greater operational efficiency.

Considering the initial contributions of [lll], monitoring health and charge indicators
play a crucial role in BESS performance, which enhances predictive maintenance and
diagnostics, specifically regarding the State of Charge (SOC) and State of Health (SOH) as
target variables in battery modelling.
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Based on the literature study, the latest trends in the field are the combination of
different Al methods and battery models for improvement of the algorithm design to
achieve energy transition [8]—[11], therefore it is important to consider current challenges
when designing the present methodology:

1. Combination of different Al methods and battery models: Implementing Data-Driven
approaches, Al methods, and battery models that consider not only an engineering
perspective but also a computational point of view, all to provide a trustworthy
understanding across both physical and virtual entities.

2. Improvement and interpretability of algorithm design: Accurate, adaptable, and
reliable algorithm design based on user criteria, operating data, experimental
conditions, and BESS properties.

3. Energy transition and engineering technologies: Development of periodic strategies
that address the management, manufacturing, and application of battery
technologies, all to obtain optimal performance and deploy future technologies in
the energy field.

1.3 Objective of the thesis and hypotheses

The objective of this thesis is to strengthen the methodological and technological
capabilities of both industrial and academic sectors in developing resilient virtual and
physical models of a BESS. These systems aim to mitigate the impacts of climate change
that threaten sustainable stability, renewable energy sources, and the overall energy
integrity of the European Union.

To overcome the current challenges and to ensure optimal effectiveness, robustness,
adaptability, and reliability, the following hypotheses, in which existing methodologies
and algorithmic designs from both Al and energy domains are considered:

e  Battery tests have been meticulously conducted to assess the operational efficacy
of each component involved in the experiments. This ongoing scrutiny is essential,
as research lacking thorough validation risks promoting inaccurate and unreliable
theories.

e Both the physical and virtual entities of an energy storage system are affected by
different operational problems. In physical entity, degradation plays the most
relevant role, so under the End-of-Life (EOL) criteria, the internal performance of the
BESS has been affected. Similarly, virtual entity presents a challenging topic due to
real-time modelling, with its infrastructure heavily influenced by concept drift and
data drift. To monitor and address these issues, in this thesis, a methodology that
covers different branches of knowledge is created.

e Application Programming Interfaces (APIs) and Relational Databases (RDBs) have
been implemented to enhance coding optimization, manage larger volumes of data,
and improve the accuracy of measurements. This approach is essential because,
in the future, issues may arise related to Centric Requirements (CRs), such as state
estimation, Remaining Useful Lifetime (RUL), or charging management. In such cases,
immediate corrective actions must be taken. If the energy storage system is not
properly adapted to operational demands, it can lead to additional complications.
These complications may exploit existing performance limitations, ultimately affecting
the efficiency and reliability of the entire system.
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1.4 Scientific contributions

1.4.1 Scientific novelty

In Data Mining, four “super problems” are tackled: classification, outlier analysis,
clustering, and association pattern mining. The methodology addressed three of
the four super problems, which are classification, outlier analysis, and clustering.
Considering an energy framework, this significant contribution leads to the
improvement of Exploratory Data Analysis (EDA) by explaining the foundations of
the algorithm design.

In terms of stability, effectiveness, and interpretability, the methodology encourages
the deployment through Machine Learning Operations (MLOps) for potential
applications in the industry. The algorithm design of different Neural Networks (NNs)
is improved through Bayesian optimization, which stochastically generates network
architectures. This novelty motivates future generations to explore stochastic
applications in the energy sector for both industry and academia.

The Encoder-only Transformer has been proposed. It is coded and customized from
scratch, providing superior performance in state estimation with errors lower than
0.40%. In the algorithm design, the virtual and physical entities have been explained
in detail to meet user criteria and needs by unifying the Computer Science and
Electrical Engineering sectors. This allows the user to understand, customize,
perform scientific computing, and reduce the complexity in model interpretability.
Regression algorithms, binary classifiers, and NNs are proposed within the framework
of Machine Learning (ML) and Deep Learning (DL). Compared to existing scientific
literature and prior research, this thesis offers a significant contribution by establishing
the relationship between network hyperparameters, operating conditions, and BESS
applications. Thus, it yields valuable outcomes in both scientific and technological
contexts. In addition, it represents a pioneering testament that explains algorithm
design from scratch to an advanced level.

The Kolmogorov-Arnold Network (KAN) has been proposed as an alternative to
traditional NNs. It has demonstrated superior performance, achieving errors below
1.60% in the Model Performance Analysis, outperforming even the most accurate
NN categories, and whose tremendous contributions go beyond expectations.

1.4.2 Practical novelty

The proposed Data Mining algorithms are profitable in the Data processing step,
specifically in the EDA to identify outliers and provide anomaly detection in different
operational phases of a BESS. Segregation of explanatory variables is achieved by
considering Feature Importance, Feature Ranking, and Mutual Information as
benchmark signals that improves the algorithm design based on needs and user
criteria.

For analysis in the RUL and EOL criteria, the Data Science techniques are enriching
novelties to extend physics behavior through both Supervised and Unsupervised
Learning in the various stages of a BESS life.

Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), Recurrent
Neural Networks (RNNs), Transformers, and KANs are coded, validated, and evaluated.
Considering computational sources and working mechanisms, users have the
advantage of selecting the most optimal NN categories that fulfill their specific
demands.
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The Encoder-only Transformer is used to investigate charge diagnostics and is a
promising novelty in the Time Series analysis for industrial applications.

KAN is evaluated for RUL, state estimation, and charging management, whose
programming configuration, mathematical properties, and network architecture can
be further explored in the energy industry due to its exceptional performance metrics.

1.4.3 Applied novelties of emerging algorithms

Moreover, this research can help implement avant-garde algorithms in the industry,
which can be considered visionary in Software Engineering, Electrical Engineering, Energy
Engineering, Data Engineering, Mechatronics, and Computer Science.

A Hybrid model that implements Unsupervised and Supervised techniques in the
Data Science techniques provides the foundations to generate meaningful insights
into health and charge indicators through ML and ECM approaches. In the proposed
Regression algorithms and Binary Classifiers, all ML methods are designed and
executed under the foundations of Ensemble Learning for multitasking purposes.
In most of the literature, these algorithms are addressed for individual or separate
tasks, therefore limiting the performance and increasing the computational cost.
On the other hand, in the proposed methodology, all algorithms are automatically
considered while calculating the assessment of a BESS.

The proposed methodology can be used for advanced algorithm design in state
estimation, charging management, and RUL applications.

Because of the prominent level of adaptability, the algorithm design has the
potential to be deployed in different APIs, RDBs, and programming languages.

As the algorithm design has virtual and physical entities, once the physical entity is
coded and defined based on BESS properties, the virtual entity has the potential to
be customized by several functions and classes in a programming environment.
The compatibility of the algorithm design within the DL frameworks makes it feasible
to utilize Keras, PyTorch, and TensorFlow, depending on the user case, project
requirements, computational cost, and available resources.

It is of utmost importance to select the appropriate NNs according to application
type. It has been scientifically proven that specific NN architectures provide higher
performance in the Model evaluation based on different Centric Requirements
(CRs).

The proposed Transformer and its innovative multi-head self-attention (MHSA)
mechanism based on Encoder-only, represents a testament to developing,
validating, and evaluating contemporary architectures such as Decoder-only and
Encoder-Decoder.

The tremendous performance of the KANs for all CRs is an unprecedented pinnacle
in the Al and energy sectors, which encourages future generations to explore the
algorithm design of different energy technologies.
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2 Data Science techniques in battery applications

This chapter discusses the initial technological tools for developing the methodology and
the framework, all to familiarize and provide a solid explanation of the scientific advances
and their impact on later chapters.

It is essential to highlight that the implementation, validation, and evaluation of the
algorithms proposed in the methodology are designed in a programming environment.
The list of publications, beginning with [IV] and progressing to the more advanced concepts
in [IX], offers the foundational and advanced information necessary for understanding
these processes.

The structure of this chapter is divided into three sections. The first section explains
the coding tasks, emphasizing the basis from an Electrical Engineering, Energy Engineering,
and Mechatronics perspective. The second section illustrates the implemented APIs and
RDBs, highlighting their impact and contributions to the thesis. In the third section,
a summary of the chapter is provided.

2.1 Battery modelling

Considering the degree of physical interpretation explained in [I] and [ll], battery models
are categorized into three main categories: (1) the grey box model, (2) the white
box model, and (3) the black box model. The grey box refers to either the
Pure-Electrochemical or Electrochemical model; the white box contemplates the
Equivalent Circuit Model (ECM) approach, and the black box model considers the
Mathematical Model, which also implements Al methods.

Regarding the physical system, it is essential to consider the categories of a BESS, as
they highlight the mechanisms and chemical properties. Nickel-cadmium, Lead-acid,
Lithium-ion, and Nickel-metal hydride are the most relevant types due to their raw
material availability [12]-[14], cycle life [15,16], abundance [17,18], and reliable
performance under various usage conditions [19]—[21]. Due to their high energy density,
longer life cycle, and fast charging, Lithium-ion batteries provide better advantages
compared to the other categories [22,23], being selected as the focus of this thesis and
whose different parameters are explained in detail from [IV] to [VIII].

In this methodology, the electrochemical model, ECM, and the mathematical model
are explained in the initial section, providing a framework for the following subsections.
These subsections describe a summary of their corresponding advantages and drawbacks
and introduce the design of hybrid models.

2.1.1 Electrochemical model

Electrochemical models explain the behavior of chemical reactions in the BESS
components [24]—-[26], such as cathode, anode, electrolyte, and Solid-Electrolyte
Interphase (SEl), which are described from a molecular point of view and require
microscopic experimental conditions [27,28]. Among all, the main electrochemical models
of a BESS are: (1) Base Models, (2) Lithium-ion models, and (3) Lead acid models [17].

In a programming environment, the design, customization, and implementation of
Electrochemical models refer to the solution of both ordinary differential equations and
partial differential equations, therefore, an elevated level of computational resources is
required.
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Python Battery Mathematical Modelling (PyBaMM) is an open-source library developed
in 2020 [29,30], which enables users to simulate physical behavior under various conditions,
evaluating battery performance and relevant energy storage applications [31,32].

According to [I], the most relevant advantages of using electrochemical models are
summarized as follows:

e High accuracy compared to other battery modelling.

e Equations reflect the internal mechanism of a BESS, and chemical properties
highlight the energy framework.

e Provide a reliable and elevated level of adaptability that efficiently monitors the
physical entity of a BESS.

2.1.2 Equivalent Circuit Model (ECM)
The Equivalent Circuit Model (ECM) is a helpful approach to determining the engineering
framework of the various variables in battery modelling, providing a solid understanding
of the predictors during the initial stages of the methodology. However, complex
experimental procedures, a lack of virtual interpretability, lower accuracy compared to
electrochemical and mathematical models, and the expense of equipment highlight the
opportunity to consider different alternatives to overcome these challenges.

The ECM is composed of engineering parameters such as the voltage across the SEI
Av,(t), SOC, voltage source V., and the cell voltage output v, (t). The mathematical
equation that reflects the voltage source and SOC is given as follows and explained in [V]:

SOC(E) = SOCy +3 [ 1 () - %‘f“))dt, (1)

As described in [V], the input variables correspond to the self-discharge resistor Ry,
the initial SOC is expressed as SOC,, the applied current refers to i}, and the capacity of
the battery is the variable q.

Regarding the voltage across the SEI Av,(t), it is represented by the double layer
capacitance C;, and the resistance of the layer charge transfer R;. The Av.(t) is
mathematically calculated by equation (2) [V]:
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The cell voltage output v, (t) is obtained by summing the voltage across the SEl,
voltage source, and the voltage drop due to internal resistance Rg, calculated by equation
3[VI]:

vy () = Ave + Y, (SOC()) +ip(t) *Rs,  (3)

For this research, two types of ECM are illustrated: first order in [V], and second order
for [VIII] and [IX], respectively. Due to its simplicity and viable implementation, the ECM
has been coded from scratch, using Python programming language to complement the
Data Mining techniques and support the results of meaningful processes such as Feature
Engineering, Feature Selection, and Variance Inflation Factor (VIF).

The most relevant contributions to using an ECM are summarized as follows:

e Straightforward understanding and helpful approach to generate explanatory
variables in the Data processing step.
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e  Computationally fast and efficient.
e  Provide an engineering framework to explain the physical entity of a BESS.

2.1.3 Mathematical model

The Mathematical model is based on both mathematical and physics-based equations
that describe the behavior of the BESS within the framework of analytical or stochastic
techniques [l].

Although the physical entity is not fully reflected, mathematical models are a more
suitable and appropriate option than electrochemical models or ECM due to their
elevated level of stability and accuracy in terms of Validation and Model Performance
Analysis, providing a high level of virtual interpretability.

For the purposes of this thesis, mathematical models are employed to support the
successful design of algorithms. Such modeling serves as the foundation for Al methods,
whose mechanisms are based on statistical arbitrage theory. The resulting methods use
stochastic algorithms and are applied to BESS datasets to generate advanced energy
solutions.

Although the operation of a BESS and its chemical properties present limitations in
terms of user criteria and industrial applications, the significant contributions of
mathematical models surpass expectations and can be summarized as follows:

e Prominent adaptability compared to Electrochemical and ECM models.

e  Provide a solid and clear interpretability of the virtual entity in a BESS.

e  Reduce the complexity of physical understanding through analytical or stochastic
methods.

2.1.4 Hybrid model

The hybrid model integrates a diverse array of specialized sub-models, each tailored to
address multiple tasks simultaneously. Its architecture is primarily structured around the
functional demands of BESS applications, while also adapting dynamically to user criteria
and operational priorities. By combining the strengths of distinct modeling approaches,
this hybrid framework enhances flexibility, scalability, and performance, ensuring that
complex energy management challenges are met with precision and efficiency.

It is fundamental to point out that, due to the operation and nature of the datasets,
a varying number of models, ranging from a few to many, are implemented to deliver
best results in the Model Performance Analysis. These models are customized to meet
specific needs of the project, tasks, or requirements.

In this thesis, the hybrid model is executed to conduct different steps and tasks that
will be discussed and explained in the next chapters, obtaining tremendous performance
metrics that satisfy the needs with more than 97% in several regression and classification
approaches. The promising outcomes obtained with the algorithm design and methodology
are presented below:

e Physical and virtual interpretability, which is validated and explained through
experimental procedures and programming tools.

e Tremendous performance in terms of error rate, complemented by technological
approaches and scientific branches of knowledge.

e Outstanding reliability and robustness for different BESS applications.
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2.2 Application Programming Interfaces (APIs) and Relational Databases
(RDBs)

This section explains the executed APls, which are TensorFlow, Keras, and PyTorch,
to familiarize their importance and impact on the methodology. The reader is encouraged
to refer to [VII], which provides the foundations of the APIs in the TensorFlow and Keras
framework, then discuss more sophisticated algorithm design in [VIII], and finally refer
to [IX] for the complete incorporation of PyTorch. At the end of this section, the use of
APIs is proposed in conjunction with RDBs to promote faster processing in terms of data
management and storage.

2.2.1 TensorFlow

TensorFlow is a comprehensive APl designed for ML and DL frameworks, which supports
static and dynamic computational graphs [33]-[35]. In terms of model building,
TensorFlow provides many toolkits and libraries for the construction and deployment
of NNs. In addition, its computational usage offers efficient computation to different
processors, such as CPU, GPU, and TPU [36]—[38].

Regarding the energy context, the use of TensorFlow promotes the adaptability and
scalability of the implemented algorithms considering industrial and research needs, all
due to the extensive ecosystem for model training, serving, deployment, and integration
with other platforms. Examples of the ecosystems and rich set of tools include
TensorFlow Hub [39]-[41], TensorFlow Extended (TFX) [42,43], and TensorFlow Lite
[44,45].

For this research, TensorFlow Hub and TFX are the selected ecosystems, the first to
encourage the Fine-tuning, discovery, and consumption of reusable DL models, while the
second to provide the highest level of monitoring during Training, Validation, and Model
evaluation. Execution of TensorFlow has demonstrated a significant reliability exceedingly
more than 95% of accuracy for several algorithms based on the results in [VII], [VIII], and
[1X].

2.2.2 Keras

Keras is a high-level APl designed in 2015 to build NN architectures, which has been
integrated into TensorFlow since 2017 through the “tf.keras” module. Regarding model
building, Keras shows flexibility with backends like the Microsoft Computational Network
Toolkit (CNTK) [46], Theano [47], and TensorFlow [48,49], which allow switching
frameworks if needed during the programming environment [50,51].

In the energy domain, Keras execution enables rapid feature customization based on
its high-level design and modularity principle, thus fast network architecture and
efficient coding characterization concerning physical experiments make it a concise API
for beginners and experienced users. Examples of the straightforward and user-friendly
Keras contributions in this methodology include the simplicity in algorithm design of DL
algorithms from scratch [52,53], accelerating the development cycle in a BESS, and
allowing quick prototyping and experimentation.

In this research, Keras is used to select pre-trained models that will serve as a basis for
different BESS applications. In addition, due to its adaptability in the TensorFlow API
[54,55], rapid experimentation is encouraged in the selected network architectures by
implementing Fine-tuning techniques and achieving scalable hyperparameter optimization
[56,57]. It has been scientifically demonstrated through the current methodology and
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outstanding results obtained from [VII] to [IX] that the incorporation of Al methods using
TensorFlow and Keras improves the network architecture and saves computational
sources with errors less than 3%.

2.2.3 PyTorch

PyTorch is an APl based on the foundations of the dynamic computational graph [58]—[60],
providing a DL framework that offers flexibility, simplicity, and efficiency. When it comes
to model development, PyTorch offers faster debugging capabilities compared to
TensorFlow and Keras APIs. Its Pythonic nature also makes it more intuitive and
user-friendly for Python developers and researchers working in a programming
environment [61,62].

Regarding the energy context, PyTorch promotes not only the use of dynamic graph
computing but also a learning curve that appeals to both beginners and experienced
users, all due to easier debugging and prototyping since the structure is defined at runtime,
not beforehand. Examples of PyTorch’s contributions to this methodology include fast
tensor computation compared to TensorFlow and Keras, automatic differentiation, and
gradient computation to simplify the training process in network architecture.

For this research, PyTorch is used to achieve a plug-in model with the Python language
to serialize PyTorch models, ensuring production readiness and meeting user criteria
[63,64]. In addition, running PyTorch offers the possibility of transferring a considerable
part of the workload from the CPU to the GPU, thus promoting data parallelism to split
data into batches and send them to multiple GPUs for processing [65,66].

2.2.4 Relational Databases (RDBs)

RDBs play a vital role in deploying the methodology once the APIs have been executed
[67]-[69], however, user criteria, specifications, and available computational sources are
required to make the most appropriate decision for programming, research, and industrial
objectives [70]-[73].

Based on the eminent skills and competencies of the author in both programming and
energy, the implementation of RDBs is proposed to serve as a basis for deployments,
leaving a future legacy that will lead to mutual agreement between the IT community
and energy specialists.

The implementation of RDBs is summarized in the following phases, providing a
distinguished added value in Al-powered technology for battery management, on which
the user is encouraged to customize, adapt, and include additional tools based on project
goals.

1. Inthe definition and purpose phase, structured data collection is stored in tables,
and the databases are defined in SQL (Structured Query Language) to perform
CRUD (Create, Read, Update, Delete) operations on the data. Examples include
MySQL, PostgreSQL, and SQLite.

2. The second phase will consist of software architecture implementation, in which
the database is built on a table-based schema to organize data into rows and
columns, and relationships between tables are defined using keys (primary and
foreign keys). In the culmination of this phase, output data and subsequent
modifications are accessed using SQL and many Python libraries such as sqlite3 or
SQLAIchemy, allowing easy access to this data.

3. After completing the two initial phases, the data is stored locally or remotely in a
structured format to manage large volumes of persistent data that can be queried
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using SQL. Subsequently, the storage is conducted in the best-suited RDB for
historical or static data that needs to be organized and analyzed. In the BESS
domain, the user can use a RDB to store historical data on battery performance
over time. This database can include information related to product specifications,
such as battery charge cycles, lifespan, and failure rates.

4. To ensure data availability, the RDB provides consistency by representing
historical time stamps and allowing the user to query the data at a given period.
In the BESS field, the database can contain historical records of how battery
performance has changed over months or years, which is beneficial for long-term
analysis and RUL predictions.

5. Performance and stability are achieved in this phase, requiring data distribution
across multiple servers and data storage from available vendors or manufacturers.
An advantage of scalability is the opportunity to handle large datasets efficiently
with proper schema design and indexing for big data, specifically in charging
management and state estimation applications.

6. Thevision of the data integrity and relationship phase is to maintain data integrity
and enforce relationships between data using constraints such as primary keys,
foreign keys, and transaction management. For this innovative process, the user
can store battery data in multiple tables: one for performance metrics, one for
manufacturer specifications, and one for warranty information based on specific
needs, underlying the query's potential to join tables and enforce the integrity of
data relationships.

7. The use cases are proposed as a promising phase that relies on database
properties to manage structured and persistent data storage, especially when
complex data queries and relationships are required. Considering the energy
perspective, BESS aging or charging/discharging analysis could store large
historical data sets in a RDB to track and compare battery health over time in
multiple test environments.

8. To conclude the implementation of the RDB, the security phase is proposed as a
mechanism that ensures robustness and reliability by providing user roles,
permissions, and encryption to protect data. At this stage, battery lifecycle data
storage might require user authentication and access control lists (ACLs) to
ensure that only authorized personnel can modify or delete data.

It is meaningful to underline that in a BESS domain; the user can store historical
battery performance data in a RDB (such as MySQL or PostgreSQL) and then use the
desired API to load this data into their model for training.

The proposed phases and innovations of RDBs in the energy sector go beyond
expectations, representing a dynamism and visionary testament of the author,
promoting ties of cooperation with specialists from various branches of knowledge,
specifically from Computer Science, Software Engineering, and Mechatronics.

2.3 Chapter summary

Considering the topics discussed, this chapter's contributions are summarized in Table 1
and Table 2.
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Table 1. APIs and RDBs contributions.

Technology type

Challenges addressed

API

Interface to communicate with external services based on user criteria and needs.
Monitoring of real-time interaction, retrieving or updating live data from external systems
Data integrity managed by backend services, security given by API Keys, Open Authorization (OAuth) or Tokens

RDB

Persistent storage of structured data and table-based schemas with SQL queries.
Monitoring persistent, historical, and performance data structured in rows and columns.
Data integrity enforced by primary key, foreign keys, constraints, security given by user roles, permissions,

encryption

Table 2. Specific APIs and battery modelling contributions.

Pythonic, intuitive, and easy debugging

API Challenges addressed Battery modelling
Best suited for large-scale, production-level DL models Profitability of Electrochemical and
Full-fledged production and deployment, static and Mathematical models due to the incorporation
TensorFlow . . . . .
dynamic graph execution of PyBaMM and numerical libraries
Use case for enterprise-grade deployment and research
User-friendly API, recommended for beginner users Ingenious integration of Hybrid model and ECM
High-level API, simplified and easy to use for different through adaptability in programming and
Keras applications engineering approaches
Rapid prototyping, integrated into TensorFlow
Dynamic graph execution allows detailed customization Mathematical and Hybrid models provide
PyTorch Excellent for research, prototyping, and academic uses explainability and interpretability that enable

reliable customization of the algorithms




3 Tailored programming ecosystem for Centric Requirements
(CRs)

This chapter unveils the methodology that underpins the thesis innovation, dynamism,
and unconventional contributions, all of which are indispensable for safeguarding the
accuracy, robustness, and precision of the resulting deliverables. Through this approach,
a foundation is laid for advancing both the integrity and sophistication of the work,
ensuring outcomes that are as trustworthy as they are groundbreaking.

The first section outlines the methodology, ensuring a structured and efficient
framework for the next chapters. In the second section, the coding tasks are explained,
emphasizing the importance of concept drift and data drift through the programming
language. Finally, the third section summarizes the main Centric Requirements (CRs),
which will serve as a basis for meeting user criteria and exploring further BESS
applications.

3.1 The RAGZ methodology: a unified nexus for Al-driven energy solutions

For this thesis, the methodology created is called “RAGZ”, referring to the author’s name
and surname. The RAGZ methodology represents an advanced, iterative framework
designed to bridge cutting-edge Al innovations with energy-focused solutions. By
harmonizing CRs, strategic management, visionary algorithm design, and cutting-edge
solutions, this methodology ensures a seamless alighment between technological
excellence and real-world impact. The diagram illustrates the interconnected stages that
drive innovation, adaptability, and success in the dynamic landscape of Al-powered
battery solutions.

2.- Centric
Requirements

/ 1.- Foundational

ﬂ- Cutting-Edge
solutions

4.- User-
Centric Al )
5.- Visionary innovations
algorithm
design

Figure 1. RAGZ methodology.

26



The step-by-step breakdown of the RAGZ methodology is presented in the following
points:

1. The foundational framing starts by evaluating the broader research context. This
includes assessing the available resources based on battery modelling, APls,
RDBs, and their corresponding fit considering the energy industry.

2. In the CRs, identifying and understanding the specific needs and expectations is
the crucial goal. This step involves gathering user input, analyzing pain points, and
aligning solution objectives.

3. Once CRs are identified, they are incorporated into a broader strategic
management framework. This step ensures adaptability and alignment with
dynamic conditions and organizational priorities.

4. Building upon strategic goals, the User-Centric Al innovation focuses on designing
and developing Al solutions that directly address user needs. It emphasizes
usability, personalization, and Al-driven enhancements tailored to end-users.

5. The methodology progresses to the creation of advanced and forward-thinking
algorithms. These algorithms form the foundation of Al solutions and are crafted
with a focus on scalability, accuracy, and innovation. The aim of visionary
algorithm design is to craft pioneering techniques that propel the functionality
and enhance the efficiency of Al systems to new frontiers.

6. The final stage focuses on transforming Al-powered innovations into actionable,
real-world solutions. This phase encompasses implementation, rigorous testing,
and optimization to ensure the final product not only meets but exceeds
standards. The goal is to deliver impactful solutions that effectively address CRs
challenges while driving research growth and success.

In the following sections and chapters, all the relevant steps will be exemplified,
discussed, and put into practice, all with the goal of highlighting the innovative legacy of
the RAGZ methodology.

3.2 Coding validation and characterization

In the RAGZ methodology, the programming environment provides the highest level of
adaptability to establish evaluation and verification procedures, serving as a cornerstone
to support the entire system and meet the necessary specifications in the CRs. The added
value is given by the maximum dynamism and performance within the framework of
coding validation and characterization of physical and virtual procedures, complemented
by the visionary Kolmogorov-Arnold Networks (KANs) recently created in 2024, proposed
in [IX], and patented for a BESS in [X].

It is of utmost significance to note that the author embarks on an intellectual journey
by harnessing the R programming language as a foundational instrument in [IV], before
transitioning to the application of Python from [V] to [IX]. This seamless progression
underpins the development and implementation of advanced APIs and RDBs. In the scope
of this chapter, the most meaningful concepts that integrate the framework are
explained and illustrated: (1) Data drift and (2) Concept drift.
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3.2.1 Data drift

In this thesis, Data drift refers to a phenomenon where the distribution of the input or
independent variables, also known as features, changes over time. Such shifts can
degrade the reliability of the predictions, as the assumed relationships between features
and the target variable in the algorithm design may no longer be valid.

In an energy context and within the framework of the scientific publications for this
thesis, the data drift is presented intrinsically by the nature of the dataset, which is
related to CRs, user criteria, and BESS applications. The above-mentioned topics are
explained in the following points:

e The specifications in the CRs are initially defined by the different purposes,
constraints, and resources specified during the proposed industrial or research
project. From a statistical perspective, in the data drift concept, the data that the
model sees during deployment differs from the data it was trained on, which
causes a shift in the statistical distribution. In a BESS context, the main causes of
this problem are limitations in the experimental procedures, low quality of the
collected data, or deficient performance of the test equipment.

e The user criteria are a matter of strategic importance influenced by the data
distribution across the Data-Driven methods implemented in the algorithm
design, thus obtaining a low or prominent level of robustness and effectiveness
in the Model Performance Analysis. Ineffective Feature Selection techniques and
poor implementation of Feature Engineering generate a lack of consistency in
Data processing, which is one of the main causes of data drift based on user criteria.

e Inthe RAGZ methodology, the type of BESS application will play the most relevant
role in selecting the appropriate algorithm. Considering the Al field, data drift
occurs when the algorithm design is not optimal to meet the CRs, providing a lack
of transparency between the user's criteria and the methodology. Due to their
mechanism, architecture, and functionalities, Al methods deliver higher or lower
accuracy to different CRs, which will be introduced in Chapter 4.

To exemplify the data drift concept, Figure 2 illustrates the voltage density distribution
of the different CRs.
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Figure 2. Density distribution of the Voltage in three different CRs.
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By analyzing the density distribution, it is appreciated that there is an overlap between
the state estimation and charging management curves, which indicates a correlation
where the voltage values share similarities under certain conditions. On the other hand,
the RUL curve highlights that the voltage levels differ and correspond to a distinct group
of data, which describes lower values than those of state estimation and charging
management.

Considering the statistical analysis given in Figure 2, tightly grouped values are
observed in the data distribution of state estimation around higher voltages, charging
management displays moderate variability with slightly lower voltages, and RUL shows
both lower voltages and more spread in the data, indicating higher variability and
possibly reflecting more uncertainty as systems approach the end of their useful life.

To conclude the explanations of the data drift, it is of remarkable importance to
mention that the user has the mandatory task of understanding the needs and analyzing
the data distribution of both independent and dependent variables before the
initialization of the algorithm design.

3.2.2 Concept drift

Concept drift refers to a concept where the relationship between the input and target
variable has changed over time. This phenomenon occurs even if the overall data
distribution remains stable, because the underlying concept the model is meant to learn,
and capture has changed.

Compared to Data drift, the most relevant points in Concept drift refer to external
conditions that the user cannot manage completely, so more advanced methods are
required to address this challenging topic. Considering the wide domain knowledge
acquired by the author, Concept drift is represented by chemical structure, physical
properties, and operational scenarios, which are discussed as follows:

e The specific chemical structure of the BESS and the potential performance
provided by its components are based on electrochemical reactions, electrolyte
dynamics, transport phenomena, and thermal effects. In this specific case, the
concept drift is manifested not only in the foundations of the molecular level but
also in the advanced experimental techniques to characterize a BESS.

e The physical properties that the user and CR deal with the BESS refer to the
foundational structure from which the physics and mathematical framework
explain the core components and equations. The main elements that integrate
the physical properties based on Concept drift are the governing equations,
geometric and topological parameters, initial and boundary conditions, and
numerical discretization. In the RAGZ methodology, this point encapsulates the
core physics and mathematics of operation, which can then be customized and
extended for specific BESS applications.

e In the operational scenarios, the essence of the dataset will be processed and
considered in the algorithm design. For the RAGZ methodology, concept drift is
represented through external conditions that cannot be fully managed by the
user, such as degradation, aging, manufacturing defects, and environmental
conditions. The implication of operational scenarios highlights the significance of
designing resilient algorithms with optimal features and preventive measures
that take uncontrollable factors into account.
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The challenges addressed by the current methodology in both concept and data drift
will be summarized at the end of the chapter, identifying key aspects through continuous
monitoring, retraining, or parameter tuning to maintain a reliable algorithm design over
time.

3.3 Centric Requirement (CR)

This section describes and illustrates each CR that establishes the corresponding demands
in the RAGZ methodology: (1) RUL, (2) Charging management, and (3) State estimation.

A substantial number of datasets from extensive experimental measurements in both
proprietary and public ecosystems have been collected and are explained in the following
subsections. A solid understanding of CRs is encouraged in the list of publications, with a
strong emphasis on [VII]-[IX]. However, it is important to note that, based on the
conducted research, the selection of the most suitable Al method is inherently dependent
on the complexity of the CR and the intrinsic properties of the dataset. This aspect will
be examined in detail in the subsequent chapters.

3.3.1 Remaining Useful Lifetime (RUL)

RUL is a topic that encompasses End-of-Life (EOL) criteria, the importance of which
highlights the optimal performance of a BESS over a given period. According to the design
and manufacturer specifications, RUL is explained through the discharge cycles and their
corresponding capacity of the BESS, so energy specialists are tasked with providing
lifetime estimates, however, a lack of transparency appears during the interpretability
and explainability of algorithm design from an energy perspective, specifically in terms
of operation and function components.

For this thesis, two of the most recognized datasets in the BESS field, National
Aeronautics and Space Administration (NASA), and Center for Advanced Life Cycle
Engineering (CALCE), are collected and processed to study the RUL. Explanations on the
nature of the dataset, experimental measurements, and EDA are discussed in [IV] and [V]
for the NASA and CALCE datasets, respectively. Furthermore, an initial piece of the RAGZ
methodology is proposed in [VI] through regression algorithms and binary classifiers for
BESS evaluation on EOL criteria and SOH.

A graphical representation of the CR for the NASA and CALCE datasets is shown in
Figure 3 and Figure 4. The X-axis represents the discharge cycles, while the Y-axis indicates
the BESS capacity for different cells.
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Figure 3. CR representing the RUL of the NASA dataset. Horizontal line indicates the EOL criteria. [V], [IX]

30



— Cell 3
Cell 4

3 — Cell1
\\"‘w’\ﬂ — Cell2
e

08

06

Capacity (Ah)

0.4

0.2

o 200 400 600 800 1000
Discharge cycles

Figure 4. CR representing the RUL of the CALCE dataset. The horizontal line denotes the EOL criteria.
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The significance of the NASA dataset within the RAGZ methodology lies in its capability
to evaluate the remaining product viability, leveraging avant-garde Al paradigms from
the next generation of predictive analytics. Graphically, all cells show capacity recovery
at specific points, displaying a marked increase in capacity before degrading further.
Recovery periods are common in real-world battery behavior, due to rest periods or
charging conditions that allow temporary capacity recovery. Degradation rates differ
between cells due to several factors, such as manufacturing differences, usage conditions,
or temperature exposure. Cell 3 and Cell 1 show slower and more consistent degradation
rates, being more dependable and having a longer lifespan than cells with faster
degradation, such as Cell 2 and Cell 4.

Drawing from the CR based on RUL, the relevance of the CALCE dataset enhances the
estimation of operational metrics for asset durability, thereby complementing the NASA
dataset and fortifying the strategic oversight of the RAGZ methodology. Considering the
graphical representation, all cells exhibit not only a general trend of capacity degradation
as discharge cycles increase, but also some fluctuations along the way, where capacity
increases and decreases slightly; this behavior manifests itself under certain operating
conditions, such as partial charge-discharge cycles, thermal management due to
temperature effects, charging conditions, or rest periods. Furthermore, as each cell
degrades, the rate of capacity loss becomes more pronounced towards the later stages
of its lifetime. Cells 1 and 3 are preferred for their longer RUL, while cell 4 could be
considered less steady due to its rapid degradation and instability.

To conclude this CR, [IX] summarizes the RUL and its contributions to the RAGZ
methodology based on BESS applications and algorithm design.

3.3.2 Charging management

Charging management is a crucial topic in the performance of a BESS, and its relevance
promotes efficiency in testing and battery operation. According to actual use and
manufacturing characteristics, charging management is explained through output
capacity and voltage level, which are crucial parameters in battery modelling and
maintenance. Thus, energy specialists are tasked with providing interpretability of the
explanatory variables in the algorithm design.
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For this thesis, proprietary additional datasets are collected and processed for
charging management by extensive battery testing on diverse Lithium-ion cells from their
corresponding modules. Explanations on the nature of the dataset, experimental
procedure, test equipment, and EDA are discussed in detail in [VII] and [IX]. Similarly, as
mentioned in [IX], and for comparison purposes in algorithm design, the numerous
datasets denoting charging management will be referred to as “RAGZ-cm dataset”.

A graphical representation that exemplifies the CR for the RAGZ-cm dataset is
illustrated in Figure 5. The X-axis represents the SOC, while the Y-axis indicates the Open
Circuit Voltage (OCV) of four Lithium-ion cells.
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40— Cell2
— Cell 3
Cell 4

30

SOC [%]

Figure 5. CR representing the charging management of the RAGZ-cm dataset. [VIl], [IX]

It is seen that the OCV curves are non-linear, with pronounced increases in voltage at
low SOC (0—20%) and high SOC (80—-100%), being a typical pattern in Lithium-ion chemistry,
where significant changes in potential occur in these regions due to internal reactions of
the battery. The OCV range is between 2.8 V (at 0% SOC) and 4.2 V (at 100% SOC), which
is standard for most commercial Lithium-ion batteries. Regarding a comparative analysis,
Cell 1 and Cell 3 exhibit higher OCVs compared to Cells 2 and 4, indicating better
efficiency in terms of voltage response to charging, specifically Cell 3, which maintains
the highest OCV at high SOC, suggesting that it can store more energy towards the end
of the charge and showing an advantage for applications requiring full charges.

As for charging management, the non-linear nature of the OCV curves reflects the
voltage sensitivity, meaning that charging must be carefully controlled in these regions
to avoid over-voltage, which can lead to overcharging or underutilization. Furthermore,
as an example of the above statement, Cell 3 possesses a high OCV level which can be
more sensitive to overcharging, requiring careful control; in contrast, Cell 4 and Cell 2
exhibit a lower OCV which can make them safer during charging, but may also
underperform compared to the other cells, especially in high-drain applications or
devices requiring higher voltages.

In engineering terms, for applications where maximum efficiency and voltage stability
are crucial, such as electric vehicles, consumer electronics, and grid energy storage for
renewable energy integration, Cells 1 and 3 would be preferred. However, in applications
where safety and long-term durability under consistent loads are prioritized, such as
military and defense systems, energy storage for remote areas, and telecommunications,
Cell 4 might be better due to its conservative voltage profile.
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Before concluding this CR, it is of utmost importance to emphasize that the complexity
of charging management arises from several factors. These include the diverse user
criteria, large variety of cells integrating the battery pack, and the specific needs of the
CR. Given these challenges, the proposed algorithm design, outlined in [IX], leverages the
DL methodology presented in [VII] to address these complexities.

3.3.3 State estimation

State estimation plays a fundamental role in the reliability and stability of a BESS, with SOC
being a crucial parameter for optimizing performance, ensuring safety, and extending BESS
lifetime. According to energy management, SOC is explained through operating conditions
and Key Performance Indicators (KPIs), which are crucial elements in algorithm design
and battery system optimization. Energy specialists are therefore tasked with providing
accurate SOC estimates that allow the BESS to be discharged or charged at the appropriate
times, maximizing system utility.

For this thesis, proprietary datasets are experimentally collected and processed using
a second-order ECM for state estimation by extensive testing of Lithium-ion cells.
The nature of the dataset, test equipment, and validation of the second-order ECM are
explained in [VIII] and [IX]. For comparison purposes in algorithm design, as mentioned
in [IX], the multiple datasets indicating the state estimation will be referred to as the
“RAGZ-se dataset.”

A graphical representation that exemplifies the CR for the RAGZ-se dataset is illustrated
in Figure 6. The X-axis represents time, while the Y-axis indicates the SOC under different
operations. Each operation follows a distinct charging/discharging profile for different
cells, estimated through parameter fitting and root-finding using local (multivariate)
optimization, as detailed in [IX]. These profiles offer valuable insights into energy
management strategies, operational efficiency, and system performance across diverse
scenarios. For visualization purposes, four distinct operations are selected and presented
in Figure 6.
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Figure 6. CR representing the state estimation of the RAGZ-se dataset. [VIII]

In the charging management, Operation 3 shows the most aggressive charging
behavior, with rapid and steady increases in SOC, while Operation 2 is more conservative,
with slow and steady charging, which may be ideal for long-term battery health and
minimizing stress. On the contrary, Operation 1 follows a moderate charging pattern with
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a late-stage spike in SOC, which may indicate more balanced energy usage, and
Operation 4 fluctuates significantly, due to high power demands or load variations.

Considering energy management and SOC stability, Operation 2 prioritizes gradual
power usage and slow charging, reflecting a system focused on safety and minimizing
depth of discharge, exhibiting the most stable SOC profile with the least number of
fluctuations. Operations 1 and 3 manage energy effectively, with fast recovery after
periods of heavy discharge and no extreme fluctuations, thus maximizing energy usage
while maintaining a sufficient charge for future demands that show smoother trends but
with varying levels of charging speed and load demand. For Operation 4, a system
designed to handle frequent variations in power load is reflected, with rapid response to
energy demands and supply, prioritizing the ability to manage irregular loads over
maintaining constant high SOC.

To summarize this CR, state estimation reflects different priorities, such as efficiency,
durability, or response to dynamic loads. The role of SOC prediction is to ensure that
each operating scenario manages battery power efficiently without causing overcharges
or deep discharges, which could shorten battery life or reduce its performance.
Understanding SOC trends helps optimize each operation based on its specific demands,
whether they focus on fast recharging, stability, or load management.

Relative to RUL and charging management, attaining a precise SOC hinge on addressing
the pronounced non-linear behavior inherent in a BESS. This complexity renders SOC
prediction particularly challenging, especially at the extremities of the SOC spectrum.
At extreme SOC levels, voltage changes become smaller and more complicated to measure,
increasing SOC computation complexity. Based on the above statements, the most
optimal algorithms have been designed to address the challenges presented in state
estimation, whose contributions are explained in [VIII], [IX] and summarized in the
following chapters.

3.4 Chapter summary

Considering the coding validation and characterization topics manifested by data drift
and concept drift, and the discussed CRs, this chapter's contributions are summarized in
Table 3 and Table 4.
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Table 3. Contributions of coding validation and characterization with their impact on the RAGZ methodology.

Coding validation and
characterization topic

Challenges addressed

RAGZ methodology

Data drift

Feature Engineering for adjusting predictors to account for new
patterns in the data input

Data scaling and normalization to ensure any changes in the scale
or distribution of the data input are managed appropriately.
Statistical monitoring techniques for detecting changes in the data
distribution and input data over time, therefore updating training
data with the new input distribution

Establishes the basis of the CRs and
provides the preamble for dynamic and
strategic management

Influences the User-Centric Al
innovations by the nature of the
dataset, predictors, and data
distribution

Concept drift

Optimal and innovative Al methods to adapt to changes in data
patterns over time.

Frequent retraining with recent data to help ensure that the
algorithm design remains accurate.

Periodically track different performance metrics to help identify
when concept drift is occurring.

Influences the visionary algorithm
design by the underlying concept,
specifically in Transfer Learning

Affects the Model evaluation by altering
patterns in Training, leading to
continuous monitoring in Fine-tuning
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Table 4. Contributions of Centric Requirements and their impact on RAGZ methodology.

Centric Requirement

Challenges addressed

RAGZ methodology

Remaining Useful
Lifetime

Validate degradation of a BESS, highlighting the impact of
EOL criteria on performance

Provide early identification of unstable behavior through
capacity loss

Ensure a comprehensive assessment of a BESS over time

Refines the User-Centric Al innovations with
regression and classification algorithms
Enhances coding validation and characterization
with ML and DL in the visionary algorithm design

Charging management

Provide a solid analysis based on charging behavior and
charging efficiency

Generate voltage stability to minimize energy loss

Ensure safety and long-term durability for optimal BESS
performance

Enables experimental validation from an early
stage in dynamic and strategic management
Provides the initial foundations of visionary
algorithm design using a DL approach

State estimation

Provide efficient, safe, and cost-effective operation in a
BESS

Ensure system balance and stability, prolonging BESS life
Balance energy generation and consumption based on
SoC

Encourages the implementation of the most
sophisticated algorithms in the User-Centric Al
innovations

Establishes the most challenging tasks in the
visionary algorithm design




4 Dynamic and strategic management for KPIs using advanced
data analytics

This chapter discusses the techniques for completing the EDA, defines the most relevant
features in algorithm design based on the dataset, and provides the foundations of Al
methods, all to illustrate the first scientific and practical novelties.

For this research, KPIs are the most relevant variables that will provide the highest
level of interpretability, performance, and explainability in the algorithm design, based
on Feature Selection and VIF.

The implementation of the Data-Driven methods proposed in this chapter is outlined
through Data Mining, Feature Engineering, Feature Selection, and VIF, which are
explained in detail in [IV]-[VIII].

The structure of this chapter is divided into four sections. The first section explains the
Data Mining algorithms, emphasizing the most optimal clustering and outlier analysis
methods and their importance in achieving Data processing. The second section
illustrates Feature Engineering, highlighting their impact and contributions to the
algorithm design. The third section summarizes different Feature Selection methods,
which will serve as a basis for meeting user criteria and satisfying CR needs. Finally, the
fourth section underlines the VIF, whose contributions to the RAGZ methodology go
beyond expectations due to engineering and mathematical approaches to provide
algorithm interpretability.

4.1 Capitalizing Data Mining foundations for Exploratory Data Analysis
(EDA)

This section describes and illustrates two of the four “super problems” in Data Mining
with their corresponding applications in the EDA of a BESS: (1) Clustering and (2) Outlier
Analysis.

The selected Data Mining algorithms are Density-Based Spatial Clustering of
Applications with Noise (DBSCAN), K-Means, Ordering Points To Identify the Clustering
Structure (OPTICS), and Local Outlier Factor (LOF), referred in [IV] and [V] to understand
the fundamentals and appreciate the detailed implementation.

4.1.1 Clustering

Clustering is an unsupervised technique from the ML category that groups data points
with similar characteristics. In the energy field, clustering is relevant to pattern discovery,
customer segmentation, anomaly detection, and data summarization, all of which
explain the behavior and operation of different energy technologies.

In the BESS sector, clustering will support the CRs in delivering the most optimal guide
decision-making by revealing patterns that can inform strategic choices and resource
allocation. In the Data processing step, clustering provides insights from distinctive
features, making it valuable for EDA and hypothesis generation, which serves as a
foundation for more advanced analysis techniques, such as Classification and Regression.

Considering the contributions of [IV] and [V], the selected algorithms are K-Means,
DBSCAN, and OPTICS. K-Means is a partition-based clustering algorithm that minimizes
intra-cluster variance and shows high effectiveness, however, it requires specifying the
number of clusters (k) in advance and experiences complications with non-spherical
clusters. On the other hand, DBSCAN and OPTICS are density-based algorithms, whose
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mechanism relies on clustering points according to the density of their surrounding
points. DBSCAN can find arbitrarily shaped clusters and does not require specifying the
number of clusters, but it can be sensitive to the choice of parameters, such as the
maximum distance between two points (eps), and the minimum number of samples
(min_samples). OPTICS has a similar mechanism to DBSCAN that better handles varying
densities by ordering data points by their reachability distance, being beneficial to
discover clusters with varying densities in real-time scenarios, it has the steepness
threshold to identify a significant change in the reachability plot (xi), which also determines
where clusters are separated from each other.

As explained in [IV], the Silhouette score is calculated to provide a vigorous analysis
and comparison of the clustering quality, where higher scores indicate better-defined
clusters. To provide a trustworthy exemplification, Figure 7 illustrates the implementation
of the clustering algorithms in state estimation by processing RAGZ-se datasets, showing
their corresponding hyperparameters and Silhouette scores through parameter tuning.

K-Means (k=3), DBSCAN, OPTICS,
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Figure 7. Clustering implementation. [IV]

In K-Means, the clusters are reasonably separated but overlap in specific areas,
particularly between Cluster 1 and Cluster 2, which suggests that the separation is not
very distinct. The low Silhouette score of 0.371 specifies that K-Means does not provide
an optimal separation for this dataset. In addition, the clusters are based on a broad
division of the data points, without considering subtle variations in the distribution of
SOC values. Due to its fixed number of clusters and distance-based clustering mechanism,
K-Means exemplifies insufficient performance for a more nuanced understanding of
BESS dynamics, specifically when the SOC changes non-linearly over time.

Regarding the DBSCAN performance, the cluster distribution forms two distinct
clusters concentrated in two specific regions. Cluster 0 is in the higher SOC range, while
Cluster 1 appears in the lower SOC range. The algorithm successfully identifies dense
regions of SOC values over relatively short time intervals. This behavior indicates that
DBSCAN is conservative with this dataset, particularly given the selected eps value.
The Silhouette score of 0.788 suggests that DBSCAN performs much better than K-Means
in grouping SOC values into well-defined clusters. Unlike K-Means, which requires a fixed
number of clusters, DBSCAN excels at identifying areas of high density without imposing
such constraints. It effectively detects regions where SOC values are densely packed, and
forms clusters based on the natural structure of the data.
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In the case of OPTICS, as in DSCAN for this specific example, two groups are identified,
but these groups are better distributed across the range of SOC values. Cluster 0
represents the lowest SOC values (below 35%), while Cluster 1 contains from 40% to 55%
SOC, which is higher than DBSCAN. OPTICS effectively manages the varying density of
SOC values over time, providing better insights into different charging states, particularly
when SOC moves from mid-to-high SOC values. The Silhouette score of 0.844 is the highest
among the three methods, indicating well-separated clusters with better intra-cluster
compactness, making it a better fit for the dynamic nature of SOC, as seen in this dataset.

To finalize the clustering subsection, according to the Silhouette scores, the quality of
clustering improves from K-Means to DBSCAN to OPTICS. K-Means is not recommended
for non-linear BESS datasets due to overlapping clusters, DBSCAN works well but may
miss some finer details of SOC progression, and OPTICS is the most effective method as
it handles varying SOC densities over time more flexibly, thus where changes in battery
performance occur dynamically and at different rates, density-based methods that
account for varying densities deliver the most insightful results.

4.1.2 Outlier analysis

Outlier analysis is a process whose main objective is to emphasize points distant from
the general pattern distribution, known as outliers. The benefits of outlier analysis are
the identification, understanding, and management of data points that deviate significantly
from other observations in a dataset, avoiding anomalies, errors, or unexpected variations
in further processes.

In the energy field, outliers can arise for several reasons, including data collection
errors in experimental devices, measurement variability, or legitimate but rare phenomena
based on external conditions. Identifying these outliers in a BESS is crucial, so that it
contributes to indicating defects in manufacturing or machinery that require immediate
attention, identifying errors in data related to incorrect measurements, and leads to
more accurate predictions, better models, and more informed real-world decisions.

For the RAGZ methodology and based on [IV] and [V], DBSCAN, OPTICS, and LOF are
the selected algorithms to perform outlier analysis. Compared to DBSCAN and OPTICS,
LOF is only designed for outlier analysis, which calculates the local density deviation of
each point relative to its neighbors, and points that have lower densities compared to
their neighbors are considered outliers. Furthermore, the hyperparameters of LOF are
the number of neighbors used to calculate the local density (n_neighbors) and the
proportion of outliers in the data (contamination).

Like clustering implementation, the Silhouette score is obtained to provide vital
performance analysis and comparison, however, in the case of LOF, Recall metrics are
calculated to understand the proportion of actual and detected outliers. Figure 8 illustrates
the implementation of the outlier analysis in RAGZ-se datasets from state estimation,
revealing a promising application for uncovering unusual patterns in the behavior and
operation of the BESS.
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Figure 8. Outlier analysis implementation. [IV]

In DBSCAN, a high number of outliers suggest that the algorithm views many points as
falling outside the denser regions of the SOC data. The Silhouette score of 0.581 indicates
moderate clustering quality, observing a more balanced distribution between clusters
and outliers. However, the Silhouette score considers a substantial portion of the dataset
as outliers, especially in the lower and upper regions of the SOC range, thus revealing
that the algorithm struggles with capturing the underlying distribution of SOC data.

Regarding the OPTICS performance, it identifies a mix of outlier and non-outlier points
spread around the dataset. The algorithm shows a lower quantity of samples, which
indicates that clusters can form with at least three points, making it more flexible than
DBSCAN in capturing denser clusters. The Silhouette score of 0.689 suggests that OPTICS
achieves a more balanced identification of outliers, distributing green points across areas
of lower density while maintaining a more compact core of regular points. This may
reflect more realistic behavior in SOC data where certain deviations could represent true
anomalies without classifying too many points as noise.

In the case of LOF, multiple points are labeled as outliers, especially in the upper and
lower ranges of the SOC, but also within denser clusters. The performance of LOF with a
Recall score of 0.722 indicates local anomalies and lower fluctuations in the SOC as
outliers. Furthermore, when comparing the density of each point with its neighbors,
the number of neighbors equals a value of 2, meaning that the algorithm is sensitive to
little local deviations, complemented by a high contamination rate that forces numerous
points to be categorized as outliers.

As a summary of the exemplification provided, detecting numerous outliers as
provided in DBSCAN and LOF restricts the data points in the EDA and shows rigid user
criteria. On the contrary, under detection of true outliers leads to miss early warnings of
battery inefficiencies showing less severe conditions to achieve the Data processing step.
OPTICS demonstrated to offer the most balanced performance, with a well-separated
distinction between ordinary and outlier points, making it the most suitable, as it scales
well to varying data densities and has a higher silhouette score, indicating better outlier
analysis.

Considerations in implementing outlier analysis are crucial in distinguishing between
meaningful outliers and irrelevant anomalies, so understanding the nature of the dataset,
interpreting the context, and having solid domain knowledge are encouraged.
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4.2 Refined Feature Engineering for optimal model advancement

Feature Engineering is a process that aims to create new features based on various
mathematical calculations, thus providing the basis for the most promising predictors
that will integrate algorithm design.

In EDA, distinct categories of features make up the dataset depending on their
corresponding nature and application, so that it is possible to find numerical or
categorical features. In the RAGZ methodology, the datasets of each CR are composed of
numerical features, so scaling, normalization, and standardization are the selected
mathematical techniques to deal with the numerical range.

Exemplifying strategic thinking and long-term planning, focusing on overarching goals
such as improving CRs, driving growth, and transforming model operation, four pivotal
stages of Feature Engineering are proposed: (1) Combine features, (2) Tune objective
function, (3) Make new features, and (4) Launch and reiterate. The following points
emphasize the importance of Feature Engineering in enhancing the performance of ML
and DL models, explaining the four key stages:

1. The initial step refers to combining new features by merging existing ones.
It includes techniques like feature interaction, polynomial features, or aggregation
of related features, which in the RAGZ methodology refer to executing an ECM
approach by monitoring Electrical Engineering variables. The importance of
combining features allows the user to enhance model performance by capturing
interactions between variables that may not be evident individually, therefore
being valuable for improving accuracy, reducing bias, and making the model more
resilient.

2. After completing the initial stage of creating new features, tuning the objective
function will consist of adjusting the optimization criterion to evaluate its
performance. In the algorithm design, tuning the objective function involves
improving the calculated training and validation losses by introducing penalty
terms such as those used in regularization techniques. By tuning the objective
function, the user guides the model to prioritize the most relevant features, avoid
overfitting, and improve generalization to unseen data, ensuring that the model's
focus aligns with the specific goals of the task.

3. Once the combination of features and tuning of the objective function stages are
achieved, the creation of new features from raw data is executed using
techniques such as feature extraction, clustering, categorical variable coding, or
numerical data scaling. For this methodology, the creation of new features
through scaling, normalization, and standardization is complemented by the ECM
approach in the initial stage, providing an engineering framework. This phase is
crucial for uncovering hidden patterns and relationships in the data, which will
serve as a basis for Feature Selection and the algorithm design.

4. After the features have been combined, the objective function is tuned, and new
features created, the final stage is launching and reiterating. Due to the iterative
mechanism of Feature Engineering, after the initial model is trained, the user
revisits previous steps to continue improving the features based on model
performance. This continuous refinement cycle ensures that the feature
engineering process is dynamic, improving the model’s ability to generalize by
constantly adapting the feature set based on performance metrics.
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Although Feature Engineering provides the possibility of creating new features,
the user must deliver the most optimal solution not only based on performance metrics
but also on the interpretability and explainability of the features based on algorithm design.
For this reason, the author of this manuscript advocates for the RAGZ methodology, driven
by the transformative pillars of digitalization, decentralization, and decarbonization.

The impact of Feature Engineering is listed in the publications, focusing on [IV] to [VI]
for the CR based on RUL, [VII] is related to charging management, and [VIII] to state
estimation.

4.3 Curated Feature Selection and computational framework
development

The Feature Selection process refers to choosing the most relevant features in the
dataset, which provides the basis for achieving the highest level of interpretability in
algorithm design by obtaining the KPls. In the BESS context, Feature Selection supports
the user in identifying the most relevant attributes of the dataset to predict the dependent
variable.

Before presenting the Feature Selection methods, it is necessary to point out two
critical concepts, which are Feature Ranking and Feature Importance. Feature ranking
refers to ordering features by their relevance based on the performance of an external
model, which refers to how the model performs when certain features are removed and
whose influence is evaluated to generate a ranked list of features, all by considering the
interactions between the features and their collective contribution to the model. Feature
Importance directly measures the contribution of each feature to the decision-making
process within a model, providing the degree of importance represented by scores based
on how often a feature is used and how much each feature improves the performance
metrics. Both concepts highlight remarkable features, but the approach and outcome are
different, so Feature Ranking applies to Wrapper methods, while Feature Importance
applies to Embedded methods.

For the RAGZ methodology, Filter, Wrapper, and Embedded methods are the Feature
Selection techniques implemented, which will be exemplified in this section and whose
contributions are explained in [VIII] and summarized at the end of this chapter.

4.3.1 Filter methods

Filter methods for Feature selection rely on statistical techniques to assess the
importance of each feature individually based on its relationship with the target variable.
As described in VIl techniques include Correlation Coefficients, Mutual Information, and
the Chi-Square test, the latter is used for categorical features.

To illustrate the practical implementation of the Filter methods, Mutual Information
technique is run to measure the dependence between each feature and the target
variable, where higher values indicate more relevant features. Figure 9 displays the chart
based on a battery test of a RAGZ-cm dataset.
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Figure 9. Filter method implementation using Mutual Information. [VIII]

In this example, Voltage (V), Current (l), Power (P), Capacity (mAh), Resistance (R),
SOC, and Energy (Wh) are the total features generated after executing Feature Engineering,
and the OCV is the target or predicted variable. Voltage and Power are seen to have the
highest Mutual Information scores, indicating that they contain the most information
about the target variable, followed by Capacity, SOC, Energy, and Resistance; on the other
hand, Current shows the lowest score, suggesting that it is less informative or has little
dependency on the predicted variable.

Filter methods are useful for understanding the individual relevance of features,
focusing on the statistical correlation between individual predictors and the dependent
variable. However, considering interactions between features, Wrapper, and Embedded
methods complement the initial insights, leading to different rankings and contributions
of each feature to the prediction process.

4.3.2 Wrapper methods

Wrapper methods in Feature Selection aim to use a ML algorithm to evaluate the
performance of a subset of features and iterate through different combinations of
features to find the best-performing ones. As explained in [VIIl], Forward Feature
Selection, Backward Feature Elimination, and Exhaustive Feature Selection are the
Wrapper methods implemented in the RAGZ methodology.

An effective Wrapper method based on a backward manner is Recursive Feature
Elimination (RFE), which recursively eliminates less relevant features based on the
model’s performance until the desired number of features is accomplished using a
Random Forest model. Figure 10 exemplifies the RFE performed in a RAGZ-cm dataset,
whose detailed implementation is explained in [VII], [IX].
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Features

Figure 10. Wrapper method implementation using RFE. [VIII]

In the example considered in Figure 10, RFE results with Random Forest show that
Current and Resistance are ranked as the most suitable features, being advantageous in
combination with other features for prediction. However, features like Voltage and
Power are given slightly more importance due to Random Forest’s ability to capture
non-linear interactions, suggesting a decrease in importance when considering feature
interactions and the Random Forest model’s structure. Compared to Filter methods,
Wrapper methods evaluate features based on their contributions to model performance
rather than just statistical dependence, thus considering interactions between features.

The contributions of Wrapper methods are significant in evaluating features based on
a specific criterion, typically their impact on the predicted variable, and are sensitive to
feature interactions, which may result in different rankings compared to usual statistical
methods.

4.3.3 Embedded methods

In Embedded methods, the Feature Selection process is integrated into the learning
algorithm. These methods can identify notable features for predicting the target variable,
with Lasso (L1 regularization), Ridge (L2 regularization), and decision-tree-based models
commonly used in this approach.

Like Wrapper methods and being considered as a tree-based ensemble model,
Random Forest derives the feature importance based on how much a particular feature
improves the purity (i.e., decreases the error) at each node, thus quantifying how much
each feature contributes to reducing error in the algorithm. Figure 11 illustrates feature
importance scores computed directly from a Random Forest model, which is derived
from the frequency and effectiveness of a feature used in splits within decision trees,
exemplifying a battery test for charging management.
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Figure 11. Embedded method implementation using Random Forest. [VIII]

In the example presented in Figure 11, Energy, Voltage, and Power have the highest
importance scores, making them the most noteworthy features in this Random Forest
model; on the contrary, Current is ranked as the least meaningful. Higher-ranking features
appear consistently relevant, while the role of lower-ranking features depends on whether
the user is looking at individual feature relevance or model-based importance.

The Embedded method’s benefits include providing Feature Importance directly from
the model, making it more aligned with each feature’s actual contribution to making
predictions within a model, and capturing complex relationships.

4.4 Maximizing Variance Inflation Factor (VIF) in core principles of
algorithm design

After implementing Feature Engineering and Feature Selection, one of the main points
to focus on is the level of correlation and multicollinearity of the distinctive features in
the dataset. This assists in obtaining an overview of the performance metrics in further
steps and determining the KPlIs.

To underline the importance of correlation and multicollinearity, Figure 12 displays
the correlation matrix of a RAGZ-cm dataset. This matrix represents the linear relationship
between pairs of features and the target variable (OCV).
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Figure 12. Example of a correlation matrix in a RAGZ-cm dataset. [VII]

In this example, the correlation between Voltage and Power is 1.0, indicating that they
are directly proportional. Similarly, Resistance, SOC, and OCV show very high correlations;
in contrast, Capacity and Energy have a perfect negative correlation with the SOC and
Resistance, indicating that the features are inversely proportional in their effect. This
negative correlation also suggests that if one of these features is incorporated into the
algorithm, the other might be redundant. In the case of Current, the moderate level of
correlation with features such as Voltage, Resistance, and Power suggests its relevance
to be included in the model as it provides additional information beyond the highly
correlated features.

Based on this correlation matrix and the closely related features, careful selection is
needed to avoid multicollinearity, prevent redundancy, and improve model performance;
therefore, VIF is implemented to identify features that are not optimal due to
multicollinearity.

In [VII], the corresponding steps of the VIF criterion, parallel with the Ridge Regression
and Gradient Boosting algorithms, are explained to evaluate Feature Selection methods.
Figure 13 provides a graphical example showing the distinctive features and their
corresponding Root Mean Squared Error (RMSE) after executing the VIF.
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Figure 13. VIF implementation. [VII]
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According to the results presented in Figure 13, the number of optimal features
converges similarly across the models. However, the Gradient Boosting Regressor
demonstrates the highest performance, achieving the lowest RMSE, with a value around

0.035%. Finally, the KPIs are identified through Gradient Boosted and visualized in
Figure 14.
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Figure 14. Implementation of the Gradient Boosted algorithm to identify KPIs. [VII]

Considering the previous results, the performance metrics in subsequent steps will be
influenced by the number of selected features. Thus, the user will have to choose the
most relevant predictors before proceeding with the algorithm design, all based on the
foundations defined in the concept drift and data drift.

4.5 Chapter summary

Considering the foundations of the Al methods manifested by clustering and outlier
analysis provided by Data Mining algorithms, Feature Engineering stages, Feature Selection
methods, and VIF, this chapter’s contributions to the RAGZ methodology are outlined in
Figure 15, Table 5, Table 6, and Table 7.

Combine
features
Launch Feature Tune
and objective

reiterate Engineering function

Make
new
features

Figure 15. Feature Engineering stages.
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Table 5. Data Mining contributions.

Data Mining problem

Challenges addressed

Clustering

Captures the non-linear dynamics of the state estimation, RUL, and charging management progression.

Manages datasets with different densities and identify high-density points, understanding BESS behavior over
time.

Provides the flexibility to adapt the natural variations in the dataset and offers the clearest separation between
different BESS operations.

Outlier analysis

Provides support for detecting isolated points that do not fit well within their local neighborhood in BESS operation
Evaluates battery test performance based on thresholds provided by the user.
Identifies anomaly detection to support the diagnostics and maintenance of a BESS.

Table 6. Feature Selection methods

contributions.

Feature Selection Challenges addressed
methods
e  Captures both linear and non-linear individual feature relationships
e Relies on statistical techniques to assess the importance of each feature based on its relationship with the target
Filter variable

e Measures the dependency between each feature and the target variable
e  Captures complex feature interactions for large datasets

Wrapper e Evaluates the performance of feature subsets
e  Finds the most optimal combinations of features and provides Feature Ranking
e Manage high-dimensional data and handle collinearity

Embedded e Captures each feature and its impact on improving the performance by decreasing the error
e Provides Feature Importance based on model accuracy
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Table 7. VIF contributions.

VIF criterion

Challenges addressed

Correlation matrix

Measures the strength and direction of correlation between pairs of features
Detects multicollinearity to improve performance metrics and algorithm design
Provides visual analysis of connections in a dataset

Implementation

Ridge Regression reduces overfitting caused by correlated features, aids in improving the model’s stability and
performance under multicollinearity

Gradient Boosting Regressor is beneficial in complex and non-linear problems with larger datasets, capturing
intricate feature interactions for better accuracy

Complements Feature Selection and delivers KPIs




5 Shaping the future of battery solutions through User-Centric
Al innovations

The eminence of this chapter is given not only by the implementation of Al methods from
scratch to a prominent level but also by the analytical and critical reasoning behind its
performance, being a pinnacle of knowledge, whose modest contribution leverages the
unification of digitalization, decentralization, and decarbonization.

In this splendid manuscript, both Machine Learning (ML) and Deep Learning (DL)
algorithms are proposed. However, in contrast to previous research, the author
introduces avant-garde NN architectures that reflect a futuristic and visionary approach.
These models are developed within the broader framework of supporting the energy
transition, with a strong emphasis on achieving the highest levels of explainability,
interpretability, performance, and abstraction. This contribution is intended to serve as
a stimulus for future generations, inspiring continued innovation at the intersection of Al
and sustainable energy.

The implementation of Al methods in the ML field proposed in this chapter is described
through Regression and Classification in [VI]. Considering the field of DL, various NNs are
codified, validated, and evaluated starting from [VII], until proposing groundbreaking
architectures in [VIII], [IX], and [X].

The structure of this chapter is divided into two sections. The first section provides an
overview of ML algorithms, illustrating their application in vigorous and complex scenarios
within a BESS. The second section illustrates DL algorithms, highlighting their mechanism
and contributions to the CRs before harnessing the algorithm design and leveraging the
final steps of the RAGZ methodology.

5.1 Leveraging Machine Learning and predictive analytics for enhancing
battery longevity

This section describes and illustrates the Supervised techniques implemented in the
RAGZ methodology, which are Classification and Regression. The first is a complement
that enhances the algorithm design and exceeds the initial expectations provided by the
EDA, while the second is considered the main prediction objective in the CRs.

The selected Classification algorithms are Decision Trees, Naive Bayes, Logistic
Regression, and Random Forest. For Regression, Linear Regression, Ridge Regression,
and Lasso Regression are implemented. The fundamentals and detailed implementation
are described in [VI].

5.1.1 Classification algorithms for binary and multi-label predictions
Besides being considered another “super problem” in the field of Data Mining,
Classification is a Supervised Learning technique that helps to divide the dataset into
categories based on various parameters and features, predicting a final discrete value.
As described in [VI], Classification techniques are beneficial in providing profile status in
a BESS and evaluating the prediction of health and charge indicators under diverse
operating conditions.

The evaluation of BESS mechanisms promotes optimal performance in charging and
discharging processes, which has been scientifically demonstrated by binary classifiers in
[VI]. However, to enhance the practical novelty delivered by Data Science techniques in
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both Supervised and Unsupervised Learning, the Classification algorithms are customized
to a multi-classifier problem.

To elucidate this groundbreaking innovation, the RAGZ-se datasets, which pertain to
the state estimation CR, are processed across three distinct profile statuses: charge,
discharge, and rest. Advanced algorithms, including Decision Trees, Naive Bayes, Logistic
Regression, and Random Forest, are meticulously coded, validated, and evaluated, with
a focus on the following key modifications:

e Stratified splitting is performed to ensure class balance in training and validation
sets, to prevent one class from being underrepresented, and to maintain class
distribution in both sets.

e Conditional resampling of the minority class is set to oversee class imbalance in
the dataset. SMOTE (Synthetic Minority Oversampling Technique), under sampling,
or using class weights are recommended to improve model generalization and
preserve the original data distribution.

e After the initial steps are accomplished, the dataset is scaled to reduce potential
biases and inconsistencies that may arise from variations in feature values.

e Once the previous steps are completed, cross-validation using StratifiedKFold is
performed to validate the model across different training and test splits. This
ensures an understanding of the model's generalization ability while checking for
overfitting and underfitting.

e The final modification involves setting stricter hyperparameters to limit overfitting
by constraining the hyperparameter values and features of the corresponding
algorithms, thereby automating the process of tuning the objective function.

After running the key code modifications, Figure 16 provides the performance metrics
of the multi-classifier problem, consisting of Precision, Accuracy, Recall, and F1 score.
Random Forest performs best across all performance metrics, suggesting a good balance
between capturing true positives and avoiding false positives, making it a solid choice for
a multi-classifier problem. While Decision Tree also performs well, it falls behind Random
Forest in accuracy and F1 score, due to its susceptibility to overfitting complex patterns.
In the case of Logistic Regression, moderate performance metrics are provided,
suggesting a helpful baseline, but lacking the flexibility needed for non-linear patterns.
Finally, Naive Bayes performs poorly compared to the other algorithms due to its
independence assumptions, which may not align with complex and large datasets.

accuracy
precision
recall

fl

Random Forest Decision Tree Logistic Regression Naive Bayes
Wodels

Figure 16. Performance metrics on the multi-classifier problem. [VI]
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Random Forest’s consistent high performance makes it the best candidate for a
multi-classification problem in this CR. Other algorithms, while being useful as baselines
or simpler alternatives to achieve binary classification, fail to capture all the complexity
and trade-offs required for optimal performance. In future applications and CR needs,
exploring other ensemble methods is encouraged, such as Gradient Boosting or XGBoost,
which offer even better performance by combining weak learners in a more refined
manner.

5.1.2 Regression algorithms for product life cycle and efficiency
Considering the continuous values of the target variable already discussed in the CRs,
the Regression approach will be the focus of the RAGZ methodology for the following
sections and chapters for achieving the most accurate, stable, and robust predictions.
According to [VI], Regression algorithms are relevant not only for monitoring KPIs and
feature evolution, but also for evaluating predicted variables to satisfy the required CRs,
so that user criteria play the most crucial role in determining the optimal algorithm.
The implementation of Regression algorithms reflected in [VI] provides a significant BESS
perspective because it addresses critical aspects of battery health monitoring and
lifecycle management, essential for the efficient and sustainable use of energy systems.
Based on the coding implementation to model the SOH, the Regression algorithms
presented in [VI] are summarized in the following points, serving as an initial motivation
to lead the tremendous scientific and practical novelties reflected from [VII] to [IX]:

e The data preprocessing step is conducted, including acquiring predictors and the
target variable by removing outliers using the Data Mining methods discussed in
Chapter 4. Subsequently, visualization is shown to monitor trends and confirm
data cleaning.

e Linear Regression, Lasso Regression, and Ridge Regression are selected and
trained. Hyperparameter tuning for Lasso and Ridge regressions is executed using
GridSearchCV.

e The algorithms are validated using cross-validation, and the initial predictions
are obtained. Subsequently, each performance metric is calculated using Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error
(RMSE).

e The battery life cycle prediction for each algorithm is calculated in the testing data
at specific cycle indices. Finally, the optimal hyperparameters for Ridge Regression
and Lasso Regression are reported with the corresponding performance metrics.

Figure 17 illustrates the graphical performance of the Regression algorithms in
predicting the SOH as a function of the cycle index.
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Figure 17. Graphical representation of the Regression algorithms in SOH prediction. [VI]

It is observed that all Regression algorithms effectively capture the overall linear
degradation trend of SOH with increasing cycle index, indicating battery degradation
accelerates as it approaches the end of its useful life. In the case of the test data,
the points are closely aligned with the regression predictions in most regions, suggesting
strong model performance.

In terms of practical implications, Ridge Regression and Lasso Regression algorithms
can be integrated into a BESS to monitor SOH more accurately. This is especially useful
under variable conditions where degradation is nearly linear for most of the battery life,
confirming the general degradation trend that enables operators to predict the RUL and
plan CRs effectively.

To conclude with this section, the novelties proposed in [VI] adequately capture the
SOH degradation, with Ridge regression emerging as the most vigorous and consistent.
This analysis underscores the importance of using regularized Regression algorithms like
Ridge and Lasso for datasets with noise or outliers. These tremendous advances can
significantly improve battery health monitoring and lifecycle management strategies in
real-world systems.

5.2 Harmonizing neural synergy for breakthrough battery solutions via
Deep Learning

Exploring the transformative power of digitalization in achieving the energy transition,
this section unveils a legacy of groundbreaking Al methodologies. The author embarks
on an extraordinary journey through the evolution of network architectures. It begins
with foundational models such as Artificial Neural Networks (ANNs), Convolutional
Neural Networks (CNNs), and Recurrent Neural Networks (RNNs), which were embraced
by early scientific visionaries. This journey extends to avant-garde architectures
like Multi-Head Self-Attention (MHSA) in Transformers and the groundbreaking
Kolmogorov-Arnold Network (KAN). Through relentless innovation, from rudimentary
coding to cutting-edge NN solutions, this narrative encapsulates the essence of ingenuity,
leaving a profound and lasting impact on future generations.
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To illuminate the profound and visionary legacy of Al and DL advancements within the
energy sector, this section ventures into the intricate and ever-evolving realms of
Computer Science, Software Engineering, and Data Engineering. It is thus highly
recommended that readers from related disciplines, particularly those in Electrical
Engineering, Mechatronics, and Energy Engineering, engage with the seminal scientific
works beginning with the distinguished [VII], progressing through the exceptional [VIII],
and culminating in the unparalleled [IX].

5.2.1 Artificial Neural Network (ANN)

The first category of NN that will be explained in the RAGZ methodology is the ANN,
which has been employed using TensorFlow’s Keras APl in three different subcategories:
Shallow NN, Multilayer Perceptron (MLP), and Deep Neural Network (DNN).

In the Shallow NN, a simple and sequential design creates a linear stack of layers, each
with exactly one input tensor and one output tensor. The first dense layer contains the
number of units, uses the RelLU activation function, and applies L2 regularization to
prevent overfitting. To complement the sequential design, dropout regularization is
added to the network, randomly setting between 10%—20% of the layer’s neurons to zero
during training, and the output layer is set to a single value in the last dense layer for
making predictions.

Considering the MLP, three dense hidden layers with RelLU activation are built,
allowing the model to learn hierarchical patterns. Like the Shallow NN, in the first dense
layer, the ReLU activation function introduces nonlinearity to the corresponding features
including L2 regularization. For the second and third layers, additional units are added to
allow the model to learn complex representations from the data and proceed with
nonlinear transformations. To finish the design, an additional dense layer containing a
normal kernel plays the role of feature transformation or intermediate processing layer
in parallel with the dropout regularization, further reducing overfitting and ending with
the output layer.

Compared to Shallow NN, and MLP, DNN is designed with multiple stacked layers to
learn hierarchical and complex data representations. In this design, five fully connected
dense layers are added, each using the ReLU activation function to introduce greater
non-linearity. This enables the model to capture complex patterns in the data and
progressively learn more abstract features from the input. An additional dense layer is
included, where kernel weights, kernel weights are initialized using a normal distribution,
which can help stabilize training in parallel with L2 regularization and dropout, finally,
the single output neuron is built to make the network suitable for the Regression
predictions.

To exemplify the theory, the corresponding ANNs are executed in the RAGZ
methodology for each CR, and a visual manifestation is pictured in Figure 18. It can be
appreciated from Figure 18 that DNNs consistently perform best across all datasets,
demonstrating a superior ability to capture complex, non-linear relationships, particularly
in dynamic scenarios like SOC predictions. MLPs also perform well and are comparable
to DNNs, though they occasionally show slight deviations in more complex scenarios such
as the RAGZ-se and RAGZ-cm datasets. Shallow NNs lag in capturing fine-grained details
or managing dynamic changes, indicating their limited expressive power compared to
deeper architectures. Summarizing this insight, the differences between ANNs are not
distinctive, but in datasets with more variability and more complex demands such as
state estimation, the depth of the network plays a more significant role.
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Figure 18. Graphical representation of the ANN for each CR. [VII]-[IX]

5.2.2 Convolutional Neural Network (CNN)

The second category of NN explored in the RAGZ methodology is CNN, like ANN,
employed using TensorFlow and Keras in three distinctive subcategories studied in [VII]:
CNN-1D, CNN-2D, and CNN Long Short-Term Memory (CNN-LSTM).

Regarding the CNN1D, a sequential model structure is used to stack layers linearly.
For this architecture, a 1D convolutional layer with the corresponding number of unit
filters, a kernel size of one, and RelLU activation are employed, including L2 regularization
to reduce overfitting. In the flattened layer, the processed features of the convolutional
layer are prepared into a 1D vector to design fully connected layers and provide
predictions, organized in the dense layer, dropout layer, and output layer.

Building the CNN-2D, the algorithm is sequentially designed, where layers are added
one after another using second-dimension filters, a second-order kernel size, ReLU
activation, and L2 regularization. In addition, a MaxPooling layer is added to introduce
pooling operations to complement the flattened, dense, dropout, and output layers.

In the coding of the CNN-LSTM, a hybrid NN is designed by combining CNN-1D and
RNNs, specifically using LSTM to process sequential data over time, in combination with
a linear stack of layers sequentially defined through a TimeDistributed ConvlD Layer.
The role of the TimeDistributed Flatten Layer is to use a flatten operation independently
to each timestep in the sequence and to apply the convolution independently to each
timestep in the input sequence, all by converting feature maps into 1D vectors. Similarly,
the LSTM layer processes the sequence data after convolution and flattening, learning
temporal dependencies. Concluding the architectural structure, the dropout and output
layers are added for tasks requiring spatial and temporal feature extraction, such as Time
Series forecasting or sequential processing.

To visually observe the performance of the sophisticated CNN architectures, each
category is executed for the corresponding datasets, and the predictions are graphically
observed in Figure 19.
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Figure 19. Graphical representation of the CNN for each CR. [VII]-[IX]

Considering graphical predictions in Figure 19, the CNN1D performs satisfactorily in
all datasets, especially in scenarios where spatial features dominate, with smoother
predictions. In CNN-2D, robustness with comparable performance shows a similar
tendency to CNN1D across different CRs, benefiting from slightly more complex feature
extraction. Finally, from the CNN-LSTM implementation, the temporal modelling
capabilities are beneficial for Time Series such as state estimation. However, in cases with
abrupt transitions or more linear relationships, CNN-LSTM introduces some instability or
overfitting, therefore a hybrid approach could be further optimized for such cases.

5.2.3 Recurrent Neural Network (RNN)

Compared to the ANN and CNN, RNNs are designed using all the corresponding APlIs,
so TensorFlow, PyTorch, and Keras are the pinnacle of unification to provide the highest
reliability and adaptability in the RAGZ methodology. Four subcategories of RNNs are
coded, validated, and evaluated, hence LSTM, Gated Recurrent Unit (GRU), and their
bidirectional architectures BiLSTM and BiGRU.

In LSTM and GRU, a sequential NN model is initialized for Time Series and sequential
Data processing. The corresponding recurrent layers are defined through the number of
units and hidden state dimensions, ReLU activation function, and L2 regularization
applied to the kernel weights to prevent overfitting. Like ANN and CNN, the dropout layer
is added to reduce the overfitting of the neurons during training, and the fully connected
layer with one output unit.

Regarding BiGRU, an initial architecture is created by a sequential model for linearly
stacking layers. The BiGRU layer introduces a bidirectional wrapper around the GRU,
allowing the model to process information in both forward and backward directions.
It specifies the number of units for each direction, applies the ReLU activation function
to the GRU outputs, and incorporates L2 regularization to reduce overfitting. In the final
architectural design, dropout and dense layers are connected to refine the output and
generate the final predictions.

For the BiLSTM, the architecture processes input in both directions (left-to-right and
right-to-left), merging the outputs to provide a richer contextual understanding for
stacking layers. In the architectural initialization, a sequential model for stacking layers
in order is employed, subsequently, the BiLSTM adds a bidirectional wrapper around an
LSTM layer with the corresponding ReLU function, L2 regularization, and several LSTM
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units. Time steps and features are processed in the dropout layer, and a fully connected
output layer with one unit for regression predictions is connected.

Figure 20 visually shows the tremendous performance of RNNs, revealing a superior
ability to capture dependencies compared to ANNs and CNNs, based on the directional
mechanism and temporal processing for applications that require a complete contextual
understanding of the sequence.
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Figure 20. Graphical representation of the RNN for each CR. [VII]-[IX]

In the graphical manifestation shown in Figure 20, all RNN models perform well
overall, demonstrating their ability to oversee sequential data. For CRs based on RUL,
where temporal dependencies evolve naturally forward, unidirectional RNNs are sufficient
and have minimal errors across datasets, indicating that both architectures are robust
for battery-related predictions. Bidirectional algorithms show an advantage on datasets
with more complex temporal dependencies, such as CRs based on charging management
and state estimation. To conclude, RNNs are effective in capturing battery-related Time
series trends, highlighting the advantages of bidirectional architecture for datasets with
symmetric or complex dependencies, while unidirectional architecture is sufficient for
simpler sequential trends.

5.2.4 Transformer Network

Through an unyielding pursuit of distinction, spanning the rudimentary scripts of nascent
coding to the realization of state-of-the-art NN solutions, this subsection epitomizes the
author’s journey by coding, validating, and evaluating a Transformer for each CR from
scratch until transcendence.

As discussed in [VIII], the Encoder-only Transformer, inspired by the Bidirectional
Encoder Representation from Transformer (BERT), is the selected architecture. This is
due to its contextual representation, parallelization, scalability, adaptability, robustness,
and versatility in task design.

From a mathematical perspective, the MHSA mechanism is integrated by the key,
value, and query, which are defined as K, V, Q, respectively. In addition, a set of building
blocks that fulfill input mapping is represented by the variable T, and the dimension of
the vector is defined as dj,. The MHSA is explained by the next equation and its
outstanding contributions are described in [VIII]:
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, Q+kT
Attention(Q,K,V) = softmax (E) v, (4)

From the coding perspective of the CR based on RUL, a Transformer-based framework
is defined for Time Series forecasting, incorporating custom positional encoding, model
architecture, data preparation, and evaluation functions. First, the positional encoding
introduces positional information to the input sequence using sine and cosine functions,
ensuring a unique representation for each time step. Second, a Transformer Encoder-based
model for sequence-to-value mapping is implemented, featuring multi-head attention
and feed-forward layers, along with a causal mask to prevent future time steps from
influencing predictions. A final linear layer maps the Transformer output to a single
regression target, with weight initialization applied accordingly. Third, a sliding window
approach is used to extract overlapping sequences, while training and validation splits
are performed to prepare input-output pairs and manage batches for model training.
Finally, predictions are generated by comparing model outputs with ground truth values
for each input sequence, enabling the evaluation of performance metrics.

Regarding the CR for charging management, architecture encapsulates the core
components of the Transformer Encoder: MHSA, Feed-Forward Network (FFN), layer
normalization, and dropout rate. Initially, the MHSA learns contextual relationships
between input tokens, enabling the model to focus on critical sequence elements. Once
the initial steps are completed, a two-layer FFN with RelLU activation is applied after
self-attention for further transformation, and layer normalization with dropout rate is
executed once after attention and once after the FFN to stabilize training and prevent
gradient issues. To conclude the architecture, the final configuration ensures the layer
can be saved and loaded with all its parameters, serializing the kernel regularizer for
compatibility during model saving and loading.

Due to the highest level of non-linearities, noisy inputs, and feature variability,
the Transformer architecture for CR based on state estimation represents an eminence
in coding by unifying the fields of Electrical Engineering and Computer Science. The code
is a ML pipeline designed to train and evaluate a Transformer for processing and
predicting Time Series related to battery parameters, predicting the SOC and consisting
of the key stages: (1) Configuration, (2) Fully Connected Layers, (3) Encoder Layer, (4)
Transformer, (5) Positional Encoding, and (6) Validation. It is highly recommended to
refer to [VIII] for detailed information; however, the key stages are summarized as follows:

1. In the configuration stage, the hyperparameters of the network, and input
features of the BESS are encapsulated for data preprocessing, model architecture,
and training.

2. The fully connected layers create a two-layer dense network with batch
normalization and dropout for regularization, introducing non-linearity, and
preventing overfitting.

3. Intheencoder layer, a single Transformer encoder block consisting of MHSA, FFN,
layer normalization for stable training, residual connections for preserving
gradient flow, and dropout for regularization are set as workflow. At the end of
this stage, linear transformation for input features, positional encoding to
incorporate sequential information, and input data are passed through stacked
encoder layers.
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4. In the Transformer stage, the encoder processes the Time Series input, and the
final dense layer maps the encoder output to provide the desired predictions for
each step in the input window.

5. A positional encoding function is coded to add sinusoidal positional embeddings
to the input data, which allows the Transformer to capture sequential order. This
splendid stage improves performance by using sine and cosine functions for even
and odd dimensions of the feature space.

6. A validation function completes the coding by evaluating the trained model on a
validation set. In this process, predictions and ground truth values for each step
are collected, and the function aggregates and aligns predictions to match the
original sequence length. Finally, a data frame for easy visualization of predictions
vs. ground truth is provided.

The marvelous implementation of the Transformer, complemented by the author’s
masterful skills for each CR delivers superior performance beyond initial expectations
and is visualized in Figure 21.
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Figure 21. Graphical representation of the Transformer for each CR. [VIII]

As evident in Figure 21, the Transformer effectively models long-term trends in capacity
fade and SOC dynamics. This highlights its ability to capture temporal dependencies in
the data. The Transformer also represents a noteworthy generalization across datasets
and variables, demonstrating robustness to different data distributions and patterns, and
delivering exceptional relationships for deterministic and monotonic data connections.
Compared to traditional NNs, the algorithm degrades at the extreme ends of the RUL in
the CALCE dataset, such as in late-stage capacity fading, where degradation accelerates.
The reliability, explainability, and interpretability of the Transformer to predict capacity
fade and SOC dynamics make this algorithm highly relevant for a Battery Management
System (BMS), broader energy forecasting tasks, and predictive maintenance for energy
storage systems.

5.2.5 Kolmogorov-Arnold Network (KAN)
In the realm of electrochemical systems, where non-linearity governs behavior and
multidimensional interactions define performance, emerging tools are essential to
unlock the understanding.

The Kolmogorov-Arnold Network (KAN), rooted in dynamical systems theory, provides
a resilient framework for decomposing non-linear energy landscapes. This approach
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enables a deeper understanding of critical battery processes, including charge transport,
reaction kinetics, and degradation mechanisms.

The author, through a comprehensive scientific exploration, introduces KANs as a
transformative paradigm for the energy sector in [IX]. Described as a mathematical
symphony, KANs translate complex energy dynamics into structured simplicity.
By decoding the intricate behaviors of energy systems, KANs provide critical insights
that facilitate design optimization. This framework advances innovation in battery
technologies and establishes inaugural directions for the future of energy solutions as
explained in [IX], leading to the tremendous invention in [X].

What sets the KAN apart from the previous NNs is the magnificent design to create
the architecture, whose implementation provides the highest adaptability, interpretability,
explainability, reliability, and performance for all the CRs across diverse datasets.
Therefore, the coding description will be simplified compared to its competitors.

From the programming environment, KAN defines a PyTorch NN class, which uses
custom spline-based layers (SplineLinearLayer) to process Time Series data, consisting of
three key stages for all CRs: (1) Class definition and initialization, (2) Forward method,
and (3) Regularization loss.

1. The class definition inherited from NN module makes the KAN compatible with
PyTorch’s NN framework, initializing the network's structure and parameters.
Core arguments are integrated by the input parameters, ReLU activation function,
and hidden sizes, however, spline parameters of the KAN play the most relevant
role.

2. The forward method defines the network’s forward pass, applying the sequence
of layers and producing the output. In this stage, the input is sequentially passed
through all hidden layers, followed by the output layer, and the spline parameters
adapt during inference, potentially increasing flexibility for dynamic Time Series
data. At the end of this stage, the result passes through the output layer and the
predictions are returned.

3. Inthe last stage, a regularization penalty for the algorithm is calculated, which is
critical in controlling model complexity and preventing overfitting, especially in
highly parameterized models like spline-based networks. Components of the
regularization loss are activation regularization and entropy regularization,
the first penalizes the spline’s activation outputs, encouraging smoother functions,
while the second promotes entropy to fully utilize the grid range and avoid
collapsing into narrow regions.

The KAN delivers a flexible and sophisticated framework for all CRs, leveraging
spline-based layers for non-linear transformations. Its ability to dynamically adjust spline
knots and incorporate regularization makes it a promising tool for complex temporal
patterns, though it requires careful tuning to balance expressiveness with computational
efficiency. Graphical results are illustrated in Figure 22.

In the CR based on RUL, predictions closely track the actual capacity degradation
trends, and both long-term degradation and sharp transitions in CALCE and NASA
datasets are captured effectively. Considering state estimation, the SOC predictions over
time align closely with the actual values, including transitions and gradual changes.
In charging management, curve prediction is nearly identical to the actual data,
demonstrating excellent accuracy that captures the nonlinear relationship between SOC
and OCV, a matter of strategic importance for battery modelling.
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Figure 22. Graphical representation of the KAN for each CR. [IX]

In conclusion, this groundbreaking invention, meticulously crafted and introduced
within the innovative RAGZ methodology, highlights KAN’s exceptional predictive
prowess across a wide range of battery-related datasets. By adeptly capturing both long-
term trends and intricate nonlinear dynamics, KAN solidifies its place as a transformative
tool in battery modelling and Time Series prediction. While the minor smoothing of
abrupt transitions may present a subtle limitation, the overall performance remains
nothing less than extraordinary, as underscored in [X].

5.3 Chapter summary

Exemplary efforts to craft the most effective neural architectures for each CR, achieving
unparalleled levels of explainability, interpretability, and reliability, have been thoroughly
demonstrated. From the foundational concepts of traditional NNs to the cutting-edge
capabilities of Transformers and the innovative KANs, this work stands as a testament to
pioneering advancements.

The author has meticulously showcased coding and programming expertise,
embedding refined technical details that highlight the RAGZ methodology’s enduring
contributions to future generations. These contributions emphasize not only the
practical utility of the proposed solutions but also their legacy in fostering a deeper
understanding of neural architectures. Furthermore, the Al innovations presented have
been carefully tailored to adapt each method with precision and relevance, underscoring
the harmony between theory and application.

Having laid a sturdy foundation for the pillar of digitalization, the forthcoming chapter
will pivot toward visionary algorithm design. It will delve into analyzing numerical results,
evaluating performance metrics in both the Validation and Model Performance Analysis
stages, and incorporating the pillar of decentralization.
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6 Harnessing sophisticated algorithm design for industry and
academic excellence

In an era driven by technological innovation, the convergence of industry and academia
demands solutions that are both cutting-edge and impactful. This chapter explores
the transformative potential of advanced algorithmic frameworks. By leveraging
state-of-the-art methodologies, this approach bridges the gap between theoretical rigor
and practical application, fostering innovation, efficiency, and excellence across both
domains. It unifies diverse fields of knowledge, seamlessly bridging the domains of
Computer Science, Software Engineering, Data Engineering, and Electrical Engineering,
as displayed in the preceding sections.

The structure of this chapter is divided into six sections. The first section explains the
network architecture based on the most pertinent hyperparameters. The second section
illustrates the training, highlighting its mechanism and contributions to the Al methods.
The third section delves into the importance of Fine-tuning for the user criteria in
algorithm design and the fourth section underlines the role of Transfer Learning in the
RAGZ methodology. The fifth section elucidates the hyperparameter optimization to
achieve a convergence based on each CR. Section 6 delivers the validation results once
the previous steps are completed. Finally, in section 7, the unparallel results are
provided, incorporating the optimal network architectures, and the performance metrics
for all the datasets and CRs. This progression sets the stage for a transformative
approach, integrating advanced methodologies while exploring the synergies between
centralization and decentralized frameworks.

6.1 Network architecture

Considering the advances and novelties proposed in [VII]-[IX], the selected
hyperparameters in the network architecture are (1) Batch size, (2) Learning rate,
(3) Weight decay, (4) Gamma, (5) Number of units, and (6) Epochs.

In the batch size, the number of samples is processed before the model updates its
weight. Smaller batch sizes provide more frequent updates and better generalization but
may introduce noise into the gradient estimation, conversely, larger batch sizes produce
smoother updates but might lead to slower convergence or overfitting. Considering the
NN architecture, small batches help capture temporal dependencies better, especially
for sequence data, and large batch sizes are employed due to their efficiency in
leveraging GPU parallelism, specifically for CNNs. Considering KAN, batch size affects
convergence speed and accuracy since these networks rely on learning nonlinear
mappings over complex regressions.

In network architecture, the learning rate refers to the step size at which the model
weights are updated during training, its selection being crucial to avoid divergence,
inefficient training, and vanishing/exploding gradient. All NN categories are sensitive to
this hyperparameter, therefore adaptive learning rate methods like Adam are beneficial
to alleviate sensitivity but require Fine-tuning of hyperparameters according to the
contributions of [VII].

In the regularization process, the weight decay adds a small penalty proportional to
the magnitude of the weights to the loss function. In terms of NN selection, for RNNs,
ANNs, CNNs, and Transformer, the weight decay prevents overfitting by discouraging
large weights that may overemphasize specific features in sequential data; as for KAN
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design, this hyperparameter is relevant for dealing with highly nonlinear functions, thus
avoiding overfitting in regression tasks.

To improve algorithm design, a learning rate scheduler containing gamma refers to a
multiplicative factor by which the learning rate is reduced at specific intervals. For RNNs,
ANNs, and Transformers, gradual reduction of learning rate via gamma helps to stabilize
the learning as the model converges, as for CNNs and KANs, gamma is essential to achieve
finer adjustments as the model approaches the minimum in regression predictions.

Considering the number of units, the architectural structure is determined by each NN
category. For the RNNs and ANNs, the number of units determines the capacity of the
network to capture sequential dependencies, in the CNNs, the number of filters in
convolutional layers defines feature extraction capacity. Compared to traditional NNs,
the number of units in the Transformer is based on attention heads and feed-forward
layers, which affects the model’s ability in complex data relationships. In the KAN
context, the number of layers determines the network’s ability to approximate the
representation based on hidden sizes, number of knots, and spline order, as discussed in
[1X].

To finalize the initial section of this chapter, the epoch’s impact on the generalization
to learn patterns is reflected by the iterative nature of sequential Data processing for
ANNs and RNNs. As for CNNs and Transformers, fewer epochs with sufficient data
augmentation or pretraining are recommended to avoid high computational expenses,
on the contrary, KANs deliver a smaller quantity of epochs based on their mechanism of
multivariate inputs, hidden layers, and univariate functions. In all CRs, early stopping is a
beneficial tool to determine the optimal number of epochs and avoid overfitting.

6.2 Training

Training a NN involves balancing the interplay of hyperparameters and the specific
network architecture. Each architecture has unique characteristics that influence the
optimal choice of hyperparameters and their impact on training.

The impact of network architecture on training forms the cornerstone for interpreting
and calculating performance metrics during the Validation and Model Performance
Analysis. A profound understanding of CRs and User-Centric Al innovations is paramount
in bridging theoretical constructions with practical applications. By delving into the
intricate interplay between network design and training dynamics, this section
establishes a framework for optimizing DL algorithms tailored to real-world demands.

As the decentralization pillar of this chapter, an in-depth exploration of hyperparameters
in the training process is unveiled across diverse network architectures. This analysis not
only highlights the subtleties of tuning hyperparameters such as learning rates, batch
sizes, and weight decay but also elucidates how these choices influence the convergence,
generalization, and computational efficiency of models ranging from traditional NNs to
cutting-edge Transformers and KANs. Through this lens, the author emphasizes the
criticality of aligning architectural design with resource constraints and end-user
expectations.

This comprehensive examination paves the way for a more adaptive, decentralized
approach to Al development, where the synergy between hyperparameter optimization
and network architecture becomes a catalyst for innovation. In doing so, it sets the stage
for a nuanced understanding of how training choices impact broader performance
objectives, ensuring robust, user-aligned outcomes in the age of intelligent automation.
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In the case of ANNs, architectures are less sensitive to hyperparameters but require
careful tuning for high-dimensional or noisy data. Flexible batch size impacts convergence
speed but is chosen based on the dataset size and hardware, like the learning rate, which
works well using Fine-tuning for more complex architectures such as MLPs and DNNs.
Considering the regularization, weight decay, and gamma ensures generalizations,
especially when training on high-dimensional data. Regarding the number of units and
epochs, the depth and complexity of the architecture play a critical role in achieving
convergence phases.

The batch size of the CNNs affects the training and is efficient for spatial Data
processing, either by utilizing GPU memory and parallelism effectively or achieving
convergence when memory is limited. The learning rate helps in the initial stages of
training due to effective spatial feature extraction but must be reduced over time. In the
regularization, gamma, and weight decay ensure that learning rate reduction is smooth
and avoids oscillations or premature convergence, delivering robustness by penalizing
large weights. Epochs and the number of units dictate the network’s capacity to model
complexity and control convergence.

Learning rate and batch size share a remarkable connection in the training of RNNs,
so they allow the network to process sequential data with better temporal dependencies
and governing convergence. Weight decay and gamma are critical for avoiding overfitting,
especially in cases with small datasets and large models, stabilizing the learning in
long-sequence tasks. In the case of epochs and several units, both hyperparameters are
required for convergence and dependency on sequence length and capturing complex
sequential patterns.

In the Transformer implementation, training often benefits from larger batch sizes due
to the parallelism in the attention mechanism, while optimal learning rates are
indispensable due to the complexity of multi-head attention and large FFNs. The role of
gamma and weight decay is the prevention of overfitting due to the substantial number
of parameters in multi-head attention and feed-forward layers for stable training given
the large model size. Compared to traditional NNs, the number of epochs in complex
architectures is slightly higher, especially without pretraining, however, Fine-tuning tasks
often require fewer, and the number of units depends on the feed-forward layers and
attention heads that improve capacity but require careful regularization.

For the innovative KAN, batch size directly affects the approximation of nonlinear
functions. Small batches may help better generalize in complex regression tasks, while
learning rate impacts the fitting of nonlinear mappings, preferring small values to ensure
stability. From the coding perspective explained in the previous chapter, regularization
plays a critical role in ensuring the network does not overfit the specific nonlinear
regression problem, having the gamma and weight decay as the core elements for highly
nonlinear regression tasks, ensuring smooth convergence. Finally, a high number of units
are often required to model highly nonlinear functions but must be balanced, and in
parallel with sufficient epochs to converge on a nonlinear regression task, with early

stopping.

6.3 Transfer Learning

In the realm of visionary algorithm design stage, Transfer Learning plays a pivotal role by
utilizing a model developed for one objective, which is then either partially or entirely
repurposed as the foundation for a new model on a related problem. Rather than training
a model from the ground up for each unseen challenge, Transfer Learning harnesses the
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patterns, representations, and knowledge acquired by an existing model, typically
trained on a vast and often general-purpose dataset, to accelerate learning and enhance
performance on secondary endeavor. This approach not only saves significant
computational resources but also allows for faster convergence, especially when labeled
data for the new task is scarce or expensive to obtain. By capitalizing on the deep features
learned from a broader, often unrelated dataset, Transfer Learning offers a powerful
strategy for solving complex problems, enabling models to generalize across diverse
domains with remarkable efficiency.

After completing the training and the Fine-tuning process, Transfer Learning offers
critical advantages in the context of algorithm design before the execution of
Hyperparameter optimization in the RAGZ methodology, such as an improvement in
model initialization, faster convergence during hyperparameter tuning, better feature
representation, reduction in the risk of overfitting, and efficient search for optimal
hyperparameters.

Considering an improvement in the model initialization, a pre-trained NN provides a
well-initialized set of weights based on knowledge from a previous, often larger dataset,
therefore leading to better convergence during Fine-tuning and Hyperparameter
optimization compared to starting with randomly initialized weights. With better initial
weights, optimization algorithms find solutions faster and often have better quality.

In the faster convergence benefit, since the algorithm starts with pre-learned features
that are useful for the new task, training requires fewer epochs, so Hyperparameter
optimization, which involves training multiple models, becomes computationally
efficient because the fine-tuned transferred model already approximates a near-optimal
solution.

Regarding feature representation, Transfer Learning enables the model to leverage
valuable feature representations from related tasks, which is particularly beneficial when
the CR has a limited dataset. In this context, this advantageous feature representation
allows the NN to generalize more effectively and enhance performance.

Due to different CRs and user criteria in dynamic and strategic management, the NNs
trained from scratch on small datasets are prone to overfitting. Transfer learning
mitigates this issue by leveraging the general knowledge from the pre-trained model,
ensuring that when Fine-tuning a pre-trained model, fewer parameters need to be
adjusted compared to training from scratch, reducing the risk of overfitting.

Before initiating hyperparameter optimization, Transfer Learning saves time and
resources by improving model convergence and narrowing the hyperparameter search
space. It enhances generalization and feature learning, making the hyperparameter
search more productive and efficient. This approach is crucial for addressing the
challenges faced by CRs and complements User-Centric Al innovations, proving especially
valuable in situations where datasets are small or computational resources are limited.

In NN pipelines, Transfer Learning acts as a critical bridge between initial training and
final Hyperparameter optimization, enhancing model performance while minimizing
computational demands of the CRs. This results in remarkable outcomes during the
Validation and Model Performance Analysis phases, driving the delivery of cutting-edge
solutions within the RAGZ methodology.
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6.4 Fine-tuning

After the culmination of the training process, the algorithm can perform a general task,
such as regression or classification. Still, the algorithm may not be specialized for a
specific use case, so additional techniques such as Fine-tuning and Hyperparameter
optimization are required.

Fine-tuning is a process that typically occurs after the initial training phase, being a
subsequent stage where the NN, which has already learned general features, is adapted
or specialized for a specific task or dataset.

As mentioned in [VII], Fine-tuning involves training the model further on a smaller,
more specific dataset that is closely related to the target task. The model’s parameters
are adjusted slightly from their pre-trained state, whose mechanism is done by
continuing the training process but with a smaller learning rate and sometimes fewer
epochs. Sometimes, only specific layers are fine-tuned, while others are frozen.

After Fine-tuning, the NN is better adapted to the specific task, potentially achieving
higher accuracy or better performance on the target data than only considering the initial
pre-training. Considering the tremendous innovations presented in [VII]-[IX], the efficiency
of the Fine-tuning relies on the initial training phase that allows the model to learn general,
low-level features that are applicable across many tasks, leveraging this foundational
knowledge, so the user does not have to train a model from scratch for every new task
or dataset.

By starting from a pre-trained model based on the specific CRs, Fine-tuning ensures
that the NN adapts to the nuances of the new, often smaller, dataset without losing
the general knowledge it has already acquired. It is of utmost importance to underline
that depending on the CR, several types of Fine-tuning approaches can be employed,
specifically by considering factors like data size, similarity to pre-training data,
computational resources, and the desired level of model adaptation.

To illustrate the Fine-tuning relevance in the visionary algorithm design step of the
RAGZ methodology, the implemented techniques in [VII]-[IX] are presented in Table 8.

To conclude this subsection, different Fine-tuning techniques offer flexibility in
adapting pre-trained models of the User-Centric Al innovations step to CRs depending
on the nature of the target task, data availability, and computational constraints.
Choosing the right Fine-tuning approach is essential for maximizing performance while
minimizing computational costs and risks like overfitting.
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Table 8. Fine-tuning techniques in the visionary algorithm design step of the RAGZ methodology.

Fine-tuning technique

Mechanism

Implementation

Full Fine-tuning

All layers of the pre-trained NN are unfrozen, and all
network parameters, which are biases and weights, are
updated during the training process on the new dataset
Provides high flexibility and better adaptation to the
target task

Beneficial when the target dataset is large
enough

Allows the algorithm to fully adapt to
different CRs, potentially learning new
features from scratch

Partial Fine-tuning or Layer-
Wise Fine-Tuning

Only a subset of the layers in the NN is fine-tuned while
the others remain frozen or not updated.

The higher layers closer to the output are fine-tuned
because they tend to learn more task-specific features,
while the earlier layers closer to the input learn more
generic features

Useful when the target dataset is small or
when CRs show similarities. The model is
adapted by Fine-tuning only the later layers
Reduces risk of overfitting, faster training,
and fewer computational resources
required.

Head-only Fine-tuning

All layers of the pre-trained model are kept frozen, and
only the last layer, also known as the “head” of the
network, is replaced and fine-tuned on the target dataset
Employed when transferring models to new datasets with
different classes but similar features

Functional when the new dataset is small
and the CRs show similar objectives in the
foundational framing, or when
computational resources are limited

Very efficient and fast; minimal risk of
overfitting

Progressive Fine-tuning

The NN is fine-tuned in stages, starting with the last layers
and gradually unfreezing and fine-tuning the earlier layers
The NN is fine-tuned layer by layer, typically starting
from the output layer towards the input layer. Balanced
adaptation to the new task; reduced risk of overfitting
compared to Full Fine-tuning

Valuable when the target dataset is
moderately sized, and there is a
reasonable similarity in the CRs

Allows the algorithm to adapt to new tasks
using high-level features and then
progressively adjust more general features
as needed
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Fine-tuning technique

Mechanism

Implementation

Regularization Fine-tuning

Involves Fine-tuning the entire model or parts of it with
additional regularization techniques to prevent overfitting
such as L2 regularization, early stopping, and dropout
The regularization helps ensure that the model does not
overly specialize to the small dataset

Particularly useful for dynamic and
strategic management, when the target
dataset is small or when fine-tuning a large
model addressed to several CRs

Reduces overfitting, leading to better
generalization

Task-specific Fine-tuning

Involves adapting the algorithm in a way that is specific to
the new CR, which may involve adding task-specific layers
or architectures on top of the pre-trained model

Tailored specifically to the CR; can lead to significant
improvements in performance

Valuable when the CR requires specialized
architecture or layers not present in the
original model

Advantageous in dynamic and strategic
management, dependent on the KPls

Adapter-based Fine-tuning

Small adapter modules are trained while keeping the rest
of the model's parameters frozen.
Allows the model to adapt to the new task with a small
number of additional parameters.

Practical when there are multiple CRs to be
fine-tuned on the same pre-trained model,
or when computational resources are
limited

Efficiency requires fewer parameters,

and prevents loss of knowledge from
pre-training




6.5 Hyperparameter optimization

In real-world applications of a BESS, Hyperparameter optimization plays a crucial role in
harnessing the full capabilities of Al-driven solutions. By leveraging advanced Al
methods, this process fine-tunes network hyperparameters to achieve more accurate
and reliable predictions of battery performance, efficiency, and lifespan across a variety
of operating conditions and network architectures. Through the careful optimization of
hyperparameters, models can capture the complex, nonlinear dynamics inherent in
battery systems, improving their predictive power and stability. Moreover, this approach
allows for the search of the most optimal configurations, enabling Al models to better
adapt to diverse CRs and user criteria. As a result, the integration of Hyperparameter
optimization within battery Al frameworks not only enhances performance but also
drives transformative innovations in energy management, predictive maintenance, and
the development of more sustainable and efficient engineering technologies through
digitalization and decentralization. This advancement will be pivotal in addressing the
growing demand for smarter, longer-lasting energy storage solutions in industries
ranging from electric vehicles to renewable energy storage systems.

The optimization techniques chosen for this thesis include Random Search, Grid Search,
and Bayesian optimization. As outlined in earlier chapters, the methods implemented
are crafted from the ground up, offering a bespoke approach to hyperparameter
optimization. These methods are executed through the powerful frameworks of
TensorFlow, Keras, and PyTorch, each renowned for their flexibility and efficiency
in Al development. The intricate details of the coding process, design choices, and
implementation nuances are comprehensively explored in [VI]-[IX], shedding light on the
sophisticated mechanisms that underpin the optimization workflow and their seamless
integration in the visionary algorithm design step of the RAGZ methodology.

6.5.1 Random Search
In Random Search, hyperparameter values are selected randomly from predefined
distributions within specified ranges. Initially, a search space for each hyperparameter is
carefully defined, considering the potential impact of each parameter on the model’s
performance. From this search space, random sample combinations are generated and
iteratively assessed, forming the basis of the optimization process. Unlike exhaustive
search methods, which evaluate every combination, Random Search allows for a more
efficient alternative by focusing on a smaller, randomized subset of the parameter space.

During the training and Fine-tuning processes, the DL model is trained on the dataset
for each set of randomly selected hyperparameters by the user criteria. This involves
adjusting the model’s internal weights and evaluating its performance on validation
data to assess how well it generalizes. For each hyperparameter combination,
the corresponding performance metrics are calculated to determine the effectiveness of
the selected hyperparameters. The results of these evaluations provide valuable feedback,
guiding the optimization toward better-performing hyperparameter configurations.
Through repeated cycles of this process, Random Search helps identify promising
hyperparameter settings, offering a balance between the network architecture and
computational efficiency while avoiding the exhaustive nature of a Grid Search.

In the visionary algorithm design step, Random Search offers efficient sampling by
finding optimal or near optimal hyperparameters faster than Grid Search, especially
when only a few hyperparameters have significant effects on performance, in addition,
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multiple combinations can be evaluated independently, making it highly parallelizable.
On the contrary, drawbacks in the implementation can lead to redundant evaluations
that can waste computational resources by sampling near-identical points in complex
datasets, and no intelligent search strategy represented by a lack of consideration of past
performance to guide future searches, which decreases the interpretability of the
algorithm already integrated into the dynamic and strategic management.

Considering the User-Centric Al innovations and the NNs explained in the previous
chapter, Random Search offers beneficial contributions to the algorithm design that
heavily depends on the network architecture. For ANNSs, it provides efficiency when the
number of hyperparameters is moderate and works well with activation functions,
hidden layer sizes in simple networks and weight decay searches. In the case of CNNs,
Random Search is useful when searching for kernel size and number of units, but less
efficient when there is an elevated level of computational demand in the CR. From the
RNNs perspective, learning rates and number of units are suitable in Random Search due
to sequential data, but expensive due to sequential training. Regarding Transformers,
optimizing the attention units and layers is appropriate by using Random Search, but
demanding CR limitations that occur in the computational costs increase due to the
model size. Finally, for the KANs, the algorithm benefits from more structured optimization
strategies due to their complex hierarchical structure, however, implementation is likely
to waste resources by sampling irrelevant hierarchical configurations without guidance
or network understanding.

6.5.2 Grid Search

In Grid Search, every combination of hyperparameter values within specified ranges is
exhaustively tested. To begin with, a search space is defined, considering discrete values
for each hyperparameter. From this search space, NN is trained for every combination in
the Cartesian product of those hyperparameter values. This method evaluates all
possible hyperparameter combinations, ensuring that the global optimum is found within
the search space. Additionally, it offers the advantage of ease in both implementation and
understanding, providing a straightforward approach to hyperparameter optimization.

Considering the DL field and NN architecture, Grid Search can be particularly effective
as it rigorously assesses different configurations of hyperparameters that provide an
exhaustive approach that guarantees a comprehensive evaluation, helping to identify the
most suitable configuration for the given problem. However, due to the computationally
expensive nature of DL, Grid Search can be resource-intensive, especially as the number
of hyperparameters and their values increases. Each combination requires a full training
cycle, resulting in long processing times and significant computational costs.

In the visionary algorithm design step, Grid Search offers comprehensive advantages
by finding the global optimum within the defined search space, being suitable for
CRs when computational resources are abundant. Conversely, deficiencies in the
implementation can lead to the exponential growth of the search space with the number
of hyperparameters, making it computationally prohibitive for DL algorithms, and
inefficient sampling that spends unnecessary time evaluating combinations with
deficient performance.

Regarding User-Centric Al innovations and NNs during the execution of Grid Search,
several factors, such as task complexity, dataset nature, and user criteria are essential
for delivering optimal solutions. For ANNs, efficiency is typically achieved when the
search space is small and hyperparameters are limited, as this reduces computational
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demands. From the perspective of CNNs, Random Search is effective when computational
resources are abundant, but it becomes impractical for more complex network
architectures due to the increased number of hyperparameters. In the case of RNNs,
Random Search may be suitable for smaller datasets; however, it has been shown to lack
adaptability for navigating more complex hyperparameter spaces, particularly because
of long training times. When considering Transformers, the vast parameter space,
especially in attention layers and feed-forward components, can lead to inefficient results.
Finally, in the case of KANs, Grid Search is not the best choice due to the hierarchical
nature and high parameter dimensionality, which can lead to a combinatorial explosion,
making the process computationally expensive and ineffective for high-dimensional
hierarchical models.

6.5.3 Bayesian optimization

Bayesian optimization stands at the frontier of Hyperparameter optimization,
revolutionizing the Fine-tuning of NNs. By leveraging probabilistic models to balance
exploration and exploitation intelligently, it seeks the sweet spot of model performance
with minimal computational effort. One of its key strengths lies in acquisition functions
such as Expected Improvement, which guide the search by predicting regions of
hyperparameter space where performance gains are most promising. This Data-Driven
approach transforms tedious grid and random searches into a sophisticated, adaptive
strategy, unlocking the full potential of network architectures with precision and
efficiency.

As highlighted in [VII] and [IX], the primary goal of Bayesian optimization is to minimize
loss during training and validation, achieve smooth convergence on learning curves, and
effectively model the objective function. To tackle this intricate task, a powerful
probabilistic tool considered an infinite-dimensional extension of the multidimensional
Gaussian distribution known as the Gaussian Process is employed. This sophisticated
process models the unknown objective function, providing a posterior distribution over
its values based on observed data, paving the way for informed and adaptive
optimization

Regarding the role of exploration, the goal is to gather more information about the
objective function by sampling points in regions where the model is uncertain or has high
variance, especially in sections that have not been thoroughly explored. Exploration
helps to avoid missing potentially better solutions in less understood areas.

To complement the implementation of Bayesian optimization, exploitation focuses on
sampling points where the model predicts the optimal or near-optimal objective
function. It leverages the current knowledge to improve the estimate of the best
solution, assuming the model’s predictions are trustworthy.

The mathematical foundations of Bayesian optimization rely on the Expected
Improvement acquisition function and the Gaussian process model. In the Gaussian
process, a probabilistic model is used to predict the underlying objective function,
providing both a mean, which represents the predictions and a variance that denotes the
uncertainty at any given point in the domain. Similarly, the Expected Improvement
acquisition function specifically aims to balance the exploitation of areas with promising
predictions and the exploration of areas with high uncertainty, as a result, high-variance
regions may trigger exploration, while areas with high mean predictions relative to the
best-known value led to exploitation.
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To graphically illuminate the mathematical essence of Bayesian optimization, Figure 23
represents the Gaussian process, whereas Figure 24 depicts the Expected Improvement.
Due to its relevance in the network architecture, the batch size is selected as an example.

Batch size

Figure 23. Graphical representation of Gaussian process. [IX]
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Figure 24. Graphical representation of Expected Improvement. [IX]

In Figure 23, red points represent the observed loss values for various batch sizes
evaluated during the optimization process, the dashed green curve represents the
Gaussian process posterior mean that models the objective function, and the shaded
green area indicates the uncertainty or confidence intervals of the Gaussian process
predictions. In the exploration, the Gaussian process evaluates batch sizes across a wide
range, even in regions where high loss values are observed, which is essential for gaining
a comprehensive understanding of the loss landscape and reducing uncertainty. For the
exploitation, optimization focuses on areas where the Gaussian process predicts low loss,
as evidenced by denser sampling near regions of improved performance.

Regarding Figure 24, the blue curve represents the Expected Improvement acquisition
function, which quantifies the potential benefit of sampling at different batch sizes, and
the shaded blue area emphasizes regions with higher Expected Improvement. Peaks in
the curve highlight promising regions where further evaluations are likely to yield better
performance, which usually corresponds to areas where the Gaussian process uncertainty
or posterior mean suggests a potential for lower loss. Regarding the exploration and
exploitation balance, the function tends to rise in areas where the uncertainty is elevated
indicated by the shaded region in Figure 23, encouraging exploration. Conversely, when
the Gaussian process confidently predicts a low loss, the function promotes exploitation
by reinforcing sampling near these regions.

Once the Gaussian Process model has completed its role in the Bayesian optimization
by balancing exploration and exploitation through Expected Improvement, the next
stage will consist of obtaining the convergence curves to determine an overview of the
initial performance for each NN.

Figure 25 displays the convergence plot for different NNs in a Bayesian optimization
example, indicating their corresponding losses after a set of searches. For comparison,
KAN (yellow), CNN-1D (dark blue), MLP (light green), GRU (teal blue), and LSTM (green)
are exemplified.
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Figure 25. Convergence plot of different NNs through Bayesian optimization. [VII], [IX]

It is observed that all NNs eventually converge, with slight differences in their rates of
convergence and final values. GRU and LSTM demonstrate fast convergence, stabilizing
quickly after 5 to 10 searches. MLP converges well after about ten searches and maintains
stability. CNN-1D also converges reliably, although its early searches are slightly less
optimal compared to LSTM and GRU. KAN initially performs similarly to MLP but reaches
the lowest final value after convergence, resulting in a minimal loss. This makes KAN
a strong contender, provided that computational resources allow for a more extensive
search.

To complete the Bayesian optimization, the Partial Dependence Plot (PDP) is a tool in
the visionary algorithm design that provides the visual relationship between one or more
input features and the predicted output of the model. It shows how the predicted value
of the objective function changes as a particular feature evolves, while all other features
are held constant. The core benefits of a PDP support the understanding nature of the
algorithm, especially in high-dimensional spaces, by showing the impact of individual
features on the model’s predictions as practically proven in [VII], [IX].

Figure 26 depicts the PDP that focuses on the relationship between the number of
feed-forward layers (num_ff) in a Transformer and various other hyperparameters,
including learning rate, number of epochs, batch size, weight decay, number of transformer
units, embedding dimension, and attention heads.
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Figure 26. Exemplification of a PDP in a Transformer. [VII], [IX]

Based on Figure 26, key observations in the algorithm design in the network
hyperparameters suggest that careful learning rate tuning is essential when increasing
the feed-forward layer size to avoid training instability, therefore smaller learning rates
are preferred. Higher feed-forward layers require more training epochs for convergence,
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highlighting the importance of scheduling long enough training sessions. In the batch size
choice, a number between 40 and 80 for models with larger feed-forward layers to
achieve an effective balance between computational efficiency and gradient stability,
whereas increasing feed-forward layers is beneficial, but it is required to complement
this hyperparameter with sufficient Transformer units, embedding dimensions, and
attention heads.

To conclude this subsection, Hyperparameter optimization is a critical step in
algorithm design, with methods like Random Search and Grid Search providing
foundational approaches to exploring hyperparameter space. However, these methods
often lack efficiency, as they do not incorporate information from previous evaluations,
leading to potentially wasteful sampling. In contrast, Bayesian optimization is a
sophisticated technique that intelligently navigates the search space by leveraging a
Gaussian process to model the underlying objective function. This probabilistic approach
enables the method to balance the exploration of uncharted regions with the
exploitation of areas that show promise, guided by the principle of Expected
Improvement. By estimating where future gains are most likely found, Bayesian
optimization not only enhances efficiency but also accelerates the convergence toward
optimal hyperparameters. This constructive interaction between exploration and
exploitation ensures that the optimization process is both adaptive and strategic, making
Bayesian optimization a powerful tool for Fine-tuning complex models with minimal
computational expense.

6.6 Validation

Validation in the Al field, particularly in the context of NNs, refers to evaluating the
model’s performance on a dataset separate from the training data but not yet exposed
to the final testing phase, as specified in [V]-[IX]. The primary purpose is to ensure the
algorithm’s ability to generalize well to unseen data. It prevents overfitting, and
underfitting, therefore allowing Fine-tuning of hyperparameters in the network
architecture.

As mentioned in [VII], overfitting refers to the process in which the NN learns
excessively from the training data and might perform exceptionally on that data but
poorly on new, unseen data, so Validation helps catch and mitigate overfitting by
signaling when the training should stop or the proposed Regularization techniques
specified in [VI], [VII]. On the other hand, underfitting denotes a poorly trained model
that fails to capture the underlying patterns in the data [VII], consequently, validation
scores can reveal this problem by showing persistently low-performance metrics across
training and validation sets.

According to the exceptional scientific contributions delivered in [VII]-[IX],
the Validation process must be monitored by the user to ensure robustness,
adaptability, reliability, and stability through validation scores and learning curves,
the latter, a graphical representation of the initial performance metrics in the visionary
algorithm design.

Learning curves are support tools that identify overfitting or underfitting, assist in
Hyperparameter optimization and Fine-tuning, and visually reinforce that the final
deployed model can handle real-world data effectively. To exemplify the essence of
learning curves in the visionary algorithm design of the RAGZ methodology, Figure 27,
Figure 28, and Figure 29 display the validation cases of overfitting, underfitting, and
optimal fit respectively.

74



—— Tain loss
Validation loss

Loss

| M

[ 10 20 30 40 50
epoch

Figure 27. Overfitting exemplified by learning curves in Validation. [VII]-[IX]

—— Tain loss
010 Validation loss

Loss

) 5 10 15 20 P
epach

Figure 28. Underfitting exemplified by learning curves in Validation. [VII]-[IX]
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Figure 29. Optimal fit exemplified by learning curves in Validation. [VII]-[IX]

In Figure 27, overfitting is evident as the training error continues to decrease with
each epoch, while the validation error stabilizes after a certain point and then either
increases or oscillates. This pattern indicates that the model is becoming too specialized
for the training data, leading to poor generalization of unseen data.

In contrast, Figure 28 illustrates underfitting, where the training and validation errors
remain high and stable throughout the training process. There is little to no improvement
as the training progresses, and no convergence is observed in either error curve,
suggesting that the model is too simplistic to capture the underlying patterns in the data.
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On the other hand, the optimal fit of Figure 29 is represented by training and
validation loss curves that steadily decrease over the epochs and eventually converge.
This convergence signals effective training, where both curves align closely, with the error
gap between them typically less than 1%, indicating that the algorithm is well-balanced
and generalizes effectively, without significant overfitting.

Once the behavior of the learning curves is monitored in the Validation step, the next
task consists of obtaining the performance metrics, integrated by the MSE, MAE, and
RMSE, in conjunction with the additional benchmarks proposed in [IX], which are the
Symmetric Mean Absolute Percentage Error (SMAPE), and the Residual Sum of Squares
(RSS).

For the MAE, it provides a simple and direct way to understand typical prediction
errors, especially when large magnitudes are not disproportionately penalized. In contrast,
MSE and RMSE are particularly useful because their natural interpretation emphasizes
the impact of large outliers on predictions, hence making them ideal for identifying
algorithms that produce erratic or highly inaccurate predictions for specific data points.
SMAPE, on the other hand, is particularly valuable for cases where percentage-based
error evaluations are necessary, such as in Time Series forecasting and datasets where
scale is crucial, as discussed in [VIII]. For RSS, this metric is beneficial for model
diagnostics, as it quantifies the unexplained variance and allows for the comparison of
different approaches or architectures, complementing the mathematical framework
outlined through Bayesian optimization.

The visionary algorithm design generated thousands of NNs, and only the most
optimal have been carefully saved for future use. The final algorithms are stored in
industry-standard formats such as Keras, PTH, and H5 files, ensuring both portability
and scalability. These meticulously crafted models have demonstrated remarkable
performance, reflecting the seamless integration of innovative architectures and
practical applications.

Table 9, Table 10, Table 11, and Table 12 deliver the calculated performance metrics
using K-fold cross-validation as specified in [VII] for all the NNs in each dataset that
integrates the CRs.

Table 9. Performance metrics in the Validation step for the NASA dataset.

NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
Shallow 0.02317 1.02435 1.52224 0.64998 0.64778
MLP 0.01768 0.69117 1.32962 0.44012 0.49422
DNN 0.01817 0.77788 1.34785 0.49608 0.50786
CNN-1D 0.02057 1.02211 1.43412 0.64857 0.57496
CNN-2D 0.03457 1.34452 1.85928 0.88894 0.96640
CNN-LSTM 0.02115 0.87648 1.45441 0.55094 0.59135
LSTM 0.01712 0.72823 1.30825 0.46713 0.47846
GRU 0.01763 0.74811 1.32796 0.47221 0.49299
BiLSTM 0.01843 0.87976 1.35760 0.55398 0.51524
BiGRU 0.01736 0.69113 1.31743 0.43911 0.48520
Transformer 0.02719 1.06476 1.64882 0.66459 0.76766
KAN 0.01648 0.67684 1.28367 0.43031 0.46065
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Table 10. Performance metrics in the Validation step for the CALCE dataset.

NN MSE [%] MAE [%)] RMSE [%] SMAPE [%] RSS [%]
Shallow 0.01890 0.88897 1.37491 1.30884 0.43686
MLP 0.02036 0.99073 1.42688 1.31767 0.47050
DNN 0.07248 2.29504 2.69228 3.17046 1.67505
CNN-1D 0.04325 1.74101 2.07965 2.25001 0.99946
CNN-2D 0.02217 1.05863 1.48907 1.60311 0.51241
CNN-LSTM 0.02608 1.23708 1.61489 1.73842 0.60266
LSTM 0.11850 3.01924 3.44237 3.45480 2.73843
GRU 0.01689 0.80136 1.29950 1.12311 0.39024
BiLSTM 0.03385 1.28129 1.83990 1.61716 0.78231
BiGRU 0.03932 1.67719 1.98301 2.19784 0.90873
Transformer 0.53767 6.01212 7.33259 10.36050 13.05468
KAN 0.01278 0.49460 1.13061 0.77125 0.29540
Table 11. Performance metrics in the Validation step for the RAGZ-se dataset.
NN MSE [%] MAE [%)] RMSE [%] SMAPE [%] RSS [%]
Shallow 5.11442 1.36150 2.26150 0.70796 0.01935
MLP 3.76617 1.29633 1.94066 0.71619 0.01424
DNN 4.09496 1.40277 2.02360 0.72017 0.01549
CNN-1D 8.93079 2.04643 2.98844 0.71129 0.03378
CNN-2D 5.11969 3.40471 2.26267 0.71551 0.09917
CNN-LSTM 5.57406 1.68887 2.36094 0.70572 0.02108
LSTM 7.26541 1.76505 2.69544 0.70759 0.02748
GRU 10.36267 1.89256 3.21911 0.69891 0.03920
BiLSTM 10.87812 2.12006 3.29820 0.70189 0.04115
BiGRU 6.64136 1.68658 2.57708 0.71656 0.02512
Transformer 0.00005 0.00515 0.00735 0.11981 0.00204
KAN 0.00004 0.00171 0.00205 0.10098 0.00158
Table 12. Performance metrics in the Validation step for the RAGZ-cm dataset.

NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
Shallow 0.00370 0.52151 0.60865 4.54107 0.05838
MLP 0.00133 0.33196 0.36471 4.49588 0.04185
DNN 0.00186 0.39944 0.43080 4.50839 0.05838
CNN-1D 0.00188 0.33644 0.43312 4.48826 0.05901
CNN-2D 0.00143 0.29167 0.37770 4.49088 0.04488
CNN-LSTM 0.00563 0.58733 0.75006 4.48371 0.17698
LSTM 0.00288 0.42836 0.53688 4.52585 0.09068
GRU 0.00304 0.44949 0.55121 4.51886 0.09558
BiLSTM 0.00289 0.42221 0.53758 4.52200 0.09091
BiGRU 0.00153 0.30098 0.39094 4.53861 0.04808
Transformer 0.00001 0.01964 0.02431 0.00487 0.00019
KAN 0.00047 0.10394 0.21727 0.30398 0.02537
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For CR based on RUL for NASA and CALCE datasets, the ANN results remain
competitive, especially the MLP with MSE below 0.21% and MAE under 1%. This
outperforms the DNN, which shows MAE higher than 2.20% and RMSE above 2.60% in
the NASA and CALCE datasets, respectively. The Shallow NN performs well for both
datasets, with all metrics under 1.53%, suggesting simple architectures generalize
effectively due to lower complexity. In the CNN category, CNN-1D and CNN-2D show
impressive performance, capturing local dependencies, but still have error rates over
2.50%, especially compared to CNN-LSTM, which struggles with the CALCE dataset’s
patterns. Among RNNs, GRU excels in RUL prediction, with better generalization across
both datasets, while BiLSTM has higher MSE than LSTM and BiGRU, struggling with CALCE
features. The Transformer model underperforms, especially in CALCE, with MSE of 0.53%
and SMAPE of 10.36%, due to its strength in long-sequence tasks rather than regression.
Concluding this CR, KAN consistently outperforms other models with an MSE of 0.0165%,
MAE of 0.79%, and RMSE of 1.30%, demonstrating superior accuracy and generalization
without overfitting or requiring extensive hyperparameter tuning.

Analyzing the results of the CR based on state estimation, ANNs work reasonably well,
specifically MLP with an MSE of 3.76% and RMSE of 1.94%, indicating its superior ability
to model nonlinear relationships, followed by DNN with slightly higher MSE (4.09%),
suggesting a strong but less optimized structure compared to MLP. In the CNN category,
CNN-2D performs better than CNN-1D and CNN-LSTM, with MSE of 5.11% and RMSE of
2.26%, suggesting efficient spatial feature learning, and CNN-LSTM shows competitive
results, but CNN-1D struggles, due to suboptimal feature extraction in one-dimensional
space. For RNN, GRU performs the worst, and BiGRU outperforms GRU and BiLSTM,
showing MSE lower than 6.7% and RMSE below 2.6%, suggesting bidirectional
information flow improves generalization. At the top, Transformer and KAN perform
exceptionally well with an extremely low error rate for all benchmarks with less than
0.025%.

Finalizing the validation results in the charging management and the RAGZ-cm
datasets, MLP demonstrates the best performance in the ANN category, with an MSE of
0.001% and RMSE of 0.36%, indicating excellent generalization, and Shallow NN, while
showing a reasonable MSE below 0.004%, lag behind DNN and MLP in all other metrics.
For CNN architecture, CNN-2D shows powerful performance with MSE below 0.0015%
and RMSE of 0.37%, outperforming CNN-LSTM, and CNN-1D maintains solid generalization,
indicating it efficiently extracts features for this CR. In the case of RNN, GRU shows
significant improvement in RAGZ-cm with MSE of 0.003%, indicating better sequence
learning for charging management than state estimation predictions, whereas BiGRU and
BIiLSTM perform similarly, highlighting the benefits of bidirectional recurrence. Finally,
as obtained in the RAGZ-se dataset, the Transformer and KAN achieve the best results
for all NN categories, demonstrating their robustness and adaptability, and highlighting
the MHSA mechanism that reaches less than 0.02% across different error rates for
prediction tasks in charging management.

To summarize the Validation results in the RAGZ methodology, the diverse NN
architecture explored in the visionary algorithm design have demonstrated exceptional
prowess in predicting critical aspects of battery performance, including charging
management, state estimation, and RUL for each CR. The performance of these models,
spanning from traditional architecture like MLP and Shallow NN to advanced approaches
such as CNN, RNN, and Transformer-based models, reveals a clear evolution in predictive
accuracy and generalization capabilities. Among them, the KAN emerged as the undisputed
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leader, delivering unparalleled precision and efficiency. These results underscore the
transformative potential of NNs in optimizing battery management systems, paving the
way for more authentic, intelligent, and long-lasting energy solutions.

6.7 Model Performance Analysis

In this subsection, the ultimate step of the visionary algorithm design through a
comprehensive Model Performance Analysis is explored, emphasizing the impact of
optimal network hyperparameters and rigorous testing on the accuracy, interpretability,
reliability, adaptability, and stability of the RAGZ methodology. Building on the foundation
of the NN architectures previously discussed, which have demonstrated exceptional
capabilities in CRs and user criteria, the focus will shift to obtaining the most optimal
hyperparameters through the powerful Bayesian optimization technique. By systematically
evaluating various hyperparameter configurations, the goal is to identify the settings that
maximize predictive precision and model generalization. This analysis not only highlights
the strengths of each NN category but also provides valuable insights into how
hyperparameter optimization can further enhance their applicability in real-world
battery management systems. The refined results will be presented in the Model
Evaluation section, concluding the transformative pillar of decentralization in the RAGZ
methodology.

6.7.1 Optimal network hyperparameters

Achieving optimal performance in NNs requires more than just vigorous architecture;
it demands strategic experimentation and precise optimization of key hyperparameters.
This step of the Model Performance Analysis presents a comprehensive examination of
the Training, Transfer Learning, Fine-tuning, Bayesian optimization, and Validation for
advancing model generalization and predictive accuracy.

Through rigorous iterative experimentation, optimal hyperparameter configurations
are obtained to significantly improve the efficiency and predictive power of the network
architecture based on CRs. Thanks to the visionary algorithm design approach, the results
carefully balance the exploration and exploitation of hyperparameter spaces, leveraging
advanced search strategies and transfer learning paradigms to accelerate convergence
and maximize model reliability and adaptability.

To ensure the highest level of congruency, explainability, and interpretability of the
algorithm design, the values of the corresponding network hyperparameters are given
for all NNs in each dataset. Highlighting that in the Transformer implementation for the
CR based on state estimation, the value of the gamma hyperparameter does not reach a
fixed term due to the cosine annealing, where the learning rate gradually decays
following a cosine curve.
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Table 13. Optimal network hyperparameters of the NASA dataset.

NN Batch Epochs Learning Weight Gamma Units
size rate decay
Shallow 254 500 0.00067 0.00010 0.15491 50
MLP 193 686 0.00037 0.00018 0.28115 88
DNN 245 960 0.00220 0.00943 0.99933 145
CNN-1D 114 839 0.00381 0.00012 0.64052 179
CNN-2D 113 622 0.00415 0.00931 0.21797 200
CNN-LSTM 138 982 0.00053 0.00014 0.51787 169
LSTM 100 800 0.00069 0.00001 1.00000 150
GRU 100 500 0.00054 0.00001 1.00000 135
BiLSTM 190 800 0.00106 0.00001 0.83458 100
BiGRU 200 800 0.00073 0.00001 1.00000 100
Transformer 16 200 0.00050 0.00010 0.9500 1
KAN 8 237 0.00220 0.00300 1.00000 32
Table 14. Optimal network hyperparameters of the CALCE dataset.
NN Batch Epochs Learning Weight Gamma Units
size rate decay
Shallow 184 1000 0.00852 0.00010 0.10000 150
MLP 186 903 0.00040 0.00715 0.92281 79
DNN 140 706 0.00481 0.00045 0.94007 77
CNN-1D 121 735 0.0045 0.00517 1.00000 173
CNN-2D 84 910 0.00141 0.00100 0.72541 101
CNN-LSTM 273 1000 0.00197 0.00583 1.00000 100
LSTM 100 1000 0.01000 0.00177 0.77640 155
GRU 100 1000 0.00393 0.00001 1.00000 128
BiLSTM 100 885 0.00742 0.00614 1.00000 128
BiGRU 191 803 0.01000 0.00001 0.51923 300
Transformer 128 100 0.00096 0.00003 0.57760 4
KAN 62 270 0.00220 0.00001 0.98029 16
Table 15. Optimal network hyperparameters of the RAGZ-se dataset.
NN Batch Epochs Learning Weight Gamma Units
size rate decay
Shallow 287 534 0.00032 0.00018 0.99252 115
MLP 164 780 0.00264 0.00161 0.89026 119
DNN 240 500 0.00010 0.00100 0.90000 64
CNN-1D 123 759 0.00340 0.00686 0.85708 196
CNN-2D 101 814 0.00558 0.00352 0.50953 206
CNN-LSTM 273 949 0.0077 0.00126 0.18926 318
LSTM 200 500 0.00100 0.00010 0.90000 200
GRU 200 500 0.00100 0.00001 0.90000 200
BiLSTM 200 500 0.00100 0.00010 0.90000 150
BiGRU 200 500 0.00100 0.00010 0.90000 150
Transformer 32 256 0.00100 0.00010 NA 8
KAN 171 39 0.00144 0.00010 1.00000 64
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Table 16. Optimal network hyperparameters of the RAGZ-cm dataset.

NN Batch Epochs Learning Weight Gamma Units
size rate decay
Shallow 253 621 0.00530 | 0.00071 | 0.56356 94
MLP 120 799 0.00013 0.00269 | 0.72794 78
DNN 205 846 0.00026 | 0.00772 | 0.80066 94
CNN-1D 259 602 0.00020 | 0.00077 | 0.65761 140
CNN-2D 293 639 0.00010 | 0.00159 | 0.92586 168
CNN-LSTM 117 697 0.00010 | 0.00580 | 0.99599 251
LSTM 181 864 0.00126 | 0.00039 | 0.58547 232
GRU 196 545 0.00307 | 0.00051 | 0.49582 168
BiLSTM 290 661 0.00662 0.00072 | 0.15768 248
BiGRU 285 874 0.00028 | 0.00160 | 0.81709 166
Transformer 63 450 0.00087 0.00025 0.90000 3

KAN 16 41 0.00730 1.42e-5 1.00000 16

Examining the optimal results in CALCE and NASA datasets, ANNs demand careful
tuning of learning rates and weight decay to prevent overfitting while supporting their
respective complexities, whereas CNN architectures reveal varying learning requirements
based on the complexity of their spatial and sequential feature extraction mechanisms.
In the case of RNNs, they demonstrate dataset-dependent differences in batch sizes and
epochs, with bidirectional variants benefiting from slightly more aggressive learning
rates, specifically in the BiGRU optimization. A prominent level of importance is given to
the efficient MHSA mechanism in Transformer models, which require fewer training
steps but benefit from meticulous learning rate adjustments and careful weight decay
optimization. KAN exhibits vigorous performance across both datasets, highlighting its
flexibility and efficiency in high-dimensional, nonlinear modelling tasks from fewer epochs
with carefully tuned hyperparameters.

Noteworthy interpretability for the RAGZ-se and RAGZ-cm datasets highlights the
complexity of the CRs and the importance of user criteria through dynamic and strategic
management during hyperparameter convergence. The ANN categories across both
datasets require careful tuning of the learning rate and weight decay to account for their
architectural complexities, demonstrating that Shallow NNs favor faster convergence,
while deeper models benefit from more extensive training. CNNs in both datasets
emphasize the importance of balancing the batch size and learning rate; however,
the CNN-LSTM architecture consistently requires more training but achieves stability
with careful regularization. RNN architecture exhibits a strong dependence on epoch
count and learning rate adjustments, particularly when bidirectional variants are used,
indicating that increased complexity necessitates more epochs in charge management.
Transformers consistently achieve efficient convergence with fewer training steps due to
their powerful attention mechanisms, making them highly adaptable for prediction tasks.
Finally, KAN stands out as a powerful and computationally efficient network, capable of
achieving strong predictive performance with minimal training.

By Fine-tuning pre-trained models and performing targeted validation, results
demonstrate how careful hyperparameter optimization can bridge the gap between
baseline results and optimal performance in complex learning tasks. The findings
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contribute valuable insights to the ongoing pursuit of best practices in Al and BESS
development, offering practical guidance for pioneering solutions in NN design and
optimization.

6.7.2 Model evaluation

In this comprehensive Model evaluation, the intricacies of advanced NN architectures
are delved into assessing their performance in tackling a wide range of complex and
dynamic problems. This evaluation provides valuable insights into the unique capabilities
of Al methods, offering a detailed comparison of their efficiency, scalability, and
interpretability in addressing issues that involve intricate data relationships, non-linearity,
and high dimensionality.

Each NN has been carefully chosen for its unique strengths: the ANN for its versatility,
CNN for pattern recognition, RNN for sequential Data processing, and Transformers for
their exceptional handling of contextual relationships. The KAN approach, an avant-garde
journey of complexity theory, unveils a profound and insightful perspective on the art of
data transformation and the discovery of intricate patterns. Table 17, Table 18, Table 19,
and Table 20 show the results of each NN for all the datasets demanded in the CR.

Table 17. Performance metrics in the Model evaluation step for the NASA dataset.

NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
Shallow 0.0450 1.3604 2.0674 0.8654 1.3512
MLP 0.0395 0.9383 1.9263 0.5973 1.1837
DNN 0.0406 1.0876 1.9547 0.6877 1.2458
CNN-1D 0.0454 1.3886 2.0635 0.8694 1.3471
CNN-2D 0.0616 1.5796 2.4158 1.0444 1.7632
CNN-LSTM 0.0443 1.0932 2.0379 0.6886 1.3075
LSTM 0.0398 1.0412 1.9321 0.6620 1.1858
GRU 0.0402 1.0748 1.9448 0.6751 1.2179
BiLSTM 0.0423 1.2180 1.9907 0.7602 1.2719
BiGRU 0.0402 1.0081 1.9437 0.6371 1.2121
Transformer 0.0658 1.4934 2.4757 0.9130 1.8789
KAN 0.0398 0.9827 1.9300 0.6202 1.2013

Table 18. Performance metrics in the Model evaluation step for the CALCE dataset.

NN MSE [%] MAE [%] | RMSE[%] | SMAPE[%] | RSS [%]
Shallow 0.0256 1.0196 1.5983 1.5016 0.5184
MLP 0.0284 1.1577 1.6811 1.5373 0.5731
DNN 6.4548 4.9827 2.5406 1.1109 0.1072
CNN-1D 0.0536 1.8953 2.3075 2.4822 1.0757
CNN-2D 0.0296 1.1936 1.7155 1.8383 0.5960
CNN-LSTM 0.0339 1.3615 1.8384 1.9424 0.6844
LSTM 0.1391 3.2458 3.7180 3.7005 2.7977
GRU 0.0230 0.9085 1.5131 1.2345 0.4654
BiLSTM 0.0471 1.5119 2.1504 3.7005 2.7977
BiGRU 0.0487 1.8282 2.2021 2.4112 0.9834
Transformer | 0.6700 6.6900 8.090 14.1100 13.200
KAN 0.0189 0.6013 1.3721 0.8602 0.3841
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Table 19. Performance metrics in the Model evaluation step for the RAGZ-se dataset.

NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
Shallow 5.8435 4.3209 2.4173 1.2089 0.0833
MLP 5.6862 4.0399 2.3845 1.1097 0.0804
DNN 6.4548 4,9827 2.5406 1.1109 0.1072
CNN-1D 6.3010 4.7146 2.5101 1.0865 0.0972
CNN-2D 13.7307 47146 3.7054 1.0998 0.6314
CNN-LSTM 5.4700 3.9751 2.3388 1.1003 0.07243
LSTM 5.8797 4.4196 2.4248 1.2133 0.0836
GRU 7.3483 5.5897 2.7107 1.2155 0.1370
BiLSTM 6.6670 4,9944 2.5820 1.2165 0.1104
BiGRU 7.1920 5.2865 2.6817 1.2257 0.1339
Transformer 0.0001 0.0094 0.0118 0.3735 0.3019
KAN 0.0212 0.0913 0.1057 0.6848 0.6261

Table 20. Performance metrics in the Model evaluation step for the RAGZ-cm dataset.

NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
Shallow 0.6447 4.3376 5.5511 5.7479 9.5047
MLP 0.4804 4.5616 5.0035 5.4822 8.4320
DNN 0.7813 6.8438 7.3328 5.6038 2.1376
CNN-1D 0.0485 4.0607 4.7004 5.5456 6.7605
CNN-2D 0.5184 4.0058 4.8730 5.6241 7.2353
CNN-LSTM 0.7826 6.0449 6.8296 5.7205 15.9713
LSTM 0.6099 4.3703 5.2720 5.6751 8.4580
GRU 0.5663 4.0648 4.8653 5.6184 6.9597
BiLSTM 0.5648 4.2450 4.8473 5.5668 6.8966
BiGRU 0.7874 5.4390 6.5476 5.8298 14.0386
Transformer 0.2806 0.6508 0.8870 0.2514 0.1470
KAN 0.0107 0.4103 0.5006 1.5798 0.1715

For the NASA and CALCE datasets, ANN models rely heavily on proper tuning and
model depth, MLP is the algorithm that stands out due to its ability to oversee non-linear
patterns efficiently. In the CNN category, CNN-LSTM consistently outperforms standalone
CNNs, suggesting the importance of temporal feature extraction in predictive modelling
for both datasets. Considering RNNs, GRU consistently delivers superior performance,
suggesting their efficiency in capturing temporal dependencies without the complexity
of LSTM, on the other hand, BiLSTM exhibits moderate errors, while BiGRU continues to
be strong with an MSE of 0.0487% and RMSE of 2.20%. The Transformer struggles to
achieve competitive performance, with the highest MSE of 0.0658% and RMSE of 2.47%
in the NASA dataset, whereas, in the CALCE, the performance remains in the same range
as the Validation step and lower compared to the other categories of NNs, indicating that
the complexity of the task may not align well with the MHSA architecture’s strengths.
KAN emerges as an exceptionally strong and efficient NN, setting itself apart in the
domain of RUL prediction, demonstrating an unparalleled aptitude for navigating
nonlinear relationships with minimal training, and proving to be an exemplary choice for
this CR, with an error rate consistently below 1.94% across all performance metrics.
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In the RAGZ-se dataset, Shallow NN has an MSE of 5.84% and RMSE of 2.41%,
indicating moderate performance but higher errors compared to the other categories of
ANNSs. DNN shows slightly worse errors due to the complex nature of the dataset, and
MLP performs the best among ANNs with the lowest MSE of 5.68% and RMSE of 2.38%,
showing strong generalization for this CR. In the case of CNNs, both CNN-1D and CNN-2D
predictions indicate poor feature extraction from spatial dependencies compared to
CNN-LSTM, which performs the best among CNN with an MSE of 5.47% and RMSE of
2.33%. LSTM and BiLSTM in the RNN category demonstrate competitive performance
with MSEs of 5.87% and 6.66%, respectively, BIGRU and GRU show slightly higher errors
that exceed 7.00%. The Transformer achieves the best overall results, with an
impressively low MSE of 0.0001%, RMSE lower than 0.012%, and the lowest SMAPE of
0.37%, confirming its superior generalization capability. Compared to traditional NNs,
KAN demonstrates excellent performance after the Validation step with an error rate of
less than 0.70% for all performance metrics, indicating strong prediction capabilities in
the CR based on state estimation.

In the context of RAGZ-cm within the ANN category, the MLP stands out with its
superior learning efficiency and exceptional generalization capabilities, outshining both
Shallow NN and DNN. Conversely, the underperformance of the DNN underscores its
vulnerability to intricate challenges and heightened non-linearity, as previously observed
in state estimation. When it comes to CNN architectures, the CNN-1D yields more
promising results than CNN-2D; however, the CNN-LSTM’s remarkable ability to
seamlessly integrate temporal and spatial feature extraction propels its performance to
the forefront, achieving an MSE of 0.78% and an RMSE of 6.82%, making it the preferred
choice for temporal-spatial data. While RNNs, with their well-established sequential
modelling, show promise, BiGRU exhibits slightly elevated errors, surpassing the 6.50%
threshold in RMSE and SMAPE. In contrast, the GRU maintains an ideal balance of
efficiency and accuracy with errors lower than 5.70%, surpassing LSTM variants due to
its streamlined architecture and powerful temporal feature extraction. The Transformer
continues to exhibit unparalleled stability, boasting an MSE of 0.28%, an RMSE of 0.88%,
and retaining the lowest SMAPE at 0.25%. KAN exemplifies extraordinary efficacy in
charging management, achieving error rates under 1.58%, whose remarkable mechanism
to adeptly manage nonlinear relationships without falling prey to overfitting firmly
establishes it as a pioneering solution on the forefront.

The performance metrics in the Model evaluation are nothing short of compelling,
providing undeniable evidence of the profound impact and potential of the RAGZ
methodology, and exemplify a truly extraordinary synergy between DL techniques and
groundbreaking theoretical advancements in the CRs. These findings not only redefine
the limits of what is possible in ML but also represent a monumental leap toward the
realization of more intelligent, adaptive, and efficient algorithms. The results speak for
themselves, with performance metrics far surpassing expectations, serving as a resounding
testament to the transformative power of these innovative NN paradigms.

6.8 Chapter summary

Driven by the constructive collaboration of advanced network architectures such as ANN,
CNN, RNN, Transformers, and KAN, this visionary algorithm design delivers unparalleled
value in the BESS field. By seamlessly integrating rigorous Training, Fine-tuning, and
Hyperparameter optimization guided by Bayesian principles, it offers innovative solutions
tailored to user criteria and CR needs.
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Specifically, the system excels in all the critical areas of the RUL, providing accurate
insights into battery longevity to optimize operational decisions. Its state estimation
capabilities ensure precise monitoring of battery health and performance metrics,
fostering safer and more efficient usage. Additionally, advanced charging management
strategies optimize energy delivery, reducing degradation while enhancing charging
speed and efficiency.

Through meticulous validation, and testing in the Model Performance Analysis, this
groundbreaking approach transforms complex challenges into elegant solutions, setting
distinguished standards for intelligent battery management and driving progress in
energy sustainability and technological advancement.

The RAGZ methodology emphasizes comprehensive visionary algorithm design,
employing a layered validation and testing pipeline to ensure the model’s accuracy,
generalizability, stability, reliability, interpretability, and explainability. By employing
Bayesian optimization, the system identifies hyperparameters that maximize model
efficiency, minimizing computational overhead while delivering top-tier results.
Furthermore, fine-tuned calibration ensures that the algorithm adapt seamlessly to
dynamic operating conditions, maintaining peak performance even under fluctuating
load profiles.

This trailblazing approach transforms intricate challenges into refined, scalable
solutions, setting unique benchmarks for intelligent battery management. With its
commitment to sustainable energy practices and technological advancement, this
groundbreaking design stands as a beacon of innovation, driving the future of energy
storage towards greater efficiency, resilience, and environmental harmony.
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7 Unleashing RAGZ methodology and future work to accelerate
Al-powered battery solutions

In an era defined by an immense variety of demands of a BESS, the RAGZ methodology
has dived into the pillars of digitalization and decentralization, so in the decarbonization
pinnacle, this groundbreaking methodology unlocks unprecedented frontiers for energy
innovation by harmonizing Al with advanced battery technologies. Guided by six
transformative steps, it crafts pioneering solutions that address evolving energy demands
with precision and foresight.

The journey begins with a comprehensive analysis of market dynamics and
operational landscapes, ensuring a deep understanding of foundational framing and
opportunities to create a future-ready energy roadmap. This foundation continuously
transitions into a meticulous alignment with CRs, where user expectations, regulatory
compliance, and market trends converge to guide solution development.

Building on this, dynamic and strategic management frameworks are implemented,
fostering resilience and adaptability in the face of technological and environmental
evolution. This agile approach sets the stage for integrating User-Centric Al innovations,
embedding intelligent algorithms at the core of operations to deliver Data-Driven insights
for enhanced energy management, predictive maintenance, and smooth optimization of
battery systems.

At the core of this transformative process is the visionary algorithm design step.
By harnessing the power of advanced NN architectures such as ANNs, CNNs, RNNs,
Transformers, and KANs, sophisticated computational intelligence is unleashed, enabling
the solution of complex challenges with unmatched precision. The culmination of this
methodology is embodied in cutting-edge solutions that are both sophisticated and
scalable, redefining battery energy storage systems through predictive analytics, state
estimation, and intelligent charging management strategies.

Considering the RAGZ methodology and presented novelties, future work in the
framework as a scientist and scholar involves the following tasks:

e Coding validation and characterization in thermal, electrochemical, and
mechanical phenomena.

e Model-based framework for predicting non-linear behavior in connection
with Al methods.

e Electrochemical modelling and remote-control operation.

This forward-thinking framework empowers the energy sector with intelligent,
sustainable solutions that transcend traditional boundaries. It transforms complex
challenges into elegant opportunities, driving progress toward a cleaner, smarter, and
more resilient energy future through pioneering applications that illuminate the path to
global energy transformation.

7.1 Charting new horizons through pioneering energy applications

In an age defined by complexity, innovation, and the relentless pursuit of efficiency,
the RAGZ methodology emerges as a transformative force across diverse domains.
By harmoniously integrating the pinnacles of digitalization, decentralization, and
decarbonization, energy applications are empowered to push the boundaries of
possibility, creating a future fueled by intelligence and sustainability.
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The promise of this groundbreaking framework shines brightly in three critical areas:
Research and Development (R&D), Consulting, and High-Performance Computing (HPC)
for decision-making. In R&D, the proposed pioneer’s solutions redefine battery systems,
leveraging Al-driven insights to extend battery life, optimize energy usage, and foster
technological advancements. For Consulting, the groundbreaking approach innovates
decision-making and operational strategies, helping organizations craft tailored,
Data-Driven approaches that ensure agility, efficiency, and sustainable growth.
Meanwhile, in HPC, the RAGZ methodology unleashes unprecedented computational
power to solve complex problems, enabling leaders to make faster, smarter decisions
backed by real-time analytics and predictive intelligence.

With its bold, future-forward vision, the RAGZ methodology bridges innovation with
practicality, offering scalable, intelligent solutions for dynamic enterprises, and paving
the way for a smarter, greener, and more resilient tomorrow.

7.1.1 Research and Development (R&D)

The RAGZ methodology, consolidated as an innovative framework that harmonizes Al
with cutting-edge advancements in battery technologies, holds immense potential for
transformative R&D applications. By fusing the pillars of digitalization, decentralization,
and decarbonization with intelligent algorithm design, RAGZ becomes a strategic compass
for pioneering solutions that redefine energy storage systems and sustainable power
management.

One of the most promising research applications lies in predictive battery analytics.
Leveraging Al-driven models built upon RAGZ's visionary algorithm design, researchers
can develop sophisticated tools for accurate RUL and health monitoring. These innovations
will enhance battery performance diagnostics, enabling more efficient resource allocation
and extending battery lifespan. Such breakthroughs are essential for industries ranging
from electric vehicles to renewable energy storage solutions.

The methodology also opens doors for advanced SOC and SOH systems. Traditional
methods often rely on static models that struggle under dynamic operating conditions.
The RAGZ approach introduces adaptable NNs, such as RNNs, Transformers and KANs,
that continuously learn and optimize, offering unparalleled precision in real-time battery
state tracking. This capability is critical for maximizing efficiency and safety in grid-scale
energy storage and decentralized power networks.

In the field of smart charging management, User-Centric Al innovations enable the
development of adaptive charging algorithms that intelligently balance speed and
degradation rates. By integrating strategic decision-making processes with ML, researchers
can create next generation charging systems that optimize energy flow while reducing
wear on batteries. This advancement will significantly benefit fast-charging stations for
electric vehicles and energy storage hubs for smart grids.

Moreover, the decarbonization of energy systems can be accelerated through
Al-augmented energy forecasting and charging management solutions derived from the
RAGZ methodology. By combining dynamic and strategic management frameworks with
Data-Driven insights, researchers can design systems that optimize energy distribution
based on demand fluctuations and renewable energy availability. This capability not only
reduces computational complexity but also supports the seamless integration of
decentralized renewable energy sources.
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Lastly, the RAGZ methodology encourages innovation in the development of a DT for
energy storage systems. These virtual models, powered by Al and advanced NNs, such as
KANs and Transformers, will enable researchers to simulate, assess, and optimize battery
performance under various scenarios without risking physical assets. The insights gleaned
from such simulations will drive more resilient and efficient battery designs, fostering an
incipient wave of technological advancements in sustainable energy solutions.

By embracing the RAGZ methodology, R&D in the energy sector is poised for a
renaissance of innovation. This paradigm shift will empower researchers to push the
boundaries of battery technology, creating intelligent, adaptive, and sustainable solutions
that meet the demands of a rapidly evolving energy landscape. The future of energy
storage is bright, with RAGZ leading the charge toward a smarter, cleaner, and more
resilient world.

7.1.2 Consulting

The RAGZ methodology, a forefront framework that flawlessly blends Al, strategic
management, and algorithm design, offers transformative potential for consulting. RAGZ
methodology empowers organizations to unlock Data-Driven insights, optimize operations,
and achieve sustainable growth. By addressing modern research challenges with precision,
this methodology becomes a significant change for consultants seeking to deliver value
across diverse scientific and technological fields.

One promising application lies in predictive operational strategy development.
By leveraging the algorithmic power of RAGZ methodology, consultants can craft highly
adaptive strategies that forecast market trends, resource requirements, and operational
risks with unparalleled accuracy. This capability enables engineering and research to
transition from reactive decision-making to initiative-taking leadership, positioning them
ahead of their competitors.

Performance optimization through Al-driven process intelligence is another vital area
where this tremendous approach shines. Traditional consulting models often rely on
retrospective analysis, but RAGZ’s dynamic and strategic management frameworks allow
for continuous real-time optimization. ML, and DL algorithms embedded within the
visionary algorithm design empower the consultants to identify bottlenecks, streamline
workflows, and recommend actionable improvements, driving significant gains in efficiency
and profitability.

In the field of supply chain, the methodology introduces intelligent solutions for
demand forecasting, inventory management, and energy storage optimization.
By integrating decentralized data streams and applying advanced predictive analytics,
consultants can help businesses build resilient and sustainable supply chains that
respond seamlessly to market fluctuations and disruptions. This approach fosters
operational agility while reducing waste and carbon footprints.

RAGZ methodology also redefines consulting through the development of personalized,
Al-driven engagement strategies. By analyzing dynamic patterns, consultants can design
tailored experiences that anticipate needs and preferences, leading to increased loyalty
and revenue growth. The methodology’s user-centric Al innovations ensure that consulting
remains agile and responsive to evolving expectations.

Moreover, the RAGZ methodology plays a pivotal role in sustainability consulting,
enabling industries to meet environmental, social, and governance (ESG) goals through
Data-Driven decarbonization strategies. By harnessing RAGZ’s advanced modelling
capabilities, consultants can design energy-efficient operational models and recommend
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sustainable resource allocation strategies. This not only positions consulting as leaders
in sustainability but also unlocks long-term cost savings and regulatory advantages.

Finally, the RAGZ methodology empowers consultants to develop DTs for organizations,
simulating operations and market conditions in virtual environments. These models
provide a safe and scalable platform for testing strategic initiatives, optimizing resource
allocation, and evaluating potential risks without disrupting real-world operations.

By welcoming the RAGZ methodology, consultants can deliver smarter, more impactful
solutions that drive innovation, resilience, and sustainability of energy storage systems.
This game-changing procedure positions consulting firms as strategic partners in shaping
the future of consulting, helping organizations thrive in a dynamic and rapidly evolving
marketplace.

7.7.3 High Performance Computing (HPC) for decision-making

The RAGZ methodology, leveraging its innovative framework that coordinates advanced Al,
strategic management, and visionary algorithm design, paves the way for groundbreaking
applications in HPC for decision-making. Strengthening the pillar of digitalization,
the RAGZ methodology unleashes computational power to transform complex data into
actionable insights, redefining how organizations make strategic decisions in real time.

One of the most promising applications of the RAGZ methodology in HPC lies in
real-time scenario simulation and predictive analytics. By harnessing the immense
computational capabilities of HPC systems and sophisticated NNs embedded into
the RAGZ methodology, decision-makers can simulate intricate operational, and
environmental scenarios at unparalleled speed and accuracy. This allows leaders to
anticipate market trends, optimize resources, and respond proactively to potential
disruptions, ensuring a competitive edge in rapidly evolving industries.

Additionally, the methodology supports multi-objective optimization for complex
decision frameworks. Traditional decision-making models often struggle to balance
competing priorities such as cost, efficiency, and sustainability. The RAGZ framework,
powered by HPC, processes vast amounts of data in parallel, applying dynamic
optimization techniques to provide decision-makers with trade-off analyses and optimal
recommendations tailored to specific contexts. This approach is particularly valuable for
industries like manufacturing, logistics, and energy management.

Another transformative application is found in resource allocation and scheduling
optimization. Leveraging advanced NNs and ML models, the RAGZ methodology enables
HPC systems to solve complex combinatorial problems in real time, such as fleet
management, production scheduling, and supply chain coordination. These capabilities
drive significant gains in operational efficiency and cost reduction, empowering
organizations to make smarter, faster decisions with precision.

The methodology’s focus on user-centric Al innovations further amplifies
decision-making processes through intelligent recommendation systems. By analyzing
diverse and decentralized data sources, RAGZ methodology enhances HPC systems by
delivering personalized insights to executives and stakeholders, helping them navigate
uncertainty with confidence. This capability fosters more inclusive and informed
decision-making at all organizational levels.

Furthermore, the proposed framework advances risk assessment and resilience
modelling. With HPC’s ability to perform massively parallel computations, organizations
can model complex risk scenarios across multiple dimensions in the energy sector, such
as financial, operational, and environmental, while identifying strategies to mitigate
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vulnerabilities. This is crucial for industries seeking to build resilience in an era of climate
change, geopolitical uncertainty, and supply chain disruptions.

Lastly, the integration of this thesis with HPC facilitates the creation of DTs for decision
environments. These virtual replicas of organizational systems, market dynamics, and
operational processes empower decision-makers to evaluate strategies, optimize resource
allocation, and evaluate potential outcomes without real-world consequences. The insights
gleaned from such digital ecosystems drive smarter, more strategic decisions.

By adopting the RAGZ methodology within HPC, organizations gain access to
unparalleled computational intelligence for superior decision-making. This transformative
approach empowers leaders to navigate complexity with clarity, driving innovation,
efficiency, and sustainability across industries. As a beacon of computational excellence,
the tremendous potential of this thesis reshapes the decision-making landscape, heralding
a future where Data-Driven intelligence and strategic foresight lead the way.

7.2 Powering a decarbonized world for everyone and conclusions

The author of this thesis, a proud precursor of different branches of knowledge, has the
vision of giving continuity to the RAGZ methodology in honor of all his work, effort, and
dedication over the years, from his beginnings in industrial physical engineering,
specializing in energy systems and data science, to reaching transcendence with Al
applied to autonomous systems.

The mission for the future is to strengthen strategic planning and decision-making
processes through research and consulting in competitive and technological intelligence
for innovation, providing alternatives for companies to be at the forefront of innovation
and increase their competitive position. This mission stems from a legacy instilled in the
author by the Instituto Tecnoldgico de Estudios Superiores de Monterrey (ITESM),
Campus Monterrey, his alma mater, from an early age, and on which the three pillars
proposed in the RAGZ methodology originate: digitalization, decentralization and
decarbonization. Additionally, the author’s forethought involves training ethical, honest,
and humanistic professionals through the RAGZ methodology. This approach cultivates
professionals who are not only internationally competitive in their field but also
dedicated to economic, technological, and scientific progress, as well as the sustainable
use of natural resources.

Promoting the values and principles of the master’s degree in energy awarded by
Mines Paris - PSL, the RAGZ methodology is presented as selective and committed to
equal opportunities, aimed at researchers, entrepreneurs, engineers, and managers who
are aware of their individual and collective social responsibility.

In conclusion, the RAGZ methodology is introduced to Estonia as a catalyst for
fostering cooperation and collaboration, offering a visionary approach to propel the
country’s growth. This vision is intricately aligned with the economic, scientific,
technological, and business needs of not only Estonia but also the broader European
Union, particularly within the energy sector. The enduring impact of this contribution
rests in the shared interests between the author and the relevant entities, united in their
pursuit of a greater good for future generations.
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Abstract

Artificial Intelligence-Based Predictive Analytics for Battery
Energy Storage Systems in Electric Vehicle Applications

In today’s world, energy technologies have become indispensable, playing a pivotal role
across a multitude of sectors, with the Battery Energy Storage System (BESS) emerging
as a cornerstone and catalyst for the global energy transition. Despite their immense
importance, the design, construction, and operation of a BESS present formidable
challenges, influenced by a myriad of user-specific criteria, project demands, and needs.
Consequently, vigilant monitoring of BESS performance is not merely advisable but
essential, ensuring both operational reliability and minimization of costly downtime.

This thesis introduces a tremendous methodology for optimizing the overall
performance of a BESS by integrating diverse disciplines of expertise, including Electrical
Engineering, Mechatronics, Computer Science, Software Engineering, Energy Engineering,
and Data Engineering. At its core, the methodology lays a solid foundation by presenting
the most advanced battery models, aligning them with precise requirements, and
utilizing avant-garde technological tools within a sophisticated programming environment.
This multidisciplinary approach not only enhances the functionality of the system but
also ensures its reliability, explainability, interpretability, and adaptability across various
applications.

In the practical segment of this thesis, considerable emphasis was placed on the
extensive and intricate implementation of code, leveraging Python as the primary
programming language. This effort encompassed development, rigorous validation, and
thorough evaluation of the most sophisticated Artificial Intelligence (Al) methods.
To ensure the utmost authenticity and precision in the outcomes, the algorithm design
was meticulously crafted from the ground up, transcending traditional approaches and
pushing the boundaries of computational innovation. Moreover, a profound exploration
of stochastic methods was undertaken, underscoring the critical importance of Bayesian
optimization in shaping the future of next-generation battery solutions. By harnessing
these trailblazing techniques, the research aims to illuminate novel pathways for
enhancing the path of the energy storage sector, setting the stage for transformative
advancements in the field.

In forthcoming endeavours, the author envisions the continuation and further
refinement of the proposed research, focusing on the validation and detailed
characterization of more complex battery phenomena, with particular attention to
non-linear aging processes and electrochemical approaches, harmonized with Internet
of Things technologies and Al methodologies. This convergence of pioneering tools and
techniques will not only enhance the depth of battery research but also lay the
foundation for more dynamic, responsive systems in the energy sector.

Furthermore, fostering ties of cooperation and collaboration is a strategic imperative.
Such alliances empower research groups to facilitate the participation of their collective
expertise and resources, ensuring they are well-positioned to tackle the ever-evolving
challenges within the interdisciplinary landscape. In doing so, PhD holders contribute to
the collective advancement of society, underscoring their roles as scientists and scholars,
while supporting the broader goals of global warming and peacebuilding.
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Lihikokkuvote

Tehisintellektil pdhinev ennustav andmeanaliiiis akupohiste
energiasalvestussiisteemide jaoks elektrisdidukites

Tdanapdeva maailmas on energiatehnoloogiatest saanud asendamatud komponendid,
mangides keskset rolli mitmetes valdkondades. Akupdhiste energiasalvestussiisteemid
(AESS) on esile kerkinud kui Gilemaailmse energiapoorde tugisambad ja katallsaatorid.
Hoolimata nende olulisusest on AESS-i projekteerimine, ehitus ja kditamine darmiselt
keerulised, kuna neid mdjutavad paljud kasutajaspetsiifilised kriteeriumid, projektinduded
ja vajadused. Seetéttu ei ole AESS-i jdudluse hoolikas jadlgimine Uksnes soovitatav, vaid
hadavajalik, tagamaks to66kindlus ja vahendamaks kulukat seisakuaega.

Kaesolev doktorito6 tutvustab murrangulist metoodikat AESS-i (ldise joudluse
optimeerimiseks, integreerides erinevaid valdkondi, nagu elektrotehnika, mehatroonika,
informaatika, tarkvaraarendus, energiatehnika ja andmeinseneeria. Selle metoodika
tuumaks on arenenumate akumudelite esitlemine, nende vastavusse viimine tidpsete
nouetega ning tipptasemel tehnoloogiliste tooriistade rakendamine keerukas
programmeerimiskeskkonnas. See interdistsiplinaarne lahenemine suurendab mitte
ainult susteemi funktsionaalsust, vaid tagab ka selle tookindluse, seletatavuse,
tGlgendatavuse ja kohandatavuse erinevates rakendustes.

Too praktilises osas keskenduti pdhjalikule ja keerukale koodi rakendamisele,
kasutades peamise programmeerimiskeelena Pythoni. Selle kadigus tootati valja,
valideeriti ja hinnati kdige arenenumaid tehisintellekti meetodeid. Tulemuste
maksimaalse tdpsuse ja usaldusvadrsuse tagamiseks loodi algoritmid algusest peale,
Uletades traditsioonilisi Idhenemisi ja nihutades arvutusliku innovatsiooni piire. Lisaks
viidi labi p&hjalik uurimus stokastiliste meetodite kohta, réhutades Bayesi optimeerimise
kriitilist rolli jargmise polvkonna akulahenduste kujundamisel. Neid uuenduslikke
tehnikaid rakendades plilitakse avada wuusi suundi energiasalvestuse sektori
arendamiseks ja sillutada teed valdkonna murrangulistele edusammudele.

Tulevastes uurimistoddes ndeb autor ette pakutud metoodika jatkamist ja
edasiarendamist, keskendudes keerukamate akuprotsesside valideerimisele ja pShjalikule
iseloomustamisele, podrates erilist tahelepanu mittelineaarsetele vananemisprotsessidele
ja elektrokeemilistele ldhenemistele, mis on kooskdlas asjade interneti tehnoloogiate ja
tehisintellekti metoodikatega. Nende tipptasemel tdoriistade ja tehnikate koostoime
siivendab mitte ainult akude uurimist, vaid loob ka aluse dinaamilisematele ja
reageerimisvéimelisematele slisteemidele energiasektoris.

Samuti on strateegiliselt oluline edendada koostdodvorgustikke ja teadusalast
partnerlust. Sellised liidud vdimaldavad uurimisriihmadel (ihendada oma teadmised ja
ressursid, et paremini toime tulla interdistsiplinaarse maastiku (ha muutuvate
véljakutsetega. Nii panustavad doktorikraadiga teadlased Uhiskonna arengusse, taites
oma rolli teadlaste ja akadeemikutena ning toetades samal ajal lleilmseid eesmarke,
nagu kliimamuutuste leevendamine ja rahu edendamine.
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1 | INTRODUCTION

Anton Rassdlkin | Toomas Vaimann | Ants Kallaste

Abstract

The demand for energy is a relevant topic in the field of science and engineering, which
has been discussed throughout the last years due to the challenges of climate change
and environmental concerns around the world. Currently, electric vehicles (EVs) offer a
source of mobility that emphasises the use of energy storage devices to reduce CO,
emissions. The growing development of advanced data analytics and the Internet of
Things has driven the implementation of the Digital Twin (DT), all to improve effi-
ciency in the build, design and operation of the system. Regarding the components of
EVs, the batteries are considered as the most expensive elements to analyse according
to the State of Health and the State of Charge, which lead to implement the most
optimal models, along with a DT for battery systems. The present article provides a
literature review about the current development trends of EVs' energy storage tech-
nologies, with their corresponding battery systems, which gives an overview to un-
derstand different type of models and to identify future challenges in the industrial
sector. Additionally, a solid explanation of the DT focussed on battery systems for
EVs is discussed, highlighting some study cases, characteristics, and technological
opportunities.

KEYWORDS

artificial intelligence and data, battery powered vehicles, electric vehicles

based on propulsion technologies. According to Refs. [1-3],
the five categories are listed as follows :

The electric market has been a point of concern in the research
and development (R&D) field across the world, which has
given the potential use of electric vehicles (EVs) to support
climate change emissions and improve the way of living, It has
been a growing trend of EVs since the last decade due to
several advantages and economic benefits they offer. In 2021,
Sanguesa et al. [1] conducted a study that shows the current
challenges and technologies for EVs; among the most
important contributions, we find the simplicity and reliability
of the manufacturing maintenance, operation efficiency,
accessibility, comfort, and zero emissions. It is important to
mention that EVs have been classified into several categories

® Battery EVs: This type of vehicle works using electric po-
wer; therefore, neither an internal combustion engine nor a
liquid fuel is used in the operating mechanism

® Plug-in-hybrid EVs: Have the characteristics of being pro-
pelled by both an electric engine charged by a pluggable
external source and a conventional combustible engine. It is
fundamental to specify that this category of vehicles can be
connected to the grid, which contributes to the reduction of
fuel consumption in regular driving scenarios.

® Hybrid EVs: This category of vehicles is mobilised through
electric and conventional motors, the battery that provides

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
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GILBERT ZEQUERA ET AL

energy to the electric motor has the mechanism of being
charged due to the one generated in the vehicle's combus-
tion engine

® Extended-range EVs: This vehicle is equipped with a sup-
plementary combustion engine that enables it to charge the
battery when it is needed. It is important to say that the
main difference in comparison with the plug-in hybrid and
hybrid EVs relies on the engine that is used for charging
purposes. Consequently, it does not integrate the connection
of the wheels' vehicle.

® Fuel Cell EVs: This vehicle is provided with a fuel cell that
works through chemical reactions, using a mix of com-
pressed hydrogen and oxygen obtained from the air.

One of the most critical elements of EVs is the batteries,
which are expensive components that not only affect the
overall cost but also their capacity and charging time. Ac-
cording to Ref. [4], the most expensive element in the EV is
the battery pack. Regarding the performance of the battery in
EVs, there are several challenges and limitations that have been
a point of interest for the scientific community, which are bulk
and weight, charging time, driving range, and battery cost. In
the following sections, the challenges will be analysed and
discussed to familiarise the reader with the aim and focus of
this research.

Currently, academic and industrial R&D institutions are
focussed on different issues related to EVs' storage systems,
some of which are the application of modelling to understand
not only physical behaviour, but also the engineering frame-
work of the system. According to the literature review, there
are different categories of battery models, which are based on
the properties of the batteries, available data, physical inter-
pretation, mechanical and thermal analysis etc. [5]. This study
will focus on three main categories, which are electrochemical,
electrical, and mathematical, all because of the promising ap-
plications that are applied using these models in the sustainable
and renewable field.

Electrochemical models are defined as the most complex
and precise due to the thermodynamic and kinetic phenomena
that explain the behaviour of the cell. Mass transfer, diffusion,
ion distribution, and electrode theory implement time-
dependent  differential which  require  high
computing performance, so order-reduced methodologies and
parameter model identification are considered challenging
tasks to accomplish during this model implementation [5].

Mathematical models have been classified into two main

equations,

categories: stochastic and empirical [6]. Empirical models
describe the specific behaviour of the system using mathematical
equations with certain boundary conditions and initial parame-
ters that accomplish real-time parameter identification; however,
these models have the disadvantage of achieving errors in the
range of 5%—-20% [5]. Stochastic models, on the other hand,
provide accurate performance and fast speed that are based on
the discrete-time Markov chain. Nonetheless, a hybrid meth-
odology is required to apply parameter identification, which in
some cases increases the complexity of the model [5].

Electrical models are based on equivalent circuit analysis
that recreates the operating system of the batteries; it is
fundamental to point out that this category of models is faster
than electrochemical models but has the drawback of
neglecting high parameters in detail, such as dynamic behav-
iour [6].

The increasing development of EVs provides the way for
new technologies that complement the application of battery
models to monitor not only the physical system but also the
operation process in real time; therefore, the innovative and
promising DT is emerging to strengthen both sustainability
and Internet of Things (IoT) fields.

Since the year 2003, the concept of DT has been evolving
and experiencing several definitions in the literature review,
which consistently creates a lack of consistency and dilutes the
concept not only for the research sector but also for industrial
applications. In 2020, Jones et al. published a research paper
that explains and illustrates the concept of DT [7], which is
mainly defined by the CIRP Encyclopaedia of Production
Engineering as follows [8]:

A DT is a digital representation of an active unique
product (real device, object, machine, service, or intangible
asset) or unique product-service system (a system consisting of
a product and a related service) that comprises its selected
characteristics, properties, conditions, and behaviours by
means of models, information, and data within a single or even
across multiple life cycle phases.

Several scientific studies have been conducted to expand
the knowledge of DT and its applications in Energy Storage
Systems (ESSs) to improve the building, design, and operation
of EVs. In 2020, Li et al. [9] developed a Battery Management
System (BMS) to build up a DT that diagnoses the SOC and
SOH. In the same manner, Wu et al. [10] pointed out the
promising connection between data and artificial intelligence to
create a battery digital twin, and in 2021, Singh et al. [11]
identified different efforts and proposed future academic and
industrial research to implement functionalities and benefits of
the battery DT.

Recently, significant novelties have been implemented in
the field of BESSs, Smart electric vehicles, and DTs applica-
tions, which correspond to face climate change mitigation by
reducing CO, emissions, specifically in the transport industry
through mobility systems. Contributions in the framework of
DTs for smart electric vehicles have been discussed in Ref.
[12], in which the authors classified the review into specific
domains and explored different challenges. The benefits of
BESSs to achieve energy transition have also been reviewed in
the scientific literature [13], not only limited to EVs, but also
implemented in energy-based microgrids for optimal fre-
quency, voltage, and loadings based on operating limits [14]. It
is necessary to point out that the accuracy of the DT is ex-
pected to continue the development of battery communication
in Smart Grids, Battery Swapping Systems, and Renewable
sources [15], all this to assess new methodologies that assess
the operation of a BMS to deliver a safe, reliable, and efficient
energy demand [16].
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GILBERT ZEQUERA ET AL.

The implementation of mathematical modelling to different
battery types is a complex and challenging task, which is neces-
sary to understand the boundaries of the system, operating
conditions, and assumptions. However, this topic is beyond the
scope of this research; therefore, the reader is encouraged to
consult the corresponding references finally that illustrate and
exemplify the background of battery modelling in specific detail.

It is fundamental to point out that the problem statement
is defined as the implementation of the most optimal battery
model for EVs based on a DT technology, which will be dis-
cussed in the following sections, considering battery properties,
engineering methodologies, and computational algorithms. The
motivation of this work is based on the future application of
robust models through Data-Driven approaches to improve
the performance of EVs, so that further analysis and innova-
tive mechanisms are required.

Major contributions of this work are summarised in the
following points.

® The most relevant problems of ESS are mentioned,
providing a summary of scientific contributions in the field
of battery types for EVs applications, focussing on chemical
properties and operating mechanisms.

® A mathematical framework of battery modelling is
explained, considering the main advantages and drawbacks
of each implementation.

® Trends and opportunity areas of DTs for BESSs are
described, all to establish the connection between the
physical and virtual entities based on computational algo-
rithms for life cycle assessment.

Finally, a discussion regarding future applications and
promising advances will be provided, all to encourage the
continuation of the research within the actual framework.

2 | ESS AND BATTERY
TECHNOLOGIES FOR EV

The increasing development of ESS has led to the application
of modern technologies in the energy sector, climate change
being a point of concern for the next generation. The specific
use of energy determines the classification of different ESSs,
which are divided into mechanical, electrochemical, electrical,
thermal, and hybrid [17]. Mechanical ESSs are pumped hydro
storage, compressed air energy storage, and flywheel energy
storage, which contribute to approximately 99% of the world's
energy storage capacity [18]. Electrochemical ESSs are devices
that transform electrical to chemical energy and vice versa
through a reversible process, having a dual function that is
based on storing and releasing electrical energy; these tech-
nologies are classified as Flow Batteries (FB) and Secondary
(rechargeable) batteries. Chemical Storage Systems are defined
as technologies that through the use of chemical reactions
store and release energy in the energy system. According to
Ref. [18], the main category is Fuel Cells, which can be
Hydrogen Fuel Cell and Metal-Air Fuel Cell. Finally, the last

categories of ESSs are Electrical, Thermal, and Hybrid; the
first ones have the feature to store energy in the form of
clectrical field by separating magnetic field by flux or charges,
so Ultracapacitors and Superconducting Magnetic Coil are
Electrical ESS; the second category has the ability to store
energy from the solar or electric heater to be used in electricity
generation plants based on different heating purposes [18-21];
Latent Heat Storage, Sensible Heat Storage, and Thermo-
chemical Sorption Storage are considered as Thermal ESS.
Finally, in the case of Hybrid ESS, these technologies combine
the features of specific ESS to provide the optimal perfor-
mance of the system, such as power density, power density, life
cycle, energy density, and cost [22].

In this article, the focus is based on the electrochemical
devices, which correspond to the implementation of batteries
for electric vehicle applications. A brief description is given as
follows [1]:

® Lithium—ion batteries (Li-ion): These batteries operate
through reversible chemical reactions, provided by a lithium
salt as an electrolyte between the cathode and anode. The
charging mechanism works through the intercalation of
lithium ions from the positive to the negative electrode
through the electrolyte; for the discharge process, the
lithium ions move in the opposite direction [23]. Operating
conditions ate specified in the range of —20°C to 150°C and
installed in the majority of EVs, especially in PHEVs. Li-ion
batteries have the advantage of internal resistance, lightness
of their components, and high loading capacity that are
complemented by their high loading and unloading cycles.
An essential property of this category of batteries is its
durability. One important reason related to the degradation
that occurs in several proportions depends on the operating
conditions, so high amperage, overcharge, and high or low
operating temperatures are crucial factors to consider for
the maintenance of Li-ion key properties [23].

® Zinc—bromine batteries (Zn—Bry): This technology works
using a zinc-bromine solution, which is stored in two tanks
and has the effect of turning bromide into bromine in the
positive electrode. The operating temperature is found from
20°C to 40°C and cell voltage 1.79 V, considered an
attractive battery system due to its chemical simplicity, good
energy density, high degree of electrochemical reversibility,
and abundant low-cost materials [24].

® [.cad-acid batteries (Pb—PbOy,): According to Ref. [1], this
type of battery is the oldest category of rechargeable battery;
the composition is integrated by a group of lead plates and a
sulphuric acid deposit. The operating mechanism works by
an initial loading process, in which lead oxide (PbO,) is
formed on the positive plates and lead sulphate on the
negative plates, having a working temperature in the range
of —=20°C to 45°C and 2.1 V cell voltage It is important to
note that Pb-PbO, batteries are used in both conventional
and electric vehicles, having low specific density and energy
ratios. Among the main advantages of this device, we can
find the low cost, simplicity, and effective technological
process in effective recycling [25].
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GILBERT ZEQUERA ET AL

® Nickel-metal-hydride batteries (Ni-MH): This category of
batteries has the characteristic of using hydrogen for nega-
tive electrodes, unlike the use of cadmium [7]; in the same
way, an advantageous characteristic is the high level of self-
discharge compared to Nickel-Cadmium batteries. Oper-
ating temperatures are in the range of 0°C-50°C and cell
voltage is 1.35 V, leading to its extensive use in HEVs. Ni-
MH batteries have the potential to offer durability, abuse
tolerance, environmental friendliness, and compact size, all
of which have been expanding over time in the propulsion
and telecommunications market. Compared to lithium-ion
batteries, Ni-MH batteries have a higher volumetric en-
ergy density, and future applications lie in wearable elec-
tronic devices, wearable displays, and medical devices [25].
Sodium sulphur batteties (Na—S): They are composed of
sodium liquid (Na) and sulphur (S). The main contributions
of this technology are high loading and unloading efficiency,
long life cycle, and high energy density. One main advantage
of this technology is the possibility to work at high operating
temperatures in the range between 300°C and 350°C;
additionally, the fabrication materials have a low cost. The
corresponding cell voltage of this battery is 2.08 V.
Sodium chloride and nickel batteries (Na—NiCl): These
batteries have the potential to save energy up to 30% in low
operating temperatures, which give a potential use for EVs
[26]; however, it is important to mention that the optimum
operating temperature is found between 260°C and 300°C
and the cell voltage corresponds to 2.58 V. This type of
battery was used for the British manufacturer Modec, which
disappeared in 2006.

Nickel-cadmium batteries (Ni—Cd): These batteries have the
advantages of efficient energy density. However, low life-
span, high memory effect, and expensive cost of Cadmium
are considered as the main disadvantage; thus, the use of Ni-
MH batteries is currently taking effect as a strategy of
replacing Ni—Cd batteries. Operating temperatures are
found in the range of 0-50°C and the cell voltage is 1.35 V.

Regarding the challenges and research opportunities of

clevated temperatures [2]; finally, the Magnesium Ion bat-
teries are a promising technology that according to Zhao
et al. [29], store more than double the load and increase
stability, being a current research point for prestigious in-
stitutions, such as TOYOTA, NASA, and the Advanced
Research Projects Agency-Energy (ARPA-E) [30].
Optimisation of the charging process: It has been stated that
one of the most important problems in the charging process
when installing an EV is the connector. In 2021, Sanguesa
et al provided a review of the future challenges concerning
EVs [1]. They pointed out that installing a universal
connector, applying intelligent algorithms, and the possi-
bility of using a wireless charger are the most promising
alternatives; however, highly associated costs, unstable
clectricity prices in some countries, and the lack of a stan-
dard wireless charging technology complicate the optimal
charging process.

Improvement of the mobility system through artificial in-
telligence: Applications of Artificial Intelligence Algorithms
have been developing in recent years not only to improve
the performance of the battery components but also to
allow wireless communication and intelligence to the vehi-
cles; the latter is expected to revolutionise the transport
system in the coming years. It is necessary to point out that
the algorithms must be applied to certain components to
maintain the optimal operation, especially in the electrical,
mechanical, and thermal domains. Several authors have been
considering new and crucial indicators to achieve optimal
performance; in 2020, Panahi et al. proposed an Artificial
Neural Network (ANN) algorithm that considers user habits
as historical data to predict charge coordination by electricity
demand [31]. In the same way, Park et al. proposed an ANN
method to reduce energy consumption by improving ther-
mal management systems [31].

Green energy and sustainability issues: Regarding sustain-
ability and environmental conditions, according to Ref. [1],
the potential applications rely on three important stages: (I)
application process, (II) usage throughout the lifetime
period, and (III) recycling and disposal processes. In the first
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ESS technologies for EVs, Sanguesa et al. [1] provided po-
tential applications in the following areas.

point, the fabrication process involves the production of

batteries that involves mining and processing minerals, an
energy concern that produces an estimated quantity of 150—

® Manufacturing processes: In this case, the opportunities 200 kg of CO, emissions [1]. Concerning the usage of EVs,

focus on improving batteries and components to increase
the efficiency of processes, such as energy density, durability,
and stability. Modern technologies have been sought; among
the most important, we find Sodium Air (Nay,O,),
Aluminium Air, Lithium Iron Phosphate, and Magnesium
Ton; the first has the potential to multiply the autonomy of
lithium batteries 13 times [27] and offers the possibility of
having sodium as the sixth most abundant element on Earth
[21]; the second had an affordable price of €300/kWh in
2021 [28] and their main advantage is that they are recy-

an important indicator is based on the high amount of
electricity that is required to charge vehicles' batteries during
the deployment stage; this is due to the power generation
that is produced by fossil fuel-power plants [1]. Finally,
disposal and recycling provide an opportunity for the suc-
cessful implementation of EVs, a fundamental driver to
reduce costs, promote sustainability of high-value materials,
and increase lifetime [32].

A summary of the ESS classification, battery types, chal-

clable. Iron and Lithium Phosphate offers high durability
that is in the range of 20,000-100,000 cycles and tolerates

lenges, and opportunities is summarised in the following fig-
ures with their respective references (Figures 1-3).
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Mechanical

Electrochemical

Thermal Chemical

Electrical

FIGURE 1 Summary of the different energy storage system types
[17-22].
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FIGURE 2 Classification of different battery types [1, 23-26].

Optimization of the
charging

Challenges and
research
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Improvement of the
mobility system
through artificial

Green intelligence

energy and
sustainability
issues

FIGURE 3 Challenges and rescarch opportunities [1, 2, 27-32].

3 | BATTERY MODELS FOR EVS

According to the degree of physical insight, the battery models
can be classified into 3 main categories, which are the white
box model, grey box model, and black box model [33]. White
box models can be Pure-Electrochemical or Electrochemical,
Grey box models are based on the Equivalent Circuit Model
(ECM), and finally, Black box models have a mathematical
framework and apply Artificial Intelligence algorithms [33].

3.1 | Electrochemical models

Electrochemical models explain the behaviour of chemical
reactions that occur in the electrodes and deployed electrolytes
[33]. Solving partial differential equations require a high
computational level. However, some scientific approaches have
been developing in recent years; one of them is the Composite
Battery Model developed by Ding et al. [34].

In the Composite Battery Model, the SOC is considered as
a variable of state <’ in the system, x; is the number of state
vectors, and 9y is the voltage of the battery and the output
variable. The Composite model is expressed by the 3 following
electrochemical models [34]:

Shepherd model

K
y=Eo—Riy —— (1)
Xk

Unnewehr universal model:
y=Ey—Ri — K, -x (2)
Nerst model
Yo =Eo—Rip +K;5-In(x) + Ks-In(1—2x)  (3)

In this case, 7, is the instantaneous current at time ‘k’, £ is
the variable Open Voltage Circuit (OCV), R is the internal
resistance that changes with every different charge/discharge
status and SOC. The parameters K; to K, are defined as
matching parameters to be identified through battery experi-
ments [34]. When combining the 3 previous equations, the
output equation is obtained as follows:

. K
v, =Ko — Ry, — x—] — Ky, + Ks.n(xg) + Kydn(1 — xz,)
k
(4)

More complex models have been developed to explain the
electrochemical behaviour of batteries for the application of
electric vehicles; some of them were explained by Fotouhi et al.
[35] in 2016 and are based on diffusion processes. It is essential
to mention that although electrochemical models can mathe-
matically explain the operation of the battery on a microscopic
scale, the complexity of the system of differential equations
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and the identification of parameters are the most challenging
tasks, for which some researchers have considered continuing
to simplify the models [35].

3.2 | Equivalent citcuit model (ECM)

As mentioned in the previous paragraph, due to the complexity
of electrochemical models, the scientific community has been
investigating new methodologies to explain the battery
modelling approach for EVs; one of them is the Equivalent
Circuit Model, which is constructed by putting capacitors, re-
sistors, and voltage sources in the circuit [35]. The internal
resistance model is considered as the simplest representation of
the ECM for battery modelling, which can be represented in
Figure 4.

Adding the Resistance—Capacitor element (RC) in the cir-
cuit is another approach that considers polarisation charac-
teristics; it is called “Thevenin Model” and is represented in
Figure 5.

V, is the battery terminal voltage, I is the load current, V.
is the Open Circuit Voltage (OCV), R, and C, are the
equivalent resistors and capacitors, and finally, R, is defined as
the internal resistance.

The mathematical equation that is applied to the Thevenin
model in the frequency domain is given by [35]

Ve = Vel k0 (Rt i) )

In the ECM structure, the determination of model pa-
rameters must be considered and there are some useful
methods to potentially accomplish this task; one of them was
firstly proposed in 1998 by Haran et al. and implemented by
Kuhn et al. in 2006 [36, 37], which is known as the Electro-
chemical Impedance Spectroscopy (EIS). In this method, the
electrochemical impedance from the equivalent circuit plays a
fundamental role and is defined as the response of an elec-
trochemical system to an applied potential [35].

The equivalent impedance is described by the following
equation:

Ze=Ry+—s = (6)

The variable R, is the initial resistance, j is the imaginary
number, w is the frequency, and the elements R; and C; are
the elements of the RC system. The first implemented ECM
using the electrical interconnections method was developed by
Edward Randles in 1947 and shows each corresponding
clement, which is related to a component in the cell [35]. A
representation of the Randless circuit is illustrated in Figure 6.

Before concluding with this section, it is essential to point
out that a detailed explanation on ECM, providing a mathe-
matical formalism and validating the accuracy of the results,
has been proposed by several authors and can be found in the
References section [38].

® +

- -

FIGURE 4 Representation of the internal resistance battery model.
Elements of the model are integrated by a resistance Ry and an ideal battery
voltage Voc.

FIGURE 5 Representation of the Thevenin Battery Model. Elements
of the model are integrated by a Resistance—Capacitor element [33].

Rct Zw

FIGURE 6 Randless circuit representation and elements using the
electrical interconnections method.

3.3 | Mathematical models

Black box battery models, also known as Mathematical models,
are based on the application of Artificial Intelligence Algorithms
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and can be classified into 2 categories: stochastic and analytical
models.

Regarding analytical models, few equations are used to
describe the behaviour of the battery and its properties;
one example was developed by Manwell et al. and is known
as the Kinetic Battery Model (KiBaM) [38]. In this model,
the system is described using a chemical kinetics process
that reflects many of the observed properties in the deep-
cycle lead acid batteries, specifically used for charging and
discharging processes, assuming that the charges can be
stored in two different manners: immediately available or
chemically bounded [38]. The mathematical equations are
given by

V:E—[R[) (7)

The parameters [ ate the discharge current and Ry are
internal resistance. E is defined as the internal voltage and is
calculated using the following equation:

CX
E:E0+AX+m (8)

The parameter A reflects the initial variation of the battery
voltage in the state of charge, C and D explain the decrease of
the battery voltage when the battery is discharged, X is the
normalised charge temoved from the battery, and £, is known
as the internal battery voltage of the fully charged battery [39].
A detailed explanation of the KiBaM can be found in Ref. [38].

Several authors have proposed other types of models to
predict battery lifetime, such as Peukert's law and the Rakh-
matov and Vrudhula; the first is considered as the simplest
model that considers non-linear properties, and the second
describes a diffusion process through differential equations
and boundary conditions [39].

Regarding the Stochastic Models, it is important to
mention that the discharging and recovery effects are described
as stochastic processes. Chiasserini and Rao proposed the first
stochastic model in the period 1999-2001 that was based on
discrete Markov chains [37]. In the first stochastic model, the
battery is described by N + 1 states from 0 to N, in which
every state represents the number of charge units available in
the battery, and the variable N indicates the number of charge
units based on the continuous usage [37]. The probability that
a charging unit is consumed can be represented by the
expression a; = q or recovery of one unit of charge is defined
as ap = 1 — g. A graphical representation can be appreciated in
Figure 7.

An extension of the model was developed and applied to
the initial Kinetic Battery Model, and in this case, two new
aspects are considered: (1) a maximum of M charge units can
be consumed (M < N) and (2) no consumption or recovery
takes place during a time step, which is mathematically repre-
sented by a non-zero probability at the same state [39].

The probability is represented by the parameter g, 7 is
defined as the requested charge units. In the same way, during
the idle periods, the battery has two possibilities, either with

QAo
Qo
Ao
n a
a; ‘ a, .\1/

FIGURE 7 Graphical representation of the basic Markov model
proposed by Chiasserini and Rao [39].

the probability of recovery p;(f) or is found in the same state
with probability 7j(f). The mathematical expression is repre-
sented by the equation [40]:

() = goeNDevef) (9)

The recovery probability of state and phase is represented
by the variables j and f, respectively. The variables gy and
gc(f) are known as exponential decay coefficients; the first
one is related to the cell conductivity and the second to the cell
potential drop during the discharge phase [40]. The complete
methodology of the stochastic model focussed on battery
management can be found in Ref. [40].

The evolution of Artificial Intelligence algorithms has been
increasing and generating the application of Data Driven
models. In 2021, Avadhanula and Kulkarni published an article
comparing the battery performance and parameter estimation
using some data-driven models; the most relevant were Support
Vector Machine, Linear Regression, and ANNs [41]. Results
from the investigation showed that the application of ANNs
demonstrated the best performance to optimise the SOC of the
battery system; however, XG boost and Fuzzy logic algorithms
are also other alternatives to achieve satisfactory accuracy [41].

It is fundamental to select the most appropriate model;
thus, the factors to consider are listed as follows [11].

Number of parameters

Computation time

Accuracy

Battery dynamics represented by the model

Ease of understanding and complexity for implementation

To conclude with this section, a summary of the most
important contributions and drawbacks of the current models
are given in Figures 8—10.

4 | DIGITAL TWINS FOR BATTERIES -
EXAMPLES AND TRENDS

Several authors have proposed the application of DTs for ESS
and renewable technologies to promote climate change miti-
gation. However, it is fundamental to point out that there are
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Medium time

Simple understanding and ease '
consuming modeling

access to model parameters

) Contributions |

Time consuming
experimental procedures and
cost equipment for
parameter estimation

Internal characteristic of
the battery is not
reflected

FIGURE 8 Contributions and drawbacks of the equivalent circuit
model [5, 6, 42].

High accuracy compared to
other models

characteristic of the

, Equations reflect the
battery behaviour

|Contributions |

Some working conditions
cause inefective results
due to poor adaptability

High computational
complexity

FIGURE 9 Contributions and drawbacks of the Electrochemical
model [34, 35, 42].

| Fast analysis and evaluation
of the internal state of the
battery

[ Reduce or eliminate the
complexity of the
physical understanding

JContributions |

Mathematical

Overfitting and
underfitting might
occur due to
numerical errors

Training methods and size of
the dataset affect the results
and reduce accuracy

FIGURE 10 Contributions and drawbacks of the Mathematical model
[40-42].

specific components that play a fundamental role in the bat-
tery; one of them is the BMS.

The BMS is defined as the central element that protects,
monitors and ensures safety, efficiency, and reliability [11].

Measurements of the BMS are executed for cell voltages, pack
voltage, and pack temperature and provide estimations of the
SOC, SOH, and Depth of Charge (DOC) [43]. The func-
tionalities of the DT in parallel with the application of an in-
tegrated BMS work with a battery data storage platform.

In 2020, two investigations were conducted to determine
the application of DT for battery systems; one of them, carried
out by Li et al. [9], was focussed on the current SOC and SOH,
whereas the other investigation presented by Wu et al. [10]
provides an overview about data-driven perspectives in parallel
with vehicle diagnostics and battery modelling,

The study conducted by Wu et al. introduces the applica-
tion of hybrid models, which are defined as models that
combine the best aspects of data-driven and physics-based
models, using real-time data collection obtained from IoT.
From the scientific point of view, physics-based models
consider a set of differential equations that describe the
physical degradation of the battery and have many advantages
with the estimation of anode potential for fast charging algo-
rithms the most favourable. The main beneficial application of
hybrid models in combination with ANNSs is the fast optimi-
sation of the algorithm and increasing accuracy. However,
future opportunities are also important to consider, which are
listed in the following [23].

® Standardised and transparent data: Testing and data pre-
processing are an essential part of the modelling, data
storage, and database management, all of these enable
transparent and more accurate diagnostics.

® Combination of multiscale physics models and Machine
Learning algorithms: The application of multiscale physics
models offers the possibility to capture nano-scale effects
and macroscopic metrics, which enable high fidelity of data
generation and increase the accuracy of the algorithm.

® Development of new methodologies to assess lifetime
estimation: Hybrid models are developed by implementing
physics and data-driven approaches, which are considered
promising methodologies to achieve real-time predic-
tion not only to promote longer lifetime battery systems but
also to open new ways of operating mechanisms. According
to Ref. [23], a combination of deeper electrochemical in-
sights and data-driven approaches is also a potential chal-
lenge due to the increased accuracy of the model.

Regarding the research conducted by Li et al. [9], a cloud
BMS was presented for battery systems, estimating the SOC
and SOH and improving computational power and data stor-
age capability by cloud computing. A summary of the meth-
odology is explained as follows [9]:

o Cloud battery management system: Based on the concept
of IoT and cloud computing, a digital twin was built to
improve the computational power, reliability, and data
storage capability of the BMS. The battery interface consists
of six subsystems, which are (1) Battery System for Data
Generation, (2) BMS-Slave for Data Sensing, (3) IoT
component used for Data Collection, (4) Cloud for Data
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Storage purposes, (5) Application Programming Interface
(API) for user interface and Data Analytics, and (6) User
Interface (UI) for Data Visualisation.

o Battery modelling: The ECM was implemented to model
the battery dynamics; it is based on the extended Thevenin
model for estimating the SOC and SOH with adaptive
extended H-infinity filter (AEHF) and particle swarm
optimisation (PSO).

o SOC and SOH estimations: To validate the PSO and AEHF
algorithms, some ageing tests were carried out for both
hardware and software; a UPS system was connected with the
cloud BMS prototype, and finally, a Battery test bench for
lead-acid and lithium-ion batteries was connected with the
cloud BMS to validate the SOC and SOC estimations.

In 2021, Singh et al. [11] conducted a scientific study that
identifies the efforts to implement a Battery Digital Twin;
among the most important benefits of the DT and the onboard
integrated BMS are the following: (1) evaluating battery, (2)
ageing indicators, (3) optimal charging strategy, (4) thermal
management, and (5) fault diagnosis.

The contributions of Singh's implementation are listed and
described as follows [11]:

o Functionalities and implementations of the DT during the
battery operation: In this case, the benefits are integrated
into the mechanism and the operating system, such as the
performance estimation, optimisation  strategies, and
improved representation, all from an electrical or electro-
chemical perspective.

o Approach and challenges: An innovative approach that
moves from a battery model to a battery DT was proposed,
which was based on the five next steps: (1) Experimental
parameter identification for model development, (2)
Charge/Discharge cycle data, (3) Model Parameter update
Estimation, (4) Adaptative Model Update, and (5) Battery
Digital Twin Key Performance Indicators (KPI) Quantifi-
cation. The differences between a battery digital twin and a
model were also mentioned, including a literature review of
the DT and its applications not only in the industrial sector
but also from the academic point of view. Regarding the
challenges, two key issues were recognised: the first is
the available battery operational data for the model and the
second is the methodology to update the model parameters.

o Future research: Some topics showed promising results but
are considered untesolved; therefore, further research is
encouraged in the coming years. The level of fidelity ex-
pected from a DT battery is a point of interest due to
electrical, thermal, electrochemical, and ageing aspects,
which is related to the improvement of cost operation.
Technical installation and life cycle assessment are other
areas of opportunity due to the docking process, sensor
deployment, and manufacturing. Finally, the accuracy of
behaviour prediction using a DT battery is within the scope
of the research community according to the comparison of
the percentage error in the DT estimates, being a focus in
future research.

It is important to mention that a solid understanding of the
EVs and ESS technologies must be considered not only to
provide the optimal mechanism of the battery but also to
identify future trends and opportunity areas in the energy
market.

In Section 5, a discussion about the promising applications
of DTs of batteries for EVs will be given; additionally, a
summary of the future trends and opportunity areas will be
mentioned. Finally, a conclusion that highlights the continua-
tion of this research is encouraged in Section 6.

5 | DISCUSSION

Currently, the development of the DT has promoted the
implementation of different battery technologies, focussed on
the SOC and SOH indicators by influencing BMS core func-
tionalities and life cycle assessment of the ESS. Latest trends
show that specific implementation methods and algorithms
have been proposed to monitor some functionalities of the
DT; among the most important, we find discharge capacity
[44], cell voltage and temperature [43], SOC and SOH esti-
mations, and capacity fade [9, 44]. In 2021, Weeber et al. [11]
conducted a scientific research to provide an overview of the
DT implementation for battery systems, which describes
different methodologies not only to monitor the real-time
battery data modelling through cloud services but also to
validate the state estimation algorithm.

In 2020, Onori et al. [45] conducted a research to provide a
review on Fault Mechanisms, Diagnosis Procedures, and Fault
Features in Li-ion battery systems. It was mentioned that Fault
Diagnostic Systems are essential technologies that involve the
application of advanced mathematics, information theory, and
computational algorithms, discussing the advantages and dis-
advantages of each algorithm with the aim of stimulating new
ideas for Li-ion batteries fault diagnostics.

Regarding the energy and sustainability applications of
batteries for EVs, operating conditions play the most impor-
tant role in the system. However, a functioning mechanism
might be affected by both external conditions and internal
parameters. The maintenance of the battery system is a point
of concern that ensures the reliability and safety of the EV;
thus, a continuous monitoring of the operating system must be
executed to assure an optimal performance. Predictive main-
tenance, fault detection, and health monitoring are the points
of concern that require a solid understanding of the battery
system, which determine the lifetime prediction over an
extended period of time. Consequently, DT technology can be
integrated to strengthen and optimise the mechanism of the
battery.

The promising application of the DT technology can also
be extended to more complex systems that will lead to a new
and sustainable future around the wotld; one of them is Smart
Grid, which is currently under development due to innovative
methodologies of power system generation, distribution,
transmission, and consumption. In 2021, Jiang et al. [46]
conducted a research to provide a new reference for the
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application of DT in Smart Grids. Due to the complexity of
the physical world based on the Smart Grid architecture, the
Digital Twin Body must highlight the local characteristics of
the system under different requirements, promoting the intel-
ligence that reflects and predicts the transmission interaction
between the virtual and physical entities.

Table 1 summarises the major challenges for each topic
that have been discussed based on the accomplishments and
novelties of the research.

6 | CONCLUSION

Energy and sustainability issues are the points of interest for
industrial and research organisations around the world, all this
to promote the most optimal supply and demand of energy
sources. The path to energy transition has caused many
changes and encouraged the current development of powerful
technologies and intelligent algorithms, being the DT one of
the most prominent due to the accurate prediction, safety, and
diagnosis of the system.

It has been stated that different models can be implemented
for the optimal functioning of BESS; however, there are specific
advantages and disadvantages that must be considered, such as
understanding the battery behaviour, available datasets, accuracy,
computational complexity etc. In order to select the most
appropriate battery model, the needs of the user must be known,
and system restrictions and operating conditions of the battery
are required to develop the algorithm and implement the func-
tioning mechanism. The result comparison with different types
of algorithms is an approach to validate the performance of each
model, which can determine the optimal feature selection and
parameter estimation. However, input parameters, available
datasets, and battery standards will play the most fundamental
role depending on the user needs.

TABLE 1 Major challenges regarding the Energy Storage System
(ESS) implementation, battery modelling for electric vehicles (EVs), and
digital twin applications for a BESS.

Topic Challenges

1. ESS and battery ® Optimisation of the health and charge
technologies indicators

® Manufacturing, operation, and re-utilisation
management

® Performance of energy components using arti-

ficial intelligence
2. Battery models for @ Accuracy of the selected model based on battery
EVs properties
® Reducing computational complexity

Experimental procedures for testing purposes

3. Digital twins for ® Development of new methodologies to provide
batteries lifetime assessment

® Parameter selection based on customer needs
and modelling

® Transparent data and processing to achieve ac-

curate diagnostics

This work is the basis of the BESS modelling and can be
developed to implement algorithms for a BMS to determine
their parameter values from lab-test data and how to use them
to simulate cell behaviours under different load profiles for EV
applications. Moreover, this work provides a research envi-
ronment for the development of a DT of battery energy
storage systems for analysis, investigation, and online simula-
tion in EVs. This will help establish assessment and verification
procedures for possible fault diagnostics to support commer-
cial consulting, research, and testing for enterprises based on
the digital twin concept.

The main directions for future research are based on Data-
Driven approaches considering the battery models discussed in
this article, in which the performance of mathematical models,
ECM, and Electrochemical models will be implemented using
technological tools, such as Simulink and PyBaMM. The Data
Mining techniques will illustrate the KPIs of BESSs; after that,
it will be required to implement machine learning algorithms to
assess the battery degradation based on supervised and unsu-
pervised outcomes. Future work will be based on the validation
of the previous models according to experimental measure-
ments and battery tests. Once the KPIs have been obtained,
predictive maintenance and fault diagnosis will be the point of
interest to monitor the lifetime assessment and develop the
BMS before the initialisation of the DT.

Finally, the implementation of the corresponding compu-
tational algorithms, the BESS models, and the performance of
the EV based on Health and Charge indicators are the topics
that will be addressed in the next research. Therefore, it is
recommended to continue with this work and consider it as a
basis for initial understanding of the promising challenges of
the energy transition.

NOMENCLATURE

Cp  equivalent capacitors

E  internal voltage

Ey open voltage circuit

i, instantaneous current at time ‘k’
I; load current

R internal resistance

R, internal resistance

R, equivalent resistors

V' battery terminal voltage
X, number of state vectors
y,  voltage of the battery
Z,  equivalent impedance
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Abstract: Digital twin (DT) technology has been used in a wide range of applications, including
electric vehicles. The DT platform provides a virtual representation or advanced simulation of
a physical object in real-time. The implementation of DT on various aspects of EVs has recently
transpired in different research studies. Generally, DT can emulate the actual vehicle on the road
to predict/optimize its performance and improve vehicle safety. Additionally, DT can be used for
the optimization of manufacturing processes, real-time condition monitoring (at all levels and in all
powertrain components), energy management optimization, repurposing of the components, and
even recycling processes. This paper presents an overview of different DT platforms that can be
used in EV applications. A deductive comparison between model-based and data-driven DT was
performed. EV main systems have been discussed regarding the usable DT platform. DT platforms
used in the EV industry were addressed. Finally, the review showed the superiority of data-driven
DTs over model-based DTs due to their ability to handle systems with high complexity.

Keywords: digital twin; electric vehicle; platform; software

1. Introduction

In recent decades, digital manufacturing has contributed significantly to all industries.
The remarkable advances in communication and information technology have gone a long
way towards the development of manufacturing [1]. Computer-aided technologies such
as computer-aided design (CAD), computer-aided engineering (CAE), computer-aided
manufacturing (CAM), finite element analysis (FEA), product data management (PDM),
etc., are developing rapidly and play a crucial role in modern industry [2].

Manufacturing, healthcare, and smart city environments have become more able
to harness data through advanced analytics and the Internet of Things (IoT) connectiv-
ity [3]. In conjunction with data analytics, IoT environments can be used for predictive
maintenance, fault detection, and design optimization processes [4]. When it comes to
describing, finding, and accessing resources, DTs and IoT overlap. DT and IoT standards
have been developed by many organizations with various backgrounds and perspectives
to address these overlapping aspects. IoT and DT both focus on resources [5]. Resources
are internet-connected objects that can communicate with consumers either directly or
indirectly through some sort of software system in the context of the IoT. Resources are
defined more broadly in the context of DT, including assets, devices, and actual or vir-
tual entities. Both share the concept that most resource-to-resource communication, or
machine-to-machine (M2M) communication, should occur without the involvement of
humans. With the advancements in DT technology, the gap between IoT and data analytics
can be bridged by creating connected physical and virtual models [6]. This has allowed
DT technology to be applied in many different sectors and disciplines such as smart cities,
construction, healthcare, ocean, automobile, aerospace, manufacturing, utilities, etc. [7].

Sensors 2023, 23, 1414. https:/ /doi.org/10.3390/s23031414
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1.1. Background

After Challenge Advisory hosted Michael Grieves’ presentation on technology at the
University of Michigan in 2002, the concept of the DT gained wider recognition [8]. During
this presentation, the focus was on the development of a lifecycle management center for
products. The presentation covered all the key details associated with DT technology, such
as the physical and digital environment, as well as the transfer of appropriate information
and data between the physical and digital worlds. The DT concept has been practiced
since the 1960s by NASA during the space programming period. They created physically
duplicated systems at ground level to match the systems in space [9].

The term DT refers to the digital representation of a physical object, process, or service
that supports decision-making throughout its lifecycle. It is updated from real-time data
and uses simulation, machine learning, and reasoning [10]. With improved data accessibility
and connection and the changing end-user needs, the idea of DT can be considered a logical
extension of conventional simulations [1]. It is a computer program that simulates how
products and processes will perform using real-world data. Software analytics, artificial
intelligence, and the Internet of Things can be integrated into these programs to enhance
the output. Three basic pillars make up the DT, which are the physical entity, the virtual
entity, and the data exchange and communication system between them [11]. Creating a
DT for a system is a multiphase process comprises of modeling, validation, training, and
deployment [12].

Recent works have defined DT technology as a five-dimensional structure with sepa-
rate entities for services and connections [8]. Creating a DT can enhance technology trends,
prevent costly failures in physical objects, and improve test processes by using advanced
analytics, monitoring, and predictive capabilities. Figure 1 shows the main structure of DT.

> Communication: 10T > > Aggregate: Cloud >
E Sensors : ;E Data E
A %
® , 1
3 Integration o,
S < > [
(%] 2
o =
© R0
@
S g
Physical
N e N
E Diagnosis E< ---------------------------
_aepdn ssisoubeia oy, <  voppaid awbsul <

Figure 1. Systematic Characteristics of DT.

1.2. Digital Twin in EV Industry

Historically, automotive and aerospace systems have been developed using empirical
engineering practices [13], but now with growing performance requirements, the necessity
for “self-awareness” during operation, and the necessity for a lack of external assistance,
new engineering procedures are required. With the emergence of DT, new testing and
development modeling techniques have become available to fulfil new requirements. As
a result, research interest in these technologies had also increased steadily, as illustrated
in Figure 2.
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Figure 2. Search results for publications related to DT in automotive applications during the period
2011-2022 in ScienceDirect and Scopus.

The EV industry is gaining increased attention nowadays. The rising demand for EVs
is because they not only eliminate exhaust emissions and contribute to the transportation
sectors (23% of global CO, emissions), but because they also provide critical grid flexibility
as a transition to a greater share of renewable energy (RE) supply. Despite this solid strategy,
EVs accounted for only 7.2% of global car sales in 2021. Pricing and battery capacity pose
major challenges to the introduction of EVs on the road. To address these challenges, one
way is to optimize the electrical energy consumption of the vehicle and design a supporting
architecture to facilitate it. As the 4th industrial revolution presses on, EV manufacturers
are adopting even more technology to make their production operations proceed and make
them more cost-effective. Advanced machine learning tools and optimization algorithms
have contributed highly to the EV development process [13]. The IoT, along with DT, act as
the required architecture for mapping offline physical assets to digital models. Since EVs
generate significant amounts of sensory data, the DT technology is far superior to other
technologies such as hardware-in-the-loop (HIL) simulations. Smart system monitoring,
predictive events, fault detection, remaining useful lifespan, and many other benefits can
be achieved through this conversion. Despite the many advantages that DT offers to the
technology of manufacturing and developing EVs, mastering this application is still in the
early stages. EVs comprise a mixture of electrical and mechanical systems that range in
complexity. One of the main problems facing researchers in this regard lies in choosing an
appropriate development environment (platform) to create a DT of an EV system.

This paper presents a comprehensive overview of different platforms used to develop
DTs for EV applications. The general objective of this study is to provide a reference for
researchers on this topic. The paper is organized as follows: A systematic understanding of
the inception and evolution of DT technology and its implementation in automotive appli-
cations is offered in Section 1. Section 2 highlights and compares the two main categories
of DTs. In Section 3, the study investigates DT platforms for potential contributions to EV
technologies and considers current barriers to their realization. Section 4 addresses the
research findings for innovation in this field. Finally, Section 5 concludes the main findings
and presents recommendations for future work.

2. DT Architecture Categorizations
The DT architecture can be divided into two main categories as the following subsec-
tions illustrate.
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2.1. Model-Based DT

The concept of a model-based simulation approach (MBS) refers to a formalized
methodology for preparing requirements and designing, analyzing, and verifying complex
systems [14]. MBS places models at the center of the system design. Physical systems,
whether in nature, on the testbench, or in applications, consist of interconnected and in-
teracting objects or components performing a task or a variety of functions. Simulating a
physical system using MBS implies that the mechanism inside the system is being stud-
ied using fundamental physical laws and principles of engineering. The power of MBS
relies on a deep understanding of the system or process and can benefit from scientifically
established relationships. Model-based DT is an advanced form of MBS with increased
sensory data and Al supplementary tools. The following literature illustrates some ex-
amples of model-based DTs and the used platforms for creation in different applications.
Madni et al. [15] implemented DT technology in a model-based system of a vehicle using a
planar mechanics open-source library. Bachelor et al. [16] proposed a case study of a model-
based DT of an ice protection system for a regional aircraft using Dassault Systems” Dymola
platform. Magnanini and Tullio [17] proposed an analytical model-based DT of a railway
axles manufacturing system for a performance evaluation based on Markovian system
representation. Zheng and Sivabalan [18] used a Windows Presentation Foundation (WPF)
application and .Net framework 4.5 in Visual Studio to develop a DT for a cyber-physical
system (CPS) of a 3D printer based on a tri-model-based approach for product-level devel-
opment. Ward et al. [19] proposed a model-based machining DT system for a case study
of a large-scale CNC machine tool using a MATLAB/Simulink platform. Yang et al. [20]
developed a model-based DT of an aero-engine disk for online detection of disk unbalance
and crack failure using an ANSYS simulation platform. Woitsch et al. [21] proposed a
meta-model of a model-based DT environment to bridge the between the manufacturing
and the use of products and services based on an ADOxx meta-modeling platform.

From the above, it is clear that the creation of a model-based DT of a system is closely
related to modellable physical systems and mostly depends on conventional modeling
and simulation platforms, in addition to some artificial intelligence techniques and IoT
tools. Although model-based DTs are widely used in different applications, some obstacles
undermine their use, especially with high-complexity systems. The major drawback of
model-based DT is that models cannot handle infinite complexity and typically need to be
simplified. Moreover, it has difficulty considering unknown variables and noisy data.

2.2. Data Driven DT

The adoption of DTs enables operators to monitor production, test deviations in an
isolated virtual environment, and strengthen the security of process industries [6]. With
the substantial increase in process data, conventional model-based methods are unable to
describe complex systems’ state space. In this way, data-driven modeling technology has
become a potential solution for modeling DTs. The data-driven modeling concept is based
on analyzing data about a system to find connections between variables (input, internal,
and output variables) without explicitly knowing its physical behavior. As compared to
conventional empirical models, these methods represent a significant advance in a wide
range of applications. Data-driven modeling relies on substantial and sufficient data to
describe the underlying system. Data are used to perform tasks such as classification,
pattern recognition, associative analysis, and predictive analytics. The literature shows
excessive use of data-driven DT in different applications especially systems with high
complexity as will be described in the following. Wang et al. [22] developed a data-driven
DT framework for a three-domain mobility system of human, vehicles, and traffic based
on an Amazon web services (AWS) platform. Gao et al. [23] used a MATLAB/Simulink
platform to build an anomaly detection framework for monitoring anomalous behaviors in
a data-driven DT-based cyber-physical system. Coraddu et al. [24] developed a data-driven
DT of a ship for speed loss and marine fouling estimation based on a large number of
onboard sensors using the IBM Engineering Lifecycle Management (IBM-ELM) platform.
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Merghani et al. [25] proposed a data-driven DT of a proton exchange membrane fuel cell
(PEMFC) for system health monitoring and lifetime prediction. Mykoniatis and Harris [26]
implemented a data-driven DT of an automated mechatronic modular production system
for condition monitoring, design decisions, testing, and validating the actual system behav-
ior using the Any Logic Simulation platform. Blume et al. [27] developed a data-driven DT
of a cooling tower for improving system understanding and performance prediction using
the software tools KNIME and Microsoft Excel. Kim et al. [28] developed a data-driven
DT of an onload tap charger (OLTC) for health monitoring and fault detection based on a
numerical algorithm of subspace state-space system identification (N4SID). Major et al. [29]
developed a java-based data-driven 3D graphical DT platform for smart cities applications.
They also supported their study with a real study case of a smart city in Norway.

From the foregoing, it is obvious that there is a direct connection between the data-
driven DT and the complex systems that contain a huge amount of data. It is also noted
that the platforms used for data-driven DT creation are often artificial intelligence and Big
Data tools. Table 1 summarizes the comparison between data-driven and model-based DTs.

Table 1. Comparison between model-based and data-driven DTs from different perspectives.

Comparison Model-Based DT Data-Driven DT
Basis Mathematical equations of physical ~ Sensory data of system’s inputs
lows (Model Simulation) and outputs (grayor black box)
Cost More expensive Less expensive
Time of creation Shorter Longer
Applications Modellable physical systems Cyber-physical systems,

complex systems

3. DT Platforms for EV Applications

EVs are also referred to as battery electric vehicles (BEV), as they use a battery pack to
store the electrical energy that powers the electric motor. EV main domains are divided into
two categories as follows: a smart vehicle system and a vehicle propulsion drive system.

3.1. Smart Vehicle System

Emerging technologies in the field of smart vehicle systems have promoted the con-
tinuous development of sustainable transport. To increase energy efficiency and reduce
CO; emissions, smart electric vehicles have been deployed to achieve decarbonization
challenges. The smart vehicle system includes advanced driver assistance systems and
vehicle health management systems. Bhatti et al. [30] conducted research to provide a
comprehensive analysis of DT for smart electric vehicle applications, which highlighted
the implementation of DT platforms for health monitoring systems based on integrated
vehicle health management (IVHM).

Sanabria et al. [31] developed a DT of an electric passenger bus to emulate the vehicle’s
performance. They provided predictive maintenance models to determine the remaining
useful life of the vehicle components. They used the MATLAB/Simulink platform deployed
on an NVIDIA processor through Compute Unified Architecture (CUDA).

Ezhilarasu et al. [32] discussed the prospective role of DT in an integrated vehicle
health management system (IVHMS) to support condition-based maintenance (CBM) by
monitoring, diagnosing, and prognosing the vehicle health.

Advanced driver assistance systems are also a point of interest not only for increasing
energy savings but also for achieving a more comfortable driving experience. Sun et al. [33]
used MATLAB Simulink and Carsim to deploy machine learning algorithms and developed
a more accurate and precise groundwork for training and testing smart vehicle DTs.

Wang et al. [34] developed a DT of an advanced driver assistance system for a con-
nected and automated vehicle (CAV) by leveraging the Unity game engine as a physical
system emulator. They built the DT virtual model using e Unity scripting API combined
with external tools (e.g., SUMO, MATLAB, Python, and/or AWS) to enhance the simulation
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functionalities. To provide reliable and safe online monitoring for autonomous guided
vehicles (AGVs), El Sisi et al. [35] integrated an IoT architecture to address the issue of
cyber-attacks based on a deep neural network (DNN) with a rectified linear unit.

Lui et al. [36] proposed two approaches based on a Gaussian process (GP) and a deep
convolutional neural network (DCNN) for DT model development of a heavy vehicle for
optimization of vehicle driving states.

The advantages of DT technologies integrate autonomous navigation performance;
however, critical decision-making must be considered to enable the modelling of large
vehicle data. Bottani et al. [37] developed a DT for preparing the AGV control system using
discrete event simulation software (DES) based on the Arduino and C++ interpreter.

The ability to introduce several scenarios for critical decision-making provides a more
accurate model through the application of stochastic factors using a DT platform; therefore,
physical assessment is also required. Guerra et al. [38] proposed the optimization of a DT
for modeling the behavior of ultraprecision motion systems with backlash and friction.
The implementation of the complete algorithm and simulation was performed using MAT-
LAB/Simulink, concluding that the cross-entropy method required a remarkably shorter
time compared to other optimization approaches; hence, further studies are necessary to
analyze the influence of different optimization methods.

3.2. EV Propulsion Drive System

The EV powertrain is the main system that defines a vehicle as an EV. It is a combina-
tion of electrical and mechanical components. Figure 3 shows different components of an
EV propulsion drive system.

Electric Motor

Traction Inverter / Controller Transmission

On-board Charger Battery Pack
DC-DC Converter

Figure 3. Main components of an EV propulsion drive system.

Despite the multiple components in the electric propulsion system, most research
efforts in EV digital twin technology are focused on three specific components: the battery,
the electric motor, and the traction inverter/controller.

3.2.1. EV Battery System

Digital twin applications for a battery energy storage system (BESS) is an important
topic that contributes to sustainability and climate change mitigation, not only by reducing
CO;, emissions but also by implementing green strategies towards clean energy sources.

The battery management system (BMS) is defined as the core element of a battery that
monitors, protects, and ensures reliability, safety, and efficiency [39]. It is fundamental to
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point out that some indicators play a fundamental role in the successful BESS implementa-
tion, such as the state of charge (SOC), state of health (SOH), depth of charge (DOC), and
depth of discharge (DOD).

Several scientific studies have been conducted to determine the major relevant applica-
tions of DTs for battery systems. In 2020, Wu et al. [40] used Python Battery Mathematical
Modelling (PyBaMM) and MATLAB to propose the introduction of hybrid models, defined
as models that combine physics-based models and data-driven approaches. Wu et al. also
mention opportunity areas in the fields of (1) standardized and transparent data, (2) a
combination of machine learning and artificial intelligence algorithms, and (3) development
of new methodologies to assess lifetime assessment of battery systems [41].

Concerning health and charge indicators, a cloud BMS was implemented by using
software programs in Python, in which cloud computing was used to improve computa-
tional power data as well as storage capacity. The research contribution proposed by Li
et al. is explained in the following points [42]:

e  SOC and SOH estimations to validate particle swarm optimization: In this case, aging
tests were carried out for both software and hardware. Additionally, a battery test for
lead-acid and lithium-ion batteries was performed to validate the results of SOC and
SOH estimations;

e  Battery Modeling: Implementation of the equivalent circuit model (ECM) was exe-
cuted with additional modifications to the battery dynamics, taking into considera-
tion the particle swarm optimization (PSO) and the adaptative extended H-infinity
filter (AEHF);

e  Cloud BMS: A DT was built to improve the computation power, data storage capability
of a BMS, and reliability, all this considering the concept of IoT and cloud computing.

Future research that identifies the efforts to implement a BESS for DT was also pro-
posed by Singh et al. in 2021, highlighting software packages in Python and MATLAB. The
most important benefits of the DT and the integrated BMS in the scientific study conducted
by Singh et al. were the following [39]: (1) evaluation of the battery performance, (2) aging
indicators to predict the remaining useful lifetime (RUL), (3) optimal assessment of the
SOC, (4) thermal management, and (5) fault diagnostics.

Selection of an optimal algorithm before building the DT is a challenging task to
accomplish, all due to the specifications of battery packs, input data, operating conditions,
and manufacturing requirements that a BESS must fulfil. Sancarlos et al. [43] developed
a regression model based on sparse-proper generalized decomposition (s-PGD) that was
incorporated into a DT, allowing for not only real-time simulation but also to achieve battery
evaluation and early prediction (BEEP). It is important to mention that a data-driven model
was also implemented to provide more optimal accuracy that corrects the results between
the prediction and measurements. Finally, it was summarized that improvements to the
DT model can be incorporated by considering not only thermal gradient but also aging
effects as a future line of research. Results and validation models were compared using
lithium-ion simulation battery toolbox (LIONSIMBA) in MATLAB.

Regarding the analysis of degradation mechanisms in BESS, points of interest are
sustained in the aging and RUL of the system. Operating temperatures are the major
indicator of heat generation in the battery pack. Soleymani et al. [44] generated a semi-
analytical DT model to capture thermal behavior in a real-time environment. The proposed
model was used to accelerate the battery pack design and development through the
evaluation of several operating conditions such as charge and discharge profiles, initial
SOC, coolant flow rate, and temperature. Results of the research were illustrated in ANSYS
and provide an optimization for reliability, comfort, and safety in battery pack thermal
systems, which results in a significant reduction in time-to-market.

To conclude with this section, it is necessary to point out that the major requirements of
the DT implementation in a BESS are based on a solid understanding of the physical system,
selection of the most optimal model based on input data and manufacturing requirements,
execution of the data-driven approach according to the key performance indicators (KPIs),
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and finally, assessing the fault diagnostics and predictive maintenance by testing processes
and BMS specifications.

The continuous advance in the IoT has encouraged the development of new software
platforms for battery data storage; all this ensures easy access by the creation of learning
models that guide the product design and optimization processes. In [45], battery data
storage platforms simplify the prediction of the RUL, which supports not only the design
usage history, but also the behavioral integration in consequent life cycle phases. It is
important to mention that the big data platforms must fulfil the performance of integration,
storage, interactive analysis, visualization, and security, all to assure the implementation
of advanced technological tools, such as sensor data, model generation data, multiple
structures, real fusion, and virtual data.

Execution and deployment of software platforms for implementing the DT of a BESS
is a fundamental step that can be summarized in the next points [39]:

Use of experimental inputs to determine parameter identification.

Implementation of the state estimation algorithm.

Integration of a battery modeling that considers the design and manufacturing data.
Execution of the parameter-update estimation that can be coded in several tools, such
as MATLAB, Python, Linux, etc.

The variety in existing libraries and open-source battery modeling based on software
packages is the most crucial step for results delivery. Although the selection of the software
package depends on the sector, it has been proven by scientific studies that MATLAB,
COMSOL, Dualfoil, and fast DFN have improved the performance and functionalities of
the models, not only in the academic field but also for industrial purposes.

Considering the parameter estimation, the PyBaMM platform is considered a powerful
tool to facilitate computational complexity by solving standard electrochemical battery
models [46]. The feasibility of PyBaMM execution and its main contributions relies on
the following advantages and customized attributes [39]: (1) boundary conditions in the
initialization of the algorithm, (2) governing equations based on electrochemical models,
(3) initial conditions, (4) output variables of the model that represent the internal state of
the battery, and (5) customized attributes that illustrate the physical meaning of the system
(termination events, battery region, geometry, and computation solver).

Special DT platforms have also been implemented to assess the performance degrada-
tion of lithium-ion batteries. Peng et al. [47] developed a low-cost DT based on LabView
2018 using an equivalent circuit model (ECM) to realize a pack degradation assessment
of lithium-ion battery packs. Among their main contributions was a DT platform to test
different battery types and load algorithms for SOC estimation. Their results indicated
that their platform provides accurate new solutions for battery degradation in real-time;
however, compatibility with different algorithms and incorporation of new features, such
as virtual reality and augmented reality, are opportune areas for further improvement.

In terms of challenges regarding data and sensing of standardized collection methods,
numerous efforts have been proposed to achieve suitable data structures and effective
data-driven approaches. One remarkable effort was developed by Herring et al. [48], a
scientific study in which a BEEP Python library was implemented, enabling cell-testing
and machine-learning applications.

3.2.2. EV Electric Motor

The electric motor is considered the core element of an EV. It is responsible for con-
verting electric energy from the battery into kinetic energy that moves the vehicles” wheels.
It functions in part as an electric generator, converting kinetic energy created when the
vehicle is in neutral (for example, when it is descending a slope) into electric energy that is
stored in the battery. When the car decelerates, the same energy-saving concept is used,
resulting in a “regenerative braking system”. The main challenges of EV motors concern
their design and control [49]. The main goal is achieving maximum efficiency of the motor,
which means higher driving range and longer battery life [50]. The advancement in DT
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technology has coped with many problems of motor design and control. DT technology
provides many advantages for EV motors, from design optimization to prognosis and
determining the life span of different parts. In the meantime, DT technology facilitated
motor control algorithm development. The control strategy can be implemented and tested
through the motor DT without the need for a real physical model, which saves a lot of
time and power consumption needed for testbench development. Many platforms for
electric machine design and control support DT creation and deployment as shown in
the literature.

Venkatesan et al. [51] proposed an intelligent DT model of an EV PMSM for health
monitoring and prognosis. The MATLAB/Simulink platform supported with an arti-
ficial neural network (ANN) and Fuzzy logic tools were used to build the motor DT.
Rassolkin et al. [52] used MATLAB/Simulink and Unity 3D platforms to build a DT of
an induction motor for condition monitoring. Goraj [53] used Siemens’ product lifecycle
management (PLM) platform to build a DT of an airplane electric motor for lifetime fa-
tigue prediction analysis. Proksh et al. [54] developed an empirical-based DT model of
an induction motor using MATLAB/Simulink to monitor the bearing voltage and electric
breakthroughs. Jitong et al. [55] used 3D MAX and Unity 3D platforms to build a DT of a
three-phase induction motor for condition monitoring of motor equipment. Ruba et al. [56]
presented a DT for an EV propulsion system based on energetic macroscopic representation
(EMR) using the LabVIEW platform. Abbate et al. [57] developed a DT approach for an
industrial electric motor to evaluate its behavior based on vibration data for maintenance
purposes using the Arena simulation platform. Bouzid et al. [58] proposed a real-time DT
of a wound rotor induction motor for condition monitoring based on FEM of the motor
using RT-LAB in the MATLAB/Simulink environment. Ibrahim et al. [59] proposed a DT
of an EV-PMSM based on the motor analytical model to act as a virtual torque sensor. They
used the MATLAB/Simulink platform combined with the Robot Operating System (ROS)
to build the motor DT.

3.2.3. Traction Inverter

Power electronics interfaces are a key element in enabling the transition from conven-
tional internal combustion engine vehicles (ICV) to EVs [60]. Traction inverter technology
has recently advanced, making it a particularly promising field for expansion. The traction
inverter controls how much energy is transferred from the high-voltage battery system to
the motor, which turns the wheels and moves the vehicle. Inverters contain motor control
units (MCU), which are usually integrated parts. The EV motor’s control algorithm is
implemented by the MCU. As soon as it receives comments from the vehicle control unit
(VCU) via CAN-bus communication, it configures motor speed and torque, which are then
converted by the inverter into power signals. An inverter is considered the brain of the
EV as it is the main link between stationary and kinetic elements. Insulated gate bipolar
transistors (IGBT) have been the base element of EV inverters since 1980. Field-effect
transistors (FETs) with simple gate-drive and bipolar transistors (BJTs) with high current
and low conduction loss were merged to create IGBT. With low on-state conduction losses,
as well as a strictly controlled switching rate, IGBTs can block high voltages. Despite their
fast-switching capabilities, they suffer from low on-state conduction losses. As a result,
they require a larger thermal management system which has a negative impact on the
power conversion system efficiency.

Power transistors made of silicon carbide (S5iC) and gallium nitride (GaN) have recently
gained popularity as IGBT substitutes. [61]. By switching at higher frequencies (100 kHz
or more as opposed to 20 kHz), SiC devices can increase efficiency while minimizing the
size and cost of any inductors or transformers [62]. GaN transistors have been used in a
range of switch-mode power supply applications, including DC/DC converters, inverters,
and battery chargers because of their ability to tolerate high voltages (up to 1000 V), high
temperatures, and fast switching [63]. The main drawback of such a technology is that it is
still high costs.
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The advancement in DT technology for EV inverters has had a significant effect. Health
monitoring, fault diagnosis, performance optimization, and lifetime estimation of semicon-
ductors are the main prospective functions of DT for EV inverters as the literature shows.
Milton et al. [64] proposed a DT of a power converter running on a field programmable
gate array (FPGA) for online diagnostic analysis using the MATLAB platform. Wunder-
lich and Santi [65] developed a data-driven DT model of a power electronic converter
based on a dynamic neural network for condition monitoring using the MATLAB platform.
Liu et al. [66] proposed a model-based DT of a power electronic converter for condition
monitoring using the MATLAB/Simulink platform. Wu et al. [67] proposed a DT approach
for a single-phase inverter for degradation parameters identification using the MATLAB
platform. Shi et al. [68] proposed a DT method for IGBT parameter identification of a
three-phase DC/AC inverter for circuit condition motoring based on a particle swarm
optimization algorithm using the MATLAB/ Simulink platform. Liu et al. [69] developed
and experimentally validated a DT of an automotive traction drive system. The proposed
DT combined an FEM-based PMSM model with a SiC inverter circuit simulation using the
MATLAB /Simulink platform.

3.3. DT Platforms from EV Industry

Many producers of EVs and their co-systems are using the DT platform for research
and development purposes. Some EV manufacturers have established their own DT
platforms, while others are in collaboration with global platform developers [70-73]. Table 2
provides an adequate review of some DT platforms used by EV manufacturers.

Table 2. Some DT platforms of EV manufacturers and their functions.

Manufacturer DT Platform Origin Function

Predictive maintenance, Virtual

BMW Nv.1d1a Nvidia factory planning,
Omniverse o Lo
Condition monitoring
General Smart Signal General Electric Condition monitoring, Fault

Electric detection, Diagnosis, Forecasting

Predicting EV battery lifespan,
Hyundai Azure Microsoft optimizing battery management
and performance

Design optimization,

Kia NX software Siemens .o, -
Predictive maintenance
. Siemens . Testing simulations and calculations
Siemens Siemens . .
Xcelerator on digital versions
Bosch Bosch IoT Suite Bosch Condition Momfformg,
Product testing
Mitsubishi ~ MELSOFT Gemini  Mitsubishi Visualization, Design optimization,
Predictive maintenance
Skoda Auto Matterport DT Matterport Condition monitoring

4. Discussion

The first key step of creating a DT for a system is modeling. It is necessary to choose
between the two main DT modeling architectures: data-driven and model-based. The
selection relies on several factors, including the function performed by the DT, the system
parameter availability, and the simplicity or the complexity of the system. The next step of
the DT development process is to choose the right development environment (platform).

From the perspective of EV applications, EV vehicles were divided into two main
domains: the smart vehicle system and the vehicle propulsion drive system. Creating a DT
of a smart vehicle system is more achievable based on data-driven techniques. Whilst for
EV propulsion systems, a mixture of data-driven, model-based, or hybrid DT architectures
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have been applied. For battery storage systems, including battery health management
systems, data-driven DTs showed more reliability and flexibility; however, some researchers
used a hybrid architecture to model the system. In contrast, electric motors and traction
inverters can be modeled in diverse ways such as by finite element (FEM), analytical, and
numerical models; thus, they were modeled more by model-based DTs.

The use of platforms such as MATLAB/Simulink, Ansys, LabView, Unity 3D, and
other modeling platforms has been effective in creating model-based DTs. While in the case
of data-driven DTs, more reliance has been on cloud-based platforms such as Microsoft
Azure, AWS, IBM-ELM, or special purposes platforms built by the DT developers based
on one of the software development environments, such as Python, C++, R, and others.
Figure 4 represents an illustrative figure summarizing the results of this review of DT
architectures for different EV systems.

Use cases
* Smart vehicle system
* Battery storage systems

Use cases
*  Electric motors

+ Traction inverter:
* Vehicle Management IRcHOn I
System
Data-Driven DT Hybrid DT Model-Based DT
Use cases
* Traction Inverter
* Battery Storage systems
Platform Examples Platform Examples
* Microsoft Azure * Matlab/ Simulink
* Amazon web services * Labview
(Aws) * Ansys Twin Builder
* IBM-ELM - Unity3D

Figure 4. DT architectures for different EV systems.

5. Conclusions

Recently, DTs have become an emerging paradigm for virtual representations of
complex systems along with their underlying components.

DTs are composed of three main parts: physical objects, virtual representations, and
the communications between them. The virtual part of DT must be developed through a
specific environment called the DT platform.

Model-based and data-driven are the main categories of DTs. A comparison between
the two categories clarified their strengths and weaknesses as well as the prospective
applications for both.

This review dealt specifically with DTs for EV applications. EV systems were divided
into smart vehicle systems and vehicle propulsion drive systems. The literature addressed
the advantages of using data-driven DTs with smart vehicle systems due to the complexity
of modeling such systems and also the significant amount of data concerned with it. While
in the case of the electric propulsion drive system, there was mixture between the use
of model-based DT, data driven DT, or a combination of them both, depending on the
component to be modeled and the DT’s function.

This paper represents a reference for researchers on the topic of DT for EV applications
in order to determine the appropriate DT platform according to the work requirements.
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For researchers, many platforms may be used to create DTs for different EV systems,
but the reality in industry may differ slightly. Most EV manufacturers rely on their unique
platforms for research and development purposes. The main issue with such platforms
is that they are not open source, which deepens the gap between academic research and
industrial development.
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Abstract— This article focuses on the different charge
and health indicators of battery energy storage systems
to provide an overview of the different methodologies
implemented in optimal lifetime assessment, as well as
on some introductory simulations implemented to
analyze the impact of model parameters. Our aim was
to familiarize the reader with the importance of lifetime
evaluation in Battery Energy Storage System (BESS) by
using different models given in the literature.
Introductory  simulations in  Simulink  were
implemented to illustrate the electrical and thermal
responses of the BESS.

Keywords— State of Charge, State of Health,
batteries, Electric Vehicles.

I INTRODUCTION

Battery degradation is a point of interest for the scientific
community due to the current development of new energy
storage technologies. As the demand for energy and issues
ofsustainability is increasing, climate change mitigation
shouldbe promoted, and CO2 emissions should be reduced.
Battery Energy Storage Systems (BESSs) are essential
components ofElectric Vehicles (EVs) that improve the
efficiency of the system; however, some indicators explain
lifetime reductionand aging processes during operating
conditions. To wunderstand battery degradation, two
specific levels are addressed: design and operation [1].
Regarding the design level, the main usage factors are the
Depth of Discharge (DOD), ambient conditions, and the
State of Charge (SOC), which have a direct impact on
lifetime and battery aging. In the operation level, an online
lifetime estimation is essential due to the faster aging

process experienced by low-capacity batteries in
comparison with batteries in the first gradients [1].
Some studies have addressed different types of

degradation mechanisms, using both programming
algorithms and experimental techniques, such as X-ray
Diffraction, Scanning Electron Microscopy (SEM), and
Electrochemical Impedance Microscopy (EIM) [2-6].
Through impedance microscopy and pulse current tests,
dependence on battery impedancecharacteristics has been
found to play a critical role in batteryconditions. Reduction
in battery efficiency and power capacity are the results of
significant changes in batterycondition and aging. [4]. In
the same manner, material characterization has been
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proposed as a methodology to identify different lithium
microstructure formations in the anode components,
providing a solid understanding of the behavior of battery
components in the study of energy storagesystems from the
electrochemical point of view [5]. In 2019,two remarkable
studies focused on aging and lifetime assessment of
batteries were conducted to provide parameterestimation
for battery modeling. First, Sutter et al. [3] proposed a
Fractional Differential Model (FDM) that demonstrates a
plausible implementation in the Battery Management
System (BMS) over the SOC range. Then Kimet al. [2]
suggested the identification of physical parameters of
lithium-ion batteries and implementation of a Bayesian
harmony search algorithm, which achieved optimal
development of the battery degradation model using an
electrochemical approach.

Different Health Indicators (HIs) have been reported to
determine efficient methodologies for accurate lifetime
estimation [15,17,18,21]. Among the most remarkable are
impedance parameters to detect degradation behavior and
health monitoring, pulse voltage response through the
application of Machine Learning algorithms, and HPPC
(Hybrid Pulse Power Characterization) to estimate
prognostics and health management. However, parameter
identification, experimental measurements, and additional
methods are fundamental to complement the lifetime
assessment of BESS.

In Section 2, methodologies to determine the SOC and
State of Health (SOH) indicators based on BESS are
explained. Section 3 provides an introductory simulation
of Li-ion batteries to illustrate the impact of the model
parameters on battery performance. Section 4 addresses
future research andopportunity areas to provide an optimal
lifetime assessment of BESS.

1L HEALTH AND CHARGE INDICATORS

SOH is an essential parameter to analyze and evaluate the
Remaining Useful Life of the BESS, which has encouraged
the development of new data-driven and statistical
approaches. However, some indicators must be considered
to guarantee the efficiency of the electric vehicle and avoid
failures, making model input selection a challenging task to
accomplish. According to reference [11], most commonly,
the SOH is defined as the percentage of ratio between the
rated capacity at the beginning of the battery life and the
current maximum available capacity of a lithium-ion
battery.

Mathematically, the SOH is defined as follows:

Caged, (1)

SOH =

Cnew
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where variables Cyg0q and Cpey, are defined as the capacity
of the battery after certain cycles and the original capacity
of the brand-new battery respectively. The capacity refers
to the maximum number of ampere-hours that can be drawn
from the battery when this device is completely
discharged/charged at certain conditions.

In 2015, Zhang et al. [12] proposed a method to estimate the
SOH for hybrid electric vehicles. It was based on the
calculation of the bulk capacitor, whereas this parameter is
defined as the element that stores energy and has a high
capacitance in the Equivalent Circuit Model (ECM) [12,13].

The contribution of Zhang's investigation lies in three
points:

1. The accuracy of the model is guaranteed by using
a nonlinear discretization system at the sample
timedirectly.

2. The attenuation factor of the bulk capacitor is
obtained from the collected data and reliability
analysis.

3. Estimation error has a convergence and is
guaranteed by a nonlinear observer.

Regarding the SOC indicator, it is also an essential
parameter that integrates the BMS to obtain necessary
energy requirements of EVs, such as charging, power, and
safety information, to ensure optimal operating mechanism
from the battery to the vehicle.

The SOC is defined by the following expression according
to [14]:

SOC = S0C, — LmWat )

Ceell
where 7; represents the charge/discharge rate, Cgpy 1s
defined as the nominal capacity of the battery and SOC, is

the initial value of the SOC.

Different algorithms have been applied to provide an
accurateestimation of the SOC; among the most important
are the Extended Kalman Filter (EFK) and the Unscented
Kalman Filter (UFK). The EKF was proposed in 2004 by
Gregory Plett [26-28] to estimate the operating condition of
the BMS, which includes SOC, instantaneous available
power and capacity byapplying a linearization process at
every time step with a linear time-varying system (LTV).
Although the above algorithms have been widely
implemented to ensure the safetyand reliability of BESS,
focused on lithium-ion batteries, they experience some
drawbacks, such as low precision, high complexity, and
large dimensions, which is why new methodologies are
required. [15].

In 2018, Wang et al. [14] conducted a study to calculate
boththe SOC and SOH of a lithium-ion battery; a Dual
Unscented Kalman Filter (DUFK) that considers
concentration and electrochemical polarization was
proposed to fulfill online parameters identification and
SOC estimation. The main contribution of Wang's research
is as follows [14]:

1. The algorithm considers real-time parameters,
avoids the influence of ambient factors, and
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compensates for noise signals the
operation.

2. Estimation of the SOC and SOH is obtained in
real- time through changeable parameters that are
related tothe fading state of the battery.

3. Higher accuracy than EFK and UFK algorithms is
obtained, achieving an error of less than 3%. For
mathematical understanding, the reader is

encouragedto consult the reference.

during

Regarding  specific ~ HIs, literature reviews in
[15,17,18,21,24]consider seven diverse types of Hls into
three main categories: (1) Impedance-based HI, (2) Voltage-
based HIs, and (3)Curve-based HIs. For the purpose of this
research, Impedance- based HI and Voltage-based Hls are
described.

A. Impedance-based HI

The Equivalent Circuit Model (ECM) [15] is normally
implemented to calculate the impedance-based HI, which
depends largely on the SOC estimated either by an ampere-
hour counter or coulomb counter, accumulating charge and
integrating the battery current. In 2017, Yuan and Dung
[15]conducted a study that applied an offline state-of-
health estimation based on transfer resistance for high-
power lithium-ion batteries. They proposed a fast and
efficient three-point impedance extraction method.
Mathematically, the SOC estimation is defined as follows:
to+htg

S

Ipae(t)dt
SoC(t) = SoC(ty) + ~o—=

-100%. (3)
Considering the previous equation, the parameter SoC (t)
is the SOC at a specific time; SoC (t,) is the SOC value at
the initial time to; Qf is defined as the full capacity value
of the battery cell; I, (t) is the battery current, having a
positive value when it is charged and negative when it is
discharged; finally, At% is the time period of the

charging/discharging regime [15]. The SOH estimation
using the impedance three-method was proposed by
Haifeng et al. [16] and is defined according to the next
equation:

X)X,
SoH ==B"@W . 1009,
XE) =X

4)

where X is defined as the impedance in the ECM and the
subindexes (E), (N) and (A) are the parameters of an End
of Life (EOL) cell, fresh cells and aging cells respectively.
To test the performance indexes in the Haifeng’s research,
three experiments were conducted: 1) repetitive charge-
relaxation test; 2) external resistance test; 3) accelerated
aging test. Among the major contributions of the three-
point impedance extraction method are a low estimation
SOC error of 6.1%, a simple and not complex numerical
computation and a significant aging change with battery
degradation against external resistance [15].

Some authors have suggested other important approaches
for applying reduced impedance models, such as Xiong et
al. in 2017 [17]. They implemented a double polarization
model to estimate health monitoring using parameter
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estimation, and Wang et al. applied the dual unscented for
online parameter identification and SOC calculation [14].

B. Voltage-based Hls

In this category, voltage-based HIs normally depend on the
voltage response curves under specific current pulse tests.
Several features must be considered in order to establish the
SOC estimator, so that the keen points and slope of the
voltage curve at the beginning and end of the current test
are fundamental due to the feature selection.

In 2018, Meng et al. [18] implemented a Support Vector
Machine (SVM) algorithm to provide a SOC estimation,
executing a short-term current pulse test. Tests were
performed using a LiFePO4 battery and the parameter
selection is summarized in the following table:

TABLEL PARAMETERS FOR LIFEPO4 SOC
ESTIMATION [18].

Parameter Value
Operating temperatures -30 to 50
°C
Voltage range 20t03.6 V
Nominal voltage 33V
Maximum charge current 10 A
Maximum discharge 70 A
current
Capacity 2.5 Ah

To proceed with the SVM algorithm implementation, the
extracted indicators from the pulse voltage response are
considered in the following function:

y=fVa Vs, Ve, Vp, Ki, K3, K3, Ky). (5)

In the previous equation, the variable V represents the keen
point of the pulse voltage and K is the slope between each
point. In the same manner, the estimation of the SOH in a
battery can be calculated by identifying the resistance and
the capacity, as expressed in the following equations [19-
20]:

SoH = REoL=Rbat 100 (6)
REOL=Rnew

SoH = Lat=9E0L 40004 7
Qnew—CQEoOL

where R and Q are the resistance and battery capacity,
whereas the subindexes EOL, bat and new represent the
corresponding measurements of the End of Life, battery at
current time and new cells respectively. It is important to
mention that the main contribution of Meng et al. [18] is
based on the voltage response during the aging process; the
testing method showed an effectiveness for a period of 37
weeks and demonstrated an estimation error of less than
1%.

Another approach to calculate health management of
lithium-ion batteries was proposed by Hu etal. in 2013 [21],
in which an ameliorated sample-entropy-based capacity
estimator was implemented. In this test, several parameters

were considered and an HPP (Hybrid Pulse Power
Characterization) is used as an input to characterize the
capacity loss, a total of eight aging datasets were collected
to evaluate the estimator. Finally, three temperature ranges
were considered and the results demonstrated a good
performance with an average relative error of 2% in the
health management strategy.

I MATLAB SIMULATION AND SOC
IMPACT ON MODELPARAMETERS

In this section, we performed three introductory simulations
in MATLAB using the Simulink library. The main purpose
was to integrate the battery performance and demonstrate the
impact of input parameters on the model, focusing on the
SOC calculations over a period of time.

In the first simulation model, a simple battery cell is
implemented according to the diagram in Fig.1.

Fig. 1. Simulink diagram of a simple battery cell. The Panasonic NCA
103450 battery type is implemented.

In the figure, the thermal and electrical effects are
representedby the orange and blue colors, respectively, to
appreciate thebehavior of the battery in the discharging
process. Accordingto the Simulink specifications, the user
is able to select and implement several types of batteries,
which depends on the manufacturer and the part number.
The model implemented in the simulation corresponds to
a Panasonic NCA 103450 battery.

The Open Circuit Voltage Resistance (OCV-R) model
shownin Fig. 2 has been considered to characterize a
lithium-ion battery into a high-level system.

R_chg (SOC)
— AW

R_dis (SOC)

oCcV(Soc) C
V
)

e

Fig. 2. Graphic representation of the OCV-R model.
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The parameters Reng(SOC) and Rais(SOC) are the internal
resistances during the battery charging and discharging
processes, respectively, whereas the variable V is the
voltageof the battery, and OCV(SOC) is defined as the
Open CircuitVoltage. The relationship between the OCV
and SOC dependson the chemistry of the battery and the
direction of the charging and discharging processes.

To calculate the SOC, the following equation is used:

50C =S0C, — =« [ I(t)dt , (8)
e 0

where C,is defined as the total capacity of the battery and

SOC, represents the State of Charge at the initial time.

After calculating the SOC, the voltage of the battery is

calculated by the following equation:

Vy = OCV(SOC) — I % R(T, SOC). )

It is important to point out that both OCV(SOC) and
R(T,SOC) are functions dependent on the SOC; however,
the current I is a scalar value whose specific value is kept
constant.

To simulate the OCV-R model, an excel dataset was
collected, and the corresponding input variables are: SOC,
OCV, Charge Resistance, and Discharge Resistance.
Regarding the constant parameters, the total capacity of the
battery Crn and the constant current [ have the values of
2.3AHand 2.3A, respectively.

The corresponding diagram that implements the prior
equations of the OCV-R model is illustrated in Fig. 3.

MO g —w?
1 -
S
D Gain

r_discharge
Fig. 3. Simulink diagram of the OCV-R model.

,.

After running the simulation for a time period of 1 h, the
following curves were obtained; they show the SOC for
boththe simple battery cell and OCV-R model behavior:

SOC [%]]

—— Voltage [V][

;:L [—Temperature [K]

o m ET ) "o

|TIME [Sec]

Fig. 4. Curves calculated in the Simulink library by implementing a
simplebattery cell model.
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T ocv V]

at t =

at

[TIME [Seq]

Fig. 5. Curves calculated in the Simulink library by implementing the
OCV-R model.

Fig. 4 shows the thermal and electrical effects of the
battery. The first plot indicates the SOC evolution using a
simple model for the Panasonic NCA 103450 battery type.
The second plot presents the voltage evolution. Both plots
illustrate a linear decreasing behavior due to the
dischargingprocess, whereas the temperature distribution
is shown in thethird plot. The thermal mass of the battery
plays an important role in the simulation, especially
regarding the thermal effects; thus, the recommended
value is around 400%0.05 J/K according to the thermal
properties of lithium-ion batteries and the Mathworks
documentation [25]. Fig. 5 shows the evolution of the SOC
and OCV using the OCV-R model for a charging process
and indicates a behavior different from the first graph. The
main explanation is based on the complexity of the model
and the mutual dependence of the input variables in Eqs.

(8) and (9).

Finally, the third model also implements a high-level
battery system by using the UKF, which incorporates
thermal and electrical properties for parameter estimation
and simulation. In this case, the output variable
corresponds to the SOC estimation and is based on the
ECM [15].

Battery

UKF

cument  ch_dch

Random Current Pulse Generator

Fig. 6. Simulink diagram implementation of the UKF to estimate SOC.

The UFK has been a selected block parameter from the
Simulink library, and the initial specifications have been
set according to the default values from the Mathworks
documentation [25]. Regarding electrical properties,
three rate transition block parameters have been
implemented for the voltage, temperature, and current,
respectively, to establish the connection with the UFK. In
the case of the thermal properties, the convective heat
transfer coefficient has been selected from the range of 5
to 25 W/m? due to thenatural convective process, with 5
W/m? being the recommended value according to the
Matlab documentation.
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It is important to notice that in the third model, the output
curves show the comparison results between the true SOC
calculated by the battery using the ECM approach and the
SOC estimated by the UFK. Results can be appreciated in
Fig. 7.

estim SOC, true SOC

estim SOC
true SOC

TIME [Sec]

Fig. 7. Curves calculated in the simulink library by implementing the

UFK to obtain SOC estimation. A comparison between the Real SOC

using the ECM and the estimated SOC using the UFK method is also

shown.

Fig. 7 shows that both curves, Real SOC and estimated
SOChave similar behavior and almost equal numerical
values at the beginning of the simulation, in the same way,
it can be appreciated that after a time of 4000 seconds, there
is an almost negligible numerical difference between Real
SOC and estimated SOC, all this due to the accuracy of the
methodologies that are represented in the curves.

It is important to mention that the impact of both SOC and
SOH in the BESS depends on the model implementation,
so the EV battery lifetime will be the point of analysis when
applying the algorithm. One remarkable example of the
SOCand SOH impact when implementing the OCV model
was developed in 2021 by Essiet and Sun [29], in which the
advantages of the Shepherd, Unnewehr and Nernst models
were considered to optimize battery charging and maintain
grid stability in voltage-to-grid systems (V2G). Among the
most important contributions of the model proposed by
Essient and Sun [29], are the stability in sag voltages, a
cheper charging cost of 26% during V2G operation, and an
increase in financial gains for EVS in grid regulation
services, thus providing healthy battery status for optimized
V2G andGrid-to-Vehicle (G2V) operation.

In conclusion, implementing a battery model mainly
dependson the criteria and user specifications to estimate the
differenttypes of health and charge indicators. However,
there is a complexity regarding the input parameters that
affect the output of the model, which is based on the
correlation between the input variables due to the applied
equations. A solid understanding of the electrical and
thermal features of the model is required, which is
complemented not only by the physical behavior of the
model but also by experimental procedures to validate the
results.

Iv. CONCLUSION

Different Health and Charge indicators in the most efficient
methodologies recently implemented by the researchers are
described. Our aim was to familiarize the reader with the
importance of lifelong evaluation in BESS. At the same
time,the implementation of a BMS must also be considered
to provide an optimal estimation of the electrical and
thermal parameters of the BESS. Thus, the first step is to
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apply a robust mathematical model that explains the
behavior of the system over a specific time period.

It is fundamental to specify that the approaches to estimate
Health and Charge indicators discussed in this article, are
mostly focused on lithium-ion batteries, however, other
types of batteries are also eligible, so that the battery
modeling plays the most important role in the algorithm.
Additionally,the performance of the algorithm will depend
on the battery characteristics, operating conditions,
manufacturing processes, etc.

The complexity of the mathematical model is based on
limitations, assumptions, and validation approach to
provideaccurate results. However, the implementation of
technological tools, such as virtual simulations, numerical
methods, Machine Learning algorithms and Artificial
Intelligence, has encouraged the development of new
technologies in the field of Energy Storage Systems.

In this work, introductory simulations in Simulink were
implemented to illustrate the electrical and thermal
responsesof the BESS. However, more robust models in
combination with major functions performed by a BMS
are required to monitor and estimate the health and charge
indicators of a BESS.

This work is the basis of the BESS modeling and can be
developed to implement algorithms for a BMS to
determine their parameter values from lab-test data and
how to use themto simulate cell behaviors under different
load profiles. Moreover, this work provides a research
environment for the development of a digital twin of
battery energy storage system for analysis, investigation,
and online simulation. This will help establish assessment
and verification procedures for possible fault diagnostics
to support commercial consulting, research, and testing for
enterprises based on the digital twin concept.

Future work will be based on validation of the models
according to experimental measurements and battery
testing. Predictive maintenance and fault diagnosis will be
executed not only to estimate the SOC and SOH, but also
to describe and illustrate the Key Performance Indicators
(KPIs) of the BESS. Once the KPIs have been obtained in
battery modeling, the development of the BMS algorithm
will be started so as to initiliaze the digital twin.
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Abstract— This research work focuses on implementing
outlier analysis and clustering to provide an assessment of the
charging and discharging processes of Battery Energy Storage
Systems (BESSs). K-Means, Density-based spatial clustering of
applications with noise (DBSCAN), and Local Outlier Factor
(LOF) are the main algorithms executed to illustrate Key
Performance Indicators (KPIs) and their corresponding critical
values during battery operation. Additional Data Mining
methods are implemented to provide feature selection,
correlation analysis, parameter estimation, and validation.
Implemented algorithms show that there is a strong correlation
between specific variables at certain operation stages, which is
complemented by the lifetime period of BESSs.

Keywords—outliers, clusters, charge, discharge, battery.

I.  INTRODUCTION

Battery Energy Storage Systems (BESSs) are used for a
variety of applications in the energy industry, with mobility
systems being one of the most promising fields to reduce CO2
emissions by deploying various categories of electric vehicles
around the world. Especially in Europe, where in October
2022 the European Parliament and Council agreed to ensure
all new cars registered in Europe will be zero-emission by
2035.

Different charging and discharging strategies have been
implemented to monitor and ensure the reliability of BEESs
measurements, however, some of the parameters are not
controlled all the time by the battery's user, which could lead
to battery degradation. Several studies [1,2] have been
conducted to demonstrate that charging and discharging
processes can be optimized by monitoring Key Performance
Indicators (KPIs) and increasing the lifetime period of BEEs,
such as the voltage of the cell, the temperature measured, and
cell capacity. The charging technique is considered as the
most crucial factor that affects the stability of a BESS, all due
to its ability to control time, temperature, and assure
protection, on the other hand, the discharging process is
essential to determine the capacity of a BESS based on cycles,
which plays a key role in the lifetime estimation.

The research has been supported by the Estonian Research Council
under grant PSG453 "Digital twin for propulsion drive of autonomous
electric vehicle".

In the field of Data Mining, clustering and outlier analysis
is the point of discussion to develop new and efficient
methodologies to optimize the solution of complex problems,
not only limited to the computer science community but also
to the energy industry. Remarkable Data Mining studies have
also contributed to the development of new insights in the
field of BESSs and industry mobility. In 2020, Zhou et al. [3]
developed a methodology for second-life batteries usages by
implementing a bisecting K-Means algorithm, which
demonstrated fast clustering of retired lithium-ion batteries. In
addition to the previous study, Ran et al. used a pulse
clustering model that was embedded with improved bisecting
K-Means, all to effectively sort retired batteries with specific
life cycles [4]. Finally, in 2022 Chang et al. [5] implemented
and compared the efficiency of Hierarchical clustering, K-
Means, and Hybrid clustering to sort pouch cell capacity in
battery packs.

The main goal of current research work is to provide
clustering and outlier analysis for charge and discharge in a
BESS, all to assess operating mechanisms based on the
identification and explanation of KPIs through Data Mining
algorithms.

The rest of the paper is organized as follows, in Section II,
the problem statement and the motivation of this research are
explained. Section IIl describes and implements the
methodologies, focusing on feature selection, correlation
analysis, and parameter estimation. Section IV provides the
results based on the KPIs and their interpretation within the
framework of the BESS. Finally, in Section V, a conclusion is
provided to promote new areas of opportunity based on fault
diagnostics and lifetime estimation of BESSs.

II.  DATASET AND PROBLEM STATEMENT

The field of Data Mining has been growing during the past
two decades, providing new opportunity areas not only in the
computer science community but also in the engineering
industry, being renewable energy integration a promising
topic that contributes to climate change mitigation.
Foundations of Data Mining consider four "super problems",
which are clustering, association pattern mining, outlier
analysis, and classification. The relevance of these problems
relies on the broad use as building blocks in a variety of data
mining applications [6], complementing more advanced fields
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such as Machine Learning, Deep Learning, Natural Language
Processing, etc.

In this research, two of the four "super problems" in the
field of Data Mining are discussed under the framework of an
energy perspective, all to illustrate the KPIs of BESSs in
charging and discharging processes.

This research work uses an aging dataset collected by
Macintosh in 2010 for a Li-ion battery that ran through two
operational profiles at room temperature [7]. The charge was
carried out in a constant current (CC) mode at 1.5 A until the
battery voltage reached 4.2V, and then continued in a
constant voltage (CV) mode until the charging current load
dropped to 20 mA. The discharge was performed at a constant
current level of 2.0 A until the battery voltage dropped to
2.7 V. The dataset contains several features that explain the
behavior of the BESS: voltage measured, current measured,
temperature measured, current charge, voltage charge, time
vector for the cycles, capacity for discharging, operation type,
ambient temperature, and start time. It is fundamental to point
out that only a few variables from the entire dataset will be
considered as KPIs when implementing the corresponding
methods described in the following sections.

During the operation of a BESS, crucial steps are based on
the State of Charge (SOC) and State of Health (SOC),
however, identifying potential values that can lead to
degradation mechanisms at certain periods of time is an
essential task to accomplish. Implementing clustering
algorithms ensures the reliability of experimental battery
measurements and identifies patterns at various stages.

Regarding outlier analysis, predictive maintenance is an
essential task to monitor the lifetime of a BESS. To validate
not only stability in battery operation but also battery
modeling, some critical points at specific intervals are the
main concern to avoid early deterioration, and these points are
outliers found in anomaly ranges of battery processes.

1. METHODS

Initially, the Correlation test and Principal Component
Analysis (PCA) are implemented to perform data
preprocessing, feature selection, and illustrate variance
importance. Subsequently, some parameter estimation
techniques are applied to optimize the mechanism of selected
algorithms and evaluate clustering quality. K-Means, Local
Outlier Factor (LOF), and Density-based spatial clustering of
applications with noise (DBSCAN) are described and
executed.

A. PCA and feature selection

The dataset is processed and sorted based on the Start time
to understand problem dimensionality represented by charge
and discharge. Null values are searched and not found, which
ensures the reliability of the measurements. Additionally, a
correlation test is executed to analyze the relevance of all
variables.

Ambient temperature and start time are dropped to continue
with the following steps, the first because of the constant value
during all the measurements and the second because of the
negligible numerical correlation with the input features.
Similarly, the "Type" variable is separated from the matrix of
features based on its clustering properties According to the
results of the Correlation test, the temperature measured, time,
voltage measured, current measured, and capacity are the most

correlated variables in the entire dataset, these being
considered as the KPIs.

Before implementing the correlation test, it was expected
to have a mutual correlation between the voltage measured vs
capacity, all because these variables explain the charge-
discharge curves of a BESS. However, in this case, the results
indicate an anomaly behavior in the dataset. On the other
hand, voltage measured vs. time and temperature measured vs.
capacity show the highest correlation expected because of
KPIs on aging and degradation in a BESS. A visual
representation of the Correlation test can be appreciated in
Fig. 1.
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Fig. 1. Correlations with p<0.05 for charge and discharge, in which "p"
denotes the level of significance. Negative correlations are represented
in red and positive correlations are in blue.

Regarding the contribution of the KPIs, the PCA algorithm
is executed to illustrate the variance importance for each
principal component. It is important to mention that not only
is the feature matrix standardized, but also the corresponding
eigenvalues of each principal component are used to draw a
boundary for the explanatory variables that retain the highest
cumulative variance. To understand the contribution of each
input variable in the entire dataset, the importance of
components is explained by the standard deviation, proportion
of variance, and cumulative proportion, the first because of the
eigenvalue's representation, the second due to the amount of
variance that each principal component accounts for in the
dataset, and the third indicate the accumulative amount of
explained variance. Fig. 2 shows the percentage of explained
variance by each principal component.

Principal Component
Analysis (PCA) - Charge and Discharge

Percentage of explained variances

7.8%

Dimensions

Fig. 2. PCA representation for cumulative variance. Explained variance and
contribution of each principal component.

Since the data is standardized and the corresponding
eigenvalues of each principal component are obtained, the
boundary is implemented to those eigenvalues <1, which
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means that the component explains less than a single
explanatory variable. PCA results show that the first two
components explain more than 70% of the total variance in a
7-feature dataset, therefore it is possible to represent the
distribution of points by considering the charging and
discharging processes, which are defined as the initial labels.
Fig. 3 illustrates the distribution of the dataset considering the
first two principal components and operation type.

2D PCA-plot from 7 feature dataset

Type

E charge
[4] discharge

Dim2 (32.8%)

0
Dim?1 (48.9%)

Fig. 3. PCA representation for variables and individuals in the dataset.
Points outside the ellipses show an anomaly pattern.

Finally, the matrix of features is separated into two
different arrays of [50,285 *7] for discharge and [541, 173 *6]
for a charge, which explains the longer duration of the
charging process. Before explaining the following sections, it
is remarkable to state that PCA is a powerful algorithm that
provides support to accomplish dimensionality reduction,
however, this does not imply that feature removal is a
mandatory task in feature engineering steps, therefore,
familiarity with the dataset is highly recommended when
implementing Data Mining algorithms, specifically for
clustering and classification problems.

B. Parameter estimation techniques

In this subsection, the most optimal methods to perform
parameter estimation for K-Means, LOF, and DBSCAN are
described. It is necessary to mention that there is no
completely accurate technique, but there are some that provide
more efficient results based on validation and testing.

1) K-Means
To select the optimal quantity of "k" clusters, the Elbow
Method was implemented, which is described in the next steps

(8]:

e Compute the clustering algorithm for different
values of "k", for instance, by varying "k" from 1 to
the maximum and desired clusters.

e For each value of "k" calculate the total Within-
Cluster Sum-of-Squares (WCSS).

e Plot the curve of WCSS according to the number of
clusters specified in the previous step.

e The inclination point (knee) in the plot is considered
as an indicator of the optimal number of clusters.

For comparison purposes, the Average Silhouette method
is also implemented and is summarized below [9]:

e Compute the clustering algorithm for different
values of "k", from the initial to the maximum
desired value.

e For cach corresponding "k", calculate the average
silhouette of the observations.

e The curve of average silhouette observations is
plotted, and location of the maximum point is
considered as the optimal number of clusters.

To determine the condition for outlier's detection, the

following algorithm is implemented using reference and
divided into three stages [10]:

e Stage 1: Calculate the pairwise distance for the
whole dataset, considering the quantity of
observations in the matrix of features and cluster
centers for the K-Means algorithm. Take the
maximum and minimum value of the calculated
pairwise distances. Threshold value= (maximum
distance + minimum distance)/2

e  Stage 2: If the distance > Threshold value, this point
is considered as outlier, otherwise, is a non-outlier.

e Stage 3: Finding out all outliers for a particular
dataset based on the previous conditions.

In Fig. 3 and Fig. 4, the Elbow and Average Silhouette
methods are illustrated to represent the cluster's selection and
clustering quality; it can be appreciated that according to both
methodologies, the optimal value of "k" equals three for this
example.

Optimal number of clusters
Elbow method

60000

40000

Total Within Sum of Square

20000

1 2 3 4 5 6 7 8 9 10
Number of clusters k

Fig. 4. Elbow method to select the optimal number of clusters in K-Means.

Optimal number of clusters
Silhouette method

04
0.3

02

Average silhouette width

1 2 3 4 5 6 7 8 9 10
Number of clusters k

Fig. 5. Average Silhouette method to select the optimal number of clusters
in K-Means

2) DBSCAN

DBSCAN is an algorithm implemented for density base
clustering that contains a huge amount of data noise and
outliers, having Eps and MinPts as the main parameters of
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performance, denoting the maximum distance between two
points and minimum quantity of points, respectively.

To determine the optimal value of Eps, a single-level
density algorithm that calculates the slope between the points
of the k nearest neighbor distance is implemented, selecting
the slope of 1% difference as the optimal Eps value [11]. In
Fig. 6, the previous explanation is exemplified. Regarding the
selection of MinPts, reference [12] explains a simple but
effective heuristic approach that is based on the k-th nearest
neighbor distance, a "k-dist" function that maps each point to
the k-th nearest neighbor, and a density distribution in the
dataset, however, domain knowledge and familiarity are also
important to consider when selecting MinPts in the DBSCAN
algorithm.

4-NN distance
03 04 05

02

0.1

T T T T T T
0 10000 20000 30000 40000 50000

Points (sample) sorted by distance

Fig. 6. Determination of the optimal Eps based on a single-level density
algorithm. Horizontal red line denotes the selected value.

3) LOF

LOF is a normalized density-based approach. This
algorithm detects outliers by comparing the density of each
point with the density of its k-nearest neighbor, moreover, its
mechanism is integrated by the minimum number of points
"q" and the threshold "p". To obtain the optimal value of "q",
it is necessary to select a minimum and maximum number of
points, after that, for each point take the maximum value over
each "q" in the previous specified range; detailed
methodology is explained in reference [13].

Regarding the threshold value for outlier detection, the
density of the LOF score distribution is considered and
visualized, subsequently, quantile point is calculated in
accordance with the density distribution, finally, the threshold
is adjusted according to the selected quantile and user criteria.
Exemplification of the methodology for the threshold
selection is shown in Fig. 7.

Density LOF

15

Density [%]

o 4 N
T T T T T T T

0.90 095 1.00 1.05 1.10 1.15 1.20

LOF Score

Fig. 7. Determination of the threshold value based on the LOF score
distribution.

IV. RESULTS

In this section, K-Means, LOF, and DBSCAN are
implemented in the charging and discharging processes. It is
fundamental to specify not only that the capacity is restricted
to the discharge but also that is the most crucial KPI due to the
End-of-Life (EOL) criteria of a BESS.

Usually, the EOL criteria is reached when the capacity of
a BESS is lower than 70%-80% of the total rated capacity. It
is important to clarify that a battery pack consists of a set of
battery modules, in which each module has 12 battery cells. In
this dataset, the BESS refers to a battery cell whose total rated
capacity is 2 Ah, so the EOL at 70% is reached at
approximately 1.4 Ah in cycle number 125. To illustrate the
EOL criteria, Fig. 8 shows the capacity of the BESS through
the total quantity of cycles, in which each cycle is updated
based on different capacity values for all time intervals.

Capacity vs Discharging Cycles

Capacity [Ah]

12 14 15 16 17 18

| Y

T T T T T T T
0 25 50 75 100 125 150

Discharging cycles [number]

Fig. 8. Capacity vs Discharge cycles. Blue curve denotes the different
capacity through the discharge. The horizontal red line denotes the EOL
value for the BESS.

Taking KPIs and initial results into account, capacity and
cycles will be the focus of the discharge, while the temperature
of the charge, all to discuss the results of the clustering and
outlier analysis.

A. Charge

K-Means and LOF are algorithms that detect a similar
quantity of outliers based on the determination of threshold
and the number of clusters, on the other hand, DBSCAN is the
algorithm that identifies the least quantity of outliers in the
dataset. A remarkable insight corresponds to the values of the
outliers related to the KPIs of the BESS, which is found in the
same range for all the Data Mining algorithms, specifically
during the initial and ending period of the EOL criteria.

In Fig. 9 the outlier analysis is represented by K-Means,
DBSCAN and LOF, taking a sample of values and showing a
similarity due to the distribution of points in the KPlIs,
specifically in the intervals for Temperature and Time,
demonstrating that the parameter estimation validates the
optimal performance of the algorithms.
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Outlier analysis- Charge
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Fig. 9. Outlier analysis representation by DBSCAN, K-Means and LOF in
the charging process.

The complexity of the subset in the charging process can
be exemplified by the irregular shape of clusters because of
the longer duration of the cycles, which in this case is
supported by charging the batteries until they are almost at
maximum capacity and then starting the discharge. Altering
densities can be appreciated in this subset, visually
represented by clustering the charging process in Fig. 10.

Cluster plot

cluster

of
&

[
Dim? (63.9%)

Fig. 10. Clustering representation of the charging process. Two clusters are
selected according to parameter estimation techniques. Black points indicate
an anomaly behaviour.

The interpretation of the results from an engineering
perspective is explained not only by noise data in experimental
measurements but also by showing anomaly patterns in
intervals outside the range of the temperature distribution,
these being contributors to the deterioration of a BESS.

B. Discharge

In this subsection, the capacity and discharging cycles are
analyzed to detect outliers before reaching the EOL criteria,
specifically to identify the interval of cycles with the major
quantity of anomaly patterns.

The results show there are many outliers when the battery
capacity is above the mean value that equals 1.5 Ah;
furthermore, this result is supported by the duration of the
cycles to initiate a degradation in the BESS. It is appreciated
that when the EOL criteria is reached, the number of outliers
decreases because the degradation previously had an effect, so
the KPIs play a key role in sections with the highest density
points, which correspond to the 30-75 discharging cycles. A
sample of points in Fig. 11 illustrates the outlier analysis,
showing a slight similarity in the interval values by
implementing DBSCAN and LOF; however, there is a pattern
of significant difference in the range of values for the K-
Means algorithm

Outlier analysis- Discharge

. .*|— pBscan
. o|—+— KMEANS
. .- —— LOF

Capacity [Ah]

13 14 15 16 17 18

T T
0 40 50 80 100 120 150 160
Cvcles [numberl

Fig. 11. Outlier analysis representation by DBSCAN, K-Means and LOF in
the discharging process. Horizontal red line denotes the EOL value for the
BESS

Finally, clustering of the discharge has been successfully
implemented and can be appreciated in Fig. 12, in which PCA
is executed to illustrate the KPIs based on the first two
principal components, complemented by the parameter
estimation techniques.

Cluster plot
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Fig. 12. Clustering representation of the discharging process. Three clusters
are selected according to parameter estimation techniques. Black points
indicate an anomaly behaviour.

C. Clustering validation and discussion

The implementation of the parameter estimation
techniques shows that the number of "k" clusters in the K-
Means, MinPts in DBSCAN, and "q" value in LOF play the
most important role in increasing or decreasing the quantity of
outliers and clusters points, in addition, the threshold will
determine the optimal interval values of the of the data points
as clusters or outliers for K-Means and LOF, while Eps for
DBSCAN.

The validation of the clustering techniques is based on the
Silhouette curve, which shows the suitability of the selected
clusters according to the Silhouette score. Although the
parameter estimation technique for K-Means and the
DBSCAN implementation indicate the same number of
selected clusters, the Silhouette curve shows a remarkable
difference in the shape of the clusters for charging and
discharging processes. Fig. 13 shows the lack of efficiency of
the K-Means algorithm, which provides an anomaly pattern
for groups of clusters 1 and 3, and some negative values for
the Silhouette score in cluster 1.

Clusters silhoustte plot
Average silhouette width: 0.38

100~

cluster

Silhouette width Si

Fig. 13. Silhouette curve for clustering validaton of K-Means algorithm
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Due to the assumption of elliptically shaped clusters in the
K-Means algorithm, the Silhouette curve shows an anomaly
behavior in cluster 1 and 3, while for DBSCAN a different
shape of curves and better-quality clustering are achieved. It
is necessary to point out that according to the results in the
previous subsections, DBSCAN experience difficulties in
datasets with major differences in density, so that
complications arise when identifying outliers and noise points.
A validation result that considers the DBSCAN
implementation is appreciated in Fig. 14.

Clusters silhouette plot
Average silhouette width: 0.47

cluster
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-

Fig. 14. Silhouette curve for clustering validaton of DBSCAN algorithm

Results show a similarity in the outlier intervals, on the
other hand, clustering representation have slight differences,
specifically in the shape of the corresponding clusters for
charge and discharge, which can be problematic when dealing
with more complex datasets during battery measurements.
The drawbacks of the proposed methodology are the lack of
interpretability of both the clusters and the outliers, so domain
knowledge is a key component in the results, all to explain
possible bias or noise in the dataset. In addition, sampling and
selected input parameters could be potential sources of
anomalies in the results; however, these causes may be
attributed to the needs and criteria of the user, which are
entirely dependent on the tolerance of the algorithm for
considering a data point as a cluster or outlier.

V. CONCLUSION

K-Means, LOF, and DBSCAN are described, analyzed,
and implemented to achieve clustering and outlier analysis in
a BESS during charging and discharging operations. Our aim
was to familiarize the reader with the importance of BESS
assessment according to the capacity and EOL criteria.
Regarding the Data Mining algorithms, parameter estimation
and feature selection techniques must be considered to
identify KPIs and provide an optimal performance. Thus, the
first step is to become familiar with the robust computational
algorithm that explains the behavior of input and output
parameters.

Due to its robustness to irregularly shaped clusters,
DBSCAN is the optimal algorithm for this particular problem
composed of charging and discharging processes, all because
in some datasets, the shape of the underlying clusters is
already defined implicitly by the underlying distance function
or probability distribution, so that Grid and Density-based
clustering explore the idea that clusters are of a different
density than space between them. Limitations of K-Means
rely on clustering datasets where points have distinct size and
density, which can lead not only to clustering outliers, but a
convergence of a constant value in distance-based similarity

measure as the number of dimensions increases. Considering
LOF implementation, parameter estimation is straightforward
and less complex to achieve compared to K-Means and
DBSCAN, consequently, this algorithm is the most efficient
to show the tendency of a point and explore outlier analysis in
each dataset.

The novelties discussed in this article consist of
implementing Data Mining methods to ensure battery model
quality, specifically during feature selection and data
exploration. In addition, the proposed methodology associates
the correlation between the different KPIs to optimize the
SOH of a BESS before reaching the EOL criteria, comparing
the advantages and disadvantages of each algorithm. Current
research improvements will be based on making experimental
measurements of different battery cells to assess their
performance according to charge and discharge profiles. The
future scope of EOL criteria will be determined through more
advanced algorithms such as Regression, Binary Classifiers,
and Ensemble Learning, considering the KPIs studied in this
article. This will help establish assessment and verification
procedures for possible fault diagnostics to support
commercial consulting, research, and testing for enterprises
based on the digital twin concept.
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Abstract— This research work focuses on implementing
Data Science techniques for Battery Energy Storage Systems
(BESSs) according to Health and Charge indicators based on
End-of-Life (EOL) criteria. A simple Equivalent Circuit Model
(ECM) is implemented to illustrate the behavior of a battery cell
in parallel with numerical methods. Density-based spatial
clustering of Applications with Noise (DBSCAN), Ordering
Points to identify the Clustering Structure (OPTICS), and Local
Outlier Factor (LOF) are the Unsupervised techniques
implemented for anomaly detection, while Multi-Layer
Perceptron (MLP), Long-Short Term Memory (LSTM), and
Gated Recurrent Unit (GRU) are the Supervised algorithms
executed for diagnostics. Similar results are obtained in the
outlier analysis, additionally, Supervised algorithms show a
high level of performance and provide a basis for determining
the capacity of the battery based on the End-of-Life criteria
(EOL) of a Battery Energy Storage System (BESS).

Keywords—Battery Management Systems, Machine Learning,
Computer Science.

I. INTRODUCTION

The energy transition is a promising topic to achieve
climate change mitigation and reduce CO2 emissions across
the globe, being the point of discussion in the scientific and
technological fields. Electrification composes a beneficial
source of renewable energy to substitute fossil fuels with
electricity, not only decreasing the quantity of air pollutants
but also offering more affordable prices that satisfy consumer
needs. In the operation of an electric vehicle, a Battery Energy
Storage System (BESS) is a core element in the mechanism of
working to provide reliable and safe transportation, however,
specific methodologies must be considered to achieve optimal
performance.

The build, design, and operation are crucial steps to
monitor the performance of a BESS, which are based on the
Key Performance Indicators (KPIS) during the modelling
implementation. Gilbert Zequera et al. [1] conducted a
literature review about the different types of battery models
for Electric Vehicles (EV) and Digital Twin (DTs)
applications, being Equivalent Circuit Model (ECM),
Mathematical Model, and Electrochemical Model, all the
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basis knowledge for developing, verifying, and implementing
a battery diagnostic.

Health and Charge indicators play an important role not
only in battery modelling, but also in fault diagnostics and
predictive maintenance [2], so that conducting experimental
measurements and testing processes are additional tools in the
life cycle of a BESS. The State of Health (SOH) is defined as
an indicator that measures the life cycle of a battery in
comparison with its initial capacity as well as its degradation
level, which has encouraged the development of new Data-
Driven and statistical approaches [2,3].

In the computer science field, Data Science techniques
provide fast and reliable solutions to manage batteries and
their applications in the renewable energy industry, however,
it is important to point out that specific algorithms must be
considered to satisfy user needs based on several restrictions.
The End-of-Life (EOL) criteria is defined as a concept in a
BESS that explains the failure in the performance or
functionality, which is usually associated with 70-80% of the
total rated capacity [4].

In this article, a dataset based on lithium-ion battery
cycling tests is presented to evaluate robustness of various
Data-Driven methods. The main goal of current research work
is to provide modelling and diagnostics of battery cells
through the implementation of Data Science-based
techniques, all to initialize a research environment in battery
management for DTs and EVs applications.

The rest of the paper is organized as follows, in Section II,
the problem statement, dataset, and the motivation of this
research are explained through the implementation of a battery
model. Section III describes and executes Unsupervised
techniques, focusing on outlier analysis. Section IV
implements Supervised techniques to estimate the battery
capacity based on the EOL criteria. Section V discusses the
results, and finally, in Section VI a conclusion is presented to
encourage the continuation of this work by considering more
advanced battery models and computer science algorithms for
diagnostics of different cells and packs.

II. BATTERY MODELLING AND PROBLEM STATEMENT

The ECM is defined as a Grey-box model that provides
understanding and ease access to parameters in a BESS,
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providing a medium time-consuming modelling that reflects
the behavior under an engineering framework [1].

Mathematically, the ECM is integrated by several
parameters, such as the State of Charge (SOC), Voltage source
V), Voltage across the Solid Electrolyte Interface (SEI), and
cell voltage output v, (t). The SOC and voltage source are
represented by the following equation [5]:

SOC() = S0C, + 5 fy iy(0) =R de, (1)

The variable Qis defined as the capacity of the battery, R,
is the self-discharge resistor, SOC, is the initial State of
Charge, and iyis the applied current. Similarly, the voltage
across the SEI is represented as follows [5]:

A (0) = 2 fy i (®) — 6))

The terms C,refers to the double layer capacitance, and
R,is the resistance of the SEI layer charge transfer Finally, the
cell output is represented by the total sum of the voltages [5]:

V(1) = Vo (SOC()) + iy (DR, + Av,(8) . (3)

A simple ECM has been implemented in Python, in which
the input parameters specified in the previous equations have
been defined to compute the output variables. A graphical
representation is illustrated in Fig. 1, considering the SOC and
Voltage source.
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Fig. 1. ECM representation of the Voltage source vs SOC.

Additionally, numerical approximations can be executed
to achieve a high level of accuracy in a battery model, by
comparing the predicted results with the measured voltage
from a BESS. Solution of linear and non-linear equations can
be solved through dynamic optimization to fit experimental
data in regression problems. The GEKKO Optimization Suite
[6] has been implemented to solve and fit the equations of the
ECM, which illustrates the results of the cell voltage output in
Fig 2.
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Fig. 2. Numerical approximations to fit experimental data in the ECM,
using the GEKKO Optimization Suite.

It is important to mention that battery modelling explains
the physics of the system based on mathematical equations so
that the explanation and calculation of the KPIs are the next

steps to provide the diagnostics of a BESS. The problem
statement in the next sections corresponds to implementing
Unsupervised and Supervised techniques to achieve
diagnostics of a batter cell, all by considering the trends and
crucial values of the Health and Charge indicators based on
the EOL criteria.

The dataset used in this article corresponds to an
experimental test of two prismatic lithium-ion battery cells
containing SOH as the predicted variable and the features used
for estimations, which are the Voltage, Current, Resistance,
Time, Charge capacity and Discharge capacity. Cells were
tested in a charge profile that was a standard constant
current/constant voltage protocol with a constant current rate
of 0.5C until the voltage reached 4.2V, and then held 4.2V
until the charging current dropped below 0.05A. The
discharge cutoff voltage for these batteries was 2.7V and the
total capacity of the cells is 1.1 Ah. Additional information
about the dataset can be found in reference [7].

Motivation of this research is based on the development of
an initial methodology that can provide a research
environment for modelling and diagnostics of a BESS, all by
implementing Data-Science based solutions and combining
the knowledge from both fields, engineering, and Machine
Learning (ML).

I11. UNSUPERVISED TECHNIQUES

Initially, the dataset is processed, and Feature Engineering
is executed to calculate the new features, which are the
Constant Current Constant Time (CCCT), Constant Voltage
Constant Time, Cycles, Discharge capacity, and the State of
Health (SOH), the latter being defined as the predicted
variable. The next step consists of implementing Exploratory
Data Analysis (EDA) to understand the correlation of every
feature and the corresponding KPIs. Subsequently, some
parameter estimation techniques are initialized to start the
Unsupervised techniques and achieve outlier analysis. Fig. 3
illustrates the KPIs after executing the Feature Engineering
process in the dataset, representing the CCCT, CVCT, Internal
resistance, Capacity, and the SOH for the battery cells.
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Fig. 3. Initial plots after implementing Feature Engineering in the battery
cells. The upper plot represents the Capacity and Resistance, while the
lower plots indicate the CCCT and the CVCT.

A. Parameter optimization and initialization

Density-based spatial clustering of Applications with
Noise (DBSCAN) is defined as a density-based clustering
algorithm whose input parameters of performance are Eps and
MinPts. Eps denotes the maximum distance between two
points, while MinPts is the minimum quantity of selected
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points in the neighborhood. Determination of the optimal Eps
value is based on a single-level density approach that
calculates the slope of 1% difference between the points of the
k-nearest neighbor [8]. Regarding the optimal MinPts in the
DBSCAN implementation, a heuristic approach that consists
of the k-th nearest neighbor distance function in parallel with
a density distribution in the dataset is considered [9]. The
methodology to determine the optimal Eps value is
exemplified in Fig. 4.
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Fig. 4. Determination of the optimal Eps based on the k-Nearest Neighbor
approach through a single-level density algorithm.

Local Outlier Factor (LOF) is defined as a normalized
density-based approach used for anomaly detection. LOF can
detect outliers by comparing the density of each data point
with the density of its respective k-nearest neighbor, thus input
parameters are integrated by the minimum number of points
“q” and the threshold “p”. Selection of the optimal “q” value
can be determined by choosing a maximum and minimum
number of points, subsequently, taking the maximum value
over each “q” in a specified interval until convergence is
achieved [10]. Threshold value is selected by considering the
LOF score distribution and calculating the quantile point,
finally, the threshold is adjusted based on the user criteria. In
Fig. 5, the optimal threshold has been determined by using
several LOF models based on the distribution of the LOF
score over a total range of 200 Nearest-Neighbors.
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Fig. 5. Threshold determination of the LOF based on aggregating multiple
LOF models and score distribution. 20 LOF models are selected

Ordering Points to identify the Clustering Structure
(OPTICS) is defined as a density-based clustering method that
has the potential to address data points of different densities,
being considered as an extension of DBSCAN.
Implementation of the OPTICS algorithm introduces an
additional distance for each data point, which not only
represents the density but also is used as selected criteria to
determine if a point is considered a cluster. The input
parameters have the same meaning as DBSCAN, which are
the cluster radius and a minimum number of points; however,
OPTICS has the advantage of overcoming density limitations,

primarily based on using core distance, reach distance, and
spawn distance [11].

B.  Outlier analysis

Implementation of the Unsupervised techniques has been
achieved by using the appropriate parameter optimization
techniques explained in the previous subsection. Regarding
the detection of outliers, results indicate that the threshold
plays the most important role in determining if a point is
considered or not as an outlier, which not only increases or
decreases the quantity of outliers in the dataset but also
specifies the interval value for each feature.

Due to the mutual correlation between the capacity of the
battery and the SOH, the focus is based on identifying the
intervals that have a major quantity of outliers during the EOL
criteria, all to provide assessment during the data processing
and avoid possible potential biases during the battery
diagnostics. Outlier analysis of the LOF, DBSCAN, and
OPTICS for the first cell is shown in Fig. 6
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Fig. 6. Outlier analysis representation by the LOF, DBSCAN, and OPTICS
in the SOH vs Capacity curves for the first cell.

It can be appreciated that for the first cell, outliers are
generally close to the EOL criteria, demonstrating that the
implemented algorithms provide robust performance,
additionally, LOF and OPTICS show similar behavior during
outlier detection, specifically due to the outlier range when
SOH is around 60-70%.

Results of the second cell are shown in Fig. 7, illustrating
a similar pattern in the SOH vs Capacity curve, however,
compared to the first cell, a higher quantity of outliers is
found, which indicates a possible anomaly behavior at some
points during the battery operation.

According to the results illustrated in Fig. 7, LOF and
OPTICS not only show a higher quantity of outliers than
DBSCAN, but also detect different intervals in the SOH vs
Capacity curves. On the other hand, DBSCAN results indicate
a remarkable distribution of outliers into specific groups,
corresponding to intervals below the EOL criteria, which
differs from the outlier distribution of both OPTICS and LOF.
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Cell 2 - Outlier analysis
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Fig. 7. Outlier analysis representation by the LOF, DBSCAN, and
OPTIICS in the SOH vs Capacity curves for the second cell.

Before concluding this section, it is important to point out
that for the implementation of Supervised techniques, those
points detected as outliers have been removed with the
purpose of achieving a remarkable accuracy in the
performance metrics. A more detailed analysis will be
provided in the results subsection at the end of this article.

1V. SUPERVISED TECHNIQUES

In this section, Supervised techniques are implemented in
the dataset after performing Feature Engineering, EDA, and
outlier analysis. The main goal of this section is to implement,
evaluate, and compare the performance of different ML
methods, all to estimate the capacity of the battery based on
the calculated KPIs and EOL criteria.

Multi-layer Perceptron (MLP) is defined as an Artificial
Neural Network (ANN) process, also considered as a
complement of a feed-forward neural network that consists of
three layers: an input layer, a hidden layer, and an output layer.
Each neuron in the hidden layer is connected to the neurons in
the next layer. The connecting wires between the neurons are
known as weights whose values are updated with the help of
the learning phase. The learning phase is continuously
repeated until the error value is less than the threshold level.
The input layer is the combination of the values of the features
and the output layer is responsible for functions like
classification and prediction. It is necessary to mention that
the directly connected mechanism of MLP consists of an
infinite series of hidden layers located between the output and
input layers. Finally, in a MLP the data passes in a forward
path from the input to the output layer, being the equivalent of
a feed-forward that uses backpropagation to train all the nodes
[12,13].

Long Short-Term Memory (LSTM) is a Recurrent Neural
Network (RNN) whose operating mechanism consists of a
more sophisticated process, which is composed of three gates
(forget, input, and output) that regulate the information flow
in the neural network unit for long periods of time. Compared
to an RNN, an LSTM not only provides more efficient
performance in complex tasks such as language modelling and
language translation but also resolves the vanishing gradient
problem that an RNN is not able to solve. The vanishing
gradient problem occurs when a zero gradient is obtained, and
the weights cannot be optimized during the backpropagation
process, therefore, the amount of data that can be stored in the
memory is limited. LSTM-type RNN solves the vanishing
gradient problem by implementing the three gates to decide

how much of the memory should be allocated. Additionally,
the problem is solved by regulating not only the quantity of
data that gets into each corresponding time step but also the
quantity of weights that are optimized [14, 15].

Gated Recurrent Unit (GRU) is a type of RNN that was
introduced in 2014 by Cho et al. as a simpler alternative
algorithm to LSTM. GRU has not only the potential to make
each recurrent unit adaptively capture dependencies of
different time scales but also an operating mechanism that
uses less training parameters and memory. Like the LSTM
unit, the GRU has gating units that modulate the flow of
information inside the unit, however, without having a
separate memory cell. Among the remarkable applications of
the GRU are the well performance and accuracy in sequence
learning tasks, overcoming the problems of vanishing and
explosion of gradients in traditional recurrent neural networks
(RNNs) when learning long-term dependencies. The
architecture of a GRU is based on an input layer composed of
multiple neurons, the number of neurons is determined by the
size of the feature space. It is necessary to point out that the
number of neurons in the output layer corresponds to the
output space. Hidden layers containing memory cells cover
the main functions of GRU networks. Cell state changes and
maintenance depend on two gates in the cell: a reset gate and
an update gate [16, 17, 18].

A. Cell diagnostics

MLP, LST, and GRU are the selected and implemented
algorithms to estimate the capacity of the battery. As
mentioned at the end Section III, outliers have been removed,
and the dataset is processed to initialize the Supervised
techniques. It is important to point out that the main purpose
of this approach is to implement and compare the performance
of different ML algorithms that optimize the operation of the
battery cells so that estimations of the SOC and SOH can be
automatically performed.

In this specific case, the rated capacity of each cell has the
value of 1.1 Ah, therefore the EOL at 70% of the battery cells
is reached at approximately 0.77 Ah. A new visualization of
the battery capacity vs number of cycles for two cells is shown
in Fig. 8, which differs from Fig. 3 due to the execution of
outlier analysis.
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Fig. 8. Remaning capacity vs number of cycles for two battery cells.
Horizsontal red line denotes the EOL criteria specied at 70% of the
total rated capacity.

Diagnosis of the battery cells is based on a Data Science
approach and is summarized in the following points:
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e The dataset is pre-processed and EDA in parallel
with Feature Engineering are executed. During the
Feature Engineering process, each variable is
separated into  charging and  discharging.
Additionally, the CCCT, CVCT, discharge capacity,
and SOH are the new calculated KPIs based on the
initial features (e.g., current, voltage, and time). The
dataset of each battery cell is updated according to
the status profile and each measurement.

e Unsupervised techniques are executed. LOF,
DBSCAN, and OPTICS are implemented to achieve
outlier analysis, first, parameter optimization is
initialized, second, each unsupervised technique with
different hyperparameters is validated to test several
models, finally, the outliers are detected and dropped
from the dataset.

e Helper functions are coded to achieve data
processing. The dataset is divided into training,
validation and testing, performance metrics are
executed to verify the accuracy of the validation
process, finally, the Neural Networks modules are
compiled and customized based on the battery cells
to initialize the training process.

e  Hyperparameters are selected to initialize the
training and validation processes. Learning rate,
epochs, dimension of hidden layers, and window
size, are the most crucial hyperparameters for the
Supervised techniques. Training and validation loss
for each epoch are provided to verify the suitability
of the corresponding models, preventing biases,
underfitting, and overfitting.

e Supervised techniques are implemented to conclude
the Data Science approach. After executing the
training and validation processes, the testing set is
used to make predictions of the battery capacity.
Performance metrics for each model are provided to
compare the accuracy, finally, the estimations and
true values are visualized.

Graphical results of the diagnostics are provided in Fig. 9,
comparing the predictions with the true values of the dataset.

p—cell 1
10 — cell 2
N = Prediction
=
< 0.8
>
o
‘O 0.6
©
Q
©
O 04
0.2 q
0 200 400 600 800 1000

Number of Cycles

Fig. 9. Graphical results of the Supervised techniques in the Capacity vs
Number of cycles for two cells . Horizsontal line denotes the EOL
criteria specied at 70% of the total rated capacity.

V.PERFORMANCE METRICS AND DISCUSSION

The performance of the Supervised techniques for both
battery cells is evaluated in the testing process. Numerical
results of the Root Mean Squared Error (RMSE), Mean
Absolute Error (MAE), and Relative Error (RE) are shown in
Table 1.

TABLE L. PERFORMANCE METRICS
Supervised RMSE MAE RE
technique
MLP 0.1140 0.0908 0.1430
LSTM 0.0993 0.0785 0.1395
GRU 0.0822 0.0614 0.0989

All the Supervised techniques show a similar performance
in the Testing step, corroborating the Training and Validation
loss over the total of epochs, however, compared to MLP, the
RNNs provide a more optimal performance, which in this
specific problem not only prevents overfitting, but also a
possible bias due to model simplicity or erroneous
assumptions.

Hyperparameter tuning and Validation play the most
important role in implementing the diagnostics and achieving
accurate estimations of the predicted variable, all because of
the calculated KPIs in the data preprocessing. Furthermore,
Feature Engineering is a helpful process that can provide
promising insights not only to analyze the data set, but also to
obtain a new subset of features in the operation of a BESS.

Regarding the Unsupervised techniques, outlier analysis is
a useful tool that not only improves the accuracy of the Data
Science approach on performance metrics, but also helps to
understand a possible anomaly in the dataset during battery
operation. Compared to DBSCAN, LOF and OPTICS provide
similar results in outlier detection, which rely on the properties
of each algorithm to identify data points with variable density
and hidden irregular patterns in various datasets. The LOF
implementation has less complexity than density-based
methods, making this method easy for the user to understand;
however, the threshold criterion is a key factor in categorizing
a data point as a potential outlier. To obtain more reliable
results in battery datasets with different KPIs and high feature
dimensionality, OPTICS overcomes the limitations of
DBSCAN by using the concept of reachability distance, which
adapts to the local density of the data.

According to the properties of density-based methods,
outlier analysis is one of the possible drawbacks due to the
possibility of dealing with variable densities. Additional
drawbacks of unsupervised techniques are the difficulties in
evaluating results due to the lack of a universal measure of
success or failure. However, one way to evaluate the technique
is to compare the results with the domain knowledge or using
error analysis and performance auditing, which rely on
quantitative metrics, human level performance, visual or
qualitative methods.

Based on the properties of battery datasets, their initial
features, and the calculated KPIs, RNNs are beneficial for
handling sequential or temporal information in cell
diagnostics, so that data points are used in sequence to make
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accurate predictions. The RNN implementation introduces an
internal loop in the number of cycles that allows the battery
predictors to be processed from one step of the network to the
next one. Examples of the suitable tasks for the RNNs under
the framework of a BESS are: 1) variable length of sequences
in the charge and discharge, 2) share parameters across the
sequences of battery cycles, 3) maintain a sequence of order
in the KPIs and 4) keep track of long-term dependencies in the
battery capacity. MLP showed a lower level of performance
than the RNNs methods, supporting the previous explanation
about the implementation of sequential modelling in cell
diagnostics. Due to a lower level of complexity in the
modelling and architecture mechanism, GRU is a more
recommended algorithm compared to LSTM for this dataset,
however, a small difference in the metrics of performance was
obtained, concluding that similar results can be obtained
through RNNs. Finally, drawbacks in the implementation of
RNNs are the computational and training complexity, prone
to overfitting with noisy or small datasets, and possibility to
experience either vanishing gradient or exploding gradient
problems.

VI.  CONCLUSION

Data science-based techniques are described, discussed,
and implemented to provide diagnostics of battery cells based
on EOL criteria. The objective of the research work was to
familiarize the reader with an assessment of battery cells by
explaining the physics behavior through an ECM and then
providing diagnostics using ML algorithms. Regarding the
implementation of both Supervised and Unsupervised
techniques, parameter optimization and validation must be
considered to achieve optimal metrics of performance in the
Testing step. Therefore, it is crucial to become familiar with
the mathematical foundations of the computational algorithm
to understand the behavior of the battery in the different stages
of the battery life.

The novelty associated with the proposed methods is based
on the implementation of robust computer science algorithms
that not only perform Data Science techniques to estimate
Health and Charge indicators but also consider battery
modelling based on the physics framework to provide a
meaningful insight about the build, design, and operation of a
BESS. Innovative techniques are summarized to obtain
helpful insights into the KPIs in battery cells, all to
demonstrate that developing, verifying, and implementing
physics models of battery systems are beneficial to achieve the
energy transition.

Different types of battery cells must be tested in
experimental measurements, thus, it is necessary to compare
the behavior of battery models than can explain the dynamics
of the entire system, such as ECM, Mathematical Model, and
Electrochemical Model are further points of discussion to
encourage future research. This work is a basic methodology
for the diagnostics of BESS through ML network architectures
by the utilization of Explainable Artificial Intelligence
methods. Moreover, this work provides an initial research
environment for battery management in DTs and EVs
applications to test and compare the performance of battery
cells. This will help establish assessment and verification
procedures for possible fault diagnostics to support
commercial consulting, research, and testing for enterprises
based on the DT concept.
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Abstract: This research work implements an initial methodology for the assessment of Battery Energy
Storage Systems (BESSs) based on Remaining Useful Lifetime (RUL), and its main contribution is
the modeling and estimation of Health and Charge indicators through regression algorithms and
binary classifiers during the battery’s operation. Linear Regression, Ridge Regression, and Lasso
Regression are the main algorithms for modeling the State of Health (SOH), while Decision Tree,
Naive Bayes, and Logistic Regression are implemented as binary classifiers to estimate the charge
and discharge during battery operation. Additional data science techniques are executed to provide
feature selection, validation, and metrics of performance. The results show that binary classifiers
achieve a remarkable accuracy, around 95% for charge and discharge predictions, which is supported
by experimental battery measurements. Similarly, regression algorithms achieve accuracy results
around 97% and provide a basis for determining the Remaining Useful Lifetime (RUL) according to
the End-of-Life (EOL) criteria of a BESS.
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1. Introduction

Battery Energy Storage Systems (BESSs) are promising technologies used for applica-
tions in the energy industry, and are considered a core element of achieving climate change
mitigation and energy transition. Currently, not only the deployment of many electric but
also hybrid vehicles worldwide has led to an increase in the demand for BESSs, specifically
due to their long-life cycle and high energy density [1].

In operation, the battery’s dynamic performance consists of charging and discharging
profiles, which can be characterized experimentally by measuring the voltage under con-
stant charge and discharge current inputs. It is important to specify that the level of rate
discharge is divided into three levels: low rate, medium rate, and high rate [2]. Additionally,
the voltage and current parameters control the charging profile, which usually consists of
periods of constant voltage (CV) or/and constant current (CC). The State of Charge (SOC)
is an indicator that expresses the current available capacity of a BESS as a percentage of
nominal capacity [2]. Several methodologies have been proposed by the scientific commu-
nity to achieve the estimation of the SOC in both experimental and analytical manners,
among the most relevant are Impedance Spectroscopy, DC internal resistance, Coulomb
Counting, and Open-Circuit Voltage (OCV), which are described in reference [3].

The performance of a BESS during its lifetime is measured according to the gradual
degradation of the system due to irreversible chemical or physical changes, which take
place in operating processes until the battery is no longer capable of satisfying the user’s
needs. The State of Health (SOH) is defined as an indicator that measures the life cycle of a
battery in comparison with its initial capacity as well as its degradation level; therefore,
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the remaining capacity is the main point to analyze [3]. Remarkable studies have shown
that SOH monitoring methods optimize the performance of a BESS, all by recognizing
an ongoing or sudden degradation of battery cells, which can lead to failures in mobility
systems. In 2016, Berecibar et al. conducted a study that categorized different SOH
methodologies in Battery Management System (BMS) applications, stating the strengths
and weaknesses to test and validate the developed algorithms [4]. Additionally, recent
research work has contributed to the development of new techniques to achieve predictive
maintenance, such as hybrid methods combining empirical mode decomposition (EMD)
and particle filter (PF), prosed by Meng et al. in 2023 [5].

The Key Performance Indicators (KPIs) of a BESS play the most significant role in the
operation and in the implementation of the algorithm to train, validate, and test the battery
modeling. With new advances in the field of Machine Learning and Artificial Intelligence,
accurate methods can achieve SOC and SOH estimations; however, domain knowledge
of a BESS that improves the physics of the system is a crucial step to understanding the
mechanism of performance and incorporate hybrid models to satisfy different user needs.

The main goal of the current research work is to provide battery modeling to assess op-
erating mechanisms in the charging and discharging processes, all to optimize Health and
Charge estimations based on Remaining Useful Lifetime (RUL) through regression algo-
rithms and binary classifiers. The corresponding steps of the research work are summarized
in the following schema, which is illustrated in Figure 1.

Experimental
measurements

Data acquisition

Parameters

-

Cross-validation Training data

Test data
Best Retrained
parameters model
\—v Final evaluation
and results

Figure 1. Flowchart of the implemented steps in the research work methodology.

The rest of the paper is organized as follows: In Section 2, the problem statement
and the motivation of this research are explained. Section 3 describes and implements the
methodologies, focusing on Feature Engineering and Exploratory Data Analysis. Section 4
provides the results based on binary classifiers and regression algorithms within the frame-
work of BESSs. Finally, in Section 5, a conclusion is provided to encourage the continuation
of this work based on more advanced methodologies to achieve fault diagnostics and
predictive maintenance.

2. Data Acquisition and Materials

Lithium-ion cells have become ubiquitous in modern technology and are extensively
used in portable electronic devices, electric vehicles, and renewable energy systems due to their
high energy density, low self-discharge, and long cycle life. Achieving optimal performance
and ensuring the safe operation of these cells demands accurate measurement of their charging
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and discharging behavior. The charging and discharging curves of a lithium-ion cell provide
valuable insights into its capacity, efficiency, voltage, and current profiles.

To ensure precise measurement of the charging and discharging curves of a lithium-
ion battery module, a high-accuracy data analyzer was employed. The data analyzer
was connected directly to the battery module (which consisted of 16 lithium-ion cells) for
voltage measurement and via a current shunt to measure the current. Each cell voltage
and current were measured independently. A charging and discharging current of 1/10 C
were chosen to obtain reliable data. The measurements were carried out in a closed room
with an ambient temperature of 20 °C. Specifications of the battery module datasheet are
presented in Table 1.

Table 1. Battery module datasheet.

Parameter Value
Width 300.0 mm
Thickness 37.8 mm
Height 127.0 mm
Nominal capacity 218 Ah
Working voltage 2.8-435V
Internal resistance 0.35-0.45 mQ)
Nominal discharge current 72.7 A
Maximum Pulse Discharging 500 A
Cell count 16

3. Methods

Initially, Feature Engineering and Exploratory Data Analysis (EDA) are executed to
obtain several KPIs related to the SOC, which are based on the Full Equivalent Cycles
(FECs). Subsequently, hyperparameter tuning and cross-validation are applied to optimize
the mechanism of binary classifiers and regression algorithms. Linear Regression, Ridge
Regression, and Lasso Regression are described and executed to estimate the SOH according
to the remaining number of cycles extracted from the battery.

Feature Engineering and Exploratory Data Analysis

The dataset is processed and sorted based on the operating time, which is represented
by charge and discharge. Null values and outliers are searched to ensure a good quality of
the experimental measurements before implementing the battery modeling. Initial plots
are shown in Figure 2.

In this specific case, before starting EDA, it is necessary to execute Feature Engineering
to calculate the required KPIs related to both charge and discharge, all to obtain the FECs
that the given battery has undergone, taking into consideration the charge status, charge
current, change charge, and several cycles. The following points summarize the Feature
Engineering algorithm that calculates the FECs of the battery:

e  The SOC is calculated using the Coulomb counter and the input features. After that,
the charge status is initially defined according to the SOC and updated throughout the
complete process for each iteration. The value is negative if discharged and positive
if charged.

e A charge current is defined as a new feature and initialized in the entire process. This
variable gives the difference while charging and has a zero value when the battery is
in discharge.

e  The fraction of completed cycles is calculated based on the positive charge status of
the battery and its time evolution.
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e The total FECs are calculated considering the cumulative charge status of each iteration.
Finally, the capacity, also known as the change of charge per cycle at a given time is
obtained by mathematically multiplying the charge current by time.

Voltage [V]

Current [A]
)
T
L

0 2 4 6 8 10 12 14 16 18 20
Time [h]

Figure 2. Initial plots of the charging and discharging processes. The upper plot represents voltage
vs. time, and the lower plot indicates current vs. time.

Regarding the contribution of the KPIs, EDA is executed to illustrate the correlation
between the newly generated features in the dataset; however, because of the mutual
dependence on the charging process, only the most relevant variables are analyzed in the
SOC. Visualization of the correlation matrix is illustrated in Figure 3.
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Figure 3. Correlation matrix of the dataset after implementing Feature Engineering. EDA shows a
strong correlation for the features calculated in the charging process.

The results indicate that there is a high correlation between the current, time, capacity,
and charge current, all due to the Feature Engineering process performed in the previous
steps, which is also complemented by the SOC estimations, as expected, showing a mutual
dependency of the features SOC vs. time, current vs. capacity, and voltage vs. SOC. The
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complete charging process is represented by the voltage vs. SOC curve shown in Figure 4
by the SOC and voltage evolution.
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Figure 4. Charging process is represented by voltage vs. SOC.

In the discharging process, capacity is the main feature to analyze, all due to the
estimations of SOH that will be explained in Section 4. The most relevant insights found
in the dataset correspond to the linear relationship between the cycles calculated in the
Feature Engineering process and the decrease in capacity, which is a potential indicator
to implement regression algorithms for RUL estimations. Figure 5 shows the discharging
process in terms of the remaining battery capacity.
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Figure 5. The discharging process is represented by the voltage vs. BESS capacity.

Usually, the End-of-Life (EOL) criteria are reached when the capacity of a BESS is
lower than 70-80% of the total rated capacity [2]. A graphical representation of the EOL
criteria is represented in Figure 6 and reference [6] is used as a basis to illustrate. It is
fundamental to point out that the cycle index represents the FEC count of the battery during
the discharging process.
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Figure 6. Remaining capacity vs. number of cycles. The horizontal line denotes the EOL criteria
specified at 70% of the total rated capacity.

4. Results

In this section, binary classifiers and regression algorithms are implemented in the
dataset after performing Feature Engineering and EDA. In the first method, the objective is
to predict the output variable, which in this specific problem is the profile status: either
charge or discharge. Regarding regression algorithms, the goal is to implement a model
that estimates the capacity of the battery based on the SOH to calculate the RUL at any
given time or cycle.

4.1. Binary Classifiers

Naive Bayes, Decision Tree, and Logistic Regression are the selected binary classifiers
to perform the predictions for the charge and discharge of a battery. It is important to point
out that the main purpose of this section is to implement an algorithm that optimizes the
operation of the battery by identifying the profile status of the independent variables so
that estimations of the SOC and SOH can be automatically performed.

Decision Tree is a Machine Learning algorithm commonly used for classification
problems, usually based on developing predictions for a target variable. This algorithm is
defined as non-parametric and consists of nodes and branches as principal components,
while splitting, stopping, and pruning are model-building steps. Using Decision Tree is
considered a potential methodology with several advantages, such as feasible interpretation
and understanding, outlier robustness, a non-parametric approach that can deal without
considering distributional assumptions, and a simplicity of complex relationships between
input and output variables [7].

Logistic Regression is a supervised Machine Learning technique implemented for
binary classification problems when the predicted variable is considered categorical. Math-
ematically, it is based on a logistic function with the purpose of modeling a binary output
variable whose range is bounded between 0 and 1, the latter being the main difference
compared to Linear Regression. It is necessary to mention that Logistic Regression uses
a loss function defined as Maximum Likelihood Estimation (MLE), which is defined as a
conditional probability. The advantages of Logistic Regression are the ease of implementa-
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tion and satisfactory performance achieved with linearly separated classes. Mathematical
foundations can be found in references [8,9].

Naive Bayes is a probabilistic methodology that predicts the classification of a specific
target variable described by a set of feature vectors. The mathematical basis corresponds
to the Bayes theorem, in which prior distribution is updated into posterior based on
empirical information. Naive Bayes assumption is computed by a likelihood calculation
that considers conditional independence between the features and a given class label.
Like Logistic Regression, this algorithm implements the MLE to estimate the probabilistic
parameters and predict the classification output. It has been demonstrated that Naive
Bayes achieves meaningful results in practical applications, such as systems performance
management, text classification, medical diagnosis, etc. [10].

To start the implementation of the binary classifiers, the dataset was labeled according to
the profile status, either charge or discharge. After that, two approaches were considered to
assess the most accurate and optimal methodology during battery operation. In this target
output, the profile status is considered 1 when the battery is charged and 0 if it is discharged;
however, it is fundamental to avoid confusion with the charge status performed in the Feature
Engineering process, in which the charge current values are updated based on the charge
change for each iteration. The following steps summarize the computational algorithm:

e  The dataset is processed, and the vector of classes is generated based on the profile
status, either charge or discharge, which is defined as the target variable.

e  Two approaches are considered to start the implementation of the binary classifiers;
therefore, separated arrays are generated. The first approach consists of taking the
initial features (i.e., current and voltage) as the independent variables, while the second
approach considers the KPIs generated in the Feature Engineering process.

e  Ineach separated array, all features and target variables are randomized to provide the al-
gorithm with a more complex dataset that the binary classifiers will process automatically.
It is necessary to point out the importance of this step to avoid processing unbalanced
datasets that easily identify patterns to make wrong predictions in later steps.

e Datasets are divided into training and testing. Validation of each binary classifier
is executed in a training set through Nested and Non-Nested Cross-Validation [11].
Five-fold cross-validation for inner and outer loops is selected using 30 trials.

e  Validation methods are compared, and finally each binary classifier is applied to the
testing set to make predictions. Different metrics are calculated to show
the performance.

The cross-validation score measures the initial performance of the model, such that the
training set is split into a selected number of folds to validate the same model multiple times
on different training and validation sets. While Nested-Cross Validation performs feature
selection and hyperparameter tuning to select the best combination, Non-Nested Cross-
Validation considers a set of parameters previously selected by the user. The results of the
Nested and Non-Nested Cross-Validation process for each binary classifier are illustrated
in Figure 7, in which different scores were obtained in 30 trials.

It can be appreciated that in this problem, the results of the Non-Nested cross-
validation are more optimistic; however, relying solely on the information process and
initial dataset without implementing Feature Engineering might result in a biased clas-
sification model. According to the cross-validation score in the training dataset, binary
classifiers show a significant level of performance, which should be in the same range as
the test set when evaluating final performance metrics.

In a classification problem, the accuracy of the model refers to the total observations,
considering both positive and negative, that were correctly predicted. Sensitivity, also
known as True-Positive Rate, refers to all positive observations that are correctly classified
as positive. Specificity is defined as the True-Negative Rate, which measures the total
observations accurately predicted as negative [12].
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Figure 7. Graphical results of the Nested Cross-Validation and Non-Nested Cross-Validation for the
binary classifiers of the training set.

Both approaches previously described in the computational algorithm were imple-
mented using Naive Bayes, Decision Tree, and Logistic Regression. Regarding the perfor-
mance metrics to evaluate that of each classifier, precision, sensitivity, and specificity are
calculated and plotted in Figure 8, demonstrating a high score that is in a similar range
compared to the cross-validation process.

BN Accuracy B Sensitivity Bl Specificity

Naive Bayes

Decision Trees

Logistic Regression

Score [%]

Figure 8. Performance metrics of the Naive Bayes, Decision Tree, and Logistic Regression. Accuracy,
sensitivity, and specificity are calculated to evaluate and compare the predicted results.

The final performance for each binary classifier shows that accuracy is around 95%, and
sensitivity corresponds to a value close to 96%. On the other hand, the specificity has a slightly
smaller difference, of 94%, compared to previous metrics for Naive Bayes and Decision Tree.
A detailed analysis of the above results will be provided at the end of this section.

4.2. Regression Algorithms

Linear Regression is considered one of the most widely used models in Machine
Learning. Mathematically, it finds linear coefficients and deals with the prediction of
continuous numeric outcomes. In the context of regression, the terminology “linear”
refers to a model in which a dependent variable has a relationship expressed as a linear
combination of independent variables. Additionally, linear methods can be applied to the
transformation of the inputs, usually called basis function methods [13].



Appl. Sci. 2023, 13,7597

90f13

Overfitting is considered one of the most common problems when implementing
Machine Learning estimations and is based on retaining a subset of the predictors and dis-
carding the rest, which produces a high variance that consequently reduces the prediction
error of the full model. Probable causes of overfitting may be the fact that the chosen model
structure and data do not conform, so shrinkage methods are applied to overcome this
problem. Regularization is defined as a shrinkage method that imposes a penalty on the
cost function and prevents larger values of the estimated coefficients, with Ridge and Lasso
(Least Absolute Shrinkage and Selection Operator) Regression being remarkable shrinkage
methods that do not suffer as much from high variability [13].

Ridge Regression is a shrinkage technique used when the independent variables have
an elevated level of correlation, also known as multicollinearity. In Ridge Regression, a
shrinkage parameter is added to achieve a low variance that minimizes a penalized sum
of squares and reduces the standard errors, all by adding the squared magnitude of the
coefficients to the cost function. [13]. However, instead of using squares, Lasso Regression
uses absolute values as a penalty of the coefficients to the loss function. Like Ridge
Regression, Lasso Regression also reduces the variability and improves the performance
of Linear Regression; however, when a group of predictors shows an elevated level of
multicollinearity, one of them is selected and shrinks the others to zero, making it a
technique useful in feature selection [14].

In this subsection, the BESS capacity and discharging cycles are analyzed to calculate
the SOH, which is defined as the output or target variable in the methodology. Finally,
regression algorithms are executed to estimate the RUL before reaching the EOL criteria
and to predict the SOH based on the previous calculated values. The methodology is
explained as follows:

e  The cycle indexes and the discharge capacity are considered as input variables. After that,
each cycle is updated according to the capacity values associated with every time step.

e  The SOH is calculated considering the initial capacity of the BESS and its discharging
evolution through every cycle. The cycles and BESS capacity are defined as the
predictors, whereas the SOH is considered the predicted variable to initialize the
regression algorithms.

e  The data are divided into training and testing. In this step, Linear, Ridge, and Lasso
Regression are implemented.

e  Cross-validation is executed in a training set to compare the performance of the Linear
Regression and regularization techniques. Cross-validation scores are obtained and
the most optimal hyperparameters of the regularization methods are selected to build
and test the final models.

e  The RUL is estimated, and the performance of each regression algorithm is evaluated
by calculating the Mean Squared Error (MSE), Mean Absolute Error (MAE), and
coefficient of determination (R?).

The initial results indicate that by implementing Linear Regression, the performance of
the model is slightly higher compared to the regularization methods; however, as previously
mentioned, overfitting may occur in the testing process, so that shrinkage techniques are
recommended to obtain a more stable and reliable model.

Like binary classifiers, cross-validation is used to validate the model, specifically
to note the difference in performance using regularization in the regression algorithms.
Nested Cross-Validation has been used to optimize the selection of hyperparameters for
Lasso and Ridge Regression; however, in the case of Linear Regression, Non-Nested Cross-
Validation uses the same data to fit model parameters and assess model performance. The
cross-validation score process is illustrated in Figure 9, which compares the performance
with and without regularization.

A constant value of the Linear Regression score in the cross-validation step indicates
that hyperparameter tuning is not applicable; on the other hand, regularization methods
show a different performance due to optimized hyperparameter tuning, which is explained
by the shrinkage parameters, providing a performance in the range of 97%. It is crucial
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to mention that, as indicated in the previous subsection, the final performance of the
regression algorithms must not differ substantially from the cross-validation process.
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Figure 9. Graphical results of the cross-validation for the regression algorithms, with and without
regularization. Five folds were selected in 30 trials.

Finally, the performance of each regression algorithm is evaluated in the testing. The
numerical results of the MSE, MAE, and R? are shown in Table 2.

Table 2. Performance of different regression algorithms.

Regression MSE MAE R?

Linear 0.0155 0.0119 0.9779
Ridge 0.0153 0.0110 0.9768
Lasso 0.0188 0.0153 0.9650

All the regression algorithms show a similar performance in the testing step, corroborat-
ing the cross-validation process; however, compared to Linear Regression, the regularization
methods provide a more optimal performance in the case of multicollinearity between the inde-
pendent variables in the dataset, which in this specific problem prevents not only overfitting,
but also a possible bias due to model simplicity or erroneous assumptions.

Figure 10 illustrates the implementation of the regression algorithms, comparing the
testing and predicted results of the SOH during the BESS” operation.

It is fundamental to point out that points graphically close to the straight line indicate
a high-quality level in the implementation of the regression algorithms. In addition, the
predictions of SOH values after the EOL criteria are illustrated to show the robustness of the
algorithms across the entire dataset, all because considering a significant sample of data points
prevents easy predictions, which may result in overfitting due to high variance and low bias.

Regarding the RUL results, Table 3 provides the SOH and the corresponding cycles.
As shown in Figure 10, the battery reaches 70% of SOH in cycle 446.

Table 3. RUL results considering cycles and SOH.

Cycle RUL SOH
50th 396 cycles 0.9695
200th 246 cycles 0.8650
300th 146 cycles 0.7780

400th 46 cycles 0.7283




Appl. Sci. 2023, 13,7597

110f13

1835, T ; T

onl S0y
2T ] ®  Predicted | |
3
091 A*. 1
0.85 - ’-"& 1

1 d
08t N & 1

075 : ]

07+ % 1
L (J

065" o3 1

0.55 oo ]

OH
°

wn

0.5 . . . . . .
0 100 200 300 400 500 600 700

Cycle index

Figure 10. Graphical results of the regression algorithms. Test and predicted values are represented
by the SOH vs. cycles.

5. Discussion

Hyperparameter tuning and cross-validation play a key role in implementing BESS
modeling and achieving accurate estimations of the target variable, all because of the
different KPIs and level of mutual correlation. Furthermore, Feature Engineering is a
helpful process that can provide promising insights not only to analyze the dataset, but
also to obtain a new subset of features in the charge and discharge of a BESS.

Regarding the binary classifiers, the approach that consists of taking the voltage
and current as input features showed an elevated level of performance metrics, which
is supported by the fact that constant values of current during the charge and discharge
represent a potential trend to predict the binary output. The second approach, which
considers the KPIs generated in the Feature Engineering process, showed slightly lower but
optimistic performance compared to the first approach, and it is concluded that although
input features are randomized to avoid easily processing patterns for unbalanced datasets,
multiple BESS indicators must be provided to achieve performance metrics at the same
numerical level for sensitivity, specificity, and accuracy. Logistic Regression and Decision
Tree achieved a prominent level of performance metrics that is not dependent on the quan-
tity of selected features, all because of the hyperparameter tuning, however, Naive Bayes
provided a lower specificity by considering the KPIs generated in the Feature Engineering
process, being the assumption of independence features a cause.

Finally, regression algorithms provided a similar performance in the cross-validation
and testing steps, demonstrating the promising results of the BESS modeling based on
the RUL. Compared to the binary classifiers implementation, hyperparameter tuning and
cross-validation do not manifest computational expensive outputs, which is explained
by a lower quantity of predictors. In this approach, the quantity of cycles, discharging
capacity, and the calculated SOH are the indicators of a mathematical relationship that fits
a linear model, which can also be implemented in more advanced research approaches that
consider the external degradation mechanisms during the operation of a BESS.

6. Conclusions

The article examined and measured a battery module comprising 16 cells, resulting in
the acquisition of charging, and discharging curves. Binary classifiers and regression algo-
rithms are described, analyzed, and implemented to assess the BESS based on Health and
Charge indicators. The statistical results achieve a validation and testing accuracy of 96%
and 95% for binary classifiers, while 98% and 97% corresponding to regression algorithms.
The research work aimed to familiarize the reader with the importance of BESS operation
according to the profile status and EOL criteria through Machine Learning. Regarding
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the implementation of both regression and binary classifiers, hyperparameter tuning and
cross-validation must be considered to achieve optimal metrics of performance. Thus, the
first step is to become familiar with the mathematical foundations of the computational
algorithm to explain the behavior of the dataset in a battery.

The main contribution of this research work is providing an initial methodology for
estimating Health and Charge indicators in a BESS through binary classifiers and regression
algorithms. The novelty associated with the proposed methods is the implementation of
robust computational algorithms that not only automatically classify the profile status of a
BESS, but also perform data science techniques to optimize the modeling during battery
operation. Innovative techniques are summarized to obtain helpful insights about the KPIs
in a BESS, all to demonstrate that promising results can be obtained when computer science
techniques are implemented under the framework of renewable energy technologies.

Finally, the data-driven approaches discussed in this article correspond to validated
methodologies that the scientific community has implemented for different types of prob-
lems, BESS being one of the most important to achieve the energy transition. Furthermore,
different datasets must be processed to evaluate the lifetime operation of a BESS, specially
to test battery cells and design diagnostics methodologies; however, it is important to
mention that external factors must be considered to build several types of models, such
as thermal conditions, mechanical degradation, vibrations, etc. This work is the basis for
designing a methodology for the diagnostics of BESSs through Machine Learning network
architectures by the utilization of Explainable Artificial Intelligence methods. Moreover,
this work provides a research environment for battery management in digital twin and
electric vehicle applications to test and compare the performance of diverse types of battery
modeling. This will help to establish assessment and verification procedures for fault
diagnostics to support commercial consulting, research, and testing for enterprises based
on the digital twin concept.
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Deep Learning Methodology for Charging
Management Applications in Battery Cells
Based on Neural Networks

Rolando Antonio Gilbert Zequera
Anton Rassolkin
and Ants Kallaste

Abstract—A Battery Energy Storage System (BESS) plays an
important role in achieving energy transition and climate change
mitigation, with charging management applications being a crucial
topic to improve the build, design, and operation of renewable tech-
nologies. With the continuous development of Artificial Intelligence
(AI), implementing accurate algorithms that monitor Key Perfor-
mance Indicators (KPIs) and provide predictive maintenance is
a callenging task. This article presents a solid and robust Deep
Learning methodology based on Neural Networks (NNs) in the
TensorFlow framework and using Python as a programming lan-
guage, all to predict the Open Circuit Voltage (OCV) and improve
the state estimation of battery cells. Extensive tests on Lithium-ion
cells under diverse operating conditions were carried out, with data
acquisition meticulously recorded using a programmable DC Elec-
tronic Load. Various architectures were designed using Keras as a
high-level Application Programming Interface (API) to build Arti-
ficial Neural Networks (ANNs), Convolutional Neural Networks
(CNNs), and Recurrent Neural Networks (RNNs). In addition,
advanced computer science techniques were executed to improve
the performance of the algorithms, such as cross-validation, Fine-
tuning, Regularization, Bayesian optimization, Machine Learning
techniques, and Data-Driven approaches. The resulting network
architectures were stored in Hierarchical Data Format (HDFS5)
files, tested against both seen and unseen data to ensure its ro-
bustness and effectiveness in new battery measurements. The Deep
Learning methodology provides remarkable testing accuracy of
over 95% for all types of NNs, affirming its high adaptability and
reliability in the development of AI-powered technology for battery
management.

Index Terms—Deep Learning, Neural networks, Battery energy
storage system (BESS).

1. INTRODUCTION

N THE rapidly landscape of renewable energy integration,
optimal implementation of a Battery Energy Storage Sys-
tems (BESS) is essential to reduce CO2 emissions and promote
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climate change mitigation. Battery modeling highlights a re-
markable understanding of not only the operating mechanism
but also the scientific framework, which is critical for accurate
diagnostics and maintenance. Different approaches have been
considered to implement an optimal battery modelling, being
Electrochemical model, Equivalent Circuit Model (ECM), and
Mathematical models the most important to simulate, monitor,
and predict Health and Charge indicators of a BESS [1], [2].
With the continuous advances of Artificial Intelligence (AI),
computer science algorithms must be developed, verified, and
implemented to support the knowledge provided by energy
analysts in both the industrial and academic fields. Several
researchers and scholars have proposed Data Science techniques
that achieve the modeling and diagnostics of a BESS, which offer
beneficial applications for various topics of strategic importance
such as digital twins, enterprise testing and business consulting
[3], [4], however, it is necessary point out the importance of
strengthening a methodology that explains both the physics of a
system and the behavior of Key Performance Indicators (KPIs)
through Al-powered technology.

Within the framework of a BESS operation, the State of
Charge (SOC) plays a fundamental role in improving the per-
formance of renewable technologies, so charging management
is a key benefit to monitor efficiency and optimize lifetime.
Experimental measurements and battery testing monitor the
charging and discharging processes performed by a BESS based
on chemical structure, manufacturing characteristics and actual
use, which are directly influenced by user needs and the type
of application in the output capacity and voltage level. Further-
more, in recent years battery models based on electrochemical
and engineering approaches have been proposed to develop
charge profiles for different industrial applications, highlighting
the impact of KPIs on the design of intelligent algorithms, being
current rate and threshold voltage vital in the final charging
performance [5].

In a Data-Driven context, it is essential to highlight the
critical role that KPIs play in determining both their level of
correlation and the final performance on the predicted vari-
able during model evaluation. Deep Learning encompasses
complex Machine Learning algorithms and advanced com-
puting techniques based on Al and mathematical principles.
These strategies enable precise management of input variables,
optimizing the predictions across a wide network of neurons.
However, even if the algorithm provides a high level of testing

2379-8858 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on July 24,2025 at 17:22:21 UTC from IEEE Xplore. Restrictions apply.



GILBERT ZEQUERA et al.: DEEP LEARNING METHODOLOGY FOR CHARGING MANAGEMENT APPLICATIONS 669

accuracy, there is a gap between computational complexity
and state estimation based on network architecture and BESS
parameters during the implementation of Al methods [1], [3],
[4], [5].

During the implementation of Deep Learning algorithms in
a BESS domain, the opportunity exists to train and fine-tune a
Neural Network (NN), thus optimizing the battery’s operations
based on Health and Charge indicators. However, when different
types of datasets are collected, the challenge lies in unravel-
ing its interpretation to achieve both Feature Engineering and
Feature Selection, as battery specialists typically withhold this
information. This opacity regarding the internal mechanisms
of the battery presents a significant obstacle when seeking to
understand, potentially modify, and test Deep Learning algo-
rithms to interpret the predictors and the target variable during
model evaluation. As highlighted by Gilbert Zequera [6], this
lack of transparency poses a substantial obstacle in the pursuit
of the capability, robustness, and adaptability of Al methods in
battery management, which introduces the research question of
designing an optimal algorithm whose mechanism can explain
the behavior of physical and virtual entities from an energy
framework.

Indeed, in such a context, unifying the domains of Deep
Learning and a BESS becomes highly applicable and valuable.
Deep Learning enables computational models to learn features
progressively from data at multiple levels [7]. Compared to
traditional Machine Learning methods, it has more accuracy and
has a strong learning ability to use datasets for feature extraction.
It has gained global attention recently as a critical practice in
several industries such as Natural Language Processing, Image
Recognition and Computer Vision, Recommended Systems,
Autonomous Vehicles, Speech Recognition and Voice Assistant,
etc. [8].

Deep Learning find valuable applications in the BESS sector,
where they help dissect and comprehend the inner workings of
battery components and systems, ultimately driving advance-
ments, innovations, and optimizations in the battery modelling,
state estimation, and state prediction. Li et al. [9] explored the
applications of some relevant Deep Learning algorithms for SOC
and State of Health (SOH) predictions, using public datasets
such as NASA, CALCE, UCL, TRI, Oxford, etc. Tian et al. [ 10]
contributed a theoretical Deep Learning framework for SOC
estimation in Lithium-ion batteries, explaining recent advances
and future perspectives in different battery management tasks.

Existing models integrating both Machine Learning and Deep
Learning in the BESS domain have been designed to achieve
battery charge and life estimation, however, robustness of the
algorithm design is fundamental in the development of a method-
ology for the diagnostics of a BESS based on digital representa-
tions, so the integration of new tools such as Data Engineering,
IT operations, and Software Development is highly valuable for
both industry and academia

Relevant academic sources published by renowned scientists
have proposed the incorporation of Al methods for energy
demand in charging applications, whose notable contribution
has been proven through probabilistic models and Deep
Learning approaches [11], [12]. In 2022, Li et al. developed a
Reinforcement Learning-assisted Deep Learning approach to
forecast an electric vehicle charging station (EVCS), which was
complemented with a Markov decision process and a LSTM

TABLE 1
LEV50N BATTERY CELL PARAMETERS
Parameter Value Unit
Nominal voltage 3.75 \
Operating voltage range 2.75t04.1 | V
1-hr rate typical Capacity 25°C 50 Ah
Charge voltage limit at 25°C 4.1 N
Charge termination threshold current 0.5 A

algorithm [13]. Later, in 2023, Xiong and Zhou [14] combined
multiple Deep Learning models to achieve forecasting in electric
vehicle charging stations, and Yang et al. designed a hierarchical
forecasting model to predict plug-in electric vehicles (PEV)
charging by using a new attention-based LSTM Deep Learning
approach [15].

This research addresses a fundamental gap in the domain
of a BESS for both modelling and state estimation by intro-
ducing a Deep Learning methodology based on Neural Net-
works (NNs). The key innovation lies in departing from the
conventional design starting point of an ECM and traditional
Machine Learning algorithms, leveraging the building of several
neuron’s architecture through KPIs and Transfer learning in
battery operating data. The study employs an exhaustive com-
puter science approach within the framework of TensorFlow and
Keras as a high-level Application Programming Interface (API),
experimentally subjecting the BESS to rigorous testing across
diverse conditions, complemented by meticulous performance
data acquisition using a programmable DC Electronic Load.
This departure from established paradigms not only fills a critical
void in battery development but also offers a novel perspective
on renewable energy systems and Al methods, particularly in
cases where the physical model is already defined.

The paper is structured as follows: Section I provides a
systematic review of recent advances in Deep Learning applied
to a BESS and the motivation for this research. In Section II,
a comprehensive case study on Lithium-ion battery cells is
presented in parallel to the experimental process carried out.
Section IIT presents an overview of the implemented NN,
their architecture, parameters, functionalities, and mechanisms.
Section IV elucidates the Deep Learning Methodology and
its corresponding procedures. The results and performance are
given in Section V. Finally, the conclusions drawn from the
research and further work are provided in Section VI.

II. CASE STUDY: LEV50N BATTERY CELL TESTING

The BESS corresponds to a battery pack of Mitsubishi i-
MiEYV, consisting of 88 Lithium-ion battery cells type LEV50N
manufactured by GS Yuasa. The battery pack has its origins in
the innovative ISEAUTO project, an Estonian autonomous elec-
tric vehicle (AEV) from the Tallinn University of Technology
(TalTech) campus [16]. However, it is important to note that due
to topics of research importance and energy cooperation, the
battery pack was dismantled into several battery cell modules.
For a comprehensive understanding of the LEV50N cells, Table I
provides a summary of the cell parameters.

Importantly, different battery cells were tested from their
corresponding modules to experimentally evaluate not only an
optimal working status but also a diagnostic. These challenging
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Fig. 1.

LEV50 battery test using a programmable DC Electronic load.

tasks constitute central research added value, as the primary
objective of this study is to establish a precise Deep Learning
methodology for battery modelling and state estimation applied
to charging management. The development of this methodology
serves as a foundational step for the subsequent experimental
validation of NN algorithms from an energy domain perspective.

To accomplish this objective, a series of diverse testing was
systematically conducted on the LEV50N battery cells using
a programmable DC Electronic Load. These processes were
designed to comprehensively explore the battery’s performance
characteristics and to gain deeper insights into its intricate elec-
trical engineering operation. The programmable DC electronic
load has an adjustable current rising speed from 0.001 A/us to
5 A/us, readback resolution of 0.1 mV and 0.1 mA, list function
that supports editing as many as 512 steps, and dynamic mode up
to 30 kHz. In this research, the battery tests consist of a slew rate
of 0.001 A/us, a step duration of 1 second, a frequency of 1 Hz,
and a resolution of 0.8%. The battery cell terminals established
a connection with a data acquisition system installed on a PC,
allowing accurate data collection under various test conditions.
Additionally, the battery test functionality of the programmable
DC Electronic Load was activated, and operational data was
seamlessly integrated into the data acquisition system for a com-
prehensive evaluation of battery performance. The experimental
setup is illustrated in Fig. 1 and the Data acquisition step will be
explained in Section I'V.

III. NEURAL NETWORKS OVERVIEW

This section presents a brief literature of the different NNs,
their corresponding mechanism, architecture, and functional-
ities, focusing on three categories: 1) Artificial Neural Net-
work (ANN), 2) Convolutional Neural network (CNN) and
3) Recurrent Neural network (RNN), with the aim of familiariz-
ing the reader with the Deep Learning algorithms implemented
in the following sections. The reason behind the selection of cur-
rent NN is based on the outstanding level of accuracy of Deep
Learning algorithms for battery health monitoring, highlighting
specific architectures [ 17], [ 18], [19], which are computationally
and experimentally validated into the understanding of battery
state monitoring problems.

It is fundamental to clarify that model parameters are the
model’s aspects learned from the data during Training. Hyper-
parameters, on the other hand, are set before Training begins
and dictate a model’s overall structure and behavior.

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 10, NO. 1, JANUARY 2025

There are many hyperparameters that integrate a NN, but
among the most important are the number of layers and units,
learning rate, activation functions, epochs, and batch size. The
number of layers and the size of each layer determine the
depth and width of the neural network respectively, affecting
the amount of information the model can capture and its suit-
ability. The learning rate regulates the amount of error allocated
with which the model weights are updated during training with
respect to the loss. Activation functions are nonlinear transfor-
mations that transform inputs into outputs and affect the model’s
ability to capture nonlinear relationships and achieve stability.
Finally, an epoch is the total quantity of iterations of all training
data in a cycle through the learning algorithm, and the batch size
is the number of samples passed to the network at a time [20].

A. Artificial Neural Network

ANNSs are computational models whose mechanism is like
the functioning of a human nervous system. There are several
types of ANNs, which are implemented based on mathematical
operations and a set of parameters necessary to determine the
predictions. First, the input layer is the initial layer of the
network, which takes the independent variables in the form
of numbers. Second, the hidden layer, which processes the
information received from the input layer. Third, the output layer
is responsible for producing results from the calculations applied
to data over the network.

In this article, three types of ANN are designed, which are
Shallow Neural Network, Deep Neural Network (DNN), and
Multilayer Perceptron (MLP). A Shallow Neural Network is
defined as an ANN that contains a single hidden layer between
the input and output layers, whose limited capacity struggles
with complex tasks and different learning patterns. A MLP
is usually integrated by three or more interconnected layers,
which usually require a short period of training to learn the
representations in data and produce an output. In contrast, a
DNN has multiple hidden layers stacked between the input and
output layers, manifesting a greater ability to learn complex
patterns and hierarchical representations of data, allowing them
to capture more complex relationships and features [20], [21],
[22], [23].

With the objective of testing errors from output nodes to input
nodes in an NN, back propagation is a method used in ANNs
to calculate the gradient of a loss function with respect to all
the weights in the network. The main working framework of an
ANN is explained in the following points [20]:

e Random weights are assigned to the NN. The activation
rate of the hidden nodes is found using the inputs and the
linkages from the input to the hidden layer.

e The activation rate of the output nodes is calculated based
on the activation rate of hidden nodes and linkages to the
output. The linkages between hidden and output nodes
are recalibrated and the error rate of the output node is
calculated.

e Using the weights and error found at output node, the error
of the hidden nodes is minimized. The weights between
the hidden node and input nodes are recalibrated.

® The previous steps are repeated until convergence and the
activation rate of the output nodes is obtained using the
final linkage weights.

Authorized licensed use limited to: Tallinn University of Technology. Downloaded on July 24,2025 at 17:22:21 UTC from IEEE Xplore. Restrictions apply.
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B. Convolutional Neural Network

Depending on the type of connections between the neurons,
two categories of architectures can be found, which are feed
forward NNs and RNNSs. In a feed forward network, information
moves in a single direction (forward) from the input nodes,
through the hidden nodes, and to the output nodes, excluding
cycles or loops in the network [24].

The mechanism of a feed forward NN involves the forward
phase and the backward propagation phase. In the forward phase,
the input data is fed into the network and propagated through the
network. At each hidden layer, the weighted sum of the inputs
is calculated and passed through an activation function, which
introduces nonlinearity into the model until the output layer is
reached and a prediction is achieved. In the backpropagation
phase, once a prediction is made, the error is calculated, propa-
gated back through the network, and the weights are adjusted to
minimize this error [24].

CNN is a feed forward NN that applies convolutional opera-
tions to the input instead of general matrix multiplication, being
able to extract features from data with convolutional structures
in at least one of its layers. Compared to other type of NNs, a
CNN has different layers that conforms its intrinsic architecture,
which are briefly summarized as follows [25]:

® Convolutional Layers: They apply the convolution oper-

ation to the input data, combining the input and filter to
create a feature map.

® Pooling Layers: They subtract from the feature maps to

make the network invariant to small translations, reducing
the number of parameters and controlling overfitting.

® Activation Layer: Its main function is to apply a nonlinear

activation function to the output of the pooling layer, in-
troducing nonlinearity into the model, allowing it to learn
more complex representations of the input data.

® Normalization Layer: The main objective is to ensure that

the activations of each layer are well adapted and avoid
overfitting by performing normalization operations, such
as batch normalization or layer normalization.

® Dropout layer: It ensures that the model does not memorize

the training data, but rather generalizes it to new, unseen
data, preventing overfitting by randomly removing neurons
during training.

® Dense layer: After feature extraction from convolutional

and pooling layers, it can be used to combine features and
make a final prediction; furthermore, the dense layer is
usually the final layer and is used to produce the output
predictions.

In the Deep Learning methodology, three types of CNNs are
designed, which are CNN-1D, CNN-2D and CNN Long Short-
Term Memory (CNN-LSTM), the latter being the most used
to solve predictions and forecasting problems, having excellent
performance in terms of stability and precision compared to
standard Machine Learning algorithms [26].

C. Recurrent Neural Network

RNNSs have an architecture based on recurrent connections,
capable of modeling sequential data for sequence recognition
and prediction. RNNs are formed by high-dimensional hidden
states with nonlinear dynamics, in which the structure of the
hidden states serves as the network’s memory and the state of

the hidden layer at any given time is conditional on its previous
state [27].

The vanishing gradient problem occurs when a zero gradient
is obtained and the weights cannot be optimized during the
backpropagation process, so the amount of data stored in mem-
ory is limited. Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) are types of RNNs designed to handle
sequential data. They address the vanishing gradient problem in
traditional RNNs by introducing gating mechanisms that allow
them to capture long-term dependencies more effectively [28].

LSTM is composed of three gates (forget, input, and output)
that control the flow of information to hidden neurons over long
periods of time, use more constant errors, and allow RNNs
to learn over many more time steps. The corresponding gates
of LSTM preserve extracted features from previous time steps
regulating not only the amount of data entering at each cor-
responding time step, but also the number of weights that are
optimized [6], [28].

GRU has control units that modulate the flow of information
within the unit, but without having separate memory cells.
Unlike LSTM, GRU exposes the entire state at each step and
computes a linear sum between the existing state and the newly
computed state. Hidden layers containing memory cells cover
the main functions of GRU networks. Cell state changes and
maintenance depend on two gates in the cell: a reset gate and an
update gate [6], [27].

A Bidirectional Recurrent Neural Network (BRNN) is a
category of RNN that processes input data both forward and
backward, which has the property of being trained using all
available input information in the past and future of a specific
time. The operating mechanism of a BRNN consists of two
separate backpropagation phases: one for the forward RNN and
one for the backward RNN [29].

During the forward phase of a BRNN, the input sequence
is processed by the forward RNN processes like the usual
RNN, and the predictions of the output sequence are made;
these predictions are subsequently compared to the target output
sequence and the error is propagated back through the network to
update the weights of the forward RNN. In the backward phase,
the RNN processes the input sequence in reverse order and
predicts the output sequence. Once both phases are complete,
the weights of the forward and backward RNNs are updated
based on the errors obtained during the forward and backward
passes, respectively. Finally, the process is repeated for multiple
iterations until the model converges and the predictions are
accurate [29], [30].

The RNNs designed for the Deep Learning methodology are
LSTM, GRU, Bidirectional LSTM (BiLSTM) and Bidirectional
GRU (BiGRU), whose performance will be compared and ana-
lyzed in the following sections.

D. Summary of the Section

Summarizing this section, ANNs are beneficial for solving
problems related to tabular data, image data and text data due
to their different architecture based on one or multiple network
units in each layer, being able to learn non-linear functions,
but having difficulties in capture sequential information. On the
other hand, RNNs have a recurrent connection on the hidden
state whose objective is to ensure that sequential information
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Fig. 2.  Flow-chart of the deep learning methodology.

is captured in the input data, being able to solve tasks mainly
related to time series, text data and audio data, and having the
greatest advantage of reducing computational cost due to the
parameter sharing property. Regarding CNNs, the architecture
design has more complexity compared to ANNs and RNNs
due to filters and kernels to perform convolution operations,
resulting in efficient solutions when dealing with image data
and sequential inputs, capturing spatial relationships through
parameter sharing.

Currently, Deep Learning algorithms show remarkable accu-
racy in solving different types of problems in the scientific and
technological field, however, there is no universal approach that
can consider a specific NN more efficient, but depending on the
objective, needs and user restrictions, some algorithms are more
feasible to adapt in the network architecture. From the BESS
perspective, considering battery properties is of vital importance
in the experimental behavior, so that the most accurate NN is
selected according to the operation and scenarios for battery
tests.

The implementation of the different NNs in the following
sections will provide a pioneering step to explain and understand
the behavior of a BESS during the execution of Al methods, an-
swering the initial research question. It is necessary to highlight
that the mechanism and architecture of each NN will determine
its viability to adapt the Deep Learning methodology to the
various needs of users, experimental tests, battery properties,
and operating conditions.

IV. DEEP LEARNING METHODOLOGY

The first step in the Deep Learning methodology involves the
understanding of the predictors and target variable in the Data
acquisition step. This extensive data collection, obtained through
meticulous battery tests and measurement techniques, serves
as the basis for subsequent analyses, to delve deeper into the
BESS’s behavior, identity patterns, and ultimately reconstruct its
underlying mechanisms. It is necessary to mention that different

charging and discharging processes were carried out to collect
the training and validation sets, monitoring several C-rates and
operating voltage ranges. A more detailed explanation of the
final battery tests will be given at the end of this section.

Regarding input features in the Data acquisition step, the
Voltage [V], Current [1], Resistance [R], Capacity [mAh], Time
[seconds], and Energy [wh] are collected using a programmable
DC Electronic Load. Subsequently, in the Data processing
step, Exploratory Data Analysis is executed to ensure
Feature Engineering and Feature Selection. Initial network
architectures are designed to start the Training process, after that,
Fine-tuning through Bayesian optimization is implemented.
Cross-validation is performed not only to improve algorithm
performance but also to prevent bias, underfitting, and over-
fitting. Finally, optimal network hyperparameters are obtained
and tested in new data during Model evaluation. A summary of
the Deep Learning methodology is appreciated in Fig. 2.

A. Data Processing and Initialization

Initially, training and validation sets are stored to begin the
Data processing step, which mainly consists of Exploratory Data
Analysis (EDA), Feature Engineering, and Feature Selection.
The purpose of EDA is to find insights that serve in subsequent
steps such as cleaning, preparing, and transforming data that
will ultimately be used in NN algorithms. Furthermore, EDA is
executed by performing initial investigations on data to verify
assumptions, discover patterns and detect anomalies with the
help of statistics and graphical representations.

Regarding the Feature Engineering process, additional fea-
tures are obtained based on the input data, which mainly consists
of the calculation of Power [P], Open Circuit Voltage (OCV)
defined as the target or predicted variable, and SOC. In this
specific study, the SOC is obtained using the Coulomb counting,
while OCV and Power calculations are performed using an
Equivalent Circuit Model approach [10]. A histogram of the
Probability Density Function based on OCV, and a correlation
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Fig. 4. Correlation matrix after executing Feature Engineering.

matrix of the whole set of features are represented in Figs. 3
and 4 respectively.

Itis remarkable to note that there is a strong level of correlation
between some of the predictors and the OCV, with Resistance,
Power, Voltage and SOC being the most important. Although
correlation is a useful statistical tool, identifying the impact of
each feature before starting the NN design is a crucial task,
so Feature Selection is required to focus on learning patterns
in the dataset with fewer samples to make the process more
accurate.

The importance of the Feature Selection step relies on im-
proving model performance and identifying KPIs during the
algorithm design. As stated previously, EDA results provide
information about the emergence of high correlations between
several independent variables, leading to multicollinearity, con-
sequently the main goal will be to consider Feature Selection
methods that attempt to address multicollinear features.

The Variance Inflation Factor (VIF) is selected as the main
criterion to measure the multicollinearity [31], in addition, Ridge
Regression and Gradient Boosting [32] are the two main algo-
rithms that will evaluate the performance of the Feature Selec-
tion step. A summary of the implemented process is described
as follows:

e The VIF is calculated for each feature.

e The feature with the highest VIF score is removed.

e In case some features have the same VIF score, the feature

least correlated with the target variable is selected.

e Ridge Regression and Gradient Boosting algorithms are

executed, using cross-validation.

TABLE II
FEATURE SELECTION RESULTS

. Ridge Gradient

Negative RMSE Regresgsion Boosting
Best 5.95¢-4 3.49¢-4
Average 5.96e-4 3.55e-e
Worst 5.97e-4 3.67¢-4

Iterative Feature Elimination w/ VIF
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Fig. 5. Gradient Boosting implementation using VIF criterion to achieve
feature selection.

e The set of features that results in the best cross-validation

score are selected.

Performance of the Feature Selection process is evaluated
using the Negative Root Mean Squared Error (RMSE), which
compares the Gradient Boosting and Ridge Regression algo-
rithms. Table II summarizes the obtained results.

The highest performance of the Feature Selection process is
achieved through Gradient Boosting; therefore, the selected fea-
tures will be taken using this algorithm. Fig. 5 shows a graphical
representation of the implemented VIF criterion to achieve Fea-
ture Selection through Gradient Boosting. The different quantity
of features is indicated on the X-axis after performing Feature
Engineering, while the Y-axis shows the calculated values of
the negative RMSE for every feature, the vertical line represents
the number of selected features until the maximum level of
performance is achieved.

In case the user has a smaller number of features available
in the dataset, the performance of the algorithm will decrease
according to the Feature Selection process, so executing Feature
Engineering also helps in the initial design of the algorithm.

The optimal performance is obtained when the algorithm
selects the total number of features, so although there are some
features that do not provide a significant level of correlation
between the predicted variable, itis necessary to consider themin
the NN Design and subsequent steps. Finally, Gradient Boosted
Feature Selection [33] is implemented, which ranks all features
by importance and selects the top 3, in this specific case capacity,
SOC, and voltage, all of them defined as the KPIS and illustrated
in Fig. 6. These KPIs represent a high level of statistical corre-
lation in the set of predictors and show intrinsic engineering
behavior with the target variable.

Reflecting on the study’s approach to Feature Selection, the
selected features influence the NNs by increasing the perfor-
mance of the algorithms based on the number of predictors. As
seen in Fig. 5, the highest performance is achieved using the total
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Implementation of the gradient boosted feature selection to obtain

number of independent variables after performing Feature Engi-
neering; however, both interpretability and multicollinearity are
added values within the scope of this research to understand
the rationale behind the initial network architecture through
VIF, Ridge regression and Gradient Boosting. Feature Selection
influences the NNs learning to reduce overfitting, so that by
selecting the most relevant features, the algorithm is less likely
to overfit and can better generalize to new data and achieve
optimal prediction capabilities.

The interpretability of the algorithm is initially given by the
VIF criterion and subsequently by the KPIs calculated using
Gradient Boosted Feature Selection, which not only detects the
most relevant features and their relationships with the target
variable, but also reflects and allows the user to understand
the underlying factors that drive the predictions of the BESS
operation.

B. Neural Network Design and Training

After Data processing, training and validation sets were con-
sistently stored and transformed in tensors to ensure alignment
with the samples, timesteps and features for execution of next
steps using Keras.

The initial network architectures are designed to begin with
the implementation of Deep Learning algorithms, so the creation
of hyperparameters is the first process to be carried out, however,
itis crucial to understand the mechanism of NNs for the purpose
of monitoring arguments in Keras that control Training and
Validation steps, such as activation functions, metrics, kernel
regularizers, optimizers, etc.

Due to the impact on performance and computational effi-
ciency of the Training process, batch size, number of epochs,
network units, and learning rate are the selected hyperparameters
that will be optimized during Fine-tuning. Regarding additional
arguments of the NN in Keras, the ReLu is selected because of
its sparsity and beneficial to reduce likelihood of the gradient
vanishing.

Regularization techniques are crucial to prevent overfitting
or underfitting during the Validation process, so that Dropout
and a kernel regularizer are executed in the network design.
Furthermore, Adam optimizer is used to minimize the loss and
weights, stabilize the Training, and help NNs converge towards
optimal solutions.

Before the start of Training, two important techniques are
considered to improve the performance of the NNs in subse-
quent steps, the first considers early stopping to reduce the risk
of overfitting, save time and computational resources, which
simplifies the model and preserves the best weights. The second
implements a learning schedule to avoid exceeding the minimum
learning rate and to tune the model parameters more precisely.

Finally, the Training is initialized and explained in the follow-
ing points:

e Data processing is applied to the training and validation

sets. Random weights and biases are randomly generated.

e For each epoch, Forward Propagation is executed through

the network and the loss is calculated.

® Once Forward Propagation is completed, the process of

Back-Propagation calculates the gradient of loss with re-
spect to weights and biases for each batch. Weights and
biases are updated through Adam optimizer.

Training loss across all batches is calculated.

Validation losses with their respective biases and weights
are calculated at the end of the epoch.

C. Fine-Tuning and Bayesian Optimization

With its remarkable potential and intricate mechanisms, Deep
Learning often depends on fine details. One of those fundamental
details for the success of a model is Hyperparameter optimiza-
tion. In essence, this process systematically searches for the best
set of hyperparameters to increase the performance of a model.

Given the vastness of the hyperparameter space, with a nearly
infinite number of combinations, finding the optimal set is
a challenging and monumental task in every Deep Learning
algorithm.

Fine-tuning hyperparameters using various optimization
methods is not only beneficial but essential to ensure that models
are accurate, efficient, and adaptable. Among the different types
of Hyperparameter optimization techniques we find Grid Search,
Random Search, and Bayesian optimization, the latter being the
most advanced compared to the others and implemented in this
research [33].

Bayesian optimization reduces the time required to obtain
an optimal set of parameters. When determining the next set
of hyperparameters to evaluate, it works by considering pre-
viously seen combinations of hyperparameters. Two important
concepts are considered into the implementation of Bayesian op-
timization, which are Exploitation and Exploration. Exploitation
means choosing the point with the highest uncertainty in each
iteration, while Exploration refers to selecting a point from a
region that currently has the best results.

In the context of Bayesian optimization, the main objective
is to minimize the loss function. In addition, a model called
Gaussian Process is built, which refers to the natural infinite-
dimensional analog of the multidimensional Gaussian. A Gaus-
sian Process is used to model the unknown objective function and
provides a posterior distribution over the values of the function
given the observed data.

To balance Exploration and Exploitation, an acquisition func-
tion is implemented, which determines the next point or set of
points to evaluate in the search space. Furthermore, based on the
current state of the optimization process, an acquisition function
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Fig.7. Convergence plot of a fine-tuning process using bayesian optimization.
The X axis refers to the search number, the Y axis indicates the validation loss.

quantifies the possible usefulness or desirability of sampling
a particular point, all considering both the predicted values of
the surrogate model and the uncertainty associated with those
predictions [34].

Expected Improvement is an acquisition function, also defined
as a greedy improvement-based heuristic that samples the point
offering greatest expected improvement over the current best
sampled point. It works by selecting the points that have the
potential to improve upon the best-observed value, quantifying
over the current best value [35].

The following points provide a summarized explanation of
Fine-tuning through Bayesian optimization, using Expected
Improvement:

o At first a fitness function is run, which in subsequent steps
will provide the performance of the NNs in the dataset
based on the selected hyperparameters, so the goal is to
find the minimum.

® The Training is executed, and a Gaussian Process is built
using an initial set of hyperparameters to know the perfor-
mance metrics of every NN.

e The Bayesian optimization search starts with the initial
values of the hyperparameters. In the initial phase of op-
timization, the search is explored further and in the later
phase, the search focuses on the best regions found.

® The model is sampled to maximize the Expected Improve-
ment and the validation loss is calculated for every search.

® At the end of the process, a set of hyperparameters corre-
sponding to the minimum validation loss is found and the
performance metrics are obtained.

The search is completed until a convergence on the minimum
validation loss is achieved. An example of a convergence plot
using Bayesian optimization is visualized in Fig. 7, showing
a minimal validation loss achieved at search number 12 and
converged at search number 40.

A plot of all combinations of values for the hyperparameters is
also obtained in Fig. 8, which exemplifies a GRU. The vertical
axis illustrates the influence of a single dimension on fitness,
which is called “Partial Dependence plot” for that specific di-
mension. It shows how the approximated fitness value changes
with different values in that dimension. The yellow regions show
areas where the loss on the validation set is lower, unlike the
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Fig. 8. Partial dependence plot of a fine-tuning process using Bayesian opti-

mization in a LSTM.

darker regions. The star on the graph represents the location
where the optimal hyperparameters were found.

It is essential to mention that Fine-tuning through Bayesian
optimization was carried out to all type of NNs explained in
Section III, so that the ANNs, CNNs, and RNNs highlight
different sets of optimized hyperparameters and metrics of
performance in the Validation sets, which will be explored in
the next subsection.

D. Validation

After the completion of Training and Fine-tuning, the next
step consists of selecting a metric to measure the performance
of every NN in the Validation set, so that cross-validation is
executed. In a Deep Learning algorithm, the goal of Validation
is to provide at least approximate performance of the model for
data that will appear in the future. Additionally, it is necessary
to consider the importance of balancing Underfitting and Over-
fitting.

Underfitting refers to the model performing poorly on both
the training and testing sets. The main cause of Underfitting is
that the model does not fit the Training set well or is not trained
enough, leading to high bias and low variance. Overfitting in-
dicates the model was excessively fitted during Training, so it
performs well on the training set but poorly on new evaluated
data resulting in low bias and high variance.

It is worth mentioning that both Underfitting and Overfitting
can be identified from the learning curve due to the behavior
of training and validation losses in each epoch. An Underfitting
plot shows a training loss that remains flat with respect to the
evolution of epochs, therefore high levels of loss will be an
indicative of the lack of ability to learn the training set. On the
other hand, in the case of Overfitting, both training and validation
losses will decrease, reach specific values, and start increasing
again without any convergence.

Due to its mechanism to expose the model to different subsets
and generalize to unknown datasets, K-fold cross-validation is
selected, which consists of dividing the data into k subsets (folds)
of equal size. In this method, the model is trained on k-1 subsets
and tested on the remaining subset, after that, the process is
repeated and completed until all subsets are the testing subset at
least once. The model performance is the average accuracy of
each training/validation round [36].

A learning curve that shows a good fit can be appreciated in
Fig. 9, consisting of training losses that decrease to a point of sta-
bility, while validation losses decrease throughout the evolution
of the epochs and have a small gap with respect to training loss.
The numerical difference in gap is appropriate when the range
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Fig. 9. Learning curve that shows an optimal fit in the validation step. (Blue
line) Train loss. (Red line) Validation loss.

TABLE III
ANN PERFORMANCE IN THE VALIDATION STEP
ANN MSE [%] | MAE [%]
Shallow 0.0030 0.4737
DNN 0.0038 0.4947
MLP 0.0093 0.7273
TABLE IV

CNN PERFORMANCE IN THE VALIDATION STEP

CNN MSE [%] | MAE [%]
CNN-1D 0.0087 0.8674
CNN-2D 0.0071 0.6523
CNN-LSTM 0.0039 0.4786

TABLE V

RNN PERFORMANCE IN THE VALIDATION STEP

RNN MSE [%] | MAE [%]
GRU 0.0092 0.7470
LSTM 0.0068 0.6247
BiGRU 0.0050 0.0527
BIiLSTM 0.0022 0.0351

is usually less than 1% and nearly zero in an ideal situation,
decreasing both training and validation losses; therefore, the
Fine-tuning is accomplished, and the optimal performance point
of the model has been reached for use on the Testing set.

Finally, the target variable is predicted, and performance met-
rics are obtained by calculating the Mean Square Error (MSE)
and Mean Absolute Error (MAE) for the corresponding NNs. As
mentioned in Section III, Shallow, DNN, and MLP are designed
in the ANN category. As for CNN, one dimension (CNN-1D),
two dimensions (CNN-2D) and CNN-LSTM are implemented.
In the case of RNN category, GRU, LSTM, BiLSTM and BiGRU
are considered. Tables III, IV, and V show the performance
metrics in the Validation step for each ANN, CNN, and RNN
respectively.

From the comparison of performance metrics in this problem,
it is crucial to evaluate the nature of the datasets. If the dataset
contains data points that do not fit the general pattern of the
battery tests, it is advisable to select MAEs that provide greater
resilience against distortions introduced by outliers. Conversely,
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if the dataset is relatively clean and without significant out-
liers, the faster convergence of MSEs could offer an advantage.
Regarding the results of the EDA process, there is no signif-
icant evidence of outliers in the Data Acquisition step, so no
relevant anomalies are found in the dataset, with MSE being
more convenient than MAE because it offers faster convergence
on the stages where the error values are relatively small and
consistent.

Regarding the numerical values obtained in the perfor-
mance metrics, the MAE is higher than the MSE, which
suggests that the NN have some small errors that accumu-
late in the MAE, with the variability of operation being the
main cause of capturing errors during battery tests. Due to
the battery user’s needs to predict accurate Charge indicators,
MSE is a more optimal performance metric than MAE, not
only because it considers large errors instead of small ones,
but also because it penalizes models that make significant
mistakes.

Considering the continuous advancement in Al methods, the
implementation of cross-validation, Regularization, and Fine-
tuning through Bayesian optimization is a testimony to the
improvement and effectiveness of different categories of NN.
Among the most relevant benefits are cost and resource ef-
ficiency, which in turn leads to lower costs and less onerous
infrastructure requirements in the Model evaluation step.

Contributions of the advanced computer science techniques
in this study are summarized in Fig. 10.

The validation results show that BRNNs provide a higher level
of performance compared to CNNs and ANNs; however, there
are also notable performance metrics in the case of Shallow.
A more detailed analysis and explanation will be provided in
Section V.

E. Testing

The Testing step consists of an experimental and computa-
tional part; in the first, several LEVS50N cells were disassem-
bled from different battery modules to test them under various
operating conditions, while in the second, the collected datasets
were compiled to ensure proper data processing and run Model
evaluation.

In the experimental part, sixteen LEV50N cells were tested
using a programmable DC electronic load. 43 battery tests were
done, in which the operating conditions are: 1) C-rate, 2) operat-
ing voltage range, and 3) cut-off voltage range. It is essential to
note that the operating conditions were exhaustively measured
in various scenarios through the UltraLoad Software for remote
operation and monitoring, not only to experimentally evaluate
the performance of the cells, but also to test the robustness of
the Deep Learning algorithms during the Model evaluation.

As for the computational part, the datasets were collected and
the Data Acquisition step was executed, carrying out the corre-
sponding processes explained at the beginning of this section,
all using tensor transformation in Tensorflow through Keras.
Finally, the Testing set was obtained and prepared to complete
the Model evaluation.

The selection of HDSF files as the primary source for NN
architectures is based on the format that supports large, complex,
and heterogeneous data. Processing and storing optimized
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Fig. 10.

NN architectures are key steps in the model evaluation of
every developer looking to deliver Machine Learning-based
applications. In terms of robustness and effectiveness in
battery measurements, H5DF files stored in Keras focuses
on debugging speed, code elegance and maintainability,
which run faster due to the TensorFlow platform, and are
easier to deploy across every platform thanks to the service
components.

Considering research results, HDF5-based Big Data integra-
tion has been scientifically proven to improve efficient digiti-
zation processing in many engineering disciplines, specifically
in design and simulation for collaborative applications [37].
Challenges in industry, education and educational teams become
increasingly important due to the large amount of data to inte-
grate into software architectures; however, integrating data from
HDFS5 files into software platforms allows the user to support
data sharing and traceability as well as interoperability of tools
and workflows [38], [39].

Among the most relevant implications of HDSF files for
future Al-driven technology in battery management are: 1) Open
format compatible with many programming languages such as
C++, C, R, Python, etc., 2) Faster source format to open and
read a dataset compared to netCDF4 and Zarr formats [40], 3)
Ability to support data splitting and self-describing property that
parses through the returned data one element at a time, 4) HDFS

Main contributions of the computer science techniques implemented in the NN architecture.

features that achieve parallel I/O performance scalable on a
large amount of fragmented and compressed dataset in scientific
computing [41].

V. FINAL RESULTS

In this section, the optimal network hyperparameters after
Fine-tuning are provided, to compare and analyze the conver-
gence of each hyperparameter in the NN.

Regarding the Model evaluation step, a final performance
metrics is calculated, and the NN are evaluated in the different
Testing sets to complete the Deep Learning methodology. At
the end of this section, a discussion and analysis of the results
is carried out, within the framework of the Al methods applied
to a BESS.

A. Optimal Network Hyperparameters

The Fine-tuning process was executed through Bayesian op-
timization, using the Expected Improvement as the acquisition
function, after that, K-Fold cross-validation is performed to
obtain the optimal hyperparameters of the network.

Table VI shows the optimal set of hyperparameters for each
NN, after the successful completion of Fine-tunning and cross-
validation.
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TABLE VI
OPTIMAL NETWORK HYPERPARAMETERS

Neural Network Bathh Learning |Units| Epochs
size rate

Shallow 298 | 0.00180 | 297 653
MLP 217 | 0.00017 | 74 913
DNN 172 | 0.00011 | 100 889
CNN-1D 216 | 0.00016 | 323 992
CNN-2D 202 | 0.00008 | 341 760
CNN-LSTM 115 | 0.00001 | 156 349
GRU 116 | 0.00024 | 153 554
LSTM 100 | 0.00818 | 175 922
BiGRU 285 | 0.00603 | 91 961
BiLSTM 194 | 0.00172 | 105 928

In the context of convergence from the Bayesian optimization,
the optimal values of learning rate are similar for the same
type of NNs, which complements the mechanism and network
architecture in the algorithm design. In terms of units, RNNs
show a small numerical difference in optimal values, which
differ from CNNs and ANNs. Regarding the number of epochs
and the batch size, the convergence point exceeds 500 and
156 in most cases, taking advantage of the benefits of training
dynamics mainly due to the early stopping and Regularization
techniques.

By analyzing the values of the optimized network hyperpa-
rameters, it is notable to identify that batch size values below
202 tend to converge towards sharp minimizers of the train-
ing and validation functions, and that sharp minima lead to
slower training time. In contrast, batch size values in the range
of 216-298 consistently achieve stable convergence and better
generalization. The effect of using values of batch size below 64
can cause the network to diverge or converge to a non-optimal
minimum.

The numerical values of the learning rate show that higher
values represent the network taking larger steps along the error
gradient, while a lower learning rate means the network takes
smaller steps. Considering the optimized results, when the learn-
ing rate is above 0.1 the network may exceed the minimum of the
loss function and diverge, resulting in unstable and inaccurate
predictions. On the contrary, when the learning rate is below
le-4, the network may take too long to converge or get stuck in
alocal minimum, resulting in slow and suboptimal performance.

The speed and quality of the Training step is mainly affected
by the optimized number of epochs, so using a low number of
epochs below 300 may cause NN to not learn enough from the
data and have poor performance. Conversely, using an excessive
number of epochs higher than 1000 can cause the NN to mem-
orize the training data and lose its ability to generalize to new,
unseen data.

In the case of units, the design of the NN plays the most
important role in determining the optimal values, so having
many layers and more complex architectures such as BiLSTM,
BiGRU, MLP and DNN will obtain a lower number of units
compared to Shallow, LSTM and GRU. Considering CNNss,
there is a high level of similarity in obtaining optimal unit
values, which is based on their intrinsic architecture and mech-
anism for both CNN-1D and CNN-2D, but which differ from
CNN-LSTM.

TABLE VII
ANN FINAL PERFORMANCE IN MODEL EVALUATION

ANN MSE [%] | MAE [%] | RMSE [%]

Shallow 0.3337 4.1029 4.6023

DNN 0.8236 6.3998 7.1634

MLP 0.3927 4.5391 5.0924
TABLE VIII

CNN FINAL PERFORMANCE IN MODEL EVALUATION

CNN MSE [%] | MAE [%] |RMSE [%]
CNN-1D 0.1994 3.4304 4.1326
CNN-2D 0.7560 6.5093 7.1899
CNN-LSTM 0.4798 5.1284 5.8794
TABLE IX

RNN FINAL PERFORMANCE IN MODEL EVALUATION

RNN MSE [%] | MAE [%] | RMSE [%]
GRU 0.5895 5.6717 6.2832
LSTM 0.4529 5.2620 6.0007
BiGRU 0.0041 0.4665 0.5125
BiLSTM 0.0026 0.3721 0.4149

From the BESS perspective, selecting a C-rate is a crucial
task that will determine the time it takes the cell to charge
or discharge, which will have a direct impact on the Training
and Fine-tuning, so the number of batch size and learning rate
are the two main hyperparameters intrinsically related to the
charging management applications, all due to the number of
samples used in a forward and backward propagation through the
network. The above statement is because the BESS parameters
will change according to different scenarios and user needs,
so the network hyperparameters must be robust to evaluate the
performance of the model, predict the target variable, and avoid
poor generalization based only on a specific dataset.

After completing the Fine-tuning and cross-validation steps,
the optimal hyperparameter networks with their respective ar-
chitectures were processed and saved using the Keras API to
create different Hierarchical Data Format (HDFS5) files. In the
next section, the final performance metrics in the Testing set
will be analyzed, compared, and discussed to complete the Deep
Learning methodology.

B. Model Evaluation

A total of 43 battery tests on sixteen cells, where each one
corresponds to a Python list, were processed, and transformed
into a final Testing set using the Keras API in the Tensorflow
Framework. After that, the optimized network architectures
were evaluated on the Testing set and the MSE, MAE and Root
Mean Square Error (RMSE) were calculated to obtain the final
performance metrics. Tables VII, VIII and IX show a summary
of the results in the Model evaluation step for each type of NN.

Even under different operating conditions and scenarios in
which the battery tests were carried out, there is outstanding
accuracy with MSE less than 1% and MAE and RMSE less
than 7.20% for all types of NN, considering account for the
large amount of unseen data evaluated. Considering the per-
formance metrics in the Validation step, Shallow, BILSTM and
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Fig. 11.  Graphical representation of the predictions in the model evaluation
step, considering ANNs, CNNs, and RNNs.

BiGRU continue to provide the minimum error rate for the ANN
and RNN categories. On the contrary, for the CNN category,
CNN-LSTM has a slightly lower accuracy than CNN-1D but
still higher than CNN-2D.

The interpretation of the results of CNNss is supported by the
fact that their main architecture is useful for modeling spatial
localities using shared weights in complex tasks, which can
lead to complications in capturing long-term dependencies in
input sequences such as charging management of a BESS. In
the case of ANNs, MLP and DNN show similar performance,
however, for this task, the more hidden layers added, the more
complex in making predictions, which is explained by the com-
putationally intensive process of Multi-layer feedforward that in
consequence can predict the target variable with less precision
during fast charging or discharging.

The outstanding performance of RNNs is attributed to their
intrinsic property of handling sequential data for sequential mod-
eling and temporal dynamics. However, BRNNs demonstrated
that their mechanism is beneficial in tasks where the entire
sequence contains past and future time steps, which requires
context from both directions to understand the operation of a
BESS under different profiles.

Graphical results illustrating the most accurate predictions for
each type of ANN, CNN, and RNN are visualized in Fig. 11.

Given the extensive tests conducted on Lithium-ion cells
under diverse operating conditions, the NN architecture plays
the most important role in determining the battery behavior
and the effectiveness of the model. To summarize this section,
a comparison of the different NN categories is illustrated in
Fig. 12, addressing the contributions of each architecture in
improving predictive accuracy and efficiency in battery state
estimation, and highlighting their expected impact on the final
model’s performance. Finally, a brief discussion summarizing
the entire Deep Learning methodology will be presented in the
next subsection.

C. Discussion

In the initial steps, Feature Engineering and Feature Selection
play the most important role, all to provide information about

the correlation and data distribution of predictors before algo-
rithm design. It was demonstrated through Gradient Boosted
Feature Selection in parallel with VIF, that even a high level of
correlation is found, the algorithm shows the maximum level of
performance using all features and achieving KPI calculation.

From the BESS domain, including all predictors and Charge
indicators allows the user to understand the operating profile
and physical interpretation of the battery test, however, not in
all cases these indicators are available, which is why the KPI
calculation and Feature Selection are required to ensure data pro-
cessing and gain insight into future model evaluation. Regarding
the architecture of the different NNs, a mutual relationship
between hyperparameters and predictors was established based
on the operating conditions of a BESS, in which the learning
rate and the batch size monitor the behavior of the C-rate and
the SOC due to different step sizes and samples that update the
model weights in the network.

Coding validation and characterization with respect to phys-
ical and numerical experiments of the BESS was another point
of added value in the research, due to the Bayesian optimiza-
tion that managed to find the most promising validation scores
corresponding to the optimized network architectures, not only
considering various battery tests, but also establishing a battery
modeling as an objective function.

Regarding the performance metrics in Model evaluation, all
NNs provide an accuracy greater than 95%, but the RNNs
showed the best accuracy, specifically BiGRU and BiLSTM.
These BRNNSs are also able to handle variable-length sequences
during charge or discharge of a BESS, as they do not depend
on a fixed window size or predefined order of inputs. Further-
more, they can learn complex and non-linear patterns during the
BESS operation due to the combination of the outputs of two
RNNs with different weights and activation functions. This huge
mechanism is beneficial for completing even more challenging
tasks like forecasting, however, a modification in the network
architecture must be executed.

Compared to existing Machine Learning models and physics-
based approaches [42], [43], this methodology starts with al-
gorithm design from a beginner level that initially familiarizes
the reader with the topic, until reaching an advanced network
architecture that can make accurate predictions in the Model
evaluation step. Furthermore, considering the OCV analysis,
due to the high level of Al methods, NN categories and
programming tools of this research, this methodology com-
plements some proposed models that not only focus on the
aging mechanisms of a BESS through Data-Driven methods
[44], but also in the diagnosis of operational data to con-
struct the OCV-SOC curve [45] and state estimation using
DNN [46].

In terms of accuracy, the proposed Deep Learning method-
ology improves existing methods for OCV prediction and state
estimation by not only comparing different NN architectures
such as CNN, RNN and ANN, but also explaining the design
of these architectures based on the BESS operation. Regarding
adaptability, the methodology provides the BESS framework to
explain the engineering behavior with the hyperparameters of
each NN using Bayesian optimization, this being considered as
a pinnacle to initialize a research environment that is capable of
unifying virtual and physical entities of a BESS.
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* Highly effective in handling
large BESS datasets

* Minimizes computation in
charging and discharging
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CNN

* Ability to integrate sequential

Fig. 12.

TABLE X
CHALLENGES ADDRESSED BY THE CURRENT METHODOLOGY

Topic Challenges addressed

e Monitoring the performance of
multiple Li-ion cells through
extensive battery testing
e Validation of experimental procedures|
for charging management in a R&D
environment
e Accurate model evaluation based on
different NN architectures, scientific
computing, and BESS operation

Battery
technology|

e  Virtual entity whose physical
representation is based on user needs
and KPIs of a BESS
e  Reducing computational complexity
through AI methods
e Innovative design using a probabilistic|
approach, battery properties, and
Charge indicators

Algorithm
design of a
BESS

In the context of the future opportunities of a BESS based
on Machine Learning techniques and Data-Driven approaches,
the proposed methodology introduces the combination of Al
methods within an energy framework to monitor the actual
functioning of a BESS based on the user’s needs, that vary
significantly depending on the available datasets, battery proper-
ties, and experimental tests. Table X provides a summary of the

Main contributions of the different categories of NNs in the model evaluation.

challenges associated with predictive maintenance of a BESS
addressed by the current methodology.

The Deep Learning methodology represents a crucial step
in the future development, verification, and implementation of
models in a BESS using Al methods, all to execute optimal
predictive maintenance, support business consulting, research
and enterprise testing based on renewable energy.

VI. CONCLUSION

In this study, a Deep Learning methodology was employed
to validate the experimental testing of Lithium-ion battery cells,
marking a crucial step in the state estimation, and charging man-
agement applications of a BESS. Extensive battery tests were
carried out under diverse conditions and scenarios, accompanied
by advanced measurement via UltraLoad Software for remote
operation and monitoring. This strategy was realized through
the design, development, and implementation of ANNs, CNNss,
and RNNs. Feature Selection, Regularization, cross-validation,
and Fine-tuning through Bayesian optimization were applied
to transform initial networks into several Al models, capable of
emulating the intricacies of the battery cells. It was scientifically
demonstrated that the design and execution of a BRNN shows
the most optimal performance, whose mechanism can explain
the behavior of both virtual and physical entities of a BESS,
answering the research question. The resulting network archi-
tectures, firmly rooted in empirical data, stands as a significant
outcome of this research, achieving an outstanding performance
that represents a substantial advancement in the development of
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Al-powered technology for battery management. The level of
adaptability and reliability of this research has been strengthened
by a comprehensive methodology that explains the algorithm
design from scratch considering Data Science and battery health
monitoring perspectives, being a beneficial and understandable
testament for different branches of knowledge in the scientific
and technological field.

Among the most important novelties of this tremendous
methodology are: 1) Reduction of computational complexity
in the implementation of Deep Learning algorithms focused
on a BESS, 2) Design of different types of NN architectures
based on KPIs and hyperparameters in battery cells, 3) Bayesian
optimization that provides a framework for combining prob-
abilistic models and Charge indicators for objective battery
modeling evaluations, 4) Improving state estimation and KPIs
calculation for charging management using Al methods in an
energy framework.

This pioneering research represents a pinnacle to unify several
branches of knowledge, such as Computer Science, Energy
Engineering, Mechatronics, and Software Engineering. The next
steps will consist of the deployment through Machine Learning
Operations (MLOps), and the incorporation of new architectures
based on the multi-head attention mechanism.

Finally, it is of utmost importance to mention that the re-
sources of a research group must facilitate the participation of
those resources for other research groups. Our research must
facilitate a modest contribution with the aim of promoting ties
of cooperation, that is our vocation as researchers, scientists, and
scholars.
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ABSTRACT With the continuous development of Artificial Intelligence (Al), designing accurate algorithms
that provide diagnostics and maintenance of energy technologies is a challenging task in the energy transition
domain. This research work focuses on the implementation of Transformer models for charge diagnostics
and algorithm design of Battery Energy Storage Systems (BESSs). Experimentally, two Lithium-ion (Li-
ion) battery cells were tested using a programmable DC electronic load to evaluate charge indicators, and
20 battery tests were performed for each cell. Filter, Wrapper, and Embedded methods are the techniques
implemented to achieve Feature Selection and illustrate Key Performance Indicators (KPIs) in battery
testing. Time series and state estimation are the Supervised Learning techniques executed for charge
diagnostics and State of Charge (SOC) predictions. The results show remarkable performance metrics of
the Transformer models, achieving over 94% accuracy in Model evaluation compared to traditional Deep
Learning algorithms.

INDEX TERMS Deep learning, neural networks, battery energy storage system.

Term/Abbreviation Definition SOC State of Charge.

BESS Battery Energy Storage System. RNN Recurrent Neural Network.

ECM Equivalent Circuit Model. MHSA  Multi-head self-attention.

Al Artificial Intelligence. LSTM  Long Short-Term Memory.

NN Neural Network. GRU Gated Recurrent Unit.

Li-ion Lithium-ion.

KPIs Key Performance Indicators.

RS Ohmic resistance.

R1 Polarization resistance. I. INTRODUCTION

C1 Polarization capacitance. The energy transition is a promising topic that not only
R2 Diffusion resistance. leads the scientific field towards a more sustainable future
2 Diffusion capacitance. but also contributes to the emergence of new algorithms
vOC Open circuit voltage. and strategies in the technological field. Electrification and
Veell Voltage of the cell. smart applications constitute a beneficial renewable energy

source for designing, developing, and implementing various

types of energy technologies to replace fossil fuels with a

The associate editor coordinating the review of this manuscript and Battery Energy Storage System (BESS), a core element in
approving it for publication was Frederico Guimardes . the operation of an electric vehicle.
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Different approaches have been considered to monitor
the performance of a BESS, with Electrochemical Models,
Equivalent Circuit Models (ECMs), and Mathematical Mod-
els being the most important to accurately predict Health and
Charge indicators [1], [2], [3]. With the relentless strides in
Artificial Intelligence (Al), the realm of informatics necessi-
tates the meticulous development, rigorous verification, and
seamless implementation of sophisticated algorithms to bol-
ster the insights proffered by energy analysts across both
industrial and academic fields.

In the Computer Science field, Neural Network (NN)
architectures provide efficient and reliable solutions to pre-
dictive maintenance and the remaining useful life of a BESS;
however, depending on the operation, battery properties, and
experimental procedures, the NN’s adaptability, robustness,
and capability are challenging to achieve, which is why more
advanced and improved architectures are currently being
designed.

Several scientists and scholars have proposed Data-Driven
approaches based on Machine Learning, Deep Learning, and
Data Science methodologies [3], [4], [5], all to provide BESS
modelling and diagnostics that support commercial consult-
ing, research, and testing for enterprises. As highlighted by
Gilbert Zequera [5], there exists a pressing imperative to
delve into the design of algorithms capable of elucidating
the behavior of a BESS by utilizing Al-powered technology,
which introduces the research question to develop new Al
models whose network mechanism not only make accurate
predictions but also illuminate the intricacies of physical and
virtual entities from an energy framework.

In the context of Deep Learning, renowned scientists have
published scientific literature to highlight the relevance of
AI methods and propose different categories of algorithms
in the field of BESS. Time series models have also been
the point of analysis for both evaluating and predicting the
lifetime of Lithium-ion (Li-ion) batteries [6], [ 7], [8]. In 2020,
Zhang et al. [9] proposed a Time series model for prognostics
prediction based on a recurrent neural network, whereas,
in 2021, Agab et al. [10] developed a unifying model to
achieve forecasting by describing the dynamics of a BESS
using learning Time series.

Due to different user needs and computational costs, effi-
cient and robust algorithms have been developed in recent
years to support the integration of Software Development and
Computer Science in the engineering domain, one of them is
an innovative Deep Learning model known as Transformer.
A Transformer model is defined as a new network architec-
ture whose operation works based on attention mechanisms.
It was initially proposed by Vaswani et al. in 2017 [11] to
achieve Natural language processing tasks, currently being
able to support complex problems related to different Al
topics, such as Computer Vision, Machine Translation, DNA
sequence analysis, and Protein Structure analysis [11].

The implementation of a Transformer model in the BESS
field has focused on energy consumption forecasting [12]
charging demand prediction, and useful life evaluation [13],

17734

[14]. However, the need arises to unify the energy domain
and Al perspective in the algorithm design of a BESS, all to
develop a methodology based on physical and virtual entities
through various branches of knowledge such as Data Engi-
neering, IT Operations, Electrical Engineering, and Software
Development.

The main contribution to the scientific community is sum-
marized in the following points:

o Complement the current Deep Learning algorithms
associated with the prediction of Health and Charge
indicators based on battery tests for Li-ion cells.

« Propose an innovative approach that considers an ECM,
Transformer model, and Time series.

o Reduce computational complexity in algorithm design
of a BESS due to AI methods.

Among the main reasons for developing a Transformer
model are to improve the functioning of the network archi-
tecture through attention mechanisms, make the models more
scalable and parallelizable in a BESS operation, and execute
diagnoses based on experimental tests and Deep Learning
approaches. The architecture and understanding of the Trans-
former model from a BESS perspective will be explored in the
following sections.

In this article, two Li-ion cells were experimentally tested,
and different datasets were collected by performing 20 battery
tests for each cell, respectively, using a programmable DC
electronic load. The motivation of this research is to develop
an initial AI methodology using Transformer architectures
that can provide modeling and diagnostics in battery man-
agement based on algorithm design.

The rest of the paper is organized as follows, in Section II,
the problem statement, experimental battery tests, and
motivation of this research through battery modelling are
explained. Section III illustrates the calculation and iden-
tification of the Key Performance Indicators (KPIs) using
different Feature Selection methods. Section IV implements
the Transformer Model for state estimation and charge diag-
nostics of battery cells. Finally, in Section V a conclusion is
presented to encourage the continuation of this research based
on more advanced Transformer model architectures.

An overview of the proposed methodology is summarized
in Fig. 1, which will be explained in detail in the following
sections.

Il. CASE STUDY: LEV50N BATTERY CELL TESTING

The datasets used in this article correspond to experimental
tests of two Li-ion battery cells, initially measuring Voltage
[V], Current [I], and time. The cells were tested using a
standard constant current/constant voltage (CC/CV) charging
protocol [15], [16]. During the charging process, a constant
current rate of 0.80 C was applied until the voltage reached
4.10 V, at which point the voltage was maintained at 4.10 V
until the charging current dropped below 0.50 A. For the
discharging phase, the cells were discharged using a constant
current method with a cut-off voltage of 2.75 V, ensuring

VOLUME 13, 2025



R. A. Gilbert Zequera et al.: Charge Diagnostics and State Estimation of BESS Through Transformer Models

IEEE Access

Data
acquisition
9
Data
processing

Feature Selection
and KP/
>

Algorithm

-ansformer

model
.

State estimation

and charge

. diagnostics

FIGURE 1. Flow-chart of the charge diagnostics and time series
methodology.

a controlled discharge process. The total capacity of the
cells was 50 Ah. All tests were conducted at room temper-
ature (23 °C) under standard atmospheric pressure (1 atm),
ensuring consistent test conditions to minimize any potential
variations in performance.

The study employs an exhaustive Computer Science
approach within the framework of TensorFlow and Keras
as a high-level Application Programming Interface (API),
experimentally subjecting the BESS to rigorous testing, com-
plemented by meticulous performance data acquisition using
a programmable DC Electronic Load.

The target application of this article is based on industrial,
academic and research Deep Learning modeling comple-
mented with static data, all to achieve the highest overall per-
formance, optimal Training, and robustness of the algorithm.

A. BATTERY TESTS AND DATA ACQUISITION

A Mitsubishi i-MiEV battery pack, composed of 88 Li-ion
cells type LEV50N and manufactured by GS Yuasa was
collected from the innovative ISEAUTO project, an Estonian
autonomous electric vehicle (AEV) deployed on the Tallinn
University of Technology (TalTech) campus [17]. Specific
information about the battery pack incorporates two modules
that contain four cells, and ten modules integrated by eight
cells, having a total amount of 88 Li-ion prismatic cells,
which are connected serially using screwed contacts. Due to
topics of strategic importance, energy, and cooperation, the
battery pack was dismantled into several modules. A sum-
mary of the battery pack parameters and LEV50 cells is
shown in Table | and Table 2.

TABLE 1. Battery pack specifications.

Manufacturer GS Yuasa
Type Li-ion
Number of cells 88
Pack weight 164.65 kg
System voltage 325.60 V
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TABLE 2. LEV50N battery cell parameters.

Parameter Value Unit
INominal voltage 3.75 v
Operating voltage range 2.75t04.1 |V
1-hr rate typical Capacity 25°C 50 Ah
Charge voltage limit at 25°C 4.1 v
Charge termination threshold current |0.5 A

Different battery tests were performed experimentally to
evaluate the performance of the cells using a programmable
DC electronic load through the UltraLoad Software for
remote operation and monitoring. The programmable DC
electronic load has an adjustable current rising speed from
0.001 A/us to 5 A/us, a readback resolution of 0.1 mV
and 0.1 mA, a list function that supports editing as many
as 512 steps, and dynamic mode up to 30 kHz. A total of
20 battery tests for each LEV50N cell were carried out to
evaluate the charge indicators of a BESS. Specifications of
the battery tests consist of a slew rate of 0.001 A/us, a step
duration of 1 second, a frequency of 1 Hz, and a resolution of
0.8%.

B. SECOND-ORDER EQUIVALENT CIRCUIT MODEL

The ECM is a helpful approach that can simulate the oper-
ation of a BESS within an engineering framework. The
framework is constructed by putting capacitors, resistors, and
voltage sources in the circuit. In 2022, Gilbert Zequera et al.
[1] conducted a literature review that explains the advantages
and drawbacks of executing an ECM for electric vehicles and
digital twin applications.

It is fundamental to mention that two different approaches
based on an ECM can be considered to determine a BESS’s
dynamic behavior, including the voltage response to different
load profiles and operating conditions [18]. The first-order
ECM considers a capacitor in parallel, voltage source,
ohm resistance, and polarization resistance. In contrast, the
second-order ECM includes not only the same elements but
also implements a polarization resistance, which is divided
into electrochemical polarization resistance and diffusion
resistance [18]. A graphical representation of a second-order
ECM is illustrated in Fig 2.

The elements of a second-order ECM visualized in Fig. 2
are denoted by the ohmic resistance Rs, polarization resis-
tance R1, polarization capacitance C1, diffusion resistance
R2, diffusion capacitance C2, open circuit voltage VOC,
and the voltage of the Li-ion cell Vcell. The mathematical
derivation of the corresponding equations that explain the
ECM from an engineering domain is found in [19] and [20].

In this research, a second-order ECM is coded using
Python as the main programming language. Likewise, param-
eter estimation is achieved using the weighted mean of
vectors algorithm [21], being a promising and innovative
method that demonstrates superiority in terms of accuracy
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FIGURE 2. Graphical rep tation of a second-order ECM.

and speed in the performance of battery management sys-
tems.

To demonstrate the robustness of the weighted mean of
vectors algorithm, Fig. 3 illustrates the predictions and com-
pares them with experimental measurement data.

[ — = Dot
—— Predictions

\oltage (V)

L] L 0 15 0
Time (hours)

FIGURE 3. Graphical predictions of the weighted mean of vectors
algorithm.

To validate the accuracy of the results through the weighted
mean of vectors algorithm, performance metrics consisting
of Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Square Error (MSE) are calculated over
the entire experimental measurements, which is provided in
Table 3.

TABLE 3. Validation results of a second-order ECM.

Performance metrics Results [%]
RMSE 0.0392
MAE 2.1510
MSE 1.9809

Regarding the simulation of the Li-ion cells, the State of
Charge (SOC) is defined as the dependent variable and will
be the main point of analysis for the following sections, also
considered as the target variable in the predictions of the
Transformer model. The second-order ECM is initialized to
simulate the operation of a Li-ion cell, reflecting the evolution
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of the SOC over time in hours. To provide a robust visualiza-
tion and clear understanding of the simulation, the dataset has
been labeled to classify the different states of a BESS. Fig. 4
shows the SOC representation based on a regression problem
explained by Time series analysis.

100

® carge
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¢ static

50C (%]

40 1

time [hours]

FIGURE 4. SOC evolution over time for a Li-ion cell using a second-order
ECM.

1Il. KEY PERFORMANCE INDICATORS

Initially, the dataset is processed, and Feature Engineering is
executed to obtain distinctive features intrinsically related to
the battery tests, which are the Power [P], Resistance [R],
Capacity [mAh], Energy [Wh], and SOC, the latter being
considered as the predicted variable. The next steps consist
of performing Exploratory Data Analysis to ensure that the
dataset does not contain significant outliers, after that, differ-
ent Feature Selection methods are executed to identify and
calculate the KPIs.

Filter, Wrapped, and Embedded are the selected Feature
Selection methods that will be implemented and discussed in
this research. The objective of this step is not only to select the
relevant features for model building, but also to understand
the impact and mutual information that every feature shares
during the different battery tests.

The KPIs obtained in the next sections refer to the features
that best represent the relationship in the dataset, all to achieve
the following tasks: 1) Reducing resource requirements and
model complexity, 2) Reducing the size of the feature space,
3) Removing features that do not influence the predictions.

A. FILTER METHODS
Filter methods are a collection of techniques based on sta-
tistical approaches, whose main purpose is to measure the
importance of every feature in the dataset. Fast processing
and inexpensive computational cost are the main advantages
of the Filter methods compared to Wrapper and Embedded,
so when analyzing big data, they offer great benefits [22].
Among the most relevant categories of Filter methods
are Correlation coefficients, Mutual information, Variance
Threshold, and Chi-Square test. Because the features of the
dataset are only numerical, without having any categorical
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variable, Correlation coefficients, and Mutual information
will be the Filter Methods implemented [22].

Correlation coefficients are Filter methods that help mea-
sure the linear relationship between two or more numerical
features, whose main function is to display the correlation
matrix between the features and the target variable [23]. Fur-
thermore, correlation coefficients are beneficial in revealing
information about collinearity, so it is strongly recommended
to remove redundant features when they do not provide any
additional information [23].To select the most notable fea-
tures using this method, a threshold is defined as a measure
of the correlation value; when the correlation between the
feature and the target variable is less than the threshold, the
feature can be discarded.

A correlation map showing each Correlation coefficient
for two different battery tests corresponding to cycles 1 and
20 respectively is illustrated in Fig. 5, showing that there
is an elevated level of correlation between the independent
variables and the SOC.

FIGURE 5. Correlation coefficients of two different battery tests. The top
plot indicates cycle 1, and the bottom plot indicates cycle 20.

Considering the perspective of a BESS, battery tests are
carried out to analyze the charging management of Li-ion
cells during discharge, explaining this statistical behavior.
Like Correlation coefficients, the Mutual information method
is executed when the independent variables are numerical.
It measures the level of dependence of the predictors on the
target variable. A visualization of the Mutual information
method is shown in Fig. 6, performed for cycles 1 and 20 of
the battery tests, respectively. Notably, even though the cycles
have changed, the Mutual information method shows that the
scores share similar values for each corresponding feature in
the dataset, demonstrating that there is an elevated level of
dependence in terms of the Capacity and Energy of the BESS
concerning the SOC.

The explanation for the different scores on Mutual infor-
mation and Correlation coefficients is that correlation analy-
sis provides a quantitative means to measure the strength of
the relationship between the predictors and the target variable.
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FIGURE 6. Mutual information of battery tests for cycles 1 and
20 respectively. The X-axis indicates the f ; the Y-axis rep
the score.

On the other hand, Mutual information is essentially the
measure of the amount of knowledge that the user can obtain
about a certain variable by knowing the value of another
variable.

B. WRAPPER METHODS

Wrapper methods in Feature Selection provide an algorithm
with the ability to evaluate the performance of a model on all
subsets of features [24]. A significant advantage of Wrapper
methods is the quality of learning with each combination
of features, providing performance metrics for feature sets.
However, selecting the most optimal features is a critical user
task, all to avoid potential bias or vague physical interpreta-
tions of predictors during the Model evaluation step.

Forward Feature Selection, Backward Feature Elimination,
and Exhaustive Feature Selection are the Wrapper methods
implemented in this research. Forward Feature Selection
operates by selecting the best variable among all the features
and groups a different feature with the previously selected
variable, iterating this process until the convergence criteria
are completed, which usually specifies a quantity of fea-
tures limit or final score on a performance metric. Backward
Feature Elimination works on the opposite side of Forward
Feature Selection, starting with all the features to evaluate
the performance of a model and discarding irrelevant features
that give a low level of performance, repeating the process
until the convergence criteria are fulfilled. Exhaustive Fea-
ture Elimination works by searching for all combinations of
features to evaluate the performance of a model over each
subset of features, therefore, the combination of all features
is the main result based on each corresponding performance
metric [25].

Implementation of the Wrapper methods with their cor-
responding results are shown in Table 4. A minimum of
three features with a maximum of seven features have been
selected, and the metrics of performance is the RMSE for
calculating the average score.

The results in Table 4 show that the maximum number
of features gives poor performance on the Wrapper methods
when considering Forward Feature Selection and Backward
Feature Elimination. However, when the selected features
are Voltage, Current, and time, there is a similar level of
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TABLE 4. Wrapper methods results.

Feature subsets Method RMSE
Current, Voltage, | Forward Feature
; . . 0.5054
time, Resistance, | Selection
Power, Capacity, | Backward Feature
Energy Elimination 0.4617
Current, Voltage, | Forward Feature
; . . 0.2573
time,  Resistance, | Selection
Power, Capacity Backward Feature
R 0.2131
Elimination
Current,  Voltage, Forwa.r d Feature 0.2573
. . Selection
time,  Resistance,
Backward Feature
Power . 0.1764
Elimination
Current, Voltage, | Forward Feature
. . . 0.2145
time, Resistance Selection
Ba'ck'war.d Feature 0.1563
Elimination
Current, Voltage, | Forward Feature
. . 0.1719
time Selection
Ba.ck.war.d Feature 0.1017
Elimination
Voltage Resistance, | Exhaustive Feature | 0.1162
Power Selection

convergence in performance. A more detailed explanation
of these preliminary results will be given at the end of this
section.

C. EMBEDDED METHODS

Embedded methods, also known as Hybrid methods, are a cat-
egory of Feature Selection algorithms that surpass the ability
of Filter and Wrapper methods due to their efficient com-
putational cost and reliability [24]. It is essential to specify
that the process of searching for feature subsets in Embedded
methods is incorporated as part of the Training step.

Embedded methods provide an operating mechanism
between the Filter and the Wrapper because they combine
the qualities of both approaches [25]. Like Filter methods,
Embedded methods are computationally lighter than Wrap-
per methods, and all rely on the Training step where, during
the classification or regression problem, the internal param-
eters are tuned to determine the appropriate weights given to
each feature and produce the best accuracy [26].

Support Vector Machine (SVM), Artificial Neural Net-
work (ANN), Decision Tree, and Random Forest are among
the most relevant Embedded methods, which also consider
the execution of regularization models, such as Lasso, Ridge,
or Elastic net [26]. In this study, Gradient Boosted Tree and
Random Forest are the two Embedded methods that will show
the results of feature importance before starting the algorithm
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design. The top three features with their corresponding scores
for both the Gradient Boosted Tree and the Random Forest are
visualized in Fig. 7.
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FIGURE 7. Graphical repr of the Embedded methods tt |
Random Forest and Gradient Boosted trees.

D. SUMMARY OF INITIAL RESULTS

Regarding the results of the Filter methods, the Correlation
coefficients show that Resistance and Power share an elevated
level of correlation with the target variable, which is also in
the same numerical range as Voltage, as do Capacity and
Energy with time. Similarly, the Mutual information pro-
vides insight into the direct impact and intrinsic relationship
between the Capacity and Energy consumption of the BESS
during the SOC’s evolution. Furthermore, based on the ini-
tial results and to reduce multicollinearity, only the most
important features will be considered in the design of the
algorithm, which is why it is required to execute the Wrapper
and Embedded methods.

In the context of Wrapper methods, the larger the number
of features, the lower the algorithm’s performance compared
to a minimum number of variables. In particular, the optimal
number of feature subsets is achieved when the Wrapper
method converges on three or four variables, so the previous
results given by the Filter methods play a key role based on
the level of dependence or independence of the predictors
with the target variable. In addition, the highest performance
is achieved by Backward Feature Elimination; therefore, the
three selected features, which correspond to Voltage, Current,
and time, will be the input variables in the network archi-
tecture. In case the user wants to select a larger number of
features than recommended, the performance of the algorithm
will decrease based on the Wrapper method results.

The Embedded methods demonstrate that the relevance
of feature importance complements the results delivered by
the Wrapper methods, allowing the size of the feature space
to be reduced and features that do not influence the model
predictions to be removed. Both Random Forest and Gradient
Boosted trees show a level of convergence to identify and
calculate the feature importance of the independent variables,
not only based on the level of correlation the SOC but also the
performance metrics of each feature subset. According to the
results obtained by Embedded methods, Current, Voltage, and
time are the most relevant predictors in the dataset and are
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considered KPIs, all based on their property of storing and
explaining the physical interpretation of additional variables
such as Resistance, Power, Capacity and Energy of a BESS.
These KPIs represent a remarkable level of statistical corre-
lation in the set of predictors due to the Filter methods and
show intrinsic engineering behavior with the target variable
according to the Wrapper and Embedded methods.

It is required to mention that the results provided by the
Feature Selection methods do not differ but rather have a
different scope to complement each other in algorithm design,
supported not only by statistical correlation and mutual infor-
mation but also by the feature importance and performance
metrics.

Before concluding this section, it is essential to highlight
that KPIs will be defined as predictors during the design of
the Transformer model in the next section, which will reduce
computational complexity and promote a better understand-
ing of the network architecture.

In the following sections, the proposed Al methodology in
this research employs both virtual and physical entities. The
physical entity refers to the Li-ion cells in the experimental
tests, while the virtual entity is defined as the Transformer
model in the algorithm design.

IV. TRANSFORMER MODEL

Recurrent Neural Networks (RNNs) have been one of the
most prominent Al methods for capturing timely dependen-
cies in sequences. As stated in [11], it has been scientifically
and computationally proven that implementing only atten-
tion mechanisms without any RNN can improve the results
of Deep Learning algorithms, all due to its ability to learn
context and meanings through tracking relationships in
sequential datasets.

Transformer models comprise large Encoder-Decoder
blocks that use positional encoders to label data elements
entering and leaving the network. Architecturally, attention
units follow the data labels, calculating and mapping each
related element. Attention queries are executed in parallel by
calculating an equation matrix process, which is called multi-
head attention.

From a BESS perspective, implementing a Transformer
model by forgoing the decoder layer results in a more accurate
state estimation [27], so this approach will be considered
in the algorithm design that implements an Encoder-only
architecture.

In this section, a Transformer model is designed, coded,
and executed to achieve state estimation. The main objective
is to show the robustness and adaptability of new NN architec-
tures based on multi-head attention mechanisms and compare
their performance with traditional Deep Learning algorithms,
all to define a methodology for the algorithm design of a
BESS through Al-powered technology.

A. ENCODER ARCHITECTURE AND ALGORITHM DESIGN
The encoder architecture is inspired in the Bidirectional
Encoder Representation from Transformer (BERT) model,
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in which attention layers process the input and provide a
sequence of embeddings as output. Attention is a mechanism
that assigns weights to each input based on their importance,
where the weighted sum is then used to compute the output of
the model [11]. In the NN design, the only difference with the
Encoder-Decoder architecture is the self-attention: in BERT
it is a bidirectional method that considers both at left and right
with respect to the selected input.

The Encoder-only Transformer provides a faster Training
step than RNNS, processing the information in common
blocks, which are the input vector, positional encoding,
encoder stack, and the linear layer. The input vector con-
sists of Voltage, Current, and time, previously defined as
KPIs. In contrast, positional encoding is a network repre-
sentation that describes the position or location of the input
in a sequence, such that each position is assigned a unique
representation. The encoder stack is a network composed
of multiple layers of autoencoders, and the linear layer
indicates the matrix operations executed on the Multi-head
self-attention (MHSA) mechanism [27], [28].

Mathematically, key, value, and query are the main ele-
ments of the MHSA [11], [28], [29], which are defined as
K, V, and Q respectively. Dimension of the vector is defined
as dj and the variable T is represented as a set of building
blocks that will serve as input to be mapped and processed in
the model, usually named tokens in Natural Language Pro-
cessing [29], [30]. The MHSA is explained by Equation (1).

Attention(Q, K, V) = softmax( Q+ KT %4 (1
o Vi

In the context of the network architecture, the query refers
to the projection vectors in the input sequence, the key rep-
resents every input associated with the possible predictions,
and the values are the set of best predictions provided by the
encoder.

After completing Feature Selection for KPIs identifica-
tion, the data is processed, and the next steps summarize
the algorithm design of the Transformer model within the
framework of TensorFlow and Keras as a high-level API:

o Data processing: A class containing a set of objects is
defined in Python to process the data, based on the prop-
erties of the BESS, such as the rated capacity and the
vector array of the KPIs. Regarding the hyperparameters
of the Transformer model, the initial network architec-
ture is defined as including a set of hyperparameters,
such as batch size, learning rate, epochs, weight decay,
and attention units.

o Encoder layer: The encoder layer is defined using the
fully connected sequential layers, composed of a MHSA
mechanism, and followed by a fully connected feed-
forward network; furthermore, batch normalization is
added to significantly improve the efficiency of the mul-
tivariate Time series process [29].

o Transformer: The Transformer model is designed by
using the full encoder, subsequently the network starts
the execution of the embedding layer by passing the
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input and using the positional encoding method. A learn-
ing rate schedule with Cosine Annealing is developed
through Adam optimizer [31] for monitoring the losses
between the start and end of every epoch.

o Training: The corresponding hyperparameters are incor-
porated into the Transformer model to start the Train-
ing step. The algorithm compiles the values defined
in the Data processing, updates, and saves the best
model parameters, obtaining the Training and Validation
curves.

o Fine-tuning and Hyperparameter optimization: The ini-
tial set of hyperparameters is processed to start the
Fine-tuning process, and hyperparameter optimization
is executed through the Keras tuner. In this step, the
performance metrics per every combination of hyper-
parameters are calculated, and the resulting network
architectures correspond to the minimal validation loss
of the learning curves.

o Validation and Testing: K-fold cross-validation is per-
formed, and minimum validation loss is achieved, after
that, the performance metrics are obtained. Finally, new
predictions are calculated on unseen datasets in the
Model evaluation step.

An overview of the algorithm design and the previous

explanations can be seen in Fig. 8.

learning curves is a critical task during the Fine-tuning, so that
ensures the model is enabling rapid development and iteration
to avoid overfitting or underfitting.

An example of learning curves of the Training and Valida-
tion losses is seen in Fig. 9, indicating that the model reaches
a minimum loss and convergence above 100 epochs.

\ —— Tain Loss
\ — Val Loss

Loss [%]

epochs

FIGURE 9. Learning curves of the Training and Validation losses.

The Transformer is executed to make predictions and test
performance with other RNNs and Bidirectional Recurrent
Neural Networks (BRNNs). For comparison purposes, Long
Short-Term Memory (LSTM), Gated Recurrent Unit (GRU)
[51, [32], [33], and their bidirectional architectures BiGRU
and BiLSTM [34] are implemented to evaluate the accuracy

Algorithm design of different Deep Learning algorithms. Performance metrics
| are obtained by calculating the MSE, RMSE, and MAE.
T d;r’ - *LH‘L u—“— a f:ii;ﬁ“ Testing set Table 5 shows the performance metrics in the Validation step.
— Is minimal and charge
Batch validation loss diagnostics | TABLE 5. Performance metrics in the validation step.
normalization achieved? |
MHSL Valid;ﬁon ' Algorithm MSE [%] RMSE MAE
mechanism Fine n;ning and Model [%] [Vo]
i en‘co der and Kopirmuragicrer - evaluation. Transformer 0.0100 1.0031 0.8554
embedding layer optimization LSTM 0.0334 1.8422 0.9529
| : GRU 0.1100 3.3166 2.1503
Training .
| Tesintag | BiGRU 0.0676 2.6012 1.7629
FIGURE 8. Flowchart of the algorithm design of the Transformer model. BiLSTM 0.01450 1.2062 0.7077

B. TRAINING AND FINE-TUNING

In the design of the algorithm, the Training set helps the
model to recognize patterns and make predictions, on the
other hand, the Validation set serves as a reference point to
evaluate the performance of the model based on the learning
process. In this study case, the Training set corresponds to the
battery tests of the first Li-ion cell in a total of fifteen cycles,
while the Validation set comprises the remaining five cycles.
In the context of network architecture, Transfer Learning
plays a crucial role that leverages the patterns, representa-
tions, and knowledge learned by an existing model on a large
and often generic dataset, therefore saving time and com-
putational resources, improving generalization, and allowing
for learning with limited data. Noteworthy, a visualization
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Upon the successful completion of the Fine-tuning and
Hyperparameter optimization processes, the optimized net-
work architectures are meticulously saved and stored in Keras
file formats. These refined models are then ready to be uti-
lized during the subsequent Model Evaluation phase. In this
critical step, the models are applied to the Testing set, allow-
ing for an in-depth assessment of their generalization ability.
Table 6 provides the optimal network hyperparameters for
each algorithm.

C. STATE ESTIMATION AND CHARGE DIAGNOSTICS

To complete the Model evaluation step, the Testing set con-

sists of the twenty battery test cycles of the second Li-ion cell.
The Transformer model is evaluated on the Time series

dataset generated by the second-order ECM and explained
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TABLE 6. Optimal network hyperp ters.
Algorithm Bath | Learning | Epochs | Weight | Units
size rate decay

Transformer | 32 0.0010 100 le-4 8

LSTM 64 0.0008 51 le-5 150
GRU 64 0.0007 65 le-5 250
BiGRU 64 0.0004 42 le-5 200
BIiLSTM 64 0.0060 75 le-5 250

in Section II, whose operating parameters were previously
processed by the battery tests of the Li-ion cells.

The metrics of performance are calculated for RNN,
BRNNS, and Transformer in the Testing sets to complete the
Model evaluation step. MSE, RMSE, and MAE are calculated
to obtain the results for each algorithm and are provided in
Table 7.

TABLE 7. Performance metrics in the model evaluation.

Algorithm MSE [%] RMSE MAE
[%o] [%o]
Transformer 0.3318 5.7072 3.3460
LSTM 1.7810 11.5134 9.2970
GRU 2.0482 12.5514 10.5919
BiGRU 1.9169 11.7673 9.8786
BiLSTM 1.5521 10.6758 8.8536

Fig. 10 shows a Time series representation illustrating
the evolution of the SOC, offering a comprehensive visual
analysis of the performance of the Transformer and the most
accurate NNs in comparison to the actual values observed in
the testing set. This representation stands as a powerful tool
for the real-time monitoring of a BESS, providing essential
diagnostics for effective charging management. By identify-
ing anomalous patterns, it enables early detection of potential
issues within the SOC, thereby enhancing the reliability and
efficiency of the system. Moreover, this capability facili-
tates predictive maintenance, optimizing the lifespan and
performance of the BESS while minimizing downtime and
operational risks.

The error rate of Transformer is significantly lower than
that of RNNs and BRNNs with less than 6% in terms of
RMSE and MAE, and 1% for MSE, which represents a
crucial result of the Transformer architecture, specifically
considering the parallelization and Training efficiency due to
MHSA by excluding the information loss during positional
encoding.

Compared to RNNs and BRNNs, Transformer provides
scalability for large datasets and prominent global pattern
recognition, implying that, unlike traditional NN architec-
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FIGURE 10. Graphical representations of the predictions in the model
evaluation step.

tures, it efficiently processes data in parallel and captures
relationships between all elements of a sequence simul-
taneously, due to the advantage of using MHSA. Conse-
quently, Transformers can better model complex relation-
ships between distant tokens in the input generated by
the positional encoding. In terms of efficiency in Training
and Validation steps, Transformers are more efficient than
RNNs and BRNNs in handling long-range dependencies in
sequences, which offers promising results for studying and
designing different architectures such as Decoder-only and
Encoder-Decoder architectures.

Regarding BESS charge diagnostics, RNNs process charg-
ing and discharging data one element at a time, maintaining
an internal hidden state updated at each step. BRNNs oper-
ate recursively, where the output at each step depends on
the previous hidden state and the Voltage and Current val-
ues stored in the query. On the other hand, Transformers
non-sequentially process the charging management data in
parallel, relying on self-attention mechanisms to capture time
dependencies between different elements in the Voltage and
Current vectors, without recurring connections or hidden
states.

D. DISCUSSION

In the initial steps, Feature Engineering and Feature Selection
play the most significant role, all to provide information
about the correlation, dependence, and mutual information
of the variables before algorithm design. It was demonstrated
through Filter, Wrapper, and Embedded methods that even if
an elevated level of correlation is found, the algorithm shows
the maximum level of performance using Voltage, Current,
and time, achieving KPI calculation.

From the BESS domain, including all predictors and target
variables allow the user to understand the operating profile
and physical interpretation, however, not in all cases these
indicators are available, which is why the KPI calculation
and Feature Selection are required to ensure data process-
ing and gain insight into algorithm design. Considering the
architecture of the Transformer, Encoder-only is selected
for effective state estimation, mutual information between
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hyperparameters and the MHSA elements was established
based on the positional encoder, in which the learning rate
schedule and the batch size monitor the behavior of the SOC
due to different step sizes and samples that update the model
weights in the MHSA mechanism. Positional embeddings are
considered another innovation introduced in a Transformer
model to replace recurrence, the idea is to use fixed or learned
weights that encode information related to a specific position
of a token.

In the Model evaluation step, the Transformer surpasses
both RNNs and BRNNs in performance metrics. Its algo-
rithmic design, leveraging the MHSA mechanism, excels at
learning complex, non-linear patterns during BESS opera-
tion, delivering exceptional performance in model-dependent
state estimation algorithms. This sophisticated mechanism
proves advantageous for tackling more demanding tasks such
as forecasting. However, to unlock its full potential, modifi-
cations to the network architecture are essential, particularly
through the implementation of encoder and embedding layer
structures or Fine-tuning techniques.

Although the Encoder-only Transformer shows out-
standing performance metrics by executing Fine-tuning
and Hyperparameter optimization, implementing additional
search algorithms is an opportunity area to complement the
network architecture due to the execution of more techniques
such as Bayesian optimization, genetic algorithms, or Hyper-
band.

Compared to existing Machine Learning models and
physics-based approaches [35], [36], this methodology starts
with algorithm design from a beginner level that initially
familiarizes the reader with the topic, until reaching an
MHSA mechanism that can make accurate predictions in
the Model evaluation step. Furthermore, considering the
algorithm design, due to the high level of network architec-
tures and programming tools of this research, this methodol-
ogy complements some Deep Learning methodologies and
Transformer models that not only focus on the Remaining
Useful of a BESS [37], [38] but also the State of Health [39],
fault prognosis [40], and charging management [41].

The challenges addressed by the current methodology in
the predictive maintenance of a BESS are comprehensively
summarized in Table 8. The innovative approach leverages
advanced algorithm design, incorporating predictive models
capable of analyzing vast amounts of operational data in real
time. By utilizing sophisticated techniques in Al, the Trans-
former not only anticipates diagnostics before they escalate
by Transfer Learning but also adapts to evolving patterns
within the BESS. This dynamic framework ensures that the
predictive maintenance strategy is both proactive and respon-
sive, thereby significantly reducing downtime and extending
the operational lifespan.

The Encoder-only Transformer represents a crucial and
initial step in the future algorithm design of a BESS using
Al methods, all to execute optimal predictive maintenance
and support business consulting, research, and enterprise
testing.
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TABLE 8. Challenges addressed by the current methodology.

Topic Challenges addressed

Battery e  Extensive battery testing of Li-ion

technology cells validated in an R&D
environment

e Virtual entity composed of an

Encoder-only Transformer, whose

physical representation is based on

battery properties

Accurate Model evaluation based

on MHSA mechanism and KPIs of

a BESS

e Innovative design using Time
series analysis, operating data, and
Al methods.

Algorithm .
design of a
BESS

The promising results and contributions of this research
demonstrate the potential for the build, design, and operation
of a BESS over its lifetime, supporting not only the global
demand for transportation electrification [42] but also the
possibility of employing 80% of their initial capacity for
multiple storage solutions and second use, such as high-
energy, high-power applications, and hybrid solutions [43].

Employing reliable, adaptable, and accurate Al methods
in the digitalization of the energy industry is a driver for
both industry and academia [44], so considering the second
use of a BESS is a challenge that enhances climate change
mitigation and promotes future opportunities on the path to
the energy transition [45].

V. CONCLUSION
In this study, a Transformer model based on an Encoder-only
architecture was employed to achieve state estimation and
charge diagnostics, marking a crucial step in the algorithm
design of a BESS. Extensive testing of Li-ion cells was
carried out under various conditions and scenarios, accom-
panied by measurements via UltraLoad software for remote
operation and monitoring. The simulation was run by coding
a second-order ECM to generate Time series data and test the
robustness of the algorithms. This strategy was carried out
through the design, development, and implementation of the
MHSA mechanism to convert the initial networks into several
Al models, capable of emulating the operation of a BESS.
Key results demonstrate that the design and execution of
a Transformer model shows more optimal performance com-
pared to RNNs and BRNNs in the Deep Learning domain,
whose network architecture can improve the algorithm design
within an energy framework and explain the behavior of
both virtual and physical entities of a BESS, answering the
research question. Compared with current scientific refer-
ences, this article proposes an innovative and exceptional
approach in the field of a BESS by using an Encoder-only
Transformer, which is complemented not only by Feature
Selection methods and Time series analysis but also by an
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engineering perspective based on a second-order ECM and
experimental battery tests of Li-ion cells.

The resulting Encoder-only architecture, firmly rooted in
empirical data, is a significant outcome of this research
that represents a substantial advance in the development of
Al-driven technology for BESS diagnostics. Regarding the
limitations of this work, the BESS chemistry is an impor-
tant element to consider in the physical entity, and the
Encoder-only architecture in the algorithm design, so it is
recommended to experimentally test new chemistries and
design different Transformer architectures in future work.

Among the most important novelties of this research are:
1) The proposed Transformer can be used as part of advanced
model-dependent state estimation algorithms of a BESS
through AI methods, 2) As the algorithm design of the Trans-
former has physical and virtual entities, the virtual portion can
be optimized by Black-box Al, while the physical entity can
be used for simulating different experimental conditions, 3)
For current analysis of the BESS behavior, the Time series
representation helps in the anomaly detection and charge
diagnostics, and is also complemented by prior performance
and comparison of different Feature Selection methods to
identify KPIs, 4) The compatibility of the Encoder-only
Transformer through the MHS A mechanism makes it feasible
to exploit different architectures such as Decoder-only and
Encoder-Decoder.

The pioneering and visionary research carried out in this
article represents a testimony to the unification of several
branches of knowledge, such as Electrical Power Engineer-
ing and Mechatronics, Computer Science, and DevOps. The
next steps will consist of the deployment through Machine
Learning Operations (MLOps) and the incorporating of new
Transformer architectures.

Finally, it is of utmost importance to mention that the
resources of a research group must facilitate the participation
of those resources for other research groups. Our research
must facilitate a modest contribution to promote ties of coop-
eration and collaboration, which is our vocation as scientists,
researchers, and scholars.
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Energy technologies and Artificial Intelligence (AI) are essential for the energy transition to a carbon-free future
through decarbonization, digitalization, and decentralization. The Kolmogorov-Arnold Network (KAN) is a
promising new type of Neural Network (NN) that can improve Deep Learning models and serve as an alternative
to the Multilayer Perceptron (MLP) for complex tasks. This paper proposes using KANs to design algorithms for
Battery Energy Storage System (BESS) applications, focusing on state estimation, Remaining Useful Lifetime
(RUL), and charging management. A wide range of datasets is collected by performing extensive testing on
battery cells to demonstrate the robustness of the algorithms, in addition to advanced techniques like cross-
validation, Regularization, Bayesian optimization, and Fine-tuning to improve Model Performance Analysis.
The resulting network architectures were designed using Keras and PyTorch APIs, stored in PyTorch state dic-
tionaries and Hierarchical Data Format (HDF5) files, and tested on new battery datasets. The final KANs achieved
over 96 % accuracy, outperforming Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs),

and MLPs in algorithm design and BESS applications.

1. Introduction

In the accelerated landscape of the energy industry, the algorithm
design of a Battery Energy Storage System (BESS) is essential to achieve
energy transition. Artificial intelligence (AI) and energy integration
highlight a remarkable development in beneficial applications such as
diagnostics, charging management, predictive maintenance, state esti-
mation, and Remaining Useful Lifetime (RUL). Different approaches are
required to implement optimal technologies of energy systems, focusing
on modeling and digitalization, with the electrochemical model,
Equivalent Circuit Model (ECM), and Mathematical models being the
most important to simulate, monitor, and predict the health and charge
indicators of a BESS (Gilbert Zequera et al., 2023a, 2023d; Gilbert
Zequera, 2022).

Several researchers and scholars have proposed not only Data Sci-
ence techniques to deliver remarkable advances on several strategic
topics such as digital twins, enterprise testing, and business consulting
(Gilbert Zequera et al., 2023a, 2023b, 2023c) but also Deep Learning
algorithms that explain the physics of a system and the behavior of Key
Performance Indicators (KPIs) through Al-powered technology (Gilbert
Zequera et al.), all to support the experience provided by energy

* Corresponding author.
E-mail address: rogilb@taltech.ee (R.A. Gilbert Zequera).

https://doi.org/10.1016/j.egyr.2025.02.002

analysts.

In building and operating a BESS, the State of Charge (SOC) and State
of Health (SOH) are critical for improving the performance of renewable
technologies, making algorithm design essential for monitoring the ef-
ficiency of electrical machines and autonomous systems. Experimental
measurements and battery testing track the charging and discharging,
influenced by chemical structure, manufacturing characteristics, and
actual usage, which are requested by user needs, industrial applications,
and research goals. Accurate model evaluation through AI methods and
scientific computing is crucial for addressing the challenges of the en-
ergy transition, ensuring effective performance monitoring, and sup-
porting industrial procedures.

During the execution of Al methods in a BESS domain, there is an
opportunity to optimize the architecture of a Neural Network (NN),
thereby reducing the computational complexity in Deep Learning al-
gorithms. However, when collecting different types of datasets and
designing NNs, the challenge lies in explaining the physical and virtual
entities of a BESS. This opacity regarding the internal mechanisms of the
battery presents a significant obstacle when seeking to understand KPIs
and user needs. As highlighted by Gilbert Zequera (R. A. Gilbert Zequera
et.al), the search for the capability, robustness, and adaptability of Al

Received 25 October 2024; Received in revised form 27 January 2025; Accepted 3 February 2025
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methods in battery management is a challenge that unifies several
branches of knowledge such as Computer Science, Energy Engineering,
Mechatronics, and Software Engineering, which introduces the research
question of designing an optimal algorithm whose mechanism can be
implemented in both industry and academia beyond expectations.

Indeed, in such a context, developing, verifying, and implementing
algorithm design from a Data Science and battery health perspective
becomes highly applicable and valuable. Innovative and advanced NNs
have been proposed as alternatives to solve complex Deep Learning
problems such as Image Recognition and Computer Vision, Natural
Language Processing, Speech Recognition and Voice Assistant, Recom-
mended Systems, Autonomous Vehicles, etc (Du et al., 2016). In the
literature, research studies have proposed incorporating Al methods for
energy demand, and a remarkable contribution has been made through
probabilistic models, Machine Learning, and Deep Learning approaches
(Huang et al., 2020; Xiong and Zhou, 2023; Yang et al., 2023). In 2020,
Yao et al. developed a novel method to achieve fault diagnosis in a BESS
based on a Support Vector Machine (Yao et al., 2021). Later, in 2022, Li
et al. developed a Deep Learning approach assisted by reinforcement
learning to forecast an electric vehicle charging station (EVCS) (Li et al.,
2023), and Jiang et al. implemented an isolated forest algorithm for
voltage signal applications by detecting outliers (Chang et al., 2023).

The Kolmogorov-Arnold Network (KAN) is a promising Al algorithm
based on the Kolmogorov-Arnold theorem, introduced by Liu et al. in
2024. Its significant applications have enabled scientists to rediscover
physical and mathematical laws (Liu et al., 2024). Compared to tradi-
tional NNs, KAN has been shown to achieve faster neural scaling and
offers notable improvements in Deep Learning models, enhancing both
accuracy and interpretability (Liu et al., 2024; Bozorgasl and Chen,
2024).

This research addresses a critical gap in algorithm design for BESS
applications by introducing and developing KANs, progressing from
basic to advanced network architectures in the energy sector. The key
innovation lies in moving away from conventional ECM designs and
traditional NNs, instead leveraging Transfer Learning on battery oper-
ating data and comparing the performance of the resulting KANs with
the most optimal categories of NNs. The study employs a comprehensive
computing approach and Deep Learning methodology using PyTorch
and Keras as high-level APIs. It rigorously tests the BESS under various
conditions to assess charging management, Remaining Useful Lifetime
(RUL), and state estimation across diverse datasets. By departing from
previous research, this work not only fills a vital gap in battery devel-
opment and Al technology but also offers a novel perspective on energy
systems through the innovative application of KANs recently introduced
by the scientific community.

The article is structured as follows: Section 1 provides a systematic
review of recent advances in the algorithm design applied to a BESS and
the motivation for this research. Section 2 gives a comprehensive review
of the case studies with corresponding BESS applications. Section 3
presents an overview of the implemented NNs, highlighting the nov-
elties of KANs, such as architecture, parameters, functionalities, and
mechanisms. Section 4 elucidates the design of the optimized algorithms
using a Deep Learning methodology and its corresponding procedures.
The results and performance are explained in Section 5. Finally, con-
clusions drawn from the research are delivered in Section 6.

2. Case studies and applications

This section explains three different case studies to familiarize the
reader with the relevant applications of a BESS, highlighting the level of
complexity of algorithm design based on various user needs, battery
properties, experimental tests, and operating conditions.

The case studies correspond to various datasets of a BESS subjected
to experimental measurements through specific test criteria. Firstly, two
Lithium-ion (Li-ion) cells are tested using a programmable DC electronic
load to experimentally simulate the SOC by implementing a second-
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order ECM. Secondly, two of the most recognized datasets, namely
CALCE and NASA, are processed and analyzed to evaluate the RUL of
prismatic and Li-ion battery cells. Finally, using the programmable DC
electronic load from the initial case study, a series of battery tests are
performed with several Li-ion cells of their corresponding modules to
evaluate optimal charging management.

It is crucial to note that the added value of this section is to provide
the high scope of algorithm design so that the optimal NN architecture
can provide the most accurate performance and interpretability in
multitasking areas for a BESS.

2.1. State estimation

A Mitsubishi i-MiEV battery pack manufactured by GS Yuasa, con-
sisting of 88 LEV50N type Li-ion cells, was collected from ISEAUTO, an
innovative Estonian autonomous electric vehicle (AEV) project located
on the Tallinn University of Technology (TalTech) campus (Rassolkin
et al., 2018). Due to topics of strategic importance, energy cooperation,
and research management, the battery pack was dismantled into several
battery cell modules. For a comprehensive understanding of the LEV50N
cells, Table 1 summarizes the cell parameters.

A total of ten battery tests for two Li-ion cells were conducted
respectively to evaluate their charge indicators, all using a program-
mable DC electronic load through the UltraLoad Software for remote
operation and monitoring. The programmable DC electronic load has an
adjustable current rising speed from 0.001 A/ps to 5 A/ps, a list function
that supports editing as many as 512 steps, dynamic mode up to 30 kHz,
a readback resolution of 0.1 mV and 0.1 mA. Specifications of the bat-
tery tests consist of a resolution of 0.8 %, a slew rate of 0.001 A/ps, a
frequency of 1 Hz, and a step duration of 1 second.

An ECM is a useful engineering approach that can simulate the
operation of a BESS. The first-order ECM considers a parallel capacitor,
voltage source, ohm resistance, and polarization resistance, while the
second-order ECM includes not only the same elements but also imple-
ments a polarization resistance, which is divided into diffusion resis-
tance and electrochemical resistance (Wu et al., 2010; Xia et al., 2017;
Nemes et al., 2019).

In this research, a second-order ECM is coded using Python as the
programming language. Furthermore, parameter estimation is achieved
using the SciPy optimized library, focusing on root finding by Local
(multivariate) optimization.

To visualize the results of the root findings in the battery tests, Fig. 1
shows a fitted curve and compares it with the experimental data.

To validate the results of the optimization and root finding algorithm
in the parameter estimation for all battery tests, Table 2 provides the
performance metrics consisting of Mean Absolute Error (MAE), Mean
Square Error (MSE), and Root Mean Square Error (RMSE).

Finally, the best-fit parameters for each corresponding experimental
measurement are collected and defined as input variables to run the
second-order ECM, all to simulate the operation of the Li-ion cell and
generate a new dataset.

For this research, the datasets corresponding to the state estimation
application will be called “ECM dataset”, which contains SOC as a pre-
dicted variable, voltage, time, and current as input features, and which
will be processed in the algorithm design for the following sections.

Table 1

LEV50N Battery cell parameters.
Parameter Value Unit
Nominal voltage 3.75 v
Operating voltage range 2.75-4.1 \4
1-hr rate typical Capacity 25°C 50 Ah
Charge voltage limit at 25°C 4.1 A
Charge termination threshold current 0.5 A
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Fig. 1. Graphical predictions of the optimization algorithm to find the best-fit parameters.
2.3. Charging management
Table 2
Validation results of the optimization and root finding
algorithm.

Performance metrics Results [%]

MAE 1.7038
MSE 0.0743
RMSE 2.7263

2.2. Remaining useful lifetime (RUL)

In this application, two of the most recognized datasets focused on
RUL and End-of-Life (EOL) criteria are collected, which are NASA and
CALCE. The EOL criteria is defined as a concept in a BESS that accounts
for failure in performance or functionality, which is typically associated
with 70-80 % of the full rated capacity (Arrinda et al., 2021).

The CALCE dataset, available from the Center for Advanced Life
Cycle Engineering (CALCE), a research center at the University of
Maryland, contains four prismatic cells cycled at a constant current of
1°C (He et al., 2011; Xing et al., 2013). The cells were tested on a charge
profile that was a standard constant current/constant voltage protocol
with a constant current rate of 0.5 C until the voltage reached 4.2 V and
then held at 4.2 V until the charge current dropped below 0.05 A. The
discharge cut-off voltage for these batteries was 2.7 V, and the total cell
capacity was 1.1 Ah (Williard et al., 2020). In this dataset, the State of
Health (SOH) represents the dependent variable, and the features used
for the predictions are time, resistance, current, voltage, charge capac-
ity, and discharge capacity (Gilbert Zequera et al., 2023c; Williard et al.,
2020).

The NASA dataset, available from the NASA Ames Research Center
(Macintosh, 2024), contains the record of four commercial 18650 Li-ion
batteries, with each battery repeating three operations: charge,
discharge, and impedance measurements. In this specific case study,
only the discharging process is considered to evaluate the RUL. Initially,
charging was performed in constant current (CC) mode at 1.5 A until the
battery voltage reached 4.2 V and then continued in constant voltage
(CV) mode until the charging current dropped to 20 mA. Subsequently,
discharge was performed at a constant current level of 2 A until the
battery voltage dropped to 2.7 V and experiments were stopped if the
cells reached 70 % of the end-of-life criteria (Saha and Goebel, 2008a,
2008b). The predicted or dependent variable is the SOH, however,
compared to the CALCE dataset, temperature indicates an additional
independent variable (Gilbert Zequera et al., 2023b; Saha and Goebel,
2008b).
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Like the experimental measurements performed in the state estima-
tion at the beginning of this section, this dataset corresponds to LEV50N
cells, however, in this case study, sixteen cells from their respective
modules are considered, conducting a total of 89 battery tests.

In this specific application, the charging management of Li-ion cells
is evaluated using a programmable DC electronic load under several
operating conditions, which are: 1) C rate, 2) operating voltage range,
and 3) cut-off voltage range (R. A. Gilbert Zequera et.al). It is important
to note that the operating conditions of the LEV50N cells were exhaus-
tively measured in various scenarios through the UltraLoad Software for
remote operation and monitoring.

Regarding data acquisition, the independent variables are current,
time, voltage, energy, resistance, and discharge capacity. Additional
features based on the input variables such as SOC and power are ob-
tained using the Coulomb counting method; similarly, open circuit
voltage (OCV) is calculated using the ECM approach and is defined as
the predicted or target variable in the network architecture (R. A. Gilbert
Zequera et.al; Saha and Goebel, 2008b).

For the purposes of this research, the dataset referring to the
charging management application will be called “CHRG dataset”, which,
like the previous ones, will be processed to achieve the optimal algo-
rithm design in the next sections.

3. Artificial intelligence methods and neural networks

This section presents a brief review of the different Al methods
focused on NNs, their corresponding mechanism, architecture, and
functionalities, highlighting the implemented algorithms: 1)
Kolmogorov-Arnold Network (KAN), 2) Multilayer Perceptron (MLP),
and 3) Recurrent Neural Network (RNN) and Convolutional Neural
Network (CNN). The workflow of each NN is illustrated in Fig. 2.

This diagram outlines the sequential structure for discussing the
proposed NNs, emphasizing a systematic review of their definition,
network architecture, mechanism, functionalities, and implementation.
Each stage is shortly explained as follows:

o The definition explains to the reader the fundamental idea of each
NN and its role in solving computational problems.

e The structural aspects of the corresponding NNs, such as layers,
nodes, hyperparameters, and connections, are highlighted by
different types of architectures.

o In the mechanism, the key content is based on how each NN works,
breaking down the processes that allow them to learn and make
predictions.
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Fig. 2. Sequential structure diagram of the proposed NNs.

e Functionality is described by the strengths and capabilities of NNs
through their network mechanisms and architectures in Deep
Learning.

e The selected NNs for implementation are discussed through the
practical aspects of the algorithm design and coding.

The main objective of the following subsections is to provide sig-
nificant literature of implemented NNs before initializing the algorithm
design, especially to understand the novel and innovative KAN.

3.1. Kolmogorov-Arnold network (KAN)

KANs are computational models inspired by the Kolmogorov-Arnold
representation theorem, whose implications in the field of Deep
Learning are offering new alternatives for building NNs. Initially, KANS
are considered a promising alternative to MLP (Liu et al., 2024; Bozor-
gasl and Chen, 2024). However, due to their high level of accuracy and
interpretability, the opportunity to compete with other categories of
NNs, such as CNNs, RNNs, and ANNs in several fields of Al is
encouraged.

Compared to MLPs, which have fixed activation functions on nodes
or neural units, a KAN has learnable activation functions on numerical
values, also known as weights, which are associated with the connec-
tions between neurons or nodes across different layers of the network.
Furthermore, in the KAN mechanism a univariate function parameter-
ized as a spline has the task of replacing each weight parameter,
consequently allowing the switch between coarse-grained and a fine-
grained grid (Liu et al., 2024). From a mathematical perspective, func-
tion composition also provides a powerful tool to explain the mechanism
of a KAN by decomposing the multivariate function into univariate
functions, this decomposition being a different approach than a tradi-
tional NN (Tian et al., 2023; Shayan Aziznejad and Unser, 2019).

Basis functions are defined as coefficients of the building blocks to
create more complex functions and play an important role in the
network architecture (Lee et al., 1999), so as an added value, a KAN can
learn these basis functions at the edges, resulting in highly flexible and
interpretive activation functions at each connection. The remarkable
functionalities of KAN are also manifested by replacing all weight pa-
rameters by the coefficients within the edge activation function, thereby
eliminating traditional linear weights from the network (Vaca-Rubio
et al., 2024; Xu et al., 2024).

Regarding the main hyperparameters of a KAN, the width, grid, and
spline order “k” integrates the network architecture. The width refers to
the number of basis functions used to build the activation functions
within each layer, the grid defines the level of detail at which the
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interval over the activation function operates and captures in the
network, finally, the "k" determines the degree of smoothness to
parameterize the activation functions (Liu et al., 2024; Vaca-Rubio et al.,
2024; Xu et al., 2024).

A summary of the KAN working framework is explained in the
following points (Liu et al., 2024; Bozorgasl and Chen, 2024; Vaca-Rubio
et al., 2024; Xu et al., 2024):

o Input layer and processing. At initialization, the input layer of a KAN
extracts the multivariate input to prepare it for processing through
the corresponding hidden layers. After that, each input variable is
individually transformed by a set of univariate functions.

o Hidden layers and univariate functions: The hidden layers of the KAN

architecture extract the univariate functions from the initial step. To

complete this step, a sum of univariate functions is obtained, which
represent a combination of transformed input variables.

Output layer: The output layer extracts the sum of univariate func-

tions from the hidden layer. Function composition is applied to the

combination of transformed input variables, the results are calcu-
lated and then summed up to obtain the KAN predictions.

The innovation of the KAN architecture relies heavily on applying
univariate functions to each input variable individually and then to the
summed outputs, thereby reducing the complexity of the multivariate
function by decomposing it into sums of simpler univariate functions.
The parallel computation of multiple univariate transformations for
each input variable is a major advantage compared to other categories of
NNs, making it very efficient for certain types of problems in the Deep
Learning field.

3.2. Multilayer perceptron (MLP)

A MLP is a type of artificial neural network (ANN) that consists of
multiple layers of neurons. MLP architecture is characterized by the
implementation of non-linear activation functions, which makes the
network learn complex patterns in the data. A notable functionality of
MLPs is their remarkable application in machine learning, as by learning
non-linear relationships in the data, it turns them into powerful models
for tasks such as regression, classification, and pattern recognition (R. A.
Gilbert Zequera et.al; Heidari et al., 2020).

The MLP architecture comprises three layers: the input layer, the
hidden layer, and the output layer. First, the input layer is the initial
layer of the network, which processes the independent variables in the
form of numbers. Second, is the hidden layer, which processes the in-
formation received from the input layer. Third, the output layer pro-
duces the results of the calculations applied to the network data (R. A.
Gilbert Zequera et.al).

The mechanism of MLP is summarized in the next steps (Gilbert
Zequera et al., 2023c; Heidari et al., 2020; Wilson and Tufts, 1994;
Popescu et al., 2009):

o The activation rate of the hidden nodes is found using the inputs and
the links from the input to the hidden layer. Each neuron in the
hidden layer is connected to the neurons in the next layer.

o The corresponding weights of the neurons are updated with the help
of the learning phase. The learning phase is repeated continuously
until the error value exceeds the threshold level.

o Finally, the data is passed in a forward path from the input layer to
the output layer, being the equivalent of a feed-forward that uses
backpropagation to train all the nodes.

3.3. Recurrent Neural Network (RNN) and Convolutional Neural
Network (CNN)

RNNs have an architecture based on recurrent connections and can
model sequential data for sequence recognition and prediction. The
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mechanism of an RNN is given by high-dimensional hidden states with
nonlinear dynamics, emphasizing that the state of the hidden layer at a
given time is conditioned to its previous state (Salehinejad et al., 2017).

Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM)
are types of RNNs designed to handle sequential data.

The LSTM is composed of three gates (forget, input, and output),
whose beneficial mechanism allows RNNs to learn over many more time
steps and control the flow of information to hidden neurons over long
periods of time, thereby using more consistent errors. The corresponding
gates of the LSTM retain the features extracted from previous time steps,
regulating not only the amount of data entering at each corresponding
time step, but also the number of weights being optimized (R. A. Gilbert
Zequera et.al; Schmidt, 2019).

GRU has control units that modulate the flow of information within
the unit, but without having separate memory cells. Unlike LSTM, GRU
exposes the entire state at each step and computes a linear sum between
the existing state and the newly computed state. Hidden layers con-
taining memory cells cover the main functions of GRU networks. Cell
state changes and maintenance depend on two gates in the cell: a reset
gate and an update gate (R. A. Gilbert Zequera et.al.; Salehinejad et al.,
2017).

CNN is a feed forward NN that applies convolutional operations to
the input instead of general matrix multiplication, being able to extract
features from the data with convolutional structures in at least one of its
layers (SAZLI, 2006). Compared to other types of NNs, a CNN has
different layers that make up its intrinsic architecture, whose main
functionalities are to control overfitting in the model, introduce
nonlinearity, perform normalization, and combine features to make
accurate final predictions (Li et al., 2022; Song et al., 2021).

The RNNs implemented in the algorithm design are GRU and LSTM,
while a CNN-1D for CNN, whose performance will be compared and
analyzed in the following sections.

4. Algorithm design

In this section, the algorithm design will be described, illustrated,
and executed to evaluate the Model Performance Analysis subsequently.
A Deep Learning methodology proposed by Gilbert Zequera et al (R. A.
Gilbert Zequera et.al). in 2024 is implemented as an added value to
strengthen robustness. However, compared to previous research, in this
specific case, not only charging management applications but also RUL
and state estimation are considered. In addition, both Keras and PyTorch
are defined as APIs to demonstrate a high level of adaptability and
effectiveness.

As for specific and advanced computing techniques, in the Training
process, an initial network architecture is designed to consider input
features of the corresponding datasets and NN hyperparameters. Fine-
tuning is then performed using Bayesian optimization to achieve mini-
mal validation loss, and then the optimal hyperparameters of the net-
works are collected to execute cross-validation and calculate
performance metrics, avoiding later problems such as overfitting and
underfitting. A summary of the algorithm design is explained in the
following points:

e Data acquisition is completed by considering the corresponding
datasets for each BESS application and separating the training,
validation, and testing sets.

e Exploratory data analysis (EDA), Feature Engineering, and Feature
Selection are executed to complete the Data processing. In this step,
data distribution, correlation matrix, and Variance Inflation Factor
(VIF) are useful tools to achieve a solid understanding of the problem
depending on the type of application and identifying KPIs (R. A.
Gilbert Zequera et.al; Tay, 2017).

e The initial network architecture is designed using the predictors and
target variables from data processing, and the hyperparameters of
the NN are selected. The training and validation sets are processed.
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e Training is started and the loss is calculated on the validation set to
obtain the initial performance of the NN. Fine-tuning is performed to
achieve the minimum validation loss.

Once the minimal validation loss is achieved, Fine-tuning is
completed and optimal hyperparameters are collected. Cross-
validation is performed to evaluate performance metrics in the
validation step.

PyTorch state dictionary (state_dict) and Hierarchical Data Format
(HDF5) files are generated to store the resulting NNs. The testing set
is processed, and final performance metrics are calculated in the
Model evaluation step.

To conclude this introductory part, it is essential to mention that the
interpretability of the algorithm design is given by both entities, the
physical one, which refers to the operation of the BESS, and the virtual
one, which is associated with the functionalities, architecture, and
hyperparameters of the different NNs. This framework reflects and al-
lows the user to understand the underlying factors that drive the pre-
dictions of the target variable in each application of the BESS.

4.1. Neural network architecture and training

After the successful Data processing completion, the training and
validation sets were stored and consistently transformed into tensors to
ensure alignment with time steps, features, and samples for algorithm
design using Keras and PyTorch APIs.

Activation functions, metrics, and kernel regularizers are the main
arguments that integrate the programming interface in the network
architecture, so different matrices are created with a set of hyper-
parameters to monitor the Training and Validation steps. For RNNs,
CNNs, and MLPs, batch size, learning rate, epochs, weight decay, and
gamma regularizer are the selected hyperparameters, while for KANs,
width, k-spline order, and grid are additional hyperparameters to
optimize.

The selection of the above hyperparameters is intrinsically related to
the impact on the performance and computational efficiency of the
Training process, which affects the quantity of allocated error with
which the NN weights are updated, and the amount of information the
resulting architecture can capture and its suitability. As for the activa-
tion function, ReLu is selected for its sparsity and for being beneficial in
reducing the probability of gradient vanishing.

Regularization techniques are crucial to implement and avoid over-
fitting or underfitting during the validation process, all to achieve
convergence in the learning curves, so dropout, weight decay, and
gamma regularizer are included in the hyperparameter set of the
network architecture. Weight decay, also known as L2 Regularization, is
a technique applied to the weights of a neural network to minimize a loss
function by implementing a penalty on the norm of the respective
weights (Loshchilov and Hutter, 2017). Similarly, the gamma regular-
izer is defined as a multiplicative factor by which the learning rate de-
cays at each epoch (Li and Arora, 2019).

In addition to the above methods, the Adam optimizer is imple-
mented to minimize losses and weights, stabilize Training, and help NNs
converge to optimal solutions, which, in parallel with an early stopping
criterion and a learning rate schedule, integrates the final network ar-
chitecture. Early stopping reduces the risk of overfitting and saves time
and computational resources by simplifying the model and preserving
the best weights, while a learning schedule is tasked with avoiding
exceeding the minimum learning rate and Fine-tuning the model
parameters.

The notable differences in the Training step are based on the network
architecture of KANs, which differ substantially from RNNs, CNNs, and
MLPs due to the k-spline order, grid, and width, so these hyper-
parameters will be optimized first before obtaining the resulting NNs
and completing the Fine-tuning process for mutual hyperparameters.
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4.2. Fine-tuning and Bayesian optimization

In the field of AT and model interpretability, the need to achieve Fine-
tuning plays a crucial role in both Validation and Model Performance
Analysis. One of the techniques to automate algorithm design is Neural
Architecture Search (NAS), which helps to find the optimal architecture
by searching over a large hyperparameter space.

In terms of programming and computer science, understanding the
key differences between trainable parameters and hyperparameters is a
fundamental task. Trainable parameters refer to the parameters learned
by the algorithm during Training, such as the weights of the NN, while
on the other hand, hyperparameters are set before starting the learning
process and are not updated in the learning step, thus dictating the
overall structure and behavior of the model.

Fine-tuning using various optimization methods is a monumental
challenge, but essential to ensure that models are accurate, efficient, and
adaptable. Different types of hyperparameter optimization techniques
include Evolutionary Algorithms, Reinforcement Learning, Grid Search,
Bayesian optimization, and Random Search (Turner et al., 2021). In this
research, due to its high level of convergence, computational efficiency,
and fast convergence, Bayesian optimization is selected in the algorithm
design (R. A. Gilbert Zequera et.al; Turner et al., 2021; Qin et al., 2017).

Bayesian optimization assumes that a specific probability distribu-
tion underlies the performance and determines the next set of hyper-
parameters to be evaluated considering previously observed
combinations. Two important concepts are considered in the imple-
mentation of Bayesian optimization: exploration and exploitation.
Exploration refers to selecting a point in a region that currently has the
best results, while exploitation means choosing the point with the
highest uncertainty at each iteration (Wu et al., 2019).

In the context of NNs and BESSs, the main goal of Bayesian optimi-
zation is to minimize the loss during the Training and Validation steps,
achieving convergence on the learning curves and modeling the objec-
tive function. To successfully achieve this complex goal, a model called
Gaussian Process is built, which refers to the infinite-dimensional nat-
ural analogue of the multidimensional Gaussian, and this process is used
to model the unknown objective function and provides a posterior dis-
tribution over the function values given the observed data.

In the algorithm design, an acquisition function called Expected
Improvement is implemented to provide a balance between exploitation
and exploration, which determines the next set of points to be evaluated
in the search space and quantifies the potential convenience of sampling
a particular point, all while considering both the predicted values of the
surrogate model and the uncertainty associated with those predictions.

As mentioned earlier, the Fine-tuning process via Bayesian optimi-
zation is implemented using Keras and PyTorch APIs. However, to offer
an innovative solution, several programming functions were developed
from scratch using Python libraries designed for sequential model-based
optimization. First, a fitness function is created to evaluate the perfor-
mance of the NNs based on the selected hyperparameters, to minimize
the loss. Next, a Gaussian process is constructed during the Training
phase, starting with an initial set of hyperparameters to learn the per-
formance metrics of each NN. The Bayesian optimization search begins
with these initial values and subsequently focuses on promising regions
identified in earlier steps. In the third step, the model is sampled to
maximize Expected Improvement, and the validation loss is calculated
for each search iteration. Finally, the output function stores the set of
hyperparameters that correspond to the minimum validation loss, and
performance metrics are computed.

As for the KAN hyperparameters, the width, the grid and the k-spline
order are the main elements to be optimized. In the case of the width, it
is composed of the input size, the hidden size, and the output size, being
the number of features and a single target variable the input and output
size respectively, so only hidden size, grid, and k-spline order will be
included in the Bayesian optimization for this type of NN.

Before obtaining the optimal and mutual hyperparameters of
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different NNs, Bayesian optimization is implemented to select the core
hyperparameters of the KAN. In this specific procedure, a loop iterates
through the diverse types of datasets based on case studies until
convergence is achieved based on the minimum validation loss. The
results show optimal values of 16, 5, and 3 for the hidden size, grid, and
k-spline order respectively.

The Bayesian optimization graph is a powerful tool that helps visu-
alize where the optimization algorithm is likely to sample next,
providing a solid understanding of the trade-off between exploration
and exploitation. The graph illustrates exploration by sampling in areas
with high uncertainty, while exploitation is shown by sampling in areas
expected to yield the best results.

The above explanations are visualized in Fig. 3 and Fig. 4, showing a
Bayesian optimization graph that is composed of the Gaussian process
plot, and the Expected Improvement plot, considering the batch size of a
KAN as an example hyperparameter.

In the Gaussian process plot, the Python fitness function provides
observations along the data distribution of the selected hyperparameter
with its associated validation loss, which is given by the Gaussian model.
The X-axis plots the selected hyperparameter, while the Y-axis indicates
the validation loss; the red points illustrate the observations provided by
the Gaussian process.

Considering the Expected Improvement plot, the main objective is to
analyze the different high-uncertainty sampling regions and the best
results that exploration and exploitation yield. The X-axis indicates the
selected hyperparameter and the Y-axis represents the Expected
Improvement, quantifying the best current known value that can be
expected if the function is evaluated at the corresponding
hyperparameter.

Analyzing the Gaussian process plot, exploitation is represented by
low areas suggesting promising regions based on existing data and
giving minimal validation loss, on the contrary, areas with high uncer-
tainty are indicated by exploration indicating maximum validation loss
values that could be targeted by the acquisition function for further
sampling. As can be seen in the Expected Improvement plot, areas with
great values indicate a high probability of improving the current
hyperparameter, conversely, lower areas represent regions where the
model is confident that little or no improvement will be achieved
because these areas have already been well explored.

As for the optimal hyperparameters of each NN in Bayesian optimi-
zation, a search is performed until convergence on the minimum vali-
dation loss is achieved. Fig. 5 shows a plot illustrating the surrogate
models in algorithm design.

At first, it can be observed that the NNs show a different level of
validation loss that decreases with the amount of search, however, there
is a similarity in the final that illustrates the effectiveness of Bayesian
optimization. Due to their architecture and functionalities, GRU and
LSTM show a similar trend, however, KAN also provides even lower
validation loss than MLP and CNN, giving an idea about the promising
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Fig. 3. Bayesian optimization graph, representing the Gaussian process.
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Fig. 5. Convergence plot showing surrogate models using Bayesian optimiza-
tion. The X axis refers to the search number, the Y axis indicates the valida-
tion loss.

results that could be delivered in the next steps.

A graph of all combinations of hyperparameter values is shown in
Fig. 6, exemplifying the Bayesian optimization of the CNN. The vertical
axis illustrates the influence of a single dimension on a fitness function,
called a “Partial Dependence plot" and the horizontal axis the hyper-
parameters. It visualizes the effects of changing one or more variables in
the algorithm design and shows how the approximate fitness value
changes with different values in that dimension. The yellow regions
show areas where the loss on the validation set is lower, as opposed to
the darker regions. The star in the graph represents the location where
the optimal value of the hyperparameter is found.

It is fundamental to mention that Fine-tuning through Bayesian
optimization was performed on all types of NNs explained in Section 3,
so CNNs, MLPs, RNNs, and KANs highlight different sets of optimized
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hyperparameters and performance metrics on the validation sets, which
will be explored in the next subsection before providing the resulting
NNs for each dataset in the Model Performance Analysis.

4.3. Validation

After Training and Fine-tuning are complete, the next step is to run
cross-validation to measure the performance of each NN on the valida-
tion set. The goal of cross-validation is to provide an approximate per-
formance of the model for data that will appear in the future. In
addition, it is necessary to consider the importance of balancing
underfitting and overfitting.

Underfitting refers to poor model performance on both the training
and test sets; on the other hand, overfitting indicates that the model was
over-tuned during Training, so it performs well on the training set but
poorly on unseen being evaluated.

Due to the behavior of the training and validation losses at each
epoch of the network architecture, overfitting, and underfitting can be
identified from the learning curve. An underfitting plot shows high
losses for both training and validation data at all epochs without sig-
nificant improvement, hence it will be indicative of the lack of ability to
learn the training set. On the other hand, in the case of overfitting, the
training loss continues to decrease, while the validation loss starts to
increase after reaching a minimum, thus the model fits the training data
too closely, capturing noise along with the actual patterns.

In the programming framework, cross-validation is built in the
objective function, in this case, the fitness function that was pro-
grammed in Python to run the Gaussian process. The objective function
trains and evaluates the NN for each set of hyperparameters using cross-
validation and returns the corresponding performance metrics. By using
cross-validation in the objective function of Bayesian optimization, the
selected hyperparameters are more likely to generalize well to unseen
data, providing a more robust estimate of model performance and
reducing the risk of overfitting across the search space.

A learning curve is a valuable tool for diagnosing the behavior of
every NN in the Training and Validation steps. Key elements of an
optimal fit consist of training losses that decrease to a plateau over
epochs, while validation losses decrease, eventually plateau, and ideally
remain close to the training loss. The numerical difference in the gap of a
learning curve is the point at which the model’s validation loss is slightly
larger than the training loss when both curves plateau. The specific size
of the gap depends on the problem, but in general, a gap of 1 % is
considered small and stable, indicating good generalization. Monitoring
the gap of a learning curve during Training helps make decisions in the
algorithm design about model complexity, Regularization, and when to
stop Training to avoid overfitting

In Fig. 7, a good fit of the learning curve can be observed, showing a
balance between bias and variance, indicating that the model general-
izes well to new and unseen data. The curve illustrates the corre-
sponding losses of a KAN, representing not only optimal tuning in
Training and Validation but also convergence in a minimum number of
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Fig. 6. Partial dependence plot of a Fine-tuning process using Bayesian optimization in a CNN.
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Fig. 7. Learning curve that shows an optimal fit in the Validation step.

epochs, thus reducing training time and computational complexity
compared to the other NN categories.

Finally, the target variable is predicted for each dataset and perfor-
mance metrics are obtained by calculating the MSE, MAE, and RMSE for
the corresponding NNs. In addition, the Residual Sum of Squares (RSS)
and Symmetric Mean Absolute Percentage Error (SMAPE) are the sup-
ported benchmarks employed to reflect the prediction’s accuracy and
robustness to different scales of values. As mentioned in Section 3, GRU,
LSTM, MLP, KAN, and CNN-1D are designed, implemented, and vali-
dated. Table 3, Table 4, Table 5, and Table 6 show the performance
metrics in the Validation step.

From the performance metrics, it is crucial to evaluate the nature of
the datasets and their main applications in the Model evaluation step. If
the dataset contains outliers or noise that influence the model perfor-
mance metric, it is advisable to select MAE due to the robust prediction
tasks. On the contrary, if the dataset includes scenarios where large
errors are particularly critical, the effect of MSE will cause these large
errors to have a larger impact on the metric, which is useful when the
goal of the model is to minimize such significant deviations. Regarding
the RMSE, it is convenient to use it to balance the penalty for larger
errors and whose interpretation of the error metric is in the same units as
the target variable, so that the model predictions are accurate and
interpretable.

As for the numerical values obtained in the validation results, the
MAE is usually higher than the MSE, suggesting that the datasets have
diminutive and uniformly distributed errors. This implies that the
implemented NN are generally accurate, without large deviations from
the actual values, with operational variability being the core cause of
error capture during battery testing. The implications of a larger MSE
and RMSE than an MAE depend on the sensitivity of the model to out-
liers and greater errors, suggesting that predictions are heavily penal-
ized by the MSE due to the quadrature effect, which could be beneficial
information if large errors are particularly problematic in the BESS
application.

The importance of the RSS relies on measuring the overall squared
difference between the predicted and actual values, evaluating the error
rate that the model accumulates over all data points, providing a holistic
view of model accuracy, and handling continuous variables in the BESS
operation. In the case of SMAPE, this benchmark normalizes errors
relative to the actual and predicted values, making it robust to varying

Table 3

Validation results of the CALCE dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.0136 0.5611 1.1663 0.9293 0.3143
LSTM 0.0132 0.5210 1.1529 0.8594 0.3072
MLP 0.4598 3.1563 6.7810 12.0454 2.1665
KAN 0.0127 0.4946 1.1306 0.7712 0.2953
CNN-1D 0.0652 1.2609 2.5554 2.4976 1.5077
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Table 4

Validation results of the NASA dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.0238 1.1564 1.5458 0.7113 0.6679
LSTM 0.0248 1.1471 1.5763 0.7672 0.6946
MLP 0.0728 2.1001 2.6996 1.3795 2.0373
KAN 0.0169 0.7900 1.3028 0.4995 0.4745
CNN-1D 0.0457 1.5921 2.1392 1.0833 1.2793

Table 5

Validation results of the ECM dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 1.4947 0.8384 1.2226 0.1173 0.5655
LSTM 2.3191 0.9643 1.5228 0.1004 0.8774
MLP 0.6921 0.5337 0.8319 0.0704 0.2618
KAN 0.1240 0.8238 1.1138 0.1168 0.2122
CNN-1D 3.0969 1.3618 1.7598 0.1354 1.1717

Table 6

Validation results of the CHRG dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.0014 0.2965 0.3758 0.4873 0.0759
LSTM 0.0017 0.3160 0.4191 0.4630 0.0944
MLP 0.0005 0.1673 0.2433 0.3665 0.0318
KAN 0.0010 0.1245 0.3163 0.0351 0.0314
CNN-1D 0.0012 0.2443 0.3244 0.4940 0.0566

scales, therefore ensuring that the algorithm ensures that the algorithm
does not disproportionately penalize small deviations for large values or
overlook significant deviations for small values in the BESS performance
predictions.

Considering the implementation of Deep Learning methodology,
Regularization, cross-validation, and Fine-tuning through Bayesian
optimization are the testimony of the improvement and effectiveness of
the different categories of NNs. Among the most relevant benefits are the
reduction of computational resources in terms of training time and
knowledge transfer, global optimization due to the balance between
exploration and exploitation, better generalization to ensure that
hyperparameters are configured to maximize NN performance, and
adaptability to a wide range of network architectures.

The validation results show that KANs provide a higher level of
performance compared to CNNs and RNNs; however, there are also
notable performance metrics in the case of MLPs for ECM and CHRG
datasets. A more detailed analysis and explanation will be provided in
Section 5.

5. Model performance analysis

This section presents the optimal hyperparameters after Fine-tuning
to compare and analyze each NN approach on different datasets. In the
Model evaluation stage, the final performance metric is calculated and
the NNs are evaluated on different test sets. At the end of this section, a
discussion and analysis of the results are carried out, mainly focusing on
KANs in the framework of Al methods for relevant applications of BESS.

5.1. Optimal network hyperparameters

The Fine-tuning process was executed through Bayesian optimiza-
tion, using the Expected Improvement as the acquisition function and
finding a mutual balance between exploration and exploitation for each
hyperparameter, after that, cross-validation is performed to obtain the
optimal hyperparameters of the network.

Table 7, Table 8, Table 9, and Table 10 show the optimal set of
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Table 7
Optimal hyperparameters of the CALCE dataset.
NN Batch Epochs Learning Weight Gamma Units
size rate decay
GRU 159 545 0.0100 le-5 0.9711 128
LSTM 137 900 0.0030 le-5 0.8371 240
MLP 38 881 0.0036 0.0053 0.1221 52
KAN 62 270 0.0022 le-5 0.9802 16
CNN-1D 141 914 0.0017 0.0063 0.6806 100
Table 8
Optimal hyperparameters of the NASA dataset.
NN Batch Epochs Learning Weight Gamma Units
size rate decay
GRU 100 800 0.0100 le-5 1.00 150
LSTM 109 800 0.0059 le-5 0.6705 100
MLP 195 1000 0.0009 0.0056 0.2765 50
KAN 36 129 0.0003 0.0006 0.5794 16
CNN-1D 202 1000 0.0087 0.0070 0.1013 145
Table 9
Optimal hyperparameters of the ECM dataset.
NN Batch Epochs Learning Weight Gamma Units
size rate decay
GRU 182 829 0.0001 0.0005 0.9976 244
LSTM 102 999 0.0001 0.0024 0.9886 186
MLP 300 573 0.0007 0.0062 0.4524 107
KAN 221 35 0.0027 0.0009 0.9789 16
CNN-1D 180 512 0.0064 0.0075 0.8678 164
Table 10
Optimal hyperparameters of the CHRG dataset.
NN Batch Epochs Learning Weight Gamma Units
size rate Decay
GRU 145 581 0.0008 0.0001 0.7717 102
LSTM 255 987 0.0013 0.0013 0.7780 216
MLP 240 500 0.0001 0.0010 0.9010 64
KAN 47 92 0.0002 1.27e-5 0.9985 16
CNN-1D 277 675 0.0003 0.0048 0.8742 104

hyperparameters of each NN for the corresponding datasets, after the
successful completion of the Validation step.

In the context of Bayesian optimization convergence, the optimal
hyperparameters are similar for the NN categories, however, the main
differences depend on the applications of a BESS.

Regarding the RUL case study on the CALCE and NASA datasets, the
learning rate and gamma of a KAN reach optimal values in a similar
range as other types of NN, leading to a smooth and constant decrease in
loss, however, significant differences are noted in the case of batch size
and the most notable is found for the number of epochs and units, the
latter being twice as small as the other NNs. The above result is
explained based on the training time and knowledge transfer that the
KAN manifests in the algorithm design due to its mathematical prop-
erties and functionalities, consequently impacting the dynamics of the
network architecture, including training speed, memory usage, and
faster convergence behavior.

In the case of state estimation and the ECM dataset, the complexity of
the target variable reflects the convergence of the hyperparameters in a
longer training time, providing high values of the epochs and units for
the RNNs, however, in the case of MLP and CNN, there is mutual simi-
larity which is given by the weight decay and gamma in the Regulari-
zation method. Analyzing the optimal hyperparameters of KAN, the
epochs, learning rate, and number of units differ significantly from the
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other NN categories, so the algorithm design converges in a reasonable
number of iterations without overshooting or oscillating and balancing
training speed and stability.

Charging management for the CHRG dataset shows the most notable
results in the case studies, mainly due to the large number of input
features and correlation in the Data processing step. While the learning
rate and weight decay are in a similar range, the rest of the hyper-
parameters differ considerably regarding convergence and parallel
computation. The nature of the KAN architecture allows the network to
approximate any multivariate continuous function, making it a powerful
tool in function approximation; this behavior is explained by the
transformation of the input variables through univariate functions, and
the combination of these transformations into the final output using
further univariate functions and summation.

From the BESS perspective, selecting a C-rate and a cut-off voltage
range are crucial tasks that will determine how long it takes for the BESS
to charge or discharge in the experimental test, consequently they have a
direct impact on the Training and Fine-Tuning in the case studies, so the
batch size number and the learning rate are the two core hyper-
parameters that will intrinsically impact the different applications, all
due to the number of samples used in a forward and backward propa-
gation through the network architecture. Similarly, the nature of the
BESS dataset depends on the input features and their relationship with
the target variable, so hyperparameters such as weight decay, gamma
regularizer, epochs, and number of units play a critical role in the al-
gorithm design to determine the complexity of predictions on each
application, achieving balanced learning, effective convergence, and
generalization in the Training and Validation steps.

After completing the Fine-tuning and cross-validation steps, the
optimal hyperparameter networks with their respective architectures
were processed and saved using PyTorch and Keras APIs to create
different hierarchical data formats (HDF5) and PyTorch state dictionary
(state_dict) files. In the following subsection, the final performance
metrics on the testing sets for each case study will be analyzed,
compared, and discussed to highlight the outstanding performance of
KANs and the novelties of this research.

6. Model evaluation

The corresponding testing sets are processed for each case study. In
the RUL application, three different CS2 prismatic cells composed of
LiCoO2 cathode integrate the CALCE dataset, while three commercial
18650 Li-ion batteries for the NASA dataset. Considering the state esti-
mation, ten different ECM datasets are collected from an LEV50N cell
integrating a Mitsubishi i-MiEV battery pack. In the case of the charging
management application, a total of 89 battery tests were performed on
sixteen LEV50N cells integrating four different battery modules.

To complete the Model evaluation step, all the different battery tests
are stored in a Python list, processed, and transformed into a final set of
matrices using Keras and PyTorch APIs to demonstrate the enormous
level of adaptability and effectiveness in a programming environment.
After that, the resulting network architectures were evaluated on the
testing sets with the corresponding MSE, MAE, RMSE, SMAPE, and RSS
to obtain the final performance metrics. Table 11, Table 12, Table 13,
and Table 14 show a summary of the results in the Model evaluation step
for each NN type and case study.

Table 11

Model evaluation results of the CALCE dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.0220 0.7212 1.4818 1.2229 0.4464
LSTM 0.0193 0.6681 1.3894 0.9220 0.3934
MLP 0.0201 0.7240 1.4169 1.0602 0.4080
KAN 0.0189 0.6013 1.3721 0.8602 0.3841
CNN-1D 0.0232 0.9188 1.5204 1.3918 0.4688
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Table 12

Model evaluation results of the NASA dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.0592 1.6420 2.3756 0.9893 1.7291
LSTM 0.0457 1.4597 2.0737 0.9354 1.3680
MLP 0.0728 1.8399 2.6226 1.1708 2.0383
KAN 0.0410 1.0854 1.9540 0.6812 1.2191
CNN-1D 0.0549 1.8024 2.2723 1.1594 1.6117

Table 13

Model evaluation results of the ECM dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.4302 4.4239 6.0624 5.9388 2.6165
LSTM 0.4156 4.4276 5.9194 6.0296 2.4790
MLP 0.2983 3.4999 4.8941 5.8712 2.3349
KAN 0.2934 3.0665 4.4073 5.5594 2.1173
CNN-1D 0.3089 3.6993 5.0661 5.7278 2.1102

Table 14

Model evaluation results of the CHRG dataset.
NN MSE [%] MAE [%] RMSE [%] SMAPE [%] RSS [%]
GRU 0.1991 2.9660 3.7023 0.9385 4.7748
LSTM 0.3202 4.2372 4.9397 1.2505 9.0165
MLP 0.2405 3.9297 4.3954 1.3213 7.7094
KAN 0.0040 0.3051 0.3512 0.2273 0.0572
CNN-1D 0.1345 2.6333 3.0969 0.8931 3.4317

When analyzing the final performance metrics for each case study,
NASA and CALCE datasets provide the highest level of accuracy in the
Model evaluation, which is mainly due to the NNs’ property of identi-
fying sequential and non-sequential behavior leading to a decreasing
trend as a function of SOH in the RUL. For charging management, the
large number of features and different operating conditions increase the
level of complexity in the prediction results for modeling the temporal
dynamics of a BESS, thus the NNs’ learning process takes considerable
time to converge, and a higher error rate is obtained. The lowest rate of
accurate predictions is calculated on the ECM datasets, all due to the
high level of nonlinear behavior and complex objective functions, so
that not only the convergence and training time increases but also the
computation on charging and discharging, thus generating both forward
and backward sequences in algorithm design.

Even under different operating conditions, scenarios, and BESS ap-
plications where battery testing was conducted, there is a tremendous
accuracy of KAN outperforming the other NNs, with MSE less than 0.3 %
and MAE and RMSE less than 4.5 % for all datasets. Considering the
performance metrics at the Validation step, KANs still provide the
minimum error rate in the same numerical range beyond the initial
expectations in the algorithm design process. In contrast, MLP and CNN-
1D have slightly higher accuracy in the Model evaluation but are still
lower than KAN. At the same time, LSTM and GRU maintain remarkable
performance without showing significant final improvement. Regarding
additional metrics, the different network architectures perform accu-
rately across all the case studies with less than 6.03 % and 9.10 % for
SMAPE and RSS beneath high levels of non-linear behavior and health
monitoring in a BESS, quantifying the overall error, and penalizing large
deviations that ensure the algorithm learns effectively from the data.

The interpretation of KAN results is facilitated by its architecture,
which simplifies high-dimensional problems by focusing on univariate
functions. This approach is beneficial for modeling points where vari-
able interactions are limited or can be modeled independently due to
high correlations, such as the independent variables in a BESS. This
reduces complexity and enhances performance in charging management
applications.
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For RUL prediction, the objective function is represented by a curve
that gradually decreases as battery usage time increases. In this context,
KANs are well-suited for additive models, where the output is the sum of
individual contributions from each input, such as battery capacity across
cycles.

In state estimation, prediction complexity increases significantly due
to noisy inputs and non-linear relationships. However, KANs offer
robustness by decomposing complex functions, isolating the influence of
each input variable, and adapting to the various non-linearities in the
data through univariate functions.

Fig. 8 and Fig. 9 graphically represent the RUL for the CALCE and
NASA datasets respectively, indicating the number of cycles and the
battery capacity. In the state estimation and ECM datasets, Fig. 10 il-
lustrates the evolution of the SOC over a certain time. Finally, the OCV
predictions with their corresponding SOC are visualized in Fig. 11. For
visualization purposes, only the most accurate NNs are shown in the
corresponding graphs.

Considering the RUL in Fig. 8 and Fig. 9, KAN’s alignment with
actual capacity curves shows its effectiveness in RUL prediction,
leveraging its mathematical advantages across different datasets, and
highlighting its capability of predicting the highly nonlinear and un-
certain nature of battery degradation, thus offering a competitive option
compared to other NNs. In Fig. 10, KAN predictions show a strong
alignment with the actual SOC values across the entire period, especially
during the intervals of both rapid transitions and stable phases of SOC,
which is crucial for applications requiring real-time SOC estimation.
Regarding Fig. 11, the KAN design allows it to adapt to static relation-
ships like the OCV-SOC curve without relying on temporal or sequential
dependencies, it maintains its accuracy across the entire SOC range, and
superior performance ensures better reliability in SOC-OCV mapping,
leading to more accurate and robust predictions in real-world
applications.

To summarize this section, Fig. 12 illustrates a comparison of the
different case studies, addressing the contributions of KANs in
improving predictive accuracy and efficiency in BESS applications, and
highlighting their expected impact on the final model performance.
Finally, the following subsection will present a brief discussion that
provides the novelties and challenges addressed by current research.

7. Discussion

In the initial steps, managing the entire data lifecycle is an essential
task before initializing the algorithm design, so that understanding
users’ needs in the BESS application is achieved through EDA, Feature
Engineering, Feature Selection, and Transformation. It was demon-
strated that the predictors provide a level of interpretability depending
on the case study, which helps to maximize and measure the predictive
signals in further steps.

From the BESS domain, understanding the nature of the dataset al-
lows the user to monitor the operational profile and physical interpre-
tation of the BESS application, ensuring fairness and consistency in the
selection of network hyperparameters. Regarding the architecture of the
different KANs, a reciprocal relationship between hyperparameters was
provided in a Fine-tuning process through Bayesian optimization for
each case study, in which the learning rate and batch size monitor the
behavior of predictions due to different step sizes and samples that up-
date the weights of the network, and the number of epochs and units
dictates the network dynamics based on training speed and
convergence.

Gaussian process and Expected Improvement are added values of this
research through Bayesian optimization, not only explaining the balance
between exploration and exploitation for each hyperparameter in the
network but also stochastically determining the optimal architectures in
the Fine-tuning process, whose performance and combination values are
visualized in Convergence Partial dependence plots.

Regarding the performance metrics in Model evaluation, all NNs
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Fig. 10. Graphical predictions of the ECM dataset. The X-axis indicates the amount of time, while the Y-axis represents the evolution of the SOC.

provided an accuracy greater than 94 %, but the KANs showed the best
results in all case studies with more than 96 %. The outstanding per-
formance of KANs is attributed to their intrinsic property of accurate
approximation of complex nonlinear functions and faster training
convergence. Although the nature of the datasets differs due to the type
of application, KANs demonstrated their beneficial mechanism in BESS
tasks where: 1) Based on Health and Charge indicators, a high level of
correlation between the independent variables is found and their rela-
tionship with the target variable is highly nonlinear, 2) The entire
sequence contains both past and future time steps, which requires
context from both directions to understand the operation of a BESS
under different profiles, 3) An amount of high-dimensional data is
collected containing noisy inputs, or limited data is processed during

specific charging scenarios.

Compared to existing Deep Learning models, Machine Learning
methods, and physics-based approaches (Wei et al., 2022; Zhang and Li,
2022; Andersson et al., 2022), this research introduces the novel KANs
in the energy framework, starting with algorithm design from a beginner
level that initially familiarizes the reader with different case studies,
until reaching an advanced network architecture that can make accurate
predictions in the Model evaluation step. Furthermore, considering the
BESSs applications, due to the high level of Al methods, NN categories,
APIs, and programming tools, this research complements some proposed
methodologies that not only focus on the aging state of a BESS through
NNs (Cui et al., 2022a), but also in the diagnostics of RUL (Catelani
etal., 2021; Quetal., 2019), and state estimation using Kalman filtering,
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NNs, and Transformer models (Cui et al., 2022b; Zeng et al., 2023;
Zequera et al.).

In terms of accuracy, the proposed KANs improve existing methods
for RUL, state estimation, and charging management, not only by
comparing their resulting architectures with the most accurate NN

Table 15
Challenges addressed by the current research.

Topic Challenges addressed

Battery technology o Monitoring the performance of multiple battery cells with
different chemicals

properties, user needs, and BESS applications

Validation of experimental procedures for RUL, state

estimation, and charging management

Accurate model evaluation based on Al methods and BESS

operation

Virtual entity represented by novel KANs in the energy

domain focused on BESSs

High level of adaptability and Al interpretability based on

APIs and programming tools

Innovative and promising neural architecture achieved

through stochastic processes

Algorithm design of
a BESS
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categories such as CNN, RNN, and MLP, but also by explaining the
design of these KAN architectures based on mathematical foundations,
intrinsic properties, and computational functionalities. Regarding
adaptability, the KANs provide the BESS framework to provide engi-
neering behavior through Bayesian optimization in PyTorch and Keras
APIs, whose future expectations can deploy the current methodology in
a software environment through MLOps.

KAN’s continuous multivariate function property represents a su-
perposition of continuous univariate functions, which allows it to model
highly nonlinear systems with fewer layers than traditional network
architectures. KAN’s uniqueness achieves better accuracy with a more
compact structure, reducing computational overhead, facilitating more
informed decision-making, and providing better adaptability to dynamic
patterns over time. The KAN fills the technical gaps in this research not
only by delivering competitive or superior performance with less than a
5.60 % error rate in all performance metrics for each case study, but also
by addressing key challenges such as efficiency, interpretability, and
adaptability to energy storage systems.

In the context of the future opportunities of a KAN within an energy
framework, this article introduces the combination of Al methods to
monitor the actual functioning of a BESS based on the user’s needs,
which vary significantly depending on the battery properties, available
datasets, and experimental tests. Table 15 provides a summary of the
challenges associated with predictive maintenance of a BESS addressed
by this research.

The future study and improvement of KANs represent a crucial step
toward the development, verification, and implementation of energy
storage systems using Al methods, all to support beneficial tasks in both
industry and academia, such as business consulting, research, and en-
terprise testing based on climate change mitigation.

8. Conclusion

In this study, the promising KANs were proposed, designed,
compared to other NN categories, and employed to validate the exper-
imental testing of different battery cells, marking a crucial step in the
state estimation, charging management, and RUL applications of a BESS.
This strategy was realized through the implementation of several com-
puter science techniques that include Regularization, cross-validation,
and Fine-tuning through Bayesian optimization to transform initial
networks into several Al models, capable of emulating the intricacies of
the BESSs. It was scientifically demonstrated that the design and
execution of a KAN shows an optimal performance for battery devel-
opment and Al-powered technology, answering the research question.
Regarding the implications of the broader energy storage sector, this
modest contribution leads to the initiative to promote ties of collabo-
ration between different private administrations to establish the begin-
ning of remarkable agreements in the domains of energy storage
systems, sustainability, model serving, Al, and interpretability, model
resource management techniques, and High-Performance Modeling.

From the quantitative perspective, the proposed KAN presents a
unique and powerful alternative to traditional NNs for the algorithm
design of a BESS, thus offering a balanced combination of simplicity,
efficiency, and interpretability that engineers, researchers, and stake-
holders can use to understand failure mechanisms, optimize perfor-
mance, and make informed decisions about maintenance or
replacement. Regarding the quantitative point of view, its compactness,
robustness, and ability to generalize complex nonlinear systems make
KAN particularly well-suited for predicting SOC, charging management,
and RUL with less than 4.42 % in terms of MSE, MAE, and RMSE, while a
maximum of 5.56 % and 2.12 % for SMAPE and RSS.

Among the most important novelties of this tremendous research are:
1) Proposing, validating, and evaluating KANs in the energy domain
focused on a BESS, 2) Development of promising KAN architectures
based on user needs, network hyperparameters, and battery chemistry,
3) Bayesian optimization that generates stochastic models for Health
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and Charge indicators in a BESS, 4) Algorithm design to improve RUL,
state estimation, and charging management applications using KANs
and a Deep Learning methodology in an energy framework.

The outcome of this article is that the industrial and academic sectors
have the most effective robustness to design virtual and physical entities
of a BESS, whose mission is to repel any climate change problem that
threatens sustainable stability, renewable sources, and energy integrity.
In addition, the proposed research fulfills the strategic vision of the
European Union to achieve the sustainable objectives of 2030, because
specialists in the energy sector must respond effectively to any eventu-
ality, which is our vocation as researchers, scientists, and scholars.
Finally, it is of utmost importance to mention that this pioneering
manuscript is considered a dynamic and strategic vision, whose efforts
in the energy field are placing the domain of energy storage systems in a
condition that exceeds expectations not only in the entire European
territory but also around the world.
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