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Abstract

As more businesses operate online by storing and processing people’s data, the topic
of web application security is important. Numerous ways to improve web application
security are available, but it is often challenging to measure their effectiveness.

This thesis is an exploratory case study, which aims at providing an assessment of the
effectiveness of the secure coding practices implemented in the researched global tech-
nology company with operations in Estonia. The company operates a private HackerOne
bug bounty program and the author used the reported vulnerabilities metrics as the depen-
dent variables during the statistical analysis.

The results of the statistical analysis suggest that the OWASP secure coding practices
checklist is an effective method in reducing all vulnerabilities metrics, while the secure
coding training only significantly affects the distribution of the reported vulnerabilities.
When the two secure coding measures are combined, the overall effectiveness also in-
creases.

The main contribution of this study is the assessment of the effectiveness of the OWASP
secure coding practices checklist and secure coding training in reducing the number of
vulnerabilities reported in HackerOne, their average severity level and the total bounty
payouts. Additionally, the author analyzes the metrics of the private HackerOne bug
bounty program. For assessing the effectiveness of the secure coding practices, previous
research mainly relied either on the qualitative methods or one-time penetration tests.
The novelty of this study is the research method, which examines data over a longer
period of time and correlates internal organizational secure development processes with
vulnerabilities discovered by the white hat security researchers.

This thesis is written in English and is 63 pages long, including 5 chapters, 5 figures,
and 23 tables.
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Annotatsioon

Kuna üha rohkem ettevõtteid tegutseb internetis ning haldab inimeste andmeid, on vee-
birakenduste turvalisuse teema läbi aegade asjakohaseim. Veebirakenduste turvalisuse
parandamiseks on palju võimalusi, kuid nende tõhususe mõõtmine on sageli keeruline.

See lõputöö on uurimuslik juhtumianalüüs, mille eesmärk on anda hinnang turvalise koodi
kirjutamise meetmete tõhususele Eestis tegutsevas globaalses tehnoloogiaettevõttes. Et-
tevõttel on privaatne HackerOne’i veahaldusprogramm ja autor kasutas sõltuvate muutu-
jatena raporteeritud turvaaukude mõõdikuid statistilises analüüsis.

Statistilise analüüsi tulemused näitavad, et OWASP turvalise koodi kirjutamise kontroll-
nimekiri on tõhus meetod kõigi turvaaukude mõõdikute vähendamiseks, samal ajal kui
turvalise kodeerimise koolitus mõjutab märkimisväärselt ainult raporteeritud turvaaukude
jaotust. Kahe turvalise kodeerimise meetme kombineerimisel suureneb ka üldine tõhusus.

Selle uuringu peamine panus on OWASP turvalise koodi kirjutamise kontrollnimekirja
ja väljaõppe tõhususe hindamine HackerOne’is raporteeritud turvaaukude arvu, nende
keskmise raskusastme ja väljamaksete vähendamisel. Lisaks analüüsib autor privaatse
HackerOne’i veahaldusprogrammi mõõdikuid. Turvalise koodi kirjutamise meetmete
tõhususe hindamisel tuginesid varasemad teadusuuringud peamiselt kvalitatiivsetele mee-
toditele või ühekordsetele sissetungimise testidele. Selle uuringu uudsus seisneb uurim-
ismeetodis, mille abil uuritakse andmeid pikema aja jooksul ja korreleeritakse organisat-
siooni sisemised turvalisusele suunatud arendusprotsessid raporteeritud turvaaukudega.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 63 leheküljel, 5 peatükki,
5 joonist, 23 tabelit.
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List of abbreviations and terms

BBP Bug bounty platform

CTF Capture the flag

ISO International Organization for Standardization

NIST National Institute of Standards and Technology

OWASP The Open Web Application Security Project

VRP Vulnerability rewards program
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1 Introduction

1.1 Motivation

Majority of businesses nowadays use web applications to perform operating activities.
Users often store sensitive data in the software and therefore expect vendors to keep their
data safe. Security of the product creates trust in its users. Still, data breaches are on a rise
[1]. In the 17-month period between 2017 and 2019 Akamai 1 registered around 4 billion
alerts, 65% of which were attacks aiming at exfiltrating data using an SQL injection [2].
This means that businesses need to improve their security measures in order to withstand
the inevitable web application attacks.

In order to address security issues during software development various measures have
been introduced, with a systematic secure development lifecycle being one of the most
prominent changes. The secure development lifecycle addresses security at multiple
stages [3, 4], instead of relying on security testing when the software is ready.

Secure coding requirements and training are parts of the secure development lifecycle [4]
and their importance is highlighted by various international standards (e.g. ISO 27001
[5]). However, no specific guidelines are given about what those requirements and train-
ing should contain, and therefore it is up the businesses to decide which security mea-
sures to implement and how to train the developers on those measures. Organizations
like OWASP 2 developed different secure coding practices in order to help businesses
strengthen their security. The OWASP recommendations are now being widely adopted
globally (e.g. the number of forks for the Cheat Sheet Series project in GitHub is over
1800 [6]).

Academic research about the use of secure coding checklists and training has been done
before, however there is no consensus about the effectiveness of measures. Some authors
recommend using the secure coding checklists [7], while others critique this practice [8].
The general notion regarding security training for developers is that it is useful, but mea-
suring its effectiveness is a challenging task. Some papers relied on qualitative data [9,
10]. Even though analyzing survey results is a valid research method, the conclusions
are mainly based on people’s subjective opinions about the topic and not the measurable

1https://akamai.com
2https://owasp.org
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vulnerabilities being introduced in the code. Other studies conducted simple penetration
tests in order to measure the effectiveness of secure coding practices [11, 12]. The author
sees it as problematic as well, because such an approach only captures a snapshot at a
given time and does not investigate the effects of secure coding practices over a longer
period of time.

1.2 Problem statement and contribution

The main goal of this study is to provide an assessment of effectiveness of the secure
coding practices implemented in the researched technology company.

In order to achieve the goal, an exploratory case study is conducted on a global technology
company with operations Estonia. The company implemented the cyber security training
for developers in 2017 and the OWASP secure coding practices checklist [13] in 2018,
however the effectiveness of the measures has never been empirically tested. This research
aims at addressing this problem.

For measuring the effectiveness the author used the data gathered from the private
HackerOne 1 bug bounty program operated by the researched organization. The metrics
are:

� the number of submitted vulnerability reports,

� the average severity level of the submitted vulnerability reports,

� the sum of payouts made to the white hat researchers.

Both qualitative and quantitative methods were used in this research. During the data
collection phase, semi-structured interviews were conducted with developers and infor-
mation security team members to verify the author’s data collection methods and make
sure the data is valid. Quantitative data was used for the statistical analysis, and the author
conducted a set of tests (Chi-square, Mann-Whitney U test, linear regression modelling)
to assess the effectiveness of the secure coding measures in the researched organization.

Before starting the research, the author had multiple assumptions. First, the author ex-
pects that when the secure coding checklist is followed during the development phase,

1https://www.hackerone.com
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all metrics are reduced. Even if the checklist is generic and not customized for the spe-
cific organizational needs, a periodic reminder to think about security when writing code
should have a positive effect. Second, the author assumes that the security training for
developers might be effective in raising general awareness about security, but does not
directly affect the vulnerability metrics in HackerOne.

It is worth mentioning what is outside of the scope of this research. The OWASP secure
coding practices checklist fulfilment is measured on a binary scale (either it is filled out
or not). The author is not assessing to which extent all 202 requirements of the checklist
[13] have been followed by the developers. In other words, data provided in the checklist
by the developers is trusted without verification. Additionally, no correlation between
the checklist requirements, secure coding training and the types of reported vulnerabili-
ties is analyzed, although that could have provided valuable insights both for the further
academic research as well as for other organizations.

The scientific contribution of this study is twofold. First, only around 7% of all vulner-
ability reports submitted to HackerOne bug bounty platform are public [14]. Since the
author had access to a private HackerOne program, a brief analysis of the program met-
rics is given. Second, the author measures how effective OWASP secure coding practices
checklist and the training for developers are in reducing the number of reported vulner-
abilities, their severity levels and total payouts to the HackerOne participants. To the
author’s knowledge, no similar research has been conducted before.

The analysis of this otherwise not publicly available data can be used in other academic
studies as well as by companies who are looking for tested ways of improving their web
application security.

1.3 Research questions

During this study, the following questions are answered:

1. What characterizes the private HackerOne bug bounty program of the researched
organization?

2. Does following the OWASP secure coding practices checklist have a connection
with valid HackerOne reports? Specifically, does following the checklist help:

14



(a) reduce the number of vulnerabilities?

(b) reduce the average severity of the vulnerabilities?

(c) reduce the total payouts to the white hat researchers?

3. Does participating in the Rangeforce training event help developers produce more
secure code? Specifically, does completing the training help:

(a) reduce the number of vulnerabilities?

(b) reduce the average severity of the vulnerabilities?

(c) reduce the total payouts to the white hat researchers?

4. Do the OWASP secure coding practices checklist and Rangeforce training compli-
ment each other or should the organization focus its efforts on either of those?

15



2 Theoretical background

Web application security is a broad topic, and therefore it has been well researched during
the recent years. In this study, the author approaches web application security from two
sides – internal organizational processes that affect the software security, and black-box
security testing done through the emerging markets of bug bounty programs.

During the literature review forward and backward snowballing techniques were used
[15]. First, a tentative start set was constructed by using keywords that included secure

development lifecycle, secure coding, OWASP secure coding checklist, security check-

list effectiveness, secure coding training effectiveness, assessment of secure programming

training, security measures effectiveness, bug bounty, crowdsourced vulnerability discov-

ery and vulnerability reward program. For the start set generation Google Scholar was
used. This helped avoid the possible bias when only looking at specific journals [15]. In
addition to Google Scholar, IEEE Xplore database was also actively utilized for enriching
the initial start set.

In addition to academic papers, the following chapters also contain grey literature sources.
The web application security is not only a theoretical, but a highly practical field of study,
and therefore grey literature is essential for a well-rounded literature analysis.

2.1 Secure development practices in a technology company

During the last decade, the importance of security in software has been on a rise. Multi-
ple models for secure software development lifecycle have been developed and researched
[16]. Among the famous models are Secure development lifecycle by Microsoft [4], Com-
prehensive, lightweight application security process by OWASP [17] and Touchpoints
introduced by McGraw [18].

Organizations implement different practices in order to add security throughout the soft-
ware development lifecycle [3]. There are numerous measures that are being included
into the security standards and policies inside the organizations [9]:

� threat modelling,

� security code reviews,

16



� security requirements,

� security tools,

� penetrations testing,

� trainings,

� vulnerability tracking.

The main goal of these security measures is to prevent vulnerabilities in the software.
A bug, security bug and vulnerability are often used interchangeably. Ozment suggests
that the correct definition for the vulnerability should be “an instance of [a mistake] in the
specification, development, or configuration of software such that its execution can violate
the [explicit or implicit] security policy” [19]. The important notion here is that a vulner-
ability is related to security and not just any error in computer systems. Vulnerabilities
can be discovered at different stages of the software development lifecycle.

Morrison et al. conducted a survey among open-source projects focused on security and
found that from a number of different software development security practices the organi-
zations spent significantly less time on following secure coding standards and performing
security reviews (which both can be considered checklists in terms of this study) as op-
posed to doing threat modelling and penetration testing on the application [9]. On the
other hand, most of the survey participants claimed that they applied secure coding stan-
dards and tracked reported vulnerabilities daily [9]. During their study, Morrison et al.

used linear regression analysis to identify the relationships between ease of use, effective-
ness and training, and usage of different secure coding practices [9]. It was confirmed that
training in each practice increases the usage [9].

The Open Web Application Security Project (OWASP) is a non-profit organization that
has existed since the end of 2001 and has been helping software engineers improve their
code security 1. OWASP runs multiple open-source projects focused on different topics,
with OWASP Top 10 being one of the most popular ones [20]. The top 10 is often used as
a signpost security-wise [20]. The list is periodically updated by security experts to reflect
the changes happening in software development and ranks most common vulnerabilities
found by analyzing the publicly available vulnerabilities from over 100 000 applications
[20]. If during the development engineers refer to the OWASP Top 10 list, the basic se-

1https://owasp.org/about

17



curity needs of the application should be covered [11]. However, OWASP encourages
organizations to avoid only focusing on the top 10 list, as there are many more vulnera-
bilities not covered by the list [20]. The latest version of the ranking at the time of writing
was released in 2017 and can be seen in Table 1. The next revision of the top 10 list is
planned for 2020 [20].

Table 1. OWASP Top 10-2017 risk list [20].

ID Risk

A1 Injection

A2 Broken authentication

A3 Sensitive data exposure

A4 XML external entities (XXE)

A5 Broken access control

A6 Security misconfiguration

A7 Cross-site scripting (XSS)

A8 Insecure deserialization

A9 Using components with known vulnerabilities

A10 Insufficient logging and monitoring

In a study among 5 Norwegian start-ups of different size and industry, it was found that in
general security is a concern for organizations and all participants have either heard about
or are actively using the OWASP Top 10 list [11]. Some organizations had a very good
understanding of their security posture while others did not know if their applications had
vulnerabilities [11]. In addition to interviews, the authors of the study also conducted
penetration testing on all 5 applications with the goal of verifying if the top 10 vulnerabil-
ities exist in the software [11]. The start-ups that had the most awareness of the OWASP
Top 10 project also had fewer vulnerabilities [11].

The problem with a lack of security especially in a start-up environment is the tight com-
petition, which leads to the need to develop faster, not more securely [21]. Also, start-ups
and technology companies often practice fast-paced agile development, and following the
formal secure development lifecycle is not perceived as very agile [21]. This idea has
been supported during a survey done by Errata Security, where the biggest reason for not
implementing a secure development lifecycle was that it took too much time [22]. Other
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reasoning behind not having a formal security process in the development were heavy
resource requirements, no knowledge of the methodologies, high cost and not needing it
overall [22]. Nicolaysen et al. suggest that even when more strict security practices are
absent from the agile development, the experience and collective knowledge of developers
paired with security training should enable noticing security vulnerabilities during coding
[21]. In a more recent study, after interviewing 3 organizations Cruzes et al. also found
that in an agile setup there is an assumption of security knowledge among developers,
but no standardized processes of ensuring security throughout development [7]. For prac-
titioners, authors recommend secure coding training and using secure coding guidelines
similar to what OWASP offers [7].

2.2 Secure coding checklist and training

In their paper Gasiba and Lechner mention there is still ambiguity in the secure coding
guidelines (or checklists) [23]. The guidelines are either too generic or are programming
language specific, although not all languages are represented [23]. If the checklist is
abstract, it creates confusion in organizations, because developers do not know how to
comply [23]. In the absence of a well-defined language specific secure coding guideline,
authors suggest creating one by coming up with a business impact metric, calculating the
metric for vulnerabilities from the CVE database, connecting the metrics and vulnerabili-
ties to language-specific rules and finally combining the rules into a checklist [23]. When
it comes to making sure that developers are aware of code security best practices, capture
the flag style games are appropriate [23], however no assessment of their effectiveness is
provided.

Duncan and Whittington discussed the drawbacks of using checklists in cloud computing
when complying with standards [8]. According to their study, the standards cannot keep
up with the rapidly changing cloud computing and an attempt to force an organization
to adjust the systems to follow the complex checklist requirements can, for example,
cause some trivial monitoring errors [8]. As a benefit of using checklists in computer
science they bring low resource requirements (time, money, senior staff) and suitability for
repetitive tasks [8]. Authors also found that the evidence to support the idea that security
checklists work is lacking and note that checklists can be effective in some situations,
but proper consideration needs to be given to the preparation of specific organizational
needs, checklist design and implementation [8]. It should be mentioned that the research

19



by Duncan and Whittington focused on the use of checklists in terms of compliance with
the standards (ISO, NIST, etc) and not necessarily for secure coding in web applications
[8].

OWASP provides secure coding guidelines and checklists. A more basic one is OWASP
secure coding practices checklist [13]. As specified in the accompanying documenta-
tion, the checklist is designed to help with general security requirements instead of pre-
venting specific vulnerabilities [13]. This checklist is a good starting point for organi-
zations implementing secure coding guidelines into their software development process
[13]. The author created a descriptive table of all requirements from the checklist divided
by categories (see Table 2). As can be seen, the biggest focus is on authentication and
password management, session management, access control, error handling and logging.
Even though this checklist is supposed to be a simple general set of secure coding guide-
lines, it still has over 200 separate unique requirements [13], which can be a challenge to
implement in an agile organization.

Table 2. OWASP secure coding practices checklist categories (composed by the author based on [13]).

Category Number of checks

Input Validation 15

Output Encoding 3

Authentication and Password Management 35

Session Management 21

Access Control 23

Error Handling And Logging 23

Data Protection 10

Communication Security 8

System configuration 16

Database Security 13

File Management 14

Memory management 9

General coding practices 12

Total unique checks 202

The topic of security training has been researched from different angles. Some authors
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investigated the general employee awareness training [24] and existing theories [25] in
behavior research around the topic. Others focused more on the cyber security awareness
aspect of training, studying how to increase the developers’ secure coding knowledge and
skills [26].

Votipka et al. did a study on Dropbox developers [26]. They designed and conducted
a capture the flag (CTF) competition aimed at teaching attack and defence methods for
specific vulnerabilities [26]. The knowledge of participants was measured via a survey as
well as quantitatively (by looking at the number of vulnerabilities in the code repository)
before and six weeks after the event [26]. CTF participants tended to start approaching
development from the perspective of an attacker, which means they started reviewing the
security of their solutions more critically [26]. It was also found that those who partici-
pated in the training were later less confident in the security of their solutions compared to
those who were never exposed to similar training [26]. Being a little under confident never
hurts when it comes to security. In general capture the flag training proved to increase se-
curity awareness [26]. Trained participants were more proactive in reaching out to the
security team with security issues in their code and their solutions were less frequently
flagged as potential vulnerabilities during the software development [26].

For any successful hands-on cyber security training many authors agree that the prepara-
tion and specifically the design phase is crucial [27, 28]. Too simple challenges do not
provide the desired educational value, whereas participants get frustrated and lose inter-
est in too complicated or ambiguous challenges [28]. Artificially difficult CTFs are not
effective [28]. So it is important to design a secure coding training considering the level
of participants, organization-specific technologies and provide appropriate hints to those
who are stuck [28].

Another method of teaching security to developers is using cyber range exercises [29].
The concept is not new, but the popularity of such exercises has grown in the recent
years [29]. There are simpler online and on-site versions of the exercises as well as more
complex versions used for cyber warfare training in the military and on the government
level [29]. Cyber range training usually consists of blue teams on the defense and red
teams on the offense (however, red team activity is mostly automated in online training)
[29].
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2.3 Bug bounty programs and their usefulness

This chapter gives insights into the nature of vulnerability rewards programs (VRP) or
bug bounty platforms (BBP) and their usefulness in general.

Zhao et al. analyzed two bug bounty platforms – Wooyun in China and HackerOne in the
U.S. Wooyun has multiple unique features not found in other platforms [14]. Firstly, white
hats can report a vulnerability in any website on the internet (however, mainly Chinese
websites are reported) and secondly, if the report is valid, the vulnerability will be made
public in 45 days regardless if the vendor provides a patch [14]. In addition to that, for the
most part, no monetary reward is provided for a valid vulnerability [14]. One important
limitation of the HackerOne analysis is the fact that only around 7% of total reports are
publicly disclosed [14]. This signifies that there can be a large number of private programs
and the majority of the findings in the public programs are kept private. Zhao et al. found
that it is important to increase the rewards for valid reported vulnerabilities due to the
limited size of white hat community and increased competition for their attention [14].
Findings also show that the number of discovered vulnerabilities is decreasing, signalling
increased security of the web applications and therefore more effort required from the
white hats to find new vulnerabilities [14]. Additionally, it is suggested that participating
organizations should strive to increase the pool of white hats participating in their bug
bounty programs in order to ensure vulnerability discovery [14]. Although, the paper
does not discuss optimal levels of incentives and number of participants.

Finifter et al. studied bug bounty programs by Google Chrome and Mozilla Firefox. The
aim was to analyze mature platforms and give guidance to organizations looking to start
or improve their programs [30]. The research was done from different angles: software
vendor, white hat hacker and vendor’s security researcher [30]. The conclusions for a
software vendor are promising – the two researched bug bounty programs proved to be
effective solutions for finding vulnerabilities and compared to hiring one security engineer
cost-wise [30].

In their research, Zhao and Lazska made multiple observations. White hats are motivated
by monetary rewards and try to minimize the efforts required for finding vulnerabilities
[31]. This economic contradiction leads to bug bounty platforms receiving low numbers
of valid reports [31]. Private HackerOne programs have a higher percentage of valid
vulnerability reports, being around 50% in 2016 [31]. Authors also concluded that more
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white hat researchers does not mean more valid reports [31]. The peak expected utility
for the participating organization is reached between 75 and 175 white hats in the bug
bounty program [31]. After 175, the number of invalid reports lowers the usefulness of
the program [31]. This contradicts the findings of Zhao et al. [14].

Ozment tried to test if over time the number of vulnerabilities in a software decreases and
used software reliability growth model [32]. He divided the researched period of time
into equal intervals and projected identified vulnerabilities into a chart [32]. The initial
findings did not provide meaningful insights into the vulnerability reporting trends, how-
ever, dividing the period into halves showed a clear downwards trend [32]. In addition,
the time-between-failures metric, where software bugs were replaced by security vulnera-
bilities, was introduced [32]. Correlating time-between-failures (or rather time-between-
vulnerabilities) with the researched period divided into halves, showed less vulnerabilities
reported in the second half of the study [32].

Not all researchers agree that bug bounty programs are useful in the big picture. Rescorla
studied the vulnerabilities introduced in different operating systems and made several
controversial conclusions [33]. Firstly, the results of the study show that a software has
an infinite number of vulnerabilities and there is no use for white hats to search for them
[33]. Over time, the number of vulnerabilities in any given product stays relatively the
same [33]. Secondly, publicly disclosing the identified and fixed vulnerabilities gives
extra information to malicious actors [33].

During the research by Edmundson et al., 30 software developers were hired to conduct
the manual code review and find the vulnerabilities in it [34]. The application was a mod-
ified version of open-source Anchor CMS, which had around 3500 lines of code [34].
The researchers found that around 20 code reviewers are needed to find all vulnerabilities
in the conducted experiment and adding more reviewers is wasteful [34]. This finding
shows that diversity is key when outsourcing vulnerability discovery. It is also notewor-
thy that the years of experience negatively correlate to the accuracy of finding reports,
which sounds counterintuitive [34]. However, more web security reviews done in the past
resulted in more vulnerabilities discovered during the experiment [34].

Al-Banna et al. conducted a qualitative study on the fears, issues and countermeasures
that organization experience regarding crowdsourcing vulnerability discovery using vul-
nerability reward programs [35]. They interviewed 36 key security professionals from
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different organizations and summarized the findings [35]. Fears were expressed by orga-
nizations not participating in the VRPs, issues – by organizations who have experience
with VRPs and countermeasures for mitigating fears and issues [35]. Typical issues are
low quality submissions, high cost of processing submissions and difficulties to maintain
participants [35]. Multiple countermeasures were identified [35]:

� learning from the experience;

� purchasing third-party services to conduct validation of vulnerabilities;

� limiting participants by running a private VRP and only inviting white hats with
high reputation;

� selective revealing of sensitive information;

� limiting the scope of the program (e.g. domains, vulnerability types);

� adjusting rewards to keep white hats engaged.

Intuitively, limiting participants is an effective method of minimizing low quality submis-
sions and cost associated with processing them. However, this finding is not supported
by the research of Zhao et al., who suggest that the number of participants needs to be
increased in order to ensure steady inflow of vulnerability reports [14].

2.4 HackerOne case studies

Arkadiy Tetelman was involved in the VRP at Twitter and AirBnB. According to Tetel-
man, in addition to fixing the reported vulnerabilities, organizations participating in a
VRP should also collect and analyze the program metrics: types of vulnerabilities re-
ported, which parts of the application are often vulnerable, which teams introduce vulner-
abilities, how quickly vulnerabilities are fixed [36]. So essentially, the organization needs
to link externally reported data with internal processes in order to maximize the benefits
of the VRP. The data regarding most frequent vulnerability types can help make business
decisions in terms of specific tools and custom training aimed at improving engineers’
knowledge and skills as well as detecting the vulnerabilities during the software devel-
opment lifecycle [36]. The VRP metrics (first response time and time it takes to triage,
pay out the reward and fix the vulnerability) are essential when determining the overall
program health [36]. Tetelman thinks that first response time and how quickly the reward
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is paid out are the most crucial metrics when maintaining relationships with white hat re-
searchers [36]. He also suggests that an organization should start with a private program
and only make it public when there is a significant number of participants, the internal
processes perform well and there is a decrease in the number of incoming reports [36].

The U.S. Government also joined HackerOne in 2016 to benefit from the large pool of
white hat researchers [37]. More than 1400 white hats participated in their program, 1189
vulnerabilities were found, of which 138 were previously unknown [37]. The program
proved to be very cost effective (around $75000 paid to hackers) and efficient overall
[37].

HackerOne did a number of case studies with their participating organizations [38–49].
Majority of the studied organizations run a public vulnerability reward program [39, 40,
42, 45], but some started with a private program first [43, 48, 49]. The main reason
for starting private is to test out internal processes for vulnerabilities triage and fix [43].
When it comes to why organizations have a VRP in place, usually it is because internal
code reviews and internal/external penetration tests are not scalable and often not effective
either [38, 39, 41]. For example, Sumo Logic’s penetration tests did not find issues,
however during the first 15 days after VRP launch, 12 new valid vulnerabilities were
reported [47]. Many organizations find it beneficial, when many professional hackers try
to break their applications. Steve Shead, Grand Rounds VP of Infosec and IT, summarizes
the advantages of using a vulnerability reward program:

"you get the benefit of folks looking under rocks you didn’t know existed,
and they find issues you didn’t know you should be looking for." [41]

For maintaining good relationships and high participation with white hat researchers, it
is important to have fast response and bounty times, as well as high maximum rewards
[38–40]. One important observation from HackerOne use cases is that multiple organiza-
tions use HackerOne triage service for initial vulnerability assessment [36, 44]. The main
reason behind using this service is to save internal teams’ time with filtering out duplicate
and invalid submissions [38, 45]. The full summary of case study analysis can be found
in Appendix 1.
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3 Methodology

This chapter provides an overview about the researched organization, data sources and
data collection methods (including potential issues and their mitigation). Additionally,
the author discusses the threats to validity and briefly touches on ethical considerations.

3.1 Researched organization overview

The organization chosen for the research operates in a technology sector, has operations
in multiple geographical locations, including Estonia, and employs around 300 software
engineers. Since 2015 the organization has been running a private HackerOne bug bounty
program. In addition to HackerOne, annual penetration tests are also conducted, however
a bigger focus is on HackerOne.

In 2017 the researched organization started using Rangeforce 1 as the security training
platform for the engineering and infrastructure departments with a heavier focus on soft-
ware developers. Rangeforce provides a number of different training options, but the
one used in this study is an on-site siege, where the teams need to protect small virtual
networks with multiple web services against different attack vectors. This training em-
phasizes teamwork and knowledge sharing between the participants during the hands-on
lab. Organization’s main goal for using this on-site siege is to raise developers’ secu-
rity awareness about common vulnerabilities, which is assumed to result in developers
making fewer security mistakes when writing code. The topics covered in the training
are:

� Secure server configuration,

� HTTPS configuration,

� Cookie security,

� SQL injection attacks,

� Cross-site scripting attacks,

� Path traversal attacks.
1https://rangeforce.com
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Before 2018 the researched organization had a fairly common software development
model where each engineering team works on a predefined set of features and services.
However, in the middle of 2018 the development model evolved into a framework simi-
lar to what Spotify [50] has been using. The main difference is that the new framework
enables more internal mobility for software developers, which results in a more focused
and faster creation of new product features. With the change, new terminology was intro-
duced. Engineering teams were transformed into "tribes", which often combined multiple
teams. Now engineers can choose the business goals to work on and for every new project
a dedicated "mission" is formed. Missions consist of people from different departments
and tribes. New features and services are only developed during missions. After a mission
has finished, the feature or service ends up on a "launchpad", where a group of develop-
ers from the same tribe is tasked with maintaining the service and fixing bugs, including
vulnerabilities reported via HackerOne.

Before each mission lands on a launchpad, a set of checks need to be completed. In an
attempt to further ensure web application security, the OWASP secure coding practices
checklist was implemented in 2018 alongside the missions framework. The checklist was
used without any modifications from the original version provided by OWASP.

3.2 Research method

The data for this research has been collected from multiple sources – HackerOne, Atlas-
sian Jira (internal ticketing system), Atlassian Confluence (internal knowledge space), a
custom internal tool for missions tracking and the Rangeforce training after action reports.
The overall timeframe for the research is 2015 - 2020, however the timeframe for Range-
force data is 2017 - 2020 and for the secure coding checklist 2018 - 2020. The author had
direct access to all tools and resources needed for this study.

An exploratory case study is chosen as a research method for this paper. The organiza-
tion had implemented security training and a secure coding checklist with the assumption
that these measures are effective in improving the security of the web application. How-
ever, these assumptions have never been empirically tested and the effectiveness of the
measures has not been confirmed or refuted. The unit of analysis is a mission, because
besides fixing product and security bugs on a launchpad, all development is done during
the missions. The author conducted an empirical study using various quantitative statis-
tical analysis tests. Because the study is made in a real-life context, the data might not
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be perfect. The problems and their mitigations during data collection are described in
3.5. In general, the author included qualitative data collection methods (semi-structured
interviews with different stakeholders) to offset the potential researcher bias and verify
data collection methods.

The author analyzed whether secure coding training offered to the engineers and following
the secure coding checklist are effective using the following metrics: number of valid
vulnerability reports in HackerOne, average severity level of the reports and total bounty
paid to the hackers.

Additionally, the author intended to analyze the effectiveness of the secure coding mea-
sures and conducted a survey among developers. However, the response rate for the sur-
vey was less than 10% of all engineers, and therefore the results cannot be extrapolated
to the whole population (engineering department). For this reason the survey is omitted
from this thesis.

3.3 Threats to validity

Maturation. Over time developers become more experienced. After a mission has ended,
a developer could be tasked with fixing bugs as opposed to working on new projects. If
HackerOne researchers find vulnerabilities in the feature that the mission implemented,
the developer participates in fixing the vulnerability. Therefore, the skill and knowledge
can increase, leading to making fewer mistakes in the future missions, even though the
security checklist might not have been followed.

Participant selection. Even though participants have not been selected for the conducted
research, developers volunteer to participate in any given mission. Such volunteering
means that a particular developer is proactive and eager to learn, which, in turn, might
mean lower likelihood of introducing vulnerabilities over time.

Internal validity. The requirements outlined in the OWASP secure coding practices check-
list are not completely relevant to each mission. The author identified and removed such
missions which were not directly related to the web application or could not have had any
valid vulnerability reports in HackerOne within the researched timeframe. These mis-
sions included mobile development, website style updates (fonts, etc), proof-of-concept
work, research and discovery (without any end product), features that were not released
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until after 1 January 2020.

Another typical threat to internal validity is a poor choice of statistical analysis methods
[51]. To mitigate this threat, the author researched various statistical methods and their
proper use. The main issue with the collected dataset was non-normal distribution, and
therefore nonparametric statistical tests were used in hypothesis testing [52].

Because the research has been conducted on a real company, it can be challenging to iso-
late the effects of explanatory variables on the dependent variables. The changes in the
organizational structure, development process, new tools and frameworks could have di-
rectly or indirectly affected the security of the web application. The author acknowledges
this limitation, but the scope of this study did not allow for a very detailed data collection
about all possible influencing factors.

Reliability and external validity. Because this research is done on a unique organization-
specific dataset, the results might not be directly comparable to other technology compa-
nies. However, the general research methods and statistical analysis used in this thesis
could be applied in other academic studies. A sequential confirmatory case study [51] is
required to test the findings of this thesis.

3.4 Ethical considerations

The research was conducted based on internal organizational data. The original data
points included the names of employees, nicknames of HackerOne participants, internal
teams/tribes, features/services and internal and external project titles. Due to this, the
majority of data was anonymized and aggregated as much as possible during the analysis.
The author held multiple meetings with the head of information security at the researched
organization in order to confirm that only the permitted amount of internal information is
included in this work.

3.5 Data collection

For this study the data was gathered from multiple separate sources and then combined to
the main dataset, which was used throughout the analysis. A combination of manual and
programmatic methods were used for data collection and the main dataset creation.
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3.5.1 HackerOne dataset

The first dataset was collected from the private HackerOne program. The export was
done for the period of 9th June 2015 - 29th December 2019 and contained the following
information – id, report title, severity level (low, medium, high, critical), severity score
(0 - 10), status, substate, weakness, timestamps (first report, first response, triage, close,
bounty awarded), reporter, bounty amount, Jira ticket reference. Some data was missing
from the original exported file, so the author first had to fill in the gaps. Every valid
vulnerability report has to have a corresponding internal Jira ticket, but 45% of the valid
reports did not have one. At first, the author wrote a Python script to automate searching
for HackerOne report URLs in Jira and enriching the dataset. Then, the author manually
searched for the remaining 10% of missing Jira tickets. Lastly, all tickets were confirmed
to be linked to the correct HackerOne report. The descriptive numbers can be seen in
Table 3.

Table 3. Iterations of Jira ticket search (composed by the author).

Iteration Performed actions Resolved reports
missing Jira
ticket (value)

Resolved reports
missing Jira
ticket (%)

0 original export from HackerOne 228 45.15

1 Python script to search for exact
match

153 30.30

2 Python script with multiple
additional conditions

48 9.50

3 manual inspection and
verification

0 0

When submitting a report in HackerOne, the security researcher can choose a vulnera-
bility type (weakness) and severity level. Over 50% of all reports had a missing severity
level and 32% lacked vulnerability type. The author consulted with an internal security
engineer to help with assigning the missing severity levels and weaknesses. The security
engineer was involved with the HackerOne program from the beginning and had the nec-
essary knowledge. Existing severity levels and vulnerability types were also adjusted, if
the content of the reported vulnerability did not match the specified type. This step of
data collection was time consuming, and even though improving the HackerOne program
data quality was not related to the research questions of the study, this activity on its own
was a good contribution to the researched organization.
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After the dataset was complete, the author enriched it with additional information that
would be used in further analysis. Based on reported weaknesses, a corresponding cate-
gory from the OWASP Top 10-2017 list was added to each report. Not all weaknesses in
HackerOne platform are aligned with OWASP Top 10, so the author made modifications.
OWASP Top 10-2017 and corresponding HackerOne weaknesses used in this research
are presented in Table 4. The mapping is not complete, meaning not all possible vulner-
ability types are observed in the researched organization’s private program. Even though
Cross-Site Request Forgery is a standalone vulnerability type, it was categorized as Bro-

ken access control because all reports of this vulnerability were about privilege escalation
[20]. Another otherwise standalone type, Server-Side Request Forgery, in all HackerOne
reports meant missing security headers, which falls under Security misconfiguration in
this case [20]. Sometimes, under Code Injection white hat researchers categorized HTML

injection, which is an example of Cross-site scripting [20].

Additionally, teams responsible for fixing each valid vulnerability were added to the
dataset. When the HackerOne program was launched in 2015, the company was not
using Jira, so bugs were fixed by telling a responsible person directly or via the internal
messaging system. When a Jira ticket did not exist for a specific bug, the author looked at
the service that was affected and deduced the team’s name from that, because until 2018
each team worked on a specific scope of features/services.

When the missions framework was introduced, in some cases a team’s name was simply
changed into a tribe name. In other cases, multiple teams were combined into one tribe.
The author traced all historical team name changes and mergers and only the present day
tribe names were left in the dataset. This process had a set of shortcomings. First, a sig-
nificant number of people moved between tribes. This means that a drop in reported vul-
nerabilities per tribe could be simply attributed to some low-performing members mov-
ing to another tribe. Second, one particular tribe which exists in 2020 is formed from
4 separate teams. Because of its size, it is expected that a big portion of all historical
vulnerabilities is attributed to that tribe. Last, two new teams were formed in 2018 and
consequently became tribes. These tribes inherited legacy features that could have newly
reported vulnerabilities. Due to this fact, the author decided to attribute vulnerabilities to
the teams/tribes where the vulnerability originated.

Lastly, each vulnerability report was tagged with a feature name, where the issue was
found. This step was challenging, because the application consists of hundreds of mi-
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Table 4. HackerOne vulnerability types mapping to OWASP Top 10-2017 (composed by the author based
on [20]).

ID OWASP Top 10-2017 risk Corresponding observed HackerOne weakness

A1 Injection Code Injection,
Command Injection - Generic,
SQL Injection

A2 Broken authentication Improper Authentication - Generic

A3 Sensitive data exposure Information Disclosure,
Insufficiently Protected Credentials,
Privacy Violation

A4 XML external entities (XXE) XML External Entities (XXE)

A5 Broken access control Cross-Site Request Forgery,
Forced Browsing,
Improper Access Control - Generic,
Insecure Direct Object Reference,
Privilege Escalation

A6 Security misconfiguration Information Exposure Through an Error Message,
Information Exposure Through Debug Information,
Insecure Storage of Sensitive Information,
Security Misconfiguration,
Server-Side Request Forgery,
UI Redressing

A7 Cross-site scripting (XSS) Code Injection,
Cross-site Scripting (XSS) - DOM,
Cross-site Scripting (XSS) - Reflected,
Cross-site Scripting (XSS) - Stored

A8 Insecure deserialization Not observed

A9 Using components with
known vulnerabilities

Not observed

A10 Insufficient logging and
monitoring

Not observed

croservices and it was often not clear where exactly the vulnerability was introduced.
This exercise resulted in 153 different categories after the first iteration. To make sure
that features are properly connected with vulnerability reports, the author consulted with
one of the senior back end developers. As a result of the conversation, the following
iteration narrowed the scope to 45 features/services.
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3.5.2 Missions, secure coding checklist and Rangeforce training

The second phase of data collection consisted of multiple steps. At first the author did a
search in the internal Confluence for the keyword “security checklist” and identified 73
completed secure coding checklists. Out of those, 4 checklists technically existed, but
were empty, so the author eliminated them from the list. If the checklist had other notice-
able issues (e.g. some categories were not addressed, some requirements still had a “to
do” status, everything was marked as “done”), the author contacted the person responsible
for filling out the security checklist. If the responsible person confirmed that the check-
list was wrongly done or everything was marked as “done” by mistake without analyzing
each requirement, such checklists were eliminated from the research.

Next, the author searched the internal tool created for tracking missions and exported data
regarding all completed missions before 1 January 2020. This resulted in 153 missions.
The list contained: mission name, tribe, mission lead (engineer), developers participating
in the mission, product manager, launch date, end date. A mission ID was added to each
mission to simplify data correlation during the next steps.

To ensure the data regarding completed secure coding checklists is accurate, the author
manually went through each mission’s Confluence pages to verify that a completed check-
list existed. It was identified that 3 checklists had different naming conventions and were
missed by the initial keyword search. Because the author did not have experience with
the internal missions tool before, he contacted one of the engineering managers in order
to gain better knowledge of the tool and tribes’ responsibilities in general. Each mission
was labelled with 0 (no) or 1 (yes) based on the following criteria:

� secure coding checklist filled out,

� mission is related to a web application feature.

Because the secure coding checklist used in the organization is mostly about web applica-
tion security, the author decided to only focus on missions that worked on the application.
Mobile development, internal projects and custom tools were outside of scope for this
research.

Additionally, the following data was added regarding Rangeforce participation:
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� mission lead participated in the Rangeforce training (0/1),

� mission lead’s Rangeforce training score,

� each developer’s Rangeforce training score,

� date of the Rangeforce training for each person.

In terms of Rangeforce training, the author decided to separate the mission lead from the
rest of the developers in a mission. Since the lead helps to make sure that all appropriate
checks are done before a mission is completed, the assumption here is that the mission
lead’s secure coding training might have an impact on making sure that the development
team considers security during writing code as well.

As some people attended the training after they finished working on a mission, the data
would not be applicable for the analysis. Therefore, such Rangeforce participation was
removed from the dataset.

Lastly, the specific web application feature was added for each mission. The decision
about the feature was based on the mission scope documented in Confluence. After that,
the author sorted missions data first by feature and then by mission end date in the as-
cending order. For the purpose of correlating data with HackerOne vulnerability reports,
the author did the same sorting in the HackerOne spreadsheet.

When HackerOne and missions spreadsheets were completed, it allowed to cross-
reference each mission with the reported vulnerabilities. The process of cross-referencing
included manually working through the list of missions, looking for the resolved
HackerOne reports for the specific feature and tagging the HackerOne reports with the
corresponding mission ID. The methodology of assigning a vulnerability report to a mis-
sion is shown on Figure 1.

Without having underlying knowledge of the application source code, the scope of each
mission and the overall architecture of the application, providing highly reliable cross-
reference is challenging. In order to minimize the risk of poor data collection and, con-
sequently, unreliable research results, the author collaborated with the mission leads and
the information security team. Semi-structured interviews with 11 mission leads were
held to discuss attribution of specific vulnerabilities to missions they were in charge of.
This approach helped validate the method the author used for connecting HackerOne vul-
nerability reports to the features developed during missions and increase the reliability
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Figure 1. Process of vulnerability attribution to missions (composed by the author).

of the research results. It was discovered that some vulnerabilities were introduced at
early stages of development during the proof-of-concept missions. This finding moti-
vated the author to perform one more iteration of investigating each mission to make sure
the vulnerabilities were properly attributed. Even though during this step of data collec-
tion multiple actions have been taken to decrease the chance of false positives and false
negatives when attributing reported vulnerabilities to the internal development missions,
it is still possible that errors occurred.

The method of data collection described above resulted in a spreadsheet containing the
following columns:

� Mission ID,

� Tribe,

� OWASP secure coding practices checklist (0/1),
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� Mission lead participated in Rangeforce training (0/1),

� Mission lead’s Rangeforce training score,

� Number of developers total,

� Number of developers with Rangeforce training,

� Number of developers without Rangeforce training,

� Rangeforce training participation ratio,

� Average Rangeforce training score,

� Number of valid reported vulnerabilities,

� Total bounties paid,

� Average severity of valid reported vulnerabilities (1 - 4) 1.

The number of vulnerabilities, total of bounties paid and average severity were calculated
using formulas based on the mission ID in the HackerOne vulnerabilities spreadsheet.

The spreadsheet was used in hypothesis testing to answer research questions. The author
acknowledges that the Rangeforce-related variables are most likely highly correlated, but
keeps them purposefully in the dataset for further analysis.

1severity levels were transformed by giving numeric values: low = 1, medium = 2, high = 3, critical = 4
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4 Data analysis

4.1 HackerOne program descriptive statistics

In this chapter the author provides descriptive statistics of the private HackerOne program.
In total, 1019 vulnerability reports were received between the middle of 2015 and the end
of 2019 (see Table 5). Out of those, half were valid reports that got triaged and resolved
by the organization. Duplicate reports contributed to a third of all submissions. Such a
big number can be explained by the fact that none of the submitted vulnerabilities are
made public, and therefore the white hat researchers cannot know what has been reported
before.

Table 5. Descriptive statistics of the HackerOne program of the researched organization for the period of
2015-2020 (composed by the author).

Absolute values Percentages

Total number of submitted
reports

1019 100%

- resolved reports 522 51.23%

- duplicate reports 341 33.46%

- informative reports 110 10.79%

- not-applicable reports 46 4.51%

Resolved reports 522 100%

- web application 453 86.78%

- public infrastructure 24 4.60%

- main website/blog 21 4.02%

- internal systems 14 2.68%

- mobile applications 5 0.96%

- outsourced development 5 0.96%

When looking at the breakdown of all valid resolved reports (see Table 5), the vast ma-
jority belongs to the web application, whereas less than 1% of valid vulnerabilities were
found in the iOS or Android applications combined. There can be multiple explanations
to this finding. First, the bounty range for mobile vulnerabilities is between $50 and
$600 USD, so the white hat researchers might not be financially motivated. Second, mo-
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bile platforms require different knowledge and skills compared to web applications. Since
this particular bug bounty program is private and the number of participants is much lower
than in the public ones, it might have just happened that not enough mobile experts have
been invited.

During the studied period the organization paid $366100 USD in bounties to the white
hat researchers. Figure 2 shows a monthly cumulative bounty payout on a logarithmic
scale, which is suitable for depicting growth trends. As can be seen, there was a rapid
growth in total bounties in the first months of starting the private program, followed by
a slow-down of around 6 months. Starting from Q2 of 2016, rapid growth repeated and
slowed down in the first half of 2017. The second growth period is explained by the fact
that in April 2016 HackerOne implemented a feature for automatic invitations to private
programs [53]. This change brought more researchers and as a result, more vulnerabilities
were reported.

Figure 2. Cumulative total bounties paid in HackerOne (composed by the author).

When looking at the breakdown of resolved vulnerability reports by OWASP Top 10-2017
risk (see Table 6), it is clear that broken access control, cross-site scripting and security
misconfiguration form the majority of the reports in terms of the number of submissions
and the total bounty paid out. However, if we consider the severity of the vulnerabilities,
XML external entities, injection and broken authentication are above average. Higher
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severity leads to higher average bounty in those categories as well. It can be hypothesized
that higher severity also means higher complexity of the vulnerabilities. In this sense,
seeing lower complexity vulnerabilities in the top is logical, because generally bug bounty
program participants aim to maximize the returns with less effort [31].

Another noteworthy observation regarding the types of vulnerabilities reported in the pri-
vate HackerOne program is that different forms of injections, the most common risk ac-
cording to OWASP Top 10-2017 list (see Table 1), only accounts to 1.5% of all valid
reports (see Table 6). Generally, the top 4 risks from OWASP Top 10-2017 contribute to
below 12% of the total submissions from white hat researchers. This can be explained by
either a good level of security in those categories or lacking knowledge and skills of the
bug bounty participants.

Table 6. Valid reported vulnerabilities in HackerOne divided by OWASP top 10-2017 risk for the period of
2015-2020 (composed by the author).

OWASP Top 10-2017 risk Number of
resolved
vulnerabilities

Percentage of
total
vulnerabilities

Total
bounty

Average
bounty

Average
severity

Broken access control 193 36.97% 150550 780.05 2.12

Cross-site scripting (XSS) 162 31.03% 78450 484.26 2.17

Security misconfiguration 106 20.31% 62750 591.98 2.20

Broken authentication 30 5.75% 39550 1318.33 2.54

Sensitive data exposure 21 4.02% 18300 871.43 2.14

Injection 8 1.53% 8500 1062.50 2.50

XML external entities
(XXE)

2 0.38% 8000 4000 4.00

TOTALS 522 100% 366100 701.34 2.19

The author has visualized the cumulative number of resolved vulnerabilities by different
OWASP Top 10-2017 risks on a logarithmic scale in the following figure (see Figure 3). It
can be observed that cross-site scripting was the main focus of white hat researchers when
the private bug bounty program first started. Generally, the comparably rapid growth in
the cumulative reported vulnerabilities across all categories happened until the middle of
2017. The slower growth phase can be explained by either a more secure application
over time, which would be supported by previous research [32], or by the fact that a
roughly fixed pool of white hat researchers might be lacking diversity [34]. For example,
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if the majority of participants are using a method of looking at specific types of low
severity vulnerabilities in a large number of bug bounty programs, the more complex
critical vulnerabilities will not be discovered.

Figure 3. Cumulative number of resolved vulnerabilities divided by OWASP Top 10-2017 risk in the re-
searched organization’s HackerOne program (composed by the author).

When analyzing the severity levels of the valid vulnerability reports in HackerOne, the
author used a 6-month moving average for each severity level. The moving average helps
to smooth the spikes in the monthly data and allows to see a trend. A stacked column
chart (see Figure 4) shows a monthly ratio between the four severity levels. From the
chart it can be seen that at the start of the HackerOne program the majority of the reported
vulnerabilities were considered to be high and medium severity with a period of October
2015 - March 2016 being only high severity reports. This data in combination with data
from Figure 3 gives insights into the way how the severity levels of different vulnerability
types have been assessed over time. It appears that in the beginning of the researched
organization’s HackerOne program in 2015, the web application had lots of cross-site
scripting and broken access control vulnerabilities that, if exploited by malicious actors,
could have caused high impact.

Over time, the proportion of high severity reports decreased significantly, whereas low and
medium severity have been trending up. It can be also observed that from the beginning
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of 2019 the 6-month moving average ratio of the low and critical severity levels has been
in an upward trend. Considering the changes in the secure coding practices that happened

Figure 4. Monthly ratio of 6-month moving average of severity levels (composed by the author).

at the end of 2017 and the middle of 2018 (implementing the Rangeforce training and
secure coding checklist), this observation might be hinting that the changes had an effect
on the severity levels of the reported vulnerabilities.

4.2 Missions descriptive statistics

In this chapter the author presents an overview of the main dataset used for answering
the research questions. Descriptive statistics, normality tests and correlation analysis are
performed on the dataset in the preparation for the further data analysis.

The table of all variables from the dataset is shown below (see Table 7). In total there
are 7 independent and 3 dependent variables. Independent variables can be divided into 2
groups – Rangeforce training and OWASP secure coding practices checklist.

Out of 153 missions that were completed before 1 January 2020, 78 were directly related
to the web application. The rest of the missions worked on the features and tools, which
either were not implemented into the web application during the researched timeframe
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Table 7. Variables in the missions dataset (composed by the author).

Variable Description Type

DEVS_NO_RF Number of developers who did not
participate in Rangeforce training

Independent

DEVS_DID_RF Number of developers who participated in
Rangeforce training

Independent

RF_RATIO The ratio of Rangeforce participation Independent

AVG_RF_SCORE Average Rangeforce score Independent

ML_DID_RF Mission lead participated in Rangeforce
training?

Independent

ML_RF_SCORE Mission lead’s Rangeforce score Independent

CHECKLIST OWASP secure coding practices checklist
filled?

Independent

NUM_BUGS Total number of resolved vulnerabilities Dependent

AVG_SEVERITY Average severity level of vulnerabilities Dependent

BOUNTY Total amount of money paid out Dependent

or were not available to the public (e.g. internal tools). Only the missions related to the
web application were used in the further analysis. The author understands the importance
of security in any development. However, since the research is done on the effectiveness
of the secure coding checklist and security training, which both mainly relate to the web
applications, the author decided to narrow the scope to only the web application missions.

Out of 78 missions, the breakdown of checklist and mission lead’s participation in Range-
force training are similar (see Table 8). The number of missions with identified vulnera-
bilities makes up 32% of all web application related projects.

Table 9 shows the descriptive statistics for the variables excluding categorical ones
(ML_DID_RF and CHECKLIST). The statistics were collected for the whole dataset
without dividing into categories. As can be seen, each variable has the minimum of 0.
In case of dependent variables, this means that no vulnerabilities were reported for a spe-
cific mission. In case of Rangeforce scores, 0 means that there was no participation in the
training.

On average, 47% of developers in each mission had participated in the Rangeforce train-
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Table 8. General statistics of the missions dataset (composed by the author).

Mission indicator Value Percentage of total

Missions total 78 100%

Checklist filled 45 57.69%

Checklist not filled 33 42.31%

Mission lead participated in
Rangeforce

50 64.10%

Mission lead did not participate
in Rangeforce

28 35.90%

Vulnerabilities found 25 32.05%

Vulnerabilities not found 53 67.95%

ing prior to starting the mission (see Table 9). The Rangeforce training scores were much
higher among mission leads as opposed to the whole mission team. The dataset had some
outliers, which can be particularly observed in the paid out bounties, where the mean was
653 and maximum sum of bounties of 16900 for one mission.

Table 9. Descriptive statistics of the missions dataset (composed by the author).

Mean Standard
deviation

Minimum Maximum

DEVS_NO_RF 2.19 1.478 0 7

DEVS_DID_RF 1.86 1.384 0 8

RF_RATIO 0.47 0.276 0 1

AVG_RF_SCORE 1962.62 1217.788 0 5063.67

ML_RF_SCORE 4525.5 1351.522 0 6386

NUM_BUGS 0.7 1.389 0 8

AVG_SEVERITY 0.68 1.137 0 4

BOUNTY 653.21 2308.206 0 16900

One of the main deciding factors when choosing a correct analysis method is whether
data is normally distributed [52]. While preparing data for analysis, the author conducted
the Shapiro-Wilk normality test using JASP open-source software 1. The null-hypothesis

1https://jasp-stats.org
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was that the data is normally distributed and the confidence level was set at 95% (alpha =
0.05). As can be seen from Table 10, only the average Rangeforce score can be considered
normally distributed (p-value = 0.06), and the rest of the researched data are not normally
distributed (p-value < alpha). Based on this, for data analysis the author decided to utilize
non-parametric tests, because they do not assume normal distribution of the sample data
[52].

Table 10. Tests for normality in the missions dataset (composed by the author).

Shapiro-Wilk W p-value

DEVS_NO_RF 0.909 < 0.001

DEVS_DID_RF 0.845 < 0.001

RF_RATIO 0.944 0.002

AVG_RF_SCORE 0.970 0.060

ML_RF_SCORE 0.947 0.025

NUM_BUGS 0.569 < 0.001

AVG_SEVERITY 0.659 < 0.001

BOUNTY 0.310 < 0.001

In addition to checking for normal distribution, the author performs correlation tests to
identify potential relations in the dataset. If any of the independent variables are strongly
positively correlated, then their effect on the dependent variables will be similar, making it
hard to distinguish the separate effect of each variable. Kendall’s Tau correlation test was
used because it does not assume normal distribution of data [54]. The null-hypothesis was
that the data is not correlated and alternative hypothesis – data is correlated. The author
wanted to see the general correlation, and therefore a two-tailed version of the test was
performed.

The results of the two-tailed Kendall’s Tau correlation test can be seen in Figure 5. Darker
color on the gradient scale represents stronger correlation. Each cell in the matrix contains
Kendall’s Tau B value, followed by a number of asterisks in case the significant correlation
exists. The significance level is 95%. As expected, there is a very strong correlation
between all dependent variables and between most of the Rangeforce related independent
variables.

When looking at the connection between dependent and independent variables, the se-
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Figure 5. Kendall’s Tau correlation matrix for missions dataset variables (composed by the author).

cure coding checklist is significantly negatively correlated with number of vulnerabilities,
average severity and total bounties paid. The number of developers who did not get
Rangeforce training is positively correlated with the number of vulnerabilities and total
bounties paid. A separate categorical variable which checks if the mission lead partici-
pated in a Rangeforce training is negatively correlated with the average severity level of
vulnerabilities and total bounties paid. None of the Rangeforce training score variables
are significantly correlated with the dependent variables. This means the data supports
an idea that how well a developer performs during the on-site siege training compared to
others is not as important as simply participating and being exposed to web application
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security and different common vulnerabilities.

Another observation from Kendall’s Tau correlation matrix is that there is no significant
connection between Rangeforce training and following the secure coding checklist re-
quirements. This finding contradicts previous research [9] and might be related to the
errors in data collection.

4.3 Answering research questions

Chi-square test is used to help address the research questions whether following the
OWASP secure coding practices checklist and going through the Rangeforce training
have a connection with valid HackerOne reports. The test analyzes the difference be-
tween frequencies of the dependent variable and is appropriate for categorical data [55].
To perform the test, the author created a 2x2 matrix where rows contain categorical data
(groups) and columns – dependent variables.

The hypotheses are set as follows:

1. Does following the OWASP secure coding practices checklist have a connection
with valid HackerOne reports?

(a) H0CV : there is no significant difference in the frequency distribution of vul-
nerabilities between the missions that filled out the secure coding checklist
and those that did not.

(b) H1CV : there is a significant difference in the frequency distribution of vulner-
abilities between the missions that filled out the secure coding checklist and
those that did not.

2. Does mission lead’s participation in the Rangeforce training have a connection with
valid HackerOne reports?

(a) H0MLV : there is no significant difference in the frequency distribution of vul-
nerabilities between the missions depending on whether the mission lead par-
ticipated in the Rangeforce training or not.

(b) H1MLV : there is a significant difference in the frequency distribution of vul-
nerabilities between the missions depending on whether the mission lead par-
ticipated in the Rangeforce training or not.
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To address the first question the author created a frequency distribution of vulnerabilities,
which can be found in Table 11. The missions that followed the checklist requirements
introduced vulnerabilities less frequently than when the checklist was not followed.

Table 11. Observed frequency matrix between checklist and vulnerabilities variables (composed by the
author).

0 vulnerabilities 1+ vulnerabilities

checklist+ 35 10

checklist- 18 15

To test whether the difference in frequencies is statistically significant, a Chi-square test
was conducted. As seen in Table 12, the p-value is below the significance level (p =
0.0298). This means that in terms of vulnerability distribution, there is a statistical signif-
icance between the missions that followed the OWASP secure coding practices checklist
and those that did not. So we can reject the null-hypothesis H0CV and accept the alter-
native hypothesis H1CV . However, making conclusions solely based on the p-value is
not enough, so the author also checks the effect size for the variables [56]. Cramer’s V
is commonly used when describing the strength of association in Chi-square test [55].
Additionally, odds ratio is calculated for more intuitive interpretation of the test results
[57].

Table 12. Chi-square test statistics for checklist and vulnerabilities variables (composed by the author).

Significance level 0.05

df 1

χ2 4.718

Critical value 3.841

p-value 0.0298

Cramer’s V 0.246

Cramer’s V value is 0.246 for this particular test. Interpreting this value is not straightfor-
ward, as there is no one standard for the effect size scale. Some sources state that Cramer’s
V values between 0.15 and 0.25 signal strong and values over 0.25 – very strong asso-
ciation between the variables [54]. Others specify values between 0.20 and 0.30 to be
moderate, and above 0.30 to be strong association [58]. In this paper the author consid-
ers 0.246 to mean moderate association between the checklist variable and vulnerability
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distribution.

Additionally, the author calculated the odds of receiving at least 1 valid vulnerability
report through HackerOne depending on whether the secure coding checklist was filled
out during the mission. The results of odds ratio are included in Table 13. The ratio
means that the odds of receiving a valid vulnerability report is 2.92 times higher if the
secure coding checklist was not followed during the mission. Even though the strength of
association is not strong, almost 3 times higher likelihood of introducing a vulnerability is
an important finding. Over a large number of missions, simply following the requirements
of the checklist can save an organization resources on triaging, fixing and paying for the
vulnerabilities.

Table 13. The odds ratio for introducing at least 1 vulnerability depending on security checklist variable
(composed by the author).

1+ vulnerabilities

checklist- 0.83

checklist+ 0.29

odds ratio 2.92

The author conducted another Chi-square test to address the second question. The results
suggest that the variables are dependent (p = 0.0417), which means that receiving 0 or at
least 1 valid vulnerability report in HackerOne is affected by a mission lead’s participation
in the Rangeforce training (see Tables 14 and 15). We can reject the null-hypothesis
H0MLV and accept the alternative hypothesis H1MLV .

Table 14. Observed frequency matrix between mission lead’s Rangeforce participation and vulnerabilities
variables (composed by the author).

0 vulnerabilities 1+ vulnerabilities

ML_RF+ 38 12

ML_RF- 15 13

Cramer’s V value is 0.231, and therefore the strength of association can be considered
moderate. According to the odds ratio, the odds of receiving a valid vulnerability report is
2.74 times higher if the mission lead did not participate in a Rangeforce siege (see Table
15).
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Table 15. Chi-square test statistics for mission lead’s Rangeforce participation and vulnerabilities variables
(composed by the author).

Significance level 0.05

df 1

χ2 4.146

Critical value 3.841

p-value 0.0417

Cramer’s V 0.231

Odds ratio 2.74

In order to test whether there is a difference in the distribution of total bounty payouts
and average vulnerability severity between the missions that followed the OWASP secure
coding practices checklist and those who did not, the author conducted a Mann-Whitney
U test. It is a non-parametric test that is suitable for small sample sizes [59]. It works by
transforming values into their ranks and making calculations using the ranks [59]. This
helps eliminate the effects of outliers in the dataset [59].

The hypotheses are set as follows:

1. Does following the OWASP secure coding practices checklist have a connection
with the total payouts to the white hat researchers for the reported vulnerabilities?

(a) H0CB: there is no significant difference in the total payouts to the white hat
researchers for the reported vulnerabilities between the missions that filled out
the secure coding checklist and those that did not.

(b) H1CB: there is a significant difference in the total payouts to the white hat
researchers for the reported vulnerabilities between the missions that filled
out the secure coding checklist and those that did not.

2. Does following the OWASP secure coding practices checklist have a connection
with the average severity level of the reported vulnerabilities?

(a) H0CS: there is no significant difference in the average severity level of the
reported vulnerabilities between the missions that filled out the secure coding
checklist and those that did not.

(b) H1CS: there is a significant difference in the average severity level of the re-
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ported vulnerabilities between the missions that filled out the secure coding
checklist and those that did not.

The initial dataset was modified for this test. Out of 78 missions, only 25 resulted in at
least 1 reported vulnerability, and for this reason, the author removed the zeros from the
dependent variable set. Logically, 0 vulnerability reports is a positive result, however,
when conducting rank sum tests, an overwhelming number of zeros disproportionally
inflates the sum of ranks and therefore significantly affects the results.

To conduct the test, the data is sorted in the ascending order and each data point is given
a rank [59]. In case of ties, an average rank is assigned to each data point [59]. When the
ranks are summed, the U statistics are calculated using the Equation 1, where nx and ny

are sample sizes and Rx is the sum of ranks for sample x [59].

Ux = nx ∗ny +
nx ∗ (nx +1)

2
−Rx (1)

Equation 1. Mann-Whitney U statistic calculation formula [59].

After calculating the Ux and Uy, the smaller U statistic is compared to a value from the
table of critical values. If the U statistic is smaller than the critical value, null-hypothesis
is rejected and an alternative hypothesis is accepted.

The total bounty and average severity ranks have been sorted in the ascending order and
are presented in Table 16. Checklist- and checklist+ are corresponding to missing or filled
out secure coding checklists in a mission. It can already be observed that in both cases
the ranks are higher within the groups which did not follow the checklist.

The results of Mann-Whitney U test can be seen in Table 17. At 95% confidence level
the calculated U1 in both tests is smaller than the critical U of 39 (p = 0.013 for bounty
and p = 0.001 for severity). This means the data supports the idea that not following
the secure coding checklist during the mission results in significantly different amounts
of money paid out to the security researchers at HackerOne and the average severity of
reported vulnerabilities. We can reject both null-hypotheses H0CB and H0CS, and accept
the alternative hypotheses H1CB and H1CS.

The effect size of the relationship is moderate (r = 0.446) for the total bounty and strong
(r = 0.606) for the average severity (see Table 17). Because the rank sums for the group
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Table 16. Ranks distribution for bounty and average severity dependent variables split between checklist
groups (composed by the author).

Total bounty ranks Average severity ranks

checklist- checklist+ checklist- checklist+

2.5 2.5 3 3

8.5 2.5 10 3

8.5 2.5 13.5 3

8.5 5 13.5 3

8.5 6 13.5 6.5

12.5 11 13.5 6.5

14 12.5 13.5 8.5

18 15 17 8.5

19 16 18 13.5

20 17 19 20.5

21 21

22 22

23 23

24 24.5

25 24.5

that did not follow the checklist is much higher in both tests, we can conclude that the re-
searched organization pays hackers significantly more for those missions and the reported
vulnerabilities are of significantly higher severity.

The strong relationship between following the OWASP secure coding practices checklist
and lower severity of reported vulnerabilities is an important finding. This means that
even though the checklist cannot completely eliminate the security mistakes made during
the missions, it can lower their severity and therefore the potential impact on customers’
data.

A Mann-Whitney U test is also performed to analyze if there is a meaningful difference
in the total bounty and average severity of reported vulnerabilities depending on whether
the mission lead participated in a Rangeforce training.
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Table 17. Mann-Whitney U test results for bounty and average severity dependent variables split between
checklist groups (composed by the author).

Total
bounty

Average
severity

Checklist- rank sum 235 249

Checklist+ rank sum 90 76

n1 15 15

n2 10 10

UUU111 35 21

U2 115 129

Critical U at n1 = 15
and n2 = 10

39 39

Mean 75 75

Standard deviation
(corrected for ties)

17.955 17.822

z-score -2.228 -3.030

p-value 0.013 0.001

r 0.446 0.606

The author set the following hypotheses:

1. Does mission lead’s participation in the Rangeforce training have a connection with
the total payouts to the white hat researchers for the reported vulnerabilities?

(a) H0MLB: there is no significant difference in the total payouts to the white hat
researchers for the reported vulnerabilities between the missions depending
on whether the mission lead participated in the Rangeforce training or not.

(b) H1MLB: there is a significant difference in the total payouts to the white hat
researchers for the reported vulnerabilities between the missions depending
on whether the mission lead participated in the Rangeforce training or not.

2. Does mission lead’s participation in the Rangeforce training have a connection with
the average severity level of the reported vulnerabilities?

(a) H0MLS: there is no significant difference in the average severity level of the re-
ported vulnerabilities between the missions depending on whether the mission
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lead participated in the Rangeforce training or not.

(b) H1MLS: there is a significant difference in the average severity level of the re-
ported vulnerabilities between the missions depending on whether the mission
lead participated in the Rangeforce training or not.

The ranks in the ascending order are presented in Table 18 below.

Table 18. Ranks distribution for bounty and average severity dependent variables split between mission
lead Rangeforce participation groups (composed by the author).

Total bounty ranks Average severity ranks

ML_RF- ML_RF+ ML_RF- ML_RF+

2.5 2.5 3 3

5 2.5 3 3

6 2.5 6.5 3

8.5 8.5 6.5 8.5

8.5 8.5 8.5 10

12.5 11 13.5 13.5

14 12.5 13.5 13.5

15 17 13.5 13.5

16 18 18 17

19 22 19 20.5

20 24 20.5 22

21 25 24.5 23

23 24.5

In both tests the calculated U statistic is greater than the critical value (U1 > 41) at 95%
significance level (see Table 19). This leads us to conclude that the mission lead’s partic-
ipation in the Rangeforce training prior to leading a mission has no association with the
amount of money that would be paid to HackerOne participants and the average severity
of reported vulnerabilities. We can accept both null-hypotheses H0MLB and H0MLS, and
reject the alternative hypotheses H1MLB and H1MLS.

For the last phase of the data analysis, the author conducted a set of tests to assess the
combined effects of the OWASP secure coding practices checklist and developers par-
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Table 19. Mann-Whitney U test results for bounty and average severity dependent variables split between
mission lead Rangeforce participation groups (composed by the author).

Total
bounty

Average
severity

ML_RF- rank sum 235 249

ML_RF+ rank sum 90 76

n1 13 13

n2 12 12

UUU111 76 72.5

U2 80 83.5

Critical U at n1 = 13
and n2 = 12

41 41

ticipating in the Rangeforce training on the number of reported vulnerabilities and their
average severity. The author is not analyzing the effect on the total bounty paid, because
previous tests showed that generally BOUNTY dependent variable is correlated with the
number of vulnerabilities and their severity, and follows the same patterns.

JASP was used to perform linear regression analysis. The stepwise linear regression mod-
elling was used in all following tests and only the coefficients with confidence index
above 95% (p < 0.05) were accepted into the final models. All tests contain a null-model
H0 and an alternative model H1. All null-models included only the CHECKLIST inde-
pendent variable, because it showed the biggest descriptive power in the Chi-square and
Mann-Whitney U tests.

The first stepwise linear regression modelled the relationship between independent vari-
ables and the number of reported vulnerabilities. During the regression the only signifi-
cant independent variables included in the final model were checklist, number of devel-
opers who participated in Rangeforce training and the ratio of Rangeforce participation.

Only the OWASP secure coding practices checklist as a predictor explains 5.9% of the
variances in the number of reported vulnerabilities for a given mission and is statisti-
cally significant (p = 0.019) (see Table 20). However, when in addition to following the
checklist team members have also participated in the Rangeforce training, the explanatory
power of the model increases to 22%. The model one is highly significant (p < 0.001).
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Table 20. Model summary - number of vulnerabilities (composed by the author).

Model R R2 Adjusted R2 RMSE p

H0 0.266 0.071 0.059 1.348 0.019

H1 0.500 0.250 0.220 1.227 < 0.001

The unstandardized coefficients in the alternative model H1 (see Table 21) show that when
a secure coding checklist is followed, the number of vulnerabilities is reduced by 0.63.
The assumption that the number of developers who had the Rangeforce training decreases
the number of vulnerabilities is not supported by this model. Each additional developer
on a mission, who had Rangeforce training increases the number of security bugs by
0.582. However, the higher the ratio of developers with Rangeforce training, the fewer
vulnerabilities are introduced. The meaning of this finding is controversial, but could be
explained intuitively by the fact that the more people work on a project, the more code
is produced, and therefore more potential vulnerabilities can arise regardless of how well
people are trained security-wise.

Table 21. Linear regression model coefficients for the number of reported vulnerabilities in HackerOne
(composed by the author).

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 1.121 0.235 4.778 < 0.001

CHECKLIST -0.743 0.309 -0.266 -2.406 0.019

H1 (Intercept) 1.209 0.332 3.642 < 0.001

CHECKLIST -0.634 0.284 -0.227 -2.234 0.028

DEVS_DID_RF 0.582 0.144 0.580 4.050 < 0.001

RF_RATIO -2.622 0.717 -0.521 -3.657 < 0.001

The author also analyzed the effects of independent variables on the average severity of
the reported vulnerabilities using linear regression. Null-model H0 had the secure cod-
ing checklist as the independent variable and the alternative model H1 had one additional
variable – number of developers without the Rangeforce training. During the stepwise
regression modelling all other independent variables were not significant enough to in-
crease the explanatory power of the null-model. As can be seen in Table 22, both models
are highly significant. Just following the checklist explains 12,6% of the variance in the
average severity of the reported vulnerabilities. When we add the number of people with-
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out the security training, the explanatory power increases to 16,4%.

Table 22. Model summary - average severity (composed by the author).

Model R R2 Adjusted R2 RMSE p

H0 0.370 0.137 0.126 1.063 < 0.001

H1 0.431 0.186 0.164 1.039 < 0.001

When the checklist is filled out, the average severity is reduced by 0.853, and every ad-
ditional developer without the Rangeforce training increases the severity by 0.167 (see
Table 23).

Table 23. Linear regression model coefficients for the average severity level of the reported vulnerabilities
in HackerOne (composed by the author).

Model Unstandardized Standard Error Standardized t p

H0 (Intercept) 1.172 0.185 6.336 < 0.001

CHECKLIST -0.846 0.244 -0.370 -3.475 < 0.001

H1 (Intercept) 0.813 0.250 3.250 0.002

CHECKLIST -0.858 0.238 -0.375 -3.598 < 0.001

DEVS_NO_RF 0.167 0.080 0.217 2.080 0.041

The findings of the statistical tests conducted in this chapter confirm the effectiveness of
the combined secure coding practices implemented in the researched organization.
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5 Conclusions and further research

This thesis gave an assessment of the effectiveness of two secure coding measures –
OWASP secure coding practices checklist and Rangeforce training – implemented in a
global technology company with operations in Estonia. The combination of qualitative
and quantitative research methods were used throughout this study. During data collection
the author held semi-structured interviews with internal stakeholders (developers, mission
leads, information security team staff) in order to gather input and validate the data collec-
tion methods used. When testing hypotheses, multiple statistical analysis methods were
used.

The OWASP secure coding checklist on its own proved effective. There is a moder-
ate connection between filling out the checklist during the development phase and the
distribution of vulnerabilities reported in HackerOne. This means that the likelihood of
HackerOne participants finding a new vulnerability is 2.92 times higher if the checklist
was not followed. There is also a significant difference in the average severity of reported
vulnerabilities and the total bounty payouts depending on whether the checklist was filled
out. Based on the results of Mann-Whitney U test, the author can conclude that following
the checklist results in significantly lower bounties and severity of vulnerabilities. Thus,
the first assumption of the author was confirmed.

The effectiveness of the Rangeforce training, on the other hand, was not as evident as of
the secure coding checklist. The author tested whether the mission lead’s participation
in the training prior to leading a mission had any connection to the number of reported
vulnerabilities, their average severity and the total bounty payouts. Similarly to the secure
coding checklist, mission lead’s Rangeforce training showed a moderate connection with
the distribution of vulnerabilities reported in HackerOne. The odds ratio is slightly lower
than of the checklist. When a mission is led by a developer who had Rangeforce training,
the likelihood of introducing a vulnerability that would be later found in HackerOne is
2.74 times lower than if the training was not completed. Unlike the secure coding check-
list, mission lead’s Rangeforce participation did not have a significant connection with the
average severity of reported vulnerabilities and the total bounty payouts.

Additionally, the author tested the combined effect of following the OWASP secure cod-
ing practices checklist and going through the Rangeforce training on the vulnerability
metrics in HackerOne using stepwise linear regression modelling. Only following the re-
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quirements specified in the secure coding checklist describes 5.9% of the variance in the
number of reported vulnerabilities and 12.6% of the variance in the average severity of
those vulnerabilities. However, when combined with the overall Rangeforce training par-
ticipation, the explanatory power of the model increased to 22% and 16.4%. The results
of the linear regression modelling confirm the idea that both secure coding measures are
more effective when used together.

The author has multiple ideas for further research. First, the results of this research cannot
be directly applied to other similar companies, because numerous additional factors could
influence the vulnerabilities reported in the bug bounty program. For example, Thus, the
results need to be validated in a sequential confirmatory case study on another technology
company that does software development in a similar way.

Second, it would be interesting to conduct a more in-depth research about which types
of vulnerabilities the checklist helps to mitigate. Such study would help organizations to
make decisions regarding software development lifecycle. If the organization receives
mostly certain types of vulnerabilities during the security assessment and the check-
list does not efficiently address those vulnerabilities, additional secure coding measures
would need to be implemented. Such measures could include vulnerability-specific secure
coding training for developers, adding automated vulnerability-specific tests and modify-
ing the checklist with more appropriate requirements.

Lastly, finding out whether the secure coding training has a significant connection with
any specific OWASP Top 10 vulnerability types would be also beneficial.
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Appendix 1 – HackerOne case studies analysis (compiled
by the author based on the cited sources)

Organization
name

HackerOne
program type

Reason for a
VRP

Key findings

ABOUT
YOU

private Internal security
engineers and
periodic
penetration tests
are not effective
in a scaling
organization [38]

Maintain fast resolution time;
White hat researcher
communication is important [38]

Fanduel public Small security
team and
periodic
penetration tests
are not scalable
[39]

Treat white hat researchers well
and build relationships with them
[39]

GitLab public Impossible to
manually assess
code security;
Code scanning is
not effective [40]

Quick response, triage and fix
times; Reports of patched
vulnerabilities are made public 30
days after fixing the issue [40]

Grand
Rounds

not specified Regular
penetration
testing is
predictable and
therefore less
effective [41]

Organizations should outsource
security testing to 3rd parties
(VRP) in order to get unbiased
findings [41]

LocalTapiola public Inefficient and
lengthy software
development and
security
assessment
process [42]

High maximum reward amount
results in more reports; Having
developers pay for the
vulnerabilities in their code
motivates to make less mistakes
[42]
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Organization
name

HackerOne
program type

Reason for a
VRP

Key findings

ownCloud private =>
public

Penetration tests
did not find
vulnerabilities
[43]

Launched private program first and
opened public program after
internal processes were optimized;
Increasing rewards to stimulate
white hats’ motivation
vulnerabilities are reported over 21
times faster than before a VRP [43]

Paypal public Large pool of
white hat
researchers for
more extensive
application
testing [44]

Remote code execution (RCE),
server-side and database attacks get
the most attention from Paypal; A
clearly stated impact in the
vulnerability report is important
[44]

Priceline public Extend the
overall
cybersecurity
strategy [45]

When new attacks are introduced,
they are usually reflected in the
vulnerability reports. This helps
stay ahead of malicious actors;
RCE, logic flaws and mobile
application vulnerabilities deserve
more attention from the security
team [45]

Qualcomm private Extend the
overall
cybersecurity
strategy [46]

Private program mitigates
unnecessary noise in submissions;
White hat researchers like to work
with people, so maintaining direct
relationships is important;
Vulnerability reports should be
included in the feedback loop. This
helps improve the software
development lifecycle [46]

Sumo Logic private Penetration tests
did not find
vulnerabilities
[47]

12 vulnerabilities missed during
the penetration tests found in the
first 15 days after VRP launch [47]
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Organization
name

HackerOne
program type

Reason for a
VRP

Key findings

Upserve private =>
public

Needed a new
perspective on
vulnerability
finding; Internal
security reviews
are not efficient
[48]

Started with a private program and
7 months later switched to public;
Public disclosure of vulnerabilities
is useful for white hats and the
organization itself; Internal
stakeholder support is crucial when
fixing reported vulnerabilities [48]

Wordpress private =>
public

Large pool of
white hat
researchers for
more extensive
application
testing [49]

Private program was used to make
sure internal security team
optimized triage and patch
processes; Public program
increased number of reports and
the team had to prioritize based on
potential impact [49]
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