
DOCTORAL THESIS

Security-Aware Physical
Synthesis of Integrated Circuits

Tiago D. Perez

TALLINNA TEHNIKAÜLIKOOL

TALLINN UNIVERSITY OF TECHNOLOGY
TALLINN 2023

TALLINN UNIVERSITY OF TECHNOLOGY
DOCTORAL THESIS

4/2023

Security-Aware Physical Synthesis of
Integrated Circuits

TIAGO D. PEREZ

TALLINN UNIVERSITY OF TECHNOLOGY
School of Information Technologies
Department of Computer Systems
The dissertation was accepted for the defence of the degree of Doctor of
Philosophy in Information and Communication Technology on 12 December
2022

Supervisor: Professor Dr. Samuel Pagliarini,
Department of Computer Systems, Centre for Hardware Security,
Tallinn University of Technology
Tallinn, Estonia

Opponents: Professor Dr. Ronald D. Blanton,
Carnegie Mellon University,
Pittsburgh, United States

Dr. Marie-Lise Flottes,
Centre National de la Recherche Scientifique,
Montpellier, France

Defence of the thesis: 8 February 2023, Tallinn
Declaration:
Hereby, I declare that this doctoral thesis, my original investigation, and achievement,
submitted for the doctoral degree at Tallinn University of Technology, has not been
submitted for any academic degree elsewhere.

Tiago D. Perez
signature

Copyright: Tiago D. Perez, 2023
ISSN 2585–6898 (publication)
ISBN 978-9949-83-947-6 (publication)
ISSN 2585–6901 (PDF)
ISBN 978-9949-83-948-3 (PDF)
Printed by Auratrükk

TALLINNA TEHNIKAÜLIKOOL
DOKTORITÖÖ

4/2023

Integraallülituste turvateadlik füüsiline
süntees

TIAGO D. PEREZ

Contents
List of Publications . 7

Abbreviations . 8

1 Introduction . 10
1.1 Thesis Outline and Contributions . 12

2 Background . 14
2.1 History and Today’s Integrated Circuit . 14
2.2 Integrated Circuit Digital Design Implementation . 16
2.3 Hardware-based Threats and Countermeasures . 23
2.4 Computing Platforms and Hardware Accelerators . 28

3 Secure GPU-like ASIC Accelerators . 31
3.1 Introduction and Research Gap . 31
3.2 G-GPU Baseline: the FGPU .. 32
3.3 GPUPlaner Tool and Framework . 33
3.4 Results and Discussion . 36

4 Split Manufacturing: Attacks and Defenses . 43
4.1 Introduction. 43
4.2 Attacks on Split Manufacturing . 46
4.3 Split Manufacturing Defenses . 50
4.4 Discussion. 55

5 Hardware Trojans Design and Insertion . 57
5.1 Introduction. 57
5.2 Side-Channel Trojan and its Insertion via ECO .. 59
5.3 Testchip: Results and Discussion. 61
5.4 Blind Insertion of HTs Framework . 68

6 Conclusions and Future Work . 72

List of Figures . 75

List of Tables . 76

References . 77

Acknowledgements. 91

Abstract . 92

Appendix 1 . 97

Appendix 2 . 123

5

Appendix 3 . 131

Appendix 4 . 135

Appendix 5 . 141

Appendix 6 . 153

Appendix 7 . 169

Curriculum Vitae . 175

Elulookirjeldus . 177

6

List of Publications
The present PhD thesis is based on the following publications.

[I] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks, defenses,
and challenges,” IEEE Access, vol. 8, pp. 184013–184035, 2020

[II] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan insertion - a
practical foundry-side attack via eco,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2021

[III] T. Perez and S. Pagliarini, “A side-channel hardware trojan in 65nm cmos with
2µW precision and multi-bit leakage capability,” in 2022 27th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 9–10, 2022

[IV] T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja, and
S. Pagliarini, “G-gpu: A fully-automated generator of gpu-like asic accelerators,”
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 544–547, 2022

[V] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, “A pragmatic methodology for blind
hardware trojan insertion in finalized layouts,” in 2022 International Conference
on Computer-Aided Design (ICCAD), 2022

[VI] T. D. Perez and S. Pagliarini, “Hardware Trojan Insertion in Finalized Layouts:
From Methodology to a Silicon Demonstration,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2022

Other related publications
[VII] Z. U. Abideen, T. D. Perez, and S. Pagliarini, “From fpgas to obfuscated easics:

Design and security trade-offs,” in 2021 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), pp. 1–4, 2021

7

Abbreviations

3PIP Third Party Intellectual Property
AES_LFHD AES Low-Frequency-High-Density
AES_HFHD AES High-Frequency-High-Density
AI Artificial Intelligence
APU Accelerated Processing Units
ARPANET Advanced Research Projects Network
ASIC Application-Specific Integrated Circuit
BEOL Back End of the Line
BioHT Blind Insertion of Hardware Trojans
CAGR Compound Annual Growth Rate
CCR Correct Connection Rate
CMP Chemical Mechanical Polarization
CPU Central Processing Unit
CU Computing Unit
DFM Design for Manufacturability
DRC Design Rule Checking
DSE Design-Space Exploration
ECO Engineering Change Order
EDA Electronic Design Automation
eFPGA Embedded Field Programmable Gate Array
EM Electromagnetic
EMSR Effective Mapped Set Ratio
FEOL Front End of the Line
FIB Focused Ion Beam
FPGA Field Programmable Gate Array
GPU Graphic Processing Unit
HD Hamming Distance
HDL Hardware Description Language
HPC High-Performance Computing
HT Hardware Trojan
IC Integrated Circuits
IIFT Imprecise Information Flow Tracking
IP Intellectual Property
LEF Library Exchange Format
LSI Large-Scale Integration
LUT Look-up Table
LVS Layout Versus Schematic
MCTRL General Memory Controller
ML Machine Learning
MUX Multiplexer
PPA Performance, Power and Area
PCB Printed Circuit Board
PDK Process Design Kit

8

PE Processing Elements
PST Present Crypto Core
PST_LFHD Present Low-Frequency-High-Density
PST_HFHD Present High-Frequency-High-Density
RO Ring Oscillator
RTL Register-Transfer Level
SADP Self-Aligned Double Patterning
SCT Side-Channel Hardware Trojan
SDC Synopsys Design Constraints
SEM Scanning Electron Microscope
SIMT Single-Instruction Multiple Threads
SNR Signal-to-Noise Ratio
SoC System-on-Chips
SSF Signal Selection Function
TCO Trojan Change Order
TLP Thread-Level Parallelism
TPU Tensor Processing Unit
TTE Time to Evaluate
ULSI Ultra-Large-Scale Integration
UPF Unified Power Format
VLSI Very Large-Scale Integration
WLO Wirelength Overhead

9

1 Introduction
The digitalization of society has rapidly changed many aspects of our lives [1]. Today,
semiconductors power almost everything in our daily activities [2]. Thus, many critical
infrastructures deploy Integrated Circuits (ICs)-based systems. For example, even the
financial sector experienced fast and deep digitalization in the past decades [3]. Moreover,
in many parts of the world, governments are creating their digital form of currency [4].
Because IC-based systems are increasingly deployed in critical infrastructures, ensuring
the trustworthiness of such devices is crucial. A compromised device that handles
sensitive data or is essential for the functionality of a critical system can have devastating
consequences. Therefore, guaranteeing the trustworthiness of ICs is vital. However,
ensuring the IC’s security is an open research question the community strives to solve.

All digitalization processes were possible because of the rapid development of ICs.
Capable modern system-on-chips (SoCs) require powerful and efficient transistors
coupled with optimized system architectures. A modern SoC architecture combines
different computing units, often integrating a general-purpose processor (CPU), specific
hardware accelerators, memories, and standard interfaces to connect everything. CPUs
are very flexible, handling diverse types of workloads with satisfactory performance.
Since its conception, CPU architectures have been optimized to increase the number
of operations over time, and recently, they are also optimized for power efficiency.
However, for some specific applications, CPUs performance is not sufficient. Thus,
CPUs are integrated with hardware accelerators to run specific applications or parts
of applications more efficiently. Examples of hardware accelerators are crypto cores
for efficient encryption/decryption [5] and Graphics Processing Units (GPUs) [6–9]
for handling massive parallel computations. Thus, combining CPUs with hardware
accelerators achieves superior performance and efficiency, enabling applications previously
considered infeasible due to the long execution time.

Designing and manufacturing a single modern IC requires a colossal amount of
expertise among different fields of science [10]. In addition, developing and maintaining
a high-end semiconductor manufacturing process is a costly endeavor. Reportedly, Intel
is investing over 17 billion euros into a leading-edge semiconductor manufacturing
facility in Germany [11]. Consequently, the conception of a modern hardware device is a
collective effort shared between different entities. This characteristic makes the IC supply
chain decentralized, complex, and highly globalized. Moreover, for modern hardware
devices, the current organization of the IC supply chain is arguably a security threat.
A heavily-debated example that illustrates the consequences of a compromised supply
chain is the attack from Chinese spies that allegedly targeted almost 30 U.S. companies,
including Amazon and Apple. According to [12], in 2015, an extra component was
found in server motherboards that allowed the attackers to create a stealth doorway
into any network that included a compromised machine. Those servers had been in use
for a couple of years already, with Apple reportedly having almost 7000 running.

Ensuring the integrity of the technologies is crucial for protecting digital information
and maintaining critical operational systems. The field of Cybersecurity was born in the
1970s with the project Advanced Research Projects Agency Network (ARPANET) [13].
Since then, the security field has advanced significantly. The focus of the security

10

community has been on the software domain, with hardware security as a secondary
thought. However, over the last few years, there has been an exponential growth
in hardware vulnerability exposure [14]. The development of patches to fix software
vulnerabilities are almost always possible and done very quickly. Different from software,
a vulnerability in hardware cannot be updated easily. Thus, attacks, as [12], are
potentially more devastating than any other software-based attack. Nevertheless, an
electronic system has to be secure from end to end, i.e., secure software running in
secure hardware [15].

FoundryDesign Company3PIP Vendors

Logic Locking Hardware Trojan
IC Camouflage Reverse Engineering
Split Manufacturing IP Piracy

IC Overbuilding
Counterfeiting
Side-Channel Attacks

Test & Package facility

Design Phase Manufacturing Test & Packaging

Chapter 3 - Secure GPU-like ASIC Accelerators

Chapter 4 - Split Manufacturing Attacks and Defenses

Chapter 5 - Hardware Trojans Design and Insertion

In
-th

e-
fie

ld

Figure 1: Detailed IC’s life cycle phases, possible attacks, and defenses.

An overview of IC’s life cycle is illustrated in Figure 1, showing the four phases of
an IC’s life; design, manufacturing, test & packaging, and field operation. Each phase
has an associated set of potential hardware-based threats [16] as illustrated in Figure 1.
During the design phase, an adversary can insert hardware trojans [17–20], reverse
engineer, and pirate IPs. IC overbuilding, reverse engineering layouts, counterfeiting,
and insertion of hardware trojans are associated with the manufacturing phase. A rogue
element within the facility for packaging & testing can potentially reverse engineer or
pirate the device. Side-channel attacks require access to the physical device; thus, the
end-user can perform such attacks.

Hardware security techniques can be implemented in different phases of the IC’s life
cycle to enhance its security. Examples of these techniques are Split Manufacturing
[21,22], Logic Locking [23–29] and IC Camouflaging [30–32]. As illustrated in Figure 1,
Split Manufacturing and IC Camouflaging can combat a series of manufacturing threats.
Logic Locking and IC Camouflaging can prevent attacks during the test & packaging
and when the chip is in the field by an end-user. Unfortunately, the current state of these
techniques makes them unsuitable for large-scale production of ICs, either because of
practicality [22] and/or insufficient security guarantees [33]. Without countermeasures,
the described hardware-based threats are potential security hazards. Therefore, the
emerging research topic of Hardware Security is striving to solve the IC security problem.

Hardware security is becoming an important field of research over the years. As a
result, the field has been gaining more attention. Also, more groups of hardware security
research have been created, and the topic’s popularity in well-regarded conferences has
increased. In addition, many specialized conferences dedicated to Hardware security

11

were created, such as CHES [34], the HOST series [35,36], COSADE [37], and many
others. This community’s end goal is to ensure IC-based devices’ trustworthiness. To
achieve this goal, the community has been studying and exposing potential threats,
creating countermeasures for known threats, and developing novel design techniques to
enhance the IC’s security.

The central theme of this thesis is the study of IC design techniques, either for
enhancing IC security or exposing security flaws. First, I will propose a design technique
to mitigate the presence of a possible hardware trojan and/or to be used as a fault
tolerance technique (similar to triple modular redundancy). Following, I will discuss a
countermeasure against threats during the manufacturing, called Split Manufacturing.
Finally, I will demonstrate hardware trojan insertion step by step during the manufacturing
phase. The threat model for this attack assumes the adversary only holds the victim’s
IC layout. Therefore, the adversary extracts all the information necessary for performing
the attack from the layout.

1.1 Thesis Outline and Contributions
The present thesis comprises the published scientific articles in the List Of Publications
section. This manuscript comprises six chapters and presents a study of physical
synthesis for securing ICs. The chapters are: Background, three contribution chapters,
Conclusion, and Future Work.

A summary of the material of each chapter is listed as follows.

Chapter 2 – Background: In this chapter, I present the essential concepts and
theories of the contents of this thesis. The first topic is the semiconductor industry,
where I present the evolution of the IC supply chain and the current practices of
the semiconductor industry. Following, I introduce how ICs are designed, from the
specifications to the finalized layout. After this introduction, I present the state of the
art of hardware-based threats and countermeasures. Finally, the last topic covered is
hardware accelerators, their architectures, and applications.

Chapter 3 – Secure GPU-like ASIC Accelerators: This chapter comprises the
Publication [IV]. The contribution of Chapter 3 is a secure GPU-like ASIC accelerator.
The literature review shows that the lack of an open-source GPU architecture for ASIC
is a research gap. The FGPU, a GPU architecture for FPGA platforms, is among the few
GPU architectures available. Utilizing the FGPU architecture as the baseline, I translated
it to target an ASIC platform. I optimized the architecture to improve its performance,
achieving operating frequencies ten times faster than its FPGA counterpart. After
tweaking the architecture, I improved the security of the architecture by creating distinct
power domains for each computing unit (CU) of the GPU. This feature enables the
possibility of choosing which CU the user wants to turn on, and the others can be fully
shut down. The result of this study is a fully-automated tool for generating GPU-like
accelerators for ASIC. My tool permits the user to modulate the GPU regarding the
number of CUs and which one will have its own power domain. The result of this tool
is the layout of a GPU ready for being manufactured – this GPU is termed G-GPU.

12

Chapter 4 – Split Manufacturing Attacks and Defenses: This chapter com-
prises the Publication [I]. The contribution of Chapter 4 is the first survey on Split
Manufacturing. From a literature review, I identified that the Split Manufacturing
technique research was mature and relevant for having a survey. On top of that, I
addressed a controversial topic among the recent publications on Split Manufacturing.
In this survey, I comprehensively classified every attack against split layouts and every
defense technique for enhancing even further split layouts security. In addition, a
thorough discussion is presented about the strong and weak points of the current Split
Manufacturing state of the art. I argue that this survey is very important for future
research on Split Manufacturing, being a focal point to start from for security experts
interested in the topic.

Chapter 5 – Hardware Trojans Design and Insertion: This chapter comprises
Publications [II], [III], [V], and, [VI]. The contribution of Chapter 5 is a full framework
for designing and inserting hardware trojans in finalized layouts. This framework is
the first to disclose step by step how to perform hardware trojan inserting during a
fabrication-time attack, where the attacker only holds the victim’s layout. To validate
this framework, I developed a silicon prototype comprising four crypto cores altered
with a side-channel trojan. This work started with developing a technique for modifying
a finalized layout. For that, I leveraged a feature called engineering change order (ECO).
Using ECO, I modified finalized layouts with additional malicious logic. This is the first
demonstration of hardware trojan insertion utilizing ECO. Furthermore, I designed a
side-channel trojan capable of leaking multiple bits into a single power signature reading
to demonstrate the proposed ECO framework’s capabilities. The first version of the
ECO framework has a deficiency. Critical nodes for connecting the hardware trojans
must be located by visually inspecting the layout. Reverse engineering techniques are
utilized to address the ECO framework limitation, adding the capability of inserting
hardware trojans totally blindly. In addition, the framework is also improved by making
the insertion iterative and faster.

Chapter 6 – Conclusion and Future Work: In this final chapter, I summarize all
the results from the contribution chapters. The final conclusion is drawn, and a list of
possible directions for future work is presented.

13

2 Background
2.1 History and Today’s Integrated Circuit
After the invention of the first transistor in 1947, the semiconductor industry experienced
rapid growth. In 1961, the first integrated circuit patent was awarded, marking the
dawn of the era of IC-based devices [38]. As ICs started to be widely adopted in various
electronic appliances, semiconductor supply companies started to invest in developing
the IC, engaging in fierce technological and price competition [39]. The advances done
by these companies developed the so-called large-scale integration (LSI) era, where a
single chip contains hundreds of transistors. From there, the development reached a
very large-scale integration (VLSI) phase with chips containing from 100 thousand to
10 million transistors, and finally, the ultra-large-scale integration (ULSI) with more
than 10 million transistors per chip. Currently, the chase toward high performance and
multiple functions continues. The largest commercial IC available in 2022 is the M1
Ultra commercialized by Apple. This IC has a transistor count of 114 billion while
featuring a dual die in a single package manufactured in a 5nm FinFET technology.

As the IC evolved, the semiconductor supply chain also changed with it. During
the 1980s, Japan dominated the semiconductor market since it provided better yield
and products at that time [40]. Japanese businesses were fully integrated, vertical
conglomerates, managing everything from manufacturing their chips to building their
own devices and even global and local distribution of their products. In the 1990s,
the emerging economies of Korea and Taiwan started to dominate the semiconductor
market. Investing heavily solely in the manufacturing process, with records of frequently
spending 100% of their revenue on capital expenditure (i.e., re-investing back in their
own company) [41]. Thus, industries with advanced and mature manufacturing processes
began to implement the service of only manufacturing semiconductors (i.e., pure-play
foundry) [42]. Because these pure-play foundries had, and still have, the best transistors
in the market, the IC supply chain experienced a shift to a horizontal system, making this
chain decentralized and much more complex. Current semiconductor industry practices
are primarily horizontal, where design houses are “fabless” and rely on pure-play foundries
to manufacture their designs.

Figure 2: Growth of design rules from CMOS 180nm until finFET 5nm (from [43]).

14

The pursuit of denser and faster ICs sharply increased the complexity of manufacturing.
This increasing complexity drives the need for more powerful electronic design automation
(EDA) tools, related IP libraries, and new implementation strategies such as special
packaging, stacked die technologies, and other assembly techniques [44]. The number
of design rules and the total number of manufacturing steps can represent the increasing
complexity of conceiving an IC. Advanced nodes experienced exponential growth of
design rules [43], and the exponential jump in the number of rules during the design
rule checking (DRC) with the evolution of the nodes is illustrated in Figure 2. The same
trend happens for the number of manufacturing steps [45], depicted in Figure 3. To put
all these in perspective, a design company needs access to an operational manufacturing
process, a capable EDA tool vendor, and a specialized IP provider for manufacturing a
modern complex chip. Even companies that control the manufacturing process, such as
Intel, requires help from other entities to develop their products [46].

Figure 3: Logic manufacturing process steps comparison between CMOS 28nm, FinFET 10nm,
and, FinFET 5nm, technology nodes (from [45]).

Currently, almost all design companies operate as described in Figure 1. First, some
blocks are developed in-house during the design, while some parts of the design are IP
bought from 3PIP vendors. Then, the finalized layout instantiates IPs provided by a
third party, and the design company can develop some parts in-house. Finally, most
design companies have to utilize pure-play foundries for manufacturing. Foundries can
package and test the chips; however, in many cases, the bare dies are sent to another
specialized facility for that process. In addition, to compete in the current market,
companies must use EDA tools to produce a modern functional chip. Hence, this
brief description of the process of producing an IC shows how the IC supply chain is
decentralized, complex, and globalized. As Figure 4 illustrates, the number of high-end
foundries has been steadily declining over the past decades. Today, only three companies
can manufacture at advanced nodes, and that number is expected to shrink to only
two in the future.

In 2020, the semiconductor industry experienced a rapid surge in demand for chips.
The leading cause of this increased demand was the epidemic caused by the spread of the
COVID-19 virus [48]. Because of the small number of capable facilities to manufacture

15

Figure 4: Semiconductor industry evolution (from [47]).

modern ICs (see Figure 4), the market is experiencing a shortage of chips [49, 50].
According to a survey conducted by the European Commission [51], 83.3% of the
respondents were directly affected, and 16.7% were indirectly affected. Moreover, most
companies interviewed expected the shortage to last until 2024. This shortage portrays
how difficult it is to restructure the semiconductor supply chain and how vital chip
manufacturing is for the global market [52].

2.2 Integrated Circuit Digital Design Implementation
The complexity of building an advanced IC is very high, requiring hundreds of steps
(see Figure 3). Manufacturing processes build the IC from the bottom to the top layer.
Those layers can be seen in the cross-section of an IC in Figure 5. At the bottom is
the front end of the line (FEOL) layer containing all the transistors. On the top is
the back end of the line (BEOL) layer composed of all the metals. The metal layers
are referred to as MX, where X is the level of the layer. Metals are interconnected
by vias, referred to as VX, following the same naming scheme for metals. Foundries
often provide different metal stacks for each technology, differing in the number of
metal layers and/or the properties of some of the metals. From a designer’s perspective,
the number of metal layers available represents the routing resources. For example, a
metal stack containing more metals can route a design easier, of course, if compared
with another metal stack from the same technology. Nevertheless, cost and technical
limitations limit the scalability of the metal stack. In some cases, a small number of
metal layers is more than enough for routing the design, reducing the overall cost of
the chip.

SoCs can integrate analog circuits, digital logic, and memories in one single chip.
The design of analog circuits for ICs is a full-custom design because the designer must

16

...
...

...

Wire
Via

M1, V1
M2, V2
M3, V3
M4, V4
M5, V5
M6

MX, VX-1

FEOL
LAYER

BEOL
LAYER

Figure 5: Cross section of an Integrated Circuit (from [22]).

define all layers of the device, i.e., FEOL and BEOL. Hence, the designer can benefit
from complete control for optimizing the circuit but trading-off design time. On the
other hand, the digital logic implementation utilizes the notion of standard cells. Those
cells have standardized sizes regarding their height; thus, they can be placed in rows
side-by-side. Nonetheless, placing the cells in rows facilitates the overall placement
and the power distribution strategy. Each of those cells, or gates, is either a flip-flop
register for storing bits, a buffer, an inverter, or performs a unique logic operation (e.g.,
AND, OR, XOR). Foundries and specific vendors provide standard-cell IP libraries fully
characterized in terms of process variation, voltage, and temperature. Utilizing standard
cells, the designer must only define the position of the gates and the metal layers. Thus,
the gates already have the FEOL defined, and the designer only must define the BEOL.

Lo
gi

ca
l

HL System
Description

Specification
For ASIC

System
Partitioning

Micro
Arch.

Design
Constraints

Floorplan

Timing
Libraries

Physical
Libraries

Gate-level
Netlist

Placement Clock-tree
Synthesis Route Signoff Chip

Finishing

RC
Parasitics

Finalized
Layout

Simulation

Design
Constraints

Timing
Libraries

Micro Arch. To
HDL RTL Logical

Synthesis
Gate-level

Netlist
Micro
Arch.

Sy
st

em
Ph

ys
ic

al

Design
Constraints

Figure 6: Typical design flow for digital integrated circuits.

Contrary to analog designs with a minimal number of transistors, a single digital
sub-block of a modern application-specific integrated circuit (ASIC) can have more than

17

a million gates1. Thus, combining the usage of standard cells with powerful EDA tools
for automation becomes a necessity for enabling the implementation of digital designs.
Next, a brief introduction of how to perform a typical digital design implementation for
ICs is shown.

Implementing a digital design can be separated into three phases: system, logical,
and physical. This process results in a layout of all layers (FEOL+BEOL) that the
foundries utilize as a blueprint for manufacturing the IC, typically handled in GDSII
format. Figure 6 illustrates a diagram flow of this process in detail.

The designer must define a high-level description of the system and a set of con-
straints that defines the initial specification of the system. Usually, larger systems
are partitioned into small microarchitectural blocks, making the implementation more
time-efficient. Hence, many engineers can work in parallel, speeding up the implemen-
tation process. Generally, companies acquire IP for some microarchitectures of their
system or commission its design to other vendors. Later, an SoC integrator connects the
blocks back into a single system. This strategy is depicted in Figure 7. A set of design
constraints for the specification phase is an estimation of the desired performance, power
consumption, and area (PPA). The performance combines the operating frequency,
throughput, and delay for generating a valid output.

DemapperEqualizer Deframer
Symbols

Binary
Message

Transceiver

CPU

Transceiver

Analog
and RF

Memories

System-on-Chip

1 module equalizer (
2 clk,
3 reset,
4 x,
5 y);
6
7 input clk, reset;
8 input [n-1:0] x;
9 output [n-1:0] y;

HDL Gate-Level Netlist

Partitioning

System Level

Reg

X X

+

Reg

X

+

Reg

X

+

X(n)

y(n)

CmC2C1C0

Equalizer

Microarchitecture

Figure 7: Abstraction levels of a digital system.

Estimating the power consumption of an IC is complex. Total IC power consumption
is divided into static and dynamic components. Leakage power is the static component
of power and depends mainly on the threshold voltage of the transistors. On the other
hand, dynamic power depends on the circuit’s activity. Dynamic power is also divided
into internal and switching components. Switching power is the driving of output loads,
dissipated when internal cell and wires capacitors are charged and discharged. When a
cell switch states, an instantaneous short-circuit connection between the core supply
voltage and the ground occurs momentarily; during this moment, internal power is
dissipated. Therefore, in estimating the power consumption during the specification
phase, the designer must reasonably estimate the design’s number of gates and operating
frequency. The same is true for estimating the total area because it is primarily a

1A gate, or standard-cell, contains more than one transistor. Typically, the smallest gate is
an inverter with a minimum of two transistors, depending on the IP library and technology.

18

function of the number of gates and other secondary factors such as density (area
populated with gates versus empty space), aspect ratio, and pinout position. Hence,
the set of design constraints from the specification phase might not be feasible for
implementation. Through the implementation steps, PPA figures are increasingly more
accurate to report. Accordingly, often the specifications are adjusted after the logical
and physical synthesis.

After the system phase, the design is sequentially represented in three different
abstraction levels: register-transfer level (RTL), gate level, and layout. First is the
RTL, where the logic behavior of the microarchitecture is described utilizing a hardware
description language (HDL), such as VHDL, Verilog, or System-Verilog. RTL is a precise
and formal description that allows the automation of digital circuits’ simulation. During
this phase, the designer’s responsibility is to ensure the circuit behaves as expected in
terms of functionality and latency (clock cycles to produce a valid output).

After behaviorally checking the RTL, the next abstraction level is the gate level.
Generating the gate-level netlist requires a standard-cell IP library. Thus, for this phase,
the designer must have decided with which technology the IC will be manufactured. The
process of generating the gate-level netlist is called logical synthesis. Inputs required
for the synthesis are the RTL, standard-cell timing library, and design constraints. As
mentioned, foundries and vendors characterize each gate regarding process variation,
voltage, and temperature. These characteristics are usually compiled in a standard
Liberty format. Liberty files contain all available gates and their characteristics. Char-
acteristics include logical function, pinout, delay, transition time, input capacitance,
dynamic power, leakage power, setup time, hold time, and many more [53]. In addition
to the timing library, the designer must set the design constraints, utilizing the Synopsys
Design Constraints (SDC) format. The SDC file is where all clocks, input delay, output
delay, and many other parameters can be described and constrained.

Clock

D

Changing ChangingStable
Time

Tsetup Thold

Figure 8: Setup and hold time.

The logical synthesis aims to translate the RTL into logical gates and achieve the
performance set in the design constraints. For sequential logic, the circuit works under
a set operating frequency where data is stored in registers each clock cycle. Data must
travel from register to register in a time under a clock period Tperiod. Thus, logical
synthesis tools must analyze setup timing to guarantee that the circuit will operate at
the set frequency. Furthermore, during the physical synthesis, hold time is analyzed.
Setup and hold time characteristics define when the data must stay stable at the register
D pin, as illustrated in Figure 8. For checking for timing violations, the EDA tools

19

measure the time between each register, called path delay, and calculate the timing
slack for setup and hold, as illustrated in Figure 9. Following the example in Figure 9,
paths delay are timed as:

1 Data is launched from Reg1/D at the positive t0 clock edge at Reg1/C, requiring
Tck−>q time units

2 Data travels from Reg1/Q through a combinational logic to Reg2/D, requiring
Tprop time units

3 Data is captured at Reg2/D at the positive t1 clock edge at Reg2/C. The data
must be stable Tsetup time units before this clock edge and Thold after.

C

D Q

C

D Q
Comb.
Logic

Clock

Reg1 Reg2

Clock Reg1

Clock Reg2

Hold
Hold

Setup

Timet0 t1 t2 t3

Figure 9: Timing path calculation example.

Then, timing setup analysis at Reg2 is done by checking the stable time before t1
positive clock edge at Reg2/C, i.e., the time slack described by Equation 1. Finally,
hold analysis at Reg2 is done by checking the stable time after t1 positive clock edge at
Reg2/C, i.e., the time slack described by Equation 2. Note that hold does not depend
on the clock period, only setup. EDA tools consider a time setup and hold slack equal
to zero as a non-violating timing path (i.e., the circuit can operate without a timing
problem). However, typically designers choose a margin of a few picoseconds for both
setup and hold slack.

Setup slack = Tck−>q +Tprop +Tsetup −Tperiod (1)

Hold slack = Tck−>q +Tprop −Thold (2)

Therefore, the designer must analyze the timing after logical synthesis to ensure the
slack is within the desired margin or at least positive. If the slack for setup or/and hold is
negative, the design has a timing violation and will not function correctly. Fixing timing
violations in this phase is done by redefining the design constraints, changing the design
architecture for inserting additional pipeline stages, or performing resynthesis/retiming.

20

In addition, from the gate-level netlist, it is possible to analyze power and area to
contrast them with the specifications. Power and area from the gate-level netlist are
representative but not accurate enough. The physical synthesis can, in some cases,
change these figures drastically.

Finally, the final phase is the physical synthesis to generate the design layout. The
layout level of abstraction now requires physical information about the standard cells
and metal stack. For digital circuits, the physical synthesis treats each gate as a “black
box”, i.e., internal details of the transistor level are not required. However, essential
information and design rules are required, such as box dimension, pinout position, metal
layer, obstruction layer, and orientation. In addition, the EDA tool also must know
how to handle the metal layers, e.g., the number of metals, the allowed width of each
metal, and the type of vias. Library Exchange Format (LEF) file is the preferred format
to describe the physical characteristics of each available gate and the metal stack.
Then, inputs for the physical synthesis are the gate-level netlist, timing libraries, design
constraints, and LEF files for the gates and the technology LEF file.

The whole process of physical synthesis is very complex, comprising many steps.
For the sake of simplicity, the following synthesis explanation is divided into six steps:
floorplanning, placement, clock-tree synthesis, routing, signing off, and chip finishing.
Also, the following explanation focuses on block implementation. Managing a top-level
layout requires many specific steps and decisions that are not covered in this thesis.

Floorplanning Placement Clock Tree Synthesis Routing

Figure 10: Block design implementation steps; floorplanning, placement, clock-tree synthesis,
and, routing.

For block implementation, floorplanning is sizing the block box for a target density,
defining the pinout, and power distribution implementation. Setting density is very
accurate at this phase because all required gates are in the netlist. Nevertheless, the
density difference between floorplanning and the finalized layout may slightly differ. The
difference is due to added buffers during the clock-tree synthesis, timing optimization,
and the resizing of cells’ drive strength. Illustrated in the first panel of Figure 10 is
an example of a block floorplan. Figure 10 shows the upper metal stripes for power
distribution highlighted in yellow and orange, the bottom metal stripes in blue, and the
yellow arrows represent the pinout of the block.

The next step after the floorplanning is the placement. In general, running the
placement requires a single command in a commercial EDA tool, such as Innovus
from Cadence [54]. Nonetheless, the designer can control many parameters of the
placement. The placement algorithm is not only for placing the gates coherently with
their interconnections but also is time aware. Therefore, gates are placed in such a

21

way as to achieve the best setup/hold timing slack. On top of that, modern tools
also do a trial route for estimating routing congestion. Consequently, timing can be
analyzed more accurately after the placement than in logical synthesis. Furthermore,
the trial route provides a good amount of information to check if the design is routable.
Illustrated in the second panel of Figure 10 is an example of block placement. Note
that the power grid stripes and the trial route are hidden.

Before the clock-tree synthesis, timing analysis does not consider the clock skew,
i.e., the clock distribution is ideal and reaches each register simultaneously. However,
realistically the clock signal will never reach registers simultaneously; a skew between
all clock inputs will always exist. Thus, to balance the clock delay for all clock inputs,
the clock-tree synthesis inserts buffers/inverters in the clock routing. Illustrated in
the third panel of Figure 10 is an example of a clock tree. After this synthesis, the
clock is propagated, considering the expected delay between all clock inputs, making
the timing analysis more realistic. With the propagated clock, timing analysis includes
the skew between the launch and capture clock when timing the paths. Modern EDA
tools can leverage the clock skew to improve performance, a technique called useful
skew. For more details on useful skew and other timing optimization techniques, such
as borrowing time, I direct the reader to [55,56].

With all the gates placed and the clock tree routed, the next step is to route all
the interconnected gates. Routing a design is to draw wires between all drivers and
sinks. Nevertheless, depending on the amount of routing resources, design rules, and
congestion, routing can be very challenging and take several hours, or even days, to
complete. Moreover, a challenging routing may fail mainly because the tool can only
find how to route by violating design rules. In some cases, post-route optimizations
can fix the routing if the number of design rule violations is reasonably low. However,
if the post-route optimizations cannot fix design rule violations due to the routing,
the physical synthesis process must restart from the floorplanning. Then from the
floorplanning, the block box can be resized, the pinout repositioned, the power grid
adjusted, or all three to make the design routable. Illustrated in the fourth panel of
Figure 10 is an example of routing without any design rule violation.

Before the routing, tools calculate the RC parasitics using an estimated wire length.
Therefore, all effects considered due to parasitics are estimated. With the design routed,
the EDA tools can extract the RC characteristics of all wires with a high degree of
accuracy; this is called RC parasitics extraction. Then, a signing-off phase is necessary
to consider the RC parasitics information for analyzing the timing. For timing analysis,
the more accurate RC information changes the load of the pins for all cells. Pin load
affects the speed of the cells; hence, signing-off timing analysis has a more accurate
Tck−q and Tprop times. Depending on the level of route congestion, the wire’s RC
parasitic (especially coupled capacitance) could heavily impact the performance. Modern
EDA tools can fix timing violations during the signing-off to a certain degree, and
even specialized tools for this purpose are available (e.g., Tempus from Cadence). The
signing-off phase also includes the analysis of signal integrity and power integrity. For
more detail on these analyses, I direct the reader to [57].

Finally, the last phase is chip finishing. For block implementation, chip finishing
includes physical verification and layout versus schematic (LVS) checking. Physical

22

verification is the design rule check (see Figure 2) to make sure that all metal layers
(BEOL) defined in the layout are compliant with the design rules. LVS compares the
extracted netlist from the layout to the original schematic netlist to check if all devices
in the layout match the schematic.

A block layout is considered tapeout-ready if it has no timing violations, no DRC
violations, and LVS matches. Nonetheless, EDA vendors also provide additional solutions
for logical equivalence checks, structural analysis, timing constraint verification, design
for test, and many others. However, these tools do not take into account any security
aspect. Either for ensuring security or for checking for potential vulnerabilities. Thus,
most companies’ implementation flow of digital ICs is oblivious to hardware security.

2.3 Hardware-based Threats and Countermeasures
As electronic systems are increasingly deployed in critical infrastructure, counterfeit
and maliciously modified ICs have become a significant concern [58]. Assessing the
trustworthiness of the design and manufacturing of ICs has become more challenging
over the years [59]. As discussed in Section 2.1, the primary factor for this problem
is the decentralization and globalization of the IC supply chain. It is conceivable – if
not likely – that a fault in a low-quality counterfeit IC (or even a maliciously modified
IC) will effectively disrupt critical infrastructure with dire consequences. Therefore,
hardware security has gained more attention in the past decades, emerging as a relevant
research topic.

An IC passes through many different entities during its lifecycle (see Figure 1). Thus,
establishing trust between all involved parties is very difficult in practice. During the
design phase, as shown in Section 2.1, some blocks are in-house developed, some are
third-party IPs, and others are commissioned to be developed in a third-party design
house. Physical libraries are also a mix of in-house developed and third-party provided
for generating the layout. Finally, this layout is sent to the foundry to be manufactured.
After manufacturing, the chips are sent to another facility for testing. The testing
process searches for any physical defects and verifies the packaged parts to check if the
functionality and performance are under the specification. Outsourcing manufacturing
and testing to offshore companies are current practices for almost all design companies,
with a few exceptions as Intel. Thus, sensitive information is almost inevitably exposed
to untrusted parties to produce an IC. It is noteworthy that any outsider entity/company
is considered untrusted for security.

Today’s reality is that ICs are vulnerable to many hardware-based threats, including
the insertion of hardware trojans, IP piracy, IC overbuilding, reverse engineering, side-
channel attacks, and counterfeiting. Figure 11 presents a systematic classification of
these threats, their goal, and the location where they occur [16].

In particular, hardware trojans (HTs) are malicious modifications to an IC, where
attackers insert circuitry (or modify the existing logic) for their own malicious pur-
poses [17–20,60–71]. This attack is (typically) mounted during manufacturing, as the
foundry holds the entire layout and can identify critical locations for trojan insertion.
Third-party IPs can also contain trojans/backdoors that may contain hidden functional-
ities and can be used to access restricted parts of the design and/or expose data that

23

Leak Sensitive
Information

Modify
functionality

Reduce
reliability

Deny
service

Steal
Design

Identify
trade secrets

Hardware
trojan

IP Piracy

Reverse
Engineering

Side-channel
Attack

Counterfeit

IP vendor

Design
Integrator

Manufacturing

PCB
Assembling

Test
Facility

Final user

Attack goal AttackAttack goal Attacker location

Figure 11: Systematization of hardware security around the attack method (adapted from [16])

would otherwise be unknown to the adversary. HTs are designed to leak confidential
information, disrupt a system’s specific functionality [72], or even destroy the entire
system [73] and have a broad taxonomy [74].

Due to the vast ways an adversary can modify an IC for implementing HTs, they
are classified as an additive, parametric, and subtractive. As the name suggests, an
additive HT inserts extra malicious logic into the circuit. Contrariwise, subtractive
HTs remove part of the existing logic. On the other hand, parametric HTs are very
different from the other types. This family of trojans changes the IC layout’s parametric
characteristics, either the geometry of wires and transistors or the dopant polarity of a
few transistors [63]. Thus, parametric HTs add no extra logic resulting in zero overhead
of additional transistors and wires. From this point forward, I will focus mainly on
additive HT. Additive HT is the most extensive type of HT studied in the literature
and is the target of the proposed HT architecture in Chapter 5.

Hardware Trojan

Trigger Payload

Digital Analog

Combinational Sequential

Rare Value(s) Clock
Synchronous

Sensor

Activity

Event
Synchronous

Digital

Drive Node(s)

Modify
Memory

Analog

Activity

Timing

Bridging

Figure 12: Additive hardware trojan taxonomy based on trigger and payload implementation
types (adapted from [61]).

An HT architecture comprises a payload that implements the malicious behavior
and a trigger that activates the HT when a specific condition is met. According to the

24

authors in [61], the payload and trigger of an additive HT are classified as shown in
Figure 12. The payload and trigger components can be either digital [19] or analog [60]
and can be realized in diverse manners. An HT trigger is qualified by its stealthiness and
contractability. Then, the ideal trigger is activated when dozens of infrequent events
occur, increasing the HT’s stealthiness. A highly controllable HT can easily deploy the
attack, but only by the adversary and not through regular use. As mentioned, an HT’s
payload can be designed with various effects as described in Figure 12.

As HT modifies the existing circuit, if the modification is apparent, one supposedly
could identify the presence of an HT on an IC. However, since ICs are inherently opaque
devices, inspecting their internal components is not a trivial task. Therefore, detecting
HTs of any type is usually a problematic task [75]. Moreover, by design, HTs are
triggered under specific conditions, making them unlikely to be activated and detected
when the circuit operates as intended or when random stimuli are applied [73].

Nevertheless, many techniques for detecting the presence of an HT were proposed [76–
85]. These detection techniques are either invasive or non-invasive. Invasive methods
aim to retrieve information about the IC’s internal components. They are usually
performed by delaminating the IC to reconstruct the layout layers [84], leading to
the destruction of the inspected sample. However, reconstructing the layout layers is
time-consuming and requires precise equipment.

On the other hand, non-invasive techniques leverage the IC’s physical characteristics
and/or IO signal behavior (i.e., timing and state) [73]. For example, a few proposed
techniques use the notion of path delay fingerprint to assess if the circuit was modi-
fied [76–78]. These techniques will likely detect the HTs that disrupt the circuit’s data
path. Another class of techniques utilizes power consumption metrics (leakage and
total power) for detecting HTs [79, 80]. These techniques will spot the trojan if the
HT heavily modifies the chip’s power consumption. Chapter 5 presents a more detailed
discussion of additive hardware trojans, their insertion, and detection.

IP piracy and IC overbuilding are illegal ownership claims of different degrees. As
said before, designing an IC requires third-party and in-house developed IPs to complete
the design. Design companies can overuse and copy third-party IPs without the
owner’s authorization. Similarly, malicious foundries can manufacture a surplus of ICs
(overbuilding) without the owner’s knowledge and sell these parts on the grey market.

Reversing engineering of ICs has been extensively demonstrated in the specialized
literature [84, 86–88]. An attacker can identify the technology node and underlying
components (memory, analog, and standard cells), from which he/she can extract a gate-
level netlist, and even a high-level abstraction can be inferred [89]. Reverse engineering
can be effortlessly executed during manufacturing, as the foundry holds the entire layout
and most likely promptly recognizes some of the IP. Moreover, specialized high-level
functionality reconstruction tools can recover the purpose of signals. For example, those
tools can distinguish control from data paths of a finite-state machine from a target
design [88]. In [19], the authors leveraged such tools’ output to automate the search
of security-critical nodes. In [87], the authors proposed a similar reverse-engineering
technique to recover the coefficients of an obfuscated FIR filter.

After manufacturing, – when ICs are already packaged and deployed – reverse
engineering is more laborious but can still be executed by a knowledgeable adversary.

25

Similar to inspecting an IC’s internal components, an adversary can delaminate the
chip in order to retrieve the layout layers. Reconstructing the layout layers from a
physical sample is divided into three steps: depacking, delayering and imaging, and
image post-processing. The chip must first be depacked by wet-chemical or mechanical
means to access the die. Then, after recovering the bare die, the IC has to be delayered,
and each layer has to be optically captured using a scanning electron microscope (SEM)
or focused ion beam (FIB). Finally, the digitalized layer images have to be stitched and
vectorized to retrieve the layout representation of the chip. Note that this process is
yet to be fully automated [84], resulting in a highly time-intensive task prone to errors.

An IC’s operating physical characteristics, such as timing, power consumption,
electromagnetic radiation, and even sound, can be used as a side channel to indirectly
reveal information that should be internal to the IC. Hence, malicious elements can
exploit such a side channel to leak secret information from inside an IC. Since side-
channel attacks can leak data from privileged parts of a system without permission,
the most sought-after targets for side-channel attacks are embedded crypto cores.
Many authors have already demonstrated that side-channel attacks can break the most
important cryptographic algorithms in use today [90,91].

Counterfeits

Out-of-spec/
Defective

Aged

Non
 Functional

New

Recycled

Fabrication
 Outside Contract

Performance

Reverse
 Engineered

Pirated IP

 Manufacturer
Reject

Fake
 Certifications

Forged
 Changelog

 Silicon Time
Bomb
Backdoor

Forged
DocumentationRecycled Remarked TamperedClonedOverproduced

Figure 13: Taxonomy of counterfeit electronics (adapted from [59]).

According to [59], counterfeit components are classified into seven distinct categories,
as illustrated in Figure 13. Recycled, remarked, out-of-spec/defective, and forged
documentation are inherent after-market problems where products are offered by parties
other than the original component manufacturer or authorized vendors. These cases
are highlighted in red. On the other hand, overproducing, cloning, and tampering are
problems faced during the design and/or fabrication of ICs. These cases are highlighted
in blue. It is important to realize that these threats, including hardware trojans, could be
avoided if a trusted manufacturing scheme was in place. For example, the old Japanese
semiconductor business model from the 1980s discussed in Section 2.1 most likely did
not face any of the threats highlighted in blue in Figure 13. However, the escalating
cost and complexity of semiconductor manufacturing on advanced technologies made
owning an advanced foundry unfeasible for design companies, which now tend to adopt
the fabless business model [42].

Governments recognized access to advanced ICs as necessary for their domestic
economy and national security. Currently, the US and Europe are making an effort
to manufacture advanced semiconductors inside their borders [92, 93]. Access to a
domestic manufacturing process arguably could mitigate some hardware-based threats
during manufacturing. However, bringing the manufacturing inside their border does

26

not fix a major security flaw in the IC supply chain; third parties still are responsible for
the manufacturing operations. Hence, a shift in the IC supply chain, as experienced in
the 1980s, is unlikely to happen in the following decades.

Consequently, security experts are striving to develop creative countermeasures
for all known hardware-based threats. Noteworthy defense techniques include Logic
Locking [23–28], IC Camouflaging [30–32], and, Split Manufacturing [21,22].

G1
G2 G3 G4

G5

G6

I0
I1

I2
I3
I4

I5

O1K2K1
key1 key2

Figure 14: Example of a circuit locked using two XOR key gates, K1 and K2.

Logic locking is a defense technique for locking the design intent behind a key.
Additional gates are inserted to prevent the correct propagation of signals unless the
correct key is applied to these key gates. An example of Logic Locking is illustrated
in Figure 14. For the example circuit to operate as intended, the user has to apply
the correct key value to the key1 and key2 signals. The key is either programmed
at a trusted facility or stored in a tamper-proof memory. According to [26], Logic
Locking can protect against adversaries located at the design company, foundry, test
facility, and end-user. For example, an IP provider may hide their circuits sold to design
companies, protecting against their technology and overuse theft. On the other hand,
design companies can utilize Logic Locking against IP theft, overproduction, or hinder
the insertion of meaningful hardware trojans.

IC Camouflage is a technique to disguise the functionality of standard cells or parts
of a digital circuit. An attacker holding the victim’s layout can extract an unnamed
gate-level netlist with the original functionality. Techniques such as Logic Locking do
not prevent netlist extraction but hide the functionality behind a key. On the other hand,
IC Camouflage can hide the functionality of the gates at the layout level. For example,
in [31], the authors camouflaged NAND and NOR gates by making their layouts very
similar. Thus, making those gates indistinguishable, preventing the extraction of the
netlist. Therefore, IC Camouflage can increase resilience against attackers located at
the foundry. However, if the camouflage techniques only leverage look-alike cells, the
countermeasure might not be enough for an adversary located at the foundry.

Split Manufacturing promotes a hybrid solution between trusted and untrusted
fabrication. Because of the nature of the IC structure, it is possible to split the circuit
into two parts before manufacturing, the FEOL and BEOL (see Figure 5). Since the
FEOL contains all the transistors, a high-end foundry first manufactures this layer.
Then, to complete the circuit, a possibly low-end and low-cost foundry manufactures
the remaining BEOL on top of the FEOL. Splitting the layout hides the complete
design from the high-end untrusted foundry since the FEOL does not contain any wire
connection. Thus, only the low-end trusted foundry has complete information about
the design. Split manufacturing can combat all threats highlighted in blue in Figure 13.
A more detailed discussion of Split Manufacturing is presented in Chapter 4.

27

2.4 Computing Platforms and Hardware Accelerators
Modern SoCs, over the years, have become more powerful and energy efficient, enabling
all sorts of applications that once were deemed unfeasible. Such optimized SoCs are
possible not only because of denser and faster ICs. In addition, low-power techniques [94]
combined with specialized hardware architecture, i.e., hardware accelerators [95], are
also a significant factor in optimized SoC development. Following, I am going to discuss
hardware accelerators, their types, advantages, and weaknesses.

General-purpose processing architectures can handle diverse tasks with a solid
programming eco-system making it user-friendly. However, these standard processing
units cannot efficiently execute some particular tasks. Hence, to improve energy
efficiency, SoCs integrate domain- or application-specific hardware accelerators and
general-purpose CPUs [96]. Thus, the application running at the CPU offloads specific
computing tasks onto the hardware accelerators, enabling greater energy efficiency while
maintaining high performance. However, because these accelerators are very complex
and designed for a specific system or task, their reusability is greatly diminished. Thus,
they are costly, time-consuming, and resource-intense for development.

Such design challenges are overcome by implementing hardware/software co-design
techniques or general-purpose hardware accelerators. Instead of offloading an entire
application to a hardware accelerator, co-design divides the task into two components;
the software component computed by the CPU and the hardware component computed
by the accelerator. Thus, reducing the accelerator complexity and speeding up the
design process. Furthermore, according to [97], an accelerator can be either loosely or
tightly coupled. Loosely coupled accelerators are implemented outside the CPU, which
is relatively easier to integrate. Nevertheless, loosely coupled accelerators can suffer
performance penalties from the communication interface. In comparison, the tightly
alternative is embedded into the CPU architecture as application-specific functional
units [98], without interface problems. However, it requires modifications to the
instruction set architecture (ISA) 2 of the CPU.

Typically, commercial CPUs do not allow modifications to the ISA. On the other
hand, co-design is adopted by several open-source hardware initiatives, such as RISC-
V [100], IBM OpenPOWER [101], Sun OpenSPARC [102], and Linux Foundation CHIPS
Alliance Project [103]. Thus, a designer can create his own tightly coupled accelerator
hardware by utilizing a free and open ISA, such as the RISC-V. In [97], the authors
demonstrated an example of the tightly alternative using RISC-V. In addition, they
extended the RISC-V ISA to support post-quantum cryptography instructions, speeding
up considerably the encryption process.

General-purpose accelerators provide users with a flexible platform, similar to CPUs,
but very efficient for domain-specific tasks. Typically, these accelerators can benefit
from modern programming languages with practical supporting tools for programming,
debugging, and deployment. Furthermore, they can be highly configurable to fit many
use cases. Examples of general-purpose accelerators are field programmable gate arrays
(FPGA), GPUS, and Tensor Processing Units (TPUs) [104].

FPGA is a programmable fabric that utilizes look-up tables (LUTs) for implementing
2The ISA defines the interface between software and hardware [99].

28

logic functions. In some cases, FPGAs can outperform CPUs; however, it is unlikely to
outperform ASICs. The compelling feature of FPGAs is the reconfigurability on demand.
In the hardware accelerator context, chip designers can integrate a CPU with an FPGA
instead of designing a whole new chip and only having to create the accelerator program.
Moreover, the hardware accelerator inside the FPGA can be upgraded at any point in
the chip’s life span. Thus, due to the flexibility of the FPGAs, they can be implemented
outside of a CPU. This configuration is a loosely coupled implementation, with the
FPGA as the hardware accelerator. To address the performance loss from the interface,
the FPGA can also implement the CPU and the hardware accelerator in a single chip.

Recently a new concept called embedded FPGAs (eFPGA) [105,106] brings more
flexibility to the usage of FPGAs. Embedded FPGAs are IP cores integrated into an
ASIC or SoC and have recently gained ground due to their wide range of markets and
applications. For example, in the context of hardware accelerators, a designer can use
an eFPGA connected to a CPU as a tightly coupled accelerator or even as part of a
hardware accelerator. Therefore, eFPGA provides programmability and can accelerate
time to market. According to [106], the market share of eFPGA is expected to approach
the figure of 10 billion dollars in 2023. Today, users can acquire FPGA-based SoCs [107]
or FPGA IPs for integration into their SoCs. Figure 15 illustrates an FPGA-based SoC,
where the programmable logic represents the FPGA part.

Figure 15: Example of FPGA-based SoC – Zynq-7000s (from [107]).

Traditionally, GPU architectures were developed, as the name suggests, to manipulate
computer graphics and image processing. Because of the nature of image processing,
GPU architectures focus on specialized massively parallel many-core processors that take
advantage of Thread-Level Parallelism (TLP) to handle highly parallelizable applications
in a Single-Instruction Multiple Threads (SIMT) paradigm. Thus, GPUs naturally
evolved into an efficient general-purpose accelerator for High-Performance Computing

29

(HPC). Similarly to FPGAs, the user can use rapidly available commercial GPUs
for applications other than computer graphics or image processing. Moreover, the
GPU vendor NVIDIA developed a parallel programming language for GPUs for general
purpose processing [8]. Typically, commercial GPUs are sold as discrete cards connected
externally to the CPU. However, this configuration does suffer from performance loss
from the communicating interface. On the other hand, highly optimized interfaces can
achieve outstanding throughput, such as the PCI Express 4 [108]. Nonetheless, the
vendor AMD introduced the concept of accelerated processing units (APUs) [98]. An
APU incorporates the advantages of a CPU and a GPU into a single package. Therefore,
GPUs are a perfect fit for HPC applications such as oil exploration, bioinformatics, and
the thriving AI and Machine Learning (ML) domains [109].

HPC, AI, and ML applications are computationally hungry and feasible only with
capable hardware. Due to the rise in popularity of these domains, the demand for chips
capable of efficiently executing these workloads is sharply increasing. According to
the report in [110], the market share of AI chips is forecast to grow at 36.5% CAGR
from 2021-2026. Thus, Google introduced a new type of computing core called TPU
and NVIDIA a similar TPU architecture called Tensor Core. TPUs are ASICs that can
efficiently solve complex matrix and vector operations at ultra-high speeds and are used
specifically for deep learning workloads. On the other hand, NVIDIA embeds Tensor
Cores in their commercial GPUs, enabling mixed-precision computing to accelerate
throughput while preserving accuracy. These cores reportedly achieve very-high speeds
in HPC and AI workloads [111].

The hardware architecture itself can be a weakness, where many attacks that take
advantage of how the hardware architecture is implemented were recently demon-
strated [112,113]. For example, the power of electromagnetic (EM) side-channel attacks
against desktop CPUs, mobile CPUs, and FPGAs have been extensively studied [114].
However, not only these architectures but almost all hardware architectures are poten-
tially exploitable. Thus, many other hardware architectures that handle sensitive data
and/or are essential to critical systems’ functionality are yet to be studied for security
vulnerabilities. In [114], the authors described an EM side-channel attack against a
GPU AES implementation, and there is no GPU-specific countermeasure for such an
attack. Therefore, attacks similar to the one described in [114] are a potential threat
to modern SoCs and hardware accelerators. In Chapter 3, the threats against GPUs are
discussed in more detail, and a GPU architecture for aiding the research of GPU-specific
countermeasures is proposed.

30

3 Secure GPU-like ASIC Accelerators

This chapter discusses open-source GPUs state-of-the-art and their applications. A
literature review revealed the need for open-source GPU architectures for ASIC platforms.
The FGPU, a GPU architecture for FPGA, is among the few GPU architectures available.
This chapter describes the adaptation of the FGPU for ASIC and how its architecture
was optimized. The new architecture is a GPU-like accelerator for ASIC termed G-GPU.
Moreover, a fully automated tool for generating G-GPUs termed GPUPlanner was
developed. GPUPlanner permits the user to modulate the G-GPU regarding the number
of compute units (CUs) with the option of power gating each CU individually. For
controlling the power switches, a dynamic power controller is also available. Thus,
GPUPlanner enables low-power, design for reliability, and security applications.

This chapter has its content based on the following publication:

[IV] T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja, and
S. Pagliarini, "G-gpu: A fully-automated generator of gpu-like asic accelerators,"
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 544–547, 2022

3.1 Introduction and Research Gap
New computer applications, especially AI, keep pushing the need for more energy-efficient
hardware architectures [96]. For many years, designers have been utilizing application-
and domain-specific accelerators as the standard choice for achieving energy efficiency.
Those accelerators were designed and tailored according to a specific workload. Examples
of hardware accelerators are crypto cores for efficient encryption/decryption [5], and
GPUs [6–8] for handling massive parallel computations.

As discussed in Section 2.4, GPU architectures are specialized to handle highly
parallelizable applications in a SIMT paradigm used for graphics applications. However,
due to the GPU architecture, its application in HPC applications was a natural shift.
These applications have a broad range, applicable in bioinformatics, oil exploration, AI,
and ML domains [109]. For instance, several supercomputers in the top500 rank utilize
GPUs from the vendor NVDIA [115].

Nonetheless, research in GPU architectures still needs to be improved because of the
need for modern open-source GPU architectures at a sufficiently low level of abstraction.
For instance, only FlexGripPlus [116] and FGPU [117] configurable open-source GPUs
are available in the literature. Furthermore, the FlexGriPlus architecture is based on
the decade-old G80 architecture from the vendor NVIDIA, which was never deployed to
an FGPA board. On the contrary, the FGPU is explicitly designed for being deployed
to FGPA platforms. Consequently, designing, configuring, and implementing modern
GPU architectures for ASIC are still a challenge to be tackled by the literature – ASIC
platforms represent challenges far from those in FGPA design. However, ASIC platforms
can achieve higher performance compared with FPGAs. Hence, all vendors design their
GPUs for ASIC.

In order to bridge this gap, the GPUPlanner is proposed, an automated and

31

open-source framework for generating ASIC-specific GPU-like accelerators as IP – this
general-purpose accelerator architecture is termed G-GPU. GPUPlanner helps design-
ers generate GPU-like accelerators through user-driven customization and automated
physical implementation. For example, G-GPU has a series of user-defined parame-
ters to customize the computation characteristics (e.g., number of processing units),
memory access (e.g., cache sizes), and power gating implementation (e.g., insertion
of power switches to specific CUs). Therefore, GPUPlanner provides designers with
high scalability, facilitating the search for the appropriate G-GPU IP for their systems.
On top of that, GPUPlanner explores smart memory and on-demand pipeline insertion
implementation strategies to optimize even further the G-GPU architecture.

3.2 G-GPU Baseline: the FGPU
As the baseline for G-GPU architecture, the FGPU architecture is utilized. The FPGU
is an open-source GPU-like soft processor, highly configurable, to accelerate workloads
that fit in the SIMT paradigm, developed for FPGA platforms. However, porting
RTL design descriptions that initially targeted FPGAs to ASIC platforms is possible,
which requires precise adaptations, especially to the memory hierarchy. In addition to
the GPU-like open-source HDL code, this architecture has a supporting LLVM-based
compiler. As a result, existing OpenCL kernels can be compiled, providing designers
with the ability for fast software development, debugging, and deployment. Moreover,
the FGPU architecture can scale up to 64 processing units (and beyond with additional
support), being deeply configurable regarding operations, instructions, and memory
access.

The FPGU architecture overview is presented in Figure 16. As illustrated, the main
component of FGPU is the CU, a SIMD machine of 8 identical Processing Elements (PE0
- PE7) capable of spatially replicating up to eight times. A CU has the computation
capacity to run up to 512 work items (i.e., a computational kernel in OpenCL), supporting
full thread divergence and allowing each work item to take a different path in the control
flow graph. Furthermore, work items are grouped into Wavefronts (WFs) executed
concurrently in a CU. Then, WFs are combined into Workgroups (WGs) that share a
program counter and are assigned to a particular CU. Therefore, the FGPU architecture
is deeply parallelized. Notice that the number of CUs and PEs in each CU are entirely
configurable when implementing the FGPU.

In addition, the FGPU architecture has a Runtime Memory (RTM) and a Data
cache. The FGPU data cache is a central, multi-port, direct-mapped, and write-back
system capable of simultaneously serving multiple read/write requests. Likewise, several
data movers are integrated to parallelize the data traffic on up to four AXI Data
interfaces [118]. A single AXI Control interface on the hardware side controls the
whole FGPU architecture. Then, only standard OpenCL_API procedures are required to
control the FGPU on the software side. The width and depth of the AXI Data interface
can also be configured.

The FGPU architecture was adapted in the literature to fit different application
domains. One example of adaptation proposed by the authors in [119] specialized in
the FGPU architecture for persistent deep learning (PDL). The authors added new

32

Memory Controller

Runtime Memory

A
X

I D
at

a
In

te
rf

ac
e

A
X

I C
on

tro
l

In
te

rf
ac

e

CRAM

Ctrl Regs

LRAM
G

lo
ba

l M
em

or
y

C
on

tro
lle

r

C
ac

he

W
F

Sc
he

du
le

r

CU

W
G

D
is

pa
tc

he
r

...
...

Reg.
File

...

PE0 PE7

Reg.
File

...

Figure 16: FGPU architecture with memories colored according to the layouts displayed in Figs.
3 and 4 (from [9]).

instructions and enhancements to the microarchitecture and compiler. These adaptations
reportedly speed up 56 to 693x in PDL applications. However, the resulting code with
the modifications is not publicly available.

Another GPU-like general-purpose accelerator is MIAOW [120], based on the AMD
Southern Islands architecture and its ISA. However, the authors described the MIAOW
architecture using behavioral C/C++. Thus, it is not fully synthesizable. In [121], the
authors proposed the Scratch architecture, a MIAOW extension with the automatic
identification of specific requirements of each application kernel. In addition, the
authors proposed a tool for generating application-specific and FPGA-implementable
trimmed-down GPU-like architectures. MIAOW is another example of GPU-like general
purpose for FPGAs, which also has yet to make the source code publicly available.

Therefore, to bridge the literature gap, I proposed a tool termed GPUPlanner for
automatically generating tapeout-ready domain-specific accelerators based on GPU-like
architectures, making all source codes publicly available. Therefore, this is the first
work to propose a similar framework. Furthermore, the proposed framework facilitates
a novel and comprehensive design-space exploration (DSE) of GPU-like architecture
regarding logic and memory components.

Compared to related works, the proposed architecture targets ASIC flows rather
than FPGAs. Because in FPGA designs there is little to no control over how memories
are inferred, GPUPlanner DSE allows significantly more complex designs due to the
possible different parameters for the memory hierarchy to explore. On top of that, the
proposed design and framework are fully synthesizable, tapeout-ready, and available to
the community for further investigations, different from MIAOW and Scratch.

3.3 GPUPlaner Tool and Framework
Since the FGPU was originally designed targetting FPGAs, the experiments started
by migrating its architecture to ASIC. Thus, the FGPU’s architecture requires a few
modifications. FPGA’s compilers can automatically infer memories from the RTL; thus,

33

FGPU’s code describes all memory blocks as regular FFs. Differently, in ASIC, memory
blocks are hand-instantiated IPs instead of inferred ones. Therefore, for migrating the
FGPU code, all memory modules must be clearly defined and instantiated accordingly.
In this work, the implementations for the experiments utilize a commercial 65nm CMOS
technology. The provided foundry’s memory compiler has the option for dual-port
low-power SRAM IPs, with address sizes ranging from 16 to 65536 words and word
sizes from 2 to 144 bits.

A thorough DSE exercise can achieve the best PPA ratio possible for the G-GPU.
First, performance was analyzed to verify the maximum operating frequency, i.e., when
the setup and hold timing slacks for the critical path are above zero. The maximum
operating frequency found during the logical synthesis for the standard version is 500MHz.
Here, the standard version is a version without any optimization proposed in this work.
Moreover, G-GPU versions with the same number of CUs have similar performance
because the CU itself is the bottleneck for performance in G-GPU’s architecture. As
expected, the starting point of the critical path for the versions without any optimization
is a memory block inside the CU.

The delay in accessing the stored data from memories is proportional to their size.
Thus, a larger memory, either in the number of words or word size, displays a higher
delay for accessing stored data when compared with a smaller memory. Therefore,
dividing memory blocks that belong to critical paths is an efficacious strategy to increase
the design’s performance [122] – called smart memory. For example, memories can be
divided by the number of words, the size of the word, or both. However, the impact on
performance when halving the number and size of words simultaneously depends on the
technology.

Figure 17: Simplified example of smart memory technique by halving the size of the word.

Applying the smart memory strategy requires a few adaptations in the RTL code.
After locating the candidate’s memories for the division, the new modules must be
adequately instantiated. The input/output data or addresses from the new memory
modules require concatenation to maintain the same connections. In our framework,
this task is automated to accelerate the optimization process. GPUPlanner has a feature
to perform automatic memory division. Figure 17 depicts an example of smart memory
division by halving the size of the word. The read cycle delay has two parts, the access
time and data setup. When the word size is divided by two, the access time decreases

34

by almost 25%3. Smart memory takes advantage of this characteristic to lower the time
necessary to access stored data, increasing the design’s performance. In the GPUPlanner
framework, the designer only has to point to the candidate’s memories and the number
of divisions for each memory, then the smart memory division is automatically performed.
An extra feature along memory division, GPUPlanner implements pipeline on demand
to improve the performance.

Figure 18: Example of a header power switch schematic (left panel) and placement (right
panel).

In addition to the memory division strategy, the GPUPlanner framework also has the
option to power gate selected CUs. The power gating allows the complete shutdown
of the logic inside the CU. Therefore, GPUPlanner users can use power gating as a
low-power strategy, design for reliability, or as a security feature. Our framework uses a
coarse-grain header-style power switch provided by the foundry. Figure 18 shows an
example of the schematic on the left panel and the placement on the right panel of a
header power switch. As illustrated in Figure 18, when the signal Enable is de-asserted,
the header power switch disconnects the Virtual VDD from the VDD line, shutting off
the gates connected to Virtual VDD. Furthermore, coarse-grain power switches utilize
lower metal layers to cut the power distribution. In our framework, the utilized power
switches break the power distribution at the metal layer M1, highlighted in blue in
Figure 18. Moreover, physical synthesis tools can automatically implement power gating
intent, using Unified Power Format (UPF) [94] to configure the power switch rules
and define the power domains. Thus, GPUPlanner users only have to point to which
CU they want to power gate, define the power domain sets, and its implementation is
automatically performed.

Another GPUPlanner feature readily available is a dynamic power controller block
for power-gated designs. This controller can dynamically turn on and off CUs and pair
CUs to work with the same workload. All the controlling is performed on the software
side by special instructions added to G-GPU ISA. Figure 19 illustrates the dynamic
power controller block. This block is instantiated inside the WG dispatcher to control
the number of CUs available, multiplex the workload requests for CUs working in pairs,

3The timing presented in Figure 17 are from a commercial memory compiler. However, the
actual time figures are not allowed to be disclosed. For that reason, here, these figures are
normalized in terms of generic time units.

35

Figure 19: GPUPlanner generic dynamic power controller block diagram.

and enable the power switches. These tasks are controlled by two new instructions
added to the ISA: (1) the power status of each CU; (2) adjacent CU working in pairs.
The power status is controlled by one bit where logic 0 turns the CU off, and logic 1
turns on the CU. Thus, 8 bits of the instruction are allocated where the bit index is
related to a specific CU. Only pairs of adjacent CUs can share the same workload for
the mirroring workload feature, i.e., CU #1 sharing the workload with CU #2. Then, 4
bits of the instruction are allocated to enable the mirroring feature.

GPUPlanner is an open-source tool to generate G-GPU IPs from RTL to GDSII
automatically; its framework is highlighted in Figure 20. Firstly, a GPUPlanner user
has to define the desired specification from the G-GPU. The proposed architecture can
configure the number of CUs ranging from 1 to 8 and the option to power gate any CU
grouped in different power domains. A G-GPU with more CUs has more computation
capacity. Also, the designer has to specify the desired operating frequency of the
G-GPU.

After the designer sets the specifications for his/her requirements, one or more
versions of G-GPU can be feasible. With a single push of a button, GPUPlanner’s
framework performs logic and physical synthesis of all G-GPU versions. After each
logic and physical synthesis, the resulting PPA has to be checked to guarantee that
the design is under the initial specification. If the G-GPU is out of specification, the
designer should adjust it and restart the process. Finally, all the generated layouts are
ready to be integrated into a system as a tapeout-ready IP.

3.4 Results and Discussion
After a thorough DSE exercise of the GPUPlanner, 12 versions of the G-GPU with
a worth PPA trade-off in a general manner were found. These versions have 1, 2, 4,
and 8 CUs, and each variant was optimized to run at 500MHz, 590MHz, and 667MHz.
Table 1 describes the physical characteristics of each version considered. As expected,
the G-GPU sizes grow linearly with the number of CUs. On the other hand, during the
optimization phase (see Figure 20), improving G-GPU’s performance does not increase
area linearly with the frequency increment. For example, increasing the frequency from
500MHz to 590MHz increases the area by an average of 10%. However, when increasing
from 590MHz to 667MHz, the area overhead is reduced, increasing only by an average
of 2%. In this optimization stage, the divided memories belong to the top level with

36

G-GPU IP ready for deployment

Design Specification

1. Designer specifications 2. Check technology library 3. Generate N Possible
G-GPU RTLs

4. Logical Synthesis; timing
and power analysis

5. Check if the design
is under specification

6. Floorplanning and
 power planning

7. Place and route; timing
and power analysis

8. Check if the design is under
specification

Repeat optimization in case during step 5 or 8 the
design is not under specification

1. Find critical path 2. Apply smart memory
division

3. Add pipelines
if needed

Repeat from step 4

Logical Synthesis

Optimization phase

Physical Synthesis

G
P

U
P

la
n

n
e

r

Figure 20: GPUPlanner’s G-GPU generation flow (adapted from [9]).

lower implementation density – hence, the small jump in area overhead. Nonetheless, for
applications that do not prioritize power consumption, the versions running at 667MHz
are a good fit for having a negligible increase in area. Therefore, the G-GPU architecture
has potential scalability facilitated by the GPUPlanner framework.

Conventionally, power gating is used for low-power applications. However, it can
be used in design for reliability and security applications. For example, shutting off
faulty or compromised circuit parts to isolate a problem can be beneficial. Thus, the
optional power gating provided by GPUPlanner enables several use cases other than
the traditional low-power design. Those use cases can be essential for an optimal GPU,
especially for security, where recently a few GPU-specific side-channel attacks have
been demonstrated without countermeasures [114,123,124].

According to the authors in [114], power or electromagnetic (EM) side-channel
attacks against desktop CPUs, mobile CPUs, and FPGAs have been extensively studied.
However, modern GPUs are rarely taken into account. In [114], the authors demonstrated
the effectiveness of an EM side-channel attack against a GPU AES implementation.

37

Table 1: Characteristics of 12 different GGPU solutions generated by our tool after logic
synthesis in Cadence Genus.

#CU & Freq. Total Area (mm2) Memory Area (mm2) #FF #Comb. #Memory Leakage (mW) Dynamic (W) Total (W)
1@500MHz 4.19 2.68 119778 127826 51 4.62 1.97 2.055
2@500MHz 7.45 4.64 229171 214243 93 8.54 3.63 3.77
4@500MHz 13.84 8.56 437318 387246 177 16.07 6.88 7.14
8@500MHz 26.51 16.39 852094 714256 345 30.79 13.33 13.86
1@590MHz 4.66 3.15 120035 128894 68 4.73 2.57 2.66
2@590MHz 8.16 5.34 229172 221946 120 8.73 4.63 4.81
4@590MHz 15.03 9.72 436807 397995 224 16.41 8.70 9.02
8@590MHz 28.65 18.49 850559 737232 432 31.25 16.81 17.40
1@667MHz 4.77 3.26 120035 130802 71 4.65 2.62 2.72
2@667MHz 8.27 5.45 229172 222028 123 8.72 4.69 4.87
4@667MHz 15.15 9.83 436807 398124 227 16.43 8.75 9.07
8@667MHz 28.69 18.60 848511 730506 435 30.21 19.10 19.76

They argue that the literature lacks GPU-specific countermeasures for GPU-based
cryptographic implementation, which should be investigated in practice. As mentioned,
the literature also needs an ASIC open-source GPU architecture, arguably contributing
to the lack of such studies. Therefore, the proposed G-GPU architecture can aid the
research of GPU-specific countermeasures for practical applications.

Due to the physical characteristics of the CU, inserting power switches does not
entail area or performance overhead4. The only requirement from the user side is the
implementation of a controller for the power switch signals. For example, a power
controller can dynamically scale the number of CUs available accordingly to the workload.
Thus, saving power when a workload can run with fewer CUs. Even more, with a
few adjustments on the WG dispatcher (see Figure 16), the workload can be mirrored
between sets of CUs and work similarly to a TMR technique. Thus, a voter plus the
power controller can select the desired set of CUs to work similarly to a TMR. For
example, suppose a user can implement a G-GPU with 8 CUs with four sets of power
domains with 2 CUs each. Then, each set can work in lockstep to detect any fault
in the circuit. Moreover, the voter can potentially detect the presence of a hardware
trojan inserted in a specific CU.

Power side-channel attacks without the aid of SCTs require acquiring a tremendous
amount of long power traces. Thus, a power controller can turn on the G-GPU only
when executing a task, potentially reducing the chance of such power side-channel
attacks by reducing the timing window of the power/EM traces. In [114], the authors
needed to collect thousands of significant EM traces to retrieve the crypto key from
a GPU AES application. Alternatively, tasks can be executed each time in a different
CU while the other remains shut off. Thus, if an HT compromises a particular CU,
this strategy can diminish the attack’s success rate. However, these examples of power
gating are application and user-specific – GPUPlanner does not implement particular
applications of power gating. More importantly, GPUPlanner allows users to perform
power gatings controlled by a generic dynamic power controller, which can be tweaked
in the G-GPU architecture according to their needs and at runtime.

For the physical synthesis, was chosen six versions of the G-GPU: (1) 1CU@500MHz,

4Power gating can introduce area and performance overhead. For high-density designs, the
insertion of power switches will increase the area. In addition, power-on latency can degrade
the design’s performance. Suppose the power gatings are not carefully performed; IR drop due
to the power switches can also hinder the performance.

38

(2) 1CU@500MHz with power switches, (3) 1CU@667MHz, (4) 1CU@677MHz with
power switches, (5) 8CU@500MHz, and (6) 8CU@667MHz. The floorplan of the G-GPU
is broken into two partitions, one with the CU(s) and one with the rest of the blocks
(see Figure 21). For the CUs, the density was set to 70%. Then, the rest of the
logic was placed and routed at the top level, and the top level size was set to fit all
routing wires for the connections rather than achieving high densities. Because the
top level comprises three modules and does not have as many memory blocks as the
CU, achieving a high density of utilization was possible. Thus, the top has an average
density of 75%. Nonetheless, this floorplan strategy allows designers to scale the G-GPU
architecture without any extra effort regarding the number of CUs. Once a CU partition
is fully placed and routed, it can be implemented in versions with more than 1 CU by
cloning the partition in the final floorplan of the design. Moreover, the user can easily
create a collection of different CU layout blocks and scale the floorplan regarding the
number of CUs for different application scenarios.

7150 um

5
6

0
0

 u
m

7550 um

5
8

0
0

 u
m

3200 um

2
6

0
0

 u
m

2
2

0
0

 u
m

2700 um

(1) 1CU@500MHz

(3) 1CU@677MHz

(5) 8CU@500MHz (6) 8CU@677MHz

CU Optimized
Memories

Untouched
Memories

MCTRL Optimized
Memories

TOP Optimized
Memories

Figure 21: Layout comparison between the minimum and maximum performance of G-GPUs
with 1 CU (top) and 8 CUs (bottom).

The layouts for the versions with 1 and 8 CUs without power switches are depicted
in Figure 21. Only the layouts with the same number of CUs are in size scale. The block
memories divided for augmenting the performance are highlighted in green for the CU
partition, yellow and pink for the general memory controller (MCTRL), and blue for the
top. Note how different the floorplan is between the version with optimizations running
at 667MHz and without optimizations running at 500MHz. Extracting maximum
performance requires strategic memory block placement, hence, the difference in the
floorplan.

Figure 22 illustrates the G-GPUs with power gating. Note that the layout size is the
same between the version with and without power gating, and the memory placement is

39

Table 2: Comparison of power consumption for 1CU@500MHz and 1CU@677 versions with
and without power gating.

Dynamic Power (W) Leakage (µW)
CU & Freq. Power Gating # Power Switches Total Always-on CU Total Always-on CU Power Switch

1@500MHz Yes 942 1.768 0.36 1.408 385 89.5 292 0.503
1@500MHz No 0 1.753 - - 384 - - -
1@667MHz Yes 1110 2.966 0.737 2.22 522.4 157.8 364 0.6
1@667MHz No 0 2.957 - - 520.6 - - -

Always-on Cell

CU Power Domain Cells

Power Switch

VDD

VDD

VDD

VDD

VDD

VDD

VSS

VCU

VSS

VCU

VSS

VCU

Figure 22: Layout comparison between G-GPU (2) 1CU@500MHz and (4) 1CU@677MHz with
power gating.

slightly different. Due to the number of memory blocks and their placement, the edges
without pinouts usually are not populated with cells. In the case of the G-GPU, those
edges are where was placed the power switches in column fashion, as highlighted in
red in Figure 22. As described before, the power switches break the power distribution
at M1 metal. In Figure 22, the always-on power net is VDD, and the CU partition
power net is VCU, with a shared ground VSS. Therefore, the power switch connects
to VDD, VSS, and VCU. The connection between VDD and VCU is controlled by the
signal enable (see Figure 18). The overhead difference between with and without power
gating is only perceived when all power domains are turned on. However, there is only
a negligible difference in leakage. The power results of the G-GPUs with and without
power gating are described in Table 2. Even with a large number of power switches
(more than a thousand for (3) 1CU@667MHz), the difference in leakage is less than 1
µW. On the other hand, when the G-GPU is idle, the user can turn off the entire CU
partition. The power reduction comparison between a version with and without power
gating depends on how the design handles the clock. If the clock is always running
without any clock gating, the reduction is a part of the dynamic plus the leakage power.

40

Figure 23 illustrates CU partition dynamic power versus switching activity 5 for (2)
1CU@500MHz and (4) 1CU@677MHz. As described in Section 2.2, dynamic power
comprises internal and switching power. Note that the largest portion of the dynamic
power is from internal power. Hence, even if the CU is not running at capacity (idle),
the consumption is still high. Therefore, the power reduction achievable when power
gating is massive, more than 2W for the (4) 1CU@677MHz. On the other hand, if the
design has the means to stop the CU clock, the power reduction difference when power
gating is only the leakage – approximately 370µW for the (4) 1CU@677MHz.

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10 20 30 40 50 60 70 80 90100

P
ow

er
 (

W
)

Switching Activity (%)

Internal Power
Switching Power

 0

 500

 1000

 1500

 2000

 2500

 3000

0 10 20 30 40 50 60 70 80 90 100
P

ow
er

 (
W

)
Switching Activity (%)

Figure 23: Compute unit partition dynamic power versus switching activity for (2) 1CU@500MHz
(left panel) and (4) 1CU@677MHz (right panel).

A performance comparison was made between the popular RISC-V architecture
to evaluate the G-GPU as an ASIC accelerator. For the comparison, the OpenHW
group Core-V cv32e40p RISC-V was utilized [125]. Furthermore, the logic synthesis
was done utilizing the same technology for both architectures (commercial 65 nm
CMOS). Since the G-GPU’s maximum operation frequency is 667MHz, both RISC-V
and G-GPU operating frequencies are set to 667MHz for a fair comparison. The RISC-V
was implemented with 32kb of memory, and the G-GPU with 1/2/4/8 CUs. Seven
micro-benchmarks from the AMD OpenCL SDK were chosen for the experiments.
The payload size is set as the largest that the RISC-V compiler can handle without
crashing. In the same way, for the G-GPU, the payload sizes are chosen to make its
computing units fully utilized. For the evaluation, a pessimistic approach for the G-GPU
is considered to compare the performance of the different-input size applications. For
example, one could increase RISC-V application input sizes by multiplying its cycle
count by the G-GPU/RISC-V input size ratio. These results are shown in Figure 24.

The first experimental evaluation compares raw performance between G-GPU and
RISC-V for the exact input sizes. As illustrated in Figure 24, G-GPU with 8 CUs is
up to 233.4 times faster than RISC-V. However, a higher speed-up magnitude is only
achieved for applications that take advantage of high parallelism. G-GPU can be as
low as only 1.2 times faster than RISC-V for applications with low to no parallelism.
However, as G-GPU is a domain-specific ASIC accelerator, such results are expected
once it will not becomes the best option for general-purpose applications. Therefore, a
user interested in implementing a G-GPU as an accelerator can utilize these provided
data to ponder if this type of architecture is a good fit for his/her system, considering

5Switching activity is set to emulate the circuit operation when test vectors are not available.
The switching activity is how much a signal switches in relationship with the clock, e.g., 20%
of switching activity means signals switch one time per 5 clock cycles.

41

 0

 10

 20

 30

 40

 50

mat_mul copy vec_mult fir div_int xcorr parallel_sel
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

Sp
ee

d-
up

 d
er

at
ed

 b
y

ar
ea

Sp
ee

d-
up

1CU - Area Ratio=06.5
2CU - Area Ratio=11.6
4CU - Area Ratio=21.4
8CU - Area Ratio=41.0

1CU - Raw Speed-up
2CU - Raw Speed-up
4CU - Raw Speed-up
8CU - Raw Speed-up

Figure 24: Speed-up over RISC-V.

only the raw speed-up.
The measured area is factored into performance speed-up for the second experimental

evaluation. For that, the previously measured speed-up is derated by dividing the area
ratio between G-GPU and RISC-V (G-GPU/RISC-V). The G-GPU with 1 CU has an
area that is 6.5 times larger than the RISC-V, and it achieves the best increase in
performance per area of 10.2 times the RISC-V’s. On the other hand, G-GPU with 8
CUs has an area that is 41 times bigger than RISC-V’s, thus achieving a performance
per area of 5.7 times faster than RISC-V’s. This trend happens mainly because data
dependency and global memory communication limit parallelism. Thus, the provided
increased processing power of a G-GPU configuration with more CUs.

Currently, the GPUPlanner can generate tapeout-ready GPU-like ASIC accelerator
IPs with the flexibility to choose the number of CUs, layout size, frequency of opera-
tion, and power gating implementation. Moreover, the results show that the G-GPU
performs better than a general-purpose accelerator like the RISC-V in specific scenarios.
Furthermore, the GPUPlanner can still be improved to include additional features such
as the power gating controller and architecture featuring more than 8 CUs. Finally,
the GPUPlanner tool is publicly available to users interested in utilizing the already
implemented features and users interested in improving the GPUPlanner capabilities
even further [126].

42

4 Split Manufacturing: Attacks and Defenses

This chapter discusses the Split Manufacturing technique state of the art. From a
literature review, I identified that the Split Manufacturing technique research was mature
and relevant for having a survey. Thus, I present in this chapter a reduced version of the
survey published in [22]. It is noteworthy to mention it was the first published survey on
the topic. In this survey, I comprehensively classified every attack against split layouts
and every defense technique for improving even further split layouts security. On top of
that, I addressed a controversial topic (efficacy of the Split Manufacturing technique)
among the recent publications. Finally, this survey is very important for future research
on Split Manufacturing, being a focal point to start from for security experts interested
in the topic.

This chapter has its content based on the following publication:

[I] T. D. Perez and S. Pagliarini, "A survey on split manufacturing: Attacks, defenses,
and challenges," IEEE Access, vol. 8, pp. 184013–184035, 2020

4.1 Introduction
As discussed in Sections 2.1 and 2.3, ensuring the integrity and trustworthiness of ICs has
become more challenging [59] over time. Mainly because of the restructuring of the IC
supply chain, which is now very complex and highly globalized. Moreover, counterfeiting
and IP infringement are growing problems in the electronics sector. For example, in
Europe, seizures of counterfeit electronics products increased by almost 30% when
comparing 2014-2016 to the 2011-2013 period [58]. Legitimate electronics companies
reported about $100 billion in sales losses every year because of counterfeiting [127].

In Section 2.3, I discussed several techniques that have been proposed to combat
threats during the IC’s life cycle individually. However, very few of these techniques
directly address the lack of trust in the manufacturing process. Nevertheless, Split
Manufacturing emerged to promote a hybrid solution between trusted and untrusted
manufacturing. Around 2006, Carnegie Mellon and Stanford universities prepared a
white paper proposing the technique to draw Defense Advanced Research Projects
Agency (DARPA) [128] attention. Later, the technique was picked by IARPA, which
then launched the Trusted IC program [129].

In Split Manufacturing, as already discussed in Secion 2.3, the key concept is to split
the circuit into two, the FEOL and BEOL parts. The FEOL contains the transistors
and perhaps the first couple of metal layers, and the BEOL contains the remaining
ones. Then, these parts can be manufactured in different foundries. The FEOL is
assumed to be first manufactured in a high-end modern foundry to access advanced
transistors. After, the BEOL is stacked on top of the FEOL by a second, most likely
low-end, foundry. The stacking process requires electrical, mechanical, and/or optical
alignment techniques to secure the connection between the two.

As mentioned before in Section 2.1, only a few foundries are capable of manufacturing
advanced ICs (see Figure 4). Consequently, almost all design companies have to
outsource their IC manufacturing to these untrusted foundries. This outsourcing

43

practice exposes their designs against threats that may occur during manufacturing.
Nonetheless, design companies can apply the Split Manufacturing technique to protect
their designs, thus, combating threats such as overproduction, cloning, and tampering
(these threats are highlighted in blue in Figure 13). By splitting the design into FEOL
and BEOL, Split Manufacturing protects the design by hiding sensitive data from the
untrusted foundry. In advanced technologies, the FEOL contains the transistors and
possibly a few metal layers of ultra-thin metals, which are the most complex part of
a CMOS process to manufacture [130]. Thus, it is logical to utilize the few high-
end foundries for manufacturing the FEOL layer, despite being untrusted foundries.
For manufacturing the remaining metal layers, a low-end foundry may be capable of
completing the IC by stacking the BEOL on top of the FEOL. Split Manufacturing was
successfully demonstrated in [131–133], where designs were manufactured with ~0% of
faults and reportedly have performance overhead of roughly 5%. These demonstrations
show that Split Manufacturing, in principle, is feasible. Thus, design companies can use
the technique while outsourcing their IC manufacturing to advanced foundries without
fully exposing their designs.

Nonetheless, applying Split Manufacturing has to be done with caution. The
technique’s success depends on the compatibility between the technologies used to
build the FEOL and BEOL. A layout, in theory, can be split at any layer if the chosen
layer presents a good interface between FEOL and BEOL. However, since advanced
technologies utilize the dual-damascene fabrication process, the layout can only be split
into metal layers [134], as the FEOL cannot terminate in a via layer. This is because the
dual-damascene process of metal deposition fills via-metal pairs simultaneously. Thus,
via-metal pairs (e.g., V1 and M2) must mandatorily be built in the same facility.

Since after splitting the layout, the FEOL ends on metal, the first bottom layer
on the BEOL is a via layer. Hence, staking the BEOL is only possible if there is a
way to land the via on the FEOL uppermost layer without violating any DRC of both
technologies. Thus, both technologies are compatible with each other, enabling Split
Manufacturing. As discussed in Section 2.2, DRCs guarantee manufacturability and
functionality. These rules include geometric characteristics of the metal layers, such
as minimum enclosure, width, spacing, and as well, density checks, ERC checks, and
others. For advanced technologies, designers have a rich selection of via shapes. Thus,
the technologies are compatible if at least one via shape is valid.

Mx

Vx

Mx+1

EN.T.x

VW.T.x

MW.U.x

EN.T.x

VW.T.x

Figure 25: Compatibility rules between FEOL and BEOL (adapted from [131]).

According to [131], compatibility between two technologies can be generalized by

44

enclosure rules as in Equation 3, where MW.U.x is the minimum width of Mx on an
untrusted foundry, VW.T.x is the minimum width of Vx on a trusted foundry and EN.T.x
is the minimum enclosure on the trusted foundry. These rules are illustrated in Figure
25, where the left side of the image portrays a cross-section view, and the right side
shows the top view. According to Figure 25, the minimum enclosure width, Mx.EX.Vx
must be compatible between the two foundries. Nonetheless, Equation 3 is not sufficient
for advanced technologies, as it does not consider the complex rule for vias and line
endings (enclosure from one side, two sides, three sides, T-shaped/hammerheads, and
many others).

MW.U.x ≥ V W.T.x+(2EN.T.x) (3)

The Split Manufacturing design flow is similar to the regular one illustrated in
Figure 6. However, it presents some challenges and slight modifications to the design
flow. For instance, if two different technologies are utilized for generating the layout,
a hybrid process design kit (PDK) is required for the physical synthesis. Since no
company offers a Split Manufacturing service, the hybrid PDK must be created in-house.
Furthermore, depending on the metal layer where the layout is to be split, it may affect
the existing IPs. For example, standard cell IP typically requires two metal layers, while
memory IP may utilize 4 to 5 metals. Thus, using such IPs limits the metal layout in
which the layout can be split. If that is the case, standard cells and memories must be
re-designed to enable the split in lower metal layers. Hence, this presents a significant
challenge, making Split Manufacturing much harder to execute.

Hiding part of the BEOL layer from the untrusted foundry is argued to expose
enough information to be exploited by a potential attacker. The BEOL connections can
be effectively retrieved from an attack against the FEOL by making educated guesses.
Nevertheless, the success of the guessing process depends heavily on the amount of
information the attacker possesses. Thus, the assumed threat model determines the
efficiency of attacks against FEOL. The literature describes two distinct threat models:

• Threat model I: an attacker located at the untrusted foundry holds the FEOL
layout and wants to retrieve the BEOL connections.

• Threat model II: an attacker located at the untrusted foundry has the information
of the entire gate-level netlist in their hands. That netlist is assumed to be handed
over by a malicious observer. Nonetheless, the attacker inside the foundry only
holds the FEOL and wants to retrieve the BEOL connections [135].

As the primary purpose of Split Manufacturing is to expose the minimum of informa-
tion possible to the untrusted foundry, the second threat model completely nullifies any
security introduced when splitting the circuit. For example, reverse engineering a layout
while holding the gate-level netlist becomes a trivial task if the attacker only holds
the FEOL or the complete layout. Moreover, assuming an attacker inside a third-party
company knows such sensitive data (e.g., gate-level netlist) challenges the integrity
of the design company itself. Even more severe, if a rogue element inside the design
company can steal the gate-level netlist, other design representations could be equally

45

stolen as well, including the complete layout (i.e., FEOL plus BEOL layers). Thus, the
vulnerability described by threat model II is so severe that Split Manufacturing has
virtually no reason to be applied. Accordingly, for the remaining manuscript, threat
model I is the focus for discussing Split Manufacturing. Nevertheless, all related works
that assumed threat model II were covered in the conducted survey.

From the threat model I, an attacker holding the FEOL is interested in recreating
the entire design as close as possible, ideally the same as the original. For that, he/she
must retrieve the BEOL connections. Typically, it is assumed that the attackers are
skilled and work within the untrusted foundry in some capacity. Hence, they have an
excellent knowledge of the technology utilized to generate the victim’s layout. Therefore,
extracting the incomplete gate-level netlist from the FEOL layout is a trivial task [136].

Split Manufacturing presents a promising technique to enhance the security of ICs
in this era of fabless design companies. However, the technique still faces some serious
challenges:

Logistical challenge: currently, Split Manufacturing is not integrated into the IC
supply chain. Herefore, finding foundries with compatible technologies willing to
work together is not trivial. Thus, a commercial Split Manufacturing solution is
unlikely to be created soon.

Technological challenge: even within compliant technologies, non-negligible over-
heads can be introduced if they are vastly different6. In the worst-case scenario,
it can make routing impossible. Thus, this fact narrows down the technology
choices available and the feasibility of particular layers as candidates for splitting.

Security challenge: the attained security of straightforward Split Manufacturing is
still under debate. Attacks against the FEOL can be effective, where the hidden
connections can be retrieved.

In the following sections, related works in the literature about Split Manufacturing
are categorized as attacks and defenses. For attacks, authors propose modifications of
existing attacks to improve their effectiveness and new types of attacks. In defenses, the
authors proposed new techniques to be applied along Split Manufacturing to enhance
its security level.

4.2 Attacks on Split Manufacturing
Many attacks against the FEOL have been proposed, most of which are termed proximity
attacks [138–144]. The attacks are compiled in Table 3, where is described the threat
model used, the type of attack, the novelty of the attack, benchmarks, and the size
of the circuits utilized to assess the attacks. Furthermore, a few results were selected
from each work described in Table 4. For better contrast, these results are selected for
the smallest and larger circuits available. Following, I present a brief discussion about
attacks against the FEOL. Finally, for a thorough and complete discussion, I direct the
reader to [22].

6For a thorough discussion and silicon results on BEOL-related overheads, please refer
to [137].

46

Table 3: Threat Models, Attacks, and Metrics.

Work Year Threat
model

Attack type Novelty Benchmark suite(s)
Largest
circuit size
(gates)

Avg. circuit
size (gates)

[138] 2013 I Proximity Attack Based on Proximity ISCAS'85 3.51k 1288
[139] 2016 II Proximity Placement and routing proximity

used in conjunction ISPD'11 1.29M 951k

[140] 2018 I Proximity Network-Flow-Based with Design
Based Hints ISCAS'85 & ITC'99 190.21k 9856

[141] 2018 I Proximity
Proximity Attack Based on Ma-
chine
Learning

ISPD'11 1.29M 951k

[142] 2019 I Proximity Proximity Attack Based on Deep
Neural Network

ISCAS'85 & ITC'99 190.21k 9856

[143] 2019 I SAT SAT Attack without Proximity In-
formation

ISCAS'85 & ITC'99 190.21k 9856

[144] 2019 I SAT SAT attack dynamically adjusted
based on proximity information ISCAS'85 & ITC'99 190.21K 9856

As previously alluded, when implementing the IC, EDA tools focus mainly on
optimizing PPA. Hence, the solution found by the placement algorithm often places
connected cells close to one another to reduce area, wire length, and delay. Consequently,
the missing BEOL connections could be found by assessing the input and output pins
in proximity, hence, the name proximity attack. However, the number of missing
connections increases the probability of making a wrong connectivity guess. In turn, a
circuit split into a lower metal layer has a high level of security. In [138], the authors
reported the first proximity attack against the FEOL. They utilized the distance between
output-input pairs as a metric to recover the missing BEOL connections (i.e., a proximity
attack). The authors reported an average effectiveness of 96% of Correct Connection
Rate (CCR) across all the benchmarks considered.

G1
G2

G3
G4

G5

G6

I0
I1

I2

I3
I4

I5

O1

O2

Partition A

Partition B

O3

I6

Target Pin
Candidate Pin

Figure 26: Example of a partitioned circuit (from [22]).

To understand the hints left behind by EDA tools, consider as an example the
partitioned circuit illustrated in Figure 26. The circuit contains two partitions, A and
B, each with three gates. Not considering connections within the partitions, partition
A has three inputs and one output pin, while partition B has three inputs and two
output pins. The partitions are connected to each other by one input-output, where the
output pin of gate G2 is connected to one of the inputs of gate G3. Let us assume the
output pin from partition A Px,A,out is a candidate for its corresponding input pin from
partition B Px,B,in. From the perspective of EDA tools, those pins will most likely be
placed as close as possible. Therefore, using this insight, an attacker may recover the

47

missing connection in the FEOL layout. The authors in [138] have argued that their
proposed attack flow is successful because it can leverage the following “hints” provided
by the EDA tools:

Hint 1 - Input-Output Relationship: partition input pins are connected either to
another partition output pin or to an input port of the IC (i.e., input-to-input
connections are excluded from the search space).

Hint 2 - Unique Inputs per Partition: input-output pins between partitions are
connected by only one net. If a single partition output pin feeds more than one
input pin, the fan-in and fan-out nodes are usually placed within the partitions
(i.e., one-to-many connections are ruled out from the search space).

Hint 3 - Combinational Loops: only specific structures normally utilizes com-
bination loops (e.g., ring oscillators). These structures are straightforward to
identify. Thus, in most cases, random logic does not contain combinational loops
– connections that would lead to it can be eliminated from the search space.

Nonetheless, missing connections can be correctly retrieved by identifying the closest
pin from a list of possible candidates. Utilizing the hints described above, the attacker
can create a list of possible candidates. Candidates’ pins are separated into unassigned
inputs and outputs pins. Hence, a metric based on the minimum routing distance can
be used to connect the unassigned pins.

Based on the work presented in [138], other similar attacks towards the FEOL were
developed. A more advanced proximity attack is proposed by [139], where the authors
take into account other metrics besides the distance of the unassigned pins. They
proposed four different techniques to identify a small search neighborhood area for each
candidate. The techniques are called placement proximity, routing proximity, crouting
proximity, and overlap of placement and routing proximity.

On the other hand, the attack proposed in [140–142] leverages statistical analysis
to improve the search for the missing connections in proximity attacks. In [140], the
authors proposed a network-flow-based attack framework, where the missing connections
are found by solving a min-cost network-flow problem [145]. A Machine Learning (ML)
framework was created by the authors in [141] in an attempt to improve the attack
proposed in [139]. Finally, the authors in [142] proposed a more sophisticated deep
neural network, using placement and routing hints as vector and image-based features
to formulate the challenges.

Moreover, the authors in [143,144] proposed an SAT solver-based attack method
derived from CycSat [146]. Contrary to proximity attack, the authors claim their SAT
attack does not need (or depend on) any proximity information or hint from EDA tools.
Instead, they model a interconnect network as key-controlled multiplexers (MUX) with
all the missing connections. Hence, as input to the SAT-solver, the FEOL circuit with
the MUX network is utilized, and a packaged IC serves as an oracle. Thus, the threat
model considered in [143,144] is slightly different; the authors assume that a working
circuit exists.

48

Ta
bl

e
4:

Be
nc

hm
ar

k
Si

ze
an

d
Co

m
pa

ris
on

of
At

ta
ck

Re
su

lts
.

W
or

k
B

en
ch

m
ar

k
A

tt
ac

k
Sp

lit
La

ye
r

Si
ze

(I
n

G
at

e
C

ou
nt

)
M

et
ric

R
es

ul
t

[1
38

]
c1

7
Pr

ox
im

ity
No

tD
efi

ne
d

6
CC

R(
%

)
10

0
[1

38
]

c7
55

2
Pr

ox
im

ity
No

tD
efi

ne
d

35
13

CC
R(

%
)

94
[1

39
]

Su
pe

rb
lu

e
1

Pl
ac

em
en

tP
ro

xim
ity

M
2

84
7k

%
M

at
ch

in
Li

st
12

.8
4

[1
39

]
Su

pe
rb

lu
e

1
Pl

ac
em

en
tP

ro
xim

ity
M

2
84

7k
CC

R(
%

)
5.

47
9

[1
39

]
Su

pe
rb

lu
e

1
Ro

ut
in

g
Pr

ox
im

ity
M

2
84

7k
%

M
at

ch
in

Li
st

71
.0

8
[1

39
]

Su
pe

rb
lu

e
1

Ro
ut

in
g

Pr
ox

im
ity

M
2

84
7k

CC
R(

%
)

0.
65

1
[1

39
]

Su
pe

rb
lu

e
1

O
ve

rla
p

(P
&

R)
Pr

ox
im

ity
M

2
84

7k
%

M
at

ch
in

Li
st

13
.0

5
[1

39
]

Su
pe

rb
lu

e
1

O
ve

rla
p

(P
&

R)
Pr

ox
im

ity
M

2
84

7k
CC

R(
%

)
3.

97
7

[1
39

]
Su

pe
rb

lu
e

1
Cr

ou
tin

g
Pr

ox
im

ity
M

2
84

7k
%

M
at

ch
in

Li
st

82
.0

8
[1

39
]

Su
pe

rb
lu

e
1

Cr
ou

tin
g

Pr
ox

im
ity

M
2

84
7k

CC
R(

%
)

0.
65

1
[1

40
]

c7
55

2
Ne

tw
or

k-
flo

w
Ba

se
d

Pr
ox

im
ity

No
tD

efi
ne

d
35

13
CC

R(
%

)
93

[1
40

]
c7

55
2

Pr
ox

im
ity

No
tD

efi
ne

d
35

13
CC

R(
%

)
42

[1
40

]
B1

8
Ne

tw
or

k-
flo

w
Ba

se
d

Pr
ox

im
ity

No
tD

efi
ne

d
94

24
9

CC
R(

%
)

17
[1

40
]

B1
8

Pr
ox

im
ity

No
tD

efi
ne

d
94

24
9

CC
R(

%
)

<
1

[1
41

]
Su

pe
rb

lu
e

1
Pr

ox
im

ity
M

6
84

7k
%

M
at

ch
in

lis
t

33
.4

0
[1

41
]

Su
pe

rb
lu

e
1

Pr
ox

im
ity

M
6

84
7k

CC
R(

%
)

0.
76

[1
41

]
Su

pe
rb

lu
e

1
M

L
M

6
84

7k
%

M
at

ch
in

lis
t

83
.1

2
[1

41
]

Su
pe

rb
lu

e
1

M
L

M
6

84
7k

CC
R(

%
)

1.
91

[1
41

]
Su

pe
rb

lu
e

1
M

L-
im

p
M

6
84

7k
%

M
at

ch
in

lis
t

74
.6

5
[1

41
]

Su
pe

rb
lu

e
1

M
L-

im
p

M
6

84
7k

CC
R(

%
)

2.
11

[1
41

]
Su

pe
rb

lu
e

1
M

L-
im

p
M

4
84

7k
%

M
at

ch
in

lis
t

75
.4

5
[1

41
]

Su
pe

rb
lu

e
1

M
L-

im
p

M
4

84
7k

CC
R(

%
)

2.
58

[1
42

]
B1

8
DL

Ne
tw

or
k

M
1

94
24

9
CC

R(
%

)
4.

59
[1

42
]

B1
8

DL
Ne

tw
or

k
M

3
94

24
9

CC
R(

%
)

23
.7

4
[1

42
]

c7
55

2
DL

Ne
tw

or
k

M
1

35
13

CC
R(

%
)

11
.1

1
[1

42
]

c7
55

2
DL

Ne
tw

or
k

M
3

35
13

CC
R(

%
)

72
.3

0
[1

43
]

c7
55

2
SA

T
At

ta
ck

No
tD

efi
ne

d
35

13
Lo

gi
ca

lE
qu

iva
len

ce
(%

)
10

0
[1

43
]

B1
8

SA
T

At
ta

ck
No

tD
efi

ne
d

94
24

9
Lo

gi
ca

lE
qu

iva
len

ce
(%

)
10

0
[1

44
]

c7
55

2
Im

pr
ov

ed
SA

T
At

ta
ck

No
tD

efi
ne

d
35

13
Lo

gi
ca

lE
qu

iva
len

ce
(%

)
10

0
[1

44
]

B1
8

Im
pr

ov
ed

SA
T

At
ta

ck
No

tD
efi

ne
d

94
24

9
Lo

gi
ca

lE
qu

iva
len

ce
(%

)
10

0

49

4.3 Split Manufacturing Defenses
As discussed in the previous section, attacks against Split Manufacturing can be
effective. Attackers can realistic retrieve the missing BEOL connections. Thus, any
security introduced by Split Manufacturing is annulled if the connections are successfully
recovered. Consequently, several works question straightforward Split Manufacturing.
Several authors have proposed techniques to use together with Split Manufacturing to
increase security against attacks. A list of defense techniques is compiled in Table 5.
This comprehensive list describes the threat model and defense metric utilized in each
work, depending on the attack they are combating. Often defense techniques introduce
heavy PPA overhead. Table 5 also reports if the studied work addressed overheads and
which one was taken into account, such as wirelength overhead (WLO), PPA, and the
number of swaps performed. The defense’s results are reported in terms of CCR or
effective mapped set ratio (EMSR). The EMSR metric attempts to quantify the ratio
of the real gate location of a given mapping during a simulated annealing-based attack.

Table 5: Split Manufacturing Defenses.

Work Year Threat
Model

Category Defense Metrics Defense Overheads Presented

[138] 2013 I Proximity Perturba-
tion

Pin Swapping Hamming Dis-
tance

-*

[135] 2013 II Wire Lifting Wire Lifting k-Distance Power, Area, Delay and WireLength
[132] 2014 I Layout Obfuscation Layout Obfuscation for

SRAMs and Analog IPs
- Performance, Power and Area

[147] 2014 I Layout Obfuscation Obfuscation Techniques Neighbor
Connected-
ness and
Entropy

Performance and Area

[148] 2015 I Layout Obfuscation Automatic Obfuscation Cell
Layout

Neighbor
Connected-
ness and
Entropy

Performance, Power and Area

[149] 2015 I Layout Obfuscation Obfuscated Built-in Self-
Authentication

Obfuscation
Connection

Number of Nets

[139] 2016 I Wire Lifting Artificial Blockage Insertion Number of
Pins

-*

[150] 2016 I Wire Lifting Net Partition, Cell Hidden
and Pin Shaken

- -*

[151] 2017 I Proximity Perturba-
tion

Routing Perturbation Hamming Dis-
tance

Performance and WireLength

[152] 2017 I Wire Lifting Secure Routing Perturba-
tion for Manufacturability

Hamming Dis-
tance

Performance and WireLength

[153] 2017 I Proximity Perturba-
tion

placement-centric Tech-
niques

CCR Performance, Power and Area

[154] 2017 II Proximity Perturba-
tion

Gate Swapping and Wire
Lifting

Effective
Mapped
Set Ratio
and Average
Mapped Set
Pruning Ratio

WireLength

[155] 2018 I Wire Lifting Concerted Wire Lifting Hamming Dis-
tance

Performance, Power and Area

[140] 2018 I Proximity Perturba-
tion

Secure Driven Placement
Perturbation

Hamming Dis-
tance

Power and WireLength

[156] 2018 I Proximity Perturba-
tion

placement and routing per-
turbation

Hamming Dis-
tance

Performance, Power and Area

[157] 2019 I Layout Obfuscation Isomorphic replacement for
Cell Obfuscation

Isomorphic
Entropy

-*

[158] 2019 II Layout Obfuscation Dummy Cell and Wire Inser-
tion

k-security Area and WireLength

* Authors do not present any discussion regarding overhead.

Defenses techniques can be divided into three categories; proximity perturbation,
wire lifting, and layout obfuscation. Proximity perturbation aims to change the location

50

of cell pins to mislead proximity attacks. On the other hand, wire lifting moves routing
wires to upper layers in order to increase the amount of hidden routing. Finally,
layout obfuscation hides the circuit structure from the attacker. Nonetheless, defense
techniques do overlap. For example, a technique that primarily promotes proximity
perturbation may lead to indirect wire lifting. Hence, the categorization of defense
techniques described here is done in the best effort to list state of the art comprehensively.
The results for the Proximity Perturbation and Wire Lifting categories are compiled in
Tables 6 and 7.

As the name suggests, proximity perturbation defenses focus on reducing the hints
introduced by the EDA tools. Thus, this defense category aims to diminish the proximity
information between the exposed pins on the FEOL by making targeted changes to the
circuit and decreasing the success rate of proximity attacks toward Split Manufacturing.

Among many proximity perturbation defense techniques proposed, authors in [138]
utilized pin swapping as a countermeasure against proximity attacks. Partition pins
are rearranged to alter their distance, misleading attackers interested in performing
a proximity attack. For example, if the pins PG3,B,in and PG6,A,in (Figure 26)
are swapped, their connection would be incorrectly guessed during a proximity attack.
Therefore, the authors in [138] propose using hamming distance to quantify the difference
between the outputs from the original netlist and the modified one. For them, the
optimum netlist is arguably achieved for a Hamming distance of 50%, which induces
maximum ambiguity for a potential attacker.

In [140,151,156], the authors also leverage the Hamming distance for their proximity
perturbation techniques. In [151], the authors proposed a routing perturbation-based
defense to increase the Hamming distance. The authors use layer elevation, routing
detours, and wire decoys to achieve the optimum Hamming distance. In parallel, test
principles are used to choose the perturbations. Similarly to the technique proposed
in [138], in [140], the authors proposed placement-based defense. However, differently
from the pin swapping in [138], they consider the incurred wirelength overhead as a metric.
On top of that, they also perform a logic-driven perturbation with a weighted logical
difference (WLD) metric, which incurs a sizeable logical difference from its neighbors.
Considerably different from the other proximity perturbation techniques, in [156] are
proposed modifications on the netlist instead of placement/routing during physical
synthesis. These modifications have the purpose of inserting partial randomization,
and later the proper functionality is restored in the BEOL with the help of correction
cells that resemble switch boxes. Alternatively to Hamming distance, the proximity
perturbation technique proposed in [153] utilizes an information-theoretic metric to
increase the resilience of a layout against proximity attacks. According to [153], the
amount of information revealed by the distance between the exposed pins can be
quantified using mutual information (MI). Then, applying a placement-driven technique
minimizes the amount of exposed information quantified by MI.

The wire-lifting technique approaches the insecurity problem differently than proximity
perturbation. As previously explained, splitting the circuit at lower metal layers increases
the Split Manufacturing security level. Following the same idea, wire lifting proposes
moving wires from the FEOL layer to the BEOL. Thus, increasing the number of exposed
pins and potentially increasing the security level.

51

Ta
bl

e
6:

Re
su

lts
fo

rD
ef

en
se

Te
ch

ni
qu

es
ba

se
d

on
Pr

ox
im

ity
Pe

rt
ur

ba
tio

n.

W
or

k
A

tt
ac

k
Ty

pe
B

en
ch

m
ar

k
D

ef
en

se
Te

ch
ni

qu
e

D
ef

en
se

M
et

ric
D

ef
en

se
O

ve
rh

ea
d

Sp
lit

La
ye

r
R

es
ul

t
w

ith
-

ou
t

D
ef

en
se

R
es

ul
t

w
ith

D
ef

en
se

[1
38

]
Pr

ox
im

ity
c1

7
-

Ha
m

m
in

g
Di

st
an

ce
1

Sw
ap

fo
r5

0%
HD

-*
10

0%
CC

R
78

%
CC

R
[1

38
]

Pr
ox

im
ity

c7
55

2
-

Ha
m

m
in

g
Di

st
an

ce
49

Sw
ap

sf
or

50
%

HD
-*

94
%

CC
R

91
%

CC
R

[1
54

]
Pr

ox
im

ity
c4

32
M

od
ifi

ed
Gr

ee
dy

Ga
te

Sw
ap

pi
ng

EM
SR

75
%

of
W

LO
-*

90
%

EM
SR

25
%

EM
SR

[1
54

]
Pr

ox
im

ity
c4

32
M

od
ifi

ed
Gr

ee
dy

Ga
te

Sw
ap

pi
ng

EM
SR

30
0%

of
W

LO
-*

78
%

EM
SR

10
%

EM
SR

[1
51

]
Pr

ox
im

ity
c4

32
-

Ha
m

m
in

g
Di

st
an

ce
3.

1%
W

LO
fo

r4
6.

1%
HD

-*
92

.4
%

CC
R

78
.8

%
CC

R
[1

51
]

Pr
ox

im
ity

c4
32

-
Ha

m
m

in
g

Di
st

an
ce

4.
1%

W
LO

fo
r3

1.
7%

HD
-*

62
.8

%
CC

R
37

.9
%

CC
R

[1
53

]
Pr

ox
im

ity
c4

32
Ra

nd
om

M
ut

ua
lI

nf
or

m
at

io
n

<
10

%
PP

A
M

1
17

%
CC

R
<

1%
CC

R
[1

53
]

Pr
ox

im
ity

c4
32

g-
co

lor
M

ut
ua

lI
nf

or
m

at
io

n
<

10
%

PP
A

M
1

17
%

CC
R

2%
CC

R
[1

53
]

Pr
ox

im
ity

c4
32

g-
ty

pe
1

M
ut

ua
lI

nf
or

m
at

io
n

<
10

%
PP

A
M

1
17

%
CC

R
6%

CC
R

[1
53

]
Pr

ox
im

ity
c4

32
g-

ty
pe

2
M

ut
ua

lI
nf

or
m

at
io

n
<

10
%

PP
A

M
1

17
%

CC
R

4.
5%

CC
R

[1
53

]
Pr

ox
im

ity
c7

55
2

Ra
nd

om
M

ut
ua

lI
nf

or
m

at
io

n
<

10
%

PP
A

M
1

13
%

CC
R

<
1%

CC
R

[1
53

]
Pr

ox
im

ity
c7

55
2

g-
co

lor
M

ut
ua

lI
nf

or
m

at
io

n
<

10
%

PP
A

M
1

13
%

CC
R

2%
CC

R
[1

53
]

Pr
ox

im
ity

c7
55

2
g-

ty
pe

1
M

ut
ua

lI
nf

or
m

at
io

n
<

10
%

PP
A

M
1

13
%

CC
R

4%
CC

R
[1

53
]

Pr
ox

im
ity

c7
55

2
g-

ty
pe

2
M

ut
ua

lI
nf

or
m

at
io

n
<

10
%

PP
A

M
1

13
%

CC
R

3%
CC

R
[1

40
]

SA
T

c4
32

BE
O

L+
Ph

ys
ica

l
Pe

rtu
rb

at
io

n
4.

5%
W

LO
-*

58
%

CC
R

56
%

CC
R

[1
40

]
SA

T
c4

32
Lo

gi
c+

Ph
ys

ica
l

Pe
rtu

rb
at

io
n

5.
57

%
W

LO
-*

58
%

CC
R

58
%

CC
R

[1
40

]
SA

T
c4

32
Lo

gi
c+

Lo
gi

c
W

LD
1.

68
%

W
LO

-*
58

%
CC

R
52

%
CC

R
[1

40
]

SA
T

b1
8

BE
O

L+
Ph

ys
ica

l
Pe

rtu
rb

at
io

n
8.

06
%

W
LO

-*
15

%
CC

R
14

%
CC

R
[1

40
]

SA
T

b1
8

Lo
gi

c+
Ph

ys
ica

l
Pe

rtu
rb

at
io

n
1.

70
%

W
LO

-*
15

%
CC

R
17

%
CC

R*
*

[1
40

]
SA

T
b1

8
Lo

gi
c+

Lo
gi

c
W

LD
0.

61
%

W
LO

-*
15

%
CC

R
16

%
CC

R*
*

[1
56

]
Pr

ox
im

ity
c4

32
Ne

tli
st

Ra
nd

om
iza

tio
n

Ha
m

m
in

g
Di

st
an

ce
<

10
%

PP
A

ov
er

all
-*

92
.4

%
CC

R
0%

CC
R

[1
56

]
Pr

ox
im

ity
c7

55
2

Ne
tli

st
Ra

nd
om

iza
tio

n
Ha

m
m

in
g

Di
st

an
ce

<
10

%
PP

A
ov

er
all

-*
94

.4
%

CC
R

0%
CC

R
*

Sp
lit

lay
er

no
ts

pe
cifi

ed
by

th
e

au
th

or
s.

**
Th

es
e

re
su

lts
ar

e
co

un
te

r-i
nt

ui
tiv

e,
th

e
ap

pl
ied

de
fe

ns
e

de
gr

ad
es

th
e

m
et

ric
.

52

In [135], wire lifting was first presented considering Split Manufacturing as a 3D IC
implementation [159]. However, their technique is analogous to Split Manufacturing,
even the notion of untrusted FEOL vs. trusted BEOL. Their implementation consists of
two or more independently manufactured ICs, where each IC represents a tier that is
vertically integrated. For integrating the tiers, vertical metal pillars are used – referred
to as through-silicon vias (TSVs). In [135], their 3D implementations comprise two tiers;
the bottom tier consists of the transistors and some routing wires (same as the FEOL);
the top tier consists of only routing wires. However, both tiers are manufactured in
untrusted foundries. Nonetheless, the authors in [135] provide a security notion based on
existing multiple mapping between gates in the unlifted and complete netlists. Referred
to as k-security, this metric qualifies that gates across the design are indistinguishable
from at least k − 1 other gates. Thus, a defender wants to lift wires in a way to
guarantee the higher k − security possible. Two procedures are proposed to achieve
this goal, one utilizing a greedy heuristic targeted at small circuits (due to scalability
issues) and another that utilizes partitioning to solve those issues.

Now utilizing standard Split Manufacturing, in [139] the authors proposed artificial
routing blockage7 to promote wire lifting. Since commercial EDA tools are built to
provide the best PPA possible, it routes signals preferably in lower metals. Hence, the
insertion of routing blockages can force some signals to be routed above the split layer.
The result is an artificial wire lifting done during the routing stage.

The authors in [152] argued that previous wire-lifting works have largely neglected
Design for Manufacturability (DFM) concerns (i.e., lithography checks, critical feature
analysis, pattern matching, and others). Thus, the authors in [152,160] proposed two
DFM-related wire-lifting techniques; (1) Chemical Mechanical Planarization (CMP);
(2) Self-Aligned Double Patterning (SADP) [161]. The first technique, CMP-friendly
routing defense, is divided into layer elevation, wire selection, and re-routing. For that,
wires located in dense regions are selected to be re-rerouted in sparse areas. The second
is SADP-compliant, wire-lifting, and re-routing, disregarding the density of the regions,
with the solemn purpose of extending the wire’s length [162]. Moreover, according
to [152], solving SADP violations by wire extension can also increase security, increasing
the distance between vias.

To avoid the PPA overhead introduced by wire-lifting-based defenses, the authors
in [155] proposed a cost-security trade-off approach, i.e., PPA margins for a given
security budget. The authors claim that their concerted wire-lifting method enables
higher degrees of security while being cost-effective. They utilize elevating cells for
lifting the wires together with three strategies: lifting high-fanout nets, controlling the
distance for open pin pairs, and obfuscating short nets.

Both proximity perturbation and wire-lifting try to hide hints of hidden connection at
FEOL from the attackers. However, even without knowing where all connections are, an
attacker can identify regular structures just by looking at the FEOL layout, perchance
leading to easier attacks. For hiding those regular structures, layout obfuscating is used
to make them indistinguishable.

7This terminology is used in IC design to mean that a specific area should be avoided by
the EDA tool for a specific task. A blockage can be for placement and/or for routing.

53

Ta
bl

e
7:

Re
su

lts
fo

rD
ef

en
se

Te
ch

ni
qu

es
ba

se
d

on
W

ire
Li

fti
ng

.

W
or

k
A

tt
ac

k
Ty

pe
B

en
ch

m
ar

k
D

ef
en

se
Te

ch
ni

qu
e

D
ef

en
se

M
et

ric
D

ef
en

se
O

ve
rh

ea
d

Sp
lit

La
ye

r
R

es
ul

t
w

ith
ou

t
D

ef
en

se
R

es
ul

t
w

ith
D

ef
en

se

[1
35

]
SA

T
c4

32
W

ire
Li

fti
ng

k-
se

cu
rit

y
47

7%
of

W
LO

-*
k=

1
k=

48
[1

39
]

Pr
ox

im
ity

Su
pe

rb
lu

e
1

Ro
ut

in
g

Bl
oc

ka
ge

In
se

rti
on

E
[L

S
]

No
tP

re
se

nt
ed

M
4

1.
51

1.
77

[1
39

]
Pr

ox
im

ity
Su

pe
rb

lu
e

1
Ro

ut
in

g
Bl

oc
ka

ge
In

se
rti

on
F

O
M

No
tP

re
se

nt
ed

M
4

12
22

.8
14

33
[1

55
]

Pr
ox

im
ity

c4
32

Co
nc

er
te

d
Li

fti
ng

Ha
m

m
in

g
Di

st
an

ce
7.

7%
of

Ar
ea

Av
er

ag
e*

*
23

.4
45

.9
[1

55
]

Pr
ox

im
ity

c4
32

Co
nc

er
te

d
Li

fti
ng

CC
R

13
.2

%
of

Po
we

r
Av

er
ag

e*
*

92
.4

0
[1

55
]

Pr
ox

im
ity

c7
55

2
Co

nc
er

te
d

Li
fti

ng
Ha

m
m

in
g

Di
st

an
ce

16
.7

%
of

Ar
ea

Av
er

ag
e*

*
1.

6
25

.7
[1

55
]

Pr
ox

im
ity

c7
55

2
Co

nc
er

te
d

Li
fti

ng
CC

R
9.

3%
of

Po
we

r
Av

er
ag

e*
*

97
.8

0
[1

52
]

Pr
ox

im
ity

c2
67

0
CM

P-
Fr

ien
dl

y
Ha

m
m

in
g

Di
st

an
ce

3.
4%

of
W

LO
-*

14
.5

%
20

.4
%

[1
52

]
Pr

ox
im

ity
c2

67
0

CM
P-

Fr
ien

dl
y

CC
R(

%
)

3.
4%

of
W

LO
-*

48
.1

%
33

.4
%

[1
52

]
Pr

ox
im

ity
b1

8
CM

P-
Fr

ien
dl

y
Ha

m
m

in
g

Di
st

an
ce

0.
4%

of
W

LO
-*

21
.6

%
27

.6
%

[1
52

]
Pr

ox
im

ity
b1

8
CM

P-
Fr

ien
dl

y
CC

R(
%

)
0.

4%
of

W
LO

-*
12

.1
%

10
.7

%
[1

52
]

Pr
ox

im
ity

c2
67

0
SA

DP
-C

om
pl

ian
t

Ha
m

m
in

g
Di

st
an

ce
7.

49
%

of
W

LO
-*

14
.5

%
24

.4
%

[1
52

]
Pr

ox
im

ity
c2

67
0

SA
DP

-C
om

pl
ian

t
CC

R(
%

)
7.

49
%

of
W

LO
-*

48
.1

%
6.

4%
[1

52
]

Pr
ox

im
ity

b1
8

SA
DP

-C
om

pl
ian

t
Ha

m
m

in
g

Di
st

an
ce

4.
64

%
of

W
LO

-*
21

.6
%

29
.6

%
[1

52
]

Pr
ox

im
ity

b1
8

SA
DP

-C
om

pl
ian

t
CC

R(
%

)
4.

64
%

of
W

LO
-*

12
.1

%
2.

7%
[1

50
]

Pr
ox

im
ity

s5
26

Ne
tP

ar
tit

io
ni

ng
CC

R(
%

)
No

tP
re

se
nt

ed
-*

40
%

**
*

0%
**

*
[1

50
]

Pr
ox

im
ity

s5
26

Ne
tP

ar
tit

io
ni

ng
&

Ce
ll

Hi
di

ng
CC

R(
%

)
No

tP
re

se
nt

ed
-*

40
%

**
*

0%
**

*
[1

50
]

Pr
ox

im
ity

s5
26

Ne
tP

ar
tit

io
ni

ng
&

Ce
ll

Hi
di

ng
&

Pi
n

Sh
ak

in
g

CC
R(

%
)

No
tP

re
se

nt
ed

-*
40

%
**

*
0%

**
*

[1
50

]
Pr

ox
im

ity
s9

23
4.

1
Ne

tP
ar

tit
io

ni
ng

CC
R(

%
)

No
tP

re
se

nt
ed

-*
30

%
**

*
4%

**
*

[1
50

]
Pr

ox
im

ity
s9

23
4.

1
Ne

tP
ar

tit
io

ni
ng

&
Ce

ll
Hi

di
ng

CC
R(

%
)

No
tP

re
se

nt
ed

-*
30

%
**

*
1.

5%
**

*
[1

50
]

Pr
ox

im
ity

s9
23

4.
1

Ne
tP

ar
tit

io
ni

ng
&

Ce
ll

Hi
di

ng
&

Pi
n

Sh
ak

in
g

CC
R(

%
)

No
tP

re
se

nt
ed

-*
30

%
**

*
1.

5%
**

*
*

Sp
lit

lay
er

no
ts

pe
cifi

ed
by

th
e

au
th

or
s.

**
Re

su
lts

ar
e

gi
ve

n
as

an
av

er
ag

e
be

tw
ee

n
M

3,
M

4,
an

d
M

5.
**

*
Th

es
e

re
su

lts
ca

nn
ot

be
di

re
ct

ly
co

m
pa

re
d

wi
th

pr
ev

io
us

on
es

as
th

e
tra

ns
ist

or
te

ch
no

lo
gy

is
va

st
ly

di
ffe

re
nt

.

54

As described in Section 2.2, design companies often use 3PIPs in their ICs, both soft
and hard IPs. Soft IPs usually come in code form, giving the task of implementing to
the customer. However, it also gives the customer flexibility to modify the IP to meet
their needs. Therefore, soft IPs are not challenging in a Split Manufacturing design
flow paradigm. On the other hand, hard IPs are entirely designed by the vendor and are
technology-dependent.

The security of hard IPs in a Split Manufacturing context is analyzed in [132]. To
assess security, the authors proposed a recognition attack flow: an attacker holding the
FEOL layer starts his attack by isolating a target embedded memory or analog hard IP.
From the knowledge of recognizing leaf cells utilizing layout. Since the targeted hard IP
has a high probability of being constructed by compilation of leaf cells, layout pattern
recognition software [163] can be used for trivial leaf-cell identification. Then, the
attack combines this knowledge with proximity hints to improve the proximity attack’s
effectiveness. As demonstrated in [132], embedded memories, such as SRAM, are
susceptible to the proposed recognition attack. Defending against recognition attacks
can be achieved by employing layout obfuscation.

Because of the potential success of recognition attacks, many authors proposed layout
obfuscating to improve the resilience of Split Manufacturing [132,147–149,157,158].
In [132], the authors proposed a synthesis framework flow for obfuscating SRAM and
analog IP. Their synthesis flow has three goals to achieve layout obfuscation: randomizing
periphery cells, thus avoiding predictable; minimizing regularized topologies used for
peripheral circuits such as pre-decoders, word line decoders, and sense amplifiers; adding
non-standard application-specific functions to improve obfuscation and performance.
Moreover, in [147] proposed four techniques for layout obfuscation, (1) limited standard-
cell library, (2) smart-dummy cell insertion, (3) isomorphic cells, and (4) non-optimal
cell placement. Their goal is to increase Time To Evaluate (TTE). The authors in [147]
argue that if a TTE is high enough, an adversary would be discouraged from reverse
engineering the IC.

The other layout obfuscation techniques are presented in Table 5, following the same
principle described above. Finally, for a complete discussion and results presentation,
we direct the reader to [22].

4.4 Discussion
Despite our effort to present the results of the many studied papers in the fairest way
possible, it is clear that the hardware security community lacks a unified benchmark
suite and/or a standard criteria for assessing results. Instead, researchers often use
benchmark suites that are popular in the Test community but have no real applicability
in security. For example, most benchmark suites (e.g., ISCAS'85) used for assessing
Split Manufacture have no crypto cores, which are fundamental for security research.
In [164], the authors proposed a game-theoretic framework to evaluate the existing Split
Manufacturing attacks and defenses. The authors concluded that larger circuits are
secured by naïve Split Manufacturing. Hence, larger circuits do not require additional
defense mechanisms. Consequently, the community would primarily benefit from using
circuits that better represent the IC design practices of this decade, where IPs often

55

have millions of gates, and ICs have billions of transistors.
It is noteworthy to mention the disparity in the attack models proposed so far. As

previously pointed out, threat model II is too strong, almost nullifying any secure sense
introduced by Split Manufacturing. However, the real problem is how complicated
is defining a threat model to establish the attacker’s capabilities in the best manner
possible. By definition, formalizing the capabilities of an attacker requires understanding
his motivations, technical proficiency, and availability of resources. In threat models
that underestimate the attacker’s capabilities, useless defense strategies can be devised
and assumed to be effective. On the other hand, in case the attacker’s capabilities
are overestimated, convoluted defense strategies might be employed, leading to unnec-
essary PPA overheads. Thus, defining a precise threat model is a challenge for Split
Manufacturing and many other techniques that promote obfuscation.

Another topic that has led to no consensus is whether an attacker can use a partially
recovered netlist. For instance, let us assume a design that instantiates the same block
multiple times. If one of the blocks is correctly recovered, a cursory inspection of the
structure may allow the attacker to recover all other instances of the same block. The
same line of thinking can be applied to datapaths and some regular cryptographic
structures. An analysis of the functionality of the recovered netlist could be combined
with existing attacks for further improvement of correctly guessed connections.

Many of the works studied in this survey have yet to demonstrate their approach in
silicon – only 15% have a silicon demonstration. Hence, the hardware security community
should strive to validate not only Split Manufacturing techniques but many other security
approaches in silicon as often as possible. In the case of Split Manufacturing, however,
finding two foundries willing to diverge from their established practices could be next
to impossible. For this reason, only a small percentage of the reported works have
validated their techniques in silicon.

56

5 Hardware Trojans Design and Insertion

This Chapter discusses the hardware trojan threat during IC manufacturing. The
literature has many hardware trojan demonstrations, a few even in silicon; however, not
a single one disclosed how their hardware trojan is inserted. Hence, in this Chapter,
I will demonstrate a full framework for designing and inserting hardware trojans in
finalized layouts. To validate this framework, I developed a silicon prototype comprising
four crypto cores altered with a hardware trojan. For inserting the hardware trojans,
I leverage the engineering change order (ECO) feature, which is readily available in
commercial EDA tools. Furthermore, I propose a side-channel trojan capable of leaking
multiple bits into a single power signature reading to demonstrate the capabilities of
the proposed ECO framework. Finally, a reverse engineering technique is discussed to
find critical nodes to connect the hardware trojans.

This Chapter has its content based on the following publications:

[II] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, "Side-channel trojan insertion - a
practical foundry-side attack via eco," in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2021

[III] T. Perez and S. Pagliarini, "A side-channel hardware trojan in 65nm cmos with
2µW precision and multi-bit leakage capability," in 2022 27th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 9–10, 2022

[V] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, "A pragmatic methodology for blind
hardware trojan insertion in finalized layouts," in 2022 International Conference
on Computer-Aided Design (ICCAD), 2022

[VI] T. D. Perez and S. Pagliarini, "Hardware Trojan Insertion in Finalized Layouts:
From Methodology to a Silicon Demonstration," IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD), 2022

5.1 Introduction
Because of the current IC supply chain organization, as discussed in depth in Chapter 2,
the trustworthiness of an IC can be potentially affected – a foundry (or a rogue element
within the foundry) could manipulate the design for their own malicious purposes [59].
Hence, the IC is exposed to the many fabrication-time attacks studied in recent
decades [165]. Furthermore, the many defense techniques to combat these threats
discussed in the previous Chapters are not suitable for the large-scale production of ICs.
Because of either practically [22] and/or insufficient security guarantees [16].

One of the many fabrication-time attacks an IC can potentially suffer is a malicious
modification, i.e., an HT [16,73]. For example, HTs (see Section 2.3) are designed to
leak confidential information, disrupt a system’s specific functionality, or even destroy
the entire system (referred to as a time bomb). Various HTs have been studied
recently [64–67,69,70], demonstrating the potential threat of this type of attack.

57

Constraints

 RTL

Technology
Library

Logic
Synthesis

Gate-level
Netlist

Place &
Route

Timing
Signoff

Physical
Verification

Original
GDSII

Test,
Assembly &
packaging

Constraints

Modified
GDSII

Design Phase (in-house) Attack Manufacturing & Chip Finishing
(3rd Party)

Figure 27: A typical IC design flow. Highlighted in red is the stage where a rogue element
may mount an attack (modified from [17]).

Moreover, an HT can be specialized to assist SCAs – often referred to as side-channel
HTs (SCTs). The first side-channel HTs for assisting power SCAs was proposed in [64],
called “Malicious Off-chip Leakage Enabled by Side-channels” (MOLES). In this Chapter,
I propose a new SCT for assisting power SCAs. With the aid of SCTs, power SCAs can
immensely reduce their attack time as no further processing is required. However, the
disadvantage of SCTs is their invasive nature. Inserting an SCT requires a modification
of the circuit at fabrication time. Modifying a finalized layout might seem challenging;
however, a capable attacker can perform it, as demonstrated later in this Chapter by
the proposed framework to insert the SCT or any additional HT in highly dense designs
without hindering the target circuit. On top of that, the framework utilizes EDA tools
to automate the insertion of additional malicious logic, hence, DRC-aware and having a
relatively fast runtime.

The proposed SCT attack utilizes a similar model as the threat model I, described in
Chapter 4. However, with a few modifications. The principal adversary is also a rogue
element inside the untrusted foundry utilized by a design company to manufacture their
designs. In this attack, the adversary aims to o insert malicious logic into the finalized
layout handed over by the victim. Here I emphasize that the attack occurs before the
fabrication (see Figure 27), and a single rogue element inside the foundry is sufficient
to perform the proposed attack. The foundries or a few companies licensed by the
foundries provide the standard cell library to the design companies to implement their
designs. Therefore, it is assumed that an attacker inside the foundry can access all
technology and cell libraries and distinguish individual gates and their functionality.

Additionally, in the SCT attack threat model, the attacker can identify the presence
of a crypto core in a layout, which is a reasonable assumption, especially for well-known
AES implementations that display regularity (due to the round-based key schedule
structure). Finally, notice that to perform such an attack, the adversary does not need
to understand the entire victim’s design, nor is there a need for it. Instead, it is assumed
he/she needs only to recognize the layout/structure of a single crypto core within a
larger design, in line with the assumptions made in [65,67].

Furthermore, the adversary also: 1) is versed in IC design, 2) enjoys access to modern
EDA tools, and 3) has no means to make radical modifications to the circuit (e.g.,
adding new IOs or making changes in the clock domains). Therefore, with the help of
the inserted logic in the form of an SCT, the attacker will attempt to leak confidential
information via a power signature. The preferred target of this type of attack is crypto
cores [67, 68]; hence, this is also the choice of target to demonstrate our SCT insertion
framework. As the proposed SCT attack deals with power signature reading, stopping

58

some part of the clock delivery, or even entirely, would be highly beneficial for the
attack. However, the attacker is assumed to not know about the clock domains or clock
distribution in general. Therefore, synchronizing and controlling the HT’s trigger to
stop the clock delivery is not considered feasible for the SCT threat model, nor is the
addition of an external trigger controlled by an IO. Thus, the attacker has no direct
access to the trigger or payload of the trojan.

A typical IC physical implementation flow is described in the left portion of Figure
27. The attack occurs after the victim’s layout in GDSII format is sent for fabrication
(see the red portion of Figure 27). Suppose the attacker had access to all of the
victims’ data required to generate the layout (i.e., RTL, netlists, constraints, and many
others). In this case, he/she could replicate the physical implementation flow to achieve
a layout similar to the one created by the victim, yet now containing his malicious logic.
This effort is theoretically possible but largely unpractical. Although replicating the
physical implementation is possible, this scenario is not a threat model considered in
the literature. Finally, the SCT attack threat model assumes that the attacker only has
access to the finalized layout. Design companies have to hand in their finalized layout
to the foundry for fabrication. Usually, the layouts require some pre-processing steps
before the start of the fabrication, which a foundry employee handles. Thus, it is during
this period that the attack can be mounted.

5.2 Side-Channel Trojan and its Insertion via ECO
The proposed SCT architecture is an additive hardware trojan to aid a side-channel
attack with a digital sequential synchronous event trigger and a digital payload that
drive nodes (see Figure 12). The SCT architecture is designed to create artificial power
consumption, which can leak sensitive information through this extra induced power. In
order to retrieve the leaked bits, the SCT has to create the extra power in a controlled
manner. Because the most significant portion of an IC’s power consumption comes
from the switching activity (dynamic power), a great candidate to be a controlled power
sink is a structure with a controllable frequency of operation.

An example of a power sink with a controllable frequency of operation is a ring
oscillator (RO) with dynamically adjustable stages, as illustrated in Figure 28. The
RO delay stages of the proposed architecture are broken into branches controlled by
Nleak leaking bits. Each branch has two active paths: a direct connection to the next
branch or a series of delay cells. Therefore, each set of Nleak leaking bits has a specific
power consumption increment. This artificial power consumption created by the RO
is similar to a pulse-amplitude modulation technique, with an order equal to 2Nleak .
The architecture illustrated in Figure 28 is an example of the proposed RO architecture
capable of leaking two bits per power signature reading, i.e., Nleak = 2. The active
paths’ configuration is described in Table 8, where the leaking bits become branch
selectors and are referred to as S0 and S1.

An attacker has to design our SCT with a dual-sided constraint in mind: (1) the
induced dynamic power consumption has to be large enough to retrieve the leaking bits
while (2) minimizing the increase in leakage power. The first constraint is regarding
the effectiveness of the attack; the largest the induced power amplitude, the easiest it

59

Nd1 Delay
Cells

Nd2 Delay
Cells

Nd3 Delay
Cells

Ni Inverter Cells

S0

S0 S1

S1

S1 S0

Clock
Divider

Ring
Oscillator

Trojan
ControllerSystem_clock

Reset

Trigger

Key

Enable

Select

GDSII
Netlist

Extraction
Frequency
Estimation

Power
Analysis

Trojan
Design

ECO
Flow

Modified
GDSII

Clock_sct

Enable

Nd4 Delay
Cells

Figure 28: The proposed trojan insertion methodology for an SCT capable of leaking 2 bits
per power signature reading (modified from [17]).

Table 8: Ring oscillator active path configuration

S0 S1 Delay Cells Inverter Cells Freq.
0 0 ND1 Ni High
1 0 ND1 +ND2 Ni Mid-high
0 1 ND1 +ND3 Ni Mid-low
1 1 ND1 +ND2 +ND3 +ND4 Ni Low

is to retrieve the leaking bits. The second is regarding the SCT detection by the chip
owner; as the SCT is an additional HT, its presence increases leakage power directly
proportional to the SCT size. Dynamic power can be calculated using equation (4),
where Cload is the capacitance load at the output nets, Fsa is the switching activity
factor, VDD is the supply voltage, and E is the total energy of a cell. The switching
activity factor describes how many switches will occur per second. As for the RO,
since the signals are constantly switching, this factor is two times the RO’s oscillation
frequency, which can be estimated by calculating the total path delay of the ring as in
equation (5).

Pdynamic = 1
2VDD

2Fsa

∑
inet

Cload(i)+Fsa

∑
cellj

E(j)

Fsa = 2FRO = 1
τchain

(4)

(5)

Moreover, in addition to the carefully designed RO-based SCT structure, the SCT
trigger must be accordingly planned. For example, in the proposed SCT architecture,
the trojan is not allowed to compete with the dynamic power consumption of the crypto
core – the SCT triggers right after the crypto core finishes its cryptographic operation.
For this reason, our SCT has a trigger signal that is connected to the “done” signal
coming from the crypto core.

60

As the SCT is designed for a specific target layout, the attacker has to perform a
few analyses before, as illustrated in Figure 28: (1) netlist extraction, (2) frequency
estimation, and (3) power analysis. First, in (1), the attacker has to extract the
gate-level netlist from the victim layout [136] – our threat model considers the attacker
only holds the layout. Then, with the gate-level netlist on hand, in (2), the attacker
has to estimate the operating frequency of the target circuit by performing STA [20].
Finally, in (3), the attacker can perform a typical power analysis with the knowledge of
the operating frequency and the gate-level netlist. For relatively large circuits, static
power can be estimated very precisely even without input vectors8.

With the SCT designed accordingly with the target circuit, the next step is its insertion.
Then, the attacker can utilize the pre-mask ECO feature provided by commercial EDA
tools for inserting the SCT. The primary purpose of ECO is to fix minor bugs in a
finalized layout instead of re-implementing the whole design. Hence, saving a tremendous
amount of runtime to finalize a given design – essential for design companies where
time-to-market is crucial. However, this feature is leveraged in the proposed ECO
framework to insert malicious logic rather than fix bugs. I emphasize that no EDA
vendor supports this type of usage of the ECO feature. In addition, the pre-mask ECO
does not require special cells (e.g., space cells) and is a one-time operation. For more
information about ECO and its features, I direct the reader to [20].

Nonetheless, for the SCT insertion via ECO, an attacker can achieve his/her goal
without utilizing spare cells. Since we previously established that the attacker could
discern any gate in a layout, he can replace filler and spare cells for his malicious logic.
Contrarily to spare cells, every digital circuit layout has filler cells. During placement,
EDA tools have to spread the standard cells to assure routability, thus mandatorily
leaving gaps between cells. For more details about the relationship between placement
density and HT insertion, we direct the reader to [166].

After the ECO, the attacker has to perform timing sign-off to guarantee that the
performance of the victim’s design was not disturbed. The SCT insertion is not likely
to perturb the target’s performance; it is only connected to a register (crypto key
storage) and some control signals, adding a small capacitive load. Besides, the coupling
capacitance inserted by the additional routing wires is minimal due to the SCT’s
lightweight characteristic and the inherent goal of the ECO flow: not to disturb the
existing logic. However, even if unlikely, the addition of the SCT could hinder the target
performance. Since the ECO makes this attack relatively fast, the attacker can try
different SCT architectures until he/she finds a suitable trojan for their target circuit.

5.3 Testchip: Results and Discussion
For the experimental investigation, I have utilized AES-128 and Present (PST) [167]
crypto cores with Nkey = 128 and Nkey = 80, respectively. The AES crypto core was
chosen due to its standardized status and popularity, while PST was chosen due to its
lightweight characteristic [168].

8For crypto cores, in particular, it is a fair assumption to consider the plaintext to be
randomly assigned, the adversary does not need precise vectors to estimate the (order of
magnitude) of the power consumption.

61

In order to demonstrate the potential malicious capabilities of the ECO flow (see
Figure 28), I designed a silicon proof of concept comprising four crypto cores altered
with the proposed SCT. The SCTs utilized for the chip are carefully crafted to stress test
the ECO flow and its limitations: the chosen circuits are synthesized for their maximum
frequency and challenging densities, making the SCT insertion even more challenging.
The proposed framework includes all steps necessary for assessing the GDSII database,
designing a hardware trojan, and inserting it in a finalized layout.

AES_HDHD
PST_HFHD

PST_LFHD AES_LFHD

Control Unit

Figure 29: ASIC prototype top-level diagram (left), layout (middle), and its bare die (right).
The highlighted pin identifies the lower-right corner in red (adapted from [17]).

Figure 29 illustrates the top level of the chip, containing the four crypto cores and a
control unit for handling the data traffic in and out of the chip. The crypto cores are the
AES High-Frequency-High-Density (AES_HFHD), AES Low-Frequency-High-Density
(AES_LFHD), PST High-Frequency-High-Density (PST_HFHD), PST Low-Frequency-
High-Density (PST_LFHD). The signals UART_TX and UART_RX are utilized for
communicating with the control unit. In addition, the signals DONE_1, DONE_2,
DONE_3, and DONE_4 indicate the end of a cryptographic operation for AES_HFHD,
AES_LFHD, PST_HFHD, and PST_LFHD, respectively. These signals are exposed as
primary outputs only for debug reasons; their presence is not required for the attack.
Internally, these same signals are the triggers for the SCTs. To help the reader better
visualize the operation of the SCT, Figure 30 illustrates a SPICE simulation of the SCT
using the AES_LFHD target as an example. The set of leaked keys in the image is
{00-01-10-11}. The RO operating frequency and power results are from a SPICE-level
simulation with parasitics, and the total power of the AES_LFHD is estimated from
physical synthesis.

Similarly to the G-GPU, each crypto core is power gated using coarse-grain header
power switches inserted in a column fashion (see Figure 18), with the power switch
“enable” controlled by the signals PSx. Implementing the crypto cores with the possibility
of total shut-down is extremely valuable for evaluating our attack because we only read
the power signature from the enabled core.

A different RO is designed for each crypto core according to its physical characteristics
described in Table 9. In Table 9, the results are separated into before and after SCT
insertion, where the design density, leakage, clock-tree (CT) power, and total power are
reported. To design the ROs for the ASIC prototype is utilized before SCT insertion
results. In the proposed ROs, the maximum power step generated by a RO is 10% of
the leakage plus CT power. Note that this percentage is not a hard constraint nor a

62

0

1

O
ff

High Mid-high Mid-low Low

28
5u

W

313uW 310uW 308uW 306uW
65MHz 45MHz 34MHz 20MHzEn

ab
le

0

1
S

0

0

1

S
1

0

0.5

1.0

R
O

 O
ut

pu
t (

V
)

 285
 295
 305
 315

 40 130 220 310C
ur

re
nt

 (
µA

)

Time (ns)

Figure 30: Post-layout simulation of SCT architecture in Cadence Spectre. The target design
is AES_LFHD and the Trojan payload is configured as ROD6I10 (from [20]).

Table 9: Physical synthesis results for our considered targets, before and after trojan insertion.
Before SCT insertion After SCT insertion

Core Frequency
(MHz)

Density
(%)

Leakage
(µW)

CT
(µW)

Total Power
(µW)

Density
(%)

Leakage
(µW)

CT
(µW)

Total Power
(µW)

AES_LFHD 100 75 75.8 116.7 1660 78.20 79 117.6 1720
AES_HFHD 1000 72 1036 1241 22610 73.02 1040 1252 22830
PST_LFHD 95 70 14.09 31.89 371.2 82.05 17.72 32.85 428.5
PST_HFHD 950 69 34.13 329.10 3785 80.26 36.96 341.5 4015

limitation of the proposed architecture; attackers can choose any reasonable threshold
value to design their ROs. However, the 10% margin is arguably a good trade of
capability of leaking the bits and stealthiness. The designed ROs for the ASIC prototype
are described in Table 10, reporting the oscillation frequency and power consumption of
each designed RO, where the RO name“DXIY” suffix represents X amount of delay cells
and Y amount of inverter cells. These results are from detailed SPICE-level simulations.
Most importantly, Table 10 shows that the induced power step separation is clearly
visible in increments of a few microwatts; thus, the leaking bits can indeed be modulated
in the power consumption of the chip.

After designing the RO and synthesizing the remainder of the SCT logic, the attacker
is ready to perform the insertion via the ECO methodology described in Figure 28.
For the ASIC prototype, the ECO flow was completed in a single run, i.e., calling the
ECO command a single time. The results for SCT insertion are described on the right
side of Table 9 (‘After SCT insertion’). For all scenarios considered, the ECO flow
could successfully place and route the SCT, even for highly dense layouts. A visual
comparison of the density increase for the AES_HFHD and PST_HFHD SCTs is given
in the bottom part of Figure 31. Note that the placement of the targets (top part of
Figure 31) was kept identical, and only filler cells were removed for the SCT insertion

63

Table 10: RO operating frequency and power consumption from a SPICE-level simulation for
four variants of AES and PST.

Target Core RO Power & Frequency (µW & MHz)
S=00 S=01 S=10 S=11

AES_LF ROD6I10 19@65 17@45 15@34 13@20
AES_HF ROD10I10 198@551 182@483 161@390 140@300
PST_LF ROD6I4 16@112 11@58 10@39 8@20
PST_HF ROD8I10 42@79 36@61 31@46 26@31

Figure 31: Placement view (top panels) and density map (bottom panels) of the AES_HFHD
and PST_HFHD cores, before and after SCT insertion via ECO (modified from [17]).

via ECO. Therefore, this is a key finding of our work and confirms the feasibility of the
attack.

Aside from being able to insert the SCT, the ECO flow also has to preserve the
performance of the target circuit. As discussed in Chapter 2.2, the coupling capacitance
from adjacent routing wires affects the propagation delay. Thus, the added routing
wires from the SCT could negatively impact the target circuit’s overall performance.
The comparison of performance for AES_HFHD and PST_HFHD cores is illustrated
in Figure 32, where we contrast the pre- and post-ECO timing slack. These results
show that the impact is more significant on the PST_HFHD implementation, which
is explained by the high-density increase reported in Table 9. Therefore, the impact
of the SCT insertion did not degrade the crypto core’s performance. Finally, the chip
was manufactured utilizing commercial 65nm technology at a partner foundry in March

 0
 20
 40
 60
 80

 100
 120
 140

-20 0 20

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

 0

 5

 10

 15

 20

-20 0 20 40 60 80 100 120

Min. setup target slack

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

Figure 32: Pre- and post-ECO setup timing slack comparison of AES_HFHD (right) and
PST_HFHD (left) (from [17]).

64

OFF 11 10 01 00

VDDIO

VDD

UART_RX
UART_TX

CLK_CU

DONE2

Figure 33: Setup used for bringing up the testchip. On the left side, we show the signals used
for controlling the chips. On the right side, the current consumption of the chip when the RO
is active (from [20]).

2021. The bench tests of the 25 packaged samples of the chip were conducted in July
2021. All packaged samples were confirmed to be 100% functional.

The testchip bench tests were performed utilizing the setup illustrated in Figure 33.
The setup has a custom printed circuit board (PCB), a ZedBoard from Avnet with
a Xilinx Zynq-7000 (see Figure 15), a 4-channel digital oscilloscope, and a 2-channel
power supply with an ammeter with pico ampere precision. To fully validate the chip,
the tests are divided into two phases: the total power and leakage were measured;
second, all SCTs were tested to assess the feasibility of the attack. As a result, the total
power average and leakage results are given in Table 11, and its distribution across
the samples is depicted in Figure 34 for the worst, typical, and best-case scenarios
(SS-0.9V-0oC, TT-1V-25oC, FF-1.1V-125oC, respectively). Corners provided by the
vendor are for extreme cases, i.e., the best-case scenario is characterized at 125o with
an over voltage of 1.1V; in this work, the test bench measurements were performed
at room temperature and at a nominal voltage of 1.0V. In Figure 34, it is clear that
the samples are skewed towards the best-case scenario, demonstrating higher average

Table 11: Power domains, clock, average total power, and leakage across the samples tested.
Block Clock Switch Signal Leakage (µW) Total Power (µW)

Control Unit CLK_CU @1MHz Always on 46.69±4.75 -
AES_HFHD CLK_CORE @1GHz PS1 743.79±108.07 101160±10781
AES_LFHD CLK_CORE @100MHz PS2 131.57±10.35 3139.32±85.38
PST_HFHD CLK_CORE @950MHz PS3 80.75±7.82 9661.3±758.52
PST_LFHD CLK_CORE @95MHz PS4 74.35±6.84 868.56±57.90

65

leakage. The slowest sample is near the typical case, while the fastest sample is far
from the typical best case.

For testing the SCTs, the following procedure was performed: (1) a cryptokey with
the 8 first bits set to “11-10-01-00” was programmed in the Control Unit’s register
bank; (2) a command for single encryption was issued; (3) right after the encryption
is done, the chip asserts one of the “DONE” outputs to mark the time at which the
RO starts operating; (4) using only the clock signal CLK_CORE, three bursts of clocks
were sent to shift the cryptokey connected to the RO three times; (5) during the whole
procedure, the current consumed by the chip is monitored.

 0
.0

01
 0

.0
02

 0
.0

03

 200 400 600 800 1000 1200

W
C

TC B
C

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_HFHD

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

 0
.0

1
 0

.0
2

 0
.0

3

 80 100 120 140 160 180

W
C

TC B
C

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_LFHD

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

 0
.0

1
 0

.0
25

 0
.0

4

 40 50 60 70 80 90 100 110 120

W
C

TC

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_HFHD

B
C

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

 0
.0

1
 0

.0
3

 0
.0

5

 40 50 60 70 80 90 100 110

W
C

TC

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_LFHD

B
C

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e
Figure 34: Leakage distribution for each crypto core contrasted with the leakage from the
physical synthesis report for three corner cases and the leakage of outlier samples (from [20]).

Figure 33 illustrates an example of the procedure described above for the AES_LFHD
core. As clearly depicted in the ammeter, there are discrete steps representing the leaked
bits “11-10-01-00” from left to right, respectively, as expected from the key programmed
for this experiment. Next, each chip’s core was tested following the described procedure
three times to confirm the behavior. Repeating the measurements is a common practice
to reduce undesired external interference – three repetitions are deemed enough. Finally,
the measured current values were approximated to normal distributions, as represented
in Figure 35.

Comparing the RO performance from the simulations (see Table 10) with ASIC
measurements illustrated in Figure 35, it is clear that the slowest ROs are performing as
expected. However, the fastest RO targeting the AES_HFHD core can only operate at
a low frequency, generating a power step of about 25% of what was expected. In this
case, the ECO insertion had to spread the RO cells farther away because of the lack of
empty spaces nearby (see Fig. 31). For this core, the planned power steps were in the
order of 200 µA, and the actual power steps after manufacturing were in the order of
60 µA. However, the attack will still enjoy a high chance of success due to the distinct
separation of the power steps, even if 95% confidence intervals of the distributions
almost overlap. Moreover, the experimental measurement results obtained show that
the variability in the manufacturing process does not affect the effectiveness of the RO
for the smaller designs (AES_LFHD, PST_LFHD, and PST_HFHD), meaning that the
attack can be carried out with the same probability of success, regardless of the silicon

66

 0

 0.05

 0.1

 0.15

 0.2

 50 55 60 65 70 75

58.30 61.80
64.00

67.00

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_HFHD

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28

19.05
21.22

22.51

25.23

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_LFHD

 0

 0.2

 0.4

 0.6

 0.8

 1

 12 14 16 18 20 22 24 26

15.00
16.75 19.53 24.03

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_HFHD

 0

 0.5

 1

 1.5

 2

 12 14 16 18 20 22 24 26

13.90
15.4517.5219.59

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_LFHD
S00
S01
S10
S11

Figure 35: Power consumption “steps” distribution for each crypto core. The shadowed area
represents the 95% confidence interval (from [20]).

quality for a given sample.
Nonetheless, one can determine the effectiveness of the proposed SCT insertion

framework by verifying three characteristics: (1) the success rate of the attack, (2) the
probability of detection (i.e., its stealthiness), and (3) the feasibility of the insertion of
the malicious logic during the fabrication-time attack. As the testchip results showed,
the SCT was successful in (1) because the cryptokey was leaked as intended, i.e., the
attack was fully accomplished. However, since the SCT is an additive HT, it has a
probability of being detected by the chip owner. Detecting a trojan of any kind is
generally a problematic task [75]. Because SCTs do not alter the device’s functionality
under attack, any method that relies on observing corrupted bits or any degree of
incorrect computation is likely to fail to detect the trojan. Therefore, only techniques
that rely on observing the chip’s internal structures and/or its power traces have a
chance of detecting SCTs. For a complete discussion of all detection methods, I direct
the reader to [20].

To verify (3), the attack threat model must first be revisited. In the SCT threat
model, the attacker has a limited time window for modifying the victim layout. Thus,
manually placing and routing an SCT is unreasonable in such a limited time. Then,
the SCT insertion must be automated by utilizing an EDA tool. Inserting an SCT
by re-implementing the design has a significant runtime. For example, the testchip
illustrated in Figure 29 is a tiny chip compared with today’s typical commercial circuits.
Still, it requires at least 7 hours and 18 minutes to be implemented (see Figure 36).
However, replicating the entire chip is problematic; doing so without the original timing
and power constraints is very difficult, with a very high chance of affecting the target
performance and thus decreasing the stealthiness of the attack.

Nevertheless, the proposed ECO flow demonstrates that the insertion of malicious
logic during a fabrication-time attack can be automated and fast. For example, leveraging
the ECO flow, the insertion of the proposed SCT requires only 1 hour and 11 minutes –
more than 6 hours faster than re-implementing the whole testchip. On top of that, as
previously alluded, the ECO flow can keep the original design untouched, increasing
the attack’s stealthiness. In addition, the proposed ECO flow does not require the

67

SCT Insertion

AES_HFHD

AES_LFHD

PST_HFHD

PST_LFHD

Testchip

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Design Implementation

Attack

Time (s)

Placement
CTS

Route
Post-Route

Netlist Extraction
Power and Time Analysis

ECO Flow

Figure 36: Physical implementation execution time (s) for each step of the flow, and execution
time (s) for inserting the SCT in each implemented crypto core (from [20]).

original power and timing constraints; an estimation can be used without significant loss.
Moreover, the short runtime associated with the ECO flow makes the fabrication-time
attack feasible in a realistic scenario, where the time window that a rogue engineer has
for modifying the layout is (very) limited. Therefore, our proposed ECO flow method
for inserting SCTs and any malicious logic is compelling and a rogue element could
exploit the proposed framework to perform a fabrication-time attack. Furthermore,
the proposed ECO framework can be utilized as a platform to assess the layout’s
vulnerabilities against additive HT insertion.

5.4 Blind Insertion of HTs Framework
The proposed HT insertion framework by ECO (see Figure 28) has a limitation: the
attacker has to spot the security-critical nodes by visual inspection. Even though visual
inspection is sufficient to locate security-critical nodes for specific targets, such as
the AES crypto core, this weakness limits the framework’s applicability. To further
demonstrate ECO’s framework capabilities, an upgraded version is proposed for inserting
HTs blindly [19].

An attacker can recover the purpose of signals inside a design by utilizing high-level
functionality reconstruction tools. For example, such tools can recover a finite-state
machine of a target design, distinguishing control and data path nodes [88]. Therefore,
automating the search of security-critical nodes can be done utilizing the output of
these tools. Hence, the proposed framework illustrated in Figure 37 leverages high-level
functionality reconstruction tools for blindly inserting HTs in finalized layouts – this
framework is termed Blind insertion of Hardware Trojans (BioHT).

The BioHT framework assumes an equal threat model as the SCT insertion. It only
differs when inspecting the recovered gate-level netlist. Thus, the BioHT is an additional
feature to the framework illustrated in Figure 28, performed after the gate-level netlist
extraction, comprising five steps: (1) netlist recovery; (2) design analysis; (3) trojan
netlist generation; (4) signal selection for connecting the HT; (5) trojan insertion.

BioHT step (1) is performed similarly to the previous ECO framework resulting in a
gate-level netlist we refer to as unamed since the original hierarchy and name of cells

68

Figure 37: Steps 1)–5) of the BioHT Framework explained in detail. The flow starts at the
top left, while the tampered layout (highlighted in red) is the result (adapted from [19]).

and nets are assumed to be absent in the layout. Then, with the gate-level netlist,
during step (2), BioHT generates several metrics to aid the search of nodes to use as
triggers and payload for the HTs. Those metrics are calculated by applying reverse
engineering techniques. However, since these calculations have a considerable runtime
proportional to the desired level of understanding of the design, it becomes a tradeoff
between runtime and design understanding. Hence, the adversary must carefully choose
the metrics to keep the total runtime of the attack short. BioHT generates four different
metrics: transition probability ; spatial clustering ; information flow tracking of selected
signals; RELIC scoring. Transition probability is a metric to find signals with a low
probability of transitioning [169,170] that are suitable for being triggers, increasing the
HT stealthiness.

Spatial clustering maps candidate cells to hook the HT while minimizing the wire
length of the signals as much as possible to increase the routability of the HT. Information
flow tracking of selected signals is useful for HTs that intend to leak information. Using
imprecise information flow tracking (IIFT) [171], the availability of secret information
that each logic gate from the selected signals carries can be measured in an overestimated
manner. Thus, this metric has to be complemented with other metrics that explain
the functionality of signals. RELIC score and FSM identification is valuable high-level
information to identify whether a register belongs to a control logic or data path used to
design the HT payload to target specific parts of the design functionality. For example,
a payload for modifying the control FSM or leaking valuable processed data. The RELIC
scoring is performed utilizing the NETA toolset [172].

BioHT step (3) uses a configuration file to generate the HT netlists, where the
user can choose any trigger/payload combinations, and parameter values illustrated
in Figure 38. The available HTs cover known architectures [65,173,174], as well as a
few novel payloads (i.e., leakage through FSK/DBPSK, fault sweeping). It is worth
mentioning that step (3) is not a limitation of BioHT; a user can skip step (3) and use
their own HT netlist or even include new architectures to the BioHT HT generator.

After gathering all metrics during step (2) and generating the desired HT netlists in

69

Trigger Payload

trigger in
payload in

feedthrough in

feedthrough out
payload out

#ti #pi
#

#po
#

#tr

=
trigger in

n

v n

trigger
1

=/
DQ
n-bit

clk

trigger in
n

EN =v
c-bit

Counter

clk

trigger
1

Counter Trigger (n, v, c)

Combinatorial Trigger (n, v)

HT Interface

𝑆𝑟𝑆𝑟 𝑆2

𝑆1

...𝑆𝑠

𝑖𝑛&𝑚1 = 𝑣1 &𝑚1 𝑖𝑛&𝑚2 = 𝑣2 &𝑚2

𝑖𝑛&𝑚𝑠 = 𝑣𝑠 &𝑚𝑠

always

else

else

...
1

0

1

0

1

0

payload in
n

n

𝑀 ∈ {am, fsk, dbpsk, lfsr}
rate: 1/2𝑐 bit/cc

trigger

Leak Payload (n, M, c)

FSM Trigger (n, s,𝑚1, . . . ,𝑚𝑠 , 𝑣1, . . . , 𝑣𝑠)

trigger in trigger𝑆 = 𝑆𝑠

rst=1 rst=0
rst=
𝑛%2

...

trigger

clk

n

trigger
...

feedthrough in
n

10

v[0]
10

v[1]
10

v[2]

feedthrough out
n

trigger
...

feedthrough in
n

10 10 10

feedthrough out
n

r1 r2 . . . rn n
LFSR

Shi’n’burn Payload (n)

Modify Payload (n, v)

Fault Payload (n)

Figure 38: HT Interface and available trojan triggers and payloads. Trigger and payload
parameters are given in parentheses (from [19]).

step (3), an adversary can proceed to step (4) to search for appropriate security-critical
signals where to connect the HT. The search process starts by associating a signal
selection function (SSF) for each interface port of the HT and iteratively selecting
candidate signals from the target circuit to connect to each HT port – all based on
one or multiple metrics calculated during step (2). In addition, step (4) also performs
an independency check on all candidate signals. Avoiding mutually dependent signals
is highly beneficial. For example, using a signal as a trigger to activate a dependent
payload signal could generate a combinational loop. Moreover, the Modify or Fault
payloads should connect to independent signals to maximize the effectiveness of the
HT.

Finally, using the HT netlist and the selected signals for each HT, BioHT generates
the files for inserting the HT. In addition, BioHT step (5) introduces the Trojan Change
Order (TCO) format to make the attack faster. The TCO file follows the same syntax
as the ECO file, adding commented lines containing directives for the BioHT tool.
Those directives are used to configure the type of HT (e.g., leak, deplete, modify or
fault), the number of connections, and the location of the HT gate-level netlist. Instead
of providing a modified netlist to perform the ECO, EDA tools also support ECO files.
These files describe the modifications to be done by the ECO, with the advantage of
performing it interactively. Hence, it is necessary to load the design once for analyzing
multiple ECO files. Thus, it is possible to pre-generate TCO files for several types of
HT and specialize them according to the target’s evaluation. This feature enables the
creation of a database of HTs rapidly available for an attack. Finally, the attacker can
commit the changes if the TCO trial is successful.

Three crypto cores are utilized for targets, AES, SHA-256, RSA, and the general-
purpose PULPino microcontroller to evaluate the BioHT framework. In total, it is
explored 96 combinations of triggers, payloads, and targets. The DSE exercise results
showed that BioHT could automatically find suitable secure critical nodes for inserting
sophisticated HTs into a victim layout. Moreover, the experiments demonstrated that
the HT insertion vulnerability of a layout is not correlated to the design’s density, i.e.,
empty space to insert the additional malicious logic. In the two low-density designs,
SHA-256 and PULPino, the HT insertion partially failed. In contrast, in the high-density
designs, HT insertion succeeded, even for large HTs with hundreds of cells, independent

70

of the increase in wire length. Thus, the BioHT goes beyond a proof of concept that
blindly attacking a layout is possible. The framework can quickly produce a boundary of
HT insertion feasibility, provide a risk assessment and guide physical defense strategies
for HT insertion. To access all results and a more in-depth discussion of the BioHT
framework, I direct the reader to [19]. All the 96 explored combinations results are
available in [175].

71

6 Conclusions and Future Work
Integrated circuits have become a significant part of our daily life, and their integration
is constant at a fast pace. Moreover, critical infrastructures are increasingly deploying
IC-based systems. Thus, a compromised chip belonging to one of these systems can
lead to the leakage of sensitive data and even more dire consequences. For these and
many other reasons, the hardware security field has recently increased in popularity. The
main goal of this community is to guarantee the trustworthiness of integrated circuits
throughout their life span. Many threats and defenses have been recently studied;
however, the overall IC’s security level is still being determined, while finding many
other new threats is still possible. All the presented results in this PhD thesis aim
to accelerate the hardware security field research to establish the IC’s security, i.e.,
precisely defining the IC’s vulnerabilities and potential countermeasures. Thus, the main
contributions of this PhD thesis are a new ASIC-like GPU accelerator with security
features, a survey on a defense technique called Split Manufacturing, and an extensive
study of hardware trojans in a fabrication-time attack paradigm.

Capable modern SoCs are also essential to the fast development of IC-based systems.
In Chapter 3, I proposed an open-source GPU architecture to aid the research of domain-
specific ASIC accelerators based on GPU-like accelerators – termed G-GPU. A fully
automated framework called GPUPlanner is also made publicly available for generating
G-GPU IPs from the RTL to a tape-out-ready layout. The G-GPU experimental results
demonstrated the feasibility of its architecture as domain-specific ASIC accelerators.
Furthermore, the performance comparison between the G-GPU and the RISC-V shows
that the G-GPU proposed architecture has excellent benefits for applications with
high parallelism. In addition, the GPUPlanner can power gate G-GPU’s compute
units. This feature enables the creation of low-power, design for reliability, and security
solutions. Finally, because the GPUPlanner is an open-source framework, the community
can explore the design space of GPU-like accelerators – as the literature lacks GPU
architectures targetting ASIC. Moreover, the optional dynamic power control can enable
and expand the research of GPU-specific countermeasures against power and EM side-
channel attacks. Therefore, the proposed G-GPU architecture and the GPUPlanner
framework go beyond analyzing a reasonable GPU-like accelerator in 65nm. The
proposed framework can be extended for future work to support other baseline GPU
architectures, new solutions to enhance the design’s security/reliability, and other
technologies.

The current semiconductor supply chain is decentralized, complex, and highly
globalized. Design companies must rely on pure-play foundries to manufacture their
designs, which is arguably a security threat for ICs. Exposing their layouts to third-party
entities can reveal trademark IP secrets, and in the worst scenario, a rogue element
inside such foundries could manipulate the layout for malicious reasons. In Chapter 4,
I surveyed the Split Manufacturing technique, a countermeasure to secure ICs during
manufacturing. The surveyed works showed a significant disparity in how the technique
is approached. First, there is no consensus on benchmark suites and metrics to use
when evaluating the technique, difficulting the comparison between the studies and,
in some cases, making it impossible. Despite this difficulty, it was possible to classify

72

the studies, demonstrating the many interpretations of the technique, its attacks, and
defenses. Nonetheless, the results are presented to illustrate the present state of the
technique. Therefore, this work can be beneficial for future researchers to contextualize
their techniques for augmenting Split Manufacturing.

Predominantly, Spilt Manufacturing’s security level is still under debate. Some
studies consider the straightforward Split Manufacturing security level enough to protect
the layout against fabrication-time attacks, while others argue it is insufficient to secure
the layout. However, as previously alluded, the lack of unified benchmark circuits
and set of metrics could have diverged the conclusions for many different scenarios.
Hence, creating a unified benchmark suite specifically crafted for Split Manufacturing
evaluation and a set of metrics to quantify/qualify its performance could facilitate the
discussion about Split Manufacturing’s security level. In addition, increasing the number
of demonstrations in silicon could also help with evaluation and adoption issues related
to Split Manufacturing.

One of the many potential threats to an IC during manufacturing is the insertion of
a hardware trojan. The literature has many hardware trojan demonstrations, a few even
in silicon; however, not a single one disclosed how their hardware trojan is inserted. In
Chapter 5, I proposed a complete framework based on the ECO feature for inserting
HTs in a finalized layout, together with a novel SCT architecture to demonstrate the
framework. The SCT insertion was detailed step by step, showing that a rogue element
inside a foundry can replicate it effortlessly. Furthermore, the SCT attack was validated
by the developed ASIC prototype. The ASIC bench test results demonstrated the
attack’s success for all samples available, where the cryptokey was extracted via power
signature. The measurements have also demonstrated the robustness of the SCT against
skews from the manufacturing process. On top of that, the testchip had all 4 SCTs
inserted in less than two hours, making the attack viable in an actual fabrication-time
attack as it has a limited time window.

One limitation of the proposed HT insertion framework by ECO is that the attacker
has to spot the security-critical nodes by visual inspection. Thus, in Chapter 5,
an upgraded version of the framework for blindly inserting HTs was discussed to
further demonstrate ECO’s framework capabilities – termed BioHT. Hence, the BioHT
framework leverages reverse engineering techniques to introduce sophisticated trojan
into circuits, with little knowledge about the target designs. Furthermore, the BioHT
experiments demonstrated that the complete approach is fast, allowing the user to
execute it multiple times in the time frame between the tape-out and manufacturing.
Thus, enabling the selection of the optimum trojan out of several possibilities. Moreover,
BioHT also demonstrates how a realistic trojan insertion would be performed and can
guide risk assessment, defense, and future research on the topic. Finally, the BioHT
framework provides all information and capabilities to advance countermeasures against
HT insertion threats.

73

List of Figures

1 Detailed IC’s life cycle phases, possible attacks, and defenses. 11
2 Growth of design rules from CMOS 180nm until finFET 5nm (from [43]). 14
3 Logic manufacturing process steps comparison between CMOS 28nm,

FinFET 10nm, and, FinFET 5nm, technology nodes (from [45]). 15
4 Semiconductor industry evolution (from [47]). 16
5 Cross section of an Integrated Circuit (from [22]). 17
6 Typical design flow for digital integrated circuits. 17
7 Abstraction levels of a digital system. 18
8 Setup and hold time. 19
9 Timing path calculation example. 20
10 Block design implementation steps; floorplanning, placement, clock-tree

synthesis, and, routing. 21
11 Systematization of hardware security around the attack method (adapted

from [16]) . 24
12 Additive hardware trojan taxonomy based on trigger and payload imple-

mentation types (adapted from [61]). 24
13 Taxonomy of counterfeit electronics (adapted from [59]).. 26
14 Example of a circuit locked using two XOR key gates, K1 and K2.. 27
15 Example of FPGA-based SoC – Zynq-7000s (from [107]). 29
16 FGPU architecture with memories colored according to the layouts

displayed in Figs. 3 and 4 (from [9]). 33
17 Simplified example of smart memory technique by halving the size of

the word. 34
18 Example of a header power switch schematic (left panel) and placement

(right panel).. 35
19 GPUPlanner generic dynamic power controller block diagram. 36
20 GPUPlanner’s G-GPU generation flow (adapted from [9]). 37
21 Layout comparison between the minimum and maximum performance

of G-GPUs with 1 CU (top) and 8 CUs (bottom). 39
22 Layout comparison between G-GPU (2) 1CU@500MHz and (4) 1CU@677MHz

with power gating. 40
23 Compute unit partition dynamic power versus switching activity for (2)

1CU@500MHz (left panel) and (4) 1CU@677MHz (right panel). 41
24 Speed-up over RISC-V. 42
25 Compatibility rules between FEOL and BEOL (adapted from [131]). 44
26 Example of a partitioned circuit (from [22]). 47
27 A typical IC design flow. Highlighted in red is the stage where a rogue

element may mount an attack (modified from [17]). 58
28 The proposed trojan insertion methodology for an SCT capable of leaking

2 bits per power signature reading (modified from [17]). 60
29 ASIC prototype top-level diagram (left), layout (middle), and its bare

die (right). The highlighted pin identifies the lower-right corner in red
(adapted from [17]). 62

74

30 Post-layout simulation of SCT architecture in Cadence Spectre. The
target design is AES_LFHD and the Trojan payload is configured as
ROD6I10 (from [20]). 63

31 Placement view (top panels) and density map (bottom panels) of the
AES_HFHD and PST_HFHD cores, before and after SCT insertion via
ECO (modified from [17]). 64

32 Pre- and post-ECO setup timing slack comparison of AES_HFHD (right)
and PST_HFHD (left) (from [17]). 64

33 Setup used for bringing up the testchip. On the left side, we show the
signals used for controlling the chips. On the right side, the current
consumption of the chip when the RO is active (from [20]).. 65

34 Leakage distribution for each crypto core contrasted with the leakage
from the physical synthesis report for three corner cases and the leakage
of outlier samples (from [20]). 66

35 Power consumption “steps” distribution for each crypto core. The
shadowed area represents the 95% confidence interval (from [20]). 67

36 Physical implementation execution time (s) for each step of the flow,
and execution time (s) for inserting the SCT in each implemented crypto
core (from [20]). 68

37 Steps 1)–5) of the BioHT Framework explained in detail. The flow starts
at the top left, while the tampered layout (highlighted in red) is the
result (adapted from [19]). 69

38 HT Interface and available trojan triggers and payloads. Trigger and
payload parameters are given in parentheses (from [19]). 70

75

List of Tables
1 Characteristics of 12 different GGPU solutions generated by our tool

after logic synthesis in Cadence Genus. 38
2 Comparison of power consumption for 1CU@500MHz and 1CU@677

versions with and without power gating. 40
3 Threat Models, Attacks, and Metrics. 47
4 Benchmark Size and Comparison of Attack Results. 49
5 Split Manufacturing Defenses. 50
6 Results for Defense Techniques based on Proximity Perturbation. 52
7 Results for Defense Techniques based on Wire Lifting.. 54
8 Ring oscillator active path configuration . 60
9 Physical synthesis results for our considered targets, before and after

trojan insertion. 63
10 RO operating frequency and power consumption from a SPICE-level

simulation for four variants of AES and PST. 64
11 Power domains, clock, average total power, and leakage across the

samples tested. 65

76

References
[1] I. Bojanova, “The digital revolution: What’s on the horizon?,” IT Professional,

vol. 16, no. 1, pp. 8–12, 2014.

[2] Make Use Of, “8 reasons why semiconductors are important to modern living.”
ttps://www.makeuseof.com/why-semiconductors-important. Accessed: June 15,
2022.

[3] International Monetary Fund, “Digitization of Money and Finance: Challenges and
Opportunities.” https://www.imf.org/en/News/Articles/2018/05/08/sp050818-
digitization-of-money-and-finance-challenges-and-opportunitie. Accessed: June
15, 2022.

[4] European Central Bank, “A digital euro.”
https://www.ecb.europa.eu/paym/digital_euro/html/index.en.html. Ac-
cessed: June 15, 2022.

[5] C. Mucci, L. Vanzolini, A. Lodi, A. Deledda, R. Guerrieri, F. Campi, and M. Toma,
“Implementation of aes/rijndael on a dynamically reconfigurable architecture,” in
2007 Design, Automation Test in Europe Conference Exhibition, pp. 1–6, 2007.

[6] J. Nickolls and W. J. Dally, “The gpu computing era,” IEEE Micro, vol. 30, no. 2,
pp. 56–69, 2010.

[7] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips,
“Gpu computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, 2008.

[8] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing experiences with cuda,”
IEEE Micro, vol. 28, no. 4, pp. 13–27, 2008.

[9] T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja, and
S. Pagliarini, “G-gpu: A fully-automated generator of gpu-like asic accelerators,”
in 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 544–547, 2022.

[10] The Wall Street Journal, “There Aren’t Enough Chips - Why Are They So Hard
to Make?.” https://www.wsj.com/story/there-arent-enough-chips-why-are-they-
so-hard-to-make-3e29c7e0. Accessed: June 15, 2022.

[11] Intel, “Intel Announces Initial Investment of Over €33 Billion for RD and Manufac-
turing in EU.” https://www.intel.com/content/www/us/en/newsroom/news/eu-
news-2022-release.html. Accessed: Aug 21, 2022.

[12] Bloomberg, “The Big Hack: How China Used a Tiny Chip to Infiltrate U.S.
Companies.” https://www.bloomberg.com/news/features/2018-10-04/the-big-
hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies. Accessed:
June 15, 2022.

77

https://www.makeuseof.com/why-semiconductors-important
https://www.imf.org/en/News/Articles/2018/05/08/sp050818-digitization-of-money-and-finance-challenges-and-opportunitie
https://www.imf.org/en/News/Articles/2018/05/08/sp050818-digitization-of-money-and-finance-challenges-and-opportunitie
https://www.ecb.europa.eu/paym/digital_euro/html/index.en.html
https://www.wsj.com/story/there-arent-enough-chips-why-are-they-so-hard-to-make-3e29c7e0
https://www.wsj.com/story/there-arent-enough-chips-why-are-they-so-hard-to-make-3e29c7e0
https://www.intel.com/content/www/us/en/newsroom/news/eu-news-2022-release.html
https://www.intel.com/content/www/us/en/newsroom/news/eu-news-2022-release.html
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies
https://www.bloomberg.com/news/features/2018-10-04/the-big-hack-how-china-used-a-tiny-chip-to-infiltrate-america-s-top-companies

[13] Cybermagazine, “The history of cybersecurity.” https://cybermagazine.com/cyber-
security/history-cybersecurity. Accessed: June 15, 2022.

[14] Help Net Security, “Threats to hardware security are growing.”
https://www.helpnetsecurity.com/2022/05/10/hardware-security-threats-
video. Accessed: June 15, 2022.

[15] Semiengineering, “Hardware Security: A Critical Piece Of The Cybersecurity
Puzzle.” https://semiengineering.com/hardware-security-a-critical-piece-of-the-
cybersecurity-puzzle/. Accessed: June 15, 2022.

[16] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security: Models,
methods, and metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295,
2014.

[17] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan insertion - a
practical foundry-side attack via eco,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2021.

[18] T. Perez and S. Pagliarini, “A side-channel hardware trojan in 65nm cmos with
2µW precision and multi-bit leakage capability,” in 2022 27th Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 9–10, 2022.

[19] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, “A pragmatic methodology for blind
hardware trojan insertion in finalized layouts,” in 2022 International Conference
on Computer-Aided Design (ICCAD), 2022.

[20] T. D. Perez and S. Pagliarini, “Hardware trojan insertion in finalized layouts: From
methodology to a silicon demonstration,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2022.

[21] J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing secure?,” in
2013 DATE, pp. 1259–1264, 2013.

[22] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks, defenses,
and challenges,” IEEE Access, vol. 8, pp. 184013–184035, 2020.

[23] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the security
of logic locking,” IEEE TCAD, vol. 35, no. 9, pp. 1411–1424, 2016.

[24] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan, “Threats on
logic locking: A decade later,” in GLSVLSI ’19, p. 471–476, 2019.

[25] J. Sweeney, V. Mohammed Zackriya, S. Pagliarini, and L. Pileggi, “Latch-based
logic locking,” in 2020 IEEE HOST, pp. 132–141, 2020.

[26] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: From theory to practice,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’17, (New York, NY, USA), p. 1601–1618, Association for
Computing Machinery, 2017.

78

https://cybermagazine.com/cyber-security/history-cybersecurity
https://cybermagazine.com/cyber-security/history-cybersecurity
https://www.helpnetsecurity.com/2022/05/10/hardware-security-threats-video
https://www.helpnetsecurity.com/2022/05/10/hardware-security-threats-video
https://semiengineering.com/hardware-security-a-critical-piece-of-the-cybersecurity-puzzle/
https://semiengineering.com/hardware-security-a-critical-piece-of-the-cybersecurity-puzzle/

[27] T. Hoque, R. S. Chakraborty, and S. Bhunia, “Hardware obfuscation and logic
locking: A tutorial introduction,” IEEE Design & Test, vol. 37, no. 3, pp. 59–77,
2020.

[28] Z. U. Abideen, T. D. Perez, and S. Pagliarini, “From fpgas to obfuscated easics:
Design and security trade-offs,” in 2021 Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), pp. 1–4, 2021.

[29] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu, A. Sri-
vastava, Y. Xie, M. Yasin, and M. Zuzak, “Keynote: A disquisition on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 10, pp. 1952–1972, 2020.

[30] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal attacks
on logic locking and camouflaging techniques,” IEEE Transactions on Emerging
Topics in Computing, vol. 8, no. 2, pp. 517–532, 2020.

[31] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit camouflage
integration for hardware ip protection,” in DAC, pp. 1–5, 2014.

[32] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z. Pan, “Provably
secure camouflaging strategy for ic protection,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 8, pp. 1399–1412,
2019.

[33] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic encryption
algorithms,” in 2015 IEEE HOST, pp. 137–143, 2015.

[34] CHES, “Conference on Cryptographic Hardware and Embedded Systems.”
https://ches.iacr.org/. Accessed: Aug 21, 2022.

[35] HOST, “IEEE International Symposium on Hardware Oriented Security and Trust
(HOST).” http://www.hostsymposium.org/. Accessed: Aug 21, 2022.

[36] AsianHOST, “Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST).” http://asianhost.org/. Accessed: Dec 11, 2022.

[37] COSADE, “International Workshop on Constructive Side-Channel Analysis and
Secure Design.” https://www.cosade.org/. Accessed: Aug 21, 2022.

[38] R. Fair, “History of some early developments in ion-implantation technology
leading to silicon transistor manufacturing,” Proceedings of the IEEE, vol. 86,
no. 1, pp. 111–137, 1998.

[39] The Pragmatic Programmers, “The Caculator Wars.”
https://medium.com/pragmatic-programmers/the-calculator-wars-
66bdf4cbab3d. Accessed: June 19, 2022.

[40] Fabricated Knowledge, “Lessons from History: The 1980s Semiconduc-
tor Cycle(s).” https://www.fabricatedknowledge.com/p/history-lesson-the-1980s-
semiconductor. Accessed: June 19, 2022.

79

https://ches.iacr.org/
http://www.hostsymposium.org/
http://asianhost.org/
https://www.cosade.org/
https://medium.com/pragmatic-programmers/the-calculator-wars-66bdf4cbab3d
https://medium.com/pragmatic-programmers/the-calculator-wars-66bdf4cbab3d
https://www.fabricatedknowledge.com/p/history-lesson-the-1980s-semiconductor
https://www.fabricatedknowledge.com/p/history-lesson-the-1980s-semiconductor

[41] Fabricated Knowledge, “Lessons from History: The 1990s Semiconductor Cy-
cle(s).” https://www.fabricatedknowledge.com/p/lessons-from-history-the-1990s-
semiconductor. Accessed: June 19, 2022.

[42] Anysilicon, “What is a Fabless Company.” https://anysilicon.com/what-is-a-
fabless-company/. Accessed: June 19, 2022.

[43] Semiconductor Engineering, “Design Rule Complexity Rising.”
https://semiengineering.com/design-rule-complexity-rising/. Accessed:
June 19, 2022.

[44] Semiconductor Digest, “Shortage to Surplus Cycle Hits Semi But One Segment
Escapes.” https://www.semiconductor-digest.com/shortage-to-surplus-cycle-hits-
semi-but-one-segment-escapes/. Accessed: June 19, 2022.

[45] Fabricated Knowledge, “The Rising Tide of Semiconductor Cost.”
https://www.fabricatedknowledge.com/p/the-rising-tide-of-semiconductor.
Accessed: June 19, 2022.

[46] EETimes, “Intel Will Rely on TSMC for its Rebound.”
https://www.eetimes.com/intel-will-rely-on-tsmc-for-its-rebound/. Accessed:
Sept. 9, 2022.

[47] i-Micronews, “High-End Performance Packaging 2022 – Focus on 2.5D/3D Integra-
tion.” https://www.i-micronews.com/products/high-end-performance-packaging-
2022-focus-on-2-5d-3d-integration/. Accessed: Aug 17, 2022.

[48] World Health Organization, “Coronavirus disease (COVID-19) pandemic.”
ttps://www.who.int/europe/emergencies/situations/covid-19. Accessed: Sept.
14, 2022.

[49] Bloomberg, “The Chip Shortage Isn’t Over Quite Yet.”
ttps://www.bloomberg.com/news/newsletters/2022-08-19/the-chip-shortage-
isn-t-over-quite-yet. Accessed: Sept. 14, 2022.

[50] IEEE Spectrum, “How and When the Chip Shortage Will End, in 4 Charts.”
https://spectrum.ieee.org/chip-shortage. Accessed: Sept. 14, 2022.

[51] European Chips, “Survey report.” https://digital-
strategy.ec.europa.eu/en/library/european-chips-survey. Accessed: Sept.
9, 2022.

[52] Manufacturing Tomorrow, “6 Implications of the Chip Shortage for Auto
Manufacturing.” https://www.manufacturingtomorrow.com/story/2022/05/6-
implications-of-the-chip-shortage-for-auto-manufacturing/18744/. Accessed:
Sept. 19, 2022.

[53] Synopsys, “What is Library Characterization?.”
https://www.synopsys.com/glossary/what-is-library-characterization.html.
Accessed: June 21, 2022.

80

https://www.fabricatedknowledge.com/p/lessons-from-history-the-1990s-semiconductor
https://www.fabricatedknowledge.com/p/lessons-from-history-the-1990s-semiconductor
https://anysilicon.com/what-is-a-fabless-company/
https://anysilicon.com/what-is-a-fabless-company/
https://semiengineering.com/design-rule-complexity-rising/
https://www.semiconductor-digest.com/shortage-to-surplus-cycle-hits-semi-but-one-segment-escapes/
https://www.semiconductor-digest.com/shortage-to-surplus-cycle-hits-semi-but-one-segment-escapes/
https://www.fabricatedknowledge.com/p/the-rising-tide-of-semiconductor
https://www.eetimes.com/intel-will-rely-on-tsmc-for-its-rebound/
https://www.i-micronews.com/products/high-end-performance-packaging-2022-focus-on-2-5d-3d-integration/
https://www.i-micronews.com/products/high-end-performance-packaging-2022-focus-on-2-5d-3d-integration/
https://www.who.int/europe/emergencies/situations/covid-19
https://www.bloomberg.com/news/newsletters/2022-08-19/the-chip-shortage-isn-t-over-quite-yet
https://www.bloomberg.com/news/newsletters/2022-08-19/the-chip-shortage-isn-t-over-quite-yet
https://spectrum.ieee.org/chip-shortage
https://digital-strategy.ec.europa.eu/en/library/european-chips-survey
https://digital-strategy.ec.europa.eu/en/library/european-chips-survey
https://www.manufacturingtomorrow.com/story/2022/05/6-implications-of-the-chip-shortage-for-auto-manufacturing/18744/
https://www.manufacturingtomorrow.com/story/2022/05/6-implications-of-the-chip-shortage-for-auto-manufacturing/18744/
https://www.synopsys.com/glossary/what-is-library-characterization.html

[54] Cadence, “Innovus Implementation System.”
https://www.cadence.com/content/dam/cadence-
www/global/en_US/documents/tools/digital-design-signoff/innovus-
implementation-system-ds.pdf. Accessed: Sept. 15, 2022.

[55] J. Kim and T. Kim, “Useful clock skew scheduling using adjustable delay buffers
in multi-power mode designs,” in The 20th Asia and South Pacific Design
Automation Conference, pp. 466–471, 2015.

[56] K. Chae, S. Mukhopadhyay, C.-H. Lee, and J. Laskar, “A dynamic timing con-
trol technique utilizing time borrowing and clock stretching,” in IEEE Custom
Integrated Circuits Conference 2010, pp. 1–4, 2010.

[57] R. Signh, Signal integrity effects in custom IC and ASIC designs. IEEE Press,
2002.

[58] European Union Intellectual Property Office (EUIPO), “2019
Status Report On IPR Infringement,” [Online]. Available:
https://euipo.europa.eu/ohimportal/en/web/observatory/status-reports-
on-ip-infringement.

[59] U. Guin, K. Huang, D. Dimase, J. M. Carulli, M. Tehranipoor, and Y. Makris,
“Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor
Supply Chain,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1207–1228, 2014.

[60] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog malicious
hardware,” in 2016 IEEE Symposium on Security and Privacy (SP), pp. 18–37,
2016.

[61] T. Trippel, K. G. Shin, K. B. Bush, and M. Hicks, “Icas: an extensible framework
for estimating the susceptibility of ic layouts to additive trojans,” in 2020 IEEE
Symposium on Security and Privacy (SP), pp. 1742–1759, 2020.

[62] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric trojans for
fault-injection attacks on cryptographic hardware,” in 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 18–28, 2014.

[63] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy dopant-level
hardware trojans,” in Cryptographic Hardware and Embedded Systems - CHES
2013 (G. Bertoni and J.-S. Coron, eds.), (Berlin, Heidelberg), pp. 197–214,
Springer Berlin Heidelberg, 2013.

[64] L. Lin, W. Burleson, and C. Paar, “Moles: Malicious off-chip leakage enabled by
side-channels,” in 2009 IEEE/ACM International Conference on Computer-Aided
Design, pp. 117–122, 2009.

[65] L. Lin et al., “Trojan side-channels: Lightweight hardware trojans through side-
channel engineering,” in Cryptographic Hardware and Embedded Systems - CHES
2009, pp. 382–395, 2009.

81

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/innovus-implementation-system-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/innovus-implementation-system-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/digital-design-signoff/innovus-implementation-system-ds.pdf

[66] Y. Jin and Y. Makris, “Hardware trojans in wireless cryptographic ics,” IEEE
Design Test of Computers, vol. 27, no. 1, pp. 26–35, 2010.

[67] Y. Liu, Y. Jin, and Y. Makris, “Hardware trojans in wireless cryptographic
ics: Silicon demonstration & detection method evaluation,” in Int. Conf. on
Computer-Aided Design (ICCAD), pp. 399–404, 2013.

[68] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric trojans for
fault-injection attacks on cryptographic hardware,” in 2014 Workshop on Fault
Diagnosis and Tolerance in Cryptography, pp. 18–28, 2014.

[69] J.-F. Gallais et al., “Hardware trojans for inducing or amplifying side-channel
leakage of cryptographic software,” in Trusted Systems, pp. 253–270, 2011.

[70] L. Ali and Farshad, “Analog hardware trojan design and detection in OFDM based
wireless cryptographic ICs,” Plos One, vol. 16, no. 7, p. e0254903, 2021.

[71] S. Ghandali, T. Moos, A. Moradi, and C. Paar, “Side-Channel Hardware Trojan
for Provably-Secure SCA-Protected Implementations,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 28, no. 6, pp. 1435–1448, 2020.

[72] F. Almeida, M. Imran, J. Raik, and S. Pagliarini, “Ransomware attack as hardware
trojan: A feasibility and demonstration study,” IEEE Access, vol. 10, pp. 44827–
44839, 2022.

[73] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design and Test of Computers, vol. 27, no. 1, pp. 10–25, 2010.

[74] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware:
Identifying and classifying hardware trojans,” Computer, vol. 43, pp. 39–46, Oct
2010.

[75] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection techniques,”
in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2021–
2024, 2015.

[76] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, “A practical split manufacturing
framework for trojan prevention via simultaneous wire lifting and cell insertion,”
in 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 265–270, 2018.

[77] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique for improving
hardware trojan detection and reducing trojan activation time,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 112–125,
2012.

[78] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,”
in 2008 IEEE International Workshop on Hardware-Oriented Security and Trust,
pp. 51–57, 2008.

82

[79] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon demonstration of hardware
trojan design and detection in wireless cryptographic ics,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1506–1519,
2017.

[80] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power supply signal
calibration techniques for improving detection resolution to hardware trojans,” in
2008 IEEE/ACM International Conference on Computer-Aided Design, pp. 632–
639, 2008.

[81] J. Cruz, Y. Huang, P. Mishra, and S. Bhunia, “An automated configurable trojan
insertion framework for dynamic trust benchmarks,” in 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 1598–1603, 3 2018.

[82] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware
trojans: Lessons learned after one decade of research,” ACM Trans. Des. Autom.
Electron. Syst., vol. 22, pp. 6:1–6:23, May 2016.

[83] K. Hasegawa, K. Yamashita, S. Hidano, K. Fukushima, K. Hashimoto, and
N. Togawa, “Node-wise hardware trojan detection based on graph learning,”

[84] B. Lippmann, A.-C. Bette, M. Ludwig, J. Mutter, J. Baehr, A. Hepp, H. Gieser,
N. Kovač, T. Zweifel, M. Rasche, and O. Kellermann, “Physical and functional
reverse engineering challenges for advanced semiconductor solutions,” in 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 796–
801, 2022.

[85] A. Hepp, J. Baehr, and G. Sigl, “Golden model-free hardware trojan detection
by classification of netlist module graphs,” in 2022 Design, Automation Test in
Europe Conference Exhibition (DATE), pp. 1317–1322.

[86] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse engi-
neering,” Design Automation Conference, pp. 333–338, 2011.

[87] L. Aksoy, A. Hepp, J. Baehr, and S. Pagliarini, “Hardware obfuscation of digital
fir filters,” in 2022 25th International Symposium on Design and Diagnostics of
Electronic Circuits and Systems (DDECS), pp. 68–73, 2022.

[88] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-level func-
tionality reconstruction,” in 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 655–660, 2016.

[89] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea, and S. Malik,
“Reverse Engineering Digital Circuits Using Functional Analysis,” pp. 1277–1280,
March 2013.

[90] P. Rohatgi, Improved Techniques for Side-Channel Analysis, pp. 381–406. Boston,
MA: Springer US, 2009.

83

[91] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances in
Cryptology — CRYPTO’ 99 (M. Wiener, ed.), pp. 388–397, 1999.

[92] Intel, “Intel Announces Initial Investment of Over
€33 Billion for R&D and Manufacturing in EU.”
https://www.intel.com/content/www/us/en/newsroom/news/eu-news-
2022-release.html. Accessed: June 24, 2022.

[93] TechCrunch, “TSMC to build a $12 billion advanced semiconductor plant in Ari-
zona with US government support.” https://techcrunch.com/2020/05/14/tsmc-
to-build-a-12-billion-advanced-semiconductor-plant-in-arizona-with-u-s-
government-support/. Accessed: June 24, 2022.

[94] IEEE, “Ieee standard for design and verification of low-power, energy-aware
electronic systems,” IEEE Std 1801-2018, pp. 1–548, 2019.

[95] V. Natarajan, A. K. Nagarajan, N. Pandian, and V. G. Savithri, “Low power
design methodology,” in Very-Large-Scale Integration (K. H. Yeap and H. Nisar,
eds.), ch. 3, Rijeka: IntechOpen, 2018.

[96] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12,
pp. 2295–2329, 2017.

[97] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled risc-v accel-
erators for post-quantum cryptography,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2020, p. 239–280, Aug. 2020.

[98] AMD, “APU 101: All about AMD Fusion Accelerated Processing Units.”
http://developer.amd.com/wordpress/media/2012/10/apu101.pdf. Accessed:
Aug 15, 2022.

[99] ARM, “INSTRUCTION SET ARCHITECTURE (ISA).”
https://www.arm.com/glossary/isa. Accessed: Aug 15, 2022.

[100] RISC-V Foundation, “RISC-V Cores and SoC Overview.” https://riscv.org. Ac-
cessed: Aug 15, 2022.

[101] OpenPower Foundation, “OpenPower.” https://openpowerfoundation.org. Ac-
cessed: Aug 15, 2022.

[102] Oracle and Sun Microsystems, “OpenSPARC Overview, 2019.”
https://www.oracle.com/servers/technologies/opensparc-overview.html.
Accessed: Aug 15, 2022.

[103] Linux Foundation, “CHIPS: Common Hardware for Interfaces, Processors and
Systems.” https://chipsalliance.org. Accessed: Aug 15, 2022.

[104] Makeuseof, “What Is a TPU (Tensor Processing Unit) and What Is It Used For?.”
https://www.makeuseof.com/what-is-tpu-how-is-it-used/. Accessed: June 15,
2022.

84

https://www.intel.com/content/www/us/en/newsroom/news/eu-news-2022-release.html
https://www.intel.com/content/www/us/en/newsroom/news/eu-news-2022-release.html
https://techcrunch.com/2020/05/14/tsmc-to-build-a-12-billion-advanced-semiconductor-plant-in-arizona-with-u-s-government-support/
https://techcrunch.com/2020/05/14/tsmc-to-build-a-12-billion-advanced-semiconductor-plant-in-arizona-with-u-s-government-support/
https://techcrunch.com/2020/05/14/tsmc-to-build-a-12-billion-advanced-semiconductor-plant-in-arizona-with-u-s-government-support/
http://developer.amd.com/wordpress/media/2012/10/apu101.pdf
https://www.arm.com/glossary/isa
https://riscv.org
https://openpowerfoundation.org
https://www.oracle.com/servers/technologies/opensparc-overview.html
https://chipsalliance.org
https://www.makeuseof.com/what-is-tpu-how-is-it-used/

[105] Circuit Cellar, “The Future of Embedded FPGAs — eFPGA: The Proof is in
the Tape Out.” https://circuitcellar.com/insights/tech-the-future/the-future-of-
embedded-fpgas-efpga-the-proof-is-in-the-tape-out/. Accessed: Aug 17, 2022.

[106] S. K. Lee, P. N. Whatmough, M. Donato, G. G. Ko, D. Brooks, and G.-Y. Wei,
“Smiv: A 16-nm 25-mm2 soc for iot with arm cortex-a53, efpga, and coherent
accelerators,” IEEE Journal of Solid-State Circuits, vol. 57, no. 2, pp. 639–650,
2022.

[107] Xilinx, “SoCs with Hardware and Software Programmability.”
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html. Accessed:
Aug 17, 2022.

[108] ONLOGIC, “Your Ultimate Guide to Understanding PCIe Gen 4.0.”
https://www.onlogic.com/company/io-hub/your-ultimate-guide-to-
understanding-pcie-gen-4/. Accessed: Aug 17, 2022.

[109] P. P. Brahma, D. Wu, and Y. She, “Why deep learning works: A manifold disen-
tanglement perspective,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 10, pp. 1997–2008, 2016.

[110] MarketWatch, “Artificial Intelligence (AI) Chips Market Size, Share, Growth and
Forecast to 2027 with 36.6% CAGR.” https://www.marketwatch.com/press-
release/artificial-intelligence-ai-chips-market-size-share-growth-and-forecast-
to-2027-with-366-cagr-141-pages-report-2022-09-20. Accessed: Sept. 23,
2022.

[111] NVIDIA, “NVIDIA Tensor Cores: Unprecedented Acceleration for HPC and AI.”
ttps://www.nvidia.com/en-us/data-center/tensor-cores/. Accessed: Sept. 23,
2022.

[112] TechRepublic, “Massive Intel CPU flaw: Understanding the technical details of
Meltdown and Spectre.” https://www.techrepublic.com/article/massive-intel-cpu-
flaw-understanding-the-technical-details-of-meltdown-and-spectre. Accessed: Feb
19, 2021.

[113] Black Hat, “Exploiting the DRAM rowhammer bug to gain ker-
nel privileges.” https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-
Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf. Accessed:
Dec 9, 2022.

[114] Y. Gao and Y. Zhou, “Side-channel attacks with multi-thread mixed leakage,”
IEEE Transactions on Information Forensics and Security, vol. 16, pp. 770–785,
2021.

[115] NVIDIA, “Record 136 NVIDIA GPU-Accelerated Supercomputers Feature
in TOP500 Ranking.” https://blogs.nvidia.com/blog/2019/11/19/record-gpu-
accelerated-supercomputers-top500/, 2019. Accessed: 2022-11-02.

85

https://circuitcellar.com/insights/tech-the-future/the-future-of-embedded-fpgas-efpga-the-proof-is-in-the-tape-out/
https://circuitcellar.com/insights/tech-the-future/the-future-of-embedded-fpgas-efpga-the-proof-is-in-the-tape-out/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.onlogic.com/company/io-hub/your-ultimate-guide-to-understanding-pcie-gen-4/
https://www.onlogic.com/company/io-hub/your-ultimate-guide-to-understanding-pcie-gen-4/
https://www.marketwatch.com/press-release/artificial-intelligence-ai-chips-market-size-share-growth-and-forecast-to-2027-with-366-cagr-141-pages-report-2022-09-20
https://www.marketwatch.com/press-release/artificial-intelligence-ai-chips-market-size-share-growth-and-forecast-to-2027-with-366-cagr-141-pages-report-2022-09-20
https://www.marketwatch.com/press-release/artificial-intelligence-ai-chips-market-size-share-growth-and-forecast-to-2027-with-366-cagr-141-pages-report-2022-09-20
https://www.nvidia.com/en-us/data-center/tensor-cores/
https://www.techrepublic.com/article/massive-intel-cpu-flaw-understanding-the-technical-details-of-meltdown-and-spectre
https://www.techrepublic.com/article/massive-intel-cpu-flaw-understanding-the-technical-details-of-meltdown-and-spectre
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Seaborn-Exploiting-The-DRAM-Rowhammer-Bug-To-Gain-Kernel-Privileges.pdf
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/
https://blogs.nvidia.com/blog/2019/11/19/record-gpu-accelerated-supercomputers-top500/

[116] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone, “Flexgripplus:
An improved GPGPU model to support reliability analysis,” Microelectronics
Reliability, vol. 109, p. 113660, 2020.

[117] M. Al Kadi, B. Janssen, and M. Huebner, “Fgpu: An simt-architecture for
fpgas,” in Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA ’16, (New York, NY, USA), p. 254–263,
Association for Computing Machinery, 2016.

[118] ARM, “Learn the architecture - An introduction to AMBA AXI.”
https://developer.arm.com/documentation/102202/0300/AXI-protocol-
overview. Accessed: Sept. 27, 2022.

[119] R. Ma, J.-C. Hsu, T. Tan, E. Nurvitadhi, D. Sheffield, R. Pelt, M. Langhammer,
J. Sim, A. Dasu, and D. Chiou, “Specializing fgpu for persistent deep learning,”
ACM Trans. Reconfigurable Technol. Syst., vol. 14, July 2021.

[120] V. Gangadhar, R. Balasubramanian, M. Drumond, Z. Guo, J. Menon, C. Joseph,
R. Prakash, S. Prasad, P. Vallathol, and K. Sankaralingam, “Miaow: An open
source gpgpu,” in 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–43, 2015.

[121] P. Duarte, P. Tomas, and G. Falcao, “Scratch: An end-to-end application-aware
soft-gpgpu architecture and trimming tool,” in Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO-50 ’17, (New
York, NY, USA), p. 165–177, Association for Computing Machinery, 2017.

[122] H. E. Sumbul, K. Vaidyanathan, Q. Zhu, F. Franchetti, and L. Pileggi, “A
synthesis methodology for application-specific logic-in-memory designs,” in
ACM/EDAC/IEEE Design Automation Conference, pp. 1–6, 2015.

[123] J. Ahn, C. Jin, J. Kim, M. Rhu, Y. Fei, D. Kaeli, and J. Kim, “Trident: A hybrid
correlation-collision gpu cache timing attack for aes key recovery,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
pp. 332–344, 2021.

[124] Y. Gao, W. Cheng, H. Zhang, and Y. Zhou, “Cache-collision attacks on gpu-
based aes implementation with electro-magnetic leakages,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE), pp. 300–306, 2018.

[125] OpenHW Group, “OpenHW Group CORE-V CV32E40P RISC-V IP.”
https://github.com/openhwgroup/cv32e40p. Accessed: Aug 15, 2022.

[126] Centre For Hardware Security, Tallinn University of Technology, “GPUPlanner.”
ttps://github.com/Centre-for-Hardware-Security/gpu-asic, 2022. Accessed: 2022-
11-03.

86

https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://developer.arm.com/documentation/102202/0300/AXI-protocol-overview
https://github.com/openhwgroup/cv32e40p
https://github.com/Centre-for-Hardware-Security/gpu-asic

[127] M. Pecht and S. Tiku, “Bogus: Electronic Manufacturing and Consumers Confront
a Rising Tide of Counterfeit Electronics,” IEEE Spectrum, vol. 43, no. 5, pp.
37–46, 2006.

[128] Defense Advanced Research Projects Agency, “Lessons from History: The 1980s
Semiconductor Cycle(s).” https://www.darpa.mil/. Accessed: Oct. 5, 2022.

[129] Intelligence Advanced Research Projects Activity (IARPA), “Trusted Integrated Cir-
cuits Program,” [Online]. Available: https://www.iarpa.gov/index.php/research-
programs/tic.

[130] T. Kikkawa and R. Joshi, “Design Technology Co-Optimization for 10 nm and
Beyond,” in Proceedings of the IEEE 2014 Custom Integrated Circuits Conference,
pp. 1–1, Sep. 2014.

[131] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building Trusted
ICs Using Split Fabrication,” IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 1–6, 2014.

[132] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and L. Pileggi,
“Efficient and Secure Intellectual Property (IP) Design with Split Fabrication,” in
2014 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), pp. 13–18, 2014.

[133] B. Hill, R. Karmazin, C. T. O. Otero, J. Tse, and R. Manohar, “A Split-Foundry
Asynchronous FPGA,” in Proceedings of the IEEE 2013 Custom Integrated
Circuits Conference, pp. 1–4, Sep. 2013.

[134] T. Usui, K. Tsumura, H. Nasu, Y. Hayashi, G. Minamihaba, H. Toyoda, H. Sawada,
S. Ito, H. Miyajima, K. Watanabe, M. Shimada, A. Kojima, Y. Uozumi, and H. Shi-
bata, “High Performance Ultra Low-k (k=2.0/keff=2.4)/Cu Dual-Damascene
Interconnect Technology with Self-Formed MnSixOy Barrier Layer for 32 nm-
node,” in 2006 International Interconnect Technology Conference, pp. 216–218,
2006.

[135] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer hardware
using 3d integrated circuit (IC) technology and split manufacturing for obfusca-
tion,” in 22nd USENIX Security Symposium (USENIX Security 13), pp. 495–510,
USENIX Association, Aug. 2013.

[136] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, “Regds: A reverse engineering
framework from gdsii to gate-level netlist,” in 2020 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pp. 154–163, 2020.

[137] S. N. Pagliarini, M. M. Isgenc, M. G. A. Martins, and L. Pileggi, “Application and
Product-Volume-Specific Customization of BEOL Metal Pitch,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 9, pp. 1627–1636,
2018.

87

https://www.darpa.mil/

[138] J. Rajendran, O. Sinanoglu, and R. Karri, “Is Split Manufacturing Secure?,” in
Design, Automation and Test in Europe (DATE), no. Ic, pp. 1259–1264, 2013.

[139] J. Magaña, D. Shi, and A. Davoodi, “Are Proximity Attacks a Threat to the
Security of Split Manufacturing of Integrated Circuits?,” IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), vol. 07-10-Nove, no. c, pp. 1–7,
2016.

[140] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran, “The Cat and Mouse in
Split Manufacturing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 5, pp. 805–817, 2018.

[141] W. Zeng, B. Zhang, and A. Davoodi, “Analysis of Security of Split Manufacturing
Using Machine Learning,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 12, pp. 2767–2780, 2019.

[142] H. Li, S. Patnaik, A. Sengupta, H. Yang, J. Knechtel, B. Yu, E. F. Y. Young, and
O. Sinanoglu, “Attacking split manufacturing from a deep learning perspective,”
in 2019 56th ACM/IEEE Design Automation Conference (DAC), pp. 1–6, 2019.

[143] S. Chen and R. Vemuri, “On the Effectiveness of the Satisfiability Attack on Split
Manufactured Circuits,” in 2018 IFIP/IEEE International Conference on Very
Large Scale Integration (VLSI-SoC), pp. 83–88, 2018.

[144] S. Chen and R. Vemuri, “Exploiting Proximity Information in a Satisfiability
Based Attack Against Split Manufactured Circuits,” Proceedings of the 2019
IEEE International Symposium on Hardware Oriented Security and Trust, HOST
2019, pp. 171–180, 2019.

[145] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, “Network Flows: Theory, Algorithms,
and Applications.,” Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

[146] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-Based Attack on Cyclic Logic
Encryptions,” in 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 49–56, 2017.

[147] M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze, “Split-
Fabrication Obfuscation: Metrics and techniques,” IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 7–12, 2014.

[148] O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, “Automatic Obfuscated
Cell Layout for Trusted Split-Foundry Design,” IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 56–61, 2015.

[149] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split manufac-
turing via obfuscated built-in self-authentication,” in 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 14–19, 2015.

[150] P. Yang and M. Marek-Sadowska, “Making split-fabrication more secure,” in
2016 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 1–8, 2016.

88

[151] Y. Wang, P. Chen, J. Hu, and J. Rajendran, “Routing Perturbation for Enhanced
Security in Split Manufacturing,” Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 605–610, 2017.

[152] L. Feng, Y. Wang, J. Hu, W. K. Mak, and J. Rajendran, “Making Split Fabrication
Synergistically Secure and Manufacturable,” IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), vol. 2017-Novem, pp. 313–320, 2017.

[153] A. Sengupta, S. Patnaik, J. Knechtel, M. Ashraf, S. Garg, and O. Sinanoglu,
“Rethinking Split Manufacturing: An Information-Theoretic Approach with Secure
Layout Techniques,” IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), vol. 2017-Novem, pp. 329–336, 2017.

[154] Z. Chen, P. Zhou, T. Y. Ho, and Y. Jin, “How Secure is Split Manufacturing
in Preventing Hardware Trojan?,” IEEE Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), pp. 1–6, 2017.

[155] S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu, “Concerted Wire Lifting:
Enabling Secure and Cost-Effective Split Manufacturing,” Asia and South Pacific
Design Automation Conference (ASP-DAC), vol. 2018-Janua, pp. 251–258, 2018.

[156] S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, “Raise Your Game for
Split Manufacturing: Restoring the True Functionality Through BEOL,” Design
Automation Conference (DAC), pp. 1–6, 2018.

[157] M. A. Masoud, Y. Alkabani, and M. W. El-Kharashi, “Obfuscation of Digital
Systems using Isomorphic Cells and Split Fabrication,” International Conference
on Computer Engineering and Systems (ICCES), pp. 488–493, 2019.

[158] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, “A Practical Split Manufacturing
Framework for Trojan Prevention via Simultaneous Wire Lifting and Cell Insertion,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 38, no. 9, pp. 1585–1598, 2019.

[159] Tezzarron Semiconductors, “Lessons from History: The 1980s
Semiconductor Cycle(s).” http://www.tezzaron.com/media/3D-
ICs_and_Integrated_Circuit_Security.pdf. Accessed: March 19, 2020.

[160] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Nosovic, “Dijkstra’s
Shortest Path Algorithm Serial and Parallel Execution Performance Analysis,” in
2012 Proceedings of the 35th International Convention MIPRO, pp. 1811–1815,
2012.

[161] D. Z. Pan, B. Yu, and J. Gao, “Design for Manufacturing With Emerging
Nanolithography,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 10, pp. 1453–1472, 2013.

[162] Y. Ding, C. Chu, and Wai-Kei Mak, “Throughput Optimization for SADP and
E-beam Based Manufacturing of 1D Layout,” in 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1–6, 2014.

89

http://www.tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf
http://www.tezzaron.com/media/3D-ICs_and_Integrated_Circuit_Security.pdf

[163] M. Schobert et al., “Degate.” http://www.degate.org/, 2011. Accessed: 2022-
11-05.

[164] V. Gohil, M. Tressler, K. Sipple, S. Patnaik, and J. Rajendran, “Games, dollars,
splits: A game-theoretic analysis of split manufacturing,” IEEE Transactions on
Information Forensics and Security, vol. 16, pp. 5077–5092, 2021.

[165] S. M. Ben, “Security challenges and requirements for industrial control systems
in the semiconductor manufacturing sector,” 2012.

[166] T. Trippel et al., “ICAS: An Extensible Framework for Estimating the Susceptibility
of IC Layouts to Additive Trojans,” 2020 IEEE Symposium on Security and Privacy
(SP), pp. 1078–1095, 2020.

[167] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher,”
in Cryptographic Hardware and Embedded Systems - CHES 2007 (P. Paillier
and I. Verbauwhede, eds.), (Berlin, Heidelberg), pp. 450–466, Springer Berlin
Heidelberg, 2007.

[168] S. Ghandali et al., “Side-channel hardware trojan for provably-secure sca-protected
implementations,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 28, no. 6, pp. 1435–1448, 2020.

[169] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique for improving
hardware trojan detection and reducing trojan activation time,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, pp. 112–125, Jan 2012.

[170] S. Yu, W. Liu, and M. O’Neill, “An improved automatic hardware trojan generation
platform,” in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 302–307, 7 2019.

[171] W. Hu, A. Ardeshiricham, and R. Kastner, “Hardware information flow tracking,”
vol. 54, no. 4, pp. 83:1–83:39.

[172] T. Meade, “Netlist Analysis Toolset (NETA).” https://github.com/jinyier/NetA,
2018. Accessed: 2022-11-05.

[173] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor, “Bench-
marking of hardware trojans and maliciously affected circuits,” Journal of Hardware
and Systems Security, vol. 1, pp. 85–102, Mar 2017.

[174] A. Baumgarten, M. Steffen, M. Clausman, and J. Zambreno, “A case study in
hardware trojan design and implementation,” vol. 10, no. 1, pp. 1–14.

[175] A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, “BioHT (Blind Inser-
tion of Hardware Trojans) Tool.” https://github.com/Centre-for-Hardware-
Security/bio_hardware_trojan, 2016. Accessed: 2021-11-25.

90

http://www.degate.org/
https://github.com/jinyier/NetA
https://github.com/Centre-for-Hardware-Security/bio_hardware_trojan
https://github.com/Centre-for-Hardware-Security/bio_hardware_trojan

Acknowledgements

First and foremost, I must thank my supervisor and head of the Centre for Hardware
Security, Prof. Dr. Samuel Pagliarini. He was the one that introduced me to the field of
Hardware Security. His deep knowledge inspired and gave me the confidence that this
topic was worth researching. Completing this PhD would not have been possible without
his assistance and tremendous dedication. Thank you very much for your support and
understanding over these past three years of hard work. Furthermore, I would like to
thank all Centre Hardware for Security members and the Dept. of Computer Systems
for their support and collaboration.

I also want to express sincere gratitude to my closest friends, Chaves, Dr. Henrique,
Dr. Fernando, Felipe, my sister Isabela, and my brother Rodrigo. When I faced uncertain
moments, I could always count on my friends to steer me in the right direction. When
my papers were accepted, sharing the news and celebrating with my friends made the
accomplishments much more joyful. I deeply value their support, fruitful conversations,
and almost daily friendly chats. Not only they helped me with work-related tasks, but
they brought work-life balance during my studies. I am fortunate to have such friends.

Thanks to the Tallinn University of Technology for providing the structure, resources,
and financial means to complete this PhD thesis. I am deeply grateful to the projects and
organizations that have supported me during my PhD studies; "Novel and Competent
Solutions Towards Synthesizing Trusted Hardware," Estonian Research Council; SAFEST,
European Commission; SMART4ALL, European Commission; IT Academy, European
Social Fund and Estonian Education and Youth Board. Special thanks to the Technical
University of Munich for having me for almost a month.

Most importantly, I am grateful for my family’s unconditional, unequivocal, and
loving support.

91

Abstract
Security-Aware Physical Synthesis of Integrated Circuits
The conception of a modern hardware device is a collective effort shared between differ-
ent entities. This characteristic makes the integrated circuit supply chain decentralized,
complex, and highly globalized. Moreover, for modern hardware devices, the current
organization of the IC supply chain is arguably a security threat. Since critical infrastruc-
tures are increasingly deploying integrated circuits-based systems, a compromise chip
belonging to one of these systems can lead to the leakage of sensitive data and even
more dire consequences. Therefore, ensuring the integrity of the technologies is crucial
for protecting digital information and maintaining critical operational systems – this is
precisely the focus of the hardware security field. The IC is susceptible to many recently
demonstrated threats during its lifespan, such as the insertion of hardware trojans, IP
piracy, overbuilding, reverse engineering, and side-channel attacks. However, only a
handful of countermeasures for specific threats have been proposed – for example, Split
Manufacturing, Logic Locking, and IC Camouflage. Unfortunately, the current state of
these techniques makes them unsuitable for large-scale production of ICs, either because
of practicality and/or insufficient security guarantees. Therefore, this thesis presents
a comprehensive study of different hardware security topics. All the presented results
in this PhD thesis aim to accelerate the hardware security field to determine the IC’s
security level. The main contributions are summarized as follows:

Open-source GPU architecture to aid the research of domain-specific ASIC
accelerators based on GPU-like accelerators – termed G-GPU. Capable
modern system-on-chips are essential to the fast development of IC-based systems.
However, the literature lacks an open-source GPU architecture for application-
specific integrated circuits. Hence, I propose an open-source GPU architecture
targetting ASIC to close this research gap in this thesis. Among the few GPU
architectures available in the literature is the FGPU, a GPU for FPGA instead
of ASIC. Utilizing the FGPU as a baseline, I translated it to targeting ASIC
and optimized the architecture utilizing smart memory division – the resulting
architecture is referred to as G-GPU. The G-GPU performance results compared
with the RISC-V show that the G-GPU has excellent benefits for applications
with high parallelism. In addition, a full framework is also made publicly available
for generating G-GPU IPs from the RTL to a tape-out-ready layout – called
GPUPlanner. The GPUPlanner also has the possibility of power gating, enabling
the creation of low-power, design for reliability, and even security solutions. On top
of that, the results include 6 G-GPU versions of tapeout-ready layouts implemented
in a 65nm CMOS technology. Those versions vary in the number of computing
units, operating frequency, and power gating implementation.

A Survey on Split Manufacturing attacks and defenses. Due to the current
IC supply chain organization, most design companies, must outsource their design
manufacturing to pure-play foundries. This practice is arguably a security threat for
ICs. Exposing their layouts to third-party entities can reveal trademark IP secrets.
In the worst scenario, a rogue element inside such foundries could manipulate the

92

layout for malicious reasons. Split manufacturing is a promising defense technique
to overcome concerns associated with outsourcing IC manufacturing. In Split
Manufacturing, the Front End of Line (FEOL) layers (transistors and lower metal
layers) are manufactured at an untrusted high-end foundry. The Back End of Line
(BEOL) layers (higher metal layers) are manufactured at a trusted low-end foundry.
The presented survey in this thesis is a detailed overview of the technique, the
many attacks towards Split Manufacturing, and the possible defense techniques
described in the literature. Different threat models and assumptions for the
attacks are concisely presented. The defense techniques studies are classified
into proximity perturbation, wire lifting, and layout obfuscation. The primary
outcome of our survey is to highlight the discrepancy between many studies –
some claim netlists can be reconstructed with near-perfect precision. In contrast,
others claim marginal success in retrieving BEOL connections. Finally, future
trends and challenges inherent in Split Manufacturing are discussed, including
the difficulty of evaluating the efficiency of the technique.

A methodology for inserting hardware trojans into finalized layouts. One
of the many potential threats to an IC during manufacturing is the insertion of
a hardware trojan. The literature has many hardware trojan demonstrations, a
few even in silicon; however, not a single one disclosed how their hardware trojan
is inserted. In this thesis, I proposed a complete framework based on the ECO
feature for inserting HTs in a finalized layout and a novel side-channel hardware
trojan (SCT) architecture to demonstrate the framework. The SCT is designed to
aid power side-channel attacks by inducing controlled power consumption. The
SCT insertion was detailed step by step, showing that a rogue element inside a
foundry can replicate it effortlessly. Furthermore, the SCT attack was validated by
the developed ASIC prototype in a 65nm CMOS technology. The ASIC prototype
comprises four crypto cores, two versions of the AES, and two of the Present,
each altered with an SCT. The chip testbench results demonstrated the attack’s
success for all samples available, where the cryptokey was extracted via power
signature. The measurements have also demonstrated the robustness of the SCT
against skews from the manufacturing process. On top of that, the testchip had
all 4 SCTs inserted in less than two hours, making the attack viable in an actual
fabrication-time attack as it has a limited time window.
Moreover, an upgraded version of the framework for blindly inserting HTs is
presented to further demonstrate ECO’s framework capabilities – termed BioHT.
Hence, the BioHT framework leverages reverse engineering techniques to introduce
sophisticated trojan into circuits, with little knowledge about the target designs.
Furthermore, the BioHT experiments demonstrated that the complete approach is
fast, allowing the user to execute it multiple times in the time frame between the
tape-out and manufacturing. Thus, enabling the selection of the optimum trojan
out of several possibilities. Moreover, BioHT also demonstrates how a realistic
trojan insertion would be performed and can guide risk assessment, defense, and
future research on the topic.

93

Kokkuvõte
Integraallülituste turvateadlik füüsiline süntees
Kaasaegse riistvaraseadme kontseptsioon on ühine jõupingutus, mida jagatakse erinevate
üksuste vahel. See omadus muudab integraallülituse tarneahela detsentraliseerituks,
keerukaks ja väga globaliseerituks. Veelgi enam, tänapäevaste riistvaraseadmete jaoks
on integraallülituse tarneahela praegune korraldus vaieldamatult julgeolekuoht. Kuna
kriitilistes infrastruktuurides kasutatakse üha enam integraallülitustel põhinevaid süs-
teeme, siis võib üks neisse süsteemidesse kuuluv tahtlikult kahjustatud kiip põhjustada
tundlike andmete lekkimist või veelgi kohutavamaid tagajärgi. Seetõttu on tehnoloogiate
terviklikkuse tagamine ülioluline digitaalse teabe kaitsmisel ja kriitiliste operatsioonisüs-
teemide ülalpidamisel – just see on riistvaraturbe valdkonna fookus. Integraallülitus on
oma eluea jooksul vastuvõtlik paljudele hiljuti demonstreeritud ohtudele, nagu riistvara
troojade lisamine, intellektuaalomandi piraatlus, ületootmine, pöördprojekteerimine
ja külgkanalite rünnakud. Siiski on välja pakutud vaid käputäis konkreetsete ohtude
vastumeetmeid – näiteks jaotatud tootimne, loogika lukustus ja integraal lülituse mas-
keerimine. Kahjuks muudab antud meetotite praegune seisukord nende praktilisuse ja/või
ebapiisavate turvagarantiide tõttu ebasobivaks integraallülituste suuremahulisel toot-
misel. Käesolev lõputöö esitab põhjaliku uuringu erievate riistvaraturbe teemade kohta.
Esitatud tulemused on suunatud riistvaraturbe valdkonna kiirendamisele, et määrata
kindlaks integraallülituste turbetase. Peamised panused on kokku võetud järgmiselt:

Avatud lähtekoodiga graafika töötlemisüksuse (GPU) arhitektuur, mis aitab
uurida domeenile iseloomulikke rakendusspetsiifilisi integraallülituskiiren-
deid (ASIC), mis põhinevad GPU-laadsetel kiirenditel – mida nimetatakse
G-GPU-ks. Võimsad kaasaegsed süsteemkiibid on integraallülituspõhiste süsteemi-
de kiireks arendamiseks olulised.Siiski puudub kirjanduses avatud lähtekoodiga
GPU arhitektuur ASIC-u jaoks. Seetõttu pakun välja avatud lähtekoodiga GPU-
arhitektuuri, mis on suunatud ASIC-ule, et täita see uurimislünk selle lõputööga.
Kirjanduses vähe saadaolevate GPU-arhitektuuride hulgas on väljatoodud FG-
PU, mis on programmeeritaval ventiilmaatriksil (FPGA) baseeruv GPU disain.
Baseerudes FGPU lähetkoodile muutsin antud disaini ASIC spetsiifiliseks ja op-
timeerisin arhitektuuri mis kasutaks nutikat mälujaotust – saadud arhitektuuri
nimetatakse G-GPU-ks. G-GPU jõudlustulemused võrreldes RISC-V-ga näitavad,
et G-GPU-l on suure paralleelsusega rakenduste jaoks suurepärased eelised. Lisaks
on avalikustatud ka täielik raamistik G-GPU intellektuaalomandi genereerimiseks
registersiirde tasemelt kuni tootmisvalmis kiibi pinnalaotuse disainini – nimega
GPUPlanner. Antud raamistikku on ka lisatud toitevärava lisamise võimekus, mis
võimaldab luua väikesema voolutarbega sedmeid, töökindlamaid disaine ja isegi
lisada turvalahendusi. Lisaks on tulemustes väljatoodud 6 G-GPU tootmisvalmis
pinnalaotuse disaini, mis on realiseeritud 65 nm CMOS-tehnoloogias. Need ver-
sioonid erinevad arvutusüksuste arvu, töösageduse ja toitevärava rakendamise
poolest.

Ülevaade jaotatud-tootmise rünnakute ja kaitsemehhanismide kohta. Prae-
guse integraallülituste tarneahela korralduse tõttu peavad enamik disainiettevõtteid

94

oma disainitootmise allhankima kitsalt tegutsevatele kiibitootmis tööstustele. See
praktika on vaieldamatult turvaoht integraallülituste tootmisel. Nende kiibi pinna-
laotuse disainide avaldamine kolmandatele osapooltele võib paljastada kaubamärgi
intellektuaalomandi saladusi. Halvima stsenaariumi korral võib sellises tehases
olev petturlik element pahatahtlikel põhjustel kiibi pinnalaotust manipuleerida.
Jaotatud tootmine on paljulubav kaitsetehnika, mis aitab ületada integraallü-
lituste tootmise allhangetega seotud muresid. Jaotatud tootmisel toodetakse
FEOL-i (Front End of Line) kihte (transistorid ja alumised metallikihid) ebausal-
dusväärses kõrgekvaliteedilises kiibitootmis tehases. BEOL (Back End of Line)
kihid (kõrgemad metallikihid) on toodetud usaldusväärses madala kvaliteediga
tehases. Käesolevas lõputöös esitatud uuring on üksikasjalik ülevaade antud teh-
nikast, paljudest rünnakutest jaotatud tootmise vastu ja kirjanduses kirjeldatud
võimalikest kaitsetehnikatest. Lühidalt on välja toodud erinevad ohumudelid ja
eeldused rünnakute kohta. Kaitsetehnikate uuringud on klassifitseeritud järgnevalt:
lähedus põhine häirimine, traadi tõstmine ja pinnalaotuse hägustamine. Ülevaate
peamine tulemus on tuua esile lahknevus paljude uuringute vahel – väidetavalt on
võimalik riistvara kirjeldust rekonstrueerida peaaegu täiusliku täpsusega. Seevastu
on esitatud vaid marginaalt edu BEOL-ühenduste taastamisel. Lõpuks arutatakse
jagatud tootmisega seotud tulevikusuundumusi ja väljakutseid, sealhulgas tehnika
tõhususe hindamise raskusi.

Riistvaratroojalaste lisamise metootika tootmisvalmis pinnalaotus disainile.
Üks paljudest potentsiaalsetest ohtudest integraallülitustele tootmise ajal on riistva-
ralise troojalase lisamine. Kirjanduses on korduvalt demonstratreeritud riistvaralisi
troojalasi, mõned isegi ränis; aga ükski neist ei avaldanud, kuidas nende riistvara
troojalane on sisestatud. Selles lõputöös pakkusin välja tervikliku raamistiku, mis
põhineb ECO-funktsioonil riistvara troojade (HT) sisestamiseks tootmisvalmis
pinnalaouts disainile ja uudset külgkanali riistvara trooja (SCT) arhitektuuri, et
demonstreerida antud raamistikku. SCT on loodud toetama külgkanalite rünna-
kuid, mida kutsutakse esile kontrollitud energiatarbimisega. SCT sisestamine on
üksikasjalikult kirjeldatud, näidates, et tehases olev petturlik element suudab seda
vaevata korrata. Kirjeldatud SCT rünnak valideeriti välja töötatud ASIC proto-
tüübis, mis oli toodetud 65 nm CMOS-tehnoloogias. ASIC-prototüüp koosneb
neljast krüptotuumast, kahest AES-i versioonist ja kahest PRESENT-i versioonist,
millest igaüks on muudetud SCT-ga. Kiibi testimise tulemused näitasid rünnaku
edukust kõigi katsete puhul, kus krüptovõti ekstraheeriti voolutarbe karrakteristiku
kaudu. Mõõtmised näitasid ka SCT vastupidavust tootmisprotsessist tulenevate
variatsioonide vastu. Peale selle sisestati testkiibile kõik 4 SCT-d vähem kui kahe
tunniga, muutes antud rünnaku reaalseks ohuks tegeliku tootmise korral, kuna
sellel on piiratud ajavahemik.

Lisaks esitletakse HT-de pimesi lisamist raamistiku täiendatud versioonis, et veelgi
demonstreerida ECO raamistiku võimeid – nimega BioHT. Seega kasutab BioHT
raamistik pöördprojekteerimise tehnikaid, et viia integraallülitustesse keerukaid
troojalasi, omades sealhulgas vähe teadmisi antud disaini kohta. Lisaks näitasid
BioHT katsed, et täielik lähenemine on kiire, võimaldades kasutajal troojade

95

lisamist tootmisvalmis disaini ja reaalse tootmise vahelisel ajal mitu korda läbi
viia. Seega tekib võimalus mitme võimaliku toojalase hulgast valida välja kõige
optimaalsem. Lisaks näitab BioHT ka seda, kuidas realistlik trooja sisestamine
toimuks, ning võib suunata riskianalüüsi, kaitset ja ka sellel teemal tulevasi
uuringuid.

96

Appendix 1

[I]
T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks,
defenses, and challenges,” IEEE Access, vol. 8, pp. 184013–184035, 2020

97

Digital Object Identifier 10.1109/ACCESS.2020.3029339

A Survey on Split Manufacturing:
Attacks, Defenses, and Challenges
TIAGO D. PEREZ, SAMUEL PAGLIARINI
Tallinn University of Technology (TalTech)
Department of Computer Systems
Centre for Hardware Security
Tallinn, Estonia
(e-mails: {tiago.perez,samuel.pagliarini}@taltech.ee)

Corresponding author: T. D. Perez (e-mail: tiago.perez@taltech.ee).

This work was supported by the European Union through the European Social Fund in the context of the project “ICT programme”.

ABSTRACT
In today’s integrated circuit (IC) ecosystem, owning a foundry is not economically viable, and therefore most
IC design houses are now working under a fabless business model. In order to overcome security concerns
associated with the outsorcing of IC fabrication, the Split Manufacturing technique was proposed. In Split
Manufacturing, the Front End of Line (FEOL) layers (transistors and lower metal layers) are fabricated
at an untrusted high-end foundry, while the Back End of Line (BEOL) layers (higher metal layers) are
manufactured at a trusted low-end foundry. This approach hides the BEOL connections from the untrusted
foundry, thus preventing overproduction and piracy threats. However, many works demonstrate that BEOL
connections can be derived by exploiting layout characteristics that are introduced by heuristics employed
in typical floorplanning, placement, and routing algorithms. Since straightforward Split Manufacturing may
not afford a desirable security level, many authors propose defense techniques to be used along with Split
Manufacturing. In our survey, we present a detailed overview of the technique, the many types of attacks
towards Split Manufacturing, as well as possible defense techniques described in the literature. For the
attacks, we present a concise discussion on the different threat models and assumptions, while for the
defenses we classify the studies into three categories: proximity perturbation, wire lifting, and layout
obfuscation. The main outcome of our survey is to highlight the discrepancy between many studies –
some claim netlists can be reconstructed with near perfect precision, while others claim marginal success
in retrieving BEOL connections. Finally, we also discuss future trends and challenges inherent to Split
Manufacturing, including the fundamental difficulty of evaluating the efficiency of the technique.

INDEX TERMS Hardware Security, Hardware Trojans, Integrated Circuits, IP Theft, Reverse Engineering,
Split Manufacturing

I. INTRODUCTION

Counterfeiting and intellectual property (IP) infringement are
growing problems in several industries, including the elec-
tronics sector. In Europe, for instance, seizures of counterfeit
electronics products increased by almost 30% when compar-
ing the 2014-2016 to the 2011-2013 period [1]. Legitimate
electronics companies reported about $100 billion in sales
losses every year because of counterfeiting [2].

As electronic systems are being increasingly deployed in
critical infrastructure, counterfeit and maliciously modified
integrated circuits (ICs) have become a major concern. The
globalized nature of the IC supply chain contributes to the
problem as we lack the means to assess the trustworthiness

of the design and fabrication of ICs. It is conceivable – if not
likely – that a fault in a low-quality counterfeit IC (or even
a maliciously modified IC) will effectively disrupt critical
infrastructure with grave consequences. Therefore, hardware
security has gained more attention in the past decades, emerg-
ing as a relevant research topic.

As the IC supply chain has become more globalized,
ensuring the integrity and trustworthiness of ICs becomes
more challenging [3]. When a modern IC is conceived, the
probability that all involved parties are trusted is, in practice,
close to zero. The process of conceiving an IC can be broken
down into three major steps: design, manufacturing, and
validation. Designing an IC involves arranging blocks and

VOLUME XXX, 2020 1

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

Counterfeits

Out-of-spec/
Defective

Aged

Non
 Functional

New

Recycled

Fabrication
 Outside Contract

Performance

Reverse
 Engineered

Pirated IP

 Manufacturer
Reject

Fake
 Certifications

Forged
 Changelog

 Silicon Time
Bomb
Backdoor

Forged
DocumentationRecycled Remarked TamperedClonedOverproduced

FIGURE 1. Taxonomy of counterfeit electronics (adapted from [3]).

their interconnections. Some blocks are in-house developed,
while some are third-party IPs. Finally, a layout is gener-
ated by instantiating libraries that might also be in-house
developed or provided by third parties. The resulting layout
is then sent to a foundry for manufacturing. The process
of validation requires test for physical defects as well as
verification of packaged parts for correct functionality. Both
test and packaging facilities may be untrusted, as these efforts
are often offshored. Thus, in order to produce an IC, sensitive
information almost inevitably is exposed to untrusted parties.
Today’s reality is that ICs are vulnerable to many hardware-
based threats, including insertion of hardware trojans, IP
piracy, IC overbuilding, reverse engineering, side-channel
attacks, and counterfeiting. These threats are discussed in
details in [4].

Hardware trojans, in particular, are malicious modifica-
tions to an IC, where attackers insert circuitry (or modify the
existing logic) for their own malicious purposes. This type
of attack is (typically) mounted during manufacturing, as the
foundry holds the entire layout and can easily identify critical
locations for trojan insertion. Third-party IPs can also contain
trojans/backdoors that may contain hidden functionalities,
and which can be used to access restricted parts of the design
and/or expose data that would otherwise be unknown to the
adversary.

IP piracy and IC overbuilding are, essentially, illegal own-
ership claims of different degrees. As said before, during
designing an IC, third-party and in-house developed IPs are
utilized. The untrusted foundry (or a rogue employee of it)
can copy one of those IPs without the owner’s authorization.
Similarly, malicious foundries can manufacture a surplus of
ICs (overbuilding) without the owner’s knowledge, and sell
these parts in the grey market.

Reversing engineering of ICs has been extensively demon-
strated in the specialized literature [5]. An attacker can
identify the technology node and underlying components
(memory, analog, and standard cells), from which a gate-level
netlist can be extracted and even a high-level abstraction can
be inferred [6]. Reverse engineering can be effortlessly exe-
cuted during manufacturing, as the foundry holds the entire
layout and most likely promptly recognizes some of the IP as
well. After fabrication, – when ICs are already packaged and

deployed – reverse engineering is more laborious but can still
be executed by a knowledgeable adversary.

According to [3], counterfeit components are classified
into seven distinct categories, as illustrated in Figure 1. Recy-
cled, remarked, out-of-spec/defective, and forged documen-
tation are intrinsic after-market problems, where products
are offered by parties other than the original component
manufacturer or authorized vendors. These cases are high-
lighted in red. On the other hand, overproducing, cloning, and
tampering are problems faced during the designing and/or
fabrication of ICs. These cases are highlighted in blue. For
this reason, in this paper, we will focus on these threats. It
is important to realize that these threats could be avoided
if a trusted fabrication scheme was in place. However, the
escalating cost and complexity of semiconductor manufac-
turing on advanced technologies made owning an advanced
foundry unfeasible for design companies, which now have
the tendency to adopt the fabless business model [7]. Con-
sequentially, outsourcing of the manufacturing exposes their
entire layout to untrusted foundries, leaving their designs
vulnerable to malicious attacks.

While many ad hoc techniques have been proposed to
individually combat these threats, very few solutions di-
rectly address the lack of trust in the fabrication process.
Split Manufacturing stands out from other techniques as it
promotes a hybrid solution between trusted and untrusted
fabrication. The technique was first pitched to DARPA circa
2006 in a white paper authored by Carnegie Mellon and
Stanford universities. Later, it was picked by IARPA which
then launched the Trusted IC program [8] that successfully
stewarded much of the research in the area and led to this
survey.

In Split Manufacturing, the key concept is to split the
circuit in two distinct parts before manufacturing, one con-
taining the transistors and some routing wires, and the other
containing the remaining routing wires. These parts are then
fabricated in different foundries. The anatomy of an IC is il-
lustrated in Figure 2, containing two set of layers, the bottom
layer where the transistors are built, called Front end of the
Line (FEOL), and the top layer where the metal layers are
built for routing purposes, called Back end of Line (BEOL).
The metal layers are referred as MX, where X is the level of

2 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

...
...

...

Wire
Via

M1, V1
M2, V2
M3, V3
M4, V4
M5, V5
M6

MX, VX-1

FEOL
LAYER

BEOL
LAYER

FIGURE 2. Anatomy of an integrated circuit (adapted from [10]).

the layer. M1 is the lowest layer at the bottom of the stack.
Connections between metals are made by vias referred as
VX, following the same naming scheme for metals. In Split
Manufacturing, the FEOL is first manufactured in a high-
end foundry, and later the BEOL is stacked on top of it by a
second (and possibly low-end) foundry. This process requires
electrical, mechanical, and/or optical alignment techniques
to ensure the connections between them. Additionally, FEOL
and BEOL technologies have to be compliant with each other
[9] regarding the rules for metal/via dimensions where the
split is to be performed. The split can be performed at the
lowest metal layer (M1) or at higher layers, for which trade-
offs are established between attained security and overheads.
If the BEOL and FEOL technologies are vastly different from
one another, Split Manufacturing may incur heavy overheads.

In this work, the focus is on the Split Manufacturing tech-
nique. As described above, Split Manufacturing can tackle
threats that occur during the fabrication. It avoids overpro-
duction, reverse engineering (to some extent) and unwanted
modifications, limiting the capability of attackers. In Section
II, we provide a background and more in-depth explanation
of the technique. We address security threats in Section
II, demonstrating the potential vulnerabilities found in split
circuits and describing the state-of-the-art attacks proposed
until the present day. In Section IV, the security of split
circuits is discussed, showing how it can be improved using
enhancement techniques. Future trends and lessons learnt are
discussed in Section V. Finally, our conclusions are presented
in Section VI.

II. SPLIT MANUFACTURING: BACKGROUND
As mentioned before, in order to have access to advanced
technologies, many design companies have to outsource their
IC manufacturing to untrusted high-end foundries. Protecting
their designs against threats that may occur during manufac-
turing is a concern. Designs can be protected by applying
the Split Manufacturing technique, thus combating all threats
highlighted in blue in Figure 1.

Split Manufacturing protects a design by hiding sensitive
data from the untrusted foundry. This is achieved by splitting
the IC into two parts before manufacturing, a horizontal cut

that breaks the circuit into one part containing the transistors
and some (local) routing wires, and another containing only
routing wires. These parts are termed FEOL and BEOL.

As the FEOL and the BEOL of an IC are built sequentially,
first FEOL and then BEOL, this characteristic enables the
Split Manufacturing technique. Since the FEOL contains
the transistors and possibly a few of the lowest ultra-thin
metal layers – the most complex parts of an CMOS pro-
cess [11] –, it is logical to seek to use a high-end foundry
for its manufacturing, even if said foundry is not trusted.
Completing the IC can then be done in a trusted low-end
foundry, where the BEOL is stacked on top of the FEOL.
Split Manufacturing was successfully demonstrated in [9],
[12], [13], where designs were manufactured with ~0% of
faults, and are reported to present a performance overhead of
about 5%. Therefore, the technique is, in principle, feasible
and available for design companies to make use of, such that
they can utilize advanced foundries without fully exposing
their layouts during manufacturing.

However, there are many caveats to Split Manufacturing.
The technique can be successfully applied only if the tech-
nologies used to build the FEOL and BEOL are “compat-
ible”. In theory, a layout can be split at any layer if the
chosen layer presents a good interface between FEOL and
BEOL. However, since advanced technologies utilize the
dual-damascene fabrication process, the layout can only be
split on metal layers [14]. Thus, the FEOL cannot terminate
in a via layer. The dual-damascene process is characterized
by patterning the vias and trenches in such a way that the
metal deposition fills both at the same time, i.e., via-metal
pairs (e.g., V1 and M2) must mandatorily be built by the same
foundry.

Two technologies are said to be compatible with each other
if there is a way for a BEOL via to land on the FEOL
uppermost layer while respecting all design rule checks
(DRCs) of both technologies. DRCs are used to guarantee the
manufacturability and functionality of an IC, and are defined
with respected to the characteristics of the materials utilized
and to tolerance ranges of the manufacturing processes (e.g.,
polishing, patterning, and deposition). These rules encom-
pass minimum enclosure, width, spacing, and density checks.
Modern technologies have several options for via shapes
– as long as one via shape is valid, the technologies are
compatible for Split Manufacturing purposes. However, in
practice, to keep the overhead of the technique under control,
an array of via shapes must be feasible, thus providing the
physical synthesis with a rich selection for both power and
signal routing.

According to [9], compatibility between two technologies
can be generalized by enclosure rules as in Eq. 1, where
MW.U.x is the minimum width of Mx on untrusted foundry,
VW.T.x is the minimum width of Vx on trusted foundry
and EN.T.x is the minimum enclosure on trusted foundry.
These rules are illustrated in Figure 3, where the left side of
the image portrays a cross section view and the right side
shows the top view. According to Figure 3, the minimum

VOLUME XXX, 2020 3

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

Mx

Vx

Mx+1

EN.T.x

VW.T.x

MW.U.x

EN.T.x

VW.T.x

FIGURE 3. Compatibility rules between FEOL and BEOL (adapted from [9]).

enclosure width, Mx.EX.Vx, must be compatible between
the two foundries. In modern technologies, Equation 1 is no
longer sufficient as it does not capture the intricate rules for
vias and line endings (enclosure from 1 side, 2 sides, 3 sides,
T-shaped/hammerheads, etc.).

MW.U.x ≥ VW.T.x+ (2EN.T.x) (1)

Split Manufacturing also presents challenges on the design
flow front, which is illustrated in Figure 4. An in-house team
designs the circuit, from RTL to layout. Most likely, the
layout contains IPs obtained from third parties. Depending
on the metal layer where the layout is to be split, it may
affect existing IP. Logic and memory IP may use higher metal
layers – memories typically require 4 to 5 metal layers, while
standard cells typically require 2 metal layers –, limiting
where the split can be done. Standard cells and memories
have to be re-designed if they use metal layers that will be
split, a grave challenge that may render Split Manufacturing
significantly harder to execute.

Still referring to Figure 4, the FEOL and BEOL are gener-
ated using a hybrid process design kit (PDK), and then later
split to be manufactured. After splitting the layout correctly,
the FEOL is first manufactured in a high-end foundry, and
later the BEOL is stacked on top of it by a second (and
possibly low-end) foundry.

Even by splitting the layout, it is often argued that the
FEOL exposes enough information to be exploited. Attacks
towards the FEOL can effectively retrieve the BEOL con-
nections by making educated guesses. The efficiency of the
guessing process is inherently linked to the threat model
assumed, which determines the information the attacker pos-
sesses to begin with. The literature describes two distinct
threat models:

• Threat model I: an attacker located at the untrusted
foundry holds the FEOL layout and wants to retrieve
the BEOL connections.

• Threat model II: an attacker located at the untrusted
foundry holds the entire gate-level netlist that is as-
sumed to be provided by a malicious observer. The
attacker here still holds the FEOL layout and wants to
retrieve the BEOL connections. [15].

It is important to emphasize that the second threat model
completely nullifies the security introduced by Split Man-
ufacturing. Possessing the gate-level netlist makes reverse

engineering the layout a trivial task, as if the attacker held
the entire layout, not only the FEOL. Assuming the attacker
has knowledge about the netlist challenges the integrity of
the design company itself. If a rogue element exists inside the
design company, other representations of the design could be
equally stolen, such as the register-transfer level (RTL) code
of the design, or even the entire layout (including the BEOL).
It could be argued that this vulnerability is so severe that Split
Manufacturing virtually stops making sense. For this reason,
threat model I is the focus in this work. However, as our goal
is to present a comprehensive survey, related works that use
threat model II will be covered as well.

Assuming threat model I, an attacker already knowing
all the layers that make up the FEOL, is now interested in
retrieving the BEOL connections to recreate the full design
(or as close as possible). The commonly used assumption
is that attackers are powerful and work within the untrusted
foundry in some capacity. Thus, the attackers have deep
understanding about the technology. Extracting the (still
incomplete) gate-level netlist from a layout is, therefore, a
trivial task for the attacker.

Many approaches to retrieve the BEOL connectivity have
been proposed, several of which are termed proximity at-
tacks [10], [16], [17]. Since EDA tools focus on optimizing
power, performance, and area (PPA), the solution found by
a placement algorithm (that uses heuristics internally) tends
to place connected cells close to one another as this will, in
turn, reduce area, wirelength, and delay. Therefore, finding
the correct missing connections between FEOL and BEOL
can be done by assessing input and output pins that are in
proximity (thus, the name proximity attack). The more input
and output pins to connect, the higher is the probability to
make a wrong connectivity guess. Thus, a higher level of
security is achieved by splitting the circuit at the lowest metal
layer possible.

As a promising technique to enhance the security of ICs in
this era of fabless chip design, Split Manufacturing still faces
some enormous challenges:

Logistical challenge: Split Manufacturing is not
presently incorporated into the IC supply chain. Finding
foundries with compliant technologies that are willing
to work with each other is not trivial.
Technological challenge: even within compliant tech-
nologies, non-negligible overheads can be introduced if
they are vastly different1. In the worst-case scenario, it
can make routing impossible. Thus, this fact narrows
down the technology choices available and feasibility of
certain layers as candidates for splitting.
Security challenge: the attained security of straightfor-
ward Split Manufacturing is still under debate. Attacks
towards the FEOL can be effective, where the hidden
connections can be retrieved.

1For a thorough discussion and silicon results on BEOL-related over-
heads, please refer to [18].

4 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

G1
G2

G3
G4

G5

G6

I0
I1

I2

I3
I4 I5

O1

O2

Third-Party
IPs Libraries

Ph
ys

ic
al

Sy
nt

he
si

s
In-House Team

Desigining

Sp
lit

Layout Generation

Gate Gate Gate
S S SD D D

M1

M2

M3

M4

Mx

Gate Gate Gate
S S SD D D

M1

Manufacturing

U
nt

ru
st

ed
 F

ou
nd

ry

M4

Mx

Tr
us

te
d

 F
ou

nd
ry

Te
st

 &
 P

ac
ka

ge

Integrated CIrcuit

PDK

FIGURE 4. Split Manufacturing Design Flow.

For the purpose of this survey, we categorized related
works in the literature as attacks and defenses. In attacks,
authors proposed new attack models or modifications of
existing attacks in order to improve their effectiveness. In
defenses, authors proposed new techniques to use together
with Split Manufacturing in order to improve its security
level.

III. ATTACKS ON SPLIT MANUFACTURING
The Split Manufacturing technique was developed to protect
ICs against threats related to manufacturing in potentially
untrusted foundries. In practical terms, to split the layout
means to hide some connections from the untrusted foundry.
The security provided by Split Manufacturing is based on
the fact that the attacker in the FEOL foundry cannot infer
the missing BEOL connections. This assumption, however,
was challenged by several works where authors proposed
attack approaches that can potentially retrieve the missing
connections with varying degrees of success. In the text that
follows, we present works that proposed Split Manufacturing
attacks. These attacks are discussed in chronological order
as compiled in Table 1. For each studied attack, we reported
the related threat model, attack type, novelty, and benchmark
circuits used in experiments. Additionally, we reported the
largest and average size of the circuits utilized in each
work (measured in number of gates). The circuit size is an
important metric when analyzing the Split Manufacturing
technique because its effectiveness is often proportional to
circuit size. In Table 2, we compiled results for when the
smallest and largest studied circuits are under attack. Also,
we reported the circuit size and, if defined, the split layer that
the author selected to split the circuit at.

The first reported attack is by Jeyavijayan et al. and is
described in [10]. In this work, the authors assumed that naive
Split Manufacturing (i.e., splitting a layout without care for
the connections) is inherently insecure. They introduced the
concept of proximity attacks that exploits “vulnerabilities”
introduced by EDA design tools. Since EDA tools focus
on optimizing for PPA, the solution found by a placement
algorithm tends to place logically connected cells close to one
another so they become physically connected during routing.
Therefore, the distance between output-input pairs can be

G1
G2

G3
G4

G5

G6

I0
I1

I2

I3
I4

I5

O1

O2

Partition A

Partition B

O3

I6

Target Pin
Candidate Pin

FIGURE 5. Example of a partitioned circuit.

used as a metric to recover the missing BEOL connections.
Designs are commonly partitioned during physical imple-

mentation, i.e., separated into small logical blocks with few
connections between them. That way, the designer has total
control of the floorplaning regarding the placement of blocks.
This approach also allows for blocks to be implemented
separately and later integrated, creating a sense of parallelism
in the design flow which can reduce the overall time required
for executing physical synthesis. Consider as an example the
circuit illustrated in Figure 5 which contains two partitions,
A and B, each with 3 gates. Partition A has 3 input pins
and one output pin, while partition B has three input pins
and two output pins. The partitions have only one connection
between them, connecting the output pin of gate G2 with one
of the inputs of gate G3. Consider a target output pin from
partition A Px,A,out and its corresponding candidate input
pin from partition B Px,B,in. During placement, the EDA
tool will attempt to place the pin Px,A,out as close as possible
to Px,B,in, possibly closer than any other pin in partition
B. Using this insight, an attacker may recover the missing
connections in the FEOL layout, performing then a proximity
attack. The authors argued that their proposed attack flow is
successful due to being able to leverage the following “hints”
provided by the EDA tools:

Hint 1 - Input-Output Relationship: partition input pins
are connected either to another partition output pin or to

VOLUME XXX, 2020 5

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

an input port of the IC (i.e., input to input connections
are excluded from the search space).
Hint 2 - Unique Inputs per Partition: input-output pins
between partitions are connected by only one net. If a
single partition output pin feeds more than one input pin,
the fan-in and fan-out nodes are usually placed within
the partitions (i.e., one-to-many connections are ruled
out from the search space).
Hint 3 - Combinational Loops: in general, only very
specific structures are allowed to utilize combinational
loops (e.g., ring oscillators). These structures are very
easy to identify. In most cases, random logic does
not contain combinational loops (i.e., connections that
would lead to combinational loops can be excluded from
the search space).

An attacker can correctly connect a target pin to a candi-
date pin by identifying the closest pin from a list of possible
candidates. The list of possible candidates is created by
observing the hints mentioned above. A possible candidate
pin is an unassigned output pin of another partition and
an unassigned input port of the design. Then, a minimum
distance metric is used to connect the pins based on the
previously discussed heuristic behavior of EDA tools.

In Algorithm 1, we described the proximity attack detailed
in [10]. The input to the algorithm is the FEOL layout,
from which the information about unassigned input-output
ports can be derived. The algorithm does not describe the
specifics of how to derive a netlist from a layout. However,
the complexity of this task is rather straightforward. It is
assumed that the attacker possesses information about both
the PDK and the standard cell library. In many cases, the
untrusted foundry is the actual provider of both2. From there,
a layout in GDSII or OASIS format can be easily reverted to
a netlist by any custom design EDA tool.

From the gate-level netlist, the algorithm chooses an ar-
bitrary TargetPin from the unassigned partition input pins
and output ports, creates a list of possible CandidatePins,
and then connects the TargetPin to the closest pin in this list.
After each connection, the netlist is updated. This procedure
is repeated until all unassigned ports are connected. When the
procedure is over, the attacker obtains the possible missing
BEOL connections. If all guesses were correct, the original
design has been recovered and Split Manufacturing has been
defeated.

Algorithm 1 was originally applied to the ISCAS'85 [24]
suite of benchmark circuits. These circuits were originally
selected and published to help in comparing automatic test
pattern generation (ATPG) tools. Due to the small size of
these circuits, they may not be the best option to assess
the effectiveness of Split Manufacturing. The difficulty to
retrieve the BEOL connections is directly proportional to
the size of the circuit. The authors reported an average

2For the PDK, it is very natural that it is created by the untrusted foundry
itself. For standard cell libraries, the cells might be designed by the foundry
or by a third-party licensed by the foundry. In either case, the effort to revert
a layout to a netlist remains trivial.

Algorithm 1: Proximity attack
Input: FEOL layers
Output: Netlist with BEOL connections

1 Reverse engineer FEOL layers and obtain partitions;
2 while Unassigned partition pins or ports exist do
3 Select arbitrary unassigned pin/port as a targetPin;
4 ListOfCandPins = BuildCandPinsList(targetPin);
5 Select candPin from ListOfCandPins that is closest to

targetPin;
6 Connect targetPin and candPin;
7 Update netlist;

8 Return: netlist
9 BuildCandPinsList(targetPin)

Input: targetPin PX,i,in

Output: CandPins for targetPin
10 CandPins = Unassigned output pins of other partitions +

unassigned input ports of the design;
11 for each PinJ ∈ CandPins do
12 if CombinationalLoop(targetPin, PinJ) then
13 CandPins -= PinJ ;

14 Return: CandPins

effectiveness of 96% of Correct Connection Rate (CCR)
across all the benchmarks considered. For the c17 circuit
(smallest circuit in the ISCAS'85 suite with only 6 gates), all
the connections were retrieved correctly, thus demonstrating
that the algorithm is capable of retrieving the missing BEOL
connections. In Table 2, we highlight the best and worst
results in terms of CCR.

Jeyavijayan et al. [10] were the first to question the se-
curity of straightforward Split Manufacturing. Their proxim-
ity attack showed promising results, even if the considered
benchmark circuits were rather small in size. This was the
starting point for other studies proposing different attacks
to Split Manufacturing in an attempt to retrieve the missing
BEOL connections. Improvements over the original proxim-
ity attack, as well as other attacks, are compiled in Table 1.

The effectiveness of the proximity attack utilizing dis-
tance of unassigned pins alone as metric to find missing
BEOL connections was questioned by Magaña et al. [19].
The authors proposed to utilize both placement and routing
information in augmented proximity attacks. For their results,
large-sized circuits from the ISPD-2011 routability-driven
placement contest [25] were used. These benchmarks are
better representatives of modern circuits as they contain 9
metal layers and up to two million nets in a design. Thus,
in an attempt to increase the success rate of the attack for
large-sized circuits, they proposed routing-based proximity
in conjunction with placement-centric proximity attacks.

A key difference present in [19] is that this work utilizes a
different threat model (model II), claiming that the untrusted
foundry possesses information about the entire place &
routed netlist (as well as the FEOL layout). This assumption
is hard to reason if the attacker’s intent was to overproduce
the IC or pirate the IP. For these goals, clearly, this assump-
tion is unnecessary. The attacker himself can, if he indeed

6 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

TABLE 1. Threat Models, Attacks, and Metrics.

Work Year Threat
model

Attack type Novelty Benchmark suite(s) Largest circuit
size (gates)

Avg. circuit
size (gates)

[10] 2013 I Proximity Attack Based on Proximity ISCAS'85 3.51k 1288

[19] 2016 II Proximity Placement and routing proximity
used in conjunction ISPD'11 1.29M 951k

[20] 2018 I Proximity Network-Flow-Based with Design
Based Hints

ISCAS'85 & ITC'99 190.21k 9856

[21] 2018 I Proximity Proximity Attack Based on Machine
Learning ISPD'11 1.29M 951k

[22] 2019 I SAT SAT Attack without Proximity In-
formation

ISCAS'85 & ITC'99 190.21k 9856

[23] 2019 I SAT SAT attack dynamically adjusted
based on proximity information ISCAS'85 & ITC'99 190.21K 9856

TABLE 2. Benchmark Size and Comparison of Attack Results.

Work Benchmark Attack Split Layer Size (In Gate Count) Metric Result

[10] c17 Proximity Not Defined 6 CCR(%) 100
[10] c7552 Proximity Not Defined 3513 CCR(%) 94
[19] Superblue 1 Placement Proximity M2 847k % Match in List 12.84
[19] Superblue 1 Placement Proximity M2 847k CCR(%) 5.479
[19] Superblue 1 Routing Proximity M2 847k % Match in List 71.08
[19] Superblue 1 Routing Proximity M2 847k CCR(%) 0.651
[19] Superblue 1 Overlap (P&R) Proximity M2 847k % Match in List 13.05
[19] Superblue 1 Overlap (P&R) Proximity M2 847k CCR(%) 3.977
[19] Superblue 1 Crouting Proximity M2 847k % Match in List 82.08
[19] Superblue 1 Crouting Proximity M2 847k CCR(%) 0.651
[20] c7552 Network-flow Based Proximity Not Defined 3513 CCR(%) 93
[20] c7552 Proximity Not Defined 3513 CCR(%) 42
[20] B18 Network-flow Based Proximity Not Defined 94249 CCR(%) 17
[20] B18 Proximity Not Defined 94249 CCR(%) < 1
[21] Superblue 1 Proximity M6 847k % Match in list 33.40
[21] Superblue 1 Proximity M6 847k CCR(%) 0.76
[21] Superblue 1 ML M6 847k % Match in list 83.12
[21] Superblue 1 ML M6 847k CCR(%) 1.91
[21] Superblue 1 ML-imp M6 847k % Match in list 74.65
[21] Superblue 1 ML-imp M6 847k CCR(%) 2.11
[21] Superblue 1 ML-imp M4 847k % Match in list 75.45
[21] Superblue 1 ML-imp M4 847k CCR(%) 2.58
[22] c7552 SAT Attack Not Defined 3513 Logical Equivalence(%) 100
[22] B18 SAT Attack Not Defined 94249 Logical Equivalence(%) 100
[23] c7552 Improved SAT Attack Not Defined 3513 Logical Equivalence(%) 100
[23] B18 Improved SAT Attack Not Defined 94249 Logical Equivalence(%) 100

possesses the netlist, perform his own physical synthesis and
generate his own layout. The interest in reverse engineering
the BEOL connections of the original design diminishes.
Nevertheless, we report on the strategies employed by the
authors of [19] since they build on the approach proposed by
[10].

Regarding the attacks, the authors of [19] proposed four
different techniques to identify a small search neighborhood
for each pin. The goal is to create a neighborhood that is
small enough to make further pruning feasible, and therefore
increase the likelihood of including the matching pins. The
techniques are called placement proximity, routing proximity,
crouting proximity and overlap of placement and routing
proximity, and are described in the text that follows. The
circuit illustrated in Figure 6 is the example (before the split)
that will guide the discussion on these four techniques.

Placement proximity exploits the placement information of

cells. Each split wire is taken from the pin location of the
corresponding standard cell that is connected to it. A search
neighborhood is defined as a square region centered around
the corresponding pin with an area equal to the average areas
of the bounding boxes (BB) in a typical design. The authors
argued that it can also be measured based on BBs of the non-
split wires in the design under attack, under the assumption
that the number of wires that remain in the FEOL is also
very large in practice. Let us consider the circuit illustrated in
Figure 6 as an example. If the split is done at M2, the search
area defined using the placement proximity would contain
three gates as illustrated in Figure 7 (a). Thus, using the
placement proximity search area, the most likely connections
are illustrated by the green squares (candidate pins) and by
the red squares (target pins). Note that the layer at which
the layout is split does not affect the search area defined by
placement proximity.

VOLUME XXX, 2020 7

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

M2

M3

M1

FIGURE 6. Representation of the routing for the first 3 metal layers of a
simple circuit (adapted from [19]).

Routing proximity exploits the routing information. First,
for each split wire, pins are identified as the point where the
wire is actually cut at the split layer, i.e., the via location.
Next, a square area centered around those pins is defined. The
size of the square area is defined based on the average BBs of
the pins on that layer in the design. This procedure for iden-
tification results in different neighborhood sizes according to
the split layer location, i.e., the search radius adapts to the
routing resources of each layer. A search area defined using
routing proximity is illustrated in Figure 7 (b), highlighted in
gray and containing a set of routing wires and its respective
pins.

Crouting proximity takes into account routing congestion
by exploiting the union of placement and routing proximity.
The search area for each pin is defined in such way that the
ratio of number of pins to the search area is equal across all
the pins in the split layer. Thus, if a pin is located at a high
routing congestion area, the search area will be expanded
until the pin density in the new search area reaches a target
value or the search area grows to four times its starting value.
The starting value is set according to the split layer, set as
the average of numbers of pins which fall within a BB. A
search area defined using crouting proximity is illustrated in
Figure 7 (c).

The last strategy proposed by [19] also combines place-
ment and routing information. It is referred to as Overlap
of placement and routing proximities. The concept here is to
include a subset of pins identified by the placement proximity
list which have their corresponding pins included in the
routing proximity list. According to the author, intuitively,
the overlap then identifies a subset of pins which may be
more likely to point towards the direction of the matching

pin. A search area defined using the overlap of placement
and routing proximities is illustrated in Figure 7 (d).

Magaña et al. [19] assessed each strategy using the bench-
mark circuit superblue1. Different split layers were also con-
sidered. In Table 2, we compiled the results for split layer M2.
By comparing the results, it becomes clear that no strategy
was able to recover 100% of the missing BEOL connections.
The best result was only 5.479% of CCR. This is in heavy
contrast with the findings of [10]. However, as we previously
noted, the circuit sizes differ by orders of magnitude.

According to the authors of [19], proximity alone is in
no way sufficient to reverse engineer the FEOL. However,
proximity attacks have merit as they can be used to narrow
down the list of candidates to a significantly smaller size.
Using crouting proximity, in 82.08% of the cases, the search
area defined contained the matched pin in the list of candi-
dates. The authors also present results for a circuit split at
M8. We opt not to show these results in Table 2. Using the
circuit superblue1 as an example, the number of unassigned
pins when the circuit is split at M8 is only 1.2% of the pins
when split at M2. Therefore, the small number of unassigned
pins to be connected overshadows the large circuit used for
their experiments. It must also be emphasized that splitting
a circuit in such higher layers is rather impractical since M8
tends to be a very thick metal reserved for power distribution
in typical 10-metal stacks. There is very little value in hiding
a power distribution network from an adversary that wants to
pirate an IP. Once again, we opt not to show this result in our
comparisons.

A network-flow based attack model towards flattened de-
signs was proposed by Wang et. al [20]. The authors argued
that the proximity attack originally proposed by [10] utilizes
hints that can be used only by hierarchical designs, and that
modern designs are often flattened 3. Based on the original
proximity attack, they proposed a proximity attack utilizing
five hints: physical proximity, acyclic combinational logic
circuit, load capacitance constraint, directionality of dangling
wires, and timing constraint. Note that the first two hints are
already described by [10] and [19]. The three novel hints are
described below:

Load Capacitance Constraint: gates can drive a limited
load to honor slew constraints. Typically, maximum
load capacitance is constrained and has a maximum
value defined by the PDK and/or the standard cell
characterization boundaries. Hence, an attacker will
consider only connections that will not violate load
capacitance constraints.
Directionality of Dangling Wires: routing engines tend
to route wires from a source to a sink node along the
direction of the sink node. Therefore, the directionality
of remaining dangling wires at lower metal layers may

3We highlight that best practices in circuit design have changed over
the years. Hierarchical design was heavily utilized for many years, but it
lost favor due to the difficulty in performing reasonable timing budgeting
between the many blocks of a system. Thus, flattened designs are often used
to facilitate timing closure.

8 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

M2

(a) (b) (c) (d)
Union of Place & Route Proximity Overlap of Place & Route Proximity

Target Pin
Candidate Pin

Routing
Proximity

Placement
Proximity

Routing
Proximity

Placement
Proximity

M1

Placement
Proximity

Routing
Proximity

FIGURE 7. Multiple strategies for pin/connectivity search areas according to [19].

indicate the direction of their destination cell with a
high degree of certainty4. An attacker can disregard
connections in the other directions.
Timing Constraint: connections that create timing paths
that violate timing constraints can be excluded. An
attacker, through an educated guess of the clock period,
can determine a conservative timing constraint and ex-
clude any connections that would lead to slower paths.

The network-flow based attacked framework proposed by
Yang et al. considers two hints proposed by [10] plus the
aforementioned hints to create a directed graph G = (V,E),
where V is a set of vertices and E is a set of edges. The set
(V) is composed by the set of vertices corresponding to the
output pins Vo, and a set corresponding to the input pins (Vi),
the source vertex (S), and the target vertex (T). The set E
consists of ESo, edges from S to every output pin vertex,
Eoi, edges from output pin vertices to input pin vertices,
and EiT , which includes edges from every input vertex to
the target vertex. An example of this kind of representation
is shown in Figure 8, where (a) is the circuit with missing
connections and (b) is the network-flow representation. The
detailed problem formulation is omitted from this work. To
find the connections, a min-cost network-flow problem is
solved, where the decision variables are the flow xi,j going
through each edge (i, j) ∈ E . The authors utilized the
Edmons-karp algorithm [26] to solve this problem. Complex-
ity of the algorithm alone is given by O(V E2), however, in
the worst case it is required to run the algorithm V times;
thus, the run-time of the complete network attack is given by
O(V 2E2) in the worst case.

The network-flow approach was applied to ISCAS'85 and
ITC'99 [27] benchmark circuits. The ITC'99 circuits were
proposed as an evolution of the ISCAS'85 set, since the Test
community acknowledged that newer and larger circuits were
already in demand. For comparison, the authors applied both

4Metals usually have preferred directions that alternate along the stack
(i.e., if M1 is vertical, then M2 is horizontal). Therefore, this hint becomes
more effective if the attacker can observe more than one routing layer of the
FEOL

G1

G2

G3
G5

G6
G4

A

B

C

D

E

1

2
3

4

5

S

A 1

B 2

C 3 T

D 4

E 5

(a) (b)

FIGURE 8. (a) Circuit with missing connections. (b) Network-flow model for
inferring the missing connections. (Adapted from [20]).

the original proximity attack and the network-flow attack to
flattened designs. As shown in Table 2, their network-flow
proximity attack outperformed the original attack in terms of
CCR. However, despite the evident improvement, the attack
could only retrieve 17% of the missing BEOL connections
for a medium sized circuit (b18 from the ITC'99 suite).

A Machine Learning (ML) framework was used by Zhang
et al. [21] in an attempt to improve the attack proposed in
[19]. The same setup as previously discussed was utilized.
However, more layout features were incorporated in their ML
formulation, including placement, routing, cell sizes, and cell
pin types.

A high-level overview of their modeling framework is
shown in Figure 9 (a). First, they create a challenge instance
from the entire layout and only FEOL view. Next, for each
virtual pin (point where a net is broken on the split layer),
layout information is collected, including placement, routing,
cell areas, and cell pin as illustrated in Figure 9 (b). Using
this information, samples are generated which are fed into
the ML training process. Each sample carries information
of a pair of virtual pins which may or may not be matched.
Classifiers then are built by the ML framework using training
samples. After training and building the regression model,
cross validation is used for evaluation which ensures vali-
dation of the model is done on data samples which were
not used for training. Their framework faces scaling issues
when applied to lower split metal layers. An improved ML

VOLUME XXX, 2020 9

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

framework is then proposed as well, denoted by ML-imp, to
solve the scaling issues.

For their experiments, Zhang et al. [21] utilize the ISPD'11
benchmark suite. They compare results from their previous
work [19] with their ML and ML-imp frameworks. However,
they do not show results for lower split metal layers (e.g.,
M2). Instead, results are provided for M8, M6, and M4
splits. As pointed out before, utilizing higher layers for the
split effectively shrinks the otherwise large circuits used in
their experiments. A drastic reduction of unassigned pins is
expected for such higher layers, as higher metal layers are
used often for power routing, not for signal routing. Results
for the superblue1 circuit are shown in Table 2. Regarding
recovering missing BEOL connections, ML and ML-imp
could only retrieve around 2%, therefore not showing a huge
improvement over their previous work. However, search list
area accuracy showed significantly better results when com-
pared to their prior work. A caveat worth mentioning is that
the proposed machine learning framework needs the entire
layout during its modeling phase. This characteristic may,
in an extreme case, nullify the applicability for an attacker
that only holds the FEOL layout and cannot produce training
samples from other sources.

Attacks using proximity information as a metric are not
the only solution to recover missing BEOL connections. An
effective methodology to apply a Boolean satisfiability based
strategy is proposed by Chen et al. [22]. The authors claim
that their attack methodology does not need (or depend on)
any proximity information, or even any other insights into
the nature of EDA tools utilized in the design process. The
key insight in their work is to model the interconnect network
as key-controlled multiplexers (MUX). Initially, all combina-
tions of signal connections between the FEOL partitions are
allowed, as illustrated in Figure 10. First, a MUX network
is created in order to connect all missing paths in the circuit.
This MUX network leads to potential cyclic paths, thus, there
is a possibility to generate many combinational loops during
the attack process corresponding to incorrect key guesses.
Therefore, constraints on the key values are generated in
order to avoid activating the cyclic paths. The attack can be
summarized in 4 steps: identification of all cyclic paths, gen-
eration of cycle constraints, cycle constraints optimizations,
and finally, SAT attack. The authors utilize a SAT solver-
based attack method derived from CycSat [28]. The SAT
attack algorithm has as input the FEOL circuit with MUX
network and a packaged IC that serves as an oracle. The
algorithm outputs keys to be used in the MUXes such that
correct BEOL connections are made.

In reality, [22] presents a different interpretation of Threat
model I since the attacker is assumed to possess a functional
IC. This IC would then have to be available in the open
market for the attacker to be able to purchase it. This charac-
teristic severely narrows down the applicability of this SAT
attack. For instance, ICs designed for space or military use
will not be freely available, thus an oracle may not be known
to the attacker.

Experimental results presented by [22] utilize ISCAS'85
and ITC'99 benchmark circuits. It has been shown that their
attack could recover a logically correct netlist for all the
studied circuits. However, there is a small clarification to be
made that relates to what is a logically correct circuit. In
Table 2, two of those results are shown. For seven of the
studied benchmarks (c1908, c2670, c5315, c7552, b14, b15,
b17), the connections recovered are identical to the BEOL
connections. For the remaining benchmarks, the recovered
connections are not identical but logically equivalent to the
original circuit. In practice, the logically equivalent circuit
may present performance deviations from the original design.
Matching the performance of the original design can be
done by re-executing place and route using the logically
equivalent gate-level netlist. Depending on the attack goal, it
is possible that the attacker had already planned to re-execute
the physical synthesis flow again (say, to resell the IP in a
different form or shape). An attack that guarantees 100% of
logic equivalence of the recovered netlist is powerful enough,
allowing attackers to copy and modify split layouts.

In order to increase the efficiency and capacity of the
SAT attack proposed in [22], the authors proposed two
improvements in [23]. First, the size of the key-controlled
interconnect network that models the possible BEOL connec-
tions is reduced. Second, after the MUX network is inserted
into the FEOL circuit, the number of combinational cycles
it induces in the design for incorrect key guesses should
also be reduced. Proximity information is then exploited
to achieve the proposed improvements. The improved SAT
attack method which exploits proximity information showed
significant reduction in the attack time and increase in the
capacity. Same as in [22], the circuits tested were 100%
recovered, as shown in Table 2.

IV. SPLIT MANUFACTURING DEFENSES
Attacks toward Split Manufacturing showed promising re-
sults, as described in the previous section. A malicious at-
tacker has the real potential to recover the missing BEOL
connections. If the missing connections are successfully re-
covered, the security introduced by applying the technique
is nullified. Therefore, straightforward Split Manufacturing
is questioned by several works. Several authors proposed
defense techniques that augment the technique, i.e., tech-
niques that, when used together with Split Manufacturing,
do increase the achieved security against attacks. In Table 3,
we compile a comprehensive list of defense techniques found
in the literature. Each defense technique utilizes a different
metric and Threat model, depending upon the type of attack
they are trying to overcome. Since many of the studied
defense techniques often introduce heavy PPA overheads,
Table 3 also shows if the studied work assessed overheads
and which ones were addressed.

In the text that follows, the many defense techniques are
divided into categories, namely Proximity Perturbation (i.e.,
change the location of cells or pins), Wire Lifting (i.e., move
routing wires to upper layers), and Layout Obfuscation (i.e.,

10 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

Original Placed
& Routed
Design

Create
Challenge

Split
Layer

Extract Various
Layout Features

and Generates the
Training Samples

Train & Build
Regression Model

Test with Cross
Validation

M1

(a) (b)

Split
Layer

Cell Area

Hamming Distance
Between Pins

Routing

A

B

(B-A) = Wire Length

FIGURE 9. (a) Machine Learning Modeling by Zhang et al. [21]. (b) Few Exmples of Layout Features.

G1
G2 G3

G4

G5

Key Input

Key Input

0

1

S0

Mux

0

1

S0

Mux

Mux Network
Key

Key G6

FIGURE 10. MUX network for a bipartitioned FEOL circuit (Adapted from
[22]).

hide the circuit structure). We present the categories in this
exact order. For some techniques, it is worth mentioning that
overlaps do exist and that techniques could be categorized
differently. Thus, this categorization is our interpretation of
the state of the art and may not be definitive. Furthermore, the
boundaries between categories are not strict. For example, a
technique may perform a layout modification that promotes
proximity perturbation and leads to (indirect) wire lifting. In
Tables 4 and 5, we compile the results for the Proximity
Perturbation and Wire Lifting categories, respectively. To
demonstrate the effectiveness of each defense technique, we
compile the results for when the attack is done with and
without the defense. The results showed in Tables 4 and 5 are
for the smallest and largest circuits addressed in each studied
work. Additionally, we show the PPA overhead introduced
and, if specified, the split layer.

A. PROXIMITY PERTURBATION
Attacks toward split circuits are generally based on lever-
aging proximity information. The first category of defenses,
Proximity Perturbation, addresses this hint left by the EDA

tools. The goal of the techniques within this category is to
promote changes in the circuit such that the proximity infor-
mation between the FEOL pins is less evident. Therefore, the
success rate of the proximity attacks is decreased.

In [10], the authors proposed pin swapping to overcome
proximity attacks. Rearranging the partition pins can alter
their distance in such a way that the attacker is deceived. As
an example, if the pins PG3,B,in and PG6,A,in (Figure 5) are
swapped, the proximity attack will incorrectly guess the con-
nection between PG2,A,out and PG3,B,in. Thus, a sufficient
number of pins have to be swapped in order to create a netlist
that is significantly different from the original netlist (based
on some sort of metric for similarity). In [10], Hamming dis-
tance is proposed as a way to quantify the difference between
the outputs of the original netlist and the modified netlist.
Assuming the outputs of a circuit are arranged as a string
of bits, Hamming distance is defined as the number of bits
that change when two instances of this string are compared
to one another. The authors argued that the optimum netlist
is created when the Hamming distance is 50%. Therefore,
inducing the maximal ambiguity for a potential attacker.
Since the best rearrangement for N pins of partitions might
take N ! computations (rather computationally expensive),
pair-wise swapping of pins is considered in [10]. Pair-wise
swapping of pins results in O(N2) computations.

The modified netlist is created based on a series of rules.
Similarly, to the proximity attack, a list of candidates pins to
be swapped is created before the actual swap is applied. Since
not every pin can be swapped, a candidate pin to be swapped
should:

• be an output pin of the partition where the target pin
resides

• not be connected to the partition where the candidate pin
resides

• not form a combinational loop
Using the above constraints, a candidate pin is selected.

VOLUME XXX, 2020 11

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

TABLE 3. Split Manufacturing Defenses.

Work Year Threat Model Category Defense Metrics Defense Overheads Presented

[10] 2013 I Proximity Perturbation Pin Swapping Hamming
Distance

-*

[15] 2013 II Wire Lifting Wire Lifting k-Distance Power, Area, Delay and Wire-Length
[12] 2014 I Layout Obfuscation Layout

Obfuscation
for SRAMs and
Analog IPs

- Performance, Power and Area

[29] 2014 I Layout Obfuscation Obfuscation Tech-
niques

Neighbor
Connectedness
and Entropy

Performance and Area

[30] 2015 I Layout Obfuscation Automatic Obfus-
cation Cell Layout

Neighbor
Connectedness
and Entropy

Performance, Power and Area

[31] 2015 I Layout Obfuscation Obfuscated
Built-in Self-
Authentication

Obfuscation Con-
nection

Number of Nets

[19] 2016 I Wire Lifting Artificial Blockage
Insertion

Number of Pins -*

[32] 2016 I Wire Lifting Net Partition, Cell
Hidden and Pin
Shaken

- -*

[16] 2017 I Proximity Perturbation Routing Perturba-
tion

Hamming
Distance

Performance and Wire-Length

[33] 2017 I Wire Lifting Secure Routing
Perturbation for
Manufacturability

Hamming
Distance

Performance and Wire-Length

[34] 2017 I Proximity Perturbation placement-centric
Techniques

CCR Performance, Power and Area

[35] 2017 II Proximity Perturbation Gate Swapping and
Wire Lifting

Effective Mapped
Set Ratio and Av-
erage Mapped Set
Pruning Ratio

Wire-Length

[36] 2018 I Wire Lifting Concerted Wire
Lifting

Hamming
Distance

Performance, Power and Area

[20] 2018 I Proximity Perturbation Secure Driven
Placement
Perturbation

Hamming
Distance

Power and Wire-Length

[37] 2018 I Proximity Perturbation placement
and routing
perturbation

Hamming
Distance

Performance, Power and Area

[38] 2019 I Layout Obfuscation Isomorphic
replacement for
Cell Obfuscation

Isomorphic
Entropy

-*

[39] 2019 II Layout Obfuscation Dummy Cell and
Wire Insertion

k-security Area and Wire-Length

* Authors do not present any discussion regarding overhead.

The target pin also needs to be chosen carefully. In [10], IC
testing principles [40] and hints from the original proximity
attack are used to choose the target pin. The swapping pro-
cedure is described in Algorithm 2, where TestMetric is a
metric based on IC testing principles, such as stuck-at fault
models which are still utilized in Test today. More details can
be obtained from [10]. The proposed defense technique is
validated using ISCAS'85 circuits and the original proximity
attack. For the smallest circuit, c17, it takes only one swap
to achieve a Hamming Distance of 50%. For the largest
studied circuit, c7552, it takes 49 swaps. These results are
summarized in Table 4.

As demonstrated in [10], rearranging the partition pins can
thwart proximity attacks. However, according to Chen et al.
[35], pin swapping at partition level has limited efficacy. They

demonstrated that an attacker holding the FEOL layout as
well as the nestlist can insert hardware trojans even when the
defense approach of [10] is applied. It must be highlighted
that [35] assumes threat model II, which we have previously
argued that has the potential to nullify the vast majority of
defenses towards split circuits. Thus, they proposed a defense
to counter the threat from hardware trojans. Their defense
incorporates the global wire-length information, with the
goal to hide the gates from their candidate locations, and
as result decreasing the effective mapped set ratio (EMSR).
The EMSR metric is an attempt to quantify the ratio of
real gates location of a given mapping during a simulated
annealing-based attack. This defense consists of two steps,
first a greedy gate swapping defense [20], and second, a
measurement of the security elevation in terms of EMSR. The

12 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

technique is evaluated using ISCAS'85 benchmarks circuits
and the EMSR metric to quantify the defense effectiveness.
The results are shown in Table 4.

Following the same principle of increasing the Hamming
Distance, Wang et al. [16] proposed a routing perturbation
based defense. The optimum Hamming distance is sought
to be achieved by layer elevation, routing detours, and wire
decoys, while test principles are used to drive the perturbation
choices. Layer elevation is essentially a wire lifting tech-
nique: without changing the choice of split metal layer, wires
are forced to route using higher metal layers, thus being lifted
from the FEOL to the BEOL. Intentional routing detours are
a way to increase the distance between disconnected pins of
the FEOL. If done properly, disconnected pins will not be the
closest to each other, deceiving the proximity attack. In some
cases, routing detours will increase the distance between
disconnected pins, however, they still remain the closest to
each other. In this scenario, wire decoys can be drawn near
disconnected pins, in such a way that decoys are now the
closest and will instead be picked as the ideal candidate pin.

The perturbations proposed in [16] can incur heavy over-
heads, and, for this reason, wires to be perturbed are chosen
by utilizing IC test principles. In [16], fault observability, as
defined in SCOAP [41], is used as a surrogate metric for this
task. The technique is evaluated using ISCAS'85 and ITC'99
benchmark circuits. For all studied circuits, the Hamming
distance increased by an average of 27% at a cost of only
2.9% wire length overhead (WLO), on average. The results
for the largest and smallest studied circuits are shown in
Table 4.

Sengupta et al. [34] take a different direction from other
works. They utilized an information-theoretic metric to in-
crease the resilience of a layout against proximity attacks.
As demonstrated in [34], mutual information (MI) can be
used to quantify the amount of information revealed by the
connectivity distance between cells. Mutual information is
calculated by taking into account the cells connectivity D,
if they are connected or not, and their Manhattan distance X ,
described by Eq. 2, where H[·] is the entropy. The Manhattan
distance of two cells is defined as the sum of horizontal
and vertical distances between them. Entropy is a measure
of disorder of a system. Therefore, in this work, entropy is
utilized as a measure of disorder in the FEOL layer. The
distribution of the variable X for a given layout is determined
pair-wise for all gates, allowing a straightforward compu-
tation of I(X;D). Thus, layouts with the lowest mutual
information, i.e., the correlation between cell connectivity
and their distance is low, are more resilient against proximity
attacks.

MI = I(X;D) = H[X]−H[X/D] (2)

In order to minimize the information “leaked” from mu-
tual information, [34] applies cell placement randomization
and three other techniques: g-color, g-type1, and g-type2.
Randomizing the cell placement can achieve the desired low

Algorithm 2: Fault analysis-based swapping of pins
to thwart proximity attack (adapted from [10]).

Input: Partitions
Output: List of target and swapping pins

1 ListofTargetP ins = ∅;
2 ListofSwappingP ins = ∅;
3 ListofUntouchedP ins = All partition pins and I/O ports;
4 while Untouched output partitions pins or input ports exist

do
5 for UntouchedP in do
6 SwappingP ins =
7 BuildSwappingPinsList(UntouchedP in); for

SwappingP in ∈ SwappingP ins do
8 Compute
9 TestMetric(UntouchedP in, SwappingP in);

10 Find the TargetP in and SwappingP in with the
Highest TestMetric from its SwappingPins;

11 ListofTargetP ins+ = TargetP ins;
12 ListofSwappingP ins+ = SwappingP ins;
13 ListofUntouchedP ins− = TargetP ins;
14 LisofUntouchedP ins− = SwappingP in;
15 Swap TargetPin and SwappingPin;
16 Update netlist;

17 Return: ListofTargetPins and ListofswappingPins;
BuildSwappingPinList(TargetP in);
Input: TargetP inPx,i,out

Output: SwappingP ins for TagetP in
18 for PinJ ∈ SwappingP ins do
19 if CombinationalLoop(TargetP in, P inJ) then
20 SwappingP ins− = PinJ ;

21 Return: SwappingP ins;

mutual information; however, the PPA overhead incurred is
excessive. Minimizing mutual information without excessive
PPA overhead can be achieved by the other techniques. From
a graph representation of the circuit, graph coloring can
be used to hide connectivity information, where gates of
the same color must not be connected. Thus, the resulting
colored netlist is then partitioned by clustering all cells of
same color together. During cell placement, the cells with the
same color will be confined within their respective clusters.
According to [34], these constraints naturally mitigate the
information leakage to a great extent. The g-color technique
utilizes only the graph coloring as described above. The other
two, g-type1 and g-type2, consider the type of the gate when
creating clusters. The g-type1 approach clusters gates only
by their functionality, while g-type2 utilizes functionality and
the number of inputs for clustering. The authors assessed
their techniques utilizing ISCAS'85 and MNCN benchmark
suites. Results for the smallest and largest circuits are shown
in Table 4.

Similar to the pin swapping technique proposed in [10],
Wang et al. [20] proposed a placement-based defense with
the same objective of deceiving a proximity attack by per-
turbing proximity information. Differently from pin swap-
ping, their placement-based defense considers the incurred
wire-length overhead as a metric. This technique is based

VOLUME XXX, 2020 13

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

TABLE 4. Results for Defense Techniques based on Proximity Perturbation.

Work Attack
Type

Benchmark Defense Technique Defense Metric Defense Overhead Split
Layer

Result with-
out Defense

Result with
Defense

[10] Proximity c17 - Hamming Distance 1 Swap for 50%
HD

-* 100% CCR 78% CCR

[10] Proximity c7552 - Hamming Distance 49 Swaps for 50%
HD

-* 94% CCR 91% CCR

[35] Proximity c432 Modifed Greedy Gate
Swapping

EMSR 75% of WLO -* 90% EMSR 25% EMSR

[35] Proximity c432 Modifed Greedy Gate
Swapping

EMSR 300% of WLO -* 78% EMSR 10% EMSR

[16] Proximity c432 - Hamming Distance 3.1% WLO for
46.1% HD

-* 92.4% CCR 78.8% CCR

[16] Proximity c432 - Hamming Distance 4.1% WLO for
31.7% HD

-* 62.8% CCR 37.9% CCR

[34] Proximity c432 Random Mutual Information < 10% PPA M1 17% CCR < 1% CCR
[34] Proximity c432 g-color Mutual Information < 10% PPA M1 17% CCR 2% CCR
[34] Proximity c432 g-type1 Mutual Information < 10% PPA M1 17% CCR 6% CCR
[34] Proximity c432 g-type2 Mutual Information < 10% PPA M1 17% CCR 4.5% CCR
[34] Proximity c7552 Random Mutual Information < 10% PPA M1 13% CCR < 1% CCR
[34] Proximity c7552 g-color Mutual Information < 10% PPA M1 13% CCR 2% CCR
[34] Proximity c7552 g-type1 Mutual Information < 10% PPA M1 13% CCR 4% CCR
[34] Proximity c7552 g-type2 Mutual Information < 10% PPA M1 13% CCR 3% CCR
[20] SAT c432 BEOL+Physical Perturbation 4.5% WLO -* 58% CCR 56% CCR
[20] SAT c432 Logic+Physical Perturbation 5.57% WLO -* 58% CCR 58% CCR
[20] SAT c432 Logic+Logic WLD 1.68% WLO -* 58% CCR 52% CCR
[20] SAT b18 BEOL+Physical Perturbation 8.06% WLO -* 15% CCR 14% CCR
[20] SAT b18 Logic+Physical Perturbation 1.70% WLO -* 15% CCR 17% CCR**
[20] SAT b18 Logic+Logic WLD 0.61% WLO -* 15% CCR 16% CCR**
[37] Proximity c432 Netlist Randomiza-

tion
Hamming Distance < 10% PPA overall -* 92.4% CCR 0% CCR

[37] Proximity c7552 Netlist Randomiza-
tion

Hamming Distance < 10% PPA overall -* 94.4% CCR 0% CCR

* Split layer not specified by the authors.
** These results are counter-intuitive, the applied defense degrades the metric.

on changing gate locations such that the proximity hint is
no longer effective. Their algorithm consists of two phases,
one to select which gates to be perturbed and a second phase
where the selected gates are (re)placed. Gate selection is done
by extracting a set of trees using two techniques, BEOL-
driven and logic-ware extraction. The first approach selects
all gate trees that contain any metal wires in the FEOL, i.e.,
connections that are not hidden from the attacker. The second
approach considers the wire-length impact and the gate tree
impact on the overall security. After extracting the set of
trees, the placement perturbation is done in one of two ways:
physical-driven or logic-driven. For each extracted tree, the
physical-driven perturbation changes the location of gates
using a Pareto optimization approach. Also, each solution is
evaluated by its wire-length overhead and a perturbation met-
ric that discerns the placement difference from the original
layout. According to [20], geometric-based difference alone
may be insufficient to enhance the split circuit security. Thus,
a logic-driven perturbation is performed with a weighted log-
ical difference (WLD) metric, which encourages perturbation
solutions with large logical difference from its neighbors.
The authors assessed their techniques combining the gate se-
lection and perturbation as BEOL+Physical, Logic+Physical
and Logic+Logic, using ISCAS'85 and ITC'99 circuit bench-
marks. Results for the smallest and largest circuits considered

are shown in Table 4.
A considerably different approach is proposed by Pat-

naik et al. [37], whereas netlist modifications are promoted
(instead of placement/routing modifications during physical
synthesis). The goal is to modify the netlist of a design in
order to insert (partial) randomization. According to [37],
this approach helps to retain the misleading modifications
throughout any regular design flow, thereby obtaining more
resilient FEOL layouts where the netlist changes are later
“corrected” in the BEOL. This methodology is implemented
as an extension to commercial EDA tools with custom in-
house scripts. The process goes as follows: first, the netlist
is randomized. Second, the modified netlist is place and
routed. Lastly, the true functionality is restored by re-routing
in the BEOL. For the netlist randomization, pairs of drivers
and their sinks are randomly selected and swapped. This is
done in such way to avoid combinational loops that may
be introduced by swapping. The modified netlist then is
place and routed, utilizing a ‘do not touch’5 setting for the
swapped drivers/sinks to avoid logic restructuring/removal of
the related nets. Finally, the true connectivity is restored in
the BEOL with the help of correction cells [37] that resemble
switch boxes. The technique is evaluated using ISCAS'85

5This terminology is used in IC design to mean that a specific cell or
family of cells should not be optimized, i.e., not to be touched.

14 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

circuits, and the results for the largest and smallest circuit
are shown in Table 4.

B. WIRE LIFTING
Hiding routing information from untrusted foundries is the
main objective of the Split Manufacturing technique. Since
attacks mainly rely on hints left by EDA tools to recover
the missing BEOL connections, the amount of hidden in-
formation is related to the circuit performance – splitting
the circuits at low metal layers increases the security level.
Following the same idea, wire lifting proposes ‘lifting’ wires
from the FEOL layer to the BEOL. That is, changing the
routing to split metal layers has the potential to increase the
security level.

Wire lifting was first presented by Imerson et al. [15]
where Split Manufacturing is considered as a 3D IC imple-
mentation [42]. For the sake of argument, we will continue
to refer to this technique as Split Manufacturing, even if
the notion of untrusted FEOL vs. trusted BEOL is shifted.
This type of 3D implementation consists of two or more
independently manufactured ICs, where each IC represents
a tier that is vertically integrated on top of each other.
Connections between the tiers are done using vertical metal
pillars, referred to as through-silicon vias (TSVs). In [15], a
3D implementation consisting of two tiers is used for their
experiments. The bottom tier containing the transistors and
some routing wires (akin to the FEOL), and the top tier,
containing only routing wires (akin to the BEOL). Regarding
the manufacturing of these 3D ICs, the bottom tier is built in
a high-end untrusted foundry, and the top tier is built in an
also untrusted foundry (not necessarily high-end, however).

In [15], threat model II is used, i.e., the adversary is as-
sumed to possess the entire netlist. The problem is formulated
as the attacker being the FEOL foundry, which in turn also
possesses the so called ‘unlifted netlist’ extracted from the
FEOL layout. By utilizing a graph to represent the circuits as
previously described, the attacker seeks a bijective mapping
of gates of the unlifted netlist to gates in the complete netlist.
According to [15], if the attacker can distinguish any gate
between the two netlists, the split circuit does not provide any
security. A security notion is provided by the authors, based
on existing multiple mapping between gates in the unlifted
and complete netlists. Referred to as k-security, this metric
qualifies that gates across the design are indistinguishable
from at least k − 1 other gates. Thus, a defender wants to
lift wires in a way to guarantee the higher k − security
possible. Two procedures are proposed to achieve this goal,
one utilizing a greedy heuristic targeted at small circuits
(due to scalability issues), and another procedure that utilizes
partitioning to solve those issues. For their experimental
study, they have utilized the ISCAS'85 benchmark suite and
a DES crypto circuit with approximated 35000 gates. The
results are shown in Table 5, where k = 1 is the original
circuit and k = 48 is achieved when all the wires are lifted.
It is worth to mention that; besides the notion of the security
metric, their defense technique was not validated using an

actual proximity attack towards the modified netlist.
An artificial routing blockage6 insertion that promotes

wire lifting is proposed by Magaña et al. [19]. The goal of
this technique is to deceive proximity attacks by wire lifting.
As discussed before, the objective of commercial EDA tools
is to guarantee the best PPA possible. During the routing
stage, lower metals are preferred for signal routing, promot-
ing better PPA. Thus, routing blockages can be inserted at the
split layer, forcing signals to be routed above the split layer.
The result is an artificial wire lifting done during the routing
stage.

Applying this type of procedure must be done considering
the design routability and overhead introduced, as well as top
level floorplan decisions for the power grid, clock distribu-
tion, and resources for busses. Larger designs are generally
difficult to be routed – simply reducing the number of routing
layers can make the design unroutable. In [19], a procedure
is proposed to insert routing blockages ensuring the design
routability is kept. After a first routing stage, the design is di-
vided into small rectangular non-overlapping windows. The
routing congestion is then analyzed in each window at the
split layer for the blockage insertion. If the area has capacity
for more routing, a routing blockage is inserted, otherwise
the original routing is kept. Utilizing ISPD'11 circuits, the
technique is evaluated using the proximity attack proposed
by [19], and its effectiveness is measured using two metrics,
E[LS] and FOM . The E[LS] metric reports the candidate
list size, being an average over different search areas. The
FOM metric is a figure of merit obtained from the ratio of
candidates list size divided by the search area, when averaged
over all the search areas at the split layer. According to [19],
a higher value of FOM means it is more challenging for an
attack to be mounted because of the density of candidates
(over the same search area). The results for the Superblue 1
circuit are shown in Table 5.

Design for Manufacturability (DFM) has become an ex-
tremely important aspect of IC design for many years now.
Manufacturing an IC is a sensitive process that involves many
critical steps. Hence, a layout is required to be compliant
to several rules to ensure its manufacturability. A layout is
said to be manufacturable if there are no DRC violations.
However, for a design to also achieve high yield, the layout
must also pass strict DFM checks. The most common checks
are related to wire and via density over predetermined region
sizes. Until now, defense techniques discussed were mainly
concerned about security and PPA overheads. Feng et al. [33]
argued that previous works have largely neglected manufac-
turability concerns. Therefore, they proposed two wire-lifting
techniques that address two important DFM-related tech-
niques: Chemical Mechanical Planarization (CMP) and Self-
Aligned Double Patterning (SADP) [43]. The first technique,
CMP-friendly routing defense is divided into layer elevation,

6This terminology is used in IC design to mean that a specific area should
be avoided by the EDA tool for a specific task. A blockage can be for
placement and/or for routing.

VOLUME XXX, 2020 15

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

TABLE 5. Results for Defense Techniques based on Wire Lifting.

Work Attack
Type

Benchmark Defense Technique Defense Metric Defense Overhead Split
Layer

Result with-
out Defense

Result with
Defense

[15] SAT c432 Wire Lifting k-security 477% of WLO -* k=1 k=48
[19] Proximity Superblue 1 Routing Blockage In-

sertion
E[LS] Not Presented M4 1.51 1.77

[19] Proximity Superblue 1 Routing Blockage In-
sertion

FOM Not Presented M4 1222.8 1433

[36] Proximity c432 Concerted Lifting Hamming Distance 7.7% of Area Average** 23.4 45.9
[36] Proximity c432 Concerted Lifting CCR 13.2% of Power Average** 92.4 0
[36] Proximity c7552 Concerted Lifting Hamming Distance 16.7% of Area Average** 1.6 25.7
[36] Proximity c7552 Concerted Lifting CCR 9.3% of Power Average** 97.8 0
[33] Proximity c2670 CMP-Friendly Hamming Distance 3.4% of WLO -* 14.5% 20.4%
[33] Proximity c2670 CMP-Friendly CCR(%) 3.4% of WLO -* 48.1% 33.4%
[33] Proximity b18 CMP-Friendly Hamming Distance 0.4% of WLO -* 21.6% 27.6%
[33] Proximity b18 CMP-Friendly CCR(%) 0.4% of WLO -* 12.1% 10.7%
[33] Proximity c2670 SADP-Compliant Hamming Distance 7.49% of WLO -* 14.5% 24.4%
[33] Proximity c2670 SADP-Compliant CCR(%) 7.49% of WLO -* 48.1% 6.4%
[33] Proximity b18 SADP-Compliant Hamming Distance 4.64% of WLO -* 21.6% 29.6%
[33] Proximity b18 SADP-Compliant CCR(%) 4.64% of WLO -* 12.1% 2.7%
[32] Proximity s526 Net Partitioning CCR(%) Not Presented -* 40%*** 0%***
[32] Proximity s526 Net Partitioning &

Cell Hiding
CCR(%) Not Presented -* 40%*** 0%***

[32] Proximity s526 Net Partitioning &
Cell Hiding & Pin
Shaking

CCR(%) Not Presented -* 40%*** 0%***

[32] Proximity s9234.1 Net Partitioning CCR(%) Not Presented -* 30%*** 4%***
[32] Proximity s9234.1 Net Partitioning &

Cell Hiding
CCR(%) Not Presented -* 30%*** 1.5%***

[32] Proximity s9234.1 Net Partitioning &
Cell Hiding & Pin
Shaking

CCR(%) Not Presented -* 30%*** 1.5%***

* Split layer not specified by the authors.
** Results are given as an average between M3, M4, and M5.
*** These results cannot be directly compared with previous ones as the transistor technology is vastly different.

wire selection, and re-routing. Layer elevation selects wires
for lifting according to following principles [33]:

• The wire has a significant logic difference from its
neighboring wires. As such, an incorrect connection in
attacking this wire may lead to more signal differences.

• The wire has large observability such that an erroneous
guess by the adversary can easily affect the circuit
primary output signals.

• The wire segment is originally at a wire-dense region.
The wire density of this region would be reduced by
the layer elevation and makes the corresponding FEOL
layer have more uniform wire density.

• The BEOL region where the wire is elevated to has low
wire density so that the density of the corresponding
BEOL layer is more uniform.

Principles 1 and 2 have the goal to increase security in the
same way as described in [16]. After the wire lifting step,
a set of wires is selected for re-routing. The selection has
two purposes, CMP-friendliness and security improvement.
For CMP-friendliness, wires located in dense regions are
selected to be re-rerouted in sparse areas. For the security
improvement, decoys are inserted if the routing detour passes
through a sparse area. A suspicious attacker may realize that
the detour is a defense measure. After selecting the set of
wires to be re-routed, wires are re-routed one at a time.

According to [33], their routing approach considers wire
density, while the routing perturbation proposed by [16] can
be solely focused on security, and may not be CMP-friendly.
Utilizing a graph representation, their re-routing method is
based on the Dijkstra’s shortest path algorithm [44] where
the density of wires is used as a metric.

With a few exceptions, the SADP-compliant routing de-
fense follows the same approach as described above. During
wire lifting, the density is not considered. Wire re-routing
is actually wire extension of FEOL wires as in [45]. This
wire extension of FEOL wires inevitably leads to re-routing
of connected BEOL wires. According to [33], solving SADP
violations by wire extension can also increase security, as its
increase the distance between vias. The wire extension for si-
multaneous SADP-compliance and security is realized using
Integer Linear Programming. In their experiments, ISCAS'85
and ISPD'11 are used to evaluate their techniques. Each
technique, CMP-friendly and SADP-compliant routing, is
evaluated separately. The results for the smallest and largest
circuits are shown in Table 5.

Wire lifting approaches, in general, are not cost-free. As
shown in the discussed results, wire-lifting based defenses
introduce a considerable PPA overhead. An approach to
establish a cost-security trade-off is proposed by Paitinak et
al. [36], i.e., PPA margins for a given security budget. In [36],

16 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

a concerted wire-lifting method is proposed. The authors
claim to enable higher degrees of security while being cost-
effective. For their method, custom elevating cells are used
for executing the wire-lifting. Elevating cells connect gates
or short wires directly to the first layer above the split layer.
Their wire-lifting method utilizes three strategies: lifting
high-fanout nets, controlling the distance for open pin pairs,
and obfuscation of short nets. High-fanout nets are chosen to
be lifted for two reasons: (a) a wrong connection made by the
attacker propagates the error to multiple locations, and, (b)
introduces multiple open pin pairs. As the attack to overcome
is the proximity one, controlling the distance between open
pin pairs is necessary, which is achieved at will simply by
controlling the placement of the elevating cells. According
to [36], short nets may be easy for an attacker to identify
and localize (from assessing driving strengths). Short wires
are obfuscated by inserting an elevating cell with two pins
close to each other, one being the true connection and the
other a dummy connection. Finally, wires are lifted according
to those strategies until a given PPA budget is reached. For
their experimental study, ISCAS'85 and ISPD'11 circuits are
utilized. However, results for attacks are presented only for
ISCAS'85 circuits. For ISPD'11, only the PPA impact result
introduced by their technique is presented. Once again, we
present the results for the smallest and largest of the studied
circuits in Table 5.

While the majority of studies reported in our survey make
use of conventional transistors (bulk CMOS technologies
with either planar or FinFET transistors), Yang et al. [32]
proposed a design methodology to secure Split Manufac-
turing for Vertical Slit Field Effect Transistor (VeSFET)-
based integrated circuits. VeSFET is a twin-gate device with
a horizontal channel and four metal pillars implementing
vertical terminals [46]. While a detailed explanation on VeS-
FETs is beyond the scope of this work, we do highlight the
differences between VesFETs and conventional transistors.
In contrast with conventional transistors, a VeSFET can be
accessed by both top and bottom pillars, allowing two-side
routing and offering a friendly monolithic 3D integration
[46]–[48]. While we have so far considered ICs that have
two distinct layers, the FEOL and BEOL, a VeSFET-based IC
has tiers of the layer containing the transistors. Connections
between tiers can be made directly, same as TSV by the
pillars, or by a layer containing connections between tiers.
A 2D VeSFET design contains only one tier and both top
and bottom connections, whereas a 3D design contains two
or more tiers. In summary, the notion of tier is pushed down
to the transistor level in this device topology, thus making it
an interesting platform for Split Manufacturing.

The method proposed by [32] assumes that both foundries
are untrusted and have the same capability (i.e., same tech-
nology). For 2D designs, the first foundry manufactures the
tier with the top connections, comprising most of the connec-
tions. Then, the rest of the bottom connections, comprising
of the critical minority connections, are completed by the
second foundry. For 3D IC designs, they proposed special

types of standard cells, referred as cell A and B. Cell A
has two tiers that are visible and manufactured by the first
foundry, as well as inter-tier connections. Cell B has only
the top tier visible and manufactured by the first foundry, the
low tier is completed by the second foundry, without inter-
tier connections. Thus, transistors can be hidden from the
first foundry as a security feature. Vulnerabilities claimed by
[32] for both 2D and 3D methods are described in Table 6.
Practices of reverse engineering and IC overbuilding are
claimed to be impossible because the first foundry controls
the number of wafers available to the second foundry.

Increasing the security of both 2D and 3D VesFET designs
is achieved by net partitioning, and exclusively for 3D de-
signs, by transistor hiding and pin shacking. Net partitioning
is performed similarly to the wire lifting techniques described
above, where nets are chosen to be routed in the bottom
connection layer, thus, hiding those from the first foundry.
Their selection method is done by selecting nets from se-
quential logic. First, all the high-fanout nets are selected to be
partitioned. Next, the remaining nets are selected by a search
area, where two approaches are used, distance-first search
and high-fanout first search. In distance-first method, a pin in
a predefined search window connecting to an un-partitioned
net is selected when it has the minimum distance to the
currently processed pin pair. The FO-first search method
selects the pin connecting to a net having the highest FO
in the searching window. Transistor hiding in 3D designs is
done by utilizing cells similar to the cell B. Cells connected
only by partitioned nets are candidates for hiding. After
selecting the candidates, availability of unused transistors
that are accessible to the second foundry in the lower tiers of
the nearby cells is checked. If the available transistor count
is sufficient, then the cell is hidden. The empty space created
could provide clues for the first foundry about the security
technique. Pin shaking is then applied to obfuscate the empty
spaces. Some nearby cells are moved to this area to obfuscate
the layout for any distance-based proximity attackers. In
[32], 10 MCNC LGSynth'91 benchmark circuits are used to
evaluate the effectiveness of their methodology. The best and
worst results are shown in Table 5. It is worth to mention
that, even though the VesFET implementation mimics the
layered structure of Split Manufacturing, the results cannot
be compared side by side in a fair manner.

TABLE 6. Vulnerabilities of Split Manufactured VesFET-based Designs
Described by [32].

Threats 1st Foundry 2nd Foundry

Design
Reconstruction

2D IC: Very Difficult
3D IC: Impossible

Impossible due to
a very limited
information

Trojan Insertion Possible, but will be
detected

No control of de-
vices

Reverse
Engineering Meaningless Impossible

IC Overbuilding Meaningless Impossible

VOLUME XXX, 2020 17

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

C. LAYOUT OBFUSCATION
The main goal of Split Manufacturing – to hide sensitive
information from untrusted foundries – is compromised once
we start to consider more regular structures such as memory.
Even without knowing where all the routing goes to, an
attacker can easily identify regular structures just by look-
ing at the FEOL layout, possibly leading to easier attacks.
Mitigating attacks towards regular structures could be done
by obfuscating those structures in such a way that they
become indistinguishable. In this section, we discuss works
that propose layout obfuscation techniques to be used in a
Split Manufacturing context.

During the development of a modern IC, third-party IPs are
sought to close a technological gap or to minimize time-to-
market. IPs are typically categorized as soft and hard IPs: soft
IPs typically come in code form, giving the customer flexibil-
ity to modify the IP such that it meets a given specification
during synthesis. Therefore, soft IPs do not present a direct
challenge for a Split Manufacturing design flow. Perhaps,
and on a very specific scenario, a given IP can facilitate a
proximity attack because it promotes certain library cells over
others (i.e., it leads to a biased composition).

On the other hand, hard IPs are completely designed by
the vendor and are technology dependent. In some instances,
the vendor only provides an abstract of the IP; the customer
then has to rely on the foundry to replace the abstract by
the actual layout. Thus, splitting a hard IP is not trivial.
Additional information is needed to be provided by the
vendor, which is not guaranteed to be provided, making the
IP completely incompatible with Split Manufacturing. Even
when the customer holds the entirety of the IP layout, dif-
ferences between the FEOL foundry and the BEOL foundry
could make the IP no longer compliant and therefore virtually
useless. Furthermore, defense techniques cannot be applied
due to the lack of information or lack of feasibility. Hard IPs,
such as embedded memories and specialized analog circuits,
have been heavily optimized for maximum compactness,
performance and yield. In today’s IP market, there is still
little concern with security in general, so it is not conceivable
that any vendors will start to offer split IP any time soon.

The security of hard IPs in a Split Manufacturing context
was first analyzed by Vaidyanathan et al. [12]. A recogni-
tion attack flow was proposed for this purpose. An attacker
holding the FEOL layer starts his attack by isolating a target
embedded memory or analog hard IP. Since the targeted hard
IP has a high probability of being constructed by compilation
of leaf-cells, layout pattern recognition software [49] can
be used for trivial leaf-cell identification. After recognizing
all the leaf-cells, the attacker attempts to infer the missing
BEOL connections. Using proximity hints together with the
knowledge about the regularized structure, the connections
have a high likelihood to be guessed correctly. Demonstrated
in [12], embedded memories, such as SRAM, are suscep-
tible to the proposed recognition attack. Defending against
recognition attacks can be achieved by means of obfuscation.
According to [12], SRAM IPs can be obfuscated by the

following methods:
• Randomization of periphery cells, thus avoiding pre-

dictable connections.
• Minimization of regularized topologies used for periph-

eral circuits such as pre-decoders, word line decoders,
sense amplifiers, etc.

• Adding non-standard application-specific functions to
improve obfuscation and performance.

A synthesis framework is proposed by [12] to obfus-
cate SRAM IPs. Referred as application-specific SRAM, the
methodology synthesizes SRAMs using augmented bitcell
arrays and standard cell logic IP (instead of using leaf-cells).
Such synthesis, when compared with conventional SRAM
compilation, accomplishes all the three obfuscation goals
described above while still providing similar performance.

Analog hard IPs are also vulnerable to recognition at-
tacks. In contrast with embedded memories (that are often
compiled), analog hard IPs are mostly hand designed to
cater for a challenging specification or interface. Even when
such degree of customization is employed, the majority of
the design is done utilizing leaf-cells (e.g., current mirrors,
matched arrays, etc.). Thus, disclosing important information
that could be used as leverage for recognition attacks. In [12],
two methods are proposed to defend analog hard IPs against
such attacks:

• Obfuscation of analog leaf-cells.
• Use of diverse topologies and architectures that enable

obfuscation and efficiency.
Next, let us discuss the techniques utilized in order to

achieve the goals listed above. First, adding camouflaging
dummy transistors in empty spaces can turn leaf-cells indis-
tinguishable. Second, regularizing transistor widths, which
allows transistor with different channel lengths to abut each
other, thereby obscuring boundaries across different sized
transistors. Third, utilizing the same idea behind wire-lifting,
routing blockages can be inserted between transistors below
the split layer. Such routing scheme would make it difficult
to infer the missing BEOL connections, virtually in the same
way as it does for a standard-cell based design.

To demonstrate the feasibility and efficacy of their pro-
posed approaches, the authors of [12] designed and fabri-
cated test chips in 130nm technology. For comparison, the
same designs were Split Manufactured and conventionally
manufactured. Split Manufacturing used Global Foundries
Singapore as the untrusted foundry and IBM Burlington as
the trusted foundry. Conventional manufacturing was en-
tirely done in Global Foundries Singapore. The first reported
design is a smart SRAM that targets an imaging applica-
tion. Two implementations of a parallel 2x2 access 1Kb
SRAM were demonstrated. For conventional manufacturing,
the SRAMs were traditionally implemented, and for Split
Manufacturing, the SRAMs were implemented using their
smart synthesis approach. For their measurements, 10 chips
were used to demonstrate the feasibility regarding PPA. Area
reported for the split manufactured samples was 75% of the

18 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

conventional approach, and, while the power consumption
was 88%. Performance was the same between conventional
and split manufactured, i.e., both could work with the same
clock frequency. The PPA advantage of Split Manufacturing
reported in [12] is not from the manufacturing itself. This ad-
vantage is from their smart memory synthesis approach, that
was not applied on the conventional manufacturing samples.

The second demonstrated design is a DAC with statistical
element selection. The test chip contains a high resolution
15-bit current steering DAC. Only a description of the re-
sults is presented, where the authors claim there are tiny
measurements differences between the performance of the
conventional and the split manufactured, emphasizing that
the differences are within measurement noise.

An attacker trying to reverse engineer a split IC will try
to recover the maximum number of connections as possible,
while minimizing the Time To Evaluate (TTE), i.e., the
amount of time needed to reverse engineering the IC. For
Jagasivamani et al. [29], the goal of a designer seeking
to secure his design is to create an IC with a high TTE
while being cost-effective regarding design effort and PPA
overheads. If the TTE is high enough, an adversary would be
discouraged from reverse engineering the IC. To achieve this
goal, [29] proposed obfuscation methods that do not require
any modifications to standard cells nor the implementation of
any specialized cell.

Four techniques are proposed by [29] for layout obfus-
cation, (1) limited standard-cell library, (2) smart-dummy
cell insertion, (3) isomorphic cells and (4) non-optimal cell
placement. Along with the techniques, a set of metrics is
presented to help assess the obfuscation level of a design.
Neighbor connectedness, a measure of how interconnected
cells are to their respective neighbors, i.e., how much prox-
imity information is exposed to the attacker. For a specific
cell, this metric is computed as how many connections that
cell has for a given radius around it. Standard-cell compo-
sition bias, a metric that addresses the effort required for
composition analysis of a design. The bias signature could
leave information of the function of the cell. Thus, this metric
measure how skewed a design is according to a specific bias
cell. In [29], they utilized three types of bias cells for this
analysis: XOR-type, flip-flop type, and adder type of cells.
Cell-level obfuscation, a metric that measures the percentage
of standard-cells that have been obfuscated. Entropy, which
is similar to the concept of mutual information previously
discussed.

Technique (1) aims to achieve obfuscation by reducing the
use of complex cells and instead favor only simple cells to
compose the design (i.e., to prefer single stage cells over
complex multi-stage cells). Removing specialized complex
cells could obfuscate functional signatures due to the larger
granularity that is employed to construct the cell. However,
since the functionality of complex gates will have to be
reconstructed through basic cells, a heavy PPA overhead is
likely to occur when applying this technique. Technique (2)
aims to obfuscate composition analysis by adding dummy

cells in such a way that a neutral bias composition is
achieved. Dummy cells are inserted as spare cells 7, focusing
solely on obfuscating the composition analysis. Technique
(3) obfuscates the layout by regularizing the shapes of the
cells in a library. All layouts of logic standard cells are
made FEOL-identical such that the overall circuit layout
appears to be a sea of gates. The functionality of the cells
is defined later by the BEOL connections. Thus, the true
functionally of the cell is hidden at the BEOL, making cell-
level identification harder. Technique (4) employs the same
strategy from placement perturbation discussed before.

For their experimental study, the authors of [29] made use
of a multiplier block with a high number of adder cells and a
crypto-like circuit. Experiments were separated into limited
library and smart dummy insertion. Results are shown as a
percentage relative to the baseline circuit, i.e., without any
protection approach applied. Neighbor connectedness (%)
for a radius ≤ 25nm decreased substantially for both test
cases and circuits (for more information see [29]). Overhead
results are shown in Table 7, where the figures presented are
normalized with respect to the baseline circuit.

TABLE 7. Impact on Performance from the Defense Approaches of [29].

Benchmark Metric Limited Library Smart Dummy

mult24 Area 94.9% 72.6%
Timing Slack -64.8% 3.4%

a5/1 Area 69.8% 69.4%
Timing Slack -27.2% -1.2%

Utilizing exactly the same concepts and metrics described
in [29], Otero et al. [30] proposed a “trusted split-foundry
toolflow” based on cellTK [50]. The concept of the cellTK-
based flow is to have on-demand cell generation from a
transistor-level netlist. This is heavily in contrast with a
traditional ASIC flow that relies on a predefined (and thor-
oughly characterized) cell library. Leveraging cellTK, [30]
proposed an extension referred as split-cellTK. This exten-
sion can generate multiple physical layouts for each unique
cell without modifying the circuit topology, which is then
used to implement obfuscation strategies. Two strategies are
proposed, referred as Uniform and Random. The Uniform
strategy tries to standardize the size and spacing between
cells by inserting dummy transistors to equalize the number
of nMOS and pMOS devices and, after the cell placement,
dummy cells are inserted in empty gaps. A Random strategy
is also proposed in order to reduce the overheads introduced
by the Uniform strategy. Instead of deliberately standardizing
the size and spacing between cells, a specific number of
empty spaces is chosen for these tasks. A more in-depth
explanation about their strategies is beyond the scope of
this work because they are closely related to cellTK itself.

7Spare cells are extra logic usually inserted during physical synthesis.
These cells are used when an engineering change order (ECO) is required,
such that small tweaks to the circuit logic can be performed with minimal
changes to placement and routing.

VOLUME XXX, 2020 19

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

However, their goals and evaluations are the same as in
[29]. For their experimental study, they utilized the island-
style asynchronous FPGA developed in [51]. A test chip was
Split Manufactured in 65nm and the design was synthesized
with a cellTK-based approach, i.e., without any defense
strategy. Their defense strategies were evaluated only by sim-
ulation. The performance results for the baseline, Uniform,
and Random strategies, when applied to obfuscate an adder,
are shown in Table 8. Trustworthiness results are given in
terms of neighbor connectedness and, for all implementations
discussed, neighbor connectedness results were significantly
smaller than the results reported in [29].

TABLE 8. Performance Results Reported by [30] to Obfuscate an Adder
Circuit.

Technique Area
(µm2)

Power
(mW)

Energy
(pJ)

Perf.
(MHz)

Baseline 462 0.146 0.257 568
Uniform 717 0.149 0.307 486
Random 760 0.164 0.303 542

In the context of obfuscation, but also generally for Split
Manufacturing, a higher level of security is achieved when
the chosen layer to perform the split is the lowest possible.
Xiao et al. [31] pointed out that splitting at lower metal layers
could increase the cost to manufacture the IC; it is argued that
the FEOL-BEOL integration process must be more ‘precise’
for correct alignment. Thus, a closer technology match be-
tween the trusted and untrusted foundries is required. As we
previously argued, if the goal is to make use of the best silicon
available from an untrusted foundry, the implication is that
the trusted foundry cannot provide a legacy technology, but
perhaps a mature yet still relevant technology is sufficient. In
[31], a methodology for obfuscating the layout is proposed
for split at M3 or higher, meanwhile keeping the cost as low
as possible and at the same time providing a high level of
security. Their strategy is similar to the insertion of dummy
cells; however, functional cells are inserted instead. Referred
as obfuscated built-in self-authentication (OBISA) cells, the
inserted functional cells are connected together to form a
circuit. As the circuit is connected to the original circuit it
is trying to protect, they claim this fact makes it extremely
difficult for an attacker to separate the OBISA design from
the original design. The idea behind OBISA is to obfuscate
the layout by hindering neighbor connectedness analysis and
standard-cell composition bias analysis while also perturbing
the proximity between gates. As illustrated in Figure 11, two
additional functional cells, O1 and O2, were placed between
gates G2 and G3, and, G3 and G4, respectively. The insertion
of these additional functional cells could deceive proximity
attacks, assuming that the EDA tool would place the gates
between OBISA cells farther apart than in the original circuit.

The proposed OBISA circuitry has two operating modes:
functional and authentication. During functional mode, the
OBISA circuitry stays idle and incoming signals and clock
are gated/blocked. Thus, the original circuit is not affected

G1
G2

G3
G4

G5

G6

I0
I1

I2

I3
I4 I5

O1

O2

O1
O2

FIGURE 11. Circuit representation with OBISA cells (square cells) inserted
(adapted from [31]).

by OBISA operating as it should. As the name suggests,
when in authentication mode, OBISA is used to verify the
trustworthiness of the manufactured IC (in the field). The
specifics of the authentication are beyond the scope of this
work and will not be discussed. The insertion of OBISA
cells follows a similar strategy of dummy cell insertion as
discussed in [29]. The connections of the inserted cells are
done in a way to promote the testability of the OBISA circuit
and increase the obfuscation strength. Their approaches were
evaluated using benchmark circuits from OpenCores. Results
for the smallest and largest circuits are shown in Table 9.

TABLE 9. Implementation Results from [31].

Benchmark Gate
count

OBISA cell
count

Total nets Nets ≥ M4

DES3 1559 158 1799 127
DES_perf 49517 2090 49951 1343

Another study using look-alike cells is reported by Masoud
et al. [38] where the goal remains to make the attacker unable
to distinguish cells and their inputs/outputs, thus mitigating
attacks to some degree. In this study, two types of search
algorithms are proposed to replace cells for isomorphic cells.
In contrast with [29] where all cells are replaced, in [38], only
cells with high impact on the security are replaced. Thus, the
overhead introduced by cell replacement can be controlled
(i.e., a trade-off is established). The proposed algorithms are
based on ‘gate normalization’, whereby truth tables of cells
are analyzed in order to balance the occurrence of 0s and 1s
(e.g., XOR and XNOR gates are normalized by definition).
An analysis is made by replacing existing gates by XORs
and comparing the deviation from the original circuit. If the
deviation is larger than a given deviation threshold, the gates
are effectively replaced.

A novel layout obfuscation framework is proposed by Li
et al. [39] which builds on the wire lifting concept of [15].
According to the authors, wire lifting alone is not enough to
secure a design. If an attacker can tell the functionality of a
specific gate that had its wires lifted, the security is already
compromised. To address this problem, a framework that
considers dummy cells and wire insertion simultaneously
with wire lifting is proposed. As in [15], threat model II was
used. The proposed framework makes use of mixed-integer
linear programming (MILP) formulation for the FEOL layer

20 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

generation and a Lagragian relaxation (LR) algorithm to
improve scalability. The generation of the new FEOL layout
considers three operations: wire-lifting, dummy cell inser-
tion, and dummy wire insertion. Dummy wire insertion is
done only on dummy cells; thus, the original functionality
of the circuit is guaranteed to remain and floating pins are
avoided. Utilizing a graph representation, they re-formulate
the security metric to accommodate dummy cell and dummy
wire insertion. Since the original graph isomorphic relation-
ship is lost when new nodes are inserted, a new approach
has to be used to formalize the relationship between the
original and the new FEOL; this concept is denoted as k-
isomorphism [52] and the associated security analysis is
denoted as k-security. In their experimental study, TrustHub
[53] trojan insertion methods are used to select the nodes
for protection. They used ISCAS'85 benchmark circuits to-
gether with functional units (shifter, alu, and div) from the
OpenSPARC T1 processor [54]. Comparison between MILP
and LR algorithms are done for several k-security levels, and
the results are given in terms of area overhead (AO) and wire-
length overhead (WLO). The results for a few of the security
levels are shown in Table 10.

TABLE 10. Comparison Between MILP and LR Algorithms for the c4232
circuit [39].

Security Level Algorithm AO(%) WLO(%)

15 MILP 18 180
20 MILP 41 220
25 MILP 58 295
15 LR 18 200
20 LR 40 230
25 LR 60 305

V. FUTURE TRENDS AND CHALLENGES
Despite our effort to present the results of the many studied
papers in the most fair way possible, it is clear that the
hardware security community lacks a unified benchmark
suite and/or a common criteria for assessing results. Often,
researchers make use of benchmark suites that are popular in
the Test community but have no real applicability in security.
For instance, the ISCAS'85 suite has no crypto cores in
it, which are the bread and butter of the research in the
area. Furthermore, we believe the community would largely
benefit from using circuits that better represent IC design
practices of this decade where IPs often have millions of
gates and ICs have billions of transistors.

While the lack of a common criteria is an issue for the
academic community, the lack of an industry-supported path
for Split Manufacturing is even more troubling. Today, more
than ever, foundries compete for the title of ‘best silicon’
and rarely engage in cross-foundry cooperation. Efforts of
the past, such as the now defunct Common Platform of IBM,
Samsung and GF, could have been a catalyzer for the adop-
tion of Split Manufacturing. Without such collaboration, it is
hard to foresee a future where the technique will gain traction

FIGURE 12. Techniques validated in silicon among presented works.

again. Furthermore, the study of DFM-related implications of
the technique is really cumbered by the fact that we cannot
measure yield from massively produced Split Manufactured
chips.

We have discussed in details how many attacks leverage
heuristics and hints left behind by the EDA tools. Many of
these hints are very logical and can be appreciated, even
graphically, as we illustrated in Figure 7. It is entirely possi-
ble that machine learning approaches can detect subtle biases
in the tools that are not easy to appreciate graphically. There
is no consolidated knowledge of what these biases are and
to which extent machine learning is effective in detecting
them. This avenue of research is certainly interesting and we
believe it will be the target of many papers in the near future.

It is also worth discussing the attack models that have been
proposed so far. We have previously highlighted how strong
Threat model II is, but the fact of the matter is that defining
the threat model is a complicated exercise in which we seek
to establish what are the capabilities of the attacker. By
definition, formalizing the capabilities of an attacker requires
understanding his motivations, technical proficiency, and
availability of resources. If the attacker is underestimated,
useless defense strategies can be devised and assumed to be
effective. If the attacker is overestimated, convoluted defense
strategies might be employed, leading to unnecessary PPA
overheads. This is a challenge for Split Manufacturing and
many other techniques that promote obfuscation.

Another topic that has led to no consensus is whether
an attacker can make use of a partially recovered netlist.
For instance, let us assume a design that instantiates the
same block multiple times. If one of the blocks is correctly
recovered, perhaps a cursory inspection of the structure will
allow the attacker to recover all other instances of the same
block. The same line of thinking can be applied to datapaths
and some cryptographic structures that are regular in nature.
In a sense, an analysis of the functionality of the recovered
netlist could be combined with existing attacks for further

VOLUME XXX, 2020 21

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

improvement of correctly guessed connections.
We note that many of the works studied in this survey

have not actually demonstrated their approach in silicon. This
fact is summarized in Figure 12. As a community effort, we
should strive to validate our approaches in silicon as often as
possible. However, as discussed before, finding two foundries
willing to diverge from their established practices could be
next to impossible. This is likely the main reason that such
small percentage of the works herein reported have validated
their techniques in silicon.

VI. CONCLUSION
Our findings showed a big disparity on how the Split Manu-
facturing technique is approached among the surveyed stud-
ies. A variety of benchmark suites and metrics were used for
evaluation, making direct comparisons between studies very
difficult – and, in some cases, impossible. In spite of that,
we were able to classify the studies, clearly demonstrating
the many interpretations of the technique, its attacks, and
defenses. Our belief is that this survey assesses the most
significant studies about Split Manufacturing as we focused
on papers that appear on highly-regarded venues. Results
gathered from the surveyed studies were compiled such that
main features, metrics, and performance results are available.
Regarding the results themselves, these are presented in such
manner to illustrate the present state of the technique. There-
fore, this work can be very helpful for future researchers
to contextualize their own techniques for augmenting Split
Manufacturing.

Overall, the security of Split Manufacturing is still under
debate. Some studies conclude that the technique is indeed
secure, and others that it is not. However, these conclu-
sions are reached for different scenarios, i.e., using different
benchmark circuits and set of metrics. Creating a unified
benchmark suite suitable for Split Manufacturing evaluation,
along with a unified set of metrics to quantify/qualify its per-
formance, could facilitate the discussion about its security. In
addition, increasing the number of demonstrations in silicon
could also help with evaluation and adoption issues related to
Split Manufacturing.

REFERENCES
[1] European Union Intellectual Property Office (EUIPO), “2019

Status Report On IPR Infringement,” [Online]. Available:
https://euipo.europa.eu/ohimportal/en/web/observatory/status-reports-
on-ip-infringement.

[2] M. Pecht and S. Tiku, “Bogus: Electronic Manufacturing and Consumers
Confront a Rising Tide of Counterfeit Electronics,” IEEE Spectrum, vol.
43, no. 5, pp. 37–46, 2006.

[3] U. Guin, K. Huang, D. Dimase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit Integrated Circuits: A Rising Threat in the Global
Semiconductor Supply Chain,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1207–1228, 2014.

[4] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:
Models, methods, and metrics,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[5] R. Torrance and D. James, “The State-of-the-Art in Semiconductor Re-
verse Engineering,” 2011 48th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 333–338, 2011.

[6] P. Subramanyan, N. Tsiskaridze, K. Pasricha, D. Reisman, A. Susnea,
and S. Malik, “Reverse Engineering Digital Circuits Using Functional
Analysis,” pp. 1277–1280, March 2013.

[7] AnySillicon, “Fabless Company Sales By Region 2018,” [Online]. Avail-
able: https://anysilicon.com/fabless-company-sales-by-region-2018.

[8] Intelligence Advanced Research Projects Activity (IARPA),
“Trusted Integrated Circuits Program,” [Online]. Available:
https://www.iarpa.gov/index.php/research-programs/tic.

[9] K. Vaidyanathan, B. P. Das, E. Sumbul, R. Liu, and L. Pileggi, “Building
Trusted ICs Using Split Fabrication,” IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 1–6, 2014.

[10] J. Rajendran, O. Sinanoglu, and R. Karri, “Is Split Manufacturing Se-
cure?,” in Design, Automation and Test in Europe (DATE), no. Ic,
pp. 1259–1264, 2013.

[11] T. Kikkawa and R. Joshi, “Design Technology Co-Optimization for 10 nm
and Beyond,” in Proceedings of the IEEE 2014 Custom Integrated Circuits
Conference, pp. 1–1, Sep. 2014.

[12] K. Vaidyanathan, R. Liu, E. Sumbul, Q. Zhu, F. Franchetti, and L. Pileggi,
“Efficient and Secure Intellectual Property (IP) Design with Split Fab-
rication,” in 2014 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 13–18, 2014.

[13] B. Hill, R. Karmazin, C. T. O. Otero, J. Tse, and R. Manohar, “A Split-
Foundry Asynchronous FPGA,” in Proceedings of the IEEE 2013 Custom
Integrated Circuits Conference, pp. 1–4, Sep. 2013.

[14] T. Usui, K. Tsumura, H. Nasu, Y. Hayashi, G. Minamihaba, H. Toyoda,
H. Sawada, S. Ito, H. Miyajima, K. Watanabe, M. Shimada, A. Ko-
jima, Y. Uozumi, and H. Shibata, “High Performance Ultra Low-k
(k=2.0/keff=2.4)/Cu Dual-Damascene Interconnect Technology with Self-
Formed MnSixOy Barrier Layer for 32 nm-node,” in 2006 International
Interconnect Technology Conference, pp. 216–218, 2006.

[15] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer
hardware using 3d integrated circuit (IC) technology and split manufac-
turing for obfuscation,” in 22nd USENIX Security Symposium (USENIX
Security 13), pp. 495–510, USENIX Association, Aug. 2013.

[16] Y. Wang, P. Chen, J. Hu, and J. Rajendran, “Routing Perturbation for
Enhanced Security in Split Manufacturing,” Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 605–610, 2017.

[17] K. Yang, U. Botero, H. Shen, D. Forte, and M. Tehranipoor, “A Split
Manufacturing Approach for Unclonable Chipless RFIDs for Pharmaceu-
tical Supply Chain Security,” Asian Hardware Oriented Security and Trust
Symposium (AsianHOST), vol. 2018-May, pp. 61–66, 2018.

[18] S. N. Pagliarini, M. M. Isgenc, M. G. A. Martins, and L. Pileggi, “Applica-
tion and Product-Volume-Specific Customization of BEOL Metal Pitch,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 26, no. 9, pp. 1627–1636, 2018.

[19] J. Magaña, D. Shi, and A. Davoodi, “Are Proximity Attacks a Threat to
the Security of Split Manufacturing of Integrated Circuits?,” IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), vol. 07-
10-Nove, no. c, pp. 1–7, 2016.

[20] Y. Wang, P. Chen, J. Hu, G. Li, and J. Rajendran, “The Cat and Mouse in
Split Manufacturing,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 26, no. 5, pp. 805–817, 2018.

[21] W. Zeng, B. Zhang, and A. Davoodi, “Analysis of Security of Split
Manufacturing Using Machine Learning,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 27, no. 12, pp. 2767–2780,
2019.

[22] S. Chen and R. Vemuri, “On the Effectiveness of the Satisfiability Attack
on Split Manufactured Circuits,” in 2018 IFIP/IEEE International Confer-
ence on Very Large Scale Integration (VLSI-SoC), pp. 83–88, 2018.

[23] S. Chen and R. Vemuri, “Exploiting Proximity Information in a Satisfia-
bility Based Attack Against Split Manufactured Circuits,” Proceedings of
the 2019 IEEE International Symposium on Hardware Oriented Security
and Trust, HOST 2019, pp. 171–180, 2019.

[24] F. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,” in IEEE International Symposium on
Circuits and Systems,, pp. 1929–1934 vol.3, 1989.

[25] N. Viswanathan, C. J. Alpert, C. Sze, Z. Li, G.-J. Nam, and J. A. Roy, “The
ISPD-2011 Routability-Driven Placement Contest and Benchmark Suite,”
in Proceedings of the 2011 International Symposium on Physical Design,
ISPD ’11, p. 141–146, Association for Computing Machinery, 2011.

[26] T. L. M. R. K. Ahuja and J. B. Orlin, “Network Flows: Theory, Algorithms,
and Applications.,” Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

22 VOLUME XXX, 2020

Perez et al.: A Survey on Split Manufacturing: Attacks, Defenses, and Challenges

[27] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and
first atpg results,” IEEE Design Test of Computers, vol. 17, no. 3, pp. 44–
53, 2000.

[28] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-Based Attack on Cyclic
Logic Encryptions,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pp. 49–56, 2017.

[29] M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze, “Split-
Fabrication Obfuscation: Metrics and techniques,” IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST), pp. 7–12,
2014.

[30] C. T. O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, “Automatic
Obfuscated Cell Layout for Trusted Split-Foundry Design,” IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust (HOST),
pp. 56–61, 2015.

[31] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split man-
ufacturing via obfuscated built-in self-authentication,” in 2015 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust (HOST),
pp. 14–19, 2015.

[32] P. Yang and M. Marek-Sadowska, “Making split-fabrication more secure,”
in 2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 1–8, 2016.

[33] L. Feng, Y. Wang, J. Hu, W. K. Mak, and J. Rajendran, “Making Split
Fabrication Synergistically Secure and Manufacturable,” IEEE/ACM In-
ternational Conference on Computer-Aided Design (ICCAD), vol. 2017-
Novem, pp. 313–320, 2017.

[34] A. Sengupta, S. Patnaik, J. Knechtel, M. Ashraf, S. Garg, and
O. Sinanoglu, “Rethinking Split Manufacturing: An Information-
Theoretic Approach with Secure Layout Techniques,” IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), vol. 2017-
Novem, pp. 329–336, 2017.

[35] Z. Chen, P. Zhou, T. Y. Ho, and Y. Jin, “How Secure is Split Manufacturing
in Preventing Hardware Trojan?,” IEEE Asian Hardware Oriented Security
and Trust Symposium (AsianHOST), pp. 1–6, 2017.

[36] S. Patnaik, J. Knechtel, M. Ashraf, and O. Sinanoglu, “Concerted Wire
Lifting: Enabling Secure and Cost-Effective Split Manufacturing,” Asia
and South Pacific Design Automation Conference (ASP-DAC), vol. 2018-
Janua, pp. 251–258, 2018.

[37] S. Patnaik, M. Ashraf, J. Knechtel, and O. Sinanoglu, “Raise Your
Game for Split Manufacturing: Restoring the True Functionality Through
BEOL,” Design Automation Conference (DAC), pp. 1–6, 2018.

[38] M. A. Masoud, Y. Alkabani, and M. W. El-Kharashi, “Obfuscation of Dig-
ital Systems using Isomorphic Cells and Split Fabrication,” International
Conference on Computer Engineering and Systems (ICCES), pp. 488–493,
2019.

[39] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, “A Practical Split
Manufacturing Framework for Trojan Prevention via Simultaneous Wire
Lifting and Cell Insertion,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 9, pp. 1585–1598, 2019.

[40] M. Bushnell and V. Agrawal, Essentials of Electronic Testing for Digital,
Memory and Mixed-Signal VLSI Circuits. Springer Publishing Company,
Incorporated, 2013.

[41] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia Controllabil-
ity/Observability Analysis Program,” in 17th Design Automation Confer-
ence, pp. 190–196, 1980.

[42] T. Semiconductors, “3D-ICs and Integrated Circuit Security,”
[Online]. Available: http://www.tezzaron.com/media/3D-
ICs_and_Integrated_Circuit_Security.pdf.

[43] D. Z. Pan, B. Yu, and J. Gao, “Design for Manufacturing With Emerg-
ing Nanolithography,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 10, pp. 1453–1472, 2013.

[44] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Noso-
vic, “Dijkstra’s Shortest Path Algorithm Serial and Parallel Execution
Performance Analysis,” in 2012 Proceedings of the 35th International
Convention MIPRO, pp. 1811–1815, 2012.

[45] Y. Ding, C. Chu, and Wai-Kei Mak, “Throughput Optimization for
SADP and E-beam Based Manufacturing of 1D Layout,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, 2014.

[46] W. Maly, N. Singh, Z. Chen, N. Shen, X. Li, A. Pfitzner, D. Kasprowicz,
W. Kuzmicz, Y. Lin, and M. Marek-Sadowska, “Twin Gate, Vertical Slit
FET (VeSFET) for Highly Periodic Layout and 3D Integration,” in Pro-
ceedings of the 18th International Conference Mixed Design of Integrated
Circuits and Systems (MIXDES), pp. 145–150, 2011.

[47] M. Weis, A. Pfitzner, D. Kasprowicz, R. Emling, T. Fischer, S. Henzler,
W. Maly, and D. Schmitt-Landsiedel, “Stacked 3-dimensional 6T SRAM

Cell with Independent Double Gate Transistors,” in IEEE International
Conference on IC Design and Technology, pp. 169–172, 2009.

[48] X. Qiu and M. Marek-Sadowska, “Can Pin Access Limit the Footprint
Scaling?,” in Design Automation Conference (DAC), pp. 1100–1106,
2012.

[49] M. Schobert et al., “Degate.,” [Online]. Available:
http://www.degate.org/documentation.

[50] R. Karmazin, C. T. O. Otero, and R. Manohar, “CellTK: Automated
Layout for Asynchronous Circuits with Nonstandard Cells,” in IEEE 19th
International Symposium on Asynchronous Circuits and Systems, pp. 58–
66, 2013.

[51] B. Hill, R. Karmazin, C. T. O. Otero, J. Tse, and R. Manohar, “A
Split-Foundry Asynchronous FPGA,” in Proceedings of the IEEE Custom
Integrated Circuits Conference, pp. 1–4, 2013.

[52] J. Cheng, A. Fu, and J. Liu, “K-Isomorphism: Privacy Preserving Network
Publication Against Structural Attacks,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data, pp. 459–470,
2010.

[53] H. Salmani, M. Tehranipoor, and R. Karri, “On Design Vulnerability Anal-
ysis and Trust Benchmarks Development,” in 2013 IEEE 31st International
Conference on Computer Design (ICCD), pp. 471–474, 2013.

[54] P. Nguyen, T. Tran, P. Diep, and D. Le, “A Low-Power ASIC Imple-
mentation of Multi-Core OpenSPARC T1 Processor on 90nm CMOS
Process,” in 2018 IEEE 12th International Symposium on Embedded
Multicore/Many-core Systems-on-Chip (MCSoC), pp. 95–100, 2018.

TIAGO D. PEREZ received the M.S. degree in
electric engineering from the University of Camp-
inas, São Paulo, Brazil, in 2019. He is currently
pursuing a Ph.D. degree at Tallinn University of
Technology (TalTech), Tallinn, Estonia.

From 2014 to 2019, he was a Digital Designer
Engineer with Eldorado Research Institute, São
Paulo, Brazil. His fields of work include digital
signal processing, telecommunication systems and
IC implementation. His current research interests

include the study of hardware security from the point of view of digital
circuit design and IC implementation.

SAMUEL PAGLIARINI (M’14) received the PhD
degree from Telecom ParisTech, Paris, France, in
2013.

He has held research positions with the Uni-
versity of Bristol, Bristol, UK, and with Carnegie
Mellon University, Pittsburgh, PA, USA. He is
currently a Professor of Hardware Security with
Tallinn University of Technology (TalTech) in
Tallinn, Estonia where he leads the Centre for
Hardware Security. His current research interests

include many facets of digital circuit design, with a focus on circuit reliabil-
ity, dependability, and hardware trustworthiness.

VOLUME XXX, 2020 23

Appendix 2

[II]
T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan insertion
- a practical foundry-side attack via eco,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5, 2021

123

Side-Channel Trojan Insertion – a Practical
Foundry-Side Attack via ECO

Tiago Perez, Malik Imran, Pablo Vaz and Samuel Pagliarini
Department of Computer Systems - Tallinn University of Technology, Tallinn, Estonia

Emails: {tiago.perez,malik.imran,pablo.vaz,samuel.pagliarini} @taltech.ee

Abstract—Design companies often outsource their integrated
circuit (IC) fabrication to third parties where ICs are susceptible
to malicious acts such as the insertion of a side-channel hardware
trojan horse (SCT). In this paper, we present a framework for
designing and inserting an SCT based on an engineering change
order (ECO) flow, which makes it the first to disclose how
effortlessly a trojan can be inserted into an IC. The trojan is
designed with the goal of leaking multiple bits per power signature
reading. Our findings and results show that a rogue element
within a foundry has, today, all means necessary for performing
a foundry-side attack via ECO.

Index Terms—hardware security, manufacturing-time attack,
hardware trojan horse, side-channel attack, VLSI, ASIC.

I. INTRODUCTION

The ever-increasing cost to build high-end semiconductor
manufacturing facilities – estimated to cost $15-20B [1] –
has made most design companies migrate to a fabless model.
In practice, design houses can market integrated circuit (IC)
solutions, but fabrication is outsourced to a third party. The
practice of outsourcing can potentially affect the trustworthiness
of an IC as a foundry (or a rogue element within the foundry)
can manipulate the design for malicious purposes [2], [3].

Manufacturing-time attacks can tamper an otherwise trust-
worthy IC by inserting malicious logic or modifying specific
aspects of the manufacturing process [4], [5]. These kinds of
modifications are often referred to as hardware trojans (HTs).
HTs are designed to leak confidential information, to disrupt
a system’s specific functionality, or even to destroy the entire
system. Various types of HTs have been recently studied [6]–
[15], demonstrating the potential threat of this type of attack.
Moreover, a class of HTs has emerged for assisting side-channel
attacks (SCA). Lin et al. [6] were the first to propose an
architecture for assisting a power SCA. This specific type of
trojan is the centerpiece of our work and in the remainder of
this text is referred to as a side-channel trojan (SCT).

An IC’s operating characteristics (e.g., timing, power con-
sumption, electromagnetic radiation, etc.) can be used as a side-
channel to indirectly reveal information that should be internal
to the IC. For this reason, keys of crypto cores [16] are often
targeted. However, to mount a successful SCA, it is necessary
to acquire a large amount of data to perform correlation on.
Using SCTs, on the other hand, the attack time and complexity
is drastically reduced. The disadvantage of SCTs is that they
require a circuit modification at fabrication time, which we later
show is an effortless exercise for the attacker.

In [7], two lightweight SCT architectures are proposed, both
with the intent to induce power consumption in order to leak
a crypto key. The first architecture makes use of an adapted
code-division multiple access (CDMA) scheme to distribute the
leakage of bits over time. The modulated bits are forwarded to

a special “leakage circuit” that creates a CDMA channel over
the power side-channel. The second architecture, in addition to
the CDMA scheme, also implements intermediate states within
the AES key schedule to facilitate a differential power analysis
(DPA) attack. Both architectures are implemented in a field
programmable gate-array (FGPA) platform.

A silicon validated HT is presented by the authors of [8],
[9]. Their demonstration is a cryptographic IC composed of an
AES core and an Ultra-WideBand transmitter that leaks the key
together with the transmission of the 128 bits of ciphertext. To
broaden the scope of SCTs from dedicated crypto hardware to
general-purpose processors (GPPs), an interesting architecture
is described in [12], where software models of crypto standards
(AES and RSA) are executed on GPPs. A number of simple
micro-architectural modifications has been described to induce
information leakage via faulty computations or variations in the
latency and power consumption of certain instructions.

Despite the encouraging results reported from the SCT
studies mentioned so far, no study discusses how SCTs could be
inserted from the perspective of the attacker. In this work,
we present not only an SCT design methodology, but also a
novel framework for SCT insertion. We assume that a rogue
agent inside the foundry is the adversary and that he/she makes
use of readily available engineering change order (ECO)
capabilities of physical design tools.

II. THREAT MODEL AND ATTACKER CAPABILITIES

An attacker inside the foundry has the objective of inserting
malicious logic in a finalized layout. Thus, he/she enjoys access
to all technology and cell libraries utilized by the victim. This
is particularly true for advanced nodes where only a handful of
cell libraries per node exist. We assume the attacker is capable
of identifying a crypto core in a layout, which is a reasonable
assumption for well-known AES implementations that are often
regular. We do not assume the adversary understands the entire
victim’s design. Instead, we assume the adversary can recognize
the layout/structure of a crypto core within a larger design.
Our assumptions are in line with [7], [9]. Furthermore, we
also assume the adversary: 1) is versed in IC design, 2) enjoys
access to modern EDA tools. With the help of the inserted logic
in the form of an SCT, the attacker will then attempt to leak
confidential information via a power signature. For this reason,
crypto cores are often the target in this type of attack [9], [10]
– this is also the scenario in our work.

A typical physical implementation flow is described in the
upper portion of Fig. 1. The attack takes place after the victim’s
layout is sent for fabrication (see red portion of Fig. 1). Our
threat model assumes that the attacker only has access to the
layout (which is the norm when outsourcing IC fabrication)

Physical
Synthesis

Ti
m

in
g

Si
gn

of
f

D
es

ig
n

Ve
rifi

ca
tio

n

Pl
ac

e
&

R
ou

te

GDSII

Test,
Assembly &

Package

RTL

Technology
Library

 Constraints

Logic
SynthesisGate-level

Netlist

Modified
GDSII

Fig. 1: A typical IC design flow. Highlighted in red is the
untrusted fabrication stage where the attack takes place.

– he/she would not be able to insert the malicious logic by
replicating the physical implementation flow since he/she does
not have access to the RTL code, netlists, constraints, etc.

Nevertheless, EDA tools already have the capability to deal
with finalized designs. This functionality is a feature referred to
as ECO. Thus, an attacker holding only the layout could use an
ECO to modify or insert additional logic in a finalized layout.
An ECO flow requires four inputs: technology library, cell
library, gate-level netlist, and a timing constraint. The adversary
already possesses the first two, but must generate/estimate the
others. A gate-level netlist can be effortlessly obtained from the
victim’s layout through extraction [17]–[19], while the timing
constraint can be estimated to a certain degree [20]–[22]. Our
novel trojan insertion framework is shown in Fig. 2, where
these two steps are considered.

III. SIDE-CHANNEL TROJAN DESIGN AND INSERTION

A. Side-Channel Trojan Design
Our proposed SCT is designed for creating an “artificial” yet

controllable power consumption through which information is
leaked. Since the majority of the power consumption in a circuit
comes from the switching activity (dynamic power), a great
candidate to be a power sink is a structure with a controllable
frequency such as a dynamic ring-oscillator (RO). Our RO
architecture implements delay stages broken into branches that
are controlled by Nleak bits. Each RO branch has two active
path options: a direct connection to the next branch or a series
of delay cells. The power consumption created by paths is
similar to a pulse-amplitude modulation with an order equal
to 2Nleak . An example of SCT architecture for Nleak = 2 is
illustrated in Fig. 2. The branch configuration is described in
Table I, where the leaked bits are selectors S0 and S1.

TABLE I: Ring oscillator active path configuration

S0 S1 Delay Cells Inverter Cells Freq.
0 0 ND1 Ni High
1 0 ND1 +ND2 Ni Mid-high
0 1 ND1 +ND3 Ni Mid-low
1 1 ND1 +ND2 +ND3 +ND4 Ni Low

i

S1S0Enable

System_clock
Reset

Select

Enable

D4S2D3

N Inverter
Cells

D2

D1

Clock_sct

Trigger
2

.........

...

N Delay
CellsS1N Delay

Cells
N Delay

Cells
S0

N Delay
Cells

S1

...

Key Nkey

Ring
Oscillator

Trojan
Controller

GDSII

Netlist
Extraction

Frequency
Estimation

Power
Analysis

Trojan
Design

ECO
Flow

Modified
GDSII

Clock
Divider

Fig. 2: Our SCT insertion methodology detailed.

A dual-sided constraint guides the attacker: he/she has to
induce as much dynamic power as possible (i.e., to increase
the effectiveness of the attack) while increasing as little leakage
power as possible (i.e., to avoid detection). In this sense, not
only the SCT has to be carefully planned, as well as when
exactly will the trojan be triggered. Our approach is to not allow
the trojan to compete with the dynamic power consumption of
the crypto core. Therefore, when the core is actively working,
the trojan is silent and the RO is not switching. When the crypto
core is idle, the trojan kicks in. For this reason, our proposed
SCT trojan has a Trigger signal that is connected to the Done
signal coming from the crypto core, which marks the end of a
cryptographic operation.

When triggered, the SCT connects a set of the leaking bits
per clock cycle in the RO until all the Nkey bits from the
crypto key are leaked. Thus, our SCT requires a connection
to the system clock and reset, a trigger signal, and the crypto
key. Its architecture is illustrated in Fig. 2, consisting of three
blocks: clock divider (DV), the trojan controller (TC), and the
RO. The DV is required when the system clock is high and is
responsible for dividing the frequency as the name suggests.
Thus, the Clock sct signal is either connect directly to the
System clock or to the DV. The TC is responsible for enabling
the RO and for connecting the leaking bits in the RO. The RO
starts running when the enable signal is asserted. The frequency
is controlled by the select signals S0 and S1.

To reduce the detection probability and increase the attack’s
feasibility, SCTs are tailored for each target circuit. Therefore,
the SCT is designed with size and power constraints, i.e., we
set thresholds for the SCT based on the target’s size and static
power. The attacker has to acquire such information from the
layout. According to Fig. 2, the layout is inspected as follows:

Netlist extraction: since the attacker only holds the layout, a
gate-level netlist has to be extracted by a CAD tool [17]–[19].
Frequency estimation: the attacker needs to estimate the
target circuit operating frequency by performing static timing
analysis on the extracted gate-level netlist. The attacker can
try different clock frequencies and, by observing the critical
path(s), can increase/decrease the frequency as needed until
the timing slack is positive but near zero. The caveat is that
multi cycle and false paths are expected to violate STA, and
for this reason we say the frequency of operation is estimated.
Power analysis: with the extracted gate-level netlist and the
estimated operating frequency, the attacker can perform a

typical power analysis. For relatively large circuits, a near-
accurate static power estimation can be achieved even without
input vectors.
Therefore, after inspection, the attacker has estimated fre-

quency and power consumption and is now ready to draw his
SCT. The RO’s dynamic power is tweaked by choosing an
adequate number of delay cells in each individual branch as
well as the number of inverter cells in the feedback path. The
achieved amplitude steps have to be sufficiently different from
one another for the attack to be successful.

B. Side-Channel Trojan Insertion

After designing the SCT, the next step is its insertion. The
attacker can utilize the ECO feature provided by commercial
EDA tools for inserting the SCT. Typically, ECO is used
to perform slight modifications in a finalized layout after its
manufacturing (i.e., post-mask ECO). A special type of spare
cell is utilized to enable ECOs. These cells do not add any
functionality to the original design but, when needed, are
instantiated by the ECO flow. By doing so, a new design can
be generated with minimal changes in the fabrication mask set.

For the SCT insertion via ECO, since we previously estab-
lished that the attacker can discern any gate in a layout, the
attacker can replace both filler and spare cells by his malicious
logic [23]. Contrarily to spare cells, every layout has filler cells.
During placement, EDA tools have to spread the standard cells
to assure routabilility, thus mandatorily leaving gaps between
cells. For more details about the relationship between placement
density and HT insertion, we direct the reader to [23].

According to Fig. 2, the ECO flow is the last step for the
SCT insertion. In order to identify the filler/spare cells and
remove them to create the gaps needed for the SCT, a single
Cadence Innovus command is required. After the ECO, the
attacker has to perform a timing sign-off to guarantee that
the performance of the victim’s design was kept. The SCT
insertion is not likely to perturb the target’s performance; it
is only connected to a register (key storage) and some control
signals, adding a small capacitance load. Besides, the coupling
capacitance inserted by the additional routing wires is minimal
due to the SCT’s lightweight characteristic and the inherent goal
of the ECO flow: not to disturb the existing logic. However, if
the target circuit performance is perturbed, even if unlikely, it
means that the size constraint used for designing the SCT was
inappropriate - the adversary then proceeds to pick a different
value and leak less bits per clock cycle. The attacker also has
to check whether the SCT itself has timing violations. If so,
the optional clock divider must be included. Every division by
two requires one additional D-type flip-flop.

IV. EXPERIMENTS AND RESULTS

For our experimental investigation, we have utilized AES
and Present (PST) crypto cores with Nkey=128 and Nkey=80,
respectively. AES was chosen due to its standardized sta-
tus while PST was chosen due to its lightweight charac-
teristic [24]. To allow the analysis of changes in frequency
and density, the combination of these variables is explored
as low-frequency low-density (LFLD), low-frequency high-
density (LFHD), high-frequency low-density (HFLD), and

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5

#
 o

f
sa

m
pl

es

Static power (mW)

Fig. 3: PST HFLD static power histogram, 10K MC samples.

high-frequency high-density (HFHD). Results from physical
synthesis of the considered targets are presented in Table II.
A 65nm CMOS technology was utilized to exercise very
challenging placement densities (e.g., 75% for AES LFHD)
and frequencies (e.g., 0.95GHz for PST HFLD). The values
reported are for a typical corner.

Based on the pre-ECO results reported in Table II, different
SCTs were designed for each target. We assume the attacker
has no means to stop clock delivery to the whole circuit, so
we included the clock tree power as it has to be accounted for
in our SCT power constraint. Notice how the clock tree power
is significant w.r.t. the leakage power of the targets, even for
the LF variants. In the results that follow, we therefore set a
power budget for our SCTs of 10% of the sum of leakage and
clock tree power. Importantly, this is not a limitation of the
methodology, an attacker can pick any other threshold.

Aiming to obtain a better representation of the static power
of the cores, we performed a Monte Carlo (MC) simulation
using Cadence Spectre. This simulation was performed for
1000 samples, varying only the process with temperature fixed
to 25◦C. The simulation results match the values reported in
Table II for the typical corner. Fig. 3 depicts the static power
distribution of PST HFLD. As the SCT is implemented in the
very same region of the IC as the target, we can also expect
the same variation in its power.

Once the power constraint has been established, the attacker
can proceed to estimate the multiple operating frequencies of
the RO (and the associated power values that effectively leak
the key). Moreover, as previously alluded, we have to take
into account the placed and routed version of the SCTs. For
this goal, we have taken each of our SCTs and performed
a custom simulation using Cadence Spectre. The oscillation
frequency and power consumption of the ROs are reported in
Table III, where each RO has been termed with a “DXIY”
suffix. X and Y represent the number of delay and inverter
cells, respectively. Notice how we do not differentiate density
in the results reported in Table III: either the trojan fits or it does
not. The SCT design is nearly agnostic to placement density.

A visual representation of how the SCT performs is given
in Fig 4. The set of leaked keys in the image is {00-10-01-
11} and the target circuit is AES LFHD. We also highlight an
extreme case in the ROD6I4 which targets the PST LF core.
Here, the SCT alone represents about 10% of the size of the
PST core. Since area and leakage have a linear dependency,
the SCT’s leakage already is about 10% of the target’s leakage.
Hence, the power constraint is violated. This extreme example
assumes the entire IC consists of a single PST core. For a large
system-on-chip containing multiple cores, the power budget for

TABLE II: Physical synthesis results for our considered targets, before and after trojan insertion.

Before SCT insertion After SCT insertion
Core Frequency

(MHz)
Density
(%)

Leakage
(µW)

Clock Tree Power
(µW)

Total Power
(µW)

Density
(%)

Leakage
(µW)

Clock Tree Power
(µW)

Total Power
(µW)

AES LFLD 100 61 77.4 115.2 1670 63.45 80 115.8 1720
AES LFHD 100 75 75.8 116.7 1660 78.20 79 117.6 1720
AES HFLD 1000 58 1048 1228 22800 59.37 1052 1238 23015
AES HFHD 1000 72 1036 1241 22610 73.02 1040 1252 22830
PST LFLD 95 53 14.13 32.05 371.3 67.33 20.71 34.75 483.4
PST LFHD 95 70 14.09 31.89 371.2 82.05 17.72 32.85 428.5
PST HFLD 950 52 34.02 325.30 3744 60.89 36.85 338.1 4022
PST HFHD 950 69 34.13 329.10 3785 80.26 36.96 341.5 4015

TABLE III: RO operating frequency and power consumption

Target RO Power & Frequency (µW & MHz)
core S=00 S=01 S=10 S=11
AES LF ROD6I10 19.52@65 16.89@45 14.94@34 12.96@20
AES HF ROD10I10 198.4@551 182.5@483 160.7@390 139.8@300
PST LF ROD6I4 15.95@112 11.55@58 10.22@39 8.7@20
PST HF ROD8I10 42.02@79 35.56@61 30.88@46 25.66@31

0

1

O
ff

High Mid-high Mid-low Low

28
5u

W

313uW 310uW 308uW 306uW
65MHz 45MHz 34MHz 20MHzEn

ab
le

0

1

S
0

0

1

S
1

0

0.5

1.0

 40 130 220 310

R
O

 O
ut

pu
t (

V
)

Time (ns)

Fig. 4: Side channel trojan functionality example for the
AES LFHD, where the SCT utilizes the ROD6I10.

designing the SCT would be much more forgiving.
Alongside the custom-simulated ROs, the SCTs are synthe-

sized for each Nkey and at the same clock frequency of the
target. Exclusively for the HF targets, we added the CD block
to ensure the SCT does not violate timing. For AES HF, the
system clock was divided by 8 while for PST HF it was divided
by 16. Area and cell count for the SCTs are given in Fig. 5.

AES_LFLD
AES_HFHD
PST_LFLD

PST_HFHD

 0 100 200 300 400 500 600 700

170 8
171 11
130 8
139 12

µm2

Comb.
Seq.

Fig. 5: Comparison of area and number of cells between SCTs.

After designing the RO and synthesizing the remainder of
the SCT logic, the attacker is ready to perform the insertion
via ECO. Insertion results are described on Table II (‘After
SCT insertion’). For all considered scenarios, the ECO flow
was capable of placing and routing the SCT successfully, even
for dense layouts. Considering that high density implies less
routing resources, we verified that the ECO flow purposefully
utilizes the least congested metal layers. We also provide a
visual comparison of the density increase for the PST HFHD
SCT in the left side of Fig. 6. Note that the placement of the
target was kept identical and only filler cells were removed

25%

50%
Core

Filler
Trojan

Pre-ECO Post-ECO Pre-ECO Post-ECO

100%

Fig. 6: Placement view (left) and density map (right) of the
PST HFHD core, before and after SCT insertion via ECO.

 0
 20
 40
 60
 80

 100
 120
 140

-20 0 20

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

 0

 5

 10

 15

 20

-20 0 20 40 60 80 100 120

Min. setup target slack

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

Fig. 7: Pre- and post-ECO setup timing slack comparison of
AES HFHD (right) and PST HFHD (left).

during ECO. This is the key finding of this paper: an adversary
can effortlessly insert an SCT into a finalized layout.

Besides enabling the SCT insertion, the ECO flow also has
to preserve the performance of the target circuit. The impact
on the performance of AES HFHD and PST HFHD cores is
illustrated in Fig. 7. The difference in pre- and post-ECO timing
slack is attributed to additional load and coupling capacitances.
One can appreciate how the red bars in Fig. 7 are shifted to the
left (w.r.t. the green bars). However, this shift was not sufficient
to degrade the performance of any core. The PST HFHD
implementation is affected slightly (which is explained by the
increase in density reported in Table II) but does not violate
our safety margin of 20ps applied to all paths. Furthermore,
we argue that our proposed methodology is not only capable
of inserting an SCT in a high density layout, but also of
keeping the target’s performance regardless of its (challenging)
frequency. Finally, there are very few techniques that would
assuredly counter the ECO-enabled trojan insertion [3], [25].

V. CONCLUSIONS

In this work, we proposed an SCT design methodology
as well as a novel framework for SCT insertion via ECO.
The SCT insertion was detailed step by step, showing that a
rogue element inside a foundry can replicate it effortlessly. Fur-
thermore, our results show how efficient an otherwise benign
ECO flow can be when used for malicious reasons. Our future
work includes a silicon demonstration of the inserted HT. A
tapeout was completed during the writing of this paper and the
fabricated ICs are expected to arrive by Jan/2021.

ACKNOWLEDGMENT

This work has been partially conducted in the project “ICT
programme” which was supported by the European Union
through the European Social Fund.

REFERENCES

[1] M. Lapedus, “Big trouble at 3nm,” [Online]. Available at:
https://semiengineering.com/big-trouble-at-3nm/.

[2] U. Guin et al., “Counterfeit integrated circuits: A rising threat in the
global semiconductor supply chain,” Proceedings of the IEEE, vol. 102,
no. 8, pp. 1207–1228, 2014.

[3] S. Pagliarini, J. Sweeney, K. Mai, S. Blanton, S. Mitra, and L. Pileggi,
“Split-chip design to prevent ip reverse engineering,” IEEE Design &
Test, 2020.

[4] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan tax-
onomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10–25, 2010.

[5] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:
Models, methods, and metrics,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[6] L. Lin, W. Burleson, and C. Paar, “Moles: Malicious off-chip leakage
enabled by side-channels,” in 2009 IEEE/ACM International Conference
on Computer-Aided Design, pp. 117–122, 2009.

[7] L. Lin et al., “Trojan side-channels: Lightweight hardware trojans through
side-channel engineering,” in Cryptographic Hardware and Embedded
Systems - CHES 2009, pp. 382–395, 2009.

[8] Y. Jin and Y. Makris, “Hardware trojans in wireless cryptographic ics,”
IEEE Design Test of Computers, vol. 27, no. 1, pp. 26–35, 2010.

[9] Y. Liu, Y. Jin, and Y. Makris, “Hardware trojans in wireless cryptographic
ics: Silicon demonstration & detection method evaluation,” in Int. Conf.
on Computer-Aided Design (ICCAD), pp. 399–404, 2013.

[10] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric trojans
for fault-injection attacks on cryptographic hardware,” in 2014 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 18–28, 2014.

[11] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in 2016 IEEE Symposium on Security and Privacy
(SP), pp. 18–37, 2016.

[12] J.-F. Gallais et al., “Hardware trojans for inducing or amplifying side-
channel leakage of cryptographic software,” in Trusted Systems, pp. 253–
270, 2011.

[13] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extraction
at gate-level netlists and its application to hardware-trojan detection using
random forest classifier,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–4, 2017.

[14] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection
techniques,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 2021–2024, 2015.

[15] S. Yu, C. Gu, W. Liu, and M. O’Neill, “A novel feature extraction strategy
for hardware trojan detection,” in 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2020.

[16] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology — CRYPTO’ 99 (M. Wiener, ed.), pp. 388–397, 1999.

[17] Cadence Design Systems, “Virtuoso Layout Suite,” [Online].
Available at: https://www.cadence.com/en US/home/tools/
custom-ic-analog-rf-design/layout-design/virtuoso-layout-suite.html.

[18] Mentor, “Calibre ®,” [Online]. Available at: https://www.mentor.com/
products/ic nanometer design/.

[19] Synopsys, “Synopsys Custom Design Platform,” [Online].
Available at: https://www.synopsys.com/implementation-and-signoff/
custom-design-platform.html.

[20] R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” Design Automation Conference, pp. 333–338, 2011.

[21] N. Albartus, M. Hoffmann, S. Temme, L. Azriel, and C. Paar, “Dana
- universal dataflow analysis for gate-level netlist reverse engineering,”
2020. https://eprint.iacr.org/2020/751.

[22] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, “Timingcam-
ouflage: Improving circuit security against counterfeiting by unconven-
tional timing,” in 2018 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 91–96, 2018.

[23] T. Trippel et al., “ICAS: An Extensible Framework for Estimating the
Susceptibility of IC Layouts to Additive Trojans,” 2020 IEEE Symposium
on Security and Privacy (SP), pp. 1078–1095, 2020.

[24] S. Ghandali et al., “Side-channel hardware trojan for provably-secure
sca-protected implementations,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 6, pp. 1435–1448, 2020.

[25] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks,
defenses, and challenges,” IEEE Access, vol. 8, pp. 184013–184035,
2020.

Appendix 3

[III]
T. Perez and S. Pagliarini, “A side-channel hardware trojan in 65nm cmos
with 2µW precision and multi-bit leakage capability,” in 2022 27th Asia
and South Pacific Design Automation Conference (ASP-DAC), pp. 9–10,
2022

131

A Side-Channel Hardware Trojan in 65nm CMOS with 2µW precision
and Multi-bit Leakage Capability

Tiago Perez, Samuel Pagliarini
Department of Computer Systems - Tallinn University of Technology

Tallinn, Estonia
{tiago.perez,samuel.pagliarini} @taltech.ee

Abstract — In this work, a novel architecture for
a side-channel trojan (SCT) capable of leaking multi-
ple bits per power signature reading is proposed. This
trojan is inserted utilizing a novel framework featuring
an Engineering Change Order (ECO) flow. For assess-
ing our methodology, a testchip comprising of two ver-
sions of the AES and two of the Present (PST) crypto
cores is manufactured in 65nm commercial technol-
ogy. Our results from the hardware validation demon-
strated that keys are successfully leaked by creating
microwatt-sized shifts in the power consumption.

Our SCT architecture leaks information through an
artificially and controllable induced power consumption
[1, 2, 3]. This is done by implementing a ring-oscillator
(RO) for dynamically creating the extra power consump-
tion. For generating the power consumption multi-steps
required for leaking multiple bits, our RO utilizes delay
steps that are controlled by Nleak bits. In Fig. 1, an ex-
ample of our SCT architecture for Nleak = 2 is depicted.
Our SCT is triggered when the target is idle. An example
of how our SCT performs is illustrated in Fig. 2.

For assessing our methodology, a testchip was manufac-
tured utilizing a 65nm commercial technology, compris-
ing of 4 crypto cores and a control block. We have im-
plemented AES and PST with Nkey=128 and Nkey=80,
respectively. Two versions of each crypto core were de-
signed for different operating frequencies (AES@1GHz,
AES@100MHz, PST@950MHz, and PST@95MHz) and a
challenging density (≈ 70%). Utilizing the flow depicted
in Figure 1, for each crypto core we designed a specific
SCT based on its power consumption. The novelty of our
work is in the manner that the trojan logic is inserted in
the design, i.e., via an ECO flow. Our SCT competes with
the target leakage power, thus, it must induce as much dy-
namic power as possible (i.e., to increase the effectiveness
of the attack) while increasing as little leakage power as
possible (i.e., to avoid detection). The SCT insertion was
possible even with the chosen challenging density, which
represents fewer empty spaces for introducing the SCT.
An example for the denser design, the PST@950MHz, is
depicted in Fig. 3. A key feature of the ECO is not dis-
rupting the performance of the target, as demonstrated
at the setup timing slack comparison between pre- and
post-ECO in Fig. 4.

This work has been partially conducted in the project “ICT
programme” which was supported by the European Union through
the European Social Fund

Our chip was designed in November of 2020, fabricated
in March of 2021, and bench tests were conducted during
July of 2021. Our bare die and its layout are contrasted
in Fig. 5. For the hardware validation, we have access to
25 packaged samples of the chip. A printed circuit board
(PCB) was designed specifically for the tests. For con-
trolling the chip, we utilized a ZedBoard that contains
a Xilinx Zynq-7000 All Programmable SoC. This setup
is shown in Figure 6. The measurements were done as
following: 1) a cryptokey with the 8 first bits being “11-
10-01-00” was programmed; 2) a command for a single
encryption was issued; 3) right after the encryption is
done, all clock sources were turned-off; 4) three bursts of
clocks were sent in order to shift the cryptokey connected
to the RO. Our design can enable one crypto core at the
time on the same chip. Thus, the values measured in our
tests include only the leakage from the control block, the
leakage from the selected crypto core and the dynamic
power from the RO itself. The average across the sam-
ples of total power and leakage for each core is shown
in Tab. 1. An example for AES@100MHz is shown in
Figure 6, as seen in the ammeter, there are discrete steps
representing the leaked bits “11-10-01-00” from the left to
the right, respectively. The RO steps were approximated
to a normal distribution, depicted in Figure 7. As seen
for the PST@95MHz, our SCT was successfully capable
of creating distinct steps with a precision of only 2µA.

The experimental measurements results obtained show
that the variability in the manufacturing process does
not affect the effectiveness of the RO for the smaller de-
signs (AES@100MHz, PST@95MHz and PST@950MHz),
meaning that the attack can be carried on with the same
probability of success regardless of the sample. For the
biggest design, AES@1GHz, the ECO had to spread far-
ther away the RO cells because of the lack of empty spaces
nearby. For this crypto core, the planned power steps
were in the order of 200 µA, and the actual power steps
after manufacturing were in the order of 60 µA. However,
if the adversary has total control of the clock sources of
the target, the attack will have a high chance of success
due the distinctly separation of the power steps.

Our findings and results from the hardware phase val-
idation demonstrated that our SCT was successfully in-
serted and was capable of leaking the cryptokey. Even
more, it demonstrates that the ECO flow is a valid option
for enabling a foundry-side attack. Therefore, proving
that a foundry-side attack via ECO can be done by a

rogue element within a foundry, hence he/she has all the
means necessary for performing it.

i

S1S0Enable

System_clock
Reset

Select

Enable

D4S2D3

N Inverter
Cells

D2

D1

Clock_sct

Trigger
2

.........

...

N Delay
CellsS1N Delay

Cells
N Delay

Cells
S0

N Delay
Cells

S1

...

Key Nkey

Ring
Oscillator

Trojan
Controller

GDSII

Netlist
Extraction

Frequency
Estimation

Power
Analysis

Trojan
Design

ECO
Flow

Modified
GDSII

Clock
Divider

Fig. 1: Our SCT insertion methodology detailed.

0

1

O
ff

High Mid-high Mid-low Low

28
5u

W

313uW 310uW 308uW 306uW
65MHz 45MHz 34MHz 20MHzEn

ab
le

0

1

S
0

0

1

S
1

0

0.5

1.0

 40 130 220 310

R
O

 O
ut

pu
t (

V
)

Time (ns)

Fig. 2: Side channel trojan functionality example for the
AES@100MHz.

25%

50%
Core

Filler
Trojan

Pre-ECO Post-ECO Pre-ECO Post-ECO

100%

Fig. 3: Placement view (left) and density map (right) of the
PST@950MHz core, before and after SCT insertion via ECO.

 0
 20
 40
 60
 80

 100
 120
 140

-20 0 20

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

 0

 5

 10

 15

 20

-20 0 20 40 60 80 100 120

Min. setup target slack

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

Fig. 4: Pre- and post-ECO setup timing slack comparison of
AES@1GHz (right) and PST@950MHz (left).

Fig. 5: Our bare die (right) and its layout (left).

Fig. 6: Setup used for bringing up the testchip. In the left is
shown the signals used for controlling, and, in the right the
current consumption of the chip when the RO is active.

Table 1: Average of the total power and leakage across the
tested chips for each crypto core.

Core Total Power (µW) Leakage (µW)
AES@1GHz 101160±10781 743.79±108.07
AES@100MHz 3139.32±85.38 131.57±10.35
PST@950MHz 9661.3±758.52 80.75±7.82
PST@95MHz 868.56±57.90 74.35±6.84

15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

A (μA)

P
ro

b
ab

ili
ty

D
en

si
ty S00

S01
S10
S11

15.00

16.78 19.62 24.03

12 14 16 18 20 22
0.0

0.5

1.0

1.5

A (μA)

P
ro

b
ab

ili
ty

D
en

si
ty

S00
S01
S10
S11

13.90

15.45
17.51

19.58

15 20 25
0.0

0.2

0.4

0.6

0.8

A (μA)

P
ro

b
ab

ili
ty

D
en

si
ty

S00
S01
S10
S11

18.92

21.15
22.50

25.23

50 60 70 80
0.00

0.05

0.10

0.15

A (μA)

P
ro

b
ab

ili
ty

D
en

si
ty

S00
S01
S10
S11

58.25

61.75

64.05

67.03

PST@95MHz PST@950Mhz

AES@100MHz AES@1GHz

Fig. 7: Power consumption “steps” distribution for each crypto
core. The red shadowed area represents the 95% confidence
interval.

References
[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware tro-

jan taxonomy and detection,” IEEE D&T, 2010.

[2] J.F. Gallais et al., “Hardware trojans for inducing or ampli-
fying side-channel leakage of cryptographic software,” Trusted
Systems, 2011.

[3] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel
trojan insertion - a practical foundry-side attack via ECO,” IS-
CAS’21.

Appendix 4

[IV]
T. D. Perez, M. M. Gonçalves, L. Gobatto, M. Brandalero, J. R. Azambuja,
and S. Pagliarini, “G-gpu: A fully-automated generator of gpu-like asic
accelerators,” in 2022 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 544–547, 2022

135

G-GPU: A Fully-Automated Generator of GPU-like
ASIC Accelerators

Tiago D. Perez∗, Márcio M. Gonçalves†, Leonardo Gobatto†, Marcelo Brandalero‡, José Rodrigo Azambuja†,
Samuel Pagliarini∗

∗ Department of Computer Systems, Tallinn University of Technology (TalTech), Estonia
† Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

‡ Brandenburg University of Technology (B-TU), Germany
Emails:{tiago.perez,samuel.pagliarini}@taltech.ee,{marcio.goncalves,leonardo.gobato,jose.azambuja}@inf.ufrgs.br,marcelo.brandalero@b-tu.de

Abstract—Modern Systems on Chip (SoC), almost as a rule,
require accelerators for achieving energy efficiency and high
performance for specific tasks that are not necessarily well suited
for execution in standard processing units. Considering the broad
range of applications and necessity for specialization, the design
of SoCs has thus become expressively more challenging. In this
paper, we put forward the concept of G-GPU, a general-purpose
GPU-like accelerator that is not application-specific but still gives
benefits in energy efficiency and throughput. Furthermore, we
have identified an existing gap for these accelerators in ASIC,
for which no known automated generation platform/tool exists.
Our solution, called GPUPlanner, is an open-source generator of
accelerators, from RTL to GDSII, that addresses this gap. Our
analysis results show that our automatically generated G-GPU
designs are remarkably efficient when compared against the
popular CPU architecture RISC-V, presenting speed-ups of up to
223 times in raw performance and up to 11 times when the metric
is performance derated by area. These results are achieved by
executing a design space exploration of the GPU-like accelerators,
where the memory hierarchy is broken in a smart fashion and
the logic is pipelined on demand. Finally, tapeout-ready layouts
of the G-GPU in 65nm CMOS are presented.

Index Terms—ASIC generator, domain-specific accelerators,
general-purpose gpu architectures, integrated circuits

I. INTRODUCTION

New computer applications, especially in the field of
Artificial Intelligence (AI), keep pushing the need for more
energy-efficient hardware architectures [1]. For many years,
application- and domain-specific accelerators, designed by
specializing to the task at hand, have been the standard choice
for achieving high energy efficiency. Canonical examples are
crypto cores [2] and Graphics Processing Unit (GPUs) for
which even specialized programming languages and paradigms
have been proposed [3]. GPU architectures focus on specialized
massively parallel many-core processors that take advantage of
Thread-Level Parallelism (TLP) to handle highly parallelizable
applications in a Single-Instruction Multiple Threads (SIMT)
paradigm. GPUs have been traditionally designed for
graphics applications but have recently evolved into efficient
general-purpose accelerators for High-Performance Computing
(HPC). HPC applications have a wide range, including oil
exploration, bioinformatics, and the thriving AI and Machine
Learning (ML) domains [4]. NVIDIA GPUs, for instance, are
used as accelerators in several top500 supercomputers.

However, despite its widespread use as accelerators, research
in GPU architectures is limited due to the lack of open-source
models at a sufficiently low level of abstraction and that

are representative of modern architectures. To the best of
our knowledge, the only configurable open-source GPU
architectures available in the literature are FlexGripPlus [5] and
FGPU [6]. The first is based on the NVIDIA G80 decade-old
architecture and has never been deployed to an FPGA board.
The second was designed specifically for FGPA platforms.
Therefore, the literature has not yet tackled the challenges
in designing, configuring, and implementing modern GPU
architectures for ASICs – a platform that presents challenges
that are far from those in FPGA design. Still, all commercial
GPUs are designed as ASICs.

This work proposes to bridge this gap with GPUPlanner,
an automated and open-source framework for generating
ASIC-specific GPU-like accelerators as IP. We term
these general-purpose accelerators G-GPUs. GPUPlanner
helps designers in generating GPU-like accelerators
through user-driven customization and automated physical
implementation. Customization is performed according to a
given GPU architecture through a series of parameters that
define computation characteristics (e.g., number of processing
units) and memory access (e.g., cache sizes), thus providing
designers a high degree of scalability to better fit the generated
IP into their systems. Implementation strategies explore the
use of smart memories and on-demand pipeline insertion.

We evaluate our proposed framework by implementing
four flavors of G-GPU architectures in terms of performance,
power, and area (PPA). Additionally, we provide a reasonable
comparison with the popular CPU architecture RISC-V [7],
[8] in terms of raw performance speed-up and performance
speed-up derated by area. Our main contributions is an
open-source framework for automated generation of GPU-like
accelerators, from RTL to GDSII – the GPUPlanner.

II. HARDWARE ACCELERATORS AND OUR BASELINE GPU
In a nutshell, domain- or application-specific accelerators

cost too much. Recent developments in High-Level Synthesis
(HLS) [9] are encouraging and have helped in accelerate the
development of domain-specific hardware accelerators. Yet,
for ASIC designs, the performance for flexibility trade-off is
not interesting, or the performance is insufficient [10]. This
scenario presents itself as an opportunity where general-purpose
accelerators have gained ground. Our proposed GPUPlanner
framework combines the efficiency from domain-specific
accelerators and the ease of use from general-purpose
architectures into G-GPU. The result is an automatically

Memory Controller

Runtime Memory

A
X

I D
at

a
In

te
rf

ac
e

A
X

I C
on

tro
l

In
te

rf
ac

e

CRAM

Ctrl Regs

LRAM

G
lo

ba
l M

em
or

y
C

on
tro

lle
r

C
ac

he

W
F

Sc
he

du
le

r

CU

W
G

D
is

pa
tc

he
r

...
...

Reg.
File

...

PE0 PE7

Reg.
File

...

Fig. 1: FGPU architecture colored according to Fig 3.
generated domain-specific ASIC accelerator based on GPU
architectures that can be easily programmed with modern
programming languages.

FGPU is a configurable open-source GPU-like soft processor
designed to accelerate workloads that fit in the SIMT
paradigm [6]. Fig. 1 presents an overview of FGPU’s
architecture. Its main component is the Compute Unit (CU),
a SIMD machine of 8 identical Processing Elements (PE0 -
PE7) that can be spatially replicated up to eight times. A
single CU can run up to 512 work-items (a computational
kernel in OpenCL) and supports full thread-divergence, i.e.,
each work-item is allowed to take a different path in the control
flow graph. Work-items are grouped into Wavefronts (WFs)
that execute concurrently in a CU, and WFs are combined
into Workgroups (WGs), which share a program counter and
are assigned to a CU. FGPU is also deeply pipelined. On
the software side, only standard OpenCL-API procedures are
needed. Most importantly, FGPU can be artlessly scaled up
to 64 processing units and is deeply configurable in terms of
operations, instructions, and memory access.

Several past works have modified the FGPU to adapt it
to different application domains. In [11], the authors have
included new instructions along with micro-architecture and
compiler enhancements to specialize FPGU for persistent deep
learning, achieving 56–693x speed-up in PDL applications.
MIAOW [12] is GPU-like implementation based on the
AMD Southern Islands architecture and supporting its ISA.
Scratch [13] extended MIAOW with automatic identification
of the specific requirements of each application kernel and
a tool that allows for the generation of application-specific
and FPGA-implementable trimmed-down GPU-inspired
architectures. Our work is the first to propose a tool
that automatically generates tapeout-ready domain-specific
accelerators based on GPU-like architectures and to make it
publicly available.

III. GPUPLANNER FRAMEWORK

Our experimental investigation started from migrating the
FGPU, originally designed for FGPA, to ASIC. To this
end, a few changes in the architecture were necessary. As
compilers for FGPA have a feature to infer memory from
RTL automatically, all the memory blocks in the FGPU code
were described as regular FFs. In ASIC, memory IPs are
hand-instantiated instead of inferred. Thus, the first task was to
clearly define intended behavior from the code and instantiate
memory modules, utilizing a 65nm commercial technology.

Fig. 2: GPUPlanner’s G-GPU generation flow.
One of our main goals is to achieve the best PPA ratio

possible from the G-GPU, exercising the maximum possible
design space. The first aspect analyzed was the performance.
This is done by finding the maximum operating frequency,
which does not violate timing. For the logical synthesis, the
value found for the standard version (without any of the
optimizations done in this work) is 500MHz. The G-GPU has a
similar performance across versions with different numbers of
CUs because the CU itself is the bottleneck for performance in
this architecture. As expected, the critical path for the version
without any optimization has its starting point at a memory
block. Also, the critical path was found inside the CU partition.

Larger memories display a higher delay for accessing the
stored data when compared with smaller memories. This
observation guides our design space exploration: dividing the
memory blocks in the critical path is a valid strategy for
increasing the performance of a design [14]. Memory division
can be applied by diving the number of words, the size of
the word, or both. This strategy requires a few alterations in
the RTL code. First, the new modules have to be instantiated
properly, substituting the target memories for the optimization.
Second, the address or the input/output data have to be
concatenated accordingly. To attain faster results, this task was
fully automated in our framework.

The area of the memory blocks is not linear w.r.t. their
size. In fact, two blocks of size M × N are larger and more
power-hungry than a single block of size 2M×N or M×2N .
From the memory division alone, we are increasing the area and
power. Also, a small extra logic is necessary to accommodate
the addressing control. When exercising the memory division
to enhance the design performance, we found cases where
the critical path was not in memory blocks. For solving such
timing issues, pipelines were introduced in those paths. As a
result, we created an open-source tool to automatically generate
G-GPU IPs, from RTL to GDSII. The flow of GPUPlanner is
highlighted in Fig. 2. For starters, the designer has to define the
specifications required from the G-GPU. Our architecture can
be configured for CUs ranging from 1 to 8. Also, the designer

has to specify the operating frequency of the G-GPU.
After surveying the possible versions of the G-GPU for

desired application scenarios, the designer can generate a
specification for each scenario. Then, these specifications are
contrasted with the characteristics of the technology intended to
be used to create a first-order estimation of the G-GPU PPA. In
this phase, there is a possibility to find several versions suitable
for the given specification. Still, it also might happen that a
configuration that suits the designer’s requirements does not
exist. However, our framework is not a static input generator.
Instead, we provide a map on how to achieve a realistic PPA
that might be close enough to the designer’s requirements. This
map is a dynamic spreadsheet, where the user input the delay
of the memory blocks required for the non-optimized version
of the G-GPU. Our map gives the maximum performance
and which memory has to be divided or where to introduce
pipelines to enhance the performance. This is an iterative
process and can be repeated until the designer finds the desired
performance. Thus, using our map, the designer can rapidly
adapt his specification or create new versions of G-GPU. The
only hard constraint in our framework is that many of the
G-GPU memories have to be dual-port. Further development
for single-port memories is scheduled as future work.

From a single push of a button, our framework can perform
logic and physical synthesis of the list of designs. After the
logic and physical synthesis, the resulting PPA is checked to
guarantee it is under the initial specification. If the resulting
G-GPU is out of the specifications, the designer should modify
it and restart the process. In any case, the resulting layouts are
ready to be integrated in a system as a tapeout-ready IP.

IV. RESULTS AND DISCUSSION

From the exercise of the GPUPlanner, we found 12 versions
worth the PPA trade-off in a general manner. These versions
have 1, 2, 4, and 8 CUs. Their variants run at 500MHz,
590MHz, and 667MHz. The characteristics of each version are
shown in Table I. In terms of area, the G-GPU size grows
linearly with the number of CUs. The optimizations done for
augmenting the performance increased the area by an average
of 10%, from 500MHz to 590MHz, and 2%, from 590MHz to
667MHz. Thus, if the power consumption is not a priority, the
667MHz is a good fit for having a negligible increase in area
in trade-off a better performance. These results demonstrate the
potential scalability of the G-GPU architecture.

We chose four versions to perform the physical
synthesis. Those are the 1CU@500MHz, 1CU@667MHz,
8CU@500MHz, and 8CU@677MHz. During this phase, the
G-GPU is broken into three partitions during implementation:
the CU, the general memory controller (MCTRL), and the
top. The density of the CU and the MCTRL was set to 70%.
Because of our floorplan strategy of breaking the design into
partitions, the top has a low density of 30%. Nevertheless,
breaking the design in partitions allows the designer to scale
G-GPU without any extra effort. Once a CU partition is fully
placed and routed, it can be implemented in versions with
more than 1 CU by cloning the partition in the final floorplan
of the design. Moreover, the user can create a collection of

7150 um

62
50

 u
m

8350 um

74
50

 u
m

8CU@500MHz

8CU@600MHz

2700 um

25
00

 u
m

3200 um

28
00

 u
m

1CU@500MHz

1CU@677MHz

Untouched
Memories
CU Optimized
Memories
MCTRL Optimized
Memories
TOP Optimized
Memories

Fig. 3: Layout comparison between minimum and maximum
performance of G-GPUs with 1 CU (top) and 8 CUs (bottom).

different CU layout blocks and scale the floorplan regarding
the number of CUs for different application scenarios easily.

The layouts for the versions with 1 and 8 CUs are depicted
in Fig. 3. Size scale in the figure only applies to the
ones with the same number of CUs. The block memories
divided for augmenting the performance are highlighted in
green for the CU partition, yellow and pink for the MCTRL,
and blue for the top. Note how different the floorplan is
between the version with optimizations running at 600MHz
and without optimizations running at 500MHz. Block memories
have to be strategically placed in order to extract the
maximum performance, hence, the differences in the floorplan.
The layout of the versions 1CU@500MHz, 1CU@667MHz,
8CU@500MHz have the same performance expected from the
logical synthesis (i.e., they can run at the specified clock
frequency without any timing violation). However, the layout
of version 8CU@667MHz can only run at 600MHz. This
is explained by analyzing the floorplan of its layout (see
Fig. 3). The connecting routing wires introduce a significant
capacitance because of the long distance between the peripheral
CUs and the general memory controller.

To fully evaluate the G-GPU as an ASIC accelerator,
we compared its performance with the popular RISC-V
architecture. We synthesized both architectures using the
same technology used before with an operating frequency of
667MHz, the RISC-V having 32Kb memory and the G-GPU
with 1/2/4/8 CUs. We chose seven micro-benchmarks from the
AMD OpenCL SDK and increased their inputs up until crashing
the RISC-V compiler. We further increased the input size of
the G-GPU applications to make its computing units fully
utilized. To compare the performance of the different-input size
applications, we took a pessimistic approach for G-GPU and
considered that one could increase RISC-V application input
sizes by multiplying its cycle count by the G-GPU/RISC-V
input size ratio. These results are shown in Fig. 4.

Our first evaluation compares raw performance between
G-GPU and RISC-V for the same input sizes. For applications

TABLE I: Characteristics of 12 different GGPU solutions generated by our tool after logic synthesis in Cadence Genus.

#CU & Freq. Total Area (mm2) Memory Area (mm2) #FF #Comb. #Memory Leakage (mW) Dynamic (W) Total (W)
1@500MHz 4.19 2.68 119778 127826 51 4.62 1.97 2.055
2@500MHz 7.45 4.64 229171 214243 93 8.54 3.63 3.77
4@500MHz 13.84 8.56 437318 387246 177 16.07 6.88 7.14
8@500MHz 26.51 16.39 852094 714256 345 30.79 13.33 13.86
1@590MHz 4.66 3.15 120035 128894 68 4.73 2.57 2.66
2@590MHz 8.16 5.34 229172 221946 120 8.73 4.63 4.81
4@590MHz 15.03 9.72 436807 397995 224 16.41 8.70 9.02
8@590MHz 28.65 18.49 850559 737232 432 31.25 16.81 17.40
1@667MHz 4.77 3.26 120035 130802 71 4.65 2.62 2.72
2@667MHz 8.27 5.45 229172 222028 123 8.72 4.69 4.87
4@667MHz 15.15 9.83 436807 398124 227 16.43 8.75 9.07
8@667MHz 28.69 18.60 848511 730506 435 30.21 19.10 19.76

 0

 10

 20

 30

 40

 50

mat_mul copy vec_mult fir div_int xcorr parallel_sel
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

Sp
ee

d-
up

 d
er

at
ed

 b
y

ar
ea

Sp
ee

d-
up

1CU - Area Ratio=06.5
2CU - Area Ratio=11.6
4CU - Area Ratio=21.4
8CU - Area Ratio=41.0

1CU - Raw Speed-up
2CU - Raw Speed-up
4CU - Raw Speed-up
8CU - Raw Speed-up

Fig. 4: Speed-up over RISC-V.
with low to no parallelism, G-GPU can be as low as only
1.2 times faster than RISC-V. As G-GPU is a domain-specific
ASIC accelerator, such results are expected, once it will not be
the best option for general-purpose applications. Therefore, a
user interested in implementing a G-GPU as an accelerator can
utilize these provided data to ponder if this type of architecture
is a good fit for his system, considering only the raw speed-up.

Our second evaluation factors previously measured area into
performance speed-up. We derated the previously measured
speed-up by dividing the area ratio (G-GPU/RISC-V). A
G-GPU with 1 CU has an area that is 6.5 times larger than
the RISC-V, and it achieves the best increase in performance
per area of 10.2 times the RISC-V’s. On the other hand, G-GPU
with 8 CUs has an area that is 41 times bigger than RISC-V’s,
thus achieving the best increase in performance per area of 5.7
times faster than RISC-V’s. This trend happens mainly because
data dependency and global memory communication limit
parallelism. Thus, the provided increased processing power of
a G-GPU configuration with more CUs.

We are planning to update the GPUPlanner to be able to
implement the 8-CU G-GPU without performance loss. The
performance problem of the layouts with 8 CUs has the
possibility to be solved by replicating the general memory
controller, shortening the distance between the peripheral CUs,
and reducing the delay introduced by the routing wires.
Also, we intend to include support of memory hierarchy and
incorporate single-port memories into GPUPlanner.

V. CONCLUSION

Our results showed that G-GPUs are feasible domain-specific
ASIC accelerator. Furthermore, when the G-GPU performance
is contrasted with that of a RISC-V, it shows that our
architecture has tremendous benefits for applications with

high parallelism. Moreover, as GPUPlanner is an open-source
framework, it gives the community the opportunity to explore
the design space of GPU-like accelerators. Our work goes
beyond the analysis of what constitutes a reasonable G-GPU
accelerator in 65nm, as our tool can be easily extended to
support other baseline GPU architectures and technologies.

ACKNOWLEDGMENTS

This work has been partially conducted in the project “ICT
programme”, supported by the European Union through the
European Social Fund. This work was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
- Brasil (CAPES) - Finance Code 001, CNPq, and FAPERGS.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. of the IEEE, vol. 105,
no. 12, pp. 2295–2329, 2017.

[2] C. Mucci, L. Vanzolini, A. Lodi, A. Deledda, R. Guerrieri, F. Campi,
and M. Toma, “Implementation of aes/rijndael on a dynamically
reconfigurable architecture,” in 2007 Design, Automation Test in Europe
Conference Exhibition, pp. 1–6, 2007.

[3] T. D. Han and T. S. Abdelrahman, “hicuda: High-level gpgpu
programming,” IEEE Trans. on Parallel and Distributed Systems, vol. 22,
no. 1, pp. 78–90, 2011.

[4] P. P. Brahma, D. Wu, and Y. She, “Why deep learning works: A
manifold disentanglement perspective,” IEEE Trans. on Neural Networks
and Learning Systems, vol. 27, no. 10, pp. 1997–2008, 2016.

[5] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone,
“Flexgripplus: An improved GPGPU model to support reliability
analysis,” Microelectronics Reliability, vol. 109, p. 113660, 2020.

[6] M. Al Kadi, B. Janssen, and M. Huebner, “Fgpu: An simt-architecture for
fpgas,” in ACM/SIGDA Int. Symp. on Field-Programmable Gate Arrays,
p. 254–263, ACM, 2016.

[7] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Extensions
for Scalable IoT Endpoint Devices,” IEEE Trans. on VLSI Systems,
vol. 25, no. 10, pp. 2700–2713, 2017.

[8] OpenHW Group, “Cv32e40p risc-v ip,” 2016. https://github.com/
openhwgroup/cv32e40p.

[9] A. Canis et al., “Legup: High-level synthesis for fpga-based
processor/accelerator systems,” FPGA’11, p. 33–36, ACM, 2011.

[10] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
Synthesizing programmable spatial accelerators,” in ACM/IEEE Int.
Symp. on Computer Architecture, pp. 268–281, 2020.

[11] R. Ma et al., “Specializing fgpu for persistent deep learning,” ACM Trans.
Reconfigurable Technol. Syst., vol. 14, July 2021.

[12] V. Gangadhar et al., “Miaow: An open source gpgpu,” in IEEE Hot Chips
Symp., pp. 1–43, 2015.

[13] P. Duarte, P. Tomas, and G. Falcao, “Scratch: An end-to-end
application-aware soft-gpgpu architecture and trimming tool,” in
IEEE/ACM Int. Symp. on Microarchitecture, p. 165–177, ACM, 2017.

[14] H. E. Sumbul, K. Vaidyanathan, Q. Zhu, F. Franchetti, and L. Pileggi, “A
synthesis methodology for application-specific logic-in-memory designs,”
in ACM/EDAC/IEEE Design Automation Conference, pp. 1–6, 2015.

Appendix 5

[V]
A. Hepp, T. Perez, S. Pagliarini, and G. Sigl, “A pragmatic methodology for
blind hardware trojan insertion in finalized layouts,” in 2022 International
Conference on Computer-Aided Design (ICCAD), pp. 9–10, 2022

141

A Pragmatic Methodology for Blind Hardware Trojan Insertion
in Finalized Layouts

Alexander Hepp
alex.hepp@tum.de

Technical University of Munich
Department of Electrical and

Computer Engineering
Munich, Germany

Tiago Perez
Samuel Pagliarini
tiago.perez@taltech.ee

samuel.pagliarini@taltech.ee
Tallinn University of Technology
Department of Computer Systems

Tallinn, Estonia

Georg Sigl
sigl@tum.de

Technical University of Munich
Department of Electrical and

Computer Engineering
Munich, Germany
Fraunhofer AISEC
Munich, Germany

ABSTRACT
A potential vulnerability for integrated circuits (ICs) is the insertion
of hardware trojans (HTs) during manufacturing. Understanding
the practicability of such an attack can lead to appropriate mea-
sures for mitigating it. In this paper, we demonstrate a pragmatic
framework for analyzing HT susceptibility of finalized layouts. Our
framework is representative of a fabrication-time attack, where
the adversary is assumed to have access only to a layout represen-
tation of the circuit. The framework inserts trojans into tapeout-
ready layouts utilizing an Engineering Change Order (ECO) flow.
The attacked security nodes are blindly searched utilizing reverse-
engineering techniques. For our experimental investigation, we
utilized three crypto-cores (AES-128, SHA-256, and RSA) and a
microcontroller (RISC-V) as targets. We explored 96 combinations
of triggers, payloads and targets for our framework. Our findings
demonstrate that even in high-density designs, the covert insertion
of sophisticated trojans is possible. All this while maintaining the
original target logic, with minimal impact on power and perfor-
mance. Furthermore, from our exploration, we conclude that it is
too naive to only utilize placement resources as a metric for HT
vulnerability. This work highlights that the HT insertion success is
a complex function of the placement, routing resources, the position
of the attacked nodes, and further design-specific characteristics.
As a result, our framework goes beyond just an attack, we present
the most advanced analysis tool to assess the vulnerability of HT
insertion into finalized layouts.

CCS CONCEPTS
• Security andprivacy→Malicious designmodifications;Hard-
ware reverse engineering.

KEYWORDS
hardware security, reverse engineering, manufacturing-time attack,
hardware trojan horse, VLSI, ASIC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9217-4/22/10. . . $15.00
https://doi.org/10.1145/3508352.3549452

ACM Reference Format:
Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl. 2022. A
Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized
Layouts. In IEEE/ACM International Conference on Computer-Aided Design
(ICCAD ’22), October 30-November 3, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3508352.3549452

1 INTRODUCTION
Securing the development and manufacturing of integrated circuits
(ICs) is a problem that the Hardware Security community is trying
to solve [7]. As owning a foundry is not financially viable for most
design houses, they have become fabless entities that have to rely
on third-party foundries for manufacturing their designs. In this
business model, the circuit layout is developed in-house and its
manufacturing is outsourced. Exposing the layout to a third party
is a potential threat to the IC’s trustworthiness. A malicious indi-
vidual could take ownership of this layout and manipulate it for
his own purposes. Many potential threats have been discussed [30,
42], including insertion of hardware trojans (HTs), IP piracy, IC
overbuilding, reverse engineering, and counterfeiting.

Even though only a few validated examples have been observed
[13], the risk of a security breach due to hardware tampering has
been in focus for many years [42]. Thus, in the past decade many
potential vulnerabilities and possible countermeasures have been
demonstrated. In this work, we focus on the feasibility of HT inser-
tion during a fabrication-time attack.

HTs are designed to leak confidential information, to disrupt a
system’s specific functionality, or even to destroy the entire system
[35] and have a broad taxonomy [16]. They comprise a payload
implementing the malicious behavior and a trigger that ensures
that the HT remains dormant until a specific condition is met. The
target of an HT is the circuit into which the HT is inserted, e.g., a
crypto-core or any other IP in a SoC design.

Several digital HT architectures have been proposed recently
[42], with a few even demonstrated in silicon [13]. However, not
many disclosed how their HT is inserted during the attack. Fabri-
cation-time HT insertion in previous works relies on extensive
knowledge of the victim’s circuit [2, 27], for example of the security-
critical nodes. In a fabrication-time attack, only the layout is avail-
able to the attacker, limiting the applicability of the approaches.
The main contribution of our work is to shed light on how successful
an attack can be under the assumption of very limited information
about the target circuit.

High-level functionality reconstruction tools can be used to re-
construct the purpose of signals inside the design. For example, the

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

G1 G2 G3 G4
G5

G6

crpt_rnd_0

ctrl_0
ctrl_1

rt_0

rt_1

Third-Party
IPs Libraries

Ph
ys

ic
al

Sy
nt

he
si

s

In-House Team
Desigining

PDK

Finalized Layout

Sent to
Foundry

N
et

lis
t

Ex
tr

ac
tio

n

G1 G2 G3 G4
G5

G6

I0
I1

I2
I3
I4 I5

O1

O2

crpt_rnd_1

crpt_rnd_2

ctrl_3

Unnamed
Gate-level Netlist

Fu
nc

tio
na

lit
y

R
ec

on
st

ru
ct

io
n

Nodes
scores

List of
Nodes

Tr
oj

an
G

en
er

at
or

#N
Trojans

#N Eco
Files

Trial
ECO

Suitable
Trojans

Tr
oj

an
In

se
rt

io
n

M
an

uf
ac

tu
rin

g

S0
S1

S3

Layout conception in a trusted facility Layout manipulation inside an untrusted foundry Test, assembly and packaging
in a trusted facility

Figure 1: A typical IC design flow. Highlighted in red is the stage where a rogue element may mount an attack.
finite-state machine of a target design can be recovered and con-
trol and data paths nodes can be distinguished [22]. The output of
such tools can be utilized to automate the search of security-critical
nodes on a given layout – this is the case in our work. Our main
contribution is a full framework for inserting a HT utilizing only
the target layout as information. For assessing our methodology,
we utilized as targets the cryptocores AES-128, SHA-256, and RSA,
and the general purpose PULPino microcontroller. For each target,
multiple different HTs are selected for insertion. We report the
success of insertion based on stealthiness, impact on power and
performance and required time and discuss HT defense technique
capabilities in context of our attack.

2 BACKGROUND
2.1 Related Works and Motivation
Artificial HT creation is necessary, as no public HT examples are
known. The majority of published artificial HTs have been created
manually (e.g., Trust-Hub benchmarks [33]). Other HTs are de-
signed to test or overcome specific detection methods [9]. A recent
survey [42] lists 27 research articles presenting HTs, but only 4
of them perform insertion of a sophisticated, non-parametric HT
on the layout level. The constraints of manual HT insertion into
layouts have been studied in [2]. The authors conclude that a core
utilization rate of >80% will prohibit trojan insertion, but only use
one HT sample with varied parameters. In [39], the authors claim
that removing unused (“dead”) space is sufficient to thwart HT
insertion. Trippel et al. [37] analyze the susceptibility of layouts to
HTs by three metrics, the unused space available for HT gates, the
amount of space available for wires and the distance between HT
cell placement and attacked signals. However, the authors exper-
iment with only four HT samples and manually insert them into
three fully-known IC designs. This limits the explanatory power,
as we show in Section 4.

In [27], the authors propose a full framework for HT insertion
during a fabrication time-attack. The authors utilized engineering
change order (ECO) technique for inserting HTs, which allows the
attacker to perform the attack holding only the layout database.
Nevertheless, [27] makes a strong assumption on how the at-
tacker searches for the security-critical nodes: the attacker can spot
these nodes by visual inspection. This is not true for targets with
little available information or targets with irregular placement. This
limits their attack framework to a few targets, e.g., the AES core
used in their demonstration.

With the rise in popularity of machine learning, various auto-
mated HT insertion frameworks have been proposed and used to
provide enough HT samples to train on. Cruz et al. [4] present a
HT generator for gate-level netlists. Their tool generates diverse
triggers, but relies on manual insertion for payloads and does not

cover the insertion at layout. In addition, trigger location is deter-
mined by a simulation-based probability metric, requiring simula-
tion testbenches to be available. In [3] the authors improve upon
the previous tool. The authors emphasize that their tool generates
similar HTs to those in the training set (hence the name MIMIC).
This approach might not generate a trojan set that allows general-
ization in machine learning, as this requires a very diverse set of
trojan variants, locations, and target designs [11].

A similar tool is presented in [43], also only diversifying the
trigger insertion into netlists, but improving the trigger signal se-
lection method to be executed without a simulation testbench. Still,
payload location selection is simplistic and requires manual effort.

In [32], reinforcement learning is used for HT insertion, but
their targets are small ISCAS-85 benchmarks. The reinforcement
learning reward driving the insertion is chosen to be dependent
on the ratio of circuit inputs involved in HT activation, on the
observability of the payload changes, and on the usage of at least
one net with low controllability. This approach is more diverse, but
tuning the reward function is a non-deterministic task requiring
a high level of understanding of both the circuit and the machine
learning – which is infeasible for a blind attack.

As the implementations of previous works have not been pub-
lished, multiple authors of detection techniques resorted to imple-
menting template HT generators, varying the internal structure of
the HTs, but not the HT locations [11, 10].

In conclusion, existing methods lack crucial features; even au-
tomated methods require extensive knowledge about the attacked
design and thus are unfit for the blind insertion attacker model.
When utilizing prior knowledge, most automated tools cannot di-
versify payload insertion, either because payload locations must be
chosen with manual effort, or because only local variation around
known payload locations are possible. In this paper, we overcome
the limitations by the targeted usage of reverse engineering tech-
niques and integrate it into an end-to-end framework for blind HT
insertion.

2.2 Threat model and Attacker Capabilities
In our framework, we assume that an attacker within the foundry
has the objective of inserting malicious logic in a finalized layout.
Thus, since the attacker is familiar with the manufacturing pro-
cess of the foundry, he/she enjoys access to all technology and
cell libraries utilized by the victim when creating the layout. We
assume the attacker has no detailed knowledge about the victim’s
design, such as timing/power constraints, clock domains, exact
functionality of the input/output pins, or high-level functionality.

For performing the attack, we assume the adversary is skilled in
IC design and enjoys access to modern EDA tools including their
scripting languages. From the victim’s side, the attacker only has ac-
cess to the layout database – typically handled in the GDSII format.

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

For manipulating the victim’s layout, we also assume the attacker
knows how to apply reverse engineering techniques. Specifically,
for the attack proposed in this work, the adversary has access
to tools for extracting the gate-level netlist [29] and partially re-
constructing the high-level functionality of the target design [22].
Furthermore, we also assume the attacker has no means to make
radical modifications to the layout, e.g., manipulating the clock
domains and/or changing the I/O configurations.

Designing an IC is typically executed as illustrated in Fig. 1. The
layout-level work is generally considered trusted, done in-house.
This is done using third-party IPs and a process design kit (PDK)
together with standard cells provided by the foundry for a given
technology. Here, we assume this process is trusted in which no
malicious alteration is made for generating the finalized layout.
The attack takes place when the victim’s layout is handed over to
the foundry. Precisely, the adversary is a rogue element inside the
foundry that can manipulate the victim’s layout before the start of
the manufacturing (see the red portion of Fig. 1). This resembles
attack model B as given in [41]. According to Karri et al. [16], the
attacker inserts digital, gate-level HTs during fabrication time. In
addition, we restrict the time when the rogue element has access
to the victim’s database to a full day (24 hours) [24]. This reduces
attacker’s capabilities to analyze and reverse engineer the victim’s
design, and to perform the HT insertion.

Typically, an ECO flow is used to fix small bugs in finalized
layouts. ECOs are designed for post-mask modifications utilizing
pre-populated gate-array cells, and pre-mask fixes, avoiding the
time-consuming re-implementation of a design. However, Perez
et al. [27] demonstrated that the ECO flow is a powerful tool for
inserting HTs. The layout changes are local routing perturbations,
as the original placement is kept intact. For inserting the HT, the
ECO re-purposes empty spaces (filled with filler and spare cells1)
with malicious logic. Since the ECO flow is executed by an industry-
grade EDA tool, potential errors from manual modifications and
design rule check (DRC) violations are avoided. The penalty for
HT insertion is a slightly negative impact on the overall target
performance due to the extra capacitance fromHTwiring (see Fig. 5
for a performance comparison before and after the HT insertion).
For a complete explanation of how to utilize the ECO for inserting
an HT, we direct the readers to [27].

3 BIOHT TOOL FRAMEWORK
Our main contribution is a framework for blind insertion of hard-
ware trojans in finalized layouts, termed BioHT. All the steps of
this framework are automated; inserting HTs requires just a push
of a button. Fig. 1 illustrates the BioHT framework, which com-
prises five distinct steps: 1) Netlist Recovery (Section 3.1), 2) Design
Analysis (Section 3.2), 3) HT Netlist Generation (Section 3.3), 4)
Hooking Signal Selection (Section 3.4), 5) HT insertion and Trigger
Validation (Section 3.5). Fig. 2 shows the flow in detail.
3.1 Netlist Recovery from Layout
The attack begins once the rogue element within the foundry re-
ceives the victim’s layout. First, a gate-level netlist has to be ex-
tracted from the layout. We refer to this gate-level netlist as un-
named, since the original hierarchy and names of cells and nets are
1Typically, the placement density utilization (i.e, area with active cells versus unused
area) is in the range of 50 to 60% for modern SoCs in the FinFET era. Thus, nearly half
of the area of a commercial IC today can be populated by spare/filler cells.

assumed to be absent in the layout. Only the individual functionality
of cells and their connectivity are recovered from the netlist extrac-
tion. Thus, in order to perform the attack, i.e., a HT-insertion with
meaningful functionality, further reverse engineering is necessary.

An HT targets a specific part of the circuit, thus, full under-
standing of the complete design is not necessary. Instead of
performing a full functional recovery, the attacker has to only iden-
tify security-critical signals and registers to hook the HT to. Using
available information such as layout markings, datasheets, market-
ing material or patents, I/O-port descriptions can be inferred [28].
Global signals such as clock and reset can be identified from their
connections to flip-flop pins. The resulting netlist is converted into
a verilog gate-level netlist and input to design analysis. The process
of netlist recovery can be seen in the top-left section of Fig. 2.
3.2 Design Analysis
During design analysis,metrics are generated to aid an adversary in
searching for signals to be used for trigger and payload. This search
requires a certain degree of understanding of the victim’s design.
For calculating those metrics, reverse engineering techniques are
applied. As reverse engineering takes some time, it is a tradeoff to
choose the desired level of design understanding. The metrics must
be chosen carefully to keep the total runtime for the attack low.

Suitable metrics are transition probability, imprecise information
flow tracking of selected signals, and the RELIC score [20]. Design
analysis can be paralellized, as shown in the bottom-left portion
of Fig. 2. In the remainder of this section, the calculation of these
metrics is outlined.
Transition Probability: The HT trigger must seldomly activate in
order to avoid detection during functional tests [41]. Thus, a metric
is necessary to identify signals with low probability to activate the
HT. In previous literature, the transition probability was introduced
[31, 43]. If the transition probability is low, the probability that
the required transitions for HT activation occur is also low. The
transition probability is a function of the signal probability. The
signal probability (𝑃𝑠 (𝑥)) of 𝑥 is the fraction of clock cycles during
which 𝑥 is 1. A transition occurs if a 1 follows a 0 or vice versa, i.e.
the transition probability can be estimated as 𝑃𝑡 (𝑥) = 2 · 𝑃𝑠 (𝑥) ·(
1 − 𝑃𝑠 (𝑥)

)
, assuming temporal independence [26].

To initialize the calculation, set 𝑃𝑠 = 0.5 for the primary in-
puts and all flip-flop outputs. This assumption is reasonable for
crypto-cores and approximately correct for other large circuits. For
each combinatorial gate in the fan-out of the initialization, 𝑃𝑠 of
the outputs is calculated. The output 𝑃𝑠 (𝑜) of a 2-input or-gate is
𝑃𝑠 (𝑎) + 𝑃𝑠 (𝑏) − 𝑃𝑠 (𝑎) · 𝑃𝑠 (𝑏), the output 𝑃𝑠 (𝑜) of a 2-input and-
gate is 𝑃𝑠 (𝑎) · 𝑃𝑠 (𝑏) and the output 𝑃𝑠 (𝑜) of a not-gate is 1 − 𝑃𝑠 (𝑎).
The necessary formulas for other n-input 1-output gates can be
produced by decomposing them into 2-input gates. In order to im-
prove the probability results for flip-flop outputs, further iterations
of the algorithm can be performed. In each iteration, the flip-flop
input probabilities override the initial 𝑃𝑠 = 0.5. Finally, the 𝑃𝑡 (𝑥) is
calculated for all signals and saved as the metric value.
Spatial Clustering: Co-location of HT hooking signals is desired
for short wire lengths, but repeated distance calculation has a high
overhead. Thus, BioHT precalculates using complete linkage clus-
tering [25] with a 𝐿1 distance metric: The target’s cells are agglom-
erated into larger clusters. The agglomeration stops once a distance
limit is reached, i.e., in the final clusters the cells remain closer than
the limit. The mapping of cells to these clusters is saved as a metric.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

1) Netlist Recovery

2) Design Analysis 3) Trojan Netlist Generation 4) Signal Selection for Hooking 5) Trojan Insertion

Start

Netlist
Extraction

Target
Valuation

Layout

Global
Annotation

Available
Information

Transition
Probability IIFT

RELIC
Analysis

Spatial
Clustering

Analyzed
Netlist

Trojan
Config

Trigger
Generation

Payload
Generation

Top-level
Generation

Trojan
Synthesis

Trojan
Netlist

Analyzed
Netlist

Trojan
Netlist

Feedthrough
selection

SSF
Config

Independency
Check

Input/Output
selection

Hooking
Signals

Trigger
Assertions

Hooking
Signals

Trojan
Netlist

TCO
Generator

TCO
Database

Layout

TCO
Trial

HT is
unfit

TCO
execution

Tampered
Layout

Fail

OK

Figure 2: Steps 1)–5) of the BioHT Tool Framework explained in detail. Colored nodes represent an end-product of a previous
step in the flow. The flow starts at the top left, while the tampered layout (highlighted in red) is the end-result.
Imprecise Information Flow Tracking: A HT that leaks infor-
mation requires a metric that explains where valuable (tainted)
input data can be found inside the circuit. Imprecise Information
Flow Tracking (IIFT) [14] estimates an upper bound of information
flow, as it assumes that each logic gate carries tainted information
from its inputs to the output. The IIFT metric therefore marks as
tainted any signal that exists in the output cone of the initially
tainted signals. The mark, i.e., tainted or untainted, is saved as the
metric value. This metric overestimates the availability of secret
information at a specific signal. It must be complemented with
another metric that explains the functionality of signals, such as
the RELIC score.
RELIC Scoring and FSM identification: A valuable high-level
information is the identification of whether a register (flip-flop
or latch) belongs to the control logic or the data path. Using this
information, HT payloads can be targeted to specific parts of the
design functionality, for example to modify the control FSM or leak
valuable processed data.

Finding the registers belonging to either the control or datapath
logic can be performed with the NETA toolset [21]. RELIC 2 assigns
every register a z-score that explains the level of dis-similarity to
other registers. The underlying assumption is that data registers in
a data-word show similar fan-in structure, while control registers
are more unique. REDPEN returns pairs of dependent registers, i.e.,
a register dependency graph, in which every edge represents a path
from the first register to the second register. TJSCC analyzes the
register-dependency graph for its strongly connected components
(SCC). As a result, there is a SCC for each register in the design.
Combining RELIC and TJSCC, the SCC containing the register with
the highest RELIC z-score implements the (most important) FSM
in the design. Two metrics are saved for each register, its z-score
and the SCC number it belongs to.

3.3 Hardware Trojan Netlist Generation
The BioHT HT Netlist Generator receives a configuration file, in
which the user can choose any trigger/payload combinations and
parameter values from our templates (see Fig. 3). Our selection of
trigger and payloads covers known architectures [33, 18, 1], as well
as novel payloads (i.e., leakage through FSK/DBPSK, fault sweep-
ing). A configuration file generator is provided to ease the process
of generating multiple configuration files. Nevertheless, the HT
generation can be skipped, our framework is flexible enough for
the user to implement their own trigger and/or payload architec-
tures since the HT insertion only cares about the interface (i.e.,
where the HT is hooked to the target circuit).

For our HT architectures, we use three kinds of triggers; com-
binatorial, counter, and FSM; and four kinds of payloads; leak,
shift’n’burn, modify, and fault. The explanation of the triggers
and payloads is presented in Fig. 3. The HT triggers either wait for
a Combinatorial condition 𝑣 from 𝑛 bits, waiting for 𝑣 changes of 𝑛
bits using a Counter, or traverse a 𝑠-state FSM on 𝑛-bit conditions
𝑣𝑖 , masking some of the 𝑛 bits with𝑚𝑖 . The payloads Leak 𝑛 bits
through a side channel code𝑀 at a rate of 1/2𝑐 bits per clock cycle,
Shift’n’burn energy with 𝑛 transitions per clock cycle,Modify 𝑛-bits
to a value 𝑣 , or try to Fault 𝑛 bits by flipping them in any combi-
nation (inspired by [2]). In order to differentiate the interfacing
connections, we distinguish HT ports as: input-only, output-only,
and feedthrough. HT input-only ports are used for triggering or for
payloads that do not drive any node. HT output-only ports drive
nodes, however, do not have any corresponding input hooked to
the target circuit. HT feedthrough ports are a special case, they
are pairs of input-output ports that disrupt original connections
between two nodes of the original circuit. Thus, the HT has control
of the bit value of the disrupted connection. This type of port is
utilized by the Modify and Fault payloads (see Fig. 3). The entire
process of the HT Netlist Generator is shown in step 3) of Fig. 2.
3.4 Signal Selection for Hooking
The fourth step of the BioHT framework is to select appropriate
security-critical signals to hook the HT generated in the previ-
ous step. For searching those signals, the tool requires the metrics
calculated during the design analysis, and the HT interface charac-
teristics (i.e., number of input-only, output-only, and feedthrough
ports). The process starts by associating a signal selection function
(SFF) for each interface port of the HT. Then, the SSF iteratively
yields candidate signals from the target circuit to be hooked to each
HT port, all this based on one or multiple provided metrics. The T
SSF yields all signals in the circuit in increasing order of transition
probability, while ensuring that duplicate nets and buffer trees are
avoided. This SSF is used if the total trigger probability is a sum of
individual probabilities (e.g. for the Counter trigger). In contrast,
the TR SSF yields signals with low transition probability randomly
using a negative-exponential weighting function. This overcomes
detection tools searching for rare signals only, while providing bet-
ter diversity than a threshold-based approach [4]. These SFFs might
require the additional use of the spatial clustering metric (TC and
TCR) if signals selected by T and TR are spatially distant. Further
SSFs are tailored to selecting payload signals. An explanation of
SSFs implemented, and their behavior is given in Tab. 1.

Selection of signals to hook the HT to has to be meticulously
done, and it is not only a function of the calculated metrics. It is

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

Trigger Payload

trigger in
payload in

feedthrough in

feedthrough out
payload out

#ti #pi
#

#po
#

#tr

=
trigger in

n

v n

trigger
1

=/
DQ
n-bit

clk

trigger in
n

EN =v
c-bit

Counter

clk

trigger
1

Counter Trigger (n, v, c)

Combinatorial Trigger (n, v)

HT Interface

𝑆𝑟𝑆𝑟 𝑆2

𝑆1

...𝑆𝑠

𝑖𝑛&𝑚1 = 𝑣1 &𝑚1 𝑖𝑛&𝑚2 = 𝑣2 &𝑚2

𝑖𝑛&𝑚𝑠 = 𝑣𝑠 &𝑚𝑠

always

else

else

...
1

0

1

0

1

0

payload in
n

n

𝑀 ∈ {am, fsk, dbpsk, lfsr}
rate: 1/2𝑐 bit/cc

trigger

Leak Payload (n, M, c)

FSM Trigger (n, s,𝑚1, . . . ,𝑚𝑠 , 𝑣1, . . . , 𝑣𝑠)

trigger in trigger𝑆 = 𝑆𝑠

rst=1 rst=0
rst=
𝑛%2

...

trigger

clk

n

trigger
...

feedthrough in
n

10

v[0]
10

v[1]
10

v[2]

feedthrough out
n

trigger
...

feedthrough in
n

10 10 10

feedthrough out
n

r1 r2 . . . rn n
LFSR

Shi’n’burn Payload (n)

Modify Payload (n, v)

Fault Payload (n)

Figure 3: HT Interface and available trojan triggers and payloads. Trigger and payload parameters are given in parentheses.
Table 1: Available Signal Selection functions

Function metrics used Behavior

T Trans. Prob. sample low probability signals
TC Trans. Prob.,

Spat. Clust.
sample low probability signals from
adjacent clusters.

TR Trans. Prob. randomly sample low probability
signals.

TCR Trans. Prob.,
Spat. Clust.

randomly sample low probability
signals from adjacent clusters.

RLR RELIC z-score randomly sample low z-score (i.e.
data) signals

RLT RELIC z-score,
IIFT

sample tainted signals with z-score
below threshold

RHS RELIC z-score,
SCC

sample signals from the highest-z-
score SCC (i.e. FSM)

RHST RELIC z-score,
SCC, IIFT

sample signals from the tainted
FSM (e.g. tainting instr. memory)

D — Connect no signal to this I/O. (e.g.
shift’n’burn feedback signal)

highly desirable to avoid mutually dependent signals: If a signal
used for triggering is dependent of an active payload signal, a
combinational loop could be generated. Also, hooked signals used
as Modify or Fault payloads should be independent, for maximizing
the effectiveness of the HT.

For avoiding the situations described above, our signal search
engine repeatedly checks the dependencies of each candidate signal.
Only independent signals are considered for hooking the HT. To
check the independence of two signals, a directed acyclic graph rep-
resentation of the target design is created by replacing all registers
by virtual input and output ports. Two signals are deemed indepen-
dent if they do not have a common ancestor in the directed acyclic
graph representation. This approach increases the amount of avail-
able trigger input signals significantly compared to the topological
order approach used in other works [4, 43].

3.5 Trojan Insertion
For inserting the HTs into the victim’s layout, we utilize an ECO
flow similar to [27], as described in Section 2.2. In our framework
(see Fig. 1), we approach the ECO differently than the one demon-
strated in [27]. Instead of directly modifying the victim’s netlist,

we utilized the ECO file format. This format is supported by EDA
tools and procedurally describes the modifications to be performed
by the ECO. The advantage of utilizing this format is doing the
ECO interactively. It is necessary to load the design only once for
analyzing multiple ECO files before committing the modifications.
By doing this, the adversary significantly saves execution time,
since loading large designs can take several hours. Instead, loading
an ECO file takes a few minutes. Before committing, the adversary
can check if the HT fits in terms of placement resources and timing
with a trial insertion.

To make the attack even faster, we introduce the concept of Tro-
jan Change Order (TCO) format file. The TCO file is generated from
the signals to hook the HT in combination with the HT netlist. We
utilize the same syntax as the ECO file, however, with commented
lines containing directives for the BioHT tool. Those directives are
used to configure the type of HT (e.g., leak, deplete, modify or fault),
number of connections and location of the HT gate-level netlist.
Thus, it is possible to pre-generate TCO files for several types of
HT, and specialize it according to the target’s evaluation. Thus, it is
feasible to create a database of HTs rapidly available for an attack,
as shown in Fig. 2. Finally, if the HT fits, the attacker can commit
the changes with a final TCO execution.

Trigger validation is performed after HT insertion by adding the
respective SystemVerilog assertions (Trigger Assertions in Fig. 2)
to the final netlist module and using any formal verification tool
capable of handling cover property assertions. Besides the netlist,
modern formal verification tools require only little additional infor-
mation to prove HT triggering. Clock and reset inputs and polarities
are found automatically, as well as most initialization sequences. If
available from the design analysis step, the user can specify addi-
tional formal verification constraints and constants, e.g., for scan
enable pins. If the validation is successful, the formal verification
tool provides the attacker with a testbench to trigger the HT.
4 BIOHT FRAMEWORK EVALUATION AND

RESULTS
In this section, we demonstrate our methodology and the settings
utilized for evaluating the BioHT framework. All experiments per-
formed in this work use industry-grade EDA tools. The layouts
generated during the experiments are tapeout-ready, meaning they
have proper power planning, timing closure, and no design rule
violations.

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

Targets, Evaluation Settings and Procedure: For evaluating
the BioHT capabilities, we have utilized four designs as targets –
three crypto cores and one microcontroller. We chose the crypto
cores AES-128, SHA-256, and RSA. The microcontroller utilized is
the open-source SoC PULPino featuring one 32-bit RISC-V core
[36]. The PULPino uses multiple memories and shows that BioHT
can insert into large and complex targets.

For the implementation, we have utilized a commercial 65nm
CMOS technology with a nominal voltage of 1.2V. For timing the
designs, we utilized the slow process corner (SS), temperature of
125◦C, and under voltage of 1.12. This is the worst case setup corner
recommended by the vendor. For reporting the power consumption,
we utilized the typical process corner (TT), temperature of 25◦C,
and the nominal voltage of 1.2V. These practices are in line with
the standard flow adopted by the IC industry.

The first step is to generate a tapeout-ready layout for each
target as the victim would do. For PULPino, RSA, and AES-128,
we balanced density and performance, with the goal to achieve
high-density designs operating at a considerably fast clock. For
SHA-256, we set the density to a less ambitious value (i.e., around
50%) and then aimed for maximum performance. The results are
presented in Tab. 2. It was possible to achieve both high-density
and high-speed for AES-128 and RSA, above 80% of utilization and
a clock frequency of 750MHz. In contrast, PULPino’s density and
clock frequency are low due to the presence of 8 memories (see
Fig. 4). However, the achieved frequency of 285MHz is competitive
with other PULPino implementations in a similar 65nm CMOS
technology [6].

We extracted the gate-level netlist from the layout, estimated
the operating frequency of the target and the power consumption
(see Tab. 2), similarly as done in [27]. Steps 2)–4) were implemented
in Python using several open-source libraries [8, 34, 23, 5]. Note
that for all targets except PULPino, we assumed that signal tainting
was only possible for the I/O. In PULPino, for the HT variant with
Combinatorial trigger and Modify payload, we assumed that the
attacker has acquired additional information, for example from an
insider. This shows that our framework is capable to adapt to any
additional available data about the design under attack. We assume
that the data allows to taint the core control FSM registers, so that
the payload can insert random pipeline flushes for performance
degradation. After generating the TCO files, the actual HT-insertion
is performed. To demonstrate the boundaries of HT insertion, we
also executed unfit HTs that lead to trivially tampered layouts.
Evaluation of the performance of the tampered layouts was done
using signoff settings and provides accurate performance impact.

Experimental Results: To show the diversity of achievable
HTs using BioHT, we performed the insertion of 96 variations of
HTs. In the remaining results presentation, we are going to show
only a handful of the possible HTs, the full results for all HT variants
can be found at [12]. The results in Tab. 2 show the injected type
of trigger and payload, the number of sequential/combinational
cells, and the number of connections that the HT hooks to the
target circuit. As mentioned before, BioHT can generate a vast
number of HTs when employing all configuration options and
trigger-payload combinations. Depending on the available target
information, the attacker can narrow the range of fitting configu-
rations and trigger-payload combinations. For example, a bit-flip
fault as produced by the fault payload fits a crypto-core better

than PULPino. Parametrization was guided by Trial TCO, as well
as the independency check. For example, the independency check
highlighted for both AES and RSA that there is no FSM, as only
one independent FSM state register was found. This is why the
Modify payload was not used for FSM tampering with these targets.
Trial TCO guided towards low register count (that is lower 𝑛 and
𝑐 parameters), as register count was directly related to unfittabil-
ity. Note that, among the selected HTs presented in this work are
smaller and larger possible HTs. The SSFs were selected so that
their behavior (see Tab. 1) fits the HT. We can conclude that BioHT
is capable to produce diverse HTs for virtually any given target,
while adapting to the amount of available information.

One goal of HT insertion is to guarantee that layout performance
is not affected. The impact on the target layout is shown in Tab. 2 in
terms of density, total power, timing (critical path slack), and design
rules violations. An actual attacker would drop the HT variants that
show unfit timing (large negative slack) or design rules violations
(e.g. the last RSA variant). For all other variants, the impact of
their insertion is not enough for breaking the design, making the
resulting tampered layout manufacturable.

We selected the targets PULPino and RSA for demonstrating the
HT insertion results in more detail. The HT variant with a Counter
trigger and a Modify payload is challenging for its large number
of cells (highlighted in bold in Tab. 2). The contrast between the
layouts before and after the HT insertion is depicted in Fig. 4, where
the malicious cells are highlighted in red, and the hooked cells are
highlighted in light blue. For this image, we omitted the filler cells
to improve the contrast between the original cells and HT cells.

The impact on the timing performance is demonstrated in Fig. 5.
The green bars show the distribution of the timing slack of paths
before and the red bars after inserting the HT. As portrayed in this
figure, the overall impact is greater on the denser design, i.e., RSA.
This is expected since the increase in the routing congestion is lesser
in low-density designs. This claim is supported by the wire length
statistics reported in Tab. 32. From these results, it is clear that
routing the additional HT logic is easier in PULPino (low-density
design), because the additional wiring can be evenly distributed in
all metal layers. The opposite is true for RSA (high-density design),
where it was required to use an additional layer that was empty
before, and in M5 more than the double amount of routing metal
was used. Therefore, the timing impact on RSA from the additional
coupling capacitance is stronger.

For this work, we executed further fit and unfit HT TCOs for
demonstrating the dependency between the overall design imple-
mentation, HT architecture, and, number/location of chosen signals
to hook the HT. Tab. 2 shows that the density of the design is not
the only factor that makes an HT unfit. In the case of the AES-128,
even with a density of 84.54%, all HTs were inserted without break-
ing the target design. This contradicts previous works that stated it
would be impossible to insert HTs in designs with 80% of density or
higher [2], or being a very difficult task if the placement resource
available is small [37]. The size of the HT and the number of hooked
signals are also not a sufficient metric to decide if an HT is unfit.
Still using AES-128 as an example, the total timing impact does
not depend on those HT characteristics, where the large timing

2In the 9-metal stack used in our experiments, M1 cannot be used for signal routing.
For this reason, M1 is not shown. Similarly, M8/M9 are reserved for power distribution
and are not shown.

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

impact is not from the largest HT. Therefore, it is not possible to
rely on these metrics to assess with precision the vulnerability of a
layout against HT insertion. Another experiment on PULPino was
performed using the cluster-based SSFs (TC, TCR). By enforcing
co-location of hooks, all PULPino variants become feasible. We
conclude that the feasibility to co-locate HT signals (for a given
attack objective) has a large impact on layout vulnerability.

When developing BioHT, an important aspect was to ensure
a runtime within the 24h time window available to perform the
attack. In Fig. 6, we show the runtime required for our attack in
contrast with the design implementation runtime for PULPino and
RSA. For PULPino, we show the HT-insertion with and without the
use of the Spatial Clustering (optimized) Metric for searching the
hooking signals. Trial TCO can easily determine if the overhead for
spatial clustering is required. The runtime for RSA, PULPino with
optimization, and PULPino without, are 50 minutes, 44 minutes,
and, 24 minutes, respectively. As shown in the Fig. 6, the most time
intensive tasks are the netlist extraction and power/time analysis.
Those tasks are mandatory if the intention of the attacker is to
insert meaningful and stealthy HTs. Our tool BioHT represents
less than 20% of the attack total runtime. We conclude that HT
generation with BioHT achieves competitive runtime overhead and
would allow repeated attack execution for optimum performance.

135um

13
5u

m
10

50
um

1050um

Before HT insertion After HT insertion

PU
LP

in
o

R
SA

Data Memory
4096x32

Data Memory
4096x32

Data Memory
4096x32

Data Memory
4096x32

Instruction Memory
4096x32

Instruction Memory
4096x32

Instruction Memory
4096x32

Instruction Memory
4096x32

Figure 4: Layout contrast before and after HT insertion for
PULPino and RSA. The HT inserted has a trigger counter
and a modify payload. Its cells are highlighted in red.

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 100 200 300 400 500 600 700

#
 o

f
pa

th
s

Time (ps)

Before HT Insertion
After HT Insertion

 0

 10

 20

 30

 40

 50

 60

-100 0 100 200 300 400 500 600 700

#
 o

f
pa

th
s

Time (ps)

Figure 5: Timing impact of the hardware trojan Insertion,
for PULPino (left) and RSA (right).

RSA
 HT insertion

PULPino
 HT insertion

PULPino
 Opt. HT insertion

RSA

PULPino

 0 1000 2000 3000 4000 5000 6000 7000 8000

Design Implementation

Attack

Time (s)

Placement
CTS

Route
Post-Route

Netlist Extraction
Power and Time Analysis

BioHT
ECO Flow

Figure 6:HT insertionusingBioHTexecution time (s) in con-
trast with the physical implementation of a target.

5 DISCUSSION
During the experiments, the ease of the BioHT flow proved valuable,
as few configuration options have to be adapted to run HT insertion
on a new design. Configuration was also guided by the tool itself.
For example, the independency check proved to have a significant
advantage over mere topological ordering. It aids the exploration
of possible HT configurations, as it immediately highlights that
specific configuration parameters are infeasible. It must be noted,
however, that the experiments showed that, in rare cases, the inde-
pendency check cannot guarantee that a HT can be triggered. In
this case, the user is warned and recommended to use a different
random seed for the trigger SSFs configuration, or select a different
SSF. In our experiments, this occured once and was solved with a
new random seed immediately.

An important and unforeseen result is that the influence of circuit
cell density on the feasibility of HT insertion is much less than
expected. In the two low density designs, SHA and PULPino, the
HT insertion partially failed, while in the high density designs HT
insertion succeeded, even for large HTs with hundreds of cells, and
independent of the increase in wire length. We conclude that the
vulnerability of a layout for HT insertion cannot be assessed by
a few metrics. Instead, we propose to use BioHT as an empirical
solution to assess the vulnerability by random HT insertion. BioHT
goes beyond a proof-of-concept that blindly attacking a layout is
possible. The framework can quickly produce a boundary of HT
insertion feasibility, provide a risk assessment and guide physical
defense strategies for HT insertion. Our claim is that no other work
in the literature can provide this information.

In order to defend against sophisticated foundry-level attacks
as in this work, two possibilities are pre-silicon design-for-trust
or post-silicon detection techniques. Pre-silicon design-for-trust
implements measures to render HT insertion more difficult or to
provide trust anchors in the design to identify tampered locations.
For example, logic locking renders understanding an unknown
layout more difficult [17]. As previously explained, little available
information is enough to insert meaningful HTs with BioHT. In
how far this limits the effect of locking remains as a future work.
Other design-for-trust techniques such as on-chip sensors must be
circumvented, but automated solutions exist for many techniques
(e.g. [40]), which are easily integrated into BioHT.

Post-silicon detection generally is either an exhaustive, error-
prone and costly reverse engineering effort [19] to fully inspect
the design, or can by principle only achieve partial coverage (e.g.,
with side-channel analysis, logic testing, etc.) [17]. BioHT can be

ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl

Table 2: Physical synthesis results before and after HT insertion for the target designs and several HT architectures.
Hardware Trojan Characteristics Physical synthesis results

Target Trigger Payload SSF Seq. Comb. Conn. Freq. Density Total power Slack Viol.
Trig. Payl. # # # (MHz) (%) (µW) (ps) #

before before after before after before after after
PULPino FSM Modify TR RHS 7 14 20 54.00 72.20 -4 0

FSM Shift’n’burn TR D 40 75 6 54.23 72.59 -8 0
Comb. Modify TR RHST 4 8 19 53.99 72.48 -9 0
Comb. Modify TCR RHST 4 15 31 54.03 72.77 2 0
Comb. Shift’n’burn TR D 37 71 8 285 53.97 54.26 71.88 72.61 15 -10 0

Counter Modify T RHS 24 79 18 54.33 72.52 -18 0
Counter Modify TC RHS 24 82 15 54.43 73.00 0 0
Counter Shift’n’burn T D 57 140 3 54.51 72.99 -46 0
Counter Shift’n’burn TC D 57 140 3 54.66 73.04 3 0

SHA-256 FSM Modify TR RHS 24 85 28 54.38 47.27 20 0
FSM Shift’n’burn TR D 40 75 6 54.54 47.28 31 0
Comb. Modify TR RHS 4 18 38 53.94 47.28 -7 0
Comb. Shift’n’burn TR D 37 71 8 500 53.84 54.58 46.48 51.74 49 34 0
Counter Modify T RHS 24 85 25 54.38 47.27 20 0
Counter Shift’n’burn T D 57 140 3 55.03 51.94 45 0

RSA FSM Fault TR RLR 13 31 30 87.40 15.58 -84 0
FSM Shift’n’burn TR D 40 75 6 89.62 15.73 139 0
Comb. Fault TR RLR 10 29 33 87.21 15.87 -46 0
Comb. Shift’n’burn TR D 37 71 8 750 86.19 89.39 15.58 15.62 196 194 0

Counter Fault T RLR 30 96 24 89.34 15.90 -108 0
Counter Shift’n’burn T D 44 109 3 91.57 15.97 N/A 71

AES-128 FSM Fault TR RLR 13 31 28 84.85 21.96 76 0
FSM Shift’n’burn TR D 40 75 6 85.85 22.11 30 0
Comb. Fault TR RLR 10 29 38 84.79 21.95 52 0
Comb. Shift’n’burn TR D 37 71 8 750 84.46 85.55 21.82 22.12 201 116 0
Counter Fault T RLR 30 96 24 85.99 22.15 119 0
Counter Shift’n’burn T D 10 29 2 84.78 21.94 163 0

Table 3: Routing length in µm per metal layer for PULPino
and RSA, before and after the HT-insertion.

RSA PULPino
Metal layer before after before after

M2 18.7k 18.9k 323.8k 326.5k
M3 23.2k 25.1k 439.2k 441.7k
M4 11.5k 15.9k 378.2k 382.4k
M5 2.5k 5.1k 357.1k 360.6k
M6 - 1.0k 221.3k 223.8k
M7 - - 161.6k 163.2k

adapted to evade non-exhaustive post-silicon detection by modi-
fying HT configuration and SSFs. An interesting approach is to
include self-test structures in pre-silicon to improve post-silicon
imaging detection [38]. In the end, post-silicon detection tries to
prove that the design is identical to the pre-silicon layout, but a
solution with guaranteed coverage is yet to be found.

As BioHT resembles a real-world blind foundry-level attack, the
framework can complement post-silicon inspection by guiding in-
spection to vulnerable locations. This reduces the effort required for
inspection, as only selected regions of the design must be inspected,
namely those where BioHT potentially attacked the circuit.

Orthogonally, the use of machine-learning in any pre- and post-
silicon HT detection is on the rise [17, 15]. Providing a vast amount
of diverse HT samples is essential to train any machine-learning
based detection technique. BioHT can be used blindly on any design
to generate diverse training samples. Unlike with previous methods,
it is not necessary to manually implement a sample set of trojans
or to perform manual adaptation of the HT insertion technique.
We expect the diversity of HTs and targets to be necessary and
beneficial to future work on machine-learning based HT detection.

6 CONCLUSION
In this work, we presented BioHT, a framework to insert hardware
trojans into unknown ASIC layouts. The tool is using an end-to-end
approach, starting at the victim’s layout delivered to the foundry
and ending with the tampered layout ready for fabrication. Through
the use of reverse engineering techniques, little knowledge about
the design is necessary to introduce sophisticated trojans into the
circuit. The use of state-of-the-art physical synthesis tools and an
ECO flow allows performing the actual insertion as trouble-free
as a layout bug fix. The end result is a DRC-clean layout that is
ready for manufacturing, or an error message to the attacker that
the parameters of insertion must be changed. Our experiments
show that the complete approach can be executed multiple times
in the time-frame between tape-out and manufacturing, so that
the optimum trojan could be selected out of several possibilities.
However, BioHT is also a tool to show how realistic trojan insertion
would be performed, and can guide risk assessment, defense, and
future research. To conclude, HT insertion in finalized layouts is a
real threat to today’s globalized IC manufacturing and must not be
taken lightly. Our framework provides the necessary capabilities
and information to advance countermeasures against this threat.

ACKNOWLEDGMENTS
This work has been partially conducted in the project “ICT pro-
gramme” which was supported by the European Union through the
European Social Fund. It was also partially supported by European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 952252 (SAFEST).

A Pragmatic Methodology for Blind Hardware Trojan Insertion in Finalized Layouts ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

REFERENCES
[1] Alex Baumgarten, Michael Steffen, Matthew Clausman, and Joseph Zambreno.

2011. A case study in hardware Trojan design and implementation. Int. J. Inf.
Secur., 10, 1, (Feb. 1, 2011), 1–14. doi: 10.1007/s10207-010-0115-0.

[2] S. Bhasin, J. Danger, S. Guilley, X. T. Ngo, and L. Sauvage. 2013. Hardware
Trojan Horses in Cryptographic IP Cores. In 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography. (Aug. 2013), 15–29. doi: 10.1109/FDTC.2013.15.

[3] Jonathan Cruz, Pravin Gaikwad, Abhishek Nair, Prabuddha Chakraborty, and
Swarup Bhunia. 2022. Automatic Hardware Trojan Insertion using Machine
Learning. (2022). https://arxiv.org/abs/2204.08580 arXiv: 2204.08580.

[4] Jonathan Cruz, Y. Huang, P. Mishra, and S. Bhunia. 2018. An automated con-
figurable Trojan insertion framework for dynamic trust benchmarks. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE). (Mar. 2018),
1598–1603. doi: 10.23919/DATE.2018.8342270.

[5] Chris Drake. 2015. PyEDA: Data Structures and Algorithms for Electronic
Design Automation. In Proceedings of the 14th Python in Science Conference.
Kathryn Huff and James Bergstra, (Eds.), 25–30. doi: 10.25080/Majora-7b98e3e
d-004.

[6] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor Loi, Anto-
nio Pullini, Davide Rossi, Eric Flamand, Frank K. Gürkaynak, and Luca Benini.
2017. Near-Threshold RISC-V Core With DSP Extensions for Scalable IoT End-
point Devices. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
25, 10, (Oct. 2017), 2700–2713. doi: 10.1109/TVLSI.2017.2654506.

[7] Ujjwal Guin et al. 2014. Counterfeit integrated circuits: A rising threat in the
global semiconductor supply chain. Proceedings of the IEEE, 102, 8, 1207–1228.
doi: 10.1109/JPROC.2014.2332291.

[8] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proc. SciPy ’08, 11–15.

[9] S. K. Haider, C. Jin, M. Ahmad, D. Shila, O. Khan, andM. van Dijk. 2017. Advanc-
ing the State-of-the-Art in Hardware Trojans Detection. In IEEE Transactions
on Dependable and Secure Computing. Vol. PP, 1–1. doi: 10.1109/TDSC.2017.26
54352.

[10] Kento Hasegawa, Kazuki Yamashita, Seira Hidano, Kazuhide Fukushima, Kazuo
Hashimoto, and Nozomu Togawa. 2022. Node-wise Hardware Trojan Detection
Based on Graph Learning, (Mar. 15, 2022). Retrieved Apr. 4, 2022 from arXiv:
2112.02213.

[11] Alexander Hepp, Johanna Baehr, and Georg Sigl. 2022. Golden Model-Free
Hardware Trojan Detection by Classification of Netlist Module Graphs. In 2022
Design, Automation Test in Europe Conference Exhibition (DATE), 1317–1322.
doi: 10.23919/DATE54114.2022.9774760.

[12] Alexander Hepp, Tiago Perez, Samuel Pagliarini, and Georg Sigl. 2022. BioHT
(Blind Insertion of Hardware Trojans) Tool. https://github.com/Centre-for-Ha
rdware-Security/bio_hardware_trojan.

[13] Alexander Hepp and Georg Sigl. 2021. Tapeout of a RISC-V crypto chip with
hardware trojans: a case-study on trojan design and pre-silicon detectability.
In Proceedings of the 18th ACM International Conference on Computing Frontiers.
CF ’21: Computing Frontiers Conference. (May 11, 2021), 213–220. doi: 10.114
5/3457388.3458869.

[14] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2021. Hardware Informa-
tion Flow Tracking. ACM Comput. Surv., 54, 4, (May 3, 2021), 83:1–83:39. doi:
10.1145/3447867.

[15] Z. Huang, Q. Wang, Y. Chen, and X. Jiang. 2020. A Survey on Machine Learning
Against Hardware Trojan Attacks: Recent Advances and Challenges. IEEE
Access, 8, 10796–10826. doi: 10.1109/ACCESS.2020.2965016.

[16] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor. 2010. Trustworthy
Hardware: Identifying and Classifying Hardware Trojans. Computer, 43, 10,
(Oct. 2010), 39–46. doi: 10.1109/MC.2010.299.

[17] Konstantinos G Liakos, Georgios K Georgakilas, Serafeim Moustakidis, Nicolas
Sklavos, and Fotis C Plessas. 2020. Conventional and machine learning ap-
proaches as countermeasures against hardware trojan attacks. Microprocessors
and Microsystems, 79, 103295. doi: https://doi.org/10.1016/j.micpro.2020.103295.

[18] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson.
2009. Trojan Side-Channels: Lightweight Hardware Trojans through Side-
Channel Engineering. In Cryptographic Hardware and Embedded Systems -
CHES 2009. Christophe Clavier and Kris Gaj, (Eds.), 382–395.

[19] Matthias Ludwig, Ann-Christin Bette, and Bernhard Lippmann. 2021. ViTaL:
Verifying Trojan-Free Physical Layouts throughHardware Reverse Engineering.
In 2021 IEEE Physical Assurance and Inspection of Electronics (PAINE). 2021 IEEE
Physical Assurance and Inspection of Electronics (PAINE). (Nov. 2021), 1–8.
doi: 10.1109/PAINE54418.2021.9707702.

[20] T. Meade, Y. Jin, M. Tehranipoor, and S. Zhang. 2016. Gate-level netlist reverse
engineering for hardware security: Control logic register identification. In
2016 IEEE International Symposium on Circuits and Systems (ISCAS). 2016 IEEE
International Symposium on Circuits and Systems (ISCAS), 1334–1337. doi:
10.1109/ISCAS.2016.7527495.

[21] [SW] Travis Meade, Netlist Analysis Toolset (NETA), Mar. 16, 2018. url:
https://github.com/jinyier/NetA.

[22] Travis Meade, Shaojie Zhang, and Yier Jin. 2016. Netlist reverse engineering
for high-level functionality reconstruction. In 2016 21st Asia and South Pacific

Design Automation Conference (ASP-DAC), 655–660. doi: 10.1109/ASPDAC.201
6.7428086.

[23] Aaron Meurer et al. 2017. SymPy: symbolic computing in Python. PeerJ Com-
puter Science, 3, (Jan. 2017), e103. doi: 10.7717/peerj-cs.103.

[24] Michael Muehlberghuber, Frank K. Gürkaynak, Thomas Korak, Philipp Dunst,
and Michael Hutter. 2013. Red Team vs. Blue Team Hardware Trojan Analysis:
Detection of a Hardware Trojan on an Actual ASIC. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Security and
Privacy (HASP ’13) Article 1, 8 pages. doi: 10.1145/2487726.2487727.

[25] DanielMüllner. 2011.Modern hierarchical, agglomerative clustering algorithms.
(2011). https://arxiv.org/abs/1109.2378 arXiv: 1109.2378.

[26] F.N. Najm. 1994. A survey of power estimation techniques in VLSI circuits.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2, 4, (Dec.
1994), 446–455. doi: 10.1109/92.335013.

[27] Tiago Perez, Malik Imran, Pablo Vaz, and Samuel Pagliarini. 2021. Side-Channel
Trojan Insertion - a Practical Foundry-Side Attack via ECO. In 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), 1–5. doi: 10.1109
/ISCAS51556.2021.9401481.

[28] Shahed E. Quadir, Junlin Chen, Domenic Forte, Navid Asadizanjani, Sina Shah-
bazmohamadi, Lei Wang, John Chandy, and Mark Tehranipoor. 2016. A Survey
on Chip to System Reverse Engineering. J. Emerg. Technol. Comput. Syst., 13, 1,
Article 6, (Apr. 2016), 6:1–6:34. doi: 10.1145/2755563.

[29] Rachel Selina Rajarathnam, Yibo Lin, Yier Jin, and David Z. Pan. 2020. ReGDS:
A Reverse Engineering Framework from GDSII to Gate-level Netlist. In 2020
IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
154–163. doi: 10.1109/HOST45689.2020.9300272.

[30] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A primer on
hardware security: Models, methods, and metrics. Proceedings of the IEEE, 102,
8, 1283–1295. doi: 10.1109/JPROC.2014.2335155.

[31] H. Salmani, M. Tehranipoor, and J. Plusquellic. 2012. A Novel Technique for
Improving Hardware Trojan Detection and Reducing Trojan Activation Time.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20, 1, (Jan.
2012), 112–125. doi: 10.1109/TVLSI.2010.2093547.

[32] Amin Sarihi, Ahmad Patooghy, Peter Jamieson, and Abdel-Hameed A. Badawy.
2022. Hardware Trojan Insertion Using Reinforcement Learning. (2022). arXiv:
2204.04350 [cs.LG].

[33] Bicky Shakya, Tony He, Hassan Salmani, Domenic Forte, Swarup Bhunia, and
Mark Tehranipoor. 2017. Benchmarking of Hardware Trojans and Maliciously
Affected Circuits. Journal of Hardware and Systems Security, 1, 1, (Mar. 2017),
85–102. doi: 10.1007/s41635-017-0001-6.

[34] Shinya Takamaeda-Yamazaki. 2015. Pyverilog: A Python-Based Hardware De-
sign Processing Toolkit for Verilog HDL. In Applied Reconfigurable Computing
(Lecture Notes in Computer Science). Vol. 9040. (Apr. 2015), 451–460. doi:
10.1007/978-3-319-16214-0_42.

[35] Mohammad Tehranipoor and Farinaz Koushanfar. 2010. A survey of hardware
trojan taxonomy and detection. IEEE Design and Test of Computers, 27, 1, 10–25.
doi: 10.1109/MDT.2010.7.

[36] Andreas Traber, Florian Zaruba, Sven Stucki, Antonio Pullini, Germain Haugou,
Eric Flamand, Frank K. Gürkaynak, and Luca Benini. 2015. PULPino: A small
single-core RISC-V SoC. https://github.com/pulp-platform/pulpino.

[37] T Trippel et al. 2020. ICAS: An Extensible Framework for Estimating the
Susceptibility of IC Layouts to Additive Trojans. 2020 IEEE Symposium on
Security and Privacy (SP), 1078–1095. doi: 10.1109/SP40000.2020.00083.

[38] Nidish Vashistha, Hangwei Lu, Qihang Shi, Damon L.Woodard, NavidAsadizan-
jani, andMark Tehranipoor. 2021. Detecting Hardware Trojans using Combined
Self Testing and Imaging. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 1–1. doi: 10.1109/TCAD.2021.3098740.

[39] Xiaoxiao Wang, M. Tehranipoor, and J. Plusquellic. 2008. Detecting malicious
inclusions in secure hardware: Challenges and solutions. In Hardware-Oriented
Security and Trust, IEEE International Workshop on. (June 2008), 15–19. doi:
10.1109/HST.2008.4559039.

[40] Xinmu Wang, Seetharam Narasimhan, Aswin Krishna, Tatini Mal-Sarkar, and
Swarup Bhunia. 2011. Sequential hardware Trojan: Side-channel aware design
and placement. In 2011 IEEE 29th International Conference on Computer Design
(ICCD). 2011 IEEE 29th International Conference on Computer Design (ICCD).
(Oct. 2011), 297–300. doi: 10.1109/ICCD.2011.6081413.

[41] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, andM. Tehranipoor. 2016. Hardware
Trojans: Lessons Learned After One Decade of Research. ACM Trans. Des.
Autom. Electron. Syst., 22, 1, Article 6, (May 2016), 6:1–6:23. doi: 10.1145/29061
47.

[42] Mingfu Xue, Chongyan Gu, Weiqiang Liu, Shichao Yu, and Máire O’Neill.
2020. Ten years of hardware Trojans: a survey from the attacker’s perspective.
English. IET Computers & Digital Techniques, 14, 6, (Nov. 2020), 231–246, 6,
(Nov. 2020). eprint: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049
/iet-cdt.2020.0041. doi: https://doi.org/10.1049/iet-cdt.2020.0041.

[43] S. Yu, W. Liu, and M. O’Neill. 2019. An Improved Automatic Hardware Trojan
Generation Platform. In 2019 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). (July 2019), 302–307. doi: 10.1109/ISVLSI.2019.00062.

Appendix 6

[VI]
T. D. Perez and S. Pagliarini, “Hardware Trojan Insertion in Finalized Lay-
outs: From Methodology to a Silicon Demonstration,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
(to appear), 2022

153

1

Hardware Trojan Insertion in Finalized Layouts:
From Methodology to a Silicon Demonstration

Tiago Perez, Samuel Pagliarini
Department of Computer Systems - Tallinn University of Technology, Tallinn, Estonia

Emails: {tiago.perez, samuel.pagliarini} @taltech.ee

Abstract—Owning a high-end semiconductor foundry is a
luxury very few companies can afford. Thus, fabless design
companies outsource integrated circuit fabrication to third par-
ties. Within foundries, rogue elements may gain access to the
customer’s layout and perform malicious acts, including the
insertion of a hardware trojan (HT). Many works focus on the
structure/effects of a HT, while very few have demonstrated the
viability of their HTs in silicon. Even fewer disclose how HTs are
inserted or the time required for this activity. Our work details,
for the first time, how effortlessly a HT can be inserted into
a finalized layout by presenting an insertion framework based
on the engineering change order flow. For validation, we have
built an ASIC prototype in 65nm CMOS technology comprising
of four trojaned cryptocores. A side-channel HT is inserted in
each core with the intent of leaking the cryptokey over a power
channel. Moreover, we have determined that the entire attack can
be mounted in a little over one hour. We also show that the attack
was successful for all tested samples. Finally, our measurements
demonstrate the robustness of our SCT against skews in the
manufacturing process.

Index Terms—hardware security, manufacturing-time attack,
hardware trojan horse, side-channel trojan, VLSI, ASIC.

I. INTRODUCTION

The ever-increasing cost to build high-end semiconductor
manufacturing facilities – building a 3nm production line
is estimated to cost $15-20B [1] – has made most design
companies migrate to a fabless business model. In practice,
fabless design houses can design and market integrated circuit
(IC) solutions, but the actual IC fabrication is outsourced to
a third party. This practice can potentially affect the trustwor-
thiness of an IC as a foundry (or a rogue element within the
foundry) can manipulate the design for malicious purposes [2].
Many fabrication-time threats have been studied recently [3].
For combating these threats, numerous techniques have been
proposed for increasing the trustworthiness of an IC. Examples
of these techniques are Split Manufacturing [4], Logic Locking
[5], [6] and IC Camouflaging [7]. Unfortunately, the current
state of these techniques makes them unsuitable for large-
scale production of ICs, either because of practicality [4]
and/or insufficient security guarantees [8]. Thus, the current
practices of a globalized supply chain leave the fabrication of
ICs vulnerable to attacks.

Tampering an otherwise trustworthy IC can be done by
inserting malicious logic or modifying specific aspects of the
manufacturing process [10], [11]. These kinds of modifications
are often referred to as hardware trojans (HTs). HTs are
designed to leak confidential information, to disrupt a system’s

specific functionality, or even to destroy the entire system
(referred to as time-bomb). Various types of HTs have been
studied recently [12]–[20], demonstrating the potential threat
of this type of attack.

An IC’s operating physical characteristics, such as tim-
ing, power consumption, electromagnetic radiation, and even
sound, can be used as a side-channel to indirectly reveal
information that should be internal to the IC. For this reason,
side-channel attacks (SCAs) often target keys of embedded
crypto cores [21]. However, to mount a successful SCA,
acquiring a large amount of data is usually required, followed
by correlation/statistical analysis. Moreover, a very specific
type of HT has been proposed for assisting SCAs. Lin et al.
[12] were the first to propose an HT architecture for assisting
a power SCA, referred to as “Malicious Off-chip Leakage
Enabled by Side-channels” (MOLES). This specific type of
trojan is the centerpiece of our work; in the remainder of
this text it is referred to as a side-channel trojan (SCT). By
using SCTs, the attack time can be drastically reduced as no
further processing is required. The disadvantage of SCTs is
their invasive nature. Inserting an SCT requires a modification
of the circuit at fabrication time. While this might seem a
difficult task at first sight, we later show how it can be executed
by a capable attacker.

Despite the encouraging results reported from the SCT
studies, no study discusses how SCTs could be inserted from
the perspective of the attacker. Even more concerning, this
is true even for silicon validated trojans [14], [15], [20]. This
is also generally true for other types of HTs. In this work, we
present not only an SCT design methodology, but also a novel
framework for SCT insertion. We assume that a rogue element
inside the foundry is the adversary and that he/she makes
use of readily available engineering change order (ECO)
capabilities of physical design tools. Consequently, the main
contributions of this work are a full framework for inserting
SCTs, an ASIC prototype for validating our methodology, and
also a rich discussion regarding its effectiveness. We fabricated
a testchip comprising of 4 cryptocores in a 65nm commercial
technology, making our technique silicon proven. Our in-
depth analysis of the side-channel versus the variation in the
manufacturing process demonstrated that our SCT is robust
against this type of skew. On top of that, we include an analysis
of the attack time required for inserting our SCT in a finalized
layout when also utilizing our ECO flow methodology. These
characteristics sharply contrast our work with prior art.

2

Constraints

RTL

Technology
Library

Logic
Synthesis

Gate-level
Netlist

Place &
Route

Timing
Signoff

Physical
Verification

Original
GDSII

Test,
Assembly &
packaging

Constraints

Modified
GDSII

Design Phase (in-house) Attack
Manufacturing & Chip Finishing

(3rd Party)

Fig. 1: A typical IC design flow. Highlighted in red is the stage where a rogue element may mount an attack (mod. from [9]).

II. THREAT MODEL AND ATTACKER CAPABILITIES

In this work, the principal attacker we are concerned with
is a rogue element inside the foundry. He/she has the ob-
jective of inserting malicious logic in a finalized layout. We
emphasize that the attack occurs before the fabrication. Thus,
since the attacker is located inside the foundry, he/she enjoys
access to all technology and cell libraries1 utilized by the
victim when creating the layout. We assume the attacker is
capable of identifying the presence of a crypto core in a
layout, which is a reasonable assumption specially for well-
known AES implementations that display regularity (due to the
round-based key schedule structure). To be very clear, we do
not assume that the adversary understands the entire victim’s
design (nor there is a need for such knowledge). Instead, we
assume that the adversary can recognize the layout/structure
of a single crypto core within a larger design, in line with the
assumptions made in [13], [15].

Furthermore, we also assume the adversary: 1) is versed
in IC design, 2) enjoys access to modern EDA tools, 3) has
no means to make radical modifications to the circuit (e.g.,
adding new IOs or making changes in the clock domains).
With the help of the inserted logic in the form of an SCT,
the attacker will then attempt to leak confidential information
via a power signature. Crypto cores are often the target in this
type of attack [15], [16] – this is also the case in our work. As
our attack deals with power signature reading, stopping some
part of the clock delivery, or even entirely, would be highly
beneficial for the attack. However, the attacker is assumed
to have no knowledge about the clock domains or clock
distribution in general. Synchronizing and controlling the HT’s
trigger to totally stop the clock delivery is not an option we
have considered feasible, nor is the addition of an external
trigger controlled by an IO.

A typical IC physical implementation flow is described in
the left portion of Fig. 1. The attack takes place after the
victim’s layout in GDSII format is sent for fabrication (see
red portion of Fig. 1). Suppose the attacker had access to
all of the victims’ data required to generate the layout (i.e.,
RTL, netlists, constraints, etc.). In this case, he/she could
replicate the physical implementation flow to achieve a layout
similar to the one created by the victim, yet now containing
his malicious logic. This effort is theoretically possible but
largely unpractical. Our threat model, therefore, assumes that

1This is particularly true for advanced nodes where only a handful of cell
libraries per node exist. Typically, the foundry or a company licensed by the
foundry provides a standard cell library. In either case, we assume the attacker
has no difficulty identifying individual gates and their functionality.

the attacker only has access to the finalized layout. Design
companies have to hand over their finalized layout to the
foundry for fabrication. Normally, the layouts require some
pre-processing steps before the start of the fabrication, which
are handled by a foundry employee. Thus, it is during this
time period that the attack can be mounted.

Nevertheless, EDA tools already have the capability to deal
with finalized designs. This functionality is a feature referred
to as ECO. Thus, an attacker holding only the layout could
use an ECO to modify or insert additional logic in a finalized
layout. An ECO flow requires four inputs: a technology library,
a cell library, the gate-level netlist, and a timing constraint. The
adversary already possesses the first two, but must generate the
third and estimate the fourth input. A gate-level netlist can
be extracted from the victim’s layout [22], while the timing
constraint can be estimated to a certain degree. Our proposed
trojan insertion framework is shown in Fig. 2, where these
two steps are considered. The details of the framework are
described in the next section.

III. SIDE-CHANNEL TROJAN DESIGN AND INSERTION

A. Side-Channel Trojan Design

Our SCT is an additive hardware trojan with the intention
of aiding a side-channel attack. For more details regarding
hardware trojans taxonomy and concepts we direct the reader
to [23]. Thus, it is designed for creating an artificial power
consumption through which information is leaked. This has to
be performed in a controlled manner, naturally. Knowing that
the majority of the power consumption in a circuit comes from
the switching activity (dynamic power), a great candidate to
be a controlled power sink is a structure with a controllable
frequency of operation.

A ring-oscillator (RO) is an example of such power sink if
the number of stages in the RO can be adjusted dynamically
as shown in Fig. 2. Our architecture implements variable
delay stages broken into branches that are controlled by Nleak

leaking bits. Each branch of our RO has two active path
options: a direct connection to the next branch or a series
of delay cells. Thus, each set of the Nleak is associated with
a distinct change in the power consumption amplitude. This
artificial power consumption created by the RO is similar to a
pulse-amplitude modulation technique, with an order equal to
2Nleak . An example of this RO architecture for Nleak = 2
is illustrated in Fig. 2. The active paths’ configuration is
described in Table I, where the leaking bits become branch
selectors and are referred to as S0 and S1.

3

Nd1 Delay
Cells

Nd2 Delay
Cells

Nd3 Delay
Cells

Ni Inveter Cells

S0

S0 S1

S1

S1 S0

Clock
Divider

Ring
Oscillator

Trojan
ControllerSystem_clock

Reset

Trigger

Key

Enable

Select

GDSII
Netlist

Extraction
Frequency
Estimation

Power
Analysis

Trojan
Design

ECO
Flow

Modified
GDSII

Clock_sct

Enable

Nd4 Delay
Cells

Fig. 2: Our trojan insertion methodology for a SCT capable
of leaking 2 bits per power signature reading (modified from
[9]).

TABLE I: Ring oscillator active path configuration

S0 S1 Delay Cells Inverter Cells Freq.
0 0 ND1 Ni High
1 0 ND1 +ND2 Ni Mid-high
0 1 ND1 +ND3 Ni Mid-low
1 1 ND1 +ND2 +ND3 +ND4 Ni Low

A dual-sided constraint guides the attacker’s effort: he/she
has to induce a discernible amount of dynamic power (i.e.,
to increase the effectiveness of the attack) while increasing
leakage power as little as possible (i.e., to avoid detection).
In this sense, not only the RO-based SCT structure has to
be carefully planned, but a decision has to be made as to
when exactly will the trojan be triggered. Our approach is
to not allow the trojan to compete with the dynamic power
consumption of the crypto core. Therefore, when the core
is actively working, the trojan is silent and the RO is not
switching. When the crypto core is idle, the trojan is triggered.
For this reason, our proposed SCT trojan has a Trigger signal
that is connected to the “done” signal coming from the crypto
core, which marks the end of a cryptographic operation.

When triggered, the SCT connects a set of the leaking bits
per clock cycle in the RO until all the Nkey bits from the
crypto key are leaked. Thus, our SCT requires a connection
to the system clock and reset, a trigger signal, and the crypto
key. Its architecture is illustrated in Fig. 2, consisting of three
blocks: clock divider (DV), the trojan controller (TC), and the
RO. Notice that our SCT does not required any additional
external connections (i.e., I/Os or pads). All of its signals are
connected to existing wires of the target circuit. The invasive
portion of our attack is the insertion of new cells and routing
wires.

The DV is responsible for dividing the frequency, as the
name suggests. This feature is interesting for two reasons:
there are scenarios when the attacker wants to slow down the
speed at which bits are leaked, thus giving him/her control over
the amount of time the attack will take. In other scenarios, the
crypto core operates at a frequency that the trojan controller
cannot match, so to avoid timing violations in the HT itself,
clock dividing proves useful. Thus, the clock sct signal is
either connected directly to the system clock or to the DV.
The TC is responsible for enabling the RO and for connecting

the leaking bits to the RO. The RO starts running when the
enable signal is asserted; its operating frequency is controlled
by the select signals S0 and S1 (see Fig. 4).

To reduce the detection probability and increase the attack’s
feasibility, the SCT has to be customized for each targeted
circuit. Therefore, the SCT is designed with size and power
constraints. The size constraint is set as a percentage of the
target circuit size, and the power, on its turn, is a percentage
of the target circuit’s idle power. As the size and power
constraints are set by analyzing the circuit’s physical char-
acteristics, the attacker has to acquire such information from
the layout. According to the flow detailed in Fig. 2, the layout
is inspected as follows:

Netlist extraction: since the attacker only holds the
layout, a gate-level netlist has to be extracted. Such effort
is considered a trivial task for an expert IC designer,
demonstrated in [22].
Frequency estimation: the attacker has to estimate the
operating frequency of the target circuit by performing
static timing analysis on the extracted gate-level netlist.
The attacker can observe the critical path(s) and then
increase/decrease the frequency as needed to make the
timing slack positive but near zero2.
Power analysis: with the extracted gate-level netlist
and the estimated frequency, the attacker can perform a
typical power analysis. For relatively large circuits, static
power can be estimated very precisely even without input
vectors3.

Therefore, after the layout is inspected, the attacker has ac-
quired the estimated frequency, estimated power consumption,
and exact size of the circuit (number of gates). From these,
the attacker is now ready to draw the constraints necessary to
design the SCT. First, the RO’s dynamic power can be tweaked
according to the power constraint. We remind the reader that
the total power consumption can be divided into static and
dynamic components as in (1). Leakage power is the static
component of power and depends mainly on the threshold
voltage of the transistors. On the other hand, dynamic power
depends on the circuit’s activity. Consequently, leakage power
is proportional to the number of cells in the circuit while
the dynamic power is proportional to the operating frequency.
Thus, to model the amplitude steps required for the RO, we
need to carefully model its dynamic power consumption.

Ptotal = Pstatic + Pdynamic

Pdynamic =
1

2
VDD

2Fsa

∑

inet

Cload(i) + Fsa

∑

cellj

E(j)

Fsa = 2FRO =
1

τchain

(1)

(2)

(3)

Dynamic power can be calculated using (2), where Cload is
the capacitance load at the output nets, Fsa is the switching

2Currently, our method does not take into account multi-cycle and false
paths, which can reduce the accuracy of the frequency estimation but does
not prevent the attack.

3For crypto cores in particular, it is a fair assumption to consider the
plaintext to be randomly assigned, the adversary does not need precise vectors
to estimate the (order of magnitude) of the power consumption.

4

activity factor, VDD is the supply voltage, and E is the total
energy of a cell. The switching activity factor describes how
many switches will occur per second. As for the RO, since the
signals are always switching, this factor is two times the RO’s
oscillation frequency, which can be estimated by calculating
the total path delay of the ring as in (3).

The total path delay of the RO is estimated using (4), where
τdelay is proportional to the number of delay cells in the active
path times the delay of each cell (τdcell), see (5). The τinverter
delay is from the inverter cells in the feedback path, described
by (6). The τcontrol delay is from the logic cells that controls
the active paths, described by (7). Since τinverter and τcontrol
are fixed for a given implementation, τdelay is the knob utilized
to change the frequency of oscillation dynamically. Therefore,
the RO can be designed by choosing the adequate number of
delay cells in each individual branch as well as the (static)
number of inverter cells in the feedback path.

τchain = τdelay + τinverter + τcontrol

τdelay = (ND1 +ND2 +ND3 +ND4)τdcell

τinverter = Niτinvcell + τnand

τcontrol = 7τand + 3τor

(4)
(5)
(6)
(7)

Finally, the equations above give a first-order estimation of
the power profile of the RO. However, since the RO will still
undergo place and route, cell position and length of wires have
to be properly accounted for. This is achieved by utilizing a
SPICE-level simulator and is addressed in Section IV.

B. Side Channel Trojan Insertion

After designing the SCT, the next step is its insertion. The
attacker can utilize the ECO feature provided by commercial
EDA tools for inserting the SCT. Typically, this feature is used
to perform slight modifications in a finalized layout after its
manufacturing, referred to as post-mask ECO. A special type
of logic cell, called spare cell, is utilized to enable the ECO
methodology. Spare cells are typically inserted in commercial
ICs and, when needed, are instantiated by the ECO flow. By
doing so, a new design can be generated with minimal changes
in the fabrication mask set.

For the SCT insertion via ECO, an attacker can achieve
his/her goal without utilizing spare cells. Since we previously
established that the attacker can discern any gate in a layout,
the attacker can replace both filler and spare cells for his
malicious logic. Contrarily to spare cells, every layout of a
digital circuit has filler cells. During placement, EDA tools
have to spread the standard cells to assure routability, thus
mandatorily leaving gaps between cells. For more details about
the relationship between placement density and HT insertion,
we direct the reader to [24].

According to Fig. 2, the ECO flow is the last step for the
SCT insertion. Before the ECO, the attacker has to identify the
filler/spare cells and remove them to create the gaps needed
for his own logic. This is achieved by literally one command
in physical synthesis tools, as deleting fillers is a typical
operation to be performed. After the ECO, the attacker has
to perform timing sign-off to guarantee that the performance

of the victim’s design was not disturbed. The SCT insertion
is not likely to perturb the target’s performance; it is only
connected to a register (crypto key storage) and some control
signals, adding a small capacitance load to them. Besides, the
coupling capacitance inserted by the additional routing wires
is minimal due to the SCT’s lightweight characteristic and
the inherent goal of the ECO flow: not to disturb the existing
logic. However, even if unlikely, the addition of the SCT could
hinder the target performance. In that case, it means that the
size constraint used for designing the SCT was inappropriate.

The attacker also has to check whether the SCT itself has
timing violations. If so, the optional clock divider must be
included to slow the SCT clock (w.r.t. the system clock). Every
division by two requires one additional D-type flip-flop.

IV. IMPLEMENTATION AND SIMULATION RESULTS

In this section, we demonstrate our methodology and justify
our chosen target designs, i.e., the crypto cores that we are
going to insert our trojans on. The first part of the experiments
are from simulations done using industry-grade EDA tools.
After validating the methodology through simulation, the next
step is the demonstration of our ASIC prototype, discussed in
Section V.

A. Targets and Conditions

For our experimental investigation, we have utilized AES-
128 and Present (PST) [25] crypto cores with Nkey = 128 and
Nkey = 80, respectively. The AES crypto core was chosen
due to its standardized status and popularity, while PST was
chosen due to its lightweight characteristic [26].

To allow the analysis of SCT insertion for both AES and
PST cores regarding changes in frequency and placement
density, the combination of these variables is explored in
Table III. In the column titled ‘Acronym’, we define the ter-
minology used for referring to the many variants of the cores.
Results from physical synthesis of the considered targets are
presented in Table II. A 65nm commercial CMOS technology
was utilized to exercise very challenging placement densities
(e.g., 75% for AES LFHD) and frequencies (e.g., 0.95GHz
for PST HFLD). The values reported are for typical process
corner (TT) and a nominal temperature of 25◦C.

B. SCT Design Results

Initially, all studied cores were physically synthesized for
the placement and frequency conditions set above. These
results are obtained from Cadence Innovus and are reported as
pre-ECO results in Table II (“Before SCT insertion”). As we
assume the attacker has no means to stop the clock delivery
to the entire circuit, we have included the clock tree (CT)
power in our results as it has to be accounted for in the SCT
power constraint. Notice how the CT power is significant when
compared to the leakage power of the targets, even for the
LF variants. Different SCTs were designed for each target by
setting a power budget for the SCTs to be 10% of the sum of
leakage and CT power. Importantly, this is not a limitation of
the methodology, an attacker can pick any other threshold and
still design the SCT accordingly.

5

TABLE II: Physical synthesis results for our considered targets, before and after trojan insertion.

Before SCT insertion After SCT insertion
Core Frequency

(MHz)
Density
(%)

Leakage
(µW)

CT
(µW)

Total Power
(µW)

Density
(%)

Leakage
(µW)

CT
(µW)

Total Power
(µW)

∆ Density
(%)

AES LFLD 100 61 77.4 115.2 1670 63.45 80 115.8 1720 +2.45
AES LFHD 100 75 75.8 116.7 1660 78.20 79 117.6 1720 +3.20
AES HFLD 1000 58 1048 1228 22800 59.37 1052 1238 23015 +1.37
AES HFHD 1000 72 1036 1241 22610 73.02 1040 1252 22830 +1.02
PST LFLD 95 53 14.13 32.05 371.3 67.33 20.71 34.75 483.4 +14.33
PST LFHD 95 70 14.09 31.89 371.2 82.05 17.72 32.85 428.5 +12.05
PST HFLD 950 52 34.02 325.30 3744 60.89 36.85 338.1 4022 +8.89
PST HFHD 950 69 34.13 329.10 3785 80.26 36.96 341.5 4015 +11.26

TABLE III: Naming convention for the crypto cores regarding
their frequency and placement density

Core Frequency Placement density Acronym

AES
Low Low AES LFLD

High AES LFHD

High Low AES HFLD
High AES HFHD

PST
Low Low PST LFLD

High PST LFHD

High Low PST HFLD
High PST HFHD

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200 250 300 350

#
 o

f
sa

m
pl

es

Static power (µW)

Fig. 3: PST HFLD static power histogram, 10K MC samples
(from [9]).

With the goal of obtaining a better understanding of the
static power consumption of the cores, we performed a Monte
Carlo (MC) simulation using Cadence Spectre. The MC sim-
ulation was performed for 10000 samples, varying only the
process characteristics, with the temperature fixed to 25◦C.
Fig. 3 depicts the static power distribution of the PST HFLD
core. As expected, there are obvious outliers. Nevertheless,
the distribution average matches the value reported in Table
II for the typical corner. We will later show that the SCT is
implemented in the very same region of the IC as the target,
therefore we can also expect the same shifts in power due to
process variation. This is an important observation: if a given
die falls closer to the FF corner than to TT, it will be faster
and more power hungry – but so will be the trojan, nearly at
the same rate. Therefore, we argue that we can safely utilize
the nominal power values reported in Table II for RO design,
regardless of the quality of the fabricated silicon.

Once the power constraint has been established, the attacker
can proceed to estimate the multiple operating frequencies
of the RO (and the associated power values that effectively
leak the key). For this goal, we have taken each of our SCTs
and performed custom simulations using Cadence Spectre. The
oscillation frequency and power consumption of the ROs are

TABLE IV: RO operating frequency and power consumption
for four variants of AES and PST.

Target RO Power & Frequency (µW & MHz)
core S=00 S=01 S=10 S=11
AES LF ROD6I10 19@65 17@45 15@34 13@20
AES HF ROD10I10 198@551 182@483 161@390 140@300
PST LF ROD6I4 16@112 11@58 10@39 8@20
PST HF ROD8I10 42@79 36@61 31@46 26@31

0

1

O
ff

High Mid-high Mid-low Low

28
5u

W

313uW 310uW 308uW 306uW
65MHz 45MHz 34MHz 20MHzEn

ab
le

0

1

S
0

0

1

S
1

0

0.5

1.0

R
O

 O
ut

pu
t (

V
)

 285
 295
 305
 315

 40 130 220 310C
ur

re
nt

 (
µA

)

Time (ns)

Fig. 4: Post-layout simulation of our SCT architecture in
Cadence Spectre. The target design is AES LFHD and the
Trojan payload is configured as ROD6I10 (modified from [9]).

reported in Table IV, where each RO has been termed with
a “DXIY” suffix, where X and Y represent the amount of
delay and inverter cells, respectively. Notice how we do not
differentiate density in the results reported in Table IV: either
the trojan fits or it does not. The SCT design is nearly agnostic
to placement density; this is the reason why the table contains
4 entries instead of 8.

To help the reader better visualize the operation of the SCT,
the illustration in Fig. 4 displays a Spectre simulation of the
SCT using the AES LFHD target as an example. The set of
leaked keys in the image is {00-01-10-11}. The results for the
RO are from a SPICE-level simulation, and the total power of
the AES LFHD is estimated from physical synthesis.

We also highlight an extreme case in the ROD6I4 which
targets the PST LF core. For instance, both PST high fre-
quency versions, PST HFLD and PST HFHD, are 2.55 and
2.6 times larger than their low frequency counterparts, re-
spectively. Here, the SCT alone represents about 10% of the
size of the PST LF core. Since area and leakage have a
linear dependency, the SCT’s leakage already is about 10% of

6

AES_LFLD
AES_HFHD
PST_LFLD

PST_HFHD

 0 100 200 300 400 500 600 700

170 8
171 11
130 8
139 12

µm2

Comb.
Seq.

Fig. 5: Comparison of area and number of cells between SCTs.

the target’s leakage. Hence, the power constraint is violated.
However, this extreme example assumes the entire IC consists
of a single PST core. For a large system-on-chip containing
multiple cores, the power budget for designing the SCT would
be much more forgiving.

Alongside the custom-simulated ROs, the SCTs are synthe-
sized for each Nkey and at the same clock frequency as of the
target. Exclusively for the HF targets, we added the DV block
to ensure the synchronous portion of the SCT does not violate
timing. For AES HF, the system clock was divided by eight
while for PST HF it was divided by sixteen. The characteristic
of the SCTs are illustrated in Fig. 5, where we show the area
and number of cells for each SCT.

C. SCT Insertion Results

After designing the RO and synthesizing the remainder of
the SCT logic, the attacker is ready to perform the insertion
via ECO. The results for insertion are described on the right
side of Table II (‘After SCT insertion’). For all considered
scenarios, the ECO flow was capable of placing and routing
the SCT successfully, even for extremely dense layouts. Con-
sidering that high cell density implies less routing resources,
we verified that the ECO flow purposefully utilizes the least
congested metal layers. This trend is noticeable in Table V4,
where the routing length per metal layer is reported for the
PST HFHD target. Notice the significant increase in metals
M5, M6, and M7. Also note that the lower metal layers are
more closely associated with the circuit performance [27], so
overheads in M5 and above are unlikely to affect critical paths.

TABLE V: Routing length per metal for the PST HFHD
implementation, pre- and post-ECO.

Wirelength (µm)
Metal layer pre-ECO post-ECO

M2 5568 5759
M3 7036 8332
M4 4580 6223
M5 3182 6417
M6 2528 5283
M7 - 706

We also provide a visual comparison of the density increase
for the AES HFHD and PST HFHD SCTs in the bottom part
of Fig. 6. Note that the placement of the targets (top part of
Fig. 6) was kept identical and only filler cells were removed
for the SCT insertion via ECO. This is a key finding of our
work and confirms the feasibility of the attack.

4In our considered metal stack, M1 cannot be used for signal routing.
For this reason, M1 is not shown. Similarly, M8/M9 are reserved for power
distribution.

Besides being able to insert the SCT, the ECO flow also has
to preserve the performance of the target circuit. The additional
malicious logic increases the load on the paths to which the
SCT is connected, and, in general, the SCT routing could
increase the coupling capacitance to adjacent paths. Thus, the
impact on the target performance due to the SCT insertion is
related to the number of connections between them and the
increase in density. For the AES implementations, the addition
of the SCT increased their total density by a small margin. On
the other hand, for the PST cores, the SCT represents a large
portion of the total circuit area. This is illustrated in the bottom
part of Fig. 6, where the density map of the PST HFHD and
AES HFHD layouts are shown.

The impact on the performance of the AES HFHD and
PST HFHD cores is illustrated in Fig. 7, where we contrast the
pre- and post-ECO timing slack. These results show that the
impact is greater on the PST HFHD implementation, which
is explained by the high density increase reported in Table
II. One can appreciate how the red bars in Fig. 7 are shifted
to the left (w.r.t. the green bars). However, this shift was not
sufficient to degrade the performance of the cores. In particular
for the PST core, the ECO engine completed successfully by
using some of the safety margin (20ps) we applied to all
our paths. This safety margin is small and compatible with
industry practices, where often margins in the range of tens of
picoseconds are utilized. Thus, in terms of performance, our
attack appears to be adequate for realistic commercial designs.

Furthermore, considering that the reported timing slack
results are for implementations with a challenging operating
frequency, we argue that our proposed methodology is not
only capable of inserting an SCT in a high density target,
but also of keeping the target performance, regardless of its
frequency. Thus, for an attacker, inserting malicious logic by
repurposing filler/spare cells with the help of an ECO feature is
more than adequate, it is almost ideal. First, this methodology
has an area overhead of 0% because we utilize space that is
otherwise unused. Therefore, a slight increase in density is the
only measurable “overhead”. Second, the performance of the
target is very likely to remain the same. Third, the runtime
is only a fraction of other methods for inserting malicious
logic, such as re-implementation. In the following section, we
discuss these ECO characteristics in detail.

V. TESTCHIP DESIGN AND VALIDATION

In this section, we present our fabricated ASIC prototype
and its many details. Initially, we present the chip architecture
and its functionality.

A. ASIC Prototype Architecture

Our main goal while designing a silicon proof of concept for
our methodology is to demonstrate the malicious potential of
the ECO flow. For this purpose, we developed a full framework
for performing a fabrication-type attack (see Fig. 2). Our
proposed SCTs are carefully crafted in order to stress test the
ECO flow and its limitations: the chosen circuits are synthe-
sized for their maximum frequency and utilizing challenges
densities, making the SCT insertion even more challenging.

7

Fig. 6: Placement view (top panels) and density map (bottom panels) of the AES HFHD and PST HFHD cores, before and
after SCT insertion via ECO (modified from [9]).

 0
 20
 40
 60
 80

 100
 120
 140

-20 0 20

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

 0

 5

 10

 15

 20

-20 0 20 40 60 80 100 120

Min. setup target slack

#
 o

f
pa

th
s

Time (ps)

Pre-ECO
Post-ECO

Fig. 7: Pre- and post-ECO setup timing slack comparison of
AES HFHD (right) and PST HFHD (left) (from [9]).

Our framework includes all steps necessary for assessing the
GDSII database, designing a hardware trojan, and inserting it
in a finalized layout.

As discussed in the previous section, our targets are AES
and PST crypto cores. For our ASIC prototype, we chose 4 of
the 8 versions of the crypto cores described in Section IV.
These versions are the highest density ones (AES LFHD,
AES HFHD, PST LFHD, and PST HDHD), purposefully
selected for the difficulty in manipulating a dense layout. The
top level architecture and the floorplan of our ASIC design
are depicted in Fig. 8.

Our chip contains the four chosen crypto cores and a control
unit for handling the data traffic in and out of the chip.
This control unit has a UART-like communication protocol
and a register bank to store the plaintext, the cryptokey, and
the ciphertext. We note that the plaintext and the cryptokey
can be programmed externally via UART. For communicating
with the control unit, the signals UART TX and UART RX
are utilized. The signals DONE 1, DONE 2, DONE 3, and,
DONE 4 indicate the end of a cryptographic operation for
AES HFHD, AES LFHD, PST HFHD, and PST LFHD, re-
spectively. These signals are exposed as primary outputs only
for debug reasons, their presence is not required for the attack.
Internally, these same signals are the triggers for the SCTs.

Our architecture has 5 clocks domains: the “always-on”

AES
HFHD

PST
HFHD

PST
LFHD

AES
LFHD

Control Unit

VS
S

VD
D

VD
D

IO
D

O
N

E1

D
O

N
E2

C
LK

_C
O

R
E

VSS
VDDIO

VSS
CLK_CU

UART_TX

UART_RX

DBG_IN

VSS

VDD

VDDIO

RESET

PS1

PS4

DONE4

VDDIO

VDD

VSS

PS2

PS3

DONE3

AES_LFHD

PST_HFHD

PST_LFHD

Control
Unit

AES_HFHD

DBG_OUT

Fig. 8: Top-level diagram (top panel) and floorplan of our
testchip (bottom panel).

clock is delivered by the signal CLK CU, and the other
4 domains are connected to the signal CLK CORE (which
assumes 4 different frequencies). For switching the cores
on/off selectively, the signals PS1, PS2, PS3 and, PS4 are
utilized as described in Tab. VI. Both signals DBG IN and
DBG OUT are used for debugging purposes only. The power-

8

ground scheme has 2 power sources (VDD and VDDIO) and
a common ground (VSS): VDD supplies the core cells with
a nominal voltage of 1.0V and VDDIO supplies the IO cells
with a nominal voltage of 3.0V.

For manufacturing the chip, we have utilized a commercial
65nm technology (the exact same technology utilized in the
previous section). We also made use of three standard cell
flavors (LVT, SVT, and HVT) and power switch IP for
isolating power domains. Our idea in utilizing multiple voltage
threshold cells is to bring our implementations in line with
industry practices, thus adding another degree of realism to
our attack. The power switches were utilized to create a power
domain for each crypto core, making it possible to enable one
core at a time on the same chip. Implementing the crypto cores
with the possibility of total shut-down is extremely valuable
for evaluating our attack, because we are only reading the
power that come from the enabled core. However, in our chip,
the control unit is on an “always-on” domain, thus, this portion
of the circuit is always enabled. Nonetheless, this characteristic
later did not affect our tests or measurements in a negative
manner. The power domain information and the related switch
signals are described in Tab. VI.

The ideal ROs designed in the previous section (see Tab. IV)
only consider the leakage from the crypto core alone. In our
ASIC prototype, we have extra components that compete with
the leakage of the currently enabled core – even if here we
assume that only one core is on at a time. Therefore, the ROs
require small adjustments to accommodate the extra competing
leakage, which is a trivial exercise: an attacker can create a
database of SCT architectures for known targets and apply
small shifts to them by modulating the number of inverters
or delay cells in the RO. The newly adjusted ROs for the
ASIC prototype are described in Tab.VII. These results are
from detailed SPICE-level simulations.

Our chip was designed in November 2020, fabricated at a
partner foundry in March 2021, and bench tests were started in
July 2021. Our bare die and its layout are contrasted in Fig.
12. For the validation of the design, we have 25 packaged
samples of the chip. All packaged samples were confirmed to
be 100% functional.

B. SCT Insertion

In our framework, for fully inserting the SCT into a layout,
the attacker has to inspect the layout, extract the netlist, esti-

TABLE VI: Power domains, clock, average total power, and,
leakage across the samples tested.

Block Clock Switch
Signal

Leakage
(µW)

Total Power
(µW)

Control
Unit

CLK CU
@1MHz

Always
on

46.69±4.75 -

AES HFHD CLK CORE
@1GHz

PS1 743.79±108.07 101160±10781

AES LFHD CLK CORE
@100MHz

PS2 131.57±10.35 3139.32±85.38

PST HFHD CLK CORE
@950MHz

PS3 80.75±7.82 9661.3±758.52

PST LFHD CLK CORE
@95MHz

PS4 74.35±6.84 868.56±57.90

TABLE VII: RO operating frequency and power consumption
for each crypto core of the ASIC prototype.

Target RO Power & RO Frequency (µW & MHz)
core S=00 S=01 S=10 S=11
AES LFHD ROD8I14 32@90 27@61 23@46 20@31
AES HFHD ROD12I14 249@551 227@483 198@390 169@300
PST LFHD ROD8I6 22@169 19@90 16@46 13@21
PST HFHD ROD10I10 30@90 24@60 20@37 17@19

SCT Insertion

AES_HFHD

AES_LFHD

PST_HFHD

PST_LFHD

Testchip

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Design Implementation

Attack

Time (s)

Placement
CTS

Route
Post-Route

Netlist Extraction
Power and Time Analysis

ECO Flow

Fig. 9: Physical implementation execution time (s) for each
step of the flow, and, execution time (s) for inserting the SCT
in each implemented crypto core.

mate the operating frequency, estimate the power consumption,
modify the netlist, and finally, insert the SCT utilizing the
ECO flow. The time necessary to inspect the layout in order
to find the security-critical nodes depends on the expertise of
the attacker, which makes it very difficult to estimate. On the
other hand, the other steps can have their runtime measured.
These times are depicted in red in Fig. 9 and are contrasted
with the total time required for the physical implementation
of the original design, shown in blue. In our case, the required
time for implementing the original cores and building the
top-level layout is about 5 hours and 9 minutes. The most
time-intensive tasks are the clock-tree synthesis and the post-
route optimizations. For our testchip, the post-route step also
includes the assembling of the cores, the top-level clock-tree
synthesis, the top-level routing, and a chip-level design rule
check. The netlist extraction was executed in a server with an
Intel Xeon 5122 CPU @ 3.6GHz and 96GB of RAM, while all
other tasks were executed in a server with an Intel Xeon X5690
@ 3.47Ghz and 768GB of RAM. When multithreading was
supported for a given task, the number of concurrent CPUs in
use was set to 8. All execution times were measured 5 times
and the presented values are the average execution time.

For the attack, the first task is extracting the netlist from
the layout, which is done in 17 minutes. Then, the estimation
of the operating frequency and power consumption is done
in 48 minutes, which includes full parasitic extraction, static
timing analysis, and a power analysis – all utilizing the highest
effort available. The static timing analysis was done utilizing
two corners and the power analysis only one. Differently of
a chip sign-off task executed by a designer, where all corners
are considered, the attacker can make use of a couple of
corners only for a representative evaluation of the IC operation.

9

Inserting the SCT is done individually for each core, and
the total time for inserting all four SCTs is only 6 minutes.
Thus, the entire attack for this design requires 1 hours and 11
minutes. Had an attacker decided to modify the layout by re-
implementing the extracted netlist, the total time of the attacks
jumps to 6 hours and 21 minutes. Therefore, by using an ECO
flow, not only the original design remains untouched – i.e., the
cells’ placement and routing remain the same after the attack
– the attacker can drastically reduce the attack time. This is
true for both SCTs and functional trojans.

For large ICs, how can an adversary insert a HT in a
limited time frame? Or, in other words, how does the attack
time scale with the complexity of the IC? To answer this
question, we ought to look at the individual steps of the attack.
First, for the netlist extraction, there are no alternative routes
for avoiding/bypassing this specific task in the EDA tools.
However, the execution time scales fairly with the size of the
circuit.

On the other hand, the timing and power analysis can
become overwhelming depending on the circuit size. Fortu-
nately for the attacker, the runtime for these tasks can be
reduced by utilizing different effort levels and/or by reducing
the number of corners utilized. Another option is utilizing a
wire-load model instead of a more precise RC model for the
parasitic extraction. All of those alternatives would change
the quality of the analysis, e.g., the static timing analysis in
low effort with only the best-case corner will report a very
optimistic timing requirement for setup (i.e., a higher operating
frequency). From the attacker’s point of view, an optimistic
timing analysis would lead to a higher power budget, making
the SCT less stealthy but more likely to succeed. An overall
picture of the trade-offs between the analysis quality, the SCT
insertion runtime, SCT stealthiness, and the attack success rate
is provided in Tab. VIII. Here we clarify that the number
of corners considered for the timing analysis is always two
(BC/WC analysis). For the power analysis, only one corner is
taken into account. The RC model utilized for the low effort is
the wire-load model; other efforts utilize more precise models.

It must also be highlighted that the ECO insertion time does
not scale with chip size: the ecoPlace and ecoRoute engines
are available within a physical synthesis tool specifically for
the purpose of performing local changes.

Thus, even for large ICs, the attacker can significantly
reduce the time required for inserting the SCT if he/she is
willing to compromise the trojan stealthiness or its success
rate. But, most importantly, the time required for SCT insertion
when utilizing our proposed framework is always a fraction
of the time required for implementing the original design
(comparatively shown in Fig. 9). This relationship does not
depend entirely on the size of the circuit.

As shown on the last row of Tab. VIII, an adversary could
potentially make a ‘cut’ in the GDSII database and treat only
a part of it. To some extent, this would be the equivalent of
doing a block analysis instead of chip analysis. The possibility
of cutting a layout, although supported by the tools, is not
studied in this work for the reason that an adversary would
have to execute said cut very precisely and, after the SCT
insertion, merge the modified and original layout, a task that

is not trivial and could potentially damage the original layout
if mishandled.

C. Tests and Measurements

For the purpose of bench testing our ASIC prototype, we
have designed a custom printed circuit board (PCB). The PCB
itself only contains passive components utilized for helping
with the measurements and filtering noise from the power
supplies. An attacker does not need our PCB and/or test setup
to mount the attack. The chip is controlled by a ZedBoard from
Avnet with a Xilinx Zynq-7000 All Programmable SoC. Our
complete bench test setup is shown in Fig. 10, where we also
make use of a 4-channel digital oscilloscope and a 2-channel
power supply with an ammeter with pico ampere precision.

OFF 11 10 01 00

VDDIO

VDD

UART_RX
UART_TX

CLK_CU

DONE2

Fig. 10: Setup used for bringing up the testchip. On the left
side, we show the signals used for controlling the chips. On
the right side, the current consumption of the chip when the
RO is active.

The first phase of the validation was to measure total power
and leakage power from each block across all 25 samples.
For this, all the primary inputs were set to “0”, and each core
was enabled one at a time by asserting its respective switch
signal (see Tab. VI). For the total power, we delivered the
clock signal for each block utilizing the specified operating
frequency. The results of the total power average and leakage
are given in Tab. VI, and its distribution across the samples
is depicted in Fig 11. These results are in line with the
expected from the power reports done during the physical
implementation, as these results are contrasted in Fig. 11 for
the worst, typical, and, best-case scenarios (SS-0.9V-0oC, TT-
1V-25oC, FF-1.1V-125oC, respectively). The corners provided
by the vendor are for extreme cases, i.e., the best-case scenario
is characterized at 125o with an over voltage of 1.1V, in our
case the measurements were done at room temperature and at
a nominal voltage of 1.0V. Our samples are skewed towards
the best case scenario, demonstrating higher average leakage.
The slowest sample is near the typical case while the fastest
sample is very far from the expected best case. Thus, our
samples have a high variance between them (i.e., their leakage
values are very spread from the mean), with variance values

10

TABLE VIII: Trade-off comparison between the SCT insertion runtime, SCT stealthiness, and the attack success rate, for
different effort configurations of parasitic extraction, static timing analysis, and power analysis.

Cut Layout Parasitic Extraction Static Timing Analysis Power Analysis Runtime SCT Stealthiness Attack Success Rate
No Low Low Low Short Weak Medium
No Medium Medium Medium Average Strong Medium
No High High High Very Long Very Strong Very High
Yes High High High Short Very Strong Very High

of 1212, 102, 59, and 44 for the AES HFHD, AES LFHD,
PST HFHD, and PST LFHD cores, respectively.

 0
.0

01
 0

.0
02

 0
.0

03

 200 400 600 800 1000 1200

W
C

TC B
C

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_HFHD

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

 0
.0

1
 0

.0
2

 0
.0

3

 80 100 120 140 160 180

W
C

TC B
C

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_LFHD

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

 0
.0

1
 0

.0
25

 0
.0

4

 40 50 60 70 80 90 100 110 120

W
C

TC

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_HFHD
B

C

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

 0
.0

1
 0

.0
3

 0
.0

5

 40 50 60 70 80 90 100 110

W
C

TC

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_LFHD

B
C

S
lo

w
es

t S
am

pl
e

Fa
st

es
t S

am
pl

e

Fig. 11: Leakage distribution for each crypto core contrasted
with the leakage from physical synthesis report for 3 corner
cases, and, the leakage of outlier samples.

In the second phase of the experiments, we assessed the
SCTs and the feasibility of the attack. This was done by the
following procedure:

• A cryptokey with the 8 first bits set to “11-10-01-00” was
programmed in the Control Unit’s register bank

• A command for a single encryption was issued
• Right after the encryption is done, the chip asserts one of

the “DONE” outputs to mark the time at which the RO
starts operating

• Using only the clock signal CLK CORE, three bursts of
clocks were sent in order to shift the cryptokey connected
to the RO three times

• During the whole procedure, the current consumed by the
chip is monitored

An example of this procedure for the AES LFHD core is
shown in Fig. 10; the “UART TX” signal carries the single
encrypt command. As a visual aid, as soon as the “DONE”
signal is asserted, the clock sources are turned off in this
example (in Fig. 10 only CLK CU is shown). As clearly de-
picted in the ammeter, there are discrete steps representing the
leaked bits “11-10-01-00” from left to the right, respectively,
as expected from the key programmed for this experiment.
This was repeated 3 times for each core of each chip to confirm
the behavior. The measured current values were approximated
to normal distributions, as represented in Fig. 13.

By comparing the RO performance from the simulations
(see Tab.VII) with ASIC measurements, it is clear that the
slowest ROs are performing as expected. However, the fastest
RO targeting the AES HFHD core can only operate at a low
frequency, generating a power step of about 25% of what was
expected. In this case, the ECO insertion had to spread the

RO cells farther away because of the lack of empty spaces
nearby (see Fig. 6). For this core, the planned power steps
were in the order of 200 µA, and the actual power steps
after manufacturing were in the order of 60 µA. However,
the attack will still enjoy a high chance of success due
to the distinct separation of the power steps, even if 95%
confidence intervals of the distributions almost overlap. We
have also confirmed that the interconnect delay wire load was
higher than we expected from SPICE-level simulations. For
extreme cases such as the AES HFHD core, the attacker has
to make extra considerations for implementing a RO with high
power consumption, in case he/she desires high fidelity from
the RO power steps. The best-case scenario is achieved for
PST LFHD (see Fig. 13, bottom right): there is absolutely no
overlapping between adjacent steps, with very low variance,
which highly increases the success rate of the attack.

The experimental measurement results obtained show that
the variability in the manufacturing process does not affect the
effectiveness of the RO for the smaller designs (AES LFHD,
PST LFHD, and PST HFHD), meaning that the attack can be
carried out with the same probability of success, regardless of
the silicon quality for a given sample. The quality of the silicon
impact on the SCT performance is directly connected with its
size and how the cells were placed. If the cells are heavily
spread, as occurred in the AES HFHD, the variance of the
steps is very high when compared with an SCT with a similar
size (see Fig. 5) placed with low spread, as in the PST HFHD.
We hypothesize that the higher the physical spread between
the cells that compose the SCT, the more susceptible to local
variation they become. Visually, this can be seen by the width
of the shadowed areas in Fig. 5.

However, we learned from our experimental results that
even in a high spread scenario, the attack is successful for all
implemented cores. For a single given die, there is no difficulty
in differentiating the 4 possible leakage states associated with
the two bits of the key. Moreover, these results make it evident
that our SCT is successfully capable of creating distinct
steps with a 2µA precision. Furthermore, the induced power
consumption for the smaller crypto cores (PST LFHD) was in
the 20µW range. This makes our SCT a perfect fit for targeting
designs that consume very low power while maintaining a
reasonable level of stealthiness.

VI. DISCUSSION

For a SCT insertion framework like ours, its effectiveness
can be determined by three characteristics: (1) the success rate
of the attack, (2) probability of detection (i.e., its stealthiness),
and, (3) feasibility of the insertion of the malicious logic dur-
ing the fabrication-time attack. As we have already discussed,
our SCT was successful in (1) by making the attack of leaking

11

Fig. 12: Our bare die (right) and its layout (left). The lower-
right corner is identified by the highlighted pin.

 0

 0.05

 0.1

 0.15

 0.2

 50 55 60 65 70 75

58.30 61.80
64.00

67.00

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_HFHD

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28

19.05
21.22

22.51

25.23

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

AES_LFHD

 0

 0.2

 0.4

 0.6

 0.8

 1

 12 14 16 18 20 22 24 26

15.00
16.75 19.53 24.03

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_HFHD

 0

 0.5

 1

 1.5

 2

 12 14 16 18 20 22 24 26

13.90
15.4517.5219.59

P
ro

ba
bi

lit
y

D
en

si
ty

Current (µA)

PST_LFHD
S00
S01
S10
S11

Fig. 13: Power consumption “steps” distribution for each
crypto core. The shadowed area represents the 95% confidence
interval.

the cryptokey viable, i.e., the attack was fully accomplished.
Nevertheless, we have not yet discussed the probability of our
SCT being detected.

Detecting a trojan of any kind is generally a difficult task
[28]. For SCTs, any method that relies on observing corrupted
bits or any degree of incorrect computation is bound to fail
– SCTs do not alter the functionality of the device under
attack. Because of the inherent opaqueness of ICs, inspecting
their internal components is not trivial. Methods for inspecting
ICs are separated into two classes, invasive and non-invasive.
Invasive methods are generally done by delaminating the IC to
reconstruct the layout layers, which leads to the destruction of
the inspected sample. Our SCT is likely to be detected by an
invasive method due to its size and amount of connected wires.
However, these techniques are incredibly time consuming and
also require costly and precise equipment. We emphasize that
it is not a standard practice of the IC industry to perform this
type of analysis.

Differently, non-invasive methods include analyzing phys-
ical characteristics of the IC, and/or, the behavior of the IO
signals (i.e., timing and state) [10]. Our SCT does not disrupt
any data path and our insertion methodology also does not
interfere with the overall performance of the target. Thus, the
probability of it being detected by analyzing the IO signals is
effectively zero. Detection techniques that consider the path
delay, e.g., path delay fingerprint [29], would have a low
probability to detect our SCT. Nonetheless, our SCT changes
the overall power consumption of the target. First, the extra

leakage could raise a red flag if the IC is thoroughly inspected.
The chance of being detected in this type of inspection is
related with the percentage of the extra leakage from the
SCT. This is also true for any HT that inserts additional logic.
However, if the percentage is insignificant compared with the
target, the extra leakage has a high chance to be interpreted
as a skew from the manufacturing process and/or imprecision
of the measurements. Second, the artificial extra consumption
when the SCT is triggered can also be a red flag. In this
scenario, the engineer conducting the inspection would need to
know the exact moment when the SCT is triggered to suspect
any alteration. Specialized detection methodologies have been
proposed that utilize leakage and total power as input [30],
[31]. By utilizing these advanced methods of detection, our
SCT could be detected due to the trigger scheme. Since
our SCT is triggered after each cryptographic operation, a
periodic power fluctuation would be visible. However, the
trigger scheme utilized in our silicon validation can be further
modulated by an attacker by creating rarer trigger conditions,
making the SCT stealthier.

In our threat model, we assumed the attacker only has access
to the layout and utilizes the extracted netlist for inserting
the SCT. This netlist does not contain any node names,
making it impossible to distinguish nodes of interest by name.
Thus, the attacker has to identify the circuit functionality by
inspecting the layout for ‘clues’. In the case of AES, this
target circuit can be easily identified in a layout because of
its implementation regularity, and, from there, the same holds
true for the nets/registers that carry the cryptokey. On the other
hand, visually locating a Present core (or any other core) would
be a more challenging task. Nevertheless, visual inspection is
not the only technique that can be utilized for searching for
security-relevant nodes. In a future work, we are planning to
automate the search for these nodes by submitting the netlist to
a high-level functionality reconstruction tool [32]. Such tools
can be used to reconstruct the finite-state machine of the target
design and/or to give a score to each node in the circuit,
thus distinguishing between control and data paths nodes. If
a database of known cryptocores can be established in this
manner, their localization would become a much simpler task.

A clear advantage of our SCT architecture is its robust-
ness to manufacturing process skew. As demonstrated in the
previous section, even with a large difference in performance
between the fastest and slowest sample (see Fig. 11), the
SCA was successful (see Fig. 13). When compared with
a similar approach presented in [15], our SCT architecture
does not need any workaround to be implemented because
of the performance of the technology. Even more, our flow
anticipates difficulties during the SCT insertion by including
the optional clock divider. However, our architecture has the
disadvantage of being large in comparison with other similar
SCTs. The size of our SCT is proportional to the number of
bits leaked at a time and to the total number of bits intended
to be leaked (i.e., the SCT is proportional to the key length).
This characteristic increases the probability of detection.

Our attack is arguably prevented by a few techniques. Split
Manufacturing [4], as mentioned before, is a powerful preven-
tion technique for HT insertion overall, where the attacker has

12

access only to the layer that contains the devices - the con-
nections between them are hidden from the untrusted foundry.
Hence, the attacker would only be able to find the nodes by
visual inspection without any connection information, making
the SCT insertion a ‘blind’ effort. Another relevant technique
is the insertion of dummy cells and routing wires [33] with
the intent to reduce the empty spaces where – potentially – a
HT could be inserted. As demonstrated in this work, our inser-
tion methodology overcomes incredibly high densities. Hence,
these techniques would only be effective if the entire chip is
populated with dummy cells and routing wires, increasing the
design density above 95%, which for new technologies is very
challenging and can potentially hinder the IC performance.
On top of that, dummy cells have transistors inside them,
which increases the leakage of the chip proportionally to the
number of additional dummy cells. Thus, the leakage overhead
could be in the range of 40-50% – assuming that a typical
design has an approximate density in the range of 60-50%. For
industrial designs, this type of technique might not be practical
in terms of the potential performance loss, making the trade-
off between security and power consumption not interesting
for many vendors and applications. Therefore, the adoption of
this technique as a countermeasure against malicious logic is
very unlikely.

Another metric to qualify an SCT insertion attack is the
total time required to perform the attack. Our threat model
assumes the attack occurs in the untrusted foundry and only
the layout is accessible to a rogue element. Foundries are
typically working at full capacity year-round, hence, the timing
window that the layout is processed to begin the manufacturing
is limited. This time window is precisely the period of time in
which a rogue element has to mount a fabrication-time attack.
In recent SCT works that contemplate silicon validation [14],
[15], [20], the techniques for inserting the malicious logic are
not disclosed – making it difficult to address if the attack can
be replicated in a realistic scenario.

Placing and routing an SCT manually is a time-intensive
task and prone to errors, even if the HT design has only
a dozen of cells. Thus, the insertion of an SCT has to be
automated by utilizing an EDA tool. Inserting an SCT by re-
implementing the design has a significant runtime, in the case
of our testchip (see Fig. 9) it is required at least 7 hours and
18 minutes. Replicating an entire chip without the original
timing and power constraints could be very difficult, which
can potentially affect the target performance, thus decreasing
the stealthiness of the attack. In the case of the ECO flow,
the runtime for inserting the SCT in our testchip is only 1
hour and 11 minutes. Nonetheless, as previously alluded, the
ECO flow has the advantage of keeping the original design
untouched which increases the stealthiness of the attack. Even
more, our proposed ECO flow does not require the original
power and timing constraints, an estimation can be used (see
Secion III-A). Consequently, our proposed ECO flow method
for inserting not only SCTs, but any type of malicious logic,
is arguably a superior option. Furthermore, the short runtime
associated with the ECO flow makes the fabrication-time
attack feasible in a realistic scenario, where the time window
that a rogue engineer has for modifying the layout is (very)

limited.

VII. CONCLUSIONS

In order to steal secret information from crypto-capable ICs,
a rogue element within the foundry may insert a side-channel
trojan. The SCT architecture described in this work has the
advantage of not violating any design specification of the target
circuit, nor is any datapath obstructed. This is all possible
because of the use of an ECO flow for inserting our SCT. Since
this feature is readily available, adversaries may maliciously
utilize it.

Our findings and results from the validation of our ASIC
prototype demonstrated the feasibility of the framework – from
the layout inspection to the actual attack. The attack was
successful for all 25 samples available, succesfully extracting
the cryptokey via power signatures. The measurements have
also demonstrated the robustness of the SCT against skews
from the manufacturing process.

For our testchip, all the 4 SCTs were inserted in less than
two hours. Consequently, the attack would be viable in a real
fabrication-time attack. As a venue for future work, we intend
to improve the search of security-relevant nodes for inserting
hardware trojans in order to understand if a capable adversary
is able to execute a “blind” yet successful insertion, i.e., one
that does not require prior information and/or knowledge about
the targeted core.

ACKNOWLEDGMENT

This work has been partially conducted in the project
“ICT programme” which was supported by the European
Union through the European Social Fund. It was also par-
tially supported by the Estonian Research Council grant
MOBERC35.

REFERENCES

[1] M. Lapedus, “Big trouble at 3nm,” [Online]. Available at:
https://semiengineering.com/big-trouble-at-3nm/.

[2] U. Guin et al., “Counterfeit integrated circuits: A rising threat in the
global semiconductor supply chain,” Proceedings of the IEEE, vol. 102,
no. 8, pp. 1207–1228, 2014.

[3] S. M. Ben, “Security challenges and requirements for industrial control
systems in the semiconductor manufacturing sector,” 2012.

[4] T. D. Perez and S. Pagliarini, “A survey on split manufacturing: Attacks,
defenses, and challenges,” IEEE Access, vol. 8, pp. 184013–184035,
2020.

[5] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan,
“Threats on logic locking: A decade later,” in GLSVLSI ’19, p. 471–476,
2019.

[6] M. Yasin, J. Rajendran, and O. Sinanoglu, Trustworthy Hardware
Design: Combinational Logic Locking Techniques. Springer, Cham,
2019.

[7] M. Li, K. Shamsi, T. Meade, Z. Zhao, B. Yu, Y. Jin, and D. Z.
Pan, “Provably secure camouflaging strategy for ic protection,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 8, pp. 1399–1412, 2019.

[8] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in 2015 IEEE HOST, pp. 137–143, 2015.

[9] T. Perez, M. Imran, P. Vaz, and S. Pagliarini, “Side-channel trojan
insertion - a practical foundry-side attack via eco,” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5,
2021.

[10] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design and Test of Computers, vol. 27,
no. 1, pp. 10–25, 2010.

13

[11] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE,
vol. 102, no. 8, pp. 1283–1295, 2014.

[12] L. Lin, W. Burleson, and C. Paar, “Moles: Malicious off-chip leakage
enabled by side-channels,” in 2009 IEEE/ACM International Conference
on Computer-Aided Design, pp. 117–122, 2009.

[13] L. Lin et al., “Trojan side-channels: Lightweight hardware trojans
through side-channel engineering,” in Cryptographic Hardware and
Embedded Systems - CHES 2009, pp. 382–395, 2009.

[14] Y. Jin and Y. Makris, “Hardware trojans in wireless cryptographic ics,”
IEEE Design Test of Computers, vol. 27, no. 1, pp. 26–35, 2010.

[15] Y. Liu, Y. Jin, and Y. Makris, “Hardware trojans in wireless crypto-
graphic ics: Silicon demonstration & detection method evaluation,” in
Int. Conf. on Computer-Aided Design (ICCAD), pp. 399–404, 2013.

[16] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric trojans
for fault-injection attacks on cryptographic hardware,” in 2014 Workshop
on Fault Diagnosis and Tolerance in Cryptography, pp. 18–28, 2014.

[17] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in 2016 IEEE Symposium on Security and Privacy
(SP), pp. 18–37, 2016.

[18] J.-F. Gallais et al., “Hardware trojans for inducing or amplifying side-
channel leakage of cryptographic software,” in Trusted Systems, pp. 253–
270, 2011.

[19] L. Ali and Farshad, “Analog hardware trojan design and detection in
OFDM based wireless cryptographic ICs,” Plos One, vol. 16, no. 7,
p. e0254903, 2021.

[20] S. Ghandali, T. Moos, A. Moradi, and C. Paar, “Side-Channel Hardware
Trojan for Provably-Secure SCA-Protected Implementations,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 6, pp. 1435–1448, 2020.

[21] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Advances
in Cryptology — CRYPTO’ 99 (M. Wiener, ed.), pp. 388–397, 1999.

[22] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, “Regds: A reverse
engineering framework from gdsii to gate-level netlist,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), pp. 154–163, 2020.

[23] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for
hardware trojan detection,” in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5, 2021.

[24] T. Trippel et al., “ICAS: An Extensible Framework for Estimating
the Susceptibility of IC Layouts to Additive Trojans,” 2020 IEEE
Symposium on Security and Privacy (SP), pp. 1078–1095, 2020.

[25] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,
M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-
lightweight block cipher,” in Cryptographic Hardware and Embedded
Systems - CHES 2007 (P. Paillier and I. Verbauwhede, eds.), (Berlin,
Heidelberg), pp. 450–466, Springer Berlin Heidelberg, 2007.

[26] S. Ghandali et al., “Side-channel hardware trojan for provably-secure
sca-protected implementations,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 6, pp. 1435–1448, 2020.

[27] S. N. Pagliarini, M. M. Isgenc, M. G. A. Martins, and L. Pileggi,
“Application and product-volume-specific customization of beol metal
pitch,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 26, no. 9, pp. 1627–1636, 2018.

[28] S. Bhasin and F. Regazzoni, “A survey on hardware trojan detection
techniques,” in 2015 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 2021–2024, 2015.

[29] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, “A practical split
manufacturing framework for trojan prevention via simultaneous wire
lifting and cell insertion,” in 2018 23rd Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 265–270, 2018.

[30] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon demonstration
of hardware trojan design and detection in wireless cryptographic ics,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 4, pp. 1506–1519, 2017.

[31] R. M. Rad, X. Wang, M. Tehranipoor, and J. Plusquellic, “Power
supply signal calibration techniques for improving detection resolution
to hardware trojans,” in 2008 IEEE/ACM International Conference on
Computer-Aided Design, pp. 632–639, 2008.

[32] T. Meade, S. Zhang, and Y. Jin, “Netlist reverse engineering for high-
level functionality reconstruction,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 655–660, 2016.

[33] P.-S. Ba, S. Dupuis, M. Palanichamy, M.-L. Flottes, G. Di Natale,
and B. Rouzeyre, “Hardware trust through layout filling: A hardware
trojan prevention technique,” in 2016 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 254–259, 2016.

Tiago D. Perez received the M.S. degree in electric
engineering from the University of Campinas, São
Paulo, Brazil, in 2019. He is currently pursuing a
Ph.D. degree at Tallinn University of Technology
(TalTech), Tallinn, Estonia.

From 2014 to 2019, he was a Digital Designer En-
gineer with Eldorado Research Institute, São Paulo,
Brazil. His fields of work include digital signal
processing, telecommunication systems and IC im-
plementation. His current research interests include
the study of hardware security from the point of view

of digital circuit design and IC implementation.

Samuel Pagliarini (M’14) received the PhD degree
from Telecom ParisTech, Paris, France, in 2013.

He has held research positions with the University
of Bristol, Bristol, UK, and with Carnegie Mellon
University, Pittsburgh, PA, USA. He is currently
a Professor with Tallinn University of Technology
(TalTech) in Tallinn, Estonia where he leads the
Centre for Hardware Security. His current research
interests include many facets of digital circuit de-
sign, with a focus on hardware trustworthiness. His
research on hardware security has been funded by

DARPA, IARPA, the European Commission, the AFRL, and the Estonian
Research Council.

Appendix 7

[VII]
Z. U. Abideen, T. D. Perez, and S. Pagliarini, “From fpgas to obfuscated
easics: Design and security trade-offs,” in 2021 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), pp. 1–4, 2021

169

From FPGAs to Obfuscated eASICs: Design and Security
Trade-offs

Zain Ul Abideen, Tiago Diadami Perez, Samuel Pagliarini
Centre for Hardware Security, Tallinn University of Technology (TalTech), Estonia

{zain.abideen, tiago.perez, samuel.pagliarini}@taltech.ee

Abstract—Threats associated with the untrusted fabrication of in-
tegrated circuits (ICs) are numerous: piracy, overproduction, reverse
engineering, hardware trojans, etc. The use of reconfigurable elements
(i.e., look-up tables as in FPGAs) is a known obfuscation technique. In
the extreme case, when the circuit is entirely implemented as an FPGA,
no information is revealed to the adversary but at a high cost in area,
power, and performance. In the opposite extreme, when the same circuit
is implemented as an ASIC, best-in-class performance is obtained but
security is compromised. This paper investigates an intermediate solution
between these two. Our results are supported by a custom CAD tool that
explores this FPGA-ASIC design space and enables a standard-cell based
physical synthesis flow that is flexible and compatible with current design
practices. The results after physical implementation are generated for the
obfuscated circuits in a 65nm commercial technology, demonstrating the
attained obfuscation quantitatively. Furthermore, our security analysis
revealed that for truly hiding the circuit’s intent (not only portions of its
structure), the obfuscated design also has to chiefly resemble an FPGA:
only some small amount of logic can be made static for an adversary to
remain unaware of what the circuit does.

Index Terms—Hardware Obfuscation, Secure ASIC Design, CAD,
Reconfigurable obfuscation, Reverse engineering

I. INTRODUCTION

Shipment of semiconductor devices is forecast to surpass one
trillion units in the year 2021, the third time this mark is surpassed
in a calendar year since 2018 [1]. The majority of those devices
are being manufactured by foundries that subscribe to the fab-for-
hire model. Many potential threats regarding third-party foundries
have been studied in recent years, include tampering, counterfeiting,
reverse engineering, and overproduction. On the other hand, many
techniques have been devised to mitigate threats from untrusted fabri-
cation. Countermeasure techniques to increase the IC security against
not only third-party foundries but also from the end-user have been
recently demonstrated. Notable examples include IC Camouflaging
[2]–[4], Logic Locking [5]–[7], and Split Manufacturing [8], [9].

Generally speaking, all of the aforementioned countermeasures
attempt to “hide” the design from adversaries and can be classified
as obfuscation techniques. Unfortunately, none of these techniques is
currently adopted in large-scale production of ICs, for reasons that
include (lack of) practicality [8] and insufficient security guarantees
[10]. Another approach towards obfuscation is the use of an FPGA (or
FPGA-like) design, where the configuration bitstream serves as a key
to unlock the functionality of the circuit [11]. Our paper too explores
this possibility. The fabric in an FPGA contains reconfigurable
elements, but this flexibility incurs a limited performance. On the
other hand, ASIC requires one-time placement, it is static (non-
reconfigurable), but it provides best-in-class performance. As shown
in Fig. 1, performance increases if we move from right to left.
Contrarily, area, obfuscation, and flexibility increase if we move from
left to right.

This work has been partially conducted in the project “ICT programme”
which was supported by the European Union through the European Social
Fund. It was also partially supported by the Estonian Research Council grant
MOBERC35.

CPUs Memory Interface

Accelerator Cryptocore

Interface

CLB
CARRYLUT

ASIC FPGAeASIC

Static part

Performance

Obfuscation and Flexibility

Custom

logic
CARRYCARRYFFFFMUXMUX

LUT FF

MUX

Fig. 1: The design obfuscation landscape, from ASICs to FPGAs.
The relative sizes are notional.

Design obfuscation concept: In this work, we propose to obfus-
cate a design by exploiting the best of both worlds. The generated
device is a hybrid which includes reconfigurable elements (analogous
to the FPGA) and also includes ASIC cells as static elements, i.e.,
gates with fixed functionality after fabrication. Previous research on
obfuscation by reconfigurable elements has focused on keeping the
reconfigurable portion as small as possible [12], [13], which is logical
if the goal is to keep overheads under control. However, we later
show that true hiding of the circuit’s intent requires a high degree of
obfuscation that is usually not explored in the state of the art. We
term our in-between solution an “embedded ASIC” (eASIC). Thus,
our eASIC device is largely non-functional until it is programmed.
Our main contribution is a tool for automatically obfuscating a design
in the form of eASIC, where the obfuscation range can be from 0 to
100%. Furthermore, its physical synthesis flow is standard-cell based
that is compatible with current design and fabrication practices.

II. A CAD FLOW FOR EASIC

Our CAD flow is centered around a tool named Tuneable Design
Obfuscation Technique using eASIC, or TOTe for short. This section
explains the CAD flow of eASIC and TOTe’s main features. TOTe
generates a hybrid design with static and reconfigurable elements,
which we refer to as eASIC. For the reconfigurable elements, we im-
plement the logic utilizing the notion of programmable LUTs (Look
Up Tables) - same as in FPGAs. The complete TOTe design flow
for generating an eASIC is shown in Fig. 2 and it consists of three
phases. In the first phase of our flow, the design under obfuscation,
described in register-transfer level (RTL) form, is synthesized using
a commercial FPGA synthesis tool. As a result, the netlist contains
all typical FPGA primitives, i.e., FFs, MUXs, and LUTs. The input
design requires no special annotations, synthesis pragmas, or any
other change in its representation.

Next, in the second phase, TOTe requires the ASIC standard
cell library of choice. As highlighted in the center of Fig. 2, the
core idea of TOTe is to replace reconfigurable logic for static
logic. For TOTe, only the LUTs are treated as reconfigurable logic,
and, any other primitives from the FPGA synthesis are automatically
transformed into static logic. TOTe utilizes its own obfuscation and978-1-6654-4185-8/21/$31.00 ©2021 IEEE

+

D
es

ig
n

 s
y

n
th

es
is

p
h

a
se

 (
F

P
G

A
)

RTL

FPGA synthesis tool

Timing constraint

x
 :

 R
em

o
v

al
 o

f
a

ce
ll

 f
ro

m
 F

P
G

A
 b

as
ed

 n
et

li
st

eASIC

01010…

O
b

fu
sc

a
ti

o
n

 u
si

n
g

 T
O

T
e

(C
u

st
o

m
 t

o
o

l)

Standard

cell library

Parser

text

textFPGA

cell

ASIC

cell

x

Repeat

Timing reports

from FPGA

Synthesized

Verilog Netlist

Hybrid design Obfuscation engine

Obfuscated hybrid Verilog file

Bitstream

Timing engine

Synthesis

P&RA
S

IC

fl
o

w

Fig. 2: The CAD flow for eASIC, combining FPGA/ASIC synthesis.

timing engines. These engines drive the security vs. performance
trade-offs of the tool. For this phase, the designer provides an
obfuscation target in terms of percentage, which determines the
portion of logic that will remain reconfigurable as LUTs. TOTe builds
a tree representation of the circuit where primitive types are annotated
for every instance. For LUTs, in particular, the tool also annotates
their masking patterns (i.e., the portion of the bitstream associated
with an individual LUT). By using truth tables populated by the
masking patterns, TOTe builds combinational logic that is equivalent
to the LUT’s intended usage (static logic). Finally, TOTe exports an
obfuscated hybrid Verilog file (eASIC), timing report, and area report.
A designer can repeat this procedure until he achieves his obfuscation
and performance targets.

In the third and final phase, the obfuscated netlist from TOTe is
synthesized using any commercial ASIC CAD tool and implemented
using an also commercial tool where traditional P&R, CTS, DRC,
LVS, etc. steps are executed. Finally, the tapeout database is sent to
the foundry for fabrication.

III. EXPERIMENTAL RESULTS USING TOTE

This section reports the analysis of security versus performance,
security versus area for selected designs and reports the results for
numerous designs after obfuscation. For all experimental results that
follow, FPGA synthesis was executed in Vivado and the targeted
device is Kintex-7 XC7K325T-2FFG900C, which contains only 6-
input LUTs. For the ASIC flow, the implementations are done
using a commercial 65nm PDK with three standard cell flavors
(LVT/SVT/HVT) and tools from Cadence (i.e., Genus and Innovus).

Custom standard-cell based LUTs: The premise of eASIC is
to have reconfigurable and static elements that can be integrated
transparently. For this reason, we have designed our own custom
LUTs (LUT1, LUT2,..., LUT6) by following VPR’s template [14].
Different from FPGAs that generally implement only one LUT size,
for eASIC we have the flexibility to implement more than one
size because our design intent will not change. By doing this, we
preserve area and potentially increase the performance of eASIC.
These blocks are highly compact since the main design goal for
them was area/density. Each LUT has its own registers for storing
the configuration, a functionality that is enabled by including three
extra configuration pins (serial in, serial out, and enable). The

TABLE I: Detailed results for selected designs using TOTe

Design Obf.
(%)

sumCP
(ns)

CP
(ns)

Area-RE
(µm2)

Area-ST
(µm2)

LUT
(RE)

LUT
(ST)

SBM

98 16088.690 0.490 13190.04 0 29 0
95 15895.826 0.484 12762.00 21.40 28 1
92 15877.962 0.464 12547.80 32.11 27 2
89 15458.506 0.461 12438.72 37.56 26 3
86 15370.682 0.459 12224.52 48.27 25 4

SHA-256

98 7425.731 0.962 1313150.76 10291.86 2195 44
95 7354.593 0.871 1275984.00 28875.24 2128 111
92 7322.155 0.871 1233448.56 50142.96 2060 179
89 7301.945 0.871 1179674.64 77029.92 1992 246
86 7164.025 0.871 1125799.56 103967.46 1925 313

FPU

98 2909.063 0.707 1031676.84 1250.028 2487 50
95 2734.008 0.650 1003225.68 2672.586 2412 126
92 2572.952 0.650 966715.20 4498.11 2336 202
89 2478.732 0.650 935060.04 6080.868 2259 279
86 2410.211 0.650 893005.56 8183.592 2183 355

98 95 92 89 86

Obfuscation (%)

0.4

0.6

0.8

1

C
P

 (
ns

)

98 95 92 89 86

Obfuscation (%)

2

3

4

su
m

C
P

 (
ns

)

#10 4

98 95 92 89 86

Obfuscation (%)

3

4

5
6
7

T
ot

al
 a

re
a

(
um

2
)

#10 6
AES-128 RISC-V SHAKE-256

Fig. 3: Obfuscation results for AES-128, RISC-V and SHAKE-256.

LUTs are connected to one another in a daisy chain that is analogous
to a scan chain.

Design Space Exploration in TOTe: For our first experiment,
we selected a small but representative design which covers all
possible FPGA primitives: a schoolbook multiplier (SBM), which
is a bit-serial polynomial multiplication circuit. For a SBM design
that is synthesized targeting a very high frequency, the CP and
sumCP become, as calculated by TOTe, 0.490 ns and 16088.69
ns, respectively. These values correspond to a design obfuscated at
100%, i.e., the design has only reconfigurable logic. The absolute
accuracy of these values is not relevant since final timing analysis is
performed using a commercial physical synthesis engine later.

While the SBM design is an interesting motivational example,
it showed that CP tends to saturate while the sumCP continues
to improve as the obfuscation is reduced. Next, we wanted to
determine if the same saturation trend appears for other designs
and the results are reported in Table I. From these experiments, it
is possible to conclude that the performance of numerous designs
saturates incredibly fast as we decrease the obfuscation level, even
when the obfuscation range is limited to 86-100%. Moreover, the
results for AES-128, RISC-V, and SHAKE-256 have been depicted
in Fig. 3. Several other designs, including ISCAS’85 benchmarks and
known opencores, have been evaluated. The complete set of results
can be found in our git repository [15].

IV. SECURITY ANALYSIS

As compared to conventional logic locking, the LUTs introduced in
eASIC are the key-gate equivalents. In principle, a single LUTn ought
to be equivalent to 2n XOR/XNOR key-gates. In practice, the LUT
logic has similarities to a run of key-gates (see [6]) due to the n-to-1
multiplexing nature of it, which reduces the search space and may
possibly make eASIC vulnerable to well-known oracle-based attacks

L1

2
64

L2

3376

L3

RISC-V = 628

L4

Search space of LUT6

Structural attack

Composition attack

Attack

XYZ

Fig. 4: The search space of LUT6 as it shrinks with different attacks.

(e.g., SAT). However, notice that we are considering designs with
target obfuscation rates higher than 86%, which results in bitstreams
with thousands of bits. Even for a small and combinational design as
the ISCAS’85 c7552, 50% of obfuscation requires a bitstream with
approximately 11k bits. The SAT attack is not able to find the correct
key, even running for more than 60 hours. We make the following
assumptions to build a threat model:

• The adversary goal is to identify the circuit intent, even in the
presence of obfuscation. For this goal, the adversary does not
need to recreate the bistream.

• The adversary has access to the GDSII file of the eASIC design.
He or she is skilled in IC design and has no difficulty in
understanding this layout representation.

• The attacker can recognize the standard cells, thus the gate-level
netlist of the obfuscated circuit can be easily recovered [16].

• We assume that the attacker can differentiate between design
inputs and reconfiguration pins [10], [17].

• We assume the adversary can group the standard cells present in
the static logic and convert them back into reconfigurable logic
(i.e., LUT representation)1.

In order to evaluate the security hardness of eASIC, we propose two
different attacks: one based on the structure of design and another
based on the composition of known different circuits.

Structural Analysis Attack: The goal of this attack is to decrease
the key search space and attempt to recover the bitstream. As we
mentioned before, the key search space is 264 for a single LUT6. But
this assumption only holds if the FPGA synthesis is actually capable
of exercising the entire key search space, which our results reveal
that is far from possible. We have synthesized a large number of
representative designs (>30) and counted how many unique LUT6

masking patterns appear in the corresponding netlists. Designs of
varied complexity, size, and functionality where added until the
combined number of unique masking patterns appears to settle,
forming a set of m = 3376 elements. This result alone, albeit being
empirical, reduces the global search space from L1 to L2 as illustrated
in Fig. 4.

We utilize tuples of 〈pattern, frequency〉 for tracking how often
masking patterns repeat. The tuples are referenced by integer identi-
fiers and ordered by frequency. Our analysis reveals that the RISC-V
netlist has 628 unique LUTs and only 3 occur more than 100 times.In
practice, if the attacker could know for a fact that the obfuscated
circuit is indeed RISC-V, the search space would shrink further. The
shrunk search spaces are labeled L3 in Fig. 4. The question then
becomes whether the static portion of the circuit is large enough for
the adversary to be confident that the circuit under attack can be
labelled as circuit C1, C2, or Cn. We investigate this possibility by

1This is a very generous concession since the static logic is repeatedly
optimized during logic and physical synthesis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Identifier of masking pattern

0

10

20

30

40

Fr
eq

ue
nc

y
of

 m
ak

si
ng

 p
at

te
rn

86% 89% 92% 95%
98% Poly.(86%) Poly.(89%) Poly.(92%)
Poly.(95%) Poly.(98%)

Fig. 5: The structural analysis of MIPS and RISC-V.

-0.1

0.0

0.2

0.3

0.5

0.6

0.8

0.9

C
or

re
la

tio
n

70 75 80 85 90 95 100
Obfuscation (%)

0

5

10

15

20

U
ni

qu
e

L
U

T
s

(L
U

T
6)

Freq SHA-256 MIPS MSP430
RISC-V GPU FPU PID
RSA DES SHAKE-256 AES-128

Fig. 6: The correlation of SHA-256 versus numerous other designs.

further analysing the behaviour of the frequency of masking patterns,
as depicted in Fig. 5. For this, we utilized polynomial trendlines for a
portion of identifier of masking pattern, considering netlists generated
by TOTe at 98%, 95%, 92%, 89%, and 86% obfuscation levels. It
is noteworthy that the trendlines become better frequency predictors
as the obfuscation level is decreased. For RISC-V, in particular, the
adversary can guess a small number outliers and the best guess (when
obfuscation is 86%) is far from the original frequencies (>100).

Composition Analysis Attack: The goal of this attack is to
identify the circuit by correlation to known circuits. This attack
also exploits the frequency of the LUT6, but here we correlate
entire designs (instead of pattern-frequency tuples) based on their
composition. We consider that the attack is successful if the adversary
is able to identify the circuit (see threat model, 1st bullet). In this
experiment, we performed correlation analysis for the well-known
SHA-256 crypto core as shown in Fig. 6. The objective of this
experiment is to analyze the leaked information from the static part
of an obfuscated design against a database2 of circuits. We have
obfuscated SHA-256 in the 70-100% range and then correlated the
static portion of the design with the database of known circuits. In
Fig. 6, we show the results where the x-axis shows the obfuscation
percentage and the y-axis shows correlation (right) and number of
unique LUTs (left). For this circuit, three regions of interest can
be defined: 97-100% (no correlation), 86-96% (strong correlation to
another circuit), and 70-85% (correlation to itself). This attack reveals
that if the adversary goal is solely to identify the circuit’s intent,

2We assume the adversary can obtain samples of open source cores from
repositories and execute FPGA synthesis on them with his tool of choice.

TABLE II: Results for the implementation of SHA-256 for different
obfuscation levels

CAD
Flow

Obf.
(%)

Density Area
(µm2)

Freq.
(MHz)

T. Power
(mW)

LUT Comb. Seq.

FPGA 100 – – 77 191 2238 – 1830
TOTe 100 46% 1412227 166.7 274.24 2238 82756 105128
TOTe 90 45% 1274690 178.6 262.21 2015 83452 94876
TOTe 85 46% 1215328 200 277.82 1904 79626 90420
TOTe 80 54% 1135752 200 262.77 1792 74000 83790
TOTe 0 71% 43097 200 6.93 0 3165 1806
ASIC 0 71% 60563 769 33.55 0 3165 1806

eASIC can be as vulnerable as an ASIC design. To mitigate this
undesirable effect, obfuscation levels should remain relatively high.
Otherwise, if the obfuscation lies between 70 and 84%, the search
space would shift from L3 to L4 as shown in Fig. 4.

V. PHYSICAL SYNTHESIS FOR EASIC

This section contains the physical implementation results for an
obfuscated SHA-256 core. We have selected SHA-256 as it is popular
and widely used in cryptography. The variants of the design with
different obfuscation levels are implemented with the aid of the LUTs
defined in Section III. The results obtained after implementation
are focused on performance vs. area trade-offs for the 80-100%
obfuscation range as determined by the security analysis of Fig.
6. Initially, we synthesized and implemented the SHA-256 core on
FPGA. This implementation achieves a frequency of only 77 MHz
(for reference, the Kintex-7 family is produced on a 28nm CMOS
technology). To start the analysis, we select 100% obfuscation as
a baseline design because it is fully reconfigurable and somewhat
analogous to an FPGA design.

The implementation results for 0%, 80%, 85%, 90%, and 100%
obfuscation are listed in Table II, obtained after physical synthesis and
are for the worst process corner (SS) and a nominal temperature of
25◦C. It is noteworthy that the performance of the design is increasing
as we decrease the level of security. This behaviour is clearly depicted
in the fourth column of Table II and matches the goal we set from
the beginning: to trade performance for security. Here we also show
that performance saturates rather quickly, as predicted by TOTe in
Section III. The area of the design is proportional to the obfuscation
level which means that increasing the security of design will cause
area overhead. The results obtained from the physical synthesis justify
trade-offs and Table II show the resource requirements.

VI. COMPARISON AND DISCUSSION

From the many results, we conclude that obfuscation levels should
be relatively high to achieve a considerable security, thus the majority
of the eASIC logic should be reconfigurable logic (i.e., LUTs).
Having a large portion of reconfigurable logic provides an opportunity
to correct the issues/bugs that could be easily fixed during the
reconfiguration phase. Naturally, there are limitations since a portion
of the system consists of static logic and cannot be modified. This
limitation could be eased if the eASIC layout were to include spare
LUTs. To some degree, those spare LUTs could also be used to make
side-channel attacks less successful.

A recent trend in obfuscation research is the use of embedded
FPGA (eFPGA) [18], [19]. A very similar approach is also found
in [20], where authors perform obfuscation with transistor-level
granularity. While there are advantages to this practice, it has been
used selectively to only protect key portions of a design and therefore
keep the performance penalty as low as possible. The challenge is in

determining which portions of the circuit merit protection and which
ones do not. Our eASIC approach bypasses this question almost
completely by only revealing (portions of) critical paths when they
are selected to become static logic, which we consider an advantage
if the ASIC-equivalent performance can be sacrificed.

VII. CONCLUSIONS

In this paper, we have developed a custom tool (TOTe) that
obfuscates a design and transforms it into an eASIC device. Our
eASIC solution contrasts with the current practice of eFPGA for
obfuscation and this is not by coincidence: our experimental results
show that obfuscation rates have to be high to protect not only
the bitstream but also the design’s intent. This is a key finding of
our research which we hope can help to steer current obfuscation
practices in the literature. Our findings are also validated in a
commercial physical synthesis tool with industry-strength timing and
power analysis, from which we confirm that TOTe’s trade-off analysis
is sufficiently accurate.

REFERENCES

[1] IC Insights, “Semiconductor units forecast to exceed
1 trillion devices in 2021,” [Online]. Available at:
https://www.icinsights.com/news/bulletins/Semiconductor-Units-
Forecast-To-Exceed-1-Trillion-Devices-Again-In-2021/.

[2] M. Yasin et al., “Removal attacks on logic locking and camouflaging
techniques,” IEEE Transactions on Emerging Topics in Computing,
vol. 8, no. 2, pp. 517–532, 2020.

[3] R. P. Cocchi et al., “Circuit camouflage integration for hardware ip
protection,” in DAC, 2014, pp. 1–5.

[4] M. Li et al., “Provably secure camouflaging strategy for ic protection,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 8, pp. 1399–1412, 2019.

[5] K. Zamiri Azar et al., “Threats on logic locking: A decade later,” in
GLSVLSI ’19, 2019, p. 471–476.

[6] M. Yasin et al., “On improving the security of logic locking,” IEEE
TCAD, vol. 35, no. 9, pp. 1411–1424, 2016.

[7] J. Sweeney et al., “Latch-based logic locking,” in 2020 IEEE HOST,
2020, pp. 132–141.

[8] T. D. Perez et al., “A survey on split manufacturing: Attacks, defenses,
and challenges,” IEEE Access, vol. 8, pp. 184 013–184 035, 2020.

[9] J. Rajendran et al., “Is split manufacturing secure?” in 2013 DATE, 2013,
pp. 1259–1264.

[10] P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in 2015 IEEE HOST, 2015, pp. 137–143.

[11] B. Liu et al., “Embedded reconfigurable logic for asic design obfuscation
against supply chain attacks,” in DATE, 2014, pp. 1–6.

[12] H. Mardani Kamali et al., “Lut-lock: A novel lut-based logic obfuscation
for fpga-bitstream and asic-hardware protection,” in 2018 IEEE ISVLSI,
2018, pp. 405–410.

[13] S. D. Chowdhury et al., “Enhancing sat-attack resiliency and cost-
effectiveness of reconfigurable-logic-based circuit obfuscation,” in 2021
IEEE ISCAS, 2021, pp. 1–5.

[14] K. E. Murray et al., “Vtr 8: High-performance cad and customizable
fpga architecture modelling,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 13, no. 2, 2020.

[15] Z. U. Abideen et al., “TOTe (Tuneable Design Obfus-
cation Technique using eASIC),” 2021. [Online]. Available:
https://github.com/Centre-for-Hardware-Security/eASIC

[16] R. Torrance et al., “The state-of-the-art in ic reverse engineering,” in
CHES 2009, C. Clavier et al., Eds., 2009, pp. 363–381.

[17] M. Yasin et al., “Provably-secure logic locking: From theory to practice,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, p. 1601–1618.

[18] B. Hu et al., “Functional obfuscation of hardware accelerators through
selective partial design extraction onto an embedded fpga,” in GLSVLSI
’19, 2019, p. 171–176.

[19] J. Chen et al., “DECOY: DEflection-Driven HLS-Based Computation
Partitioning for Obfuscating Intellectual PropertY,” in 2020 IEEE DAC,
ser. DAC ’20. IEEE Press, 2020.

[20] M. M. Shihab et al., “Design obfuscation through selective post-
fabrication transistor-level programming,” in DATE, 2019, pp. 528–533.

Curriculum Vitae
1. Personal data

Name Tiago D. Perez
Date and place of birth 24 September 1990 São Paulo, Brazil
Nationality Brazillian

2. Contact information

Address Tallinn University of Technology, School of of Information Technologies,
Department of Computer Systems,
Ehitajate tee 5, 19086 Tallinn, Estonia

Phone +372 5393 1682
E-mail tiago.perez@taltech.ee

3. Education

2020–present Tallinn University of Technology, School of Information,
Information and Communication Technology, PhD studies

2017–2019 University of Campinas, Faculty of Electrical and Electronic Engineering,
Electrical Engineering, MSc

2010–2014 University of São Paulo, Faculty of Electrical and Computer Engineering,
Electrical Engineering, BSc

4. Language competence

Portuguese native
English fluent

5. Professional employment

2020–present Tallinn University of Technology, Early Researcher
2019–2020 NXP, Digital Design Engineer
2014–2019 Institute Eldorado, Digital Design Engineer

6. Computer skills

• Operating systems: GNU/Linux and Windows

• Document preparation: Emacs and LATEX

• Programming languages: C/C++, C# and Python

• Hardware description languages: VHDL, Verilog and System Verilog

175

7. Honours and awards

• 2022, 3rd Place Award, Security Closure of Physical Layouts Design Contest,
International Symposium on Physical Design (ISPD).

8. Defended theses

• 2019, Study on performance improvements of digital satellite receivers in the
presence of multipath channel using decision feedback equalization, MSc, Prof. Dr.
Luís Geraldo P. Meloni University of Campinas, Institute of Electical Engineering
and Telecommunications

• 2014, Development of a control system for an autonomous surface unmanned
vehicle, Prof. Dr. José Roberto B. A. Monteiro. Universty of São Paulo, Institute
of Electrical and Electronic Engineering

9. Field of research

• Hardware security

• Hardware trojans

• Integrated circuits design

176

Elulookirjeldus
1. Isikuandmed

Nimi Tiago Diadami Perez
Sünniaeg ja -koht 24.09.1990, Guarulhos, Brasiilia
Kodakondsus Brasiilia

2. Kontaktandmed

Aadress Tallinna Tehnikaülikool, Infotehnoloogia teaduskond, Arvutisüsteemide instituut,
Ehitajate tee 5, 19086 Tallinn, Estonia

Telefon +372 5393 1682
E-post tiago.perez@taltech.ee

3. Haridus

2020–present Tallinna Tehnikaülikool, Infotehnoloogia teaduskond,
Arvutisüsteemid, doktoriõpe

2017–2019 University of Campinas, Faculty of Electrical and Electronic Engineering,
Electrical Engineering, magistratuur

2010–2014 University of São Paulo, Faculty of Electrical and Computer Engineering,
Electrical Engineering, bakalaureus

4. Keelteoskus

portugali keel emakeel
inglise keel kõrgtase

5. Teenistuskäik

2020–present Tallinn University of Technology, Early Researcher
2019–2020 NXP, Digital Design Engineer
2014–2019 Institute Eldorado, Digital Design Engineer

6. Arvutialased oskused

• Operating systems: GNU/Linux and Windows

• Document preparation: Emacs and LATEX

• Programming languages: C/C++, C# and Python

• Hardware description languages: VHDL, Verilog and System Verilog

7. Autasud

• 2022, 3rd Place Award, Security Closure of Physical Layouts Design Contest,
International Symposium on Physical Design (ISPD).

177

8. Kaitstud lõputööd

• 2019, Study on performance improvements of digital satellite receivers in the
presence of multipath channel using decision feedback equalization, MSc, Prof. Dr.
Luís Geraldo P. Meloni University of Campinas, Institute of Electical Engineering
and Telecommunications

• 2014, Development of a control system for an autonomous surface unmanned
vehicle, Prof. Dr. José Roberto B. A. Monteiro. Universty of São Paulo, Institute
of Electrical and Electronic Engineering

9. Teadustöö põhisuunad

• Hardware security

• Hardware trojans

• Integrated circuits design

178

ISSN 2585-6901 (PDF)
ISBN 978-9949-83-948-3 (PDF)

	List of Publications
	Abbreviations
	Introduction
	Thesis Outline and Contributions

	Background
	History and Today's Integrated Circuit
	Integrated Circuit Digital Design Implementation
	Hardware-based Threats and Countermeasures
	Computing Platforms and Hardware Accelerators

	Secure GPU-like ASIC Accelerators
	Introduction and Research Gap
	G-GPU Baseline: the FGPU
	GPUPlaner Tool and Framework
	Results and Discussion

	Split Manufacturing: Attacks and Defenses
	Introduction
	Attacks on Split Manufacturing
	Split Manufacturing Defenses
	Discussion

	Hardware Trojans Design and Insertion
	Introduction
	Side-Channel Trojan and its Insertion via ECO
	Testchip: Results and Discussion
	Blind Insertion of HTs Framework

	Conclusions and Future Work
	List of Figures
	List of Tables
	References
	Acknowledgements
	Abstract
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Curriculum Vitae
	Elulookirjeldus

