
School of Information Technologies

Department of Computer Systems

Yevhen Bondarenko

Development of Digital Twin-based
Learning from Demonstration System

for Industrial Robots

Master’s Thesis

Supervisors: Vladimir Kuts
Ph.D.

Eduard Petlenkov
Ph.D.

TALLINN 2021

Declaration of Originality

Declaration: I hereby declare that this thesis, my original investigation and achieve-
ment, submitted for the Master’s degree at Tallinn University of Technology, has not
been submitted for any degree or examination.

Deklareerin, et käesolev diplomitöö, mis on minu iseseisva töö tulemus, on esita-
tud Tallinna Tehnikaülikooli magistrikraadi taotlemiseks ja selle alusel ei ole varem
taotletud akadeemilist kraadi.

Yevhen Bondarenko

Date: May 19, 2021

Abstract

Learning from Demonstration (LfD) is an approach to robot programming where the
machine aims to replicate the task presented by a human without being explicitly
programmed to execute this task. While being an effective way to create complex
robot routines even for users without coding skills, most LfD implementations heavily
rely on sensors for the robot to capture the state of the surrounding world and the
task being demonstrated. This work presents an alternative LfD system based on a
fully simulated 3D environment. Simulation eliminates the need for real-life sensors
on the robot, serves as a unified medium for recording demonstrated tasks, and
facilitates sharing of the produced solutions between different types of robotic cells
with minimal to no reconfiguration. The proposed system also features a Virtual
Reality interface which allows the operator to interact with the environment in
a natural way when recording task demonstrations. The system is built on top
of commonly available software such as Unity engine, Robot Operating System,
ROS-Industrial and MoveIt motion planning framework.

The thesis is in English and contains 67 pages of text, 8 sections, 12 figures and 2
tables.

3

Annotatsioon

Õppimine demonstratsioonist (LfD) on lähenemine robotite programmeerimisele,
kus masina eesmärk on korrata ehk imiteerida inimesega esitatud ülesannet ilma,
et oleks selle ülesande täitmiseks robot protsessid detailselt programmeeritud. See
on tõhus viis keerukate robotirutiinide seadistamiseks ka programmeerimisoskusteta
kasutajate jaoks, ning enamik LfD rakendusi põhineb robotiga liidestatud anduritele,
mis analüüsivad ja salvestavad ümbritseva maailma olekut ja aitavad demonstreerida
masinale ülesannet. Antud töös esitatakse alternatiivse LfD süsteemi, mis põhineb
täies mahus simuleeritud 3D-keskkonnale. Simulatsioonil pole vajadust robotile
paigaldatud füüsilise anduri järel ning see toimib ühtse keskkonnana LfD ülesan-
nete salvestamiseks ja teostab tehtud lahenduste jagamist erinevate tüüpi robot
süsteemide vahel minimaalse või ilma lisakonfigureerimise vajadust. Pakutud süs-
teemil on ka Virtuaalreaalsuse (VR) liides, mis võimaldab operaatoril ülesannete
demonstratsioonide salvestamisel keskkonnaga loomulikul viisil suhelda tänu VR
prillidele. Süsteem on ehitatud laias kasutuses oleva tarkvara tööriistade baasil, nagu
näiteks Unity mängumootor, robotite operatsioonisüsteem (ROS), ROS-Industrial ja
MoveIt eri-liikumise planeerimiste teekart.

Antud diplomitöö on kirjutatud inglise keeles ning koosneb 67 tekstilehest, 8 peatükkist,
12 joonisest ja 2 tabelitest.

4

Nomenclature

3D Three-dimensional

CAD Computer aided design

Cobot Collaborative robot

DoF Degrees of freedom

EEF End-effector

FK Forward kinematics

GUI Graphical user interface

HMD Head-mounted display

IK Inverse kinematics

IP Internet Protocol (can also refer to Internet Protocol address)

LfD Learning from demonstration

MCP MoveIt Configuration package

ML Machine learning

MPS MoveIt Planning Scene

MSA MoveIt Setup Assistant

MTDF Manipulation Task Description Format

NN Neural network

ROS Robot Operating System

5

SRDF Semantic Robot Description Format

TCP Tool center point

TCP Transmission Control Protocol

UI User interface

URDF Universal Robot Description Format

XML Extensible Markup Language

6

Contents

1 Introduction 11
1.1 Research domain . 11
1.2 Room for improvement . 12
1.3 Thesis goals . 13
1.4 Thesis contents . 13

2 Background 15
2.1 Note on the definitions . 15
2.2 Categories of LfD . 15

2.2.1 Kinesthetic teaching . 16
2.2.2 Teleoperation . 17
2.2.3 Passive observation . 18
2.2.4 Comparison of demonstration approaches 19

2.3 Potential of passive observation in digital twin environment 20
2.4 Existing simulation-based implementations and their limitations . . . 22

3 System implementation overview 24
3.1 Design philosophy . 24
3.2 Software overview . 24

3.2.1 Unity . 25
3.2.2 ROS . 25
3.2.3 ROS-Industrial . 26
3.2.4 MoveIt . 26

3.3 Architecture overview . 27

4 ROS: motion planning and robot control servers 29
4.1 Robot representation in ROS . 29

4.1.1 URDF and XACRO . 29
4.1.2 URDF in ROS-Industrial standard 30
4.1.3 SRDF and MoveIt configuration packages 30
4.1.4 Gripper description for grasping pipeline 32

4.2 Environment representation in ROS 33
4.3 Motion planning . 35

4.3.1 IK service . 35
4.3.2 MoveIt Task Constructor . 36
4.3.3 Manipulation Task Description Format 37
4.3.4 Task planner node . 39

7

4.3.5 Motion planning server . 39
4.4 Physical robot control . 40

4.4.1 ROS-Industrial drivers . 40
4.4.2 Control server . 41

5 Unity: task recording interface 42
5.1 Communication between Unity and ROS 42
5.2 Robot representation in Unity . 43

5.2.1 URDF import . 43
5.2.2 Robot control scripts . 46

5.3 Environment synchronization . 46
5.4 Task recording interface . 50

6 Use-case: testing LfD system prototype 52

7 Discussion and future developments 55
7.1 On the achieved goals . 55
7.2 Directions of future research . 55

7.2.1 Automatic deployment pipeline for ROS motion planning servers 56
7.2.2 Extending MTDF . 56
7.2.3 Migration to ROS 2 . 57
7.2.4 System performance evaluation experiment 57

8 Summary 58

References 59

A Geometry parameters for grasp_data.yaml files for two-finger
grippers 64

B Example of grasp_data.yaml (from use-case) 65

C Example of MTDF YAML (from use-case) 66

8

List of Figures

1 Three different approaches to robot demonstrations[1] 16
2 Architecture of the LfD system prototype proposed in this work . . . 27
3 Motoman GP8 loaded in MoveIt Setup Assistant GUI 31
4 Configuration parameters of ROSConnection component 42
5 "ROS Message Browser" window showing 5 MoveIt action types com-

piled to C# classes . 43
6 Motoman GP8 robot imported into Unity Scene from its ROS-Industrial

URDF file. Note that the robot’s structure in Hierarchy tab (on the
right) follows the one from URDF, including geometry containers for
"Visuals" and "Collisions" . 44

7 ArticulationBody and UrdfJointRevolute attached to "link_1_s" of
the imported Motoman GP8 . 45

8 Interface of MoveItPlanningSceneSynchronizer component. Five ob-
jects marked for synchronization with MoveIt can be seen in the "Syn-
chronized Objects" list at the bottom of the image 48

9 Robot workcell with object primitives in Unity (left) mirrored into
MoveIt Planning Scene in ROS (right) 50

10 Initial layout of the recorded task . 53
11 Steps of the recorded task . 53
12 Motoman GP8 (left) and ABB IRB 1600 (right) executing trajectories

generated from the recorded task’s MTDF 53

9

List of Tables

1 Strengths of each demonstration approach 19
2 Mapping of collision geometry from Unity to ROS 49

10

1. Introduction

Finding an effective way to teach the machine to execute required task has been one
of the main challenges in robotics since the emergence of the field. How to split a
complex industrial problem into the set of simple, easily programmable sequences of
motions? How to keep the produced algorithms reusable for solving similar problems
in the future, possibly using robots of different type? And finally, how to allow
people with the good understanding of the task at hand, but little experience in
writing code to teach robots as effectively as the experienced operators can do?

1.1. Research domain

One of the approaches to robot programming capable of answering the questions
above is called Learning from Demonstration (LfD). The essence of LfD is the
following: instead of directly programming the robot motions to solve certain task,
the user can personally demonstrate the execution of this task and let the machine
infer the sequence of actions required to replicate it. Though it may sound like LfD
needs advanced Machine Learning (ML) algorithms in order to work, the concept
actually dates back to 1980s[2], when robot LfD was done by kinesthetic teaching
(where the operator physically moves the robotic manipulator to desired poses,
forming a trajectory which is recorded and played back later to repeat the full task).
Modern LfD algorithms, however, employ a wide array of techniques to improve
the robot’s perception of the human actions being demonstrated, achieve better
generalization of the output solutions and provide more user-friendly ways to record
new task examples (sometimes even freeing the operator from the need to be present
next to the real robot hardware at all).

The importance of LfD has been growing in the recent decades thanks to the ongoing
democratization of the robotics field, which spans from personal hobby projects
to serious industrial systems. Emergence of more affordable robot systems on
the market[3, 4] and open-source projects like Robot Operating System (ROS)[5]
brings more people into robotics and increases the potential benefit of simpler,
more unified programming methods. Researchers are actively investigating the
possibilities of integrating LfD principles into the robot programming software in
order to lower the barriers of entry for new robotics specialists as well as to make

11

the experience of robot programming more universal and vendor-agnostic. This
interest is reflected in the constantly growing number of publications related to
the topic: in the past decade, on average 18% more LfD papers were published
each consecutive year[1]. The rate of LfD adoption in the commercial robotics field,
however, is slower. This is mainly reasoned by the potential financial risks connected
with switching from the proprietary programming languages to a more open and
universal LfD paradigm, but the situation is slowly changing with the spread of
collaborative robots (cobots). Several robot models on the market already come
provided with basic LfD programming functionality out-of-the-box. Examples of
commercial systems with support for LfD include CoBlox environment by ABB[6]
and TM-Flow by Omron[7] (box allow to use kinesthetic teaching for recording robot
poses). Given such tendencies, it is very likely that LfD principles will get integrated
into more commercial systems in the upcoming future. That being said, the majority
of innovations in the field are still exclusive to scientific research carried out in the
laboratories, and the question of an industrially feasible system for LfD programming
still remains open.

1.2. Room for improvement

To date, almost all LfD systems proposed in literature heavily rely on expensive
hardware sensors. Although there exist studies about using simulated environments
for LfD, they still utilize the real robotics hardware in certain parts of the teaching
process. In addition, many proposed LfD systems rely on deep learning models, which
require time-consuming data collection and training to be effective in custom tasks.
This seriously limits the potential of adopting LfD in real-world production scenarios,
especially for small and medium enterprises which cannot afford long integration
times. Thus, making an LfD solution which is easily reproducible, does not require
physical hardware and is capable of adapting to custom tasks with minimal time
investment can produce great value for the industry. This thesis work aims to lay the
foundation for such system by creating a hardware-agnostic LfD interface running in
a simulation based on standardized and commonly available software.

Though LfD can be applied to any type of the robot, this work focuses specifically
on arm manipulators. Such choice was made for several reasons. Firstly, the typical
tasks carried out by this kind of robots, e.g. pick-and-place or trajectory following,
are easy to demonstrate for the human operator. Secondly, these types of tasks

12

can be replicated in simulation without time or force parametrization while still
providing realistic results, which simplifies initial development of the system. Finally,
arm manipulators constitute the major part of the robotics market and are available
in most robotics research facilities, which provides a reliable ground for testing the
proposed solution.

1.3. Thesis goals

Given the defined aim of developing an LfD system running entirely in a simulated
environment, this work has to achieve the following goals:

• Present the benefits of using simulated environments for LfD programming.

• Establish an implementation guideline for the hardware-agnostic simulation-
based LfD system for industrial robots.

• Develop a Virtual Reality (VR) interface for intuitive recording of task demon-
strations.

• Validate system universality by demonstrating its ability to adapt to different
robot models.

• Draw suggestions regarding the future developments based on the outlined
system.

The project developed in the process of this research is also to be made available in
an online repository[8] with the intention to ease its adoption.

1.4. Thesis contents

This thesis consists of eight sections. The first section is an introduction stating the
motivation behind the work and the goals set for the research. The second section
provides the background for practical findings of this work, giving an overview of
the current state of the art in robotic LfD and indicating room for improvement.
The third, fourth and fifth sections together provide a thorough explanation of the

13

system implemented over the course of this research. The sixth section presents a
practical use-case validating the system’s prototype. The seventh section touches
on the future research directions opened by the proposed practical implementation.
The eighth section closes the thesis with a short summary and conclusion to the
accomplished work.

14

2. Background

This section provides an insight on the current state of LfD in robotics, including
the overview of existing approaches and solutions, as well as further explains the
motivation behind this research work.

2.1. Note on the definitions

Before starting a deep dive into research literature connected with the topic, let us
make the definitions clear. As of 2021, there is still no standard name for LfD, so
the same robot programming approach may be referenced in literature as "Imitation
Learning", "Programming by Demonstration", "Teaching by Example" etc. However,
according to the field overview published in 2020[1] (which is the most recent one as
of the time of writing of this work), over 36% of related research articles published
in between the years 2008-2018 tend to use the term "Learning from Demonstration"
(with the next most popular option being "Imitation Learning", at 29%). In the
light of this, it was decided to stick to "Learning from Demonstration" as the most
widely used naming.

2.2. Categories of LfD

In the generic meaning of the term, LfD is focused on algorithms which can generate
program code based on the demonstration of the desired outcome by the user. This
paradigm has found different uses in computer software, from basic things like defining
macros in office software[9] to more complex ones like generating SQL queries based
on desired data description[10].

However, LfD in robotics holds a special place, largely thanks to the physicality
of the domain. Most tasks carried out in software are abstract, like manipulating
information in a table or establishing communication link between two networked
machines. Conversely, tasks executed by the robots assume interaction with the
physical world, which is much more natural for humans. This fact inherently provides
us, as human operators, with more choices when deciding how to demonstrate the

15

task to the machine.

Existing approaches to robotic LfD can be divided into 3 main categories based on
the demonstration type∗, as described in [1]:

• Kinesthetic teaching

• Teleoperation

• Passive observation

Proper understanding of these categories will help correctly differentiate the system
presented in this work. Thus, each of them is explained in detail in the following
subsections.

Figure 1. Three different approaches to robot demonstrations[1]

2.2.1. Kinesthetic teaching

Historically, kinesthetic teaching was the first type of robotic LfD. This method
allows the user to physically move the robot’s links into desired poses, sequentially
building the full trajectory required for executing the task. All motions of the robot
during the teaching procedure get recorded by the on-board sensors, storing values
of joint angles and/or torques. The resulting set of data can be used directly to
playback the motions required to execute the task, or be utilized as a training set for
ML model which can help generalize the solution better[11].

∗It is worth noting that there also exists categorization of LfD methods based on the learning
outcome (i.e. what is generated as the learning output - low-level joint trajectories, abstract task
policy etc.). This classification is not be detailed here, because it is already explained well in the
existing overviews ([1]) and is not crucial for the description of the system presented in this work
(presented system, in fact, produces both low-level and high-level learning outcomes in its different
stages; the implementation focuses on the improvement of the demonstration method).

16

Kinesthetic teaching gained significant popularity with industrial arm manipulators,
because it requires little training and makes the programming process intuitive even
for new operators. On top of that, kinesthetic approach does not require additional
external sensors, because robot motions get recorded by the internal sensors in the
robot joints’ motors. Direct recording of robot poses during the task also entirely
eliminates the problem of mapping LfD task inputs to robot motions, also known as
the correspondence problem[12].

Due to its simplicity, kinesthetic teaching also falls victim to several limitations.
Human operator must be physically present next to the machine to manipulate
it. It also becomes harder to apply this approach as the robots complexity grows:
some tasks, such as legged locomotion, require posing multiple limbs of the robot
simultaneously, which may be challenging or even impossible to execute for a single
operator; same goes for complex grippers, such as multi-finger robotic hands, where
many joints have to be adjusted to achieve a good grasp. Another drawback is that
the quality of the recorded motions depends on the experience and dexterity of the
operator who demonstrates the motions, and produced trajectories often have to
be post-processed to achieve smooth results. Finally, most of the industrial robot’s
joints have too high resistance to be moved by humans without aid. Internal sensors
required to detect human’s motion intent and move the servos accordingly are usually
installed only on cobots, while for traditional industrial robots these sensor systems
have to be purchased separately (for example [13]). This puts a price premium on
using kinesthetic teaching in the practical industry scenarios.

2.2.2. Teleoperation

Teleoperation allows for somewhat greater flexibility than traditional kinesthetic
teaching. This LfD approach relies on controlling the robot through an arbitrary
external input, which can be a simple joystick, graphical user interface (GUI) or
an immersive VR application[14]. Teleoperation is similar to kinesthetic teaching
(and can even be seen as an evolution of the latter) in a sense that it allows human
operator to directly manipulate the robot for achieving the intended result.

Teleoperation has an obvious advantage which comes by definition: ability to control
the taught robot over distances. Thanks to the modern Internet, robotic systems
can now be reliably controlled by remote operator in almost real time, even between

17

continents[15]. An important implication of remote access is that it can be used for
crowdsourcing multiple demonstrations without bringing people to facility with the
robot (successfully utilized in [16, 17]). This allows to collect larger datasets faster,
leading to better training results in case if ML models are used for LfD. Teleoperation
LfD also does not have to deal with the correspondence problem, as the robot motions
are directly mapped to the executed task during the demonstration phase.

The downside of the teleoperation approach is the fact that it requires additional
effort to develop the remote interface for controlling the robot. The developed
solutions are also rarely standardized to be applicable to different types of robots,
mainly due to the relative novelty of this approach. The standardization aspect,
however, begins to improve with the introduction of popular open-source solutions
like ROS.

2.2.3. Passive observation

In passive observation LfD, the learning is done by observing the operator manually
execute the intended task. In this case, the real robot does not participate in the
task during its demonstration. Passive observation-based LfD is definitely the most
complex of the three categories discussed in this section (in terms of implementation),
but it can greatly simplify the demonstrations for the user.

Serious advantage of passive observation is the intuitiveness of the demonstrations.
In contrast to kinesthetic teaching and teleoperation, the user no longer has to learn
how to manipulate/control specific robot - instead, the task is shown by the teacher
in a natural way, and the software handles mapping the recorded actions to robot
motions needed to perform them. This method is applicable to robots with high
degrees of freedom (DoF), as it does not require the teacher to manually pose every
joint of the robot. Finally, the separation of the demonstration from the robot
hardware learning to perform the task means that the same task recording can be
potentially reused for teaching different robots (e.g. manipulators of different brands
can be taught to perform the same pick-and-place operation). This can, for example,
save significant amount of time when comparing the efficiency of different robots
when designing a new manufacturing line.

However, the perceived simplicity for the operator comes at the cost of extra com-

18

plexity under the hood of the system. Passive observation LfD has to deal with the
correspondence problem head-on, because the recorded actions of the operator have
to be somehow mapped to the robot’s motions, and the procedure of this mapping
will vary depending on the recording method used. Sensor noise and occlusion in
recordings also have to be dealt with to avoid affecting the mapping result. But
if these challenges are handled properly when designing the LfD system, passive
observation has the potential to become the most efficient way of robot programming
for an average user.

2.2.4. Comparison of demonstration approaches

Summary of the strengths and weaknesses of the described demonstration approaches
is shown in Table 1 (based on [1]).

Table 1. Strengths of each demonstration approach

Demonstration approach Ease of demonstration High DoF robots Ease of mapping
Kinesthetic teaching X X

Teleoperation X X
Passive observation X X

It can be seen that passive observation approach is the only one which combines
both ease of demonstration and support for high DoF robots. The first factor is
important when the adoption potential of the LfD system is concerned, as easier
demonstrations equal to lower barrier of entry for new users. When compared to
kinesthetic teaching, which also makes demonstration intuitive to the user, passive
observation has an edge in terms of iteration times: executing the task manually is
usually faster than by moving the physical robot.

Kinesthetic and teleoperation approaches do avoid the correspondence problem,
simplifying the mapping of recorded human actions to the robot. However, it can be
argued that "Ease of mapping" criteria is only significant during design time of the
LfD system, and, if automated properly, does not concern the user when recording
the demonstrations. For example, in pick-and-place tasks, once the algorithm is
able to automatically generate grasps and approach/retract motions for the objects
repositioned during the task, it will be sufficient for the operator to show how and
which objects have to be moved in order to generate the program.

19

However, even if the algorithm can be designed to properly handle the mapping of
recorded human motions to the ones of the robot, another question still remains:
how to perform the recording? Most implementations to date have relied on real-life
sensors (mainly cameras) which monitor the motions of the human and/or objects of
interest in the real scene[18]. Such approach makes the LfD algorithm dependent
on specific sensor hardware, limiting its universality and increasing the costs. In
this thesis, it is proposed that recording observations in the digital twin of the real
environment instead can be a universal and scalable solution for the correspondence
problem in passive observation LfD.

2.3. Potential of passive observation in digital twin environ-

ment

The concept of the digital twin (DT) was initially framed in the NASA research
paper in 2012[19]. The definition has subsequently evolved into a more concise form
as presented by Chang in [20]:

“A digital twin is a computerized model of a physical device or system that represents
all functional features and links with the working elements.”

Utilizing the digital twin of the industrial robot’s workcell for recording LfD task
demonstrations can provide two important benefits, namely:

• Easy access to the full state of the scene at any moment in time

• Unified interface for recording and sharing task demonstrations

Let us explore both points in detail. First, the simulation inherently holds the data
about the state of every object contained within it. Consequently, every interaction
of the user with the elements of the virtual workspace can be easily recorded and
reproduced. Modern computer hardware is capable of running physics simulations in
real time, assuring the validity of the recorded scene state.

This leads to the second point, making the simulation a unified interface for recording
and sharing the task demonstrations. Such approach eliminates the need for hardware

20

sensors at task recording stage, and avoids black-box ML models mapping sensor
inputs directly to generated robot motions [18, 11]. Instead, the whole flow of the
task can be described in a hardware-agnostic manner through 3D geometry and
its changes in terms of simulated physics. It must be noted that this approach to
recording tasks does not aim to eliminate the correspondence problem: the algorithm
still has to map the changes in the scene to low-level motions of the robot required
to execute them; instead, it provides a universal base condition off of which the
correspondence problem can be solved, eliminating human operator and real-world
noise from the equation. This can effectively counter the drawbacks of the passive
observation approach, as described in the previous section.

Of course, the benefits from above would be immediately halted if recording tasks in
the simulation would limit the performance of the teacher. This may hold true for
traditional 2D interfaces residing on computer screens, but nowadays we have more
immersive technologies to choose from. Modern VR hardware provides an intuitive
interface between the human operator and digital twin environment, enabling the
former to naturally perform physical interactions such as grasping and moving virtual
objects, while also enhancing the experience with world-space UI elements. This
makes VR a good potential candidate for building a pure simulation-based LfD
system.

Nevertheless, challenges also exist in the proposed digital twin approach. Time has to
be invested into modelling the virtual environments prior to simulation, including all
the objects relevant to the task. However, this undertaking becomes easier if we take
into consideration that most modern industrial products and parts are available as 3D
computer-aided design (CAD) models. Incorporating digital twin of the programmed
robot into the simulation also becomes easier thanks to the existence of the official
support packages from manufacturers, facilitated by initiatives like ROS-Industrial.
3D scanning techniques like photogrammetry can be used to quickly generate the
full 3D representation of the static geometry of the real robotic cell.

Another possible challenge of digital twin-based LfD lies in dealing with highly
dynamic environments. For example, LfD for mobile robots would likely require
different algorithms than for manipulation tasks, and would have to rely on some
representation of hardware sensors used for localization to keep the simulated envi-
ronment up-to-date in real time. For this reason, and in order to keep focus during
the initial development of the novel digital twin-based LfD concept, this thesis limits

21

its scope to industrial manipulators and tasks associated with them.

To conclude this section: even with the outlined challenges, pure simulation-based LfD
has potential benefits worth investigating, which is done in this thesis. Next section
presents a concise overview of the existing related solutions to provide practical
background before proceeding to the implementation sections of this work.

2.4. Existing simulation-based implementations and their lim-

itations

Existing implementations of LfD mostly utilize simulation and VR interfaces for
more convenient teleoperation and crowdsourcing demonstrations.

For example, multiple studies have focused on using VR as an immersive teleoperation
interface[14, 11, 21]. In [14] the researchers use VR rig (head-mounted display (HMD)
and handheld controllers) as an input source for controlling dual-arm robot in real time
(Baxter by Rethink Robotics). In this implementation, the user hands’ movements
are directly mapped to the hands of the robot, allowing for intuitive teleoperation. In
the virtual environment, the user is presented with real-time colored point cloud feed
from the camera installed on the robot, allowing to see the environment in which the
robot operates. However, it relies on the depth-sensing camera which is not included
in most commercial robots by default (in contrast to Baxter robot used in that article).
Although the study does not focus on LfD capabilities of the system, potentially
it can be used for collecting demonstration data with teleoperation approach. The
authors also assess their teleoperation interface’s performance for pick-and-place
tasks in the follow-up research[22]. This system is built on popular software: Unity
and ROS, which is good because it can ease the adoption. Integration with ROS
also simplifies the adaptation of other robot models with the existing teleoperation
interface. The system developed in this thesis follows a similar vision regarding the
used software components.

In [11], a similar teleoperation system is introduced, albeit it is utilized for the
actual LfD. The authors use the same principle of VR teleoperation: VR rig motions
are mapped to the hands of the robot in real-time, and the real environment is
streamed to the simulation through a colored point-cloud from the depth-sensing
camera installed on the robot. The operator can utilize this teleoperation interface for

22

recording task demonstrations. Recorded data is used to train a custom convolutional
neural network (NN), which produces robot arm poses as its output. The system is
using PR2 robot by Willow Garage and its control logic is implemented solely in Unity
(in C programming language). Such architecture certainly requires more effort for
integrating other robot models when compared to previous approach (manufacturers
often provide their robot communication packages for ROS, but for Unity those have
to be implemented manually). Moreover, to make system work after changing the
robot model to another one will require colleting new set of demonstration data and
retraining the NN, as it would have to produce solutions for different kinematics
chain. Thus, this solution is hardly scalable.

The example of crowdsourcing demonstrations through simulated environment is
found in [17]. In this study, the researchers explore so-called wide-area pick and place
tasks, where the mobile robot with attached manipulator has to arrange the objects
on different surfaces in the domestic environment. Crowdsourcing was implemented
through a web interface, where the users could see the simulated living apartment
and arrange pickable objects in it using their mouse pointer. The collected data was
used to train an ML model for inferring the optimal placement of the objects in the
environment (e.g. the plate with cutlery has to be placed on the dining table). The
study achieves success in generating the proper object placements from abstract task
description. It does not explore low-level trajectory generation for the robot, as the
authors claim that the robot already had logic for automatic detection and grasping
of the objects implemented. Nevertheless, this implementation can be attributed
to the category of passive observation learning - as the system aggregates the data
by recording the users’ actions in the environment. The authors have not disclosed
details as to the simulation environment implementation, so it is not possible to
draw claims about the scalability of the system.

As it can be seen from the research examples presented above, existing implemen-
tations have certain limitations, either relying on hardware to work or being based
on hard-to-scale software architecture. To the author’s best knowledge, a system
providing observation-based LfD programming cycle entirely in simulation based
on Unity/ROS has not been described in the literature to date. Such system is
introduced in the next section of this work.

23

3. System implementation overview

This section details the prototype implementation of the digital twin-based LfD
system envisioned in this work. The overview of the utilized software is presented,
followed by the thorough description of the system’s architecture and its individual
parts.

3.1. Design philosophy

To ensure that the built prototype is not a once-off research endeavor, but can be
grown into a practically useful system, it was crucial to follow two principles during
development. The prototype had to be:

• Easy to reproduce, i.e. based on commonly available and maintained software.

• Hardware-agnostic, i.e. require minimal to no changes in code to program
industrial robots of different models.

These two criteria serve as the cornerstones for all things described further in this
work.

3.2. Software overview

Quality of a passive observation-based LfD implementation is determined by at least
two of its parts: interface for making demonstrations and power of the algorithms
handling mapping of the task to the robot. Thus it was decided to use best-suited
software for each of these parts. Visualization and VR interface for recording the
demonstrations were implemented in Unity game engine, while the "brains" behind
the task mapping and robot kinematics were built in ROS. Long-term support (LTS)∗

versions of software were favored for implementation (where available). Each piece
of software is presented in the individual sub-section below.

∗Long-term support label marks the given stable release of the software as the version to be
supported/updated by its developer over the extended period of time (usually several years).

24

3.2.1. Unity

Unity is a platform for creating interactive, real-time 3D applications[23]. While
originally a game engine, in recent years it has gained significant popularity in other
fields such as cinematography and industrial visualization. Unity is a perfect fit for
developing VR apps, as it has the leading number of supported VR platforms in
industry and multiple official and community libraries to boost the development.
The engine also uses NVidia PhysX as its default physics solver, which is capable of
running decent robotics simulations[24].

Unity uses C# as its main programming language. There exists an open-source
integration between C# and ROS in the form the ROS (ROS-Sharp) project by
Siemens[25]. Unity team has recently revealed a demo project which uses the engine
to visualize the robot models simulated in ROS[26]. This demo also served as an
inspiration for this thesis work.

Thus, Unity was chosen as the visualization interface for our LfD system. In this
prototype, we use Unity version 2020.4 LTS.

3.2.2. ROS

Robot Operating System is a modular framework for developing robot software[5].
It is an open-source project with over 10 years of history, and is actively supported
by research and industrial community around the world. The power of ROS lies
in its modular publisher-subscriber architecture, which splits application logic into
dedicated modules called nodes which communicate with each other through the
network. Over the years, ROS has aggregated multiple community packages and
smaller projects dedicated to solving any robotics-related tasks. Several of them
are utilized in this work. Hundreds of custom and commercial robot models are
supported by ROS nowadays[27].

ROS nodes can be written in either C++ or Python programming languages. The core
functionality of ROS available to both languages is identical, so community packages
may be based on either language. C++ is usually preferred for performance-intensive
code, while Python interfaces are provided for faster prototyping.

25

Currently, the most widespread version of ROS is ROS 1. The newer version, ROS
2, is coming with multiple improvements over the original, but it is still in active
development and lacks documentation and proper community support. The latest
version of ROS 1, Noetic Ninjemys, is considered LTS software and will stay an
industry standard for several years to come.

Thus, ROS 1 was chosen as a software for handling robot simulation and commu-
nication in out LfD system. In this prototype, we use ROS Noetic (ROS 1) as our
distribution.

3.2.3. ROS-Industrial

ROS-Industrial is an open-source initiative aimed at providing official ROS support
packages for industrial robots[28]. This project aims to provide a standard interface
for communicating with industrial robot controllers from ROS, facilitating hardware-
agnostic software development. Standardized support packages also include the files
describing geometry of the robot, which can be directly incorporated into simulation.
Several vendors have already joined the ROS-Industrial initiative, including ABB
and Motoman[29].

Supporting ROS-Industrial standard in our system has the potential to extremely
simplify the creation of digital twins for robots, so it was taken into account during
development.

3.2.4. MoveIt

MoveIt is a motion planning library for ROS[30], originally introduced in [31]. It
provides extensive functionality for planning collision-aware trajectories, automatic
generation of pick-and-place motions for different object types, calculating forward
and inverse kinematics (FK and IK) of the robot. MoveIt architecture is based on
plugins, so many core features (for example, IK solver) can be easily replace with
the implementation more relevant to the task at hand. MoveIt is used by several
industry-leading companies and is also recognized by ROS-Industrial as a standard
tool for handling robot kinematics and planning.

26

It was decided to use MoveIt capabilities in our LfD system to handle mapping of
recorded task actions to robot trajectories required for their execution.

3.3. Architecture overview

The proposed system consists of the three core modules:

A. Task recording interface in Unity

B. Motion planning server in ROS

C. Robot control server in ROS

Functionality of the modules and relations between them are shown in the system
diagram in Figure 2.

Figure 2. Architecture of the LfD system prototype proposed in this work

Modules A and B provide all functionality of the LfD system, and are not dependent
on C. Module C is used only when the generated programs have to be executed on
the physical robot.

27

The two sections that follow comprehensively explain the inner workings of each
module. It shall be noted that many features, like simulated environment definition,
are used in both ROS and Unity sides of the application, and their full value shines
when both sides are understood. Thus, descriptions of certain features used in ROS
have references to their counterparts in Unity, and vice versa, to aid in navigating
the explanation.

28

4. ROS: motion planning and robot control servers

4.1. Robot representation in ROS

In order to make the system compatible with manipulators of different types, a way
of representing the robots in simulation had to be carefully planned. ROS-Industrial
standard was chosen as a way to ensure easy integration of new robots into the
system, because it provides a unified ROS interface for robots from different brands.
It was in turn combined with MoveIt as the component for simulating the robot
model. Let us explore each element of this approach in detail.

4.1.1. URDF and XACRO

The Universal Robot Description Format (URDF) is a specification used to describe
robots in ROS[32] based on Extensible Markup Language (XML). It can provide
information about the robot’s visual and collision geometry, kinematics (e.g. joint
articulation limits) and dynamics (e.g. joint speed limits). Each URDF file has
"robot" XML tag at its root, which in turn can contain "link" and "joint" tags.
"Link" tags are used for describing physical links of the robot and their geometry.
"Joint" tags are used to describe how links are connected with each other, as well as
articulation and speed limits of those connections. Currently, the main limitation of
the format is that it does not support closed kinematic loops, which rules out all
parallel robots. However, URDF still can be used for most industrial arm robots, as
only minority of the models on the market possess parallel links.

XACRO (derived from "XML Macros") is a macro language which allows to reuse
XML files as an expandable macro expressions[33]. It often accompanies the URDF
in ROS, as XACRO allows to "assemble" robots from several files — something that
cannot be done with plain URDF. This feature is especially useful for combining
industrial arms with custom grippers without having to manually rewrite the whole
URDF.

In this work URDF/XACRO files are used to provide a coherent robot representation
across ROS and Unity. On the ROS side, robot models are imported into MoveIt

29

simulation from XACRO files. For URDF import in Unity, please see subsection 5.2.

4.1.2. URDF in ROS-Industrial standard

Controversially, the advantage of using ROS-Industrial standard instead of generic
URDFs lies in the restrictions it imposes. According to ROS-Industrial, each robot
support package created by a manufacturer must include the URDF of the robot it
describes. On top of this, the standard defines strict guidelines regarding the content
of these URDF files, namely:

• URDF must define correct articulation limits and speeds of the joints of the
robot.

• URDF must include several standard links:

– "base_link" representing the base point of the robot arm,

– "flange" representing the attachment point of an end-effector (EEF),

– "tool0" representing tool central point (TCP).

• Corresponding XACRO file must be provided together with the URDF.

These restrictions create a common interface for working with ROS-Industrial URDFs.
This commonality becomes very useful when automating the import of industrial
robots to the simulated environment. Having standard components in robot structure,
such as "base_link" and "tool0", allows to automatically set up FK and IK algorithms
and to generate semantic robot data used by MoveIt library. It shall be noted that the
developed prototype still works with generic URDF files (i.e. the ones not following
ROS-Industrial conventions), but such files require varying amount of manual input
from the user to set up (for example, the user has to manually show the system
which link of the robot should be treated as TCP if "tool0" link is missing).

4.1.3. SRDF and MoveIt configuration packages

Semantic Robot Description Format (SRDF) is used to store semantic information
about the robot that complements what is already available from the robot’s URDF

30

file[34]. Among other features, SRDF allows to define named groups of robot joints
or links (to use in motion planning) and mark selected links to be ignored in collision
checks (to optimize planning performance). SRDF files are used by MoveIt library
to handle motion planning of the robot. In ROS, the most straightforward way to
create SRDF for the given robot is to generate a MoveIt configuration package.

MoveIt configuration packages (MCPs) are special ROS packages which store pa-
rameters and code required to use the given robot with MoveIt motion planning
pipeline. While MCPs can be created manually, the most straightforward way of
creating them in ROS is using MoveIt Setup Assistant (MSA)[35]. MSA is a ROS
node which provides a GUI aimed at generating a MCP based on the robot’s URDF
or XACRO file (seen in Figure 3).

Figure 3. Motoman GP8 loaded in MoveIt Setup Assistant GUI

All steps required to generate a MCP in MSA are available in [35] and will not be
listed here for clarity.

MCPs of the robots used for testing this prototype were generated through MSA as
a part of initial research process. From the author’s experience, generating a new
MCP for industrial robot in MSA takes under 5 minutes (after initial acquaintance
with the approach). However, it is worth noting that in the future our architecture
can allow to generate MCP in a more user-friendly manner on Unity side without
the need to interact with ROS (discussed in section 7.2.1).

31

4.1.4. Gripper description for grasping pipeline

Automated generation of pick-and-place trajectories would be impossible without a
way to determine gripper motions required to grasp and release the object moved in
the task. MoveIt provides this exact functionality in the form of the grasp generation
plugins, and this exact feature was used in our system prototype. Grasp plugins are
responsible for generating grasp and release motions given the gripper configuration
and the model of the object that has to be grabbed. The plugins can be split into
two categories:

• Procedural (represented by MoveIt Grasps[36], published in [37])

• Deep learning-based (represented by MoveIt Deep Grasps[38])

MoveIt Deep Grasps plugins use NNs to infer the correct position of the gripper.
Two options are available:

• Grasp Pose Detection library plugin[39] (samples grasps from the point cloud
using convolutional NN).

• Dex-Net plugin[40] (samples grasps from the camera images using convolutional
NN).

Both NN-based grasp libraries take sensor data as input. While sensors data (both
point clouds and images) can be generated in the virtual environment, such approach
is cumbersome and may require retraining the NNs with new, simulated datasets to
achieve optimal performance. Thus, in line with our "hardware-agnostic" principle, it
was decided to favor the procedural MoveIt Grasps plugin, which is able to compute
grasp poses for simulated object primitives without the use of NNs. MoveIt Grasps
plugin also supports grasp generation for both two-finger and suction grippers, which
makes is a good fit for typical industrial pick-and-place tasks.

In order to configure MoveIt Grasps, two files have to be included in the MCP of the
robot for which the grasps will be planned:

• ROBOT_grasp_data.yaml which describes robot’s gripper geometry.

32

• moveit_grasps_config.yaml which configures behavior of grasps generator,
including debug features.

The contents of each configuration file are detailed in [36]. Illustrations explaining
gripper geometry parameters (as should be defined in grasp_data.yaml file) are
included in Appendix A. An example of grasp_data.yaml file for the gripper used in
our prototype is provided in Appendix B.

With MoveIt Grasps pipeline configured, the setup of the robot model in ROS is
complete and can be used for solving LfD task definitions supplied from recordings,
as explained further in this work.

4.2. Environment representation in ROS

In MoveIt framework, the representation of the virtual world is called MoveIt Planning
Scene (MPS)[41]. MPS contains the robot model as well as all the objects used for
collision checking when planning motions. MPS provides C++/Python interfaces
for adding, deleting and updating objects in the scene, and a ROS application
programming interface (API)[42] providing the same functionality.

In our prototype, MPS is the source of digital twin environment state on the ROS
side. However, manually building this environment in ROS would be a suboptimal
approach. The only graphic way of editing MPS in ROS is through MoveIt GUI in
Rviz (ROS 3D visualization tool[43]), which was originally created for displaying, but
not for composing 3D content. Object manipulation tools available in Rviz are not
efficient for an average user when editing complex scenes with many objects. Unity,
on the other hand, is a software which have been perfected for authoring 3D scenes
over the years, providing a variety of tools and scripts to streamline the process.
Thus, supplying ROS with scene state from Unity was a straightforward decision.

Before we can proceed forward, let us touch on how the data can flow between different
parts of a ROS application. ROS nodes use messages and topics as the means of
communication between each other. Topic is a destination address with a certain
name. Messages define the type of data accepted and published by the topic. ROS
topics provide stream communication: messages published to the given topic arrive

33

to all subscribers listening to it. Topics are usually used for streaming constantly
changing data; for example, a point cloud from a laser sensor. However, ROS also
provides request-response communication pattern in the form of services: when a ROS
service takes a request message, it does certain work and sends reply with the results
back to the requesting client. Services are normally used for executing quick, granular
calculations or tasks; for example, retrieving the IK solution for the given pose of
robot’s EEF. Finally, ROS has actions, which can be thought of as a "heavy-duty"
version of services: actions also work using request-response communication pattern,
but can provide progress updates while the request is being processed. Thus, actions
are usually used for executing time-consuming logic; for example, commanding a
mobile robot to move to certain point and waiting until the objective is reached.
Custom messages, services and actions in ROS are correspondingly defined in *.msg,
*.srv and *.action files. These are plain text files which declare the structure and
data types used in each message. Keeping message description in plain text allows to
automatically generate C++ and Python data structures for corresponding message
type.

MoveIt library includes dozens of message types used in communication with the
framework (the full list is available in [44]). ROS API for MPS consists of two ROS
services∗ which can be called to interact with the scene:

• apply_planning_scene service takes an ApplyPlanningScene message[44], which
contains a list of named 3D objects with corresponding commands to add,
remove or update their position in the scene; the service returns a boolean
showing whether the scene changes have been applied successfully.

• get_planning_scene service takes a GetPlanningScene message[44], which
contains a binary mask used to specify which components of the scene are
being queried (this allows to query the data selectively to preserve bandwidth);
the service returns a PlanningScene message containing the data asked for in
the request.

The digital twin of the environment used for the task recording is originally created
in Unity, and is then synchronized with MoveIt by sending the geometry data of all
objects relevant to the task to the apply_planning_scene ROS service. Such approach
allows to build complex 3D scenes using Unity’s rich toolset and synchronize selected

34

objects from them with MoveIt for motion planning. The logic of this synchronization
on Unity side is covered in subsection 5.3.

4.3. Motion planning

This subsection explains how the motion planning capabilities of MoveIt were used in
the prototype to automatically generate robot trajectories from the recorded tasks,
thus handling the correspondence problem of observation-based LfD.

4.3.1. IK service

IK is the basic function required for motion planning with any robotic arm. It
is possible to do IK calculations in Unity, as the kinematic structure of the robot
is available in the scene and the engine has multiple IK libraries designed for it.
However, IK calculations are essential in ROS, because in our prototype exactly ROS
is responsible for motion planning. Implementing IK on Unity side would add an
extra layer of complexity and risk of inconsistency with ROS because of different IK
solvers used in each module. Instead, it was decided to allow Unity to use ROS’s IK
solver by querying a service provided by MoveIt — compute_ik. The logic of the
service is straightforward: request takes PositionIKRequest message, which contains
the EEF pose for which IK solution has to be found; response provides RobotState
message which contain individual joint’s poses corresponding to the IK solution, or
MoveItErrorCodes message in case the solution was not found.

Like the grasping solvers, IK in MoveIt is provided in the from of plugins. The list of
options is vast, complimented by a possibility to create custom plugins. Due to the
timeframe limitations for this research work, only 2 solvers were explored, namely:

• KDL, a default solver[45].

• IKFast, provided by the OpenRAVE framework[46].

MoveIt can be configured to use specific IK plugin through kinematics.yaml file
located in the robot’s MPC (the process is detailed in [47]). The prototype system

35

was initially tested with the default KDL solver, but it turned out to be relatively slow
and often provided unstable solutions. In an attempt to improve the situation, it was
replaced with IK-Fast plugin, which resulted in better performance and extremely
stable solutions. It has to be noted that IK-Fast plugin has to be compiled through
OpenRAVE library based on the robot’s URDF, which is not an optimal approach
(though it can be automated). Another limitation is that OpenRAVE cannot be
compiled and used on ARM architecture-based processors, which restrains from
using it on most modern single-board computers (like Raspberry Pi). TRAC-IK
plugin developed by Traclabs[48] has a promise to deliver the same performance as
IK-Fast with easier installation and no dependency on URDF, but at the moment of
writing of this thesis it was not available for Noetic, the version of ROS used in this
work. For the prototype needs, IK-Fast was chosen as a viable option, with plans to
evaluate more IK plugin alternatives reserved for future research.

4.3.2. MoveIt Task Constructor

With the robot model, virtual environment and IK solver set up, we have all the
prerequisites for generating motion plans from the recorded LfD tasks. In the
prototype, the mapping of the recorded virtual objects’ movements to the robot
actions is accomplished by MoveIt Task Constructor (MTC)[49]. This is a novel
high-level planning module introduced to MoveIt framework in 2019 with the aim
to replace the older pick-and-place pipeline. MTC allows to plan complex routines
consisting of multiple interdependent subtasks. Each such subtask in MTC is called
a stage. The stages are divided into two classes:

• Primitive stages, which are dedicated to solving a singular problem (e.g. gener-
ating plan for EEF motion between two points).

• Container stages, which are used to encapsulate several primitive stages and
post-process their results (e.g. a container stage wrapping a primitive IK solver
can be used to filter computed IK solutions based on the given constraints).

Any manipulation task can be represented as a combination of primitive and container
stages in MTC. A feature worth noting is that MTC allows the solutions of individual
stages to propagate both forward and backward through the task. For example,

36

the solver can account for the pose of the gripper required for placing the object
when deciding how the object should be grabbed in the first place. This allows to
successfully plan complex pick-and-place tasks.

MTC is written in C++ programming language. In order to make MTC compute
the solution for the manipulation task, the programmer must correctly define the
sequence of stages be to solved and their corresponding inputs in code. In the case of
our system, we aim to select the required stages automatically based on the sequence
of actions recorded during the user’s demonstration in Unity. This raises a need for
a way to store information about the recorded task, and pass it from Unity to ROS
for automatic planning.

4.3.3. Manipulation Task Description Format

For our prototype, we introduce the concept of Manipulation Task Description Format
(MTDF). It is a file specification intended for describing a sequence of object motions
in 3D space. The format does not specify the means by which the objects should be
moved, making it agnostic to the configuration of the robot (or the operator) which
will be executing the manipulation task. Although the implementation in this work
is limited to describing pick and place tasks, the author hopes that in the future the
format can be extended to support more object manipulation scenarios (e.g. using
machining tools and interacting with controls such as valves and levers).

In this work MTDF was implemented using YAML data serialization language. Such
choice was made because YAML is easily readable by humans, aiding in debugging
and improving the format during initial development. It shall be noted that MTDF
can be implemented in other languages (e.g. JSON or XML), and the default language
used may change based on the future research.

Now let us break down the structure of an MTDF file. It consists of two main parts:

• Object descriptors

• Keyframes

Object descriptors is a list of strings uniquely identifying 3D objects being manipulated

37

in the task. It must be noted that MTDF format is not fully self-contained: it does not
store the information about the initial configuration of the scene before task execution,
nor does provide any information about the 3D geometry of the manipulated objects.
Such design decision was made on purpose, leaving the identification of the objects
by the descriptor to implementation, and allowing to reuse the same high-level
task in different starting conditions. In the presented prototype, each descriptor
string is the actual name of MPS object loaded from Unity. Nonetheless, the author
believes that in the future this concept can be extended: instead of a name, object
descriptor may reference a list of rules used to identify the object in the virtual (or
real) environment. For example, certain descriptor can refer to "red part with the
given QR code, located in the robot’s work envelope". However, implementation of
such generic object descriptors requires extensive research on its own and is out of
scope of this thesis work (more on this in subsubsection 7.2.2).

Keyframes is a list containing data about how and which objects get manipulated.
Following our "hardware-agnostic" priciple, keyframe only describe the movements
of the objects, not the manipulator which executes them. In the prototype imple-
mentation, MTDF has two types of keyframes:

• Pick — describes "pick" action; contains a single object descriptor (object to
be picked).

• Place — describes "place" action; contains the descriptor of the object to be
placed, and 3D pose in which to place the object (position and orientation).

These two keyframe types are sufficient for describing basic pick-and-place tasks,
and were utilized for testing the prototype of our LfD system. It shall be noted
that object poses in MTDF (such as the object pose in Place keyframe type) are
recorded relative to the "task origin" — a custom reference frame defined by the user
when recording the task. This allows to plan the task at an arbitrary pose relative
to the robot. After MTDF is recorded from the user’s VR demonstration in Unity,
the starting environment state gets synchronized with MPS, and MTDF gets sent
to the ROS node which uses it to generate the motion plan for the taught robot.
Functionality of this node is described in the next subsection. Also, an example of
the MTDF file generated from demonstration in Unity is included in Appendix C.

38

4.3.4. Task planner node

A custom ROS C++ node was developed for planning robot motions based on the
MTDF task recordings. The node was appropriately named "task planner". It
provides a service called compute_motion_plan_from_task, which operates using
the following request/response types:

• TaskPlanningRequest, which contains: task_description, the YAML string of
MTDF; and task_origin, the pose of the task relative to the base link of the
robot.

• TaskPlanningResponse, which contains:trajectory, a JointTrajectory message
with the motion plan for the robot to execute the given task; and error_code,
which indicates whether the solution has been found successfully.

Demonstrations recorded using Unity VR interface are saved in MTDF format,
and forwarded to compute_motion_plan_from_task service. The node parses the
incoming MTDF from the YAML string, and generates MTC stages based on the
keyframes included in it. YAML parsing was implemented using the open-source
library called yaml-cpp[50]. After all stages of the task are generated, MTC computes
the solution, producing a motion plan for the robot, which is then converted into
JointTrajectory message and sent back to Unity as a part of the service response.
Generated trajectories can be used in Unity to run the program on the digital twin
of the robot, thus completing the cycle of LfD.

4.3.5. Motion planning server

All motion planning capabilities described in the above subsections are combined
together in a single instance of ROS, which becomes a standalone module for solving
LfD tasks. We call this module a "motion planning server". Thanks to MoveIt
framework, the server can be configured to work with any industrial robot (using its
URDF) while providing the same planning API. Because Unity application can com-
municate with multiple ROS instances over the network (detailed in subsection 5.1),
the planning server can be run on a separate Linux machine or inside a Docker
container on any OS. This completes the first module of our system.

39

4.4. Physical robot control

The second ROS module in our prototype is responsible for running the generated
programs on the physical robot. While the LfD system does not depend on it
(generated programs can be run on the simulated robot), this module becomes
necessary when it comes to executing the task on the real hardware.

4.4.1. ROS-Industrial drivers

Control of the physical robot is another area where ROS-Industrial brings big
value. The standard includes the specification of a universal interface for industrial
robot drivers[51]. Robot manufacturers are responsible for integrating their robot
control code with industrial_robot_client ROS package[52], which serves as a base
implementation of the specified driver interface. Multiple vendors have already
implemented such packages for their flagship controller boards.

ROS-Industrial driver package is supposed to be installed directly onto the controller
board of the industrial robot to have immediate access to the machine. It commu-
nicates with the control node in ROS instance connected to the robot through the
local network, and the control node provides a common API which is used to send
commands to the robot and monitor its state. While all API features are outlined in
[51], the ones important to our implementation of robot control are:

• joint_states, a topic providing stream of up-to-date joint positions of the robot
(based on URDF joint names).

• joint_path_command, a service accepting the list of trajectory points to be
executed on the robot (based on URDF joint names).

• stop_motion, a service which allows to stop the execution of the current robot
motion.

Using the features listed above, it is possible to upload the trajectories generated from
the LfD task to the physical robot and monitor their execution, while keeping our
code hardware-agnostic (as the robot structure is dynamically loaded from URDF).

40

4.4.2. Control server

ROS-Industrial robot control node can be combined with MoveIt simulation for
collision-aware control of the robot. This feature is officially supported by ROS-
Industrial, and manufacturers are encouraged to provide MCP for each of their
robots; however, this requirement is not strict and some robot support packages come
without MCP. Nevertheless, MCP can be generated based on the URDF provided
with each ROS-Industrial robot package. This was done in our prototype.

Robot control node from ROS-Industrial and MoveIt simulation are combined in a
single instance of ROS, which we call "robot control server". It serves as an access
point for cotrolling a single physical robot, allowing us to test the generated LfD
solutions on the real hardware connected over the network. While not necessary for
the LfD cycle itself, having robot control server module in our prototype allowed us
to validate the generated programs on the real hardware, as described in section 6.

41

5. Unity: task recording interface

5.1. Communication between Unity and ROS

ROS does not provide out-of-the-box means to communicate with software written
in C programming language. Thus, to let our Unity application interact with ROS
motion planning and robot control servers, a custom solution had to be found. It was
decided to utilize an open-source project called ROS-TCP-Connector [53], developed
by Unity for this purpose.

ROS-TCP-Connector is based on ROS#[25], and allows to communicate with ROS’s
topics, services and actions directly from C# code. As reflected in the name of the
library, connection with ROS gets established through Transmission Control Protocol
(TCP), which guarantees that all messages passed through the communication tunnel
get delivered to the other side. To start the communication, Unity application has to
be provided with Internet Protocol (IP) address and port. In ROS-TCP-Connector,
each individual connection is represented by a ROSConnection component (i.e. a
Unity C# script), which can be configured to connect to specific IP (see Figure 4).

Figure 4. Configuration parameters of ROSConnection component

To correctly serialize the messages sent to and received from ROS in C#, each message
type has to be represented as a C# class. ROS-TCP-Connector takes this burden
off the programmer by automatically generating C# classes based on existing ROS
*.msg, *.srv and *.action files (see more about these file types in subsection 4.2).
Automatic generation can be done using "ROS Message Browser" tool window
(included with ROS-TCP-Connector, accessed through "Robotics/Generate ROS
Messages..."; see Figure 5).

42

Figure 5. "ROS Message Browser" window showing 5 MoveIt action types compiled
to C# classes

After the connection settings were set and message classes were generated, the
prototype was able to successfully communicate with our ROS servers in the local
network.

5.2. Robot representation in Unity

While ROS robot representation is responsible for motion planning (see subsec-
tion 4.1), its counterpart in Unity carries out two other tasks: visualization and
simulation of planned motions in the digital twin environment. At the same time, it
was crucial to make the process of importing robot model to Unity as frictionless as
possible. Functionality used to achieve these criteria is described below.

5.2.1. URDF import

The main design goal for Unity robot representation was to make it automatically
generatable from the same URDF file used in ROS (as described in subsection 4.1).
This was successfully achieved using "URDF Importer" tool by Unity[54], based on
ROS#. This tool generates a model of the robot in Unity’s 3D scene based on the
kinematic structure and models provided in URDf file, as can be seen in Figure 6.

The virtual robot in Unity is constructed from GameObjects — primary building
blocks in Unity engine, which represent 3D Transforms with optional components
(i.e. C# scripts) attached to them to define extra functionality. In order to preserve

43

Figure 6. Motoman GP8 robot imported into Unity Scene from its ROS-Industrial
URDF file. Note that the robot’s structure in Hierarchy tab (on the right) follows the
one from URDF, including geometry containers for "Visuals" and "Collisions"

information from the original URDF file, the generated robot model has several
components attached to it. These include:

• UrdfRobot, manager script which holds reference to the original URDF file and
provides multiple controls for adjusting the imported model. It also provides a
function to export the robot back into URDF.

• UrdfLink, which holds data about a single robot link.

• UrdfJoint, which hold data about a single robot joint. There exist several
subclasses of UrdfJoint used to represent Revolute, Linear and Fixed joint
types from URDF specification.

• ArticulationBody, script responsible for physical simulation of an individual
joint. It defines joint articulation limits and effort used in the simulation,
corresponding to the original values set in the URDF. ArticulationBody scripts,
along with collision geometry attached to the links, provide a way to simulate
movement and interactions of the robot with objects in the virtual environment
(e.g. grasping).

44

An example of the robot’s link GameObject with attached components can be seen
in Figure 7.

Figure 7. ArticulationBody and UrdfJointRevolute attached to "link_1_s" of the
imported Motoman GP8

To make it easier for the robot control scripts to access kinematic information of the
robot (i.e. its joints and links), we created another component called RosRobotKine-
maticsDataProvider. This script automatically collects the lists of references to joints,
links and their respective names, which makes it easy to query and set the state of
each part of the virtual robot from other C code. This component is utilized in robot

45

control scripts, which are described next.

5.2.2. Robot control scripts

Following our "hardware-agnostic" criteria, it was compulsory to provide functionality
for testing the programs generated by the motion planning server on the virtual robot,
independently from the physical hardware. For this purpose, a script called Virtual-
RosRobotController was created. This script was based on RobotController family of
scripts proposed in the author’s previous research on digital twins in Unity[55], with
certain modifications for easier interoperability with ROS. VirtualRosRobotController
provides methods to execute arbitrary motions on the virtual robot by providing
it with ROS JointTrajectory messages (the same message type is used by MoveIt
planning pipeline and ROS-Industrial robot drivers). The trajectories get executed on
the virtual robot using the ArticulationBody scripts attached to the model, ensuring
that movement is coherent with Unity’s physics simulation and allowing the robot to
interact with virtual objects (e.g. pick them up using its gripper).

To allow for digital twin operation mode, i.e. when the virtual robot mirrors the
motions of the physical one, another script called DigitalTwinRosRobotController
was added to the system. It is based on the communication with ROS-Industrial
robot control node API (described in subsection 4.4). The script listens to the state
of the physical robot through joint_states topic, and updates virtual robot joint
positions accordingly; control commands passed to DigitalTwinRosRobotController
methods get forwarded to joint_path_command service, which executs them on the
physical robot. In the prototype, digital twin control mode was used to test the
generated programs on the real hardware, while observing the robot from the VR
environment (which also allows for remote operation scenarios).

5.3. Environment synchronization

As explained in subsection 4.2, it is more efficient to construct the MPS in ROS
by automatically synchronizing it with the Unity Scene instead of building the
environment from scratch in Rviz. To take the most out of such approach, the
synchronization system had to be:

46

• Selective — it should be possible to filter which objects get synchronized with
MoveIt; the digital twin environment in Unity may be much vaster than the
working envelope of the single robot being programmed, and adding the objects
not reachable by this robot to MPS would be a waste of processing power and
bandwidth.

• Efficient — the system should preserve bandwidth where possible to allow for
faster synchronization; geometry already uploaded to MPS should not be sent
again on the next synchronization — instead, it is sufficient to send only what
changed since the last update (e.g. if the object was moved in Unity, send the
command to update the position of the mesh in MPS instead of reuploading
the whole object’s mesh in the new position).

Let us see how these two criteria were met in our implementation.

Before writing the synchronization logic, it is necessary to decide what has to be
synchronized — i.e., derive a mapping between Unity’s and MoveIt’s representation
of a 3D scene. In MPS, 3D objects used for collision checking during motion planning
are called "collision objects", and are represented by CollisionObject ROS messages.
CollisionObject message contains data about solid primitives and meshes constituting
the object, as well as their poses relative to the object’s origin. Collision objects
of MPS are directly visualized in Rviz. In Unity, visible geometry is represented
by MeshRendereer components, which can efficiently render complex meshes but
do not take part in physics simulation, and thus do not represent the physical form
of virtual environment. Instead, collision volumes used in Unity physics engine
are represented by Collider components, which can use either solid primitives or
mesh geometry. Thus, it was decided to map Unity Collider components onto
CollisionObject messages and upload them to MPS.

To mark individual objects for synchronization, a component called MoveItColli-
sionObjectAlias was created. When attached to a GameObject, this script auto-
matically collects all Collider components belonging to this GameObject and its
children. All collected colliders are stored in a list, which can be mapped to a sin-
gle CollisionObject message for use in MPS. MoveItCollisionObjectAlias provides a
straightforward way to mark selected GameObjects for synchronization, thus fulfilling
the "Selective" criteria pointed out above.

The synchronization logic is contained in a separate script called MoveItSceneSyn-

47

chronizer. This script handles conversion MoveItCollisionObjectAliases into MoveIt’s
CollisionObjects and their uploading to ROS. Each instance of MoveItSceneSynchro-
nizer holds reference to its own RosConnection, MPS name, robot digital twin in the
form of RosRobotKinematicsDataProvider and a list of MoveItCollisionObjectAliases
to be uploaded into the named MPS on the respective ROS server. Having config-
urable parameters allows to have several synchronizers dedicated to different robots
(and to respective motion planning servers) in the same digital twin environment.
An example of a configured synchronizer can be seen in Figure 8.

Figure 8. Interface of MoveItPlanningSceneSynchronizer component. Five objects
marked for synchronization with MoveIt can be seen in the "Synchronized Objects"
list at the bottom of the image

An important aspect to take care of when converting Unity’s 3D geometry and
transforms into ROS is that the two applications use different coordinate systems.
Unity coordinate system is left-handed (X right, Y up, Z forward), while the most
common coordinate system used in ROS is right-handed (X forward, Y left, Z up).
Fortunately, ROS-TCP-Connector package includes code for converting 3D positions
and rotations between the two coordinate systems, so it was utilized in the prototype.

To correctly construct CollisionObject messages, each type of Unity’s Collider had
to be mapped to the corresponding primitive or mesh in ROS. Elements of Colli-
sionObjects in MPS are described using Shape message type from the standard ROS
shape_msgs package[56]. Certain primitive shapes supported in Shape message are
not available in Unity, namely a cylinder and a cone. Unity has a standard cylinder
mesh included in the engine library, so if any MeshCollider is using it, it gets mapped
to SolidPrimitive.Cylinder type. However, Unity does not have a cone mesh in its
default library, so it is not possible to reliably map a collider to SolidPrimitive.Cone
without analyzing the underlying mesh; thus, any cone meshes are treated as generic

48

Table 2. Mapping of collision geometry from Unity to ROS

Unity Collider ROS Shape
BoxCollider SolidPrimitive.Box
SphereCollider SolidPrimitive.Sphere
CapsuleCollider Mesh (capsule)
MeshCollider Mesh
MeshCollider (cylinder) SolidPrimitive.Cylinder
MeshCollider (plane) Plane
- SolidPrimitive.Cone

MeshCollider and mapped to Mesh type in ROS. On contrary, Unity supports capsule
primitive, which is not available in ROS. Thus, for each CapsuleCollider, a standard
capsule mesh from Unity gets uploaded to Mesh in ROS. Full mapping of the 3D
collision geometry, as it was implemented in MoveItSceneSynchronizer, can be seen
in Table 2.

After each marked Collider is converted into ROS Shape message, it is included in
the corresponding CollisionObject together with its pose in 3D space (converted to
ROS coordinate system). All poses of the objects are given relative to the base link
of the robot, because in MPS the robot base is located at the world origin point,
i.e. [0;0;0]. Once all MoveItCollisionObjectAliases are converted into CollisionObject
messages, they can be sent to the MPS. Triggering the synchronization from the
current state of Unity Scene can be done simply by calling Synchronize() method
on MoveItSceneSynchronizer. The synchronizer automatically keeps internal track
of the objects already uploaded to the MPS, and only synchronizes the changes
(e.g. an updated position of the object) with ROS, thus fulfilling the "Efficient"
criteria. It should also be noted that the Synchronize() method is not getting called
automatically by the synchronizer itself — instead allowing to toggle MPS update
from other scripts when needed. In our prototype, synchronization happens exactly
before the MTDF is sent to the motion server for processing. Result of the demo
environment synchronization can be seen in Figure 9.

In the prototype, MoveItSceneSynchronizer has successfully demonstrated that MPS
can be generated automatically based on the existing 3D environment in Unity.
This approach allows to use complex environments for planning in MoveIt without
compromising the convenience and speed of authoring them in Unity Editor.

49

Figure 9. Robot workcell with object primitives in Unity (left) mirrored into MoveIt
Planning Scene in ROS (right)

5.4. Task recording interface

The proposed interface for recording LfD demonstrations consists of the record-
ing script, status UI and VR system which allows the user to interact with the
environment.

VR functionality was implemented using Tilia framework[57] — the successor of
Virtual Reality Toolkit, a substantial open-source framework for VR development
in Unity. The framework is independent from hardware and works with any VR
headset supported by Unity. In our prototype, Tilia provides input handling for
VR HMD and hand controllers, user’s avatar locomotion and logic for interactable
objects in the environment. Interactables objects, often referred to as "interactables",
are 3D objects which can be grabbed by the user using a hand controller. Grabbing
functionality is the main advantage of using VR for demonstrations, because it allows
the user to rearrange the virtual scene in a natural fashion. The moments when the
user grabs or releases an interactable can be precisely detected in code, and directly
mapped to "pick" and "place" keyframes of MTDF. This brings us to the recording
logic.

The recording script, called MtdfRecorder, contains the core functionality for in-
terpreting user actions into MTDF format. MtdfRecorder automatically collects
references to objects which are both interactable and have MoveItCollisionObjectAlias

50

script attached to them. After the digital twin environment is set up and the user
starts a demonstration by clicking "Start recording" button in the UI, the script
starts monitoring. As the user grabs and releases the tracked objects, each such
interaction gets mapped to the keyframe of MTDF in the recorder’s memory. Once
the demonstration is complete, the user clicks "Complete recording" button in the
UI and MtdfRecorder saves the generated MTDF data into a Scriptable Object (SO)
asset in the Unity project. ScriptableObject is a type of C# script which makes it
convenient to serialize and edit custom data in the Unity project. It was intentionally
chosen for storing MTDF in Unity, as it allows to easily load recorded MTDFs for
analysis in other scripts. Nevertheless, each MTDF SO contains a method to convert
it to a YAML string, which is exactly what happens when sending MTDFs to ROS
planning server.

The recorded MTDF SOs are handled by the script called MtdfManager. This
script automatically keeps track of the available MTDF SOs in Unity application,
and provides methods for reviewing them and converting them to robot programs.
MtdfManager requires a task reference frame (i.e. Transform) for MTDF, a reference
to RosRobotKinematicsDataProvider of the robot for which the program must be
generated, and a RosConnection linked to the motion planning server. Once these
parameters are set, the manager can convert any MTDF to the motion plan for
execution on the given robot. It must be noted that before sending MTDF to the
task planner node, the manager also triggers synchronization with MPS to set up
correct collision environment before planning.

The status UI of the prototype provides minimal functionality sufficient for using
the features described in the above paragraphs. User can use the UI to start and
stop task recordings, review the created MTDFs and convert them into robot motion
plans. UI also displays a live list of generated MTDF keyframes during the recording
for user’s reference.

51

6. Use-case: testing LfD system prototype

In order to validate the developed prototype, it was tested with two robots supported
by ROS-Industrial: Motoman GP8 and ABB IRB-1600. This specific choice of robot
models was based on the fact that both robots were available in the Industrial Virtual
and Augmented Reality (IVAR) Laboratory in TalTech. This provided the possibility
to validate the generated programs not only in simulation, but also on the physical
hardware. In addition, a digital twin of the IVAR Laboratory environment was
available as a part of the ongoing project on the digialization of the said laboratory.

The following steps were carried out to set up the system for each of the robots:

• Locate ROS-Industrial support package for the robot.

• Import robot’s URDF into the digital twin environment in Unity.

• Add custom gripper to the robot and export it back to URDF.

• Generate MCP based on the exported URDF.

• Mark objects in the robot’s work envelope in Unity for synchronization with
MPS.

• Deploy motion planning server in the local network.

With the virtual robots set up, an example task was recorded, where the user stacked
digital twins of 4 colored wooden boxes. An A4 paper-sized template layout was
created to easily replicate the task starting condition when executing it in the real
world. The template can be seen in Figure 10. Each step of the task is shown in
Figure 11.

After the MTDF was generated, it was processed on both robots’ motion servers to
demonstrate that the system is capable of producting solutions for different robot
models based on MTDF from a single demonstration. Motion plans were successfully
generated for both robots, and snapshots of the programs’ execution can be seen in
Figure 12.

52

Figure 10. Initial layout of the recorded task

Figure 11. Steps of the recorded task

Figure 12. Motoman GP8 (left) and ABB IRB 1600 (right) executing trajectories
generated from the recorded task’s MTDF

53

Finally, the generated program was validated on the physical Motoman GP8 robot,
The result was a successful execution of the demonstrated task in the real world.
In shall be noted that the physical execution was tested only on Motoman because
the ABB robot available in the laboratory lacked a gripper. Virtual version of
ABB was equipped with the same gripper used on the physical Motoman robot,
which demonstrates how LfD in simulation can be used for testing different robot
configurations in absence of the physical hardware.

54

7. Discussion and future developments

This section draws suggestions regarding the future of ideas presented in this work
based on the achieved results.

7.1. On the achieved goals

Several goals were defined in the beginning of this work (subsection 1.3). They have
been successfully achieved:

• The prototype vividly presents the benefits of LfD programming in a simu-
lated environment: software-only setup, independence from hardware sensors,
unified mechanism for recording object manipulation tasks in a simulated 3D
environment.

• The practical part of this thesis serves as detailed guideline for implementing
similar digital-twin based LfD systems.

• Presented VR interface allows the user to record demonstrations by intuitively
manipulating the object in virtual environment, while the system automatically
handles mapping of the user’s actions to the keyframes relevant to the task.

• The prototype has successfully used a single demonstration recording to generate
programs for two different industrial robot models, which were imported to
the system without any modifications to the code.

Now, let us complete the final goal by setting the course for the future development.

7.2. Directions of future research

A working prototype of hardware-agnostic simulation-based LfD system has been
complete. However, the author believes that the presented system has a lot of room
for improvement. Thus, let us outline potential improvements for the system which
deserve to be implemented.

55

7.2.1. Automatic deployment pipeline for ROS motion planning servers

One of the key motivations behind this research was the desire to make the process
of robot programming simple and accessible to an average user without coding skills.
The prototype requires the user to manually configure the ROS server, and work
with ROS command line tools to generate MCP for the robot and launch MoveIt
nodes needed for planning. However, with more automation, the system architecture
presented in this thesis has the potential to provide a no-code programming experience.
Configuration of the robot’s URDF with custom grippers can already be done in
Unity. Additional semantic data, such as motion planning groups, can be added
to the model using Unity components. This means that the data for generating
MCP is available on Unity side, and can be used to automatically configure motion
planning server without demanding the user to directly interact with ROS. One can
develop a ROS node which will generate MCP based on the URDF and semantic
data uploaded from Unity, and launch the planning environment for the given robot.
Furthermore, this node can be packaged in a Docker image with ROS and MoveIt
preinstalled. This would result in a drop-in motion planning module which can run
aside our Unity LfD application on any OS, without manual configuration.

7.2.2. Extending MTDF

The concept of MTDF, introduced in this work, has the potential to be greatly
extended. As mentioned in subsection 4.3.3, object descriptors can be expanded to
reference sets of rules used to identify objects in the virtual environment. This would
allow to flexibly define the objects relevant to the task, using arbitrary features for
identification (for example, the object could be identified by color or based on point
cloud shape from a simulated sensor). Next, the library of keyframes can be extended
to allow for more complicated manipulation scenarios. One of the possible suggestions
is to introduce a "trajectory" keyframe type, which would define a list of poses which
have to be followed by the manipulated object. This could be useful for tasks where
the robot has to execute specific motions with a tool (for example, grab a marker
and execute a drawing with it). With more object descriptors and keyframe types
added in the future, MTDF can become a generic format for high-level description of
manipulation tasks, which can then be translated to low-level motions of any robotic
manipulator.

56

7.2.3. Migration to ROS 2

Although ROS 1 is currently the most stable and widespread version of the software,
ROS 2 will inevitably become the new industry standard in the upcoming years.
Migration to ROS 2 will bring several benefits which can be harnessed in our
implementation. Among them is improved performance, which can allow for faster
robot and scene synchronization as well as quicker generation of LfD task solutions
by MTC library. Another crucial upcoming feature is the ability to launch the nodes
in explicitly defined order — it will simplify the deployment of ROS-TCP-Connector
nodes, which in our case depend on the topics published by the motion planning
pipeline. The software projects from our solution are already have development
versions supporting ROS 2, including MoveIt and ROS-Industrial packages. Thus, it
is planned to adapt the developed system to ROS 2 in the close future.

7.2.4. System performance evaluation experiment

In order to objectively assess the efficiency of digital twin-based LfD approach, a
experiment comparing it to conventional methods of robot programming should be
performed. While, theoretically, the prototype system can provide significant boost
to programming speed for the users when compared to traditional coding approach,
the time required to set up the digital twin environment has to be accounted for. The
efficiency of the system will also likely depend on the frequency of reprogramming
required in a specific industrial scenario. Due to the time constraints and pandemic
situation at the time of writing of this thesis, the performance evaluation experiment
has not been attempted, thus leaving it to the future research.

57

8. Summary

In this thesis, a concept and implementation of hardware-agnostic digital twin-based
LfD system for industrial robots were suggested. An overview of the state of the art
in LfD literature was presented, outlining strengths and weaknesses of the existing
solutions. Based on the collected data, passive observation was chosen as the most
efficient, albeit complex, LfD approach. It was reasoned that the limitations of passive
observation LfD can be countered by using VR environment for task demonstrations.
An architecture of the system was proposed, relying on the common software, with
the focus on replicability and independence from hardware. The prototype of the
system was successfully implemented and validated with two different robot models
in the digital twin of TalTech IVAR Laboratory. Finally, the possible directions of
further development were defined.

The result of this work confirms the assumption that passive observation approach to
LfD can be empowered by running demonstrations in a pure simulated environment,
and does not have to be restricted by the robotic hardware available to the user.
Combined with the fact that it was developed using common and open-source software
components, the proposed system is indeed a novel outlook on the LfD paradigm,
which is also friendly to being reproduced and extended by other developers.

As a conclusion, the author sincerely hopes that this work will pave the way for a
whole set of future research endeavors crossing the areas of LfD and digital twins,
which will in turn lead us to more accessible an effective robot programming.

58

References

[1] H. Ravichandar, A. S. Polydoros, S. Chernova, and A. Billard, “Recent advances
in robot learning from demonstration,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 3, no. 1, pp. 297–330, may 2020, overview of current
state of Learning from Demonstration in robotics.

[2] D. Halbert, “Programming by example,” Ph.D. dissertation, University of Cali-
fornia, Berkeley, 1984.

[3] “Niryo one,” an affordable 6 DoF robot arm. [Online]. Available:
https://niryo.com/product/niryo-one/

[4] “Pi arm,” an affordable 6 DoF robot arm based on Rasp-
berry Pi. [Online]. Available: https://shop.sb-components.co.uk/products/
piarm-the-diy-robotic-arm-for-raspberry-pi

[5] “About ros.” [Online]. Available: https://www.ros.org/about-ros/

[6] D. Weintrop, A. Afzal, J. Salac, P. Francis, B. Li, D. Shepherd, and D. Franklin,
“Evaluating CoBlox,” in Extended Abstracts of the 2018 CHI Conference on
Human Factors in Computing Systems. ACM, apr 2018.

[7] “Omron tm-flow software.” [Online]. Available: https://automation.omron.com/
en/us/products/family/OmronTMSoftware

[8] Y. Bondarenko, “Simulation-based lfd demo,” 2021, demo implementation
of the system developed in the scope of this thesis. [Online]. Available:
https://gitlab.com/IVAR_Lab/simulation-based-lfd-demo

[9] A. Sugiura and Y. Koseki, “Simplifying macro definition in programming by
demonstration,” in Proceedings of the 9th annual ACM symposium on User
interface software and technology - UIST '96. ACM Press, 1996.

[10] M. M. Zloof, “Query-by-example: A data base language,” vol. 16, pp. 324–343,
1977.

[11] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel,
“Deep imitation learning for complex manipulation tasks from virtual reality tele-
operation,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, may 2018.

59

https://niryo.com/product/niryo-one/
https://shop.sb-components.co.uk/products/piarm-the-diy-robotic-arm-for-raspberry-pi
https://shop.sb-components.co.uk/products/piarm-the-diy-robotic-arm-for-raspberry-pi
https://www.ros.org/about-ros/
https://automation.omron.com/en/us/products/family/Omron TM Software
https://automation.omron.com/en/us/products/family/Omron TM Software
https://gitlab.com/IVAR_Lab/simulation-based-lfd-demo

[12] K. Dautenhahn and C. L. Nehaniv, Imitation in Animals and Artifacts. MIT
Press, 2002, "Correspondence problem" definition in Chapter 2.

[13] “Ati multi-axis force/torque sensor system,” example of a sensor kit used
to enable kinesthetic teaching in industrial robots. [Online]. Available:
https://www.ati-ia.com/products/ft/sensors.aspx

[14] D. Whitney, E. Rosen, D. Ullman, E. Phillips, and S. Tellex, “Ros reality: A
virtual reality framework using consumer-grade hardware for ros-enabled robots,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, oct 2018.

[15] V. Kuts, G. E. Modoni, T. Otto, M. Sacco, T. Tähemaa, Y. Bondarenko, and
R. Wang, “Synchronizing physical factory and its digital twin through an iiot
middleware: a case study,” vol. 68, p. 364, 2019.

[16] M. J.-Y. Chung, M. Forbes, M. Cakmak, and R. P. N. Rao, “Accelerating imita-
tion learning through crowdsourcing,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, may 2014.

[17] R. Toris, D. Kent, and S. Chernova, “Unsupervised learning of multi-hypothesized
pick-and-place task templates via crowdsourcing,” 2015.

[18] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation:
Learning to imitate behaviors from raw video via context translation,” in 2018
IEEE International Conference on Robotics and Automation (ICRA). IEEE,
may 2018.

[19] E. Glaessgen and D. Stargel, “The digital twin paradigm for future nasa and
u.s. air force vehicles,” 2012.

[20] Y. Chen, “Integrated and intelligent manufacturing: Perspectives and enablers,”
Engineering, vol. 3, no. 5, pp. 588–595, oct 2017.

[21] J. Spranger, R. Buzatoiu, A. Polydoros, L. Nalpantidis, and E. Boukas, “Human-
machine interface for remote training of robot tasks.” in 2018 IEEE International
Conference on Imaging Systems and Techniques (IST). IEEE, oct 2018.

[22] D. Whitney, E. Rosen, E. Phillips, G. Konidaris, and S. Tellex, “Comparing robot
grasping teleoperation across desktop and virtual reality with ROS reality,” in
Springer Proceedings in Advanced Robotics. Springer International Publishing,
nov 2020, pp. 335–350.

60

https://www.ati-ia.com/products/ft/sensors.aspx

[23] “Unity engine website.” [Online]. Available: https://unity.com/releases/
release-overview

[24] “Nvidia physx 4.0 release announcement,” physX 4.0 is the default physics
solver in current versions of Unity engine. [Online]. Available: https://developer.
nvidia.com/blog/announcing-physx-sdk-4-0-an-open-source-physics-engine/

[25] “Ros,” gitHub repository of the ROS project by Siemens. [Online]. Available:
https://github.com/siemens/ros-sharp

[26] “Unity robotics hub,” repository with demo projects integrating Unity
with ROS, developed by Unity themselves. [Online]. Available: https:
//github.com/Unity-Technologies/Unity-Robotics-Hub

[27] “Robots of ros,” official public list of robots supported by ROS. [Online].
Available: https://robots.ros.org/

[28] “Ros-industrial official website.” [Online]. Available: https://rosindustrial.org/

[29] “Ros-industrial supported hardware,” rOS Wiki page listing industrial
robot vendors supporting ROS-Industrial initiative. [Online]. Available:
http://wiki.ros.org/Industrial/supported_hardware

[30] I. A. Sucan and S. Chitta, “Moveit.” [Online]. Available: https://moveit.ros.org/

[31] T. Coleman David, “Reducing the barrier to entry of complex robotic software:
a moveit! case study,” 2014.

[32] “Universal robot description format (urdf).” [Online]. Available: http:
//wiki.ros.org/urdf/XML/model

[33] “Xacro (xml macros).” [Online]. Available: http://wiki.ros.org/xacro

[34] “Semantic robot description format (srdf).” [Online]. Available: http:
//wiki.ros.org/srdf

[35] “Moveit setup assistant documentation.” [Online]. Avail-
able: https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/
setup_assistant_tutorial.html

[36] “Moveit grasps documentation.” [Online]. Available: https://ros-planning.github.
io/moveit_tutorials/doc/moveit_grasps/moveit_grasps_tutorial.html

61

https://unity.com/releases/release-overview
https://unity.com/releases/release-overview
https://developer.nvidia.com/blog/announcing-physx-sdk-4-0-an-open-source-physics-engine/
https://developer.nvidia.com/blog/announcing-physx-sdk-4-0-an-open-source-physics-engine/
https://github.com/siemens/ros-sharp
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://robots.ros.org/
https://rosindustrial.org/
http://wiki.ros.org/Industrial/supported_hardware
https://moveit.ros.org/
http://wiki.ros.org/urdf/XML/model
http://wiki.ros.org/urdf/XML/model
http://wiki.ros.org/xacro
http://wiki.ros.org/srdf
http://wiki.ros.org/srdf
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/setup_assistant/setup_assistant_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_grasps/moveit_grasps_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_grasps/moveit_grasps_tutorial.html

[37] M. Lautman, “Introducing MoveIt grasps, a manipulation framework tightly
integrated with MoveIt.” oct 2019.

[38] “Moveit deep grasps documentation.” [Online]. Avail-
able: https://ros-planning.github.io/moveit_tutorials/doc/moveit_deep_
grasps/moveit_deep_grasps_tutorial.html

[39] “Grasp pose detection library,” library for detecting robot gripper grasps
in point clouds using convolutional neural network. [Online]. Available:
https://github.com/atenpas/gpd

[40] “Dexterity network (dex net),” convolutional neural network for extracting
robot gripper grasp poses for objects from camera images. [Online]. Available:
https://berkeleyautomation.github.io/dex-net/

[41] “Moveit planning scene documentation.” [Online]. Avail-
able: https://ros-planning.github.io/moveit_tutorials/doc/planning_scene/
planning_scene_tutorial.html

[42] “Moveit planning scene ros api.” [Online]. Avail-
able: https://ros-planning.github.io/moveit_tutorials/doc/planning_scene_
ros_api/planning_scene_ros_api_tutorial.html

[43] “Rviz,” 3D visualization tool for ROS. [Online]. Available: http:
//wiki.ros.org/rviz

[44] “Moveit ros message types.” [Online]. Available: http://docs.ros.org/en/api/
moveit_msgs/html/index-msg.html

[45] “Orocos kinematics and dynamics library,” one of the IK plugin options in
MoveIt. [Online]. Available: https://www.orocos.org/kdl.html

[46] “Openrave,” a motion planning library which includes IKFast, one of the IK
plugin options in MoveIt. [Online]. Available: http://openrave.org/

[47] “Moveit kinematics configuration.” [Online]. Available: https:
//ros-planning.github.io/moveit_tutorials/doc/kinematics_configuration/
kinematics_configuration_tutorial.html?highlight=kinematics

[48] “Trac-ik,” one of the IK plugin options in MoveIt. [Online]. Available:
https://bitbucket.org/traclabs/trac_ik

62

https://ros-planning.github.io/moveit_tutorials/doc/moveit_deep_grasps/moveit_deep_grasps_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/moveit_deep_grasps/moveit_deep_grasps_tutorial.html
https://github.com/atenpas/gpd
https://berkeleyautomation.github.io/dex-net/
https://ros-planning.github.io/moveit_tutorials/doc/planning_scene/planning_scene_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/planning_scene/planning_scene_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/planning_scene_ros_api/planning_scene_ros_api_tutorial.html
https://ros-planning.github.io/moveit_tutorials/doc/planning_scene_ros_api/planning_scene_ros_api_tutorial.html
http://wiki.ros.org/rviz
http://wiki.ros.org/rviz
http://docs.ros.org/en/api/moveit_msgs/html/index-msg.html
http://docs.ros.org/en/api/moveit_msgs/html/index-msg.html
https://www.orocos.org/kdl.html
http://openrave.org/
https://ros-planning.github.io/moveit_tutorials/doc/kinematics_configuration/kinematics_configuration_tutorial.html?highlight=kinematics
https://ros-planning.github.io/moveit_tutorials/doc/kinematics_configuration/kinematics_configuration_tutorial.html?highlight=kinematics
https://ros-planning.github.io/moveit_tutorials/doc/kinematics_configuration/kinematics_configuration_tutorial.html?highlight=kinematics
https://bitbucket.org/traclabs/trac_ik

[49] M. Gorner, R. Haschke, H. Ritter, and J. Zhang, “MoveIt! task constructor for
task-level motion planning,” may 2019.

[50] “yaml-cpp,” c++ library for working with YAML format. [Online]. Available:
https://github.com/jbeder/yaml-cpp.git

[51] “Ros-industrial robot driver specification.” [Online]. Available: http:
//wiki.ros.org/Industrial/Industrial_Robot_Driver_Spec

[52] “industrial_robot_client package from ros-industrial.” [Online]. Available:
http://wiki.ros.org/industrial_robot_client

[53] “Ros-tcp-connector.” [Online]. Available: https://github.com/
Unity-Technologies/ROS-TCP-Connector

[54] “Unity urdf importer.” [Online]. Available: https://github.com/
Unity-Technologies/URDF-Importer

[55] Y. Bondarenko, “Digital twin communication and control bridge development
using virtual reality – industrial robot use case,” 2018. [Online]. Available:
https://digikogu.taltech.ee/en/Item/bc59417d-007b-439d-9e52-2bb266d4b1b8

[56] “Ros shape_msgs package.” [Online]. Available: http://wiki.ros.org/shape_msgs

[57] “Tilia,” a framework for the development of spatial computing applications in
Unity engine. [Online]. Available: https://www.vrtk.io/tilia.html

63

https://github.com/jbeder/yaml-cpp.git
http://wiki.ros.org/Industrial/Industrial_Robot_Driver_Spec
http://wiki.ros.org/Industrial/Industrial_Robot_Driver_Spec
http://wiki.ros.org/industrial_robot_client
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/URDF-Importer
https://github.com/Unity-Technologies/URDF-Importer
https://digikogu.taltech.ee/en/Item/bc59417d-007b-439d-9e52-2bb266d4b1b8
http://wiki.ros.org/shape_msgs
https://www.vrtk.io/tilia.html

A. Geometry parameters for grasp_data.yaml files
for two-finger grippers

The original image is available in [36].

64

B. Example of grasp_data.yaml (from use-case)

base_link: world

hand:

Name and EEF type

end_effector_name: hand

end_effector_type: finger

Finger gripper parameters

max_finger_width: 0.049

min_finger_width: 0.030

max_grasp_width: 0.044

gripper_finger_width : 0.006

Joint names and state values for the EEF

joints : [joint_left_finger, joint_right_finger]

pregrasp_posture : [0.04, -0.04]

grasp_posture : [0.0, 0.0]

Distance from the mount to the palm of EEF [x, y, z, r, p, y]

tcp_to_eef_mount_transform : [0, 0, 0, 0, 0, 0]

Planning resolution parameters

grasp_resolution : 0.05

angle_resolution : 90

grasp_max_depth : 0.006

grasp_min_depth : 0.003

grasp_depth_resolution : 1.0

Grasp motions parameters

approach_distance_desired: 0.05

retreat_distance_desired: 0.05

lift_distance_desired: 0.01

grasp_padding_on_approach: 0.003

pregrasp_time_from_start : 0.0

grasp_time_from_start : 0.0

65

C. Example of MTDF YAML (from use-case)

object_descriptors:

- red_box

- green_box

- blue_box

- yellow_box

keyframes:

- { type: pick, object_descriptor: blue_box }

- { type: place, object_descriptor: blue_box,

place_pose:

{ position: [0.534, 0.0237, 0.321]

orientation: [1.4756, -0.2618, -6.0335, 0.9651] }

}

- { type: pick, object_descriptor: yellow_box }

- { type: place, object_descriptor: yellow_box,

place_pose:

{ position: [0.5332, 0.069, 0.3241]

orientation: [0.0007, 0.5797, -0.0007, 0.8149] }

}

- { type: pick, object_descriptor: red_box }

- { type: place, object_descriptor: red_box,

place_pose:

{ position: [0.5345, 0.0988, 0.3279]

orientation: [0.0005, 0.9934, 0.0004, 0.1143] }

}

- { type: pick, object_descriptor: green_box }

- { type: place, object_descriptor: green_box,

place_pose:

{ position: [0.5360, 0.1329, 0.3290]

orientation: [-0.651, -0.275, -0.2767, 0.6511] }

}

66

	Introduction
	Research domain
	Room for improvement
	Thesis goals
	Thesis contents

	Background
	Note on the definitions
	Categories of LfD
	Kinesthetic teaching
	Teleoperation
	Passive observation
	Comparison of demonstration approaches

	Potential of passive observation in digital twin environment
	Existing simulation-based implementations and their limitations

	System implementation overview
	Design philosophy
	Software overview
	Unity
	ROS
	ROS-Industrial
	MoveIt

	Architecture overview

	ROS: motion planning and robot control servers
	Robot representation in ROS
	URDF and XACRO
	URDF in ROS-Industrial standard
	SRDF and MoveIt configuration packages
	Gripper description for grasping pipeline

	Environment representation in ROS
	Motion planning
	IK service
	MoveIt Task Constructor
	Manipulation Task Description Format
	Task planner node
	Motion planning server

	Physical robot control
	ROS-Industrial drivers
	Control server

	Unity: task recording interface
	Communication between Unity and ROS
	Robot representation in Unity
	URDF import
	Robot control scripts

	Environment synchronization
	Task recording interface

	Use-case: testing LfD system prototype
	Discussion and future developments
	On the achieved goals
	Directions of future research
	Automatic deployment pipeline for ROS motion planning servers
	Extending MTDF
	Migration to ROS 2
	System performance evaluation experiment

	Summary
	References
	Geometry parameters for grasp_data.yaml files for two-finger grippers
	Example of grasp_data.yaml (from use-case)
	Example of MTDF YAML (from use-case)

