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Annotatsioon

Hajutatud reaalaja süsteemidel on sageli ranged ajastuspiirangud, mis nõuavad süsteemide
testimisel ajastusega seotud probleemide lahendamiseks skaleeruvaid lähenemisviise. Ka-
sutades täielikult hajutatud testrit lokaalsete testrikomponentidega, mis on ühendatud
otse testitava süsteemi portidega, suudame ületada hilistumisprobleemid, mis on seotud
testri ja testitava süsteemi vahelise sideviivitusega. Varem loodud algoritm, mille eesmärk
on genereerida täielikult hajutatud tester tsentraliseeritud kaugtestrist, loob lokaaltestrite
omavahelise sünkroniseerituse tagamiseks liiasusi, mida on võimalik vältida kommu-
nikatsioonimahu optimeerimisega. Struktuursete ja kommunikatsioonis leiduvate liiasuste
tagajärjena on testijadad pikemad, testimise aeg pikem ning avaldatakse suuremat koormust
kommunikatsioonikanalitele.

Antud lõputöö peamine eesmärk on hajustestri genereerimise algoritmi optimeerimine,
mille tulemuseks on optimeeritud sünkroniseerimist vajavate hajustestri lokaalkompo-
nentide hulk. Optimeerimine viiakse läbi testimudeli põhjuslike liiasuste tuvastamise ja
vähendamisega, mis põhineb tsentraliseeritud testris esinevate kommunikatsioonistruk-
tuuride vaatluste analüüsil. Käesolevas töös loodud algoritmi õigsuse verifitseerimiseks
kontrollisime bisimulatsiooni ekvivalentsi seost testiportide sündmuste suhtes tsentraliseer-
itud testri ja optimeeritud hajutatud testri vahel.

Optimeerimise tulemused on esitatud näite põhiselt. Optimeerimise tulemused näitasid üle
28% testimudeli struktuurset vähenemist, üle 23% testjälje pikkuse vähenemist, üle 26%

keskmise ajakulu vähenemist ja üle 38% sünkroonimissõnumite arvu vähenemist.

Autorile teadaolevalt ei ole antud testri hajutusalgoritmi implementeeritud tarkvaraliselt.
Seetõttu on töös tarkvaraliselt realiseeritud algoritmid meetodi üldkontseptsiooni ja prak-
tilise rakendatavuse tõestuseks. Optimeeritud hajustestri genereerimise algoritm ja algne
algoritm on implementeeritud ja integreeritud TalTech veebipõhisesse modelleerimis- ja
testimiskeskkonda "BugBroom".

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 49 leheküljel, 7 peatükki, 33
joonist, 1 tabelit.
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Abstract

Real-time distributed systems often have strict timing constraints that require scalable
approaches to overcome timing-related issues in testing. By using a fully distributed tester
with local testers attached to the ports of the system under test, we are able to overcome
delay issues related to communication delays between the tester and the system under test.
The previously proposed algorithm to generate a fully distributed tester from a centralised
remote tester creates overhead to ensure the synchronisation of local testers, which can
be avoided by optimising the communication overhead. Structural and communication
overhead results in longer test sequences, longer test time and more workload on the
communication channels.

The main goal of this thesis is to optimise the distributed tester generation algorithm to
reduce the communication overhead. The optimisation is conducted by detecting and
reducing causal redundancies in the test model based on the analysis of observations of
communication structures present in the centralised tester. To verify the correctness of
the optimised algorithm, we verified the bisimulation equivalence relation between the
centralised tester and optimised distributed tester with respect to the observable input/output
actions on the system under test ports.

The optimisation results are presented based on an example. The optimisation results
showed over 28% of decrease in structural complexity of the test model, over 23% of
decrease in trace length, over 26% of decrease in average time spent, and over 38% of
decrease in total synchronisation message count.

There are no implementations of the given tester distribution algorithm to the best of
the author’s knowledge. Therefore, the goals are to implement the algorithms as a proof
of concept and integrate the implementation into the web-based modelling and testing
environment "BugBroom" in TalTech.

This thesis is written in English and is 49 pages long, including 7 chapters, 33 figures, 1
table.
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1. Introduction

Testing is an essential part of the development process, generally taking 30 to 60 per cent
of gross development effort. Testing aims to show that the system’s actual behaviour
conforms with the expected behaviour. [1]

Model-based testing (MBT) is generally understood as black-box conformance testing,
where a model of the expected behaviour of the system under test (SUT) is created. The
SUT model is created based on the requirements of the behaviour, which usually include
a subset of the entire behaviour. The tests are automatically generated from the model,
opposite to manual testing, where tests are manually designed. MBT is said to reduce the
test design effort and increase the testing coverage of possible behaviours of a system. [1]

The SUT observable ports can be spatially distributed in distributed systems, and the
communication between components is conducted by passing messages. Two approaches
are usually meant in distributed testing: remote testing with a centralised remote tester and
a fully distributed set of local testers. In remote testing with a centralised remote tester,
the test configuration is composed of SUT and remote tester. In remote testing with a
fully distributed set of local testers, the test configuration is composed of SUT and local
testers, each local tester assigned to one group of ports based on the spatial distribution
of ports. With distributed real-time systems, strict timing constraints often lead to delay
and timing issues. [2] In the paper [3], a parameter ∆ is proposed, which sets the upper
bound for the delay in order to ensure that the testing result is correct for remote testing.
Distributed testing with local testers has the advantage to have ∆-controllability. Whereas
with centralised remote tester, we have 2∆-controllability. Hence, the centralised remote
tester cannot be used with real-time systems of timing constraints requirements less than
2∆. [2] However, synchronising the distributed tester components creates communication
overhead that could influence the testing results and should be kept as low as possible.
Though this observation has been mostly ignored in testing distributed soft real-time
systems, the reduction of communication overhead provides considerable improvement
in test reaction time that, in turn, may be critical in testing hard real-time applications.
This motivation has forced looking for better solutions, especially in the MBT domain of
cyber-physical systems.
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MBT testing is generally divided into five steps. The five steps depicted in Figure 1
are SUT modeling, test purpose specification, test generation, test deployment, and test
execution. The first step is to model the SUT based on the requirements. In the second step,
we specify the testing purpose by choosing a subset of the model’s behaviour. The next
step is to format the test purpose to abstract test cases (ATCs) used to generate executable
test cases in step four. [4] Between steps three and four, the tester distribution algorithm
can be applied to models to achieve a fully distributed tester with local testers. Finally, the
tests are executed on the SUT, and the results can be analysed [4].

SUT  
modeling

Test purpose
specification

Test
generation

Test
deployment

Test execution

SUT IO spec

Test purpose

Abstract test
case

Executable
test case

1

2

3

5

4

Tester distributor

Figure 1. Model-based testing workflow.

The tester distribution algorithm (herein Algorithm 1) proposed in [5] assumes a centralised
tester model has been generated using a method proposed in [6] and copies the remote
tester to a local tester for each spatially distributed group of ports. This distribution
causes structural overhead, which leads to communication overhead. Structural and
communication overhead results in longer test traces, longer test time and more workload
on communication channels.

We extend Algorithm 1 to optimise the local testers structurally to lower the structural
overhead. In order to optimise the local testers, we explore one possible optimisation
approach. The optimisation is composed of two steps. We first detect the causal redun-
dancies and then remove the model elements deemed redundant. Detection is carried out
by analysing observations of structures in the centralised tester and applying a general
search algorithm to find the causal redundancies. Then, the reduction is carried out by
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utilising the detected causal redundancies by removing redundant model elements and
adding necessary synchronisation to assure the preservation of global behaviour at SUT
test ports. The optimisation is further motivated by the fact that Algorithm 1 has not been
optimised yet to the author’s best knowledge.

Algorithm 1 is conceptual, and has been applied manually in earlier works. However,
manually applying algorithms can be time-consuming and prone to human error. Further,
validating the result would be additionally time-consuming and likewise prone to human
error. Therefore, offering a way to distribute and validate the result automatically is one of
the goals of this thesis. This goal is further motivated by the fact that as of writing this
thesis, as to the best of author’s knowledge, there is no known implementation given to
Algorithm 1.

The validation and comparison of the algorithms are carried out by using Uppaal1 model
checker tools as the tester distribution algorithm’s input requirement is to use Uppaal timed
automata (UTA) formalism. Uppaal toolbox offers an extensive set of tools that can be
used to model real-time systems, verify models and simulate models. In order to validate
the algorithms, the bisimulation relation is checked between the centralised tester and
distributed tester with respect to the observable input/output (i/o) actions on the ports
of the SUT. Consequently, Algorithm 1 and its optimised version Algorithm 2 are to be
fully implemented with automated validation included. The resulting distributed testers
generated by the algorithms are compared by structural, trace length, time cost, and total
synchronisation message count difference. We further integrate the implementation to a
testing tool in TalTech called BugBroom, which is a tool to provide web-based model
checking and testing toolset to TalTech researchers and as a future perspective to be
included in the education work.

Therefore, the goals of this thesis are as follows:

1. Extending Algorithm 1 by providing one possible optimisation approach to optimise
the distributed tester model structural complexity.

2. Validating the algorithms by checking the bisimulation relation between the cen-
tralised tester and distributed tester with respect to the observable i/o events on the
SUT ports.

3. Implementing Algorithm 1 and the optimisation of Algorithm 1 (Algorithm 2) with
automated validation of the output of the algorithms in the implementation.

4. Integrating the implementation to MBT toolset BugBroom.

1https://uppaal.org
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The theoretical background is covered in section 2. Section 3 covers the optimisation
process and presents the optimised tester distribution algorithm. Section 4 covers the
process of validation. Section 5 presents the optimisation results. Section 6 covers the
implementation of algorithms and integration to the testing environment BugBroom.
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2. Preliminaries

This section covers the concepts to support further discussions and analysis. We first begin
with describing model-based testing and bringing out the general workflow. Subsequently,
we bring in real-time testing requirements, and in distributed testing, we cover two ap-
proaches for distributed testing. Next, we present Uppaal timed automata and the general
notion necessary to support discussion on algorithms. Subsequently, the bisimulation
section covers the prerequisite knowledge to support the validation of algorithms. Finally,
we present Algorithm 1 to be optimised.

2.1 Model-based testing

In model-based testing (MBT), the intended behaviour of a system under test (SUT) is
specified by models. Given SUT and behaviour models, the output of the pairs of input
and output of the model is regarded as the expected output of the SUT. [4]

MBT is generally understood as black-box conformance testing, where the test cases are
derived from the system requirements model. In black-box testing, the internal behaviour
of the SUT is disregarded, and the tester can only control the input and observe the output.
The derived test cases are executed during MBT, and the result is emitted as a test verdict.
The test verdict can be a pass, fail or inconclusive and denotes the conformance between
the requirements and the actual implementation. [7] The MBT process can be divided into
five main steps, which are illustrated in Figure 1. The steps proceed as follows.

SUT modeling. The first step is to build a model of the SUT based on the requirements
or specifications that describe the intended behaviour of the SUT. In this step, the model
should be abstracted to be more simple than the SUT. Only the parts we wish to test should
be included. [4] In this step, one may use the Uppaal toolbox to create a model of the SUT.

Test purpose specification. The second step is to choose the test selection criteria. Test
selection criteria define the aim of the testing. The aim can be to test the model’s structural
properties, such as test coverage of transitions and states. The aim can also be focused on
the given functionalities of a system. [4]
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Test generation. The third step is to transform the test selection criteria to test case
specifications. Test case specifications render the test selection criteria to a format used in
the fourth step to generate test cases. [4] This step is to generate abstract test cases (ATCs).
Abstract test cases are generated from the SUT model according to the test selection
criteria. [1] The tester distribution algorithm is the intermediate step between the third and
fourth steps. We decompose the centralised tester to a fully distributed tester by applying
the tester distribution algorithm. In this step, one may use Uppaal models to represent the
expected behaviour.

Test deployment. The fourth step is to transform ATCs into executable tests. Here the
ATCs are implemented considering the low-level SUT details not included in the abstract
model. [1] In this step, one may create executable tests from models by using a tool such
as TRON1.

Test execution. The fifth step is to execute the tests against SUT and assign verdicts. Here
the execution difference is evident in whether the testing is online or offline. In online
testing, the tests are executed as they are produced, i.e. steps 2 through 4 are generally
merged. In offline testing, these steps usually remain separated. [1] In this step, we can
execute the tests, and for distributed tester, one may use a tool such as DTRON2.

After the fifth step, we are able to analyse the results. Given a test verdict of failure, the
fault can be determined, and corrective actions can be made [1].

2.2 Real-time testing requirements

In real-time systems, timing constraints compliance plays a vital role in the system’s
behaviour. Given a real-time system, the system’s behaviour is dependent on the input and
the timing of the input. Further, the timing of the output upon input has timing constraints.
[8]

Therefore, in real-time system testing, the input given by the tester and the output received
upon input have timing constraints. Hence, the timing constraints proceed to determine the
correctness of the behaviour, i.e. correct value is emitted at a specific time point. [8]

1https://uppaal.org/features/#tron
2https://cs.ttu.ee/dtron/dtronTutorial.pdf
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2.3 Distributed testing

Under distributed testing, two alternative approaches are usually meant: remote testing
with a centralised remote tester and a fully distributed set of local testers. In remote testing
with a centralised remote tester, a single centralised tester generates all the test inputs.
The input is generated for a specific port by a tester, and before another test input can be
generated, the result must be received in some output port. This process continues until a
test verdict can be emitted. Therefore, in non-negligible signal propagation time systems,
the tester may not satisfy the timing constraints. [9]

The communication latency or signal propagation time between the tester and the SUT
can lead to the interleaving of inputs and outputs, which affects the generation of inputs
and the observation of outputs, possibly resulting in a wrong test verdict [3]. In the paper
[3], ∆-testability criterion is proposed. Parameter ∆ is defined as the upper bound for
communication latency or signal propagation time between the tester and the SUT to
ensure the input and output interleaving never occurs, and the emitted test verdict is correct
[3].

In remote testing, the communication is bidirectional between SUT and the tester. As a
result, it is assumed that the time it takes to send the test input and receive the result is not
less than 2∆. Hence, the remote tester is not suitable for real-time systems with spatially
distributed ports and timing constraints requiring response upon input sooner than 2∆. [7]

The timing constraints incompliance can be overcome with a distributed testing approach
extending the ∆-testing by decomposing the centralised tester into multiple local testers.
The bidirectional communication between the tester and SUT is replaced with unidirec-
tional communication between the tester’s local components. As the local testers are
directly attached to the ports of the SUT, the communication delay with local ports can
be ignored. The unidirectional communication occurs between the local testers for syn-
chronisation purposes to propagate the local output and input to other local testers. The
local testers are generated so that the correctness of the testers is preserved so that if the
centralised tester is 2∆-controllable, the distributed tester is ∆-controllable. [2]

2.4 Uppaal timed automata

Uppsala University and Aalborg University developed the Uppaal toolbox. The purpose
of the toolbox is to verify real-time systems. The tool’s design focuses on systems that
can be modelled as networks of timed automata (NTA). Uppaal modelling language takes
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the theory of TA introduced in [10] as a base and extends it with additional features such
as committed locations, broadcast channels, and constants. [11] TA can be intuitively
understood as a state-transition system with timing constraints. Timing constraints can
be described through the notion of finitely many real-valued clocks. The usage of clocks
allows modelling the behaviour of real-time systems over time. [10] NTA is composed
of several TA in parallel, which defines a system. States of a system are defined through
discrete variables values, clock values and all the locations of an NTA. [11] Uppaal provides
an extensive set of features which are covered in [11]. Some of the offered features to
support the discussion on algorithms are as follows.

Templates are used to represent parameterised automata. The nodes of an automaton are
referred to as locations, and directed edges are referred to as transitions. A transition has
a source location and a target location. Variables, channels, constants, and clocks can be
declared locally in a template or globally in NTA. [11]

Transitions may have labels such as guard, assignment (update), and synchronisation.
Guards set constraints on transitions that must be satisfied for the transition to be enabled,
e.g. x > 3. The constraints are expressions that evaluate to a boolean value and may refer
to clocks, integer variables and constants. An assignment is a comma-separated list of
expressions that allows updating variables, e.g. x := 3. An assignment may refer to integer
variables, constants, and clocks. The synchronisation between templates can be done
through channels. Channel declared as chan ”c” forms a synchronisation pair ”c!” and
”c?”, where send-action is denoted by channel name followed by ”!” and receive-action
”?”. In order to send synchronisation as chan, the receiver must be ready. Channel declared
as broadcast chan can execute ”c!” even if there are no receivers. For broadcast chan,
the number of receivers can be arbitrary, and any receiver that can synchronise must do so.
[11]

Location may be specified as committed location, urgent location, initial location,
and may have constraints in form of invariant. Invariants set constraints on locations to
allow visiting only the locations that satisfy the constraints. Invariants are expressions
that may refer to clocks, integer variables or constants, e.g. x < 5. The initial location is
to specify the initial state. Urgent location, denoted by ”U”, sets constraints on time in
terms of entering the location and leaving the location. The constraint is not to let time
pass when in an urgent location, i.e. it must be left without letting time pass. However,
interleaving with other automata is allowed. A committed location, denoted by ”C”, sets
further constraints on execution. Without delay, the committed location must be left by the
first outgoing transition. [11]

8



2.5 Bisimulation

Bisimulation is an equivalence relation that allows us to distinguish between systems
(agents) or to show the equivalence between systems’ behaviour. The actions of one system
have to be matched by the actions of the other system. [12] In order to define bisimulation,
we bring in a formal definition of TA and preliminary properties from paper [13].

The necessary notion used to define TA are as follows: "Assume a finite set of real-valued
variables C ranged over by x, y etc.standing for clocks and a finite alphabet Σ ranged over
by a, b etc.standing for actions." [13] Further, the clock constraints are defined as follows:
"A clock constraint is a conjunctive formula of atomic constraints of the form x ∼ n or
x− y ∼ n for x, y ∈ C,∼∈ {≤, <,=, >,≥} and n ∈ N. Clock constraints will be used
as guards for timed automata. We use B(C) to denote the set of clock constraints, ranged
over by g and also by D later." [13]

Timed automaton is defined as follows: "A timed automaton A is a tuple ⟨N, l0, E, I⟩
where

– N is a finite set of locations (or nodes),
– l0 ∈ N is the initial location,
– E ∈ N × B(C)× Σ× 2C ×N is the set of edges and
– I : N −→ B(C) assigns invariants to locations" [13]

The necessary notion to define operational semantics is defined as follows: "The semantics
of a timed automaton is defined as a transition system where a state or configuration
consists of the current location and the current values of clocks. There are two types
of transitions between states. The automaton may either delay for some time (a delay
transition), or follow an enabled edge (an action transition). To keep track of the changes of
clock values, we use functions known as clock assignments mapping C to the non-negative
reals R+. Let u, v denote such functions, and use u ∈ g to mean that the clock values
denoted by u satisfy the guard g. For d ∈ R+, let u+ d denote the clock assignment that
maps all x ∈ C to u(x) + d, and for r ⊆ C, let [r 7→ 0]u denote the clock assignment that
maps all clocks in r to 0 and agree with u for the other clocks in C \ r. " [13]

Operational semantics is defined as follows: "The semantics of a timed automaton is a
transitions system (also known as a timed transition system) where states are pairs ⟨l, u⟩,
and transitions are defined by the rules:

– ⟨l, u⟩ d−→ ⟨l, u+ d⟩ if u ∈ I(l) and (u+ d) ∈ I(l) for non-negative real d ∈ R+

9



– ⟨l, u⟩ a−→ ⟨l′, u′⟩ if l
g,a,r−−→ l′, u ∈ g, u′ = [r 7→ 0]u and u′ ∈ I(l′)" [13]

The necessary notion to define bisimulation is as follows: "A timed action is a pair (t, a),
where a ∈ Σ is an action taken by an automaton A after t ∈ R+ time units since A has
been started." [13] Timed action is denoted by σ. The states denoted by s1, s2, s

′
1, s

′
2 are

pairs in the form ⟨l, u⟩. [13]

The definition of bisimulation is as follows: "A bisimulation R over the states of time
transition systems and the alphabet Σ ∪ R+, is a symmetrical binary relation satisfying
the following condition: for all (s1, s2) ∈ R, if s1

σ−→ s′1 for some σ ∈ Σ ∪ R+ and s′1,
then s2

σ−→ s′2 and (s′1, s′2) ∈ R for some s′2. Two automata are timed bisimilar iff there is a
bisimulation containing the initial states of the automata." [13]

Figure 2. Example of transition systems that are not bisimilar.

An example of transition systems where the bisimulation relation does not hold is depicted
in Figure 2. To define bisimulation on the observable i/o actions on the ports of a SUT,
we replace Σ with Σ′ ⊆ Σ, where σ′ ∈ Σ′ are the i/o actions on the observable i/o

ports of the SUT. Bisimulation with respect to Σ′ is used as the basis for the validation
of the algorithms in section 4. This allows us to show the correctness of the algorithms
by checking the bisimulation equivalence relation between a centralised tester and a fully
distributed set of local testers with respect to the observable i/o actions on the ports of the
SUT.

2.6 Tester distribution algorithm: Algorithm 1

One of the goals of this thesis is to optimise and implement the tester distribution algorithm
(herein Algorithm 1) proposed in the paper [5]. By applying Algorithm 1, the centralised
(monolithic) remote tester is transformed into a set of communicating distributed local
testers. As a result, the test is ∆-controllable instead of 2∆-controllable, where the
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communication is unidirectional between the local testers [5]. Algorithm 1 is described as
follows:

"Let MMT denote a monolithic remote tester model generated by applying the reactive
planning online-tester synthesis method [6]. Loc(IUT ) denotes a set of geographically
different port locations of IUT 3. The number of locations can be from 1 to n, where n ∈ N
i.e. Loc(IUT ) = {ln | n ∈ N}. Let Pln denotes a set of ports accessible in the location ln.

1. For each l, l ∈ Loc(IUT ) we copy MMT to M l to be transformed to a location
specific local tester instance.

2. For each M l we go through all the edges in M l. If the edge has a synchronizing
channel and the channel does not belong to the set of ports Pln , we do the following:

– if the channel’s action is send, we replace it with the co-action receive.
– if the channel’s action is receive, we do nothing.

3. For each M l we add one more automaton that duplicates the input signals from M l

to IUT , attached to the set of ports Pln and broadcasts the duplicates to other local
testers to synchronize the test runs at their local ports." [5] The local output event
observations are similarly broadcast to other local testers for the same purposes [5].

All in all, the locations (geographical) are chosen based on the spatial distribution of the
SUT test ports. Only the local actions remain as send. The synchronisation mechanism
used to synchronise the local test runs for local testers is described in step 3. Finally, the
correctness of Algorithm 1 is outlined in [5] by checking the bisimulation equivalence
relation between the model of the initial centralised tester and the resulting distributed
tester.

3System under test (SUT) is also referred to as implementation under test (IUT) in the literature.
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3. Optimisation of Algorithm 1

The tester distribution Algorithm 1, introduced in section 2.6, copies the remote tester
to each geographical location according to the groups of ports. In order to synchronise
test runs for local testers at their local ports, the local testers communicate by sending
synchronisation messages about all locally observed i/o events. However, a local tester
needs to only know about the i/o events that directly influence its behaviour. Therefore,
local testers should selectively send synchronisation messages to a set of local testers by
considering if the event directly influences their subsequent behaviour. Further, the local
testers should only receive synchronisation messages about the non-local i/o events directly
influencing its behaviour. Consequently, the copying of remote tester to each geographical
location results in structural redundancies, leading to communication overhead. The
requirements for the optimised algorithm are as follows:

(a) Input is a centralised tester in UTA formalism as an NTA composed of two automata
templates: remote tester and SUT. The i/o events are specified on the ports of the
SUT. A unique set of ports is assigned to each geographical location. Further, the
remote tester is assumed to be deterministic.

(b) Output is a distributed tester in UTA formalism composed of a SUT and a group of
local testers.

(c) Distributed tester reaction time upon SUT outputs does not exceed the distributed
tester message propagation greatest delay ∆. (∆-max message propagation time
between local testers). In other words, we must ensure ∆-controllability.

(d) Given a deadlock free centralised tester, the resulting distributed tester must remain
deadlock free in Uppaal testing tool.

(e) The parallel composition of local testers has to ensure equivalent (bisimulation
relation) behaviour on the observable test ports with the centralised tester.

In the sub-sections 3.1 to 3.3, one possible optimisation approach is explored to reduce
the structural and consequently communication overhead. In section 3.1 the requisite
augmentations of Algorithm 1 are presented before optimisation is conducted. Section
3.2 covers the process of detecting causal redundancies with examples and pseudocode.
Section 3.3 uses the results of section 3.2 and presents pseudocode to remove elements
deemed redundant and to add synchronisation.
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3.1 Algorithm 1 augmentations

Prior to optimisation, Algorithm 1 is augmented in order to satisfy requirement (d). Further,
we specify the synchronisation sending mechanism used. All of the decisions are related
to the fact that Uppaal uses interleaving semantics1. More specifically, we focus on the
interleaving semantics property that at any point in execution, one transition is picked
non-deterministically. The augmentations are as follows:

(I) Synchronising non-synchronisation transitions between local testers. In order to
meet the requirement (d), synchronisation is added between transitions that appear
in at least two local testers and have no i/o synchronisation action. Otherwise,
Uppaal is able to generate test sequences where deadlock occurs as it is using
interleaving semantics. In Figure 3, an example is depicted, where Local tester 1

transitions have been non-deterministically chosen until a committed location to
send synchronisation to Local tester 2 is reached. As the Local tester 2 is not
ready to receive, the test run results in deadlock. The described issue is resolved
by including the described augmentation to local testers. How this was technically
achieved is covered in the implementation section 6.2.1.

Figure 3. Segments of an NTA showing transitions with no synchronisation.

(II) Using chan instead of broadcast. To meet the requirement (d), as an addition to
augmentation (I), synchronisation channels are declared as chan. Broadcast is a
one-way-handshake, synchronisation can be sent if there is no one receiving. Hence,
by using chan, we enforce that the receiver must be ready to send synchronisation.
Further, transitioning to chan also results in unique synchronisation (one sender
and one receiver), allowing us to send synchronisation messages selectively. The
synchronisation messages format is implementation-specific and is covered in 6.2.1.

(III) The synchronisation sending mechanism is added to the local tester’s automaton
template. Accordingly, instead of using additional automaton templates for adapters
to broadcast local event occurrences, the synchronisation is added to the local

1https://courses.engr.illinois.edu/cs477/sp2013/lectures/23-promela-2x3.pdf
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testers by using intermediate committed locations. The augmented synchronisation
mechanism ensures that the local testers send all selected synchronisation messages
before continuing the local test run. Further, as intermediate committed locations
are used to add the synchronisation, the state space does not increase. Additionally,
as committed locations do not let time pass, we maintain the timing properties of
local testers. How this was technically achieved is covered in the implementation
section 6.2.1.

3.2 Detection of causal redundancies

Structures. Consider segments of an NTA depicted in Figure 4. The NTA is composed of
three geographical locations (henceforth referred to as loci). For each locus a segment of
local tester is presented where all are initially at location l1. The segments are sequences
of transitions and each locus sends synchronisation messages regarding locally observed
events in order to keep local test runs synchronised, e.g. given locus 1 input event i_1!,
edges i_1_2! and i_1_3! are fired, which are received by locus 2 and locus 3, respectively.

Figure 4. Segments of an NTA.

Key idea. However, by considering the discussion regarding Algorithm 1 overhead in
the first paragraph of section 3, one might notice that locus 3 does not have local events
and locus 2 has two non-local events in a row. The key idea in reducing redundancies in
this thesis is to contract sequences in a local tester with more than one non-local event
in a row. Further, only the last non-local event in described sequences is necessary to
ensure synchronised test runs. Local events are considered to be local i/o and assignments.
Assignments are required to keep the local variable values synchronised with other local
testers to provide correct valuations in terms of guards and invariants. Therefore, the causal
dependencies are local i/o, assignments, and last non-local events in the sequences of
transitions. In Figure 5, the general idea behind the redundancy reduction is depicted.
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Figure 5. Segments of an NTA with reduced redundancies.

In order to detect the redundancies, the necessary model elements must be collected to
determine where to connect the last non-local event synchronisation and what can be
removed. As the search is to cover every possible path, a breadth-first search is chosen
to be suitable. Hence, to conduct the structural analysis on a remote tester, a breadth-first
search is performed, layer-by-layer, from local events for each locus by going back along
the event causality chain.

In Figure 6, pseudocode is presented to perform the optimisation. The optimised tester
distribution algorithm (henceforth referred to as Algorithm 2) extends Algorithm 1 by
reducing structural and communication overhead. Algorithm 2 is divided into two main
steps. The first step is causal redundancy detection, which is covered in this sub-section,
and the second step is redundancy reduction, which is covered in the next sub-section. The
first step contains the use of two search algorithms, depicted in Figure 7 and Figure 8. The
second step is divided into synchronisation of local testers and model elements removal,
depicted in Figure 9 and Figure 10, respectively.

Algorithm description. The input for Algorithm 2 is a centralised tester model as described
in requirement (a). The output of the Algorithm 2 is a fully distributed tester model as
described in requirement (b). The for-loop covering lines 3 to 23 is done over the set of
loci. The set of loci is defined as loci = {locusi | i ∈ [1, ..., n]},where n ∈ N. In line
10, we access the set of ports accessible from one geographical location locusi ∈ loci

is denoted by locus_portsi = {p | accessible(p, locusi)}, where accessible(p, locusi) is
true iff port p is accessible from locusi.

In line 4, we make a copy of the remote tester. In lines 5 to 9, five empty sets are cre-
ated: h1, h2, keep, remove, and visited_transitions. The set h1 is a set of triples,
h2 is a set of triples, keep is a set of locations, remove is a set of locations, and
visited_transitions is a set of transitions. The set h1 is defined as h1 = {(l2, l1, t) |
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l2 and l1 are locations, t is a transition}. In the set h1 triples the location l1 is the target
of the last non-local event, l2 is respectively the source and t is the transition. The set
h2 is defined as h2 = {(l2, l1, t) | l2 and l1 are locations and t is a transition}. In the
set h2 triples the transition t is from h1 triple, location l2 is where the last non-local
synchronisation is sourced post contraction of the sequence of transitions (possibly no
contraction), and l1 is respectively the target location or in other words l1 from set h1. The
set keep is defined as keep = {k | k is a location}, these are the locations that must remain
to ensure connectivity in the local testers, hence cannot be removed. Hence, initially the
set keep contains all t ∈ local_transitionsi source and target locations. The set remove

is defined as remove = {r | r is a location}, these are the intermediate locations in the
causality chain that can be removed if r /∈ keep.

1 INPUT:MT
2 OUTPUT:DT
3 for locus in loci:
4 local_tester = remote_tester.copy()
5 h1 = {}
6 h2 = {}
7 keep = {}
8 remove = {}
9 visited_transitions = {}

10 locus_ports = get_locus_ports(locus)
11 all_transitions = local_tester.get_transitions()
12 local_transitions = get_local_transitions(locus)
13 for t in local_transitions:
14 h1_, keep_, h2_ = bfs_1(t, locus_ports, local_transitions,

all_transitions)
15 h2 = h2_.union(h2)
16 h1 = h1_.union(h1)
17 keep = keep_.union(keep)
18 for triple in h1:
19 h2_, remove_ = bfs_2(triple, locus_ports, all_transitions,

local_transitions)
20 h2 = h2_.union(h2)
21 remove = remove_.union(remove)
22 add_sync(h2, local_tester)
23 remove_from_model(h2, remove, keep, local_tester)

Figure 6. Algorithm 2.

In line 12, a set of transitions local_transitions is defined as local_transitionsi =

{t | t is a transition and local(t)}. The predicate local(t) is true iff has_update(t) or
local_event_port(t) or has_initial_source(t). The predicate has_update(t) is true iff

there is an update on transition t. The predicate local_event_port(t) is true iff t contains
an i/o event and the port p ∈ locus_portsi The predicate has_initial_source(t) is to
maintain the initial locations of the models and is true iff transition t source is the initial
location.
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In the for-loop covering lines 13 to 17 we apply the first search to each transition t ∈
local_transitionsi. The search results in three sets h1_, h2_, and keep_ which are unified
with sets h1, h2, and keep, respectively. Similarly, in the for-loop covering lines 18 to 21,
result in sets h2_ and remove_ which are unified with sets h2 and remove, respectively.

Finding last non-local events. The details of the first search, depicted in Figure 7,
are as follows. In line 6, the predicate initial_or_non_local_update(t) is true iff

has_initial_source(t) or has_sync(t) and has_update(t) and not local_port_sync(t).
If the predicate is satisfied, we add the transition t with source and target to the set h2_.
First, this is to ensure the initial location remains. Secondly, as the updates are local, we
must account for the case when the transition also includes a non-local i/o event and
therefore add the necessary synchronisation. In line 10, we add the source of the local
transition to the set keep_ as this is where the synchronisation is connected. We use queue
containing locations to conduct the search until the queue is empty, where the first location
is the source location of local transition, as can be seen in line 11.

1 INPUT: t
2 OUTPUT: h1_, keep_, h2_
3 h1_ = {}
4 keep_ = {}
5 h2_ = {}
6 if initial_or_non_local_update(t)
7 keep_.add(t.target)
8 h2_.add((t.source, t.target, t))
9 queue = Queue()

10 keep_.add(t.source)
11 queue.put(t.source)
12 while not queue.empty():
13 l1 = queue.get()
14 backward = get_backward_transitions(l1)
15 for b in backward:
16 l2 = b.source
17 if b in local_transitions:
18 pass
19 elif halt_condition_1(b):
20 visited_transitions.add(b)
21 h1_.add((l2, l1, b))
22 else:
23 visited_transitions.add(b)
24 keep_.add(l2)
25 queue.put(l2)

Figure 7. Algorithm 2 finding last non-local events.

The while-loop covering lines 12 to 25 contains the following steps. For each iteration we
get a location l1 from the queue and find all transitions backward with given location as
the target as can be seen in lines 13 and 14. Secondly, for each transition b in backward,
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we check for three conditions:

1. If the transition b ∈ local_transitionsi, we skip the transition and select next from
the queue as the search is applied for each transition in local_transitionsi and
hence is covered by some other transition.

2. If the transition satisfied halt_condition_1(b), we add the transition b to the set
visited_transitions and (l2, l1, b) to the set h1_. The location l2 is the source of the
transitions b and l1 is the current queue element. The predicate halt_condition_1(b)
is true iff has_sync(b) and not local_port_sync(b). This allows us to detect the
subsequently last non-local i/o event in the sequences of transitions.

3. If neither of the above applied, we continue the search by adding the locations to the
queue, transition to the set visited_transitions, and the set keep_ as the transition
will remain local to ensure connectivity of the local tester.

Finding where to connect last non-local events. The details of the second search, depicted
in Figure 8, are as follows. We use a queue containing locations to conduct the search until
the queue is empty. The search begins from the location l2 of the triple from h1, as can be
seen in line 6. The while-loop covering lines 7 to 19 consists of the following steps. In line
9, we check the predicate is_local_source_location(v1, t) which is true iff ∃ transition
t2 such that t2.source = v1 and is_local_transition(t2) and t2 ̸= t.

1 INPUT: (l2,l1,t)
2 OUTPUT: h2_, remove_
3 h2_ = {}
4 remove_ = {}
5 queue = Queue()
6 queue.put(l2)
7 while not queue.empty():
8 v1 = queue.get()
9 if is_local_source_location(v1, t):

10 h2_.add((v1, l1, t))
11 else:
12 backward = get_backward_transitions(v1)
13 for b in backward:
14 v2 = b.source
15 if halt_condition_2(b):
16 h2_.add((v1, l1, t))
17 else:
18 remove_.add(v1)
19 queue.put(v2)

Figure 8. Algorithm 2 finding where to connect last non-local events.

In other words, if there is another local transition with the source location v1, we must
halt as the location cannot be removed. If the predicate is satisfied, we add (v1, l1, t) to
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the set h2_, where v1 is the synchronisation source post contraction, l1 is the target, and
t is the transition between them, respectively. If the predicate was not satisfied, we find
all transitions backward with v1 location as the target in line 12. Next, we traverse all the
b ∈ backward transitions and check for the following conditions:

1. If halt_condition_2(b) is satisfied, we add (v1, l1, t) to the set h2_. The predicate
halt_condition_2(b) is true iff b ∈ local_transitionsi or b.target ∈ keep and
b ∈ visited_transitions. If the transition is in local transitions, then the search is
conducted from there already and the current search stops. If the transition target is
in set keep and the transition in visited_transitions, then the search is conducted
from there already and we can stop the current search.

2. If the predicate halt_condition_2(b) was not satisfied, we add the v1 location to the
set remove and v2 location to the queue. Location v1 is added to the remove set
because this is the intermediate location in the causality chain that can possibly be
removed.

Resulting sets. Consequently, the searches resulted in four sets: h1, h2, keep, and remove,
which are used in the redundancy reduction step.

3.3 Reduction of causal redundancies

Algorithm 2 redundancy detection step resulted in four sets: h1, h2, keep, and remove.
The next step is to contract the sequences of transitions by removing the intermediate
elements in the causality chain and keeping the last non-local event as the synchronisation
event.

Adding synchronisation. In Figure 9, the general idea of using the resulting sets to add
synchronisation is depicted. In the for-loop covering lines 4 to 14, we traverse over the
triples (l2, l1, t) ∈ h2. In line 5, we make a copy tc of the transition t to modify it. In
line 6, we access the last non-local transition with target location l1 and change the source
to l2. If the condition in line 7 is satisfied, we do the following steps. In line 9, we
access the transition tc synchronisation components used in lines 10 and 12 to create a
synchronisation pair of receiver and sender. In line 14, we add the transition to the local
tester. The transitions are added to the local tester if the line 7 condition was not satisfied as
well as we are keeping initial locations that may not have i/o event transitions connected
to it. A more technical description of the synchronisation mechanism is covered in the
implementation section 6.2.1
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1 INPUT: h2, local_tester
2 OUTPUT: local_tester
3 id = 0
4 for (l2, l1, t) in h2:
5 tc = t.copy()
6 tc.source = l2
7 if has_sync(tc) and not is_local_port_sync(tc):
8 original_sync = tc.synchronisation
9 io, non_local_locus, non_local_port = get_sync_components(

original_sync)
10 receive_sync = create_receive_sync(original_sync, io,

non_local_locus, non_local_port, id)
11 t.synchronisation = receive_sync
12 add_send_sync(original_sync, io, non_local_locus,

non_local_port, id)
13 id += 1
14 local_tester.transitions.append(tc)

Figure 9. Algorithm 2 adding synchronisation.

Removing elements. In Figure 10, the pseudocode for removing redundant elements is
shown. For each locus, we need the sets keep, remove and h2 to reduce redundancies.
In line 3, all the transitions are collected from the local tester. In the for-loop covering
lines 4 to 6, we first remove all the transitions replaced by transitions with modified
synchronisations, i.e. remove duplicates. In line 7, we take the set difference locations =

remove \ keep in order to keep only the locations that can be removed. In lines 8 to 15,
we detect the transitions and locations to be removed and perform redundancy reduction
by removing them.

1 INPUT: h2, remove, keep, local_tester
2 OUTPUT: local_tester
3 transitions = local_tester.get_transitions()
4 for (l2,l1,t) in h2:
5 if t in transitions:
6 transitions.remove(t)
7 locations = remove.difference(keep)
8 for location in locations:
9 transitions_remove = {}

10 for transition in local_tester.transitions:
11 if transition.target == location or transition.source ==

location:
12 transitions_remove.add(transition)
13 for transitions in transitions_remove:
14 local_tester.transitions.remove(transition)
15 local_tester.locations.remove(location)
16 remove_non_local_transitions(local_tester)

Figure 10. Algorithm 2 removing elements.
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In line 16, we remove the remaining non-local transitions as the intermediate non-local
transitions can have a source and target not deemed redundant. These non-local transitions
are the redundant intermediate transitions before the source for the last non-local transition
is found, hence can be removed.
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4. Validation of the algorithms

Section 3 presented the Algorithm 2 and section 3.1 described the requisite augmentations
for Algorithm 1. The requirement (a) is satisfied since the input for Algorithm 2 is
defined as a centralised tester with described properties. The requirement (b) is satisfied
since the output is defined as distributed tester composed of SUT and local testers with
described properties. The requirement (c) is satisfied since we maintained the Algorithm 1
property of unidirectional communication between local testers instead of bidirectional
communication between remote tester and SUT. The requirement (d) was satisfied by
providing augmentations (I) and (II). In this section, the validation of the algorithms is
presented to satisfy requirement (e). In section 4.1, the method of validation is presented
to confirm the correctness of the algorithms by checking the bisimulation equivalence
relation between the centralised tester and distributed tester with respect to observable i/o

actions on the SUT ports. In section 4.2, the resulting traces are being compared.

4.1 Method of validation

To verify the correctness of the algorithms, we use model checking to verify the bisimula-
tion equivalence relation between the centralised tester and distributed tester with respect
to observable i/o actions on the SUT ports. The validation process consists of two steps.
The first step is to compose the models by parallel composition and carry out the following
adjustments:

1. Adding synchronisation between the remote tester and set of local testers. In
the remote tester, for all observable i/o actions on the ports of the SUT, we add
a preceding synchronisation action receive ”?” from a local tester by using an
intermediate committed location. The format for synchronisation is m_[i]? where
i ∈ N. The synchronisation action send m_[i]! is added to a local tester as a
subsequent action following the equivalent local i/o action using an intermediate
committed location. The described configuration allows us to bind the i/o actions to
detect bisimulation relation violations in the synchronous parallel composition.

2. Copying the SUT for the remote tester and adding the prefix m_ for the remote
tester, and the copied SUT i/o actions to distinguish the communication from the
distributed tester. The described configuration allows us to track the i/o actions of the
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centralised tester. It is assumed that there are no transitions with no synchronisation
in the SUT.

3. Adding synchronisation to transitions with no synchronisation in the parallel compo-
sition of the remote tester and local testers as described in 3.1 augmentation (I). The
described configuration does not affect the observable i/o actions on the ports of the
SUT.

The second step is to confirm no deadlocks in the parallel composition. For that purpose,
verifyta provided by the Uppaal toolbox is used with the following model checking query:
"A[] not deadlock". The described query states that there is no deadlock in the system for
all model execution paths. The parallel composition with the adjustments and the described
query allows us to detect the actions where the observable i/o actions on the SUT ports
differ between the centralised tester and distributed tester and, therefrom, the violation of
the bisimulation relation.

4.2 Equivalence results

The validation is conducted on an example of a centralised tester in Figure 16, Algorithm 1
output in Figure 21 and Algorithm 2 output in Figure 24. The deadlock freedom condition
was satisfied for each synchronous parallel composition. For completeness of the validation
process, traces were generated to confirm the equivalence of i/o behaviour on SUT ports.
As Uppaal does not output trace if no deadlock was found in the system, we used the
following test query to generate traces:

E<> local_tester_1.trap[1] == true and local_tester_2.trap[1] == true
and local_tester_3.trap[1] == true and local_tester_1.l10 and
local_tester_2.l10 and local_tester_3.l10 and remote_tester.l10 and
remote_tester.trap[1] == true

This query checks whether the distributed tester local testers and centralised tester remote
tester have traversed the edges labelled with trap variable updates and reached the following
location. The traces were generated by verifyta using the following query:

./verifyta -t2 model.xml query.txt 2> output.txt

The -t2 allows us to access the fastest trace in stderr1 and 2> directs it to a text file. The
traces were filtered by only leaving the observable i/o communication on the SUT ports,

1https://www.computerhope.com/jargon/s/stderr.htm
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i.e. intermediate coordination messages were filtered out. As the whole trace files are too
large to include as a whole, we present segments of the traces. In Figure 11 Algorithm 1
bisimulation validation trace is depicted.

1 local_tester_1.l1->local_tester_1._id90 { 1, i_1_[1]!, 1 }
2 SUT._id15->SUT._id16 { 1, i_1_[1]?, 1 }
3 remote_tester._id44->remote_tester.l2 { 1, m_i_1_[1]!, 1 }
4 sut_copy._id15->sut_copy._id16 { 1, m_i_1_[1]?, 1 }
5 local_tester_1.l2->local_tester_1._id87 { 1, i_1_[2]!, 1 }
6 SUT._id16->SUT._id17 { 1, i_1_[2]?, 1 }
7 remote_tester._id42->remote_tester.l3 { 1, m_i_1_[2]!, 1 }
8 sut_copy._id16->sut_copy._id17 { 1, m_i_1_[2]?, 1 }
9 SUT._id17->SUT._id18 { 1, o_2_[3]!, 1 }

10 local_tester_2.l3->local_tester_2._id69 { 1, o_2_[3]?, 1 }
11 sut_copy._id17->sut_copy._id18 { 1, m_o_2_[3]!, 1 }
12 remote_tester._id31->remote_tester.l4 { 1, m_o_2_[3]?, 1 }
13 local_tester_2.l4->local_tester_2._id66 { p == 0, i_2_[4]!, 1 }
14 SUT._id18->SUT._id19 { p == 0, i_2_[4]?, 1 }
15 remote_tester._id29->remote_tester.l5 { p == 0, m_i_2_[4]!, 1 }
16 sut_copy._id18->sut_copy._id19 { p == 0, m_i_2_[4]?, 1 }
17 SUT._id19->SUT._id20 { 1, o_2_[3]!, 1 }
18 local_tester_2.l5->local_tester_2._id48 { 1, o_2_[3]?, 1 }
19 sut_copy._id19->sut_copy._id20 { 1, m_o_2_[3]!, 1 }
20 remote_tester._id37->remote_tester.l6 { 1, m_o_2_[3]?, 1 }

Figure 11. Algorithm 1 bisimulation validation trace segment.

In the validation trace, the centralised testers has prefix m_ added so the i/o can be
distinguished from that of distributed tester. Each line represents a transition with i/o

event, e.g. Figure 11 line 2 represents SUT transitioning from location with id15 to location
with id16 and receiving input i_1_[1]. In Figure 12, segment of Algorithm 2 validation
trace is depicted, where alike results can be seen.
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1 local_tester_1.l1->local_tester_1._id80 { 1, i_1_[1]!, 1 }
2 SUT._id15->SUT._id16 { 1, i_1_[1]?, 1 }
3 remote_tester._id42->remote_tester.l2 { 1, m_i_1_[1]!, 1 }
4 sut_copy._id15->sut_copy._id16 { 1, m_i_1_[1]?, 1 }
5 local_tester_1.l2->local_tester_1._id81 { 1, i_1_[2]!, 1 }
6 SUT._id16->SUT._id17 { 1, i_1_[2]?, 1 }
7 remote_tester._id44->remote_tester.l3 { 1, m_i_1_[2]!, 1 }
8 sut_copy._id16->sut_copy._id17 { 1, m_i_1_[2]?, 1 }
9 SUT._id17->SUT._id18 { 1, o_2_[3]!, 1 }

10 local_tester_2.l3->local_tester_2._id64 { 1, o_2_[3]?, 1 }
11 sut_copy._id17->sut_copy._id18 { 1, m_o_2_[3]!, 1 }
12 remote_tester._id33->remote_tester.l4 { 1, m_o_2_[3]?, 1 }
13 local_tester_2.l4->local_tester_2._id54 { p == 0, i_2_[4]!, 1 }
14 SUT._id18->SUT._id19 { p == 0, i_2_[4]?, 1 }
15 remote_tester._id36->remote_tester.l5 { p == 0, m_i_2_[4]!, 1 }
16 sut_copy._id18->sut_copy._id19 { p == 0, m_i_2_[4]?, 1 }
17 SUT._id19->SUT._id20 { 1, o_2_[3]!, 1 }
18 local_tester_2.l5->local_tester_2._id55 { 1, o_2_[3]?, 1 }
19 sut_copy._id19->sut_copy._id20 { 1, m_o_2_[3]!, 1 }
20 remote_tester._id34->remote_tester.l6 { 1, m_o_2_[3]?, 1 }

Figure 12. Algorithm 2 bisimulation validation trace segment.

For each distributed tester i/o pair, the equivalent centralised tester i/o pairs with prefix
m_ follow subsequently. As a result, the traces confirm that the i/o on the observable ports
remains the same after distribution. Consequently, based on the results, we conclude that
the requirement (e) has been satisfied.
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5. Optimisation results

In this section, we compare the results of Algorithm 1 and Algorithm 2. The comparison
comprises four parts: test model structural reduction, trace length, time cost, and synchro-
nisation message total count difference. To illustrate the optimisation efficiency, we use
the NTA depicted in Figure 16. The distributed tester generated by Algorithm 1 is depicted
in Figure 21, and the distributed tester generated by Algorithm 2 is depicted in Figure 24.

5.1 Structural difference results

In Table 1, the structural difference is depicted (LT stands for local tester and POD for
per cent of decrease). Comparison is between transition, synchronisation, and location
count. Values are calculated in the per cent of decreased columns by dividing the difference
column value by Algorithm 1 column value.

Table 1. Table of structural difference.

Algorithm 1 Algorithm 2 Difference POD
LT 1 transitions 25 15 10 40.00%
LT 2 transitions 41 32 9 21.95%
LT 3 transitions 29 22 7 24.14%
LT 1 synchronisations 25 15 10 40.00%
LT 2 synchronisations 40 31 9 22.50%
LT 3 synchronisations 28 21 7 25.00%
LT 1 locations 21 12 9 42.86%
LT 2 locations 37 28 9 24.32%
LT 3 locations 25 18 7 28.00%
Transitions total 95 69 26 27.37%
Synchronisations total 93 67 26 27.96%
Locations total 83 58 25 30.12%
Total count
(transitions and locations)

178 127 51 28.65%

Bisimilarity SATISFIED SATISFIED
No deadlock SATISFIED SATSIFIED

The model element total count regarding transitions and locations has decreased by over
28%. The greatest per cent of decrease is over 42%. The total count of elements regarding
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transitions and locations removed is 51. As a result, the NTA model element total count has
decreased considerably, and we consider it a satisfactory result. The following sub-section
compares the difference in the trace lengths.

5.2 Trace length difference results

In this sub-section, we use the examples generated and run a specific test query using
verifyta provided by the Uppaal toolbox for both algorithms to compare the resulting
trace length difference. We also use the Unix time1 command to record the time spent
for each query. Optimising test trace lengths while preserving the same test coverage
allows reducing computational resources used in lengthy test campaigns. The test query
checks whether the distributed tester local testers have traversed the edges labelled with
trap variable updates and reached the following location. The last trap is collected if the
variable p value is 30000. The variable p counts each moment where we either transition
from location l10 to l1 or from location l6 to l4. The test query is as follows:

E<> local_tester_1.trap[1] == true and local_tester_2.trap[1] == true

and local_tester_3.trap[1] == true and local_tester_1.l10 and

local_tester_2.l10 and local_tester_3.l10

The resulting command used to conduct the experiment:

time ./verifyta -t2 -f prefix modelname.xml queryfile.txt

Where -t2 means generate diagnostic with the fastest trace and -f prefix means to save the
file in form prefix-1.xtr.

The described query was applied to the distributed testers. In order to take the average time
taken, we ran the query ten times for each distributed tester. In Figure 13, the resulting
trace lengths are depicted. Algorithm 1 resulted in 5400006 lines and Algorithm 2 in
4140006 lines with a difference of 1260000 and per cent of decrease of about 23.33%. The
results are consistent with the theoretical expectation that the trace length decreases if
structural complexity decreases.

1https://man7.org/linux/man-pages/man1/time.1.html
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Figure 13. Comparison of Algorithm 1 and Algorithm 2 trace lengths.

In Figure 14, the time spent result is depicted. The experiment was conducted using a
computer with the following specifications: processor 2.3 GHz Dual-Core Intel Core
i5, memory 8 GB 2133 MHz LPDDR3, and graphics Intel Iris Plus Graphics 640 1536
MB. Algorithm 2 average time spent resulted in 2.485s and Algorithm 1 in 3.37s with a
difference of 0.885s and per cent of decrease of about 26.26%. The result is consistent
with the theoretical expectation that longer traces result in more time cost.

Figure 14. Time spent comparison of Algorithm 1 and Algorithm 2.

Consequently, the reduction of causal redundancies presented considerable gains in struc-
tural optimisation, trace length reduction, and test time reduction.

5.3 Communication overhead reduction results

The communication overhead reduction results are presented by counting the synchroni-
sation messages sent between local testers regarding locally observed i/o actions on the
ports of the SUT. The NTA is configured to collect the last trap if the variable p value is
1000. In Figure 15 the results are depicted.
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Figure 15. Synchronisation count comparison of Algorithm 1 and Algorithm 2.

Algorithm 1 resulted in 17998 synchronisation messages and Algorithm 2 in 10998. The
difference is 7000 with per cent of decrease of about 38.89%. As a result, the workload on
the communication channels has reduced considerably.

29



6. Implementation and integration

In this section, we cover the implementation and integration. In section 6.1 we describe
the technological decisions made regarding implementation and integration. In section
6.2 we cover the implementation of Algorithm 1, Algorithm 2, and automated validation.
In section 6.3, we describe the algorithms implementation integration to the model-based
testing environment BugBroom.

6.1 Back-end: technological decisions

UTA XML parser. The main component in implementing the algorithms is a parser for
UTA XML files, which allows reading, modifying, and writing NTAs. For that purpose,
PyUPPAAL1 is used. PyUPPAAL is a Python library for manipulating Uppaal XML
files and is maintained by Aalborg University academic personnel2. Further, compared
to other parsers available, PyUPPAAL had been referenced in multiple articles related to
model-based testing, which ensured the trustworthiness of the implementation.

Programming language. As PyUPPAAL is written in Python, the decision was to use
Python to develop the algorithms. However, the library is written in Python 2. Hence, the
library includes deprecated syntax as Python 2 is not maintained anymore. The deprecated
syntax can cause issues in future perspectives. Therefore, we had to upgrade the deprecated
parts to Python 3. Hence, the programming language used to implement the algorithms is
Python 33.

Model checker. Uppaal verifier functionality can be accessed with verifyta4 command-line
utility. The tool verifyta allows us to automate the verification process of the models, e.g.
confirming an NTA is deadlock-free by the "A[] not deadlock" query. This tool was chosen
as we are using the Uppaal toolbox, which includes verifyta as one of the tools.

Integration. The integration is conducted by providing a dockerised REST (representa-
tional state transfer) API (application programming interface) in an Ubuntu server provided

1https://launchpad.net/pyuppaal
2https://homes.cs.aau.dk/ adavid/python/
3https://www.python.org
4https://docs.uppaal.org/toolsandapi/verifyta/
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by TalTech. REST API is composed of Flask, Gunicorn, and Nginx. Flask5 is a micro-
framework used to develop web applications. As a micro-framework, Flask is lightweight
with minimal dependencies, which gives developers more freedom in design choices. Flask
comes with a development server that eases the development process but is not made for
production. For production, we used Gunicorn6 which is a popular Python WSGI HTTP
server. In addition, Nginx7, a high-performance web server, is used as a reverse proxy to
handle incoming requests and direct them to the Gunicorn application server. By using
Docker8, an open-source containerisation platform, we can isolate the application from its
environment, and Docker Compose9 allows us to run multi-container Docker applications.

6.2 Back-end: implementation of the algorithms

Input format. In order to distinguish SUT i/o communication between different loci and
to read the remote tester and SUT, the following assumptions are made in terms of input.
We give a standardised way to describe the input to automate the distributing process.
Therefore, in addition to the requirements (a) and (b) presented in the section 3, we present
more technical assumptions on the input.

1. Synchronisation is declared in the format [i/o]_[locus]_[port].
2. In order to identify remote tester to be copied for each locus, the templates have

specific names. Remote tester is declared as ”remote_tester” and SUT is declared
as ”SUT” or ”IUT”. Both are case insensitive.

3. Synchronisation is declared as chan globally. If not local then testers cannot com-
municate.

4. Variables are declared locally as the updates are local events.

An example of a centralised tester is depicted in Figure 16.

5https://flask.palletsprojects.com
6https://gunicorn.org
7https://www.nginx.com
8https://www.docker.com
9https://docs.docker.com/compose/
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remote_tester

SUT

Figure 16. Centralised tester.

Parsing XML to NTA. Input is parsed by PyUPPAAL to one NTA. The core classes
generated by the parser are depicted in Figure 17. Graphical elements such as nails and x
and y coordinates are omitted as we are not focusing on the visual appeal of the models.

NTA

declaration

system

templates

Template

name

declaration

locations

transitions

initlocation

parameter

Transition

source

target

select

guard

synchronisation

assignment

action

controllable

Location

invariant

exprate

committed

urgent

name

id

Label

kind

value

Figure 17. PyUPPAAL NTA general architecture.
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Tester distributor. Tester distributor is implemented as a class TesterDistributor. Al-
gorithm 1 can be accessed from distribute_tester_alg_1 method and Algorithm 2 from
distribute_tester_alg_2 method. Both methods take in 5 arguments. The first two argu-
ments define the path to the XML file and where to save the result. Two arguments specify
if to generate the bisimulation validation specific models and what verifyta version to
use, which varies by OS. Lastly, a parameter is added to specify if to count model elements
and write the result to stdout10. Tester distributor general workflow is depicted in Figure
18.

Centralised
tester in UTA
XML format

Tester
Distributor

Distributed
tester in UTA
XML format

Figure 18. Tester distributor workflow.

In the sub-section 6.2.1 we describe the implementation of Algorithm 1 considering the
augmentations and requirements described in section 3. In sub-section 6.2.2 we describe the
implementation of Algorithm 2. Finally, in sub-section 6.2.3, we describe how automated
validation was implemented.

6.2.1 Algorithm 1

Algorithm 1 implementation is composed of 5 main steps in total:

1. Reading NTA from XML. Parsing input XML to class NTA, reading locus with
corresponding ports, and copying remote tester template for each locus local tester.

2. Changing non-local synchronisation to receive. Traversing over local tester transi-
tions to detect all the non-local synchronisation values. All non-local synchronisation
values are replaced with receive action.

3. Adding send synchronisation. Using Step 2 collected synchronisation to be sent by
locus to add synchronisation send actions to local testers.

4. Synchronising non-synchronisation transitions. Detecting transitions that do not
have synchronisation and synchronising these transitions between local testers.

5. Adding declarations and writing NTA to XML. Adding declarations collected in
the previous steps to NTA and writing NTA to XML.

10https://www.computerhope.com/jargon/s/stdout.htm
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In step 1, PyUPPAAL parses the XML to NTA composed of two Templates: remote_tester
and SUT . From remote_tester we are able to access all transitions and read the synchro-
nisation values of the from [i/o]_[locus]_[port]. The described format allows us to collect
each locus and corresponding ports. Next, template remote_tester is copied for each
locus and renamed to local_tester_[locus].

In step 2, detected non-local synchronisations values are reformatted to c_[i/o]_[uid]_[sen
der locus]_[receiver locus]_[port]. Local tester synchronisation value is changed to
receiving action ”?” and for the sender locus we add send action ”!” to synchronisation to
be sent from the corresponding transition. During step 2, we also collect the declarations
to be added, as all of the synchronisations have to be declared. The synchronisation is
made unique by incrementing the variable uid value if found non-local synchronisation.
The variable uid value is initially 0 and resets to 0 for each locus. Adding uniqueness
to synchronisations by using variable uid is necessary for distributed testers where local
testers are not copies of the remote tester. Hence, we describe it in the next sub-section
under Algorithm 2 steps.

In step 3, the synchronisation to be sent is collected for each locus for each transition.
The SUT i/o remains as the first synchronisation action, and then the synchronisation
is sent to other local testers by adding intermediate committed locations (augmentation
(III) in section 3.1). Intermediate committed locations are created using class Location
with committed instance variable value declared as True. These locations are connected
by creating class Transition instances and changing the source and target locations
accordingly. The general mechanism of sending synchronisation is depicted in Figure 19.

Figure 19. General synchronisation sending mechanism.

In step 4, we traverse over all the transitions for each locus and collect transitions that
do not have synchronisation. Synchronisation on these transitions is added by select-
ing one local tester as the sender ”!” and assigning the remaining local testers as re-
ceivers ”?” (augmentation (I) in section 3.1). The format for the synchronisation is
c[uid]_[sender locus]_[receiver locus]. The variable uid is initially 0 and incremented
for each transition to make the transitions distinguishable. The synchronisation send-
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ing mechanism is identical to Step 3. An example of adding synchronisation between
transitions with no synchronisation is depicted in Figure 20.

Figure 20. Synchronisation sending mechanism for non-synchronisation transitions.

In step 5, we declare local testers in the system declaration and add all synchronisation
declarations globally as chan (augmentation (II) in section 3.1). All the variables are
locally declared for each local tester as we copied the remote_tester template for each
locus. Finally, the distributed tester is written to XML by PyUPPAAL.

local_tester_3

local_tester_2SUT

local_tester_1

Figure 21. Distributed tester generated by Algorithm 1.

An example of the result of applying Algorithm 1 to NTA depicted in Figure 16 is shown
in Figure 21.
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6.2.2 Algorithm 2

As Algorithm 2 extends Algorithm 1, the steps of Algorithm 1 remain, but additional two
steps are added: causal redundancy detection and causal redundancy reduction. Hence,
Algorithm 2 is composed of 7 main steps in total:

1. Reading NTA from XML. Parsing input XML to class NTA, reading locus with
corresponding ports, and copying remote tester template for each locus local tester.

2. Redundancy detection. Applying causal redundancy detection steps presented in
section 3.2.

3. Adding receive synchronisation. Traversing over the set h2 elements collected in
Step 2 and adding synchronisation accordingly as presented in section 3.3.

4. Redundancy reduction by removing model elements. Applying causal redundancy
reduction steps presented in section 3.3.

5. Adding send synchronisation. Using the synchronisation to be sent by locus col-
lected in previous steps to add synchronisation send actions to local testers.

6. Synchronising non-synchronisation transitions. Detecting transitions that do not
have synchronisation and synchronising these transitions between local testers.

7. Adding declarations and writing NTA to xml. Adding declarations collected in the
previous steps to NTA and writing NTA to XML.

In step 2, redundancy detection from section 3.2 is directly transferred to the implementa-
tion. Hence, no further discussion is included here. In step 3, the synchronisation adding is
presented in section 3.3. The synchronisation format and adding mechanism remain the
same as in Algorithm 1 implementation. With Algorithm 2, we must consider that the local
testers are no longer copies of the remote tester after redundancy reduction. The necessity
of making synchronisation messages unique with variable uid is depicted in Figure 22.
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Figure 22. Simplified NTA to show unique id importance.

The segments of an NTA on the left-hand side are without uniqueness added to the synchro-
nisations. For example, the Locus 3 can continue its test run by transitioning to location
l2 or l3, whereas the correct location to be reached is l2. By adding uniqueness, which
can be seen on the right-hand side, we ensure that the transitions are enabled correctly,
i.e. the local test runs are synchronised correctly. In step 4, the redundancy reduction by
removing elements presented in section 3.3 is directly transferred to the implementation.
Hence, no further discussion is added here. In step 5, the synchronisation adding remains
as for Algorithm 1 except if one locus appears more than once in synchronisation to be sent
from transition. In this case, we add a transition between consecutive locations without
adding a committed location. The described situation results from causal redundancy
reduction where locations can be reached through different paths. In order to provide that
the transitions are correctly enabled, we must ensure that all possible paths are considered.
An example of this is depicted in Figure 23.
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Figure 23. Simplified NTA to show how multiple paths are handled.

In this example, we can see that after redundancy reduction, Locus 2 does not have location
l4. The path from l3 through l4 to l2 is replaced with path from l3 to l2. In order to ensure
that the transitions are correctly enabled, a synchronisation send-action s2! is added to
Locus 1 by using a transition without an intermediate committed location. The described
configuration allows us to account for different paths one location can be reached after
redundancy reduction.
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local_tester_3

local_tester_2SUT

local_tester_1

Figure 24. Distributed tester generated by Algorithm 2.

An example of the result of applying Algorithm 2 to NTA depicted in Figure 16 is shown
in Figure 24.

6.2.3 Automated validation

In section 4, we presented the validation of the algorithms. We implemented the method
used to check bisimulation between the centralised and distributed tester. An example of
NTA to perform bisimulation relation validation between NTA in Figure 16 and Figure 24
is shown in Figure 25.
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Figure 25. Bisimulation validation NTA for Algorithm 2.

The option to generate NTA for bisimulation check is added as a boolean value for both
algorithm methods. As we are using verifyta which is OS-dependent, we also added
a parameter to specify which verifyta version to use: "bin-Windows", "bin-Darwin",
and "bin-Linux". Additionally, we added a deadlock freeness check for both algorithms
in the workflow after the centralised tester is distributed, allowing for automated NTA
verification.

Centralised
tester in UTA
XML format

Tester
Distributor

Distributed
tester in UTA
XML format

Verifying no
deadlock in NTA

Figure 26. Tester Distributor workflow with deadlock freeness check.

The general workflow of tester distributor with deadlock freeness check is depicted in
Figure 26.

6.3 BugBroom integration

BugBroom is a web-based modelling environment for timed automata. This application is
intended to replace tools such as Uppaal and ECDAR11. Further, BugBroom is proposed

11https://www.ecdar.net
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to have additional functionalities not provided by Uppaal nor ECDAR. BugBroom uses
microservice-based architecture, i.e. all the external services run separately as web servers.
As of writing this thesis, BugBroom is currently under development. The application’s
current architecture is depicted in Figure 27.

NGNIX

Workspace Models Auth File storage External Parser

External services
Postgres

Figure 27. Architecture of current BugBroom to show external services.

The general architecture, depicted in Figure 28, was proposed by Jüri Vain in the year 2020.
At this time, the environment was referred to as a workbench for model-based testing.
The implementation to be integrated into BugBroom is the "Test distributor" component
presented under general component 4 named "Test configuration management tools".
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Figure 28. BugBroom workbench.

In section 6.3.1, we cover how the tester distributor as an external service is added to the
front-end. Finally, in section 6.3.2, we cover how the implementation of the algorithms
was integrated into the system BugBroom as an external microservice.

6.3.1 Front-end

Front-end development consisted of two steps: creating views to interact with the tester
distributor and adding routing for external service for back-end communication. As the goal
is to integrate the implementation into the environment, we use the provided technologies.
The development is conducted by using mainly TypeScript12 and Vue.js13 which are used

12https://www.typescriptlang.org
13https://vuejs.org
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by the environment.

Tester distributor is added under Testing tools which can be accessed from the navigation
bar (herein navbar). We created a component called distributor. The tester distributor view
can be accessed by selecting Distributor from the Testing tools drop-down menu. The
Distributor view displays the details of the current project selected in the Projects view.
The details include Project name, Description, and systems as Test configuration. In order
to distribute a tester, two buttons are added: Distribute tester Algorithm 1 and Distribute

tester Algorithm 2. The result is depicted in Figure 29.

Figure 29. Distributor view in BugBroom.

Next step is to add external service workflow for distributing the tester. The workflow is
depicted in the Figure 30.
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Figure 30. Front-end workflow.

First, the user selects a project in the main view, navigates to the tester distributor and runs
the selected distributing algorithm. If the distribution was successful, a message notifying
the successful event is displayed, and a new project is created for the user. The response
XML is written into JSON (JavaScript Object Notation) by parserService provided by the
environment, and a new project is created by projectsService provided by the environment.
If the distribution was unsuccessful, e.g. synchronisation format does not conform with
the input assumptions, the user is notified by a message about the unsuccessful event, and
we do not create a new project. The service to distribute a tester is added under external
services.

6.3.2 Back-end and front-end communication

As BugBroom follows microservice-based architecture principles, the implementation is
provided as an external microservice to the environment. The tester distributor microservice
is a REST API running in docker containers installed in an Ubuntu server provided by
TalTech. The general architecture is depicted in Figure 31.
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BUGBROOM NGINX GUNICORN FLASK API

SERVER

DOCKER COMPOSE

docker containerdocker container

Figure 31. Integration architecture overview.

Nginx is set up as a reverse proxy to handle client requests on port 80 by redirecting them
to localhost port 5000, where the Flask wrapped with Gunicorn REST API is running. The
test distributor REST API comprises two endpoints: Algorithm 1 and Algorithm 2. Both
endpoints follow the same workflow as depicted in Figure 32.

POST request with
 NTA as XML in

request body

Distribute tester  with
bisimulation check

Distribute tester 
Response 200 with
distributed tester in

response body as XML

Encountered an
exception? Response 400

Yes

No

Encountered an
exception?

Yes

No

Figure 32. General workflow of the API.

Front-end sends a POST request with XML in the request body. The model is read from
the body, and the tester is distributed with the bisimulation check to provide automated
validation. As PyUPPAAL reads files from a path, we used Python standard library module
tempfile14 which allows creating temporary files that are automatically deleted after closing.
Next, the tester is distributed and checked for deadlock freeness. Response 200 is sent to
the front-end with XML in the response body if no exceptions were encountered. If an

14https://docs.python.org/3/library/tempfile.html
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exception occurs, response 400 is sent with text containing possible exception reason, e.g.
synchronisation is in an incorrect format.

Figure 33. Algorithm 2 distributed tester local tester in BugBroom.

An example of a local tester of a distributed tester in BugBroom is depicted in Figure 33
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7. Summary

In this thesis, we provided an approach to optimise distributed tester local components
generated by a state-of-the art algorithm referred in this thesis as Algorithm 1 from paper
[5]. Prior to optimisation, Algorithm 1 was augmented to fulfil the requirement (d) and to
specify the synchronisation mechanism used. The correctness of the optimised algorithm
was validated by checking the bisimulation relation between the centralised tester and fully
distributed tester with local testers concerning the observable i/o actions on the ports of
the SUT. We further confirmed the validation result by comparing segments of test traces.

The optimisation resulted in over 28% of decrease in structural complexity of the test
model, over 23% of decrease in trace length, over 26% of decrease in average time spent,
and over 38% of decrease in total synchronisation message count based on the example
used. The original distribution algorithm and its optimising extension were implemented
as a proof of concept, with automated validation included, and made accessible in the
BugBroom testing environment. Therefore, the goals of this thesis were achieved.

This thesis focused on one optimisation approach. As for future work, we propose an
approach to extend the optimisation by doing calculations on variables selectively in local
testers and sending the result to other testers that the value directly influences. For example,
one local tester is doing the calculations, and other local testers omit the intermediate
calculations by receiving the latest resulting value from a local tester selected to do the
calculations. Another approach would be to extend the optimisation by keeping only the
guards, updates, and invariants in the local tester if they directly influence its behaviour.
For example, if the local tester does not contain any guards or invariants related to some
variable, then the updates for this variable can be omitted. Furthermore, as stated in
requirement (a), we limited this thesis to two template test models. Future work may
extend this to more templates. An essential step in future work would be integrating
the algorithms into a real testing environment such as DTRON. Furthermore, the visual
presentation of the models was not the focus of this thesis. Future work would be to create
an algorithm to adjust the visual layout of the models to be more human-readable. Lastly,
the integration can be improved to include more advanced options for the tester distributor,
display more specified error messages, and give information about the tool.
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