TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS
64/2018

Aspect-Oriented Model-Based
Testing

KULLI SARNA

i 11U
LT

| PRESS

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Software Science

This dissertation was accepted for the defence of the degree of Philosophy in
Computer Science on September 28, 2018.

Supervisor: Professor Juri Vain
Department of Software Science
School of Information Technologies
Tallinn University of Technology
Tallinn, Estonia

Opponents: Artem Boyarchuk, PhD, Associate Professor
Department of Computer Systems and Networks
National Aerospace University
Kharkiv, Ukraine

Juha Plosila, PhD, Associate Professor

Digital Systems Design and Embedded Computing
Department of Future Technologies

University of Turku

Turku, Finland

Defence of the thesis: November 15, 2018, Tallinn

Declaration:

Hereby | declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for any academic degree.

Kdlli Sarna

* ¥
* *
* *
* *
* 4 Kk
f—
European Union
European Social Fund Investing in your future

Copyright: Kalli Sarna, 2018

ISSN 2585-6898 (publication)

ISBN 978-9949-83-343-6 (publication)
ISSN 2585-6901 (PDF)

ISBN 978-9949-83-344-3 (PDF)

TALLINNA TEHNIKAULIKOOL
DOKTORITOO
64/2018

Aspekt-orienteeritud mudeli-pohine
testimine

KULLI SARNA

gt | U
LLLLL

KIRJASTUS

Table of Contents

FOREWORD ..ottt sttt 8
LIST OF PUBLICATIONS ...ttt 10
AUTHOR’S CONTRIBUTION TO THE PUBLICATIONScccoovviriinne 11
ADDIEVIALIONS. ...ttt s 12
TBIIMNIS <.ttt bbbt b e b e e e ne e 14
LISt OF FIQUIES....eeeieeecece e 15
LiSt OF TaDIES ... s 16
1 INTRODUCTION ..ottt e 17
1.1 Chapter OVEIVIBWc..cviieiiiiiiieiiesie e 17
1.2 The Role of Software testingccccevvveveieeieie e 17
1.3 Therole of modelling in model-based testingcccccvvvveveivinenne. 20
1.4 The correctness of model-based test developmentcccceveenne. 26
1.5 Main hypothesis and problem statement..........c.ccccooveveviiiieieieenenn. 27
151 Hypothesis of the thesis ..o, 27
152 RESEarch QUESTIONS..........couoiiiiiie e 28
153 Problem Statement..........cooeiveiere e 28

1.6 Methodologyccoeiiiiciiecec e 28
1.7 Contribution of the theSiS........ccoieviiiine e 29
1.8 Structure of the thesSiScccvvvveiiiiee s 29

2 PRELIMINARIEScoooi ittt 31
2.1 Chapter OVEIVIEW.......ccuveiiiieciie ettt 31
2.2 Aspect-Oriented MOdellingcccoovviiiiiiiiiieees s 31
2.2.1 BasSiCS OF ADMcciiiiiieieieeees e e 31

2.3 Model-based teStiNg.......cccoveieiiiiiciice e 33
2.4 Aspect-Oriented TeSTINGccorveeiriniienee s 35
2.5 Uppaal timed autOmMaLacooeieiriniieneceeeeese s 36
2.6 Conformance testing with Uppaal TA ..., 38
2.7 Related work on AOM and AOTccoccveeiieniieie e 40

5

2.8 (070] 3161 111 (0] 1 PR TTTURTRRRRR 42

ASPECT-ORIENTED MODEL ENGINEERINGccccccoveiviviririenne 43
3.1 Chapter OVEIVIEW.....c.eeveiiiceic ettt 43
3.2 Creating AO test models in Uppaal TA. ..., 43

321 Approach 1: AO model construction using weaving adapters... 44

3.2.2 Correctness of weaving adapter-based AO models.................... 46

3.2.3 Approach 2: refinement-based AO model construction 47

3.24 Correctness of the refinement-based AO model construction ...48
3.3 AO teSt COVEIage CrILEIIAevevireeeeeieiieie st 51
34 CONCIUSION ...t 54

CASE-STUDY: HOME REHABILITATION SYSTEM.....c..ccccvevvvrienns 55
4.1 Chapter OVEIVIEW......ccueiiiiiiiiiiiiiiteseeiee st 55
4.2 Home rehabilitation system general description..............ccccocvveevenenn, 55
4.3 HRS home eXerciSiNg USE CASEcccvevverreiieiresieeiesieereestesreene e, 56

431 Initial configuring of HRS SyStemccccoveiiieniiiiicicee, 56

43.2 HOME USE SCENAIIOvviieiecie e 57
4.4 Aspect-oriented modelling of HRS..........c.ccco i 59

441 Requirements level model of HRS ..., 59
45 Fully augmented model of the HRS...........ccooiiiiiiniiicce 71
4.6 AO TSt gENEIALION ...cviiiiciicie e 72

46.1 AO Tests of Aspect 1: Patient safetyccocvvrineneieiiinnnnne 73

4.6.2 AO Tests of Aspect 2: Patient exercising qualitycc.c..... 73

4.6.3 AO Tests of Aspect 3: Patient exercising performance............. 74
4.7 Software agents level modelling of HRS aspects............ccocccevevenene 76

4.7.1 Model of the HRS SOFtWareccccovvvveeieiiec e 77

4.7.2 Aspect 1: DB data completeness in read-write protocol............ 77

4.7.3 Aspect 2: Cleaning the DB by cleaner agentc..ccccoeevenenee. 78

4.7.4 Aspect 3: Uniqueness of data KeYScccceevvvrireneneneieininns 80
I O 4 Tod [T o OSSR 81

ANALYSIS AND VALIDATION OF AOT METHOD..........cocvvvvrieneane. 82
5.1 Chapter OVEIVIEWcoveiiiciie ettt 82

5.2 Proving equivalence of non-aspect and aspect models...................... 82

521 Bisimulation verificationccoccooveienieniienen e 83
522 Bisimulation verification example........c..ccoceviviiiveieceevesee 84

5.3 Comparison of model update effort.........cccccoovvvviiiiiiciiicee, 89
5.4 Comparison of test purpose specification effort...........ccccocvvrennn 89
5.5 Comparison of test generation effortcccccovveieie i, 92
5.6 Comparison of generated tests (length of test sequences) 94
5.7 CONCIUSION ..ottt 95

B CONCLUSION.. ..ottt st sne s 96
6.1 Chapter OVEIVIEWccuiiieieite ettt s 96
6.2 MAIN FESUIES. ...t 96
6.3 FULUPE WOTK ...ttt e 97
REFERENCESocoiiiiicesee ettt 98
ACKNOWLEDGEMENTS ..ottt 105
ABSTRACT .ottt a et e et ss et nnere e 106
KOKKUVOTE ...ttt 108
APPENAIX Ao bbbt re s 111
APPENTIX B ... 117
APPENTIX C oo 123
APPENAIX D . 133
APPENTIX E ..o 141
APPENUIX F oo 153
CURRICULUM VITAE ...ttt 162
ELULOOKIRJIELDUScooiiciiicie et 163

FOREWORD

Since starting my work career in the telecommunications industry more than 20
years ago, | have been looking for ways to apply tool supported development
techniques. At a time when the need for professional software testing was
gathering recognition and testers were often not participating in development
teams yet, | was working with databases and correcting software errors in
database systems. This experience guided my understanding and realization of
how important systematic software development is in preventing errors. This
triggered my interest towards deeper understanding of why software errors occur.
I have experienced various roles in the software development process including
that of test engineer, programmer, analyst, and QA manager; and have discovered
how these roles contribute to the quality of a software product. My journey has
been driven by the curiosity of what improvements new software development
techniques can provide to the end product quality.

Since the early days of software testing, its role in development has been
increasing and progressively studied by researchers. Nowadays, no one questions
the fact that software testing is a vital part of the development process and must
be integrated with it from the very beginning. Unfortunately practical needs often
forestall the theory. The faster the software development process is, the less time
there is left for testing. There is a common belief that test automation using
model-based testing should provide the lever to cut time without compromising
on software quality, but an important prerequisite for efficient testing is an
elaborated design of the system under test, called design for testability.
Specifically, the design environment must address also the test requirements in
addition to regular design requirements.

During my PhD studies, | realized that choosing the correct software
development methodology before beginning the process is essential. That is the
methodology that supports both requirements engineering as well as testing,
especially for the initial stages of software development. Ignoring it is the same
as taking a road trip without planning the route.

My four years in the medical software industry culminated in realizing the
importance of a rigorous testing discipline. Regardless of the growing popularity
of the new service and micro service oriented design paradigms, the need for test
automation and methodologies has not diminished. On the contrary, a hard design
problem is more effectively solved when decomposed into a set of smaller
concerns meaning a single monolithic design representation is divided into
smaller ones by following a “divide-and-conquer” approach. An aspect-oriented
(AO) approach to development and testing, advocated in this thesis, is one such
structuring principle besides the agent-, object-, and component-oriented

8

approaches. The thesis intend to demonstrate that AQ testing realized via Uppaal
Timed Automata formalism is practical and improves the quality of testing,
especially in the domain of cyber-physical systems where the heterogeneous
design units combine various design concerns.

LIST OF PUBLICATIONS

This thesis includes results in four original publications written between 2011 and
2014. These publications are listed as follows:

A Killi Sarna, Juri Vain. Exploiting aspects in model-based testing. In
FOAL'12: Proceedings of the Eleventh Workshop on Foundations of
Aspect-Oriented Languages, March 26, 2012, Potsdam, Germany: New
York: ACM, 45 - 47.

B Alar Kuusik, Enar Reilent, Killi Sarna, Marko Parve. Home telecare and
rehabilitation system with aspect-oriented functional integration. In
Biomedical Engineering/ Biomedizinische Technik: The 46th annual
conference of the German Society for Biomedical Engineering, Jena,
Germany, September 17-19, 2012. (Edit.) Ddssel, O. De Gruyter,
1004 - 1007.

C Killi Sarna, Alar Kuusik, Enar Reilent. Home Rehabilitation System
Supported by the Safety Model. Studies in health technology and
informatics, 2013, 189, 145 - 151.

D Kaulli Sarna, Juri Vain. Aspect-oriented testing of a rehabilitation system.
In VALID 2014: The Sixth International Conference on Advances in
System Testing and Validation Lifecycle, October 12 - 16, 2014, Nice,
France: (Edit.) Kanstrén, Teemu; Helle, Philipp. Venice: IARIA,
73-78.

10

AUTHOR’S CONTRIBUTION TO THE
PUBLICATIONS

Contribution to the publications in this thesis are:

In all papers except Publication B the author was the main contributor — a paper
writer. My supervisor was also involved with the initial idea throughout my PhD
work. Without his guidance the writing of articles would not have been possible.

A The author’s contribution was the implementation of the original idea
that came from my supervisor to use aspect-oriented concepts in model-
based testing. This refinement-based aspect-oriented modelling
approach was fundamental for the subsequent research and the following
publications.

B In Publication B the author’s contribution was the initial idea of using
aspect-oriented requirements engineering principles in home telecare
system development. The author identified the need for knowledge
engineering. Also ideas of how to divide a system into aspects and how
to use system analyses prior to implementation. The paper was written
by a system implementer as he needed to know the requirements which
must be satisfied. | took part in the discussions and implementation
based on my aspect-oriented analysis.

C For publication C the author was the main contributor as she designed
the modelling and verification techniques being used in home
rehabilitation system testing. My idea involved aspect-oriented model-
based technique which allows adding incrementally new design aspects
along improving the tele-rehabilitation system quality.

D In publication D the author presents a model-based testing approach to
support automated test generation with aspect-oriented concepts. This
includes test model building using aspect-oriented constructions that
make it possible to generate a set of test cases according to an aspect
related coverage criteria.

11

Abbreviations

AC Aspect Coverage

ALM Application Lifecycle Management

AO Aspect-Oriented

AOM Aspect-Oriented Modelling

AOP Aspect-Oriented Programming

AOSD Aspect-Oriented Software Development

AOT Aspect-Oriented Testing

APC Aspect Path Coverage

BPM Business Process Modelling

BT Bench Testing

CE Coverage Expression

CPS Cyber-Physical System

ETSI European Telecommunication Standards Institute
HRS “Home rehabilitation System” - Telecare system
HSA Heterogeneous System Architecture

IEEE Institute of Electrical and Electronics Engineers
I0CO Input-Output Conformance

JPC Join Point Coverage

LTL Linear Temporal Logic

LTS Labelled Transition System

MB Model-Based

MBT Model-Based Testing

MEC Model Element Coverage

PCD Provably correct development

RMT Requirements Management Tool

SAC Strong Aspect Coverage

SDL Specification and Description Language

SJPC Strong Joint Point Coverage

SAPC Strong Aspect Path Coverage

12

SMEC
Sp0O2

SUT
SysML
TCTL
UML
Uppaal TA
V&V
WAC
WAPC
WJPC

Z

Strong Model Element Coverage

The percentage of haemoglobin in the blood that is saturated with
oXxygen

System Under Test

Systems Modelling Language
Timed Computation Tree Logic
Unified Modelling Language
Uppaal Timed Automata
Verification and Validation
Weak Aspect Coverage

Weak Aspect Path Coverage
Weak Join Point Coverage

The Z notation — a formal specification language for describing
and computing systems

13

Terms

Bench testing

In the context of software or firmware or hardware
engineering, a test bench is an environment in which the
product under development is tested with the aid of software
and hardware tools.

Cyber-
Physical
Systems

CPS are integrations of computation, networking, and
physical processes. Embedded computers and networks
monitor and control the physical processes, with feedback
loops where physical processes affect computations and vice
versa.

Heterogeneous
(Hardware)
System
Architecture

HSA is a cross-vendor set of components that allows for the
integration of central processing units on the same bus, with
shared memory and tasks.

Provably
correct
development

PCD has a precise (mathematical) specification for software
that provably (in machine check-able way) fulfils the
software requirements.

System Under
Test

SUT is a system being tested. SUT can be a full system of
software-controlled hardware, a system of hardware alone,
or even a system of SUTs. A SUT can also be a single
software unit, or a collection of software units.

14

List of Figures

Figure 1.1 Taxonomy of testing types [15].....cccceveieiiiiiiiieiese e 18
Figure 1.2 Model-based testing process [14]........ccccuvrereieneieininesese e 22
Figure 2.1 MBT WOIKFIOW..........ccoiiiiiiicc e 33
Figure 2.2 Online MBT execution architecture: Uppaal Tron [52] 35
Figure 2.3 The Uppaal TA model of ATM ..o 38
Figure 2.4 Traversal of the symbolic state space [51]ccccoeveiiiiiiniinirene, 39
Figure 3.1 Model fragment with channel synchronizationcc.ccceeevenen. 45
Figure 3.2 Generic adapter (top) and generic advice (bottom)............cccccevneeee. 45
Figure 3.3 Uppaal TA model patterns for edge and location refinement........... 50
Figure 3.4 AO model 0f the ATM ..o 50
Figure 4.1 The placement of body area sensors of HRS............ccccceovevivienn. 55
Figure 4.2 The treatment plan adjusting software agent............cccccevevereininnnene 58
Figure 4.3 Base model of the HRS home use SCeNario.........c.ccoceveververieiinnnnne 60
Figure 4.4 Safety aspect MOdel...........cccveveiiiicii i 62
Figure 4.5 Exercising quality aspect Model...........ccccevveieveiieeiece e 64
Figure 4.6 Exercising performance aspect model...........ccooviviiiiinencicienne 65
Figure 4.7 Full monolithic model of HRS ..., 72
Figure 4.8 Test coverage items labelled with Boolean assignment
I 0 Rl I 10 T PP 73
Figure 4.9 Labelling of exercising quality advice templates with traps 74

Figure 4.10 Labelling of the exercising performance advice template with traps.. 75
Figure 5.1 Model transformation for bisimulation verification.................... 84
Figure 5.2 Non-aspect-oriented model of the HRS..............ocoiii e, 87
Figure 5.3 Non-AO model of the HRS enhanced for bisimulation checking.....88

Figure 5.4 The dependency of test purpose specification effort on the number of
traps k and number of @SPECES M.......ccooviiiiiiiiii s 91

Figure 5.5 The dependency of test generation effort on the number of logic
connectives in the test coverage formula ¢ and the number of aspects m......... 94

15

List of Tables

Table 3.1 Summary of AO Test coverage Crteria..........ccoovevevierivereseciecreennn, 53
Table 4.1 Model templates by use case actors and aspects...........cccccoevrerernenes 59
Table 4.2 Aspect models correctness verification resourcesccocceceeeeeneen. 71

Table 4.3 Summary of test generation effort on AO model compared with non-
AO MOEL ... e et 76

Table 5.1 Auxiliary channels for checking AO and non-AO models
DISIMIIANILY ... 85

16

1 INTRODUCTION

1.1 Chapter overview

This chapter introduces the general context of the thesis. That is the development of
aspect-oriented models for model-based testing of cyber-physical systems. It summarizes
the methodology issues, the motivation, the research context and contribution of the
thesis, and also describes how thesis is organized.

1.2 The Role of Software testing

Software development processes regardless of the specifics of the underlying
process model — Waterfall [6], V-model [7], Spiral [8], Agile [9], etc. — involve
activities such as requirements analysis resulting in a software requirements
specification, software design, implementation, verification and validation,
integration, deployment (or installation), and maintenance.

According to the standard IEEE Std 1012-2012 testing is considered to be part
of the software verification and validation (V&V) processes. While verification
focuses on evaluating whether the software matches its specification, the
validation focuses on assessing that the specification matches the customer’s
requirements. As stated in [10] software testing constitutes up to 50 percent (or
even more in mission critical applications) of the total development costs of
software. Authors of [11] report that the root reasons of 56 percent of all defects
identified in software projects are introduced in the requirements phase. They
profess that low software quality is mainly due to the problematical test coverage
and incorrect requirements. In addition, 50 percent of incorrect requirements are
caused by incomplete specification and another 50 percent by unclear and
ambiguous requirements. From the above it follows that any increase in
productivity of testing processes has a strong impact on the productivity of the
whole development process.

Another factor that increases the importance of V&YV in the development
processes is the change of nature of software to be developed. While modern
software becomes more complex it requires new sophisticated testing
technologies. In the process of developing complex networked systems such as
Cyber-Physical Systems (CPS) or banking systems the problems of inherent
concurrency over the wide spectrum of services and heterogeneous architectures
needs to be addressed. The heterogeneous components introduce functional,
timing, safety, performance, and security features on multiple scales. In
particular, in multi-critical (e.g. safety-, security-, time-critical) applications the
networking of feature rich components needs to be paired with the predictability
of the system’s emerging behaviour to guarantee the required quality of service.
This is almost impossible to achieve without design validation methods that are

17

relevant and scalable enough to capture the product’s usability features in their
entirety.

While the features of functionality have gained major attention in traditional
software development approaches, achieving the predictable timing of critical
services in the presence of heterogeneous and evolving distributed architectures
still remains a challenge [12]. Therefore, the traditional validation methods like
bench testing or encasing alone, although helpful and widely used, have become
inadequate for CPS systems. As stated in [13] software quality and software
process productivity issues can be mitigated with model-based techniques and
tools that operate on a higher level of abstraction than typical engineering
approaches.

MBT, as one group of model-based techniques, provides the opportunities for
test automation and thus reducing software testing effort [14]. MBT suggests the
use of abstract models for specifying the expected behaviour of the SUT and
automatically generating tests from these models. According to the testing
taxonomy depicted in Figure 1.1 [15] MBT captures typically the full Level-
Accessibility plane and extends through all categories along Aspect dimension.
MBT advantages expose most clearly in Integration and System level testing.

Types of Testing
Level

system

integrafrion

| »

| —
robustness white box blackbox Accessibi
performance IlTy

reliabili

functional
behaviour

Aspect
Figure 1.1 Taxonomy of testing types [15]

From the test generation-execution point of view, MBT makes use of the
models to generate tests either in offline or online mode. The online testing
methods differ in how the test purpose is defined and how the test stimuli are
selected on-the-fly. Also online test execution requires more run-time resources
for interpreting the model. In offline testing, it is required to explore the whole
state space of the model of SUT prior to the tests being generated. In online
testing, the decisions about the next test actions are made by observing the current
output of the SUT.

18

Regardless the capability of abstraction the key issues with model based
methods is still their scalability. The test models of real-world problems and
systems rapidly grow to such an extent that managing the complexity without
using relevant modularization techniques becomes impractical. To introduce
modularity the test models can be structured using different criteria: architectural
entities, e.g. UML objects and classes; functionality guided use cases, e.g. UML
methods; specification refinement [16]; aspect-oriented mechanisms; design
viewpoints [12] and other techniques. In all cases the modularization attempts
have been driven by the need to improve the comprehension of models and to
reduce the complexity of test generation and getting the test cases to a manageable
size, both time-wise and computationally.

Referring to [17], subsystems should have a maximum cohesion and a
minimum coupling wherever possible. Cohesion measures the dependence
among classes, e.g. high cohesion means the classes in the subsystem perform
similar tasks and are related to each other (via associations), low cohesion means
lots of miscellaneous and auxiliary classes, and no associations. Coupling
measures dependencies between subsystems. In the case of high coupling,
changes to one subsystem will have a high impact on the other subsystem (change
of model, massive recompilation, etc.); in the case of low coupling, a change in
one subsystem does not affect any other subsystem.

In this thesis we focus on the model-based conformance testing where the SUT
is considered as a “black-box”, i.e. only its inputs and outputs are assumed to be
externally controllable and observable respectively. The internal behaviour of the
system is abstracted away. The aim of black-box conformance testing, according
to [14], is to check whether the behaviour observable on the system interfaces
conforms to that given in the system requirements specification. During MBT a
tester executes selected test cases (extracted from the system requirements model)
by running SUT in the test harness and emits a test verdict (pass, fail,
inconclusive). The verdict shows test results in the sense of a conformance
relation between SUT and the requirements model. A “standard” conformance
relation used most often in MBT is Input-Output Conformance (I0OCO)
introduced by Tretmans [18]. The behaviour of an IOCO-correct implementation
should respect, after some observations, the following restrictions:

- the outputs produced by SUT should be the same as allowed in the
requirements model;

- if a quiescent state (a situation where the system cannot evolve without
an input from the environment) is reached in SUT, this should also be the
case in the requirements model; and

- any time an input is possible in the requirements model, this should also
be the case in SUT.

Following the general goal of MBT, the aim of the thesis is to develop a
method for deriving tests from formal specifications so that the tests are well-

19

targeted towards achieving the test purpose, i.e. providing measurable coverage
in terms of test items. This allows defining the relative completeness of the tests,
e.g. covered states of the test model. Also, the derived tests should be cost/time
efficient, i.e. performing with possibly a low need of resources. The derived tests
should be correct, which means that they should not detect errors in correct
implementations. The derived tests should be meaningful, erroneous
implementations should be detected with a high certainty [17]. To address the
problems of complexity and traceability in testing the thesis extends the model-
based conformance testing with the concepts of Aspect-Oriented Modelling
(AOM) and elaborates the test coverage criteria that together form the theoretical
basis — for Aspect-Oriented Testing (AOT).

More specific goal of the thesis is to introduce the principles of AOM in terms
of Uppaal Timed Automata (Uppaal TA) and to define a method for constructive
development of well-structured models and test purpose specifications by
referring to the attributes of aspect models symbolically. The Uppaal TA that are
proposed for AO modelling, and test development, support the specification of
not only functional but also timing features of SUT. The theoretical results of the
thesis are validated using a practical case study “Home rehabilitation System”
(HRS). The quantitative evidence of the advantages provided by the method are
exposed using practical measurements of work put into the test development as
well as analytical reasoning on the complexity of modelling and test generation
processes.

The motivation of the dissertation is based on the following research
questions:

e How the existing aspect-oriented requirements engineering methodology
can be applied for aspect-oriented test model construction?

e What model transformations are needed for constructing AO test
models?

o How to specify the test purpose and test coverage criteria on AO test
models?

o How to express the AO test purposes symbolically?

e Given an AO SUT model and AO test purpose how to verify the
correctness and feasibility of the testing tasks?

o How AO MBT improves the productivity of the overall testing process?

1.3 The role of modelling in model-based testing

In model-based software engineering the development processes are based on
system models. These models describe a system from different viewpoints and
on different levels of detail. Due to the multitude of viewpoint models their
composition is inevitable in the system integration phase where the models need
to be checked for consistency and integrity of crucial design aspects.

20

Model-based testing is a formal, systematic verification method to validate
systems design by generating test cases from the system models. A collection of
test cases used to show that SUT has a specified set of behaviours is called a test
suite. The creation of a test suite is directed by a pre-defined set of coverage
criteria. Typically the system development process includes modifications and
updates of design requirements. Therefore, the initially created model and test
harness need to be modified incrementally to match these implementation
updates. Keeping the specification and implementation increments synchronised
is the main goal of continuous integration methodologies [5]. Such an incremental
software development allows one to initiate the testing of implemented features
as soon as these updates are inserted into the earlier version.

Early discovery and correction of design faults is one of the main factors of
reducing the development costs: catching errors in models is significantly cheaper
than finding them in the final system or even in a prototype implementation.
Successful designs rely on the separation of concerns based on time scales,
interface protocols, imposition of constraints, and other mechanisms to facilitate
a decomposition of the design problem into manageable and tractable sub
problems [23].

As stated in [24] MBT is relevant in the field of cyber-physical systems where
the complexity of interactions cannot be addressed properly without test suites
generated and executed automatically.

Test models. MBT relies on formal models. The models are built from the
requirements of the system in order to describe the expected behaviours. The
model can be presented, for example, in terms of the input sequences accepted by
the system, the actions, and the outputs performed by the system. Since the model
is a description of the application behaviour, the model should be understandable
by testing people who decide on test goals. Moreover, the model should be
precise, clear, and should be presented in a formal way for consistency and
feasibility checks.

Another main purpose of using models in MBT is that the model of the SUT
is used to retrieve a test suite consisting of a set of test cases. The test cases are
selected by means of a test case specification. The standard ETSI ES 202 951
v1.1.1 (2011-07) “Requirements for Modelling Notations” is used to define
characteristics of MBT [37]. These characteristics concern main phases of the
MBT process: SUT and its environment modelling, test purpose specification that
defines test coverage criteria, test generation and test execution. An example of
MBT process is depicted in Figure 1.2.

21

(somttion | == O (Requirements)
" crterta | 3 f
M R
&) l l (1
Taat Cass | ;j ﬁj
| specincation E
L) e Mol
7
[Test |
W a) o) T
[f
Todl | verdicts|
senpt |51 A
Agapior + Env //3'['5_2]

Figure 1.2 Model-based testing process [14]

Modelling phase. In the modelling phase the requirements to SUT can be
represented under three different perspectives:

- modelling the data input to the SUT (data model);

- modelling the SUT based on the interactions with a potential user (tester
model); and

- modelling the dynamic behaviour of the system (design) itself.

A wide range of modelling languages, such as UML, SDL, Z, various state
machines and logics, each with their own notations, semantics, and pragmatics,
have established a niche for themselves [25, 26, 27, 28, 29, 30].

By the rigour of formal semantics the models used in testing can be classified
into formal, semi-formal and informal models. The models with strict formal
semantics provide certainty that if the models represent systems correctly all
properties verified really hold. However, formal models have some inherent
limitations for MBT, in particular, their usage for test generation does not scale
to large systems. Due to the high effort required their usage is typically limited
to critical software domains such as automotive, medical, military, and critical
infrastructure systems. The general purpose software industry typically uses
semi-formal modelling languages such as Unified Modelling Language (UML),
Systems Modelling Language (SysML) [32], and others which are very
expressive and intuitive to designers. Regardless of the lack of complete formal
semantics they are preferred for their elaborate graphical representations and tool
support. Informal models are used to communicate the main ideas but they lack
clear semantics and are not suitable for the development of critical systems.

22

MBT techniques are oriented mostly towards black-box testing [31].
Therefore, the models used in testing have to be relevant for describing
interactions between SUT and its environment. These interactions are represented
as sequences of test inputs to SUT, and expected SUT outputs which are reactions
to these inputs. The de facto standard modelling language is UML. Regardless of
the wide usage of UML, a considerable amount of testing theory related research
has been conducted on formal models, in particular on different classes of state
machines. For an exhaustive survey we refer to [33].

Test coverage criteria. An important feature that the test modelling
formalisms are selected by is their relevance for representing test coverage
criteria. The modelling notations suggest the kinds of structural coverage criteria.
For example, with pre-post condition notations, cause-effect coverage or
disjunctive normal form coverage of the post-condition are the common coverage
criteria, while for algebraic model notations, the coverage of the axioms is an
obvious coverage criteria [14]. Examples of coverage criteria commonly used in
state modes are all states, all transitions, all transition-pairs, and all cycles. More
complex criteria such as all paths, branching condition coverage etc. are
aggregates of simpler ones. In general, a structural coverage criterion refers to a
set of structural items, which are called coverage items.

Although the structural coverage items refer to the structural elements of the
SUT (either program or its models) they can be used at the same time also for
measuring the behavioural coverage since the structural coverage items specify
the behaviours that ensure their coverage. In that sense strict separation of
structural and behavioural coverage criteria is not possible.

The problem of generating a test case for a coverage criterion can be treated
as a reachability problem. These criteria are based on the specification of control
flows represented by the model in which the bugs may be exposed. Authors of
[34] emphasize that extracting test selection criteria from models has been
inspired by the well-researched field of code coverage. In white-box testing the
code coverage criteria are used for measuring the sufficiency of a test suite and
deciding when to stop testing. In black-box testing these two ideas are applied to
models of externally observable SUT behaviour. The model coverage criteria are
applied to measure the adequacy of the test suite.

While the structural elements of the formal model used in MBT constitute the
lowest layer of coverage items, superimposing some structuring principle
(modules, aspects views, etc.) upon such models generates 2™ order coverage
items in the model. The pragmatic viewpoints inspired by such model structures
introduce the possibility of defining coverage items which may be aggregates of
the elementary items. The model modularization related aggregates of coverage
items are often closer to user domain related notions than ground level model
elements and provide better traceability back to the terms understandable to
domain engineers (this idea will be elaborated further in Chapter 4).

23

Test case generation. Given a model of the SUT and the test case
specification as an environment model, usually with some additional constraints,
the test cases can be generated by using graph algorithms, model checking,
property checking, symbolic execution, or deductive theorem proving. Random
generation of tests is done by sampling the input space of a system. In the case of
reactive systems, finite traces can be selected randomly by sampling the input
space and applying these inputs to the model of the SUT in order to infer the
expected output from model. A random walk through the model may result in test
suites with different characteristics. Random walks can also be performed on
usage models, and obviously, this results in certain transition probabilities for the
SUT [38]. In this dissertation we apply either random walk or (coverage) property
satisfying test sequences. As for our contribution we extract those coverage
criteria from AO Uppaal TA models and generate test sequences by Timed
Computation Tree Logic (TCTL) model checking.

Offline — Online test generation. MBT can be applied for both off-line and
online generation of test cases. In offline testing the test suites are generated
before running the tests and execution is a separate step. It is possible to create a
tool chain: modeller, test generator and test executor. Offline test generation
typically presumes extensive state space exploration and computations to
generate test input data to achieve required coverage.

In the case of online testing, the test generation procedure derives only one
test input at a time from the model and feeds it immediately to the SUT as
opposed to deriving a complete test case in advance as in off-line testing. In online
testing, it is not required to explore the whole state space of the model of the SUT
every time the test stimulus is generated. Instead, the decisions about the next
actions are made by observing the current output of the SUT. However, online
test execution requires more run-time resources for interpreting the model and
choosing proper test stimuli to reach the test goal in non-deterministic models.
Thus, the online testing methods differ in how the test purpose is defined, how
the test stimuli are selected on-the-fly, and what the planning effort is behind each
choice [24].

Automated test execution. A number of model-based test execution tools has
been reported in different categories: commercial, proprietary, and academic ones
[32, 35, 40, 41, 42]. In the following we examine briefly only few tools which
have had pioneering role in MBT.

AGEDIS —an acronym of Automated Generation and Execution of Test Suites
for Distributed Component-based Software - was a research project coordinated
by IBM Research. AGEDIS includes an integrated environment for modelling,
test generation, test execution, and other test related activities. It also provides
the framework and tools that support MBT methodology and test automation. In
addition to test preparation and execution, AGEDIS also includes a feedback loop
that integrates coverage and defect analysis tools. Three types of information
are used to describe the system under test: the behavioural model of the

24

system, the test execution directives which describe the testing architecture of
the SUT, and the test generation directives which describe the strategies to be
used in testing. The SUT behaviour and testing architecture are specified
using a UML modelling tool equipped with the AGEDIS UML profile (e.g.
Objecteering UML Modeller), whereas test generation primitives are input via
an XML editor (e.g. XML Spy).

Conformiq Creator is a commercial type of MBT tool. Creator uses a custom
modelling language which is based on activity diagrams and a graphical domain
specific action language. Models can be created via an import from existing assets
(e.g., flowcharts, BPM and manual tests), requirements can be downloaded from
the Requirements Management Tool (RMT), and generated tests can be exported
to Application Lifecycle Management (ALM) tools, Excel, various scripting
languages, or test execution with Conformiq Transformer. In Conformig
Designer the models can be created as UML State Machines and in Qtronic
Modelling Language (QML). Tests can be exported to TTCN-3 language format
and organized by Conformiq’s proprietary test management tool. Conformiq Test
Generator allows creating test cases from UML state charts, which represent a
high-level graphical test script. It has to be stressed that the state charts do not
represent the actual SUT but only the test script, which means that the tool is
more a test script editor.

The TorX tool is a prototype testing tool for conformance testing of reactive
software. JtorX is a reimplementation of TorX in Java with additional features. It
can be used for model-driven test derivation and execution. The Labelled
Transition System (LTS) specification of SUT can be given in multiple formats,
and it can interact on-the-fly with SUT. There are four main components:
Explorer, Prinmer, Driver, and Adaptor. Explorer provides access to specification
(either the Model being checked or a Test Purpose). Explorer components are
specific to the formalism used in the specification. A Primer provides access to a
formalism-independent version of the model, in which states that are not of
interest (e.g. if they have been analysed in a previous test run) are ignored. The
Driver controls a test run, as directed by the user, and records the test results. An
Adaptor provides the connection between the Driver and SUT. Adaptor
components are specific to the type of SUT and are model-dependent. The TorX
environment currently allows automatic test derivation and execution for the
LOTOS, PROMELA, and SDL languages.

The Uppaal tool family [52], supports modelling, validation and verification
of real-time systems. The modelling formalism Uppaal Timed Automata is
appropriate for systems that can be abstracted as a collection of non-deterministic
processes with a finite control structure and real-valued clocks, communicating
through channels and (or) shared data structures. Typical application areas
include real-time controllers, communication protocols, and other systems in
which timing aspects are critical. For online conformance testing the test

25

execution tool Uppaal Tron [52] and its extension for distributed testing DTron
[77] are exploited.

When comparing the MBT tools referred above, then AGEDIS, Conformiq
and TorX rely on formal models that either do not have an explicit notion of
metric time (Agedis, Conformiq) or have the notion of clocks in the limited form
of safety timed automata (TorX). Since Uppaal timed automata extend the
original timed automata to capture the notion of time intervals combined with
data types and functions Uppaal modelling formalism and tools are chosen in this
work for testing systems with parallel processes and non-trivial timing and data
constraints.

1.4 The correctness of model-based test development

Though MBT workflow relies inherently on the techniques of model engineering,
the verification of the test development process and its intermediate results is not
generally a compulsory part of MBT. The provably correct development (PCD)
approaches, in contract, tie the development process with obligatory verification
and validation steps or rely on correct by construction approaches [36]. Like in
software development, applying PCD processes in test development is motivated
by the need to improve the trustworthiness of the process products. In MBT it
means showing formal correctness of test increments at each of their development
phase. In this thesis we focus on the model-based testing of systems with timing
constraints, and in particular, incorporating timing aspects into AO test models.
Verification of such test models is important not only from the point of view of
expressing adequately the properties of SUT but also to assure that their testing
results can be trusted and traced back to the root causes, either in the requirements
or in the implementation.

Model-based analysis of test models can reveal the design errors already
before any testing. Also, it if the validation of test models reveals the consistency
and/or relative completeness errors in them.

Considering the pragmatic aspects of modelling, it would be a great advantage
from a modelling effort point of view to extract test models directly from those
used for design specification. Unfortunately it is not always possible because the
test models needs to represent only information of a given test case. Since the
design models carry a multitude of implementation details extracting that which
is only needed in testing may prove to be impractical. Another reason preventing
the use of the same models for design and testing is the need for keeping design
and test activities independent. Otherwise, faults in requirements modelling
would propagate to both design and testing. Therefore, to avoid making same
faults the test models are developed and verified independently from the design
models.

The model validation techniques can be divided into simulation based,
algorithmic state space exploration and deductive methods. The first hand rough

26

validation method of models is visual inspection and simulation which are
intuitive but not exhaustive. By simulating the test scenarios on models we can
detect the inconsistences with the behaviours expected by end user.

The second group of analysis techniques relies on model state space
exploration [20]. For example, model checking can explore the state space of test
models and discover unintended behaviours, such as states and transitions that
the test case never reaches. The exploration can also answer concretely
formulated questions specified as model checking queries. So model checking
can perform safety analysis that identifies unsafe states and a liveness analysis
that identifies dead states. Model checking queries are typically temporal logic
expressions interpreted on separate executions (in the case of linear temporal
logics) or on reachability trees (in the case of computation tree logics) of models.
The liveness properties are expressed as reachability constraints of legal model
states and safety properties as non-reachability of illegal or unintended states.
Typically deadlocks and live locks indicate violation of liveness properties. Such
a model-based analysis can reveal the design errors of tests before their execution.

In addition to standard safety and liveness properties verifiable in test models
AOM introduces additional model correctness conditions. For instance, when
studying the correctness of AO models we have to be sure that representing the
system aspect-wise provides the same testing results as that of doing it with
monolithic non-aspect models. This group of model correctness properties is
called aspects non-interference properties. Both the AO model consistency and
non-interference analysis are addressed in the thesis. This topic will be detailed
in Sections 3.2.2 and 3.2.4.

1.5 Main hypothesis and problem statement
1.5.1 Hypothesis of the thesis

As claimed in [39] aspect-orientation as one of the model structuring principles
allows improving the efficiency of model-based testing. This thesis explores this
generic hypothesis in the context of Uppaal Timed Automata by substantiating it
from following perspectives:

- Test model construction and update effort decreases compared to non-
AO models along with improving the model comprehension due to
reduction in the number and in the severity of modelling errors and the
need for their corrections;

- Defining the formal semantics of AO models and model transformations
used in AO model construction allows applying compositional test
generation and execution;

- Aspect-oriented test cases are more compact and allow saving test
execution time (improved performance); and

27

- Defining the test cases and their coverage criteria relative to aspects
provides better traceability of the causes of bugs and locating them in the
AO requirements specification.

1.5.2 Research questions

To validate the hypothesis stated in Subsection 1.5.1 the following research
problems have to be answered in the context of Uppaal TA formalism:

e How AO MBT improves the productivity of the overall testing process?

e How the generic aspect-oriented model engineering methodology can be
instantiated for aspect-oriented Uppaal TA models?

e How to specify the test purpose and test coverage criteria in AO test
models?

e How to express the AO test purpose symbolically?

e Given an AO SUT model and AO test purpose how to verify the
correctness and feasibility of the tests?

1.5.3 Problem statement

To answer the research questions following tasks have to be solved:

e providing experimental evidence based on a real life case study, that AO
testing improves the efficiency of MBT compared to the methods that are
based on non-aspect oriented (monolithic) models;

e developing the AO test model construction method for Uppaal TA that
includes the definition of join points, pointcut expressions and weaving
mechanism to compose the base and advice models of weakly invasive
[53] aspects;

e formulating the correctness conditions of AO models and the conditions
that allow applying AO models for compositional testing; and

e defining the AO test coverage criteria for Uppaal TA expressible in
TCTL.

1.6 Methodology

The research methodology applied in this thesis relies on the techniques of formal
modelling and model-based testing. Specifically, the methodology covers formal
techniques of the following subdomains:

e mapping AO programming constructs to AO modelling constructs;

e representing the MBT coverage criteria in terms of AO model structural
elements;

e interpreting abstract AO tests in terms of timed traces of AO models;

28

e expressing test coverage criteria symbolically using elements of AO
models as terms of test coverage expressions; and

e executing the abstract conformance tests in the online test execution tool
Uppaal Tron and its extension for distributed testing Dtron.

1.7 Contribution of the thesis
The main contribution of this thesis is four-fold:

e An original aspect-oriented model engineering methodology is
introduced in MBT. This methodology is based on an aspect-oriented
requirements engineering paradigm that results in three advantages:
testability of SUT aspect-related quality attributes, a simple rule for
composition, and better comprehension of test models. An example is
presented as an exploration of the practical utility of this methodology.

e A set of aspect-oriented test coverage criteria is defined. That gives
meaningful automatic test design options based on SUT models which
are defined by quality attributes related to aspects. It is shown that
coverage criteria can be formalized in temporal logic TCTL.

¢ Weaving of aspects is implemented as a set of model superposition
refinement operators. AO tests can be generated automatically by
running TCTL model checking queries on woven models and applying
resulting witness traces as test sequences of AO test cases.

o A developed MBT method which defines the AO test coverage criteria
and provides an AO test generation algorithm is validated on a realistic
case-study.

1.8 Structure of the thesis

The thesis main results are published in four research articles attached in
Appendices A, B, C, and D.

The structure of the thesis, after introducing the research context in this
chapter, is as follows:

Chapter 2 presents theoretical preliminaries of aspect-oriented testing by
highlighting the principles of aspect-oriented modelling, the syntax and semantics
of Uppaal TA, defining the notions of conformance relations and clarifying the
meaning of aspect-oriented conformance testing.

Chapter 3 elaborates the aspect-oriented model construction technique for
Uppaal TA and compares two aspect weaving approaches proposed for Uppaal
TA. The correctness conditions of weaving are defined in timed temporal logic
TCTL. Finally, the aspect-oriented test coverage criteria are defined and it is
shown how test sequences are generated from them using model checking.

29

Chapter 4 exemplifies how the theoretical results are applied in a practical
case-study - Home Rehabilitation System.

Chapter 5 provides the methodology of demonstrating the advantages of
aspect-oriented testing compared to non-aspect oriented approaches. The method
allows verifying the bisimilarity of non-aspect oriented and aspect-oriented
Uppaal TA models relative to test interface behaviour. This is necessary for
comparison of models from different perspectives such as model update effort,
test purpose specification effort, test generation effort and test execution effort.
This analysis is done analytically and the results confirm the experimental
evaluation results presented in Chapter 4.

The conclusion summarises the contribution of the thesis and outlines the open
issues and suggestions for future research.

30

2 PRELIMINARIES

2.1 Chapter overview

This chapter provides technical preliminaries and definitions which are used to extend
the model-based testing with AO concepts. Aspect-Oriented Modelling, in Section 2.2,
and Model-Based Testing, in Section 2.3, are two methods which tie together concepts
used in Uppaal TA for testing. Section 2.4 elaborates the principles of MBT in the context
of aspect-oriented testing. Section 2.5 provides the definition of semantics of Uppaal TA
and Section 2.6 introduces the conformance relation and notions of conformance testing
with Uppaal TA. Section 2.7 discusses the related work on AOM and AOT. The underlying
concepts of each chapter are introduced in publication A.

2.2 Aspect-Oriented Modelling
2.2.1 Basics of AOM

One way to manage with system complexity is the separation of concerns in its
description. A concern is a part of the problem that is treated as a single
conceptual unit. The essence of AO is articulated the best in Aspect-Oriented
Requirements Engineering (AORE) methodology. It is the methodology that can
help to improve requirements completeness, maintainability, and reduce the cost
of software development. AORE is suitable for distributed system development
processes lacking a single “holistic view” to the system and for integration of
independent, goal-oriented tasks. AORE focuses on resolving issues with the
scattering and tangling of requirements to improve the modularization,
maintainability, and completeness of the models of requirements. The model is
put together using different stakeholders’ viewpoints and AORE analysis
techniques. It is important in the analysis phase to define the application
decomposition and identify the inventory of concerns that lay the ground for the
modularization and the structure to reach a harmonized requirements model [43].

Aspects are usually defined as “units of system decomposition that can be
either functional or non-functional”. An aspect in the requirements is a concern
that crosscuts requirements artefacts. Early identification and managing aspects
helps to improve modularity in the requirements and in architectural design and
to detect conflicting concerns that need resolving by finding feasible trade-offs.
In addition, identifying aspects at one stage provides benefits downstream.
Knowing the requirement-level aspects helps the architect to design a better
system, whereas, knowing the architecture-level aspects helps producing a more
robust implementation [44].

While AO originally has emerged in programming [2, 19], it now stretches
also over all other phases of model based development. Like in requirements

31

engineering, also in all other phases of software development (AOSD) the aspect-
orientation provides improved separation of concerns, ease of maintenance,
evolution and customization, and greater flexibility in development [3]. In a
survey of industrial projects [45] it is outlined that the main benefits of AOSD
software development are substantial reduction in model size and improved
design stability.

AOSD aims at addressing crosscutting concerns by providing means for their
systematic identification, separation, representation, and composition.
Crosscutting concerns are encapsulated in separate aspects and composition
mechanisms are later used to weave them back with other modules. In particular,
AOSD focuses on the modularization and composition of crosscutting concerns.

The term crosscutting concern refers to properties of software that cannot be
effectively modularized using traditional software development techniques, such
as object-oriented methods. Typical examples of crosscutting concerns are non-
functional requirements, such as security, safety, fault tolerance, and persistency.
However, crosscutting concerns can also be functional requirements. Aspects will
allow the modularization of crosscutting concerns that cannot be encapsulated by
a single use case or viewpoint, and are typically spread across several ones.

Aspect-oriented modelling (AOM) [21, 46] is a paradigm inspired by AOSD
and it also promotes the idea of separation of concerns in order to build more
modular and easy to update specifications. In AOM, an aspect describes a
particular concern of the system from a particular viewpoint, allowing the
developers to focus on individual features of the system in isolation. Regardless,
AO concepts are well-known, for almost two decades the main body of AOSD
and AOM technologies provide conceptual frameworks rather than define a
rigorous interpretation of operations needed in AOM. Thus, the main research
challenges concerning AOM and applying AO concepts in testing can be
summarized as follows:

- How to unify the semantics of AO notions?

- How to hide the complexity of AOM composition mechanisms?

- How to exploit the AO notions and AOM composition mechanisms in
MBT?

It is generally assumed in AOM that introducing aspects starts from some base
model where aspects are not yet represented explicitly. Aspects can be modelled
separately and added to the base model incrementally in the form of advices.
Composing a base model with advices is called aspect weaving. An aspect can be
woven with a base model in many places and in different ways. Such places in
the base model are called join points. Pointcuts in the base model are the rules
which specify join points, i.e. where and under which conditions the aspects can
be woven. The composition rules or weaving directions tell how to weave the
advice at the join points which satisfy the pointcut specification.

In this thesis we present an AO modelling method for model-based testing in
the semantic framework of Uppaal timed automata (Uppaal TA). This choice is

32

motivated by sufficiency of expressive power and relevance of Uppaal TA for
specifying behavioral aspects and incorporate timing constraints as explicit
dimensions of aspects.

The rationale behind this work is to provide a) a rigorous constructive
approach to the weaving of aspects in the context of Uppaal TA and b) well-
defined coverage criteria for aspect-oriented testing by means of Uppaal TA
models.

2.3 Model-based testing

MBT is typically a black box testing technique where state machine models are
used as specifications of observable interactions between SUT and its
environment. The goal is to replicate the behaviours of the model in SUT by
sending model generated test stimuli to SUT and observing if reactions of SUT
conform to those specified in the model.

The development process of model-based tests includes typically five phases:
modelling of SUT, specification of the test purpose, test generation, deployment,
and execution. A waterfall shape test development process model is shown in
Figure 2.1.

Test design Execution
1
f |
MBT workflow SUTIO
_ spec.
modelin - est
& — X : purpase
| Test purpose g
| specification [Abstract
. X . test case
A | Tester -
1 i i xecutable
| generation | e g ek

AN Test .
| deployment _[

_—

N

Test
execution

Figure 2.1 MBT workflow

A test model is constructed based on the test requirements and the test plan, at
first. The model is usually an abstract, partial presentation of the expected
behaviour of a SUT. The test model is used to generate the test cases that together
form an abstract test suite. In principle, the test models can represent an infinite
set of SUT behaviours. Therefore, test selection criteria, specified as test purpose
are meant to select a finite and practically executable set of proper test cases. For

33

example, different model coverage criteria, such as all-states, all transitions,
selected branching points etc. can be used to derive the corresponding test cases.

The coverage of model structural elements (states and transitions) can be used
also as a measure of thoroughness for a test suite. Thus, a test purpose is a specific
objective (or property) that the tester would like to test, and can be seen as a
specification of a test case. It may be expressed in terms of a single coverage
item, scenarios, duration of the test run etc.

Let us consider a requirement “Test a state change from state sa to state sg” in
the model M®VT. For this purpose a test case should be generated that, when
starting from the initial state so, covers the specific state transition in MSUT. At
first, it requires that the test drives SUT to state sa, then specified transition is
executed and when sg is reached the test should terminate in some safe state of
MSUT.

In case of non-deterministic systems a single precomputed test sequence may
never reach the test goal, and instead of a sequence we need an online testing
strategy that is capable of reaching the goal even when SUT provides non-
deterministic responses to a test stimulus. The issue is addressed in [47] where
the reactive planning online tester synthesis method is proposed.

In the third phase, the abstract test suite is generated from the model consisting
of SUT and environment component so that the test purpose can be reached by
executing the test suite. This is typically done using a transformation tool which
translates each abstract test case into an executable test case. The abstract test
cases are deployed in the test execution environment by transforming them
directly into an executable test scripts or by introducing test adapters which map
symbolic model inputs to executable ones and the concrete outputs of SUT back
to symbolic form to compare them with ones given in the model. An advantage
of the separation between abstract test suite and concrete test suite is the platform
and language independence of the abstract test cases. Thus the same abstract test
case can be reused in different test execution environments.

In the fifth phase, the deployed test cases are executed against the SUT. The
test execution will result in the report that contains the outcome of the test case
execution. After test execution, given results are analyzed and corrective actions
are taken in the implementation if needed. Hereby, for each test that reports a
failure, the cause of the failure is determined and the program (or model) is
corrected.

An example of the symbolic test execution tool for Uppaal TA is Uppaal Tron
[52] which conceptual architecture depicted in Figure 2.2.

34

Testing-UPPAAL

Environment | Implementation
model I o model

T
SNy

Simulated Environment

Implementation

Under Test

Adapter API
Physical API

Figure 2.2 Online MBT execution architecture: Uppaal Tron [52]

2.4 Aspect-Oriented Testing

In this section we explain the concepts of AO modelling that are applicable in
aspect-oriented MBT. The AOM allows one to organize the models so that they
address crosscutting requirements and corresponding test cases. AO testing can
be considered as an example of decomposition testing where the integration of
components is tested after components have been tested separately. In a MBT
context it means that test cases are determined only by the local contexts of advice
models and only when conformance of their aggregated interface behaviour needs
to be tested.

In an AO setting we address the test purpose in terms of aspects and aspect
related model structures. Thus, the test cases for a test purpose should be derived
from the aspect model(s) of concern where the rest of SUT specification is
abstracted away. Aspects may contain sub-aspects that have their own particular
test cases. In this manner the AOM and AOT can be applied recursively.

The efficiency of aspect-oriented verification and testing, depends on whether
these activities can be done compositionally, i.e., if it is possible to infer the
properties and test verdicts of the composition from the verified properties or
passed tests of components in separation. In order to enable a compositional
approach, we need to construct Uppaal TA specification in a modular way by
applying principles of AOM. Secondly, for compositionality the non-interference
between the components of aspect models needs to be ensured. In terms of AOM
it means non-interference verification between the aspects. In Chapter 3, we
detail how aspect non-interference can be introduced and verified in Uppaal TA
via assume-guarantee reasoning. The symbolic AO coverage criteria are
expressed in timed temporal logic TCTL to specify timing constraints and 1%
order logic formulas to specify state properties.

35

2.5 Uppaal timed automata
We start with the formal definition of Timed Automata as in [48]:
Definition 2.1 (Timed Automaton)

Assume X denotes a finite alphabet of actions a, b, ... and C a finite set of real-
valued variables X, y, z, standing for clocks. A guard is a conjunctive formula of
atomic constraints of the form x ~n forc € C, where ~ € {>,<,=, >, <}andn e
N* We use G(C) to denote the set of guard conditions on clocks of C.

A timed automaton A is a tuple {L, lo, E, I) where
— L is a finite set of locations (or nodes),

—lo € N is the initial location,

—E € LxG(C) x Ix 2°x L is the set of edges and

- I: L — G(C) assigns invariants to locations (here we restrict to constraints in
the form: x < n or x < n, where neN". For shorthand we write | —¢a, I’ to denote
edges.

We use a function known as clock assignment (or clock reset) that maps C to
non-negative naturals N*.

To model concurrent systems we extend the Definition 2.1 with synchronous
parallel composition. A network of timed automata is the parallel composition
Aq|| ...|| As of timed automata A, ..., An called processes and combined into a
single system by the CCS parallel composition operator with all external actions
hidden (this composition principle applies so called closed world assumption).
Synchronous communication between the processes is by hand-shake
synchronization using input and output actions (note that asynchronous
communication can modelled by using shared variables, this will be explained at
Uppaal TA below). To model hand-shake synchronization, the action alphabet X
is assumed to consist of symbols for input actions denoted a? and output actions
denoted a!. The internal actions of automata are denoted by & [48].

To adjust the modelling power and keep the analysis traceable for test synthesis
we limit the class of timed automata to rectangular automata where guard
conditions are in conjunctive form with conjuncts including besides clock
constraints also constraints on integer and Boolean variables and their arrays.
Similarly to clock conditions the propositions on integer variables, e.g. k are of the
formk ~nforn e N, and ~ € {>, <, =, >, <}. This extension to Timed Automata
is called Uppaal Timed Automata (Uppaal TA). The advantage of this extension
is that the model has rich enough modelling power to represent real-time and
resource constraints and at the same time to be decidable for reachability analysis.

36

Definition 2.2 (Operational Semantics)

The semantics of timed automata is defined by means of transition systems where
the configuration consists of the vector of concurrent locations (one for each
automaton in the network), valuation of state variables and the current values of
clocks. There are two types of transitions between states: the automata running in
parallel may either delay for some time (delay transition), or follow an enabled
edge (action transition).

To keep track of the changes of clock values, we use functions known as clock
assignments mapping C to the non-negative reals R*. Let u, v denote such
functions, and u € g means that clock values denoted by u satisfy the guard g. For
delay d € R let u + d denote the clock assignment that maps all x € C to u(x) +
d and for r C let [r — 0] denote the clock assignment mapping all clocks to 0
and agree with for the other clocks in C\r.

The operational semantics of timed automata is represented using timed transition
system where states are pairs (I, uy and transitions are defined by the rules:

—{l,uy >4 {l, u+dyifue I(l) and (u + d) < I(l) for a non-negative real d € R*
—(Lbuy > (',) ifl 5garl’,ueg,u” =[r=0Juand u’ e I(I’).

The graphical representation of a timed automaton is considered as a directed
graph, where locations are represented by the vertices and they are connected by
edges (see Figure 2.3). Locations are labelled with invariants. Invariants are
conjunctive Boolean expressions where the literals consist clock variables and
bound conditions of clock variables, e.g. x <n.

Edges are annotated with guards, synchronisations and updates. An edge is
enabled by a guard in a state if and only if the guard evaluates to true. Processes
(parameterized instances of Uppaal TA templates) can synchronize over
channels. Edges labelled with same channel symbol synchronise, e.g. in Figure
2.3, the edge ’WaitingCard—ldle’ of Customer automaton and the edge
‘printReceipt —Idle’ of ATM automaton synchronize over channel ’card’.
Updates express the change of the state of the system when the edge is executed,
e.g., update *Clockl = 0’ resets the value of model clock *Clockl’.

37

Customer Idle ATM idle

card?

card? card!
WaitingCard .
1 displayMenue printReceipt

choseExit!

finishTransaction? . :
choseTransaction!
startTransaction!
choseTransaction?

transactionsSlected

Clock1 <= const2

finishTransaction?

| performTransaction

Clock1 <= constt

startTransaction
Clock1=0

Figure 2.3 The Uppaal TA model of ATM

2.6 Conformance testing with Uppaal TA

During a test session, MBT tool Uppaal Tron [52] uses the Uppaal verification
engine to generate symbolic timed traces of the Uppaal TA model. For each
symbolic state, the next reachable symbolic states to visit are calculated, and the
actual next state is chosen randomly from those reachable via enabled transitions.
A test session ends when the model reaches a final state, the test duration expires,
or a violation of conformance between implementation and specification is
encountered.

A symbolic timed trace TTrS of an Uppaal TA model is a (possibly infinite)
sequence of symbolic states, each state being defined as a tuple (I, D, ¥), where [
is a locations vector, D is the set of clock constraints (zone) [49] and ¥ a vector
of non-clock variable values [50]. As shown in operational semantics, the
transition from a symbolic state to another can be either an action (ai) or a delay

(61).
_ ai /i _
(Li, Di, vi) — (1j,, ©j) 1)

In Uppaal TA, an action may be composed of an 1/0 event e and assignments
to variables of V. As a consequence, when the system state changes, we can
observe either an event e, updates of V, or both. An example is shown in Figure
2.4 [48]. The symbolic state a is visited after evaluating the guard g, performing
the variable update (in case of clocks, reset operation r), and observing an action
A. Similarly, states b, c, ..., d, e are visited after evaluating their respective guards
g, reset r and action event A. The state f represents an error state where Uppaal
Tron assigns a verdict failed f (failed) to the test run.

38

Figure 2.4 Traversal of the symbolic state space [48]

The decision on which state transitions are enabled in a given state is done
based on the interaction between Uppaal Tron [52] and the SUT by evaluating
received SUT output, available inputs or delays.

In order to identify the observable behaviour between the tester and the SUT,
Tron partitions the Uppaal TA model into two parallel partitions S and Z, which
model respectively the SUT and its environment. The interaction between S and
T is implemented via observable (at test interface) actions, further divided into
input (A)) and output (Ao) actions. The former are used as stimuli to the SUT
during testing whereas the latter are used for deciding on conformance.
Additionally, Sand Z have internal actions & confined to each partition, evolving
the partition to the next state where the next observable action can be taken.

During test run, the observable actions A, and Ao are triggered based on a
testing event e, following an observable delay A € R > 0 which abstracts the
internal events. A vector of externally visible variables v (in Uppaal TA they
are defined as global variables) which contains the value of data variable at the
time of the event is also observable. The events and variables are partitioned into
three disjoint sets of input events/variables ZEvin/Vin, output events/variables

FvoulVou, and internal events/variables ZEvind Vine [50].

Thus, after dividing the model into the environment and SUT partitions, a
symbolic trace can be rewritten as a timed I/O trace. The latter is a (possibly
infinite) sequence of observations starting from a given state, where each
observation is a tuple (e, D, v) consisting of an event € € Zuinyout @ clock zone D
in which event occurs, and a vector v € Vnout) coOntaining the values of data
variables that are externally visible as inputs/outputs at the time of event e.

39

ttrio = (€0, Do, Vo_), (el,Dl,vl_), ... (e ,Di ,Vi_), . 2

Uppaal Tron is using the externally visible (observable) events to interact with
the SUT, while abstracting away the internal actions ¢ and the internal delays d
as observable delays A. Thus, the result of a test session will be a finite sequence
of events Tseq Of the form:

Tseq = (€0, (o + do), Vo), (€1, (zz + d), V1), ...,
(en, (zn + dn),Vin), (En+1, (Tne1 + dnsa) Vo1), (3)
which can be written in terms of observable delays and actions as:
Tseq =(€0, Ao,Vo), (61, A1V1), ...,
(en, AnVn), (Ens1, Anv1, Vs), ... (4)

This allows one to check the timed conformance of the SUT against the
specification via the rtioco relation, by allowing the SUT to refine the timing
behaviour of the specification [51].

Definition 2.3 Relativized timed input/output conformance (rtioco) [48]

An implementation I conforms to its specification S under the environmental
constraints if for all timed input traces o € TTr; (E) the set of timed output traces
of Jis a refinement of the set of timed output traces of S for the same input trace.

Irtioco Siff Vo € TTri (£):

TTro ((Z, E), o) ETTr (S, E), 0) (5)

The resulting test sequence is provided by Uppaal Tron as a sequence of test
events. For each test event, symbolic state in which the event occurred is specified
in terms of clock constraints, variable valuation, list of next available states, and
a list of input/output actions. A new test event occurs at a specific time, the clock
constraints are updated, a transition to a new symbolic state occurs and the list of
the next available states is updated [51].

2.7 Related work on AOM and AOT

In an early work, Jacobson [21] describes the development of design aspects
based on use cases, which are then composed to create different views of the
system. The work provides the conceptual background of AO but does not
explicitly give details about the transformation of models, rules of composition,
and structural relations.

From a modelling perspective, UML [55] has been the de facto modelling
language in AOM and several profiles have been proposed for modelling aspects

40

(e.g., [56, 57]). In addition, studies [58, 59] provide surveys and assessments of
aspect-oriented modelling techniques.

While introducing the AOM constructs, we target semantic unambiguity and
mature tool support. These prerequisites are satisfied by Uppaal TA, in contrast
to UML that does not have commonly understood formal semantics. Although
Uppaal TA is less expressive than UML, it is better suited for timed model
checking and test generation. The earliest attempt of implementing AOM
concepts in Uppaal TA has been proposed in our publication [54]. This work
suggests handling the aspect models as refinements of locations and edges in the
base model.

The work [60] also uses Uppaal TA but the focus is on extending the
functionality of the system with new features by defining a set of different
weaving operators. In addition, the non-interference of aspects via assume-
guarantee assertions has been suggested as a prerequisite for compositional
verification and test case generation.

Aspect interference is a well-known issue in AOSD. The interference occurs
when weaving conflicting aspects with the same base model. This issue has been
discussed in [58, 61], while a detailed analysis has been presented in [61]. In order
to address the interference problems the thesis relies on the work presented in
[53], which suggests non-interference criteria for weakly-invasive aspects.
Weakly invasive aspects are aspects that may change the control flow and the
values of non-local variables, as long as the state after returning from advice to
the base model is reachable in the original base model.

While the combination of propositional and linear temporal logic (LTL) has
been used in [53] for expressing non-interference conditions, we presume that the
aspect specifications are expressed in TCTL [62]. This allows one to express also
the non-interference of explicit timing properties. We use the Uppaal model
checker like in [60] to verify whether the aspects are interference-free, and to
decide on the suitability of weaving them in the joint test model.

Test generation from abstract models targeted at aspect-oriented programs has
been suggested in [63]. The tests are also built from the requirements of the
system using AOM techniques. For instance, D. Xu generated tests from protocol
state machines [64] and use case diagrams [65] so that aspectual use cases were
used in generating test requirements. They transform the use case diagrams into
aspect-oriented Petri nets [66], and then, extract the corresponding use case
sequences using transition, state, and use case coverage. The approach of [65] is
similar to ours but is limited to use case models without considering time. It also
does not use tool support, neither for the weaving nor for the test generation.

In [67] the authors suggested an AO extension for UML models (class diagram
and sequence diagram) in order to generate tests for AO programs. Similarly, in
[68] a UML profile has been suggested for modelling behaviour via aspect state
machines. This approach uses model transformations and tool support for test

41

generation. Our approach however differs from it by separating aspects to aim at
test coverage criteria that are aspect specific and can be tested aspect-wise. We
are also targeting timed specifications using the Uppaal TA formalism and
TCTL-based verification instead of UML.

2.8 Conclusion

This chapter presented the theoretical foundations of AO MBT. The basics of
aspect-oriented modelling were introduced and related to model-based testing
concepts. Formal definition of Uppaal TA provided a sematic ground for mapping
the AOM constructs onto Uppaal TA. We have elaborated the principles of MBT
in the context of aspect-oriented testing and defined the conformance relation
RTIOCO and the notions of conformance testing with Uppaal TA. The chapter
concludes with related work on AOM and AOT.

42

3 ASPECT-ORIENTED MODEL ENGINEERING

3.1 Chapter overview

This chapter presents the process of AO model construction, specifically how AO
modelling notations are interpreted in Uppaal TA. Two alternative approaches are
studied, one inspired by weaving constructs of AO programming, and the other, more
abstract, that hides the weaving details and implements weaving as model superposition
refinement operators. The correctness conditions of weaving are defined in a timed
computation tree logic TCTL. The aspect-oriented test coverage criteria are defined then
and it is shown how test sequences are generated from them using model checking.

3.2 Creating AO test models in Uppaal TA

Before presenting the Uppaal TA based AOT approach, we introduce the generic
AO notions and then give their interpretation in the context of Uppaal TA:

- An aspect model is an Uppaal TA process or a set of parallel processes
that implements a crosscutting concern;

- A base model is a set of Uppaal TA processes that model the core
functionality of the system;

- An advice model introduces features and behaviours specific to given
aspect;

- Join points are model fragments in the base model to which an aspect can
be woven;

- Apointcut is the set of join points and conditions under which an advice
can be woven. A pointcut expression is a logic condition which uniquely
defines the model fragments (join points) where the weaving is applied,;

- Weaving is the process of composing a base model with the advice model
that represents the action taken by an aspect at a particular join point; and

- A woven model, sometimes referred to as augmented model, is an Uppaal
TA in which the base model is woven with intended aspects.

In the rest of this section two weaving approaches are introduced in detail.
The first approach, highlighted in the next subsection, was originally introduced
in [69]. This work was inspired by AOP where weaving operators such as around,

43

before, after are defined. We will outline this work as a base case to position our
approach introduced later in Subsection 3.2.2.

3.2.1 Approach 1: AO model construction using weaving adapters

In the adapter-based weaving approach the adapters are model fragments that
allow the execution of an advice model at the designated join points. In [69] the
approach is limited to join points which are Uppaal TA edges with
synchronization. A weaving adapter encodes the pointcut expression, the advice
type and the join point. The approach is based on the following assumptions:

e The individual instances of an advice model (defined by an Uppaal TA
template) are woven at each join point of a base model;

e The execution of an advice is atomic w.r.t. its join point. This means that
once a join point is reached, the control flow of the base model process
containing the join point will be passed to the aspect model, and the base
model process will wait for the aspect to complete and return to the same
join point. However, this does not restrict several join points located in
different processes of the base model to be enabled at the same time and
their corresponding instances of advice models to be executed
simultaneously;

¢ Anadvice model has one entry point and one or several exit points which
return to the same join point;

e The base model and advice model can be woven using Uppaal TA
specific communication and synchronization constructs, e.g.
synchronizing the entry and exit of the advice model with wait in the base
model, sharing or refining data between base and advice model, etc. and

e Join point definitions cannot refer to the elements of weaving adapters in
order to ensure that the weaving does not introduce or remove join points
for another adapter. However, new join points can be introduced in the
advice models.

In [69], four types of weaving adapters are defined. They provide support for
weaving an advice before, after, and around a join point, similar to the homonym
advice types in Aspect]. The fourth adapter type, conditional, has been suggested
based on practical considerations.

In this approach, a join point is restricted to Uppaal TA model fragment,
namely, an edge that is labelled with a guard expression, channel, and update as
depicted in Figure 3.1. The channel labels denoted by channel? and channel!
represent synchronization of actions and can be interpreted either as an input or
output action of the process the edge belongs to. Additionally, the edge may be
labelled with guard expression and an update expression.

The weaving adapters allow a systematic weaving of advice models at
designated join points in the base model. A weaving adapter is a merge of base
44

model side and advice model side, specifying the model fragment to be included
in the base model and, respectively, to the advice model, during weaving.

The after adapter Figure 3.2 (top) implements the execution of an advice after
a join point edge(in this case channel synchronization). Its introduction
substitutes the End location (in Figure 3.1) with two new locations AspectStart
and Call (shown in Figure 3.2), and introduces two new channels enterAdvice!
and exitAdvice?. Whenever the pointcut_expression is true, the advice is
executed, otherwise the advice is skipped.

The advice model side adapter partition is shown in Figure 3.2 (bottom). The
execution of the advice model is triggered from the base model via the join point
by receiving the enterAdvice? synchronization and, after executing the advice
model, it returns the control via the exitAdvice! synchronization.

guard expression

8 dpdats ‘ 5

Figure 3.1 Model fragment with channel synchronization

update

(%

Start AspectStart Call End

Advice

Figure 3.2 Generic adapter (top) and generic advice (bottom)

Weaving Process. In the AO approach it is assumed that aspects can be designed
independently from specifications and the aspects are woven incrementally. That
is, for a given base model and a set of advices, we weave one advice at a time to
all of its designated join points. We regard the weaving process as a model
transformation that takes a base model, advice model and a selected weaving
adapter as inputs. The pointcut expression is used as a model pattern which
identifies join points. The transformation inserts the adapter at the join point and
instantiates the template of the advice for each join point.

45

It is also assume that the weavings are applied to the class of weakly-invasive
aspects and that the weaving is a conservative transformation with respect to the
class of Uppaal TA. Weakly-invasive aspects may change the control flow and
the values of non-local variables, as long as the state after returning the execution
to the base model is reachable in the base model without the aspect woven [53].

Verification of aspect non-interference is a prerequisite allowing taking
advantage of compositional verification and testing of the aspect-oriented
models. That means inferring the properties and test verdicts of the composition
from verified properties or passed tests of components in separation. The detailed
guidelines for enabling compositional verification and testing of aspect-oriented
Uppaal models are presented in [70].

3.2.2 Correctness of weaving adapter-based AO models

The correctness criteria of aspect models are specified in the form of assume-
guarantee assertions. Assuming a system S comprises a set of aspects A, ..., An,
the underlying environment models are assumed to satisfy the aspects’
assumption and the augmented system with the aspect model woven satisfies the
guarantee assertion. The specification of an aspect A is then a pair (Pai, Ra),
where Pai represents the assumption on the underlying system and Ra expresses
the guarantee of the augmented system after the aspect Aiis woven. Thus, for an
aspect Ai, Rai is the conjunction of TCTL formulas of the form:

AO (pointcut.) = @),

stating that every time the pointcut of Aiis matched, ¢ should hold. Note also that
@ is a temporal logic formula expressing what Ai’s execution guarantees. The
guarantees of the form:

$:A<> Weet

are expressing what is expected eventually of each execution of the aspect Ai (the
TCTL operator ¢ denotes the existential quantification over the set of states of an
execution path). Since TCTL model checker of Uppaal does not allow nesting of
temporal operators, it is practical to transform the temporal sub-formulas of Ra;,
where Rai = A; A0 (pointcuta= A O yrer) to equivalent form by means of
bounded leads-to operator “ @ ~>d yre” Where d is the deadline (with respect to
the time instant where & becomes true) of reaching the state where yse: holds.
Here expression et denotes the propositional state formula that includes terms
such as location names | L (M), state variables V and clocks ¢ € C.

Verification of aspects non-interference. In [69] the work on non-interference
of weakly-invasive aspects of [53] has been instantiated for Uppaal TA, as
follows.

46

Let @ denote the sequential-weaving operator, A = {Aq, ..., An} be a set of
aspects, S a system, and (Pai , Rai) be the specification of an aspect A.

Definition 2.4 The set A of aspects is said to be interference free (denoted IF) if
and only if the following holds:

IF(A)=S FAL Py =S D (Ay, ..., A) FAL, Ry

The verification conditions that aspects must satisfy in order to guarantee non-
interference can be summarized as follows:

1. The aspect Ajis correct by itself:
IF°(A):S EPy = S@ A ERy

This rule guarantees aspect correctness with respect to its specification (Pai,
Rai). Given that the assumption holds, the system obtained from weaving the
aspect and all possibly inserted aspects, must satisfy the guarantees.

2. Let Ai be the aspect currently being verified and A; any other aspect. The rules
to detect interferences are:

IFP(Ai, A)): S [Pai APA = SDAY E Ry,

This rule expresses that when weaving A; to a system, where the assumption
of another aspect Ajholds, its assumption should be preserved:

IFR(A;, A)): S ERai A Paj = SDAA ERy

This rule expresses that when an aspect Ai has already been woven, weaving
another aspect A; preserves the guarantee of A;.

In order to guarantee non-interference, the rules above must be satisfied for
every pair of aspects. Symmetrically, corresponding IF-rules for (A;; Ai) need to
be satisfied. When constructing a model of n aspects, for compositional testing
of that model n times IF°(Aj) verification tasks and n(n-1) times IF(A;, Aj) =
IFP(Ai, A) A IFR(A, A)) verification tasks must be solved.

3.2.3 Approach 2: refinement-based AO model construction

As shown in [71] the usage of adapters for AO model weaving may cause
structural overhead in the augmented model and the increase of model checking
and test generation complexity. In [54], we have suggested superposition
refinement instead of using adapters as a weaving operator, i.e. refining the join
point carrier element (either an edge or location which satisfies the pointcut
expression), with the advice model. Although the lack of weaving operators
before, after, around does not allow defining the shift with respect to join point
explicitly, the structural overhead caused by adapters is eliminated and the
method results in better scalability. From the modelling point of view the

47

refinement-based weaving requires just a “place holder” element in the base
model which defines the join point exactly where the substitution is performed.
If the shift operators before and after with respect to the join point are still needed
for some reason, then either the join point carrier element to be refined should be
selected from those immediately preceding or following the element that satisfies
the pointcut expression. Alternatively the pointcut expression can be modified to
take into account the shifts. Second advantage of the refinement approach is that
an inference test can be avoided because the refinement correctness conditions
guarantee that the augmented model will be correct-by-construction.

3.2.4 Correctness of the refinement-based AO model construction

In [54] the weaving of aspect models is implemented as superposition refinement
of locations and edges that represent join points in the base model. We call these
refinement operators location refinement (denoted by =) and edge refinement
(denoted by =) respectively. To keep the base and advice models still structurally
distinguishable after weaving (for better comprehension) we implement the
superposition refinement not by direct substitutions of model elements but by
semantically equivalent construct. Namely, by applying a synchronous parallel
composition between the base model and advice model. Here the semantic
equivalence between direct substitution and parallel composition is granted by
composition correctness conditions introduced in the following.

Let the advice model M® be woven to the base model M at join point carrier
element el € L(M) U E(M) by synchronous parallel composition lsync, SO that, M
= M lgyne M® where E € {Ze, £1}. Synchronous composition of M and M® should
preserve the semantics of M also after superposition (like non-interference
conditions of Approach 1). Technically, this composition means that entry and
exit points of the advice M® have to be synchronized (via auxiliary channel) with
a join point carrier edge e in case of edge refinement or before and after edges in
case of location refinement of M. For further elaboration we define the location
and edge refinement relations in separate.

Definition 2.5 (Location refinement)

We say that a synchronous parallel composition of automata M and M' is a
location refinement of location li of M, (M =i M lgync M") iff I; € Lu, and there
exists M" s.t. P1 A P2 A Ps, where properties P1, P,, P3 are defined as follows:

- Py (interference free new updates): no variable of M is updated in M", i.e.

no variable of M occurs in the left-hand side of any update expression in
M“;

48

P, (preservation of non-blocking): [(M IM"), (lo, I’0) EE¢ deadlock] =
[M, lo= EO deadlock];

Ps (non-divergence): inv(lj) = x < n for all clocks x e Cy,n <0 =>3d<
n: MY, I’ i I’g ~2g I’F], where* ~»** denotes bounded reachability
operator with time bound d; locations I’y and I’= denote respectively
initial- and final-nodes of the M".

Properties P, and P are specified in TCTL. The predicate symbol ‘deadlock’
is a standard predicate in Uppaal query language that denotes the existence of a
deadlock state in the model. Ps requires that the invariant of I is not violated due
to accumulated delays of M" runs.

Definition 2.6 (Edge refinement)

Let I’o, I’r denote the entry and exit locations of the advice model M®
respectively. A synchronous parallel composition of automata M and M" is an
edge t; refinement (denoted M =, M IM®, where t; € E(M)) if the conditions P’y
Ps, P4, Ps are satisfied:

P’1 (interference free new updates): no variable of M is updated in _Me‘,
i.e. no variable of M occurs in the left-hand side of any update in M®;

P3 (weakest precondition of paths): let (I’o, I’r) denote a set of all feasible
paths from the initial location I’ to final location (exit point of an advice)
I’ in M® and (Io, I’F)k €(I’0, I’¢) be k- path in that set, then vk €[1,
[0, eM]: Ajeqtengtnggr WP({’o, I’€), I’e) =grd(ti), i.e., the weakest pre-
condition wp of any path in (I’o, I’F) cannot be inconsistent with the guard
of the join point carrier edge ti.

P4 (O-duration unwinding): VI’i € (Nwmei\ I’0): Type(I’;) = committed, i.e.,
since the execution of any path in the refinement M® must be atomic and
instantaneous (by Uppaal TA definition), all locations must be committed
(committed is a location type of Uppaal TA which satisfies the condition
¢ = 0 for all clocks ¢ occurring in the invariant of the location).

Ps (non-divergency): grd(t) = M°®I’0 EAO I’r, i.e. validity of grd(t)
implies the existence of a feasible path in M®.

Similarly to location refinement we implement the edge refinement of Uppaal
TA by means of synchronous parallel composition lsync and by defining locations
I’o and I’r in M®, and edges from I’o and to I’= which model entry and exit points
to/from the advice model (Figure 3.3).

49

Except the property PO (PO’) which can be verified by syntax check, all other
properties can be verified by TCTL model checking locally with respect to M®
only. This guarantees the compositionality and better scalability of the approach
2.

Edge refinement Location refinement

L.
Fragment M that Context frame of Fragment M7 that Context frame of
refines edge e; the refinement refines the functionality the refinement
and timing of location

Figure 3.3 Uppaal TA model patterns for edge and location refinement

A refinement-based weaving example is depicted in Figure 3.4 where two
aspects Transaction and BalanceCheck are introduced respectively by location
and edge superposition refinements (shown with dashed arrows).

Customer BalanceCheck
Idle
WaitingCard DBquery{Account_na)
d Cardinserted . o
| \
ATM e — ' Transaction

enquireBalance " __balanceReporting

‘ el <= constd
omel

displayMenue, oseExil printReceipt Lo debitManey

B

b4
ol exConstd

Clock <= consl2

N

withdrawCas
performTransaction cle =Ennsf
Clock1 <= consti

transactionsSlectey

Figure 3.4 AO model of the ATM

50

3.3 AO test coverage criteria

The augmented test models composed according to the Approach 2 (see
Subsections 3.2.3 and 3.2.4 for details) include the structural elements that allow
specifying various aspect related structural coverage criteria for AO testing. The
semantics and scoping of AO coverage constraints can be defined by following
the hierarchy and sub-types of AO model elements.

For specifying the coverage criteria we use the expressions of TCTL with 1%
order terms on the alphabet of AO model elements and call these formulas to
coverage expression (CE). Thus, CE has hierarchical structure where the AO
coverage sub-expressions are concatenated in the following order: AC, JPC,
APC, MEC where

- AC stands for aspect coverage,

- JPC —join point coverage,

- APC - aspect path coverage,

- MEC - advice model element coverage.

Having this ordering of coverage item types, each of the coverage sub-
expressions defines the prefix and scope within which the next one has to be
interpreted. For instance, if for JPC the AC-prefix specifies aspects A; and A; then
join points in JPC are implicitly assumed to be only those of A; and A..

Aspect Coverage (AC) requires executing all or some aspects in the augmented
model at least once. In Strong Aspect Coverage (SAC), given an aspect model M,
all advices of the aspects specified in the CE must be covered by the tests.

To implement the SAC we use the parameterized Uppaal TA templates where
the template parameter p; ranges over indexes [1, n] that identify the aspect. Let
P(i) be the predicate symbol assigned value true only when the i-th aspect advice
model is executed. Then the traces of M (p;) that test SAC should satisfy the query:

EO forall (i: int [1,n]) P(i).

Recall that given query is valid only for paths that traverse all aspects' advice
models. In general, the model M may not be connected and a single path including
all aspects may not exist. Therefore, we introduce an auxiliary reset- transition
into M that guarantees that if n advice models are reachable in M then at most
with n traversals all of them can be visited. The reset-transition connects the final
location of M to its initial location. Due to this construct the Uppaal model
checker is able to generate a trace that traverses all advice models.

In case the strong coverage trace appears to be unreasonably long, a test suite
with shorter test cases can be achieved by "chopping" that trace at reset-
transitions to several shorter sub traces.

51

Weak Aspect Coverage (WAC) refers to the case where at least one advice
model of some aspect is traversed by the test path. The query

EO0 exists (i:int [1,n]) P(i)

differs from the SAC constraint by existential quantification of advices, therefore
only one advice of each aspect is sufficient to be covered and consequently it
provides shorter traces as a rule.

Join Point Coverage (JPC) requires executing all or some join points of the
aspects specified in AC-prefix of CE. Strong Join Point Coverage (SJPC) may
presume similarly to SAC the introduction of an auxiliary reset- transition into M.
Regardless the prefix (SAC or WAC) of the query the SIPC defines in the CE a
conjunct of form

.. Forall (j: int [1,m]) P(i) && R(),

where j ranges over the join point indexes of the aspects referred in the AC-
prefix and R(J) is a Boolean variable at each join point updated to true whenever
this join point is visited. For instance, in the model of Figure 3.4, we can add an
assignment R[J] = true to join point edge EnquireBalance—
BalanceReporting that registers the entry into advice “BalanceCheck”.

Weak Join Point Coverage (WJPC) is satisfied if there is at least one trace for
given formula prefix satisfying

..exists (J: int [1,m]) P(i) && RQ)-

Aspect Path Coverage (APC) requires executing all or some paths between the
entry and exit of the advice join point specified in the JPC-prefix. Assume the
entry and exit transitions of each advice model are decorated with entry(i, j,k) and
exit(i, j,I) predicates where i, j, k, | range over the set of aspects, join points, and
their advice entry and exit points respectively. Whenever the transition is
executed, these predicates evaluate to true. Then, the Strong Aspect Path
Coverage (SAPC) is specified by the sub formula prefixed with aspect and join
point constraints as follows:

.. forall (k: int [1, K]) forall (I: int [1,L]D)
P(i) && RG) && [(Vk:l, Kentry(k)) /\(V|:1,|_ exit(l)).

SAPC, like earlier strong coverage criteria, may presume the reset-transitions
related construct. Weak Aspect Path Coverage (WAPC) comparing to SAPC
replaces universal quantifiers with existential ones for variables k and I, the
coverage constraint becoming

..exists(k: int[1,K]) exists(l: int[1,L]) P(I) &&
R() && [(vk=1,k entry(k)) A (vi=,. exit(l)).

52

Advice Model Element Coverage (MEC) criteria imposes constraints on the
types of Uppaal TA elements to be covered in the advice model, e.g. Strong (resp.
Weak) MEC can be specified with the Uppaal TA element type, e.g. Transition
and universally (resp. existentially) quantified over given type. More specific
coverage constraints can be constructed using type discriminating predicates on
the data variables of an advice model. For instance, a test that is checking
successful completion of Balance Check (example of Figure 3.4) is specified

using query

E<> exists (i: UserlID) i1 > 510030.

The possible combinations of AO coverage subexpressions are shown in the

Table 3.1.

Table 3.1 Summary of AO Test coverage criteria

kS

Coverage Strong Weak Discriminating
constraint| (universal) (existential) predicate
of cove coverage coverage
entity v 3
Aspect All aspects of the| Some aspects of | Predicate on
A model the model aspect
VAdeA . d4eA. .. constants
/variables
i-th join point |All join points of|Some join points| Pointcut
jp(4, 1) aspect 4 of aspect 4 condition
Y jp(4, i)eJP(A4)| Jip(4, i) eJP(A4)
Entry-exit path 1 All paths Some paths |Path predicate,
of an advice model| initiated at initiated at e.g. constraint
M i-th join point | i-th join point |on path length
A€ Paths(MY) |V Ae Paths(M*)| A€ Paths(M*)
Model element of | All elements of | Some elements | Predicate on
type T (location, | type T in M* of the
transition, type Tin M* | attributes of
function, data, etc) type T
included in the
path
A€ Paths(M*)

53

3.4 Conclusion

We have shown that the AO model constructs can be introduced in Uppaal TA,
using model transformations that are conservative with respect to given model
class. Two alternative approaches were studied from the expressiveness point of
view of weaving operators. The first, finer grain method was inspired by weaving
constructs of AO programming, and second, more abstract, that implements
weaving as model superposition refinement operators was introduced by the
author. The correctness conditions of weaving were defined in timed computation
tree logic TCTL. Regardless of the concrete weaving method and differences in
their interpretation, the aspect-oriented test coverage criteria suggested were
applicable on AO test models constructed using both ways. It has been shown
how the test sequences that satisfy introduced AO coverage criteria are generated
from AO models using an Uppaal TCTL model checker.

54

4 CASE-STUDY: HOME REHABILITATION SYSTEM

4.1 Chapter overview

This chapter presents the case-study that has been explored to evaluate and validate the
developed AOM and AO MBT methods.

4.2 Home rehabilitation system general description

According to [75] about 70% of software projects in the medical domain are
delayed because of development and testing problems occurring in the application
and/or middleware tiers. The main reasons are due to safety critical nature and a
non-trivial combination of functional, performance and security features of the
medical systems. The Home Rehabilitation System (HRS) developed in [76] has
been selected as an example of a medical system where the application of AO
MBT can improve the quality of the system design and speed up the development
process and/or reduce the need for resources required for testing.

HRS is a personal health monitoring system which collects a patient’s health
condition information online using sensors attached to the patient’s body. HRS
drives the sensor devices, analyses the gathered data, interacts with the patient
and submits relevant patient information to the hospital through the internet.
Figure 4.1 illustrates the placement of an experimental sensor system to measure

Figure 4.1 The placement of body area sensors of HRS

55

movement data, SpO2, temperature, heartbeats, blood pressure, blood sugar, and
other parameters needed for patient’s online monitoring. HRS software contains
the following sub-components:

- adedicated health hub that operates as a communication gateway;

- avital signals' sensory system for patient measurements;

- amovement tracking sensor system for fall down detection;

- physical activity and exercise monitors.

HRS can operate in the following modes:
- setting up the treatment plan;
- home exercising;
- passive monitoring of pulse and blood pressure;
- reporting on how well the exercising plan is followed.

In the following, we focus on the “home exercising” use case.

4.3 HRS home exercising use case

Main use scenario “home exercising” of HRS system contains two steps: system
preparation in the hospital and home use to monitor exercising sessions. There
are three actors involved: Patient, HRS and Doctor, who all are interacting in this
use case.

4.3.1 Initial configuring of HRS system

The physiotherapist instructs the Patient and also configures the HRS equipment
before the Patient leaves hospital surveillance. During the hospital training
sessions, the HH records MEMS based motion monitoring sensor signal patterns
of different exercises. Using these the physiotherapist judges whether the signals
are correct or incorrect for calibration. If correct, this information is used to train
a neural network that provides reference values for further home exercising
monitoring. Additionally, the physiotherapist can set up safety limits for heart
rate and blood pressure, and activate a safety checking procedure. The safety
limits are set from the point of view of motor rehabilitation, and may be overruled
by primary care physician requirements during the treatment.

While creating the rehabilitation plan, the physiotherapist first chooses and
adjusts exercises for the Patient. The plan is the basis for monitoring the training
at home, giving reminding signals and recommendations as well as the basis for
the evaluation of the Patient's independent training quality. To specify the
treatment plan, the doctor has to compose the list of exercising sessions and set
additional constraints. There can be any number of exercising sessions per day,
either identical or different. The doctor sets the number of sessions and a starting
time for each session, or just a suitable time interval between sessions. To
compose a session, the doctor chooses exercises and orders them. The minimum

56

and maximum number of repetitions can also be specified as well as the duration
in seconds for every exercise.

Some important details, however, do not fit into the exercising schedule,
therefore, must be added as separate rules specifying certain assisting actions and
their triggering conditions. For example, the Patient is required to measure blood
pressure and heart rate at given times or in relation to exercising sessions.
Similarly to measurements, the Patient can be asked to answer questions about
pain, stress level, feeling, etc. The exercising plan can be adjusted by these results
as shown in Figure 4.2. For example, if the blood pressure is too high before the
exercising, then the exercising session will be postponed or conducted with a
reduced number of repetitions. The treatment plan can also be adjusted upwards
during the home rehabilitation after a certain period of time.

4.3.2 Home use scenario

After the HRS system is configured in the hospital by providing the treatment
plan and recorded samples of movements, the HRS is ready to be used at home.
The system keeps track of the treatment plan fulfilment. Primary care doctors can
insert additional safety rules into the system, e.g. reduce allowed blood pressure
or pulse rate.

All Patients’ movements are collected while the sensors are turned on and
worn. Based on the reference data the sensor raw input stream is divided into
segments that correspond to the known movements which are compared to the
plan. Within one session, the system monitors if the Patient is doing the exercises
as many times as required. Also, the quality indicators with the reference are
calculated for individual movements and displayed to the Patient.

For the Patient’s safety HRS monitors also if the Patient has fallen down. This
is implemented using the central body activity sensor. It reminds user to keep
these measurements running.

The event log and statistics that are gathered during the home rehabilitation
period, are recorded in the database called Whiteboard and can be uploaded to
the hospital information system using telemedicine services accessible via
internet.

57

Wake

v

Update
token

aliveness

|

Check for recent
52351005

session?

New or ongoing

Check: for the latest
blood pressure
measurements since the
last session

Measurement exists?

/ Get session plan

Based on the priorities
and calculate

chose relevant values
new values

Complement the
session plan with
new values

/ _______

-

Sleep

Figure 4.2 The treatment plan adjusting software agent

58

4.4 Aspect-oriented modelling of HRS

We demonstrate the AO modelling of HRS home use scenario on two levels of
abstraction: at first, on the requirements level in terms of agents such as Patient,
physiotherapist, sensor system, exercise monitoring; and second, on the level of
software agents that implement the HRS. The requirements level aspects are
directly related to the application concerns such as Patient’s safety, monitoring,
the Exercising quality and Exercising performance. Software agents level
modelling extracts the aspects from implementation entities such as object
classes, their attributes and relations. From testing point of view, both of these
modelling levels serve their purpose — the first is meant for system level testing
and the second for software integration testing, respectively.

44.1 Requirements level model of HRS

We start the modelling with the base model that incorporates requirements level
actors and their interactions. Thereafter, the aspects Patient’s safety, Exercising
quality and Exercising performance are added incrementally by superposition
refinement weaving. After weaving the correctness of weaving is verified using
model checking of correctness conditions specified in Definition 2.5 and
Definition 2.6. The base model, aspects and corresponding to them Uppaal TA
model templates are listed in Table 4.1.

Table 4.1 Model templates by use case actors and aspects

Use case Physiotherapist | Patient HRS
actor
Aspect
Base model Doctor _physical_ condition, | _sampler
_exercising
Aspect 1: . . posture_sensor,

X Emergenc exercising (refined) | — — .
Patient’s safety consu%tingy_ - 9() _emergency_monitor
Aspec_t 2 Adjusting _Eré/rsg(i:;:]_ci)ndltlonl _quality_ monitor
Exer_C|S|ng reference values | — g
quality

: _— - f it
Aspec_t 3 Adjusting _exercisingl ~performance_monttor
Exercising performance (refined)
performance settings

59

4.4.1.1 Base model (base functionality)

The base model represents the interaction of the three main entities of the
application: the Physiotherapist, Patient and HRS on a high level of abstraction.
The Uppaal TA templates Doctor, Patient, and HRS model them respectively. The
Doctor triggers the training session by initiating the output action Exercise which
represents acknowledging the training plan and enabling the session to start. The
Patient starts exercising by the plan according to which the exercising session can
last from session_TIb to session_Tub time units provided the Patient’s physical
condition is Normal.

Start Doctor Patient

Normal phvsfcaf
condition

1]

ondition=bad
Emergency_handling

. Done Bad
@ Idle RS

@ Idle exercising

Wait S %
cl=0 cl=0
r—><>cI:::Sa:anF‘.L;-rled T A Y. Falling
Bl Exercising didacil it

cl<=session_Tub
() sampling

O. D_o ;w-e

Stopped

@it g

DONE

Figure 4.3 Base model of the HRS home use scenario

The occurrence of abnormal activity, e.g. falling down, is represented with edge
Normal—Bad in the template Patient physical condition and communicated to
HRS via global variable condition update condition = bad. The execution of edge
updates the variable condition to bad which is also the guard condition of edge
Exercising—Falling of template Patient_exercising.

60

The HRS activation is also synchronised with exercising via channel Exercise
to initiate the patient’s physiological data sampling at the same time when the
exercising starts. The patient’s measurement data is sampled periodically with
period SamplPeriod until the signal Ex_done is received or patient’s health
condition turns to Bad. The first is synchronized with the patient’s exercising
completion by executing edge Exercising—Done.

4412 Aspect 1: Patient’s safety

The advice, needed for transforming the base model introduced in 4.4.1.1 to the
Patient’s safety aspect model, is represented by templates HRS_posture_sensor,
HRS_emergency monitor (Figure 4.4)

The HRS_posture_sensor is woven with base model using location refinement
of the location sampling in HRS and the advice HRS_emergency monitor is
woven by edge refinement of the edge sampling— - in the template
HRS_sampler. The template HRS of the base model is renamed to HRS_sampler
here. The full safety aspect model is exposed in Figure 4.4. Notice that due to the
refinement weaving, the guard condition condition ==bad of the transition
_—Stopped in the template HRS_sampler is refined with predicate emergency
which represents the emergency signalling condition.

The advice model HRS_posture_sensor represents the behaviour of the sensor
that detects falling of the Patient. Body posture measurement takes constant time
-one Tick and if the Patient falls, modelled with state constraint condition ==bad
then HRS_posture_sensor assigns to its output variable posture new value down.

HRS_emergency_monitor samples the value of variable posture and when the
value down is read, its output variable emergency is updated to true. This, in turn,
triggers the emergency call by HRS_ sampler which is responded by Doctor’s
reaction modelled as transition to location Emergency_handling.

Advice Emergency consulting (referred in Table 4.1) which refines the
Doctor’s activities after receiving the emergency_call is omitted from this
example since it does not concern the functionality of HRS directly and can be
abstracted away from current use case.

61

Doctor

Patient
Normal Pphysical
condition
ondition=bad
Bad

" HRS

sampler

Exercise?

Wait

cl=0
r—’<) cl<=SamplPeriod
cl==SamplPeriod

sample

() sampling

Smi_done?

condition

Exercising
cl<=session_Tub

exercising

@ Idle

Falling
on==bad

Ay id Stopped
|\ "TIN_NOTM o, emergency
W e y_calll O
Ex_done?
DONE
Smi_done! HRS posture

Posture_Detection
cl <=Tick
sample? 48
b4
posture=(condition==bad?
down: posture)

Idie

HRS

Smi_done?

e ——xy

posturei=down

posture==¢

Wn
emergency=ol

_monitar

@ Fall_sampling

HRS emergency

Figure 4.4 Safety aspect model

62

4.4.1.3 Aspect 2: Exercising quality

The exercising quality aspect specifies how HRS must react to the changes of the
Patient’s biometric characteristics during exercising and how the deviations from
nominal values are signalled back to the Patient.

Patent’s biometric characteristics’ deviations are modelled by introducing
three new (sub) states normal2, better and worse which refine the base model’s
template Patient_physical _condition coarser state normal (Figure 4.5). The
aspect advice introduces the template Patient_physical _condition1 which is the
refinement of the location Normal in the template Patient_physical _condition.
This refinement is necessary because HRS has to react also to the deviations that
are not critical (i.e., they are not sub-states of the Bad state) but still need special
handling to assure the quality of exercising.

To get the quantitative modelling of Patient’s physiological condition M
numeric values in the ranges val_N, val_B, val_W are generated periodically once
in Tick period. The value regions val_N, val_B, val_W of body characteristics
correspond to the states Normal2, Better, and Worse respectively. The values of
body characteristics are generated in the model dynamically by self-loops
attached to theses states in the template Patient_physical _conditionl. One can
implement these self-loops also in separate advice template and weave them via
join point locations Normal2, Better, Worse. For compactness reasons to avoid
too many weaving steps we introduce them at once in the template
Patient_physical _conditionl. Generating numeric values in the state Bad2 is
omitted since the body characteristic values that correspond to an emergency
situation do not concern the training use case.

Patient_exercising template is also refined in the advice model using location
Exercising refinement with template Patient_exercisingl. This is due to the need
to introduce the exercising quality indicators such as exercising_counter and the
potential duration of performing an exercise — time interval [Ex_Ib, Ex_ub].

HRS_sampler template is refined with advice template HRS_quality _monitor
and it models reactions of the HRS when Patient sampling data deviate from the
nominal values specified by a physiotherapist as an interval [L_bound, U_bound].
These boundaries are defined for M different body characteristics which are
sampled. The training online guidance is performed by indicating qualitative
values LB_warning, normal, and UB_warning which are exposed on the HRS
user interface screen (in the model global variable Screen is updated with these
values).

Advice Emergency_consulting (referred in Table 4.1) which refines the
Doctor’s activities after receiving the emergency_call is omitted from the thesis
since it does not concern the functionality of HRS and can be ignored from AOT
point of view.

63

_— Doctor

Exercisel

emergency_call?

cle=session_Tub

Ex_done? Emergency_handling
Done
Patient . - :
FPatient_physical etler cle=Tkk
. conditiond] =
Fatient M
F@Sﬁca{ <M . MNOfmal? measur [[|] -k
condition el €ONOION=In_Norm [N
measurementijsk, LONCAON=WOrse
! ci=0 cl==Tick
condtionsbad | = condition=in_norm »
Baa2 ch Bt Worse L0 measurementlj=k
Bad ¢l =Tk [
|Patient ."3'?
Exercisingl |,
' Faling
. e
Patient
exercising | ... A
e Falling <=0 1 Do_Exertise
Exercising onailion ==bad .“ o

¢l >= Ex_Lb
ExCounters+

DONE

ExCounie Swilc T oMext
ExCounter==Exhiylt
Ex_O0ne
.L‘Jme
@ HRS Smy_done!
.., sampler iy &
measurement{i] < L_bound]]
Wait Screen= LB_waming(i]
cle=SampliPeriod ==
e Evaluate / Mmeasurement(ij>=L_bound[i|&&
A measurement(ij<=U_boundi]
sampling sampie?
' - SR O Sample ated
Smi_done?
condition - . Ready |
Stopped
e il condiban -Lu..'__.) measurement[i] > U_bound[i] <M
condion--bad, HRS_quality \ "
done’ _monitor

emergency=(Screen!=07emergency++ 0),
-+

Figure 4.5 Exercising quality aspect model

64

4.4.1.4 Aspect 3: Exercising performance

Last aspect of the exercising use case is exercising performance, i.e. the speed
of performing exercises (Figure 4.6). As for other body characteristics there are
also prescribed limits for the duration of how long performing of each exercise
should take.

Performance_monitor is started by HRS_sampler and it measures the speed of
performing an exercise (variable Tmax shows how many times in one sampling
cycle. Performance_monitor measures the speed of performing exercises by
synchronizing its local clock stopwatch via channel syn with the beginning and
ending events of an exercise. The exercise performing is modelled with location
Do_Exercise in Patient_exercisingl. Depending on the measurement result the
duration measurement is sent to user interface using HRS output variable
SpeedScreen. If the speed is too slow then symbolic value Too_slow is shown on
screen, if too fast the value Too_fast is indicated and if the duration is within
norm value Nominal is exposed. Template
Doctor_adjusting_performance_settings is omitted in this advice model since it
is tested under HRS different use case.

: Idle dle
Patient ©) : Doctor @ HRS
exercising sampler
Falling
Exercising ad =0 .:]a_lt W—
cl<=session_Tub f—-"{ cl==SampiPenod
ons Patient physical @ samping
condition —— l_done
> Idie 1) Stopped
Fatient @ @ conitor
Exercisingl '
neon Sl DONE
cl=0)Dc Exercise
¢l <=Ex_Ub ThMax Ready Teounter<TMax
i PP Tcounter++
! | ExCounter++
stopwatch=0 LOPWaILL N> EXIViaX £
C) SwitchToNext SpeedScreen=Too_fast
Sounter>=ExM < c SpeedScreen=Nominal
Ex done Measuring
O i SpééﬁSn-reén=_Tsn_gla-.-;-

Figure 4.6 Exercising performance aspect model

65

4.4.1.5 The correctness of AO models and generated tests

The system under test in this case study is HRS and it has test interfaces with two
actors Doctor and Patient who constitute the environment of HRS. The
environment, behaviour scenarios define the test cases. In the following, we prove
by using the Uppaal model checker that:

(1) The base model is correct and guarantees the reachability of all control
locations;

(2) The aspect models are constructed correctly from the base model,;

(3) The AO coverage criteria introduced by aspects are feasible, i.e. there exists
traces satisfying the coverage criteria, and the traces (mapped to test sequences)
are optimal either in terms of sequence length or in terms of their execution time;

(4) The AO test sequences generated are shorter than non-AO ones and their
generation complexity is lower in average.

For that we verify the correctness of test models and introduce the test coverage
criteria by aspects specified above.

(1) Verification of test models

Base model. The base model is verified against three properties that yield the
reachability correctness stated in (1) above.

Property BM1: If the Patient_physical _condition is in state Normal then the
process Patient_exercising terminates successfully in the location
Patient_exercising.Done and automaton HRS_sampler terminates in correct final
state modelled with location HRS_sampler.Done. The TCTL query is:

Doctor.Start && Patient_physical_condition.Normal &&
Patient_exercising.l1dle&&HRS sampler.ldle --> Q _clock »>=
Patient_exercising-Ex_Ub * ExMult && Patient_exercising.-Done
&& HRS_ sampler.Done.

In this query an auxiliary formula clock Q_clock is used to be compared with
the time bound Patient_exercising.Ex_Ub * ExMult when the exercising
has to be finished at latest.

The model checking report in Appendix F.1 BM1 confirms that the property is
satisfied.

Property BMZ2: If Patient’s physical condition turns bad
(Patient_physical_condition reaches location Patient_physical_condition.Bad)
then Patient’s exercising stops in the location Patient_exercising.Falling after
Ex_Ub time units latest and HRS_sampler makes an emergency_call during
SamplePeriod time units after that event and moves to the state
HRS_sampler.Alert. These requirements are model checked using queries BM2.1
and BM2.2 while the initial location of Patient_physical_condition is set to Bad:

66

Property BM2.1.

A<> Patient_physical_condition.Bad && Patient_exercising. Falling
&& Q_clock <= Patient_exercising.Ex_Ub

Property is satisfied (see Appendix F.2).

Property BM2.2:

A<> Patient_physical_condition.Bad && HRS_sampler.Alert && Q_clock
<= HRS_sampler._.SamplPeriod

Property is satisfied (see Appendix F.3).

Note, that for referring to the time interval between executing Normal—Bad in
the template Patient_physical condition and reaching locations
Patient_exercising.Falling and HRS_sampler.Alert when the emergency_call by
HRS_sampler is done, we apply again the global property clock Q_clock which
is compared with the given upper time bounds.

Property BM3:

To prove that HRS completes a sufficient number of samplings specified with
parameter SmplMult during an exercising session and provided the session is not
interrupted due to the Patient’s emergency condition, we verify that when ending
the sampling in the location HRS_sampler.Done then condition ExCounter >=
SmplMult is satisfied.

A[1 HRS_sampler.Done && Patient_exercising.Done imply
S _counter >= SmplIMult

Property is satisfied (see Appendix F.4).

(2) Verification of the aspect models’ weaving correctness

In the following we prove properties P1-P3 (given by Definition 2.5) in the base
model join points where location refinement is used for advice weaving and
properties P1” and P3-P5 (given by Definition 2.6) in the base model join points
where edge refinement is used.

Weaving correctness of Aspect 1: Patient’s safety

HRS_posture_sensor is woven using location refinement and properties P1-P3
have to be verified.

Property P1: interference free new updates. There is an update of only one
variable posture in the template HRS_posture_sensor. Since this variable does
not occur in the base model (it is called fresh variable) this yields interference
freedom with the base model.

67

Property P2: preservation of non-blocking. Once started via channel sample the
HRS_posture_sensor always returns to the location Idle after exactly Tick time
units (verified by simple visual inspection).

Property P3: non-divergence. The property holds since HRS_posture_sensor
always returns control to the base model after Tick time units while the join point
carrier location Sampling has invariant cl <= SamplPeriod which yields that for
non-divergence the condition Tick < SamplPeriod must be satisfied.

HRS_emergency _monitor is woven using edge refinement and it is activated via
broadcast channel sml_done simultaneously with HRS_posture_sensor returning
the control to the HRS_sampler (verified by simple visual inspection).

Property P1’: interference free new updates. There is an update of only fresh
variable emergency in the template HRS_emergency _monitor.

Property P2: weakest precondition of paths. The property is satisfied since two
alternative paths exist in the template and since the guard conditions of the paths
are mutually exclusive, exactly one of them is enabled any time the location
Fall_sampling is reached and thus, internal blocking within the template never
occurs, except in the location Idle of weaving context frame.

Property P3: 0-duration unwinding. HRS_emergency_monitor has exactly one
location (except for the context frame location Idle) which is of type committed.

Property P4: non-divergence. The internal guard conditions posture!=down and
posture==down are not contradicting the guard condition cl==SamplPeriod of the
refined edge Sampling— -.

Weaving correctness of Aspect 2: Exercising quality

The base model template Patient_physical_condition is woven with advice model
template Patient_physical_condition2 using location refinement where join point
carrier is location Normal and another base model template HRS_sampler is
woven with advice model template HRS_quality_monitor via join point carrier
location Sampling.

Advice Patient_physical_conditionl generates concrete parameter values
which can occur in the Patient’s Normal state and which are monitored by HRS.
The edge Worse—Bad2 exiting advice is synchronized with the edge
Normal—Bad in the base model template Patient physical_condition. The
activation edge typical to the location refinement context frame pattern is
substituted with committed initial location and outgoing from it three edges to
locations Worse, Normal, Better in the advice.

Property P1: interference free new updates. All variables except condition in
Patient_physical_conditionl are fresh variables and thus satisfy the correctness
property P1. Variable condition is updated with new values which are data

68

refinements of value normal. The symbolic value normal is the default value of
variable condition in the base model initial location Normal. Since the valuations
of condition in the Patient_physical_conditionl do not interfere with the update
condition=bad in the base model Patient_physical_condition the property P1 is
satisfied.

Property P2: preservation of non-blocking. The only deadlocking location in the
template Patient_physical_conditionl is the final state Bad2. Model checking
query below verifies that both deadlocks in Patient_physical_conditionl and in
Patient_physical_condition are reachable in the same global state. Satisfaction of
this property is granted by construction, i.e. the synchronization ch_P between
edges Normal—Bad and Worse—Bad2.

Al Patient_physical_condition_1.Bad2 imply Patient_
physical_condition.Bad

Property is satisfied (see Appendix F.5).

Property P3: non-divergence. Since the exit from location Normal in the template
Patient_physical_condition is not obligatory by the semantics of Uppaal TA there
is no obligation for Patient_physical_conditionl to have Bad2 reachable in all
traces. Suffices only to prove the existence of such a finite trace. This is done by
query in Appendix F.6.

Note that since location Normal in Patient_physical_condition does not have
upper bound in time invariant there is no obligation to have it also in the
reachability condition of Patient_physical_conditionl.Bad?2.

E<> Patient_physical_condition_1.Bad2
Property is satisfied (see Appendix F.6).

HRS_quality_monitor
Advice template HRS_quality_monitor is depicted in Figure 4.5.

Property P1: interference free new updates. The only updated variables Screen
and emergency in HRS_quality_monitor are fresh variables which satisfy the
correctness property P1.

Property P2: preservation of non-blocking. Deadlock freeness of
HRS_quality_monitor is proved by showing that the initial state Ready is always
reachable after reaching the refinement carrier location HRS_sampler.Sampling
and sampling the sensor values by HRS quality_monitor. To distinguish two
consecutive visits of location HRS_quality_monitor.Ready, an additional
condition i > 0 is conjoined with the location predicate to specify the visit after
sampling.

HRS_sampler.Sampling --> HRS_quality_monitor.Ready &&
HRS quality_monitor.i > O

Property is satisfied (see Appendix F.7).
69

Property P3: non-divergence. By proving P2 it is shown that exit point of the
advice is always reachable and since all locations (except the location Ready of
the context frame) of the advice template HRS_quality_monitor are of type
committed the reachability is without delays. This satisfies an invariant true of
the refinement carrier location HRS_Sampling, meaning that P2 yields also the
validity of P3.

Weaving correctness of Aspect 3: Exercising performance
HRS_performance_monitor

The advice template HRS_performance_monitor is woven with the base model
template HRS_sampler via refining location Sampling (Figure 4.5). The weaving
is correct if properties P1-P3 of Definition 2.5 are satisfied.

Property P1: interference free new updates. Both variables SpeedScreen and
Tcounter updated in the template HRS_performance_monitor are fresh variables.
This guarantees that the correctness property P1 is satisfied.

Property P2: preservation of non-blocking. We show that
HRS_performance_monitor does not introduce deadlocks, i.e. Tmax
measurement cycles are completed if the Patient’s physical condition is in state
Normal. The query is depicted in Appendix F.8.

HRS_performance_monitor.ldle && Patient_physical_condition.Normal -->
HRS_performance_monitor.Tcounter == HRS_performance_monitor.Tmax

Property P3: non-divergence. To prove the non-diverging execution of
HRS_performance_monitor we verify that while Patient is exercising then the
HRS_performance_monitor if started from location Measuring, then it always
terminates in the location Done within Ex_Ub + PrepT time units (proof statistics
are depicted in Appendix F.9). Here Ex_Ub and PrepT denote the duration upper
bound of performing an exercise and the time interval between two consecutive
exercises respectively:

Patient_exercising.Exercising && HRS_performance_monitor.Measuring -->
HRS_performance_monitor.Done && Q_clock <= Ex_Ub + PrepT

Summary of AO model verification effort. The statistics of weaving correctness
verification effort shown in Table 4.2 confirm that in the case of practical
applications of HRS size not extensive computational resources are needed for
AOM and its verification. Due to the compositionality of superposition
refinement weaving operators the correctness of augmented AO model is a direct
consequence of single weaving correctness conditions. For showing weaving
correctness we proved by model checking that the advices do not violate the
constraints of weaving join points in the base model.

70

Table 4.2 Aspect models correctness verification resources

Model Property/ Verificati | Elapsed | Resident | Virtual
Reference in | on time Time memory | memory
Appendix F | (msec) (msec) | (KB) (KB)
Base model BM1/F.1 141 131 7536 27096
BM2.1/F2 |0 0 9008 46780
BM2.2/F3 |0 15 8996 46768
BM3/ F.4 15 15 7632 27356
Aspect 1: safety
- HRS_posture_ |P1/in text - - - -
Sensor P2/ in text - - - -
P3/in text - - - -
- HRS_emergen |P1’/intext | - - - -
cy _monitor P3/ in text - - - -
P4/ in text - - - -
P5/ in text - - - -
Aspect 2: quality
- Patient_physic |P1/in text
al_condition2 |P2/F.5 15 20 8160 28308
P3/F.6 16 16 8152 28428
- HRS_quality_ |P1/in text
monitor P2/ F.7 3984 4126 33056 77508
P3/in text
Aspect 3:
performance
- HRS_ performa |P1/ in text
nce_monitor |P2/F.8 0 16 7564 27336
P3/F.9 16 15 7452 26852

4.5 Fully augmented model of the HRS

To compare the processor time and memory consumption required for test
generation in case of AO and in case of non-AO models we introduce in addition
to aspect models presented in sub-sections 4.4.1.1 - 4.4.1.4 the fully augmented
model with all aspects involved (see Figure 4.7). Since this model is bisimilar to
the monolithic non-aspect model and does not carry the overhead typical of the
AO modelling Approach 1, we can use it in the role of monolithic non-aspect
model of the HRS (as reference case) for evaluation of AOM feasibility and

efficiency.

71

Doctor
Patient_physical_condition

Patient_physical_condition1

ol measurement]j=k,

o0 meas urement{=k.

Falling

Faling

HRS_emergency_maonitor

,:‘© Fall_s ampling

Figure 4.7 Full monolithic model of HRS

4.6 AO test generation

In this subsection we demonstrate how the tests that satisfy AO coverage criteria
summarized in Table 3.1 are specified and generated for HRS. To validate the
usability of the AOM and AOT methods proposed in thesis we focus on the finest
strong coverage criteria, namely Strong Model Element Coverage - SMEC which
presumes (i) specifying the aspect specific model elements such as locations,
edges and their attributes in aspect advice models and (ii) require a most resource

demanding search by model checker.

emergency={Screent=07emergency++0).

4.6.1 AO Tests of Aspect 1: Patient safety

In the Patient’s safety aspect model, there are two advices represented by
templates HRS_posture_sensor and HRS_emergency monitor woven to the base
model (Figure 4.4). We define the strong coverage of both advice template
attributes as in Figure 4.8 where Trapl, Trap2 and Trap3 are auxiliary Boolean
variables that allow referring to the coverage items of the edge
HRS_posture_sensor.-— HRS_posture_sensor.ldle and to two alternative edges:
Trap2 labels HRS_emergency_monitor.Fall_sampling -
HRS_emergency_monitor.ldle satisfying guard posture==down and Trap3 labels
an alternative edge HRS_emergency_monitor.Fall_sampling -
HRS_emergency_monitor.ldle executed when the guard posture != down is true.
These trap variables updated to true (encoded with numeric value 1) are added to
the edge assignments (Appendix F.10).

HRS_posture_sensor HRS_emergency_monitor
one Trapi=1 s m_gone
F_ : oo l,F .\\ dle qc__—————_@ Fall_s ampling
ure_Detection — —_—
ol ==Tick Pos lure=aow n |
||-‘ ok? g ol —T CL) -\‘ Trap2=1 |
oD -
pos ture={condition==bad? eme --::r5 =en
dow n: posture) Trap3=1

Figure 4.8 Test coverage items labelled with Boolean assignments Trapl+Trap3

The shortest simulation trace that satisfies this coverage criteria on the aspect
model is depicted in Appendix F.11 and the shortest trace of non-aspect model is
depicted in Appendix F.12. The traces are presented in the format the Uppaal
simulator visualizes them. The validity of query

E<> Trapl && Trap2 && Trap3

is shown for AO model and for non-AO model in Appendix F.10 a) and b)
respectively.

4.6.2 AO Tests of Aspect 2: Patient exercising quality

In the aspect model Patient exercising quality, the advice templates
Patient_physical_conditionl, Patient_exercisingl and HRS_quality_monitor are
woven to the base model shown in Figure 4.5. We define the strong coverage for
elements of advice template Patient_exercisingl to capture HRS reactions to
Patient’s monitored physiological states. For that we label all the edges of
Patient_physical_condition1 which depart from sub-states of Normal and the
edge that enters the state Bad. The traps used for this are Trap4 + Trap9 (Figure
4.9).

73

HRS_quality_monitor

done! Trap8=1

Screen= LE;'.a' 3.’7""";“: N \

Evaluate

\ Screen = UB_w arning]i]

emergency={ Screen'=07emergency ++:0),

Patient_exercising1

Patient_physical_condition1

Worse

meas urement]ij=k,

meas urement|ij=k,

Figure 4.9 Labelling of exercising quality advice templates with traps

The query E<> Trap4 && Trap5 && Trap6 && Trap7 && Trap8 && Trap9 is
executed with statistics shown in Appendix F.13 and the simulation traces of AO
model and non-AO model respectively in Appendix F.14 and Appendix F.15.

4.6.3 AO Tests of Aspect 3: Patient exercising performance

The advice template Patient_exercisingl and HRS_performance_monitor woven
with base model depicted in Figure 4.6 constitute the patient’s exercising
performance aspect model. To cover all alternative reaction of HRS in case of
exercise duration deviations we label the edges of HRS_performance_monitor as
shown in Figure 4.10 and prove that all of them are reachable in one test sequence
that satisfies query E<> Trapl0 && Trapll && Trapl2 && Trap 13 (see

Appendix F.16).

74

HRS_performance_monitor

ldle e Ready

Toounter++

L.|: atch=0 = atch=BxMax Time

/_{Tspm 1

SpeedScreen=Nominal

Figure 4.10 Labelling of the exercising performance advice template with traps
Summary of AO and non-AO test generation statistics

Regardless of the relatively small number of requirements level tests it can be
seen from the Table 4.3 that the time needed for generating tests on HRS AO
model is considerably (on average 364 msec) shorter than that of generating tests
with the same coverage on non-AO model. The difference is even more apparent
in memory usage, the difference is respectively 4715 KB of resident memory and
6321 KB of virtual memory in average. Though, the length of shortest test
sequences differs relatively little — the traces of non-AO model are 1-2 steps
longer than AO models ones, this means that there is relatively little overhead in
both models. The major disproportion is in terms of time and memory
consumption needed for model checking and this is because of the overhead in
non-aspect models which is not needed in testing the aspect coverage criteria and
therefore can be discarded in the aspect models.

75

Table 4.3 Summary of test generation effort on AO model compared with non-AO model

Aspect Verification | Elapsed Resident Virtual Test length
time (msec) | Time (msec)| memory memory (no of
(KB) (KB) transitions)
Test\model AOM [NOM JAOM [NOM |JAOM [NOM |JAOM [NOM |JAOM [NOM
type
Aspect 1:

Safety
E<> Trapl 1 0 0 2|27420(28776| 7576| 7300 14 15

&& Trap2
&& Trap3
Aspect 2:
Quality
E<> Trap4 0 47 16| 47| 8148| 7956|28396(27724 16 18
&& ... &&
Trap9

Aspect 3:
Performance

E<>Trapl10
&&...&&
Trapl3
Mean signed
difference -364,33 -435 -4714,66 -6321,33 -1,33
(MSD)

Note: In the table 4.3 the following notations are used:

1272| 9436|22416)30996/50908] 28| 29

o
o

1047

AOM - aspect-oriented model; NOM — non-aspect oriented model;

Value 0 in the table means duration that is less than 1 ms;
NO

A0 _ 1
Mean signed difference is calculated by formula MSD = 3, »—F— , where i

ranges over indexes of aspects, n is total number of aspects for which the
comparison is performed, and pi denotes the characteristic compared in AO and
non-AO models.

4.7 Software agents level modelling of HRS aspects

One of the main HRS software design principles is keeping the agents of HRS
independent as much as possible so that they can be activated and suspended
independently from each other. Otherwise, the dependencies would disable
certain functionalities and invalidate running workflows easily. Another key issue
of the HRS software system is its scalability when new functionalities and agents
need to be added. The core component of the HRS software implementation is a
whiteboard memory database (WMDB). The number of agents that are executed
in parallel without noticeable interference depends on the performance of the
WMDB.

76

A proposed aspect-oriented design solution is implemented and tested on an
off-the-self Linux running handheld (HH) device with a sub-gigahertz ARM
processor. On the given platform, writing 1500 rows of bulk data into the
whiteboard takes 100 ms and writing 100 rows of data takes 15ms. A long term
average reading time of one row is around 100 ms. Taking into account the
practical real-time requirements of the HRS — response time below 1 second,
makes it possible to execute 100-200 software agents in parallel. Here, we assume
that agents are performing computationally relatively simple tasks and each are
using only a small number of rows in the WMBD.

4.7.1 Model of the HRS software

The full monolithic model of HRS software includes altogether 98 process of 26
templates. Due to the space limit of thesis the description of model templates is
presented in the Appendix E. Verifying and generating tests from this large model
by model checking is clearly out of the human comprehension and capabilities of
explicit state model checkers. We demonstrate that by aspect-oriented approach
the verification and test generation become a practical task and can be solved
even using a standard laptop (Intel(R) Core(TM) i7-4600U CPU 2,1 GHz, RAM
8 GB and 64-bit OS) in reasonable time.

The templates are grouped according to system architecture into three groups:

Templates that model Agents are following: data_controller, pressure_checker,
heartbeat_checker, telefon_agent, get_pressure, get_heartbeat,
database_cleaner.

The templates that model Whiteboard are whb_insert_triples,
wb_get_buffered_triples, wh_get selected triples, wb_delete_selected_triples,
wh_sequence_for_ids, wh_sequence_for_keys.

The templates that model Database: wg_start read, wg_start write,
wg_end_read, wg_end_write, wg_create_record, wg_delete_record,
wg_get_first_record, wg_get next_record, wg_get field, wg_set_field,
wg_make_query, wg_fetch.

We focus on generating tests for 3 aspects:

- data completeness of DB read-write protocol;
- cleaning the DB by cleaner agent; and
- ensuring the uniqueness of data keys.

4.7.2 Aspect 1: DB data completeness in read-write protocol

Two agents Pressure Checker and Data Controller are running in parallel where
one is writing and the other is reading from the database. The purpose of tests of
this aspect is to check if the saved or read data are complete and not corrupted in
this process.

77

The model of Aspect 1 is a composition of the following templates (templates are
given in Appendix E):

pressure_checker, data_controller, get_pressure, wb_insert_triples
wb_sequence_for_keys, wb_insert_triples, wb_get_buffered_triples,
wg_start_write, wg_end_write, wg_set_field, wg_create_record.

4,7.2.1 Test cases

In the following we present the queries that specify the coverage criteria of tests
and the results of tests that are derived from these model checking queries.

Test1
Goal: check if there is any state where data in the DB is incomplete.
Query: E<> system_data_controller.ERROR
Test result: Failed
Test 2
Goal: check if there is any deadlock stated except the final state.
Query: E<> deadlock && !Test_1.EndState
Test result: Failed
Test 3
Goal: check if there exists a deadlock then it occurs only in the EndState.
Query: A[] deadlock implies Test_1.EndState
Test result: Passed
Test 4
Goal: Do all computations reach the deadlock eventually?
Query: A<> deadlock
Test result: Passed

4.7.3 Aspect 2: Cleaning the DB by cleaner agent

The purpose of testing Aspect 2 is to make sure that DB cleaning functionality is
implemented correctly, i.e. that only those data that are meant to be deleted will
be actually deleted. To run the tests it is assumed that DB may include two types
of data — those that have to be deleted and the others that have to be kept
untouched. The data items are referred in DB by the sequence_for_ids and by the
sequence_for_keys. In the testing process the agent Database Cleaner is executed
two times: at first, when it has to delete all references to the data, and second,
when the data itself are deleted.

78

The model of Aspect 2 is a composition (weaving results) of following
templates (templates are given in Appendix E):

database_cleaner, wb_sequence_for_ids, whb_sequence for_keys, wg_fetch,
wg_start_read, wg_end read, wg_create_record, wg_set field, wg_get_field,
wg_start_write, wg_end_write, wg_make_query.

47.3.1
Test 1:

Test 2:

Test 3:

Test 4:

Test b:

Test cases

Goal: Check if there is any state where data in the DB is incomplete.
Query: E<> system_data_controller.ERROR

Test result: Failed

Goal: Check if there is a state where data marked as deleted are actually
not deleted or the data are deleted when they are not supposed to be
deleted.

Query: E<> Test_2.EndState && DB_index_stack_used!=2

Test result: Failed

Goal: check if only the data marked for deleting are actually deleted. This
is negated goal of Test 1.

Query: A[] Test_2.EndState imply DB_index_stack_used==

Test result: Passed

Goal: check if the cleaner agent terminates in the final state. This is
extension to Test 2.

Query: E<> Test_2.EndState
Test result: Passed

Goal: check if there is any other deadlock state except the final state
(EndState).

Query: E<> deadlock && !Test_2.EndState

Test result: Failed

79

4.7.4 Aspect 3: Uniqueness of data keys

The data stored in DB by different agents and at different time instances should
have different keys. The test goal is to detect if there are such data with the same
key in the DB. For that the test runs simultaneously the Pressure Checker and

Heartbeat Checker agent which both write data to DB.

The model of Aspect 3 is a composition of the following templates (templates

are given in Appendix E):

pressure_checker, heartbeat checker, get pressure, wb_insert_triples,
whb_sequence_for_ids, wb_sequence_for_keys, wg_start_write, wg_get_field,
wg_create_record, wg_delete_record, wg_set field, wg_get first_record,

wg_start_write, wg_end_write.

4,741 Test cases
Test 1:

Goal: check if there is any state where the number of different keys is less than

the number of generated keys (current test generates 1028 keys).
Query: E<> Test_3.EndState && DB[1][3] < 1028

Test result: Failed

Test 2:

Goal: check if all data items have unique keys. It is negation of Test 1.
Query: A[] Test_3.EndState imply DB[1][3] (DB[1][3] == 1028)
Test result: Passed

Test3:

Goal: check if the test terminates in the final state?

Query: E<> Test_3.EndState (Addition to Test 2)

Test result: Passed

Test4:

Goal: check if the test deadlocks in some other state than its final state?
Query: E<> deadlock && !'Test 3.EndState

Test result: Failed

80

Test 5:

Goal: check if the occurrence of a deadlock implies, it happens in the EndState.
It is negation of Test 4.

Query: A[] deadlock implies Test_3.EndState
Test result: Passed

Test 6:

Goal: check if there is any deadlock?

Query: E<> deadlock

Test result: Passed (in EndState)

4.8 Conclusion

Aspect orientation introduces an alternative modularization principle to multi-
agent software design and testing. The medical monitoring and control systems
involve different stakeholders and are difficult to develop, maintain, and use
because of interplay of multiple viewpoints. The Home Telecare system with
different monitoring and assisting functionalities, is an example of such multi-
agent and multi-aspect system. The home monitoring and motor rehabilitation
system (HRS) studied in this chapter involves requirements related to
physiotherapist, patient and implementation of HRS. We demonstrated that AO-
requirement engineering improves the comprehension of system functionality
descriptions and allows modularization of models. Separation of concerns in AO
models provides also reduction in terms of test purpose specification and test
generation effort because the AO coverage criteria presume the reachability
analysis with related aspect models without the need to explore the large
monolithic model in one piece.

The model checking statistics of the HRS show that abstraction and AO
decomposition are two approaches to reduce the complexity of practical
verification and test generation. The experiments with a requirements level
abstract AO model show that the verification and test generation task can be
solved within seconds and with less than 1 MB of memory on a standard laptop.
In the second part of the chapter we exposed the AO model of HRS on the level
of software agents.

The non-AO model includes 98 process instantiations of 26 templates.
Although the verification and test generation based on a monolithic model of that
size is infeasible, the verification and test generation by aspects provided a
computationally acceptable solution and helped system developers better address
the test results in terms of HRS design aspects.

81

5 ANALYSIS AND VALIDATION OF AOT METHOD

5.1 Chapter overview

In this chapter, the aspect-oriented modelling and testing concepts and methods
introduced in Chapter 3 and illustrated with the HRS case study in Chapter 4 are studied
analytically in order to provide the quantitative and qualitative evidence of their
advantages compared with non-aspect oriented methods.

5.2 Proving equivalence of non-aspect and aspect models

To compare the performance and usability characteristics of aspect-oriented and
non-aspect-oriented modelling/verification/testing methods we have to show at
first that the comparable models represent the same behaviour observable at the
test interface. For that reason we demonstrate how to check the bisimulation
relation (relative to test 1/O actions) between the models.

The models to be compared are hon-AO test model M and its AO counterpart
model M*. We use M* that is derived from M by separating the aspects A, ...,
A, and the base functionality of M, at first, and weaving the aspect advice models
MAL, ..., MA" back to the base model M®, thereafter. After the aspect model M is
constructed we compose it with non-aspect model M by synchronous parallel
compositions so that one model has the role of word generator on the test interface
/O alphabet 3%, = 5t . U 52, and the other model has the role of word
acceptor. If the timed 1/0 sequence acceptance is established in one direction,
then the roles of the models are changed opposite and the same check repeated.

Definition 2.7
We say that M and M* are observationally bisimilar (denoted M ~;,, M*) with
respect to alphabet £/, if
- both M and M* have same test interface 1/O alphabet 5//°,
- when M is generating and M* is a}(/:cepting Uppaal TA on alphabet th/e‘;t
. 0 i
then all timed words TW(M) e (Z‘test)* generated by M are recognizable
by Mao’
and
- when M* is generating and M is accepting Uppaal TA on alphabet th/e‘;t
then all timed words TW(M®) < (Z‘t/e‘;t)* generated by M® are
recognizable by M.
In other words, two test models cannot be distinguished by an external
observer by interactions between the tester and SUT. Bisimulation is a

82

symmetrical relation. Bisimulation for timed automata has been originally
introduced in [48] and, as shown in [72] it is decidable for parallel timed
processes.

5.2.1 Bisimulation verification

In order to show the relative bisimilarity relation M ~;,, M* between a non-
aspect oriented model M and aspect-oriented model M* of the same SUT, where
M = MB||, M4, we can decompose the bisimulation verification task by
individual aspect models M4: and due to the compositionality of M limit ourselves
by observing subsets of the test interface I/O alphabet that include only symbols
of one M4: at a time. Given a M4: it is needed to compare then only the timed

words projections TW (M%), siroONto sub-alphabet Z0%, € Zihop with timed

words projection TW(M)| si/o of the non-AO model M.

test;

The bisimilarity check is performed in two steps as follows:

Step 1: To keep all 1/0 actions executions of models M and M* in lockstep the
synchrony of selecting these 1/0 actions needs to be ensured so that if one of the
models executes an 1/O action or selects non-deterministically any action the
other model should execute the same I/O action or make the same non-
deterministic choice. Otherwise the traces of non-deterministic models may
diverge and are not compatible. For this reason both — state as well as time step
wise non-deterministic transitions with same labelling in comparable models
need to be synchronized. To construct such a synchronous parallel composition
of models M and M* all pairs of edges (e, e’), where e € E(M) and e’ € E(M*)
need to be found such that

- e and e’ have the same labelling (they model the same actions),

- e is nondeterministic either stae- or time-wise if and only if the e’ is.

We denote the set of such edges with E*. If the edges e, e’ € E* are already

labelled with an I/0 action label a € 5./°, then we split both e and e’ into two
edges e and e connected via an auxiliary committed location, so that e° copies
the labelling of e, and €% is labelled with a unique side-effect free auxiliary
channel ch®* ¢ Channels(M) U Channels(M*) for inter model synchronization.
Adding a new edge e is necessary due to Uppaal TA syntax constraint that
allows at most one channel label per edge. Such a model transformation example
is depicted in Figure 5.1.

83

Figure 5.1 Model transformation for bisimulation verification

Step 2: Sufficient condition of models’ bisimilarity after performing Stepl is
following: if the models M and M® separately do not deadlock in their locations
liand I’; which are the departure locations of edges in E* then the synchronous
composition M 19, M* of compared models does not deadlock in the global
configuration (I;, I’;, .), and vice versa. It is stated formally as TCTL model
checking query satisfiability condition:

ViIi eL(M): M, |; |=A[] not deadlock A M.I; (5.1)
N\
M2, I; | A[] not deadlock A M.Ii A M®.I’;
2=

M, 1 =19, M2, I; | A[] not deadlock A M.Ii A M®.I;

Thus, before evaluating the AO modelling and testing approaches with respect
to the verification and test generation effort, we have to prove the validity of
formula (5.1) on these models by Uppaal model checker.

5.2.2 Bisimulation verification example

To ensure bisimilarity between AO and non-AO models of HRS the model in
Figure 4.7 is compared with the one depicted in Figure 5.2 by following the steps
described in Section 5.2.1.

Let the HRS model-based test interface input alphabet be 3i.,; = {Exercise,
sync0, sync} and output alphabet 22,;; = {emergency_call, refresh_scr}. To
synchronize the AO and non-AO models 1/0 actions and nondeterministic actions
we introduce auxiliary channels as required in Step 1 (Section 5.2.1). At first, the
channels for edges labelled with input actions are defined as follows: channel il
for synchronizing input action Exercise, channel i2 for sync0, and channel i3 to
synchronize the input action sync. Similarly, auxiliary channels are introduced to
synchronize output actions denoted by symbols in the alphabet 37,; : channel o1
to synchronize the output action emergency_call and channel 02 to synchronize
the output action refresh_scr.

84

Secondly, we define auxiliary channels to synchronize the non-deterministic
selecting of AO and non-AO models’ internal actions. The internal auxiliary
channels are introduced for automata templates as shown in Table 5.1.

Table 5.1 Auxiliary channels for checking AO and non-AO models bisimilarity

Template: Patient_physical _condition

Edge Aux. Edge Aux. Edge Aux.
Chan. Chan. Chan.
In_N—In_N el Initial>Normal | e4 | Normal—Better e8
In_B—In_B e2 Initial > Better e5 Better—Normal e9
In W—In_ W| €3 Initial>Worse e6 | Normal—>Worse | €10
Worse—Normal | €7 Worse—Bad ell

Template: Patient_ exercising

Edge Auxiliary channel

Do_Exercise — SwitchToNext el?

Note that when executing the edges In_N—In_N, In_B—In_B, and
In_W—In_W arandom value is generated to k which is used for updating variable
measurement. To avoid diverting the timed traces in AO and non-AO models
same random values generated in one must be duplicated also for the other model
at the same time. For that both updates need to done either in one or in the other
model and then duplicated. In our case we implement the non-deterministic
assignment in non-AO model and duplicate it for AO model variable k_prim. The
models with added auxiliary channels and random value duplications are depicted
in Figure 5. 3.

As described in Sub-section 5.2.1 Step 2 establishes that for all locations
where the non-deterministic selection of the next action is possible, if there is no
deadlock in the location of one model then there should not be a deadlock possible
also in the corresponding location of the other model. To verify this we model
check for all locations of non-deterministic choice the condition set by formula
5.1.

85

The non-deterministic locations of the template Patient_physical_condition
are: In_N, In_B, In_W, Initial, Worse, Normal, Better; and in the template
Patient_exercising there is only one such location Do_exercise.

By unifying the location names in the formula 5.1 we get the necessary model
checking queries, e.g. for location Patient_physical _condition. In_N of AO
model the query is A[] not deadlock && M. Patient_physical_condition.In_N.

Similarly, such queries have to be checked for all the above locations listed in
the non-AO model and thereafter in the synchronous parallel composition of both
models.

After the synchrony condition of non-deterministic choices has been verified,
it remains to show simultaneous non-blocking execution of 1/0 actions. To prove
this we can use again the non-existence condition of deadlocks at source locations
of edges that are labelled with some 1/0 symbol. But since the condition needs to
be checked for all 1/0O edges we apply an alternative way. Namely, we introduce
an auxiliary Boolean vector T in the model M and its counterpart vector T in

the model M®. The size of vectors | T°| = | T'’| = | zi/e‘;tiL so that there is one-to-

one correspondence between the elements of T (T) and the elements of Zi/e‘;ti
as follows (updates of T and T" are shown also in Figure 5.3):

Exercise, Exercise’ = T"°[0], T’[0],

sync0, sync0’ = T°[1], T*[1],

sync, sync’ = T°[2], T°’[2],

emergency_call, emergency_call’ = T"[3], T*[3],
refresh_scr, refresh_scr’ > T[4], T°’[4].

Each time an 1/O action with a symbol from Zi/e‘;ti is executed, its

corresponding element in T® is updated to true. If the 1/O action is executed
repeatedly its corresponding elements in T and in T have to be reset back to
false in the next transitions, following immediately the edges with update true.
This makes the repetitive execution of 1/0 actions observable to model checker.
By running now the Uppaal model checking query — A [] forall (i: [1, | T°|])
T[i] == T’[i] with a positive result, it confirms the bisimilarity of AO and non-
AO models with respect to the test I/O alphabet 3/°

test;:

86

. . o s
Doctor Monitor Patient_exercising
Start
: refresh_scr?
Exercise! =
emergency_call?
¥l b Idle
Ei dbn Emergency_handling =
i Exercise?
Done
s ExCounter<Exvuit St
2 H 243 eftter e ion!=bad &&|
Patient_physical condition o CE=Tick fitcondiont b) Do_Exercise
_P - cl <"CK = cl2<=session_Tub < ¢l <=Ex_Ub
condition= - ‘;M‘ ! il elak
bette o e A O o
t=0 measurementfij=k ExCounter++ Faling
i+ @ condition==bad \
SwitchToNext ®
ik (cl2==session_TIb ci2>==session_Tub
Measremeizk; &8& ExCounter>=ExMult) | | $&condition!=bad
H+ in_norm <M &8&condition'=bad Ex_done=true
N Ex_done=true
— Kval_V
Bad measurement[i]=k JDone
cl <=Tick e
.Id\e
Exercise? | cpq=q, Waiting
Tcounter=g_C11<=MMT Tcounter<ThMax
cl1<MNT stopwaich>=ExMaxTime
stopwatch=0, SpeedScreen=Too_slow
syn0\Q_clock=0 Teounter++
cH==MMT| @ Syn? 4 SpeedScreen=Nominal B SpeedDone

cl==samplPeriod i

&8&condition!=bad
&& not Ex_done

==MM

Measuring
cl1<=MMT SpeedScreen=Too_fast

stopwatch<ExMinTime

Tcounter==TMax

refresh_scrl

Evaluate

measurement(i] < L_bound]i]
screen= LB_warning]i]

Sample_evaluated

measurement(il>=L_bound[i]&&

il ent[i]<=U_bound]i]
SCreen= normai]

measurement[i] > U_bound][i]

Screen = UB_warning[l] iy
i< M-1

cl<=SamplPeriod

posturel=down

ci1=0
emergency=(screenl=07emergency++0),
++

Fall_sampling

o1 ==Tick
cl=0 posture=(condition==bad?
condition o down: posture) Posture_Detection
1=bad && ondition==bad oot ch <=Tick

Ex_done

0 Done

emergency_calll

emergency=on
emergency_calll

Figure 5.2 Non-aspect-oriented model of the HRS

87

i1l

T

Ex_done

emergency_call?

Done

Emergency_handling|

Start
8 Doctor Monitor Patient_exercising
Exercise! T_io0j=true refresh_scr?

ldle

Exercise?

cl=0,
T_io[1]=true

ExCounter<ExMult
&&condition!=bad &8

Do_Exercise
clz<=session_Tub

In_N

KM - —=Ti
kval N ek
el!

cl=0
measurement[i=k,
k'=k,

i+

Patient_physical_condition serer

¢l ==Tick

condition

= better
ef!

Normal
cl ==Tick

¢l <= Ex_Ub
cl>=Ex_Lb
ExCounter++,
T_io[2])=true

syn!

5 condition==bad
e Kk SwitchToNext
o (cl2==session_TIb
cl==Tick N_W & ExCounter-=ExMulty| | c/2-=session_Tub
i=0 &&condition!=bad &&condition!=bad

Kval_W
v

Ex_done=true Ex_done=true

Falling

021
T_iofd]=true

cl==SamplPeriod
&&condition!=bad
&& not Ex_done

refresh_scrl

condition
I=bad &&

cl==MMT|

stopwatch=0,

Measuring
clt<=MMT

Done
Bad (5 cl=0 <M
condition ¢l <=Tick measurement(i]=k |
= bad K'=k, i++
. Idle
Exercise? | ¢j4=p, Waiting
.Tcounler— CLI=ShMA Tcounter<TMax
c]1=MMT stopwatch>ExMaxTime

SpeedScreen=Too_slow
stopwatch>=ExMinTimesa,
opwatch<ExMaxTime
SpeedScreen=Nominal
stopwatch<ExMinTime
SpeedScreen=Too_fast

Tcounter+
b SpeedDone

Tcounter==TMax

measurementi] < L_bound][i]
screen= LB_waming]i]

Sample_evaluated

measurement[ij>=L_bound[i]&&

ment[ij<=U_bound[i]
SCreen= normail]

measurement[i] > U_boundfi]

screen = UB_warning[]] ey
i< M-1

cl==SamplPeriod posturel=do:

cl1=0
emergency=(screen!=07emergency++0),
i++

i Fall_sampling

¢l == Tick

cl=0

posture=(condition==bad?
down: posture) Posture_Detection

" cl1 <=Tick
condition==ba emergency calll
Ex_done emergency._call! posture==down
emergency=on Alert
Done ot! .
T_io[3]=true

Figure 5.3 Non-AO model of the HRS enhanced for bisimulation checking

88

5.3 Comparison of model update effort

To make reliable conclusions on modelling effort a large volume of statistical
data is needed. In order to evaluate the modelling and update effort two
independent teams with equal skills and performance should be involved, one
constructing the AO version and the other non-AO version of the model, so that
the models would be bisimilar as described in Section 5.2. Since collecting
sufficient statistical evidence on that matter was not possible under the current
thesis research we refer to conclusions drawn in [71] instead.

In [71] two different versions of the application model were developed in
parallel and the effort was measured. At first, a simple authentication procedure
was modelled for a Crises Management System (CMS). In this case study a
resource used at crises management missions provides its credentials
(authentication token) and the CMS checks if they correspond to a list of known
credentials. The CMS specification was developed both as non-AO and AO
models and the two models were checked for equivalence via bisimulation. Next,
the model was upgraded to a more advanced authentication version, where the
authentication was based on the Needham-Schroeder Public-Key protocol [73].

When upgrading, the number of changes (statement additions, updates,
removals) was measured in both, in the non-AO and AO model. The results show
that modifying the non-AO models required editing approximately 40% of the
model elements, versus 20% of editing in the case of the AO model. The effort
of updating the models was much smaller in the case of aspect models also in
terms of time spent on modifications. It was easier to identify which elements had
to be changed, and these elements had in general a local scope, without affecting
the specification of the other aspects. This is an expected result according to
different studies [3, 5, 22], which confirms that AOM reduces the scattering and
tangling of requirements.

5.4 Comparison of test purpose specification effort

We estimate the test purpose specification effort by the time of finding and
labelling edges with Boolean variables (so called traps) to define edges as test
coverage items. The traps are updated to true whenever the trap-labelled edge is
executed during a test run. Thus, the AO coverage can be expressed with traps
that label the edges and are syntactic elements used in AO coverage expression.

For quantitative characterization of test purpose specification effort we derive
an empirical formula that correlates with factors of human capability of finding
the edge to be labelled amongst the set of all edges of the model. As the base case,
we estimate the specification time on the non-aspect-oriented model, at first, and
thereafter, compare it with a case of aspect models sharing the same set of traps
between aspects.

Non-aspect oriented case. Assume the total number of edges in the model M
is n = |E(M)| and the number of edges to be labelled with traps is k. We assume

89

that once an edge has been labelled it is memorized and does not need to be
inspected when searching an edge for the next trap. Thus, in the worst case when
searching for an edge to label it with i-th trap n - i options should be inspected.
Let the duration needed for inspection of one edge be constant d. Then the upper
time bound T" of labelling k edges with traps can be calculated by formula

k-1 .
T (M) = Zi:o (n—1i)d (5.2)
Rewriting (5.2) in the form of a square function, we get the formula
_ k-1 , _ n?—(n—(k-1))*
T (M) = Zi:o (n—i)d —fd (5.3)

Aspect-oriented case. For comparison of test purpose specification effort we
assume that the non-aspect model M and its AO counterpart M* are
observationally (with respect to test interface) bisimilar. Also, the edges in M
labelled with traps should occur in the augmented AO model M. (Recall that in
the full augmented model all aspect models M%, ..., M®*, and the initial base
model M*% are woven together). Thus, the set of trap labelled edges in M is equal
to the union of trap labelled edges in the individual aspect models: E"(M) = Ui
E"(M?%). In other words, we assume that the original trap labelled set of edges is
partitioned so that: ki traps specify coverage in M®°;, ko traps specify the coverage
in M#°, and kn traps specify the coverage in M.

Having all m aspects the condition }.7, k; = k is assumed to be satisfied. By
second assumption the set of edges of any aspect model is a strict subset of edges
of the non-aspect model M, i.e.

Vi: E(M®) c E(M) = |[E(M®)| < |[E(M)] .

When denoting the number of edges |E(M{*°)| of aspect model M’ with n;
and applying formula 5.2 we get the labelling effort upper bound for each aspect
model M

n? —(n;—(k;i—1))?
T (M{°) = — 4,

and total test purpose specification time

2 (o (1._1))?
T (M) = ST (TE(ME)) = S, () g

In the following we demonstrate under which conditions AO has advantage
over non-AO test models, i.e.

Tt (M) > Tt (M), (5.4)
By substituting 7" (M) and T*" (M%°) in (5.3) we get

2_ _ _ 2 2 - i~ ki— 2
oD 5y (D) g | 0dr2

90

2~ (n=(k=1))? 2 ~(ni=(ki=1))*
Pl g > (o, (RS g e

n?—(n—(k—1)?> Y00 — (n;— (ki —1)") | Z(a+h)= Ta+xb
n? = (n— (k- 1))% > ¥y n? =31 (n — (k — 1)’

Since for any n, m > 2 and for any positive a, if a =Y, a; then a™ >
™, a;", we can conclude that Tt (M) > Tt (M°).

O

The plot of Tt (M) and T*"(M°) dependency on parameters m and ki, where
i=1,..., m,is depicted in Figure 5.4. We can assume without loss of generality
that the traps are distributed equally over the aspects and just for illustration the
following parameter values are selected: the number of edges n =100, the number
k of traps varies from 10 to 100 with step 5, and the number m of aspects varies
from 1 to 10 with step = 1. To compare non-AO and AO cases it is assumed, like
in the case of traps, the sum of edges in the aspect models equals to the sum of
edges in the bisimilar non-AO model. Under given assumptions it is easy to see
in Figure 5.4 that due to the nonlinearity in the number of aspects the sum of
labelling efforts of AO models is less than that in the non-AO model provided the
total number of traps and edges in both cases is the same.

T"(M(-))

4000

3000

2000

1000

Figure 5.4 The dependency of test purpose specification effort on the number of traps k
and number of aspects m

91

5.5 Comparison of test generation effort

The generation of test sequences in this approach is based on using timed witness
traces produced by an Uppaal model checker as the result of checking queries
that encode the test purposes (coverage reachability) symbolically. Thus, the test
generation effort is measurable in terms of time complexity of model checking
such TCTL formulas that express AO coverage criteria. In Section 3.3, it was
shown how to express the AO coverage criteriain TCTL.

The worst-case time complexity O of model checking TCTL formula ¢ over

timed automaton M, with the clock constraints of ¢ and of M in s, according
to [74]

O (Igd x (! x 2" x [Txey cx x ILP)); (5.5)

where n is the number of clock regions, - set of clock constraints, cx -maximum
constant the clock x is compared with; L : Loc — 2*" is a labelling function for
symbolic states of M. L denotes the product of data constraints over all locations
and edges defined in the Uppaal TA model and AP is the set of atomic
propositions used in guard conditions and invariants.

From (5.5) it can be seen that the time complexity of model checking TCTL
is:
0) Linear in the length of the formula ¢;
(i) Exponential in the number of clocks; and
(ili) Exponential in the maximal constants ¢ with which each clock x is
compared to the model M and in ¢.

However, using state space reduction techniques the worst case time
complexity can be reduced to being quadratic in the number of symbolic states
on data variables in the model [74].

Regarding space complexity, the lower bound for the complexity of model
checking TCTL for a Timed Automata model is known to be PSPACE-hard [62].

In practice, time and space complexity of model-checking TCTL on Uppaal
TA, boils down to the size of the symbolic state space and more specifically, to
the number of symbolic states (including clock zones) to be explored, and
respectively stored during the verification. Since by definition the number of
locations |L(M*°)| and edges [E(M®)], as well as the number of variables [V(M®)|
of an aspect model M* is not greater than that of a behavioural equivalent non-
aspect model M, we can conclude from the complexity formula (5.5) that every
small reduction in the number of model elements, and related to them, the number
of symbolic states provides an exponential decrease in the number of steps of the
model exploration. Naturally, this applies also to checking the aspect related
properties that need to be satisfied on the AO test models. Due to the
superposition refinement based weaving (synchronization built into the weaving

92

constructs), the weaving Approach 2 does not introduce additional interleaving
between base model and advices model transitions (see Section 3.2.4 for details).

Relying on the arguments above we can state the following claims on
symbolic states to be processed and stored for model checking based test
generation. Let us consider the non-aspect-oriented model M and, respectively,
the aspect-oriented model M* that specifies the same behaviour of a system.
Recall that M* consists of a base model M® with which a set of models of non-
interfering aspects A;, i = 1...n are woven. Then we yield the following:

Claim 5.1 (Verification effort): For any reachability property ¢ of any A;, i =
1...n decidable on M@ M" the model checking effort E (in terms of time or
space) is equal or less than the effort of model checking the property ¢ on the
non-aspect oriented model M, where the semantics of MB @ MA is a subset of
semantics of M, i.e.

M@ MA E g A [IMPD MA] < [IM] = M E o1 A E(MPD MM E @) <E(M F @)
(5.6)

Assuming the tests are generated using model checking traces the formula (5.6)
yields the Claim 5.2.

Claim 5.2 (testing effort): Under the assumptions of Claim 5.1, the effort E (in
terms of time or space) of generating the test case T that is interpretation of
aspect A; property g and is bounded with aspect-oriented model M® @ M, is less
than or equal to the effort of generating the test T“ from non-aspect oriented
model M:

MB@® MA E g A [IMB MM [] < [IM]] = E(MB@® M, T#) < E(M, T #).
(5.7)

Here notation [|M|[] denotes the operational semantics (a set of behaviours) of
model M. The validity of formulas (5.6) and (5.7) stems from the fact that aspect-
oriented models represent subsets of the behaviour of the non-aspect model of the
same system. The performance gain due to the compositionality via aspect-
oriented modelling is demonstrated with the numerical example in the Figure 5.5.

93

Time
complexity
(x10%%)

Figure 5.5 The dependency of test generation effort on the number of logic connectives
in the test coverage formula ¢ and the number of aspects m

The plot in Figure 5.5 is generated using the approximating function f(m, |¢|)
=m (|£| x ((%)! X 2m ><C><|%|2)) which is derived from 5.5 by applying

assumptions that the set of locations and the set of literals of coverage formula is
partitioned between m aspect models equally and [] ¢, ¢, is some constant C.

It can be seen from Figure 5.5 that the test generation effort measured in terms
of the model checking complexity of the test coverage formula ¢ s, according to
formula 5.5, inverse super-exponential in the number of aspects m and
exponential in the number of literals in ¢. It means that when partitioning the
model checking task to m smaller ones verifiable on an aspect model instead of
one monolithic non-aspect model it provides in total exponentially smaller test
generation effort.

5.6 Comparison of generated tests (length of test sequences)

As concluded in Section 5.5 generating the witness traces by model checking a
TCTL formula ¢ on a non-AO model has disadvantages compared to generating
the traces of ¢ sub-formulas (when conjunction is equivalent to ¢) on AO models.
Since the AO and non-AO models to be compared must be bisimilar by
assumption their witness traces generated are equivalent in the sense of coverage.
Thus, regarding test execution effort we can conclude that the test sequences
derived from AO models and non-AO models are coverage equivalent although
their traces can differ slightly due to the interleaving introduced by the other
structural elements of full monolithic model. Just note that the Uppaal model
checker enables generating witness traces that are optionally either shortest or
fastest in the set of all witness traces satisfying some AO coverage expression .

94

5.7 Conclusion

In Chapter 5, the AOM and testing concepts and methods introduced in Chapters
3-5 have been analysed in order to provide the quantitative and qualitative
evidence on their advantages compared with non-aspect oriented methods. It was
shown analytically and with reference to complexity results of TCTL model
checking that the effort of modifying AO models, as well as the effort of
specifying AO coverage criteria and the test generation from AO models is less
than that from non-aspect oriented models. Note also that when the tests are
generated offline the test execution effort does not depend on the method of test
generation, so, only the length of test sequences matters.

95

6 CONCLUSION

6.1 Chapter overview

Last chapter summarizes the results obtained from this thesis.

6.2 Main results

The background study of the thesis domain that is aspect orientation and testing
brought up some principal questions on the model-based development and
particularly on the model-based testing:

e How the existing aspect-oriented requirements engineering methodology
can be applied to aspect-oriented test model construction?

e What model transformations are needed for constructing AO test
models?

¢ How to specify the test purpose and test coverage criteria on AO test
models?

o How to express the AO test purposes symbolically?

e Given an AO SUT model and the AO test purpose how to verify the
correctness and feasibility of the testing tasks?

¢ How AO MBT improves the productivity of the overall testing process?

Based on the state-of-the-art results scattered over a large volume of related
publications, the following research hypotheses were formulated in this thesis:

1. Test model construction and update effort decreases along with
improving the model comprehension due to a reduction in the number
and severity of modelling errors and the need for their corrections;

2. Aspect orientation can be introduced compositionally in test generation
and execution that reduces the test generation effort;

3. Aspect-oriented test cases are more compact and allow the saving of test
execution time (improved performance); and

4. Defining the test cases and their coverage criteria relative to aspects
provide better traceability of bugs’ causes and locating them in the
requirements specification.

To validate the hypotheses the generic problems, stated above, were
instantiated and studied in the context of Uppaal TA formalism. This led to the
main results of the thesis being summarised as follows:

e A new aspect-oriented model engineering methodology for Uppaal TA
was introduced in MBT. This methodology is based on an aspect-

96

oriented requirements engineering paradigm that results in three
advantages: testability of SUT quality attributes, a simple rule for
composition, and better comprehension of test models.

e Aspects weaving is implemented as a set of model superposition
refinement operators. AO tests can be generated automatically by
running TCTL model checking queries on woven models and applying
the resulting witness traces thereafter as test sequences of AO test cases.

e A new set of aspect-oriented test coverage criteria is defined. That gives
meaningful automatic test design options based on SUT models which
are defined by quality attributes related to aspects. It is shown that
coverage criteria can be formalized in temporal logic TCTL.

e The usability of the AO MBT method is demonstrated on the Home
Rehabilitation System testing case-study. This provides an experimental
evidence that AO testing improves the efficiency of MBT compared to
the methods that are based on non-aspect oriented models.

e Last but not least, the quantitative and qualitative evidence of the
advantages of AOT was provided with reference to complexity results of
TCTL model checking. It is shown also analytically that the effort of
modifying AO models, as well as the effort of specifying AO coverage
criteria and the test generation from AO models is less than that of non-
aspect oriented models.

6.3 Future work

Aspect-oriented testing provides a discipline that supports achieving better
structure and comprehension of test models. This has implications, in turn, to test
coverage criteria and the reduction of total conformance testing effort. In future
work, we plan to merge the aspect-oriented conformance testing with mutation
testing to address the bugs which are caused by too permissive software
implementations. While the conformance testing is capable of detecting bugs
where implementation does not conform to the specification, it is not revealing
bugs where the implementation under test has behaviours that are not in the
requirements specification. We also plan to conduct a set of larger case studies to
evaluate the scalability of the approach as well as its advantages from the point
of view of incremental test suite updates.

97

REFERENCES

[1] R.V. Binder, “Model-based testing, user survey: Results and analysis,”
http://robertvbinder.com/wp-content/uploads/rvb-pdf/arts/MBT-User-
Survey.pdf (Jan 2012), online, last accessed 11.5.2015, p.26.

[2] R.E. Filman, et al., “Aspect-Oriented Software Development.” Addison-
Wesley, Boston, 2005.

[3] S. J. Sutton, “Aspect-Oriented Software Development and Software Process,”
In: M. Li, B. Boehm, L. Osterweil, (eds.) Unifying the Software Process Spectrum,
Lecture Notes in Computer Science, vol. 3840, pp. 177-191. Springer, Berlin,
Heidelberg, 2006.

[4] R. France and B. Rumpe, ,,Model-driven development of complex software:
A research roadmap,” In Proceedings of the 29th International Conference on
Software Engineering, IEEE Computer Society, 2007, pages 37-54.

[5] S. Ali, T. Yue, L. Briand, “Assessing quality and effort of applying aspect
state machines for robustness testing: A controlled experiment,” In Software
Testing, Verification and Validation (ICST), 2013 IEEE Sixth International
Conference, March 2013, pp. 212-221.

[6] W. W. Royce, ,,Managing the Development of Large Software Systems:
Concepts and Techniques,” Proc. WESCON, IEEE Computer Society Press, Los
Alamitos, CA, 1970. Reprinted at the ICSE'87, Monterey, California, USA.
March 30 - April 2, 1987.

[7] M. Eigner, T. Dickopf, H. Apostolov, P. Schaefer, K. G. Failit, et al. System
Lifecycle Management: Initial Approach for a Sustainable Product Development
Process Based on Methods of Model Based Systems Engineering. Shuichi
Fukuda; Alain Bernard; Balan Gurumoorthy; Abdelaziz Bouras. 11th IFIP
International Conference on Product Lifecycle Management (PLM), Jul 2014,
Yokohama, Japan. Springer, IFIP Advances in Information and Communication
Technology, AICT-442, pp. 287-300.

[8] B. Boehm (1996), "A Spiral Model of Software Development and
Enhancement,”" In: ACM SIGSOFT Software Engineering Notes, ACM, 11(4):
14-24, August 1986.

[9] A. Cockburn, ,,Agile Software Development,” Boston, Addison-Wesley,
2002.

[10] B. Hunt, G. T. Abolfotouh, J. Carpenter, R. Gioia, “Software test costs and
return on investment (ROI) issues,” http://www.iceaaonline.com/ready/wp-
content/uploads/2014/03/Software-Test-Cost-and-ROI-Galorath-Feb-14-
Hunt.pdf, online, last accessed 15.12.2016.

98

[11] P. Skokovic, ,,Requirements-Based Testing Process in Practice,” IJIEM,
Vol.1 No 4, 2010, pp. 155-161.

[12] EU SPEEDS project. “Inria research report n° 8147, november 2012,
(https://hal-univ-tlse2.archives-ouvertes.fr/hal-01178467/document) retrieved
11.5.2015.

[13] E. A. Lee, “Cyber-physical systems-are computing foundations adequate,”
in Position Paper for NSF Workshop On Cyber-Physical Systems: Re-search
Motivation, Techniques and Roadmap, vol. 2, 2006.

[14] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based
testing approaches,” Software Testing, Verification and Reliability, vol. 22,
no. 5, pp. 297-312, 2012, online, last accessed: 18.5.2015. Available:
http://dx.doi.org/10.1002/stvr.456.

[15] J. Tretmans. “Model Based Testing: Property checking for real,” Keynote
address at the International Workshop for Construction and Analysis of Safe
Secure, and Interoperable Smart Devices, 2004. Last accessed: 27.5.2018.
Available http://www-sop.inria.fr/everest/events/cassis04.

[16] J.-R. Abrial, “The B-Book: Assigning Programs to Meanings,” JCambridge
University Press, 1996. ISBN 0-521-49619-5.

[17] G. J. Tretmans, “A formal approach to conformance testing,” PhD
dissertation, University of Twente, 1992.

[18] J. Tretmans, “Test Generation with Inputs, Outputs, and Quiescence,” In
TACAS , volume 1055 of LNCS, Springer, 1996, pages 127-146.

[19] G.Kiczales and others, “Aspect-Oriented Programming,” in ECOOP ’97 -
Object-Oriented Programming, 1997, vol. 1241, pp. 140-149.

[20] M. Badri, L. Badri, and M. Bourque-Fortin, “Generating unit test sequences
for aspect-oriented programs: towards a formal approach using UML state
diagrams,” in Information and Communications Technology, 2005. Enabling
Technologies for the New Knowledge Society: ITI 3rd International Conference
on, 2005, pp. 237-253.

[21] S. Clarke and E. Baniassad, “Aspect-Oriented Analysis and Design,” The
Theme Approach. Addison-Wesley, 2005.

[22] S. Ali, T. Yue, L. C. Briand, “Does Aspect-Oriented Modelling Help
Improve the Readability of UML State Machines?,” Software & Systems
Modelling, vol. 13, no. 3, pp. 1189-1221, 2014.

[23] A. Bhave, B. H. Krogh, D. Garlan, B. Schmerl, “View Consistency in
Architectures for Cyber-Physical Systems,” 2011 IEEE/ACM Second
International Conference on Cyber-Physical Systems, Chicago, IL, 2011,
pp. 151-160. doi: 10.1109/ICCPS.2011.17

99

[24] J. Vain, M. Kaaramees, M. Markvardt, “Online Testing of Nondeterministic
Systems with the Reactive Planning Tester,” 2012.

[25] S. Ghosh, R. France, C. Braganza, N. Kawane, A. Andrews and O. Pilskalns,
"Test adequacy assessment for UML design model testing," 14th International
Symposium on Software Reliability Engineering, 2003. ISSRE 2003., 2003,
pp. 332-343.

[26] J. Ellsberger, D. Hogrefe, A. Sarma, ,,SDL Formal Object-Oriented
Language for Communication Systems,“ Prentice Hall 2007.

[27]J. M. Spivey, ,, The Z Notation: A Reference Manual,” Second ed., Published
1998 by J. M. Spivey, Oriel College, Oxford, England.

[28] E. Bernard, F. Bouquet, A. Charbonnier, B. Legeard, F. Peureux, M. Utting,
and E. Torreborre, "Model-based Testing from UML Models,” In Procs. of the
Int. Workshop on Model-based Testing (MBT'2006), volume P-94 of Lecture
Notes in Informatics, Dresden, Germany, pages 223-230, October 2006.

[29] A. Cavarra, ,,Data Flow Analysis and Testing of Abstract State Machines,”
In Proceedings of the 1st international conference on Abstract State Machines, B
and Z (ABZ'08), E. Borger, M. Butler, J. P. Bowen, and P. Boca (Eds.). Springer-
Verlag, Berlin, Heidelberg, 85-97.

[30] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes, ,,Generating Finite
State Machines from Abstract State Machines,” ACM SIGSOFT Software
Engineering Notes 27 (4), 2002, 112-122.

[31] C. Pfaller, “Requirements-based test case specification by using information
from model construction,” In Proceedings of the 3rd international workshop on
Automation of software test, 2002, ACM, New York, NY, USA 7-16.

[32] M. Sarma, P. V. R. Murthy, S. Jell, and A. Ulrich, “Model-Based Testing in
Industry — A Case Study with Two MBT Tools,” in AST '10 Proceedings of the
5th Workshop on Automation of Software Test, ACM, New York, NY, USA
87-90.

[33] A. C. D. Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, ,,A survey
on model-based testing approaches: a systematic review,” In Proceedings of the
1st ACM international workshop on Empirical assessment of software
engineering languages and technologies: held in conjunction with the 22nd
IEEE/ACM International Conference on Automated Software Engineering (ASE)
2007 (WEASELTech '07). ACM, New York, NY, USA, 31-36.
DOlI=http://dx.doi.org/10.1145/1353673.1353681

[34] M. Utting, B. Legeard, “Practical model-based testing: A Tools Approach,”
2007, Elsevier Inc.

[35] M. Bernardino, E. M. Rodrigues, A. F. Zorzo and L. Marchezan, "Systematic
mapping study on MBT: tools and models,” in IET Software, vol. 11, no. 4,
pp. 141-155, 8 2017. doi: 10.1049/iet-sen.2015.0154

100

[36] R. Jeords, C. Heitmeyer, M. Archer, and E. Leonard, “A formal method for
developing provably correct fault-tolerant systems using partial refinement and
composition, in FM,* 2009, Formal Methods, pp. 173-189, Springer.

[37] ETSI ES 202 951, “Methods for Testing and Specification (MTS); Model-
Based Testing (MBT); Requirements for Modelling Notations,” July 2011.

[38] S.J. Prowell, “JUMBL.: A tool for model-based statistical testing,” in Proc.
36th Annual Hawaii International Conference on System Sciences, 2003,
pp. 9 pp.-. doi: 10.1109/HICSS.2003.1174916

[39] C. Sant’Anna, et al., "On the reuse and maintenance of aspect-oriented
software: An assessment framework," Proceedings of Brazilian symposium on
software engineering. 2003.

[40] A. Huima, (2007) "Implementing Conformiq Qtronic," Testing of Software
and Communicating Systems, Springer, pp. 1-12. DOI: 10.1007/978-3-540-
73066-8_1

[41] A. Belinfante, (2012) "JTorX: a Tool for On-Line Model-Driven Test
Derivation and Execution”. In Proc. of TACAS'10, Springer, pp. 266-270.
DOI: 10.1007/978-3-642-12002-2_21

[42] A. Hartman and K. Nagin (2004), "The AGEDIS tools for model based
testing,” SIGSOFT Softw. Eng. Notes, 29:4, pp. 129-132.
DOI: 10.1145/1013886.1007529

[43] A. Schauerhuber, et al., “Survey on Aspect-Oriented Modelling
Approaches,” 2002.

[44] G. Geri, et al., “An Aspect-Oriented Methodology for Designing Secure
Applications,” 20009.

[45] A. Rashid, et al., “Aspect-Oriented Software Development in Practice: Tales
from AOSD-Europe,” Computer 43(2), 19-26 (2010).

[46] R.B. France, et al., “An aspect-oriented approach to design modelling,” IEE
Proceedings - Software, Special Issue on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design 151(4) (aug 2004)

[47] J. Vain, et al., 2011, “Online testing of nondeterministic systems with
reactive planning tester,” Dependability and Computer Engineering: Concepts
for Software-Intensive Systems, (113-150), Hershey, PA: IGI Global.

[48] J. Bengtsson, W. Yi, 2004, “Timed automata: Semantics, algorithms and
tools,” Lecture Notes on Concurrency and Petri Nets, Lecture Notes in Computer
Science vol. 3098.

[49] J. Bengtsson, “Clocks, DBMs and States in Timed Systems,” PhD
dissertation, Dept. of Information Technology, Uppsala University, 2002.

101

[50] P. Herber, 2010, “A Framework for Automated HW/SW Co-Verification of
SystemC Designs using Timed Automata,” Logos Verlag Berlin GmbH.

[51] J. Igbal, D. Truscan, J. Vain, I. Porres, “Reconstructing timed symbolic
traces from rtioco-based timed test sequences using backward-induction,” In:
V.Vrani¢, R. Ondrej, Ondrej (Ed.). Proceedings of the Fifth European
Conference on the Engineering of Computer-Based Systems, ECBC 2017 :
31 August - 01 September 2017, Larnaca, Cyprus (1-10).

[52] A. Hessel, K. G. Larsen, M. Mikucionis, B. Nielsen, P. Pettersson, and A.
Skou, 2008, “Testing Real-Time Systems Using UPPAAL,” In Formal Methods
and Testing, RobertM. Hierons, JonathanP. Bowen, and Mark Harman (Eds.).
LNCS, Vol. 4949. Springer Berlin Heidelberg, 77-117.

[53] E. Katz and S. Katz, “Incremental analysis of interference among aspects,”
In Proceedings of the 7" Workshop on Foundations of Aspect-oriented
Languages, FOAL '08, pages 29-38, New York, NY, USA, 2008. ACM.

[54] K. Sarna and J. Vain, “Exploiting aspects in model-based testing,” In
Proceedings of the 11" Workshop on Foundations of Aspect-Oriented
Languages, FOAL'12, pages 45-48, New York, NY, USA, 2012. ACM.

[55] OMG, Unified Modelling Language Infrastructure Specification, version
2.1.2, Oct. 2007. Document formal/2007-11-04, available at
http://www.omg.org/.

[56] S. Ali, T. Yue, and L. C. Briand, “Does Aspect-oriented Modelling Help
Improve the Readability of UML State Machines?,” Software & Systems
Modelling, 13(3):1189-1221, July 2014.

[57] S. Op de Beeck, et al., “A study of aspect-oriented design approaches,”
Technical Report CW 435, Department of Computer Science, K.U.Leuven,
Leuven, Belgium, Feb 2006.

[58] R. Pawlak, L. Duchien, and L. Seinturier, “CompAr: Ensuring Safe Around
Advice Composition,” In Proceedings of 7th IFIP International Conference on
Formal Methods for Open Object-Based Distributed Systems (FMOODS),
volume 3880 of LNCS, pages 75-105, Athens, Greece, June 2006. Springer-
Verlag.

[59] A. Mehmood and D. Jawawi, “A guantitative assessment of aspect design
notations with respect to reusability and maintainability of models,” In Software
Engineering Conference (MySEC), 2014 8" Malaysian, pages 136-141. IEEE,
Sept 2014.

[60] D. Truscan, J. Vain, M. Koskinen, “Combining aspect-orientation and
UPPAAL timed automata,” ICSOFT-PT : Proceedings of the 9th International
Conference on Software Paradigm Trends, Vienna, Austria, 29-31 August, 2014.
Ed. Holzinger, Andreas; Cardoso, Jorge; Cordeiro, José; van Sinderen, Marten;
Mellor, Stephen. SciTePress, 159-164.

102

[61] F. Sanen, R. Chitchyan, L. Bergmans, J. Fabry, M. Sudholt, and K. Mehner,
“Aspects, dependencies and interactions: Report on the workshop adi at ecoop
2007,” in Proceedings of the 2007 Conference on Object-oriented Technology,
ser. ECOOP’07. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 75-90, online,
last accessed 18.05.2015. Available:
http://dl.acm.org/citation.cfm?id=1787553.1787563

[62] R. Alur, C. Courcoubetis, and D. Dill, “Model-checking for real-time
systems,” in Logic in Computer Science, 1990. LICS’90, Proceedings, Fifth
Annual IEEE Symposium on e. IEEE, 1990, pp. 414-425.

[63] M. Badri, L. Badri, and M. Bourque-Fortin, “Generating unit test sequences
for aspect-oriented programs: towards a formal approach using UML state
diagrams,” in Information and Communications Technology, 2005. Enabling
Technologies for the New Knowledge Society: ITI 3 International Conference
on. IEEE, 2005, pp. 237-253.

[64] D. Xu et al., “Automated Test Code Generation from UML Protocol State
Machines,” in Proc. of the 19th International Conference on Software
Engineering and Knowledge Engineering (SEKE’07), 2007.

[65] D. Xu and X. He, “Generation of Test Requirements from Aspectual Use
Cases,” in Proc. 3rd workshop on Testing aspect-oriented programs
(WTAOP’07). ACM, 2007, pp. 17-22, online; last accessed: 18.05.2015.

[66] D. Xu and K. E. Nygard, “Threat-driven modelling and verification of secure
software using aspect-oriented petri nets,” IEEE Transactions on Software
Engineering, vol. 32, no. 4, pp. 265-278, 2006, online; last accessed: 18.05.2015.

[67] D. Xu et al.,, “Testing Aspect-oriented Programs With UML Design
Models,” Intl. Journal of Software Engineering and Knowledge Engineering
(IJSEKE), vol. 18, no. 3, pp. 413-437, 2008.

[68] S. Ali, L. Briand, and H. Hemmati, “Modelling Robustness Behavior Using
Aspect-Oriented Modelling to Support Robustness Testing of Industrial
Systems,” Simula Research Laboratory, Tech. Rep. 2010-03, 2010.

[69] D. Truscan, J. Vain, M. Koskinen, “A Tool-supported Approach for
Introducing Aspects in UPPAAL Timed Automata,” in Software Technologies -
The 9th International Conference, ICSOFT 2014, Vienna, Austria, 2014, Revised
Selected Papers, 2014.

[70] J. Igbal, L. Tsiopoulos, D. Truscan, J. Vain, and |. Porres, “The Crisis
Management System — A Case Study in Aspect-Oriented Modelling Using
UPPAAL,” Turku Centre for Computer Science, 2016.

[71] J. Vain, D. Truscan, J. Igbal, L. Tsiopoulos, “On the Benefits of Using
Aspect-Orientation in UPPAAL Timed Automata,” Conference Proceedings.
2017 International Conference on Infocom Technologies and Unmanned Systems

103

(ICTUS) (Trends and Future Directions). Ed. S. K. Khatri, R.K. Kapur, A. Rana
S. Singh, P.K Kapur, New Delhi: Excellent Publishing House, 81-88.

[72] K. Cerans, “Decidability of bisimulation equivalences for parallel timer
processes,” in Computer Aided Verification: Fourth International Workshop,
CAV ’92 Montreal, Canada, June 29 -- July 1, 1992 Proceedings, G. von
Bochmann and D. K. Probst, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1993, pp. 302-315.

[73] R. Needham, M. Schroeder, (December 1978) "Using encryption for
authentication in large networks of computers,” Communications of the ACM.
21 (12): 993-999. d0i:10.1145/359657.359659

[74] J. Katoen, “Concepts, Algorithms, and Tools for Model Checking,” ser.
Arbeitsberichte des Instituts fur Mathematische Maschinen und
Datenverarbeitung. IMMD.

[75] A.Yakout, A. Mohamed, Nov 2010, ,Case Study: Aspect-Oriented
Requirements Engineering,” last accessed: 18.05.2015. [Online] Available:
http://www.ccsenet.org/journal/index.php/cis.

[76] A. Kuusik, E. Reilent, K. Sarna, and M. Parve, “Home telecare and
rehabilitation system with aspect-oriented functional integration,” Biomedical
Engineering. DOI: 10.1515/bmt-2012-4194

[77] A. Anier, J. Vain, L. Tsiopoulos, (2017) “DTRON: A tool for distributed
model-based testing of time critical applications,” Proceedings of the Estonian
Academy of Sciences, 66 (1), 75-88.10.3176/proc.2017.1.08.

104

ACKNOWLEDGEMENTS

At the time | was writing this thesis, | received emotional support from many
people — and without the support and the people, | would not have written it with
such a joy. | am truly grateful to everyone who contributed to the mental support.
I will thank them personally.

Yet, I must single out certain people for special thanks. Firstly, I am grateful
to my former colleagues Oliver Vaartndu and Alar Kuusik in Eliko competence
centre. Along with the support on understanding the practical design issues
highlighted in thesis use a practical case study example. | would like to thank
Enar Reilent for encouraging me to write the articles on that case study.
Discussions with him and others in the development team, provided me with
insight and tips on how to stay on the right track with practical testing problems.

| appreciate the time | spent at the Technical University of Graz in winter
2013/2014 and | am grateful to the people | met there. | recall with gratitude the
inspiring time in this wonderful environment.

A special word of thanks goes to my supervisor Professor Juri Vain as without
him and his guidance, and support, this thesis would never have been completed.

Lastly, big thanks to my husband and parents, who took care of my children
and me during the period of writing the thesis. | did intensive writing at different
periods during my doctoral studies. 1 am deeply thankful for your patience and
love.

Funding

This work has been partially supported by the Competence Centre programme of
Enterprise Estonia.

The Doctoral School has contributed in the participation at conferences and
summer schools. The last conference visit was supported by the European Social
Fund’s Doctoral Studies and Internationalisation Programme (DoRa).

I received financial support from the Tiigritlikool during my studies, which is
very much appreciated. | am truly grateful for the support from all sources.

105

ABSTRACT

You know you have achieved perfection in design, not when you have
nothing more to add, but when you have nothing more to take away.
Antoine de Saint-Exupery

Model-based testing (MBT) is an umbrella term specified by ETSI standard ES
202 951 v1.1.1 (2011-07) that captures various approaches to generating tests
from models of systems under test (SUT). A system model is a computer-readable
behavioural model that describes the intended external operational characteristics
of the SUT.

The standard of MBT captures basic concepts and notations necessary for
modelling and testing the SUT. Due to its generality the standard is independent
of a specific modelling language. It mandates only modelling concepts that
support tool usage and facilitate the generation of tests.

Compared to traditional testing methods, in MBT, the testing effort is shifted
from mere test purpose specifications to modelling the requirements which the
SUT should conform to. However, a recent survey by Binder [1] showed that two
of the main challenges of MBT are in updating the models and in handling their
complexity. In addition, the models used in MBT are not always intuitive and
usually only part of the system behaviour is modelled to reduce the test generation
effort. Therefore, modularization and abstraction techniques applicable in
creating test models have become key factors that determine the usability of MBT
in applications of a practical scale.

Aspect-orientation offers a new modularization concept for improving the
modularity of crosscutting concerns in software development. Aspect-Oriented
(AO) Software Development is a paradigm, based on aspect-oriented
programming (AOP) [2, 19] that addresses the effects of crosscutting concerns
on software artefacts: scattering (specifications related to one concern are
distributed over several units), and tangling (a given unit contains specifications
related to several concerns). The main principle of Aspect-Oriented Software
Development (AOSD) is to develop multiple concerns of a software system in
isolation (via aspects) and later on to combine (weave) them into a complete
working system. The perceived benefits of AOSD are [3, 20]:

- improved separation of concerns;
- ease of maintenance, evolution and customization; and
- greater flexibility in development.

Aspect-Oriented Modelling (AOM) [21] combines the ideas behind AOSD
with those of model-based (MB) software development, where the main focus is
placed on how different concerns of the system can be modelled independently

106

and combined later on via composition mechanisms [4]. Experiments show that
using AOM techniques provides models of better quality and improved
readability [22]. Results from [5] confirm that aspect state machines used as test
models are significantly more complete and correct, although their construction
takes significantly more time than the standard approach with state machines that
directly model the entire system behaviour, including crosscutting concerns.

This thesis presents a novel approach to aspect-oriented modelling and testing
to address the needs of MBT. In particular, the approach aims at providing
assistance for incremental test model creation as well as for abstract test purpose
specification by referring to attributes of aspects using symbolic expressions. The
proposed AO modelling principles and test development steps are implemented
based on Uppaal Timed Automata [48] which allow specifying not only
functional but also timing features, data dependencies and synchronization
conditions of the SUT. The thesis validates the AQ test development approach on
a practical case study, namely - “Home Rehabilitation System” (HRS) and the
evidence of the advantages is provided by all steps of AO test development.

107

KOKKUVOTE

Teate, et Te olete saavutanud disainis tdiuslikkuse mitte siis, kui teil
pole midagi lisada vaid siis, kui teil pole enam midagi dra vétta.
Antoine de Saint-Exupery

Mudelip6hine testimise maéaratlus on antud ETSI standardis ES 202 951 v1.1.1
(2011-07), kuhu on kogutud nduded erinevate testimisviiside Uihtseks kasitluseks.
Standardi eesmérgiks on anda Uhtne raamistik testitava sisteemi mudelitest
testide genereerimise meetoditele. Slsteemi mudeli all mdeldakse arvutile
loetavat mudelit, mis kirjeldab testitava stisteemi kaitumist ja selle parameetreid.
Lisaks kirjeldab standard testitava stisteemi modelleerimiseks ja testimiseks
vajalikke pdhikontseptsioone ja notatsioone. Oma tldisusastme tdttu on standard
sOltumatu konkreetsest modelleerimiskeelest..

Vaorreldes traditsiooniliste testimismeetoditega on mudelip8hises testimises
raskuspunkt liikunud testieesmargi spetsifitseerimiselt nGuete modelleerimisele,
millele testitav stisteem peab vastama. Hiljutine Binderi uuring [1] naitab, et
mudelipbhise testimise peamine raskus on mudelite konstrueerimine ja
ajakohastamine ning mudeli keerukusest tulenevate probleemide lahendamine.
Lisaks sellele ei ole mudelid mitte alati intuitiivsed ja tavaliselt modelleeritakse
slisteemi kaitumist osade kaupa, et vdhendada testide genereerimise tdémahtu.
Seetdttu on testimudelite loomiseks kasutatavad modulariseerimise ja
abstraktsioonitehnikad peamiseks faktoriks, millega on maaratud mudelipdhise
testimise kasutatavus praktilistes rakendustes.

Aspekt-orienteeritus annab uudse ldhenemine modulaarsusele vdimaldades
paremini adresseerida tarkvaraarenduses probleeme, millele on seni suhteliselt
véhe tdhelepanu pooratud. Aspekt-orienteeritud tarkvara arenduse ideed
pbhinevad aspekt-orienteeritud programmeerimisel [2, 19] mis késitleb arenduse
tilikamaid probleeme nagu nduete hajutamine (scattering) erinevatel
komponentile ja kokkusegamine (tangling), kus komponendi spetsifikatsioonis
on elemente erinevat liiki nduetest. Aspekt-orienteeritud tarkvaraarenduse
vBtmeidee on arendada esmalt tarkvara aspekte omavahel s6ltumatult ning hiljem
pbimida (weave) need terviksusteemiks. Aspekt—orienteeritud tarkvaraarenduse
peamisteks eelisteks on probleemide lahuskéideldavus, tarkvara hélpsam
hooldamine, haldamine, arendamine ja kohandamine ning arendusprotsesside
suurem paindlikkus [3, 20].

Aspekt—orienteeritud modelleerimine [21] Uhendab endas aspekt-
orienteeritud tarkvaraarenduse ja mudelip8hise tarkvaratestimise ideed
keskendudes sellele kuidas esmalt modelleerida slisteemi sltumatult tema osade
kaupa ning hiljem need osad omavahel siduda [4]. Katsed kinnitavad, et aspekt-
orienteeritud modelleerimistehnika abil on v6imalik parandada mudelite

108

arusaadavust ning valtida modelleerimise vigu [22]. Publikatsiooni [5]
tulemused nditavad, et kuigi testimudelitena kasutatavate aspekt-orienteeritud
olekumasinate konstrueerimiseks kulub oluliselt ronkem aega kui standardsete
olekumasinate konstrueerimiseks, on aspekt-orienteeritud mudelid oluliselt
korrektsemad ja tdielikumad.

Kéesolev vaitekiri pakub uudse ldhenemise aspekt—orienteeritud
modelleerimisele ja selle rakendamisele mudelipdhises testimises. Lisaks
modelleerimistehnikale on vaitekirja eesmargiks néidata kuidas testieesmarke
abstraktselt spetsifitseerida kasutades selleks aspekt-orienteeritud mudeli
atribuute. Modelleerimise formalismist tulenevad AO modelleerimispdhimdtted
ja testide arendamise sammud on konkretiseeritud Uppaali ajaga automaatide
formalismil [48] ning seda toetava tarkvara abil, millega saab testida lisaks
funktsionaalsetele omadustele ka ajastusomadusi, andmete sdltuvusi ning
paralleelsete protsesside stinkroniseerimistingimusi. Véitekiri valideerib aspekt-
orienteeritud lahenemise otstarbekust testide arendamisel praktilise
juhtumianaltdisi “Kodune taastusravi slsteem” néitel ja esitab kvantitatiivsed
téendid aspekt-orienteerituse eelistest.

109

Appendix A

PAPER A:

Killi Sarna, Jiri Vain. Exploiting aspects in model-based testing. In:
FOAL'12: Proceedings of the Eleventh Workshop on Foundations of
Aspect-Oriented Languages, March 26, 2012, Potsdam, Germany: New
York: ACM, 45 - 47.

111

Exploiting Aspects in Model-Based Testing

Kiilli Sarna

ELIKO Competence Centre in Electronics-, Info- and
Communication Technologies
Tallinn, Estonia

kylli.sarna@eliko.ee

Abstract

We introduce an approach to exploiting aspects in model-
based testing and describe how an aspect-oriented model
for testing purposes can be constructed. At first, we intro-
duce the aspects to be addressed in testing safety and time
critical systems and describe how the aspects enhance in
defining test cases. We present a way how behavioural
aspect models are defined formally as refinements of ex-
tended timed automata models, and how the aspect models
are used for generating abstract online testers. Applying
these techniques aspect-wise allows one to structure the
model-based testing process in terms of well-defined model
transformation steps. The approach is illustrated with an
ATM case study.

Categories and Subject Descriptors:

D.2.5 [Testing and Debugging, Testing tools]: model con-
struction for testing.

General Terms: Design, Aspects, Theory, Verification.

Keywords: Aspect Oriented Modelling; Model Refinement;
Model-Based Testing; Test Generation.

1. Introduction

Model-based testing (MBT) and automated test generation
have high potential for reducing the costs of testing activi-
ties in software development. Especially, it applies in the
field of complex distributed and embedded systems where
thousands of tests are carried through repeatedly, and the
testing processes need to be well coordinated. As shown in
[3] the model-based test case generation has demonstrated
its practical applicability in test automation. The ETSI
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

FOAL’12, March 26, 2012, Potsdam, Germany.

Copyright 2012 ACM 978-1-4503—1099-4/12/03...$10.00.

Jiri Vain
Department of Computer Science

Tallinn University of Technology
Tallinn, Estonia

vain@ioc.ee

standard ES 202 951 v1.1.1 (2011-07) defines key notions
and characteristics of MBT: a model of the System Under
Test (SUT) is used to retrieve a set of test cases; the test
cases are selected by means of a test case specification.

One of the practical obstacles in MBT is the complexity
of models that specify industrial applications. Those mo-
dels suffer often from the lack of clarity and/or integrity
even though the semantics of underlying formalism is well-
defined. Current modelling approaches provide good sup-
port for modularizing design models supporting compo-
nent-based and/or hierarchical state models. On the other
hand, they provide poor support for isolating crosscutting
features, that is, functionality that is spread across the mo-
dules of the software and tangled with other functionality
[5].

In this paper we make use of Aspect Oriented Modelling
(AOM) for systematic definition of test cases and for
grouping the test cases into consistent test suites when
system level and integration tests are designed. In software
testing, the test cases usually address the requirements
items and the test purpose of each test case can be consid-
ered as specification of that requirement item. In the com-
plex distributed systems some crosscutting concerns, €.g.
security strongly affects the implementation architecture.
AOM enhances modularization of concerns that cannot be
modularized using other techniques.

2. Preliminaries

2.1 Aspect oriented modelling

AO concepts are currently exploited to model a system
from the beginning of development to its implementation
and testing. AOM deals with requirements that cut across
the primary modularization of a system, e.g., logging, tra-
cing, security, persistence (non-functional aspects). AO
models propose the separation of the crosscutting concerns
of software systems into separate entities. This separation
avoids the tangled concerns of software and allows the
reuse of the same aspect in different entities of the software
system (components, modules, etc.). The separation of
concerns also improves the isolated maintenance of the
different concerns of the software systems. In AOM ap-

proach we distinguish a primary model and several aspect
models. Crosscutting features are treated as patterns de-
scribed by aspect models, and other features are described
by a primary model. The result of composing aspect and
primary models into an integrated model is called the com-
posed model. An aspect model can be integrated with the
primary model in many places and in different ways. AOM
techniques use the term advice for the action an aspect will
take and join points for where these actions will be inserted
in the primary model. Point cuts are used to specify the
rules of where to apply an aspect. Advice, joint points, and
point cuts are specified as one entity, called an aspect [5-9].

2.2 Model-based testing

By model-based testing we mean a black box technique
where state machine models are used as specifications of
observable interactions between SUT and its environment.
The model is examined to generate test suites. The
coverage of model structural elements (states and
transitions) can be used as a measure of thoroughness for a
test suite. A test purpose is a specific objective (or
property) that the tester would like to test, and can be seen
as a specification of a test case. It may be expressed in
terms of coverage items, scenarios, duration of the test run
etc. In AO setting we address the test purpose in terms of
aspects and aspect related properties. Thus, the test cases
for a test purpose should be derived from the aspect
model(s) of concern abstracting from the rest of SUT
specification. As an example of a test purpose, we consider
an informal requirement “test of a state change from state A
to state B” in an aspect model M,. For this purpose a test
case should be generated that covers the specific state
change in M,. At first, it requires that the test drives SUT in
state A, then specified transition is executed and when B is
reached the test should terminate in some safe state of M,.
For non-deterministic systems a single test sequence may
never reach the test goal and instead of a sequence we need
an online testing strategy that is capable of reaching the
goal even when SUT provides non-deterministic responses
to test stimulus. The issue is addressed in [1] where the
reactive planning online tester synthesis method is intro-
duced. Although the [1] relies on EFSM specifications it
can be extended easily to models with constant time
bounds. In the rest of the paper we use Uppaal Timed
Automata (UPTA) [4] to specify such aspect models of
SUT.

2.3 Uppaal timed automata

UPTA are appropriate for systems that can be modelled as
a collection of non-deterministic processes with finite
control structure and real-valued clocks, communicating
through channels or shared variables [4]. Typical
application areas include real-time controllers and
communication protocols in particular, those where timing
aspects are critical.

The graphical representation of a timed automaton is
considered as a directed graph, where locations are
represented by the vertices of this graph that are connected
by edges (see Figure 1). Locations are labelled with
invariants. Invariants are conjunctive expressions of
boolean expressions on model variables and simple bound
conditions on clock variables, e.g. *Clock]1<= const1’.

Customer Idle ATM Idie

printReceipt

Clock1=0
Clock1 <= const2

finishTransaction?
choseTransaction!
(©-stansasiont.) finishiTransaction?

choseTransaction?|

clarTransaction \PerformTransaction

Clock1=0

Clock1 <= constt

Figure 1. The primary model of ATM.

Edges are annotated with guards, synchronisations and
updates. An edge is enabled by a guard in a state if and

only if the guard evaluates to true. Processes (paramet-
erized instances of Uppaal automata) can synchronize over
channels. Edges labelled with a common channel synchro-
nise, e.g. edge *WaitingCard->Idle’ of Customer automaton
and edge ’printReceipt->Idle’ of ATM automaton synchro-
nize over channel ’card’. Updates express the change of the
state of the system when the edge is executed, e.g., update
’Clock1 = 0’ resets the value of model clock *Clock1”’.

3. Construction of Aspect Models

In UPTA we consider aspect models as the refinements of
model syntactic units (locations and edges) that represent
join points in the primary model. We call them location
refinement (5,) and edge refinement (E,) respectively.

Let the refinement of an element e/ in a primary model M
be represented by automaton M that is composed with the
primary model M by synchronized parallel composition
lypne, 1.€., M E M gy M®. Synchronization of M and M” "is
needed to preserve the contract of element e/ with its con-
text after refinement. Technically, it means decorating the
primary automaton M with auxiliary channel labels ch to
synchronize the entry and leave points to/from the element
el of M. For further elaboration we define the location and
edge refinement relations separately.

We say that a_synchronous parallel composition of auto-
mata M and M" is a location refinement for location 1; of M,
(M E; Mlyoe MY iff 1€ Ny, and I M" s.t. Py A P, A Ps:
P, (interference free new updates): no variable of M is
updated in M", i.e. no variable of M occurs in the left-hand
side of any update in M";)

P, (preservation of non-blocking): [(M|\M , (lo, 1) EEO
deadlock] = [M, lo= EO¢ deadlock];

P; (non-divergency): inv(l;) = x < n for a clock x € Cy, n<co
= [M', I’y E 1y ~, I’5], where“ ~,“ denotes bounded
reachability operator with time bound #; locations 1’y and
I’k denote respectively auxiliary pre- and post-nodes in the
context frame of the refinement.

P, and P; are specified as Uppaal model checking queries
expressed in TCTL. ‘deadlock’ denotes a standard predi-
cate in Uppaal about the existence of deadlocks in the
model. P; requires that the invariant of 1, is not violated due
to accumulated delays of M" runs.

Location refinement can be applied when the aspect model
specifies behaviour that in the primary model is represented
as non instantaneous and time bounded location. A syn-
chronous parallel composition of automata M and M" is an

edge refinement for edge t; of M, (M =, M IM*) if condi-
tions P’; A P; A\ P4y A\ Ps are hold:

P’y (interference free new updates): no variable of M is
updated in M“, i.e. no variable of M occurs in the left-hand
side of any update in M*;

P; (guard sequentialization): let { 1’y, I’z) denote a set of all
feasible paths from the initial location 1’ to final location
Ipin M and (1y, I'r Y €(', I'r) be k=" path in that set,
then Vk €[1, K1'o, Ur)[]. Nept.rengman grd(t) =grd(t), i.e.,
the conjunction of edge guards of any path in (1’y, I’r) is not
weaker than the guard of the edge ¢ refined.

P, (0-duration unwinding): VI’; € (Nye\ 1g). Type(l’;)) =
committed, i.e., all edges in the refinement M“ must be
atomic and all locations instantaneous.

Ps (non-divergency): grd(t;) = M°, 1’y EAO I’g, i.e. validity
of grd(t;) implies the existence of a feasible path in M.
Similarly to location refinement we implement the edge
refinement by means of |y, and context frame that includes
auxiliary locations 1’y and 1’g, and an edge between them.

4. Example ATM

We demonstrate the use of refinement transformations
of Section 3 for composition of aspect models. The primary
model of ATM depicted in Figure 1 includes interacting
automata Customer and ATM. Refinements in Figure 2
specify aspects of interest: (i) aspect model Transaction is
defined as location refinement of both ATM and Customer
automata; (if) further edge refinement of ATM.Transaction
introduces EnquireBalance aspect. Since the refinement (i)
introduces new interaction between ATM and a new actor

ATM (aspect "Transaction'")

Account=Customer|D

balanceCheck!

enquireBalance, balanceReported

debitMoney

ansaction_type==withdraw
ransaction? finishTra

withdrawCash

Causti (aspect "Tr ion"")

card?
WaitingCard| &

choseExit!

transaction type=enquire

o e
choseTsansaction| startTransaction?

JcpmpleteTransaction

transaction type=debit
@ startTransaction? %
startTransaction?
transaction_type=withdraw

Figure 2. The aspect model “Transaction”.

Server (not shown in the model) the edge introduced is
labelled with channel ‘balanceCheck!’.

When the aspect related tests have to be generated from
the composed model of SUT that includes automata of
Figures 1 and 2, we can ignore all the transactions the as-
pects of interest do not depend on. For instance, when tes-
ting the transaction balanceCheck! between ATM and
Server the tester model is extracted from the composition
of automata Customer and Customer.Transaction by algo-
rithm of [1] so that the test sequence <card!, choseTrans-
action!, transaction_type:=enquire, startTransaction!, wait,
[finishTransaction? | Timeout>=constl, TESTFAIL],
choseExit!, card?, TESTPASS> can be executed.

5. Conclusion and Future Work

The refinement-based AOM approach described in this
paper has been applied for construction of SUT models of a
patient health remote monitoring system [2]. Switching the
irrelevant aspects off at test generation allowed saving the
SUT model structural complexity in test generation up to
80%. Currently, the bottleneck is automated support for
aspect model engineering that needs manual aspect model
construction and formulating model-checking tasks. Im-
plementation of the context frame generation for aspect
models derived by refinement work is in progress.

References

[1] Vain, J., et al. 2011. Online testing of nondeterministic sys-
tems with reactive planning tester. Dependability and Com-
puter Engineering: Concepts for Software-Intensive Systems
(113-150). Hershey, PA: IGI Global.

[2] Kuusik, A., et al. 2010. Software architecture for modern
telehome care systems. In Proceedings of the 6th
International Conference on Networked Computing. IEEE
Computer Society Press (326-331).

[3] Pfaller, C. 2008. Requirements-based test case specification
by using information from model construction. In Proceed-
ings of the 3" international workshop on Automation of
software test. ACM, New York, NY, USA 7-16.

[4] J. Bengtsson, W. Yi. 2004. Timed automata: Semantics,
algorithms and tools. Lecture Notes on Concurrency and Pe-
tri Nets, Lecture Notes in Computer Science vol. 3098.

[5] Yedduladoddi, R. 2009. Aspect Oriented Software develop-
ment: An Approach to Composing UML Design Models.
VDM Verlag Dr. Miiller.

[6] Schauerhuber, A., et al. 2006. A Survey on aspect-oriented
modeling approaches.

[7] Kienzle, J., et al. 2010. Aspect-Oriented Design with Reusa-
ble Aspect Models. In Transactions on aspect-oriented soft-
ware development VII. Springer-Verlag, Berlin, Heidelberg
272-320.

[8] Rashid, A. 2008. Aspect-Oriented Requirements Engineer-
ing: An Introduction. In Proceedings of 16™ IEEE.

[9] Disenfeld, C and Katz, S. 2011. Compositional verification
of events and observers. In Proceeding of 10" FOAL. ACM,
New York, NY, USA, 1-5.

Appendix B
PAPER B:

Alar Kuusik, Enar Reilent, Killi Sarna, Marko Parve. Home telecare
and rehabilitation system with aspect-oriented functional
integration. In: Biomedical Engineering/ Biomedizinische Technik: The
46th annual conference of the German Society for Biomedical
Engineering, Jena, Germany, September 17-19, 2012. (Edit.) Ddssel, O.
De Gruyter, 1004 - 1007.

117

Biomed Tech 2012; 57 (Suppl. 1) © 2012 by Walter de Gruyter - Berlin - Boston. DOI 10.1515/bmt-2012-4194

Home telecare and rehabilitation system with aspect oriented func-

tional integration

Alar Kuusik', Enar Reilent', Kiilli Sarna', Marko Parve’

'ELIKO Technology Competence Centre, Tallinn, Estonia; Firstname. Lastname@eliko.ce
?East-Tallinn Central Hospital, Tallinn, Estonia; Marko.Parve@itk.ee

Abstract

Modern home telecare is shifting from emergency conditions detection to the wellness monitoring, treatment plan obser-
vation and rehabilitation. Because of such shift the telecare attracts more beneficiaries besides of traditional elderly and
chronically ill people. From the other side, more complex systems for simultaneous treatment and safety monitoring in-
volve more stakeholders — physiotherapists, primary doctors, carers and patients. Possibly contradicting requirements
and perspectives of different partners are rising significant system usability and planning problems. In the paper we de-
scribe an extendable and requirement conflict tolerant software framework for home health hubs (HHH) for simultane-
ous motor rehabilitation (post-stroke and -arthroscopy) and patient safety observation. Aspect oriented software design
(AOSD) and -requirement engineering (AORE) are used to simplify and automate integration of software subprograms

representing interest or viewpoints of different participators.

1 Introduction

Due the scalability problems of traditional healthcare ser-
vice models there is growing tendency to decentralization,
shifting care from the hospital to the community. Home-
centred health care has become an important health man-
agement issue [1, 2]. In near further home telecare shall
become an efficient extension of hospital treatment proce-
dures [3, 4]. In the paper we describe how to extend classi-
cal (passive) home vital signs monitoring solutions with
user friendly (active) motor rehabilitation functionalities.
The development focuses on a flexible agent based soft-
ware framework minimizing the home patient safety risks,
simplifying treatment and training plan setup and monitor-
ing. The framework is universal and applicable for differ-
ent homecare scenarios of patient monitoring and training
in home rehabilitation assistant (HRA) system. Our current
software implementation for home health hub (HHH) de-
vice is mainly targeting post-surgery and post-stroke train-
ing.

Focused exercise training is beneficial for stroke recovery
[5] and essential therapy component after surgeries. Train-
ing quality on such cases rely on the availability of skilled
therapists or training robots. Unfortunately assistive ma-
chines are intended for hospital use only and have limited
accessibility due the price constraints.

As stressed by Sabatini already in 2005 there is a need for
ambulatory monitoring systems providing objective as-
sessment of human functional abilities outside of laborato-
ry settings [6]. One reason of lack of integrated systems
supporting both home safety monitoring and training sup-
port is the complexity of handling the requirements of dif-
ferent parties: patient in comfort zone, primary care doctor
focusing on patient’s general safety, physiotherapist target-
ing recovery of joint movements. Today’s home training
procedures composed by physiotherapists are intentionally

conservative to avoid any potential risk to patient’s safety.
Additionally, it would be too complex for patient or direct
carers to (manually) adapt individual treatment plan ac-
cording to changes in health condition or gained progress.
Such adaptive treatment would be possible, at least in
some extent, with decision support systems capable of
handling interests of different stakeholders.

A practical agent based software framework is described in
the paper using aspect oriented software design (AOSD)
and -requirement engineering (AORE) methodology for
designing the telecare system for formally safe home reha-
bilitation and patient monitoring. Developed prototype
software is able to instruct user during exercising in real
time and takes into account of personal defeasible safety
rules.

2 HRA instrumentation

Home rehabilitation assistant (HRA) system targeting ma-
chine supervised patient exercising contains subcompo-
nents: HHH as data acquisition gateway and user inter-
face device; generic vital signs sensor system (VSSS); mi-
cro-electro-mechanical sensor system (MEMSS) for pa-
tient physical activity and exercise quality monitoring.

The HHH (Image 1) acquires and analyses sensor data, in-
teracts with the patient and communicates with the hospital
EHR repository over the Internet. For realizing HRA func-
tionality on HHH we reuse our existing telemedicine home
gateway solution [7] (Image 1). The sensor data, patient
parameters, configurations, and system states are kept in
the in-memory database organized as whiteboard data ex-
change solution.

Besides the extended VSSS subsystem (containing BP and
SpO2 meters, weight scale, sensorized box of pills), HHH
serves as a MEMSS data processor in real time. Comput-

1004

Biomed Tech 2012; 57 (Suppl. 1) © 2012 by Walter de Gruyter - Berlin - Boston. DOI 10.1515/bmt-2012-4194

erized analysis of exercising data is essential for presenting
intelligible numbers to the physiotherapists.

) Wererdhu modtmine
Qotan tulemust

n

..

Image 1 Home Health Hub with sensors

Several different practical methods of human motion and
gait analysis are concluded in a review [8]. Several off-the-
self MEMSS based (patient) physical activity monitoring
products exist from different vendors - activPAL, PAM-
Sys, ActiGraph and others. However, such devices typical-
ly act as standalone activity loggers or can just recognize
basic patterns of walking, sitting, lying. Extensive review
of experimented activity classification methods for human
activity recognition by MEMSS is presented by Preece [9].
Tests with an original MEMSS system [10] (Image 2)
showed that limb training quality can be sufficiently cor-
rectly monitored using neural networks (NN) and k-

nearest neighbor (kNN) classification methods and 3 gyro-
scope sensor nodes.

\ ‘ |
Image 2 Prototype MEMSS for hand training

3 HRA use scenario

We see the purpose of HRA as a low cost assistive tool
guaranteeing correct exercising without immediate physio-
therapist supervision. A physiotherapist initially instructs
the patient and also configures the HRA equipment at hos-
pital. During the calibration session the patient does exer-
cises that the physiotherapists evaluates correct or incor-
rect. The HHH records signal patterns of MEMS sensors
used later as reference data for exercising assessment. For
each exercise reference data for training a neural network
has to be recorded.

For creating the rehabilitation plan the physiotherapist first
choses and adjusts exercises for the patient. The plan is the
basis for the system to monitor patient's training at home,
give reminder alarms and recommendations as well as the

basis for the evaluation of the patient's independent train-
ing. Some important details, however, does not fit into the
exercising schedule, these must be added as separate rules.
For example, the patient is required to measure BP and HR
at given times or in relation with exercising sessions. The
exercising plan could be affected by the measurement re-
sults, for example if the BP is too high before the exercis-
ing the session might be delayed.

As an essential enhancement the proposed solution sup-
ports simultaneous training and safety monitoring. The
preconfigured HRA system tracks the treatment plan ful-
fillment at home. Primary care doctors or carers can insert
additional safety rules to the HHH. All patient movements
are collected while the sensors are operational. During an
exercising session the system monitors if the patient is do-
ing correct number of exercises in the required order. Also
the similarity measure with the reference is calculated for
individual movements and displayed to the patient with a
multimedia guiding option.

All of the event log and statistics that are gathered during
the home rehabilitation period is recorded for physicians
and can be uploaded to the hospital information system
using previous telemedicine framework [11].

4 Aspect oriented approach for re-
alizing HRA software

Due to the functional complexity of proposed HRA solu-
tion there is a need for provably correct approach for solv-
ing contradictory requirements. A fundamental principle in
addressing system’s complexity is separation of concerns.
It is important in the analysis phase to define the applica-
tion decomposition and identify the inventory of concerns
that lay ground for modularization and structure of a future
requirements model. Aspect oriented requirement engi-
neering (AORE) is a methodology that can help to improve
requirements completeness, maintainability, and reduce
cost of software development [12, 13]. AORE is suitable
for distributed systems applications lacking system’s
“global picture” [14] or integration of independent, goal-
oriented tasks. The model is put together using all view-
points of stakeholders and AORE analysis techniques.
Aspect oriented software development (AOSD) aims at
addressing crosscutting concerns by providing means for
their systematic identification, separation, representation
and composition. Crosscutting concerns (CC) are encapsu-
lated in separate aspects and composition mechanisms are
later used to weave them with other modules.

4.1 Implementation of HRA system

Now we describe actual HHH software which is realized
as the optimal set of aspects gained from AORE method-
ology. Each aspect is following its own goal independently
from the targets of others. All aspects are implemented as
one or more software agents dealing with specific type of
data items on the HHH whiteboard corresponding to cer-
tain activities and situations. Thanks to the AORE meth-

1005

Biomed Tech 2012; 57 (Suppl. 1) © 2012 by Walter de Gruyter - Berlin - Boston. DOI 10.1515/bmt-2012-4194

odology new agents can be added to the HRA system in
runtime which significantly improves the system usability.
Particular agents to be present in certain cases are defined
by the treatment plan and its constraints. All components
of the system are intended to run independently and com-
plement the overall system behavior without need to ex-
plicitly know about the presence of other agents. Cross-
cutting and general interoperability is achieved by the uti-
lization of whiteboard where every agent could interact
with the entire knowledge existing in the system for inter-
vening ongoing workflows. An agents does not overwrite
values given by other agents, instead of that it adds its own
version and marks itself as the source. All the aspects and
agents are ordered by priority. Depending on the situation
the agent picks the value with the highest source priority or
the value inserted by someone with lower priority com-
pared to itself.

One of the key issues of the system is its scalability which
means introductions of new aspects and agents in the fu-
ture. The HRA solution is currently implemented on an
off-the-self Linux running HHH device with a sub-
gigahertz ARM processor. On the given platform writing
1500 rows of bulk data to the HHH whiteboard takes
100ms. A long term average reading time of one row is
around 100us. Assuming that the agents are performing
simple tasks and using small number of rows on the white-
board, it is possible to run the HRA effectively with
around 100 independent software agents.

4.1.1

Treatment plan aspect is responsible for steering the pa-
tient to follow the treatment plan. The aspect is split to
several smaller agents. “Treatment plan follower” agent
checks current time and the original treatment plan insert-
ed by the doctor. When it is time to start exercising again,
the agent prepares data structures for upcoming exercising
session. Original treatment plan is left unmodified; all ad-
justments are done to the copy.

“Exercising plan feeder” agent checks for and interprets
the actual session plan whenever it is present and generates
guidance messages for the patient. As the agent reads from
the whiteboard what the patient is supposed to do and what
exercises are already done it can determine what the pa-
tient should do next. The output is not directly rendered to
the screen but saved back to the whiteboard to be picked
up by corresponding agents.

A slightly different task is given to the “sequence check-
ing” agent. The patient could do whatever movements re-
gardless of the exercising plan and system’s messages. As
the order of exercises, which includes relaxation in certain
points, is relevant then the patient should be notified if he
or she does something wrong in respect to the plan.

The treatment plan “adjusting agents” adjust the session
plan accordingly to the constraints and rules. For example,
if the patient has completed all previous sessions during
the last five days without deviation from the plan the next
session could increase the number of repetitions for some
exercises.

Treatment plan aspect

4.1.2 Correctness aspect

Correctness of movements is considered as a separate issue
and handled by “Correctness evaluator” agent who anal-
yses incoming movements by comparing them to the ex-
amples recorded at the hospital and calculate the similarity
measure SM. These evaluations can be presented to the
patient during the exercising session for indicating if the
patient is doing exercises correctly or not. At the end of the
exercising session when all movements have been captured
and evaluated the “guide agent” could present the media
guide if some exercises have high failing ratio.

4.1.3 Rehabilitation progress aspect

The aspect of progress is basically concerned with the re-
sults of the rehabilitation and monitoring its progress. “Sta-
tistical analyzer” agent prepares reports for the doctor. The
agent runs only once per day and looks back at the exercis-
ing session plans and committed exercises. Similarly it can
look back at the exercises of previous days and make con-
clusions of how much the patient is exercising, whether the
patient can tolerate more load than before, is the trend of
the correctness of movements satisfactory, has the move-
ment range of the joint increased etc. Quick reports are
useful for getting overview of important circumstances of
the rehabilitation when revisiting the hospital.

4.1.4 Daily living aspect

“Inter-session activities counter” agent pays attention to
movements committed outside the exercising sessions.
Provided that the sensor is online and registers patient ac-
tivity when there is no exercising session going on, this
information should be taken into account. If wireless sen-
sors are used and some movements of daily living (like
opening doors, picking up objects) are similar enough to
the prescribed exercises and are recognized by the system
the agent can adjust upcoming exercising session. When a
new session plan is created the agent could decrease the
number of recommended repetitions in the case where it
can identify considerable load to the damaged joint to
avoid overburden.

4.1.5 Safety aspect

Safety requirements have to be continuously fulfilled in
runtime therefore a set of agents deal with safety monitor-
ing and reporting of dangerous situations to various stake-
holders. For example, when the “emergency agent” detects
fall down and no further activity within the next moments,
it initiates an emergency call to summon help. Also other
critical situations are monitored depending on the patient’s
conditions and available sensor readings.

The “doctor alert generator” agent concentrates on the
events that cannot be classified to emergencies but still
need intervention. While minor problems of following the
treatment plan do not need to be reported in real time as
the doctor checks the data at the patient’s next visit to hos-
pital, then occasions of major violations could be checked
earlier. For example, if there are no traces of any exercis-

1006

Biomed Tech 2012; 57 (Suppl. 1) © 2012 by Walter de Gruyter - Berlin - Boston. DOI 10.1515/bmt-2012-4194

ing activity in the past three days it sends a notification
messages to the doctor.

The “patient alert generator” agent outputs local warning
messages intended for the patient. The patient should be
informed about the actions and situations which are unfa-
vorable. Whenever some exercising fairly exceeds limits
recommended by the session plan or the patient performs
movements too vigorously the agent creates outputs warn-
ings.

4.1.6

The agents responsible for direct input and output actions
form the input-output aspect. Each sensor device (MEMS
system, vital signal sensor) is handled by corresponding
input “adapter agent”. Adapter agents communicate to the
sensors and receive raw data, restructure it and store on the
whiteboard.

“Output agents” are adapters to output devices like the
screen or speakers and also the agent for network commu-
nication. The screen adapter searches the whiteboard for
information about the contents of different virtual windows
(warnings, correctness measures, feedback, etc) that it ren-
ders to the physical screen areas.

The “output manager” performs as a mediator between the
system and the output adapters. Incoming exercises are
displayed on one virtual window, warnings are played by
speakers, etc. If there are several possible messages suita-
ble for one channel then they are sorted by the source pri-
ority and the information with the greatest impact is cho-
sen. When the situation on the whiteboard is updated the
agent also reappraises its output.

Input-output aspect

4.1.7 System aliveness aspect

Self-monitoring mechanism is two-layered. Every agent
registers itself on the whiteboard when started and updates
its personal aliveness token. The “self-monitoring” agent
constantly monitors all registered tokens and restarts the
malfunctioning agent. The self-check agent guards itself
with the hardware level watchdog that reboots HHH im-
mediately if contact is lost. Such multi-layer watchdog so-
lution reduces the number of unnecessary restarts.

5 Conclusions

Complex monitoring and control systems involving differ-
ent stakeholders are difficult to develop, maintain and use
because of different viewpoints. Based on an example of
patient monitoring and motor rehabilitation involving re-
quirements of physiotherapists, patients and clinicians we
demonstrated that aspect oriented requirement engineering
is a practical and approach for such systems. At certain ex-
tent, essential functionalities of home based rehabilitation
were presented as aspects which demonstrate applicability
of AOSD techniques for user adaptive telecare. HRA soft-
ware agents were described and implemented driven by
AORE analysis results and tested within a whiteboard
based agent software framework. The presented aspects
form an optimal set for the considered HRA task.

Acknowledgement: This work was supported by Compe-
tence Centre program of Enterprise of Estonia.

6 References

[1] World Health Organization: The World Health Report
2008: Primary Health Care: Now More Than Ever.
Geneva, 2008

[2] Doarn C.R., Merrell R.C.: A roadmap for telemedi-
cine: barriers yet to overcome. Telemed J E Health
2008, No 14(9): pp 861-862

[3] Jolly K., Taylor R.S., et al.; Home-based cardiac reha-
bilitation compared with centre-based rehabilitation
and usual care: a systematic review and meta-analysis.
Int J Cardiol 2006, 111: pp 343-351

[4] Vieira D.S.R., Maltais F., Bourbeau J.: Home-based
pulmonary rehabilitation in chronic obstructive pul-
monary disease patients. Curr Opin in Pulm Med. No
10, 2010, pp 134-143

[5] N.F. Gordon, M. Gulanick, et al.: Physical activity and
exercise recommendations for stroke survivors, Circu-
lation, vol. 109, pp. 2031-2041, 2004

[6] Sabatini, A.M.: Inertial sensing in biomechanics: a
survey of computational techniques bridging motion
analysis and personal navigation. In Comp. Int. for
Movement Sciences: Neural Networks and Other
Emerging Techniques; Idea Group Pubilishing: Her-
shey, PA, USA, pp. 70-100, 2006

[7] A. Kuusik, E. Reilent, I. Lodbas, M. Parve: Software
Architecture for Modern Telehealth Care Systems,
Journal of Advances on Information Sciences and
Service Sciences; Vol 3, no 2, pp. 141-151,2011

[8] Zhou, H. and Hu, H.: A Survey - Human Movement
Tracking and Stroke Rehabilitation, TECHNICAL
REPORT: CSM-420, University of Essex, 2004

[9]S. J. Preece, J. Y. Goulermas, L. P. J. Kenney, D.
Howard, K. Meijer and R. Crompton: Activity identi-
fication using body-mounted sensors—a review of
classification techniques, Physiological Measure-
ments, Vol 30 No4, 2009

[10]S. Ovsjanski: Real time wireless wearable motion
monitoring system for motor rehabilitation, Master
Thesis, Tallinn University of Technology, 2012

[11]A. Kuusik, E. Reilent, I. Lddbas, M. Parve: Semantic
Formal Reasoning Solution For Personalized Home
Telecare, Proc. of 2010 Int. Conf. on Mechanical and
Electrical Technology, pp. 72 — 76

[12]R. France, 1. Ray, G. Georg, S. Ghosh: An Aspect-
Oriented Approach to Early Design Modeling, in
Software, IEEE, no 4, 2004, pp 173-185

[13]Gray, J., Lin, Y., Zhang, J.: Automating change evo-
lution in model-driven engineering. Computer 39(2),
pp 51-58, 2006

[14]E. P. Freitas, M. A. Wehrmeister, et al.: Using As-
pect-Oriented Concepts in the Requirements Analysis
of Distributed Real-Time Embedded Systems, IFIP
Int. Fed. for Information Processing, vol. 231, pp 221-
230, 2007

1007

Appendix C
PAPER C:

Alar Kuusik, Killi Sarna, Enar Reilent. Home Rehabilitation System
Supported by the Safety Model. Studies in health technology and
informatics, 189, 145 - 151 (Article of scientific journal).

123

pHealth 2013 145
B. Blobel et al. (Eds.)

10S Press, 2013

© 2013 The authors and 10S Press. All rights reserved.

doi:10.3233/978-1-61499-268-4-145

Home Rehabilitation System Supported by
the Safety Model

Alar KUUSIK ', Kiilli SARNA and Enar REILENT
“ Eliko Competence Centre

Abstract. The paper describes a tele-rehabilitation system for simultaneous motor
rehabilitation (post-stroke and post-arthroscopy) and continuous patient’s
condition assessment with the focus on patient safety observations. Micro-electro-
mechanical accelerometer and gyroscope sensors attached to the patient gather
information about the performed therapeutic exercises. The measurement data
processing of the vital sign sensors and accelerometers is done in the health hub
device in real time with the patient feedback. Model verification is used for
providing that the specified requirements have been actually fulfilled. By the
safety model validation, we supplement clinical evaluation, which means the
efficacy of the system is proven by the rules given by the physician for the
particular patient.

Keywords. Motor rehabilitation, tele-rehabilitation, telemedicine, model-based
verification, multi agent system.

Introduction

The care is shifting from the hospital to the community due to the scalability problems
in the traditional healthcare [1]. Due to the insufficient availability and remarkable
service fees of neurologists and physiotherapists, the systematic evaluation of the
condition changes of the patients suffering from neurodegenerative diseases and stroke
survivors is complicated in sparsely populated and rural areas. In this respect, one of
the major goals is the technologically assisted home therapy and continuous monitoring
systems in the form of cost efficient short time rentals.

We describe a practical motor rehabilitation system dedicated to individual
patients, and a safety model that ensures the system working according to the
physician’s rules. The developed solution is suitable for objective patient motor
condition assessment. It supports training outside of clinical environments and should
automatically monitor the patient’s exercising process and give real time feedback in
the form of instructions and warnings. Because there are several circumstances to be
taken into consideration with this kind of tele-rehabilitation system the solution makes
use of the model verification techniques. It has been tested before implementation by
patient models and concern models.

The rest of the paper is structured as follows: The section number one elaborates
the idea of using MEMS (Micro-Electro-Mechanical Systems) for motion tracking. The
section number two gives the background details of the development of the system for

' Corresponding Author: Alar Kuusik; Eliko Competence Centre, Miealuse2/1, 12618, Tallinn, Estonia;
Email: alar.kuusik@eliko.ee

146 A. Kuusik et al. / Home Rehabilitation System Supported by the Safety Model

rehabilitation assistance at home. This is followed by the description of the solution of
how the system ensures the required properties in the section number three and the
conclusion at the end.

1. MEMS Technologies in Movement Detection

The main aim of our activities is the development of a low cost portable motion
recording and analysis solution which employs lightweight low power wireless sensors
and is capable for movement pattern classification for home or ambulatory training
purposes. We used functional reference for our solution as the reference of Shimmer
wearable sensor platform [2]. To date the Shimmer is technologically relatively
obsolete — its modules are too big and heavy for convenient use.

Another option is video bridging between the clinician and the patient but video
monitoring based solutions do not allow discovering small property changes (without
special expensive 3D motion tracking equipment) like slightly worse flexibility. It is
not well suitable for fatigue analysis with duration of some hours perhaps and requires
full intention from the therapist evaluating of series of videos.

The importance of evaluation of fatigue dynamics of muscles as one essential
disability component is stressed in today’s clinical research. Unfortunately such long
term gait monitoring is not possible with wired (ambulatory) solutions and a small
wireless sensory system is required for fatigue analysis.

Meijer proposed already in 1991 [3] the use of MEMS for patient movement
analysis. Ambulatory use of MEMS devices was also proposed by Foerster already in
1999 [4]. Acceleration sensors in healthcare are used mainly for recognition of
patient’s basic activities e.g. walking, sitting, laying [5], [6] and prevention/detection of
fall down [7]. From the technological point of view MEMS are much more capable, e.g.
technology allows measuring angles with accuracy of one degree, collecting
simultaneous 3D acceleration data from several joints, etc. From the clinical
perspective high-precision motor performance assessment is extremely beneficial
because it allows much more detailed presentation of patient’s condition or condition
changes compared today’s e.g. Rankin or EDSS scores for stroke and Sclerosis
Multiplex patients respectively. However, due the price constraints of such high-end
devices [8], precise movement tracking technology is still used only in the
experimental level [9].

2. Health Hub System for Motor Rehabilitation Monitoring

Our Health Hub (HH) software supports motion recognition and analysis with safety
reasoning. The patient motion tracking solution is built into a Linux running HH
described in [10]. Currently the HH device supports up to 4 MEMS body sensors. The
low cost sensor device is based on Texas Instruments’ Zigbee chip CC2530 which
assembles 6DOF movement data from Invensense’ IMU device. The sample rate of the
sensors is set to S0Hz as a tradeoff between the signal quality and the amount of data to
be transmitted. Signal preprocessing is not necessary because the signal is high quality
and if there are missing samples then the previous sample is repeated. With current
1500 mAh batteries the continuous time of the system is ca 50 hours.

A. Kuusik et al. / Home Rehabilitation System Supported by the Safety Model 147

The algorithm for recognizing and classifying movements of therapeutic exercises
is clearly presented in [11] and is based on ANARX neural networks. Modeling is
performed in the following way. For each therapeutic exercise one of the sensors
outputs is chosen to be modeled by the outputs of the other sensors observed over
certain period of time. The neural network is trained to predict the value of one output
on the bases of remaining outputs. Therefore, the modeled output plays the role of
system output and remaining outputs are system inputs. Such model corresponds to the
neural networks with restricted connectivity, which leads less computation power
required. Corresponding neural network were trained with Levenberg-Marquardt
algorithm for 1000 epochs. The actual HH software is realized as a set of independent
agents responsible for all kind of different functional and non-functional aspects [12].
All agents complement the overall system behavior without the need to explicitly know
about the presence of other agents as the whiteboard-based communication is used.

In the setup phase of the rehabilitation system the physiotherapist designs the
individual treatment plan for every patient consisting of proper selection of exercises,
constraints and additional requirements. The patient is instructed on the exercise
program and the usage of the HH device and the MEMS sensor nodes. Sensors are
attached onto the frame that guarantees a stable position during the exercises (Figure
1.). The patient must ensure that the frame is always installed in the same place — the
height, direction, and etc. One way to ensure this is to use a skin patch to labeling, and
place the frame onto the patch every time. If the sensors are mispositioned with small
error it does not affect the system’s ability to classify movements. During the initial
exercising session the patient performs exercises while wearing the wireless MEMS
sensors and the physiotherapists evaluates the movements being correct or incorrect.
This provides the reference data for training the neural network for automatic exercise
recognition and assessment.

The prescribed exercises with elaborating parameters (such as the number and
starting times of the exercising sessions, order of exercises within a session, number of
repetitions of certain exercises, etc.) form the rehabilitation plan in the context of the
HH-based training system. This gives the basis for the system to monitor the patient's
independent training at home, analyze the gathered data and give reminder alarms,
recommendations and warnings. There can be other matters as well in addition to the
exercising schedule which correlate with the vital signs’ measurements (blood pressure,
heart rate, SpO,, body temperature, body weight). The execution of the exercising plan
could be affected by the measurement results, for example if the blood pressure is too
high it can delay the next exercising session or reduce the number of some movements.

In the rehabilitation phase in the patients’ home environment, the configured HH
system keeps track of the treatment plan fulfillment and tries to ensure the patient’s
safety which means the continuous checking of the rules established by the physician.
To keep the patient within the safety zone determined by these rules a set of software
agents is called into existence to keep track of whether the patient’s actions comply
with the targets of the rehabilitation plan and not overload her in any way.

All the patient’s movements are collected while the sensors are turned on and worn
which also means the system knows when the patient is refraining from therapy.
Within one exercising session the system monitors if the patient is doing correct
number of exercises in the required order. The similarity measure to the reference
recording of the MEMS signals is calculated for individual movements and the
feedback is given to the patient in real time about the correctness of exercising to avoid
the situations of doing useless training or further damaging disabled parts of the body.

148 A. Kuusik et al. / Home Rehabilitation System Supported by the Safety Model

Figure 1. Wearing wireless MEMS sensors

During the home rehabilitation period all log and statistics that are gathered is
recorded for physicians and can be uploaded to the hospital information system using
previous telemedicine framework [13].

To illustrate the case study, we describe a use case: Rehabilitation process at home.

Actors: Patient, HH System. Pre-condition: Patient has a treatment plan (what
includes already MEMS technology. In Figure 2. it is located in motion model under
the function of MotionRecognition(Treatment_plan)). Patient status is “at home”.
Sensor frames are placed in position. Post-condition: Patient exercises are recorded.
The message is displayed on the screen in the following exercises start time.

Normal course of events: Patient has the time to start doing exercises. The system
copies the treatment plan to session plan to keep the original. TreatmentPlan agent
keeps the current session. The patient makes the first exercise. Sensors send the
information and Motion agent analyses exercise recognition. TreatmentPlan agent
manages the ongoing session. Screen displays of what to do next. If something is
wrong then display warning on the screen immediately. PersonSafety agent creates
local warning messages. Environment agent watches aliveness and resets certain
components if necessary.

3. The Safety Model of the HH System

We have constructed the abstract models according to the behaviors of the independent
agents, the HH-based system and the patient’s exercises. Our system is described by
the environment model, patient’s exercising, and the safety model (Figure 2). The
safety model secures that the exercising guidelines presented at any given time by the
HH are meant personally to the particular patient and are satisfied by physician’s rules.

Model checking has been widely used in system design and verification. We use
model checking to derive a reliable system. It is essential to verify the system design
and also to model check its implementations. Model checking is a method for formally
verifying finite-state concurrent systems such as communication protocols and real-
time systems. It is a technique for formally and automatically checking whether a
particular model or a set of models meets a given specification.

We give a simplified example of safety model and the related environment. In the
current case Uppaal tool [14] is used for validation and verification of models. There

A. Kuusik et al. / Home Rehabilitation System Supported by the Safety Model 149

are 4 models which belong to safety zone: patient exercising model, motion recognition
model, treatment plan model and person safety model. In addition there is the
environment model containing an invariant x<=2 which refers to a system aliveness
watchdog. The system can be in this state only 2 time units and then it has to leave the
state using one of the three transitions. Models communicate by global variables and
synchronization channels.

The model of patient represents behavior of the patient exercising at home (Figure
2, in top left). Activity is started by the freatmentPlan aspect by calling the exercise!.
There is a time in the plan to start exercising and function x_exe=x_tp does a copy
from the original treatment plan and all adjustments are done to the copy. The model of
treatmentPlan represents the behavior of the agent that is responsible for steering the
patient to follow the treatment plan. It presents the next exercise during the actual
session lasts. Model of environment provides by concurrently call safety! against the
model of safety that the safety requirements comply with the rules established by the
physician. During the session after every exercise the call initAccuracyCheck! goes to
analyze incoming movements in model of motion. There under the MotionRecognition
location is the algorithm which solves the movements’ comparison. The end of the
exercising is informed by the treatmentPlan.

Model verification environment ensures the correct model by verification that the
model is correct in the particular software environment. One of the model verification
techniques — safety analysis checks whether anything bad can happen and another —
liveness analysis checks if something good will happen. It searches for dead states from
which goals cannot be reached. Model composition is performed automatically by the
tool. All models work as concurrent processes. By safety model we show that the
patent is in safety condition while using the HH system.

patient

environment motion

STOP

X_exe:=x_1p

MotionRecqgnition(Treatment_plan)

<=2

person Safety

treatmentPlan

START

Figure 2. Model checking environment

150 A. Kuusik et al. / Home Rehabilitation System Supported by the Safety Model

4. Conclusions

For patients under post-surgery rehabilitation and patients suffering neurodegenerative
diseases it is convenient to receive motor condition assistance and assessment outside
of hospital environments in the form of a tele-rehabilitation equipment that can gather
the information about the patient’s movements, interpret it, and provide real-time
guidelines. On the other hand, it saves labor cost of neurologist and physiotherapists.

Focus on tele-rehabilitation systems research is currently on a combination of
virtual-reality and game based methodologies as indicated by the SWORD system [15]
which enables three-dimensional space. Our idea involves model based techniques
which can add as much dimensions as needed for improving the tele-rehabilitation
system. Including a model checker we improve software quality and also ensure that
agents we have deployed are verified. Model checking in the medical domain is
obviously needed activity because of the safety critical nature of the systems. This
formal approach adds important attributes like safety and security for these systems. By
using models early during the developing process, quality is added as early as possible.
As a result of this work, we are able to confirm that the system has verified and reliable.

The future work focuses on conducting the clinical trials to assess the effect of the
training equipment on the effectiveness of the motor rehabilitation at home.

Acknowledgments

This research has been supported by European Union through European Regional
Development Fund.

References

[1] Baum P, Abadie F. Market developments — Remote Patient Monitoring and Treatment. Telecare,
Fitness/Wellness & mHealth, (SIMPHS 2), JRC IPTS Technical Report, European Communities, 2012.

[2] http://www.shimmer-research.com/r-d/hardware/extension-modules accessed in Sept 2012.

[3] Meijer G, Westerterp KR, Verhoeven FM, Koper HB, and ten Hoor F. Methods to assess physical
activity with special reference to motion sensors and accelerometers. IEEE Transactions on Biomedical
Engineering 1991; 38(3):221-229.

[4] Foerster F. Detection of posture and motion by accelerometry: a validation study in ambulatory
monitoring. Computers in Human Behavior 1999; 15(5):571-583.

[5] Ravi N, Dandekar N, Mysore P, Littman ML. Activity Recognition from Accelerometer Data. In: Proc
of the 17th Conference on IAAI, AAAI Press, 2005, 1541-1546.

[6] Lorincz K, Chen B, Welsh M, et al. Mercury: a wearable sensor network platform for high-fidelity
motion analysis. Proc of the 7th ACM Conference on Embedded Networked Sensor Systems.
SenSys2009, Berkley (2009), 183-196. DOI= http://dx.doi.org/10.1145/1644038.1644057

[7] Hirata Y, Komatsuda S, and Kosuge K. Fall prevention control of passive intelligent walker based on
human model. In: Proc of the Int. Conf. on Intelligent Robots and Systems, 2008, 1222—1228.

[8] www.xsens.com, accessed in Sept 2012.

[9]1 Cloete T, Scheffer C. Repeatability of an off-the-shelf, full body inertial motion capture system during
clinical gait analysis. Engineering in Medicine and Biology Society (EMBC), 2010 Annual
International Conference of the IEEE. Nov 2010, 5125 — 5128, DOI= 10.1109/IEMBS.2010.5626196.

[10] Kuusik A, Reilent E, Lddbas I, Parve M. Software Architecture for Modern Telehealth Care Systems.
Journal of Advances on Information Sciences and Service Sciences 2011; 3(2):141-151.

[11] Kuusik A, Nomm S, Osjanski S, Orunurm L, and Reilent E. Wearable system for patient motor
condition assessment and training monitoring. IEEE PHT: Bangalore, India, 16-18 Jan 2013.

[12] Kuusik A, Reilent E, Sarna K, Parve M. Home telecare and rehabilitation system with aspect oriented
functional integration. Biomed Tech (Berl) 2012; DOI: 10.1515/bmt-2012-4194.

A. Kuusik et al. / Home Rehabilitation System Supported by the Safety Model 151

[13] A. Kuusik, E. Reilent, 1. Lodbas, M. Parve: Semantic Formal Reasoning Solution For Personalized
Home Telecare, Proc. of 2010 Int. Conf. on Mechanical and Electrical Technology, pp. 72 — 76

[14] http://www.uppaal.com

[15] Virgilio F. Bento, Vitor T. Cruz, David D. Ribeiro, Marcio M. Colunas and Joao P. S. Cunha. The
SWORD Tele-Rehabilitation System. pHealth 2012. Doi: 10.3233/978-1-61499-069-7-76.

Appendix D

PAPER D:

Killi Sarna, Jiri Vain. Aspect-oriented testing of a rehabilitation
system. In: VALID 2014: The Sixth International Conference on
Advances in System Testing and Validation Lifecycle, October 12 - 16,
2014, Nice, France: (Edit.) Kanstrén, Teemu; Helle, Philipp. Venice:
IARIA, 73 - 78.

133

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

Aspect-Oriented Testing of a Rehabilitation System

Killi Sarna and Jiiri Vain
Department of Computer Science
Tallinn University of Technology

Tallinn, Estonia
Kylli.Sarna@eliko.ee; Juri.Vain@ttu.ee

Abstract— The paper focuses on modularizing test models by
adapting aspect-oriented modelling techniques. Model-based
testing is an unavoidable part of contemporary model-driven
software processes. The essence of model-based testing is to
provide methods and tools to validate software systems by
generating test cases systematically from models. From the
practical usage point of view, it is critical to construct models
that capture the essential aspects of the system under test. The
proposed test design approach allows systematic separation of
testing concerns, that, in turn, helps to overcome the
complexity issues. Also, verification conditions are proposed to
ensure the correctness of derived aspect test models and their
compatibility with base test models. We demonstrate the
technique of test model construction using timed automata
models and illustrate it with a home rehabilitation system case
study.

Keywords-aspect-oriented testing; model-based testing; test
model design; test generation.

L. INTRODUCTION

In the current practice of software testing, including
Model-Based Testing (MBT), the test cases are frequently
insufficiently structured and specified. The test designers
use component-based or hierarchical state models.
However, these modelling approaches provide poor support
for isolating crosscutting features, specifically, functions
that are spread across the software modules and tangled with
other functions. We use the principles of Aspect-Oriented
Modelling (AOM) to modularize such crosscutting
functions into aspects. The AOM approach has evolved
from aspect-oriented programming [2] to produce well-
structured and well-encapsulated software. We enhance
MBT design methodology with aspect handling capabilities
taken from AOM [3]. Using the principles of AOM we can
encapsulate typical cases like specifying requirements (use
cases) that do not specify one property (scattering) or
different functionalities (tangling). In this paper, we will
explain how to conceptualize concerns into aspects and how
to extract test cases from these aspect test models.

In MBT, the tests are generated from formal models of
the System Under Test (SUT). The AOM technique
introduced by Sarna and Vain [9] models SUT using timed
automata and defines aspect models as refinements of the
base model. The structural test coverage criteria considered
are the same as those commonly used in state models, i.e.,
state, and transition coverage. As a novelty, in this paper we
demonstrate how a test suite can be generated according to

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

structural units that are specific to AOM. This gives us new
test coverage criteria that address implemented features —
aspect, advice, join-points coverage, etc. - and provide more
intuitive reference to the parts of SUT to be tested for those
features.

Another advantage of Aspect-Oriented (AO) MBT is the
possibility of easy modification of the test suite. When new
requirements arise, new advice models can be woven into
the test suite without redesigning the existing base model.

Applying the principles of AOM does not provide
compositional testing techniques per se. Compositionality of
proposed AO testing is achieved by imposing extra
constraints on how the advice models are constructed and
model weaving operations defined. We define these rules in
the semantic framework of Uppaal timed automata [6] and
formulate the proof obligations to be model-checked. Our
approach is illustrated with a home rehabilitation system
testing framework.

The rest of the paper is structured as follows. We
introduce the technical background in Section 2. Section 3
describes AO MBT. In Section 4, the home rehabilitation
system is introduced. Finally, Section 5 concludes the paper.

II. BACKGROUND

A. Aspect-oriented modelling

AOM is a way of modularizing crosscutting concerns
much like object—oriented programming is a way of
modularizing common concerns. Crosscutting concerns
generally refer to non-functional properties of software,
such as security, synchronization, mobility, resilience, etc.
In addition, every system may contain its own application
specific crosscutting concerns [5].

Cottenier et al. [4] and Rashid [8] have admitted that
AOM technologies have the potential to simplify software
deployment, and the ability to improve the categorization of
crosscutting concerns. Also, AOM aids in modular
extension of object systems, where the treatment of
crosscutting concerns is encapsulated in separate modules
called aspects. We use concepts taken from AOM, such as
Aspect, Advice, Join-points, Pointcut, and Weaving.

An aspect consists of two parts: the code/model
associated with treatment of the concern (called advice), and
a predicate defining when the advice should be applied
during system executions (called a pointcut). The points in
the code/model that are identified by a pointcut are called

Jjoin-points.

73

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

A pointcut selects a subset of join-points based on
defined criteria. The criteria can be explicit function names,
or function names specified by wildcards. Pointcuts can be
composed using logical operators. Customized pointcuts can
be defined, and pointcuts can identify join-points from
different aspects. The process of adding aspects to a base
system is called weaving; and the result is referred to as the
woven system [5]. AOM techniques use the term advice for
the action an aspect will take and join-points for where these
actions will be inserted in the base system model. Pointcuts
are used to specify the rules of where to apply an aspect.
Advice, join-points, and pointcut are specified as one entity,
called an aspect [7].

As in AOM, AO testing uses a base test model and
several aspect test models. An example of a base test model
is depicted in Figure 1 (for better understanding of the
relationship between the models, we use an Automatic
Teller Machine (ATM) as an example of a well-known
system). The ATM test model specifies the use case of
withdrawing money from an ATM. Crosscutting features
are treated as patterns described by aspect advice models,
and common features are described in the base model. The
result of weaving the base model with advice models is
called the composed aspect model. An advice model can be
woven with the base model in many places and in different
ways. The Transaction advice model is defined as location
refinement of both ATM and Customer automata. The
details of advice model construction in the test design level
are presented in [9].

Customer Idle ATM idle

L:ard’]/ &1
displayMenue printReceipt

choseExit?
Clock1=0

card?

WaitingCard)

choseExit Cardinserted

. finishTransaction?
choseTransaction!
© startTransaction! O

Clocki <=const2

finishTransaction?
choseTransaction?|

performTransaction

(ransacnonsSIeclet stariTransaction! :
£ Clock1=0

Clock1 <= constt

Figure 1. The base test model of ATM.

The base model of an ATM depicted in Figure 1 includes
interacting Customer and ATM automata. Refinements in
Figure 2 specify aspects of interest: (i) the Transaction
advice model is defined as location refinement of both ATM
and Customer automata; (ii) edge refinement of ATM. The
aspect behaviour is launched from the base model explicitly
with the help of channels. We model in Uppaal
(www.uppaal.com), a tool box for modelling, simulation
and verification of timed automata. In Uppaal [12], the
synchronization =~ mechanism is a hand-shaking
synchronization: two processes go through a transition at the
same time, one will be labelled x !, and the other x ?, where
suffixes ?, and ! after the channel name x distinguish
sending and receiving synchronization information
respectively. A system is composed of concurrent processes,
each of them modelled as an automaton. The automaton has
a set of locations and edges to specify the control flow. A
transition specified by an edge is enabled if its guard and
synchronization conditions are satisfied. The transaction
automaton in Figure 2 introduces the EnquireBalance aspect

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

ATM (aspect "Transaction)

Account=CustomerlD
balanceCheck!

ported

transaction

staiTransaction? Ykl

tarTy i

fansaction_type==debit
2 (%) finishT:

debitMoney

tagsaction_type==withdraw
starransaction?

finishTra

withdrawCash

Customer (aspect "Transaction")
Idle

card?
WaitingCard(() card|

Cardinserted o Transactign?

trans. Ype=engl
startTransaction?

choseT!

pmpleteTransaction

@ transaction type=debit . ¥

startTransaction? =
startTransaction?

transaction_type=withdraw

Figure 2. The aspect model “Transaction”.

advice. Since the refinement (ii) introduces a new
interaction between ATM and a new actor Server (not
shown in the model) the edge introduced is labelled with the
‘balanceCheck!” channel. When the aspect related tests have
to be generated from the composed model of SUT that
includes the automata in Figures 1 and 2, we can ignore all
the transactions that the aspects of interest do not depend on.
For instance, when testing the balanceCheck! transaction
between ATM and Server the tester model is extracted from
the composition Customer || Customer(Transaction) by
algorithm of [1] so that the test sequence <card!,
choseTransaction!, transaction_type := enquire, start-
Transaction!, wait,[finishTransaction?| timeout >= constl,
TESTFAIL], choseExit!, card?, TESTPASS > can be
executed.

B. Model-based testing

MBT uses abstract behavioural models for specifying
the expected behaviour of the SUT and for automatically
generating tests to check if the behaviour of SUT conforms
to the model. The SUT is an executable implementation
which is considered as a black-box during the testing
process, i.e., only inputs and outputs of the system are
visible externally. The SUT is tested incrementally by
applying test cases. A test case in MBT is defined as a
sequence of test stimuli paired with expected SUT outputs.
A specified set of test cases constitutes a test suite.

C. Uppaal timed automata

Assume a finite alphabet X' ranged over by a, b,... stands
for actions and a finite set C of real-valued variables ranging
over by x, y, z, standing for clocks.

74

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

A guard is a conjunctive formula of atomic constraints of
the formx ~nforc e C,~ e {2, <,=> <} andn € N. We
use G(C) to denote the set of guards, ranged over by g.

Definition 1 (Timed Automaton) [6]

A timed automaton A is a tuple (N, l, E, I) where

— N is a finite set of locations (or nodes),

— Iy € N is the initial location,

—E € Nx G(C) x Xx 2¢x N is the set of edges and

— I: N > G(C) assigns invariants to locations (here we
restrict to constraints in the form: x < n or x < n, neN. For
shorthand we write / =, I’ to denote {/, g, a, r, I’) € E.

To model concurrent systems, timed automata are extended
with parallel composition. In the UPPAAL modelling
language, the CCS parallel composition operator is used,
which allows interleaving of actions as well as hand-shake
synchronization. The parallel composition of a set of
automata is the product of the automata.

The semantics of timed automata is defined as a transition
system where configuration consists of the current location,
valuation of state variables and the current values of clocks.
There are two types of transitions between states: the
automata may either delay for some time (delay transition),
or follow an enabled edge (action transition).

To keep track of the changes of clock values, we use
functions known as clock assignments mapping C to the
non-negative reals R+. Let u, v denote such functions, and u
€ g means that clock values denoted by u satisfy the guard
g. For d € R+ let u + d denote the clock assignment that
maps all x € C to u(x) + d and for » c C let [r 0] denote
the clock assignment mapping all clocks to 0 and agree with
for the other clocks in C\r.

Definition 2 (Operational Semantics) [6]

The semantics of a timed automaton is a transition system
(also known as a timed transition system) where states are
pairs {/, u) and transitions are defined by the rules:

—Luy —>a {,u+dyifue I(I) and (u + d) € I(]) for a non-
negative real d € R+

~(Luy oo Py w)y ifl 5g0r 'y u € g, uw = [r »0]u and
well).

To increase the modeling power keeping the analysis
traceable for planner synthesis we lift the model class to
rectangular timed automata where guard conditions are in
conjunctive form with conjuncts including besides clock
constraints also constraints of integer variables.

Similarly to clock conditions, the integer variable
conditions are of the formk~nfork e Z,~ € {>,<,=,>,<}
and n € N. The advantage of this extension is that the model
has rich enough modelling power to represent real-time and
resource constraints being same time efficiently decidable
for reachability analysis.

II1.

In this section, we explain the concepts of AOM
applicable in aspect-oriented MBT. The AOM allows the
models to be organized so that they address particular
requirements (including crosscutting ones) and
corresponding test cases. The AO test model includes a base
model and aspect-related advice models. Aspects may
contain sub-aspects that require sub-advices and their own
test cases. Sub-aspect models have to be easily inserted into

ASPECT-ORIENTED MODEL-BASED TESTING

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

their parent aspect models. In our examples, we use name
prefixes that refer to the parent models so that they are
convenient to comprehend and maintain.

AO testing can also be considered as an example of
compositional testing where the test results of the composed
system can be inferred from the test results of its
components. In the MBT context, it means that the test
cases are determined only by the context of the aspect
advice models and the interface behaviour of their
composition. AOM also provides a conceptual basis for
defining test coverage criteria in terms of aspect related
model elements. The hierarchy of those criteria is depicted
in Table I.

TABLE L AO TEST COVERAGE CRITERIA
Coverage Strong Weak Discriminati
Type “\constraint| (universal) (existential) | ng predicate
of coverage coverage coverage
entity \4 3
Aspect All aspects of the| Some aspects of | Predicate on
A model the model aspect
VAeA. .. 4 € A... constants
/variables
i-th join point |All join points of{Some join points| Point cut
Jp(4, Q) aspect 4 of aspect 4 condition
V jp(d, i)eJP(A)| Jjp(4, i) eJP(4)
Entry-exit path A All paths Some paths Path
of an advice model| initiated at initiated at predicate,
M i-th join point | i-th join point e.g.
Ae Paths(M") |V Ae Paths(M*)| A€ Paths(M") |constraint on
path length
Model element of | All elements of | Some elements | Predicate on
type T (location, | type T in M4’ of the
transition, type Tin M"" | attributes of
function, data, etc) type T
included in the
path
Ae Paths(M*)

The criteria shown in Table I can be expressed as closed
Ist order logic formula in prenex normal form, where the
signature includes variables of particular types of structural
elements of Uppaal Timed Automata (UPTA) (template,
location, transition, label, function, data, etc.). The prefix of
the prenex formula includes bound variables in a fixed order
that is determined by the natural hierarchy of modelling
entities: aspect, join-points, and path. These entities model
the structural elements of UPTA, where the structural
elements can be referred to directly by name or indirectly by
constraints on their attributes. The matrix part may include
discriminating predicates of all the above listed types.

The semantics and scoping of AO coverage constraints is
defined by the hierarchy and type structure of AO model
elements (left most column in Table I). Thus, the scope of
constraints on bound variable in the formula matrix part is
defined by the position of the bound variable in prefix. For
instance, the scope of a path constraint is defined by the
join-point and aspect constraints because these elements

75

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

precede path variable in the prefix. When not explicitly
expressed in coverage constraint the default scoping means
existential quantification over all those variables preceding
in the prefix of coverage constraint. For characterization of
coverage criteria in terms of Uppaal query language, we
assume that the aspect model M is constructed according to
the rules described in [9]. The idea is to use Uppaal model
checker queries for selecting traces that constitute the test
paths of the given test case. Uppaal query based online test
generation methods are described by Vain et al. [1] and
Hessel et al. [10].

Aspect Coverage criteria impose to execute all or some
aspects in a woven model at least once. In Strong Aspect
Coverage (SAC), given an aspect model M, all possible test
paths must be covered by the tests. To implement the Strong
Aspect Coverage we use the parameterized UPTA templates
where the template parameter p; ranges over indexes [1, n]
that identify the aspect. Let P (i) be a predicate updated to
true whenever the i-th aspect advice model is entered. Then
the traces of M (p;) under Strong Aspect Coverage criteria
should satisfy the query: E<> forall (i: int [1,n])
P(i). Note that given query is valid only for paths that
include traversal of all aspects' advice models. In general,
the model M may not be fully connected and a single path
including all aspects may not exist. Therefore, we introduce
an auxiliary reset- transition into M that guarantees that if n
advice models are reachable in M then at most with n
traversals all of them are visited. The reset-transition
connects the final location of M with its initial location. Due
to this construct the Uppaal model checker is able to
generate a trace that includes visits of all advice models.
The tests paths for a final test case can achieved simply by
"cutting" that trace at reset- transitions to many shorter sub
traces.

Weak Aspect Coverage (WAC) refers to the case where at
least one advice model of some aspect is traversed by the
test path. The query E<> forall (i:int [1,n]) P (i)
differs little from the strong coverage constraint but it does
not require including reset-transitions in the model M.

Join Point Coverage criteria impose to execute all or some
join points of each aspect in a woven model at least once.
Strong Join Point Coverage (SJPC) presumes similarly to
strong aspect coverage introduction of an auxiliary reset-
transition into M. Regardless the prefix (SAC or WAC) of
the query the SJPC contributes a conjunct of form ...forall
(3: int [1,m]) P(i) && R(j) where j is ranging
over join point indexes of the aspects referred in the prefix
of that query and R (j)is a Boolean variable at each join
point updated to true, whenever this join point is visited.
Weak Join Point Coverage (WJPC) is satisfied if there is at
least one trace for given formula prefix satisfying ..exists
(j: int [1,m]) P(i) && R(3). Here, like in WAC,
auxiliary reset-transition is not needed.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

Aspect Path Coverage criteria impose to execute all or
some paths of each aspect in a woven model at least once.
Assume the entry and exit transitions of each advice models
are decorated with entry(i, jk) and exit(i, j,/) predicates
where i, j, k, [range over the set of aspects, join points, and
their advice entry and exit points respectively. Whenever the
transition is executed these predicates evaluate to true.
Then, the Strong Aspect Path Coverage (SAPC) contributes
a conjunct to the query prefixed with aspect and join point

constraints as follows: . forall (k: int [1,K])
forall (1: int [1,L]) P(i) && R(J) && [(Vk=1,x
entry(k)) A(vi,r exit(1l)).SAPC, like earlier strong

coverage criteria, presumes the reset-transitions related
construct. Weak Aspect Path Coverage (WAPC) comparing
to SAPC replaces universal quantifiers with existential ones
for variables k and 1, the coverage constraint becoming to ...
exists(k: int[1,K]) exists(l: int[1,L]) P (i)
&& R(J) && [(vk=1,x entry(k)) A (vi-i,p exit(1l)).

The Model Element Coverage criteria impose constraints
on the types of UPTA elements to be covered in the advice
model or set the specific constraints on the attributes of
those elements, e.g. Strong (resp. Weak) Model Element
Coverage can be parameterized with the element type, e.g.
Transition and universally (resp. existentially)
quantified over given type. More specific coverage
constraints can be constructed using type discriminating
predicates on, e.g., local data variables of an advice model.

IV. EXAMPLE: TESTING HOME REHABILITATION SYSTEM

The AO MBT approach described in Section 3 has been
applied in testing a Home Rehabilitation System (HRS). The
model-based testing is needed in the medical domain
because of the safety critical nature of the systems and non-
trivial combination of functional, performance and security
features [11]. The HRS is an application which drives sensor
devices, analyses the gathered data, interacts with the patient
and submits relevant information to the hospital through the

Internet. ~HRS software contains the following
subcomponents: dedicated health hub as communication
gateway; vital signals' sensor system for patient

measurements; movement tracking sensor system for fall
detection, physical activity and exercise monitoring.

There are three actors, namely, Patient, Plan and Sample,
interacting in the "home exercising" use case. The
composition of automata Plan and Sample constitute the
base model that can be woven with different advice models
depending on what body characteristic (pulse, blood
pressure, etc.) is monitored. For instance in Figure 3, the use-
case exercising is refined with two advice models that are
instances of the same automaton template. The advice
models linked to the base model are location refinements of
the unnamed location in the automaton Sample. Channel
Sample ensures that the advice models are executed
synchronously with the edge departing from location
Measure in the automaton Sample. A weak join point

76

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

coverage of completing exercising can be specified now
using query E<>exists (Screen=UB _warning([1]) .
The test case ensures that while a patient is exercising, a
warning will be shown on a screen when the patient’s pulse
is greater than the number in U_bound. On the other hand
U_bound is the upper value of pulse that the patient may
have during exercising and this is specific to each patient.
For example if the U_bound is 140 then a warning on a
screen goes red and warns “wait until your pulse will be
normal”’. We measure the pulse under “measurement [1]”
and an upper bound and a lower bound are indicated. A
normal pulse measurement have to be between U_bound and
L_bound.

A strong join point coverage of completing exercising
can be specified using query E<>forall
(Screen=normal [1])measurement [1]>=L bound
[1]&&measurement [1]1<=U bound[1]. That means
the screen indicates in green that everything is alright and the
patient can continue exercising because their pulse is within
the allowed range. By this strong join point test coverage, we
ensure that our system is able to give the right warnings
whenever necessary.

V. CONCLUSION

In this work, we have introduced an aspect-oriented
approach to model-based testing in the context of Uppaal
timed automata specifications. We advocate the view that
aspect-oriented models help in constructing models of
system under test in a systematic and user friendly way, thus
helping to defeat the perennial problems of MBT -
complexity of construction and maintenance of test models.
It has been shown how the aspect related test coverage
criteria can be formalized in a systematic way in Uppaal
query language Timed Computation Tree Logic (TCTL) and
the feasibility of test suites verified on aspect models before
real tests are deployed and executed.

Our focus on how a test case can be generated according
to structural units that are specific to AOM is novel. This
gives new test coverage criteria that address implemented
features — aspect, advice, join-points, etc., and provide more
intuitive reference to the parts of SUT to be tested for those
features.

Another contribution for enhancing MBT by aspects is
the possibility of easy update of test case related models. If
new requirements arise, new advice models can simply be
incorporated by well-defined composition rules. This is
especially relevant in regression testing.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

ACKNOWLEDGMENT

This research was supported by the European Social
Fund’s Doctoral Studies and Internationalisation Programme
(DoRa), and by the Competence Centre Programme of
Enterprise Estonia.

REFERENCES

[1] J. Vain, M. Kadramees, and M. Markvardt, “Online testing of
nondeterministic systems with reactive planning tester,” in: L.
Petre, K. Sere, and E. Troubtsyna (Eds.). Dependability and
Computer Engineering: Concepts for Software-Intensive
Systems. Hershey, PA: IGI Global (2012), pp. 113-150.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. - M. Loingtier, and J. Irwin, “Aspect-Oriented
Programming”, ECOOP’97, June, 1997, pp. 220-242.

[3] J. Kienzle, A. Wisam, F. Fleury, J. Jezequel, and J. Klein,
“Aspect-Oriented Design with Reusable Aspect Models.”
Transactions on Aspect-Oriented Software Development,
vol7, 2010, pp. 279-327.

[4] T. Cottenier, A. van den Berg, and T. Elrad, “Stateful
Aspects: The Case for Aspect-Oriented Modeling.”
Proceedings of the 10" AOM Workshop, 2007, pp. 7-14.

[5] E. Katz, and S. Katz, “User queries for specification
refinement treating shared aspect join points.” Proceedings of
the 8th IEEE, 2010, pp. 73-82.

[6] J. Bengtsson, and W. Yi, “Timed automata: Semantics,
algorithms and tools.” Lecture Notes on Concurrency and
Petri Nets, Lecture Notes in Computer Science vol. 3098,
2004, pp. 87-124.

[7] S. Clarke, and E. Baniassad, Aspect-Oriented Analysis and
Design: The Theme Approach. Addison-Wesley Professional.
2005.

[8] A. Rashid, “Aspect-Oriented Requirements Engineering: An
Introduction”. In Proceedings of 16" IEEE, 2008, pp. 173-
182.

[9] K. Sarna, and J. Vain, “Exploiting Aspects in Model-Based
Testing,” in Proceedings of 11" FOAL. ACM, New York,
NY, USA, 2012, pp. 45-48.

[10] A. Hessel, K. G. Larsen, P. Pettersson, and A. Skou,” Testing
Real-Time Systems Using UPPAAL.” Lecture Notes in
Computer Science vol. 4949. 2008, pp. 77-117.

[11] A. Kuusik, E. Reilent, K. Sarna, and M. Parve, “Home
telecare and rehabilitation system with aspect-oriented
functional integration.” Biomedical Engineering, DOI:
10.1515/bmt-2012-4194 (accessed 01.08.2014).

[12] K. Larsen, P. Pettersson, and W.Yi. UPPAAL in a nutshell.
Journal on Software Tools for Technology Transfer, 1997, pp.
134-152.

77

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

Sampl

cl ==TimeTick

Plan

Patient1
cl ==TimeTick cl=0 cl == ExMinTime
kival ExCounter++
measurement[1]=k,
cl=0
ExCounter<ExMult C) SwitchToNext

Exercising

cl <= ExMaxTime

ExCounter==ExMult

Completed
©

Measure
cl==SamplPeriod

cl==SamplPeriod

sample!

Stop

Advice(0)

Evaluate

Ready sample?

measurement[d] < L_bound[0]
Screen= LB_warning[0]

Sample_evaluated
measurement[0]==L_bound[0]&&
measurement[0}<=J_bound([0] =

P

Screen= normal[0]

measurement[0] = U_bound[0]

Screen = UB_warning[0]

Advice(1)

Evaluate

Ready sample?

measurement[1] < L_bound[1]
Screen= LB_warning[1]

Sample_evaluated
measurement{1]==L_bound[1]&&

P

measurement[1}==J_bound(1] =
Screen= normal[1]

measurement[1] = U _bound[1]

Screen = UB_warning(1]

Figure 3. Composing the primary test models and advice model in parallel.

Copyright (c) IARIA, 2014,

ISBN: 978-1-61208-370-4

78

Appendix E
/IAGENTS

IIUSER

IIWB

//IDB

system_data_controller,
system_pressure_checker,
system_heartbeat_checker,
system_telefon_agent,
system_database_cleaner,

system_get_pressure,
system_get_heartbeat,

system_whb_insert_triplesl,
system_whb_insert_triples2,
system_whb_insert_triples3,
system_whb_get_buffered_triplesl,
system_whb_get_buffered_triples4,
system_whb_get_selected_triplesl,
system_whb_delete_selected_triplesO,
system_whb_sequence_for_ids1,
system_whb_sequence_for_ids2,
system_whb_sequence_for_ids3,
system_whb_sequence_for_keysl,
system_wb_sequence_for_keys?2,

system_whb_sequence_for_keys3,

system_wg_create_record0,
system_wg_delete_recordO,
system_wg_get_first_record0,

system_wg_get_next_record0,
141

system_wg_get fieldO,
system_wg_set_fieldO,
system_wg_make_query0,
system_wyg_fetchO,
system_wg_free_query0,
system_wg_start_readO0,
system_wg_end_readO0,
system_wg_start_write0,
system_wg_end_write0,
system_wg_create_recordl,
system_wg_delete_recordl,
system_wg_get_first_record1,
system_wg_get_next_recordl,
system_wg_get fieldl,
system_wg_set_fieldl,
system_wg_make_queryl,
system_wyg_fetchl,
system_wg_free_queryl,
system_wg_start_read1,
system_wg_end_readl,
system_wg_start_writel,
system_wg_end_writel,
system_wg_create_record2,
system_wg_delete_record2,
system_wg_get_first_record2,
system_wg_get_next_record2,
system_wg_get field2,
system_wg_set field2,
system_wg_make_query?2,
system_wyg_fetch2,
system_wg_free_query2,

142

system_wg_start_read2,
system_wg_end_read?2,
system_wg_start_write2,
system_wg_end_write2,
system_wg_create_record3,
system_wg_delete_record3,
system_wg_get_first_record3,
system_wg_get_next_record3,
system_wg_get_field3,
system_wg_set field3,
system_wg_make_query3,
system_wg_fetch3,
system_wg_free_query3,
system_wg_start_read3,
system_wg_end_read3,
system_wg_start_write3,
system_wg_end_write3,
system_wg_create_record4,
system_wg_delete_record4,
system_wg_get_first_record4,
system_wg_get_next_record4,
system_wg_get_field4,
system_wg_set_field4,
system_wg_make_query4,
system_wyg_fetch4,
system_wg_free_query4,
system_wg_start_read4,
system_wg_end_read4,
system_wg_start_write4,
system_wg_end_write4,
system_wg_create_record5,
143

system_wg_delete_record5,
system_wg_get_first_record5,
system_wg_get_next_record5,
system_wg_get field5,
system_wg_set_field5,
system_wg_make_query5,
system_wyg_fetchb,
system_wg_free_querys,
system_wg_start_read>,
system_wg_end_read5,
system_wg_start_write5,

system_wg_end_write5,

144

Agents’ templates

i

T AR e P20
D,

flo] e | KEY,

e

[Sa e re——e
Npw_hwe B g

ATA ¥
viel [KEY,

vaind | KEY,
Nk KEY.

7| s 4 0 2 004 v
=T
P

S § KEY 220 Ak sl
——tt

TR
f-

fet_pressiire. v

; get_pressure_low = 00, get_pressure_high = 120 o Y —
got_pressure_low = 70, got_pressura_high = 80 i e
bt | KEY.
get_pressure_low = 50, get_pressure_high = 110 i w3 | KLY,
get_pressure_low = 30, get_pressure_high = 80 e o

get_pressure_low = 0, get_pressure_high = 90

oS0 e) g 1D ‘
TELEFCR AGENT,

-1 |REY,

get_pressure_in?

Eﬂmmﬂ'
oot
=2 | KLY,

e

gel_pressure_out!

. get_pressure_low = -1, get_pressure_high = -1

chue] wamean amtuiacn,

eyt ERRDA

@ ey SRR

g ena e gy =g tan,_raset_injAp

wd ke efAY it wtwe_swt_sufA Y

s ey OUEATT
ey make guesy_reamia]

b g

s it caray
scarrmtiet

B preeOo

ol nia et Wgtes_eapi?

Wi shed_write_autii?

Wi deieie,_recond_tmefgeet

wa et rwcire AT

et focortd uGATY

e A

gt et

e AR

s s ALY

145

hearthear_checker

ho_i? he_o!

getl_heartheat_in!

gel_heartbeal oul?
hbaget_heartbeal__return
==

l{hb>=0)

hbe=0 L

obuf|o] sub=DATA_AGENT,
0] prop=input_buffer,

obuffo].val=1 | KEY,

o+,

obufla].sub=1 | KEY,

obuflg] prep=hearbeal,

obuflo].vai=hb,

o+

wh_insen_triples_in[AJ!
wh_insent_triples__amay[Aj=obut,
wh_insen_triples__number_of_triples|A]=o,
wh_Insernt_triples__name{A}=0

wh_insert_triples_out[A]?

Whiteboard templates

amlistarge] colimn=iD,

argllargs| cond=WG COND GREATER,
anlistiargs] vake=bookmarks(A],

agers

g slart_wite_infAlt

nama=1),

rarray=wh_ge!_buffered triples rarrwN
name=wb_get_buffered triples
age=0

namet<0
arglsifarge].colimn=SLJ
arghsifargc] cond=WG,_ oan EQUAL
e

argort

wg_start_wiile_oufA]?

ame] vatie=narie.
v make:

Parglsifarge) colimn=PROP, wit_make_gquery_ in{All
wi:iam cond=WG COND_EQ!
argistarcclvakiesipit_bufler,

arge=1

wh_gel_buffered_tripies_infAJ? 5 e
w_make_query ol
q

vaoke. ey ogisipleaglet,

uery=wg_make_query_retumiA]

get_heartbear

get_heartbeat__retum = 90

get_heartbeat__retum =70

gel_heartbeal__retum = 50

get_heartbeat__retumn = 30

gel_heartbeal retum =0

gal_haaribeat i gel_heartbeal_out!

. get_heartbeat _retum = -1

wbh_get_buffered_triples

wq_end_wrie_in[A]l

wh_gel_buflered_iriples_oulfAt

wy_end_write_outjAl?

wh_get_bufered_tiples_ retur{A-ERROR, quey==ERROR

[vb_get_butfered_triples_retu
bt pel Ubutfersd_irples__rar; -a-ray wg_ start_read_infAR

dack=0, fine=0, (=0, max_ic=0, n<0 wg_sian_read_outfAT?

wg feich_ queryfAl=query
wg feich_infA]l

wg felch_ou|A]?
record=vg,felch_ A}

wg_feteh_ query|Ajquery

field==0BSOLETE|
recore=ERROR

“wa get_fieid_record|Aj-recard, i end_joed_oulA[?
e getfield fiekdre(A|-CONT

wg free_query__quenfAj=query
e get feld infA]
wa free_query_ (Al
wa_get_field_outlAT?

d=wg get fiekd_returrfA] g free_query_outfAR?

fickt==0B;
field =OBSOLETE Pestack ik
g get field_mcord|A=record,
g get_ficid _fieldre{A|=VAL
g start_wrie_InfAl!
g get fied infA
v start wrie_0IAT?
W get_fisd_ouA]?
field=wg_get field_ returmiA) argislf}column=SUB,
ey Conp AL

((lied&KEY}>0 &2

arghst0]vale=sibi]
(Tl BEEATEN)==D)}

(eidSKEY]0 &
(edBEATEN)==0

subs{stack =heid,
stacke .

_make_query_a =argist,
ittt =

“wg_make_query_inlA]

Kslfine]=record, linet+.

ot

{TE|

focord ==ERAOR

weg get field ouAl?

wg_get_fiekd_recordlA)
wg_gel_field e

A
M.nu,_ﬂsd retum(A],
ubsfieid

wg_fetch_infA]l
wg felch_oulfAj? 1 fech culh)?
record=wg_feich _ retumA] record=wg_feich _retumiA]

acord==ERROR

recard=ERROR recordI=ERROR
wg_get_field_mcord[Al= wg_get fisd _reco
wg_gel| Jnun&dn wg_gel_fisd_fieid

waget_field infA} we_gel_fied_ infAll

g get_fad auAl? wg_gel._fiid_oufAT?
=wg_get fied_returnfi], field=wg_get_fieid_renm{A],
mlx id=max_id<field?fleldmax_id max_id=max_id<fleid Miek:max_id
MMH mcord(Al=record, et_field _rex nmrd.
ol B e o :fatom et R el
wg_gel_field_|nfAl w_gel_fisd_in[All
fiald_auffAl? wg_get fisld ouljAl?
ﬂsd—vnlgﬁl fiekd__ returnfA] field=wg_get_field _retun[A),
mmnlpmp'lbb
T ~0BSOLETE
el_fieid fetch_ques
"G_ﬂ e had MMVA‘J:PRCP ‘wgl_felch_querylAj=query
W fetch im|Aj
g gel_fieid_infA)

wa_fetch_outiAT?

i=wg_feich _returnlA]

146

wh_sequence_for_ids

u
wh_sequence_for_ids_infA] wg gt fical,_recard_injA)

wi_pget_first_record_oul[A]7
FOCONd=w_

wh_sequence_for_ids_oulfA] gel_first_record__retumiA]

record! =ERRCOR

wg_get_field__recor
wa_get_field__fi

wy_set_field_owm[A]? racon
=PROP

wy_set_field_in[A]!]
record==ERROR wg_gel_next_record_out[A]?

record=wy_gel_next_record retum[A]

wg_get_field_in[A]l

= :
wi_creale_record_in[Ajl Rgagm..r'-"d _OulA?

field_retumiA) wy_gel_nexd_record_in[A]!
wo_create_record_oul[A}?
record=wg_creale_record__relum[A]

fieddl=sequence_for_jds
wg_gel_next_record __record{Al=record
‘wa_set_field_ fAl=recerd, flisld=ssaquence for_ids
wy_sel_field _fiednifAl=PROP,
wg_set_field__dataAj=saquance for_k3 1_field__record[Al=recond,
wyg_gel_field |__fieddndAVAL
wg_sel_fiedd_infA)!
wg_gel_field_in[AR

wg_sel_field_out{A]?

usl_ﬂeld_wﬁh]wwd.
&:ﬁﬂj&lﬂ_ﬂﬂdﬂ Al=VAL,
wi_set_leld_datalA]=1

wg_gel_fisld_oul[A]?
figld=wg_get_fiedd__retum|a]

wh_sequence_for_ids__redurn[Al=field

w_sel_field_infA)! new_id=wb_sequence lot_ldq__m.ln[hp\
wy_sel_fied__ record|Alsreco
wa_set_fiekl_outiA]? o S ga!tad[&\j:w:xlfd
ramay=wh_get_selected_triples__raray[Al, wbh_get_selected triples

wh_get_selected_triples_in[4])? wheresub=wb_gel_selected_triples__wheresub{A].
whereprop=wb_gel_selected_triples__whereprop{A],

wherevalue=wb_get_selected_tnples__ wherevalue[A],
arge=0
wh_get_selected_triples_out/A)! o

wheresub!=0
arglisfargc).column=SUB,
arglisfargc].cond=WG_COND_EQUAL,
arglis{argc) value=wheresub,
arge++

wheresub==0

wg_start_write_in[A]!

yropt=0
arglistfargcl.column=PROP,
arglisfarge].cond=WG_COND_EQUAL |

istfargc] value=whereprop,

wg_start_write_outjA]?

whereprop==0

wg_make_query_ arglist[A]=arglist,
wg_make_query_arge=arge

wherevalue!=0
arglistjarge).col
arglisfarge]. mnd-WG CDND) EQUAL,
arglistjargc] value=wherevalue,

arget+

wg_make_query_in[A]!

wherevalue==0

wg_make_qguery_out[A]?
query=wg_make_guery__retum[A]

arg=0 wg_end_write_In[A]!

query==ERROR wa_end_write_out[A]?

\S
wh_get_selacted_iriples_relurn[A|-ERR FueryI=ERROR

wg_start_read_in[A]!

stack=0. line=0, =0 wg_start_read_out[A]?

wg_fetch__query[Al=guery
wg_fetch_in[A]!

wg_felch_outfA]?
record=wg_felch_retum[A]

field==OBSOLETE record==ERROR

record!=ERROR wg_end_read_in[A]!
‘wg_get_field__record[A]=record, ‘wg_end_read_out[A]?
wg_get_field_fieldnA]=CONT

wa_free_query__query[Al=query
wg_get_field_in[A)!

wg_free_guery_in[A]!

wg_get_field_out[A]?

147

| aray=wb_insert_triples__array[A],
wh_insert_triples_in[A]? number=wb_insert_triples__number_of_triples[A],
name=wb_insert_triples _ namelA],
maplan—{! b i vt trid
wo_Inse, ples
wh_insert_triples_out[A] = gty

== numﬂb [E23
wg_end_wrile_out[A]? ienumber
new_sub=getMap(array[i].sub),
wg_end_write_in[A]! new_prop=getMap(aray(i].prop),

new_val=getMap(array]i].val)

\&

(arrayli] sub&8KEY)=0 &&
(naw_sub==0)

(arrayll] sub&KEY)== wtl sequence_for_keys_in[A]!

Il
new_sub!=0
{ iy) w‘b _sequence for_keys out[A?
map[maplen].from=array(i].sub,
map[maplen].to=wb_sequence_for_keys return[A],
maplen++

\o‘f

(a"&y[] prop&KEY >0 &&
(new_prop==0)

(artay[] prapRKEY == wb_sequence for keys_in[A]!

Il
(new_prop!=0)

.“

wb_sequence for keys out[A]?
map[mapten].from=array(i].prop,
map[maplen]to=wb_sequence_for_keys__ return[A],
maplen++

¥

(arrayli]va I&KEY PO &&
{new _val==i

(arrayfl] valRKEY)==0 wh_sequence_for_keys_in[A]!

Il
(rew_vall=0)

.’

wb_sequence for keys oul[A]?
map[maplen].from=array(ij.val,
map[maplen].to=wb_sequence_for_keys__ return[A],
maplenH

wg_start_write_infA]!

wg_start_write_out{A]?

i==numbser i*+

i=number

wg creale record in[A]!

148

wh_delete_selected_triples_in[A]7

wh_delete_selected_triples_out[A]

b_delete_sel

wi _delete.

d_triples__

de_d [A]
1Al

=wb_delete_

o
wheresub!=0

triples__ 1
whereprop—wb delete_selected_triples_ \ wheleprop[ﬁ].
_triples__wherevalue{A],

wb_delete_selected triples

record!=ERROR

wg_get_field__record[Al=record,
wg_get_field_ fieldnrfA)=CONT

wy_free_guery__query[Al=query

wyg_get_field_in[A]!

wg_free_guery_in[A]!

wyg_get_field_out[A]?

149

wg_end_read_in[A]!

wg_end_read_outfA]?

arglist[arge].column=SUB,
wheresub==0 arglistfarge].cond=WG_COND_EQUAL,
ﬁlliliargc].vmmmmrasub. wa._start_wite_infA]!
whereprop!=0 wg_start write_oul[A]?
W:IS[EEJ’QC} m!unnw-g ggND EQUAL
hereprop== ist[argc].cond=" " "
HherepEp :ghleagc% valve=whereprap, wg_make_guery__arglist{A]=arglist,
argc++ wg_make_guery__argc=arge
whereval ue!=0 wg_make_query_in[A]!
arglistfarge].column=VAL,
wherevalug== arglisifargc].cond=WG_COND_EQUAL,
arglistfargc].valve=wherevalue, wa_make_query_oufA]?
argee+ query=wg_make_guery__returnfA]
J
arge== arge>0 wg_end_write_in[A]!
or cascade_down==
query==ERROR wg_end_write_out[A]?
- n
wh_delete_selected_triples__return[A]=ERRI query=ERROR
1 wg_start_read_in[A]!
stack=0, line=0, i=0 wg_start read_outA]?
p
wa_fetch__query[Al=query
wg_fetch_in[A]!
wy_fetch_out[A]?
record=wg_fetch__returnfA]
field==0BSOLETE record==ERROR cascade_down-

Database templates

wg_start_write

STl _in AT g A, . AR

Ik 1= NO_LOCK

. wg_ger_next_record
<

wi_ot_next_rmcard_oulfA]!

wij_gel_next_record__returnjA] = ERROR

is=0
wi_get_next_meord outfA]!
wig_gel_next_mcord__relurnfA] = i

wil_get_next_moord_inAl?

| = pat_nex_recordiwg_gol_naxt_mecond, i)
ok == true
DEs{wg_st_fol_ rocoedAflwg_set_foks_feldnaaf = wg_set_field
wil_sed_felds_dabnA],
ok == (alge
wil_sel_Beid_retutr{A] = NO_ERROR wip sal_feld__relurn{A] = ERROR

wi_net_liekct outjap w_sot_fiid_owtjAj!

wi_sal_feld_ in[A]?

o = rocord_ckiwg_set_fiold__meoma])

wg_end_write

lock = NO_LOCK

wg_end_write_in[A]? wyg_end_write_oul[A]!

lock_stack <= 1
lock_stack =0,

lock = NO_LOCK
wg_end_read_outlA]!

lock_slack > 1 TE_end_read
lock_stack —
wg_end_read_out[A]!

wg_end_read_in[A]?

we_get_first_record
O _incgx_stwck_usod » 0
wi_pal_first, pecard_outjal
w e fral_recodd riturnfAj=DE_indes_stackid]

DB _index_stack used == 0
w{l_get_firat_facced_outiA!
wi_get_rst_record__returrA| = ERROR

Wit first_meceny_infAfT|

wg_get field
uaag '"‘r; = ok =a tale
i fala_pmin wal_gat_fioid_retum{A] = ERROR

DB{wy_got_fiwld_recor(Alllwg_get_Sold_ feddrifAl]

wi_get_feid_outlA]! wi_get_fiesd_oul[AR

wy_gel_field AR

ok = rocord_okiwg_got_fokd__recordiA])

wg_create_record

meon)_pomter »= 0 mcond_poinir < 0
Wi craale_record returnfA) = racond pointer

wg_crents_record cut[A] wg_cremts_recard_outjA]l

wia_croate_record_ifAT?

recard_painior = get_naw_record()

wg_delete_record
i=0
wil_delate_record_out{A}!

=0
wi_delets_recond_oul[A]!
wg_dolets_record__returnfa] = NO_ERROR

wy create record returnfA] = ERROR

wi_delate_record__raturn|A] = ERROR

wg_chelelo_record_infa]7?

i = delete_recond{wg_delete_record__reclAl)

lock == READ_LOCK wg_smrf_read
lock_stack ++
wg _start_read oufA]

lock == NO_LOCK

lock = READ_LOCK,

lock_stack = 1

wi_start_read_oulfA]l
wg_stan_read_in[A]7

leck == WRITE_LOCK

150

query_result_buffer_counter[A] > 0 && wg_fetch
guery_result_buffer_pointerfA] <

query_result_buffer_counter[A] <=0 || query_resuli_buffer_counter[A]

query_result_buffer_pointer[A] >=

query_resull_buffer_counter(A] wg_fetch__retum[A] = Query_result_buffer[A][query_result_buffer_pointer[A]],
” - o query_resull_buffer_pointer{A] ++
wg_fetch__retum[A] = ERROR fotoh oullAll
wg_fetch_out[A]! Wy fetch_outfy)
wg_fetch_in[A]?
. wg_make_guery
wo_make_guery__arge< 1
wg_make_guery_in[A]? :g:;:t::;::;;ﬁ;w:-w - ERROR
wyg_make_guery__argc>= 1
wo_make_query__arglist[A],
=wg_make_query__argc,
i=0,
i >= DB_index_stack_used query_result_buffer_counter[A] = 0,
wg_make_auery_outfA]! query_resut_buffer pointer(a] = 0
wg_make_guery__return[A] = NO_ERROR e
i< DB _index_stack_used
row = DB_index_stack{l. j>= arge
B ! 'Qu'ary_resuu_ {Allauery_result_buffer_ 1Al = row,
i=i+t _‘ query_result_buffer_counter{A] = query_result_bufer_counterfA] + 1

I =arge

arglistfj].cond == WG_COND_EQUAL argistfjl.cond == WG_COND_GTEQUAL

arglist{j].cond == WG_COND_NOT_EQU anglistf]l.cond == WG_COND_LTEQUAL

arglist(]).cond ==
Wi

arglsi].cond ==
'G_COND_LESSTHAN WG

DB[row]arglistfj].column] == COMND_GREATER

DBfrow][arglist{].column] <
arglist(j].value

arglisif].value

DB[row][arglist[j].column] >
arglist[]] valse

DB[row](arglist[j).column] 1=
arglistfj].value

DBjrow][arglist(j] column] <=
anglistf].value

DB{row][arglistj].column] >=
arglist(j].valug

DB{row][argistfj] column] ==

DB{row][arghist[] delumn] <= / arglist{j]. value

anglistfil yaly

DB[row][arglist[]).column] <|
arglist]].value

D8[row][arglist[j].columf] >
arglistfj].value

D [j].column] >= /
list e
arglistfj].valjie DB[row][arglist]].column] =
&

arglist[]].valu

151

Appendix F

F.1 BM1 Reachibility of base model terminal states

(Academic) UPPAAL version 4. 1,19 {rev. 5649), September 2014 - server.
Verification kernel felapsed time used: 0,141= / 0s /0,131s.
Residentvirtual memory usage peaks: 7 536KB / 27 096KE.

Property iz satisfied.

F.2 BM2.1 Time bounded reachability of Patient model location .Falling

A< > Patient_physical_condition.Bad && Patient_exercising. Falling 8& Q_dock <= Patient_exerdising.Ex_Ub
Verification fkernel felapsed time used: 0s [0s [Os.

Resident/virtual memory usage peaks: 9 003KE [46 720KB.

Property is satisfied.

F.3 BM2.2 Time bounded reachability of HRS location Alert

A<= Patient_physical_condition.Bad && HRS_sampler. Alert && Q_cdock <= HRS_sampler.SamplPeriod
Verification kernel felapsed time used: Os f 0,015 f 0,015z,

Residentfvirtual memory usage peaks: 8 995kE [46 7A3KE.

Property is satisfied.

F.4 BM3 Correct termination of Patient’s exercising

A[l HRS_sampler.Done && Patient_exercdsing.Done imply 5_counter == SmplMult
Verification kerneljelapsed time used: 0,015 /05 /0,015s,

Residentfvirtual memary usage peaks: 7 632KE [27 356KB.

Property is satisfied.

F.5 Non-blocking of template Patient_physical condition

A[]l Patient_physical_condition_2.Bad2 imply Patient_physical_condition.Bad
Verification/kernelfelapsed time used: 0,015s / 0s f0,002s,

Resident/virtual memory usage peaks: 8 160KE / 23 308KE.

Property is satisfied.

153

F.6 Reachability of location Patient_physical_condition_1.Bad2

E<> Patient_physical_condition_2.Bad2
Verificationfkernel/elapsed time used: 0,018s / 0s [0,0168s,
Resident/virtual memary usage peaks: 8 152KB [28 428KB.
Property is satisfied.

F.7 Non-blocking of advice template HRS_quality_monitor

HR.S_sampler.Sampling —> HRS_guality_monitor, Ready && HRS_quality_monitor.i = 0
Verificationfkernel/elapsed time used: 3,984s [0,125s [4, 126s.

Resident/virtual memary usage peaks: 33 058KB [77 S08KEB.

Property is satisfied.

F.8 Non-blocking of the template HRS_performance_monitor

HRS_performance_monitor. Idie && Patient_physical_condition.Mormal —> HRS_performance_manitor. Tcounter == HRS_performance_monitor, TMax
Verification kernel felapsed time used: 0s /0,016s /0,016s,

Resident virtual memory usage peaks: 7 564KEB [27 336KB.

Property is satisfied.

F.9 Non-divergence of HRS_performance_monitor

Patient_exercsing.Exercising && HRS_performance _monitor.Measuring —> HRS_performance_monitor.Done && Q_dock <= Ex_Ub +PrepT
Verification/kernel felapsed time used: 0,016z / 0s / 0,015s.

Resident/virtual memory usage peaks: 7 452KB [26 852KB.

Property is satisfied.

F.10 Test generation statistics of a) Aspect model b) full augmented model

a)
E<>=Trapl && Trap2 && Trap3
Verification/kernel felapsed time used: 0= /0s /0s,
Residentfvirtual memory usage peaks: 7 57EKE [27 420KE.
Property is satisfied.

b)

E<>Trapl && Trap2 && Trap3

Verification kernel felapsed time used: 0s /0s f0,002s.
Residentvirtual memory usage peaks: 7 300KE [28 776KE.
Property is satisfied.

154

F.11 Simulation trace of coverage criteria Trapl && Trap2 && Trap3

Simulation Trace

(5tart, Mormal, Idle, Idle, Idle, Idle, Idle)

Exercise: Doctor — Patient_exercisingPatient_exercising IHRS_sampler
(T1, Mormal, Exercising, -, Wait, Idle, Ide)

Patient_exercising1

(T1, Mormal, Exercising, Do_Fxercise, Wait, Idle, Idle)

sample: HRS_sampler — HRS_posture_sensor

(T1, Mormal, Exercising, Do_Exercise, Sampling, Posture_Detection, Idle)
HRS_posture_sensor

(T1, Mormal, Exercising, Do_Exercise, Sampling, -, Idle)

sml_done: HRS_posture_sensor — HRS_samplerHRS_emergency_monitor
(T1, Mormal, Exercising, Do_Exercise, -, Idle, Fall_sampling)
HRS_sampler

(T1, Mormal, Exerdising, Do_Fxerdise, Wait, Idle, Fall_sampling)
HR.5_emergency _monitor

(T1, Mormal, Exercising, Do_Exercise, Wait, Idle, Idle)
Patient_physical_condition

(T1, Bad, Exerdising, Do_Exerdse, Wait, Idle, Idle)

Patient_exercising1

(T1, Bad, Exercising, SwitchToMext, Wait, Idle, Idle)

Patient_exerdsingl

(T1, Bad, Exerdising, Falling, Wait, Idle, Idle)

sample: HRS_sampler — HRS_posture_sensor

(T1, Bad, Exerdising, Falling, Sampling, Posture_Detection, Idle)
HRS_posture_sensor

(T1, Bad, Exercdising, Falling, Sampling, -, Idle)

sml_done: HRS_posture_sensor — HRS_samplerHRS_emergency_monitor

(T1, Bad, Exerdising, Falling, -, Idle, Fall_sampling)

HRS emergency monitor

155

F.12 Simulation trace of coverage criteria Trapl && Trap2 && Trap3 of
non-AO model

(T1, Bad, Exerdising, Falling, -, Idle, Idle)

(Start, Mormal, -, Idle, Idle, Idle, Idle, Idle, Ready, Ide)

Patient_physical_condition1

(Start, Mormal, Warse, Idle, Idle, Idle, Idle, Idle, Ready, Idle)

Exercize: Doctor — Patient_exercisingPatient_exercsing1HRS_sampler

(T1, Normal, Worse, Exerdsing, -, Wait, Idle, Idle, Ready, Idle)

sample: HRS_sampler — HRS_posture_sensorHRS_guality_monitorHRS_performance_monitor
{T1, Mormal, Worse, Exerdising, -, Sampling, Idle, Posture_Detection, Evaluate, Ready)
HRS_quality_monitor

(T1, Normal, Worse, Exerdising, -, Sampling, Ide, Posture_Detection, Sample_evaluated, Ready)
HRS_quality_monitor

{T1, Mormal, Worse, Exerdising, -, Sampling, Idle, Posture_Detection, Evaluate, Ready)
HRS_quality_manitor

(T1, Normal, Worse, Exerdising, -, Sampling, Ide, Posture_Detection, Sample_evaluated, Ready)
HRS_quality_monitor

{T1, Mormal, Worse, Exerdising, -, Sampling, Idle, Posture_Detection, Evaluate, Ready)
HRS_quality_monitor

(T1, Normal, Worse, Exerdising, -, Sampling, Ide, Posture_Detection, Sample_evaluated, Ready)
sml_done: HRS_guality_monitor — HRS_emergency_monitor

(T1, Mormal, Waorse, Exerdising, -, Sampling, Fall_sampling, Posture_Detection, Ready, Ready)
HRS_emergency_monitor

(T1, Normal, Worse, Exerdising, -, Sampling, Idle, Posture_Detection, Ready, Ready)

gyn; Patient_exercisingl — HRS_performance_manitor

{T1, Normal, Worse, Exerdising, Do_Exercise, Sampling, Idle, Posture_Detection, Ready, Measuring)
ch_P: Patient_physical_condition1 — Patient_physical_condition

(T1, Bad, Bad2, Exercising, Do_Exerdise, Sampling, Idle, Posture_Detection, Ready, Measuring)
HRS_posture_sensor

(T1, Bad, Bad2, Exercising, Do_Exerdise, Sampling, Idle, -, Ready, Measuring)

sml_done: HRS_posture_sensor — HRS_emergency_monitor

(T1, Bad, Bad2, Exercising, Do_Exerdse, Sampling, Fall_sampling, Idle, Ready, Measuring)
HRS_emergency_monitor

(T1, Bad, Bad2, Exerdsing, Do_Exercise, Sampling, Idle, Idle, Ready, Measuring)

156

F.13 Trace generation statistics of a) aspect model b) full model
a)

E«<>Trapd && Trap5 && Traps && Trap7 && Traps && Trap9
Verification kernel/elapsed time used: Os /0,015 f0,016s,
Resident/fvirtual memory usage peaks: 8 148KE [23 396KE.
Property is satisfied.

b)

(Academic) UPPAAL version 4.1.19 (rev. 5649), September 2014 - server,
E<> Trap4 && Trap5 && Trapb && Trap7 && Traps && Trap9
Verification kernel felapsed time used: 0,047s / 0s [0,047s.
Resident/virtual memory usage peaks: 7 956KE [27 724KE.

Property is satisfied.

157

F.14 AO simulation trace of coverage criteria Trap4 && ...&& Trap9

Simulation Trace

(Start, Mormal, -, Idle, Idle, Idle, Ready)

Patient_physical_condition 1

(Start, Mormal, Better, Idle, Idle, Idle, Ready)

Exercse: Doctor — Patient_exercisingPatient_exercising IHRS_sampler
(T1, Mormal, Better, Exerdising, -, Wait, Ready)

Patient_exercisingl

(T1, Mormal, Better, Exercising, Do_Exerdise, Wait, Ready)
Patient_physical_condition 1

(T1, Mormal, Mormal2, Exercising, Do_Exerdise, Wait, Ready)
Patient_physical_condition 1

(T1, Mormal, Worse, Exerdising, Do_Exercise, Wait, Ready)
Patient_exercisingl

(T1, Mormal, Worse, Exerdsing, SwitchToMext, Wait, Ready)
Patient_exercisingl

(T1, Mormal, Worse, Exerdising, -, Wait, Ready)
Patient_exercisingl

(T1, Mormal, Worse, Exerdising, Do_Exercise, Wait, Ready)
ch_P: Patient_physical_condition1 — Patient_physical_condition
(T1, Bad, Bad2, Exerdising, Do_Exercise, Wait, Ready)

sample: HRS_sampler — HRS_quality_monitor

(T1, Bad, Bad2, Exerdising, Do_Exercdse, Sampling, Evaluate)
HR.S_guality_monitor

(T1, Bad, Bad2, Exerdising, Do_Fxerdse, Sampling, Sample_evaluated)
HR.S_guality_monitor

(T1, Bad, Bad2, Exerdising, Do_Exercdse, Sampling, Evaluate)
HR.S_guality_monitor

(T1, Bad, Bad2, Exerdising, Do_Fxerdse, Sampling, Sample_evaluated)
HRS guality monitor

(T1, Bad, Bad2, Exerdising, Do_Exercise, Sampling, Evaluate)
HR.S_guality_monitor

(T1, Bad, Bad2, Exercising, Do_FExerdse, Sampling, Sample_evaluated)
sml_done: HRS_quality_monitor — HRS_sampler

(T1, Bad, Bad2, Exercising, Do_Exercise, -, Ready)

158

F.15 Non-AOQ simulation trace of coverage criteria Trap4 && ... &&
Trap9

Simulation Trace
(Start, Mormal, -, Idie, Idle, Idle, Idle, Idle, Ready, Idle)

Patient_physical_condition 1

(Start, Mormal, Better, Idle, Idle, Idle, Idle, Idle, Ready, Idle)

Exercise: Doctor — Patient_exercisingPatient_exercising IHRS_sampler

(T1, Mormal, Better, Exercising, -, Wait, Idle, Idle, Ready, Idle)

sample: HRS_sampler — HRS_posture_sensorHRS_guality_monitorHRS_performance_monitor
(T1, Mormal, Better, Exerdising, -, Sampling, Idle, Posture_Detection, Evaluate, Ready)
HRS_guality_monitor

(T1, Mormal, Better, Exercising, -, Sampling, Ide, Posture_Detection, Sample_evaluated, Ready)
HR.S _quality_monitor

(T1, Mormal, Better, Exercdising, -, Sampling, Idle, Posture_Detection, Evaluate, Ready)
HRS_guality_monitor

(T1, Mormal, Better, Exerdising, -, Sampling, Idle, Posture_Detection, Sample_evaluated, Ready)
HR.S _quality_monitor

(T1, Mormal, Better, Exercising, -, Sampling, Idle, Posture_Detection, Evaluate, Ready)
HR.5_quality_monitor

(T1, Mormal, Better, Exerdsing, -, Sampling, Idle, Posture_Detection, Sample_evaluated, Ready)
sml_done; HRS_guality_monitor — HRS_sampler

(T1, Mormal, Better, Exercising, -, -, Idle, Posture_Detection, Ready, Ready)

syn: Patient_exerdsingl — HRS_performance_monitor

(T1, Mormal, Better, Exercising, Do_Exercise, -, Idle, Posture_Detection, Ready, Measuring)
Patient_physical_condition 1

(T1, Mormal, Mormal2, Exerdsing, Do_FExercise, -, Idle, Posture_Detection, Ready, Measuring)
Patient_physical_condition 1

(T1, Mormal, Worse, Exercising, Do_Exercise, -, Idle, Posture_Detection, Ready, Measuring)
syn: Patient_exerdsingl — HRS_performance_monitor

(T1, Mormal, Worse, Exercising, SwitchToMext, -, Idle, Posture_Detection, Ready, -)

Patient_exerdsing1

(T1, Mormal, Worse, Exerdising, -, -, Idle, Posture_Detection, Ready, -)
HRS_performance_monitor

(T1, Mormal, Worse, Exerdising, -, -, Idle, Posture_Detection, Ready, -)
HRS_performance_monitor

(T1, Mormal, Worse, Exerdising, -, -, Idle, Posture_Detection, Ready, Ready)

syn: Patient_exercisingl — HRS_performance_monitor

(T1, Mormal, Worse, Exerdsing, Do_Exerdse, -, Idle, Posture_Detection, Ready, Measuring)
ch_P: Patient_physical_condition1 — Patient_physical_condition

(T1, Bad, Bad2, Exercising, Do_Exercise, -, Idle, Posture_Detection, Ready, Measuring)

159

F.15 Non-AO simulation trace of coverage criteria Trapl0 && ...&&
Trapl3 (continuation)

(T1, Mormal, Worse, Exerdsing, -, -, Idle, Posture_Detection, Ready, Ready)
syn: Patient_exercisingl — HRS_performance_monitor

(T1, Mormal, Worse, Exerdsing, Do_Exercise, -, Idle, Posture_Detection, Ready, Measuring)
HRS_posture_sensor

(T1, Mormal, Worse, Exerdsing, Do_Exercise, -, Idle, -, Ready, Measuring)
sml_done: HRS_posture_sensor — HRS_emergency_maonitor

(T1, Mormal, Worse, Exerdsing, Do_Exercise, -, Fall_sampling, Idle, Ready, Measuring)
HRS_emergency_monitor

(T1, Mormal, Worse, Exerdsing, Do_Exercise, -, Idle, Idle, Ready, Measuring)
syn: Patient_exercisingl — HRS_performance_monitor

(T1, Mormal, Worse, Exerdsing, SwitchToMext, -, Idle, Idle, Ready, -)
Patient_exerdising 1

(T1, Mormal, Worse, Exerdsing, -, -, Idle, Idle, Ready, -)
HRS_performance_monitor

(T1, Mormal, Worse, Exerdsing, -, -, Idle, Idle, Ready, -)
HRS_performance_monitor

(T1, Mormal, Worse, Exerdsing, -, -, Idle, Idle, Ready, Ready)

syn: Patient_exercisingl — HRS_performance_monitor

(T1, Mormal, Worse, Exerdsing, Do_Exercise, -, Idle, Idle, Ready, Measuring)
ch_P: Patient_physical_condition1 — Patient_physical_condition

(T1, Bad, Bad2, Exerdsing, Do_Exercise, -, Idle, Idle, Ready, Measuring)
syn: Patient_exercisingl — HRS_performance_monitor

(T1, Bad, Bad2, Exerdsing, SwitchToMext, -, Idle, Idle, Ready, -)
Patient_exerdising 1

(T1, Bad, Bad2, Exerdsing, Falling, -, Idle, Idle, Ready, -)
HRS_performance_monitor

(T1, Bad, Bad2, Exerdsing, Falling, -, Idle, Idle, Ready, -)
HRS_performance_monitor

(T1, Bad, Bad2, Exerdising, Falling, -, Idle, Idle, Ready, Ready)
sml_done: HRS_performance_monitor — HRS_emergency_monitor

(T1, Bad, Bad2, Exerdising, Falling, -, Fal_sampling, Idle, Ready, Ide)

160

F.16 Trace generation statistics of a) aspect model b) full model
a)

E«<>Trapl0 && Trapll &2 Trap12 && Trapl3
Verification kernel jelapsed time used: 0s / 0s [0s.
Resident/virtual memory usage peaks: 9 436KE [30 996KE.
Property is satisfied.

b)

E«>Trapl0 && Trapll && Trapl2 && Trapl3

Verification kernelfelapsed time used: 1,047 /0,218s [1,272s.
Resident/fvirtual memory usage peaks: 22 416KE / 50 903KE.
Property is satisfied.

161

CURRICULUM VITAE

Personal data
Name:
Date of birth:
Place of birth:
Citizenship:
Contact data
E-mail:
Education
2009 - 2014

2005 — 2007
1999 - 2005

1978 — 1989
Language competence
Estonian
English
German
Russian
Professional employment
2017 -2018
2014 - 2016

2013 - 2014
2008 - 2014

1996 - 2008

Kdlli Sarna
22.06.1971
Tallinn, Estonia
Estonian

kylli.sarna@gmail.com

Tallinn University of Technology (TalTech),
PhD studies

TUT, MSc in Engineering, Informatics,
Computer Science

TUT, Diploma Engineer, Networking and
Intelligent systems

Tallinn Nomme Upper Secondary School

native language
fluent
average

average

Register OU, IT analyst

Percival Software OU, IT analyst — quality
assurance manager

Marie Curie Research Fellowship in Technical
University Graz

Eliko Competence Centre, domain manager of
Smart Environment Applications and researcher

AS EMT, various positions: test engineer,
programmer, and information systems analyst.

162

ELULOOKIRJELDUS

Isikuandmed
Nimi:
Slinniaeg:
Slnnikoht:
Kodakondsus:

Kontaktandmed
E-mail:

Hariduskaik
2009 - 2014
2005 - 2007
1999 — 2005
1978 — 1989

Keelteoskus
Eesti keel
Inglise keel
Saksa keel
Vene keel

Teenistuskaik
2017 - 2018
2014 - 2016

2013 - 2014

2008 — 2014

1996 - 2008

Klli Sarna
22.06.1971
Tallinn, Eesti
eestlane

kylli.sarna@gmail.com

Tallinna Tehnikaiilikool (TTU), doktoridpe
TTU, tehnikateaduse magister, Informaatika
TTU, diplomiinsener, Vérgutarkvara

Tallinna Ndmme Gilimnaasium

emakeel
kdrgtase
keskmine tase

keskmine tase

Register OU, IT analtitik

Percival Software OU, IT analiitik -
kvaliteedijuht

Marie Curie Fellow stipendiumiga Grazi
Tehnikaulikoolis kulalisdoktorant

Eliko OU, targa keskkonna rakendusvaldkonna
juht ja teadur

AS EMT, erinevad ametikohad: testiinsener,
programmeerija, infostisteemide anallitik.

163

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

