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Abstract 

This thesis focuses on the development and benchmarking of a Datalog to SQL 

interpreter, designed to integrate the logic programming language Datalog with SQL, the 

predominant language used in relational database management systems. Datalog is used 

for its ability to succinctly express complex recursive queries, which are typically verbose 

and complicated in SQL. By integrating Datalog with SQL, this work aims to leverage 

the data manipulation capabilities of SQL with the advantages offered by Datalog, 

facilitating more efficient and expressive data querying. The primary aim of this master’s 

thesis is to develop a Datalog to SQL interpreter and to subsequently assess its practicality 

and performance across various database engines. The interpreter is benchmarked to 

evaluate its efficiency in translating Datalog queries into SQL. 

This thesis is written in English and is 42 pages long, including 6 chapters, 13 figures and 

1 table. 
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Annotatsioon 

Terry, Datalog-SQL interpretaator 

See lõputöö keskendub loogilise programmeerimiskeele Datalog integreerimiseks SQL-

iga, mida valdavalt kasutatakse relatsioonilistes andmebaasihaldussüsteemides, läbi 

Datalog-SQL interpretaatori arendamise ja jõudluse testimise. Datalogi kasutatakse selle 

võime tõttu lühidalt väljendada keerulisi rekursiivseid päringuid, mis on SQL-is tavaliselt 

keerulised. Integreerides Datalogi SQL-iga, on selle töö eesmärk kasutada SQL-i 

andmetega manipuleerimise võimalusi koos Datalogi pakutavate eelistega, hõlbustades 

tõhusamat ja väljendusrikkamat andmepäringut. Selle magistritöö esmane eesmärk on 

välja töötada Datalog to SQL interpretaator ning seejärel hinnata selle praktilisust ja 

toimivust erinevates andmebaasimootorites. Osa tööst on ka uurida interpretaatori 

jõudlust, et hinnata selle tõhusust Datalogi päringute SQL-i käivitamisel. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 42 leheküljel, 6 peatükki, 13 

joonist, 1 tabelit. 
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1 Introduction 

Datalog, as a declarative logic programming language, has regained prominence in the 

realm of database querying and programming languages due to its expressive power and 

simplicity. The relevance of Datalog extends beyond traditional database queries; its 

ability to efficiently handle recursive queries and perform complex pattern matching 

makes it invaluable in areas requiring sophisticated data manipulation and inference 

capabilities, such as artificial intelligence [1], knowledge representation, and data 

integration [2]. 

The utility of Datalog manifests across various use cases: in the realm of big data, Datalog 

is used for large-scale data processing [3], leveraging its recursive capabilities to navigate 

and analyse deeply nested or hierarchical data structures like social networks [4], 

genealogical trees [5]. Furthermore, in cybersecurity, Datalog helps in the formulation 

and enforcement of security policies and access control decisions [6], where its rules can 

succinctly express complex conditions and relationships among data entities.  

Despite its strengths, there remains a gap in the integration of Datalog into mainstream 

application development, primarily due to the lack of robust tools that can translate 

Datalog’s theoretical advantages into practical, deployable solutions in standard relational 

database management systems (RDBMS). Many existing systems either do not support 

recursive queries natively or do so with significant limitations. This demonstrates the need 

for an interface between classical relational database systems and a logical programming 

language with an accessible recursion syntax such as Datalog. Developing an interpreter 

that can efficiently translate Datalog queries into optimized SQL should broaden 

Datalog’s acceptance in the industry. Addressing this gap forms the core challenge for 

this research. 
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1.1 Research Questions 

This thesis aims to answer two research questions:  

1. How would the interpreter’s performance be affected by different database 

engines, including SQLite, PostgreSQL, MySQL, and DuckDB? This aspect 

is important for understanding how different database engines handle expected 

loads from a Datalog program. 

2. How efficient would such a Python implementation be compared to other 

languages? In order to gauge whether a solution should instead be developed in 

a different programming language, it would be valuable to analyse the efficiency 

of the current solution in terms of estimated energy consumption. 

1.2 Contributions 

Our contribution to this field with the development of Terry includes: 

1. Implementing a Datalog to SQL interpreter in Python, including a Datalog parser, 

rule evaluator and program materializer. 

2. Added integration for several popular databases like SQLite, PostgreSQL, 

MySQL, DuckDB. 

3. The modular design which allows future integration of other SQL database 

engines in the future. 

4. Benchmarks empirically evaluate Terry’s effectiveness and performance; I 

conducted comprehensive benchmarks. These tests are designed to measure the 

interpreter's execution speed when operating across the supported databases under 

various datasets and query complexities.  

Section 2 gives a background overview of the theory behind relational databases and 

SQL, Datalog and deductive databases, and the concepts behind interpreters and 

translating Datalog to SQL. Section 3 describes the conceptual background behind 

Terry, the software architecture and implementation. Section 4 explains the datasets and 

Datalog programs used in the benchmarks, and discusses its results. Section 5 draws 

conclusions based on the completed work.  
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2 Background 

This section offers a brief theoretical overview of the three fundamental pillars that this 

work relies on: the relational model and the SQL databases that implement it, Datalog 

and the concepts behind interpreting Datalog into SQL. The aim is to introduce the ideas 

which are integral to understanding how Terry functions. 

In the spirit of transparency, we are disclosing that AI assistance was used in this chapter. 

Its role was to better our understanding of the concepts necessary for grasping the thesis, 

as well as to partially aid in improving the writing process. 

2.1 Relational Databases 

Relational algebra is a theory that defines an algebraic structure to model data. It can be 

seen as a set of rules to manipulate relations, which are sets of tuples 𝑆  

𝑆 = {(𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛| 𝑖 ∈ 1 … 𝑚} 

with a fixed-arity of 𝑛 and containing 𝑚 number of rows. 

Relational algebra defines operations that are used to manipulate data, such as selection, 

projection, cartesian product, union, etc. However, only the relevant operations will be 

introduced. 

Selection is used to filter rows from a relation based on a specified condition. Given a 

relation 𝑅, and a condition 𝜙 (for example, 𝐴 = 5), selection operation selects all tuples 

𝑡 in 𝑅 where 𝜙 holds true: 

𝜎𝐴=5(𝑅) = {𝑡 | 𝑡 ∈ 𝑅 ∧ 𝑡. 𝐴 = 5} 

This selection corresponds to a SQL SELECT * FROM R WHERE A=5 statement. 
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Projection is used to select certain columns from a relation, reducing the number of 

attributes in the result set to only those specified. It is denoted by Π𝑎1,…,𝑎𝑛
(𝑅) , where 

𝑎1, … , 𝑎𝑛 is a list of attributes kept in the result. The result of a projection is a relation 

that contains tuples stripped of any attributes not specified in the project list, e.g.,  

Π𝐴,𝐵(𝑅) 

produces a new relation with only the columns 𝐴 and 𝐵 from the relation 𝑅. An analogical 

statement in SQL is SELECT A, B FROM R. 

Equijoin (Join) is a join operation that combines tuples from two relations based on 

equality conditions between specified attributes of those relations. Equijoin merges rows 

from two relations, when the specified attributes have matching values. The syntax can 

be expressed as 

𝑅 ⋈𝐴=𝐵 𝑆 

where 𝑅 and 𝑆 are relations, and 𝐴 and 𝐵 are attribute names from 𝑅 and 𝑆 respectively. 

The condition 𝐴 = 𝐵 specifies that only those tuples in the resulting relation should be 

included where the value of attribute 𝐴 in relation 𝑅 matches the value of attribute 𝐵 in 

relation 𝑆. 

Relational database is a database that uses the relational model to describe data as named 

relations of labelled values. For example, a relation to describe a graph’s set of edges 

could be written as 

𝐸𝑑𝑔𝑒: {< (𝑆𝑟𝑐𝑁𝑜𝑑𝑒, 1), (𝐷𝑠𝑡𝑁𝑜𝑑𝑒, 2) >, < (𝑆𝑟𝑐𝑁𝑜𝑑𝑒, 2), (𝐷𝑠𝑡𝑁𝑜𝑑𝑒, 3) >} 

where the relation’s name is 𝐸𝑑𝑔𝑒, commonly referred to as a table, and tuples of labelled 

value pairs < (𝑆𝑟𝑐𝑁𝑜𝑑𝑒, 1) … > are seen as rows of a table. [7]. 

SQL (Structured Query Language) is the standard language for interacting with relational 

databases [8]. SQL dialects refer to variations of the SQL language that are adapted and 

extended by different database systems like MySQL, PostgreSQL, SQLite or DuckDB. 

Each dialect has its unique features and syntax nuances, which makes the goal of creating 

a compatible interpreter more challenging. 
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2.1.1 Embedded Databases 

An embedded database is integrated into the application that uses it, rather than being a 

standalone service. The demand for embedded databases has grown significantly since 

the rise in popularity of embedded devices, whose applications tend to be of limited scope 

and do not require an enterprise-level relational database to manage its data [9]. Many 

applications are not complex and require only a single database to satisfy their storage 

needs [10]. This kind of database has the benefit of easier deployment, as it typically 

utilizes the device’s memory or disk space for storage.  

SQLite is a library, which implements a self-contained SQL database engine. The lack 

of having to manage a dedicated connection to a separate, possibly remote, process makes 

it easier to deploy, as the database instance exists within the same memory space as the 

application. [11] It also offers exceptional portability, as the only requirements for its use 

are a couple of routines from the standard C library.  

DuckDB is an embedded database meant for analytical purposes. It is similar to SQLite, 

except that it uses a columnar query execution engine. This greatly reduces overhead 

present in traditional systems such as SQLite which process each row sequentially [12].  

2.1.2 Client-Server Architecture Databases 

PostgreSQL is an open-source object-relational database system that extends SQL with 

advanced features for handling complex data workloads. Originating from the 

POSTGRES project at the University of California, Berkeley in 1986, it has evolved over 

35 years into a highly respected platform known for its architecture, reliability, and rich 

feature set including ACID compliance since 2001 and third-party extensions. 

PostgreSQL is also notable for its broad compliance with the SQL standard, conforming 

to 170 out of 179 mandatory features [13].  

MySQL is an open-source relational database management system (RDBMS) that has 

grown to be one of the most popular RDBMSs [14] widely used in web applications, 

particularly as a result of having been included in the LAMP (Linux, Apache, MySQL, 

PHP/Python/Perl) stack.  
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2.2 Datalog 

Datalog is a declarative logical programming language. It is a Turing incomplete subset 

of Prolog. Datalog is known for its simplicity and expressiveness, particularly in 

representing complex queries involving recursion, which is a challenge in many 

traditional database systems [15]. 

A Datalog program is a list of rules. Rules are Horn clauses in the form of  

𝐻(𝑥, 𝑦) ←  𝐵(𝑥, 𝑦) 

where 𝐻, 𝐵 are relations (predicates). 𝐻 is also the head of the rule and is part of the 

intensional database (IDB), while 𝑏 is the body of the rule, and is part of the extensional 

database (EDB). The arguments of the relations are terms, which can either be variable 

or constant, in this case both are variable. Facts are derived from evaluating rules. Facts 

in themselves are rules without a body. 

Datalog has three main definitions for the semantics of its programs: model-theoretic, 

proof-theoretic and fixpoint semantics. This work focuses on fixpoint semantics because 

bottom-up evaluation is based directly on it [7]. Fixpoint semantics involves using an 

immediate consequence operator, which is a function that applies rules to derive new facts 

based on the conditions defined within those rules. The operator can be used to derive 

new data that conforms to the Datalog program’s logic. Recursive programs may be 

applied multiple times to accumulate results, before reaching the least fixpoint, meaning 

that no new facts can be derived. 

Bottom-up evaluation in Datalog is a strategy that repeatedly applies the immediate 

consequence operator starting from the base data (initial facts). This approach iteratively 

computes the results from the ground up until a point is reached where no new data 

emerges, indicating that a fixpoint has been reached. The naïve version of this strategy 

involves a lot of redundancy as it recomputes all facts, including those derived in previous 

steps, while the semi-naïve approach optimizes this by only considering new facts 

produced in the most recent step.  

For example, computing the transitive closure using the Datalog program: 

𝑇(𝑥, 𝑦) ←  𝐸(𝑥, 𝑦) 
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𝑇(𝑥, 𝑦) ←  𝑇(𝑥, 𝑧), 𝐸(𝑧, 𝑦) 
 

 

We initialize relation T with the edges from E with 𝑇0 ← 𝐸, thus evaluating the first rule. 

To evaluate the (𝑖 + 1) iteration, we compute the following: 

𝑇𝑖+1 ← Π𝑥,𝑦(𝑇𝑖 ⋈ 𝐸) 

The computation reaches the fixpoint when 𝑇𝑖+1 = 𝑇𝑖, which means that no new facts 

were derived last iteration. In a semi-naïve implementation, we maintain a delta relation 

Δ𝑇𝑖 = 𝑇𝑖 − Δ𝑇𝑖−1 where we store the results of the 𝑖-th iteration only. In this case, we 

the (𝑖 + 1) iteration is evaluated as 𝑇𝑖+1 ← Π𝑥,𝑦(Δ𝑇𝑖 ⋈ 𝐸)   [16]. 

A Datalog reasoner has three primary functions: 

1. Parsing. The reasoner takes a Datalog program as input, which consists of a set of 

rules and possibly some facts. The reasoner parses these rules to understand the 

logical implications they represent. 

2. Rule evaluation. The core functionality of a Datalog reasoner is to evaluate these 

rules. It applies logical inference based on the rules provided to derive new facts 

from given facts. This is often done using various evaluation strategies like naive, 

semi-naive, or magic sets, depending on the implementation and the specific 

requirements of the application. 

3. Query resolution. In addition to rule evaluation, a Datalog reasoner can answer 

queries about the data. These queries are answered by checking whether data 

derived or existing within the database satisfies the query conditions.  

2.3 SQL to Datalog Translation 

High-level programming language source code needs to be translated into machine 

language that the computer's processor can understand. This translation can happen in 

two main ways: through compilation or through interpretation. 

An interpreter is a program that directly executes instructions written in a programming 

language without requiring them to have been compiled into a machine language 

program.  
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An interpreter parses the source code of a program written in a high-level programming 

language statement by statement. Interpreted source code is platform independent, 

assuming that the interpreter itself is compiled for the target platform. 

Writing recursive queries in SQL, particularly with extensions such as Common Table 

Expressions (CTEs), can be complex and verbose as it requires explicit definition of both 

the anchor and recursive parts within the CTE. SQL's recursive capabilities are not as 

inherently integrated as in Datalog, leading to potential errors and cumbersome 

constructions in complex recursion scenarios. In contrast, Datalog naturally supports 

recursion through its syntax and semantics, allowing recursive queries to be expressed 

more succinctly and declaratively. Datalog's execution engines are specifically optimized 

for recursive operations, potentially offering more efficient query processing than SQL 

databases where recursion is not a primary design focus. 

Terry is a Datalog to SQL interpreter that translates Datalog programs into SQL 

statements that can be executed on traditional relational database management systems. 

This translation allows the powerful, declarative querying capabilities of Datalog to be 

applied to structured data stored in SQL databases. Section 4 presents its architecture and 

implementation in detail. 

In general, the first step in interpreting Datalog into SQL is parsing the input Datalog 

program. This involves breaking down the logical rules and queries written in Datalog 

into a format that the interpreter can understand. This process checks the syntax of the 

Datalog program for correctness and then constructs an internal representation of the 

program.  

Once parsed, the program needs to be evaluated in the correct order, which requires 

sorting its rules based on a dependency analysis. The executed rules must be translated 

into an intermediary format that has a close relationship with SQL, and this thesis utilizes 

the Select-Project-Join (SPJ)-stack to achieve that. Once an instruction stack based on the 

rule is created, the relational algebra instructions can be easily interpreted in the context 

of SQL. Afterwards, the results of the evaluation are materialized by the interpreter, 

which completes one iteration of the program. 
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An interpreter that could transform a Datalog program to a SQL query would allow us to 

make use of complex recursive queries without having to deal with the verbosity of such 

queries in SQL. 

Python is an interpreted high-level programming language, where the emphasis is put on 

having readable, and therefore more maintainable, source code [17]. Due to this, Python 

has been in the recent years been considered to be the most popular programming 

language [18], and therefore has a large developer community and a diverse selection of 

libraries and applications available through its Python Package Index (PyPi). 

SQLAlchemy is an open-source SQL toolkit and Object-Relational Mapping (ORM) 

system for Python, designed to facilitate high-level interaction between Python programs 

and databases using SQL language constructs. The library abstracts common database 

interactions, allowing developers to write Python code instead of SQL to create, read, 

update, and delete data and schemas in their database. It supports multiple database 

engines, including PostgreSQL, MySQL, and SQLite, providing a consistent interface to 

manage database operations across different types of databases. [19]. 

SQLGlot is an open-source Python library designed to parse and transform SQL into 

various dialects. It enables the conversion of SQL queries from one dialect to another, 

supporting multiple database platforms like PostgreSQL, MySQL, and SQLite, thus 

facilitating cross-database compatibility and migration efforts. Additionally, SQLGlot 

offers features for optimizing and generating SQL queries [20].  

  



19 

3 Terry 

Terry owes its name to P. D. Terry, who pitched a comprehensive way to envision 

interpretation as a syntax-directed processing unit [21]. A core feature of Terry, rule 

evaluation, uses a similar approach to parse Datalog rules into an intermediate form of an 

SPJ stack, which is then translated into SQL statements. The source code is available at 

the author’s GitHub page: https://github.com/edvardpaas/pyterry. 

3.1 Architecture 

The interpreter utilizes a strategy of bottom-up evaluation, which means iteratively 

applying the rules until no more new facts are derived. As the interpreter utilizes semi-

naïve evaluation, rule execution happens using all the facts produced so far. For example, 

computing the transitive closure using the Datalog program [16]: 

T(x, y) <- E(x, y) 
T(x, y) <- T(x, z), E(z, y) 

 

We would initialize relation T with the edges from E with 𝑇0 ← 𝐸, thus evaluating the 

nonrecursive program. To compute the (𝑖 + 1)  iteration, we compute the following: 

𝑇𝑖+1 ← 𝜋𝑥,𝑦(𝑇𝑖 ⋈ 𝐸) 

The computation reaches the fixpoint when 𝑇𝑖+1 = 𝑇𝑖, which means that no new facts 

were derived last iteration [16]. 

The language chosen to implement the compiler is Python (3.12), as it possessed the best 

selection of libraries and documentation to make the development faster. Namely, a 

library called SQLGlot allows easily to build SQL statements and specify a dialect to 

output them in. The wide selection of dialects compared to other similar engines in other 

languages made it the most attractive module to use. [20] 

The code was developed using test-driven development and object-oriented design 

principles. The interpreter is sectioned into classes that have minimal responsibilities, and 

different database engines are covered by integration tests. 
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This section describes the codebase, including the documentation and unit tests of the 

Naïve compiler. It consists of the Datalog library, relational algebra instruction stack, 

Datalog rule evaluator, Datalog program splitting and sorting, and the Naïve compiler 

class. The code is deliberately commented to be self-documenting alongside the unit tests. 

Terry’s functionality can be abstracted into three primary components: Datalog Parser, 

Program Materializer, and the Rule Evaluator. Terry makes use of a shared connection 

pool between all its components, all of which need to interact with the SQL database. 

This section will provide an overview for each component. See Figure 1 for the general 

architecture of the interpreter. 

 

Figure 1. Architecture of Terry 

 

3.2 Datalog Parser 

The aim of the parser is to take an input in the form of a Datalog program, process it and 

prepare the database for materializing newly derived facts and rule evaluation (activity 

diagram of the algorithm on Figure 2). It achieves this by splitting the program into 

nonrecursive and recursive parts and deriving delta programs from them, sorting the 
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recursive delta program, establishing the connection with the database, and initializing it 

with delta relation and evaluation result tables. 

 

 

Figure 2. Datalog Parser Activity Diagram 

 

In order to parse a Datalog program, we need a way to operate with Datalog concepts in 

the interpreter. This was accomplished by creating a library, derived from Micro Datalog, 

which provides a structured and type-safe way to represent and manipulate Datalog 

constructs: programs, rules, atoms and terms. The class model of the Datalog library is 

depicted by Figure 3.  
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Figure 3. Datalog Library Class Model 

The connection pool is created using SQLAlchemy, and this is propagated to rest of the 

interpreter’s components. The interpreter allows the user to choose the database engine, 

and currently supports SQLite, DuckDB, Postgres, MySQL. 

Delta relation and rule evaluation result tables are used by delta programs, and the 

interpreter assumes that these tables are used solely for the purpose of program 

evaluation, meaning that it takes responsibility for creating and dropping them when 

necessary. 

Delta programs are Datalog programs where IDB relations, i.e. relations that appear in 

the head of the program’s rules, are replaced with delta relations. The transformation of 

a program into a delta program entails swapping the IDB relation table name with the 

equivalent delta relation table name created prior.  

For example, a simple program to insert all tuples of one relation into another, and 

assuming the extensional database containing the relation 𝐸 has been updated with new 

facts. 

𝑇(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦) 

Gets transformed into 

Δ𝐸(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦) 

Δ𝑇(𝑥, 𝑦) ← Δ𝐸(𝑥, 𝑦) 

Note that in this case the body relation 𝐸 has also been deltafied, due to it containing new 

data that needs to be processed. 
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Program splitting needs to occur in order to separate recursive rules from nonrecursive 

ones. This is important as nonrecursive rules need to be run only once and sequentially. 

Splitting means creating two programs: recursive and nonrecursive, and filling them with 

rules from the original. Recursive rules are rules which contain the IDB relation (head) 

inside the body.  

After splitting, the nonrecursive program needs to be sorted according to the dependencies 

between the rules. A sorted program is a Datalog program, where rules are executed in a 

sequential order without violating a relational dependency. A relation is dependent on 

another when a rule 𝑟2 has an EDB relation, which is present in the head of another rule 

𝑟1,then means that we must first derive the facts from rule 𝑟1before evaluating 𝑟2. 

For example, in the program 

𝑟1: 𝑟1(𝑥, 𝑦) ∶ − 𝑟0(𝑥, 𝑦) 

𝑟2: 𝑟2(𝑥, 𝑦) ∶ − 𝑟1(𝑥, 𝑦) 

From code nr x, we can clearly see that 𝑟2 depends on 𝑟1 to be evaluated, which means 

that 𝑟1 must be evaluated first. There is also 𝑟0, which is an independent relation. 

Sorting a Datalog program requires generating a rule dependency graph and stratifying it. 

A dependency graph is a directional graph, where rules are represented by nodes, and 

edges imply a dependency of the source rule on the destination rule, where the body of 

the source rule contains a relation name, or the symbol, which is present in another rule’s 

head. 

A strongly connected component is a maximal subgraph in which any vertex is 

reachable from any other vertex within the same component. Essentially, for every pair 

of vertices 𝑢 and 𝑣 in a strongly connected component, there exists a directed path from 

𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.  

This dependency graph needs to be stratified into strongly connected components using 

an appropriate algorithm, such as Kosaraju’s algorithm. The strongly connected 

components in this context are sets of dependent rules that serve as the basis for the 

evaluation order. Finally, the sets are merged into a program and the order reversed as 
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required to handle the side-effect of Kosaraju’s algorithm. With this, the interpreter has 

the two programs necessary for complete evaluation. 

3.3 Program Materializer 

Materializing a program has to be done in order to store intermediate results, from where 

the next iterations of the program can continue. What sets semi-naïve implementation 

apart from naïve is that the interpreter materializes only the change in data since the last 

iteration, which significantly reduces the amount of processed data. Figure 4 presents the 

general algorithm for evaluating the entire program with materialization. 

In a SQL database, materialization occurs with the help of auxiliary tables that store 

intermediate results. After a rule in the program is evaluated, the results are stored in a 

temporary table, e.g. ΔΔ𝑇. The antijoin (implemented through SQL’s 𝐸𝑋𝐶𝐸𝑃𝑇) of this 

temporary table and the corresponding delta table Δ𝑇 is inserted into 𝑇, to be able to track 

whether fixpoint has been reached, and Δ𝑇, thereby starting a new increment for the next 

evaluation. In relational algebra terms, the operation sequence for materialization is: 

𝑇 ← ΔΔ𝑇 ⊳ Δ𝑇 

Δ𝑇 ← ΔΔ𝑇 ⊳ Δ𝑇 

Materialization in either recursive or nonrecursive variants is very similar, but with the 

key difference being that the nonrecursive program rules need to be evaluated 

sequentially, while recursive program rules are independent and can be evaluated in any 

order. As a result, evaluation and materialization of nonrecursive programs happens one 

rule at a time, while with recursive programs the interpreter evaluates all rules first, and 

then materializes the results in bulk. 
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Figure 4. Program Materializer Activity Diagram. 

 

Prior to program evaluation, the delta relation tables have to be initialized with the data 

contained by the respective original relation tables. The sorted nonrecursive program 

must be evaluated and materialized first, and then the recursive program is evaluated until 

no new facts can be derived. After evaluation, the remaining data in all delta relations 

needs to be drained into the respective original relations. 
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3.4 Rule Evaluator 

Rule Evaluator is responsible for evaluating a Datalog rule within a SQL database. It 

executes a sequence of instructions derived from a given rule, using the Select-Project-

Join stack, to produce the desired output in the database.  

SQL queries are generated using the SQLGlot library. However, the next iteration of the 

compiler will allow the user to choose a specific SQL dialect and database connection. 

This (Instruction Stack) library serves as a bridge between Datalog and SQL, allowing 

for the transformation of Datalog rules into SQL queries using relational algebra 

principles. It provides a structured representation of relational algebra operations as 

Instruction subclasses that are collected into a list (the Stack), which is later used to 

evaluate them in SQL by Rule Evaluator. 

The instruction stack module is split into several classes. The ProjectionInput class model 

is shown by Figure 5. 

 

Figure 5. ProjectInput Class Model 

 

The Instruction class model as depicted by Figure 6 shows different subclasses of 

instructions available to the Stack. 
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Figure 6. Instruction Class Model 

 

Finally, the Rule Evaluator class has a very simple design shown by Figure 7, where the 

primary functionality is in the step() function. This function is responsible for building 

and executing SQL statements according to the instruction stack of the evaluated rule. 

 

Figure 7. Rule Evaluator Class Model 

 

For the recursive part, it follows the bottom-up evaluation strategy as described in point 

2.1.  
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4 Experimental Results 

This section elaborates on how Terry was benchmarked. First, we introduce the programs 

and the datasets, and then we look at the performance observed during testing.  

The interpreter was benchmarked on a Google Cloud Compute Engine (16 vCPU, 128 

GB, Intel Broadwell platform) running a Debian 12 virtual machine. Performance was 

profiled using three graph datasets: a dense graph, a sparse graph and the Lehigh 

University Benchmark [22]. Every benchmark was allowed 100 test runs, where each data 

point was recorded at the successful execution of a SQL statement. The recorded variables 

were iteration number, statement type, evaluated rule (if applicable) and elapsed time of 

the SQL statement.  

4.1 Benchmark Programs and Datasets 

A dense graph is a graph where the number of edges is close to the maximum number of 

edges it can possibly have. For a simple graph with 𝑛 vertices, the maximum number of 

edges in a directed graph 𝑛 ⋅ (𝑛 − 1), which occurs when every vertex is connected to 

every other vertex. Therefore, a graph is considered dense if the number of edges |𝐸| 

approaches this maximum value. 

The dense graph dataset contains less data in the form of vertices and edges, but it is very 

interconnected, giving more data per iteration for the Datalog program. The expectation 

in this case is that the interpreter might struggle with an increased amount of data to 

process, but it has to do less hops overall. 

Conversely, a sparse graph has relatively few edges compared to the number of vertices 

|𝑉|, meaning most pairs of vertices are not directly connected. In other words, if  

|𝐸| ≪ 𝑛(𝑛 − 1) 

Then the graph is considered sparse.  
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The sparse graph dataset contains less data per iteration than the dense dataset, but has 

more iterations in total, which means that the interpreter will spend more time 

materializing fewer facts per hop. 

The following program was run on the dense and sparse graph datasets 

𝑇(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦) 

𝑇(𝑥, 𝑧) ← 𝑇(𝑥, 𝑦), 𝐸(𝑦, 𝑧) 
 

Figure 8. Datalog transitive closure program 

An RDF (Resource Description Framework) graph is a structured way of representing 

information about resources in the form of a graph. RDF is a foundational technology of 

the semantic web, which aims to make data on the internet machine-readable. RDF 

represents information using a set of triples, each consisting of a subject, a predicate, and 

an object. This structure is analogous to the basic sentence structure in natural language, 

where the subject and object represent the entities or concepts, and the predicate 

represents the relationship or property linking them. In RDF, a collection of such triples 

is typically visualized as a graph, where each triple forms an edge from a subject node to 

an object node, labeled by the predicate.  

The following program was run on the RDF dataset: 

𝑇(𝑠, 𝑝, 𝑜) ← 𝑅𝐷𝐹(𝑠, 𝑝, 𝑜) 

𝑇(𝑦, 0, 𝑥) ← 𝑇(𝑎, 3, 𝑥), 𝑇(𝑦, 𝑎, 𝑧) 

𝑇(𝑦, 0, 𝑥) ← 𝑇(𝑎, 4, 𝑥), 𝑇(𝑦, 𝑎, 𝑧) 

𝑇(𝑥, 2, 𝑧) ← 𝑇(𝑥, 2, 𝑦), 𝑇(𝑦, 2, 𝑧) 

𝑇(𝑥, 1, 𝑧) ← 𝑇(𝑥, 1, 𝑦), 𝑇(𝑦, 1, 𝑧) 

𝑇(𝑧, 0, 𝑦) ← 𝑇(𝑥, 1, 𝑦), 𝑇(𝑧, 0, 𝑥) 

𝑇(𝑥, 𝑏, 𝑦) ← 𝑇(𝑎, 2, 𝑏), 𝑇(𝑥, 𝑎, 𝑦) 
 

Figure 9. Datalog RDF program 

 

In total there are three perspectives from which the benchmarked data was analysed.  

1. The general performance of the interpreter among the tested database engines was 

measured by observing the time it took to evaluate a given program until reaching 

the fixed point. 
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2. Rule performance for each database engine. The goal was to capture the average 

execution time per rule for three specific computational rules evaluated across the 

four different database types. Each bar represents the average execution time for 

a given rule-database combination, measured in milliseconds. 

3. Comparing distribution of operations 

The central inquiry about the benchmark revolves around what impacts performance more 

significantly: a smaller number of large queries (dense dataset) or a higher volume of very 

small queries (sparse dataset).  

The evaluation of RDF data presents a unique case within this context. RDF is 

characterized by query scenarios that are significantly challenging, predominantly 

because each rule is recursive and typically requires only two iterations to complete. This 

scenario represents a "worst-case" in terms of query complexity and recursion. 

4.2 Overall Performance 

Figure 10 contains a set of density plots that visualize the evaluation speed of an 

interpreter across different database engines for three types of graph data: Dense, Sparse, 

and RDF. Each plot shows the distribution of execution times in milliseconds for each 

database type as it processes queries on these graph structures. 

Each plot displays the kernel density estimation (KDE) which is a way to estimate the 

probability density function of a random variable. The x-axis represents the time in 

milliseconds, and the y-axis represents the density. 
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Figure 10. Dense, Sparse and RDF Graph Evaluation Speed 

 

 

The variability in execution times can be seen with broader peaks for MySQL, which 

indicates less consistency in performance. Postgres appears to have an edge over the other 

database engines with dense graphs, consistently performing evaluation under 1000 ms. 

On the other extreme, MySQL is lagging far behind the others overall in every single 

dataset. DuckDB seems to handle the RDF graph the best out of four, with Postgres and 

SQLite being nearly even in their performance. We can also see an answer to our inquiry: 

it is clear that the sparse dataset turned out to be the most challenging, though, DuckDB 

appears to be performing well. It is also notable that both of the embedded databases 

outperform the others. 
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4.3 Rule Performance 

Before analysing the performance of rule evaluation, let us clarify the rules: 

0. 𝑑𝐸(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦) initializing nonrecursive rule that is run implicitly by the 

interpreter. 

1. 𝑑𝑇(𝑥, 𝑦) ←  𝑑𝐸(𝑥, 𝑦) nonrecursive rule that inserts all edges from 𝐸 into 𝑇. 

2. 𝑑𝑇(𝑥, 𝑧) ←  𝑇(𝑥, 𝑦), 𝑑𝐸(𝑦, 𝑧) nonrecursive rule which finds the first hop of TC. 

3. 𝑑𝑇(𝑥, 𝑧) ← 𝑑𝑇(𝑥, 𝑦), 𝐸(𝑦, 𝑧) recursive rule which finds connected nodes by 

connecting two different edges. 

In terms of rule performance, on Figure 11 we can see a couple of trends:   

• MySQL consistently shows the longest execution times across all rules, following 

the already established pattern. 

• Postgres generally exhibits the shortest execution times, when it comes to the 

dense dataset, but struggles more at the last rule of the sparse dataset, which is 

likely due to the heavier projection that occurs, as other databases seem to suffer 

a performance hit as well. 

• In the sparse dataset DuckDB appears to have a clear advantage over other 

database engines, likely due to its column-based ordering.  
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Figure 11. Dense (Top) and Sparse (Bottom) Graph Rule Performance 

 

When it comes to the RDF dataset on Figure 12, the graph indicates that while MySQL 

still struggles significantly, and with the nonrecursive rule especially, all databases 

manage recursive computations efficiently. The notable increase in execution time for 

later recursive rules across all databases suggests that these rules might be due to the 

growing number of derived facts. This increase appears to begin at rule Recursive_5 
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onward, and there is a gradual increase in execution times across all databases, peaking 

at Recursive_10, and going down significantly afterwards. 

 

Figure 12. RDF Graph Rule Performance 

 

 

4.4 Statement Type Performance 

On Figure 13 we can see a plot for each dataset, which shows the average execution time 

per statement type. In total, there are 5 types of statements. 

1. COMPILER_INIT operations initialize the tables before program evaluation. 

2. SPJ_PROJECT, SPJ_SELECT, SPJ_JOIN, SPJ_CLEAR are operations related to 

rule evaluation. 

3. MAT_NONREC, MAT_REC are operations that are responsible for materializing 

evaluation results. 
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4. DRAIN is the operation responsible for moving the last remaining facts from the delta 

relations into their respective original relations, and dropping the temporary delta 

tables. 

5. FACT_COUNT is responsible for counting rows inside a table. 

Some of the results are notable: 

• SQLite clearly seems to struggle with DDL statements responsible for dropping 

tables, seeing how disproportionate the amount of time is spent in SPJ_CLEAR. 

In addition, SQLite also appears to struggle relatively more with table creation 

statements under COMPILER_INIT. 

• In the case of sparse and RDF datasets, DuckDB did not appear to struggle with 

any particular operation, meaning that the performance effect that its columnar 

engine has is uniform across all operations. 

• In the sparse dataset, Postgres spends more time relative to others in 

SPJ_PROJECT and SPJ_JOIN, which could suggest that embedded databases 

perform better due to their close integration and serverless design, which means 

almost no latency between the database and the application. 
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Figure 13. Dense (Top), Sparse (Middle) and RDF (Bottom) Statement Type Performance 
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5 Conclusion 

In this thesis, we have explored the design, implementation, and performance evaluation 

of a Datalog to SQL interpreter, Terry. The primary motivation behind this endeavour 

was to enhance the ease of handling complex queries, especially recursive queries, which 

are naturally expressed in Datalog but often challenging to implement directly in SQL. 

The thesis was divided into three main components: the theoretical background, technical 

implementation of Terry, benchmarking and analysis of the results. 

The thesis introduced the concepts necessary to understand the theoretical background 

behind Terry. This involved explaining the fundamentals behind relational algebra and 

relational databases, SQL, Datalog and how deductive databases operate, as well as the 

basic idea behind Datalog evaluation. In the second part, we explained how a SQL-to-

Datalog interpreter works, showing the algorithms behind Datalog parsing, rule 

evaluation and program materialization. The third part dealt with profiling the 

performance and explaining the trends occurring in the performance of the different 

database engines. 

This thesis contributes to the field by providing concrete benchmarks on how different 

SQL database engines handle the evaluation of Datalog queries. Additionally, this work 

introduces a novel approach to Datalog query parsing in the form of the SPJ stack that 

could benefit researchers interested in this field. 

Finally, we can answer the research questions we posed in the beginning. 

1. Effect of Database Engine Choice on Performance 

Overall, the plots in section 4 provide a fairly concise representation of how each database 

handles graph-based queries, highlighting differences in performance that can inform 

future developments on the database selection. Namely, we can exclude MySQL from 
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further consideration due to its notably poor performance in all benchmarks. DuckDB 

was able to evaluate the sparse dataset, as well as the RDF graph, far more efficiently 

than its competitors. PostgreSQL did better with the dense dataset, but DuckDB may be 

a more versatile option when dealing with graph solving problems. 

2. Energy Efficiency of Terry’s implementation 

After seeing the interpreter work in runtime, we can see that the efficiency heavily 

depends on the database engine that it is attached to. We could approximate the efficiency 

in terms of energy consumption compared to other languages by looking at our results 

and comparing them to the energy efficiency of other programming languages [23]. 

Assuming an average ratio between energy (J) and time (ms) of 
0.040+0.046+0.014

3
= 0.033 

for Python according to the study, we can apply this ratio to the data we have gathered.  

On average, dense graph evaluation took 4208 ms on MySQL, which means that on 

average, a single transitive closure query will yield an energy amount of 𝐸𝑀𝑦𝑆𝑄𝐿 =

138.9 𝐽. Assuming a user base of 100 000 clients, who will do a hundred queries per day 

for a year, will yield about 58.7 metric tons of CO2 equivalent [24]. 

 From the same study we can calculate the average ratio between the energy consumption 

of Rust and Python, which is a factor of 
49.07:1793.46 +238.30:12784.09 +26.15:1061.41 

3
=

0.024, meaning that Rust is on average 42.5 times more energy efficient than Python. 

Doing this calculation for the rest of the graphs and database engines gives us an 

efficiency comparison between them in Table 1. 

Table 1. Metric tons of CO2 equivalent emitted annually by Terry and a hypothetical Rust implementation 

of Terry 

 Python     Rust    

  postgres duckdb sqlite mysql  postgres duckdb sqlite mysql 

Dense 11.93 17.68 23.41 58.71  0.29 0.42 0.56 1.41 

Sparse 183.22 19.83 92.73 829.4  4.4 0.48 2.23 19.91 

RDF 37.84 14.3 44.66 212.31  0.91 0.34 1.07 5.1 

 

To illustrate the point, using Rust would save us approximately 89 391 kilograms of coal 

annually. We can clearly see that an in-memory Rust implementation of Terry would have 
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a considerable environmental effect, and that future implementations should take this into 

account.
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