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PREFACE 

In this project it is carry out the pyrolysis of oil shale, the pyrolysis of biomass and the co-

pyrolysis of oil shale and biomass using the batch reactor. It is used nitrogen as an inert gas in 

order to ensure pyrolysis at different temperatures so as to perform the experimental part. 

Temperatures chosen in this project are 550ºC, 750ºC and 900ºC. The first one is the 

temperature at which the highest yield of shale oil is achieved in the co-pyrolysis process, 

whereas the other two are used in order to make a comparison with the first one. 

The first objective for the thesis is to observe the effect of the mass losses in order to compare 

them with other experiments that have already been carried out in this field. The second 

objective set is to characterize the product gases at different temperatures using the FTIR. 

Moreover, the concentration per mass of organic matter is calculated and the measured and 

calculated concentrations in co-pyrolysis are compared. In addition, the composition of the 

gas mixture is analyzed, using the GC-TCD and compared with calculated results. Finally, 

the evolution of the char obtained in each experiment for the different temperatures used is 

also observed. 

 

 

 

  



11 

 

LIST OF ABBREVIATIONS AND SYMBOLS 

CFB     Circulating Fluidized Bed 

OS     Oil Shale 

BM     Biomass 

CSTR     Continuous Stirred Tank Reactor 

ppm     Parts per million 

FTIR     Fourier Transform Infrared spectroscopy 

FID     Flame Ionization Detector 

GC-TCD    Gas Chromatography – Thermal Conductivity Detector 

OMOS     Organic Mass of Oil Shale 

OMBM    Organic Mass of Biomass 

VOC     Volatile Organic Compound 

Si     Initial sample mass 

Sf     Final simple mass  



12 

 

INTRODUCTION 

The current rate of fossil fuel consumption is known to be increasing both our planet 

pollution and the global climate change. Furthermore, resources to produce the necessary 

energy for consumers are not inexhaustible, that is why it is needed to find new alternative 

ways to produce this energy. One of the most interesting chances is to produce synthetic 

petroleum using co-pyrolysis of Kukersite oil shale and biomass. This method is considerably 

interesting as far as the efficient conversion between biomass with oil shale to obtain fuel or 

other valuable products is concerned. Also, it has demonstrated higher efficiency than 

processing these resources individually. Moreover, including oil shale in co-pyrolysis 

increases the capacity for producing quantities of fuels and chemical feedstock. [1] 

Additionally, this technique to obtain synthetic petroleum has lots of advantages. One of 

which is the availability of resources. Also, the capacity of oil shale all over the world is 2 

and a half time bigger than that of coal and 30 times than that of petroleum [2]. As for 

Estonia, Kukersite oil shale is the most important energy source and it is the basis of its 

economy because it is used as a source of energy to produce electricity, heat, liquid fuels and 

lots of chemicals following combustion and liquefaction methods. [3] 

In the case of biomass is known to be practically an inexhaustible renewable resource of 

feedstock for energy and chemical needs so there is high availability of this kind of source.  

Another important matter about this energy is its environmental benefits because it might 

reduce the level of polluting emissions to the atmosphere much better than using fossil fuels. 

Moreover, this technique is eco-friendly because it is considered as a promising recycling 

method. A good example is the conversion of waste plastics into liquid hydrocarbons. Thus, 

with this technique it can be reused and recycled plastics to produce energy. [1] 

The goal of this thesis is to study biomass and oil shale co-pyrolysis to determine and analyze 

the mass losses, the composition of the gas mixture and the char that is obtained under 

different pyrolysis/co-pyrolysis conditions. 
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1 LITERATURE 

1.1 Pyrolysis 

Pyrolysis is a thermochemical decomposition of organic matter caused by heat in absence of 

oxygen or other reactive. During the pyrolysis process, large complex hydrocarbon molecules 

are transformed into different smaller molecules of gas, liquid and char. Therefore, the goal 

of this process is to obtain non-condensable gases, solid char and liquid product heating the 

feedstock in absence of oxygen at maximum temperature to product these molecules at 

maximum yield value. 

This process consists of different steps. First of all, feedstock is introduced into the reactor 

where the feedstock is heated until pyrolysis temperature (maximum temperature) which its 

decomposition begins. After that, both the condensable and non-condensable steams liberated 

from the feedstock leave the chamber. The produced solid char remains into the chamber but 

also partly into the gas. So, the next step consists of separating the gas from the char and 

cooled downstream of the reactor. Finally, the condensable steam condenses as pyrolysis oil, 

the non-condensable gases leave the reactor as a product gas and the solid char is collected as 

a commercial product or used as a combustible to produce the necessary heat for pyrolysis. 

[4] 

 

Figure 1. Pyrolysis Cycle [5] 
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1.2 Pyrolysis products 

The most important product to be obtained through pyrolysis method is the liquid product 

because it can be an important substitute for fossil fuels, whose nature depends on different 

parameters. These factors are the type of feedstock used in the process, the temperature also 

depending on the characteristics of feedstock, heating rate, reaction time and the particle size 

of feed. [1] 

As it has been mentioned before, three types of products are obtained through pyrolysis 

process; gases, solid char and liquid product as shown in Figure 2.  

 

Figure 2. Products obtained in pyrolysis of biomass [6]  

1.2.1 Gas 

Gas is obtained from non-condensable gases when the gas exits from the chamber. The 

composition of the non-condensable gases obtained after pyrolysis are the volatile organic 

compounds (VOCs), water and small quantities of light hydrocarbons. These organic 

compounds depend basically on the feedstock used during the process. The most typical 

volatile organic compounds are carbon monoxide (CO), carbon dioxide (CO2), acetylene 

(C2H2), ethylene (C2H4), ethane (C2H6), benzene (C6H6) and methane (CH4). [7] 

1.2.2 Liquid 

Liquid is obtained from condensable gases which are directed from reactor to condenser. On 

the one hand, using biomass as a feedstock the product of pyrolysis is a blend of tar (also 

called bio-oil or biocrude), heavier hydrocarbons and water. This liquid is a black tarry fluid 

that contains as much as 20% of water and is usually formed by molecular fragments of 

cellulose, hemicellulose and lignin polymers. On the other hand, in case that the feedstock of 
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the pyrolysis is oil shale, the product that can be obtained is shale oil. This liquid is yellow 

and contains a complex mixture of hydrocarbons and its composition depends on the oil shale 

origin and composition. This composition is formed by large quantities of olefinic and 

aromatic hydrocarbons and some quantities of heteroatoms such as oxygen, nitrogen and 

sulphurs. [4] 

1.2.3 Solid 

After the pyrolysis process, the produced solid component remains into the chamber in the 

form of char or carbon. This solid char or carbon can be used as a commercial product or also 

as a combustible to produce heat. For example, this solid product can be used to get the 

necessary heat for the pyrolysis process. [8]  

1.3 Types of pyrolysis 

Pyrolysis process can be classified into two types: slow pyrolysis and fast pyrolysis. These 

kinds of pyrolysis depend on two parameters; the time to heat the fuel to the pyrolysis 

temperature (theat) and the characteristic pyrolysis reaction time (treaction). If the theat is much 

bigger than treaction, it is slow pyrolysis and if the theat is smaller than treaction, is is fast pyrolysis. 

[9] 

Table 1. Types of pyrolysis [10] 

Mode Heating rate T (ºC) 
Residence 

Time 

Material 

Size 

(Diameter) 

Main 

Products 

Slow 

Pyrolysis 

Slow 

1-20ºC/m 
400-650 

Minutes to 

days 
1 – 200 mm 

Oil gas, char ~ 

1/3 each 

Fast 

Pyrolysis 

Very fast > 

300ºC/s 
700 Second <1 mm 

Bio-oil, 75% 

Char, 10-20% 

Gasification 2-100ºC/m > 800 5-30 min 5-20 mm 
Gas, 80% 

Char, 10-20% 

 

1.3.1 Slow pyrolysis 

In slow pyrolysis, steam residence time in the pyrolysis zone is in minutes or even days. On 

the contrary to conventional pyrolysis where the goal is the production of liquid, slow 

pyrolysis method is used to produce char. It can be divided into two types of slow pyrolysis: 

- Carbonization: the main goal of this process is to obtain charcoal or char and it has 

been the oldest method of pyrolysis. In this technique, feedstock is heated slowly in 

absence of oxygen with a low temperature, around 400°C, and using lots of time to 

maximize the char formation. [11] 



16 

 

- Torrefaction: the aim of this thermal process is to convert biomass to obtain coal 

which has better fuel characteristics than the original feedstock. In this method, 

feedstock is heated slowly in absence of oxygen to a temperature between 200 and 

400°C. [12] 

1.3.2 Fast pyrolysis 

In fast pyrolysis, steam residence time in the pyrolysis zone is on the order of seconds or 

milliseconds and this technique is used to produce bio-oil and gas. The aim of the fast 

pyrolysis is to maximize production of liquid or bio-oil. It can be divided into two types: 

flash and very quick pyrolysis: 

- Flash Pyrolysis: in this process biomass is heated quickly in absence of oxygen to a 

temperature between 450 and 600°C. The product that can be obtained with this kind 

of pyrolysis is the liquid fuel called bio-oil and its yield is about 70-75% of the total 

pyrolysis product. [13] 

- Ultra rapid Pyrolysis: in this method biomass is heated extremely fast in absence of 

oxygen to a temperature around 1000°C for gas and around 650°C for liquid. These 

temperatures maximize the product yield of the gas. [4] 

1.4 Parameters that affect the pyrolysis process 

In this point, the parameters that affect the pyrolysis process are explained. As it had been 

said before, these parameters are the type of feedstock that is used in the process, temperature 

that also depends on the characteristics of feedstock, heating rate, reaction time and the 

particle size of feed. These factors can affect directly the yields of the solid, liquid and 

gaseous products that can be obtained by the pyrolysis. [1] 

1.4.1 Type of the feedstock 

The type of feedstock that is used in pyrolysis is important because each component of the 

biomass presented different temperatures of thermal decomposition. That means that they 

contribute to the results of the method in a different way. The hydrogen-to-carbon (H/C) 

atomic ratio of biomass is quite influential with the pyrolysis yield. Thus, depending on the 

type of feedstock that it is chosen, the obtained products could be different. [14] 
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1.4.2 Temperature 

Temperature is quite influential as far as the final results of the pyrolysis products are 

concerned. For example, during the pyrolysis of biomass the escape of different product 

gases changes with different temperatures and also the amount of char produced depends on 

this parameter. It has been studied that for higher temperatures the process provides big 

quantities of non-condensable gases like syngas or synthetic gas (CO + H2). Instead, if the 

process is done with lower temperatures it provides the production of solid products like 

charcoal, bio-coal or torrefied fuels. [14] 

1.4.3 Heating rate 

The heating rate is important because it has a big influence on the yield and composition of 

the product that can be obtained after the pyrolysis process. For example, if the process is 

done with rapid heating using moderate temperatures, more liquids will be obtained and if the 

process is done with a slower heating, it will produce more char. [14] 

1.4.4 Reaction time 

Reaction time influences the degree of thermal conversion of the solid product and the 

residence time of the steam. This residence time of the vapour affects the composition of 

steams, which means that influences if they are in a condensable or non-condensable phase. 

[14] 

1.4.5 Particle size of feed 

The particle size of feed is an important parameter because it affects the speed in which 

material is submissive to the pyrolysis process. Normally, lower particle size materials are 

faster influenced by the thermal decomposition and because of this reason they can achieve 

more quantities of pyrolysis oil than in case of bigger particle size. [14] 

Some examples of particle sizes of samples can be found in the literature. For example, in the 

study [2] that talks about co-pyrolysis of oil shale and plastics, samples of oil shale were 

ground and sieved to give particle size of 0.1 mm. Another example is in the study [15], 

which talks about the co-pyrolysis of oil shale and wheat straw where all samples were first 

air-dried, crushed, and sieved to a grain size of ≤3 mm. Finally, another example is with the 

study on co-liquefaction of Estonian kukersite oil shale with peat and pine bark [3], where all 

samples were air-dried and finely powdered with a size less than 0.1 mm. 
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1.5 Materials 

The materials to be used during the co-pyrolysis process are biomass and Kukersite oil shale, 

so right now some characteristics of these two materials are introduced. 

1.5.1 Biomass 

Biomass is organic matter of plant or animal origin, which includes materials that come from 

natural or artificial transformation and can be used as a source of energy, either as fuel or for 

other processes. This material is a valuable feedstock because it allows to obtain energy from 

a renewable source and it can be one interesting alternative for the production of energy. [16] 

1.5.1.1 Biomass resource 

Biomass is known to be practically an inexhaustible resource of feedstock for energy and 

chemical needs. For this reason, there is high availability of this kind of source and now and 

there are several types of biomass that can be found in the world. 

European Committee for Standardization have defined biomass classification: virgin biomass 

and waste biomass. Virgin biomass includes terrestrial and aquatic biomass. Terrestrial 

biomass is product that can be obtained from forest or energy crops and an example of 

aquatic biomass is the algae or water plants. Waste biomass includes: municipal waste, 

agricultural solid waste, forestry residues and industrial waste. 

If biomass is studied as for its origin, it can be defined by four categories: woody biomass, 

herbaceous biomass, fruit biomass and blend and mixtures. Woody biomass includes trees, 

bushes and shrubs and fruit biomass is composed by fruits or seeds. Herbaceous biomasses 

are the plants that die when the growing season ends such as grains or cereals. Finally, blend 

and mixtures are composed by different types of biomass. 

As it can be seen, there are lots of different types of biomass, although in this project is 

focused in Scots pine (woody biomass) in order to achieve the fixed goals. [17] 

 

Figure 3. Sample of woody biomass used in the experiments 
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1.5.1.2 Biomass composition 

As it has been said before, biomass is a mixture of different organic materials. The main 

components of woody biomass are: extractives, cell wall components (cellulose, 

hemicellulose and lignin) and ash. 

At first, extractives are formed by different substances that are present in animal or vegetable 

tissue. These substances can be separated with solvents and through evaporation of the 

solution can be obtained again. 

The cell wall component provides the structural strength to the plant. This component is 

formed basically by cellulose or hemicellulose fibres (carbohydrates) and lignin: 

- Cellulose: is the most common organic compound in the world. It is a 

homopolysaccharide formed by hundreds or thousands of β-glucose monomers. It has 

a fibrous structure, formed by chains of glucose that are linked by hydrogen bonds of 

hydroxyl groups, giving rise to waterproof fibres that make up the cell wall of plant 

cells. It is the dominant component of wood and it represents about 40-44% by dry 

weight. 

- Hemicellulose: is a heteropolysaccharide formed by different types of monomers. 

This polymer forms part of the walls of plant cells, coating the surface of the cellulose 

fibres and allowing the binding of pectin. It represents about 20-30% of the dry 

weight of most wood. 

- Lignin: is one of the most abundant organic polymers in the world. Thus, it is the 

most complex natural polymer as far as its structure and heterogeneity is concerned. 

This molecule has a high molecular weight because of the union of different 

phenylpropyl alcohols and acids. The random coupling of these radicals origin one 

three-dimensional structure that is being as an amorphous polymer. This element 

provides rigidity to the cell wall and resistance of lignified tissues to protect them 

from the microorganisms, preventing the penetration of destructive enzymes in the 

cell wall. It represents about 18-35% of dry weight of most wood. 

Finally, ashes are considered as the inorganic component of biomass. [18] 

1.5.1.3 Biomass applications and products 

The way of transforming biomass into energy depends on different factors but the most 

important are the type of biomass and the energy type that is need to be obtained. The 

different processes and systems of transformation of biomass can produce thermal energy, 

electrical energy and mechanical energy. 



20 

 

Thermal energy is the most common application of biomass energy, which is used basically 

for heating. From this energy hot water can be generated, hot air and steam. Residually, it is 

possible to take advantage of the steam that is emitted for the production of electrical energy 

or other industrial processes. 

To generate electrical energy there are different technologies. The first one is steam cycle, 

which is based on the combustion of biomass in order to generate steam. Thus, moving a 

turbine that with the help of one alternator, electricity can be produced. The second 

technology is the gas turbine which is based on the gasification of biomass in order to 

generate steam and in this way to move a turbine. The difference from the first technology is 

that if the generated gases from the turbine are used in a steam cycle, then it is a combined 

cycle. Another important technology is the cogeneration that produces electrical energy and 

takes advantage of the heat surplus to produce thermal energy. 

Finally, the last application that it can be found is mechanical energy. Through biomass 

transformation, for example pyrolysis, it is possible to obtain bio-fuels and bio-alcohols that 

are capable of feeding explosion motors. [19] 

1.5.1.4 Environmental considerations 

Right now, the discussion will be focused on some environmental aspects that showed why 

this energy can be considered as a renewable one. First of all, woody biomass is a sustainable 

product that generates a renewable energy obtained from the management of forests and can 

help improve the forest masses, which mean to reduce excessive density. It also contributes to 

the compatibility with the operations of prevention of incentives and reduction of the risk of 

fire and to reduce the risk of forest pests. Another important point to be treated is that there 

are neither sulphur emissions (SO2) nor nitrogen oxides (NOx), which are components of acid 

rain, so there is quite an improvement of air quality. 

The most important disadvantage is that there might be some risk of overexploitation and 

incorrect combustion of biomass. The risk of overexploitation happens only in case of 

exceeding the production capacity of the system and incorrect forest management. In 

addition, the incorrect combustion conditions of biomass may produce the liberation of 

contaminating gases which are harmful for the planet. [20] 
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1.5.2 Oil Shale 

Oil shale is a sedimentary rock that contains an organic-rich material called kerogen. This 

material is used as a feedstock in order to obtain a liquid fuel used in the pyrolysis method. In 

addition, this material could be one of the substitutes of the conventional crude oil because of 

its large reserves. [15] 

 

Figure 4. Sample of oil shale used in the experiments 

1.5.2.1 Oil shale resource 

The oil shale deposits can be found all over the world, but most of them cannot be exploited 

economically due to their depth. That is why the reserves of oil shale all over the world can 

be exploited economically in more than 30 countries. The most important reserves of oil 

shale are in the United States, in the Green River, which represents the 72% of the world’s 

reserves. Also reserves can be found in countries such as: China, Russia, Brazil, Morocco and 

Jordan. Estonia has become the eighth country as for this kind of resources, with 16.3 billion 

barrels, as it can be seen in the Figure 5. [21] 

 

Figure 5. Most important countries that have reserves of Oil Shale [21] 
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1.5.2.2 Oil shale extraction and processing 

The extraction of oil shale implies mining. Once extracted the oil shale it can be burned 

directly and used as a power generation or used for further processing. The most common 

processes of extraction are open pit mining and strip mining. The useful components of 

extraction of this material usually take place above the ground but nowadays are appearing 

some new technologies to do it underground. [22] 

After extraction, the process which kerogen is decomposed or pyrolysed in different 

components in absence of oxygen is called retorting. During this process, kerogen in oil shale 

is heated at temperatures about 300-350°C and is converted into organic intermediates like 

bitumen. In this moment, also some molecular substances as carbon dioxide, interlayer water 

and moisture are liberated. After that, the temperature continues rising into temperatures 

between 400 and 550°C and the organic intermediate is decomposed generating gases, shale 

oil and residual carbon as it can be seen in the Figure 6. [15] 

 

Figure 6. Scheme of the retorting process [15] 

1.5.2.3 Oil shale applications and products 

Oil shale is mainly used as a fuel for thermal-power plants, where it is burnt to run the steam 

turbines. As a result, electrical energy is produced that can be supplied as the domestic 

energy applications or the industrial plants. 

Another application to use the oil shale as a fuel is the production of residential heat. In 

addition, it can be used to produce some chemical products such as carbon fibers, adsorbent 

carbons, phenols, resins, glues, tanning agents or fertilizers. Also, this product can be 

founded in the construction field used to produce cement or used for construction and 

decorative blocks. [23] 

In Estonia, the oil shale is mostly used as a source of energy for the production of electricity 

becoming one of the most energy independent states in Europe. In this country, the 

production of electricity using the oil shale as a source of energy is above 84% [24]. 
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Additionally, oil shale is also used as a liquid fuel, for residential heat or for chemical 

industry. 

1.5.2.4 Environmental considerations 

In this point, some environmental aspects that have to be considered are explained. The first 

one is that the extraction of oil shale has a big environmental impact. That is why with this 

technique some metals such as mercury have been introduced into the surface/groundwater 

water, erosion increases, sulphur gas emissions rise too, and during processing and transport 

some particulates increase air pollution. 

Another disadvantage that should be considered is that for the extraction of oil shale is 

required enormous quantities of water that after this process will be polluted. 

Another aspect to keep in mind is that when oil shale is heated, it emits carbon dioxide to the 

atmosphere. That affects directly to the atmosphere contributing to the greenhouse effect 

which this greenhouse gas absorbs and retains heat in the Earth’s atmosphere. That last point 

is very important because it contributes in a sharp way to accelerating the climate change. 

[22] 

1.6 Techniques and process used for pyrolysis 

Just now the discussion is about the different techniques and process to carry out the 

pyrolysis or co-pyrolysis. Therefore, the discussion will be focused on the types of pyrolyzers 

most commonly used at present when it comes to performing this process. Modern reactors 

can be classified as fixed bed, fluidized bed and entrained bed and then they can be according 

to the design characteristics. So, the most commonly pyrolyzers now are the fixed or moving 

bed, the bubbling fluidized bed, the circulating fluidized bed (CFB), the rotating cone, the 

ablative reactor and the vacuum reactor.  

1.6.1 Type of reactor 

1.6.1.1 Fixed or moving bed reactor 

This reactor is the first pyrolyzer that appears, which operates in batch mode. In this kind of 

reactors, the heat for the thermal decomposition of the feedstock could be provided by an 

external source or internal one, as for example a resistant into the reactor. When the pyrolysis 

process is carried out, the gas flows out of the reactor because of volume expansion and the 

char product abides into the reactor. One important point to consider in this kind of reactors is 

that after pyrolysis an inert sweep gas is used in order to remove the remaining product gas 
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into the reactor. This gas could be, for example, nitrogen and has to be oxygen free. In the 

Figure 7 the scheme of this type of reactor is shown. [25] 

 

Figure 7. Fixed or moving bed reactor [26] 

1.6.1.2 Bubbling fluidized bed reactor 

This kind of reactor is easy to build, thus it is easy to scale up. Its mode of operation consists 

of introducing feedstock into a bubbling bed of hot sand or other solids. Once this has been 

realised, this bed is fluidized using one inert gas, such as nitrogen, which allows having a 

good control of temperature and a high heat transfer to the solids.  

In order to make the pyrolysis process, the necessary heat can be supplied by burning part of 

the gas product included into the bed or by burning the solid char in a different chamber and 

transferring the heat that is produced in this chamber to the remaining solids into the bed. The 

char that is contained in the bed is used as a vapour-cracking catalyst and the char particles 

that are mixed with the gas product must be separated. So as to separate these particles, the 

technique that is usually used is single or multistage cyclones. In Figure 8, the operation 

mode of this kind of reactor using biomass as a feedstock is shown. [27] 

 

Figure 8. Bubbling fluidized-bed reactor [27] 
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1.6.1.3 Circulating fluidized bed reactor (CFB) 

This reactor presents similar characteristics to the bubbling fluidized-bed reactors. The most 

important difference is that the circulating fluidized bed reactor has shorter residence time for 

chars and vapours, which implies that the gas has higher speed and there is more char in the 

bio-oil. One important point to emphasize is that this kind of reactor is used for high 

performances, although it implies more complex hydrodynamics. This special hydrodynamics 

is known as a fast bed and this kind of reactor allows good control of temperature. Another 

advantage of this kind of reactor is that the char that is pulled out from the reactor can be 

separated and burnt easily in an external reactor. After that, combustion heat is transferred to 

inert bed solids that are recycled to the reactor. 

Currently, there are two types of this kind of reactors: single circulating fluidized bed reactor 

and double circulating fluidized bed reactor. [28] 

1.6.1.4 Rotating cone reactor 

In these types of reactors, the pyrolysis process occurs due to a mechanical blend of feedstock 

and hot sand, instead of using inert gas because it is the most effective way to transfer heat. 

The process consists of feeding into the bottom this mixture of feedstock and hot sand to the 

base of the rotating cone. After that, the solids are moved up to the lip of the cone using the 

centrifuge force that pushes the particles. Once this has been realised, char and sand are sent 

to a combustor where sand is heated again. Finally, this sand is introduced into the base of the 

cone with fresh raw material. In Figure 9 the operation mode of a rotation cone reactor using 

biomass as a feedstock is shown. [29] 

 

Figure 9. Rotating cone reactor [30] 
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1.6.1.5 Ablative reactor 

The most common ablative reactors currently used are the ablative vortex reactor and the 

ablative rotating disk reactor. In this type of reactors the operation mode consists of 

transferring heat to a melt layer at the hot reactor surface with the absence of inert gas. In 

order to pressure the feedstock against a heated wall of the reactor is used the mechanical 

pressure. After that, the material in contact with the wall is melted and as it is moved away 

the residual oil evaporates as pyrolysis vapours. 

On the one hand, the most important advantage offered by this type of reactor is that the size 

used as a feedstock introduced into the reactor is much larger than other types of reactors. On 

the other hand, due to mechanical nature of the system, these types of reactors have a more 

complex configuration. [31] 

1.6.1.6 Vacuum reactor 

This type of reactor is formed by several stacked heated circular plates. The pyrolysis process 

in this reactor consists of introducing feedstock to the top plate, which is at a temperature 

about 200°C, and is falling towards the lower plates successively using means of scrapers. 

Feedstock goes through drying and pyrolysis while is moving over the plates until it reaches 

the last plate, which is approximately at 400°C. When the feedstock reaches the lowest plate, 

the char is left and during the process the use of the carried gas is not necessary. The design 

of the vacuum reactor is complex due to embedding of the vacuum pump. [32]  
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2 EXPERIMENTAL 

In this section, the experimental part is performed. In order to do this, first, the main 

characteristics of the materials that are used when performing the experiments are exposed. 

Next, it is explained the equipment and procedures to be able to perform the experiments. 

Below are some preliminary considerations where the system’s repeatability is checked and a 

signal correction is made due to the condenser affects it. Finally, the test plan that has been 

followed of the different experiments is shown. 

2.1 Materials 

In this point, it is stated about the main characteristics of the materials that are used when 

performing the experiments. Firstly, the chemical composition of oil shale and biomass gets 

defined. Next, it is explained how samples have been prepared to perform the different 

experiments and finally, the conditions that have been used during the experiments are 

presented. 

2.1.1 Oil Shale 

As it has been mentioned earlier, oil shale deposits can be found throughout the world, but 

most of it cannot be exploited economically due to their great depth. However, in Estonia this 

element is easy to exploit and is used as the country’s main power source because it 

represents roughly the 84% of the energy production [24]. In this project, the approach is 

applied to the Kukersite oil shale, which is the most common in Estonia. Table 2 shows its 

chemical composition. 

Table 2. Chemical composition of Kukersite Oil Shale 

Chemical composition of Kukersite Oil Shale 

Loss on 

ignition at 

550°C 

Ash content 

at 815°C 

(dry matter) 

Carbonate 

CO2 

Elemental composition 

C H N S O 

41.21/41.56% 47.35% 17.6% 33.78% 3.71% 0.09% 1.73% 60.69% 

 

Once the chemical composition of this material has been defined, the samples are prepared as 

it is shown below. There are two steps for preparation of the samples of Kukersite Oil Shale 

to carry out the experiments. In the first place, oil shale was crushed using a crushed jaw and 

then a sieve was used for 2 minutes in order to make the particle size between 0.25 and 

0.5 mm. 
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The conditions used to carry out the experiments with this element are three temperatures 

(550°C, 750°C and 900°C) with a sample of 5 g in the pyrolysis of oil shale and 2.1 g in the 

co-pyrolysis of oil shale and biomass. This sample used in the co-pyrolysis is due to the fact 

that the higher heating value is meant to be 1:1 energetically speaking (OS: 9.72 MJ/kg and 

BM: 20.4 MJ/kg). 

2.1.2 Biomass 

As it is known, biomass is virtually an inexhaustible renewable source of energy and 

chemical needs. In this case, the project focuses on the Scots pine as it is one of the most 

common trees in Estonia (33% of the total area of stands) [33]. Therefore, this is why this 

project is used as there is a high availability of this type of biomass. Table 3 describes its 

chemical composition. 

Table 3. Chemical composition of Scots pine 

Chemical composition of Scots pine 

Type 
Content 

(%) 

Humidity 

(%) 

Ash 

(%) 

HV, 

analytical 

sample 

(MJ/g) 

HHV 

(MJ/kg) 

LHV 

(MJ/kg) 

C 

(%) 

H 

(%) 

N 

(%) 

Bark 10.66 4.78 3.05 20.38 21.4 20.08 52.79 6.08 1.19 

Trunk/stem 89.34 4.82 0.33 - - - 50.12 6.59 0.19 

 

Once the chemical composition of this element has been defined, the samples are prepared as 

it is explained below. There are four steps for preparation of the samples of Scots pine to 

carry out the experiments. First, the Scots pine logs have been cut into smaller pieces using 

an electric able saw and an axe. After that, the cut pieces have been shredded into wood 

chips. The next step has been to pulverise the wood chips into sawdust using a laboratory 

sample pulveriser. The last step has been fractioning the sawdust in order to get a consistent 

particle size suitable for the reactor and the sample holder.  

In this case, conditions used to carry out the experiments with this element are three 

temperatures (550°C, 750°C and 900°C) with a sample of 1.7 g in the pyrolysis of biomass 

and 1 g in the co-pyrolysis of oil shale and biomass. For the same reason as the oil shale, this 

sample used in the co-pyrolysis is due to the fact that the higher heating value is meant to be 

1:1 energetically speaking. 
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2.2 Equipment and procedure 

First of all, in order to be able to do the experimental part of the setting up has to be 

explained. The most important elements that are necessary to make the co-pyrolysis process 

in order to obtain the results are the fixed bed reactor, the condenser, the gas 

chromatography-thermal conductivity detector, the rotameter, the carrier gas and the gas 

analyzers (FTIR and FID) as it is shown in Figure 10. 

 

Figure 10. Gasification Batch reactor test set up 

2.2.1 Fixed bed reactor 

The reactor used in this project is the batch reactor in order to achieve the pyrolysis at the 

desired temperatures (Figure 11). The experimental system consists of one reactor-heater, the 

temperature-control system, the gas mixing-control system and the control system. On the 

one hand, in this type of reactor the heat for the thermal decomposition of the feedstock is 

provided by an internal source. In this case, heat is provided with electric heaters. On the 

other hand, the temperature-control system is provided using the thermocouple, the gas 

mixing-control system comprises masses flow controllers and the control system is carried 

out through the computer by the LabView program.  
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One important point to consider is that this reactor has been designed to achieve a working 

temperature up to 950°C, it is one of the reasons why the experiments are carried out with the 

temperatures of 550°C, 750°C and 900°C. [34] 

The procedure of the experiments consists of the following tasks: firstly introduce nitrogen to 

the reactor in order to remove the remaining product gas and the oxygen inside the chamber; 

secondly introduce the sample holder into the balance chamber and then dropped into the 

reactor to begin the process of pyrolysis. 

 

 

Figure 11. Batch reactor 

2.2.2 Gas analyzer 

The gas analyzer is an industrial device designed so as to measure the composition of gases 

produced in the co-pyrolysis process. In this project, the used analyzer is the Gasmet DX4000 

which is usually configured to measure H2O, CO2, CO, NO, NO2, N2O, SO2, NH3, CH4, HCl, 

HF and different volatile organic compounds (VOC’s). It is possible to measure 50 gases at 

the same time. So as to measure all these gases simultaneously, this device uses the Fourier 

Transform Infrared spectroscopy (FTIR) technology. This technology identifies all the 

molecules with their characteristic absorption spectrum. That is why every molecule receives 

infrared radiation at its characteristic frequency. Besides, each molecule has its unique 

combination of atoms, which means that they produce one unique spectrum for each 

molecule when they are receiving infrared light. In spite of this, there are some molecules 

that have the same number of atoms but they can be distinguished because they are in 

different positions in exception of the diatomic elements and the noble gases. [35] 
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In this kind of technology the infrared radiation is plotted according to wavelength or 

wavenumber. In particular, this analyzer measures all the infrared radiation wavelengths at 

the same time and plots the full spectrum as it is shown in Figure 12.  

 

Figure 12. Spectrum obtained in the gas analyzer 

In addition, this device heats its corrosion resistant sample cell to 180°C to ensure that the 

sample is always kept in a gas phase so as to obtain the measures correctly. Therefore, it is 

necessary to heat up to avoid condensation since if the liquid condenses, it can contain 

corrosive compounds that would destroy the gold-plated mirrors. Finally, this device is 

equipped with software that allows obtaining the results in the computer in order to be able to 

analyze them accurately. [36] 

2.2.3 FID Analyzer 

The flame ionization detector (FID) analyzer is an industrial apparatus designed to measure 

the total composition of the hydrocarbons produced in the co-pyrolysis process. In this 

project, the analyzer used is Fidamat 6 of the Siemens company.  

The measurement of this device is not specific to a component, but to a class of materials. 

The result that shows the measures of the device is proportional to the number of the carbon 

atoms in the correspondent molecule. 

This apparatus can have different uses such as trace measurement of hydrocarbons in pure 

gases. This is possible thanks to high resolution and the minimum difference in the response 

factors. Another use can be the total content measurement of hydrocarbons in presence of 

corrosive gases. For this last application, it is important to use a filer free of wear and 

resistant to corrosion. Also it is important to use a quartz capillary as the measuring gas 
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capillary. The high operating temperature can be adjusted for the internal gas path and the 

detector also allows to measure mixtures of high boiling point and measure hydrocarbons at 

vapour concentrations up to 100%. 

In short, the use of this device has a number of advantages. The first one, as is has been said 

before, is that it has a wide range of applications. It also has very low sensibility to cross 

interference from disturbing gases, has low consumption combustion air and a low influence 

of oxygen in average value. Finally, this device has an alarm and fault system that is 

important for safety. [37] 

2.2.4 Gas chromatography – Thermal Conductivity Detector (GC-

TCD) 

Gas chromatography is a technique that is used to identify and quantify volatile substances in 

the gas phase. In this technique, the constituents of the sample are dissolved in a solvent and 

vaporized to obtain the separation of the analytes by distributing the sample between two 

phases: a stationary phase and a mobile phase. The mobile phase is a carrier gas used to 

transport the particles of the analyte through the heated column. 

Some of the most common application of this technique is the analysis of petroleum and 

derivatives and the analysis of volatile substances in different fields as it can be the 

perfumery. 

There are two types of chromatography: the gas-solid chromatography (GSC) and the gas-

liquid chromatography (GLC). Nowadays, the last one is used more widely and it can be 

called gas chromatography (GC). [38] 

In this project, the apparatus used to analyze the composition of the sample is the Shimadzu 

gas chromatograph GC-2014. This device has the characteristic that uses the thermal 

conductivity detector. This detector works measuring the change produced in the carrier gas 

thermal conductivity when the presence of the sample which has another thermal 

conductivity appears.     

 

Figure 13. Schematic diagram of a gas chromatograph [39] 
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2.2.5 Condenser 

The condenser used is the Cool-Care brand and this element of the system serves to separate 

condensable gases from non-condensable during the pyrolysis process. In addition, in order to 

improve condensation, this element is made up of two subsystems as well as ceramic and 

cotton pieces have been added to avoid shale oil leaks to the following elements of the system 

as it is shown in Figure 14. 

 

Figure 14. Condenser 

2.2.6 Rotameter 

The rotameter is a device used to measure the flow of fluid that circulates through a conduit. 

It is an indicator that fits through a graduated tube. In this case, the rotameter is used to 

regulate the flow of fluid that reaches the Tedlar® bag in order to be able to accurately 

measure the properties of the non-condensable gases. 

 

Figure 15. Rotameter 
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2.2.7 Gas Agents 

The gas used in this project is nitrogen (>99.5 vol.%) since it is an inert gas. Its use is very 

important in order to ensure that pyrolysis is carried out properly. This is because the 

introduction of this agent eliminates the presence of oxygen as this is a reactive gas. The total 

nitrogen flow used in this study is 3.8 L/min. Of this flow, 0.3 L/min goes directly to the 

reactor and 3.5 L/min is used for the dilution. 

 

Figure 16. Gas Agents 

2.3 Previous considerations 

At this point, previous considerations taken into account when carrying out of the study are 

getting exposed. First of all, the proper operation of the system has been checked while 

repeating the experiment several times and seeing similar obtained results. After that, 

concentration is known to be obtained before and after the condenser be different due to this 

element. Therefore, in this section the purpose is to find a model that allows the correction of 

this signal through a mathematical model to ensure the results be as accurate as possible. 

2.3.1 Repeatability 

As it has been mentioned before, in this section what it is intended is to demonstrate the 

proper operation of the system through the repetition of experiments. In order to achieve this 

proposal, it takes co-pyrolysis as an example, which has been made at 750°C using oil shale 

and biomass and then comparing the evolution of the concentrations of one of the gases 

during reaction. 
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Figure 17. Repeatability of the system 

As it can be seen in Figure 17, repeatability is met since in both cases the results have been 

quite similar. First, it is observed that the values of concentrations are very similar. This can 

be demonstrated by calculating the average concentration where in the case of the curve of 

the carbon monoxide (l) it takes a value of 14841 ppm and in the cases of the curve of the 

carbon monoxide (ll) it takes a value of 15801 ppm. However, there are small variations in 

the maximum values of concentrations. This is because the flow of the rotameter was 

adjusted during reaction and this causes the accentuated peaks that can be seen in the curve of 

the carbon monoxide (l). In addition, reaction times in both cases are very similar. Therefore, 

it can be concluded that the system works correctly since repeatability occurs.  

2.3.2 Signal 

As it is known, the obtained hydrocarbon concentration before and after the condenser has a 

small delay due to this device. Firstly, so as to demonstrate this phenomenon, what is done is 

to connect the FID analyzer just after the reactor and connect the gas analyzer (FTIR) just 

after the condenser to see the obtained signals. In Figure 18 the scheme that is followed to 

perform the experiment is shown. 
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Figure 18. Set up to check the signal 

Once everything has been connected correctly, what is done is to inject propane through a 

syringe at room temperature in order to see which the delay between both signals is. Once 

this has been done, the obtained signals are the ones that are shown below in Figure 19: 

 

Figure 19. Signal delay 
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As it can be seen, what is predicted is confirmed where the signals obtained before and after 

the condenser is different. It is for this reason that a correction of this FTIR signal is made 

using the mathematical model more adjusted to the reality considering that the condenser 

behaves like a continuous stirred tank reactor (CSTR). [40]  

In this model, what is intended is to see how the concentration within the condenser changes 

during the reaction time. So, the goal of this model is to get one expression that links both 

signals. In order to get this, the following mathematical model is used: 

𝑉

𝑞
·

𝑑𝐶𝐴

𝑑𝑡
= 𝐶𝐴,𝑖𝑛 − 𝐶𝐴,𝑜𝑢𝑡 (1) 

Where V is the Volume of the condenser (L), q is the volumetric flow rate (L/s), CA,in is 

concentration that enters to the condenser (ppm), CA,out concentration that goes out from the 

condenser (ppm) and t is the time (s). So, assuming perfect mixing in the condenser such that 

CA,out = CA then the equation (1) gets integrated: 

∫
𝑑𝐶𝐴

𝐶𝐴,𝑜𝑢𝑡 − 𝐶𝐴,𝑖𝑛

𝐶𝐴2

𝐶𝐴1

= −
𝑞

𝑉
· ∫ 𝑑𝑡

𝑡

0

 (2) 

Solving the integral, the equation (3) is obtained: 

ln
𝐶𝐴2 − 𝐶𝐴,𝑖𝑛

𝐶𝐴1 − 𝐶𝐴,𝑖𝑛
= −

𝑞

𝑉
· 𝑡 (3) 

And: 

𝐶𝐴2 − 𝐶𝐴,𝑖𝑛 = (𝐶𝐴1 − 𝐶𝐴,𝑖𝑛) · 𝑒−
𝑞

𝑉
·𝑡 = 𝐶𝐴1 · 𝑒−

𝑞

𝑉
·𝑡 − 𝐶𝐴,𝑖𝑛 · 𝑒−

𝑞

𝑉
·𝑡

 (4) 

𝐶𝐴2 = 𝐶𝐴,𝑖𝑛 + 𝐶𝐴1 · 𝑒−
𝑞

𝑉
·𝑡 − 𝐶𝐴,𝑖𝑛 · 𝑒−

𝑞

𝑉
·𝑡 = 𝐶𝐴1 · 𝑒−

𝑞

𝑉
·𝑡 + 𝐶𝐴,𝑖𝑛 · (1 − 𝑒−

𝑞

𝑉
·𝑡) (5) 

Resting CA1 to both sides of the equation (5): 

𝐶𝐴2 − 𝐶𝐴1 = 𝐶𝐴1 · 𝑒−
𝑞

𝑉
·𝑡 + 𝐶𝐴,𝑖𝑛 · (1 − 𝑒−

𝑞

𝑉
·𝑡) − 𝐶𝐴1 = 

= 𝐶𝐴,𝑖𝑛 · (1 − 𝑒−
𝑞

𝑉
·𝑡) − 𝐶𝐴1 · (1 − 𝑒−

𝑞

𝑉
·𝑡) = (𝐶𝐴,𝑖𝑛 − 𝐶𝐴1) · (1 − 𝑒−

𝑞

𝑉
·𝑡) 

(6) 

So, the equation linking both signals is: 

𝐶𝐴,𝑖𝑛 = 𝐶𝐴1 +
𝐶𝐴2 − 𝐶𝐴1

1 − 𝑒−
𝑞

𝑉
·𝑡

 (7) 

Where that CA1 is concentration that goes out from the condenser in the time before and CA2 

is the concentration that goes out from the condenser the time after. So, in order to express 

equation (7) clearly: 

𝐶𝐴,𝑖𝑛 = 𝐶𝐴,𝑜𝑢𝑡(𝑡1) +
𝐶𝐴,𝑜𝑢𝑡(𝑡2) − 𝐶𝐴,𝑜𝑢𝑡(𝑡1)

1 − 𝑒−
𝑞

𝑉
·𝑡

 (8) 
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Now, using equation (8), the corrected signal is obtained as it can be seen in Figure 20: 

 

Figure 20. Signal corrected 

However, in this project the signal correction will not be performed, but it has been 

considered convenient to mention. 

2.4 Test plan 

In Table 4 the test plan is shown, which will be done in order to achieve the goals that are 

fixed in the thesis. These temperatures should be said to have been chosen since it is known 

that the temperature of 550ºC is the one that gives maximum yield in co-pyrolysis [2] and the 

other two temperatures, those of 750ºC and 900ºC, in order to compare with the first 

temperature. As far as selected materials are concerned, apart from being two local materials, 

it has been considered interesting how these materials behave when they are mixed together. 

Finally, the gas agent chosen is the nitrogen because it is one of the most typical inert gas 

used for pyrolysis.  
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Table 4. Test plan 

Test plan 

Sample Temperature (°C) Gas agent Date 

OS 

550 N2 17/04/2019 

750 N2 29/04/2019 

900 N2 22/04/2019 

BM 

550 N2 24/04/2019 

750 N2 24/04/2019 

900 N2 24/04/2019 

OS + BM 

550 N2 24/04/2019 

750 N2 02/05/2019 

900 N2 02/05/2019 
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3 RESULTS AND DISCUSSION 

In this section the results and the discussion are exposed after the experimental part. First, it 

is analyzed the effect of the mass losses in order to compare them with other experiments that 

have already been carried out in this field. Next, is to characterize the gases making a 

comparison of the gases at different temperatures to see which the most important 

components during the evolution of the reactions are. Moreover, the concentration per mass 

of organic is calculated and the measured and calculated concentrations in co-pyrolysis are 

compared. In addition, the composition of the gases is analyzed, using the GC-TCD, and a 

comparison between the composition of the gas measured and calculated is performed. 

Finally, the evolution of the char obtained in each experiment for the different temperatures 

used is shown. 

3.1 Mass losses 

This section explains the mass losses obtained during the different experiments. Firstly, it is 

necessary to define how mass losses have been calculated. To do this, expressions (9) and 

(10) have been used: 

𝑀𝑎𝑠𝑠 𝑙𝑜𝑠𝑠𝑒𝑠 = 𝑆𝑖 − 𝑆𝑓 [𝑔] (9) 

𝑀𝑎𝑠𝑠 𝑙𝑜𝑠𝑠𝑒𝑠 =
𝑆𝑖 − 𝑆𝑓

𝑆𝑖
· 100 [%] (10) 

Where parameter “Si” is the weight of the initial sample and parameter “Sf” is the weight of 

the sample after pyrolysis. So, the results obtained are presented in the Table 5. 

Table 5. Mass losses 

Sample Temperature (°C) Si (g) Sf (g) Mass losses (g) 
Mass losses (wt. 

%) 

BM 

550 1.6761 0.3251 1.3510 80.60 

750 1.7411 0.2533 1.4878 85.45 

900 1.6815 0.2082 1.4733 87.62 

OS 

550 4.9186 3.7116 1.2070 24.54 

750 4.9734 3.6536 1.3198 26.54 

900 5.0536 2.9191 2.1345 42.24 

OS + BM 

550 3.0975 1.8723 1.2252 39.56 

750 3.1240 1.6661 1.4579 46.67 

900 3.0959 1.2240 1.8719 60.46 
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It should be added that in some of the experiments they were repeated to check the validity of 

the mass losses. For example, in the experiment of the pyrolysis of oil shale at 550ºC it was 

repeated, obtaining losses of 25.21%. 

As it can be seen in the previous table (Table 5), as the temperature increases, the massive 

losses are increased. In order to demonstrate this, in Figure 21 the evolution of the losses with 

the temperature is shown more clearly. 

 

Figure 21. Evolution of the mass losses with the temperature 

As it can be seen as for pyrolysis of biomass, the mass losses are between 80-88%. In order to 

compare the results of the mass losses in pyrolysis of biomass from the literature of the article 

[41] where it is explained the effect on the temperature on biochar yield, expressed in wt% of 

biomass feedstock. Figure 2 of this article [41] shows this evolution and is shown below 

(Figure 22). 

 

Figure 22. The effect of HTT on biochar yield, expressed in wt% of biomass feedstock, on dry and ash-

free basis (Daf). Biochar samples prepared from wood (◊), straw (□), green waste (∆) and algae (○) [41] 
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As it can be seen in Figure 22, the biochar yield at temperatures of 550ºC and 750ºC using 

wood as a feedstock are 25% and 20% approximately. That means that the mass losses of this 

wood biomass are approximately 75% for a temperature of 550ºC and 80% for a temperature 

of 750ºC. According to the results obtained in experiments, mass losses were 80.60% for a 

temperature of 550ºC and 85.45% for a temperature of 750ºC. If the comparison is made 

between results, it can be observed that in both cases a similar trend is followed, although 

there are some small differences in percentages because the materials do not have exactly the 

same chemical composition. Therefore, results can be said to be valid because the trend of 

both experiments is very similar.  

As for pyrolysis of oil shale, the mass losses are between 24-42%. In order to compare the 

results of the mass losses in the pyrolysis of oil shale from the literature of the study [42] 

where it is analyzed the mass change in function of the temperature for oil shale of different 

origins in Figure 7. 

 

Figure 23. Thermographs of the analyzed oil shale samples [42] 

As it can be seen in the Figure 23, the residual mass of the Estonian oil shale at the 

temperature of 550ºC is approximately 75%, at the temperature of 750ºC is 73% and at the 

temperature of 900ºC is 55%. That means that the mass losses of this oil shale are 

approximately 25% for a temperature of 550ºC, 27% for a temperature of 750ºC and 45% for 

a temperature of 900ºC. According to the results obtained in the current study, mass losses 

were 24.54% for a temperature of 550ºC, 26.54% for a temperature of 750ºC and 42.24% for 
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a temperature of 900ºC. If comparison is made between results, it can be observed that in 

both cases results are practically identical. So, results can be said to be valid because in both 

experiments these have been very similar.  

Finally, in the case of co-pyrolysis between biomass and oil shale, these losses are between 

40-60%. In this case, to compare the losses obtained, what is done is to calculate the 

theoretical value of losses of co-pyrolysis from the obtained losses in pyrolysis of biomass 

and oil shale and then compare this value with that has been obtained in the experiments of 

the losses in co-pyrolysis. In order to do this, the sample applied to co-pyrolysis (1 g of Scots 

pine and 2.1 g of oil shale) is multiplied by the percentage of mass losses in each pyrolysis 

for each temperature. Once this has been done, it has to be divided by the total sample mass 

(3.1 g of Scots pine and oil shale) as it is indicated in the equation (11). 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝐵𝑀 (𝑔) · 𝑀𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 (%) + 𝑆𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑂𝑆 (𝑔) · 𝑀𝑎𝑠𝑠 𝑙𝑜𝑠𝑠 (%)

𝑇𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠 (𝑔)
 [%] (11) 

So, solving the equation (11) in each temperature, the theoretical mass losses that are 

obtained in the co-pyrolysis are 42.62% for a temperature of 550ºC, 45.54% for a temperature 

of 750ºC and 56.88% for a temperature of 900ºC. According to the results obtained in the 

experiments, mass losses were 39.56% for a temperature of 550ºC, 46.67% for a temperature 

of 750ºC and 60.46% for a temperature of 900ºC. If the comparison is made among the 

results, it can be observed that in both cases the results are very similar. So, results for the co-

pyrolysis can be said to be valid. 

3.2 Characterization of gases 

In this section, results obtained during the experiments in the laboratory are analysed. Firstly, 

comparison of the different types of gases is made that have been obtained at different 

temperatures in the FTIR. In order to do this, one of the elements is analysed to be able to see 

in more detail the evolution of reaction for each temperature. After that, concentration of 

some of the gases per unit of organic mass is also calculated using the values obtained in the 

FTIR. In addition, the percentage composition of each type of gas obtained through the GC-

TCD is analysed and compared with theoretical value. 

3.2.1 Comparison of the gases at different temperatures 

As it has been mentioned above, at this point the evolution of different pyrolysis gases at 

different temperatures will be compared. However, at first, the evolution of pyrolysis of 
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biomass (Figure 24 and Figure 25), pyrolysis of oil shale (Figure 26 and Figure 27) and co-

pyrolysis of biomass and oil shale (Figure 28 and Figure 29) at a temperature of 750°C are 

shown in order to see what gases are obtained in these reactions and to compare if the results 

obtained are similar to those that the literature states. 

 

Figure 24. Pyrolysis evolved gas compounds of biomass at 750°C (1) 

 

Figure 25. Pyrolysis evolved gas compounds of biomass at 750°C (2) 

The main components obtained in the pyrolysis of biomass at 750°C are carbon monoxide 

(CO), mixture of hydrocarbons (TOC’s), methane (CH4), ethylene (C2H4) and ethane (C2H6). 

These components have also been obtained with other temperatures (550°C and 900°C) but 
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due to the fact that they work at different temperatures, reactions are different as it was 

expected. It should be added that the mixture of hydrocarbons are volatile organic compounds 

(VOC) with the exception of methane (CH4). 

 

Figure 26. Pyrolysis evolved gas compounds of oil shale at 750°C (1) 

 

Figure 27. Pyrolysis evolved gas compounds of oil shale at 750°C (2) 

In this case, the main components obtained in the pyrolysis of oil shale at 750°C are mixture 

of hydrocarbons (TOC’s), methane (CH4), ethylene (C2H4) and ethane (C2H6). As in the 

previous case, these components have also been obtained with the other temperatures (550°C 

and 900°C) but the reactions are different for the same reason as before. 
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Figure 28. Co-pyrolysis evolved gas compounds of oil shale and biomass at 750°C (1) 

 

Figure 29. Co-pyrolysis evolved gas compounds of oil shale and biomass at 750°C (2) 

In this case, the main components obtained in co-pyrolysis of oil shale and biomass at 750°C 

are mixture of hydrocarbons (TOC’s), carbon monoxide (CO), methane (CH4), ethylene 

(C2H4) and ethane (C2H6). As in the previous cases, these components have also been 
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obtained with the other temperatures (550°C and 900°C) but reactions are different for the 

same reason as before. 

Once the components obtained in pyrolysis processes have been seen, now differences in the 

pyrolysis between the different temperatures would be analyzed. In order to do this, it is 

compared the evolution of methane gas in different environments. 

 

Figure 30. Pyrolysis of biomass 

As it can be seen in Figure 30, as the temperature of the process is increased, reaction time 

decreases according to what has been mentioned in the theoretical part. These times are 

approximately 18 minutes for the temperature of 550°C, 14 minutes for the temperature of 

750°C and 10 minutes for temperature of 900°C. In addition, it can be observed that when the 

temperature increases, the concentration increase is pronounced. This is because reaction 

time is smaller at higher temperatures and, therefore, reaction evolves faster.  
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Figure 31. Pyrolysis of Oil Shale 

As it can be perceived in Figure 31, as the temperature of the process is increased, reaction 

time also decreases. These times are approximately 21 minutes for the temperature of 550°C, 

17 minutes for the temperature of 750°C and 14 minutes for the temperature of 900°C. Like 

in pyrolysis of the biomass, it can be seen that when the temperature increases, the 

concentration increase is pronounced. In this case, the difference between concentrations at 

temperatures of 750°C and 900°C is not as pronounced as in the previous case. 

 

Figure 32. Co-pyrolysis of Oil Shale and Biomass 
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As it can be seen in Figure 32, as the temperature of the process is increased, reaction time 

also decreases. These times are approximately 18 minutes for the temperature of 550°C, 10 

minutes for the temperature of 750°C and 7 minutes for the temperature of 900°C. Like in the 

last cases, when the temperature increases can be seen, concentration increases pronounced. 

In order to demonstrate this last phenomenon in Figure 33 evolution of the average 

concentration is shown according to the temperature for carbon monoxide (CO) and for 

methane (CH4). 

 

Figure 33. Evolution of the average concentration according to the temperature 

 

3.2.2 Concentration per mass of organic matter 

In this point, concentration of some of the gases per unit of organic mass is calculated using 

the data obtained in the FTIR. The gases that are calculated are carbon monoxide (CO), 

methane (CH4), ethane (C2H6), ethylene (C2H4) and propane (C3H8). 

In order to achieve this purpose, what is needed to do is to calculate the average value of the 

concentration of each gas during reaction time and divide this value into the mass of organic 

matter. 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑎𝑠

𝑀𝑎𝑠𝑠 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑖𝑐
=

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

(𝑆𝑖 − 𝑆𝑓)
 [

𝑝𝑝𝑚
𝑔⁄ ] 

(12) 
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Solving the equation (12) for each gas the values obtained are in Table 6. 

Table 6. Concentration per mass of organic 

Sample 
Temperature 

(°C) 

Concentration/mass of organic [ppm/g] 

Carbon 

monoxide  

(CO) 

Methane 

(CH4) 

Ethane 

(C2H6) 

Ethylene 

(C2H4) 

Propane 

(C3H8) 

BM 

550 22013 6205 1502 659 360 

750 68193 18138 5110 4491 1058 

900 175496 33219 7376 13184 956 

OS 

550 4215 7683 8161 15155 1938 

750 23265 34370 17473 41812 6445 

900 22498 16346 6541 26465 371 

OS + BM 

550 12783 6729 4628 4704 659 

750 57079 24444 11522 25995 2273 

900 76390 26561 8151 22655 1269 

 

As it can be perceived in the last table (Table 6), as the temperature increases, the 

concentration of lower molecular weight compounds is increased. In order to check this data, 

what is done is to compare them with what is said in the literature [43].  

 

Figure 34. Effect of temperature and pressure on equilibrium gas composition [43] 

As it can be seen in the previous figure (Figure 34), this phenomenon is confirmed since as 

the temperature increases, the concentration of lower molecular weight compounds is 

increased. Therefore, the results can be considered as valid. 
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3.2.3 Comparison between the concentration measured and calculated 

in the co-pyrolysis 

In this section, comparison between the concentrations measured and calculated using the 

FTIR data in co-pyrolysis is analysed. In order to achieve this purpose, the amount of organic 

mass of biomass (Equation (13)) and oil shale (Equation (14)) is calculated for each 

temperature, knowing that the sample of oil shale is 2.1 g and the sample of Scots pine is 1 g. 

Sample masses before (Si) and after (Sf) pyrolysis are used for oil shale and biomass. 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑂𝑀𝐵𝑀) =
1

𝑆𝑖
· (𝑆𝑖 − 𝑆𝑓) [𝑔] (13) 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙 𝑠ℎ𝑎𝑙𝑒 (𝑂𝑀𝑂𝑆) =
2.1

𝑆𝑖
· (𝑆𝑖 − 𝑆𝑓) [𝑔] (14) 

It should be added that, as for oil shale, the equation (14) is not met when the temperature is 

900°C due to carbonates has begun to decompose. Therefore, by this temperature the organic 

mass is calculated from ignition losses obtained in chemical composition of the Kukersite Oil 

Shale (41.4%). 

𝑂𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑜𝑖𝑙 𝑠ℎ𝑎𝑙𝑒 (𝑂𝑀𝑂𝑆) = 2.1 · 0.414 [𝑔] (15) 

Once this clarification has been made, in order to determine theoretical concentrations, the 

concentration measured in pyrolysis has to be multiplied by organic mass of each component 

for each temperature according to the equation (16). 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑂𝑀𝐵𝑀 · 𝐶𝐵𝑀 + 𝑂𝑀𝑂𝑆 · 𝐶𝑂𝑆 [𝑝𝑝𝑚] (16) 

Where OMBM is the organic mass of biomass (g), CBM is the measured concentration of 

biomass in each temperature (ppm/g), OMOS is organic mass of oil shale (g) and COS is 

measured concentration of oil shale in each temperature (ppm/g). 

So, the results obtained for the co-pyrolysis are shown in Table 7: 

Table 7. Concentration calculated in the co-pyrolysis 

Sample 
T 

(°C) 

OMOS 

(g) 

OMBM 

(g) 

Concentration (ppm) 

Carbon 

monoxide 

(CO) 

Methane  

(CH4) 

Ethane 

(C2H6) 

Ethylene 

(C2H4) 

Propane 

(C3H8) 

OS + BM 

550 0.52 0.81 19915 8961 5416 8341 1289 

750 0.56 0.85 71238 34653 14104 27139 4496 

900 0.87 0.88 173326 43318 12149 34561 1160 
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In Table 8 the measured results are shown for co-pyrolysis: 

Table 8. Concentration measured in the co-pyrolysis 

Sample T (°C) 

Concentration (ppm) 

Carbon 

monoxide 

(CO) 

Methane  

(CH4) 

Ethane 

(C2H6) 

Ethylene 

(C2H4) 

Propane 

(C3H8) 

OS + BM 

550 15662 8245 5670 5764 807 

750 83215 35636 16797 37898 3314 

900 142995 49720 15257 42408 2375 

 

As it can be seen in both tables above (Table 7 and Table 8), the results of the measured and 

calculated concentration of carbon monoxide (CO), methane (CH4), ethane (C2H6), ethylene 

(C2H4) and propane (C3H8) diverge. This is because there is a certain error as for accuracy 

due to the different devices when performing the experiment. However, it can be observed 

that in both cases the concentrations follow a similar trend in each gas. Therefore, the results 

can be valid even if this uncertain. 

Finally, in order to compare the results of concentration obtained what is done is to compare 

them with literature. To do this, concentration obtained is used in pyrolysis of oil shale and 

compared to the values of the article [44]. This article states about the Huadian oil shale and 

in Table 3 the concentration in mg/Nm3 of the different hydrocarbon gases obtained in the 

pyrolysis of oil shale for different temperatures is shown. Since the results obtained in the 

experiments are in ppm, they must be changed to mg/Nm3 to obtain comparison. In order to 

achieve this, the equation (17) is used: 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [
𝑚𝑔

𝑁𝑚3⁄ ] =
𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 [𝑝𝑝𝑚] · 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 [

𝑔
𝑚𝑜𝑙⁄ ]

𝑀𝑜𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 [𝑁𝑚3

𝑚𝑜𝑙⁄ ]
 (17) 

Table 9 shows the resolution of the equation (17) for the concentration obtained in the 

pyrolysis of oil shale at the temperature of 550ºC for methane, ethane and propane and Table 

10 shows the results obtained in the study [44]: 

Table 9. Concentration in pyrolysis of oil shale at 550ºC 

Concentration (mg/Nm3) 

Methane  

(CH4) 
Ethane (C2H6) Propane (C3H8) 

6624 13192 4595 
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Table 10. Concentration in pyrolysis of oil shale at 520ºC 

Concentration (mg/Nm3) 

Methane  

(CH4) 
Ethane (C2H6) Propane (C3H8) 

8844 1114 790 

 

Comparing the results obtained in the Table 9 with the results obtained in the article [44] at 

the temperature of 520ºC (Table 10) it can be perceived that there is a big difference. This is 

because the molecular structures (or Building blocks) of the oil shale are different. 

3.2.4 Composition of the gases 

In this section the composition of the non-condensable gases obtained through the Gas 

chromatography – Thermal Conductivity Detector (GC-TCD) is shown. Therefore, the results 

obtained with this device are those that are shown in Table 11 and Table 12: 

Table 11. Concentration of the gases (1) 

Sample Temperature (°C) 
Concentration of the gases (vol. %) 

H2 O2 N2 CO CH4 CO2 

BM 

550 0.01 2.15 91.25 1.70 0.86 3.85 

750 0.01 4.24 88.91 2.08 1.28 3.09 

900 0.05 2.61 81.23 6.61 3.81 4.11 

OS 

550 0.00 0.61 98.48 0.14 - 0.42 

750 0.01 3.15 90.44 0.58 1.15 2.72 

900 0.01 1.90 77.99 3.30 2.07 11.06 

OS+BM 

550 0.00 1.51 96.32 0.53 0.00 1.37 

750 0.01 2.97 88.60 1.84 1.80 3.12 

900 0.04 2.77 65.92 8.80 6.66 9.38 
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Table 12. Concentration of the gases (2) 

Sample 
Temperature 

(°C) 

Concentration of the gases (vol. %) 

C2H4 C2H6 C3H6 C3H8 i-C4H10 n-C4H10 

BM 

550 0.00 0.10 0.00 0.04 0.00 0.00 

750 0.21 0.13 0.00 0.05 0.00 0.00 

900 1.01 0.39 0.00 0.18 0.01 0.00 

OS 

550 0.08 0.11 0.04 0.11 0.11 

750 0.79 0.66 0.04 0.34 0.07 0.06 

900 1.99 0.96 0.06 0.52 0.06 0.08 

OS+BM 

550 0.06 0.14 0.00 0.06 0.00 0.00 

750 0.76 0.53 0.04 0.23 0.05 0.05 

900 3.78 1.59 0.05 0.80 0.10 0.12 

3.2.5 Comparison between the composition of the gases measured and 

calculated 

In this section, is realized the comparison between the composition of the gases measured in 

the GC-TCD and the composition of gases calculated with the values obtained in FTIR. The 

composition of theoretical gases has been calculated by passing the value of the average 

concentration for each temperature from parts per million to percentage following the 

equation (18). 

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛

10000
 [%] (18) 

So, in Table 13 the results of calculating the theoretical composition for the carbon monoxide 

(CO), methane (CH4), ethane (C2H6), ethylene (C2H4) and propane (C3H8) are shown: 

Table 13. Concentration of the gases calculated with the data of the FTIR 

Sample 
Temperature 

(°C) 

Concentration of the gases (vol. %) 

CO CH4 C2H6 C2H4 C3H8 

BM 

550 2.97 0.84 0.20 0.09 0.05 

750 10.15 2.70 0.76 0.67 0.16 

900 25.86 4.89 1.09 1.94 0.14 

OS 

550 0.51 0.93 0.99 1.83 0.23 

750 3.07 4.54 2.31 5.52 0.85 

900 4.80 3.49 1.40 5.65 0.08 

OS + BM 

550 1.57 0.82 0.57 0.58 0.08 

750 8.32 3.56 1.68 3.79 0.33 

900 14.30 4.97 1.53 4.24 0.24 
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In order to compare the concentration of the gases measured (GC-TCD) and calculated 

(FTIR), Table 14 and Table 15 with the concentration ratios of each gas in function of the 

carbon monoxide are shown to see what the differences are. 

 
Table 14. Concentration ratios measured 

Sample 
Temperature 

(ºC) 

Concentration ratios measured 

CH4/CO C2H6/CO C2H4/CO C3H8/CO 

BM 

550 0.51 0.06 0.00 0.02 

750 0.62 0.06 0.10 0.02 

900 0.58 0.06 0.15 0.03 

OS 

550 - 0.81 0.59 0.78 

750 1.98 1.14 1.36 0.59 

900 0.63 0.29 0.60 0.16 

OS + BM 

550 0.00 0.26 0.11 0.11 

750 0.98 0.29 0.41 0.13 

900 0.76 0.18 0.43 0.09 

 

Table 15. Concentration ratios calculated 

Sample 
Temperature 

(ºC) 

Concentration ratios calculated 

CH4/CO C2H6/CO C2H4/CO C3H8/CO 

BM 

550 0.28 0.07 0.03 0.02 

750 0.27 0.07 0.07 0.02 

900 0.19 0.04 0.08 0.01 

OS 

550 1.82 1.94 3.60 0.46 

750 1.48 0.75 1.80 0.28 

900 0.73 0.29 1.18 0.02 

OS + BM 

550 0.53 0.36 0.37 0.05 

750 0.43 0.20 0.46 0.04 

900 0.35 0.11 0.30 0.02 

 

As it can be seen in the two previous tables (Table 14 and Table 15) there are quite a few 

differences between the concentration ratios. Therefore, what follows is a table (Table 16) 

with the values extracted from the literature in the pyrolysis of biomass in order to be able to 

compare them with the results obtained. 
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Table 16. Concentration ratios obtained from the literature 

Reference Sample Temperature (°C) 
Concentration ratios 

CH4/CO 

[45] Wood 900 0.17 

[46] Wood 900 0.73 

[47] Siberian elm 
600 0.35 

700 0.46 

[48] Wood chips 

500 0.93 

750 0.91 

1000 0.12 

 

As it can be observed in Table 16, in the literature there are also some differences between 

the different concentration ratios. This can be seen clearly in the case of wood at a 

temperature of 900ºC where the difference between the concentration values is very high with 

values of 0.17 in the first case and 0.73 in the second one. However, if values are compared 

with the calculated and measured concentration ratios (Table 14 and Table 15) the values 

tend to be more similar to the calculated values (Table 15).  

One the one hand, one of the reasons why measured concentration values, using Gas 

chromatography – Thermal Conductivity Detector (GC-TCD), may be wrong is that they 

have been measured much later since the experiments were performed as it is shown in the 

following table (Table 17): 

Table 17. Measurement of the concentration 

Sample Temperature (°C) 
Date of the 

experiment 

Date of the 

measurement of 

the concentration 

OS 

550 17/04/2019 24/04/2019 

750 29/04/2019 09/05/2019 

900 22/04/2019 09/05/2019 

BM 

550 24/04/2019 14/05/2019 

750 24/04/2019 09/05/2019 

900 24/04/2019 14/05/2019 

OS + BM 

550 24/04/2019 14/05/2019 

750 02/05/2019 24/05/2019 

900 02/05/2019 24/05/2019 
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This delay between measures can cause that some gases to enter or leave from the Tedlar® 

bag during the waiting days of the measures, which means that the measured composition of 

gases during the experiments may change. 

On the other hand, in the case of the FTIR the results are more accurate. However, this cannot 

always be ensured since during the realization of the experiments, not all measures were 

within the range of calibration and this is a problem. To solve this problem there are two 

possible solutions. The first is to recalibrate the ranges with respect to those currently 

existing. The second and most interesting one is to increase dilution so that the total 

concentration values are less than the range at which they are currently calibrated. Therefore, 

in conclusion it can be said that between the two measures the FTIR is the most accurate but 

not in all experiments ensures that the measurements are within the range of calibration. 
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3.3 Char obtained 

In this point, in order to see the differences of the char obtained in each experiment, this solid 

residue is shown in the following figures (Figure 35-Figure 43). 

 

Figure 35. Char obtained with 

Biomass at 550ºC 

 

Figure 36. Char obtained with 

Biomass at 750ºC 

 

Figure 37. Char obtained with 

Biomass at 900ºC 

 

Figure 38. Char obtained with Oil 

Shale at 550ºC 

 

Figure 39. Char obtained with Oil 

Shale at 750ºC 

 

Figure 40. Char obtained with 

Oil Shale at 900ºC 

 

Figure 41. Char obtained with 

Biomass and Oil Shale at 550ºC 

 

Figure 42. Char obtained with 

Biomass and Oil Shale at 750ºC 

 

Figure 43. Char obtained with 

Biomass and Oil Shale at 900ºC 
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CONCLUSIONS 

In this project it has been carried out the pyrolysis of oil shale, the pyrolysis of Scots pine and 

the co-pyrolysis of oil shale and Scots pine using the batch reactor. The conditions used to 

perform the experimental part have been to use nitrogen as an inert gas in order to ensure the 

pyrolysis at different temperatures (550ºC, 750ºC and 900ºC). 

Mass losses that have been obtained in the experiments are between 80.60% and 87.62% for 

biomass pyrolysis, between 24.54% and 42.24% for pyrolysis of oil shale and between 

39.56% and 60.46% for co-pyrolysis of oil shale and biomass. Therefore, it has been shown 

that these values are in agreement with the literature data, so they can be considered as valid 

results. In addition, it has been observed that as the temperature increases, the mass loss also 

increases. 

Next, a gas characterization has been performed using the FTIR. In order to do this, first, it 

has been seen which the most important hydrocarbons during the different reactions at a 

temperature of 750ºC were. Based on the literature it can be said that the most important 

hydrocarbons are carbon monoxide (CO), carbon dioxide (CO2), acetylene (C2H2), ethylene 

(C2H4), ethane (C2H6), benzene (C6H6) and methane (CH4). Noting the results obtained in the 

pyrolysis of biomass and co-pyrolysis of oil shale and biomass, it has been observed that the 

most prominent components are carbon monoxide (CO), methane (CH4), ethylene (C2H4) and 

ethane (C2H6) which are the main constituents of the mixture of hydrocarbons (TOC’s). In 

the case of pyrolysis of oil shale, it has been seen that the most important hydrocarbons are 

methane (CH4), ethylene (C2H4) and ethane (C2H6) (which form most of the mixture of 

hydrocarbons (TOC’s)). Therefore, these results agree with the literature data. In addition, it 

can be observed that in all three cases the most important components are very similar except 

for carbon monoxide (CO) in the case of pyrolysis of oil shale. 

In the following part, it has been analyzed how the different pyrolysis reactions evolve at 

different temperatures. In order to do this, it has been compared the evolution of methane gas 

(CH4) in the different environments. It has been concluded that as the temperature of the 

process is increased, the reaction time decreases according to what has been mentioned in the 

theoretical part. It also can be observed that when the temperature increases, the 

concentration increases sharply. This is because the reaction time is shorter at higher 

temperatures and therefore, the reaction evolves faster. 

Also the concentration per mass of organic of the carbon monoxide (CO), the methane (CH4), 

the ethane (C2H6), the ethylene (C2H4) and the propane (C3H8) has been calculated. Based on 
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the results it could be concluded that as the temperature increases, the concentration of lower 

molecular weight compounds is increased. In addition, measured and calculated 

concentrations in co-pyrolysis have been compared. In this comparison, it has been seen that 

although there is a small difference between the values in both cases the concentrations 

follow a similar trend in each gas. 

Next, it has been compared the composition of the gases using the GC-TCD and the values 

measured with this device have been compared with those calculated from the concentration 

ratios (obtained in the FTIR). At this point, it has been seen a discrepancy between measured 

and calculated values. However, it has been shown that in the literature there are also 

differences between the values of concentration ratios for similar cases. In addition, the 

measured values (obtained in the GC-TCD) can be erroneous because the measurements were 

performed much later than the experiments were carried out. This may cause that some gases 

to enter or leave from the Tedlar® bag during the waiting days of the measures and this 

means that the measured composition of the gases during the experiments may change. 

As for the results calculated with the FTIR these are more recommended even though this 

cannot always be ensured since during the realization of the experiments, not all measures 

were within the range of calibration and this is a problem. To solve this problem there are two 

possible solutions: recalibrate the ranges with respect to those currently existing or increase 

the dilution so that the total concentration values are less than the range at which they are 

currently calibrated. 

Finally, the future plans for this project could be the improvement of the set-up of the reactor 

since there were some cold regions inside of it that caused the partial condensation of the 

sample during the pyrolysis process. Another possible thing to do is improve the gas analysis 

as there has been a significant delay between the experiments (Tedlar® bag) and the 

measures (GC-TCD). 
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