
Tallinn 2024

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Edvard Paas, 221490IABM

Terry, a Datalog to SQL Interpreter

Master's thesis

Supervisor: Sadok Ben Yahia,

PhD

 Bruno Rucy Carneiro

Alves De Lima, MSc

Tallinn 2024

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Edvard Paas, 221490IABM

Terry, Datalog-SQL interpretaator

Magistritöö

Juhendaja: Sadok Ben Yahia,

Professor

 Bruno Rucy Carneiro

Alves De Lima, MSc

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Edvard Paas

12.05.2024

4

Abstract

This thesis focuses on the development and benchmarking of a Datalog to SQL

interpreter, designed to integrate the logic programming language Datalog with SQL, the

predominant language used in relational database management systems. Datalog is used

for its ability to succinctly express complex recursive queries, which are typically verbose

and complicated in SQL. By integrating Datalog with SQL, this work aims to leverage

the data manipulation capabilities of SQL with the advantages offered by Datalog,

facilitating more efficient and expressive data querying. The primary aim of this master’s

thesis is to develop a Datalog to SQL interpreter and to subsequently assess its practicality

and performance across various database engines. The interpreter is benchmarked to

evaluate its efficiency in translating Datalog queries into SQL.

This thesis is written in English and is 42 pages long, including 6 chapters, 13 figures and

1 table.

5

Annotatsioon

Terry, Datalog-SQL interpretaator

See lõputöö keskendub loogilise programmeerimiskeele Datalog integreerimiseks SQL-

iga, mida valdavalt kasutatakse relatsioonilistes andmebaasihaldussüsteemides, läbi

Datalog-SQL interpretaatori arendamise ja jõudluse testimise. Datalogi kasutatakse selle

võime tõttu lühidalt väljendada keerulisi rekursiivseid päringuid, mis on SQL-is tavaliselt

keerulised. Integreerides Datalogi SQL-iga, on selle töö eesmärk kasutada SQL-i

andmetega manipuleerimise võimalusi koos Datalogi pakutavate eelistega, hõlbustades

tõhusamat ja väljendusrikkamat andmepäringut. Selle magistritöö esmane eesmärk on

välja töötada Datalog to SQL interpretaator ning seejärel hinnata selle praktilisust ja

toimivust erinevates andmebaasimootorites. Osa tööst on ka uurida interpretaatori

jõudlust, et hinnata selle tõhusust Datalogi päringute SQL-i käivitamisel.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 42 leheküljel, 6 peatükki, 13

joonist, 1 tabelit.

6

List of abbreviations and terms

RDBMS Relational database management system

SQL Structured Query Language

ACID Atomicity, consistency, isolation, durability

IDB Intensional database

EDB Extensional database

LAMP Linux, Apache, MySQL, PHP

CTE Common Table Expression

PyPi Python Package Index

ORM Object-Relational Mapping

SPJ Select-Project-Join

vCPU Virtual Central Processing Unit

RDF Resource Description Framework

KDE Kernel density estimation

DDL Data Definition Language

7

Table of contents

1 Introduction ... 10

1.1 Research Questions... 11

1.2 Contributions .. 11

2 Background .. 12

2.1 Relational Databases ... 12

2.1.1 Embedded Databases ... 14

2.1.2 Client-Server Architecture Databases ... 14

2.2 Datalog.. 15

2.3 SQL-to-Datalog Translation ... 16

3 Terry .. 19

3.1 Architecture .. 19

3.2 Datalog Parser... 20

3.3 Program Materializer .. 24

3.4 Rule Evaluator .. 26

4 Experimental Results ... 28

4.1 Benchmark Programs and Datasets .. 28

4.2 Overall Performance ... 30

4.3 Rule Performance ... 32

4.4 Statement Type Performance .. 34

5 Conclusion ... 37

6 References ... 40

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 42

8

List of figures

Figure 1. Architecture of Terry... 20

Figure 2. Datalog Parser Activity Diagram .. 21

Figure 3. Datalog Library Class Model .. 22

Figure 4. Program Materializer Activity Diagram. .. 25

Figure 5. ProjectInput Class Model .. 26

Figure 6. Instruction Class Model .. 27

Figure 7. Rule Evaluator Class Model ... 27

Figure 8. Datalog transitive closure program ... 29

Figure 9. Datalog RDF program ... 29

Figure 10. Dense, Sparse and RDF Graph Evaluation Speed .. 31

Figure 11. Dense (Top) and Sparse (Bottom) Graph Rule Performance........................ 33

Figure 12. RDF Graph Rule Performance .. 34

Figure 13. Dense (Top), Sparse (Middle) and RDF (Bottom) Statement Type

Performance .. 36

9

List of tables

Table 1. Metric tons of CO2 equivalent emitted annually by Terry and a hypothetical

Rust implementation of Terry... 38

10

1 Introduction

Datalog, as a declarative logic programming language, has regained prominence in the

realm of database querying and programming languages due to its expressive power and

simplicity. The relevance of Datalog extends beyond traditional database queries; its

ability to efficiently handle recursive queries and perform complex pattern matching

makes it invaluable in areas requiring sophisticated data manipulation and inference

capabilities, such as artificial intelligence [1], knowledge representation, and data

integration [2].

The utility of Datalog manifests across various use cases: in the realm of big data, Datalog

is used for large-scale data processing [3], leveraging its recursive capabilities to navigate

and analyse deeply nested or hierarchical data structures like social networks [4],

genealogical trees [5]. Furthermore, in cybersecurity, Datalog helps in the formulation

and enforcement of security policies and access control decisions [6], where its rules can

succinctly express complex conditions and relationships among data entities.

Despite its strengths, there remains a gap in the integration of Datalog into mainstream

application development, primarily due to the lack of robust tools that can translate

Datalog’s theoretical advantages into practical, deployable solutions in standard relational

database management systems (RDBMS). Many existing systems either do not support

recursive queries natively or do so with significant limitations. This demonstrates the need

for an interface between classical relational database systems and a logical programming

language with an accessible recursion syntax such as Datalog. Developing an interpreter

that can efficiently translate Datalog queries into optimized SQL should broaden

Datalog’s acceptance in the industry. Addressing this gap forms the core challenge for

this research.

11

1.1 Research Questions

This thesis aims to answer two research questions:

1. How would the interpreter’s performance be affected by different database

engines, including SQLite, PostgreSQL, MySQL, and DuckDB? This aspect

is important for understanding how different database engines handle expected

loads from a Datalog program.

2. How efficient would such a Python implementation be compared to other

languages? In order to gauge whether a solution should instead be developed in

a different programming language, it would be valuable to analyse the efficiency

of the current solution in terms of estimated energy consumption.

1.2 Contributions

Our contribution to this field with the development of Terry includes:

1. Implementing a Datalog to SQL interpreter in Python, including a Datalog parser,

rule evaluator and program materializer.

2. Added integration for several popular databases like SQLite, PostgreSQL,

MySQL, DuckDB.

3. The modular design which allows future integration of other SQL database

engines in the future.

4. Benchmarks empirically evaluate Terry’s effectiveness and performance; I

conducted comprehensive benchmarks. These tests are designed to measure the

interpreter's execution speed when operating across the supported databases under

various datasets and query complexities.

Section 2 gives a background overview of the theory behind relational databases and

SQL, Datalog and deductive databases, and the concepts behind interpreters and

translating Datalog to SQL. Section 3 describes the conceptual background behind

Terry, the software architecture and implementation. Section 4 explains the datasets and

Datalog programs used in the benchmarks, and discusses its results. Section 5 draws

conclusions based on the completed work.

12

2 Background

This section offers a brief theoretical overview of the three fundamental pillars that this

work relies on: the relational model and the SQL databases that implement it, Datalog

and the concepts behind interpreting Datalog into SQL. The aim is to introduce the ideas

which are integral to understanding how Terry functions.

In the spirit of transparency, we are disclosing that AI assistance was used in this chapter.

Its role was to better our understanding of the concepts necessary for grasping the thesis,

as well as to partially aid in improving the writing process.

2.1 Relational Databases

Relational algebra is a theory that defines an algebraic structure to model data. It can be

seen as a set of rules to manipulate relations, which are sets of tuples 𝑆

𝑆 = {(𝑠𝑖1, 𝑠𝑖2, … , 𝑠𝑖𝑛| 𝑖 ∈ 1 … 𝑚}

with a fixed-arity of 𝑛 and containing 𝑚 number of rows.

Relational algebra defines operations that are used to manipulate data, such as selection,

projection, cartesian product, union, etc. However, only the relevant operations will be

introduced.

Selection is used to filter rows from a relation based on a specified condition. Given a

relation 𝑅, and a condition 𝜙 (for example, 𝐴 = 5), selection operation selects all tuples

𝑡 in 𝑅 where 𝜙 holds true:

𝜎𝐴=5(𝑅) = {𝑡 | 𝑡 ∈ 𝑅 ∧ 𝑡. 𝐴 = 5}

This selection corresponds to a SQL SELECT * FROM R WHERE A=5 statement.

13

Projection is used to select certain columns from a relation, reducing the number of

attributes in the result set to only those specified. It is denoted by Π𝑎1,…,𝑎𝑛
(𝑅) , where

𝑎1, … , 𝑎𝑛 is a list of attributes kept in the result. The result of a projection is a relation

that contains tuples stripped of any attributes not specified in the project list, e.g.,

Π𝐴,𝐵(𝑅)

produces a new relation with only the columns 𝐴 and 𝐵 from the relation 𝑅. An analogical

statement in SQL is SELECT A, B FROM R.

Equijoin (Join) is a join operation that combines tuples from two relations based on

equality conditions between specified attributes of those relations. Equijoin merges rows

from two relations, when the specified attributes have matching values. The syntax can

be expressed as

𝑅 ⋈𝐴=𝐵 𝑆

where 𝑅 and 𝑆 are relations, and 𝐴 and 𝐵 are attribute names from 𝑅 and 𝑆 respectively.

The condition 𝐴 = 𝐵 specifies that only those tuples in the resulting relation should be

included where the value of attribute 𝐴 in relation 𝑅 matches the value of attribute 𝐵 in

relation 𝑆.

Relational database is a database that uses the relational model to describe data as named

relations of labelled values. For example, a relation to describe a graph’s set of edges

could be written as

𝐸𝑑𝑔𝑒: {< (𝑆𝑟𝑐𝑁𝑜𝑑𝑒, 1), (𝐷𝑠𝑡𝑁𝑜𝑑𝑒, 2) >, < (𝑆𝑟𝑐𝑁𝑜𝑑𝑒, 2), (𝐷𝑠𝑡𝑁𝑜𝑑𝑒, 3) >}

where the relation’s name is 𝐸𝑑𝑔𝑒, commonly referred to as a table, and tuples of labelled

value pairs < (𝑆𝑟𝑐𝑁𝑜𝑑𝑒, 1) … > are seen as rows of a table. [7].

SQL (Structured Query Language) is the standard language for interacting with relational

databases [8]. SQL dialects refer to variations of the SQL language that are adapted and

extended by different database systems like MySQL, PostgreSQL, SQLite or DuckDB.

Each dialect has its unique features and syntax nuances, which makes the goal of creating

a compatible interpreter more challenging.

14

2.1.1 Embedded Databases

An embedded database is integrated into the application that uses it, rather than being a

standalone service. The demand for embedded databases has grown significantly since

the rise in popularity of embedded devices, whose applications tend to be of limited scope

and do not require an enterprise-level relational database to manage its data [9]. Many

applications are not complex and require only a single database to satisfy their storage

needs [10]. This kind of database has the benefit of easier deployment, as it typically

utilizes the device’s memory or disk space for storage.

SQLite is a library, which implements a self-contained SQL database engine. The lack

of having to manage a dedicated connection to a separate, possibly remote, process makes

it easier to deploy, as the database instance exists within the same memory space as the

application. [11] It also offers exceptional portability, as the only requirements for its use

are a couple of routines from the standard C library.

DuckDB is an embedded database meant for analytical purposes. It is similar to SQLite,

except that it uses a columnar query execution engine. This greatly reduces overhead

present in traditional systems such as SQLite which process each row sequentially [12].

2.1.2 Client-Server Architecture Databases

PostgreSQL is an open-source object-relational database system that extends SQL with

advanced features for handling complex data workloads. Originating from the

POSTGRES project at the University of California, Berkeley in 1986, it has evolved over

35 years into a highly respected platform known for its architecture, reliability, and rich

feature set including ACID compliance since 2001 and third-party extensions.

PostgreSQL is also notable for its broad compliance with the SQL standard, conforming

to 170 out of 179 mandatory features [13].

MySQL is an open-source relational database management system (RDBMS) that has

grown to be one of the most popular RDBMSs [14] widely used in web applications,

particularly as a result of having been included in the LAMP (Linux, Apache, MySQL,

PHP/Python/Perl) stack.

15

2.2 Datalog

Datalog is a declarative logical programming language. It is a Turing incomplete subset

of Prolog. Datalog is known for its simplicity and expressiveness, particularly in

representing complex queries involving recursion, which is a challenge in many

traditional database systems [15].

A Datalog program is a list of rules. Rules are Horn clauses in the form of

𝐻(𝑥, 𝑦) ← 𝐵(𝑥, 𝑦)

where 𝐻, 𝐵 are relations (predicates). 𝐻 is also the head of the rule and is part of the

intensional database (IDB), while 𝑏 is the body of the rule, and is part of the extensional

database (EDB). The arguments of the relations are terms, which can either be variable

or constant, in this case both are variable. Facts are derived from evaluating rules. Facts

in themselves are rules without a body.

Datalog has three main definitions for the semantics of its programs: model-theoretic,

proof-theoretic and fixpoint semantics. This work focuses on fixpoint semantics because

bottom-up evaluation is based directly on it [7]. Fixpoint semantics involves using an

immediate consequence operator, which is a function that applies rules to derive new facts

based on the conditions defined within those rules. The operator can be used to derive

new data that conforms to the Datalog program’s logic. Recursive programs may be

applied multiple times to accumulate results, before reaching the least fixpoint, meaning

that no new facts can be derived.

Bottom-up evaluation in Datalog is a strategy that repeatedly applies the immediate

consequence operator starting from the base data (initial facts). This approach iteratively

computes the results from the ground up until a point is reached where no new data

emerges, indicating that a fixpoint has been reached. The naïve version of this strategy

involves a lot of redundancy as it recomputes all facts, including those derived in previous

steps, while the semi-naïve approach optimizes this by only considering new facts

produced in the most recent step.

For example, computing the transitive closure using the Datalog program:

𝑇(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦)

16

𝑇(𝑥, 𝑦) ← 𝑇(𝑥, 𝑧), 𝐸(𝑧, 𝑦)

We initialize relation T with the edges from E with 𝑇0 ← 𝐸, thus evaluating the first rule.

To evaluate the (𝑖 + 1) iteration, we compute the following:

𝑇𝑖+1 ← Π𝑥,𝑦(𝑇𝑖 ⋈ 𝐸)

The computation reaches the fixpoint when 𝑇𝑖+1 = 𝑇𝑖, which means that no new facts

were derived last iteration. In a semi-naïve implementation, we maintain a delta relation

Δ𝑇𝑖 = 𝑇𝑖 − Δ𝑇𝑖−1 where we store the results of the 𝑖-th iteration only. In this case, we

the (𝑖 + 1) iteration is evaluated as 𝑇𝑖+1 ← Π𝑥,𝑦(Δ𝑇𝑖 ⋈ 𝐸) [16].

A Datalog reasoner has three primary functions:

1. Parsing. The reasoner takes a Datalog program as input, which consists of a set of

rules and possibly some facts. The reasoner parses these rules to understand the

logical implications they represent.

2. Rule evaluation. The core functionality of a Datalog reasoner is to evaluate these

rules. It applies logical inference based on the rules provided to derive new facts

from given facts. This is often done using various evaluation strategies like naive,

semi-naive, or magic sets, depending on the implementation and the specific

requirements of the application.

3. Query resolution. In addition to rule evaluation, a Datalog reasoner can answer

queries about the data. These queries are answered by checking whether data

derived or existing within the database satisfies the query conditions.

2.3 SQL to Datalog Translation

High-level programming language source code needs to be translated into machine

language that the computer's processor can understand. This translation can happen in

two main ways: through compilation or through interpretation.

An interpreter is a program that directly executes instructions written in a programming

language without requiring them to have been compiled into a machine language

program.

17

An interpreter parses the source code of a program written in a high-level programming

language statement by statement. Interpreted source code is platform independent,

assuming that the interpreter itself is compiled for the target platform.

Writing recursive queries in SQL, particularly with extensions such as Common Table

Expressions (CTEs), can be complex and verbose as it requires explicit definition of both

the anchor and recursive parts within the CTE. SQL's recursive capabilities are not as

inherently integrated as in Datalog, leading to potential errors and cumbersome

constructions in complex recursion scenarios. In contrast, Datalog naturally supports

recursion through its syntax and semantics, allowing recursive queries to be expressed

more succinctly and declaratively. Datalog's execution engines are specifically optimized

for recursive operations, potentially offering more efficient query processing than SQL

databases where recursion is not a primary design focus.

Terry is a Datalog to SQL interpreter that translates Datalog programs into SQL

statements that can be executed on traditional relational database management systems.

This translation allows the powerful, declarative querying capabilities of Datalog to be

applied to structured data stored in SQL databases. Section 4 presents its architecture and

implementation in detail.

In general, the first step in interpreting Datalog into SQL is parsing the input Datalog

program. This involves breaking down the logical rules and queries written in Datalog

into a format that the interpreter can understand. This process checks the syntax of the

Datalog program for correctness and then constructs an internal representation of the

program.

Once parsed, the program needs to be evaluated in the correct order, which requires

sorting its rules based on a dependency analysis. The executed rules must be translated

into an intermediary format that has a close relationship with SQL, and this thesis utilizes

the Select-Project-Join (SPJ)-stack to achieve that. Once an instruction stack based on the

rule is created, the relational algebra instructions can be easily interpreted in the context

of SQL. Afterwards, the results of the evaluation are materialized by the interpreter,

which completes one iteration of the program.

18

An interpreter that could transform a Datalog program to a SQL query would allow us to

make use of complex recursive queries without having to deal with the verbosity of such

queries in SQL.

Python is an interpreted high-level programming language, where the emphasis is put on

having readable, and therefore more maintainable, source code [17]. Due to this, Python

has been in the recent years been considered to be the most popular programming

language [18], and therefore has a large developer community and a diverse selection of

libraries and applications available through its Python Package Index (PyPi).

SQLAlchemy is an open-source SQL toolkit and Object-Relational Mapping (ORM)

system for Python, designed to facilitate high-level interaction between Python programs

and databases using SQL language constructs. The library abstracts common database

interactions, allowing developers to write Python code instead of SQL to create, read,

update, and delete data and schemas in their database. It supports multiple database

engines, including PostgreSQL, MySQL, and SQLite, providing a consistent interface to

manage database operations across different types of databases. [19].

SQLGlot is an open-source Python library designed to parse and transform SQL into

various dialects. It enables the conversion of SQL queries from one dialect to another,

supporting multiple database platforms like PostgreSQL, MySQL, and SQLite, thus

facilitating cross-database compatibility and migration efforts. Additionally, SQLGlot

offers features for optimizing and generating SQL queries [20].

19

3 Terry

Terry owes its name to P. D. Terry, who pitched a comprehensive way to envision

interpretation as a syntax-directed processing unit [21]. A core feature of Terry, rule

evaluation, uses a similar approach to parse Datalog rules into an intermediate form of an

SPJ stack, which is then translated into SQL statements. The source code is available at

the author’s GitHub page: https://github.com/edvardpaas/pyterry.

3.1 Architecture

The interpreter utilizes a strategy of bottom-up evaluation, which means iteratively

applying the rules until no more new facts are derived. As the interpreter utilizes semi-

naïve evaluation, rule execution happens using all the facts produced so far. For example,

computing the transitive closure using the Datalog program [16]:

T(x, y) <- E(x, y)
T(x, y) <- T(x, z), E(z, y)

We would initialize relation T with the edges from E with 𝑇0 ← 𝐸, thus evaluating the

nonrecursive program. To compute the (𝑖 + 1) iteration, we compute the following:

𝑇𝑖+1 ← 𝜋𝑥,𝑦(𝑇𝑖 ⋈ 𝐸)

The computation reaches the fixpoint when 𝑇𝑖+1 = 𝑇𝑖, which means that no new facts

were derived last iteration [16].

The language chosen to implement the compiler is Python (3.12), as it possessed the best

selection of libraries and documentation to make the development faster. Namely, a

library called SQLGlot allows easily to build SQL statements and specify a dialect to

output them in. The wide selection of dialects compared to other similar engines in other

languages made it the most attractive module to use. [20]

The code was developed using test-driven development and object-oriented design

principles. The interpreter is sectioned into classes that have minimal responsibilities, and

different database engines are covered by integration tests.

20

This section describes the codebase, including the documentation and unit tests of the

Naïve compiler. It consists of the Datalog library, relational algebra instruction stack,

Datalog rule evaluator, Datalog program splitting and sorting, and the Naïve compiler

class. The code is deliberately commented to be self-documenting alongside the unit tests.

Terry’s functionality can be abstracted into three primary components: Datalog Parser,

Program Materializer, and the Rule Evaluator. Terry makes use of a shared connection

pool between all its components, all of which need to interact with the SQL database.

This section will provide an overview for each component. See Figure 1 for the general

architecture of the interpreter.

Figure 1. Architecture of Terry

3.2 Datalog Parser

The aim of the parser is to take an input in the form of a Datalog program, process it and

prepare the database for materializing newly derived facts and rule evaluation (activity

diagram of the algorithm on Figure 2). It achieves this by splitting the program into

nonrecursive and recursive parts and deriving delta programs from them, sorting the

21

recursive delta program, establishing the connection with the database, and initializing it

with delta relation and evaluation result tables.

Figure 2. Datalog Parser Activity Diagram

In order to parse a Datalog program, we need a way to operate with Datalog concepts in

the interpreter. This was accomplished by creating a library, derived from Micro Datalog,

which provides a structured and type-safe way to represent and manipulate Datalog

constructs: programs, rules, atoms and terms. The class model of the Datalog library is

depicted by Figure 3.

22

Figure 3. Datalog Library Class Model

The connection pool is created using SQLAlchemy, and this is propagated to rest of the

interpreter’s components. The interpreter allows the user to choose the database engine,

and currently supports SQLite, DuckDB, Postgres, MySQL.

Delta relation and rule evaluation result tables are used by delta programs, and the

interpreter assumes that these tables are used solely for the purpose of program

evaluation, meaning that it takes responsibility for creating and dropping them when

necessary.

Delta programs are Datalog programs where IDB relations, i.e. relations that appear in

the head of the program’s rules, are replaced with delta relations. The transformation of

a program into a delta program entails swapping the IDB relation table name with the

equivalent delta relation table name created prior.

For example, a simple program to insert all tuples of one relation into another, and

assuming the extensional database containing the relation 𝐸 has been updated with new

facts.

𝑇(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦)

Gets transformed into

Δ𝐸(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦)

Δ𝑇(𝑥, 𝑦) ← Δ𝐸(𝑥, 𝑦)

Note that in this case the body relation 𝐸 has also been deltafied, due to it containing new

data that needs to be processed.

23

Program splitting needs to occur in order to separate recursive rules from nonrecursive

ones. This is important as nonrecursive rules need to be run only once and sequentially.

Splitting means creating two programs: recursive and nonrecursive, and filling them with

rules from the original. Recursive rules are rules which contain the IDB relation (head)

inside the body.

After splitting, the nonrecursive program needs to be sorted according to the dependencies

between the rules. A sorted program is a Datalog program, where rules are executed in a

sequential order without violating a relational dependency. A relation is dependent on

another when a rule 𝑟2 has an EDB relation, which is present in the head of another rule

𝑟1,then means that we must first derive the facts from rule 𝑟1before evaluating 𝑟2.

For example, in the program

𝑟1: 𝑟1(𝑥, 𝑦) ∶ − 𝑟0(𝑥, 𝑦)

𝑟2: 𝑟2(𝑥, 𝑦) ∶ − 𝑟1(𝑥, 𝑦)

From code nr x, we can clearly see that 𝑟2 depends on 𝑟1 to be evaluated, which means

that 𝑟1 must be evaluated first. There is also 𝑟0, which is an independent relation.

Sorting a Datalog program requires generating a rule dependency graph and stratifying it.

A dependency graph is a directional graph, where rules are represented by nodes, and

edges imply a dependency of the source rule on the destination rule, where the body of

the source rule contains a relation name, or the symbol, which is present in another rule’s

head.

A strongly connected component is a maximal subgraph in which any vertex is

reachable from any other vertex within the same component. Essentially, for every pair

of vertices 𝑢 and 𝑣 in a strongly connected component, there exists a directed path from

𝑢 to 𝑣 and a directed path from 𝑣 to 𝑢.

This dependency graph needs to be stratified into strongly connected components using

an appropriate algorithm, such as Kosaraju’s algorithm. The strongly connected

components in this context are sets of dependent rules that serve as the basis for the

evaluation order. Finally, the sets are merged into a program and the order reversed as

24

required to handle the side-effect of Kosaraju’s algorithm. With this, the interpreter has

the two programs necessary for complete evaluation.

3.3 Program Materializer

Materializing a program has to be done in order to store intermediate results, from where

the next iterations of the program can continue. What sets semi-naïve implementation

apart from naïve is that the interpreter materializes only the change in data since the last

iteration, which significantly reduces the amount of processed data. Figure 4 presents the

general algorithm for evaluating the entire program with materialization.

In a SQL database, materialization occurs with the help of auxiliary tables that store

intermediate results. After a rule in the program is evaluated, the results are stored in a

temporary table, e.g. ΔΔ𝑇. The antijoin (implemented through SQL’s 𝐸𝑋𝐶𝐸𝑃𝑇) of this

temporary table and the corresponding delta table Δ𝑇 is inserted into 𝑇, to be able to track

whether fixpoint has been reached, and Δ𝑇, thereby starting a new increment for the next

evaluation. In relational algebra terms, the operation sequence for materialization is:

𝑇 ← ΔΔ𝑇 ⊳ Δ𝑇

Δ𝑇 ← ΔΔ𝑇 ⊳ Δ𝑇

Materialization in either recursive or nonrecursive variants is very similar, but with the

key difference being that the nonrecursive program rules need to be evaluated

sequentially, while recursive program rules are independent and can be evaluated in any

order. As a result, evaluation and materialization of nonrecursive programs happens one

rule at a time, while with recursive programs the interpreter evaluates all rules first, and

then materializes the results in bulk.

25

Figure 4. Program Materializer Activity Diagram.

Prior to program evaluation, the delta relation tables have to be initialized with the data

contained by the respective original relation tables. The sorted nonrecursive program

must be evaluated and materialized first, and then the recursive program is evaluated until

no new facts can be derived. After evaluation, the remaining data in all delta relations

needs to be drained into the respective original relations.

act Program Materializer

D
ra

in

Materialize nonrecursiv e

delta program

while True

Count facts in all tables

Count facts in all tables

Materialize recursiv e

delta program

new facts?

End

Start

Initialize delta relation

tables

Insert into original

relation all nonduplicate

data from delta relation

i terated

all delta

relations?

Clear delta relation

false

false

true

true

26

3.4 Rule Evaluator

Rule Evaluator is responsible for evaluating a Datalog rule within a SQL database. It

executes a sequence of instructions derived from a given rule, using the Select-Project-

Join stack, to produce the desired output in the database.

SQL queries are generated using the SQLGlot library. However, the next iteration of the

compiler will allow the user to choose a specific SQL dialect and database connection.

This (Instruction Stack) library serves as a bridge between Datalog and SQL, allowing

for the transformation of Datalog rules into SQL queries using relational algebra

principles. It provides a structured representation of relational algebra operations as

Instruction subclasses that are collected into a list (the Stack), which is later used to

evaluate them in SQL by Rule Evaluator.

The instruction stack module is split into several classes. The ProjectionInput class model

is shown by Figure 5.

Figure 5. ProjectInput Class Model

The Instruction class model as depicted by Figure 6 shows different subclasses of

instructions available to the Stack.

27

Figure 6. Instruction Class Model

Finally, the Rule Evaluator class has a very simple design shown by Figure 7, where the

primary functionality is in the step() function. This function is responsible for building

and executing SQL statements according to the instruction stack of the evaluated rule.

Figure 7. Rule Evaluator Class Model

For the recursive part, it follows the bottom-up evaluation strategy as described in point

2.1.

28

4 Experimental Results

This section elaborates on how Terry was benchmarked. First, we introduce the programs

and the datasets, and then we look at the performance observed during testing.

The interpreter was benchmarked on a Google Cloud Compute Engine (16 vCPU, 128

GB, Intel Broadwell platform) running a Debian 12 virtual machine. Performance was

profiled using three graph datasets: a dense graph, a sparse graph and the Lehigh

University Benchmark [22]. Every benchmark was allowed 100 test runs, where each data

point was recorded at the successful execution of a SQL statement. The recorded variables

were iteration number, statement type, evaluated rule (if applicable) and elapsed time of

the SQL statement.

4.1 Benchmark Programs and Datasets

A dense graph is a graph where the number of edges is close to the maximum number of

edges it can possibly have. For a simple graph with 𝑛 vertices, the maximum number of

edges in a directed graph 𝑛 ⋅ (𝑛 − 1), which occurs when every vertex is connected to

every other vertex. Therefore, a graph is considered dense if the number of edges |𝐸|

approaches this maximum value.

The dense graph dataset contains less data in the form of vertices and edges, but it is very

interconnected, giving more data per iteration for the Datalog program. The expectation

in this case is that the interpreter might struggle with an increased amount of data to

process, but it has to do less hops overall.

Conversely, a sparse graph has relatively few edges compared to the number of vertices

|𝑉|, meaning most pairs of vertices are not directly connected. In other words, if

|𝐸| ≪ 𝑛(𝑛 − 1)

Then the graph is considered sparse.

29

The sparse graph dataset contains less data per iteration than the dense dataset, but has

more iterations in total, which means that the interpreter will spend more time

materializing fewer facts per hop.

The following program was run on the dense and sparse graph datasets

𝑇(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦)

𝑇(𝑥, 𝑧) ← 𝑇(𝑥, 𝑦), 𝐸(𝑦, 𝑧)

Figure 8. Datalog transitive closure program

An RDF (Resource Description Framework) graph is a structured way of representing

information about resources in the form of a graph. RDF is a foundational technology of

the semantic web, which aims to make data on the internet machine-readable. RDF

represents information using a set of triples, each consisting of a subject, a predicate, and

an object. This structure is analogous to the basic sentence structure in natural language,

where the subject and object represent the entities or concepts, and the predicate

represents the relationship or property linking them. In RDF, a collection of such triples

is typically visualized as a graph, where each triple forms an edge from a subject node to

an object node, labeled by the predicate.

The following program was run on the RDF dataset:

𝑇(𝑠, 𝑝, 𝑜) ← 𝑅𝐷𝐹(𝑠, 𝑝, 𝑜)

𝑇(𝑦, 0, 𝑥) ← 𝑇(𝑎, 3, 𝑥), 𝑇(𝑦, 𝑎, 𝑧)

𝑇(𝑦, 0, 𝑥) ← 𝑇(𝑎, 4, 𝑥), 𝑇(𝑦, 𝑎, 𝑧)

𝑇(𝑥, 2, 𝑧) ← 𝑇(𝑥, 2, 𝑦), 𝑇(𝑦, 2, 𝑧)

𝑇(𝑥, 1, 𝑧) ← 𝑇(𝑥, 1, 𝑦), 𝑇(𝑦, 1, 𝑧)

𝑇(𝑧, 0, 𝑦) ← 𝑇(𝑥, 1, 𝑦), 𝑇(𝑧, 0, 𝑥)

𝑇(𝑥, 𝑏, 𝑦) ← 𝑇(𝑎, 2, 𝑏), 𝑇(𝑥, 𝑎, 𝑦)

Figure 9. Datalog RDF program

In total there are three perspectives from which the benchmarked data was analysed.

1. The general performance of the interpreter among the tested database engines was

measured by observing the time it took to evaluate a given program until reaching

the fixed point.

30

2. Rule performance for each database engine. The goal was to capture the average

execution time per rule for three specific computational rules evaluated across the

four different database types. Each bar represents the average execution time for

a given rule-database combination, measured in milliseconds.

3. Comparing distribution of operations

The central inquiry about the benchmark revolves around what impacts performance more

significantly: a smaller number of large queries (dense dataset) or a higher volume of very

small queries (sparse dataset).

The evaluation of RDF data presents a unique case within this context. RDF is

characterized by query scenarios that are significantly challenging, predominantly

because each rule is recursive and typically requires only two iterations to complete. This

scenario represents a "worst-case" in terms of query complexity and recursion.

4.2 Overall Performance

Figure 10 contains a set of density plots that visualize the evaluation speed of an

interpreter across different database engines for three types of graph data: Dense, Sparse,

and RDF. Each plot shows the distribution of execution times in milliseconds for each

database type as it processes queries on these graph structures.

Each plot displays the kernel density estimation (KDE) which is a way to estimate the

probability density function of a random variable. The x-axis represents the time in

milliseconds, and the y-axis represents the density.

31

Figure 10. Dense, Sparse and RDF Graph Evaluation Speed

The variability in execution times can be seen with broader peaks for MySQL, which

indicates less consistency in performance. Postgres appears to have an edge over the other

database engines with dense graphs, consistently performing evaluation under 1000 ms.

On the other extreme, MySQL is lagging far behind the others overall in every single

dataset. DuckDB seems to handle the RDF graph the best out of four, with Postgres and

SQLite being nearly even in their performance. We can also see an answer to our inquiry:

it is clear that the sparse dataset turned out to be the most challenging, though, DuckDB

appears to be performing well. It is also notable that both of the embedded databases

outperform the others.

32

4.3 Rule Performance

Before analysing the performance of rule evaluation, let us clarify the rules:

0. 𝑑𝐸(𝑥, 𝑦) ← 𝐸(𝑥, 𝑦) initializing nonrecursive rule that is run implicitly by the

interpreter.

1. 𝑑𝑇(𝑥, 𝑦) ← 𝑑𝐸(𝑥, 𝑦) nonrecursive rule that inserts all edges from 𝐸 into 𝑇.

2. 𝑑𝑇(𝑥, 𝑧) ← 𝑇(𝑥, 𝑦), 𝑑𝐸(𝑦, 𝑧) nonrecursive rule which finds the first hop of TC.

3. 𝑑𝑇(𝑥, 𝑧) ← 𝑑𝑇(𝑥, 𝑦), 𝐸(𝑦, 𝑧) recursive rule which finds connected nodes by

connecting two different edges.

In terms of rule performance, on Figure 11 we can see a couple of trends:

• MySQL consistently shows the longest execution times across all rules, following

the already established pattern.

• Postgres generally exhibits the shortest execution times, when it comes to the

dense dataset, but struggles more at the last rule of the sparse dataset, which is

likely due to the heavier projection that occurs, as other databases seem to suffer

a performance hit as well.

• In the sparse dataset DuckDB appears to have a clear advantage over other

database engines, likely due to its column-based ordering.

33

Figure 11. Dense (Top) and Sparse (Bottom) Graph Rule Performance

When it comes to the RDF dataset on Figure 12, the graph indicates that while MySQL

still struggles significantly, and with the nonrecursive rule especially, all databases

manage recursive computations efficiently. The notable increase in execution time for

later recursive rules across all databases suggests that these rules might be due to the

growing number of derived facts. This increase appears to begin at rule Recursive_5

34

onward, and there is a gradual increase in execution times across all databases, peaking

at Recursive_10, and going down significantly afterwards.

Figure 12. RDF Graph Rule Performance

4.4 Statement Type Performance

On Figure 13 we can see a plot for each dataset, which shows the average execution time

per statement type. In total, there are 5 types of statements.

1. COMPILER_INIT operations initialize the tables before program evaluation.

2. SPJ_PROJECT, SPJ_SELECT, SPJ_JOIN, SPJ_CLEAR are operations related to

rule evaluation.

3. MAT_NONREC, MAT_REC are operations that are responsible for materializing

evaluation results.

35

4. DRAIN is the operation responsible for moving the last remaining facts from the delta

relations into their respective original relations, and dropping the temporary delta

tables.

5. FACT_COUNT is responsible for counting rows inside a table.

Some of the results are notable:

• SQLite clearly seems to struggle with DDL statements responsible for dropping

tables, seeing how disproportionate the amount of time is spent in SPJ_CLEAR.

In addition, SQLite also appears to struggle relatively more with table creation

statements under COMPILER_INIT.

• In the case of sparse and RDF datasets, DuckDB did not appear to struggle with

any particular operation, meaning that the performance effect that its columnar

engine has is uniform across all operations.

• In the sparse dataset, Postgres spends more time relative to others in

SPJ_PROJECT and SPJ_JOIN, which could suggest that embedded databases

perform better due to their close integration and serverless design, which means

almost no latency between the database and the application.

36

Figure 13. Dense (Top), Sparse (Middle) and RDF (Bottom) Statement Type Performance

37

5 Conclusion

In this thesis, we have explored the design, implementation, and performance evaluation

of a Datalog to SQL interpreter, Terry. The primary motivation behind this endeavour

was to enhance the ease of handling complex queries, especially recursive queries, which

are naturally expressed in Datalog but often challenging to implement directly in SQL.

The thesis was divided into three main components: the theoretical background, technical

implementation of Terry, benchmarking and analysis of the results.

The thesis introduced the concepts necessary to understand the theoretical background

behind Terry. This involved explaining the fundamentals behind relational algebra and

relational databases, SQL, Datalog and how deductive databases operate, as well as the

basic idea behind Datalog evaluation. In the second part, we explained how a SQL-to-

Datalog interpreter works, showing the algorithms behind Datalog parsing, rule

evaluation and program materialization. The third part dealt with profiling the

performance and explaining the trends occurring in the performance of the different

database engines.

This thesis contributes to the field by providing concrete benchmarks on how different

SQL database engines handle the evaluation of Datalog queries. Additionally, this work

introduces a novel approach to Datalog query parsing in the form of the SPJ stack that

could benefit researchers interested in this field.

Finally, we can answer the research questions we posed in the beginning.

1. Effect of Database Engine Choice on Performance

Overall, the plots in section 4 provide a fairly concise representation of how each database

handles graph-based queries, highlighting differences in performance that can inform

future developments on the database selection. Namely, we can exclude MySQL from

38

further consideration due to its notably poor performance in all benchmarks. DuckDB

was able to evaluate the sparse dataset, as well as the RDF graph, far more efficiently

than its competitors. PostgreSQL did better with the dense dataset, but DuckDB may be

a more versatile option when dealing with graph solving problems.

2. Energy Efficiency of Terry’s implementation

After seeing the interpreter work in runtime, we can see that the efficiency heavily

depends on the database engine that it is attached to. We could approximate the efficiency

in terms of energy consumption compared to other languages by looking at our results

and comparing them to the energy efficiency of other programming languages [23].

Assuming an average ratio between energy (J) and time (ms) of
0.040+0.046+0.014

3
= 0.033

for Python according to the study, we can apply this ratio to the data we have gathered.

On average, dense graph evaluation took 4208 ms on MySQL, which means that on

average, a single transitive closure query will yield an energy amount of 𝐸𝑀𝑦𝑆𝑄𝐿 =

138.9 𝐽. Assuming a user base of 100 000 clients, who will do a hundred queries per day

for a year, will yield about 58.7 metric tons of CO2 equivalent [24].

 From the same study we can calculate the average ratio between the energy consumption

of Rust and Python, which is a factor of
49.07:1793.46 +238.30:12784.09 +26.15:1061.41

3
=

0.024, meaning that Rust is on average 42.5 times more energy efficient than Python.

Doing this calculation for the rest of the graphs and database engines gives us an

efficiency comparison between them in Table 1.

Table 1. Metric tons of CO2 equivalent emitted annually by Terry and a hypothetical Rust implementation

of Terry

 Python Rust

 postgres duckdb sqlite mysql postgres duckdb sqlite mysql

Dense 11.93 17.68 23.41 58.71 0.29 0.42 0.56 1.41

Sparse 183.22 19.83 92.73 829.4 4.4 0.48 2.23 19.91

RDF 37.84 14.3 44.66 212.31 0.91 0.34 1.07 5.1

To illustrate the point, using Rust would save us approximately 89 391 kilograms of coal

annually. We can clearly see that an in-memory Rust implementation of Terry would have

39

a considerable environmental effect, and that future implementations should take this into

account.

40

6 References

[1] G. G. L. T. S. Ceri, “What you always wanted to know about Datalog (and never

dared to ask),” IEEE Transactions on Knowledge and Data Engineering, vol. 1,

no. 1, pp. 146-166, 1989.

[2] e. a. Todd J. Green, “Datalog and Recursive Query Processing,” Foundations and

Trends® in Databases, vol. 5, no. 2, pp. 105-195, 2013.

[3] e. a. Alexander Shkapsky, “Big Data Analytics with Datalog Queries on Spark,”

Proceedings of the 2016 International Conference on Management of Data

(SIGMOD '16), p. 1135–1149, 2016.

[4] S. G. a. M. S. L. J. Seo, “SociaLite: Datalog extensions for efficient social

network analysis,” 2013 IEEE 29th International Conference on Data

Engineering (ICDE), pp. 278-289, 2013.

[5] T. S. K. S. K. Pieciukiewicz, “Usable Recursive Queries,” in Advances in

Databases and Information Systems. ADBIS, 2005.

[6] J. L. Edelmira Pasarella, “A Datalog Framework for Modeling Relationship-based

Access Control Policies,” Proceedings of the 22nd ACM on Symposium on Access

Control Models and Technologies (SACMAT '17 Abstracts), p. 91–102, 2017.

[7] M. T. Z. Ling Liu, Encyclopedia of Database Systems, Springer Publishing

Company, Incorporated, 2009.

[8] C. J. Date, A Guide to the SQL Standard, Standard. Addison-Wesley Longman

Publishing Co., Inc., 1989.

[9] M. A. Olson, “Selected and Implementing an Embedded Database System,”

Computer, vol. 33, no. 9, pp. 27-34, September 2000.

[10] A. Nori, “Mobile and embedded databases,” SIGMOD '07, pp. 1175-1177, 2007.

[11] SQLite Consortium, “About SQLite,” 10 10 2023. [Online]. Available:

https://www.sqlite.org/about.html. [Accessed 4 April 2024].

[12] “Why DuckDB,” [Online]. Available: https://duckdb.org/why_duckdb. [Accessed

9 May 2024].

[13] The PostgreSQL Global Development Group, “What is PostgreSQL?,” [Online].

Available: https://www.postgresql.org/about/. [Accessed 29 April 2024].

[14] solid IT gmbh, “DB-Engines Ranking,” [Online]. Available: https://db-

engines.com/en/ranking. [Accessed 1 May 2024].

[15] S. S. H. B. T. L. a. W. Z. Todd J. Green, “Datalog and Recursive Query

Processing,” Foundations and Trends® in Databases, vol. 5, no. 2, pp. 105-195,

2013.

[16] J. Z. Z. Z. A. A. P. K. J. P. Zhiwei Fan, “Scaling-Up In-Memory Datalog

Processing:,” Proceedings of the VLDB Endowment, vol. 12, no. 6, pp. 695-708,

2019.

[17] Python Software Foundation, “General Python FAQ,” [Online]. Available:

https://docs.python.org/3/faq/general.html. [Accessed 14 April 2024].

41

[18] https://www.tiobe.com/tiobe-index/, “TIOBE Index,” 2024. [Online]. Available:

https://www.tiobe.com/tiobe-index/. [Accessed 2 May 2024].

[19] SQLAlchemy, “Overview,” [Online]. Available:

https://docs.sqlalchemy.org/en/20/intro.html. [Accessed 12 May 2024].

[20] SQLGlot developers, “SQLGlot,” [Online]. Available:

https://sqlglot.com/sqlglot.html. [Accessed 10 January 2024].

[21] P. D. Terry, Compilers and Compiler Generators - an introduction with C++,

International Thomson Computer Press, 1997.

[22] Lehigh University, “SWAT Projects - the Lehigh University Benchmark

(LUBM),” [Online]. Available: https://swat.cse.lehigh.edu/projects/lubm/.

[Accessed 7 May 2024].

[23] e. a. Rui Pereira, “Energy efficiency across programming languages: how do

energy, time, and memory relate?,” Proceedings of the 10th ACM SIGPLAN

International Conference on Software Language Engineering, pp. 256-267, 2017.

[24] United States Environmental Protection Agency, “Greenhouse Gas Equivalencies

Calculator,” [Online]. Available: https://www.epa.gov/energy/greenhouse-gas-

equivalencies-calculator. [Accessed 11 May 2024].

42

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I, Edvard Paas

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Terry, a Datalog to SQL Interpreter”, supervised by Sadok Ben Yahia and

Bruno Rucy Carneiro Alves De Lima.

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

12.05.2024

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

