
Fault Simulation and Code Coverage
Analysis of RTL Designs Using High-Level

Decision Diagrams

ULJANA REINSALU

P R E S S

THESIS ON INFORMATICS AND SYSTEM ENGINEERING C86

Dissertation was accepted for the defense of the degree of Doctor of Philosophy in
Computer and Systems Engineering on May 11, 2013

Supervisors:

Opponents:

Defence of the thesis: June 12, 2013

Prof. Peeter Ellervee
Prof. Jaan Raik
Dr. Aleksander Sudnitsõn

Dr. Graziano Pravadelli, University of Verona, Italy
Dr. Juha Plosila, University of Turku, Finland

Declaration:
Hereby I declare that this doctoral thesis, my original investigation and achievement,
submitted for the doctoral degree at Tallinn University of Technology has not been
submitted for any academic degree.

/Uljana Reinsalu/

(publication)
(PDF)

Copyright: Uljana Reinsalu, 2013
ISSN 1406-4731
ISBN 978-9949-23-476-9
ISBN 978-9949-23-477-6

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology

Department of Computer Engineering

INFORMAATIKA JA S TEHNIKA C86ÜSTEEMI

Rikete simuleerimine ja koodikatte
analüüs register-siirde tasemel

kasutades kõrgtaseme
otsustusdiagramme

ULJANA REINSALU

To my great family

7

Abstract

This thesis addresses hardware testing issues as well as simulation-based
hardware verification issues applied at register-transfer and behavioral levels of
design abstraction. Particularly the main topics are Register-Transfer Level
(RTL) fault simulation and structural coverage measurement exploiting
advantages of High-Level Decision Diagrams (HLDD) design representation
model.

First, a novel method for fault simulation at RTL based on the HLDD model
is presented. The method is based on deductive fault simulation algorithm
brought to higher level of abstraction and applied to the design represented by
HLDDs. Efficient data structure was implemented into the algorithm in order to
make fast bitwise operations with fault lists and this way to accelerate the fault
simulation. Fault simulation is widely used in test stimuli generation for digital
circuits. Other tasks as fault diagnosis, test stimuli compaction, built-in-self test
optimization incorporate fault simulation as part of the process. Thus efficient
fault simulation algorithm is very important for solving these tasks.

Second, a novel method for structural code coverage analysis based on the
HLDD model is presented. Traditional code coverage metrics as statement
coverage, branch coverage and toggle coverage are mapped onto HLDD
constructs. With the help of fast HLDD-based simulation the measuring of these
coverage is efficient. The method also implies manipulations with HLDDs for
finding better HLDD model representation targeting different aspects in code
coverage analysis. Moreover, observability coverage metric is implemented into
HLDD simulation engine. This metric measures not only activation of the bugs
but also evaluates the propagation of these bugs to the observable points.
Observability coverage metric makes possible to better analyze the test stimuli
and circuit’s design.

All proposed methods rely on a HLDD-based simulation engine. Previous
research works in TUT (Tallinn University of Technology) show that HLDDs
are efficient models for digital circuits’ simulation as well as convenient for
diagnosis and debugging. The performed experiments confirm feasibility and
efficiency of the proposed methods.

9

Kokkuvõte

Käesolev töö käsitleb nii digitaalriistvara testimise kui ka simuleerimisel
põhineva verifitseerimise küsimusi register-siirde ja käitumuslikul tasemel.
Töös pakutud lähenemised rikete simuleerimiseks register-siirde tasemel ning
struktuurse katte mõõtmiseks kasutavad kõrgtaseme otsustusdiagrammide
(KTOD) eeliseid skeemide esitamisel.

Kõigepealt on esitatud uudne meetod rikete simuleerimiseks register-siirde
tasemel, mis põhineb KTOD mudelil. Meetod tugineb deduktiivsele rikete
simuleerimisalgoritmile, mis on viidud kõrgemale abstraktsioonitasemele ning
rakendatud KTOD-na esitatud digitaalriistvarale. Algoritmi on lisatud efektiivne
andmestruktuur selleks, et kiirendada bitioperatsioone rikete nimekirjadega ning
järelikult kiirendada rikete simulatsiooni tervikuna. Rikete simuleerimist
kasutatakse laialt digitaalriistvara testi stiimulite genereerimisel. Sellised
ülesanded nagu rikete diagnostika ja testi stiimulite kokkupakkimine isetestivate
arhitektuuride projekteerimine vajavad oma töös rikete simuleerimist. Seega on
efektiivne rikete simuleerimise algoritm väga tähtis nende ülesannete
lahendamisel.

Teiseks on esitatud uudne meetod struktuurseks koodikatte analüüsiks, mis
samuti põhineb KTOD mudelil. Traditsioonilised koodikatte mõõdud nagu
lausete, harude ja andmevoo kated seoti KTOD struktuuriga. KTOD-põhine
kiire simuleerimine võimaldab mõõta neid katteid efektiivselt. Samuti sisaldab
pakutud meetod KTOD mudeli teisendusi, mis on suunatud koodikatte analüüsi
erinevatele aspektidele. Lisaks on KTOD simulaatori jaoks realiseeritud
jälgitavuse katte mõõt. See mõõt mõõdab mitte ainult vigade aktiveerimist vaid
ka hindab nende levimist vaadeldavatesse punktidesse. Jälgitavuse katte mõõt
võimaldab paremini analüüsida testi stiimuleid ning digitaalriistvara disaini.

Pakutud meetodid toetuvad KTOD-l põhinevale simulaatorile. Eelnev
uurimistöö TTÜ-s on näidanud, et KTOD on efektiivne mudel simuleerimise
läbiviimiseks ning sobilik digitaalsüsteemide diagnostikat ja silumist silmas
pidades. Töös teostatud eksperimendid tõestavad pakutud lähenemiste
rakendatavust ja efektiivsust.

11

 Acknowledgements

I would like to express my sincere gratitude to everybody who have supported
and advised me during my PhD studies.

First of all, I would like to thank my supervisors. I appreciate the support
and advices of Prof. Peeter Ellervee. He is always open to discussions and helps
in solving different problems. I am thankful to Prof. Jaan Raik for his guiding
and consulting during the work on this thesis and also his joyful encouraging to
continue working and to finish this thesis. His attitude to life gives me the
energy in doing things. I would like to thank Aleksander Sudnitsõn for his
remarks concerning this thesis. I would like to thank Prof. Raimund-Johannes
Ubar for his help and wise advices.

Special thanks to the head of the Department of Computer Engineering
Margus Kruus for creating outstanding environment for productive work and
study.

I also would like to thank all my colleagues from Department of Computer
Engineering for their interesting discussions and ideas. In particular I would
express my appreciation to Sergei Devadze, Maksim Jenihhin, Artur Jutman,
Marina Brik.

Moreover, I would like to acknowledge the organizations that have
supported my PhD studies: Tallinn University of Technology, National
Graduate School in Information and Communication Technologies (IKTDK),
Estonian IT Foundation (EITSA), Centre of Integrated Electronic Systems and
Biomedical Engineering (CEBE), FP7 STREP projects DIAMOND, FP6
STREP project VERTIGO.

Finally, I would like to thank my great family for the patience and support.
In particular I would like to mention all my parents for their valuable support in
my family nest, also my beloved husband Juri for his philosophical discussions
and support and express my gratitude to my sweet children Artur and Timur for
giving me chance for development.

Uljana Reinsalu,
 Tallinn, May 2013

13

Table of Contents

Abstract .. 7
Kokkuvõte .. 9
Acknowledgements .. 11
List of Publications .. 15
Author’s Contribution to the Publications.. 17
List of Abbreviations ... 19
Chapter 1 INTRODUCTION .. 21

1.1 Motivation ... 21
1.2 Problem formulation .. 25
1.3 Contributions ... 27
1.4 Thesis organization.. 28

Chapter 2 BACKGROUND .. 31
2.1 Design representation by decision diagrams ... 31

2.1.1 Binary decision diagrams ... 32
2.1.2 High-level decision diagrams ... 34

2.1.2.1 HLDD model definition .. 34
2.1.2.2 Modeling RTL designs by HLDDs ... 38
2.1.2.3 Basic simulation on HLDDs ... 38

2.2 Fault Simulation .. 40
2.2.1 The role of Testing ... 41
2.2.2 Top-Down Design and Test Methodology 42
2.2.3 Fault modeling ... 43
2.2.4 Fault simulation .. 47

2.2.4.1 Serial Fault Simulation ... 47
2.2.4.2 Parallel Fault Simulation... 48

14

2.2.4.3 Deductive Fault Simulation .. 50
2.2.4.4 RTL Fault Simulation ... 52

2.2.5 Applications ... 53
2.3 Design Verification ... 55

2.3.1 Simulation-based verification .. 57
2.3.2 Coverage metrics .. 59

2.4 Chapter summary .. 60
Chapter 3 HLDD-BASED FAULT SIMULATION .. 61

3.1 Overview ... 61
3.2 Deductive Fault Simulation on HLDDs .. 63

3.2.1 Algorithm Structure ... 64
3.2.2 Example of deductive fault simulation on HLDD 69
3.2.3 Internal Data Representation .. 71
3.2.4 Analysis of the algorithm ... 72

3.3 Experimental results .. 73
3.4 Chapter summary .. 74

Chapter 4 HLDD-BASED CODE COVERAGE ... 75
4.1 Overview ... 75
4.2 Coverage metrics on HLDD .. 76

4.2.1 Simulation algorithm .. 77
4.2.2 Mapping standard coverage metrics on HLDDs 78

4.3 HLDD manipulations for code coverage ... 79
4.4 Experimental results .. 81
4.5 Chapter summary .. 84

Chapter 5 HLDD-BASED OBSERVABILITY COVERAGE 85
5.1 Overview ... 85
5.2 HLDD-based observability coverage .. 88

5.2.1 Integration into a tool ... 89
5.2.2 Simulation results ... 91

5.3 Observability coverage metric discussion ... 92
5.4 Chapter summary .. 94

Chapter 6 CONCLUSIONS AND FUTURE WORK .. 95
6.1 Conclusions ... 95
6.2 Future work ... 96

References .. 99
Appendix .. 107
Curriculum Vitae in English .. 137
Curriculum Vitae eesti keeles ... 139

15

List of Publications

 Papers included in the thesis

1. Reinsalu, U.; Raik, J.; Ubar, R. (2010). Register-Transfer Level
Deductive Fault Simulation Using Decision Diagrams. In: Proceedings
of the 12th Biennial Baltic Electronic Conference BEC2010, Tallinn,
Estonia, 2010, pp. 193 – 196

2. Reinsalu, Uljana; Raik, Jaan; Ubar, Raimund; Ellervee, Peeter (2011).
Fast RTL Fault Simulation Using Decision Diagrams and Bitwise Set
Operations. Proceedings of 26th IEEE International Symposium on
Defect and Fault Tolerance in VLSI Systems. Vancouver, Canada, 2011,
pp. 164-170

3. Raik, J.; Reinsalu, U.; Ubar, R.; Jenihhin, M.; Ellervee, P. (2008). Code
Coverage Analysis using High-Level Decision Diagrams. In:
Proceedings of the 11th IEEE Workshop on Design and Diagnostics of
Electronic Systems (DDECS), 16-18 April 2008, Bratislava, Slovakia

4. Minakova, K.; Reinsalu, U.; Chepurov, A.; Raik, J.; Jenihhin, M.; Ubar,
R.; Ellervee, P. (2008). High-Level Decision Diagram Manipulations
for Code Coverage Analysis. The 11th Biennial Baltic Electronics
Conference (BEC'08), Tallinn, Estonia, Oct. 2008, pp. 207 – 210

System level modeling

5. Reinsalu, U.; Arhipov, A.; Ellervee, P. (2008). Architectural
Exploration Tasks for On-Chip Embedded Systems. The 11th Biennial
Baltic Electronics Conference (BEC'08), Tallinn, Estonia, Oct. 2008.,
pp. 171 – 174

6. Ellervee, P.; Reinsalu, U.; Arhipov, A. (2007). Translating Behavioral
VHDL for Emulation. 25th NORCHIP Conference, Aalborg, Denmark,
Nov. 2007

16

7. Ellervee, P.; Arhipov, A.; Reinsalu, U. (2007). Using Emulation for
System Model Analysis. DATE'07 Friday Workshop on "Diagnostic
Services in Network-on-Chips", Nice, France, April 2007, pp. 280 – 282

Educational topics

8. Raik, J.; Jenihhin, M.; Chepurov, A.; Reinsalu, U.; Ubar, R. (2008).
APRICOT: a Framework for Teaching Digital Systems Verification.
19th EAEEIE Annual Conference, Tallinn, Estonia, 2008, pp. 1 - 6

9. Ellervee, P.; Reinsalu, U.; Arhipov, A.; Ivask, E.; Tammemäe, K.;
Evartson, T.; Sudnitson, A. (2008). HDL-s and FPGA-s in Digital
Design Education. The 19th EAEEIE Annual Conference, Tallinn,
Estonia, June 2008, pp. 37 – 41

10. Reinsalu, U.; Arhipov, A.; Evartson, T.; Ellervee, P. (2007). HDL-s for
Students with Different Background. International Conference on
Microelectronic Systems Education (MSE'07), San Diego, CA, USA,
June 2007, pp. 69 – 70

11. Ellervee, P.; Reinsalu, U.; Arhipov, A. (2006). Teaching HDL for IT-
Students. The 6th European Workshop on Microelectronics Education
(EWME'2006), Stockholm, Sweden, June 2006, pp. 112 – 115

17

Author’s Contribution to the Publications

Research paper I [64] Reinsalu, U.; Raik, J.; Ubar, R. (2010). Register
Transfer Level Deductive Fault Simulation Using Decision Diagrams. In:
Proceedings of the 12th Biennial Baltic Electronic Conference BEC2010,
Tallinn, Estonia, 2010, pp. 193 – 196

The author modified the deductive fault simulation algorithm for RTL
abstraction. The author implemented this algorithm using HLDDs. The author
carried out the experiments with selected set of benchmarks and analyzed the
results from the experiments. The author prepared the publication of the paper
and presented this paper at the conference.

Research paper II [63] Reinsalu, Uljana; Raik, Jaan; Ubar, Raimund;
Ellervee, Peeter (2011). “Fast RTL Fault Simulation Using Decision Diagrams
and Bitwise Set Operations.”, Proceedings of 26th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems. Vancouver,
Canada, 2011, pp. 164-170

The author proposed new data structure for storing the fault list required during
RTL deductive fault simulation algorithm work. This data structure is efficient
for making bitwise set operations. The author integrated this new data structure
into the previously implemented RTL deductive fault simulation algorithm. The
author carried out the experiments with selected set of benchmarks and
analyzed the results from the experiments. The author prepared the publication
of the paper and presented this paper at the conference.

Research paper III [59] Raik, J.; Reinsalu, U.; Ubar, R.; Jenihhin, M.;
Ellervee, P. (2008). Code Coverage Analysis using High-Level Decision
Diagrams. In: Proceedings of the 11th IEEE Workshop on Design and
Diagnostics of Electronic Systems (DDECS), 16-18 April 2008, Bratislava,
Slovakia

The author proposed the mapping of structural code coverage metrics onto high-
level decision diagrams. The author integrated proposed metrics into existing
HLDD simulation engine. The author carried out the experiments with selected

18

set of benchmarks and analyzed the results from the experiments. The author
helped preparing the publication of the paper and presented this paper at the
conference.

Research paper IV [54] Minakova, K.; Reinsalu, U.; Chepurov, A.; Raik, J.;
Jenihhin, M.; Ubar, R.; Ellervee, P. (2008). High-Level Decision Diagram
Manipulations for Code Coverage Analysis. The 11th Biennial Baltic
Electronics Conference (BEC'08), Tallinn, Estonia, Oct. 2008, pp. 207 – 210

The author proposed the set of experiments with different modifications of
HLDDs for code coverage analysis. The author supervised the experiments and
helped in analysis the results. The author helped in preparation of the paper.

19

List of Abbreviations

AGM Alternative Graph Model

APRICOT Assertions, PRopertIes, Coverage and Test

ASIC Application Specific Integrated Circuit

ATPG Automatic Test Pattern Generator

BDD Binary Decision Diagram

BIST Built-In Self-Test

CAD Computer Aided Design

CMOS Complementary metal–oxide–semiconductor

CUT Circuit Under Test

DD Decision Diagram

DUV Design Under Verification

EDA Electronic Design Automation

EDIF Electronic Design Interchange Format

FPGA Field Programmable Gate Array

GCD Greatest Common Devisor

GUI Graphical User Interface

HDL Hardware Description Language

HLDD High-Level Decision Diagrams

IEEE Institute of Electrical and Electronics Engineers

PC Personal Computer

RTL Register Transfer Level

20

SSF Single Stuck-Fault

TLM Transaction Level Modeling

TPG Test Pattern Generation

TUT Tallinn University of Technology

VHDL
VHSIC (Very-High-Speed Integrated Circuit) Hardware
Description Language

VLSI Very Large Scale Integration

Latin and English abbreviations:

aka - also known as

e.g. - for example

et al. - and other co-authors

etc. - and the rest

i.a. - among others

i.e. - that is

vs. - versus

21

Chapter 1
INTRODUCTION

This thesis presents hardware testing issues as well as simulation-based
hardware verification issues. Particularly, the main topics are Register-Transfer
Level (RTL) fault simulation and structural coverage measurement exploiting
advantages of the High-Level Decision Diagrams (HLDD) design
representation model.

This chapter begins with motivation to this work, followed by the problem
formulation. Then, summary of the main contributions and an overview of the
thesis structure are described.

1.1 Motivation

Different electronic devices have become a part of everyday’s life. Nowadays
electronic devices are developed not only for specific fields such as military,
avionics, space, medical applications, etc., but also in quantity for general use
such as mobile phones, tablet PCs, and many others. Although some devices
have quite simple functionality, a huge amount of surrounded electronics has
become more complex with wide range of functionality. This is thanks to the
tremendous progress in the CMOS (Complementary metal–oxide–
semiconductor) technology. According to the famous Moore’s law [55][40], the
number of transistors on integrated circuits doubles every two years. Thus
complexity of integrated circuits grows, devices become smaller, density of
transistors grows, which allow using a lot of functionality within one circuit.
Despite the fact that such complex devices need more man power resources to
implement, time-to-market imposes even shorter time than it demanded before
for less complex devices. This fact raises the need for efficient EDA (Electronic

22

Design Automation) tools. The more automation included into the tools, the
easier the process of finding the suitable solutions.

In this thesis, only the digital part of the systems is taken into account.
During the last ten years digital electronic devices have become an important
part of daily life. People have got dependent on surrounding electronics and its
correct functionality. Strong reliability issues are a must for space, automotive
applications, however reliability issues have become very significant for
consumer electronics as well. Nobody wants a malfunctioning mobile phone
during a very important talk or a tablet PC turning off while critical work is
done on it. Also, consumers want to have manifold functionalities on their
devices and new features can be desirable only if basic functionality does not
fail. This obligates producers to spend more effort on reliability issues. In order
to reach a certain level of reliability, considerable testing of electronic devices is
required.

The cost of a hardware error is very high for the industry. It cannot be easily
fixed by applying a patch as it is usually done for software products. A new
device must be reproduced with errors fixed by withdrawing the previous
version, which is extremely costly for the producer. There are many causes of
errors: errors in specification, errors at any level of implementation, physical
defect of manufacturing. Moreover, errors in hardware can appear during the
lifetime of a device in consequence of a variety of reasons, such as high
temperature or radiation for example. Therefore, it is strongly important to
verify a design at every stage of implementation by fixing the bugs at any cost
before manufacturing. Also, testing the devices for manufacturing defects is
obligatory for every device [13].

Design cycles of the circuit are divided into several abstraction levels.
Usually top-down design methodology is used. Thus a lot of decisions should
be done at higher level of abstraction in order to shorten time-to-market.
Therefore, many design tasks, which were used to be implemented at the gate
level, are transferred to the register-transfer level (RTL) and higher levels. Sure,
at this level one can not have exact data, however sufficient estimation can be
done, which allows throwing out unsuitable solutions very early. Also,
verification is mandatory after each step of design flow, detecting errors as early
as possible and avoiding propagation of errors to lower levels of abstraction,
thereby saving time and money.

One of the topics of the current thesis is improving fault simulation
techniques, which is one of the most important issues in digital testing. Fault
simulation is brought to the behavioral level of abstraction of the circuit design

23

in order to speed up the design cycle by preparing valuable test suits for testing
already at this level of abstraction. Fault simulation is heavily used by many
test-oriented tasks. These are automatic test generation, fault diagnosis, test
quality assessment, test suite compaction and other problems. If fault simulation
is efficient, then accomplishment of all these tasks will gain in speed while
keeping the quality.

Other topic of the current thesis is code coverage analysis at the register-
transfer level as one of the simulation-based verification tasks. With the growth
of digital devices’ complexity a huge effort is required to verify the
functionality of the device including finding the errors and localizing them. The
exhaustive stimulus for today’s designs is huge. It is mostly impossible to
generate and exercise this stimulus due to the fact that it will take millions of
years to execute [43]. Therefore, a coverage model is built to identify key
stimulus values. These input values and their sequence allows sufficiently
exercise design functionality. To measure the verification effort, different
coverage metrics are employed to show whether the design is verified enough.
Coverage metrics should be on one hand simple so that it would be quick to run
the simulation using the metric and get an answer, on the other hand they should
be sophisticated in order to thoroughly examine the design. Usage of the well-
defined coverage metrics is widespread because they are integrated into
simulation engines. The code coverage analysis process is fully automated.

Testing and fault simulation

The terms testing and verification differ. Testing does not refer to checking
the correctness of design implementation, i.e., functional verification. Testing of
electronic devices is a process of checking the manufacturing correctness [92].
Usually testing is done after each and every device is fabricated in silicon to
ensure that the device is free of manufacturing defects that can appear during
the manufacturing process. The types of physical defects depend on technology.

Usually during the testing phase ready-made stimuli is applied to the
manufactured device and output responses are collected. Correct output values
are also given with the set of input stimuli and compared to the real device
outputs. If any mismatch in outputs has happened then a failure has occurred.
The device can be sent to diagnosis for finding the defect. If it is possible then
repair of the device is done. In the worst case the device is thrown away.

During preparation of the set of input stimuli, the device has not been
manufactured yet, only the model of the device exists. Therefore, a model of
defects is required to simulate actual physical defects. This model is called a

24

fault model. It imitates the behavior of actual physical defects as close as
possible. At the same time it is mathematically simple enough for fast
computation. To determine the effectiveness of test vectors regarding
detectability of faults, fault simulation is employed. During fault simulation test
vectors are applied to implemented device one after other and for each test
vector, detected faults are determined. One of the outputs of fault simulation is
fault coverage, which is the ratio of faults detected by the test stimuli out of all
possible faults in the device. The higher the fault coverage, the better the quality
of test stimuli is. Obviously, the fault simulation process is computationally
expensive and both memory and time consuming. Thus, it is very important to
accelerate this process, which is used as a basic task in different test-oriented
tasks mentioned above for improving their performance.

One possible approach is to use fault simulation at the RT (Register-
Transfer) level that is to build RTL fault model, which is closely related to the
gate-level fault model and to compute fault coverage already at this level of
abstraction. The obtained set of test vectors can be reused at lower levels of
abstraction, which makes the application of test-oriented tasks at lower levels of
abstraction easier and faster. The current thesis is focused on fault simulation at
the RTL using the RTL bit-coverage fault model, which is well correlating with
the stuck-at fault model [29].

Verification and code coverage analysis

With the increase in complexity of modern integrated circuits, it has become
imperative to address critical verification issues in the design cycle. The process
of verifying correctness of designs takes roughly 70% of the design time [35].
For every designer the number of verification engineers can vary from 2 to 4
depending on the design complexity. The following aspects are the causes for
the huge amount of resources spent on verification. First, design complexity
increases. Second, historically more attention has been devoted to design
process improvements that have produced significant progress in the design
part, for example applying different automated tools for synthesis. However,
verification process was not improved as much and has become a bottleneck.

For hardware verification, two types of methods are usually applied. These
are formal methods and simulation-based verification. Formal methods use
mathematical models to prove the correctness of the described model. Formal
verification algorithmically and exhaustively explores all possible input values
over time. However, formal verification can be performed only for limited
design sizes due to the excessive time needed for proving the design correctness
[66]. Thus, formal methods are applied only to some parts of the whole design

25

implementation. Simulation-based verification relies on design simulation under
a set of stimuli. Usually simulation-based verification assumes comparison of
current implementation against the specification or against the implementation
on another abstraction level [43]. In this thesis only simulation-based hardware
verification is considered. Both, formal methods and simulation-based
verification only detect the presence of an error in the design implementation,
often providing description of the cases causing this incorrect behavior. Finding
an error and fixing it is usually the manual work of verification engineer.

In order to verify the correctness of a design, different test cases are
generated. Due to the fact that it is impossible to verify exhaustively all possible
inputs and states of a design, the confidence level regarding the quality of the
design must be quantified to control the verification effort. The fundamental
question is: “How do I know if I have verified or simulated enough?”
Verification coverage is a measure of confidence and it is expressed as a
percentage of items verified out of all possible items. Different definitions of
items give rise to different coverage measures or coverage metrics [43].

Various coverage metric classes exist such as code coverage, parameter
coverage and functional coverage. Today, coverage-driven verification
methodology is widespread, where verification progress is measured by
achieving the coverage described by the coverage model. Coverage model
consists of a set of various verification metrics and is built at the beginning of
the design cycle. New methodology improves visibility into the verification
process.

 In this thesis, only code coverage would be used, which provides insight
into how thoroughly the code of a design is exercised by a suite of simulations.
The main disadvantage of code coverage metrics lies in the fact that they only
measure the quality of the test case in stimulating the implementation and do
not necessarily prove its correctness with respect to the specification. On the
other hand, code coverage analysis is a well-defined, well-scalable procedure
and, thus, applicable to large designs.

1.2 Problem formulation

Traditional design implementation is done using hardware description
languages such as VHDL [90] or Verilog [89] for example. In this thesis,
simulation-based verification issues and fault simulation at RTL using high-
level decision diagrams (HLDDs) as the design representation model are
addressed. Previous research works, including [84][85], have shown that

26

HLDDs are an efficient model for hardware design simulation and fault
modeling since it provides a fast evaluation by graph traversal and easy
identification of cause-effect relationships. Methods presented in this work are
based on HLDD representation. This representation gives us opportunity to find
some uncovered holes in verification by providing an alternative view compared
to traditional methods.

Efficient fault simulation algorithms for combinational circuits are known
for decades. However, sequential fault simulation which is frequently used in
test and fault tolerance applications remains a very time-consuming task, in
particular for larger circuits [23]. In order to contend the complexity, the
research community has turned towards developing methods at higher design
abstraction levels. In this work, a new approach, which is applicable directly at
the RTL, is proposed. Three typical methods of fault simulation at the gate-level
exist: parallel, deductive and concurrent fault simulation. Deductive fault
simulation is faster than the parallel one and consumes less memory resources
than the concurrent one. However, to the best of author’s knowledge, it has
never been used at higher level of abstraction than gate-level. In this work,
deductive fault simulation algorithm is transformed for the register-transfer
level and applied to HLDD-based designs, which allows accelerating the fault
simulation.

Comprehensive verification coverage metrics help evaluating verification
progress and managing verification effort [65]. In this thesis, a method and a
tool for fast analysis of classical code coverage metrics, such as statement,
branch and toggle coverage, are presented. All these metrics are built into a
simulation tool working on HLDD design representation. Correspondingly,
those classical coverage metrics are mapped to HLDD constructs. Also HLDDs
can be seamlessly applied to observability coverage analysis. Commonly used
code coverage metrics only point controllability of items in implemented design
while ignoring their observability at outputs [4]. Taking into account the
observability of a coverage item gives more information to the verification
engineer. An observability coverage metric based on the toggle coverage metric
is also built into the simulation tool based on HLDDs.

27

1.3 Contributions

The main contributions of this thesis are summarized below.

A new method for RTL fault simulation using High-Level Decision
Diagrams was developed. This method was implemented using the deductive
fault simulation algorithm. The initial deductive fault simulation algorithm,
proposed by Armstrong for gate-level designs [3], was brought to RTL, where
not only bits are taken into account when making decisions for fault lists
propagation but word-level variables and arithmetic operations too. For fault

…
Assertion-based
verification

BIST ATPG

Gate-level
Fault

Simulation

Test

Verification

Methods: Tasks:

Model
checking

HLDD-based
simulation

RTL Deductive
Fault Simulation

Algorithm on
HLDDs

RTL Fault
Simulation

Code coverage
analysis

Observability
coverage

Figure1.1 Developed methods & tasks (grey background) in general verification
and test steps

28

simulation, RTL bit coverage fault model is used, which has proven to provide a
good correspondence with gate-level structural faults [29].

An efficient data structure implementation to speed up set operations in
deductive fault simulation algorithm at RTL was developed. The faults are
coded with bits the way that it would be possible to make fast bitwise set
operations with fault lists. Faulty data of the faults is stored in an array, which is
closely related to faults IDs.

 Fast HLDD-based simulation was extended to support code coverage
analysis, such as node coverage, edge coverage, toggle coverage. A method of
mapping traditional code coverage metrics to High-Level Decision Diagrams
(HLDD) was described.

Manipulations on HLDDs to find the best representation for code coverage
analysis were defined.

An observability coverage metric based on the bit-coverage fault model was
presented, which takes into account not only the controllability of an internal
point of the design, but also the observability at the outputs. The observability
coverage metric gives more information to verification engineer and allows
detection of testability problems at an early stage of a design cycle. This metric
was implemented on HLDDs using toggle coverage as a basis for bugs
insertions. The proposed deductive fault simulation algorithm on RTL is applied
as the bugs propagation algorithm.

All above described methods were successfully integrated into a single tool,
which is based on the HLDD simulation engine. General view of the tool
methods and implemented tasks is depicted in Figure 1.1. Developed methods
and tasks are colored in grey. In this figure one can see that code coverage
analysis is one of the verification tasks, where observability coverage is part of
a code coverage analysis. For implementation of these tasks in the thesis the
HLDD-based simulation and the RTL deductive fault simulation algorithm were
used. Also, the RTL deductive fault simulation algorithm was used for RTL
fault simulation, which is one of the test tasks.

1.4 Thesis organization

This thesis consists of 6 chapters and 1 appendix.

Chapter 2 provides background information on related topics to this work.
First, design representation by decision diagrams is presented including
description of the High-Level Decision Diagram (HLDD) model. Second,

29

introduction to fault simulation is described, where different fault models are
shown and different levels of abstraction for circuit design are presented. Also,
classic fault simulation algorithms for the gate-level are described. Third,
introduction to verification is given, where necessary definitions are presented.

Chapter 3 starts with an overview of fault simulation. Then a new approach
for fault simulation at the RTL using the HLDD design representation is
presented in detail. The deductive fault simulation algorithm implemented at
RTL is explained. An efficient implementation of algorithm’s internal data
structure for bitwise set operations is described. Then, results comparing RTL
and gate-level fault simulations are presented.

Chapter 4 starts with an overview of code coverage for hardware designs.
Code coverage metrics implemented on the HLDD simulation engine are
presented. Then it is explained, how traditional code coverage metrics map to
HLDDs and which representation of HLDDs better suits code coverage
analysis. Experimental results for code coverage analysis are presented.

Chapter 5 starts with an overview of observability coverage analysis.
Observability coverage metric presented in this thesis is defined. It is explained,
how this observability coverage metric is built into the tool, implemented as the
framework of this thesis. Experiments with measuring the observability
coverage are shown and analysis of this metric is presented.

Chapter 6 concludes the thesis and discusses possible directions for future
research.

The appendix presents research papers that form the basis for this thesis.

31

Chapter 2
BACKGROUND

This chapter presents background on the topics related to the current research.
First, the High-Level Decision Diagram (HLDD) model is introduced. Register-
transfer level fault simulation and HDL code coverage presented in this work
take advantage of a design representation by High-Level Decision Diagrams
developed at Tallinn University of Technology [61]. HLDDs themselves are not
contributions of this thesis. However, most of the contributions in this research
rely on these models. Second, digital test concepts are introduced. Classical
fault simulation methods based on the stuck-at fault model are presented. The
algorithm for RTL fault simulation proposed in this thesis is based on a classical
deductive fault simulation algorithm. Third, verification concepts are
introduced, where code coverage related topics are described in details.

2.1 Design representation by decision diagrams

The history of decision diagrams [61] based design representation goes back to
seventies when the basic concept of Binary Decision Diagrams (BDD) was
introduced. It was done by two authors, Raimund J. Ubar and Sheldon B. Akers,
independently from each other in 1976 [81] and 1978 [2], respectively. In [81]
decision diagrams were originally referred to as alternative graphs. During the
following years, a number of works about using decision diagrams for test and
simulation purposes were published, including [80] and [82]. However, it was
not until the efficient Boolean manipulation method was presented by Randal E.
Bryant in [11] when this type of representations became widely accepted by the
research community.

Later, different special classes of binary decision diagrams have been
proposed. They include Reduced Ordered BDDs (ROBDD) [11], multi-terminal

32

BDDs [17], edge-valued BDDs [42], binary moment diagrams [12], multi-
valued decision diagrams [72], functional decision diagrams (FDD) [41] and
others.

There is a number of word-level Decision Diagrams based models used for
design representation at the Register-Transfer and higher levels. High-Level
Decision Diagrams (HLDDs) were proposed by Raimund Ubar in [83] and
further developed by Jaan Raik in [60] and [61] and Anton Karputkin and Mati
Tombak in [38]. The other examples are multi-terminal DDs (MTDDs) [17] and
Assignment DDs (ADDs) [16] are some of them. However, in MTDDs the non-
terminal nodes hold Boolean variables only. The principal difference between
HLDDs and ADDs lies in the fact that ADDs’ edges are not labeled by
activating values. They are rather used as connecting signals to represent
structure. In HLDDs, the selection of a node activates a path through the
diagram, which derives the needed value assignments for variables.
Furthermore, ADD model includes four types of nodes (read, write, operator,
assignment decision). In HLDD the nodes are divided into non-terminal
(control) and terminal (data) ones.

The following two subsections provide an introduction to BDD and to
HLDD models correspondingly.

2.1.1 Binary decision diagrams

This subsection presents the traditional BDDs, which are commonly used for
representing Boolean functions. The general concept of BDD is explained and a
widely used special class of BDDs, Reduced Ordered BDDs (ROBDD), is
introduced.

A BDD is defined [61] as a directed acyclic graph with two terminal nodes,
which are the 0-terminal and 1-terminal nodes. Each non-terminal node is
labeled by an input variable of the Boolean function, and has two outgoing
edges, called 0-edge and 1-edge.

33

Ordered BDD (OBDD) is a BDD, where the input variables appear in a
fixed order on all the paths of the graph and no variable appears more than once
in a path. Figure 2.1 shows an example of a full tree BDD (a) and ordered BDD
(b) corresponding to a Boolean function f= (x1 · x2) v ¬x3. In the binary tree, 0-
and 1-terminal nodes represent logic values 0 and 1, and each node represents
the Shannon's expansion of the Boolean function:

where i is the index of the variable and f0 and f1 are the functions of the nodes
pointed to by 0- and 1-edges, respectively.

Reduced Ordered BDD (ROBDD) is created by applying the following
reduction rules to OBDD [11]:

Reduction rule1: Eliminate all the redundant nodes where both edges point
to the same node (Figure 2.2a).

Reduction rule2: Share all the equivalent sub-graphs (Figure 2.2b).

An important feature of ROBDDs is that they provide canonical forms for
Boolean functions. This allows us to check the equivalence of two Boolean
functions by merely checking isomorphism of their ROBDDs. This is a widely
used technique in formal verification.

High-Level Decision Diagrams are derived from BDDs and used at a higher
abstraction level of design representation, namely at word-level rather than
Boolean-level. Below, explanation of this model is provided.

x1

x2

x3

0 1

0

1

0

0

1

1

x1

x2

x3

1 0

1

0 1

1
x2

0

x3

0

x3

0

x3

1 1 1 1

1 00

0 1 0 1 0 1

a) b)

Figure 2.1 BDD representations for a Boolean expression (x1·x2) V¬ x3;

a) full tree BDD; b) ordered BDD

 ,.. 10 fxfxf ii

34

2.1.2 High-level decision diagrams

In this subsection, description of the HLDD model is provided. High-Level
Decision Diagrams can be viewed as a generalization of BDDs. HLDDs can be
used for representing different abstraction levels from RTL to behavioral.

2.1.2.1 HLDD model definition

Below the High-Level Decision Diagram (HLDD) data structure is defined
based on [38]. Consider a digital system (Z, F) as a network of subsystems or
components, where Z is the set of variables (Boolean, Boolean vectors or
integers), which represent connections between components, primary inputs and
primary outputs of the network, and F is a set of discrete functions. Let Z = X U
Y, where X is the set of function arguments and Y is the set of function values,
where Q = X ∩ Y is the set of state variables. D(z) denotes the finite set of all

possible values for z Z and D(Z’) is the set of all possible vectors for all Z’

Z. Obviously, if Z’ = {z1, …, zn} then D(Z’) = D(z1) … D(zn). Let F be a set

of discrete functions: yk = fk(Xk), where yk Y, fk F, and Xk X (k iterates
over all elements in F).

Definition 1. The high-level decision diagram representing a function

 fk : D(Xk) → D(yk) is a directed acyclic graph G = (V, E) with one root node
and a set of terminal nodes where:

a) b)

x

1

...

sG

0

...

sG

x
1

...

sG0

0

x

1

...

sG1

0
x

1

...

sG0

0

...

sG1

Figure 2.2 BDD reduction rules: a) reduction rule 1: eliminate all the
redundant nodes, where both edges point to the same node;
 b) reduction rule 2: share all the equivalent sub-graphs

35

 Each non-terminal node is labeled by some input or control variable

x X.1 We shall denote the variable of node v by xv.

 Each terminal node w is labeled by some function gw : D(Xw) →

D(yk) (possible a constant or single variable), where Xw Xk.

 Each edge e from node v to u is labeled by a non-empty set of

constants C D(xv). We denote such edge by (v, u, C).

 Each two edges e1 = (v, u1, C1) and e2 = (v, u2, C2) going from the

same source node are labeled by different constants C1∩ C2 = .

 If the node v is labeled by xv then the number of edges going from
this node is |D(xv)|.

In simple words, HLDD is a data structure similar to BDD, but with many
edges originating from a particular node and a number of functions at the end,
instead of constants 0 and 1. We shall denote the set of terminal nodes by VT,
the set of non-terminal nodes by VN and the set of all successors of the v by Γ(v).

For non-terminal nodes v VN an onto function exists between the values c

D(xv) of labels xv and the successors vc Γ(v) of v. By vc we denote the
successor of v for the value xv = c.

The edge e, which connects nodes v and vc, is called activated iff there exists
an assignment xv = c. Activated edges, which connect vi and vj, make up an

activated path l(vi, vj) V. An activated path l(v0, v
T) from the root node v0 to a

terminal node vT is called the main activated path and vT itself is referred to as
the activated terminal node.

Remark 1. Every BDD is an HLDD as well, with two terminal vertices labeled
by constant functions 0 and 1, and D(x) = {0, 1} for every variable x.

Without loss of generality we assume further that each variable has at least

two values, i.e. z Z, D(z) > 1. Let Di designate a subset of D(xv) labeling
node v, such that assignments from it will activate its successor node vi. D(xv) is
partitioned into non-intersecting sets D1, …, Dm, where m = |Γ(v)|. More
formally,

jivi

m

i

DDjijixDD ,,)(
1
 .

1 Some of these variables are in fact atomic predicates but are treated as Boolean variables as
there is no difference between a variable and a predicate in current context.

36

In other words, with every value assignment to variable xv one and only one
successor node will be activated. In the following graphical examples the edges
are merged according to their successor node vi and labeled by the
corresponding domain partition Di.

 Figure 2.3 depicts a HLDD Gy representing a discrete function
y=f(x1,x2,x3,x4). The diagram contains five nodes v0, …, v4. The root node v0 is
labeled by variable x2 which is an integer with a range from 0 to 7. The node has
three outgoing edges entering the nodes v1, v3 and v4. The node v1 is labeled by
x3 with a range from 0 to 3. It has two outgoing edges e4 and e5 entering
terminal nodes v2 and v3, respectively. The edge e4 is activated by x3=2, while
the edge e5 is activated by x3 having a value 0, 1 or 3.

Definition 2. A HLDD Gk = (V, E) represents a function yk = fk(Xk), iff for each
assignment of variables in Xk, a main activated path exists, so that yk = z(vT) is
valid.

Each function fk F in the system (Z, F) is represented by a decision
diagram Gk. Depending on the class of digital system (or level of its
representation), we may have various DDs, in which nodes have different
interpretations and relationships to the system structure. In RT level we usually
decompose digital systems into control and data paths parts. State and output
variables of the control part serve as addresses or control words, and the
variables in the data paths part serve as data words. The functions of RTL
components in the data paths are described by arithmetic operations on the
word-level data variables. Non-terminal nodes in HLDDs correspond to control

Figure 2.3 Graphical representation of a HLDD for function y=f(x1, x2, x3, x4)

0,1,3

2
x2

x2

x1

x4 x3

v0 v1 v2

v3

v4

y 0

1-3

4-7

e3

e1

e2

e4

e5

Gy
= (V,E);

V = {v0, v1, v2, v3, v4};

E = {e1, e2, e3, e4, e5}, e1=(v0, v1, 0),
e2=(v0, v3, {1-3}), e3=(v0, v4, {4-7}),

e4=(v1, v2, 2), e5=(v1, v3, {0,1,3});

X={x1=xv3
, x2=xv0

=xv4
, x3=xv1

, x4=xv2
};

D1(xv0)={0}, D2(xv0)={1,2,3},
D3(xv0)={4,5,6,7}, D1(xv1)={2},
D2(xv1)={0,1,3}.

37

1

0 3

2

1

1

0 0

SEL2

R1

IN

IN*R2

R1+R2 SEL1 SEL3

R1*R2

IN+R2

0

0

1 R2

R2 EN2

#0RES

1

R2

*

+
IN

>

EN2

>

SEL3

=0
=1

M
U

X
3

=2

=3

SEL1

=0

=1 M
U

X
1

SEL2

=0

=1 M
U

X
2

R1

b d

c
a

e

a) b)

b)

paths and they are labeled by control variables or logical conditions, whereas
terminal nodes correspond to data paths, and they are labeled by the data or
functions on data.

Figure 2.4 a) RTL schematic and b) its HLDD-based representation

38

2.1.2.2 Modeling RTL designs by HLDDs

In Fig. 2.4a the datapath is depicted and its corresponding HLDD representation
shown in Fig. 2.4b. Here, R1 and R2 are registers (R2 is also a primary output),
MUX1, MUX2 and MUX3 are multiplexers, + and * denote addition and
multiplication operations, IN is an input bus, SEL1, SEL2, SEL3 represent
multiplexer address signals, EN2 serves as the signal for register R2, and a, b, c,
d and e denote internal buses, respectively. In the HLDD, the control variables
RES, SEL1, SEL2, SEL3 and EN2 are labeling internal decision nodes of the

HLDD. The terminal nodes are labeled by a constant 0 (reset of R2), by word-
level variables R1 and R2 (data transfers to R2), and by expressions related to
the data manipulation operations of the network.

Consider, simulating HLDD with some values assigned to the variables. Let
the value of SEL2 be 0, the value of SEL3 be 3, the value of EN2 be 1 and the
value of RES be 0 in the current simulation run. By bold lines and grey nodes, a
main activated path in the HLDD is shown from RES to R1*R2, which
corresponds to the pattern RES=0, EN2=1, SEL3=3, and SEL2=0. The activated
part of the network at this pattern is denoted by grey boxes.

The main advantage and motivation of using HLDDs compared to the
netlists of primitive functions is the increased efficiency of simulation and
diagnostic modeling because of the direct and compact representation of cause-
effect relationships. For example, instead of simulating the control word
SEL1=0, SEL2=0, SEL3=3, EN2 = 1, RES=0 by computing the functions a =
R1, b = R1, c = a + R2, d = b * R2, e = d, and R2 = e, we only need to trace the
nodes RES, EN2, SEL3 and SEL2 on the HLDD and compute a single operation
R2 = R1 * R2. In case of detecting an error in R2 the possible causes can be
defined immediately along the simulated path through RES, EN2, SEL3 and
SEL2 without complex diagnostic analysis inside the corresponding RTL netlist.
The activated path provides the fault candidates, i.e. variables that are suspected
to contain faults causing the error at R2 during current simulation run. Further
reasoning should be based on analyzing sources of these signals.

2.1.2.3 Basic simulation on HLDDs

Simulation on decision diagrams takes place as follows. Consider a situation,
where all the node variables are fixed to some value. For each non-terminal

node vi VN according to the value of the variable xv = c certain output edge e

= (vi,vj,C), vjΓ(vi) will be chosen, which enters into its corresponding

39

successor node vj. Let us call such connections activated edges under the given
values.

Succeeding each other, activated edges form in turn activated paths. For each
combination of values of all the node variables there exists always a
corresponding activated path from the root node to some terminal node. We
refer to this path as the main activated path. The simulated value of variable
represented by the HLDD will be the value of the function result of constant
labeling the terminal node of the main activated path.

Algorithm in figure 2.5 presents the HLDD based simulation engine for
RTL, behavioral and mixed HDL description styles and has been proposed in
[85].

When representing systems by decision diagram models, in general case, a
network of HLDDs rather than a single DD is required. During the simulation in
HLDD systems, the values of some variables labeling the nodes of a HLDD are
calculated by other HLDDs of the system.

Starting from the root node the outgoing successor is found according to the
value of variable x0 labeling a node v0. While the terminal node is not reached
value of variable xcurrrent activates edge eactive to the next successor node vnext. In
the RTL style, the algorithm takes the previous time step value of variable
xcurrent labeling a node vcurrent if xcurrent represents a clocked variable in the
corresponding HDL. Otherwise, the present value of xcurrent will be used. In the
case of behavioral HDL coding style HLDDs are generated and ranked in a
specific order to ensure causality. For variables xcurrent labeling HLDD nodes the

Figure 2.5 Algorithm1. Simulation engine on HLDDs

for each diagram G in the model
 vcurrent = v0
 Let xcurrent be the variable labeling vcurrent
 while vcurrent is not a terminal node
 if xcurrent is clocked or its DD is ranked after G then
 Value = previous time-step value of xcurrent
 else
 Value = present time-step value of xcurrent
 end if
 vnext Γ(vcurrent), where eactive =(vcurrent, vnext) /\ c = Value
 vcurrent = vnext
 end while
 if xcurrent is a function then calculate a function;
 assign xcurrent to the DD variable xG
end for

40

previous time step value is used if the HLDD diagram calculating xcurrent is
ranked after current decision diagram. Otherwise, the present time step value
will be used. Reaching the terminal node value of terminal variable is assigned
to the graph variable y calculating first resulting value of a function if terminal
node labels a function.

In Figure 2.6 example of simulation on the high-level decision diagram
presented in Figure 2.3 is shown. Let assume that variable x2 is equal to 0,
variable x3 = 1 and variable x1 = 3. A path (marked by bold arrows) is activated
from node v0 (the root node) to a terminal node v3 labeled by x1. Thus, y=x1=3.
Note, that this type of simulation is event-driven since we have to simulate only
those nodes that are traversed by the main activated path (marked by grey color
in Figure 2.6).

2.2 Fault Simulation

In this subsection introduction to fault simulation is done. First, role of testing is
described. Then, different fault models are presented, which mathematically
describe defects of the circuit. Afterwards, the most widespread algorithms for
fault simulation are presented. Also, applications of fault simulation are defined.

x1 = 3
x2 = 0
x3 = 1
x4 = -
y = 3

e1

e2

e4

e5 0,1,3

2
x2

x2

x1

x4 x3
v0 v1 v2

v3

v4

y 0

1-3

4-7

e3

Figure 2.6 Example of design simulation on HLDD

41

2.2.1 The role of Testing

Reliability and testing techniques have become of increasing interest to different
applications, including consumer electronics. A key requirement for obtaining
reliable electronic systems is the ability to determine that the system is error-
free [9]. A test is a procedure which allows one to distinguish between good and
bad parts. In this work we concentrate only on digital testing, i.e. input and
output signals of the circuit can only take on the value ‘logic 0’ or ‘logic 1’.
Testing a circuit prior to its manufacturing is known as design verification. The
question is not whether one should verify but how well to verify in order to have
confidence that the device will comply with its specification [56]. This topic
would be discussed in the next subchapter. The stress of this subchapter is
testing a circuit after it is manufactured. Even though a circuit is designed error-
free, manufactured circuit may not function correctly. Since the manufacturing
process is not perfect, some defects such as short-circuits, open-circuits, open
interconnections, pin shorts, etc., may be introduced. Davis [20] points out that
the cost of detecting a faulty component increases ten times at each step
between prepackage component test and system warranty repair. Therefore,
testing has become a very important aspect of any VLSI manufacturing system.

Testing typically consists of applying a set of test stimuli to the inputs of the
circuit under test (CUT) while analyzing the output responses, as illustrated in
figure 2.7. Circuits that produce the correct output responses for all input
stimuli pass the test and are considered to be fault-free. Those circuits that fail
to produce a correct response at any point during the test sequence are assumed
to be faulty. Testing is performed at various stages in the lifecycle of a VLSI
device [92]. In addition, a diagnosis of the failing circuit can be performed in
order to identify the location and type of the defect.

Outputm

Output1

Inputn

Input1
Input
Test
Stimuli

Circuit
Under Test

(CUT)

Output
Response
Analysis

Pass/Fail

Figure 2.7 Basic testing approach [92]

42

Figure 2.8 Top-Down design & test methodology

2.2.2 Top-Down Design and Test Methodology

A VLSI design can be described at different levels of abstraction. The design
process is essentially a process transforming a higher level description of design
to a lower level description either with a help of synthesis tools or by hand. One
possible top-down design and test methodology is described in Figure 2.8.
Starting from a circuit specification, a behavioral model of a circuit is
developed in VHDL, Verilog, C or other language, program and simulated to
determine if it is functionally equivalent to the specification. At the behavioral
level functionality is modeled without regard to the hardware structure,
electrical signals and detailed timing. Such models are useful as a proof-of-
concept. The design is then described at the register-transfer level (RTL), which
contains more structural information in terms of the sequential and
combinational logic functions to be performed in the data paths and control

Functional
verification

Methods used
at different
abstraction
levels:
 Formal

verification
 Simulation

-based
verification

 Static
timing
analysis

…

Verification: Test:

Test

generation &
Fault

Simulation

Testing

Circuit
specification

Behavioral
model

Gate-level
netlist

RTL design

Floor plan &
polygons

Manufactured
chip

Design:

ge

neral tim
e flo

w

43

circuits. The RTL modules are validated as stand-alone components before
integrating them into a system. The RTL description must be verified with
respect to the functionality of the behavioral description before proceeding with
logic synthesis to the gate level. Logic synthesis transforms the RTL description
into an optimized technology-specific hardware description, generally in the
form of a gate-level netlist (connectivity description of Boolean gates). The gate
level structure of the design stabilizes only after the synthesized circuit has been
verified through logic simulation. Once the design is verified, gate-level SSF
(Single Stuck-Fault) models are used for test generation and fault simulation
using the technology-specific (gate-level) netlist. In addition, the gate-level
netlist serves as a common database for various post-synthesis steps such as
timing simulation, placement, routing, static timing analysis, etc., until a
prototype is fabricated.

2.2.3 Fault modeling

Below, some definitions of basic terms are presented.

Definition 2.1. A defect in an electronic system is the unintended difference
between the implemented hardware and its intended design [13].

Defects occur either during manufacturing process or during the use of the
device. Some typical defects are [13]:

 Process defects (imperfection of manufacturing process: missing of
contact windows, parasitic transistors, oxide break-down, etc.)

 Materials defects (surface impurities, bulk defects, etc.)

 Age defects (electromigration, dielectric breakdown, etc.)

 Package defects.

Definition 2.2. A wrong output signal produced by a defective system is called
an error. An error is an “effect” whose cause is some “defect”[13].

Definition 2.3. A representation of a “defect” at the abstracted function level is
called a fault.[13]

Definition 2.4. Test vector is an input pattern applied to the circuit under test
(CUT), and its responses are compared to the known good responses of a fault-
free circuit.

In order to completely test a circuit, a sequence of test vectors is required;
however, it is difficult to know how many test vectors are needed and the order

44

of test vectors in a sequence to guarantee a satisfactory reject rate. The
effectiveness of the test sets is usually measured by the fault coverage and is
defined as:

The set of test vectors is complete if its fault coverage is 100%. This level of
fault coverage is desirable but rarely attainable in most practical circuits.
Moreover, 100% fault coverage does not guarantee that the circuit is fault-free.
The fault coverage is calculated using a fault simulator.

Definition 2.5 Fault simulator is a logic simulator in which faults are injected
at the appropriate nets of the circuit, usually one at a time. The responses of the
circuit to test vectors are compared with the good responses of the circuit. The
fault is considered detected if at least one of the test pattern has a response
different from the good circuit response.

Fault simulator typically works with a specific fault model. Because of the
diversity of physical defects, it is impractical to work with real defects. Fault
models were introduced to offer a simplified mathematical description of the
erroneous behavior. Although most of the fault models do not provide exact
description of the erroneous behavior of the circuit, they are very useful for
generating and evaluating the quality of tests. A good fault model should satisfy
two criteria: it should accurately reflect the behavior of defects, and it should be
computationally efficient in terms of fault simulation and test pattern
generation. Many fault models have been proposed, e.g. single stuck-at faults,
transition faults, gate-delay faults, bridging faults [13], but, unfortunately, no
single fault model accurately reflects the behavior of all possible defects that
can occur. As a result, a combination of different fault models is often used.

Generally any fault model can be divided into two classes: single-fault
model and multiple-fault model. For single-fault model it is assumed that only
single fault can occur in the circuit at the time. A multiple-fault represents a
condition caused by simultaneous presence of a group of single faults. For a
given fault model let m be different type of faults that can occur at potential
fault site and n be possible fault sites. Then for single-fault model number of
possible faults equal to m*n and for multiple-fault model number of possible
faults equal to (m+1)n -1. Because latter amount of faults is too large even for
small values of m and n, the single-fault assumption is usually considered in
practice. Fortunately, tests for single stuck-at faults are known to cover a very
high percentage (greater than 99.6%) of multiple stuck-at faults when the circuit
is large and has several outputs [13].

45

Modeling of faults is closely related to the modeling of the circuit. Different
levels of abstraction are used in the top-down design methodology. The
behavioral level has fewer implementation details and fault models at this level
may have no obvious correlation to manufacturing defects. Behavioral level
fault models play greater role in the simulation-based design verification, than
in testing. The RTL level faults usually imitate gate level stuck-at faults at the
higher level of abstraction. Commonly this is not one to one correspondence.
The logic level or gate level consists of a netlist of gates and the stuck-at faults
at this level are the most popular fault models in digital testing. Other fault
models at this level are bridging faults and delay faults. Transistor and other
lower levels include technology-dependent faults, e.g. stuck-open faults.

Behavioral faults: Usually, the behavior of electronic system is described in
a programming language, e.g. C, or in some hardware description language such
as VHDL, Verilog. At the behavioral level the variables are not necessarily
electrical, but correspond to a specific application domain. Behavioral faults
refer to incorrect execution of the language constructs used in the program.
Examples of behavioral faults are assertion faults, branch faults, and instruction
faults. At the behavioral level, different coverage metrics (statement coverage,
branch coverage, toggle coverage) can be used to measure efficiency of the test,
although these do not conform to any specific fault model [13].

RTL faults: Straightforward extension to the stuck-at-fault model is to
replace the concept of a signal line that is stuck with that of an internal RTL
variable being stuck. Further it is possible to differentiate between data faults
and control faults, depending on the type of the stuck variable [1].

 Typical data faults are register or memory bits that are stuck. Data
faults are stuck-at-0 and stuck-at-1 faults: when the fault is present,
the affected object (a signal or a variable representing memory
element) loads the correct value, except for one bit that remains
stuck to 0 or 1.

 Control faults are defined on variables that control conditional
operations. These are stuck-at-then and stuck-at-else faults for if
statements and selection faults for case statements. It is allowed
having a stuck fault to the result of any expression that is part of a
condition or the entire condition itself.

Logical faults represent the effect of physical faults on the behavior of the
modeled system. Many physical faults can be modeled by the same logical fault.
Logical faults affect the state of logical signals. Normally, the state is modeled

46

as {0, 1, X, Z}, and a fault transform the correct value to any other value.
Several types of faults can be modeled at this level. However, the term logical
fault often implies stuck-at faults.

Lower level faults are not part of this work therefore their description is out
of the scope of the thesis. As the Single Stuck-Fault (SSF) model is used as the
basis for RTL level faults model, more detailed description of the SSF model is
provided below.

SSF (Single Stuck-at Fault) model is a logical fault model that is most
commonly used in digital testing [35]. A stuck-at fault is assumed to affect only
the interconnections between gates. A single stuck-at fault (stuck-at-0 or stuck-
at-1) represents a line in the circuit that is fixed to logic value 0 or 1,
irrespective to the correct logic output of the gate driving it.

The SSF model is widely used, its usefulness results from the following
attributes [1]:

 It represents many physical faults.

 It is independent on technology, as the concept of a signal line being
stuck at a logic value can be applied to any structural model.

 Experience has shown that SSFs detect many non-classical faults as
well.

 Compared to other fault models, the number of SSFs in the circuit is
small. Moreover, the number of faults to be explicitly analyzed can
be reduced by fault-collapsing techniques.

 SSFs can be used to model other types of faults.

 High SSFs coverage provides a high multiple stuck-at faults
coverage.

 In this work, two fault models: the SSF model and the RTL bit coverage
fault model [29] - are used for fault simulations. A detailed description of fault
simulation methods and experiments will be provided in the next chapter.
Comparative table of the properties of the fault models is given below. It is
important to mention that there is no one to one correspondence between SSF
faults and RTL faults because for a given RTL description several gate-level
implementations exist.

47

Table 1 Properties of fault models

Gate level SSF model RTL bit coverage fault model [29]

Boolean components are assumed to
be fault-free

Language operators are assumed to be
fault-free

Signal lines contain faults:

 Stuck-at-0 fault when the
logic level is fixed at value 0

 Stuck-at-1 fault when the
logic level is fixed at value 1

Variables contain faults:

 Stuck-at-0 fault when the bit
is fixed to value 0

 Stuck-at-1 fault when the bit
is fixed to value 1

According to SSF assumption, only
one fault is applied at a time when the
test set is evaluated

Single fault assumption: only one fault
is applied at a time when the test set is
evaluated

2.2.4 Fault simulation

Simulation is the process of predicting the behavior of a circuit design before it
is manufactured. For digital circuits, simulation serves dual purposes. First,
during the design stage, logic (fault-free) simulation helps the designer verify
that the design works according to the functional specifications. Verification
with the help of simulation techniques will be part of the next subchapter.
Second, during test development, fault simulation is applied to simulate faulty
circuits. Definition of fault simulator is given in the previous subchapter. To
summarize, a fault simulator must classify given modeled faults in a circuit as
detected or undetected with given test vectors. Fault simulator determines the
efficiency of test vectors in detecting the modeled faults of interest.

The section below presents the key fault simulation techniques based on the
single stuck-at fault model. These techniques can be reused with modifications
on other fault models as well as at other abstraction levels. Since these
algorithms were developed for SSF model the explanations would be given on
this model. Further, RTL fault simulation features would be shown.

2.2.4.1 Serial Fault Simulation

Serial fault simulation is the simplest fault simulation technique. First, the
circuit is simulated in a fault-free mode for all test vectors and fault-free output
values are stored. Then the fault simulator simulates faults one by one. For each

48

fault, fault injection is performed, which modifies original circuit to mimic the
circuit behavior in the presence of the fault. As simulation proceeds, the output
values of fault simulation are compared with stored fault-free output values for
all test vectors. All faults are simulated serially in this way. This kind of
simulation is very time consuming. To improve the fault simulation
performance, fault dropping is used. Halting the simulation as soon as
comparison indicates detection of the target fault is called fault dropping.

The major advantage of serial fault simulation is its ease of implementation.
It can simulate wide range of fault models, as long as the fault effect can be
properly injected into the circuit. The major disadvantage of serial fault
simulation is its low performance. There exists more intelligent algorithm to
reduce the effort of fault simulation. These general algorithms are parallel [67],
deductive [3] and concurrent [87] fault simulation techniques. They differ from
the serial method in two fundamental aspects [1]:

 They determine the behavior of the circuit in the presence of faults
without explicitly changing the model of the circuit.

 They are capable of simultaneously simulating a set of faults.

Two of these algorithms will be described in the following sections.

2.2.4.2 Parallel Fault Simulation

Parallel fault simulation benefits on the bitwise parallelism of logical operations
in a digital computer in order to reduce computational time. For example, for a
32-bit machine word, logic operations such as AND, OR, XOR etc. can be
performed on all 32 bits at once. The idea of parallel fault simulation belongs to
[67]. It is assumed that signals work on logic 0 and/or 1. It is possible to expand
2-bit signal logic to wider coding such as X and Z values, but this method
would require special encoding.

In parallel fault simulation w-1 faults would process in one pass, where w is
the machine word size. One bit of w is used for fault-free value and other w-1
bits are values of signals in the faulty circuits for w-1 faults. Each bit of a word
represents a signal value in a different circuit. The injection of a fault is done by
changing the value of a bit corresponding to a signal value in a circuit. If the
number of simulated faults is more than the machine word size, then more than
one pass of fault simulation is required to simulate all faults. The technique of
fault dropping can be applied in parallel fault simulator as well as in serial fault
simulator to reduce computational time, however the simulation pass would

49

terminate only when all faults of the pass would be detected. Therefore, serial
fault simulation gains more by fault dropping.

Consider an example of a multiplexer at the gate level (Figure 2.9). In this
example, test vector ACB=011 is applied to the inputs. Three faults f1 (s-a-1), f2
(s-a-0), f3 (s-a-0) are injected into the circuit. Therefore, a packet of 4 bits is
required for logic operations of parallel simulation, where 3 bits are used to
encode values of the signals in faulty circuits and 1 bit is used for the fault-free
circuit. To simulate in parallel, the signal of each line in a circuit is expressed as
a word where 4 left-most bits are useful for simulation in this example. The bit,
which represents faulty value of a signal in faulty circuit, is changed to the
stuck-at value, other bits remain the same. During the simulation, the effect of
the faulty value propagates towards the output. For example, fault f1 is present
only in the first circuit, thus second bit of signal A is changed to 1. Performing
logic operations we obtain output out=0110. Faults f1 and f2 are detected
because bits in the output signal representing faulty circuits with these faults
differ from fault-free bit value; fault f3 is not detected because its bit value is
equal to the fault-free bit value.

Parallel fault simulation is approximately w times faster in comparison with
serial fault simulation. However, it has limitations as well. It becomes
impractical for multi-valued logic. And as it was mentioned above, the fault
dropping technique is not as effective as for serial fault simulation.

Figure 2.9 Parallel fault simulation

xA

out

B

C

f1=s-a-1

f2=s-a-0

f3=s-a-0

0
1

1

x

x

0 1 1 0 1 0 1 1

0 0 1 0

0 1 0 0
0 1 1 1

0 1 0 0

1 1 1 1

0 0 1 0

fault-free value
value in faulty circuit with fault f1

value in faulty circuit with fault f2

f1, f2 –
detected
f3 -
undetected

value in faulty circuit with fault f3

50

2.2.4.3 Deductive Fault Simulation

In deductive fault simulation [3] only the fault-free circuit is simulated and
the behavior of all faulty circuits is based on logic reasoning. All signal values
of faulty circuits are deduced from fault-free circuit signal values and the
structure of a circuit. All deductions are carried out simultaneously and only one
fault-free simulation is performed. Thus deductive fault simulation can be very
fast. It is possible theoretically to deduce all signal values, however practically
this depends on the size of the available memory. Fault effects are represented
by the fault list. A fault list Li is associated with every signal i. Li is a set of
faults that cause the value of signal i to differ from its fault-free value. If signal i
is a primary output then the fault list associated with i is the set of faults
detected at this output. Thus the aim of the deductive fault simulator is
eventually to construct a set of detected faults by uniting fault lists of all
primary outputs. Based on logic reasoning, the process of deriving the fault list
of a gate output from those of the gate inputs is called fault list propagation
[92].

Let us see the procedure of fault list propagation in general. In deductive
fault simulation it is important to know either the gate input holds a controlling
value or a non-controlling value. The value of an input is said to be controlling
if it determines the value of the gate output regardless of the values of the other
inputs [1]. For example, a controlling value for an AND gate is 0 (because
appearance of 0 at least in one of the inputs of an AND gate will force the
output of the gate into 0), for an OR gate is 1, etc. Let I be a set of inputs of a
gate Z. Let C be a set of inputs with controlling value c, where . z is an
output signal of gate Z. The fault list Lz of gate Z is computed as follows where
2 cases are recognized:

1) If then

This means, that if all inputs have non-controlling values, then all faults
observed at the inputs propagate to the output of the gate adding a fault
of the output signal line. In the example in Fig. 2.10 this is computation
of Lout, because the OR gate has inputs 00, which both are non-
controlling values for the OR gate.

2) If then

This means, that if some of the inputs has the controlling value c, only
faults of these inputs propagate to the output taking into account the self-
masking effect - the appearance of the same fault at any of non-
controlling inputs, which faults are excluded at the fault list of the gate

51

output. As in the previous case, the fault of the output signal line is
added. In the example in Fig. 2.10, Lh and Lf are calculated with this
formula, because both AND gates have in one input the controlling value
0 and in the other input non-controlling value 1.

Consider the same multiplexer example (Figure 2.10). Let input vector to the
schematic be the same ACB = 011. Also, the same faults f1 (s-a-1), f2 (s-a-0),
f3 (s-a-0) are injected into the circuit. Faults are propagated by computation of
fault lists at every signal line of a circuit:

, , , ,

, , , ,

 , .

The following fault list is propagated to primary output out Lout = {f1, f2},
therefore detected faults for input vector ACB =011 in this circuit are {f1, f2},
and f3 is not detected.

Deductive fault simulation is efficient and powerful technique, because it
processes all faults in a single run without re-simulations of the same circuit.
However, it has limitations as well. Unknown values are not easily handled.
Algorithm spends a lot of CPU time for logic operations on sets. Also it has
potential memory management problem, because the size of the fault lists
cannot be predicted in advance.

Lb = {f3}

xA
f1=s-a-1

f2=s-a-0

f3=s-a-0

0

x

xB

C 1

1

h

fd

e

g

b

a

Lout = {f1, f2}

Ld ={f2}

La = {f1}

Lf = {f2}

Lh = {f1}

Le = {f2}

f1, f2 - detected
 f3 - undetected

out

Figure 2.10 Deductive fault simulation

52

2.2.4.4 RTL Fault Simulation

For RTL fault simulation, the input design is described at higher abstraction
level - RT level. RTL constructs represent a subset of HDL (hardware
description language) constructs in order to ensure the consistent synthesis by
logic synthesis tool into gate-level. An RTL model represents micro-
architecture of a circuit, where operations are synchronous transfers between
functional units (e.g. arithmetic units) and registers. A fault model can be
designed according needs, though a RT level fault model should guarantee fault
coverage comparable to the gate-level fault coverage obtained for the same test
sequence. In this work the RTL bit coverage fault model described in part 2.2.3
“Fault modeling” is considered, where memory bits stuck at value 0 or 1.

For RTL fault simulation any algorithm can be selected. Usually it is
convenient to apply proven algorithms for SSF model in fault simulation at
other levels of abstraction. Some of these standard algorithms were described in
previous subsections. Certainly, different modifications for these algorithms are
required in order to simulate the RTL bit coverage fault model. The RTL fault
simulation method itself is analogous to the gate level approach, where fault-
free and faulty circuits are created based on the SSF assumption and simulated
with given test vectors. When the outputs of the fault-free circuit and the faulty
circuit are different, the fault is considered to be detected. Simulation continues
until all faults are evaluated with given test vectors. At the end of fault
simulation a fault report is generated where RTL fault coverage of a circuit is
provided.

In general RTL fault simulation has the following advantages with respect to
the gate-level fault simulation:

 a performance gain compared to gate level approach;

 the possibility of improving tests prior to logic synthesis;

 early detection of testability problems, when design for testability is
considered for the circuit.

53

2.2.5 Applications

In this subsection, main tasks, which require intensive use of fault simulation,
are outlined. This helps to understand how important the performance of fault
simulation is. The speed of simulation is very significant in a lot of tasks,
because the process of simulation must perform many times in a cycle. General
picture for test generation is presented at Fig 2.11, where other applications of
fault simulation are also depicted.

First, fault simulation rates the effectiveness of a set of test vectors in
detecting defects. The test quality is measured in terms of fault coverage with
respect to the modeled faults of interest. Calculating the fault coverage is the
primary task of any fault simulator.

Second, fault simulator helps to identify undetected faults. Fault simulator is
often used in conjunction with an Automatic Test Pattern Generator (ATPG)
in order to verify the generated test vectors. The generated test set is modified
by adding new test vectors until the obtained fault coverage is considered
satisfactory. These changes may be made by ATPG or by test designer in an
interactive mode.

Third, it is possible to use the result of the fault simulator to remove test
vectors from an already available test set without decreasing the fault coverage.

Figure 2.11 Fault simulation for test generation

Sufficient

Stop

Fault
coverage?

delete
vector

add
vector

low

Fault Simulator Netlist

Test

Update list
of

discovered
faults

Test
compacter

ATPG

54

This process is called test compaction and often effectively used for random
test generation on combinational ATPG. Test compaction is done in order to
reduce time of test application and also to reduce the cost of storage for test
vectors in the tester memory.

Fourth, fault simulation helps in fault diagnosis. If a device fails the tests,
then diagnostic information assists to determine the type and location of a fault
that best explains the faulty behavior of the circuit under test. One of the well-
known methods to perform diagnosis is to use a fault dictionary. The fault
dictionary stores the faulty output response to test vector of the faulty circuit
corresponding to the simulated fault. Actually, the fault dictionary does not
store all faulty output responses, but a certain function, called the signature of
the fault. For the circuit under diagnosis, the signature is used for narrowing the
suspected area of the fault and trying to identify the fault. This fault dictionary
is constructed during fault simulation and must be done without the fault
dropping technique.

Fifth, fault simulation can be used to find the optimal solution for BIST
(Built-in Self-Test). BIST is a technique, which enables a circuit with the
additional functionality of self-testing. A typical Logic BIST consists of a
controller, a special pseudo-random test pattern generator and a response
analyzer. Also, memory is sometimes required to store deterministic test
vectors. To find a tradeoff between the size of additional memory and the
quality of test many runs of fault simulation is required.

Another application of fault simulation is to analyze the operation of a
circuit in the presence of faults. This is especially important in high-reliability
systems. Examples [1]:

 a fault can induce races and hazards not present in the fault-free
circuit;

 a faulty circuit can oscillate or enter a deadlock state;

 a fault can prohibit the proper initialization of a sequential circuit;

 a fault can transform a combinational circuit into a sequential one or
a synchronous circuit into an asynchronous one.

55

2.3 Design Verification

Verification of digital circuits is a process of proving that digital circuit design
meets the design specification and requirements before its manufacturing. It is
important to distinguish between testing and verification, where testing ensures
that the implemented device works correctly and verification is done during the
implementation phase. Statistical data show that around 70% of the project
development cycle is devoted to design verification [43]. A verification
engineer must verify the design under all cases, not only cases represented in
the specification. It is not possible during project development cycle to verify
all cases thoroughly while meeting the time-to-market requirements. Therefore
different methodologies are used to plan the verification process, in which
critical parts of the design are proven to be bug-free. A verification
methodology starts with a test plan that details specific functionality to be
verified in order to satisfy specification. Different methods are used to track
process against test plan. In reality it is impossible to verify a set of
specifications completely [14]. Thus, a measure of verification quality is
desirable. This measure is called coverage metrics. Usually used metrics are
functional coverage and code coverage. Functional coverage shows the part of
the functionality verified in percentage. Code coverage measures the percentage
of code simulated.

One of the possible methodologies is borrowed from [14]. This methodology
is based on automated metric-driven processes. Processes are important and
improve the predictability of the project. The verification process model is
shown in fig 2.12.

plan

respond execute

measure

Figure 2.12 Verification Process Model [14]

56

In the first phase – plan - it is determined what requirements should be and
how to measure the result. Then, the model of the design needs to be executed
(execute phase). In the measure phase, effectiveness of the verification effort is
measured with a help of different metrics such as code coverage, functional
coverage, assertion coverage etc. In the respond phase, result data is analyzed
and adjustments are worked out for the next iteration. This cyclic process
repeats until all product requirements are satisfied.

Since the design process is usually hierarchical process, verification also
must be made at all levels of design. Design verification is a reverse process of
design. Design verification starts with implementation and confirms that the
implementation meets the specification at every abstraction level. Also,
equivalence checking between different levels is performed. A common
intermediate form for determining equivalence between transistor-level and
RTL is binary decision diagrams.

There exist two verification approaches: formal method-based verification
and simulation-based verification. These methods can be distinguished as
formal verification is output oriented (the output properties must be verified)
and simulation-based verification is input oriented (input vectors must be
supplied).

Formal verification mathematically proves that a protocol, assertion, or
design rule holds true for all possible cases in the design [94]. Formally only a
limited sized design can be verified, a formal verification engine consumes
enormous amounts of computer resources, even for small designs. Formal
methods work well on control logic blocks, where results can be returned in a
reasonable time.

Simulation-based verification relies on the software model of a design,
which runs on the simulation engine. Simulation reflects the behavior of the
modeled device and generates corresponding outputs in response to specific
inputs. During simulation-based verification the design is placed under
testbench, input stimuli are applied to the testbench, and output from the design
is compared with the reference output [43].

The most commonly used verification approach is simulation-based
verification. Formal verification is a great complement to simulation and often
applied to portions of the entire design. In this work only simulation-based
verification for finding code coverage is used, thus this approach is described
below in more details.

57

2.3.1 Simulation-based verification

Three interrelated problems in simulation-based verification are [1]:

 How does one generate the input stimuli?

 How does one know the results are correct?

 How “good” are the applied input stimuli, i.e. how “complete” is the
testing experiment?

Usually input stimuli are organized as a sequence of test cases, which are
extracted from design specification. Also pseudorandom input stimuli are
generated in order to activate unusual bugs of which designers are unaware. The
cost of creating pseudorandom inputs is much lower compared with directed
tests.

The results are considered correct when they match expected results
according the specification of the design. Goodness of applied input stimuli
commonly measures with a help of different coverage metrics.

The typical flow of simulation-based design verification is shown in Fig 2.13
[43]. The components inside the dashed enclosure represent the components
specific to the simulation-based methodology. During simulation-based
verification, the design is placed under a test bench. A test bench consists of
code that supports operations of the design, and generates input stimuli and
compares the output with the reference output as well. Before a design is
simulated, it runs through a linter program that checks static errors or potential
errors and coding style guideline violations. Next, input vectors of the items in
the test plan are generated. After the tests are created, simulators are chosen to
carry out simulation. The coverage metrics measure how much the design is
stimulated and verified. When a bug is found, it has to be communicated to the
designer and fixed. This is usually done by logging the bug into a bug tracking
system, which sends a notification to the owner of the design. When bugs are
fixed, the regression is carried out, which goal is to make sure that none of
previously existing functionality has broken. Design codes with newly added
features and bug fixes must be made available to the team. Therefore, design
codes are maintained using revision control software that arbitrates file access
to multiple users and provides a mechanism for making the latest design code
visible to all.

58

The simulation-based method has strengths and weaknesses [13]. Its strength
is in details of the circuit behavior that can be simulated, such as timing details,
logic details etc. Another advantage is use of hierarchy of the design. Circuit
can be simulated at different levels of abstraction iteratively. Thus the speed of
simulator is very important, because it is used very many times. The method
weakness is its dependence of designer’s heuristics for generating input stimuli.
Also these stimuli are non-exhaustive and therefore guarantee of conformance
to specification is impossible. Such guarantee is possible with a formal
verification method. But the high complexity of formal methods allows their
use only for small designs and at the higher behavior levels. In case of the
incompleteness, simulation provides a better check on the manufacturability of
the design. Ideally both (simulation-based and formal) methods should be used
in conjunction to verify the design.

Figure 2.13 Simulation-based verification [43]

design

testbench
design

revision control

regression

bug tracking debug

simulation

linting

coverage metrics

stimulus generation

test plan

59

2.3.2 Coverage metrics

To measure the quality of design verification, coverage metrics are widely used.
Because it is impossible to verify exhaustively a design, the confidence level
regarding quality of verification must be quantified. The fundamental question
is “How do I know if I have simulated or verified enough?” Verification
coverage is a measure of confidence and it is expressed as a percentage of items
verified out of all possible items [43]. An item can be of various forms: a line of
code, parameters, functionality in a specification etc. Thus coverage metrics are
divided into code coverage, parameter coverage, functional coverage etc. Code
coverage provides insight into how well the code of an implemented design is
verified by the stimuli. Functional coverage computes the amount of features
and functions that are exercised in a design. Code coverage is also called
implementation coverage, because it is based on the implementation of the
design, whereas functional coverage is based on specification only. Therefore
code coverage does not necessary provide implementation’s correctness with
respect to its specification, because it assumes only current implementation of a
design. However, using code coverage metrics designer sees the parts of a
design that have not been exercised yet and can create input stimuli for these
parts. To guarantee a good level of confidence different class of metrics must be
used, so usually code and functional metrics are used in conjunction.

Carter et al. in [14] propagate metric-driven design verification, where they
state that metric-driven approach allows improving the predictability,
productivity and quality of both implementation and engine execution. First,
metrics are able to point out holes of uncovered areas in the design. Second,
with automatically captured metrics it is possible to fully automate some
processes and remove the human element.

In this thesis, code coverage metrics were implemented based on HLDDs.
Three metrics were implemented: statement, branch and toggle. Only these
metrics are described in details below.

Statement coverage calculates how many statements are executed during
simulation among all possible statements in a code. Statement is syntactical
structure of HDL specification. The statement coverage gives the knowledge
that statement has been executed.

Branch coverage reports the count of control flow transfers for HDL control
statements. This means keeping track on which conditions the simulation
encounters and which it does not. The limitation of this coverage is that

60

decisions can be implemented not only with a help of conditional constructs.
Thus some decisions are not taken into account by branch coverage.

Toggle coverage measures transitions between values of bits in registers,
wires. Toggle coverage is the ratio of bits toggled from 0 to 1 and from 1 to 0 to
the total number of bits in registers and wires. Toggle coverage is simple to
implement and easy-to-understand. It is a general activity indicator, but gives a
very coarse view of signal activity and associates no semantic meaning to
recorded results.

Code coverage can clearly improve the verification quality. They are easy to
implement and to use, and give information of uncovered parts of the design.
Also, these metrics are usually embedded into EDA (Electronic Design
Automation) tools and straightforward to use during simulation. All these
advantages have made code coverage an important feature of HDL simulation
engine.

2.4 Chapter summary

The goal of this chapter was to provide background information required to
understand the contributions of this thesis. The first part of this chapter gives an
overview of HLDDs, proposed and developed at TUT (Tallinn University of
Technology). Advantages of this model for representing digital designs for fault
simulation purposes as well as for simulation-based verification purposes were
described.

The second part of this chapter described the role of testing of digital
circuits. Then, basic concepts were given such as fault and defect. Also different
fault models at different abstraction levels and their relation to real defects were
described. Then, fault simulation principles were presented and classic fault
simulation algorithms based on the widespread stuck-at fault model were
explained.

The third part of this chapter provided an overview of design verification
issues. The main emphasis of this part is given to simulation-based verification.
Then, basic knowledge of code coverage metrics was presented and the
advantages of simulation-based verification were explained.

61

Chapter 3
HLDD-BASED FAULT SIMULATION

In this chapter, a new approach to fault simulation based on High-Level
Decision Diagrams (HLDDs) is proposed, which is applicable directly at the
Register-Transfer Level (RTL). The fault simulation algorithm is built on the
RTL bit coverage fault model, which has proven to yield good correspondence
with gate-level structural faults [29]. A new deductive fault simulation
algorithm is described. An efficient data structure based on bitwise set
operations is introduced in order to achieve a high speed of simulation.
Experiments on RTL benchmark circuits are presented.

3.1 Overview

While several efficient algorithms for fault simulation of combinational circuits
exist, the task of analyzing structural faults in sequential circuits remains a
highly difficult issue. In order to contend the complexity the research
community has turned towards developing methods at higher design abstraction
levels.

Existing fault simulation tools typically rely on gate-level algorithms. One of
the earliest sequential fault simulators, PROOFS [57] combines the advantages
of differential fault simulation and parallel fault simulation. HOPE [44], a
parallel fault simulator, simulates 32 faults at a time. Faults with short
propagation paths are excluded from parallel simulation, since most of the time
the faulty circuit response would be identical to the correct one during the
simulation of such faults. Also PARIS [31] is based on a parallel fault
simulation model. Heuristics are used to minimize the number of events that
must be tracked. LIFTING [8] is an open-source simulator able to perform logic
and fault simulations for single/multiple stuck-at faults and single event upset

62

(SEU) on digital circuits described in Verilog. Despite of a wide range of
methods, fault simulation for sequential circuits at the gate-level is slow for
larger designs, in particular when long test sequences are considered.

Functional fault simulation of VHDL designs has been proposed in [28][93].
This approach is fast but it lacks accuracy since there is no strict correlation
between the functional fault model and actual structural faults in the circuit. In
[45] an architectural-level fault simulation tool ARSIM is presented. The tool
uses symbolic data to simultaneously process the fault effects for groups of
faults in the module under simulation. However, ARSIM is capable of reporting
only pessimistic fault simulation results because of the limitations of the
symbolic algebra applied in fault propagation. This shortcoming has been
contended in an improved symbolic approach by Sinanoglu and Orailoglu [70]
by utilizing the rightmost faulty bit location information to enhance the
method’s ability of propagating symbolic data. In [39], Kassab, Rajski and
Tyszer, propose hierarchical functional fault simulation that provides high
speed-up but relies on building blocks that have regular structures. Shen
introduced a concurrent Register-Transfer Level (RTL) fault simulator VFSim
[69], which is capable of simulating Verilog designs. However, comparison to
the gate-level fault simulator HOPE [44] showed no speed-up in most cases.

Deductive fault simulation algorithm was first introduced by Armstrong [3].
Some improvements of this algorithm for 2-value bit logic were worked out in
[52][74]. This algorithm is developed for 2-value bit logic and different gate-
level fault simulators [15], [71], [91] were built based on this technique. In this
thesis deductive fault simulation algorithm is reused for register-transfer level of
design representation, where integer values are used to pass signal values.

In [21] fast RTL fault simulator is presented. This simulator is based on
Reduced Ordered Ternary Decision Diagrams ROTDD. For fault propagation it
combines advantages of both bit-parallel and deductive techniques. In
comparison with HOPE [44] proposed in [21] the method is faster, but there is
no strict connection between the RTL fault model, applied in [21], and the gate-
level fault model.

The paper [19] focuses on fault simulation at the RTL, and aims at
exploiting the capabilities of VHDL simulators to compute faulty responses.
Authors established rules for RTL code, which allow the RTL fault coverage to
become more and more correlated to the gate-level fault coverage. The
feasibility of this method has been confirmed by experiments with ITC’99
benchmarks. However, these RTL faults are modeled only on all assignment
targets of the executed statements that respect a defined set of rules.

63

In [73] fault simulation at RT level for digital circuits is proposed. The
method is based on Verilog hardware description language, where fault-free
circuit description is changed to faulty description. Commercial simulator is
used to compare results. The fault model is based on an assumption that only
interconnections are fault affected, thus these map to operators and variables in
RTL. The RTL Fault Coverage obtained by the proposed fault modeling
methodology has a close match to the Gate-Level Fault Coverage for the tested
digital circuits. However, for each of the faults, a new faulty circuit is created in
Verilog. This is a time-consuming task and authors of the paper do not provide
time of fault simulation neither at RTL nor at gate level.

Moreover, there exists acceleration of fault simulation even at TLM
(Transaction-Level Modeling) level [7]. It is clear that many details (time,
structure) are dropped, which allows fast design exploration. When TLM
exploration is performed a RTL fault simulator is still required for more detailed
design evaluation.

A concept of hierarchical fault simulation using a deductive algorithm on
High-Level Decision Diagram (HLDD) [83] models was introduced in [86].
The method assumed that gate-level descriptions of all the modules exist and
faults were modeled in the circuits hierarchically at the register-transfer and
logic levels. Another, RTL algorithm was proposed in [64], which is the first
version of the algorithm presented in this thesis. However, experimental results
showed that the method becomes prohibitively slow when circuits with large
number of arithmetic operations are considered. An efficient data structure
based on bitwise set operations is introduced in [63] in order to increase the
speed of fault simulation.

3.2 Deductive Fault Simulation on HLDDs

Deductive fault simulation at RT-level based on HLDD models will be
described in this subsection. This simulation algorithm and its implementation
is the contribution of [63][64]. In Figure 2.4 an example of a small digital
circuit and corresponding HLDD-based representation is depicted. This
example circuit would be used to explain the deductive fault simulation
algorithm. The main advantage and motivation of using HLDDs compared to
the netlists of primitive functions is the increased efficiency of simulation and
diagnostic modeling because of the direct and compact representation of cause-
effect relationships.

64

In this work we rely on the RTL bit coverage fault model, described in
section 2.2.3. According to this fault model the faults are injected to every bit of
every register in the RTL circuit. Single fault assumption is used, i.e. a fault is
expected to be present at one of the register bits at the time. The bit is assumed
to be permanently stuck to the value 0 or 1. This RTL bit coverage fault model
has been proven to have a good correspondence with gate-level structural faults
[29].

The central datastructure of the deductive fault simulation algorithm is a
fault propagation record. A fault propagation record Ty is generated for all the

variables yY that represent registers.

Ty={p0, (p1, M1), …, (pk, Mk)},

where p0 is the fault free value of the register variable y and pj is the faulty value

corresponding to the faults mj,i Mj propagated to variable y. M1 … Mk =

M’ and M1 … Mk = , where M’ M, and M is the set of all faults and M’
is the set of faults propagated to the register variable y. If two faults produce the
same faulty value pj then they should be merged to the same fault group Mj.

3.2.1 Algorithm Structure

The algorithm processes test vectors one by one. The design under test is
translated automatically into internal representation at High Level Decision
Diagrams (HLDDs). Usually there is a set of diagrams rather than one diagram
representing the circuit. Simulation and fault propagation of the DUT (Design
Under Test) is done diagram by diagram, where diagrams are ordered according
dependences between them. The fault insertion is done for all the bits in
variables, which represent registers. The RTL bit coverage fault model (data bit
is stuck-at-0 or stuck-at-1) is implemented by flipping the bits to the stuck-at-
value from correct one for every test vector. Then, propagation of the fault sets
is done from the root of the diagram to the terminal nodes. For saving the fault
information, the fault propagation record is used for every node of the diagrams.

65

General function call graph of the deductive fault simulation algorithm is
presented in figure 3.1, pseudo-code of the algorithm is depicted in figure 3.2.
As it has already been mentioned, the fault simulation on the HLDDs is
performed vector by vector (function FaultSimulation). For each vector, all
HLDD graphs are traversed one after another (function ProcessFaults). In every
graph (HLDD), first, the fault free path is followed by processing the nodes
along the main activated path of the HLDD recursively (function
ProcessFaultFreePath) until the terminal node vT is reached (function
ProcessFaultFreeTerminal). While following the main activated path for every
node the set of possible faults out of fault free path is calculated. If this set is
not empty the faulty path is processed (function ProcessFaultyPath)
propagating the faults to the terminal nodes. This propagation is done
recursively node by node until terminal node of the graph is reached. All the
possible branches are taken to process the faulty paths. While processing the
terminal nodes, new fault propagation record Ty for the HLDD gy is calculated
(function ProcessFaultyTerminal).

At the beginning of a new cycle (new test vector) new faults are injected
according to the RTL bit coverage fault model. Thus, the set of faults to
propagate to the next clock cycle consists of propagated faults and newly
injected faults.

Figure 3.1 Call graph of the deductive fault simulation algorithm

66

During the fault simulation, two sets of faults Mexcl and Mincl are collected for
each graph. Mexcl (excluded faults) is the set of faults that can’t be propagated to
the output of the fault-free path. Mincl (included faults) is the set of faults that are
included into the fault propagation path. As there are usually many faulty paths
Mincl is calculated separately for every faulty path.

The set of functions depicted in the call graph of the fault simulation of the
HLDD gy (fig. 3.1) is described in more details below. The preudo-code of the
algorithm (fig. 3.2) is the reference to the following description.

ProcessFaultFreePath. The fault-free path is simulated in accordance to the
input test vector. For current HLDD gy the fault-free value of y=D(xv

T) is
calculated, where vT is the terminal node of the main activated path. In order to
follow the main activated path the call of processFaultFreePath function is
done recursively. In this function current node is processed and successor node
is found for recursive call.

Following the main activated path for current node Mexcl(v) is calculated:

 Mexcl(v) = Mexcl(v)’ Mv, where

 Mv is a set of faults in a current node v and

 Mexcl(v)’ is a set of excluded faults collected along main activated
path until current node v.

Initially, Mexcl is empty set. The condition of reaching the node v in the fault-
free path during fault simulation is the absence of all the faults from Mexcl(v)’.

Denote by Mincl(v) the set of faults consistent to the current faulty path from
the initial node v0 up to the node v. For the node v for fault-free path we have

 Mincl(v)=Mv – Mexcl(v)’

When processing the node in function ProcessFaultFreePath() first we call
recursively the function itself with newly calculated Mexcl(v) while reaching the
terminal node. Then function ProcessFaultyPath() is called if Mincl(v) is not
empty.

When reaching the terminal node of the fault-free path the terminal node is
processed by ProcessFaultFreeTerminal().

ProcessFaultFreeTerminal. Fault simulation of a terminal node vT of the
fault-free path lies in finding all the combinations of (pj, Mj), of the terminal
node’s fault propagation record Txv

T. The set of propagated faults Mexcl(vT) is
excluded from the Txv

T. This fault propagation record is assigned to the graph
variable y (Ty= Txv

T). Also fault-free value of the graph is calculated.

67

dsdsWhen kfalfaklfad;fka;fka;flksa;faksfldkfldak

Figure 3.2 Pseudo-code of fault simulation algorithm

Continuation…

ProcessFaultFreeTerminal(gz, v, Mincl){

Ty = Txv
Remove faults that are not in Mincl from
Tz

}

ProcessFaultyTerminal (g, v, Mincl){
 Mdiff = Mincl – {faults in Txv}
 Minsec = Mincl ∩ {faults in Txv}
 If (Mdiff ≠)

add new pair (faulty value, Mdiff)
to Ty

 End if
 If(Minsec ≠)

add pairs with faults Minsec from
Txv to Ty

 End if
}

Beginning…

FaultSimulation(){
 for each vector vec
 ProcessFaults(vec)
 end for
}

ProcessFaults(vec){
 Mexcl=
 for each graph gy
 ProcessFaultFreePath(gy, v0, Mexcl)
 In Ty assign the value of y to p0
 All single bit flip faults of p0 are added
 to Ty
 end for
}
ProcessFaultFreePath(g, v, Mexcl){
 Mincl={faults in Txv} – Mexcl
 Mexcl=Mexcl {faults in Txv}
 if vvT

ProcessFaultFreePath(g, vc, Mexcl)
//vc - successor
if Mincl ≠

 ProcessFaultyPath(g, v, Mincl,
 True)

 end if
 else
 ProcessFaultFreeTerminal(g, v, Mincl)
 end if
}
ProcessFaultyPath(g, v, Mincl,

 FlagFromFaultFree){
 If vvT // if non-terminal
 if(FlagFromFaultFree==False)
 Mparam=Mincl – {faults in Txv}
 ProcessFaultyPath(g, vxv, Mparam,
 False)
 end if
 For each faulty response e=pxv,j of Txv
 Mincl= Mincl ∩ Mxv,j
 ProcessFaultyPath(g, ve, Mincl, False)
 End for
 Else // if terminal
 ProcessFaultyTerminal(g, v, Mincl)
 End if
}
….

68

ProcessFaultyPath. Fault simulation along the faulty path of a non-terminal
node v labeled by the variable xv with fault propagation record Txv = {p0, (p1,
M1), …, (pk, Mk)} consists of the following:

 For v, faulty responses are processed as follows. For each faulty
response e=pi of Txv, Mincl(v) is calculated as follows

Mincl(v)= Mincl(v)’ ∩ Mi, where

 Mincl(v)’ is a set of included faults collected along the
faulty path until the current node v.

 Mi is a set of faults which corresponds to the faulty
value pi

According to the faulty response value pi the new successor node is
found and the function ProcessFaultyPath() is called recursively
with Mincl(v) and the successor node of v with edge label equal to pi.

 If v does not belong to the fault-free path then the non-faulty
response p0 of Txv is found and Mincl(v) is calculated as follows

 Mincl(v)=Mincl(v)’ − Mi

The function ProcessFaultyPath() is called recursively with Mincl(v)
and the successor node of v with edge label equal to p0.

When reaching the terminal node of the faulty path the terminal node is
processed by ProcessFaultyTerminal().

ProcessFaultyTerminal. When reaching the terminal node v of a faulty path
the difference of faults Mdiff is calculated by subtracting all the faults in Txv
(propagation record of terminal node v) from Mincl(v)’. Then, if Mdiff is not empty,
a new pair (value p0 of terminal node v, Mdiff) is added to the fault propagation
record Ty (y is a variable holding the result of graph gy).

Also, an intersection of faults Minsec is calculated.

Minsec = Mincl(v)’ ∩ all faults in Txv,

Only the pairs (faulty value pi of the terminal node v, Minsec,i) corresponding

to faults Minsec (Minsec,i Minsec) are added from fault propagation record Txv to
the fault propagation record Ty.

If a terminal node v is labeled by a function then faulty values of function
parameters are taken in order to calculate function result. Parameters’ faulty
values correspond to a fault from the set of propagated faults to the variables
corresponding to the parameters. If parameter’s fault propagation record does

69

not contain the current propagated fault, then the fault-free value of this
parameter is taken. Function result is a new faulty value and pair (function
faulty value, current propagated fault) is added to fault propagation record Ty (y
is a variable holding the result of graph gy).

As a result of the fault simulation we create a fault propagation record for
the variable y: Ty = {p0, (p1, M1), …, (pk, Mk)}. All the pairs (pj,Mj) where pj = p0
are eliminated since the faults Mj are self-masked at this point. All the groups of
pairs {(pi,Mi), (p,j,Mj)} where pi = pj are merged into a single pair (pi,Mi), so that

Mi = Mi Mj.

3.2.2 Example of deductive fault simulation on HLDD

Figure 2.4 (see part 2.1.2) presented a HLDD gR2 . Consider a fragment of this
HLDD in Figure 3.3 with a set of fault propagation records:

TSEL3 = {3, 0 (f3,f4), 1 (f1,f2,f5)},

TSEL2 = {0, 1 (f3,f5)},

TSEL1 = {1, 0 (f4,f6)},

TR2 = {7, 3 (f4,f5,f7), 4 (f1,f3,f9)},

TR1 = {2, 4 (f3,f7), 6 (f2,f8), 9 (f4,f5)},

TIN = {4, 5 (f6,f7), 8 (f2), 10 (f1,f3,f4)}.

All the paths traced during the fault simulation are highlighted and marked
by details of simulation in Fig.3.3. The fault-free paths are shown by bold lines
in the Figure. The edges on paths in Fig.3.3 are labeled by pairs {e,(M)}, where
e is the value of the node variable when leaving the node at this direction, and
M is a subset of faults: Mexcl(v) for the successor of node v on the fault-free path,
and Mincl(v) for the successor of node v on the faulty paths. Mexcl(v) is marked
with line above the fault IDs. The result of function processTerminal (either
faulty-free of faulty) is depicted in the grey boxes attached to the terminal node.

 Since Mexcl(SEL2) = {f1,f2,f3,f4,f5} includes both faults of SEL2, the faults f3
and f5, no faulty paths are simulated from the node SEL2:

 for the value SEL2 = 1: Mincl(SEL2) = (MSEL2 – Mexcl’(SEL2)) =({f3,f5}

– {f1,f2,f3,f4,f5}) = .

70

From all the faults propagated to R2, only the faults f7, f8 and f9 are simulated
at the node R1*R2. Such as node R1*R2 is a function, then for fault f7 faulty
values of R1 = 4 and R2 = 3 are taken and result of the function is calculated
{12(f7)}. The same calculations are done for other propagated faults f8 and f9.

At the terminal node IN, only the faults f1, f2, f5 are simulated, since only they
are consistent to the condition of leaving the node SEL3 towards this direction.
For terminal node IN on the faulty path we have the following calculations:

 Minsec = Mincl(IN)’ ∩ all faults in TIN = {f1,f2,f5}∩{f1,f2,f3,f4,f6,f7} = {f1,f2}.
Then from TIN, faulty values consistent to fault f1 and f2 are found
{10(f1), 8(f2)} and are added to the fault propagation record TR2.

 Mdiff = Mincl(IN)’ - all the faults in TIN = {f1,f2,f5} – {f1,f2,f3,f4,f6,f7} =
{f5}. Then fault-free value of terminal node IN is found and pair
{4(f5)} is added to the fault propagation record TR2.

After fault simulation of all the faults that reached terminal nodes, we
compose the final result of TR2 as follows: the fault f3 propagated to the node
IN+R2 is self-masked because the value IN+R2 = 14 calculated for the fault f3 is
equal to the fault-free value calculated at the node R1*R2. The faults f2 and f9
propagated to different terminal nodes are merged into the same group because
they produce the same new value 8 for R2. Also, the faults f4 and f7 are merged
into the same group. The final value of the fault propagation record for R2 is:

 TR2 = {14, 4(f5), 8(f2,f9), 10(f1), 12(f4,f7), 42(f8)}.

1 (f3)

…

…

…

1

2

1 (f1,f2,f5)

0 (f4) 0 (f3,f4)

SEL2

IN

R1+R2 SEL1 SEL3

R1*R2

IN+R2

R2

14 ()
4(f7) * 3(f7)=12(f7)

6(f8) * 7()=42(f8)

2() * 4(f9)=8(f9)

10(f1)
8(f2)
4(f5)

10(f3) + 4(f3)=14(f3)

9(f4) + 3(f4)= 12(f4)

3 (f1,f2,f3,f4,f5) 0 (f1,f2,f3,f4,f5)

Figure 3.3 Example of deductive fault simulation on HLDD

71

3.2.3 Internal Data Representation

The core part of any deductive fault simulation algorithm is the set operations
on faults. In order to perform calculations with fault sets during propagation
more efficiently, a dedicated representation of the fault propagation record was
developed. The following operations with fault sets were carried out: difference,
intersection, union. To achieve high speed, bitwise set operations were
implemented. For that, fault data were stored in a specific way. In particular, for
every variable two arrays exist: FaultOccurences array and FaultyValues array
(Figure 3.4).

For every variable in the circuit, all propagated fault IDs are stored in an
array FaultOccurences (binary representation of data). In addition, faulty values
corresponding to these fault IDs are stored in an array FaultyValues (decimal
representation of data) to the respective positions.

The array FaultOccurences represents the presence of faults in a variable. In
order to reduce simulation time the width W of processor data is fully utilized. If
computer has a 32-bit architecture (W=32) then set operation of 32 faults is
performed simultaneously. Every bit of array FaultOccurences denotes whether
the fault is propagated to variable v or not (‘1’ denotes propagated, ‘0’ – not

FaultOccurences array:
(binary data representation)

[0]

[1]

 …

…

[m]

1 0 1 ……1 0

0 1 0 ……1 0

1 0 …………0

… … ……………

… … ……………

W – CPU data word size

N – number of faults

m = ┐N/W┌

[0]

[1]

[2]

[3]

…

[N]

4

3

273

8

…

999

FaultyValues array:

(decimal data representation)

 Figure 3.4 Data structures for storing propagated faults

72

propagated). Index i represents the bit index in an array and denotes the fault
ID. If the number of faults is more than W then more than one word is used in
the array FaultOccurences. If N is the number of faults in a fault list then m is
the number of words in FaultOccurences array.

m= ┐N/W┌

Another array FaultyValues is used to store the faulty values corresponding
to the propagated faults for a variable v. This array is linked to array
FaultOccurences and has length N (number of faults in the fault list). Word in
FaultyValues array store faulty values propagated to the variable v. Word’s
index i represent the faulty value of the fault with ID = i. If the i-th bit in the
FaultOccurences array is ‘1’ then i-th word in the FaultyValues array stores the
corresponding faulty value of the fault with ID = i. Otherwise, if the i-th bit in
the FaultOccurences array is ‘0’ then value of i-th element of FaultyValues
array is out of our interest. For example, in Fig. 3.4 for some variable v there
exist faults with ID=0, 3, ..., 33, 35,… and the corresponding faulty values are
4, 8, Note that value 273 in array FaultyValues at position i=2 is not used.
Thus, this structure usually requires more storage than is needed, but it is of
fixed size.

The proposed data structure for representing fault lists proved extremely
efficient. Complex set operations with large fault lists could be performed in
very short run times. For example, the set intersection operator is reduced to just
performing bitwise AND operations on the FaultOccurences array, while the
union operator is just represented by bitwise OR, etc. Experiments performed
on a set of sequential benchmarks prove the efficiency of this approach.

3.2.4 Analysis of the algorithm

To evaluate the algorithm’s complexity, it should be noted that every test vector
is analyzed independently. The number of test vectors depends on the test
strategy that is not covered in this section. In the deductive fault simulation
algorithm every node is traversed once per test vector.

Let n be the number of nodes in the graphs (High-Level Decision Diagrams).
Let N be the number of faults in the circuit and m be the number of words
representing the fault list m= ┐N/W┌ (see also Fig. 3.4).

For every node it is required to perform operations with all the faults in the
fault list, because a fault in any other variable (node) may affect the node under
analysis. As a rule, the number of required operations is m*n, because it is
possible to analyze W faults at once using bitwise set operations.

73

In the worst case, Nmax=n*W because every variable (node) requires an entire
processor word, i.e., W faults must be inserted to every node. Thus, in the worst
case, m=n. Then the algorithm’s time complexity is O(n2).

In general, to store the information about faults

Memory size = (1+m+N)*n+2m [processor words] is required, where

 1 processor word is to store fault free value for one node;

 m processor words is to store fault occurrences for one node;

 N processor words is to store faulty values for one node;

 n is number of nodes, for every node we need to have storage of the
size (1+m+N) processor words;

 2m is to store propagated faults during the work of the algorithm one
m is for Mexcl and further m is for Mincl;

In the worst case, when m=n, then

Memory size = (1+n+W*n)*n + 2n = (3+n+W*n)*n = (W+1) n2 + 3n.

Thus, the overall memory complexity is O(n2).

3.3 Experimental results

Comparative experiments between high-level fault simulation based on the
deductive algorithm, which was presented in this chapter, and a gate-level fault
simulation tool from Turbo Tester [79] were carried out. Four circuits: sosq,
gcd16, diffeq, mult8x8 and one processor circuit risc were chosen for
experiments. The experiments were run on Intel Core 2 CPU, 1.83 GHz, 2 GB
of RAM, Windows XP.

In Table 2 the results of experiments are shown. The column ‘vectors’
reports the number of test vectors simulated. Column ‘fault coverage’ shows the
fault coverage achieved according to the RTL bit coverage fault model. The
following two columns document the run times of the proposed deductive
algorithm and the Turbo Tester fault simulator, respectively. The last column
presents the ratio indicating the speed-up of the proposed RTL fault simulator
with respect to the gate-level approach. As it can be seen from the table, the
speed-up tends to increase steadily with the run times reaching to about two
orders of magnitude with the diffeq example.

74

Table 2 Fault simulation results

circuit Vectors fault
coverage
[%]

time [s] time ratio
(gate/RTL)

RTL gate-
level

gcd16 4000 100 3.28 29.23 8.91
mult8x8 4000 71.80 11.38 66.14 5.81
sosq 4970 78.15 12.58 66.36 5.28
risc 4000 100 18.19 366.3 20.14
diffeq 10000 100 37.02 3339.9 90.23

The method is based on the RTL bit coverage fault model, which has been
proven to have a good correspondence with gate-level structural faults (see Table
2). Experiments on chosen benchmark circuits were carried out showing the
feasibility of the new method for RTL fault simulation on the system model of
high-level decision diagrams. Efficient data structures were implemented to speed
up set operations in the deductive fault simulation algorithm. Experiments on
RTL benchmark circuits show that up to two orders of magnitude shorter run-
times are achieved with the method in comparison to gate-level fault simulation.

3.4 Chapter summary

The goal of this chapter was to present one of the contributions of this thesis,
namely the RTL-based deductive fault simulation algorithm on HLDDs. The
first part of this chapter gives an overview of fault simulation.

The second part of this chapter gives an overview of the deductive fault
simulation algorithm on HLDDs. The proposed fault simulation algorithm uses
the RTL bit coverage fault model. At the beginning, the general structure of the
algorithm was presented, where a dedicated data structure fault propagation
record is used throughout the algorithm. Furthermore, pseudo-code with step-
by-step description was provided. Propagation of faults with the help of the
proposed algorithm was shown on a small example of HLDD. Efficient internal
data representation, which allows using bitwise set operations in order to
achieve a high speed of simulation, was introduced. Also, analysis of the
algorithm complexity was provided.

The third part of this chapter provided the experimental results, which were
carried out on RTL benchmarks circuits. Experiments show that up to two
orders of magnitude shorter run-times were achieved with the method in
comparison to state-of-the-art gate-level simulation.

75

Chapter 4
HLDD-BASED CODE COVERAGE

In this chapter a method and a tool [59] for fast analysis of classical code
coverage metrics, such as statement, branch and toggle coverage, are presented.
High-Level Decision Diagrams (HLDD) model for efficient code coverage
analysis is introduced and it is shown, how those classical coverage metrics map
to HLDD constructs. Also, a set of HLDD manipulations [54] is proposed in
order to generate diagrams that would allow more stringent code coverage
measurement without sacrificing performance, i.e., computation time and
memory requirements. The manipulation techniques include generation of
HLDD-trees from HDL descriptions and two types of HLDD collapsing
methods. Experiments on a set of ITC’99 benchmarks are presented.

4.1 Overview

With the increase in size and complexity of modern integrated circuits, it has
become imperative to address critical verification issues in the design cycle. The
process of verifying correctness of designs consumes between 60% and 80% of
design effort [35]. Ensuring functional correctness is the most difficult part of
designing a hardware system [76]. One possible way to verify the correctness of
a design is by generating different test cases. Due to the fact that it is
impractical to verify exhaustively all possible inputs and states of a design, the
confidence level regarding the quality of the design must be quantified to
control the verification effort. The fundamental question is: How do I know if I
have verified or simulated enough? Verification coverage is a measure of
confidence and it is expressed as a percentage of items verified out of all

76

possible items. Different definitions of items give rise to different coverage
measures or coverage metrics.

Various coverage metrics exist such as code coverage, parameter coverage,
and functional coverage. In this work, only code coverage will be used, which
provides insight into how thoroughly the code of a design is exercised by a suite
of simulations. The main disadvantage of code coverage metrics lies in the fact
that they only measure the quality of the test case in stimulating the
implementation and do not necessarily prove its correctness with respect to the
specification. On the other hand, code coverage analysis is a well-defined, well-
scalable procedure and, thus, applicable to large designs.

Following Miller and Maloney [53], a large variety of code coverage metrics
have been proposed, including statement coverage, block coverage, path
coverage, branch coverage, expression coverage, transition coverage, sequence
coverage, toggle coverage, etc. [43][76]. The statement coverage metric
measures the percentage of code instructions exercised with respect to total
instructions contained in the code by the program stimuli. Toggle coverage
shows the percentage of bits toggling in the nodes in the design, i.e., how many
bits change their state from 0 to 1 or vice versa. In the case of branch coverage,
we measure the ratio of branches in the control flow graph of the code that are
traversed under the set of stimuli. Path coverage measures the percentage of
paths in the control flow graph is exercised by the stimuli. A potential goal of
software testing is to have 100 % path coverage that implies branch and
statement coverage. However, full path coverage is a very stringent requirement
as the number of paths in a program is exponentially related to program size.

Current work is motivated by our previous encouraging research results
obtained on HLDD based simulation [85] and test pattern generation [60].

4.2 Coverage metrics on HLDD

In order to analyze the quality of verification of hardware designs translated to
HLDDs, three traditional coverage metrics were chosen and built in to the
HLDD based simulation tool. These include statement coverage, branch
coverage and toggle coverage. As it was mentioned above, the statement
coverage measures the number of times every instruction is exercised by the
program stimuli. Toggle coverage shows whether and how many times nodes in
the design toggle, i.e. how many bits change their state from 0 to 1 or vice
versa. In the case of branch coverage, we measure the number of times each

77

branch in the control flow graph of the code is taken or not taken under the set
of program stimuli.

4.2.1 Simulation algorithm

The basis for code coverage analysis in this work is a simulator engine relying
on HLDD models. An algorithm has been implemented supporting both
Register-Transfer Level and behavioral design abstraction levels. The
description of the simulation algorithm is presented in subsection 2.1.2.3.

Some metrics were chosen and built into simulation engine in order to
analyze the quality of verification of simulated design [59]. As the simulation is
based on HLDDs, the possible structures to measure are nodes and edges.
Therefore, we have built the node coverage, the edge coverage and the toggle
coverage mechanism into the simulation engine. Node coverage measures, how
many nodes are traversed during simulation against all nodes in the HLDDs.
Edge coverage shows how many edges are traversed during simulation against
all possible edges in the HLDDs. Toggle coverage presents how many bits are
toggled from 0 to 1 and backwards in the variables labeling the nodes. The

for each diagram gy in the model
vcurrent = v0
Let xcurrent be the variable labeling vcurrent
while vcurrent is not a terminal node
 vcurrent.setFlag(Traversed); //set flag for node coverage
 if is xcurrent clocked or its DD is ranked after gy then
 Value = previous time-step value of xcurrent
 else

 Value = present time-step value of xcurrent
 end if

vnext Γ(vcurrent), where eactive =(vcurrent, vnext) /\ c = Value
eactive.setFlag(Traversed);//set flag for edge coverage

 vcurrent = vnext
 end while

 if xcurrent is a function then calculate a function;
 Assign Value xcurrent to the DD variable y
 y.calculateCurrentToggleCoverage();//calculate current toggle coverage
 //for variable y
end for

Figure 4.1 Pseudo-code of simulation algorithm for code coverage analysis

78

amount of code, which allows measuring this coverage is quite small. This code
is highlighted with gray colors at the figure 4.1. Flag “traversed” is put to node
or edge separately if it is traversed. A simple method
calculateCurrentToggleCoverage() is used to calculate the toggle coverage at
every iteration. Actual calculation of coverage is done after simulation process
while generating report. While simulating the design, it is possible to mark with
a program flag whether code coverage would be included into the simulation or
not. As the overhead in data processing during simulation with code coverage
analysis is small, the time overhead for simulation is also small (see
experimental result part 4.4).

4.2.2 Mapping standard coverage metrics on HLDDs

Standard coverage metrics such as statement coverage and branch coverage can
be mapped into metrics used in HLDDs: node coverage and edge coverage.
Consider the example in figure 4.2. This is a small part of b04 from ITC99
benchmarks [34]. The part of the code is represented in VHDL and
corresponding generated HLDDs are shown for variables state and RMAX (data
register).

The statement coverage maps directly to the node coverage in HLDD
representation, i.e. ratio of nodes vcurrent traversed during the HLDD simulation

Figure 4.2 b04 example: VHDL vs. HLDDs for variables “state” and “RMAX”

79

to the total number of nodes in HLDDs presenting a circuit. For example, the
statement “RMAX := DATA_IN” is represented by the terminal node
“DATA_IN” surrounded by bold circle in the corresponding HLDD (see fig.
4.2). Covering all nodes in the HLDD model corresponds to covering all
statements in the respective HDL. However, it can be noticed that usually total
number of nodes is bigger than total number of statements. This is due to the
fact that in HLDDs diagrams are generated to each data variable separately.
Thus in the example (fig. 4.2) statement “case state is” is represented twice by
the node “state” in diagram for variable state and in diagram for variable
RMAX. The same holds for statement “if RESET =’1’ then” is represented by
node “reset”.

Similar to the statement coverage, branch coverage has also very clear
representation in HLDD simulation. The ratio of every edge eactive activated in
the simulation algorithm to total number of edges in HLDDs, i.e. edge
coverage, constitutes to the HLDD branch coverage. For example, the branch
coverage item corresponding to “DATA_IN > RMAX = true” in the VHDL
code of the b04 design maps to the edge e = (DATA_IN>RMAX, DATA_IN)
denoted by a bold arrow in the HLDD representing variable RMAX in Figure
4.2. Covering all edges in the HLDD model corresponds to covering all
branches in the respective HDL. However, it can be noticed that usually total
number of edges is bigger than total number of branches. This is due to the
same fact that in HLDDs, diagrams are generated to each data variable
separately.

HLDD toggle coverage is calculated similarly to traditional HDL toggle
coverage. The information about toggling the bits for every variable in the
HLDD model is collected.

4.3 HLDD manipulations for code coverage

The main contribution of this part is HLDD manipulation technique allowing
efficient code coverage analysis [54]. In fact, if HLDD is generated for each
output variable and the generation process is terminated at the primary input
signals then code coverage analysis for the diagram will be equivalent to the
path coverage metric. However, enumerating all the paths through a design is
infeasible and it is easy to see that the corresponding HLDD may be of
exponential size.

Therefore, another approach is adopted that differs from the traditional one
of generating a diagram for each primary output. When representing systems by

80

decision diagram models, a network of HLDD-s is implemented where each
internal HDL variable has its corresponding HLDD. During the simulation in
HLDD systems, the values of some variables labeling the nodes of a HLDD are
calculated by other HLDD-s of the system. Such partitioning helps avoiding the
node explosion problem of DD-s and keeps the size requirements for resulting
HLDD systems acceptable.

The method proposed for generating reduced HLDDs and minimized
reduced HLDDs suitable for code coverage analysis is similar to BDD reduction
rules [61] and it consists of the following steps:

1. Generate a HLDD tree for each system variable

2. Follow the reduction rules:

2.1. Eliminate all redundant nodes whose all edges point to the equivalent
sub-graphs

2.2. Share all equivalent sub-graphs

Figure 4.3 a) HLDD tree, b) reduced HLDD and c) minimized reduced HLDD

reset state sB

sA sC

sC

sC

DATA_IN>RMAX

0

1

sA

sB

sC

1

0

reset state sB

sA sC

sC

0

1

sA

sB

sC

reset state sB

sA sC

0

1

sA

sB, sC

state

b)

c)

a)

state

state

81

The above steps are explained by an example presented in Fig. 4.3, which
depicts HLDD manipulations for the ‘state’ variable of the b04 design presented
in Fig. 4.2. We distinguish three types of diagrams: HLDD tree, reduced HLDD
and minimized reduced HLDD. All these types are depicted in Fig. 4.3 and
described below.

As the first step, a HLDD tree for variable v is generated by traversing the
full control flow graph of the design and collecting the values assigned to v at
each control step. If the value of v does not change at current control step then a
terminal node with the present value of the variable will be created. Fig. 4.3a
shows the HLDD tree generated for the variable state in b04.

Then, the first reduction rule is applied to eliminate nodes for which all
successor nodes (in general case, succeeding sub-graphs) are identical. As a
result a reduced HLDD is obtained (Fig. 4.3b).

Finally, we create a minimized reduced HLDD by uniting identical terminal
nodes (Fig. 4.3c). In general case, uniting identical sub-graphs, which is
application of the second reduction rule.

HLDD generation experiments on a set of ITC99 benchmarks [34] show that
around 45-80% of nodes are removed by the reduction step from the initial
HLDD tree. Further 40-60% of nodes will be eliminated by the minimization
step.

According to experimental results presented below, we propose reduced
HLDD-s as a suitable model for code coverage analysis because it provides for
more stringent coverage metrics than minimized HLDD-s. At the same time it is
a more compact representation than full HLDD trees. Furthermore, in terms of
speed of simulation reduced HLDD offers equal performance when compared to
the minimized model. This is because of the fact that by both models the
number of edges to be traversed is exactly the same. However, in full trees the
number of diagram edges would be considerably higher.

4.4 Experimental results

In this section, experimental results [54],[59] for code coverage analysis on
HLDDs are presented. First, comparative experiments between the HLDD-
based code coverage analysis tool implemented in this thesis and a popular
HDL commercial simulation tool were carried out. Experiments were run on a
set of circuits from the ITC99 benchmark family [34] and the Greatest Common
Divisor (GCD) example.

82

Table 3 shows the comparison between traditional code coverage assessment
(statement, branch and toggle coverage) carried out by a state-of-the-art
commercial HDL simulator and by the HLDD-based simulator (implementing
node, edge, toggle coverage, respectively). The code has been exercised using
random set of stimuli of different length. The experiments were run on AMD
Athlon 64 Processor 3000+, 1.80 GHz, 2.00GB of RAM, Windows XP.

Table 3 coverage measure experiments on different simulators

While there is no definite advantage of the speed of basic logic simulation of
benchmarks to either of the tools it should be noted that the overhead of
coverage checking in Modelsim is much higher than in the case of HLDDs (See
columns (5) and (8)). When HLDDs have coverage calculation overhead for
10000 patterns in a 1 to 4 % range, the commercial simulator uses 28 up to 78
% extra time.

Second, experiments with different HLDD manipulations were carried out.
Table 4 presents the characteristics of the different HLDD representations
introduced in previous sub-chapter. The columns tree, red. and min show the
number of nodes/edges in HLDD tree, reduced HLDD and minimized reduced
HLDD models, respectively. From the Table 4, it can be seen that around 45-80
% of nodes are removed by the reduction step from the initial HLDD tree.
Further 40-60 % of nodes will be eliminated by the minimization step.

Desi
gn
(1)

Test
length

(2)

Commercial HDL simulator HLDD simulator

simulation time, s ratio
(4)/(3)

(5)

simulation time, s ratio
(7)/(6)

(8)
w/o

coverage
(3)

w
coverage

(4)

w/o
coverage

(6)

w
coverage

(7)

b00
5000 0.0137 0.0173 1.263 0.046 0.048 1.043

10000 0.0243 0.0311 1.280 0.099 0.100 1.010

b04
5000 0.0131 0.0166 1.267 0.051 0.053 1.039

10000 0.0227 0.0300 1.322 0.106 0.107 1.009

b09
5000 0.0151 0.0262 1.735 0.010 0.012 1.200

10000 0.0270 0.0483 1.789 0.023 0.024 1.043

GCD
5000 0.0135 0.0178 1.319 0.015 0.016 1.067

10000 0.0240 0.0316 1.317 0.031 0.032 1.032

83

Table 5 presents code coverage analysis comparing statement coverage and
branch coverage assessment results on reduced HLDD-s (red.), on minimized
reduced HLDD-s (min) and on a well-known commercial tool using the same
set of input stimuli for all three models. As it can be seen from the experiments,
the reduced HLDD model always achieves the best (i.e. most stringent results)
of all three. The minimized reduced HLDD has the poorest outcome for node
coverage and traditional HDL simulator is the weakest for measuring branch
coverage in most cases.

Table 5 Comparison of code coverage analysis results

Design
Number of nodes Number of edges

tree red. min red. min

b01 267 57 30 52 52

b02 48 26 16 24 24

b06 440 116 47 83 83

b09 125 69 44 62 62

Table 4 Characteristics of different HLDD manipulations

Design
Stimuli,
(vectors)

Node coverage, (%) Edge coverage, (%)

red. HLDD min. HLDD VHDL red. HLDD min. HLDD VHDL

b01
14 86.0 100 93.8 74.2 84.6 88.9

23 96.5 100 100 90.3 100 100

b02
10 92.3 100 96.3 91.7 91.7 93.8

14 100 100 100 100 100 100

b06
11 80.2 100 85.5 79.3 89.2 87.5

52 98.3 100 100 98.2 100 100

b09
23 87.0 100 100 85.9 87.1 100

33 100 100 100 100 100 100

84

4.5 Chapter summary

The goal of this chapter was to present one of the contributions of this thesis,
namely code coverage analysis based on HLDDs. First, a set of code coverage
metrics were built into the HLDD-based simulator engine. Then, manipulations
on HLDDs were done in order to find the best way to represent the circuit for
code coverage analysis.

The first part of this chapter presented a new approach to analyzing
validation code coverage metrics using High-Level Decision Diagrams. A
technique was proposed, where HLDD-based simulation was extended to
support code coverage analysis. It was shown how classical code coverage
metrics can be mapped to HLDD constructs. Experiments on ITC99 benchmark
circuits indicated the feasibility of the proposed approach.

The second part of this chapter presented a set of straight-forward
manipulations on High-Level Decision Diagrams to support code coverage
analysis. Experiments on ITC99 benchmark circuits showed that the reduced
HLDD model proposed in this thesis offers higher accuracy in statement and
branch coverage analysis than traditional models. The gain in accuracy is
achieved only with a slight increase in memory requirements. The simulation
times for all three models are nearly identical.

85

Chapter 5
HLDD-BASED OBSERVABILITY

COVERAGE

In this chapter, the observability coverage metric based on the toggle coverage
metric is presented. The description of this metric is provided. Propagation of
bugs to the outputs for this observability coverage metric is based on the
deductive RTL fault simulation algorithm. The integration of this metric with
developed methods in the framework of this thesis is provided. Results of
experiments on chosen set of benchmarks are also presented.

5.1 Overview

Verification of the HDL designs is not a trivial task. Usually it can be stated that
this process is somewhat subjective. In order to make it more objective, an
automated process for test vector generation and test vector analysis must be
created. The end of the verification process is seen, when a certain degree of
confidence is achieved with the help of coverage metrics and it is proved that
the product is free of significant errors.

The most common RTL coverage metrics are adopted from the software
testing metrics, such as statement coverage, branch coverage, and condition
coverage [5]. However, in hardware description languages these coverage
metrics have got a little bit different content. This is because software is
different from hardware. First, hardware is mostly concurrent in comparison
with software that dramatically degrades the path coverage metric widely used
in software. Also, at description levels higher than gate-level there usually
exists combination of behavioral and structural description styles that prevents
the use of techniques suitable for control and data-oriented circuits only. Timing

86

is also not considered in software. Moreover, software metrics only consider
reachability of conditions that corresponds to fault controllability. They do not
explicitly check weather erroneous effects propagate to the observation points.
Bugs may remain undetected even if they are activated during the simulation.
Therefore, an observability measure is required and the above mentioned
metrics may overestimate the validation extent.

Keeping track of covered lines of code does not generally reflect if the
respective items influence the primary outputs of the system. The quality of
validation is low when only code coverage items corresponding to the internal
lines of the system are exercised but not propagated to the system outputs.
Furthermore, while the general function of the system is specified at the
outputs, the internal signals may be difficult for the designer or verification
engineer to comprehend and verify.

In testability arena at the gate-level, traditional observability analysis is
based on the well-known stuck-at-fault model [10],[32],[68]. At RTL Fallah et
al. [26] propose observation coverage in their method called OCCOM, where
simplified fault grading is carried out in order to assess, which code items have
been covered and propagated to an observable output. They show that 100 %
statement coverage corresponds to 60-80 % observable coverage in the worst
case. However, the OCCOM method [26] and its recent improvements [25],[27]
are based on representing the effect of an error by a tag that can propagate
through the circuit according to a set of rules similar to the D calculus. The
main problem of the method is that it over-simplifies the fault-effect
propagation. In this work, we propose an alternative approach, where
calculation on HLDDs is used for observability analysis.

The OCCOM method [26] is the first code coverage metric that considers
the essential observability issue in RTL designs. Based on this approach
different applications were worked out. One of the most widespread is ATPG
(Automatic Test Pattern Generator) [18][95]. In [18] observability coverage
metric is used as the basis for a fitness function of ATPG. Special tags are
attached to internal signals as in OCCOM, simulation is done and propagation
of tags is observed in the outputs. The tags used in [18] have coarse granularity.
In addition, a commercial simulator is used to watch the effect of propagation.
Moreover, different modifications of OCCOM were worked out and compared
with fault coverage at gate-level. In [95], the OCCOM method is improved by
adding U-sign to more accurately tag the propagation effect. Based on the
observability coverage metric test vectors are generated and it is shown that tags
propagation is reasonable for ATPG, because tags coverage helps to generate

87

efficient test vectors set. These works prove that observability coverage metric
is very useful and essential in verification.

The OCCOM method was commercialized by Synopsys Inc. [75] and
became Observability-Based Coverage (OBC), a part of the VCS™ simulator.
The official definition of OBC is "stimulation of a line whose effect can be
subsequently observed at a user-specified point." In essence, OBC will report
that a line is not covered if it could be removed from the source code without
impacting the simulation. Tensilica [77] reports: “Because OBC provides a
more accurate measurement of the completeness of verification stimulus on the
design code, it allows us to produce higher quality designs compared to
traditional coverage tools”[65]. OBC appears to have been discontinued as of
VCS™ simulator 2006.06 release, just at about the time when Synopsys Inc.
received a patent for the technique [88].

Dynamic analysis, like the techniques proposed in [36],[50],[96] can
determine how thoroughly the test stimuli examine design code at RTL and
subsequently propagate potential design errors to the outputs. Probabilistic
observability measure and its efficient computation algorithm were developed
in [37]. For every variable in the design it is possible to find statistically
probabilistic value of observability calculated by special rules. The threshold
value is set in order to report variables with low propagation probability. The
method takes time for calculations in comparison with easier metrics.

In [48] observability-enhanced code coverage metric is developed which
shows covered only when there is some degree of confidence that any error
were at least propagated to the checker and ideally detected. This work
summarizes previous works [46][47][49]. In [46] tags are injected into compiled
C code, which represent high-level circuit description, in order to observe the
propagation of the tags on the outputs. A mutation coverage tool [49] was
developed for C++/SystemC designs, which supports previous solutions. Also
analytical technique, Coverage Discounting, was developed that uses fault
insertion to add checker sensitivity to existing functional coverpoints [47]. This
is good complex solution for high-level design descriptions.

The RTL fault grading presented in [51] injects faults only into input and
internal variables. The injection is done by modification of the original code and
then fault simulation is performed. Only single stuck-at-fault is injected per
RTL variable and simulation is done twice for optimistic (without taking into
account fan-outs) and pessimistic (with taking into account fan-out branch of
RTL variable), then average is calculated. Similar approach is supported also by
the method proposed in this thesis as when constructing HLDDs, one variable

88

could be represented by many nodes, depending on its logical connection with
other data. Thus, every node would be processed separately, which is similar to
injection of a fault to each fan-out of a variable.

Validation Vector Grade (VVG) described in [78] is an observability-based
validation metric, which can be used for early testability analysis at the RT
level. The method is very well examined and proven based on Verilog code
modification for fault injection. Fault simulation is done using Verifault-XL.

Our approach is based on HLDDs. The code coverage analysis described in
previous chapter is done on the same design representation observability
coverage that is going to be presented here is based on the same structure.

5.2 HLDD-based observability coverage

As it has already been stated above, commonly used code coverage metrics only
point controllability of certain items of the RTL design from primary inputs
while ignoring their observability at outputs or observation points. A metric,
which takes into account observability, gives more information to verification
engineer and allows detection of testability problems at early stage of a design
cycle.

In previous chapter of this thesis common code coverage metrics were built
into our simulation engine. In this chapter new observability-based metric is
presented, this metric is built into the same simulation system working on
HLDD design representation. The metric extends possibilities of code coverage
analysis presented in chapter 4. The algorithm for observability coverage metric
is based on the RTL fault simulation algorithm presented in chapter 3. Thus,
approach presented in this part unites ideas presented in two previous chapters
and extends them to a new observability coverage metric.

HLDD-based observability coverage metric shows the percentage of bugs
inserted into a RTL design represented by HLDD and observed at the
outputs/observation points with respect to total number of inserted bugs in the
design simulated by stimuli. The bug can have different meanings. In our case,
we have examined bugs, which is inverted bit of a variable. This is very similar
to our fault simulation at RTL. Actually, the same algorithm of fault simulation
at RTL proposed in chapter 3 is used for our observability coverage metric. This
way effectiveness of verification and proposed/generated test vectors can be
evaluated directly at RTL. Analysis of not observed bugs can help to improve
test vectors set and/or even circuit design.

89

5.2.1 Integration into a tool

The observability coverage metric is built into the HLDD-based framework tool
created in this thesis, which is based on HLDD fast simulation. This tool
supports the following applications: RTL fault simulation (described in chapter
3), code coverage analysis at RTL (described in chapter 4) and observability
coverage metric (topic of current chapter). Last application actually combines
both algorithms presented in chapters 3 and 4. The general view of the
algorithms/methods used in the tool is presented in the figure 5.1. Developed
methods and tasks are colored in grey. In this figure one can see that code
coverage analysis is one of the verification tasks, where observability coverage
is part of a code coverage analysis. As can be seen from the picture 5.1 only 2
algorithms are core of the tool, both based on HLDD design representation.
These algorithms are HLDD-based simulation and RTL deductive fault
simulation. HLDD-based simulation initially is applied for code coverage
analysis. RTL deductive fault simulation algorithm is used for RTL fault
simulation. Adding observability coverage metric application requires to
process toggle coverage data received from code coverage analysis results. This
toggle coverage data is inverted into bugs and RTL deductive fault simulation
algorithm is used for the propagation of inserted bugs and for observing them
on the outputs/observation points. Thus, new application “observability
coverage metric” unites all the work presented above.

90

Instead of inserting the tags as in OCCOM method [26] for observability,
bugs represented by inverted bits, are inserted. First, our bugs have finer
granularity in comparison with tags, which represent difference of variable
value. Also, algorithm used for bug propagation is the same as for fault
simulation without simplifications, and this algorithm is fast due to HLDD
design representation. In general observability coverage is compared with
statement and branch coverage (based on most papers presented in the
overview). From our point of view, to achieve 100% of statement coverage is
considerably easy in comparison with other code coverage metrics. To change
one statement is possible by many ways, further propagating the change
(tag/bug). Thus, this is one-to-many relation and comparison of statement

…
Assertion-based
verification

BIST ATPG

Gate-level
Fault

Simulation

Test

Verification

Methods: Tasks:

Model
checking

HLDD-based
simulation

RTL Deductive
Fault Simulation

Algorithm on
HLDDs

RTL Fault
Simulation

Code coverage
analysis

Observability
coverage

Figure 5.1 Developed methods & tasks in general verification and test steps

91

coverage and observability coverage is not exact. Toggle coverage actually
includes statement coverage, because if at least one bit of a variable is toggled
then the statement containing this variable is covered as well. But when toggle
coverage metric and observability coverage metric are taken then we have one-
to-one mapping of items to cover. Therefore, it was decided to compare
observability coverage metric with toggle coverage metric trying to reach the
condition when statement and branch coverage reach 100%. Taking toggle
coverage results after HLDD-based design simulation under stimuli, this
information is given to deductive fault simulation algorithm in order to find
observability at outputs of toggled bits. As statements consist of variables the
observability coverage metric built into our tool can also be analyzed to show
statement observability coverage.

The main steps for observability coverage analysis are:

 Simulate design under stimuli to obtain code coverage results;

 Translate toggle coverage results into bugs;

 Insert bugs (faults) into design and run deductive fault simulation
algorithm under the same stimuli;

 Analyze propagated bugs to the outputs, calculate observability
coverage in percentage;

 Show unobservable bugs;

As the deductive fault simulation algorithm allows analysis of all faults in
parallel, all observability coverage items are also analyzed simultaneously.

5.2.2 Simulation results

In this section experimental results for observability coverage analysis on
HLDDs are presented. Comparative experiments between the code coverage
analysis (in particular node coverage, edge coverage and toggle coverage) based
on the HLDD simulation algorithm, presented in chapter 4, and observability
coverage analysis based on HLDD deductive fault simulation algorithm,
presented in this chapter, are carried out. For experiments the following circuits
were chosen: sosq, gcd16, diffeq, risc. The Greatest Common Divisor (gcd16)
and the Differential Equation (diffeq) are examples from the HLSynth92
academic benchmarks suite [33]. The design risc is a processor example from a
FUTEG research project. The test stimuli for the academic benchmarks were

92

generated by a hierarchical test pattern generator Decider [60]. The experiments
were run on Intel Core 2 CPU, 1.83 GHz, 2 GB of RAM, Windows XP.

 In Table 6 the results of experiments are shown. All coverage metrics for
the benchmark were measured under the same set of test stimuli. Columns show
node coverage, edge coverage, toggle coverage and observability coverage in
percentage.

Table 6 Comparative experimental results for observability coverage analysis

As it can be seen from the table, observability coverage is less than toggle
coverage for 2 circuits (sosq and diffeq), i. e. some bugs are non-observable at
the outputs. For sosq circuit there are 2% of non-observable bugs and for diffeq
the percentage is almost 10. Other circuits are fully covered. These results show
that with observability coverage metric it is possible to get more information
about the quality of the stimuli and draw attention to the places in circuits where
bugs are non-observable.

5.3 Observability coverage metric discussion

The observability coverage metric can be used for testability property analysis
at RTL stage of design cycle. If observability coverage is less than 100% it is
due to at least one of the following reasons:

 Insufficient simulation test vectors set;

 Poor observability of internal nodes.

In the first case better stimuli test suite should be worked out. In the second
case the designer should modify the circuit design for better testability.
Therefore, the observability coverage metric can be a good indicator for RTL

Circuit Node
coverage

Edge
coverage

Toggle
coverage

Observability
coverage

Sosq 100% 100% 56.3 % 54.3 %

Gcd16 100% 100% 100 % 100 %

diffeq 100% 100% 100 % 90.4 %

RISC 100% 100% 100 % 100 %

93

testability as well as a good predicator for gate-level fault coverage (because
observability coverage item is closely related to stuck-at-fault model).

Even though a block of code is fully exercised by usual code coverage
metrics, the verification effort may be meaningless unless results of the
activated items propagate to the outputs. The observability coverage metric
allows observing changes of all internal RTL variables at the outputs. Thus
problem of propagation is solved.

Assume that a certain observability coverage is obtained for RTL circuit
design. Assume that some items are not propagated to the outputs. By
controlling non-propagated items one by one with the same suite of stimuli it is
possible to determine blocking statement(s) (or statement(s) which mask the
bug). The values of the variables in the blocking statement(s) should be changed
in order to propagate bug further. The designer should find the legal test suite to
change blocking statement(s) variable values. If designer is unable to come up
with such test stimuli, then the circuit design may have redundancy or there is a
design error.

Designs become bigger and more complicated, thus self-checking
verification environments are very welcome. Verification suites consist of input
stimuli and expected outputs to these stimuli. Self-checking verification
environment allows monitoring outputs/observation points during the
simulation and report any difference from expected results. The observability
coverage metric provides self-checking verification environment to detect
design bugs.

Observability coverage metric allows giving indication of whether certain
logic is functionally used during simulation. For example, enable signal of a
counter should be reported covered only if it is properly exercised in a
functional way. If counter is in a reset state and the enable signal is toggled, it
would not be observed at the counter outputs, thus it would not be covered by
the observability coverage metric.

It is also possible to build a diagnosis table, which is filled with results of the
observability coverage metric. This is similar to building diagnosis tables at the
gate-level. Observability coverage metric item has good correspondence to the
stuck-at-fault model, but it is applied to the designs at RTL, thus diagnosis at
this level can be done for searching errors in the design.

For a good coverage metric it has to be easy to write, easy to understand,
cheap to implement and have a good ability to track the types of errors most
likely to happen. The stuck-at-fault model conforms to all these requirements

94

and that’s why is suitable for fault modeling. Observability coverage metric is
very similar to the stuck-at-fault model and conforms to all the above listed
requirements, thus we can derive that it is a suitable coverage metric. Every
time a design is changed, all test cases must be rerun and coverage metric must
be recalculated.

It would be beneficial to combine functional coverage and observability
coverage. If some bugs of a design are not covered according to observability
coverage, i.e. erroneous value of a bug is not propagated to the outputs, specific
functional test suite can be specified for this bug. Also, if functional coverage
gives positive feedback and observability coverage negative, then total report:
“is not covered”. The bug is not propagated to the outputs and better test suite
must be worked out.

5.4 Chapter summary

In this chapter observability coverage metric was presented. The objects for this
metric are RTL designs represented by HLDDs. The metric allows measuring
not only activated bugs of the design but also the propagation of these bugs to
the observable outputs. The observability coverage metric allows making better
analysis of the test stimuli and design itself.

The observability coverage metric was built into the HLDD-based
simulation engine using for propagation RTL deductive fault simulation
algorithm presented in chapter 3 and for bugs insertion the toggle coverage
analysis presented in chapter 4. Experiments were carried out on RTL
benchmark circuits showing that the observability coverage metric gives
information of non-propagated bugs in the design under the test stimuli. An
analysis of observability coverage metric was presented as well its usefulness
was discussed.

95

Chapter 6
CONCLUSIONS AND

FUTURE WORK

This chapter summarizes the thesis and discusses possible directions for future
research.

6.1 Conclusions

This thesis presents several approaches targeting RTL fault simulation and RTL
code coverage analysis. All approaches exploit advantages of high-level
decision diagrams representation model.

A deductive fault simulation algorithm based on HLDDs for RTL designs
was proposed in this thesis. The initial deductive fault simulation algorithm,
proposed by Armstrong for gate-level designs, was brought to RTL where not
only bits are taken into account when making a decision for fault lists
propagation, but also variables and arithmetic operations. The algorithm was
successfully implemented into a tool using HLDD-based simulation engine.
Analysis of algorithm characteristics is provided, which shows its quite good
properties. The algorithm complexity depending on a number of graphs nodes is
O(n2). For fault simulation, the RTL bit coverage fault model is applied, which
has proven by the set of experiments to provide a good correspondence with
gate-level structural faults [29].

An efficient data structure was proposed and implemented to speed up set
operations in the deductive fault simulation algorithm at RTL. The faults are
coded with bits the way that it would be possible to make fast bitwise set
operations with fault lists. As a result, the speed of RTL fault simulation was
increased.

96

Experiments for fault simulation algorithm were carried out on RTL
benchmark circuits and show feasibility of proposed approaches. Up to two
orders of magnitude shorter run-times were achieved with the method in
comparison to state-of-the-art gate-level fault simulation.

Fast HLDD-based simulation was extended to support code coverage
analysis, such as node coverage, edge coverage, toggle coverage. A method of
mapping traditional code coverage metrics to High-Level Decision Diagrams
was described. Experiments on ITC99 benchmark circuits indicate the
feasibility of the proposed approach. The time overhead of coverage checking in
a commercial simulator was much higher than in the case of HLDDs. When
HLDDs had coverage calculation overhead in a 1 to 4 % range, the commercial
simulator used 28 up to 78 % extra time.

Manipulations on High-Level Decision Diagrams were developed to find the
best representation of HLDDs for code coverage analysis. Experiments on
ITC99 benchmark circuits showed that the reduced HLDD model proposed in
this thesis offered higher accuracy in statement and branch coverage analysis
than traditional models. The gain in accuracy was achieved only with a slight
increase in memory requirements. The simulation times for all three models
were nearly identical.

An observability coverage metric based on the bit coverage fault model was
proposed, which take into account not only controllability of the internal point
of the design, but also observability at the outputs. Observability coverage
metric was built into the tool, based on HLDD-based simulation engine, where
for bugs propagation, RTL deductive fault simulation algorithm developed in
this thesis is used. Bugs were inserted relying on the toggle coverage metric, i.e.
toggled bit was inverted into a bug and the bug was propagated to the output.
Experiments were carried out on RTL benchmark circuits and shown that the
observability coverage metric allows finding bugs which are activated but not
propagated to the outputs under test stimuli. For circuits sosq and diffeq, the
percentage of unobservable bugs was 2 and 10, respectively.

6.2 Future work

Experiments presented in this thesis are carried out on RTL benchmark circuits
of relatively small size. It would be very beneficial to make experiments on the
circuits of bigger sizes, especially on some industrial benchmarks. This would
need to investigate the scalability of the proposed techniques.

97

Deductive fault simulation algorithm implementation uses a lot of recursive
functions. The benchmark circuits have been examined by this algorithm did not
demand additional management of resources. However, for bigger circuits the
memory requirements certainly need investigation.

The tool presented in the framework of this thesis could be further
developed.

It would be beneficial to include other coverage metrics into the presented
tool. One of the comprehensive metrics could be a metric that takes into account
not only controllability and observability of the item, but also insertion of
checkers to the observable points. This technique provides a measure of the
quality of verification allowing detection of functional errors. This would be
one of the possibilities to combine structural and functional verification.

99

References

[1] Abramovici, Miron; Breuer, Melvin A.; Friedman, Arthur D., “Digital
Systems Testing and Testable Design”, John Wiley & Sons, Inc., Hoboken,
New Jersey, 1990

[2] Akers, S. B., “Binary Decision Diagrams”, IEEE Trans. on Computers, Vol.
27, 1978, pp.509-516

[3] Armstrong, D.B., “A deductive method for simulating faults in logic
circuits”, IEEE Trans. On Computers, Vol. 11, No. 2, 1972, pp. 198-207

[4] Bailey, Brian, “The Great EDA Cover-up”, EE Times, 2007

[5] Beizer, B., “Software Testing Techniques, 2nd ed.”, New York, Van
Nostrand Rheinold, 1990

[6] Bhatnagar, H.; “Advanced ASIC Chip Synthesis”, Kluwer Academic
Publishers, Boston, MA., 1999, pp. 2-4

[7] Bombieri, N.; Fummi, F.; Guarnieri, V., “Accelerating RTL Fault
Simulation through RTL-to-TLM Abstraction”, European Test Symposium
ETS’2011, May 2011, pp. 117-122.

[8] Bosio, A.; Di Natale; G., “LIFTING: A Flexible Open-Source Fault
Simulator”, ATS’08, 2008, pp. 35-40

[9] Breuer, M. A.; Friedman A. D., “Diagnosis and Reliable Design of Digital
Systems”, Computer Science Press, New York, 1976

[10] Brglez, F., “In Testability of Combinational Networks”, IEEE International
Symposium on Circuits and Systems, 1984

[11] Bryant, R. E., “Graph-based algorithms for Boolean function
manipulation”, IEEE Trans. on Computers, Vol. C-35, No. 8, August 1986,
pp. 677-691

100

[12] Bryant, R. E.; Chen Y.-A., “Verification of arithmetic functions with binary
moment diagrams”, Proc. 32nd ACM/IEEE DAC, June 1995

[13] Bushnell, Michael L.; Agrawal, Vishwani, D., “Essentials of Electronic
Testing: for Digital, Memory & Mixed-Signal VLSI Circuits”, Spinger,
2000

[14] Carter, Hamilton B.; Shankar, G. Hemmady, “Metric Driven Design
Verification: An Engineer’s and Executive’s Guide to First Pass Success”,
Springer, New York, 2007

[15] Chang, H. Y.; Chappell, S.G., “Deductive Techniques for Simulating Logic
Circuits”, Computer, Vol. 8, Issue 3, 1975, pp. 52-59

[16] Chayakul, V.; Gajski, D. D.; Ramachandran, L., “High-Level
Transformations for Minimizing Syntactic Variances”, Proc. of ACM/IEEE
DAC, June 1993, pp. 413-418

[17] Clarke, E. M.; McMillan, K. L.; Zhao, X.; Fujita, M.; Yang, J., “Spectral
transforms for large Boolean functions with applications to technology
mapping”, Proc. of the 30th ACM/IEEE DAC, June 1993, pp. 54-60

[18] Corno, F.; Reorda, M. S.; Squillero, G., “High-level observability for
effective high-level ATPG”, Proc. in VLSI Test Symposium, 2000, pp. 411-
416

[19] Corno, F.; Cumani, G.; Reorda, M. S.; Squillero, G., “An RT-level Fault
Model with High Gate Level Correlation”, High-Level Design Validation
and Test Workshop, 2000. Proceedings, pp. 3-8

[20] Davis, B., “The Economics of Automatic Testing”, McGraw-Hill, London,
1982

[21] Deniziak, S.; Sapiecha, K., “Fast High-level Fault Simulator”, ICECS 2004,
proceedings, 2004, pp. 583-586.

[22] Devadas S.; Ghosh, A.; Keutzer, K., “An Observability-based code
coverage metric for functional simulation”, in Proc. International
Conference Computer Aided Design, 1996, pp. 418-425

[23] Devadze, Sergei, “Fault Simulation of Digital Systems”, PhD thesis, TUT
press, 2009

[24] EU’s 6th Framework Programme research project VERTIGO web page,
[http://www.vertigo-project.eu]

[25] Fallah, F., “Coverage directed validation of hardware models”, Ph.D.
disseratation, M.I.T., Cambridge, MA, 1999

[26] Fallah, F.; Devadas, S.; Keutzer, K., „OCCOM: Efficient Computation of
Observability-Based Code Coverage Metrics for Functional Verification.”
Proc. Design Automation Conference, pp.152-157, 1998

101

[27] Fallah, F.; Devadas, S.; Keutzer K., „OCCOM: Efficient Computation of
Observability-Based Code Coverage Metrics for Functional Verification.”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2001, pp.1003-1015

[28] Federici, D.; Bisgambiglia, P.; Santucci, J.-F., "High level fault simulation:
experiments and results on ITC'99 benchmarks," pp.118, Fifth IEEE
International High-Level Design Validation and Test Workshop
(HLDVT'00), 2000

[29] Fummi, F.; Marconcini, C. and Pravadelli, G., “Logic-level mapping of
high-level faults”, Integration, the VLSI Journal, Volume 38, Issue 3,
January 2005, pp. 467-490

[30] FUTEG research project webpage,
[http://www.inf.mit.bme.hu/en/research/projects/functional-test-generation-and-
diagnosis-futeg]

[31] Goders, N. and Kaibel, R., “PARIS: A parallel pattern fault simulator for
synchronous sequential circuits”, in ICCAD, pp. 542-545,1991

[32] Goldstein, L. H., “Controllability/observability analysis of digital circuits”,
IEEE Transaction on Circuits Systems, 1979

[33] HLSynth92 benchmarks family webpage, Collaborative Benchmarking and
Experimental Algorithmics Lab,
[http://www.cbl.ncsu.edu:16080/benchmarks/HLSynth92/]

[34] ITC'99 Benchmarks webpage, CAD Group, Politecnico di Torino,
[http://www.cad.polito.it/tools/itc99.html]

[35] ITRS, “International Technology Roadmap for Semiconductors report”,
2007 Edition, Design section, [www.itrs.net]

[36] Jiang, T.-Y.; Liu, C.-N. J.; Jou J.-Y., “An observability measure to
enchance statement coverage metric for proper evaluation of verification
completeness”, Asia and South Pacific Design Automation Conference
(ASP-DAC), 2005

[37] Jiang, T.-Y.; Liu, C.-N. J.; Jou, J.-Y., “Observability analysis on HDL
Descriptions for Effective Functional Validation”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2007, pp.
1509-1521

[38] Karputkin, Anton, “Formal Verification and Error Correction on High-
Level Decision Diagrams”, PhD thesis, TUT press, 2012

[39] Kassab, Mark; Rajski, Janusz; Tyszer, Jerzy, “Hierarchical Functional-
Fault Simulation for High-Level Synthesis”, ITC 1995, pp. 596-605

[40] Keyes, R.W., “The Impact of Moore’s Law”, IEEE Solid-State Circuits
Issue, Sept 2006

102

[41] Kuebschull, U.; Schubert, E.; Rosenstiel, W., “Multilevel logic synthesis
based on functional decision diagrams”, Proc of the IEEE EDAC, March
1992, pp. 43-47

[42] Lai, Y.-T.; Pedram, M.; Vrudhula, S. B., “FGILP: An integer linear
program solver based on function graphs”, Proc. of the IEEE/ACM ICCAD,
November 1993, pp. 685-689

[43] Lam, William K., “Hardware Design Verification: Simulation and Formal
Method-Based Approaches”, Prentice Hall, Pearson, 2005

[44] Lee, H.K. and Ha, D. S., “HOPE: An efficient parallel fault simulator for
synchronous sequential circuits”, in DAC, pp. 336340,1992

[45] Lee, J.; Rudnick, E. M. and Patel, J. H., “Architectural level fault
simulation using symbolic data”, in European Conference on Design
Automation, pp. 437-442, 1993

[46] Lisherness, P.; Cheng, K.-T., “An Instrumented Observability Coverage
Method for System Validation”, IEEE International High Level Design
Validation and Test Workshop (HLDVT), 2009, pp. 88-93

[47] Lisherness, P.; Cheng, K.-T., “Coverage Discounting: A Generalized
Approach for Testbench Qualification”, IEEE International High Level
Design Validation and Test Workshop (HLDVT), 2011

[48] Lisherness, P.; Cheng, K.-T., “Improving Validation Coverage Metrics to
Account for Limited Observability”, Asia and South Pacific Design
Automation Conference (ASP-DAC), 2012

[49] Lisherness, P.; Cheng, K.-T., “SCEMIT: A SystemC Error and Mutation
Injection Tool”, Design Automation Conference (DAC), 2010

[50] Ly, T.; Liu, L. yi; Zhao, Y.; H. wei Li; X. wei Li, “An observability branch
coverage metric based on dynamic factored use-define chains”, Asian Test
Symposium (ATS), 2006

[51] Mao, W.; Gulati, R., “Improving Gate Level Fault Coverage by RTL Fault
Grading”, in Proc. International Test Conference, 1996, pp. 596-605

[52] Menon, Premachandran R.; Chappell, Stephen G., “Deductive Fault
Simulation with Functional Blocks”, IEEE Trans. On Computers, Vol. C-
27, No. 8, August 1978, pp. 689-695

[53] Miller, J. C.; Maloney, C. J., “Systematic Mistake Analysis of Digital
Computer Programs”, Comm. ACM, 1963, pp. 58-63

[54] Minakova, K.; Reinsalu, U.; Chepurov, A.; Raik J.; Jenihhin M.; Ubar, R.;
Ellervee, P., “High-Level Decision Diagram Manipulations for Code
Coverage Analysis”, The 11th Biennial Baltic Electronics Conference
(BEC’08), 2008, pp. 207-208

103

[55] Moore, G., “Cramming More Components onto Integrated Circuits”,
reprint from IEEE proceedings on Electronics, Vol. 38, No.8, 1965

[56] Mourad, Samina; Zorian, Yervant, “Principles of Testing Electronic
Systems”, A Wiley-Interscience publication, 2000

[57] Niermann, T.M.; Cheng, W. T. and Patel, J. H., “PROOFS: A fast,
memory efficient sequential fault simulator”, IEEE TCAD, vol. 11, n. 2, pp.
198-207, February 1992

[58] OpenCores design repository webpage, [http://www.opencores.org]

[59] Raik, J.; Reinsalu, U.; Ubar, R.; Jenihhin, M.; Ellervee, P. “Code Coverage
Analysis using High-Level Decision Diagrams”, Proceedings of the 11th
IEEE Workshop on Design and Diagnostics of Electronic Systems
(DDECS), 2008

[60] Raik, J.; Ubar, R., "Fast Test Pattern Generation for Sequential Circuits
Using Decision Diagram Representations.", JETTA, Kluwer, Vol. 16, No. 3,
June, 2000, pp. 213-226

[61] Raik, Jaan, "Hierarchical Test Generation for Digital Circuits Represented
by Decision Diagrams", PhD thesis, TTU press, 2001

[62] Raik, J.; Jenihhin, M.; Chepurov, A.; Reinsalu, U.; Ubar, R., “APRICOT: a
Framework for Teaching Digital Systems Verification”, 19th EAEEIE
Annual Conference, pp. 1 - 6

[63] Reinsalu, U.; Raik, J.; Ubar, R.; Ellervee, P., “Fast RTL Fault Simulation
Using Decision Diagrams and Bitwise Set Operations”, Proceedings of 26th
IEEE International Symposium on Defect and Fault Tolerance in VLSI
Systems pp.164 - 170, 2011

[64] Reinsalu, U.; Raik, J.; Ubar, R., “Register-Transfer Level Deductive Fault
Simulation Using Decision Diagrams”, Proceedings of the 12th Biennial
Baltic Electronic Conference BEC2010, Oct. 2010, Tallinn, Estonia, pp.
193 - 196.

[65] Reynaud, “Code Coverage techniques – a hands-on view”, EE Times
09/12/2002

[66] Sanghavi, Alok, “What is formal verification?”, EE Times-Asia,
[http://www.eetasia.com]

[67] Sesuh, S. and Freeman, D. N., On improved diagnosis program, IEEE
Trans.Electron. Comput., EC-14(1), 76–79, 1965

[68] Seth, S. C., Pan, L., Agrawal, V. D., “PREDICT: Probabilistic estimation
of digital circuit testability”, International Fault-Tolerant Computer
Symposium, June 1985

104

[69] Shen, Li, “VFSim: concurrent fault simulation at register transfer level”,
Journal of Computer Science and Technology,Volume 20, Issue 2, March
2005

[70] Sinanoglu, Ozgur; Orailoglu, Alex, “RT-level Fault Simulation Based on
Symbolic Propagation”, VTS 2001, pp. 240-245

[71] Smith, S.P.; Mercer, M. R.; Underwood, B., “D3FS: a Demand Driven
Deductive Fault Simulator”, Test Conference, 1988. Proceedings. New
Frontier in Testing, International, pp. 582-592

[72] Srinivasan, A.; Kam, T.; Malik, S.; Brayton, R., “Algorithms for discrete
function manipulation”, Proc. IEEE/ACM ICCAD, November 1990, pp. 92-
95

[73] Suma, M.S.; Gurumurthy, K.S., “Fault Simulation of Digital Circuits at
Register Transfer Level”, International Journal of Computer Applications,
Vol. 30, No. 7, 2011, pp. 1-5

[74] Sureshkumar, P.R.; Jacob, James; Srinivas, M.K.; Agrawal, Vishwani D.,
“An Improved Deductive Fault Simulator”, Proceedings on the 7th
International Conference on VLSI Design, 1994, pp. 307-310

[75] Synopsys Inc. Homepage [http://www.synopsys.com/mhome.aspx]

[76] Tasiran, S.; Keutzer, K., “Coverage metrics for functional validation of
hardware designs.” Design & Test of Computers, IEEE, Volume 18, Issue 4,
Jul-Aug. 2001, pp. 36-45

[77] Tensilica Homepage [http://www.tensilica.com/]

[78] Thaker, P. A.; Agrawal V. D.; Zaghloul M. E., “Validation Vector Grade
(VVG): A New Coverage Metric for Validation and Test”, Proc. 17th IEEE
VLSI Test Symposium, April 1999, pp. 182-188

[79] Turbo Tester homepage [http://www.pld.ttu.ee/tt]

[80] Ubar, R., “Alternative Graphs and Test Generation for Digital Systems”,
Proc. of 2nd Conf. On Fault Tolerant Systems and Diagnostics, Brno,
Czechoslovakia, 1979, pp. 177-184

[81] Ubar, R., “Test Generation for Digital Circuits Using Alternative Graphs”,
Proc. of Tallinn Technical University, Estonia, No. 409, , 1976, pp. 75-81
(in Russian)

[82] Ubar, R., “Test Pattern Generation for Digital Systems on the Vector
Alternative Graph model”, Proc. of 13-th International Symposium on Fault
Tolerant Computing, Milano, Italy, 1983, pp. 347-351

[83] Ubar, R., “Test Synthesis with Alternative Graphs”, IEEE Design and Test
of Computers, Spring, 1996, pp.48-59

105

[84] Ubar, R.; Morawiec, A.; Raik J., “Cycle-based Simulation with Decision
Diagrams”, Proc. of the DATE Conference, Munich, Germany, March 9-12,
1999, pp. 454-458

[85] Ubar, R.; Raik, J.; Morawiec, A., “Back-tracing and Event-driven
Techniques in High-level Simulation with Decision Diagrams”, Proc. of
ISCAS 2000, Vol. 1, pp. 208-211

[86] Ubar, R.; Raik, J.; Ivask, E.; Brik, M.; “Multi-level fault simulation of
digital systems on decision diagrams”, IEEE International Workshop on
Electronic Design, Test and Applications, DELTA 2002. Proceedings, pp.
86 – 91, 2002

[87] Ulrich, E.G.; Baker, T., “The Concurrent Simulation of Nearly Identical
Digital Networks”, Proc. of 10th Design Automation Workshop, 1973, pp.
145-150

[88] US Patent No. US 6990438 B1, “Method and Apparatus for Observability-
based Code Coverage”, by Synopsys Inc., Jan. 2006

[89] Verilog [www.verilog.com]

[90] VHDL [www.vhdl.org]

[91] Wang, Fuh-lin; Lowe, E.; Angeli F., “Design of a Functional Test
Generator with a Functional Deductive Simulator for Digital Systems”,
AUTOTESTCON’78, 1978, pp.134-142

[92] Wang, Laung-Terng; Wu, Cheng-Wen; Wen, Xiaoqing, “VLSI Test
Principles and Architectures”, Elsevier Inc., San Francisco, 2006

[93] Ward, P. C.; Armstrong, J. R., "Behavioral fault simulation in VHDL,"
pp.587-593, 27th ACM/IEEE Design Automation Conference, 1990

[94] Wile, Bruce; Goss, John C., Roesner, Wolfgang, “Comprehensive
Functional Verification”, Elsevier Inc., San Francisco, 2005

[95] Zhang, Liang; Ghosh, I.; Hsiao, M. S., “A Framework for Automatic
Design Validation of RTL Circuits Using ATPG and Observability-
Enhanced Tag Coverage”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2006, pp. 2526-2538

[96] Zhang, Q.; Harris, I. G., “ A data flow fault coverage metric for validation
of behavioral HDL descriptions”, International Conference on Computer
Aided Design (ICCAD), 2000

107

Appendix

RESEARCH PAPERS

Research paper I

Reinsalu, U.; Raik, J.; Ubar, R., “Register-Transfer Level Deductive Fault
Simulation Using Decision Diagrams”, Proceedings of the 12th Biennial Baltic
Electronic Conference BEC2010, Oct. 2010, Tallinn, Estonia, pp. 193 – 196

���������	�
��������������������
��������
�������������������
��
�� ������� !�"��#$%�����!&$��!'#�(�)�* +,-./01,2034531-60,/72892,,/928:;.<<922=29>,/?90@34;,AB23<38@:7C1.9<D6<E.2.F-<GH006H,,IJ�	�IK	L	M�N
N��N�������
������������M����������������
�����������
��������
�������M��O�����������M��M����������������
��
��P	M����M����Q
������M�Q�������
���
��������RSM��MM
�Q���N�������M
��
����������N�������S��M�
����������������
��
����PTUN����������V	KWWQ���M�
�X��������M
��Q����
���������M�S����M���
��Q����O���M�N��N����
NN��
�MPYV�����������Z[!� " \ *��]]!̂! �_��̀a*!_['"]a*]�#�_"!'#��_!a�a]â')!��_!a���̂ !*̂#!_" b!"_$_[_�"&a]����c"!�̀"_*#̂_#*��]�#�_"!�" d# �_!��̂!*̂#!_"* '�!�"�[!̀[�câ'e� b!""# fg�a*(*_âa�_ �(_[!"̂a'e� b!_c_[* " �*̂[̂a''#�!_c[�"_#*� (_ah�*("(\ �ae!�̀' _[a("a�[!̀[*("!̀��)"_*�̂_!a�� \ �"fi#�̂_!a���]�#�_"!'#��_!a�a]jklm("!̀�"[�") �e*aea" (!�no$pqfr[!"�ee*a�̂[!"]�"_)#_��̂&"�̂ #̂*�̂c"!�̂ _[* !"�a"_*a�̀* ��_!a�) _h �_[]#�̂_!a���]�#�_'a(���(�̂_#��"_*#̂_#*��]�#�_"!�_[!̂*̂#!_fg�nsq���*̂[!_ ̂_#*��t� \ �]�#�_"!'#��_!a�_aa�u�vgw!"e* " �_ (fr[_aa�#" ""c')a�!̂(�_�_a"!'#�_�� a#"�ce*â ""_[]�#�_]] ̂_"]a*̀*a#e"a]]�#�_"!�_['a(#� #�(*"!'#��_!a�fkah \ *$u�vgw!"̂�e�)� a]* ea*_!�̀a��ce ""!'!"_!̂]�#�_"!'#��_!a�* "#�_") ̂�#" a]_[�!'!_�_!a�"a]_["c')a�!̂��̀)*��ee�! (!�]�#�_e*ae�̀�_!a�fr[!""[a*_̂a'!�̀[�") �e�*_�c* 'a\ (!���!'e*a\ ("c')a�!̂�ee*a�̂[)cv!���à�#��(x*�!�à�#nyqfg�nzq{�""�)$���"&!��(rc"| *$e*aea" [! *�*̂[!̂��]#�̂_!a���]�#�_"!'#��_!a�_[�_e*a\!("[!̀["e (t#e)#_* �! "a�)#!�(!�̀)�â&"_[�_[�\ * ̀#��*"_*#̂_#* "a��cfr[�#_[a*"a]_[!"e�e *e*aea" (�̂a�̂ e_a][! *�*̂[!̂��]�#�_"!'#��_!a�n}q#"!�̀�((#̂_!\ ��̀a*!_['a�k!̀[tm \ �l ̂!"!a�l!�̀*�'~kmll�'a(�"n�qfr[' _[a(�""#' (_[�_ �̀_ t� \ �("̂*!e_!a�"a]���_['a(#� " b!"_��('a(� (]�#�_"!�_[̂!*̂#!_"[! *�*̂[!̂���c�__[* ̀!"_ *t_*��"] *��(�à!̂� \ �"fg�_[!"e�e *$h e*aea" �� h�ee*a�̂[h[!̂[!"�ee�!̂�)� �__[� ̀!"_ *tr*��"] *m \ �~�rm�fZ)#!�(a�_[)!_t̂a\ *�̀]�#�_'a(�$h[!̂[[�"e*a\ �_a[�\ àa(̂a** "ea�(�̂ h!_[̀�_ t� \ �"_*#̂_#*��]�#�_"n�qfr[e�e *!"a*̀��!| (�"]a��ah"fv ̂_!a�p be��!�"kmll* e* " �_�_!a�]a*�rm̂!*̂#!_"fv ̂_!a�se* " �_"_[)!_t̂a\ *�̀]�#�_'a(���(!�_*a(#̂ "_[((#̂_!\ ��̀a*!_[']a*�rm]�#�_"!'#��_!a�fg�v ̂_!a�y

 be *!' �_��* "#�_"�* e*a\!((fi!����ĉa�̂�#"!a�"�* (*�h�f���N����������	�������������������a�"!(*�(!̀!_��"c"_ '�"�� _ha*&����:��a]â'ea� �_"h[* �!"_[" _a]���\�*!�)� "~�aa� ��$�aa� ��\ ̂_a*"$!�_ ̀ *"�h[!̂[* e* " �__[â�� ̂_!a�") _h �̂a'ea� �_"$!�e#_"��(a#_e#_"a]_[� _ha*&fl �a_)c�����(���$â** "ea�(!�̀�c$_["#)" _"a]!�e#_��(a#_e#_\�*!�)� "f����(�a_ "_[ea""!)� \��# "]a*���:h[!̂[�*]!�!_ fm _�) _[" _a](!̀!_��]#�̂_!a�"a��D���4����:�:��:�:HHH:��:-��4�����h[* ����:4���:��(����Hva' a]_[]#�̂_!a�"4���$]a*_["_�_ \�*!�)� "����;�;7��:�* � b_"_�_]#�̂_!a�"f����������� u¡98BC¢,>,<+,A9?932+9.8/.1~kmll�!"�(!* ̂_ (�̂ĉ�!̂̀*�e[£��¤:¥:��h[* ¤!"�" _a]�a("$¥!"�* ��_!a�!�¤$��(¥�1��¤(�a_ "_[" _a]"#̂ ̂""a*�a("a]1�¤fr[�a("1�¤�* '�*& ()c��) �"��1�fr[��) �"̂��) !_[*\�*!�)� "���:a*��̀)*�!̂ be* ""!a�"a]���:a*̂a�"_��_"fia*�a�t_ *'!����a("1$h[* ¥�1�¦§:��a�_a]#�̂_!a� b!"_") _h �_[\��# "a]��1���(_["#̂ ̂""a*"1,�¥�1�a]1f�c1,h (�a_ _["#̂ ̂""a*a]1]a*_[\��# ��1��,fr[(̀ �1:1,�h[!̂[̂a�� ̂_"�a("1��(1,!"̂��� (.A09>.0,G!]]_[* b!"_"���""!̀�' �_��1��,fû_!\�_ ((̀ "$h[!̂[̂a�� ̂_19��(1E'�& #e��.A09>.0,G-.0B<�19:1E�Hu��̂_!\�_ (e�_[<�1̈:1;�]*a'_[!�!_!���a(1̈_a�_ *'!����a(1;!"̂��� (_[46<<.A09>.0,G-.0Bf����������© u(̂!"!a�(!�̀*�'£���¤:¥:��* e* " �_"�]#�̂_!a����4����:�:��:�:HHH:��:-��4�����!]]]a* �̂[\��# >�����>���:��ª>���:��ªfffª>���:-�:�]#��e�_[!�£�_a�_ *'!����a(1;!"�̂_!\�_ ($h[* ��1;����f«�̂[]#�̂_!a�4���!�_["c"_ '� _ha*&�¬��:��!"* e* " �_ ()c�(̂!"!a�(!�̀*�'���£�����fl e �(!�̀a�_[̂��""a](!̀!_��"c"_ '~a*� \ �a]!_"* e* " �_�_!a��$h '�c[�\ \�*!a#"ll"$!�h[!̂[�a("[�\ (!]] * �_!�_ *e* _�_!a�"��(* ��_!a�"[!e"_a_["c"_ '"_*#̂_#* fg��r� \ �("̂*!e_!a�"$h #"#���c(̂a'ea"!_!a�(!̀!_��"c"_ '"!�_âa�_*a���((�_�e�_[e�*_"fv_�_ ��(a#_e#_\�*!�)� "a]_[̂a�_*a�e�*_" *\

������������������	
�����������	��
��������������	�
�����
���
�����
������������
���������������	�
��	��������������	�	
���	�
�����
���
����������������������
���
��������
��	���	�
����������������
��������������� ������� ��������	
��������������������!���������������
��������������	�"�������	�����������������#�$��"%�&'#(�)�*��+	��,��������������-./�'0.%�/%�1%�2(�����
�����3��
���/���
��
����������	3�����������1.�4�2.��������0.�)�5�6/.�4�7�������0.�)�7�8�9/�)�5�+�)���62.�4�1.�������0.�)�:�8�92�)�7�/.�4�1.�4�2.�������0.�)�;�8�9/�)�5�<�92�)�5�/.���	��
��������������������	
����	�=�3�7������
�����	3�>��
��������
�����
������������	�������	�
���
��
������������
�����
�?�	������
����������	3�
�����
���@������������	3�����?������A���� � ������� BCDEFE�!�3���������������	����3�����G�HIJKLMCNI�OPKQM�RCSKQPMCTU�TU�VWHHR��X	�
�������������������	�
�����
�������3������
��������������������	������	�
���������3������������	��	�����
��3�
���������
���
���������
���Y ��X	�
�����
�������3������������
�������	Z��
���
����������
������������3��
����	�
�������������
��[�	3�������
�������
��	��������������������
�����,���
���
����������	
��
��	�����
�����3��
�����
���
�
���
�����������
������������
����������	�	
����
��?�
��
���������5����7��+�\]̂ _̀a9�_bccade������3�	���
�����������
�����3��
������)fg5�@g7��7A�h�@g?��?Ai�������g5��������
���������������
�����3��
���g7��������
����������������	��	3�
��
�������
��7��X��
�������
����������
������������
��������
��	�
�����������������3����X��g7)g*�
��	�@g7��7�j��*A��X������
������������g5��	������
��������gZ�����
��������
��	���������
�����gZ�������������?����	��
��������	�	
�@gZ��ZA������������������������
���������,���

��	����=���
�������
��	��	�!������������������
����
����	3�
�����
���
�����
����	�!������	��������	���
��
���3���	�����������������������������������	�����	�
��	�7��=����,�������
�
���3���	��	��
�@�
�
�A���

��	�k�)�f0.)7�9/�)5i����
�������?�/����������
���
����	���	����̂l����
���

3�����-/���
��������/m�4�7�@����
�����3���3�
�����
���	�=�3�7A������	������������/���������/�)�/m�4�7��X	���3������������
������3�
��	��	�
�����3�
������
���n)@"%oA�
����3�� �� ����?� ��
�� ��	�
��	�#�p�q�'#r%�#s%�t%�#e(p��q'".(%�".u�"�����������������	
�����������-#�����������������
������
�
��
�
��������
��������������	������3�
���
���������
�������������#v�$�".�������	�����������	������	�
���3��������������	����̂����
���!������
��
����������#@̂A���������,���

��	�l#'̂(�)�fk#'̂(%w�@k#'̂(%rx#'̂(%rA�h�@k#'̂(%y#x#'̂(%y#Ai���������	����=����
������

��	��
������
��
��
�����
���������
��xz@�A)�x#'̂(%r�j�hj�x#'̂(%y��������	������3�
���
��
���	����̂ ����
�x����
�����
������������
�������	
�����
���
����	�����
����	�l#'̂(��{�	������
�������
�������
��	��	�
���!����-#����
����������	3���
����������������|}~����}�������������
��������
�����������
����	��������	���
��
�������
�������	��
���

��	�k#'̂(%w��	��
�������
���������������#)#@̂l5A�����������
���������̂l5����
���
����	���	�������
�������
��������
���
�����
���=������	3�
�������
��������
����,������������
������,�����
�����
��������
����������	�
�����
������	
�	�����	�
�����
��������������������	3�
�������
��������
�����������
���,�@�A)��,��j�����������	��
��	����������	3�
���	�������	�
�������
��������
������	3�����
�������
��	����
�������	����������
�������
����,�@�A����	�
�������	��@�A�
�����
��������
����	���
�	
�
��
��������	
�����
����
�������
����	�
����	�����5����
��
���	�������=���
���	��������������
��������
������������	��@�A)�������,�@�A��X
�����������	�
���
��
�������	3�
���	�������
�����
��������
����	��@�A����
�����������
�������
�
��	���,�@�A��������	��	���	�
��	�g������=���
�=���g�
�@A�@=�3��:A��=���
���������������������
�����	�
��	�g������=���
��=���g�
�@A���
��	������������
�����,��������������	3�
���
����	���	��������	���	�
��	�g������=���
�g�
�@A����������������	������	�
����
���=�	�
��	�g������=���
�g�
�@A������������������	��
������������������������	3�
��
�������
���	���	�������	�������	3�
���
����	���	�����������
��������
��
���
����	���	�����������������@��������������*A��|}~����}�����=���
�������
��	������
����	���	��������������
��������
�������	��	3����������	�
��	����@g����A����
���
����	���������,���

��	��z@��A��������,��������
���������3�
�������
����,�@��A��	������3	�	3�
����������,���

��	�
��
���3��������
����������z��+��������
���������������
���3���������������
����	���������	3�
��
����������������
��3�	���
��	�	�������
������3�	���
�������
���	�,
��������X��
������������
�����������������������������@�����,��������������
�������
���
�
��5��	����
��	���3��
��A��	������
���������	��	3�
��
������
��
��	�����������������3�
���
��	�3�	���
��	��������
������������������
����������	3�
��
��������3�
�������
��������	�
��������	3�
������
������������@������	�
��	�g������=���
�@AA��|}~����}�����=���
�������
��	������	�	
����	���	��������
��
������������z@�A�����������,���

��	��z@�A�)�fgz@�A5�@gz@�A7��z@�A7A�h�@gz@�A?��z@�A?Ai���	���
�����
����������	3��

� ����m ���m����m �m������ �� �m����m�� �� �m� ���
���m���� �m����m� �

�� ��������	
���	�����������������
�	
�������������	
����������	���������	�����������������	
�������������	�� �����!�
�����������������������	��	"�
��!�
������� !�
��� #� !������� �
�� ��
��	
���	��������������������������������$������� ������	���
	����	
��	��������������������
�
	
�����������	
���������%�	�� �����	�����������	�
���
��!�
�����������������������	��	"�
��!�
������!�
���&�!��������
����
��	
���	��������������������������������$����"���!�
�������'��	���������������	
����	����������	���������()*+,-.),�/0�1��
�������
���������
���
	���	����������������������
���	���������������������!�����!�
���&�����������������������
������
	������������$�����	������
���
	����!���������������	�����	����2�����
� ���'��	��
������	
�	���������������������!�
������!�
���#�!���������
��	
���������!�
����������������	���	����2�����
� �����	��	����2�����
� ���'�����������	�����������������	
������	��������3��
��4�"�����������	����2�����
��	�����$��������56�75���895:;���95:<�=5:<���>���95:?5�=5:?5�@��'�������������95:A�=5:A��"�����95:A���95:;�����������
������
�������������=5:A�������������B����������	�
��'��������	����	��������8�95:A�=5:A����95:C�=5:C�@�"�����95:A���95:C�������������
	�����
����������95:A�=5:A����	����=5:A�D��=5:A��E�=5:C���FG 2'H��H�3�I�4�J� %��H�3�I�4�J�'GKHL��M�4�N�J��O�PGKQG%��H�3�J�L�M��K�H�H����O�H�R�3��K�3�3����L�3�I�J��K�4�M����N�J�2' 2Q'G4��I�4� %��4�H %��4�3I
I��4�

H
HO�L�

'G4�I�
FG 2'H��H�3�I�4�J� %��H�3�I�4�J�'GKHL��M�4�N�J��O�PGKQG%��H�3�J�L�M��K�H�H����O�H�R�3��K�3�3����L�3�I�J��K�4�M����N�J�2' 2Q'G4��I�4� %��4�H�I� %��4�3I

I��4�
H

HO�L�
'G4�I� ��STUVWV�������������	
�	
����XY!!�	������H���Z[\]̂ _,�Q	
���������XY!!�̀a��
�����3�"��������	���	����2�����
�6��7b����8H��%��H�3�J���4��I�4�@���7ca����8%��H��I�J�@���7cd����8H��%��4�R�@���7a����8N��I��4�J�N���4��H�I�O���L��3�L�@���7e����8L��I��4�J���4��I�N���R��3�L�@���

7d����84��H��H�I�4���3��3�R���J��R�N�@���� '���������������������
�����������������	
�����������������
�����B�������������	���������	
��
�����3�� ������������������������	"
�����	�����
����	����
�����H��
������3�� ���������	
�������
�����3�����������������������f:�=���"�����f�������$�����	�����
	���$��������"��
����$�
�����
	���������������	
���
��=������������	��������6�=fcg�h���	�����
�2�
	���h�	
��������������������
��=Aijg�h���	�����
�2�
	���h�	
����������������k�
���=fcg�2a����8H�3�I�4�J@��
��������	��	������������I��
��J���	�������	�2a��
	���������������������������	�����
	���ca6��	�����$�����ca���H6�=lca����=ca�m�=fcg��ca�����M����	������������������	�������	�al��	
�������������N��L��
��O�������������������
	���alKH��'��������
���
	���eGKdG�	
�������������H�3�J�����������������
���	
������������	
����
�	�����	
���	
�	�����$�
�����
	���bl�������������	
���'����������������	
�	������I�������������
���
	����"���	��	��������
�������������	��	"�6����������3���	�������	����
	���elndl������������B��������������$�����elndl���L������������	�����������3�����F����	��������������$��������������������
	���aGKH�� ����������I��
��N���	�������	��������
�����
���
	����������������
	�����������	�����������������	�������������
�"�$�����4��	��a��'��	������������H��
��L�������������
	�����������	���� �����
���$�����	�����
�"��	����2�����
���6�7a���8L��I�4���4�I�N���J�O���N�J���O�H�L�@��o�pqrstTusvwxy�tsz{ywz��
� �����H�����������	�����������$��������������	
����	�����	
�� QOO���
�����B���������|H%}�������	"
�� ���������	���
���	"������������� ������	
���
��������	���
�������
����
������	�����������
�����
��	�������
������������$����� ����	�����	���
����	������
������	��XY!!�
	����� ���������	���
������
����������
����
���	�B��������� ���R���	���
����	�����������$������������	$�������
�������
����	���
����	�����
��������~x�ys���������������	
��������
�
�Tt�{Tw������� �����v��sz� wszw�ysvUw�� �x{yw����st���� wTus���z��%%� I� 3� IJ� J%� RO�%� %�NN��%H� I� 3� 3R� J%� O%�%� %�HN��%3� 3� H� HR� J%� LN�J� %�%O4��%I� J� H� HIN� 3%%� LI�I� O�NJ��%4� J� H� JL� H%%� ON�N� J�%J��%R� I� 4� 44� H%%� O4�4� %�JR��%O� 3� H� 44� H%%� OL�3� 33�%��H%� O� I� HJN� 3%%� L3�J� H34L��HH� I� H� JN� H%%� LI�I� O�%R��HI� 4� N� HNL� 3%%� NR�4� H4�N�

�� ���������	
��	�� �������������!����������!��������������������"�#���������!����������������������������������#����������������������������� �$%�����������&�'((�!������)����������#����������������#�����������!���������������������������� �*�+��,�-./-0-�1	����#��)�����!�����������!��$��������23��������4567"�4879"�$'�3:4�&'��2�;$:����<���=&>?@A="�3:4�;$B:@�����<���';$=$2"�����;������'����'$C$�������!��$D�2����������3���� �E-F-G-��-	�HIJ�: �' �K���"�L �; �>��������"�MC�����������������������������NO=P"M��� Q74�Q(9"�RSTU�VWXYZ[[[�\]̂_̀a�VbTcdeT_ca�Wcaf]g]ah]�i\VW�jklm"�I((5 �HnJ�= �3�����"�: �C�����!�����"�L �3 �2�������"�MO������������������������o�%����������������������&�'p((� !������)�"M� �� II7"� q_fTU� Z[[[�ZaT]gaeT_caer�s_̀Utu]v]r�\]̂_̀a�wer_xeT_ca�eax�y]̂T�zcg{̂Uc|�isu\wyjllm"�n555�H9J�L �P"�$ �? �;�����)�����L �O �:���"�}>��!���������~"�_a�[bgc|]ea�Wcaf]g]ah]�ca�\]̂_̀a�VbTcdeT_ca"��� �894�88n"�I((9 �H8J�@�����2��������"�>�%�@��������"�};������3�����2����������C�������2��!�����:����������~"�wy��Rll�"��� �n85�n8Q �HQJ�?��)������!"�L������;�<�)�"�L���������"�}O�����������3����������3�����2��������������O����P���2�������~"�ZyW��kk�"��� �Q(6�65Q �H6J�D!��"�; ��;��)"�L ��&���)"�$ ��C��)"�? ��}?���~"�Z[[[�ZaT]gaeT_caer�zcg{̂Uc|�ca�[r]hTgca_h�\]̂_̀a��y]̂T�eax�V||r_heT_câ��\[uyV�RllR���gch]]x_à "̂��� �76���(I"�n55n ��H4J�; D!��"�}����2��������#����>���������B�����~"�Z[[[�\]̂_̀a�eax�y]̂T�cf�Wcd|bT]ĝ"�2�����"�I((6"��� 87�Q(�H7J�3 �3����"�' �?��������������B �:��������"�}P�����������������������������������~"�ZaT]̀geT_ca��TU]�wu�Z��cbgaer"�N�����97"�&����9"�L�������n55Q"�:����864�8(5�H(J�;������$ �C�����"�}B�����!�������������������C���������������������������~"�Z[[[�ygeâehT_câ�ca�Wcd|bT]ĝ"�� 9Q�� 7"�� 644�6(I"�>�� �I(76 �HI5J�### ��� ��%�� ������((�!������)��!��� �����

3����2�������������3���������������� :�����3�����������$����������:�����3����������� =%����� 3��������������� � ���5���������������������� � :�����3�����3�:�����"��5"��"�=%��� � ��� � ������������������������ � :�"����������� � � �� �����<���!��������������������C�������"��������������������!�������������:�"��!���������������������������������"�������������������������������#�������������������������������������� $������� ����:�����3�����3�:�����"��"��"�=%����������=������������������"��������=%���������=%��=%����������������"�������������&��������:�����3�����3�:�����"�"�"�=%��� �&��=�������������� �����:�����3�����:�����"��"��"�=����"�������� $������� �����$���� �������������3����3�:�����"��"��"�=����������$����������:�����3�����:�����"��"��"�=����"�3���3���3�����3����� &������������������������������� ��&���3���3���3�����3���� � ����3�������������:����"5������"������ � � =�����=�����=����"��� � ����������������3�������������� � :�����3�����:�����"������"��"�=����"������� �� �$���������������3���3�����3��� 3����������������������:����"�������"������ � =������=�������=����"��� � :�����3�����:�����"��"��"�=����"�������� $�������$��� ��������������� � :������������3�����:�����"��"��"�=������$���������:������������3����3�:�����"��"��"�=���������"���������������=������������"��������:������������3����:�����"��"��"�=�������� =������=�����=����"�������=�������=�������=����"������&���=��������������"����"������=���������$���������&��=��������������"�����"������������������=������������"��������$���������
/�����=��������������������������������!����������

113

Research paper II

U. Reinsalu, J. Raik, R. Ubar, P. Ellervee, “Fast RTL Fault Simulation Using
Decision Diagrams and Bitwise Set Operations”, Proceedings of 26th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems
pp.164 - 170, 2011

�����������	
����	
��� !"�#��$%�&���� �"'%� �"($�)��*�+%�,!!-!+�.��!+/!!�0!1�+-(!�-�23�42(1$-!+�.�5"�!!+"�5��6���"�����"/!+#"-7�23�6!89�2�257�6���"��%�.#-2�"��!:(�"�;�<$�����%�����%�+�"$*%��+/=>1�)?--$?!!�@ABCDEFCGHII�������I�	
����	
�������
�����J��I�����K��������
�����	��������L�����I����������M�N���O��P���Q	�����
�I�	
����	
�������J��J����I��Q	���
R�	����������������I�	
����
����������
������������������O��R����S����	�������LP����������	
���I���
����������	���M�T	������������������������������	���O����J���I�����������S�����I�����O�
�U���V�I�	
����	
����������J���R�������
��I�J��JS
�O�
�����������������M�W�����
R��J��K�����O������I�	
�����
��J��J�J������O���������O�����������������������������J�����S
�O�
����	��	��
�I�	
��M���	
�����������S	�������J��O����	������II���������������	��	������
�������������I����������������������J�����	���O��I�	
����	
�������
�����JM�HX����������������K���J��L�����	�����J����J���	�����������������I������	����J�������	�S�����������J��O������J��J����J�����������������������S
�O�
�I�	
����	
�����MYZ[\]D̂B�_�DZ̀aBCZD_CDEbBcZD�dZeZdf�cEgdC�BahgdECa]bf�iài_dZeZd�̂ZFaBa]b�̂aÈDEhB�j? jk6 l0�46jlkm9"�!�#!/!+���!33"8"!�-���52+"-9(#�32+�3�$�-�#"($��-"2��23�82(*"��-"2����8"+8$"-#�!n"#-%�-9!�-�#'�23�����7#"�5�#-+$8-$+���3�$�-#�"��#!o$!�-"���8"+8$"-#�+!(�"�#���9"59�7�)"33"8$�-�"##$!?�j��2+)!+�-2�82�-!�)�-9!�82(1�!n"-7�-9!�+!#!�+89�82(($�"-7�9�#�-$+�!)�-2p�+)#�)!/!�21"�5�(!-92)#��-�9"59!+�)!#"5���*#-+�8-"2���!/!�#?�.n"#-"�5�3�$�-�#"($��-"2��-22�#�-71"8���7�+!�7�2��5�-!:�!/!����52+"-9(#?�l�!�23�-9!�!�+�"!#-�#!o$!�-"���3�$�-�#"($��-2+#%�, llqr�stu�82(*"�!#�-9!��)/��-�5!#�23�)"33!+!�-"���3�$�-�#"($��-"2����)�1�+���!��3�$�-�#"($��-"2�?�vl,.�swu%���1�+���!��3�$�-�#"($��-2+%�#"($��-!#�xw�3�$�-#��-���-"(!?�q�$�-#�p"-9�#92+-�1+21�5�-"2��1�-9#��+!�!n8�$)!)�3+2(�1�+���!��#"($��-"2�%�#"�8!�(2#-�23�-9!�-"(!�-9!�3�$�-7�8"+8$"-�+!#12�#!�p2$�)�*!�")!�-"8���-2�-9!�82++!8-�2�!�)$+"�5�-9!�#"($��-"2��23�#$89�3�$�-#?�y�#2�,y jr�sxu�"#�*�#!)�2����1�+���!��3�$�-�#"($��-"2��(2)!�?�v!$+"#-"8#��+!�$#!)�-2�("�"("z!�-9!��$(*!+�23�!/!�-#�-9�-�($#-�*!�-+�8'!)?�0!#1"-!�23���p")!�+��5!�23�(!-92)#%�3�$�-�#"($��-"2��32+�#!o$!�-"���8"+8$"-#��-�-9!�5�-!:�!/!��"#�#�2p�32+���+5!+�)!#"5�#%�"��1�+-"8$��+�p9!���2�5�-!#-�#!o$!�8!#��+!�82�#")!+!)?q$�8-"2����3�$�-�#"($��-"2��23�{v0|�)!#"5�#�9�#�*!!��1+212#!)�"��s}%�~u?�69"#��11+2�89�"#�3�#-�*$-�"-���8'#��88$+�87�#"�8!�-9!+!�"#��2�#-+"8-�82++!��-"2��*!-p!!��-9!�3$�8-"2����3�$�-�(2)!����)��8-$���#-+$8-$+���3�$�-#�"��-9!�8"+8$"-?�j��s�u�����+89"-!8-$+��:�!/!��3�$�-�#"($��-"2��-22��y rj��"#�1+!#!�-!)?�69!�-22��$#!#�#7(*2�"8�)�-��-2�#"($�-��!2$#�7�1+28!##�-9!�3�$�-�!33!8-#�32+�5+2$1#�23�3�$�-#�"��-9!�(2)$�!�$�)!+�#"($��-"2�?�v2p!/!+%�y rj��"#�8�1�*�!�23�+!12+-"�5�2��7�1!##"("#-"8�3�$�-�#"($��-"2��+!#$�-#�*!8�$#!�23�-9!��"("-�-"2�#�23�-9!�#7(*2�"8���5!*+���11�"!)�"��3�$�-�1+21�5�-"2�?�69"#�#92+-82("�5�9�#�*!!��82�-!�)!)�"�����"(1+2/!)�#7(*2�"8��11+2�89�*7�r"���25�$���)�l+�"�25�$�s�u�*7�$-"�"z"�5�-9!�+"59-(2#-�3�$�-7�*"-��28�-"2��"�32+(�-"2��-2�!�9��8!�-9!�(!-92)�#��*"�"-7�23�1+21�5�-"�5�#7(*2�"8�)�-�?�j��s�u%���##�*%� ��#'"���)�67#z!+%�1+212#!�9"!+�+89"8���3$�8-"2����3�$�-�#"($��-"2��-9�-�1+2/")!#�9"59�#1!!):$1�*$-�+!�"!#�2��*$"�)"�5�*�28'#�-9�-�9�/!�+!5$��+�#-+$8-$+!#?�r9!��"�-+2)$8!)���82�8$++!�-� !5"#-!+:6+��#3!+�|!/!��� 6|��3�$�-�#"($��-2+�{qr"(�s�u%�p9"89�"#�8�1�*�!�23�#"($��-"�5�{!+"�25�)!#"5�#?�v2p!/!+%�82(1�+"#2��-2�-9!�5�-!:�!/!��3�$�-�#"($��-2+�vl,.�swu�#92p!)��2�#1!!):$1�"��(2#-�8�#!#?�y�82�8!1-�23�9"!+�+89"8���3�$�-�#"($��-"2��$#"�5���)!)$8-"/!���52+"-9(�2��v"59:|!/!��0!8"#"2��0"�5+�(��v|00��st�u�(2)!�#�p�#�"�-+2)$8!)�"��sttu?�69!�(!-92)��##$(!)�-9�-�5�-!:�!/!��)!#8+"1-"2�#�23�����-9!�(2)$�!#�!n"#-���)�3�$�-#�p!+!�(2)!�!)�"��-9!�8"+8$"-#�9"!+�+89"8���7��-�-9!�+!5"#-!+:-+��#3!+���)��25"8��!/!�#?�y�2-9!+%� 6|���52+"-9(�p�#�1+212#!)�"��stwu?�v2p!/!+%�!n1!+"(!�-���+!#$�-#�#92p!)�-9�-�-9!�(!-92)�*!82(!#�1+29"*"-"/!�7�#�2p�p9!��8"+8$"-#�p"-9���+5!��$(*!+�23��+"-9(!-"8�21!+�-"2�#��+!�82�#")!+!)?�j��-9"#�1�1!+%�p!�1+212#!����!p��11+2�89�p9"89�"#��11�"8�*�!�)"+!8-�7��-�-9!� !5"#-!+:6+��#3!+�|!/!��� 6|�?�m!�*$"�)�2��-9!�*"-:82/!+�5!�3�$�-�(2)!�%�p9"89�9�#�1+2/!��-2�7"!�)�522)�82++!#12�)!�8!�p"-9�5�-!:�!/!��#-+$8-$+���3�$�-#�stxu?�m!�"�-+2)$8!�!33"8"!�-�)�-��#-+$8-$+!#�*�#!)�2��*"-p"#!�#!-�21!+�-"2�#�"��2+)!+�-2��89"!/!���9"59�#1!!)�23�#"($��-"2�?�.n1!+"(!�-#�2�� 6|�*!�89(�+'�8"+8$"-#�#92p�-9�-�$1�-2�-p2�2+)!+#�23�(�5�"-$)!�#92+-!+�+$�:-"(!#��+!��89"!/!)�p"-9�-9!�(!-92)�"��82(1�+"#2��-2�#-�-!:23:-9!:�+-�5�-!:�!/!��#"($��-"2�?�69!�1�1!+�"#�2+5��"z!)��#�32��2p#?�r!8-"2��w�)!3"�!#�v"59:|!/!��0!8"#"2��0"�5+�(#��v|00�?�r!8-"2��x�!n1��"�#�v|00�+!1+!#!�-�-"2��23� 6|�8"+8$"-#?�r!8-"2��}�1+!#!�-#�-9!�)!)$8-"/!���52+"-9(�32+� 6|�3�$�-�#"($��-"2�?�r!8-"2��~�"�-+2)$8!#�-9!�

�������������	���
��	��
���	��
�	����
���
����	�������
����
�����	�������������������	��	��	������	�����������
������
�����	���
���	���� ��� ����������� ���!�"��� ���#��� �$!""����������	���
��%	��	���	���	�$���&!	�	��"	����
��"������'$!""(��������������	��)
����	����������������	�'*��+(�������	�%
�,�
����-����	��
���
�
�	�����%�	�	�*������	��	��
�������-�	��'.

�	����.

�	����	��
���
�����	�	��(��%������	��	�	����
��	���
���-	�%		���
�
�	������������������������������
�������
����	��	�%
�,��!	��*�/�0�#�1��%�	�	�0������	��	��
��������
������	��������1������	��	��
��������
������	��%�	�	�2�/�031������	��	��
������	������-�	���4'5(��	�
�	����	������	��	��
�������
���-�	�����	���
��56*�����4'*7(������	��	��
�������
���-�	��	��
�������
	������-�	��	��*78*��9-��
���������*7�/�:5;��<��5=>���	��4'*7(�/�4'5;(�?�<�?4'5=(��!	��+�-	���	��	��
�������	�	�������
��@�AB�/�CB'0B(��%�	�	�AB61��CB6+������0B80�'B��	���	��
�	������	�		�������+(��DEFGHGIGJH�KL�$���&�	�	���	����
����������	��	�	��������������
��CB�@�4'0B(�M4'AB(���������	��	��������������������N�/�'O��P(�%�����������	��

���
�	��������	��
���	�������
�	��%�	�	@�Q ������
�&�	�������
�	������-	�	��-���
	�������
���
���
�������-�	�R60��S	��������	�
�	���	������-�	�
���
�	�T�-��RT��Q ������	�������
�	�U������-	�	��-���
	�������
���VU�@�4'0U(�M4'AB(���%�	�	�W%8�W,��Q �����	��	�X�/�'T��Y(������-	�	��-�����
�������ZX64'RT(��Q ������%
�	��	��X;�/�'T��Y;(�����X[�/�'T��Y[(������������
���	���	��
���	��
�	���	���-	�	��-������	�	����
���������	\]��	̂��Q �����	��
�	�T������-	�	��-��RT���	����	���-	��
��	��	�������������
�������
�	����_4'RT(_��Èabcd�K����	���.""�������$!""��

��%�����%
��	�������	����	����-	�	��-���
�������������
���e�����\������4'R(�/�:e��\>��
��	�	��������-�	�R�����
��	��%
�����$!""�������������������	���������
�.""��-���%��������	��	��
�������������
���������������
�	���������-	��
��������
��������	�	��������	���
���
��������e�����\��S	��������	�
�	���	��	��
���	�������
�	��-��Of�������	��	��
���
�&�	�������
�	��-��Og�������	��	��
����������	��
���
����	��
�	�T�-��h'T(���
���
�&�	�������
�	��T6Of����
��
�������
��	������-	�%		����	�����	��Z64'RT(�
����-	���RT�������	�����	��
���TZ6h'T(�
�����.��TZ�%	��	�
�	���	�����	��
��
��T��
����	�����	�RT�/�Z�����	�	��	�'T��TZ(��%������
��	�����
�	��T�����TZ���������	��iZjkTijXl�����RT�/�Z��m������	��	��	���%������
��	���Tk�����Tn���
�����iZjkTijXl�oijp�q'Tk��Tn(�8O��m���������	�������q'Tr��Tf(���
���	��

���
�	�Tr��
����	�������
�	�Tf��������	����	�sik=�iZjkTijXl�oijp�����Tf����	�������	�	�	���
������	��������	���	�������
�	���S���
����
���
���	�	�������%	�����	������	�������	���������-�	���������	�����%
�����	�����	��t56*��4'5(�u�\��!	��4k��	������	�����-�	��
��4'RT(���-	������
�	�T������������������	������
����%�����������	���������	��
���
�	�Tk��4'RT(�����������
�	�����
��
�&���	��	�������	���4;��<��4s��%�	�	�s�/�_h'T(_��v
�	��
�������wxy]tzww nkTksk 44nknkR44 ��('\{ |�����
��	��%
�����%����	�	�������	�������	����
������-�	�RT�
�	�����
����
�	�����	��
���
�	�%����-	��������	��������	��
��
%��������������	����	��%	�	��	���	�	��	�����
�������
���	�������	��
���
�	�Tk�������-	����	�-����	��
��	��
�������
�����������
��4k���� }~�~������� �������������}� ��� ����������� }������������������ ������ NA��/�'O�P�0(���O�/�:Tr��T;��T[��T���T�>���P�/�:X;��X[��X���X���X�>��X;��Tr��T;(��X[�'Tr��T�(��X��'Tr��T�(��X��'T;��T[(���X��'T;��T�(���0/:R;�RT���R[�RTr/RT���R��RT;��R��RT[>��4;'RTr(/:e>��4['RTr(/:\�̂��>��4�'RTr(/:�������>��4;'RT;(/:̂>��4['RT;(/:e�\��>���G��cE�K�� ����������	��	�	�����
��
����$!""��
����������
��A�C�R;�R[�R��R���

����������	
	��
�����������	��	
	���������
��	�	������������������������ !��"#	�����$�������
���%	����	
�&'(�)(�& ��"#	���������	�&'��
�*+	*	��+,�%��+*	����-#��#��
������	�	��-��#�����	����$�.����/��"#	����	�#
��#�		����������	��	
�	��	������#	����	
�&�(�&�����& ��"#	����	�&���
�*+	*	��+,����-��#�����	����$�.����0��1��#
��-�����������	��	
�2 ����23	��	������	�$��*����	
�&�����&�(��	
�	���%	*,��"#	�	��	�2 ��
����%�	��+,���45(�-#�*	��#	�	��	�23��
����%�	��+,����#%�����%*�	�.(������0�� 111� 67�8�19:�;"���8<1:9<�=>�����<?��
��	���#	�����#��	����	����������5������
�����	
��������������	��	
	�������
#�-����������5+���	�	(�@������@��	��	��
�	�
��@���
�*
������$�,�������!(�ABC���ABC����ABC���	�$�*���*	D	�
(�E����F��	���	������������$�*���*���������	�����
(�GH��
���������+�
(�IJK���IJK���IJK���	��	
	���$�*���*	D	�����	

�
���*
(�JH��
	�%	
�
��#	�
���*������	��
�	��@�(����L��M��N��O����2��	���	����	��*�+�
	
(��	
�	���%	*,��1���#	�����(��#	�������*�%��+*	
�@JI�IJK���IJK���IJK����JH���	�*+	*�������	��*��	��
�������	
�����#	�������"#	��	�$��*����	
��	�*+	*	��+,�����
����P'���	
	�����@�!(�+,�-���Q*	%	*�%��+*	
�@�����@���������
�	�
����@�!(����+,�	D��	

���
��	*�	������#	����$����*�������	�����
�����#	��	�-��R���?��
��	�(�
�$�*����������-��#�
�$	�%*�	
�

���	������#	�%��+*	
���	���#	�%*�	����IJK��+	�.(��#	�%*�	����IJK��+	�0(��#	�%*�	����JH��+	�������#	�%*�	����@JI�+	�.�����#	�����	���
�$�*����������=,�+�*��*��	
������	,����	
(��$������%�	����#�����#	�������
�
#�-�����$�@JI����@�F@5(�-#��#�����	
����
�����#	����	���@JI�'�JH�����IJK��������IJK��'��"#	����%�	����������#	��	�-��R����#�
����	����
��	���	��+,���	,�+�D	
��"#	�$����%���	����$���%���������
��������
���$��	������#	��	�*�
�
�������$���%	���������
��
��#	�����	
	��	�����	��,����
�$�*�������������
����$��	*����+	��
	�����#	����	��������$�����	��	
	������������
	Q	��	����	*����
#��
������	D$�*	(���
�	�����
�$�*������#	�������*�-����IJK��'��IJK��'��IJK���(�JH��4����@JI�'�+,���$��������#	���������
�L�4�@�(�M�4�@�(�N�4�L�S�@�(�O�4�M�T�@�(�	�4�O(����@��4�2(�-	���*,��		��������	��#	����	
�@JI�JH�(�IJK�����IJK������#	�����������$���	��
���*	���	������@��4�@��T�@���1���
	�����	�	��������	��������@��#	���

�+*	���
	
����+	��	���	���$$	���	*,�*�����#	�
�$�*�	����#��#����#�@JI�JH�(�IJK�����IJK��-��#������$�*	D������
�����*,
�
���
��	��#	�����	
��������;"���	�*�
���"#	����%�	����#����%��	
��#	��LUVW�NLXOYOLW2Z(���	��%��+*	
��#���	�
�
�	��	��������������*�
���
�����#	�	�������;5������������	���
�$�*��������������#	���	
������
#��*��+	�+
	������*,[����
����	
�����#	
	�
���*
���

\]̂_̀a�b�!�;"��
�#	$�������+!���
�����Q+
	���	��	
	������
cdefgh ijhdi kjlmnonp qrs mndnmkjlpnonp qrs p kjld

nonp qrs d

cp
t uvw x!� +! �.05� �..

<8�5;�19 19T;5
;�S;5<8��<8�0
;�T;519S;5.. �yz ;5895 {.;8<

+!�
�

�������������	
������������������������� ������������������������ �!���"�#$	%&''�����'�(&%���)�*��+,� ���������-��.��-/� � ���������������������-/0��10�)�*������� � 2��34����5-�������������!�4����67� �� � 8����5�-���95��!�5.�!�������!�67������ � ����34� �� �!��� �"�#$	%&''������$&&#��:�;<�(<�=&>%���������)5���+!������5��?*�"�@�)�*��������)�*��+)�*���A�!������5��?*�"�������2!��B�?�����������������������-0��*�0�)�*���� �2!�)5���C,����� �����������������/�����-0��*�0�)5���0�?������� �� �5!������������ ����������������?��D5����-0��0�)5������������ �5!��"�#$	%&''�����E#��:�;<�(<�=�
%�<����;�$	�������$&&��� 2!��B�?������FF�5!����G���D5����� ��2!����-���D���������+�������� � �).���D+)5����@�!������5��?*�"�� � � ������������/�����-0��*�0�).���D0���������� ���� �5!������ � ���������!����/����.������+.*�0H��!�?*�� � �)5���+�)5���I�)*�0H� � � ������������/�����-0���0�)5���0��������� � �� �!���� �����FF�5!����D5����� � ������������/?��D5����-0��0�)5������ �� �5!�"�#$	%&''������$&&J&$��
���;E<�(<�=�
%���?/�+�?*�K�D����!�������������������5��)5����!��D�?/��"�#$	%&''�����EJ&$��
����;<�(<�=�
%����) 5!!�+�)5����@�!������5��?*�"�������)5�����+�)5���I�!������5��?*�"������2!��) 5!!�C,��� ���L�.�5���!����/������0�) 5!!�����?/������� �5!�����2!�)5�����C,��� �.�5���L5���!������)5�����!��D�?*�����?/�������� �5!�"

2MN O�OPQ?2M���8PR?�S2)PR8?2TU�TU�VROOS2����5��.�.���L�����/��������95��������-��!�����D� ��0�L���������!����������5�H���� ��������/�95���!�����/���-5�����5������K?R��5���5�N�S5�-���!���������D.�5���5����� 0�5N�N���!�����5���*.���� ����9��.���������������!�������-5�����95�����������5D�N�?���95��5������D� ����9��.��D������/�����W��������������1����XN�?���95��������-��D� �������9����.����������������-�� �������.�� �����L5���-���G�����������������!������YXZ[N�?����������� ��������������!����� � ���5���!������5D����5�����-��5��D�5����\]̂_̀�6ab6]c]̀dbe�afgbahi�8�!�����.��.�-��5�������� �34�5��-������� �!��������������5�9����4jk��������.���������-5�����N�3/+670��6lm�nl�0�o0��6pm�np�"0�L�����67�5������!�����!�����������!�������-5��������5�9���4��� �6q�5������!����/�������������.�� 5�-��������!������rqmdjnlN�nlA�o�Anp�+�ns��� �nlt�o�tnp�+�,0�L�����nuvn0��� �)�5�����������!�����!�������� �)s�5�����������!�!������.��.�-��� ����������-5��������5�9���4N�2!��L��!������.�� ����������D��!����/���������������/������ �9��D��-� ����������D��!�����-���.�nqN��
w���L0�L��.����������������������!����� � ���5���!������5D����5�����-��5��DN�xyzy{|}�~�{����{y��?���!������5D����5����������VROO��5��.��!��D� �������������9/��������������S����5-�����Z��� ��0�!����5����]̂_̀�dr̂_]̀dbe�N����������������0�����VROO�-��.��������������� ������!�����������N��5���0�����!�����!����.����5��!����L� �9/�.������5�-��� �������-�����D�5�����5���� �.�����!�����VROO�������5���/��!����5����abgf���]̂_̀�aff�]̀������5���������D5������ ���3�5�������� ��!����5����abgf���]̂_̀�aff3farde]_�N�S�9������������������5�-�����5�!��D��5����9����.���59���!�����������!�����!�����!����.���0���������.���59���9��������������W������.�����������!����/�.������!����5����abgf���]̂_̀4�]̀��N������/�.��������������.������� �������5���/��� ��9/��� �����5�����D5������ ����!�����-��.������������ N���5���.������5�-��������D5������ ��0���L�!�����.��.�-��5�������� �34� !�������VROO�c4 5����������� ��!����5����abgf���]̂_̀43farde]_�N�8������9�-5��5�-��!�����L��/������L�!����������-������� ������ 5�-��������95��������-��!�����D� ��N�?���0����������!�!���������.��.�-�������������*������W��/��������5�����!�.��.�-��� �!�������� ���L�/�-������� �!�����N�O��5�-�����!������5D����5��0��L��
��;�$&���Q����-��.���!�����!������5D����5�����-��5��D�

��;�$&������� ��� ��!�������!������5D����5�����-��5��D�

�����������	���
��������
����������		����������������������
���������������������	��	�������������
���������������������	���������������	���	������	�������������� !!�"#����	��������	�$��%&'()**+,-./+&))%,/01��������	�������������������	�����������������������������	�����������������������������	�������2�	������#3�4567������	��	����8�$�����56���������������	����������������������2�����������9�		�$�����������	������������:�;�	������	��	������<�:�;�	4273:�;�	=�:2�4:2����������������	������������������7�������������������������������������5�����������	����������������������	������	�������������������������		��������	���:�;�	427���!�������<�:���	427���������������	��������������������������������	�<���������������������	������5>����������������5��9������������5��������	������������$����2��:���	4273:2�?�:�;�	427���9�����$����		��������2�	<��������������@������9��	�9���@���47�$������$	<���	��	�����:�;�	�$��	����������������������	���������������������@������9��	�<@���47������		������:���	������������<���A������������������������	����������������	�����������������������	��������������������<�@������9��	�9����������	47��%&'()**+,-./+&))B)&CDE,.1�9��	������	������������������	������56�����������	������������	����������������		���������������������4�F8�:F78���������������	�����������	���������������������6�568�$������;�	�������������������������	���
���G56H����������������������	����������������������������������2�����	��#��I	������	�������2�	���������������������	��	������������������������������	�������	������������4������2���������	������	7���$����	���������������������������;���<�	����%&'()**+,-./J%,/01�9��	������	���������������������	������5�$��������2�����	���5�$�������	���������������������6�53�K�L8�4�M8�:M78�N8�4�O8�:O7P�������������������		�$���Q�R 9���5����	�<������������������������������		�$���9�����������	�<�����������ST�����6�58�:���	427������	��	����������		�$��:���	4273�:���	U�:�������������������@������9��	�<@���47������		����������2�	<�$����:���	427��R V��5������������	��������������	������������������������	�<�����������L����6�5��������������:���	427������	��	����������		�$��:���	4273:���	�W�:�������������������@������9��	�<@���47������		����������2�	<�$����:���	427����%&'()**+,-./JB)&CDE,.1�A������������������������	��������������	�<���������������������������	���:����������	��	������<������������������:���	��		��������	�������;2�������$�������42�	�������������	�����8�
X�YY7��������������������	����������������������<��I	����������������������	��������	��	����8�:������������������:���	��������������$�������	�������;28�������	<�������4���	�<�2�	��8�:�����8F7���������������������	���:������������������������	����������������������;2�������	����������������������<��I����������	������������	������	������$��������������	�����������������������������2�����	��#Q�6#�3�K�L8�4�M8�:M78�N8�4�O8�:O7P��I		�����������4TZ8
Z7�$�����TZ�3�T>�������	����������������������	���
Z�������	�����O������������������I		���������������������K4T�8
�78�4T[Z8
Z7P�$�����T��3�TZ�����������������������	�������4T�8
�78���������
��S��
���=�
Z��\],Ĉ .)�9����_�������������� !!�̀ab���c���������������������������� !!����9���d�$����������������	���������������������Q��6efgh3�KM8�L�4i8j78�M�4M8_8d7P8��6efgb��3�KL8�M�4i8d7P8��6efgk��3�KM8�L�4j8l7P8��6ab��3�Km8�i�4j8d8m78�j�4M8i8n7P8��6ak��3�K_8�j�4i8m78�l�4_8o78�n�4j8d7P8��6pq��3�Kj8�d�4l8m78�o�4_78�ML�4M8i8j7P���I		��������������������������������	������	��������������	��������������O����<������	���������	���������9���d���������	��������������������$���<���	��	������������9�����������������������������9���d�����	���		����<��������[4r78�$��������������2�	���������������2�����	��$����	��2������������������������������8�����
�������������������	��Q�
���457�����������;�������5�����������	�����������8�����
���457�����������;�������5�����������	�<��������s�����
���4st _7�3�KM8_8i8j8dP����	���������8��������	���i�����d���������������efgb8�������	�<���������������	�������������������efgbQ���������2�	���efgb�3�MQ�
uefgb�3�4
efgb�?�
����4efgb77�3�v��9�����		��������	�����������������ab8���	<��������	���m8�o�����n���������	�����������������akwab��I�������������	������pq[��	<��������	���M8_8d���������	����8���������	<����<������������������������������������	��2�������������efgh��$����������������������
M�4i7�x�
x�x� M�_�M�4M8_8d7� L�4j7�L�4i8j7�

st _Vy� zM{z_st Mst i
zM|z_

Vy{z_}~
Mj�4v7�j4m7�|�i4m73M_4m7�l4o7�|�m4v73j_4o7�_4v7�|�j4n73o4n7�ML4M7�o4_7�j4d7 ML4i7�{�j4i73Mj4i7�n4j7�{�i4j73�M_4j7

i�4M8_8i8j8d7� L�4M8_8i8j8d7����������9��	������	�������������� !!

���������	��
���	��������		��������	�
���������������������	����
�������
����������	���
�	���
��		�
���������	������������������������������
�
�	����
���������
��������	�������� �!"���	��	���������������	�����
��#��	����������	���������	�����	��	�����������������$%��&�'������	�
�(�����)������������������������������	����
��������������������
��������������
�����*������������
����������	���+������&��	
,��������	�
�"�����-��������������������
��������&�'�������	���	����������������	�������������������
��.��� �/!",�"012,�+0(,)2,�!30!2,�!(0",-2,�"(0+24&�5& 6�'��7'89:'98;7�<=8�7;'�=>;8�'?=@7�=@�'A;�B?7'7�=<�>8=>�C�';6�<�9B'7'����������������*��������������	��
���	������	��������
�����
����������
������	�
&�?������������������	��	����
���������	�
�
��
�������������������������������	*������������������
�����������������	��������������������
���������&�'����		������������
���������	��
��
����������������������������,������
�����,�����&�'��������������
����,������
��
����������
���������	�������&���		����	��?6
��������*�������	�������������������������������
������������������*�DEFGHIJJFKLMJLN&�?���������,����	�*���	��
�����
������������
�����	��?6
�����
���������������*����������
�DEFGHOPEGFLN&�'�����������*�DEFGHIJJFKLMJLN������
���
����	�
����
����������������	����������
�
�����������������������������
������������*���	��������0� �Q�RS������������
�����������TU�2,����������
�����������������	�
�����������	��	�
�&�;���*�����������*�DEFGHIJJFKLMJLN�
��
����������������
����	��������
�������	�����������V��,�����������V�
��
�����?6����������	�,�����&��������
����������������V�
�
������������*�DEFGHOPEGFLN���	��������0������������	�
2,��������
�	������������*�DEFGHIJJFKLMJLN&�;���*������������	����DEFGHOPEGFLN�����*�
���
������	�*���	��������������	�&�?����������������������DEFGHIJJFKLMJLN�����*��
�!�������������
��������V����������DEFGHOPEGFLN�����*���������
����������	�*���	������������	�������?6 ���
�
����&�=������
�,������������������������DEFGHIJJFKLMJLN�����*��
�3��������	�����������	��������DEFGHOPEGFLN�����*��
���������������
�&�<���V���	�,����<��&�W����
���������	��X��������V�
�����	�
������?6 3,��,�&&&�������������
����������	�*���	��
�����",�+,�&&&�&�'������
��������
�����������������
����������	��	�
�
��������V�����	*����������&�:��	�V�
����������
������	��������	��	�
�
���	��������������������*�
������������
&�<���V���	�,�����
��������
��������������
�����������Y�
�����������������
�������������
�������DEFGHIJJFKLMJLN�����*,����	�������������������
�Y�
�������
�������*������
���,����&�;V��������
��������������
�����
�#������	����������
�������������������*������
��������&�5?& ;Z>;8?[;@'�B�8;79B'7:�����������V��������
��������������	���	����	��
���	�������
����������������	������,���������
����
������������
������,������������	���	����	��
���	������	�����'����'�
����\!"]����������������&�<����������
��

#,����!W,������#,���	�+V+������������

������������
���������
�������V��������
&�'����V��������
������������?���	�:���(�:>9,�!&+��CÂ,�(�C_���8�[,�̀����
�Z>&�?��'��	��!�������
�	�
����V��������
�����
���&�'����	����a�����
b������
����������������
�������
�
���	����&�:	����a���	���������b�
��
��������	���	�����	&�'����		���������	���
���������������������
����������
��������������	���������������'����'�
�������	��
���	���,���
�������	*&�'���	�
���	�������
���
�������������������������
�����������������
���8'B����	��
���	�����������
����������������	���	��������&��
�����������
���������������	�,�����
������������
���������
��
�����	*������������������
������������������������
����������������������cdeeLf��V���	�&��

ghijk�lmminopmoq�����*r?���\3]� !� 3�� 3� !� &&&� &&&� !�?���\!]� 3� !� 3� !� &&&� &&&� 3�&&&� � � � � � � �&&&� � � � � � � �?���\�]� !� 3� 3��Z� &&&� &&&� Z�ghijks�thjioq�����*�?���\3]� "�?���\!]� ��?���\(]� (-��?���\�]� +�&&&� &&&�?���\�]�)))� ��u�������������	�
�� �Q�RS���
�������TUgvwino�x�6����
�������������������������	�

���������	
�����
�	�������
���
��������������������	���������� �	���!������ �"�����#����$��	�"�����%���"	
�����
�	������������&������ ����"���#�$��%��� �'����� �	#�	������������ ���(� ��������(���'�%��	#��"	
����� ��)�	� ������������""�'����� 	�	���
'�
��������� �
���������	������������ �
'��%��"	
�����
�	�����	�#��������*+������������,���(��'��	�-�'��'
�����!���	��
������!���� ����"��	#���
 ����������
�$�����	���	'���%� �!������������� ����'���	��������#	��$��%���"	
�����
�	������.�/��0�*12*3*�������!��-��	�(����
������ �(&�*����	�����#�	���4567)�*���84�������,*8����9�'��1�.3��1)��84�,*28������9�'���,*1*�)�	� �,��	�'����������*:*�"
� � �(&�*�����
'�
�	���
� ��,*�*,*��*�;<= ���3�������	��)�0���������#�	� �>��?��8	���)�@8,����A�.�"	�)������&��""�'������B
����	��"	
�����
�	���C)�DEEE�FGHIJ�%����<<)����K)�����<L6$KM4)���(�
	�&�<LLK��;K= ?��/������	� �1�����?)�@?�8*A�.���""�'������	�	�����"	
�����
�	����"���&�'�����
��B
����	��'��'
��C)�NO�IHG)�����77P75M)<LLK��;7= ���2� ���	� �,��/	�(��)�@8.,��A�.��	�	������	������"	
�����
�	����"���&�'�����
��B
����	��'��'
��C)�NO�DGGHIJ����Q5K$Q5Q)<LL<��;5= 8�����0	�)�>��,��.������#)�R:��	%���	��"	
�����
�	���������?1�)R����Q64$QL7)�STUV�HGWXDEEE�IYZN[O�H\U]̂_UN]O�G]ÒYaYObY)�<LLM��;Q= 1���� ���'�)�8��:�#	�(�#��)�>�$����	��
''�)�R?�#����%���"	
�����
�	����A��+���������	� ���
���������cLL�(��'��	�-)R����<<6)�dǸUV�DEEE�DOUYaO_UN]O_e�fN[VghYiYe�IYZN[O�j_eNk_UN]O�_Ok�FYZU�l]amZV]n�ofhIjFpqqr)�KMMM�;P= >�����)�*��3��,
 ��'-�	� �>��?��8	���)�@.�'����'�
�	����%���"	
�����
�	�����
��#�&�(���'� 	�	C)�NO�E\a]nY_O�G]ÒYaYObY�]O�IYZN[O�H\U]̂_UN]O)�����574$55K)�<LL7���;4= �s#
�����	��#�
)�.��+���	���#�
)�@,�$��%����	
������
�	�����:	� �����&�(���'�8���	#	����C)�jFt�Sqqu)�����K5M$K5Q��;6= 3	�-�/		()�>	�
s�,	9-�)�>��s&��&s��)�@?���	�'��'	���
�'����	�$�	
������
�	�����"���?�#�$��%����&�����C)�DFG�uvvw)�����QLP$PMQ��;L= �������)�@�����A�'��'
������"	
�����
�	�����	����#�������	�"�����%��C)�x]\aO_e�]̀�G]̂n\UYa�tbNYObY�_Ok�FYbVO]e][y)���
���KM)��
��K)�3	�'��KMMQ��;<M=,��(�)�@�����&������!����.�����	��%��2�	��C)�DEEE�IYZN[O�_Ok�FYZU�]̀�G]̂n\UYaZ)������#)�<LLP)����56$QL��;<<=�(�)�,�z�,	�-)�>�z��%	-)�*�z�:��-)�3�z�@3
���$��%���"	
�����
�	������"� �#��	��&������� �'����� �	#�	�C)�DEEE�DOUYaO_UN]O_e�l]amZV]n�]O�EeYbUa]ONb�IYZN[OJ�FYZU�_Ok�HnneNb_UN]OZJ�IEhFH�SqqS{�|a]bYYkNO[Z)�����6P�}�L<)�KMMK���;<K=���,���	�
)�>��,	�-)�,���(�)�@,�#����$��	�"�����%���1�
'��%���	
������
�	��������#�1�'�����1�	#�	�C)�~_eUNb�EeYbUa]ONbZ�G]ÒYaYObYJ�~EG�Squq{�|a]bYYkNO[Z)�KM<M���;<7=����
���)����3	�'��'����	� �2��8�	%	 ����)�@��#�'$��%����	����#��"���#�$��%���"	
��C)�DOUY[a_UN]OJ�UVY�jhtD�x]\aO_e)����
���76)��
��7)�>	�
	�&�KMMQ)�8	#��5P4$5LM�;<5=����A��!!!��� ���
�������

�������� �������� �������������� ������������������� ��������� ������������������������� ����������������� 5MMM� <MK� <MM� 7�K6� KL�K7� 6�L<��������� 5MMM� <66� 4<�6M� <<�76� PP�<5� Q�6<������ 5L4M� KMP� 46�<Q <K�Q6� PP�7P� Q�K6������ 5MMM� KPM� <MM� <6�<L� 7PP�7� KM�<5�������� <MMMM� K7M� <MM� 74�MK� 777L�L� LM�K7�

123

Research paper III

J. Raik, U. Reinsalu, R. Ubar, M. Jenihhin, P. Ellervee, “Code Coverage
Analysis using High-Level Decision Diagrams”, Proceedings of the 11th IEEE
Workshop on Design and Diagnostics of Electronic Systems (DDECS), 2008

�����������	��
�����������	���	��������������������	�����

�������������������� � !�!���" #�$�%�&� '� (��"�$)*+",�- '��- #���,��%�&�+-!� "���!)!&�%������!�"&�&+ "�-�$$�'�.+,�/0�#�$�1�-+!+ "�1+�,��%!�2.01134�5��#+ 6!�7 �8!���#��!� 7"�&��&�.011!������"��((+-+�"&�% '�$�(��!+%6$�&+ "��"'�&�!&���&&��"�,�"���&+ "4�96���"&����������!�"&!���&�-�"+:6�;�7�����(�!&�.011�<�!�'�!+%6$�&+ "�+!��=&�"'�'�& �!6�� �&�!��%$�!!�- '��- #���,���"�$)!+!4�>��!� 7�� 7�-$�!!+-�$�- '��- #���,��%�&�+-!�-�"�<��'+��-&$)�%����'�& �.011�- "!&�6-&!4�?"��''+&+ ";�7��+"&� '6-���"� <!��#�<+$+&)�- #���,��-�$-6$�&+ "�%�&� '�6!+",�.011�% '�$!4�@=���+%�"&!� "�?�9AA�<�"-�%��8�-+�-6+&!�+"'+-�&��&���(��!+<+$+&)� (�&����� � !�'����� �-�4��B�C������������DEFG�FGH�EIJKHLMH�EI�MENH�LIO�JPQRSHTEFU�PV�QPOHKI�EIFHWKLFHO�JEKJXEFMY�EF�GLM�ZHJPQH�EQRHKLFE[H�FP�LOOKHMM�JKEFEJLS�[HKEVEJLFEPI�EMMXHM�EI�FGH�OHMEWI�JUJSH\�]GH�RKPJHMM�PV�[HKEVUEIW�JPKKHJFIHMM�PV�OHMEWIM�JPIMXQHM�ZHF̂HHI�_̀a�LIO�b̀a�PV�OHMEWI�HVVPKF�cde\�fPK�H[HKU�OHMEWIHK�FGH�IXQZHK�PV�[HKEVEJLFEPI�HIWEIHHKM�JLI�[LKU�VKPQ�g�FP�h�OHRHIOEIW�PI�FGH�OHMEWI�JPQRSHTEFU\�iPKHP[HKY�[LSEOLFEPI�EM�MP�JPQRSHT�FGLFY�H[HI�FGPXWG�EF�JPIMXQHM�FGH�QPMF�JPQRXFLFEPILS�KHMPXKJHM�LIO�FEQHY�EF�EM�MFESS�FGH�̂HLjHMF�SEIj�EI�FGH�OHMEWI�RKPJHMM\�kIMXKEIW�VXIJFEPILS�JPKKHJFIHMM�EM�FGH�QPMF�OEVVEJXSF�RLKF�PV�OHMEWIEIW�L�GLKÔLKH�MUMFHQ�cge\��lI�PKOHK�FP�[HKEVU�FGH�JPKKHJFIHMM�PV�L�OHMEWIY�OEVVHKHIF�FHMF�JLMHM�LKH�WHIHKLFHO\�mXH�FP�FGH�VLJF�FGLF�EF�EM�EQRKLJFEJLS�FP�[HKEVU�HTGLXMFE[HSU�LSS�RPMMEZSH�EIRXFM�LIO�MFLFHM�PV�L�OHMEWIY�FGH�JPIVEOHIJH�SH[HS�KHWLKOEIW�FGH�nXLSEFU�PV�FGH�OHMEWI�QXMF�ZH�nXLIFEVEHO�FP�JPIFKPS�FGH�[HKEVEJLFEPI�HVVPKF\�]GH�VXIOLQHIFLS�nXHMFEPI�EMo�pP̂�OP�l�jIP̂�EV�l�GL[H�[HKEVEHO�PK�MEQXSLFHO�HIPXWGq�rHKEVEJLFEPI�JP[HKLWH�EM�L�QHLMXKH�PV�JPIVEOHIJH�LIO�EF�EM�HTRKHMMHO�LM�L�RHKJHIFLWH�PV�EFHQM�[HKEVEHO�PXF�PV�LSS�RPMMEZSH�EFHQM\�mEVVHKHIF�OHVEIEFEPIM�PV�EFHQM�WE[H�KEMH�FP�OEVVHKHIF�JP[HKLWH�QHLMXKHM�PK�JP[HKLWH�QHFKEJM\�rLKEPXM�JP[HKLWH�QHFKEJM�HTEMF�MXJG�LM�JPOH�JP[HKLWHY�RLKLQHFHK�JP[HKLWH�LIO�VXIJFEPILS�JP[HKLWH\�lI�FGEM�RLRHKY�PISU�JPOH�JP[HKLWH�̂PXSO�ZH�XMHOY�̂GEJG�RKP[EOHM�EIMEWGF�EIFP�GP̂�FGPKPXWGSU�FGH�JPOH�PV�L�OHMEWI�EM�HTHKJEMHO�ZU�L�MXEFH�PV�MEQXSLFEPIM\�]GH�QLEI�OEMLO[LIFLWH�PV�JPOH�JP[HKLWH�QHFKEJM�SEHM�EI�FGH�VLJF�FGLF�FGHU�PISU�QHLMXKH�FGH�nXLSEFU�PV�FGH�FHMF�JLMH�EI�MFEQXSLFEIW�FGH�EQRSHQHIFLFEPI�LIO�OP�IPF�IHJHMMLKESU�RKP[H�EFM�JPKKHJFIHMM�̂EFG�KHMRHJF�FP�FGH�MRHJEVEJLFEPI\�sI�FGH�PFGHK�GLIOY�JPOH�JP[HKLWH�LILSUMEM�EM�L�

ĤSStOHVEIHOY�̂HSStMJLSLZSH�RKPJHOXKH�LIOY�FGXMY�LRRSEJLZSH�FP�SLKWH�OHMEWIM\�]GH�WPLS�PV�JXKKHIF�̂PKj�EM�FP�RKPRPMH�L�QHFGPO�VPK�MRHHOEIW�XR�FGH�LILSUMEM�ZU�EQRSHQHIFEIW�IĤ�QPOHSM�VPK�MEQXSLFEIW�JP[HKLWH�EFHQM\�]GH�VEKMF�RXZSEMGHO�KHVHKHIJH�LZPXF�JPOH�JP[HKLWH�̂LM�LM�HLKSU�LM�EI�du_v�ZU�iESSHK�LIO�iLSPIHU�EI�cve\�s[HK�FGH�VPSSP̂EIW�UHLKM�L�SLKWH�[LKEHFU�PV�JPOH�JP[HKLWH�QHFKEJM�GL[H�ZHHI�RKPRPMHOY�EIJSXOEIW�MFLFHQHIF�JP[HKLWHY�ZSPJj�JP[HKLWHY�RLFG�JP[HKLWHY�ZKLIJG�JP[HKLWHY�HTRKHMMEPI�JP[HKLWHY�FKLIMEFEPI�JP[HKLWHY�MHnXHIJH�JP[HKLWHY�FPWWSH�JP[HKLWH�HFJ�cgeche\�]GH�!&�&�%�"&�- #���,��QHFKEJ�QHLMXKHM�FGH�IXQZHK�PV�FEQHM�H[HKU�EIMFKXJFEPI�EM�HTHKJEMHO�ZU�FGH�RKPWKLQ�MFEQXSE\�� ,,$��- #���,��MGP̂M�̂GHFGHK�LIO�GP̂�QLIU�FEQHM�IPOHM�EI�FGH�OHMEWI�FPWWSHY�E\H\�GP̂�QLIU�ZEFM�JGLIWH�FGHEK�MFLFH�VKPQ�̀�FP�d�PK�[EJH�[HKML\�lI�FGH�JLMH�PV�<��"-��- #���,�Y�̂H�QHLMXKH�FGH�IXQZHK�PV�FEQHM�HLJG�ZKLIJG�EI�FGH�JPIFKPS�VSP̂�WKLRG�PV�FGH�JPOH�EM�FLjHI�PK�IPF�FLjHI�XIOHK�FGH�MHF�PV�RKPWKLQ�MFEQXSE\�5�&��- #���,�QHLMXKHM�FGH�IXQZHK�PV�FEQHM�H[HKU�RLFG�EI�FGH�JPIFKPS�VSP̂WKLRG�EM�HTHKJEMHO�ZU�FGH�MHF�PV�RKPWKLQ�MFEQXSE\�w�RPFHIFELS�WPLS�PV�MPVF̂LKH�FHMFEIW�EM�FP�GL[H�d̀ à�RLFG�JP[HKLWHY�̂GEJG�EQRSEHM�ZKLIJG�LIO�SEIH�JP[HKLWH\�pP̂H[HKY�VXSS�RLFG�JP[HKLWH�EM�L�[HKU�MFKEIWHIF�KHnXEKHQHIF�LM�FGH�IXQZHK�PV�RLFGM�EI�L�RKPWKLQ�QLU�ZH�HTRPIHIFELSSU�KHSLFHO�FP�RKPWKLQ�MENH\�lI�FGEM�RLRHKY�̂H�RKHMHIF�L�QHFGPO�LIO�L�FPPS�VPK�VLMF�LILSUMEM�PV�JSLMMEJLS�JPOH�JP[HKLWH�QHFKEJMY�MXJG�LM�MFLFHQHIFY�ZKLIJG�LIO�FPWWSH�JP[HKLWH\�DH�EIFKPOXJH�pEWGtxH[HS�mHJEMEPI�mELWKLQM�ypxmmz�QPOHS�VPK�HVVEJEHIF�JPOH�JP[HKLWH�LILSUMEM�LIO�MGP̂�GP̂�FGPMH�JSLMMEJLS�JP[HKLWH�QHFKEJM�QLR�FP�pxmm�JPIMFKXJFM\�DH�MGP̂�FGLF�pxmmM�JLI�ZH�MHLQSHMMSU�LRRSEHO�FP�PZMHK[LZESEFU�JP[HKLWH�LILSUMEMY�FGXMY�KHRSLJEIW�FGH�JSLMMEJLS�mtJLSJXSXM�ZLMHO�QHFGPOM�yH\W\�cdvez\�{XKKHIF�̂ PKj�EM�QPFE[LFHO�ZU�PXK�RKH[EPXM�HIJPXKLWEIW�KHMHLKJG�KHMXSFM�PZFLEIHO�PI�pxmm�ZLMHO�MEQXSLFEPI�c|Y�_e�LIO�FHMF�RLFFHKI�WHIHKLFEPI�c}e\�]GEM�EM�FGH�VEKMF�LFFHQRF�FP�XMH�pxmm�QPOHSM�EI�[LSEOLFEPI�LIO�JPOH�JP[HKLWH�LILSUMEM\�]GH�RLRHK�EM�PKWLIENHO�LM�VPSSP̂M\�~HJFEPI�g�OHVEIHM�FGH�pxmm�ZLMHO�WKLRG�QPOHS�VPK�̂ GEJG�OEVVHKHIF�JP[HKLWH�QHFKEJM�̂HKH�ZXESF�EI\�~HJFEPI�v�MGP̂M�GP̂�pxmmM�JLI�ZH�XMHO�VPK�QHLMXKEIW�JPOH�JP[HKLWH�EIJSXOEIW�PZMHK[LZESEFU�JP[HKLWH\�~HJFEPI�h�RKHMHIFM�JPQRLKEMPI�̂ EFG�L�RPRXSLK�MEQXSLFEPI�FPPS�VPK�GLKÔLKH�OHMJKERFEPI�SLIWXLWHM\�fEILSSUY�~HJFEPI�|�JPIJSXOHM�FGH�RLRHK\

�LLI��LEjY��S�LIL��HEIMLSXY��LEQXIO��ZLKY�iLjMEQ��HIEGGEIY��HHFHK�kSSHK[HH�]LSSEII��IE[HKMEFU�PV�]HJGIPSPWUY�mHRLKFQHIF�PV�{PQRXFHK�kIWEIHHKEIW���LLI���XS�LIL���KLEXZ���QLjMEQ���SK[���RSO\FFX\HH�

��������	
	���	������������������������������������ �!�"��#����$��%����"���&���'����&����#�$'�'(��%���%��)�*�%$��%�+�%���%�,����-��������������������,�� �./0������������1�&������&�,��1����&$��'�����!�"��'!�����221���'��������3$�"�1������!��4������%�����-�#�1�����%�1��!��4���)�*����'1-5���!��!����#�'���'����1�"�1������2�����'�'���5���11�%�6��������'��������������������6�� �.705�!�"��#�����$�����&$11-��221��%�'�5�#�'!5������'��8'����&���1�"�1��*9: �"���&���'������%�'��'�.;<5�;;0)��9!����������$��(�'!�'!��,������%����������'�%��������%�����������'!��&��'�'!�'�'!�-��11�(�1��������*9:���%�1���5����2��'�"�1-)�=��'!���2�2���(�������%�����%�&&����'�%��������%���������2�����'�'���5�>��!8:�"�1��������������������>:�� �'!�'5�$�1�4��6��������#��"��(�%������������1�?�'�����&�,���)�>:��������#��$��%�&�����2�����'����%�&&����'��#�'���'����1�"�1��&����*9:�'��#�!�"����1)�='�!���2��"���'��#������&&�����'���%�1�&������$1�'������%�&�$1'���%�1�����������'�2��"�%���&�����&��'��"�1$�'����#-����2!�'��"����1���%�&������-��%��'�&���'�����&���$��8�&&��'���1�'����!�2��.@5�A0)��BC�D����E	F���G��������HIJKLKMKNLO�6�>:�����2�����'������%�����'��&$��'����PQR�S ������%����'�%���-�1���1�#�1�%����2!�'!�'�����#��%�&���%������3$�%�$21��TQ�UVWVXVY 5�(!����U������&���'����'��&�"��'��������&����%�'�����Z[\]̂ 5�W������&���'����'��&�]_]̂5�X������&$��'����(!��!�%�&�����'!��̀abcade]̂�ead]ecZ_�fg]�Z[\]̂���%�'!��"����#1��%������5���%�Y������&$��'�������W)�9!��&$��'����X�hc ���'$�������'!��"����#1��1�''���Sc5�(!��!����1�#�1������%��hc)�i��!���%���&���>:������1�#�1�%�#-���"����#1�)�=���2����1������5���%�������#��1�#�1�%�#-�����'��'������1��#������j2��������)�6���%���]kW�&���>:�����������%���%�2����]Q�hlVhm kWm5�(!����Wm����'!����'��&��11�'!��2����#1����%���%�2����������'�W)�Y������&$��'�������W���2�����'����'!����'�"�'�������%�'������&�'!���%����&���'!�����$1�'����2����%$���)�9!��"�1$���&�Y�] �������$#��'��&�'!��%�������&�'!��"����#1��Sc�%���'�%�#-�Xc5�(!����]Q�hcVhn)�='������3$���%�'!�'�ohcQpY�] �q�]Q�hcVhn kW�r������2��'�'�����&�'!����'�Xc)�>:���!�����1-������'��'������%���b[[f�Z[\] 5�&���(!��!�'!�����������2����%������%��)�9!����%��5�&���(!��!��$����������%��������������5�������&����%�'�����f]bhcZae�Z[\]̂)��s��)�;�2�����'������j��21���&������2!���1���'��2��'�'�����&���>:��)�

�B��t�E	�����E���G����u�G	���vu�������=��>:�����%�1����2�����'����%���'�1��-�'���5�'!�����8'������1���%���������2��%�'�����%�'��������'�����'��1������1�5���%�'!��'������1���%�����2�����'��2���'������&$��'����1�$��'�)�*����'���'����&������%�����'��'����������'������'���'�%�����2����1��������&��2���'����)�w!�����2�����'�����-�'����#-�%��������%���������%�1�5����������1�����5�����'(��4��&�>:������'!���'!���������1��>:��������3$���%)��$�����'!�����$1�'�������>:����-�'���5�'!��"�1$����&������"����#1���1�#�1����'!����%����&���>:���������1�$1�'�%�#-��'!���>:�����&�'!���-�'��)�s��)�x�2�����'������j��21���&����>:���&���'(��"����#1��5��'�'����%�*y6z����'!��=9{77�#���!���4�#<|)�}B�~�E	�~�
	���	�����u�������������}BC�������G�����G�������E�v	��
�������	
	���9!��#�����&�����%����"���������1-�������'!���2�2�����������$1�'������������1-�������>:�����%�1�)�w��!�"����21����'�%�����1����'!���$22��'���5�#�'!5�*����'��8�9����&���:�"�1��*9: ���%�#�!�"����1�%�������#�'���'����1�"�1�)�=��'!��*9:��'-1�5�'!���1����'!��'�4���'!��2��"��$��'�����'�2�"�1$���&�"����#1��Sn�1�#�1��������%��hc��&�Sn���2�����'�����1��4�%�"����#1�����'!��������2��%����>�:)�+'!��(���5�'!��2�����'�"�1$���&�Sn(�11�#��$��%)��=��'!��������&�#�!�"����1�>�:���%�����'-1��>:��������������'�%���%����4�%�������2���&�����%���'�����$�����$��1�'-)�s���"����#1���Sn�1�#�1����>:�����%���'!��2��"��$��'�����'�2�"�1$�����$��%��&�'!��>:���%���������1�$1�'����Sn�������4�%��&'����$����'�%��������%������)�+'!��(���5�'!��2�����'�'�����'�2�"�1$��(�11�#��$��%)�
�����������������������������������

u� u} uC �C������������C���������u�
�� �C� �C �C�C

������� ���C�}��t} 	 �tC � �t�v¡ ¡�C=¢ ¡¡¡ EuC u� u} u�

£-¤�y5i5z5� 5��y¤phlV�hm5�h¥V�h¦V�h§r̈��i¤p]lV�]m5�]¥V�]¦V�]§r5�]lQ©hlV�hm 5�]mQ�hlV�h¦ 5�]¥Q�hlV�h§ 5�]¦Q�hmV�h¥ 5��]§Q�hmV�h¦ ̈��z�hl ¤z�h§ªQ©SmV«¬VlVmVV®̄ 5�z�hmªQ©S¥V«¬VlVmV¥̄ 5�z�h¥ªQ©S¦V 5�z�h¦ªQ©SlV ̈���]l ¤p<r5� ��]m ¤p;5x5°r5� ��]¥ ¤p|5@5A5±r5���]¦ ¤pxr5���]§ ¤p<5;5°r)� ¬VlV¥�m�jx jxj;j|j°hl hm h¥h¦h§- ¬�l²¥�¦²®������³���́���������������µ�����¶·�̧¹³º¹»º¹�º¹¼½�

��������	
�
������
��
����
����
��	�������
����
���
����
���������
���
	���
���
����������
������
 !"#$%&'(
)�
���*���������
��	�������
��
�����
+��
���
������	
,
��
��
	���

	-�����
.
	/
��
�-�����
�
��
�������
�������
	-�����

0���
	-�����
��
���
�
��	����
���
1�

��
�-�����
����2�
��
���
��
��
���2�
����
,
���

3���
.
�������
��	4���
����
��
�-�����

5��

3���
.
�����
��	4���
����
��
�-�����

5��
��

1�
3���
6
�7�����8�
�����
.7
	-������
	9��8
���

	-�����
.
	9��

5��
��

5��
:���

������
�-�����
��
��
��
�������
�,

5��
���
;<=
>?@ABCADEF
GH
IJKK
LG?EMNBD
��
��
��	��
��
	������
����	�
��
������
�������
�
�����:��2
��
�
�������
����	
���
���
����
������
��
+����
O�
���
PQ
���

PR
��
�������
7PR
��
����
�
���	���
������8�
SQT
SR���
SU
��
	����������
V
���
W
����
����
���
	���������
XY
��
��
�����
����
ZQT
ZRT
ZU���
Z[
���
��
�����
�������
���������
���
\T
]T
̂T
_T
̀
����
�������
�����
1�
��
�����
��
�������
��������
ZQT
ZRT
ZU���
Z[
��
�������
�������
�������
����
��
��
����
:���
����
�����
���:�
��
����
��
��	����
����
��
�����
��
��������
ab
7���

��
PR8�
��
:���
��������
PQ
���
PR
7����
��������
��
PR8�
���
��
���������
�����
��
����
	�����������
���������
��
��
��:��2�
c�
����
����
���
������
�����
�
����
��������
����
��
��
����
��
���:�
���	
d7eb8.�f
��
�
��	����
���
dgehijPQkPl�
:����
����������
��
��
������
Z[jRT
ZUjUT���
ZRjb�
��
����
��
��
��:��2
����
��
��������

��
����
������
��
�����
��
������
�����

��
	���
��������
���
	���������
��
�����
����4���
���
��	����
��
��
�������
��
���	����
���������
��
��
�������
��������
��
��	�������
���
����������
	������
�����
��
�����
���
��	����
����������
��
����4����
�������������
+��
��	���
������
��
��	�������
��
�������
:���
ZQT
ZRT
ZU�
Z[
.
m/�
/�
O�
ln
��
��	������
��
���������

\
.
P��
]
.
P��
̂
.
\
V
P��
_
.
]
W
P��

.
_�
���
Pl
.
̀�

:
��
����
��
����
��
����
Zf�
ZO
���
Zl

��
��
����
���
��	���
�
�����
��������

Pl
.
P�
W
Pl�

;<;
oAppNBD
qG@ErADE
LECrNqF
CG
IJKK

1�
����
��
�����s
t������
��
�����������
��
����:��
������
���������
��
�����
���
�����������
������
	�����
:�
�����
���
�����
��
��
��
����
����
��	�������
�����
���
������
����	��
�������
������
������
���
�����
�������
��
��
:��
	������
�����
��
����	��
������
	�����
��
��	��
��
��	�
���
�����������
��
������
��
��
������	
���	����
�����
������
���:�
:����
���
��:
	���
��	�
����
��
��
�����
������
���
��:
	���
����
�����
����
����
���	
/
��
�
��
���
�����
1�
��
���
��
������
�������
:
	����
��
��	��
��
��	�
���
������
��
��
�������
���:
�����
��
��
���
��
��2�
��
���
��2�
����
��
��
��
������	
���	����

uvwx
yx
z{|
}~����}�
�����
���
���v�z�}�
�����
���
����

�����������	��
���������������
�������������������	���������	�������������	��������������������	�����	�����	���������������������������������� ��������������	�����	������������	������������������!�����	���"���������	�������	������	������	����������������
�����	������
����	�������������	����	���������
������������#���������������������	�������������	����
��������������������������	��	������������������	��
�����������������������������
��������	��������������������	�����������
�����������!��������������$�
���������	��	�����!�����	
�������	��������	���
�	���������������	��
���������$��������������������	��
��������!�	
��
��������������������
���������	�����	��	���������������	��������������������������
������
���������	��������������	���
������������������
�	�����������������!�	
��
��������������������
����������
��
��������������������������	��������������
����������#������	��������������������	��	�������
������!��	�����
�����#�����!��������	���	�������	����	��������	�����
��	�������������������������������	��������������	������	������#��
�����	��!��������������!���������������������!�	
��
������������
�����	��	���������%&'�(�)*�+�,������	�����"����
�����������!-.������	��������������������	�����!����!������#��	�����������	������� �������������	��)*�+�/,�����%&'���������	����!����������	���	��������	����!��!����
�
����	�����
�����	��	��������012�3456789:;<=�><8679?6�<=�@ABB5��C����	����
D����
��������	������
���������	�����	����������
�������������
������������	����	
���������������������������������������E�������������������	������#�#��	��	���
����
�������������
�����	��	����������	��	�����	�����������������������
�����!���	��#�����������	������	
���	���������������������
��������������������������	��	������	��������!�������
����������������	���������
����	��	��	������
������	���	�����������������������F�GH���������!�������	�
��������	�������������
������I��I*��#�������������������������	�����
����������	���������������#��
��
���������������!��	�
�������	����������������	��!����!�������������������#�������--�J�
����
�������
�����	������K-LM-�J��!����!���
��������	�����#����
�������#���������I��I*��������F�GH��	�������
�	����������	������!������	������	��	����������
������	����!�������������
�	���������������������
�
�����

���	�����������������������������������
��
�������������	���!��������������������������������L��������������������L����
�����������	��&	������������#����������	�����	�����������
���#���������������#����	��������	�������������������!����!�������	��������I!����!�������	��������	����������
�����������������#������������������N��#��������
����
����������������!��	�����
�����������������������������!���	����	������������������������������	��
�	
��	�����������������	��	����������
�������������������L���������������������	�����#���	�����������������

����
��������������	����������������
��������������	���!���#��&	����������������	�����������������������O,PQRST��������������L�������!��
D�#��������	
���	�U�V�W�XUYR�UZR�[R�U\]V��WXQ̂]R�Q̂_�Q��#��
����������	����!���������̀U��#����
��������������
������������������������!��	�����������������������������!����Uab�Q̂�������	���!�������	������	����������������
��	����c�������������#����������!���QPcT����
������������	�dQXc]�,�efQXc]Rg��PfQXc]RY�hQXc]RYT��i��PfQXc]Rj�hQXc]RjTk�
�����	������������������	������������������������������������hQXc],�hQXc]RYl�ilhQXc]Rj�����!��	������������������	����c������h�!���������������������
��	�����
���������	����������	�dQXc]����	������������������������	��	����������̀ m�������������#�	�����������
�������nopqrstor�uv����������L�����������������������	��

���	
��������������L�����	���������	�fQXc]Rg���	�����������L�������������U,QPcd�-T����
��
��������#����cd�-������������	���	����������������L�����
�����������������������	�������������������	�������
����	����������L�������������������	����c�Pc��������	����	
�����T�!��wSSPcT������hSSPcT�!���	�����cbwSSPcT������
�	�����	������
��	������	����c��	����������L������������	�����������������	���������!��	
���������������������	�hSSPcT����	����!��hxSPcT�������������������
�	�����	���������
��	�����������������������	������	����c-�����������	����c���������	�����c��	����������L���������#�������hxSPcT�,�h�L�hSS�PcT�����������	����!��y�����������������	��������������������!���������������������������	����������	����������L�������������	
�������	�����	���
������y�����
���	���������������������	��������	������	�yR�������z�
����� �P�������	���	����T���z�
�����G�P���	�	����	���T�#����!������������������������������
���������������y�#����!��������������������������	��������	�����#��	����������y�������������nopqrstor�{v����������������	����������	���	����cd�-by�#����������	
���	�U�,�QPcd�-T�,�WPU��i��U|T���������������
��������	���������	��d�,�Pd��i��d|T��da�,�efaRg��PfaRY�ĥaRYT��i��PfaRja�ĥaRjaTk��a�,��� ��i��|��#����}�aR~��ĥaR~�,�PhaR~�L�hSS�PcdR-TT���hxSPcT����nopqrstor��v����������������	������	�	����	���	����cby#������������!���QXc]��������
������������	�dQXc]�,�efQXc]Rg��PfQXc]RY�ĥQXc]RYT��i��PfQXc]Rjc�ĥQXc]RjcTk�#����}�~��ĥQXc]R~�,�PhQXc]R~�L�hSS�PcTT���hxSPcT��
�	������������������#�	�/�� &��c�!���	���������������L�����������	�����h�QXc]�,�ĥQXc]RYl�ilĥQXc]Rj�,�����	�	��	����#����!���	
�������	���y��� &��c������	���!���	��������������L�����������	�����h�QXc],���������

�����	����c��#��
��#����!������
����!������������QXc]�,���,�fQXc]Rg��#����!���	
�������	���y���������	�#�	����c���	�y�#��
��
�����/�hSSPc�T�,�hSSPcT�lhmXc�]���	��hxSPc�T�,�hxSPcT��� &��h�QXc]������������	�����c���#������,�fQXc]Ra��a/�ĥQXc]Ra����#����!���	
�������	���y���������������	�����#��
��
������hxSPc�T�,�hxSPcT���ĥQXc]Ra��hSSPc�T�,�hSSPcT�����������������������������������	�!��z�
������ ��	��G�#��
�������
������������	������������!���U/�dU�,�efURg��PfURY�hURYT��

���������	���
����������������������	���
��� ����	!�����������"���#������������$������������%�$ ���$��������&������	���
������'�	��'
������������������'��������%������$������%��������������	���
���$������	����(��	�����)�	��'��
*+,-./�01�234/.563+7+89�6:6794+4�;:�8</�=>??�@ABCDEFG�H$�����������IJKK�LM����N�%�O������������$���$����P���������Q��RS����&T��U���T��V��W
��X���O��X
����R�M����&U��T���O��W
����R�Y����&T��U���X��Z
����RM����&[��O���X��W��[
��X���T��O��\
��]���V��]
����R̂����&]��O���X��W
��X���O��[
��Z���V��]
����RY����&X��T���T��O��X
��V���V
��W���[
������������������������� ���%������� ������ ����$��������%���%������������#���_̀���������$����� ����$�����N�%�X��a����� ��������������������$���_̀�_$����������a�����%���$�����������N�%�X�������_�����_̀�������b��	
��������b��������c�� ��$�������$���c����_�����������c��%������$������������������$�������	������� _����$���� ���Q�	dd�e
��$��������P���$���e�$�������� ��"���������������	Yd�e
��$��������P���$���e�$�������� ��̀��������f�����	dd�PM
���&�T��V��O��X��W������ ����_$���$�������� �����O������W���$��%������$�PM���$��� ��̀�������������� ��������$�������$����MQ��$������c�� ���M���TQ�	g�M����	�M�"�	dd���M

���h��N�$������������ ������$��%������$�M��$��̀������� �����[���]������\�������� ��������������$���MiT������������������$���̂iY�$��̀������� �����T���V���W�������� �������������$��̀����̀������$����������$������$�����$��$�����c��%������$���S����������������$����������� ������ ����$��$������O�������������������$��������$��$���������������� �������$��$��Q������� ���V���$��%������$������$���̂jY��������"���#���_��� �������c�� ��̂jY���]����� �������$�������� ����V�����k ����$������� ��"�����c�� ������ ��������������$���MiT��a����� �����O������[���$��%������$���������������������$�����������%������$����������%�$ ��_��� ������̀���$� ����������������c�� ��X��$��M����$�������� �����T������]��������%������$����������%�$ ���a���������c�� ��$�����������$����P�����������Q�RM���&]��O��X
��X��O��[
��W��\
��[��W
��\��T��]
���

l�mnopqrsptuvw�qpxywux�H$�������c���P����������_�����������IJKK"_������$����$c���%������̀�����$$�����������������������������������$� ����IKJ��$������������ ����$���$$���������������$ ���a�_���T������������������ ������$������zaH\\�_�������#������̀�{TV|���������}��������H$��$��K�c��$���}HK
��P�������$�� �������P�����������a�_���V���$��������$������$��_��������������$�����$����$c���%�������������������������_�����������$%%����$c���%�
���������$ ��_̀��������"$�"���"�����$���������IKJ���� ���$������_̀�����IJKK"_�������� ���$��������������%��$������%����$%%����$c���%�����������c��̀
��a����$�������_�����P�������� ���%�����$������$������ ���$���������������%����a����P���������������� ��$��~K����$��ZX���$����$��OUUUi��T�]U�}I���V�UU}��$���~������$�����������������������$������������c����%��$������������$��_������$%������ ����$��$��_�������#���$��������$�������$$��������$ ���_���$�������������$c�������$���$c���%������#��%����~$����������� �����%���������������������$��IJKK���f����$� �����W
������]

����pt�����x��v�p����pqv�p��vw�ywvur�t���pq�pv����q�������ovuupqtx�rt�v���u��l���qvt�p��u�p���sspq�rvw�xrsywvu�q�yxpx����yo�u�������pnuqv�ursp��a������� �����$c���IJKK�_������$����$c���%������̀�������������̀���$�����%������� � ����$�#����������$����$��$�����������c���������� ������$���c���"���c����̀���"_�����IJKK���� ����$����%$�������{W|����$�$ ���$c���%������̀�����$$�������t�wyxr�tx�a�����������������������������$�����$�����̀���%�c�������$���$����$c���%���������� ���%�I�%�"J�c���K�����$��K��%�������������k ��������$�$����������������IJKK�_�������� ����$�������P��������$�� ��$����$����$c���%������̀����������$�����$�������������$����$c���%��������������_����������$�IJKK��$���� �����~$��$c�����������$� �����������$�����$��$_���c�_����̀��$c���%������̀����$��IJKK��$�������P����������$��zaH\\�_�������#����� �����������������������_����̀�$��������$�$��������$���������t��wp��psptux�a����$�#�����_����� ��$����������̀�_̀��H�N��Z������������$����� ���az} � N�Z"VUUW"zfa"W"UOO[U\�� ��������������$����� ������Jz¡ �K�c��$������H�������������$�����fN�%������Z[T[��[UZ]�����[X]O��

k¢ PT���T��V��O��X��W
� ¢iT�]��h
X��[�
�W��\
�¢iH¢U���T��V��W
]�h
�i�T�T
���\�T
�Z�V
�i�V�V
���]�V
�O�W
�i�X�h
���[�W
�P� PH¢U���X
T�VO
O��X
�

T�
T�\���]

¢X�O�
�
k¢ P �i�T]��h
X���[
�W���\
��i�H�]�h
�i�T��T
���\��T
Z��V
�i�V��V
���]��V
O��W
�i�X�h�
���[��W
P� PH�X���O��X
 T��O
� U���X

VO

O���X

T�

T�\����]

�X��O
�

U���T��V��O��X��W
� ������������ ����

���������	�
�������������������������� ����������� ������� !"�� ������!" !"�� ���������#��� �����$%&&�������'(()* + ,) -)'(+ .+ * / /+ 0.'(1� /(,� +� /� 1� ++�'/(� /*1� /(� -� /+� //*�������2��
3�4����3��35����6���3������6�7899:����6�36��3;���<���������������=����3���������������>/?� "��"�����"@�>,?� A�BB�CD�#��$&%���B!�#"�C� $%&&���B!�#"�C���B!�#"����"�B�E��� C#"���>+?F>-?�>0?� ��B!�#"����"�B�E��� C#"���>)?F>*?�>.?�GF��D�H�C#���>-?� G�D�H�C#���>+?� GF��D�H�C#���>*?� G�D�H�C#���>)?�'((� /((((I((0- (I((*/ /I/0/ (I(/* (I(,(/I,00((((I(/-) (I(/)- /I,*- (I(+* (I(+. /I(+-/(((((I(,+- (I(-// /I,.((I(11 (I/((/I(/('(+� /((((I((0/ (I((*(/I/)* (I(/1 (I(,, /I/0.0((((I(/-/ (I(/** /I,*) (I(0/ (I(0- /I(-1/(((((I(,,) (I(-((/I-,, (I/(* (I/() /I((1'(1� /((((I((0* (I(()) /I-)0 JFKL (I(() JFKL�0((((I(/0/ (I(,*, /I)-0 (I(/((I(/, /I,((/(((((I(,)((I(+.- /I).1 (I(,- (I(,+ /I(+-MA&� /((((I((0, (I((*/ /I/)- JFKL (I((- JFKL0((((I(/-0 (I(/). /I-/1 (I(/0 (I(/* /I(*)/(((((I(,+((I(-/* /I-/) (I(-/ (I(-, /I(-,�L�N�JFK�O�"@��C!��"�B��G#��"����@�C"�"��B�#�!C�I�PQRQSQTUQV�W/X�Y�"�C�#"���#��Z�D@�����[�\�#�B# ���C�]�B�D���!D"�C��,((*�C� �C"E�Ŵ\%X�GGGI�"C�I��"E�,(()��W,X�]I�Z#��C#�E�_I�_�!"̀�CE�abcdefgd�hdiejkl�mbe�mnokijbofp�cfpjqfijbo�bm�rfeqsfed�qdljgolI�&������t�Z��"����A�B !"�C�E�YuuuE�v��!B��/.E�Y��!��+E�w!�NK!�I�,((/E�x#����-*N+0I�W-X�wI�AI�y����CE�AI�wI�y#����[E�z{lidhfijk�|jlif}d�~ofp{ljl�bm��jgjifp�abh�nide��ebgefhlI�A�BB!��D#"��������"@��KAyE�/1*-E�x#����0.N*-I�W+X������#B�_I�%#BE���feqsfed��dljgo��dejmjkfijbo��zjhnpfijbo�foq��behfp�|dirbq��fldq�~��ebfkrdl�E�x�#C����u�!D#"����Y�DIE�,((0E�0.0� #���I�W0X�\I�̂'#CE�wI�\#��E�KI�y�C#G��DE��fk}�iefkjog�foq��cdoi�qejcdo��dkroj�ndl�jo��jgr�pdcdp�zjhnpfijbo�sjir��dkjljbo��jfgefhlI�Y]AK]�,(((E�v��I�/E� I�,(.N,//I�W*X�\#�B!���̂ '#CE�K�#B�y�C#G��DE�w##��\#��I�a{kpd��fldq�zjhnpfijbo�sjir��dkjljbo��jfgefhl��xC�D�����������"@��&KZu�A����C��D�E� I�+0+N+0.E�/111I�W)X�wI�\#��E�\I�̂'#CE��fli��dli��dodefijbo�mbe�zd�ndoijfp�ajeknjil��ljog��dkjljbo��jfgefhl��d�edldoifijbolI�w�!C�#�����u��D"C���D�Z��"���O�Z@��C[�#���K ��D#"�����/*E��_�!G�C�KD#��B�D�x!'���@�CE�,(((E�� I�,/-N,,*I�W.X�\I��C[#�"I��ef�r��fldq�fpgbejirhl�mbe��bbpdfo�mnokijbo�hfoj�npfijbo��Yuuu�ZC#��#D"��������A�B !"�C�E�AN-0E�.O*))N*1/E�/1.*�

W1X�vI�A@#[#�!�E�&I�&I�M#����E�%I�\#B#D@#��C#�E���jgr��dcdp��efolmbehfijbol�mbe�|jojhj�jog�z{oifkijk��fejfokdl�E�xC�DI�����KAyFYuuu�&KAE� I�+/-N+/.E�w!���/11-I�W/(X�YI�M@��@E�yI��!��"#E��~nibhfijk��dli��fiideo��dodefijbo�mbe��nokijbofp�����ajeknjil��ljog�~lljgohdoi��dkjljbo��jfgefhl�E�xC�DI�����KAyFYuuu�&KAE� I�+-N+.E�,(((I�W//X�%I��@#��E�YI�M@��@E�yI�$��#�E���mmjkjdoi�zd�ndoijfp�~����mbe��nokijbofp�����ajeknjil�E�Y�"I�Z��"�A���IE� I,1(N,1.E�,((-I�W/,X�YZA�11�'��D@B#C��@�B� #��E�WGGGX�@"" OFFGGGID�CDI!"��#�I��!F�"D11N'��D@B#C��F'��D@I@"B��W/-X��I��#��#@E�]I�&�H#�#�E�_I�_�!"̀�CI��AA�yO�u���D���"�A�B !"#"��������'��CH#'���"[N�#����A����A�H�C#���y�"C�D����C��!�D"���#��v�C���D#"���I��ebk���dljgo�~nibhfijbo�abomdedokdE� I/0,N/0)E�/11.I

131

Research paper IV

Minakova, K., Reinsalu, U., Chepurov, A., Raik J., Jenihhin M., Ubar, R.,
Ellervee, P., “High-Level Decision Diagram Manipulations for Code Coverage
Analysis”, The 11th Biennial Baltic Electronics Conference (BEC’08), 2008, pp.
207-208

ABSTRACT: Previous works have shown that High-Level

Decision Diagrams (HLDD-s) are suitable for system repre-
sentation for analyzing code coverage metrics. This is due to
the fact that HLDD models implicitly represent classical code
coverage items, such as statement and branch coverage. How-
ever, research on the properties of HLDD-s, which contribute
to the accuracy of coverage assessment, is missing. Current
paper proposes a set of HLDD manipulations in order to gen-
erate diagrams that would allow more stringent code coverage
measurement without sacrificing performance, i.e., computa-
tion time and memory requirements. The techniques include
generation of HLDD-trees from Hardware Description Lan-
guage (HDL) descriptions and two types of HLDD collapsing
methods, which are a generalization of the BDD reduction
rules. Experiments on ITC99 benchmark circuits show that the
code coverage assessment based on the proposed HLDD ma-
nipulation is more stringent than what can be achieved with
classical methods. At the same time, the model is well scalable
because HLDD generation is terminated in the HDL variables.

1 Introduction

With the increase in size and complexity of modern inte-
grated circuits, it has become imperative to address criti-
cal verification issues in the design cycle. The process of
verifying correctness of designs consumes between 60%
and 80% of design effort [1]. Ensuring functional cor-
rectness is the most difficult part of designing a hardware
system [2]. One possible way to verify the correctness of
a design is by generating different test cases. Due to the
fact that it is impractical to verify exhaustively all possi-
ble inputs and states of a design, the confidence level re-
garding the quality of the design must be quantified to
control the verification effort. The fundamental question
is: How do I know if I have verified or simulated enough?
Verification coverage is a measure of confidence and it is
expressed as a percentage of items verified out of all pos-
sible items. Different definitions of items give rise to dif-
ferent coverage measures or coverage metrics.

Various coverage metrics exist such as code coverage,
parameter coverage, and functional coverage. In this pa-
per, only code coverage would be used, which provides
insight into how thoroughly the code of a design is exer-
cised by a suite of simulations. The main disadvantage of
code coverage metrics lies in the fact that they only
measure the quality of the test case in stimulating the im-
plementation and do not necessarily prove its correctness
with respect to the specification. On the other hand, code
coverage analysis is a well-defined, well-scalable proce-

dure and, thus, applicable to large designs.
Following Miller and Maloney [3], a large variety of

code coverage metrics have been proposed, including
statement coverage, block coverage, path coverage,
branch coverage, expression coverage, transition coverage,
sequence coverage, toggle coverage, etc. [2][4]. The
statement coverage metric measures the percentage of
code instructions exercised with respect to total instruc-
tions contained in the code by the program stimuli. Toggle
coverage shows the percentage of bits toggling in the
nodes in the design, i.e., how many bits change their state
from 0 to 1 or vice versa. In the case of branch coverage,
we measure the ratio of branches in the control flow
graph of the code that are traversed under the set of stim-
uli. Path coverage measures the percentage of paths in the
control flow graph is exercised by the stimuli. A potential
goal of software testing is to have 100 % path coverage
that implies branch and statement coverage. However, full
path coverage is a very stringent requirement as the num-
ber of paths in a program may be exponentially related to
program size.

Current work is motivated by our previous encouraging
research results obtained on HLDD based simulation [5]
and test pattern generation [6]. The authors’ work in [7]
was the first attempt to use HLDD models in validation
and code coverage analysis. In [7] we also introduced
HLDD model for efficient code coverage analysis and
showed how classical coverage metrics map to HLDD
constructs. Additionally, we envisioned an algorithm that
applied HLDD-s in observability coverage analysis, thus,
replacing the classical D-calculus based methods (see, e.g.,
[8]).

However, research on the properties of HLDD-s, which
contribute to the accuracy of coverage assessment, is
missing. The paper proposes a set of HLDD manipula-
tions in order to generate diagrams that would allow more
stringent code coverage measurement without sacrificing
performance, i.e., computation time and memory re-
quirements. The manipulation techniques include genera-
tion of HLDD-trees from HDL descriptions and two types
of HLDD collapsing methods. Experiments presented in
Section 5 show that the code coverage assessment based
on the proposed HLDD manipulation is more stringent
than what can be achieved with classical methods. The
model is well scalable because HLDD generation is ter-
minated in the HDL variables.

High-Level Decision Diagram Manipulations for Code Coverage Analysis

Karina Minakova, Uljana Reinsalu, Anton Chepurov, Jaan Raik,

Maksim Jenihhin, Raimund Ubar, Peeter Ellervee

Department of Computer Engineering, Tallinn University of Technology, Estonia
{ uljana | anchep | jaan | maksim | raiub }@pld.ttu.ee, LRV@cc.ttu.ee

2 High-Level Decision Diagrams

Definition: A HLDD representing a discrete function
y=f(x) is a directed acyclic labeled graph that can be de-
fined as a quadruple G=(M,E,X,D), where M is a finite set
of vertices (referred to as nodes), E is a finite set of edges,
X is a function which defines the variables labeling the
nodes and the variable domains, and D is a function on E.
The function X(mi) returns is the variable letter xi, which
is labeling node mi. Each node of a HLDD is labeled by a
variable. In special cases, nodes can be labeled by con-
stants or algebraic expressions. An edge e∈E of a HLDD
is an ordered pair e=(m1,m2)∈E2, where E2 is the set of all
the possible ordered pairs in set E. D is a function on E
representing the activating conditions of the edges for the
simulating procedures. The value of D(e) is a subset of
the domain of the variable xi denoted by Xi, where
e=(mi,mj). It is required that Pmi={D(e) | e=(mi,mj)∈E }
is a partition of the set Xi. HLDD has only one starting
node (root node), for which there are no preceding nodes.
The nodes, for which successor nodes are missing, are
referred to as terminal nodes.

Modeling digital systems by HLDD-s: In HLDD
models representing digital systems, the non-terminal
nodes correspond to conditions or to control signals and
the terminal nodes represent operations (functional units).
Register transfers and constant assignments are treated as
special cases of operations. When representing systems by
decision diagram models, in general case, a network of
HLDDs rather than a single HLDD is required. During the
simulation in HLDD systems, the values of some vari-
ables labeling the nodes of a HLDD are calculated by
other HLDDs of the system. Fig. 1 presents an example of
an HLDD for two variables, state and RMAX in the
ITC99 benchmark b04.

3 Code Coverage Analysis on HLDD-s

Simulation at RTL and behavioral levels. The basis for
code coverage analysis in this paper is a simulator engine
relying on HLDD models. We have implemented an algo-
rithm supporting both Register- Transfer Level (RTL) and
behavioral design abstraction levels. In the RTL style, the
algorithm takes the previous time step value of variable xj
labeling a node mi if xj represents a clocked variable in the
corresponding HDL. Otherwise, the present value of xj
will be used.

In the case of behavioral HDL coding style, HLDD-s
are generated and ranked in a specific order to ensure
causality. For variables xj labeling HLDD nodes the pre-
vious time step value is used if the HLDD diagram calcu-
lating xj is ranked after current decision diagram. Other-
wise, the present time step value will be used.

Algorithm 1 presents the HLDD based simulation en-
gine for RTL, behavioral, and mixed HDL description
styles.

Algorithm 1. RTL/behavioral simulation on HLDDs

For each diagram G in the model
 mCurrent = m0
 Let xCurrent be the variable labeling mCurrent
 While mCurrent is not a terminal node

If is xCurrent clocked or its DD is ranked after G
then

 Value = previous time-step value of xCurrent
 Else
 Value = present time-step value of xCurrent
 End if
 If Value ∈ D(eactive), eactive =(mCurrent, mNext) then
 mCurrent = mNext
 End if
 End while
 Assign xCurrent to the DD variable xG
End for

Fig. 1. b04 example: HLDDs for variables state and RMAX

Mapping coverage metrics to HLDD. In order to ana-
lyze quality of verification of hardware designs translated
to HLDD-s, three traditional coverage metrics were cho-
sen and built in to the HLDD based simulation tool. These
include statement coverage, branch coverage, and toggle
coverage. As it was mentioned above, the statement cov-
erage measures the number of times every instruction is
exercised by the program stimuli. Toggle coverage shows
whether and how many times nodes in the design toggle,
i.e., how many bits change their state from 0 to 1 or vice
versa. In the case of branch coverage, we measure the
number of times each branch in the control flow graph of
the code is taken or not taken under the set of program
stimuli.

The statement coverage maps directly to the ratio of
nodes mCurrent traversed during the HLDD simulation pre-
sented in Algorithm 1. As an example, Fig. 1 depicts
HLDD representations of state and data register variables
of a VHDL design. Covering all nodes in the HLDD
model corresponds to covering all statements in the re-
spective HDL. However, the opposite is not true. HLDD
node coverage is slightly more stringent that HDL state-
ment coverage. This is due to the fact that in HLDD-s
diagrams are generated to each data variable separately.
Such partition on variables includes an additional context
to statement coverage.

Similar to the statement coverage, branch coverage has
also very clear representation in HLDD simulation. The
ratio of every edge eactive activated in the simulation proc-
ess of Algorithm 1 constitutes to HLDD branch coverage.
For example, the branch coverage item corresponding to
DATA_IN > RMAX = true in the VHDL code of the b04
design maps to the edge denoted by a bold arrow in the
HLDD in Fig. 1. The statement RMAX := DATA_IN is
represented by the terminal node surrounded by bold cir-
cle in the corresponding HLDD.

4 HLDD manipulations for code coverage

The main contribution of this paper is the new HLDD
manipulation technique allowing efficient code coverage
analysis. In fact, if HLDD is generated for each output
variable and the generation process is terminated at the
primary input signals then code coverage analysis for the
diagram will be equivalent to the path coverage metric.
However, as it was mentioned above, enumerating all the
paths through a design is infeasible and it is easy to see
that the corresponding HLDD may be of exponential size.

Therefore, another approach is adopted in this paper
that differs from the traditional one of generating a dia-
gram for each primary output. When representing systems
by decision diagram models, a network of HLDD-s is
implemented where each internal HDL variable has its
corresponding HLDD. During the simulation in HLDD
systems, the values of some variables labeling the nodes
of a HLDD are calculated by other HLDD-s of the system.
Such partitioning helps avoiding the node explosion
problem of DD-s and keeps the size requirements for re-

sulting HLDD systems acceptable.
The method proposed for generating HLDDs suitable

for code coverage analysis is similar to BDD reduction
rules [9] and it consists of the following steps:

1. Generate a HLDD tree for each system variable
2. Reduce nodes with identical succeeding subgraphs
3. Unite identical terminal nodes
The above steps are explained by an example presented

in Fig. 2, which depicts HLDD manipulations for the
‘state’ variable of the b04 design presented in Fig. 1. As
the first step, a HLDD tree for variable v is generated by
traversing the full control flow graph of the design and
collecting the values assigned to v at each control step. If
the value of v does not change at current control step then
terminal node with the present value of variable will be
created. Fig. 2a shows the HLDD generated for the vari-
able state in b04.

Then, reduction rules are applied to eliminate nodes for
which all successor nodes (in general case, succeeding
subgraphs) are identical. As a result a reduced HLDD is
obtained (Fig. 2b). Finally, we create a minimized re-
duced HLDD by uniting identical terminal nodes (Fig. 2b).
HLDD generation experiments on a set of ITC99 bench-
marks show that around 45-80% of nodes are removed by
the reduction step from the initial HLDD tree. Further
40-60% of nodes will be eliminated by the minimization
step.

In this paper, we propose reduced HLDD-s as a suit-
able model for code coverage analysis because it provides
for more stringent coverage metrics than minimized
HLDD-s. At the same time it is a more compact represen-
tation than full HLDD trees. Furthermore, in terms of
speed of simulation reduced HLDD offers equal per-

sC

state reset

sA

sB

sC

state

1

0 sA

sB

DATA_IN >RMAX

sC

state reset

sA

sB state

1

0 sA

sB

1

0

state reset

sA

sB

sC

state

1

0 sA

sB, sC

sC
sC

a)

b)

c)

sC

sC

Fig. 2. a) HLDD tree, b) reduced HLDD and
c) minimized reduced HLDD

formance when compared to the minimized model. This is
because of the fact that by both models the number of
edges to be traversed is exactly the same. However, in full
trees the number of diagram edges would be considerably
higher.

5 Experimental results

Comparative experiments between the HLDD-based code
coverage analysis tool implemented in this paper and a
popular HDL commercial simulation tool were carried out
on circuits belonging to the ITC99 benchmark family.
While there was no definite advantage of the speed of
basic logic simulation of benchmarks to either of the tools,
the overhead of coverage checking in the popular com-
mercial tool is much higher than in the case of HLDD-s.
When HLDD-s have penalty for coverage calculation
time in a 1% to 4% range, the commercial simulator uses
from 28% up to 78% extra time for coverage assessment
(see Table 1).

Table 2 presents the characteristics of the different
HLDD representations introduced in Section 4. The col-
umns min, red. and tree show the number of nodes/edges
in minimized HLDD, reduced HLDD and HLDD tree
models, respectively. From the Table, it can be seen that
around 45-80 % of nodes are removed by the reduction
step from the initial HLDD tree. Further 40-60 % of
nodes will be eliminated by the minimization step.

Table 3 compares code coverage analysis comparing
statement coverage and branch coverage assessment re-
sults on reduced HLDD-s (red.), on minimized HLDD-s
(min) and on a well-known commercial tool using the
same set of input stimuli for all three models. As it can be
seen from the experiments, the reduced HLDD model
always achieves the best (i.e. most stringent results) of all
three. The minimized HLDD has the poorest outcome for
statement coverage and traditional HDL simulator is the
weakest for measuring branch coverage in most cases.

6 Conclusions

The paper presented a set of straight-forward manipula-
tions on High-Level Decision Diagrams to support valida-
tion code coverage analysis. Experiments on ITC99
benchmark circuits showed that the reduced HLDD model
proposed in this work offers higher accuracy in statement
and branch coverage analysis than traditional models. The
gain in accuracy is achieved only with a slight increase in
memory requirements. The simulation times for all three
models are nearly identical.

Acknowledgements
The work has been supported partly by EC FP 6 research
project VERTIGO FP6-2005-IST-5-033709, Enterprise
Estonia funded ELIKO Development Center and Estonian
SF grants 6717, 7068 and 7483.

References

[1] ITRS 2006 report, [URL] www.itrs.net, 2006

[2] S. Tasiran, K. Keutzer, Coverage metrics for functional vali-
dation of hardware designs. Design & Test of Computers,
IEEE, Volume 18, Issue 4, Jul-Aug. 2001, pp. 36-45.

[3] J. C. Miller, C. J. Maloney, Systematic Mistake Analysis of
Digital Computer Programs. Comm. ACM, 1963, pp. 58-63.

[4] William K. Lam, “Hardware Design Verification”, Pearson,
2005, 585 p.

[5] R. Ubar, J. Raik, A. Morawiec, Back-tracing and
Event-driven Techniques in High-level Simulation with De-
cision Diagrams. ISCAS 2000, Vol. 1, pp. 208-211.

[6] J. Raik, R. Ubar, Fast Test Generation for Sequential Circuits
Using Decision Diagrams Representations. JETTA, 16,
Kluwer, 2000, pp. 213-226.

[7] J. Raik, et al. Fast Code Coverage Analysis using High-Level
Decision Diagrams. DDECS, 2008.

[8] F. Fallah, S. Devadas, K. Keutzer. OCCOM: Efficient Com-
putation of Observability-Based Code Coverage Metrics for
Functional Verification. Proc. DAC, pp.152-157, 1998.

[9] R. E. Bryant, Graph-Based Algorithms for Boolean Function
Manipulation, IEEE Trans. on Computers, August, 1986.

Table 1. Coverage analysis penalty: traditional vs HLDD [7]

Table 2. Characteristics of different HLDD manipulations

Table 3. Comparison of code coverage analysis results

Overhead time of analysis, %
design

Commercial HDL

simulator HLDD simulator

b00 28.0 1.0
b04 32.2 0.9
b09 78.9 4.3

GCD 31.7 3.2

of nodes # of edges
Design

min red. Tree min red.
b01 30 57 267 52 62
b02 16 26 48 24 24
b06 47 116 440 83 111
b09 44 69 125 62 64

Statement
coverage, %

Branch
coverage, % Design

Test
len.

red. min HDL red. min HDL

14 86.0 100 93.8 74.2 84.6 88.9 b01
23 96.5 100 100 90.3 100 100
10 92.3 100 96.3 91.7 91.7 93.8

b02
14 100 100 100 100 100 100
11 80.2 100 85.5 79.3 89.2 87.5

b06
52 98.3 100 100 98.2 100 100
23 87.0 100 100 85.9 87.1 100

b09
33 100 100 100 100 100 100

137

Curriculum Vitae
in English

Personal data

Name Uljana Reinsalu

Date and place 07.06.1981, ESTONIA
of birth
Citizenship Estonian

Contact data

Address Akadeemia tee 15A, Tallinn 12618, ESTONIA

E-mail uljana@ati.ttu.ee

Education

2005 - ... Ph.D. student in Computer Engineering,

 Tallinn University of Technology

2003 - 2005 Tallinn University of Technology, Department of

 Computer and Systems Engineering (MSc)

2002 - 2003 Alari University, “Master of Engineering in Embedded
Systems Design”

1999 - 2002 University of Tartu, “Physical Information
Technology” at the Faculty of Physics and Chemistry

1997 - 1999 Tallinna Tõnismäe Reaalkool
Career

2012 - ... Tallinn University of Technology,
 Faculty of Infotechnology, Dept. of Computer
Engineering
 Chair of Computer Engineering and Diagnostics,
 teaching assistant

2008 - 2012 Maternity leave

138

2005 - 2008 Tallinn University of Technology, department of
Computer Engineering, chair of Digital Systems,

 teaching assistant
2004 - 2005 Schneider Electric Eesti AS, Java developer

Honours & Awards

2012-2013 -- IT Akadeemia scholarship

2008 - Anita Borg Europe scholarship

2005-2008 – "Tiger University" grant for ICT PhD students, Estonian
Information Technology Foundation (EITSA)

2002 - medal from Ministry of Education given by Estonian president
A. Rüütel in honour of the best graduating students

2002 - scholarship from Rotalia fund

2002 - ALaRI scholarship for covering tuition fees and accommodation
costs

139

Curriculum Vitae
eesti keeles

Isikuandmed

Nimi Uljana Reinsalu

Sünniaeg ja 07.06.1981, EESTI
-koht
Kodakondsus Eesti

Kontaktandmed

Aadress Akadeemia tee 15A, Tallinn 12618, EESTI

E-post uljana@ati.ttu.ee

Hariduskäik

2005 - ... doktorant, Tallinna Tehnikaülikool, Arvutitehnika
Instituut

 2003 - 2005 Tallinna Tehnikaülikool, Arvuti- ja süsteemitehnika
 eriala (MSc)

2002 - 2003 Alari Ülikool, “Master of Engineering in Embedded
Systems Design” (Šveits)

1999 - 2002 Tartu Ülikool, füüsika-keemia teaduskond,
“Füüsikaline infotehnoloogia” eriala

1997 - 1999 Tallinna Tõnismäe Reaalkool
Teenistuskäik

2012 - ... Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika Instituut, assistent

2008 – 2012 lapsehoolduspuhkus

2005 - 2008 Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutitehnika Instituut, assistent

 2004 - 2005 Schneider Electric Eesti AS, Java arendaja

140

Teaduspreemiad ja -tunnustused

2012 - 2013 -- IT Akadeemia stipendium

2008 - Anita Borg Europe stipendium

2005-2008 - "Tiigriülikooli" stipendium IKT doktorantidele

 (EITSA)

2002 - Haridusministeeriumi medal parimate kõrgkooli lõpetajate
vastuvõtult president A. Rüütli poolt

2002 - Rotalia fondi stipendium

2002 - ALaRI stipendium AlaRI ülikooli õpinguteks ja elamiseks
Šveitsis

141

DISSERTATIONS DEFENDED AT
TALLINN UNIVERSITY OF TECHNOLOGY ON

INFORMATICS AND SYSTEM ENGINEERING

1. Lea Elmik. Informational Modelling of a Communication Office. 1992.

2. Kalle Tammemäe. Control Intensive Digital System Synthesis. 1997.

3. Eerik Lossmann. Complex Signal Classification Algorithms, Based on the
Third-Order Statistical Models. 1999.

4. Kaido Kikkas. Using the Internet in Rehabilitation of People with Mobility
Impairments – Case Studies and Views from Estonia. 1999.

5. Nazmun Nahar. Global Electronic Commerce Process: Business-to-
Business. 1999.

6. Jevgeni Riipulk. Microwave Radiometry for Medical Applications. 2000.

7. Alar Kuusik. Compact Smart Home Systems: Design and Verification of
Cost Effective Hardware Solutions. 2001.

8. Jaan Raik. Hierarchical Test Generation for Digital Circuits Represented by
Decision Diagrams. 2001.

9. Andri Riid. Transparent Fuzzy Systems: Model and Control. 2002.

10. Marina Brik. Investigation and Development of Test Generation Methods
for Control Part of Digital Systems. 2002.

11. Raul Land. Synchronous Approximation and Processing of Sampled Data
Signals. 2002.

12. Ants Ronk. An Extended Block-Adaptive Fourier Analyser for Analysis
and Reproduction of Periodic Components of Band-Limited Discrete-Time
Signals. 2002.

13. Toivo Paavle. System Level Modeling of the Phase Locked Loops:
Behavioral Analysis and Parameterization. 2003.

14. Irina Astrova. On Integration of Object-Oriented Applications with
Relational Databases. 2003.

15. Kuldar Taveter. A Multi-Perspective Methodology for Agent-Oriented
Business Modelling and Simulation. 2004.

16. Taivo Kangilaski. Eesti Energia käiduhaldussüsteem. 2004.

17. Artur Jutman. Selected Issues of Modeling, Verification and Testing of
Digital Systems. 2004.

18. Ander Tenno. Simulation and Estimation of Electro-Chemical Processes in
Maintenance-Free Batteries with Fixed Electrolyte. 2004.

142

19. Oleg Korolkov. Formation of Diffusion Welded Al Contacts to
Semiconductor Silicon. 2004.

20. Risto Vaarandi. Tools and Techniques for Event Log Analysis. 2005.

21. Marko Koort. Transmitter Power Control in Wireless Communication
Systems. 2005.

22. Raul Savimaa. Modelling Emergent Behaviour of Organizations. Time-
Aware, UML and Agent Based Approach. 2005.

23. Raido Kurel. Investigation of Electrical Characteristics of SiC Based
Complementary JBS Structures. 2005.

24. Rainer Taniloo. Ökonoomsete negatiivse diferentsiaaltakistusega astmete
ja elementide disainimine ja optimeerimine. 2005.

25. Pauli Lallo. Adaptive Secure Data Transmission Method for OSI Level I.
2005.

26. Deniss Kumlander. Some Practical Algorithms to Solve the Maximum
Clique Problem. 2005.

27. Tarmo Veskioja. Stable Marriage Problem and College Admission. 2005.

28. Elena Fomina. Low Power Finite State Machine Synthesis. 2005.

29. Eero Ivask. Digital Test in WEB-Based Environment 2006.

30. Виктор Войтович. Разработка технологий выращивания из жидкой
фазы эпитаксиальных структур арсенида галлия с высоковольтным p-n
переходом и изготовления диодов на их основе. 2006.

31. Tanel Alumäe. Methods for Estonian Large Vocabulary Speech
Recognition. 2006.

32. Erki Eessaar. Relational and Object-Relational Database Management
Systems as Platforms for Managing Softwareengineering Artefacts. 2006.

33. Rauno Gordon. Modelling of Cardiac Dynamics and Intracardiac Bio-
impedance. 2007.

34. Madis Listak. A Task-Oriented Design of a Biologically Inspired
Underwater Robot. 2007.

35. Elmet Orasson. Hybrid Built-in Self-Test. Methods and Tools for Analysis
and Optimization of BIST. 2007.

36. Eduard Petlenkov. Neural Networks Based Identification and Control of
Nonlinear Systems: ANARX Model Based Approach. 2007.

37. Toomas Kirt. Concept Formation in Exploratory Data Analysis: Case
Studies of Linguistic and Banking Data. 2007.

38. Juhan-Peep Ernits. Two State Space Reduction Techniques for Explicit
State Model Checking. 2007.

143

39. Innar Liiv. Pattern Discovery Using Seriation and Matrix Reordering:
A Unified View, Extensions and an Application to Inventory Management.
2008.

40. Andrei Pokatilov. Development of National Standard for Voltage Unit
Based on Solid-State References. 2008.

41. Karin Lindroos. Mapping Social Structures by Formal Non-Linear
Information Processing Methods: Case Studies of Estonian Islands
Environments. 2008.

42. Maksim Jenihhin. Simulation-Based Hardware Verification with High-
Level Decision Diagrams. 2008.

43. Ando Saabas. Logics for Low-Level Code and Proof-Preserving Program
Transformations. 2008.

44. Ilja Tšahhirov. Security Protocols Analysis in the Computational Model –
Dependency Flow Graphs-Based Approach. 2008.

45. Toomas Ruuben. Wideband Digital Beamforming in Sonar Systems. 2009.

46. Sergei Devadze. Fault Simulation of Digital Systems. 2009.

47. Andrei Krivošei. Model Based Method for Adaptive Decomposition of the
Thoracic Bio-Impedance Variations into Cardiac and Respiratory Components.
2009.

48. Vineeth Govind. DfT-Based External Test and Diagnosis of Mesh-like
Networks on Chips. 2009.

49. Andres Kull. Model-Based Testing of Reactive Systems. 2009.

50. Ants Torim. Formal Concepts in the Theory of Monotone Systems. 2009.

51. Erika Matsak. Discovering Logical Constructs from Estonian Children
Language. 2009.

52. Paul Annus. Multichannel Bioimpedance Spectroscopy: Instrumentation
Methods and Design Principles. 2009.

53. Maris Tõnso. Computer Algebra Tools for Modelling, Analysis and
Synthesis for Nonlinear Control Systems. 2010.

54. Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of
Attack Trees. 2010.

55. Erkki Joasoon. The Tactile Feedback Device for Multi-Touch User
Interfaces. 2010.

56. Jürgo-Sören Preden. Enhancing Situation – Awareness Cognition and
Reasoning of Ad-Hoc Network Agents. 2010.

57. Pavel Grigorenko. Higher-Order Attribute Semantics of Flat Languages.
2010.

144

58. Anna Rannaste. Hierarcical Test Pattern Generation and Untestability
Identification Techniques for Synchronous Sequential Circuits. 2010.

59. Sergei Strik. Battery Charging and Full-Featured Battery Charger
Integrated Circuit for Portable Applications. 2011.

60. Rain Ottis. A Systematic Approach to Offensive Volunteer Cyber Militia.
2011.

61. Natalja Sleptšuk. Investigation of the Intermediate Layer in the Metal-
Silicon Carbide Contact Obtained by Diffusion Welding. 2011.

62. Martin Jaanus. The Interactive Learning Environment for Mobile
Laboratories. 2011.

63. Argo Kasemaa. Analog Front End Components for Bio-Impedance
Measurement: Current Source Design and Implementation. 2011.

64. Kenneth Geers. Strategic Cyber Security: Evaluating Nation-State Cyber
Attack Mitigation Strategies. 2011.

65. Riina Maigre. Composition of Web Services on Large Service Models.
2011.

66. Helena Kruus. Optimization of Built-in Self-Test in Digital Systems. 2011.

67. Gunnar Piho. Archetypes Based Techniques for Development of Domains,
Requirements and Sofware. 2011.

68. Juri Gavšin. Intrinsic Robot Safety Through Reversibility of Actions. 2011.

69. Dmitri Mihhailov. Hardware Implementation of Recursive Sorting
Algorithms Using Tree-like Structures and HFSM Models. 2012.

70. Anton Tšertov. System Modeling for Processor-Centric Test Automation.
2012.

71. Sergei Kostin. Self-Diagnosis in Digital Systems. 2012.

72. Mihkel Tagel. System-Level Design of Timing-Sensitive Network-on-Chip
Based Dependable Systems. 2012.

73. Juri Belikov. Polynomial Methods for Nonlinear Control Systems. 2012.

74. Kristina Vassiljeva. Restricted Connectivity Neural Networks based
Identification for Control. 2012.

75. Tarmo Robal. Towards Adaptive Web – Analysing and Recommending
Web Users` Behaviour. 2012.

76. Anton Karputkin. Formal Verification and Error Correction on High-Level
Decision Diagrams. 2012.

77. Vadim Kimlaychuk. Simulations in Multi-Agent Communication System.
2012.

145

78. Taavi Viilukas. Constraints Solving Based Hierarchical Test Generation for
Synchronous Sequential Circuits. 2012.

79. Marko Kääramees. A Symbolic Approach to Model-based Online Testing.
2012.

80. Enar Reilent. Whiteboard Architecture for the Multi-agent Sensor Systems.
2012.

81. Jaan Ojarand. Wideband Excitation Signals for Fast Impedance
Spectroscopy of Biological Objects. 2012.

82. Igor Aleksejev. FPGA-based Embedded Virtual Instrumentation. 2013.

