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Abstract

Higher-Order Shear Deformation Theory for the Elastic
Response of Ship Structures

The concept design phase of ships has a critical role in establishing foundational design
decisions and far-reaching structural consequences. During this stage, the general
arrangement of decks is defined, and major structural elements are defined and
evaluated with preliminary structural analysis, consequently constraining following
developments. As ship design progresses into later design stages and more detailed finite
element analysis (FEA) is performed, these early design validations serve as the
framework upon which more intricate structural evaluations are built.

During the concept design phase, heavily simplified models are used for structural
analyses as detailed scantling design is not yet developed. Elements with large dimensions
and adjusted material properties are employed to maintain low computational costs.
As the marine industry mainly relies on elements with linear displacement field, stress
behaviour within elements and on element boundaries is not accurately predicted
leading to significant misrepresentation of maximal stresses and overall stress
distribution.

This thesis aims to create a finite element formulation, that can be implemented to
increase the FEA accuracy of the static response of a multideck ship in the concept design
phase. The higher-order shear deformation (HSD) theory utilizes a global 6-degree of
freedom (DOF) nodal definition that enables higher-order displacement field definitions
to accurately capture stress behaviour within elements. The theory focuses on creating
finite element formulations implementing a novel equilibrium shear flow rate DOF that
can describe noncontinuous stress between adjacent elements that significantly
improves the stress response in ship structure analysis.

Comparative calculations are presented on models varying in the level of detail to
provide a comprehensive understanding of the application potential. Additionally,
in every comparison, a selection of planes and cross-sections are analysed to verify the
applicability of the proposed theory in areas with high variation in stress distribution due
to geometric discontinuities or material changes as well as in areas with less variation.

The results across all analysed models showed sufficient accuracy for describing
normal and shear stress distributions in critical planes and cross-sections outperforming
traditional linear shell elements. The HSD element captured stress behaviour at
discontinuities by incorporating elemental parameters when calculating stress values
with the coupled DOFs. By doing so, significant stress maximums and inter-elemental
stress behaviour are discovered that otherwise can be significantly underestimated.
This method can serve as an efficient tool by increasing the accuracy of coarse mesh 3D
structural analysis.



Lihikokkuvote

Korgemat jarku nihkedeformatsiooni teooria laeva
struktuuride elastse vaste analiitisiks

Laevade kontseptuaalse projekteerimise faasil on kriitiline roll aluslike disaini ja
konstruktsiooniliste otsuste madaramisel. Selles etapis maaratletakse Uldine tekiplaan
ning peamised konstruktsioonielemendid, mida hinnatakse esialgsetes konstruktsiooni
anallusides, piirates seeldbi jargnevaid arendusi. Liikudes laevadisaini hilisematesse
etappidesse, eelnevalt tehtud otsused on raamistikuks, et teostada detailsem |6plike
elementide analiiUs.

Algses projekteerimise faasis kasutatakse tugevusanallilisideks lihtsustatud
mudeleid, kuna detailne plaanilahendus ei ole veel vilja tootatud. Madalate
arvutuskulude sdilitamiseks kasutatakse suurte mG&Gtmetega ja kohandatud
materjaliomadustega elemente. Meretoostus kasutab peamiselt lineaarset siirdevilja
omavaid tasandi elemente, mille puhul puudub tdpne (llevaade pinge kaitumisest
elemendi sees ja servadel tuues kaasa maksimaalsete pingete ja lldise pingejaotuse
ulatustliku vaara esituse.

Kdesoleva t06 eesmdark on luua IGplike elementide formuleering, mida saab
rakendada mitme-tekilise laeva staatilise reaktsiooni tdpsuse suurendamiseks
kontseptuaalse projekteerimise faasis. KGrgemat jargu nihkedeformatsiooni teooria
kasutab 6-vabadusastmega sdlmede definitsiooni, mis vdimaldab kdrgemat jarku
siirdevalja definitsioone, et hinnata pinge kditumist elementide sees. Teooria keskendub
I6plike elementide formuleeringute loomisele, rakendades uudset nihkevoo tasakaalu
vabadusastet.

Rakenduspotentsiaali moistmiseks esitatakse vordlevad arvutused erineva
detailsusastmega mudelite kohta. Lisaks analllsitakse igas vordluses erinevaid
tasandeid ja ristldikeid, et kontrollida pakutud teooria rakendatavust nii piirkondades,
kus pingejaotuses on suur varieeruvus tingitud geomeetrilistest katkestustest voi
materjali muutustest, kui ka piirkondades, kus varieeruvus on vaiksem.

K&igi anallitsitud mudelite tulemused nditasid piisavat tdpsust normaal- ja
nihkepinge jaotuse kirjeldamisel kriitilistes tasandites ja ristldigetes, parandades
tulemusi vorreldes traditsiooniliste lineaarsete tasandelementidega. KGrgemat jarku
nihkedeformatsiooni element kirjeldas pinge kaitumist katkestuspiirkondades,
kasutades elemendi parameetreid pinge vaartuste arvutamisel. Sel viisil avastati olulisi
pinge maksimumkohti ja elementide vahelist pinge kaitumist, mis traditsioonilistes
arvutustes vdivad oluliselt alahinnatud olla. Pakutud meetod vdéib olla t8husaks
vahendiks, suurendades jameda vorgu 3D konstruktsioonianaliilisi tapsust.
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Original features

The author believes that the following features in the thesis are original.

1.

A novel higher-order shear flow rate degree of freedom is developed that
describes the shear flow equilibrium value in all surrounding elements. This
degree of freedom and the additional deformation degrees of freedom are
incorporated into the displacement field descriptions for a higher-order stress
behavior analysis within elements.

The nodal equilibrium shear flow rate is parametrically defined with element
thickness and material information, which is used to derive independent
deformation for surrounding elements with varying definitions. This enables
discontinuous stress evaluation in adjacent elements where ship structures
change in topology.

The novel degree of freedom vector is developed for integration with
commercial software. The theory defines a universal nodal degree of freedom
mapping that can be implemented in commercial software through user-
defined matrix inputs, thus allowing calculations without modifying core solver
algorithms and visualization of global displacements.

11



Abbreviations

2D
3D
CUF
DMIG
DNV
DOF
FEA
FEM
GL
HSD
LDT

Two dimensional

Three dimensional

Carrera Unified Formulation
Direct Matrix Input G-set

Det Norske Veritas

Degree of Freedom

Finite Element Analysis

Finite Element Method
Germanischer Lloyd
Higher-order Shear Deformation
Layerwise Displacement Theory

12



Symbols

Ay First-order polynomial equation linear component multiplier
Ag Third-order polynomial equation cubic component multiplier
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u’* Nodal displacement of a neighbouring horizontal element
u(i,j) Displacement field function in the x-axis direction
v; Nodal displacement in the global y-axis direction
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13



B Shape function edge length parameter

Vay,i Nodal shear deformation degree of freedom in node i
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1 Introduction

1.1 Background

In modern passenger ship design, the overall dimensions of vessels and the structural
complexity have been gradually increasing as companies strive to provide outstanding
onboard experience. Ship owners are incentivized to opt for novel and unique
architectural solutions while focusing on lightweight design which ultimately leads to an
increased need for accurate structural analysis in the earlier concept and basic design
phases.

Cruise ship design is divided into three major stages: concept design phase, basic
design phase, and detail design phase. These stages require an exponentially increasing
number of labor hours, which generates a process where decisions made in every design
iteration need to be rigorously analyzed and validated. The concept design phase
establishes the critical foundation by setting dimensional constraints and defining the
initial deck arrangement, main structural scantlings, and load-carrying pathways.
The progression from broad conceptual decisions to creating precise manufacturing
paperwork in the later stages of the ship design represents a cohesive systematic
refinement process that brings a cruise ship from initial vision to buildable reality, where
setbacks due to insufficient structural analysis trigger significant rework during later
design stages.

Backed by international committees and classification societies, present-day
structural analysis of multideck passenger ships is done using 3D finite element analysis
(FEA) to evaluate the structural response (ISSC (1997), DNV-GL (2016)). The level of detail
used in the FEA is closely related to the structural design stage as analyses in the concept
design phase utilize main structural units and typically only consist of plating structures
to evaluate global ship response. Later, when scantling dimensions are defined and
outfitting mass can be determined more precisely, the FEA becomes computationally
more expensive requiring exponentially more information, modelling and solving time.
Early-stage structural analyses are increasingly important when implementing novel
design concepts as best-practice-based guidelines do not exist in classification rules and
the burden of proof for the reliable execution and implementation is on the ship
company.

The research in this thesis is positioned in the conceptual design structural analysis
space. An overview of the state of the art is provided for different methods used in
early-stage structural analysis of ship design as well as provide insight into the solid
mechanics community and how the research on layered composites and thick beams
could be implemented in the marine environment.

1.2 State of the art

Historically, the first information about the hull girder response has been gathered using
classical beam theories such as the Euler-Bernoulli beam or Timoshenko beam theory
(Timoshenko, 1921). Beyond very basic response data, the former neglects shear
behaviour altogether or oversimplifies it in the latter, when applied to a multi-deck
passenger ship. The first introductions to specialized beam theory applications built on
classical beam theories in the marine industry were done by Crawford et al. (1950) and
Bleich et al. (1953) describing the hull and superstructure interaction in two-beam
systems introducing vertical and shear coupling between the beams.
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A review paper presented by Romanoff et al. (2020) challenges traditional approaches
in marine engineering by demonstrating that shear-weak superstructures exhibit internal
behaviour that deviates from the typical shear force distribution experienced by the
hull-girder. The research identifies two potential pathways for addressing the
complicated stress behaviour of multideck ships that vary in their perspective. The first
of such approaches would be to exploit classical continuum mechanics by building on the
multi-beam approaches by Crawford et al. (1950) and Bleich et al. (1953). The research
specifically points out the Coupled Beam theory presented by Naar et al. (2004) which
divides a ship’s cross-section into layered Timoshenko beams and places vertical and
shear springs between the layers to model the asymmetric shear behaviour. The theory
is further developed to include non-linear material descriptions for the ultimate
strength assessment of passenger ships by Naar (2006). Coupled beams were also used
by Romanoff et al. (2013) and Toming et al. (2016) to evaluate superstructure and hull
interaction. Morshensholuk (2016) applied coupled beams to assess hull girder limit
states while also emphasizing local buckling and yielding.

The second pathway described by Romanoff et al. (2020) is to leverage non-classical
continuum mechanics by incorporating a micropolar correctional factor into Timoshenko
beam theory, thus capturing variation of shear stress along the hull girder’s height and
length. Research supporting this formulation is mainly found in the solid mechanics
community, where higher-order formulations are presented for thick beams, and
assumptions to layer-wise coupled finite elements can be drawn upon. Higher-order
beam theories utilizing parabolic functions in shear deformation definitions are
presented by Levinson (1981), Bickford (1982), Rehfield (1982) and Krishna Murty (1984)
to describe higher-order variation in axial displacements in the beam height direction.
Ghugal (2009, 2011) describes flexure in thick beams with variationally consistent
hyperbolic shear deformation. In-plane displacements are described using third-order
polynomials in a higher-order shear deformation theory by Reddy (1984). Higher-order
shear deformation theories are often extended into layerwise theories by defining
coupling assumptions for displacement DOFs and are applied to composite laminate or
layered beam analyses as done by Toledano (1987), Reddy (1987), and Robbins (1991).
Carrera (1995) proposed a self-named Carrera Unified Formulation (CUF) where
generalized polynomial expansion methods are defined for beams, plates, and shells that
were analysed in the marine industry application by Rehan (2017). The research showed
a simple hull girder response using 1D beam elements to model coupling between cross-
sections made up of L9 CUF elements.

In addition to using multi-beam approaches for early-stage structural response
analyses, current best practices are to perform 3D finite element method (FEM)
calculations. Typically, passenger ship models utilize convenient yet optimized mesh
dimensions that follow deck spacing vertically, main frame spacing longitudinally, and
bulkhead or pillar spacing transversally. This approach is implemented to reduce
computational cost without underrepresenting major structural units. Optimization
methods to model passenger ships in the conceptual design phase were presented by
Ringsberg et al. (2012) and Raikunen et al. (2019). In addition to optimizing mesh sizing,
orthogonal approaches to defining element stiffness properties are applied to take into
consideration the asymmetry of the stiffening structures of the structural unit cell
represented with a singular finite element. A two-layer element approach is presented
by Hughes (1988) where the first layer defines the plating stiffness, while the second
layer takes into consideration the orthogonal stiffeners that are summed into a singular
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element stiffness matrix. Andric (2010) and Zanic et al. (2013) used equivalent orthotropic
quadrilateral 8 elements to model passenger ships. Romanoff (2007) used the equivalent
single-layer theory by Reddy (2004) to define an equivalent element to represent a
web-core sandwich panel. An equivalent single-layer technique was used by Avi et al.
(2015) to implement stiffener and their spacing into an orthogonal material description.
Teguh et al. (2021) analysed passenger ship's ultimate strength using an equivalent
single-layer approach. Although there are numerous methods to defining equivalent
element stiffness properties, linear displacement fields are most used in these applications.
In conceptual design phase, where large elements are used, linear approximation between
nodal degrees of freedom may result in significant misrepresentation of stresses within
element boundaries and at element edges in areas with high influence from structural
stress concentrations or changing topology and resulting element stiffness properties.

This thesis aims to present a finite element definition that would be applicable
in marine industry applications to supplement already existing best practices.
The methodology focuses on introducing a finite element description that can be
implemented with commercial software to seamlessly provide accuracy improvements
over using meshing with linear displacement fields. Stress response in ship structures is
often highly varying and discontinuous. While the high variance is mainly caused by
structural stress concentrations, discontinuities occur in areas with varying element plate
thickness. Additionally, the cross-section of stiffening structures often varies, making the
equivalent orthogonal stiffness between elements inconsistent. In these areas, standard
linear meshing falls short due to linear displacement fields resulting in a singular
elemental stress value. Higher accuracy is achieved with increased mesh resolution
which increases the computational cost in two aspects. First and most notably, this
increases the modelling time by introducing additional unique equivalent element
descriptions and secondly by increasing the solving time.

This thesis presents a higher-order shear deformation (HSD) theory that defines a
consistent nodal mapping with six DOFs per node, matching the nodal structure in
commonly used commercial softwares. The theory presents different definitions for
elements on all principal planes as the in-plane response involves different set of
non-zero DOFs in the full nodal DOF vector. The vertical longitudinal elements utilize the
novel shear flow rate DOF that ensures shear flow equilibrium between all adjacent
elements on different principal planes and provides a higher-order stress description.
The theory is validated on several simplified ship models varying in the level of detail.

1.3 Objectives of the thesis

The main objective of the thesis is to present a finite element formulation, that could be
implemented in the concept design phase and improve the accuracy of the elastic
response results. The formulation is defined to fit the confines of commercial software
for improved applicability. To achieve this, the thesis has the following objectives:
1. Develop afinite element definition that uses higher-order approximations to
accurately assess stress within element boundaries.
2. Provide a methodology to accurately assess stress in structural transition
layers, where plating thickness, material grade or scantling geometry changes.
3. Develop the new element formulations in a way that they could be
implemented into commercial engineering tools used by maritime industry.
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1.4 Scope of work

In multi-deck ship design, 3D finite element analysis is performed to assess the reliability
of the ship structures in multiple iterations. An initial assessment is carried out in the
concept design phase by following methods to decrease computational cost and
modeling time. This typically involves using large element dimensions and linear finite
element formulations. To improve the accuracy of the finite element method, we propose
the HSD theory that is presented within the span of the three publications summarized
in Figure 1.

In [P1], the initial finite element formulation is presented for a 6-node shell element,
where nodal displacements are described in corner nodes and shear deformation DOF
are described in mid-side nodes. The research presents definitions for the elemental
stiffness matrix and external force vector calculated. The comparative analysis is performed
on two planar models with distinct geometric characteristics to visualize the accuracy of
the proposed layerwise displacement formulation compared to linear mesh types in a
variety of planes and cross-sections. The linear mesh models are created and evaluated
in FEMAP software.

In [P2], a reworked higher-order shear deformation formulation is presented.
The previously used midside nodes have been omitted for improved applicability and a
consistent six DOF nodal mapping has been created. A novel shear flow rate DOF is
introduced that implements elemental thickness and material properties to
independently describe stress in the transition layer between adjacent elements. Unique
element definitions for horizontal and vertical elements are provided, as the consistent
nodal DOF vector does not allow elements to simply be rotated, and their stiffness
matrices be transformed. The analysis shows a simple hollow beam model to initially
provide validation on a simpler model and further provide insight into the performance
of the HSD formulation over traditional linear mesh usage on a stepped box model.

In [P3], a further improvement to the HSD formulation is added by adding the
definition to vertical transversal elements and supplementing the definition of the shear
flow rate DOF. A grouping scheme for elements that share a node is presented with
considerations to elements on all three principal planes. The comparison analysis defines
a simplified cruise ship model and compares the accuracy of the improved HSD
formulation to linear mesh results concluding in a clear increase in accuracy of the elastic
response when using the HSD theory over conventional linear elements.
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2D Layerwise Displacement

3D Higher-order Shear

Modifications to 3D Higher-
order Shear Deformation

Methed [P1] — Deformation Method [P2] — Method [P3]
* Element definition with 4 * Separate element definitions for
% corner and 2 midside nodes vertical and horizontal elements
Q||* Inconsistent DOF vector * Consistent 6 DOF vector for * Vertical transversal
8 Element thickness induced element corner nodes elements added
g stress discontinuities * Element thickness and material || * Equilibrium shear flow
5 ||+ FEformulation not optimized induced stress discontinuities rate definition expanded
2 for displacement field * FE formulation optimized for
modifications displacement field modifications
@ Planar layered girder models: Stepped box model: Simplified Cruise ship
2 * Varying length of layers for * Decks added model:
<Zl: geometric discontinuities * Varying material properties * Recess added
< ||* Varying stiffness model that between layers caused by * Properties created for
o includes openings openings and stiffener geometry deck and bulkhead
2 * Element sizing not * Element sizing represents openings and pillars
8 representative of industry industry standards on smaller * Element sizing represents
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Figure 1. Publication overview for the thesis.

1.5 Limitations

The research in this thesis is limited to the following modeling aspects:

1.

Elements are only positioned on the principal planes as shape functions are
described in global coordinates and not in an isoparametric formulation.

Only in-plane response is considered to minimize computational time. Torsion
and bending response are not included at this stage of the research.
Commercial software has been used for numerical calculations. Therefore, the
proposed formulation is limited to the number of nodal degrees of freedom that
are available for the plate elements available in that software.

Calculation of equivalent element stiffness properties is not covered as the
presented formulation can be used alongside methods to calculate orthotropic
properties.

Shear stress in an element is identical on all edges; planar stress orthogonality
is not considered.

Elements in 3D applications need individual descriptions depending on the
orientation due to the restricted number of nodal degrees of freedom.
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2 Higher-order layerwise displacement formulation

2.1 Definition of variables

The higher-order layerwise displacement (HLD) theory presents a 6-node element
positioned in the Cartesian coordinate system, where the in-plane x-axis refers to the
ship's longitudinal direction and denotes edge length as length [ and in-plane y-axis refers
to the ship's vertical direction and denotes edge length as height h. This formulation
places mid-side nodes on vertical edges to describe shear behavior as shown in Figure 2:

y ta Y Vays Yxya
{iz} £ .{ Vy } . i

dys |

Vey,1 Vay,2
{Yzﬂ } . {V?;A } . h

v/

u
(@ s

I

Figure 2. Beam element in the Cartesian coordinate system and explanation of shear strain DOFs. [P1]

where u; is the longitudinal displacement in node i, v; is the vertical displacement in
node i and y,,; is the shear strain du/dz at the position of node i. Shear strain is
described as a DOF of a mid-side node to uncouple the shear strain from nodal
displacements in a global finite element formulation thus allowing discontinuous
description of shear stress in the vertical direction between adjacent elements.

2.2 Definition of the displacement field

The defined DOFs are applied as polynomial function values to describe displacement
fields u(x,y) and v(x,y). The shear deformation variables allow longitudinal
displacement in the vertical direction to be described with a third-order polynomial,
whereas vertical displacement in both in-plane directions and longitudinal displacement
in the longitudinal direction are described with first-order polynomials. Unified
representation of polynomial functions used to define element displacement fields:

P3(CZ) =A3a3+B3(12+C3a+D3, (1)

Pi(a) = Aja + By, (2)

where indexes 1 and 3 denote the order of the polynomial equation, 4; B; C; D are
the polynomial constants, a denotes a planar direction and P is the displacement in the
planar direction.

Egs. (1), (2) can be solved for A, Bs, C5, D3 and A4, B; and regrouped for arbitrary
first-order and third-order polynomial variables to represent shape functions in a
parametric form as:
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Yi(a) = (B° —3Ba’ + 2a°)/B°
P2(a) = (B*a — 2pa’ + a®)/p?
Ps(@) = BBa’® —2a°)/p?
Yu(a) = (a® = fa?)/p?,

(3)

{¢1(a) =1-a/p
$o(a) =a/B,
where [ is the element edge length in a-axis direction. An example of shape function

mapping to degrees of freedom is presented in a linear combination for the element
description in Figure 2:

u(x,y) = P11 (Duy + P (V)P (D uz + P ()1 (X)Vay 1 +
wz(Y)(f’z(x)nys + P3(V) 1 (uy + P3(¥) P (uy + 1/)4(Y)¢1(x)}’xy,2 + (5)
VAGLR (x))’xy,4

(4)

v(x,y) = 1 () P1(0)vy + d1 (V)P ()v3 + P (¥) 1 (X, +
¢2(y)¢2(x)v4l

Shape functions in Egs. (5), (6) obtain geometric values:

Y, (y) = (h® — 3hy? + 2y%)/h®
Y,() = (h*y — 2hy* + y°)/h?
Y3(y) = Bhy* — 2y®)/h?
Pu(y) = (v® — hy?)/h?,

{¢>1(y) =1-y/h
¢.(y) =y/h,

{4’1(95} =1-x/l
¢2(x) =x/L.

Detailed description of the finite element equations is presented in [P1] defined using
the first variation of potential energy equation.

(9)

21



3 Higher-order shear deformation formulation

Although the layer-wise displacement theory presented in [P1] describes shear stress
discontinuously between vertically adjacent elements, the asymmetric nodal positioning
with midside nodes on vertical edges as well as inconsistent nodal DOF mapping
complicates the implementation of such element definition. The modified HSD
formulation describes a constant nodal mapping methodology with elements populating
the xy-, xz-, and yz-planes, where nodes are placed only in element corners with six
consistent DOFs per node. The methodology presents a definition for a novel DOF that
describes an equivalent shear flow rate. The definition for such DOF presents extensions
to integrate any element plane that intersects in a specified node. Individual finite
element equations are introduced for elements on different principal planes, as the
effect on stress behavior varies with element orientation, therefore optimizing the
computational efficiency.

3.1 Definition of element displacement fields

Element displacement field descriptions are dependent on the non-zero DOFs that act
in-plane to the orientation of that element type. A simplified ship model is modeled with
three distinct element types: horizontal elements present in the global x-axis and y-axis
direction, vertical longitudinal elements present in the global x-axis and z-axis direction,
and vertical transversal elements acting in the global y-axis and z-axis direction. The highest
polynomial order that can be expressed with the DOFs in these respective directions is
used to define element in-plane displacement fields. Polynomial equations for elements
in Figure 3 a), b) are presented in [P2], and for the element in Figure 3 c) in [P3].

a) b) c)
z
P —/ x Ty nz
ns n;
z
l h
n, n, h

y / / My na

h ¥
l
u
Uy w; u;
Non-zero DOFs — vy Non-zero DOFs — q; Non-zero DOFs — {w}
i
(8v/dx); (dw/dx);

Figure 3. Element coordinate system and non-zero nodal DOF vectors for a) horizontal elements,
b) vertical longitudinal elements, and c) vertical transversal elements.

In-plane displacement fields for horizontal elements can be presented in vector form
or expanded to show the full linear combination:

u(x,y) = 1) p1(uy + @1 (V)P (NDuy + (V) Py ()uy + (10)
¢2(y)¢2(x)u3 )
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v(6,7) = G101 (s + %1 (Ivy + 61 () (), +

S22 () (37), + 103 (0Ivz + B2y (X3 + (11)

P00 () (32), + 6200 (37). -
In-plane displacement fields for vertical longitudinal elements can be presented in

vector form or expanded to show the full linear combination:

u(x,z) = P, (2)P1 (Dwy + P2 (2) P4 (x) (2—2)1 + Y1 (D) (u, +
V@92 (57) + s @ b2(us + 91 @200 (37) + (12)
Y3 (2) s (s + Pa ()1 () (52)

4

wx,2) = 61 @)1 COwy + G2 (@)1 COwy + 1 (D> () (57) +

$2@0:(0) (57), + 91 @3 (W, + Bo(@)ps(RIws + (13)
$:1@s () (57), + 2@Da @) (7).
where definitions for (du/0z); variables are derived from Eq. (16) and presented in more
detail in [P3].

In-plane displacement fields for vertical transversal elements can be presented in
vector form or expanded to show the full linear combination:

v(y,2) = $1(2D)P1(Vv1 + D1 (2D, Vv, + P2 (2)P1 (VIvs + P2 (D) P, (VIvs,  (14)

w(y,2) = &(2)p1(YIwy + & (2) P, (NI, + £,(2D) D1 (Iws + £,(2) P, (Y)ws . (15)
The finite element formulations for each element positioning type are presented in
[P2] by defining the strong-form differential force equations for a unit shell element.
The differential equations are integrated over the volume and manipulated to create
vectorized weak-form equations. Definitions for shape function matrices and differential
operator matrices are presented to describe generalized finite element equations.

3.2 Definition of equilibrium shear flow variable

Element definitions are described in a typical global coordinate system used in
shipbuilding, where the x-axis is aligned with the longitudinal direction, the y-axis is
aligned with the transversal direction, and the z-axis is aligned with the vertical direction.
The six nodal DOFs present in every node are u, v, w denoting nodal displacements in
x-, ¥-, and z-axis directions respectively, g denoting equilibrium shear flow rate in the
node, and deformations (dv/dx), (dw/dx) denoting consistent deformation along the
x-axis as it is assumed that material performs elastically and cannot separate at element
boundaries. The equilibrium shear flow rate q is defined as:

ou ow G ou\*
q = Qelxz + qel,xy + qel,yz = (Z + E) t (G_o) + ((5) +

2@+ GG ) (%) e
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DOF value q comprises neighboring element-specific .1, ger2, and qez  values,
where ell is located on the xz-plane, el2 is located on the xy-plane, and el3 is located
on the yz-plane. Additionally, t is the element thickness, (du/dy)*, t*, G* are parameters
of a neighboring horizontal element on xy-plane, (dw/dy)**,t**, G** are parameters of
a neighboring transversal vertical element on the yz-plane. G, is a reference shear
modulus value to account for the change in material properties in adjacent elements:

Go = Xi=1 Gy /m, (17)

where G; denote the shear moduli used in the analysis and n shows the total number of
shear moduli considered. The formulation can be adjusted to elements, where in-plane
shear moduli vary, depending on the direction. In these applications, G; is the relevant
shear modulus along the edge where shear flow equilibrium is defined. Deformation
parameters (du/dy)* and (dw/dy)**, are always considered in the direction of the
positive axis.

Eqg. (16) is explained in a small element system presented in Figure 4 a), where the
maximum amount of elements surrounds the central node under consideration.

a) EL10
El11  EL9 EL12

El3  Ei1 El4
El2 y

Figure 4. Example element intersection for a) non-exploded view b) for exploded view with edge
normal directions. [P3]

In general form, the equilibrium between individual shear flow rates g,;; can be
described incorporating the in-plane polarity of the element edges as:

Yie19eriSisi =0, (18)

where g, ; are the element-specific shear flow values and multipliers s; and s; obtain
polar values 1 or -1 referring to the positive or negative in-plane direction of the edge
normal.

After inserting the polarity values, the equilibrium equation for shear flow rates in
the central node according to the element system shown in Figure 4 b) becomes:

—qei1 T Geiz — Getz T Geta t Geis — Geic — Ge17 T Geis — Gets + Getro + (19)
Get11 — Gernz = 0.
Geiz t Geta t Geis t+ Geis + Get10 T Getrr = Getr t Geiz t Geie + qer7 + (20)

Geto + Gel12-
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Eqg. (20) is further grouped based on direct element edge adjacency that is required
for Eq. (16):

Qerz t Geta t Gets = q1, (21)
Geis + Getro + Gern1 = 92 (22)
Getr + Geiz + Geis = g3, (23)
Ger7 + Gero + Ger12 = qa- (24)

In Egs. (21) to (24) the final summation values represent the constant nodal DOF
value:

G1=q2=q3=q4=q. (25)
Therefore, in Eq. (16) the grouped elements share an edge and have matching multiplied
polarity of edge normals. An example partial expansion of Eq. (16) involving elements on

vertical longitudinal and horizontal planes is presented in [P2] and a full expansion
involving all principal plans is presented in [P3].
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4 Models used for validation

4.1 Modeling considerations

The models created for the analysis of HLD and HSD formulations use equivalent plate
structures, where different configurations of stiffened panels are represented with
equivalent plate elements. The details of calculating equivalent stiffness components are
not discussed in this research, however, methods such as the smeared stiffness method
or equivalent single-layer method can be applied. The different vertical stiffened panel
types such as superstructure outer shell with large openings for modular cabin
installation, pillar section with connecting girders, outer shell or bulkhead with small
openings, and standard stiffened panel are shown in Figure 5 a). Horizontal equivalent
elements substitute horizontal deck stiffened panels or hollowed deck sections, see
Figure 5 b). Equivalent elements are defined by transferring orthotropic Young’s modulus
and Poisson ratio values, and shear modulus values as well as directly using original
plating thickness to accurately describe local shear flow at element edges.

a)
< \ o El,Ez,Ul,vz,G,t
E
e [T 1T
il il

Figure 5. Structural conversion into equivalent plating for a) vertical structures, b) horizontal
structures.

Additionally, the modeling in this research uses industry standards for coarse mesh
applications as this decreases the time spent on model creation as well as actual solver
time, both of which are a factor in the total computational cost. Especially in applications,
where equivalent elements have been used to represent the added stiffness from
stiffening structures or reduced stiffness from openings, it is important to limit the
number of unique element descriptions needed. Figure 6 shows an example of how that
number increases between coarse mesh and semi coarse mesh. In addition to increased
solver time, and the number of unique orthotropic element definitions, computational
cost is further increased with the application of semi-coarse mesh, as element properties
cannot be applied to vertical structures simultaneously and need to be circulated
between adjacent elements.
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Figure 6. Equivalent plate element creation for a) coarse mesh, b) semi-coarse mesh. [P2]

4.2 Hull girder models

The HLD formulation is applied in [P1] to the case studies presented by Toming et al.
(2016). The article defined two simple planar models: a stepped beam model with
uniform stiffness in Figure 7 a), and a uniform beam model with varying stiffness in layers
due to openings in Figure 7 b). Both models consist of three major segments between
which the plate thickness varies. The varying stiffness model is further divided into
three element layers in areas of openings. The analysis for the stepped beam model
includes three mesh sizes: Coarse mesh that places a single element with dimensions
1000 x 3000 mm over the height of a layer, semi-coarse mesh that vertically divides
layers into three elements with dimensions 1000 x 1000 mm, and fine mesh that further
refines the element to dimensions 200 x 200 mm. The varying stiffness model includes
two meshing configurations: Coarse mesh that uses maximum element dimensions
vertically and consistent 1000 mm dimension in length, and fine mesh with dimensions
150 x 150 mm. The HLD models are meshed to match the coarse and semi-coarse mesh
variations to compare performance between similarly sized mesh against the substantially
finer mesh configurations. The total number of elements for both models between all
meshing variations is in Table 1.
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Table 1. Number of elements between meshing variations [P1].

Model Meshing variation Total elements
Stepped beam model Coarse mesh 120
Semi-coarse mesh 360
Fine mesh 9300
Varying stiffness model Coarse mesh 520
Fine mesh 23000

FE models use an elastic foundation as boundary conditions which is applied by
creating a row of elements with significantly reduced stiffness and fixed free nodes, see

Figure 7 c).

Identical sinusoidal loading according to Eq. (26) creating a global sagging condition
has been applied to the bottom edge nodes in both models.

2mx
p(x) = p, * cos (L ) (26)

Here, the load amplitude is p, = 60 N/mm and the total length of the model is
Lio¢ = 60 m. Uniform material Young’s modulus and Poisson ratio properties are used:
E = 210 GPa, and v = 0.3. NX Nastran solver was used in FEMAP2021.2 software to
analyze linear element models while Mathcadl5 software was used to compile and

analyze layerwise displacement theory models.

tot

d) Fine mesh

Geometry and course mesh models
representation

a) 18000 15000

24000
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Nodes on curve Single element layer
fixed over the for applying elastic

length of the model  foundation

Figure 7. Geometry and FE plate models for a) stepped beam with uniform layer stiffness and
b) uniform beam with varying layer stiffness; c) principles of applying elastic foundation, and d)
detail views showing the comparative size of the used fine mesh. [P1]
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4.3 Stepped box model

The HSD formulation is tested in [P2] on a stepped box model representing a small
multideck ship that consists of outer shell sections and two inner bulkhead sections
connected to six horizontal plating sections. The resemblance to a real-life stress
distribution is achieved by increasing deck thickness in the bottom and top decks and
including a weakened outer shell section above the horizontal midplane as windows
and other openings lower the shear stress-carrying capabilities in these structures.
The addition of deck plating allows for that stress to be carried into the central
longitudinal bulkhead. The stepped box model has dimensions of length L;,, = 60 m,
breadth B;,; = 9m, and height H;,; = 12.4 m. Geometry models with material
designations and properties as well as cross-sectional information with deck numeration
are presented in Figure 8.
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Figure 8. 3D model geometric and material parameters a) outer walls, b) superstructure walls, and
c) cross-section. [P2]

Like the hull girder models, the stepped box model analysis seeks to compare the
proposed HSD formulation against the typical linear mesh used in the concept design
phase. Three mesh sizes are considered: course mesh used with HSD and linear element
formulation, semi-coarse mesh, and fine mesh that is only used with linear element
formulation. The course mesh model in Figure 9 a) consisting of a total of 728 elements,
is defined based on common practices to describe every horizontal and vertical section
spacing with a single element resulting in 3000 x 3000 mm dimensions in most elements
excluding vertical elements between the double bottom and deckl. The semi-coarse
mesh model refines the mesh size in vertical structures to 1000 x 1000 mm dimensions
providing a good comparison if marginally decreasing element dimensions for linear
mesh has similar effects to using higher-order element definitions. The coarse mesh
model consists of a total of 3720 elements, see Figure 9 b). The fine mesh model that
places 10 elements with dimensions 300 x 300 mm between decks provides results that
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are considered as the base of the comparison, although this element sizing is considered
unreasonably fine in the concept design phase due to the increased computational cost,
see Figure 9 c).

a)

Figure 9. Finite element 3D models of stepped box model: a) coarse mesh model, b) semi-coarse
mesh model, and c) fine mesh model. [P2]

Vertical distributed loading defined in Eq. (26) is applied to the bottom edges of all
vertical shell sections with amplitude distributed force p, = 200 N/mm and total length
of Ly = 60 m.

Orthotropic material properties have been defined as E; = E, = 210 GPa,
v; = v, = 0,3 for full-stiffness sections and E; = E, =50GPa, v, =v, =0,3 for
weakened sections in the superstructure outer shell. The vertical sections are supported
on elastic foundations as boundary conditions.

4.4 Cruise ship model

A cruise ship model with global dimensions L;,, = 300 m, breadth B,,; = 42 m, height
H;os = 51 m has been created in [P3] to further analyze the HSD formulation after
further expansion of the shear flow rate definition and the addition of transversal
bulkheads. The model consists of 16 decks in total with a uniform vertical spacing of
3.4 m, including thickened layers for the double bottom and cofferdam layers.
Longitudinally, the ship has two central bulkheads and three pillar lines. The cross-sectional
main dimensions and structures are shown in Figure 10.
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Figure 10. Conceptual cruise ship cross-section dimensions. [P3]

Figure 11 shows the side profile of the cruise ship and transversal bulkhead spacing
that varies from 40 m in the aft and foreship to 30 m in the two midship watertight
sections.

Bulkhead spacing 30 m
\\\
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,

Y £
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Figure 11. Transversal bulkhead spacing. [P3]

The cruise ship plating structures represent different configurations of stiffened
panels such as is seen in Figure 5. Openings in the superstructure outer shell, bulkheads,
and decks create the necessity of defining weakened material properties for these areas.
In this research, the specific material stiffness values are not of great interest as identical
geometric models are compared against each other. General stiffness values have been
defined to achieve realistic behavior. Numerical values for different materials are
consolidated in Table 2 with applications in cruise ship structures visualized in Figure 12.
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Table 2. Material property definitions and applications. [P3]

Name Young's modulus, | Poisson PrapalleEtiiar
E,; E, [GPa] ratio, v

M1 210 0.3 Hull, bulkheads, decks,
Superstructure shell, pillars,

M2 50 0.3 superstructure bulkhead
openings

M3 100 0.3 Hull bulkhead openings

M4 10 0.3 Deck openings

d)

Cofferdam, M1, t=10mm |,

a)

‘ Superstructure,
M2, t=8mm

'\l Double bottom, M1, t=12mm |

Hull, recess, M1, t=Bmm l

Hull, M1, t=10mm | L

Bulkhead, M2, t=10mm

b)

\ Bulkhead, M3, t=10mm

Bulkhead, M1, t=6mm

Bulkhead, M1, t=10mm

‘-L' ‘ Deck opening, M4, t=6mm |

Bulkhead opening,
M2, t=10mm

Bulkhead, M1, t=10mm ‘

Figure 12. The structural breakdown of the cruise ship conceptual model: a) outer shell, b) longitudinal
bulkhead, c) pillars, d) deck plating, e) deck openings, f) transversal bulkheads. [P3]

Two mesh sizes have been defined for the cruise ship model: coarse mesh model, and
fine mesh model. Mesh dimensions for the coarse mesh model have been derived from
the cross-section definition placing the minimal amount of elements between structural
elements. Longitudinal vertical elements are dimensioned as 5 x 3.4 m, with the height
referring to single deck spacing and the length referring to the main frame spacing.
A similar length is used for horizontal elements, however, their transversal dimension is
driven by the distance between the bulkhead, pillars, and outer shell. The coarse mesh
model comprises 10228 elements in total. The fine mesh model further refines the
element sizing to uniform 1 x 1 m elements in vertical transversal and horizontal elements
and 1 x 1.13 m in vertical longitudinal elements, placing three elements between two
adjacent decks, therefore increasing the number of total elements in the model to
246438. In the concept design phase, this mesh sizing would be unreasonable due to
increased computational cost as well as for the total number of equivalent element
properties needed to be calculated. Therefore, the fine mesh model is used to compare
with the coarse mesh models.
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The cruise ship distributed curve loading has been applied on the longitudinal
structures at the bottom of the model, see Figure 13 a), calculated according to Eq. (26),
with amplitude force p, = 200 N/mm and total length of L, = 300 m.

The model is placed on an elastic foundation, which is modeled with an extra row of
low-stiffness elements under the outer shell and longitudinal bulkhead structures. These
elements are fixed at their bottom nodes, thus facilitating global sagging conditions
under sinusoidal distributed loading. Element properties for the elastic foundation are
E, = 1MPa;v = 0.3.

a)

Figure 13. Cruise ship FE model a) load-carrying edges for vertical longitudinal structures, b) elastic
foundation elements. [P3]

The HSD formulation is created together with Matlab 2023 and FEMAP 2021.2
software, where the geometric model is created in FEMAP 2021.2. The nodal and
element cloud data has been exported into Matlab 2023, where the subroutines to
create a global stiffness matrix are described. The global stiffness matrix is subsequently
imported into the geometric model in FEMAP 2021.2 using the Direct Matrix Input
G-set (DMIG) procedure. NX Nastran solver was used for the calculations after which
post-processing was performed partly in both Matlab 2023 and FEMAP 2021.2. Although
a multistep process, the desire is to perform computationally costly model and mesh
creation, and matrix multiplications in a commercial solver and receive realistically
displaced mesh as a result.
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5 Results

The comparative analyses in this thesis are structured to give insight into the
performance of the formulations developed within the publications. This thesis
summarizes equally dimensioned standard linear coarse mesh calculations typically used
in the marine industry for conceptual design phase calculations. By comparing linear and
higher-order coarse mesh methodologies against fine mesh results that would be
available in later design stages, a clear pathway for adapting higher-order formulations
in computationally light models is created to bridge the gap between the tradeoff of
result accuracy versus model preparation time and computational cost.

The comparisons systematically start from examining global deflection behavior and
continue to define critical cross-sections and horizontal planes, where stress
distributions experience nonlinearities due to topological or material changes in
structures. This approach provides a thorough overview of structural performance across
relevant areas effectively demonstrating the applicability of the proposed higher-order
formulations over conventional linear approaches while maintaining the desired
efficiency during conceptual design phases.

5.1 Hull girder model analyses

Hull girder deflection analyses in Figure 14 show minimal deviation between coarse and
fine mesh formulations alluding to the reduced importance of mesh sizing when
analyzing global displacements. For the stepped beam model both coarse mesh models
resulted in 2-3% underestimated global deflection at the lowest point in a sagging
condition. For the unified beam model with varying layer stiffness, the deflection was
similarly underestimated by 2—-4%.

Cross-sections for stress analysis in stepped beam models were chosen at
x = 19500 mm, x = 34500 mm, and x = 43500 mm. Two of these cross-sections are
specifically chosen to be near structural discontinuities to better evaluate maximum
stress caused by corner effects in the meshing. A third cross-section is chosen toillustrate
the stress magnitude difference between more linearly behaving cross-sections and
stress-critical cross-sections.
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Figure 14. Comparison of deflections: a) stepped beam, b) unified beam with varying layer
stiffnesses. [P1]

Normal stress distributions in Figure 15 show notable desired agreement between
the LDT coarse mesh and fine linear mesh, whereas the identical mesh sizing for linear
mesh shows a clear drop-off in the ability to trace fine mesh results. Most notable
discrepancies between the accuracy of LDT and linear coarse mesh happen in the model
boundaries. Linear elements use first-order polynomials for approximations which after
partial derivation results in constant stress values within elements. Stress values at
boundaries can be estimated by averaging elemental stress values into corner nodes,
however, this method can significantly misrepresent stress values as evidenced.

This deficiency is further visualized in Figure 15 in shear stress distributions, where
higher-order formulations trace fine linear mesh results closely, while coarse linear mesh
omits most critical areas in the stress distributions, especially evident in cross-sections a)
and b) in areas most prominently affected by the geometric discontinuities.
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Figure 15. Normal stress, oxy, and shear stress Ty, in the stepped beam at a) x = 19500 mm,
b) x = 34500 mm, c) x = 43500 mm. [P1]
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Cross-sections that are analyzed in the unified beam model with varying stiffness
similarly present different stress behaviors for the best overall coverage. The first
cross-section is defined at x = 14625 mm to show results that are not greatly affected
by the missing elements within the layers of the model. The second cross-section at
x = 24750 mm shows discontinuous stress distributions by crossing the openings and
the third cross-section at x = 43875 mm evaluates the highly varying stress
distributions that are influenced by the corner stress concentrations.

In general, it can be said that all mesh types are extremely coincident in cross-section
a) due to a less varying stress distribution. Although less important due to the magnitude
of the difference in stress values, cross-section b) once again shows how constant
elemental stress value cannot be accurately averaged into nodal values in an area where
corner effects are present. Cross-section c) shows a very notable and highly accurate
tracing between coarse LDT mesh and fine linear mesh, whereas coarse linear mesh
underestimates maximum stress values by up to 50% in some areas.
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Figure 16. Normal stress, ayy, and shear stress T, in unified beam with varying stiffness at
a) x = 14625mm, b) x = 24750mm, c) x = 43875mm. [P1]

5.2 Stepped box model

The stepped box model applies the modified HSD formulation to similarly compare the
applicability and the accuracy of higher-order meshing over standard linear meshes.
First, the global deflection of the stepped box model is presented in Figure 17.
The comparisons show that global deflection is overall highly corresponding with coarse
mesh models having slightly underestimated values. In the bottom edge in Figure 17 a),
the difference is around 2%, while the difference in the top edge in Figure 17 b) reaches
5% between the coarse mesh models and fine mesh model.
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Figure 17. Global deflection comparison in a) bottom edge, b) top edge. [P2]

In addition to cross-section, stepped box model analysis adds a closer look into
longitudinal stress distribution at the plane z = 6.4 m which is especially of great
interest, as in this layer plate element thickness as well as material properties change.
The plating thickness typically is lowered due to the lowered normal stress carried by the
plating in global bending while the equivalent stiffness properties are lowered in the
outer hull structures due to openings in the outer shell above the main deck.

The longitudinal distributions in Figure 18 consider stress values when approaching
upwards to the transition layer. This means that in the fine linear mesh model, the stress
values of the first element below the transition are considered, while in the coarse linear
mesh model, the constant elemental stress values are averaged into nodal positions and
the average stress values at the transition layer are used. In the HSD element model,
the stress value directly at the layer is considered calculated in the element below the
transition layer.

The comparison reveals that the HSD coarse element formulation traces fine linear
formulation results to a high degree, with no clear deficiencies. Differences in maximum
values can be emphasized, however, this can be attributed directly to mesh sizing effects.
Additionally, HSD outperforms coarse and semi-coarse linear mesh in evaluating normal
stress in the outer shell in Figure 18 d) and shear stress in the inner bulkhead in
Figure 18 a). The HSD element mesh shows excellent correlation, while the coarse and
semi-coarse linear mesh, although corresponding with each other, lack accuracy.

A deeper analysis of these graphs is presented in Figure 19 and Figure 20. There, stress
results for fine element mesh have been given for the element above and below the
transition layer separately. As coarse and semi-coarse mesh stress results can only be
described in the existing nodal position, a similar direction-specific approach is not
available. For the HSD formulation, the independent stress values are approximated
within the relevant element at the element boundary.

Multideck ships typically have weakened outer shell structures above the main hull,
as these structures have significant openings for passenger comfort and additionally have
lowered thickness. As a result, a significant amount of shear stress, carried in the outer
hull structures, is transferred over to the stiffer longitudinal bulkhead visible only in HSD
and fine linear mesh models in Figure 19. The opposite effect is seen for normal stress
distributions in Figure 20.
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Figure 18. Longitudinal distribution at z = 6,4 m for a) inner wall shear stress, b) inner wall normal
stress, c) outer wall shear stress, d) outer wall normal stress. [P2]

The necessity of evaluating stress results in transition layers with a direction-specific
method can be reasoned when looking at the difference magnitude of secondary
maximum stresses compared to the fine linear mesh values shown for shear and normal
stress in Figure 19 and Figure 20.

At the aft peak coordinate x = 11 m, shear stress for the HSD element formulation
differs from the fine element results by 5% and 2% in the upper and lower elements
respectively, whereas semi-coarse mesh maximum shear stress values differ by 34% and
70% respectively. The related values for the foreship secondary maximum shear stress
at x = 43,5 m are 16% and 3% for the HSD formulation and 70% and 47% for the semi-
coarse linear element mesh. The respective normal stress difference percentages in the
aft in Figure 20 are 15% and 4% for the HSD element formulation and 85% and 47% for
the semi-coarse linear mesh. In the foreship secondary peak, the difference is 13% and
4% for the HSD element and 127% and 40% for the semi-coarse linear mesh.
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The deficiencies of coarse linear meshing and the improved accuracy of the HSD
formulation are further strengthened on vertical shear and normal stress distributions in
two cross-sections at x = 22,5 m, shown in Figure 21 that presents an overview of a
more orderly behaving cross-section, while the cross-section at x = 40,5 m, shown in
Figure 22, includes the effects of noncontinuous structures.

Figure 21 indicates that the HSD element can accurately trace fine linear mesh
results, while the average nodal normal and more prominently shear stress values lack
accuracy at the transition layers and significant peak stress values are undiscovered.
The HSD formulation significantly outperforms semi-coarse linear mesh, as even with
decreased element sizing, the vertical stress distribution shows a lack of coverage in
critical transitory layers. Figure 21 b) indicates that coarse linear mesh is a viable
modeling solution, but only if the stress distribution does not experience any stress
discontinuities. Even a single discontinuity, such as in Figure 21 d), can create peak stress
underestimation of approximately 30% in both coarse and semi-coarse mesh models.
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Figure 21. Vertical distributions at x = 22,5 m for a) shear stress in the inner bulkhead, b) normal
stress in the inner bulkhead, c) shear stress in the outer shell, d) normal stress in the outer shell. [P2]

Although normal stress distributions close to structural discontinuities show good
correlation, shear stress distributions in Figure 22 a) and Figure 22 c) exhibit bigger
discrepancies as shear stress evaluation becomes more complicated in corner elements.
Regardless of coarse linear mesh once again exhibiting less accurate shear stress
distributions, the lowered accuracy of the HSD formulation suggests that element
refinement would be beneficial.
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5.3 Cruise ship model

The cruise ship model gives an overview of specifically shear stress distributions across
multiple planes and cross-sections. The planes have been defined on critical deck layers,
such as the main deck level, where thicker and stiffer hull structures transition into a
recess shell that is weakened with openings and has thinner plating, the first cabin deck,
where the recess shell expands outwards and transitions into cabin area shell, that is
additionally weakened to accommodate modular cabin installments, and the cofferdam
layer, where the shell and bulkhead structured are greatly diminished in length above
the cofferdam. Two cross-sections show a significantly different shear stress behavior to
further support the findings on the longitudinal distribution graphs. Global deflection and
normal stress response have been omitted, as it is sufficiently proven that the HSD
formulation can accurately predict global deflections and normal stress behavior. Shear
stress is of special interest, as it is greatly affected by the simplifications made for the
concept design model and has a larger impact from the introduction of the shear flow
rate degree of freedom presented in this research.

Longitudinal distributions of shear stress are presented in a direction-specific format,
where the vertical structures under investigation on the transition layer are further
identified. Two separate comparative graphs have been presented in the figures. The low
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approach demonstrates stress distributions, where the fine linear mesh presents results
from the element under the transition layer, whereas the HSD formulation calculates the
stress values at the edge for the element under the transition layer. The high approach
conversely uses the elements above the transition layer for the fine linear mesh and the
HSD formulation. Coarse linear mesh cannot separate stress distributions based on the
approach direction and thus puts out identical distributions for both graphs.

Shear stress distribution analyses at the main deck level are shown in Figure 23 and
Figure 24 In all graphs, the HSD formulation shows exceptional correlation to the fine
linear mesh distribution. In addition to the general tracing, local stress maximums that
are caused by proximity to structural discontinuities or weakened materials in bulkheads
are well captured. Coarse linear mesh shows varying correlation, as the analysis at the
bulkhead in Figure 23 illustrates the deficiency of the nodal averaging in layer transitions
with the difference reaching up to 40% between the coarse and fine linear mesh
distributions. Notably, the coarse linear mesh results in Figure 24 a) show a high correlation
as only a single layer of vertical element stress is averaged.
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Figure 23. Longitudinal shear stress distribution in the bulkhead at the main deck level. [P3]
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Figure 25 shows the stress distributions at the cofferdam layer. Due to the proximity
of geometric discontinuities, the stress distributions in this layer experience intense
variance in the outer shell. Here, the HSD formulation captures the local maximums
without losing any accuracy to the fine linear mesh, while the coarse linear mesh
experiences significant accuracy drop-off near discontinuities. The maximum stress
values near the structural ends at x = 110 m and x = 170 m are underestimated by up
to 75% for the coarse linear mesh and up to 20% for the coarse HSD mesh calculated in
identical coordinates.
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Cross-sections at x = 52,5 m and x = 172,5 m are additionally analyzed to better
understand the accuracy that inter-elemental higher-order interpolation of stresses
provides. In longitudinal distributions, singular elemental stress value has been used for
the HSD formulation, as ship models have more elements longitudinally and shear stress
variance within the element is less prominent. In vertical stress distribution analysis,
the singular elemental stress values might often provide good accuracy, however,
the discovery of maximum stress within the element often requires a higher-order
approximation function.

Figure 26 gives an oversight of stress distributions in a cross-section without notable

disturbances from structural discontinuities. In the inner bulkhead in Figure 26 a),
the stress distributions show significant discontinuity only on the main deck level as the
bulkhead thickness transitions from 10mm to 6mm thickness. The graph shows an overall
good correlation between the mesh types and a notable difference at the transition,
as the coarse linear mesh underestimates the maximum stress value by 15%.
Stress discontinuities at the main deck and cabin deck transitions are best visualized in
outer shell structures in Figure 26 b). Here, the coarse linear mesh lacks accuracy as the
stress values at the recess edges differ by up to 40% compared to the fine linear mesh.
The HSD formulation shows very good accuracy and proves to be very capable of
describing discontinuities along the whole vertical span of the cross-section.
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Figure 26. Vertical shear stress distribution at x = 52.5 m. [P3]

Figure 27 presents the stress distribution for a cross-section adjacent to structural
discontinuities in the midship area. Proximity to the structural discontinuities in the
cofferdam layer height at z = 37,4 m causes significant increase in shear stress that are
accurately captured by the HSD formulation. Coarse mesh distribution shows how the
peak stresses occurring within the element are completely missed resulting in a near 50%
reduction in the predicted maximum stress values. The HSD formulation shows a slight
overestimation of maximum stresses by 13% while providing a highly accurate stress
distribution over the whole cross-section.
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6 Discussion and conclusions

Structural analysis of ship structures follows closely the overall ship design process that
is largely divided into three distinct stages: concept design, basic design, and detail
design. In the concept design phase, the deck arrangement is solidified, and the major
structural elements and the mainframe are defined. As the design stages are progressively
longer and need more resources, the methods utilized in concept stage structural
analysis need to provide as accurate data as possible with a limited amount of time and
level of detail available.

The research in this thesis introduced first an asymmetric element description in [P1],
where corner nodes described nodal displacements, while midside nodes on vertical
edges described shear deformation at the corners. Although difficult to implement due
to asymmetry, this theory can describe discontinuous stress at shared corner nodes
between adjacent elements. The element description was validated on two planar model
use cases that roughly represented multideck ship vertical structures. Firstly, a model
with different layer lengths was used to simulate the interaction between a thick hull
plating and a thinner superstructure. Secondly, with similar layer thicknesses, a model
with openings was analyzed to validate the theory in areas affected by stress
concentrations. The finite element analysis revealed a realistic shear and normal stress
distribution for the proposed theory which significantly outperformed identically sized
linear mesh when compared to fine linear mesh model results.

The theory was further developed into the higher-order shear deformation theory in
[P2] and [P3], as it was favorable to rework the element descriptions into a system, where
the nodal DOF vector is constant throughout the model. This was achieved by introducing
an equilibrium shear flow rate DOF that would specifically ensure an accurate parametric
description of shear stress. Separate element descriptions for vertical longitudinal,
vertical transversal, and horizontal elements were created due to the restrictions to the
size of the nodal DOF vector from the commercial software application. It was one of the
main objectives of the thesis, to be able to apply the theory in commercial software as
that would provide similar solver efficiency. Therefore, the proposed nodal DOF vector
is limited to 6 variables consistent with the conventional displacement and rotation DOF
allocation for classical plate elements.

Two analysis models have been introduced to validate the HSD formulation.
The stepped box model in Paragraph 4.3 and originally presented in [P2] consists of
horizontal and vertical longitudinal plating and introduces a shear-weak superstructure,
where outer shell elements above the midplane have lowered thickness as well as
lowered stiffness properties. This resembles a real-life superstructure structure, where
plating thickness is reduced to a lower global center of mass as well as to facilitate the
lowered importance of carrying bending stresses. The cruise ship model in Paragraph 4.4,
originally presented in [P3], adds to the level of modeling detail and the resemblance of
a real-life cruise ship. Design elements such as recess, double bottom, cofferdam, pillars,
and transversal bulkheads are added. This model extensively incorporates weakened
material definitions as horizontal structures introduce openings for elevator shafts or
stairs and bulkheads introduce openings for passenger pathways. As local interaction
between pillars and deck stiffening structures is not of major interest, pillars have been
introduced into pillar line plate elements, with significant negative space within the
element lowering the equivalent stiffness.
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The objective of the analysis is to present a case for increased accuracy in models
using the HSD formulation over a similarly sized linear element mesh. As concept design
calculations in the maritime industry have a well-defined best practice for element sizing,
where element dimensions are driven by deck height, main frame spacing, and the
transversal distance between pillars or between a bulkhead and pillar line, the theory in
this research does not seek to redefine those. It is investigated whether the use of
higher-order shear deformation theory could be utilized in commercial software to
achieve more accurate results without increasing modeling time and computational cost.

The results in Paragraphs 5.2 and 5.3 proved to universally increase the accuracy of
the elastic response in the coarse mesh model that used the HSD formulation over
traditional linear mesh formulation. Significant focus was put into investigating the
longitudinal normal and shear stress distributions in critical planes, where the vertical
structures transitioned in element thickness or element thickness and stiffness
properties. The analysis in all cases showed that the HSD formulation can describe
stresses at the transition layer depending on the directional approach. Coarse mesh
formulation was significantly hampered by the nodal density as linear elements describe
stress as a constant value within the element. These findings were further strengthened
when analyzing vertical stress distributions, which clearly showed that maximum stress
often occurs within elements, that could only be located with smaller element sizes or
higher-order approaches. Coarse linear mesh lacked nodal density to locate such stress
maximums and therefore the case for using the HSD theory over traditional uses of linear
meshing is presented.

In practice, the HSD theory presented in this thesis enables an accurate elastic
response in the conceptual design phase such that critical maximum stresses can be
located and considered as early as possible. The method outperformed identically sized
linear mesh in all applications and every cross-section and horizontal plane. Future
developments in the development of the HSD theory include presenting a comprehensive
unified theory, where elements use consistent element definitions that are transformed
to fit the global positioning. In addition, an isoparametric approach would be needed to
model outside of principal planes, which would increase the resemblance to real-life
structures. Additionally, the theory would benefit from introducing torsional and
out-of-plane response functionality. This method would also require a mass matrix
definition to perform eigenvalue analyses that are of interest in the conceptual design
phase. Finally, it would serve this theory greatly to develop full integration with commercial
software to eliminate extra steps in data transferring and improve the applicability of the
theory.
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ABSTRACT
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placement degrees of freedom at corners, and 4 shear strain degrees of freedom at mid-side nodes,

are defined. This approach enables accurate estimates of the shear strain between adjacent layers
with different stiffness. A simple cantilever beam, non-uniform stepped girder with constant layer
stiffness, and uniform girder with varying stiffness is used in the validation analysis. An excellent
agreement between the fine mesh finite element model and the proposed model is observed.

1. Introduction

Today, a variety of marine structures such as tankers and
cargo and single-deck ships are sufficiently accurately
assessed at the preliminary stage with the simplest forms of
beam analysis that describe the hull girders as a single slender
beam; reviews of common structural rules for bulkers and
tankers are presented by Yao [1], Sumi [2]. However, recent
trends in structural design for ships have been introducing
shear-weak and long, stepped, superstructures, changing the
typical transfer of shear stresses to a more complex phenom-
enon as described by Naar et al. [3], Shi and Gao [4, 5],
Romanoff et al. [6] and Morshensholuk and Khedmati [7].
Due to this complexity, today, the most widely used method
for solving passenger ship response is the three-dimensional
(3D) finite element method (FEM) [8]. In addition to the
high computational solution time, global finite element mod-
els are time-consuming to create. Therefore, analytical meth-
ods or coarse mesh finite element models are preferred in the
early design stage where design time is limited, as described
by Avi [9]. Mathematical analysis of ship hull girders was
first introduced by A. N. Krylov at the start of the 20th cen-
tury [10]. The hull and superstructure interaction methods
using the beam theories were first introduced by Crawford
et al. [11] by considering the shear and vertical coupling in a
two-beam system through additional stress resultants
(internal shear and vertical forces between beams). A similar
approach is introduced by Bleich et al. [12], where the
stresses in prismatic beams in a vertically coupled two-beam
system were considered. A review paper of non-classical
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Quasi-static structural
response; layer-wise
displacement theory;
higher-order beam theory;
finite element method;
girder analysis

continuum mechanics application in marine engineering by
Romanoff et al. [13] suggested that the response of a shear-
weak superstructure does not follow internally a typical shear
force diagram that the entire hull-girder experiences. The
paper offers two possible solutions. The first would be, to
exploit non-classical continuum mechanics, and to add a
micropolar correctional factor to a Timoshenko beam to esti-
mate micropolar moments over the height of the beam,
allowing the layerwise, internal variation, of shear stress resul-
tants within the hull girder height and length. The second
would exploit classical continuum mechanics such as a layer-
wise formulation for the beam. The first of such layer-wise
formulations was the linear Coupled Beam presented by Naar
et al. [3]. The method uses shear and vertical coupling
between layers to evaluate the response of multideck passen-
ger ships. Toming et al. [14] investigated the interaction of
hull and superstructure using the Coupled Beam method by
implementing a piece-wise approach, where layers of a multi-
deck ship are divided into beam segments for which the
structural behavior is individually described using continuous
coordinate functions to describe local structural discontinu-
ities. Non-linear Coupled Beam theory was consequently pre-
sented by Naar [15] and Morshensholuk and Khedmati [7] to
assess hull girder limit-states accounting for non-linearities
arising from local buckling or yielding.

Today, most beam theory applications within the marine
industry utilize the Euler-Bernoulli or Timoshenko beam
theory [16] which either neglects or oversimplifies the shear
behavior. The extensions to these practices in the marine
structures’ community could exploit the developments from
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the solid mechanics community. Levinson [17], Bickford
[18], Rehfield and Murthy [19], Krishna Murty et al. [20],
Bhimaraddi and Chandrashekhara [21], and Baluch et al.
[22] have presented parabolic shear deformation theories for
beams using a higher variation of axial displacement in terms
of height coordinate. Ghugal and Sharma [23] have proposed
a variationally consistent hyperbolic shear deformation the-
ory for thick beams and further refined the theory in [24]. A
higher-order shear deformation theory was introduced by
Reddy [25], where the in-plane displacement fields follow a
third-order polynomial. Many of these beam theories have
been extended to layer-wise theories, that can be applied
when analyzing composite laminates or structures. These
could be also applied in ships with shear-weak and stepped,
long superstructures interacting with more rigid hulls
deforming according to EB- or Timoshenko beam theories.
An excellent overview of multilayer theories was published
by Carrera [26]. The review focuses on the theories setting
assumptions for the description of displacements in the
cross-section’s normal direction and the stresses in the thick-
ness direction. To achieve interlaminar continuity, an equi-
librium for the stresses in the thickness direction is assumed
in Lekhnitskii multilayered theory [27], Ambartsumian
multilayered theory [28] and the multilayered theory based
on the Reissner mixed variational theorem [29]. Additionally,
these theories have made several integral assumptions for a
layer-wise approach such as the equilibrium of displacements
in adjacent surfaces and third-order displacement field defi-
nitions used, for example, by Toledano and Murakami [30].
The layer-wise displacement theory of Reddy [31] assumes a
displacement field that uses an independent approximation
of variables in the thickness direction from in-plane approxi-
mations. A generalization of the layer-wise displacement the-
ory is presented in Reddy’s later research [32], where the
approach is applied to beams. Carrera unified formulation
(CUF) is an approach that generalizes polynomial expansion
methods for beams, plates, and shells including laminated
and multi fields loadings that has the potential to be applied
in marine technology applications as shown by Rehan [33]
for simple ship hull girders and global hull girder responses
in terms of displacements. The potential of this formulation
in the passenger ship context is providing the means to cre-
ate refined higher-order models where the specific approxi-
mation type being used and the order to which the
approximation is expanded are considered as the parametric-
ally free problem inputs. The CUF has found many applica-
tions in both statics [34-37] and dynamics [38-40] on
beams, plates and shells undergoing small and application
with large displacements [41-43]. These works include ori-
ginally classical papers [44-46] and recently also expansions
to non-classical structural models and use-cases [47-49]. In
the present paper context, the interest is in the early works
which focus on beam stress analysis and related finite elem-
ent formulations [34, 36, 37, 50] as the application to passen-
ger ships calls for both and especially increased accuracy on
the stress assessment.

This article includes reference data presented by Pagani
et al. [37] that includes a novel hierarchical Legendre
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polynomial expansion model in addition to referencing ana-
lysis data using Taylor expansion models and classical beam
theories. These advancements in beam theories have the
potential for applications within the marine structures’ com-
munity, in the analysis of complex hull girders such as in
passenger ships.

This paper aims to bridge the gap between layer-wise the-
ories typically used for composite laminates and extend their
application toward the marine industry. The layer-wise
method developed in this paper lends the assumptions for
interlaminar continuity of displacements from the classical
layer-wise displacement theory while introducing a novel
membrane element definition that achieves the desired stress
behavioral capabilities. In marine structures, in-plane shear
stress over the height of a ship is often non-continuous due
to the differences in plate thicknesses, secondary stiffening,
and non-linear responses due to different failure modes in
layers (e.g. local buckling, yielding). This characteristic is
achieved with a novel finite element definition that in add-
ition to in-plane displacements at element corner nodes,
includes hybrid shear strain degrees of freedom (DOFs) in
mid-side nodes in the ship height direction. The representa-
tion of the shear strain component values at the coordinates
of the corner nodes as mid-side node DOFs enables an
uncoupled description of shear stresses between vertically
adjacent elements, which is necessary to describe the non-
continuous nature of shear stress in adjacent structures,
where topology or material properties vary. Axial displace-
ment of the membrane element is approximated with a
third-order polynomial through the ship height direction,
whereas for the displacement in the ship height direction
linear approximation is accurate enough. This formulation
allows using large elements that can accurately approximate
the displacements and normal and shear stresses that are of
fundamental importance in the design of complex passenger
ship hull girders, where the layers are thin, yet shear stresses
can be significant and non-continuous. Thus, computational
accuracy and efficiency are enhanced in comparison to the
alternative 4- or 8-noded membrane elements. The pre-
sented method is validated in two stages. Firstly, a compara-
tive analysis is performed on a layered cantilever beam for
which the results are compared to an analysis performed by
Pagani et al. [37]. In the article, the authors compared the
results of various Carrera’s Unified Formulation (CUF)
models using hierarchical Legendre polynomial expansions
and Taylor expansions. Secondly, the numerical results are
compared between the presented method and finite element
analysis using commercially available software with stepped
and shear-weak hull girder models.

2. Higher-order coupled beam theory
2.1. Definition of variables

The method is described for a quadrilateral membrane elem-
ent defined in the Cartesian coordinate system. The x-axis is
aligned with the length I, and the y-axis with the height h,
of the element. The finite element is defined with 6 nodes.
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Figure 1. Beam element in the Cartesian coordinate system and explanation of
shear strain DOFs.

The corner nodes, 1-4, are complemented with mid-side
nodes in the y-direction, as shown in Figure 1.
DOFs in a membrane element, see Figure 1, are as follows:

e uy, ..., us—displacement in x-axis direction at cor-
ner nodes

e v, ..., vy—displacement in y-axis direction at cor-
ner nodes

® Yye1> -+ Yyga—shear strain due to horizontal shifting

at the locations of the corner nodes.

As the stiffness properties of the layers in the passenger ship
height direction often vary, it is necessary to uncouple shear
strains between layers. Thus, the shear strain DOF is
expressed in mid-side nodes leaving these variables
uncoupled between adjacent elements in the ship height dir-
ection in the global stiffness matrix.

Ship structures are traditionally considered to act as thin-
walled structures due to the high ratio between in-plane and
thickness dimensions. Although significant ie. for a single
deck vibration analysis or a buckling analysis of a singular
stiffened panel, out-of-plane behavior has little effect on the
global response of a passenger ship.

2.2. Definition of the displacement field

The in-plane displacement fields u(x,y) and v(x,y) of the
developed membrane element are individually expressed as a
combination of polynomial functions in y direction as:

u(x0,¥) = Au1y’ + Bu1y’ + Cu1y + D1, €]
V(%0,¥) = Ay 1y + By,1. (2)

Equations (1) and (2) use the following relations to solve

the polynomial equations at x=0 for constants
Au,bBu,l)Cu,lxDu,l and Av,l)Bv,l :
u(0,0) = u;
Ou
0_)/ (O’ 0) = yyx,l
u(0,h) = us )
u
(9_)/(0’ h) = Vyx,3>
v(0,0) = v,
{ v(0,h) = v3. )

After inserting values of constants to Eqgs. (1) and (2),
regrouping for DOFs shown in Figure 1, and adding first-
order approximations ¢;(x), ¢,(x),<1(y), & (y), displace-
ment fields are described as a linear combination of shape
functions and DOFs:
u(%,y) =Yy ()P (x0)ur + ¥ (V) P2 ()3 + ()91 (X) Vg1

F Yo (1) P2(%)Vsy,3 T V3 ()1 ()2 + Y3(¥) Do (X) 1

+ l//4(y)¢l (X)yxy,l + '//4(}’)452(")“/@,4’

(5)
v(xy) = & ()11 + E1(0) P2 (x)vs + () d1 (x)v2
+ sz()’)d’z(x)"‘b (6)
where
B —3hy* +2
iy =
W2y —2hy* + 33
Wz(}’) = }’h—z)'z)’ (7)
3hy? —2y°
‘ﬁ3()’) = “ h3 )
3 _ h 2
Vi) =
ap)=1-7
Y ®
Q) = n
¢i(x) =1 7%
X 9)
¢y (x) = 1
or in vector form as:
u(xy) = {N}T{u}, (10)
v(xy) = {V} {v}. (11

where {N} and {V} are vectors of shape functions and {u}
and {v} are vectors including nodal DOFs in axial and in
the ship height direction as presented in Egs. (5) and (6).

Ship structures are often composed of stiffened panels for
which the orthotropic approach is needed as it enables mod-
eling the stiffened panel as a homogeneous plate structure.
The in-plane normal and shear strains are expressed as:

u(x,y)
B Ox
xx (%)
by (= dy
2] oueny) | ovlxy)
Jy Ox (12)

B} w
- e
{3 -+ {3}




2.3. Expression of potential energy

For an orthotropic material, where material axes (%1, X2, X3)
is coincident with coordinate axes (x,y,z), stress compo-
nents according to the generalized Hooke’s law are:

Oxx Cui Cn O Exx
gy ¢=|Ch Cyn 0 &y (13)

Ty 0 0 Ce 26y

where Cj; are the elastic stiffnesses:

E E;
, G =
(1 —viova1) (1= vipv2)

Cn = , Ci2 =v12Cy, Ces = Gra.

(14)

Here, E; and E, are Young’s moduli in the x and y direc-
tions, respectively, Gy, is the in-plane shear modulus and
V1> and v, are Poisson ratios described as:

E,

V1 = Via

E (15)

The potential strain energy equation for an orthotropic

membrane element is written as:

I I
_ [ [ (Gaxax + Gyyyy + 0128y, )dAdx — J pyv(xy)dx
0A 0

i

0

1
2

[ Cnl + Ciagyyery + Cratuxtyy + szl y T Ces(2¢xy) )dAdx
A

l\.)\'—-

- [pyv(x,y

0

) dx,

(16)
for which the first variation of potential energy is:
1 !
(%u Ou 9%y . Ov

0A 0A

1 I
déu ('9 Qov 8
0A 0A
1 I
dou . Ou oou . v
+ J J ((9_}1 Ces 8_> dAdx + JJ (0—)/ Ces a) dAdx
0A 04
1 I
dov . Ou 851/ 8
0A 0A
1
- prév(x,y)dx =0,
0
(17)
where
ou = {5a}T{N}, (18)
sv = {ob} {V}. (19)
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{0a} and {db} are vectors of variations of arbitrary con-
stants. By substituting Eqs. (10), (11), (18), and (19) into Eq.
(17) finite element equations become:

d d
) + (d—yN,-CGS dyNj>>dAdx

1
d d
ki = [ | ((defC“def
0A
(20)

1
d d d d
0A

@1
1
K21;; = J j ((% ViCes dinJ) + (diy ViCiz dixNj> ) dAdx
0A
(22)
I
i, = [ ((Lvcuy) + (f vcu ) Jas
0A
(23)
1
= J pyVidx (24)

0

The first variation of potential energy in Eq. (17) can be writ-
ten using finite element equations from Egs. (20) to (24) as:

ST = {sa} " (IK11){u} + [K12]{v})

+{ob}" ([K21){u} + [K22){v} — {F})

—0. (25)

As {da} and {0b} are vectors of arbitrary constants, the first
variation can only equal to zero if the two components in
brackets in Eq. (25) are individually equal to zero, thus:

] B0

[K21]
The vector of constants in Eq. (26) is rearranged and node-
wise grouped as shown in Figure 1, where every node has 2
DOFs to facilitate the formulation of the global stiffness
matrix and global loading vector as:

(26)

Uy
Vi
u
V2
yxy, 1

[ K] yxy, 2
yxy, 3

={F} 27)
yxy,4
us
V3
Uy
Uy
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Figure 2. Cantilever beam model and layer configuration presented by Pagani et al. [37].

where [K] and {F} are the rearranged stiffness matrix and
external loading vector respectively.

3. Models used for analysis
3.1. Cantilever beam model

Proof of concept analysis is performed on a cantilever beam
model for which 8 separated layers defined with two differ-
ent sets of material properties were incorporated. The refer-
ence data values for the analysis and the topological
properties of the cantilever beam are presented in Pagani
et al. [37]. The model in Figure 2 illustrates a thin cantilever
beam with a varying configuration of layers to clearly distin-
guish the effects of changing material properties at layer
transitions. The materials used to define the layers have
identical transversal elastic modulus (Er =1 GPa), shear
modulus (G = 0.5 GPa) and possion ratio (v =0.25).
Longitudinal elastic modulus is E;; = 30 GPa for material 1
and E;; =5 GPa for material 2, see Figure 2 for layer con-
figuration. The Poisson ratio and shear modulus is assumed
to be constant in all directions. The cantilever beam is
loaded at the free end from each cross-section corner with
four equal loads summing up to F, = —0.2 N. The model is
located in a Cartesian coordinate system, where the y-axis is
coincident with the longitudinal direction and the z-axis
is coincident with the transversal direction of the model. See
Figure 2 for the cantilever beam model and the layer
configuration.

The cantilever beam is defined with 72 elements for the
application of the presented theory, where every layer con-
sists of 9 elements in the longitudinal direction resulting in
340 DOFs in total.

3.2. Hull girder models

To illustrate the layerwise application of the developed finite
element in a marine context two case studies are considered.
These are selected from Toming et al. [14] from which two
simplified ship hull girders were considered,' one represent-
ing a stepped beam with uniform stiffness in layers and

"The Cases B and C from the paper from the paper represent stepped beam
with constant stiffness in layers and uniform beam with varying stifness in
layers respectively. We exploit here the latter wording for physical insight.

another representing a uniform beam with varying stiffness
in layers.

The stepped beam model consists of three adjacent mem-
brane sections in the ship height direction with varying
lengths. Each membrane section is described with a single
layer of elements for the Quadé and coarse mesh Quad4
models consisting of a total of 120 elements. Additionally,
the Quadé6 fine mesh model has been included in stepped
beam model analysis to more accurately describe the corner
effects by separating each membrane section into three
layers of elements for which & = 1000 mm, thus consisting
of a total of 360 elements. The fine mesh finite element (FE)
model, used for comparison, consists of 9300 Quad4 mem-
brane elements with dimensions of 200 x200mm, see
Figure 3(a) for the model dimensions and the FE models.
The model for the uniform beam with varying layer stiffness
consists of three adjacent membrane sections with equal
lengths, where the upper layers have large openings, which
lower the overall stiffness of the structure and alter stress
distributions. For the Quad6 and coarse mesh Quad4 mod-
els, the membrane sections with openings are both divided
into three individual layers as the openings are described
with offsets from beam surfaces consisting of a total of 520
elements. The fine mesh FE model consists of 23,000 Quad4
membrane elements with dimensions of 150 X 150 mm, see
Figure 3(b) for the dimensions and the coarse FE model and
Figure 3(d) for comparative size of the applied fine mesh.
The elastic foundation has been used as boundary condi-
tions for FE-models as it provides an accurate representation
of a hull girder bending in waves, see Figure 3(c) for bound-
ary principles.

Identical sinusoidal loading has been applied to all mod-
els to the bottom surface nodes excluding the elastic founda-
tion elements as shown in Figure 4. The distributed loading
is calculated as:

p(x) = po * cos <%>, (28)
where py is load amplitude taken as 60N/mm, L is the total
length of the model taken as 60 m. Material properties for
elastic modulus and Poisson’s ratio are used for FE mem-
brane models: E =210GPa, and v = 0.3 respectively. FE-
analysis was performed using NX Nastran and FEMAP
Academic version for Quad4 membrane models and
Mathcad 15 software for Quad6é membrane models.
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Figure 3. Geometry and FE plate models for (a) stepped beam with uniform layer stiffness and (b) uniform beam with varying layer stiffness, (c) principles of apply-
ing elastic foundation, and (d) detail views showing the comparative size of the used fine mesh.
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Figure 4. The applied distributed loading to the stepped beam with uniform
stiffness and uniform beam with varying stiffness between layers.

4. Results
4.1. Cantilever beam model

The analysis performed for the 8-layer cantilever beam in
[37] involved expressing the transversal distribution of
normal and shear stress at the cross-section y = L/2. The

data from Figure 11 from the referenced article is
lumped together depending on the coincidence of the
results between the used methods. For the normal stress
analysis, the Euler-Bernoulli beam method (EBBM),
Timoshenko beam method (TBM), and the results for
the 6-th order Taylor expansion model (TE N6) were
lumped as well as the presented hierarchical Legendre
expansion models (8HL2, 8HL4, 8HL6, 8HL8) with vari-
ous n-th order (n=2, 4, 6, 8) were lumped together
due to highly coincident values. The layerwise theory
presented in this article shows extremely coincident
results to the hierarchical Legendre expansion models.
These methods are distinguished by the ability to accur-
ately describe the non-continuous stress behavior at the
layer transitions compared to the analytical method, clas-
sical beam theory, and Taylor expansion model values,
see Figure 5.

For shear stress comparison, hierarchical Legendre expan-
sion model results (8HL2, 8HL4, 8HL6, 8HL8) are lumped,
whereas the 6-th and 9-th order Taylor expansion models
(TE N6, TE N9) produce highly different results. The pre-
sented layerwise theory results are similarly in good agree-
ment with the results of the hierarchical Legendre expansion
models, see Figure 6.
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Figure 5. Transversal distribution of normal stresses at y = L/2 for the presented layerwise method and analyzed theories in [37].
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Figure 6. Transversal distribution of shear stresses at y = L/2 for the presented layerwise method and analyzed theories in [37].
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Figure 7. Comparison of deflections: (a) stepped beam, (b) unified beam with varying layer stiffnesses.

4.2. Hull girder models

Figure 7 presents the vertical displacements of different
models. The global behavior of the models is in an agree-
ment between the fine mesh and the Quad-6 mesh devel-
oped in this paper, and the coarse Quad-4 mesh.

4.2.1. Stress results for the stepped beam

For the stepped beam, the normal stresses have been ana-
lyzed in horizontal planes at y =% =3000mm and y=

2 — 6000mm and the top layer at y = H = 9000mm, along
girder length, see Figure 8. The stress results are in good
agreement with the fine mesh results, however, peak stress
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Figure 8. Longitudinal distribution of normal stress at (a) y =H/3 =3000 mm, (b) y = 2H/3 = 6000 mm, (c) y =H = 9000 mm.
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Figure 10. Normal stress, gy, in the stepped beam at (a) x = 19,500 mm, (b) x = 34,500 mm, (c) x = 43,500 mm.

values are generally underestimated with Quad6 and coarse edges is more accurately described with Quad6. When finer
mesh Quad4 model, Quad 6-results being considerably more  Quad-6 mesh is utilized the results are in excellent agree-
accurate. In addition, stress decay at the vertical boundary ment with the fine mesh results.
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The longitudinal distribution of shear stresses is analyzed

in the middle layers of the layers at y =% = 1500mm, y =
% =4500mm and y = % = 7500mm, see Figure 9. In gen-

eral Quadé6 element models and fine mesh, model results are
in agreement, whereas as coarse Quad4 element underesti-
mates the stresses, especially at the discontinuities. Again

S Quad4 fine, a)
© Quad4 coarse, a)

e Quad6,a)

Quada4 fine, b)
© Quad4 coarse, b)

® Quad6, b)

Quad4 fine , )
< Quad4 coarse, c)

® Quad6, c)

40000 50000 60000

Quad6 mesh models show excellent performance in com-
parison to fine mesh when element size is decreased.

Cross-sections for analyzing the transversal distribution
of normal stresses, g,, have been chosen such that both lin-
ear and higher-order distribution of stresses through the
height of the girder can be seen. For the stepped beam with
uniform stiffness in layers, cross-sections close to disconti-
nuities at x = 352~ 19,500mm and x = 1L ~ 34,500 mm
and linearly behaving cross-section at x = 15z ~ 43,500 mm
are chosen.

Vertical distribution of normal stress shows excellent
agreement in all selected sections between Quad6 element
model and fine mesh, with finer Quad6-mesh increasing the
accuracy. In comparison, the fine mesh model does not
agree with the coarse Quad4 mesh model at the places
where significant discontinuities occur. This highlights the
need for Quadé6 element formulation, see Figure 10.

As an extension to the investigation on normal stresses,
the distribution of shear stresses in the vertical direction
shows highly corresponding results for fine mesh and coarse
Quad6. Decreasing the Quad6 element size again improves
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Figure 14. Longitudinal distribution of shear stress at (a) z= 1500 mm, (b) z=4500 mm, (c) z= 7500 mm.
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Figure 15. Local shear response in low shear stiffness areas for the fine Quad4
element model of the uniform beam with varying layer stiffness.

the agreement, while the same cannot be concluded from
the Quad4 coarse mesh, see Figure 11. As in the case of nor-
mal stresses, this justifies the use of Quad6-formulation.

4.2.2. Stress results for the uniform beam with varying
layer stiffness

The axial distribution of normal stresses, g, in the uniform
beam with varying layer stiffness shows overall good corres-
pondence between the fine-, Quad6- and Quad4-meshes, see
Figure 12. The Quad6 element model describes the oscilla-
tion of stress highly accurately when compared to the fine
mesh model, while the coarse Quad4 element model overes-
timates the oscillation amplitude at the midspan region in
planes y=2H/3 and y=H. The oscillating normal stresses
form most prominently in the top surface as openings intro-
duce areas along the free edges, where bending stiffness is
lowered and secondary shear strain occurs. In a global bend-
ing situation, the free edge geometry of openings is
deformed and the structures on top of openings provide an
opposite local bending response, see Figure 13.

When the shear stresses are observed in the middle of
the layers, the Quad6 and Quad 4 results are in agreement
with the fine mesh results, except for the peak values, see

Figure 14. As Figure 15 shows in the vicinity of openings,
the traction-free stress conditions cannot be accurately
described with the Quad6 or Quad4 element models. These
discrepancies can be addressed by decreasing element
dimensions in stress-critical areas in sub-models.

For the unified beam with varying stiffness in layers,
cross-sections  close to discontinuities at x= ﬁ ~
43,875mm, in the middle of a shear weak section at x =
L

543 ~ 24,750 mm and linearly behaving cross-section at x =

ﬁ ~ 14,625mm are chosen. Transversal distributions of
normal stresses for the unified beam with varying stiffness
in layers show excellent agreement between Quadé and fine
mesh models, see Figure 16. The Quad6 element model
describes normal stress as a continuous function throughout
the cross-sections as well as the effects of openings in high
detail. Results for the coarse Quad4 element model are more
scattered, especially for the cross-sections with openings.

In the same way, the shear stresses in the ship height dir-
ection are in agreement between the Quad6 and fine mesh
models, while the coarse Quad 4 element model has difficul-

ties modeling the fine mesh results, see Figure 17.

5. Concluding remarks

This paper introduced an application for the layer-wise dis-
placement theory to evaluate displacements and stress distri-
butions in layer-wise models with changing material and
topological parameters as are present in the marine industry
in passenger ships with long superstructures. This applica-
tion creates a need for a 6-node finite membrane element
with two displacement DOFs in corner nodes and two shear
strain DOFs in mid-side nodes of transverse edges. Similar
to classical 4-node membrane elements, these developed ele-
ments can be used to describe complex membrane struc-
tures. This approach generates a realistic distribution of
normal and shear stresses in the hull girder. We have pre-
sented two case studies for the developed element to express
the applicability in areas of discontinuous stepped layers,
areas of openings or shear-weak sections and areas of
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continuous structures. In real-world marine applications,
these resemble hull and superstructure transitions and
superstructure openings.

Simple cantilever analysis provided insight into the capa-
bilities of the presented layerwise theory in comparison to a
variety of classical theories and Carrera’s unified formula-
tions analyzed in [37] using a selection of expansion models.
The presented layerwise method was highly coincident with
the hierarchical Legendre expansion models presented in
[37] being able to accurately describe stress behavior in a
cross-section with varying stiffness regions. In addition, the
formulation proved highly beneficial in problems typical for
passenger ships in which stress analysis is of great import-
ance. In areas of continuous structures, but with high stiff-
ness variations between layers, the formulation showed
excellent agreement in displacements and normal and shear
stresses in comparison to the fine mesh FEA, the agreement
improving with decreased element size. In the vicinity of
discontinuities for stepped layers, the new formulation pro-
vides very accurate results in comparison to the fine mesh.

Underestimation of peak shear stresses with the large Quadé
elements became evident in the ship height direction, in the
vicinity of the layer discontinuities. However, it was shown
that decreasing the element size increases the accuracy. In
shear-weak regions, the new Quad6 formulation similarly
provided very accurate and better results than the Quad4
coarse mesh.

In practice, this formulation allows naval architects to
perform initial stress analysis of passenger ship structures
with improved accuracy. The method presented in this
paper serves as an alternative method for detailed 3D FEM
with good accuracy and low computational cost. In addition
to the static response of structures, the lowest natural fre-
quencies of ship structures and hull girders play a significant
role in early-stage ship design. In future work, it would be
beneficial to extend the method to estimate the global
dynamic response of the passenger structure by continuing
the work of Rehan [33]. Also, the recent non-classical con-
tinuum mechanics formulations [51] should be investigated
further to define the roles of symmetric and antisymmetric



shear strain formulations more clearly in the passenger
ship context.
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ABSTRACT

This paper presents a higher-order shear deformation (HSD) finite element formulation for
evaluating the global static response of passenger ship hull girders. The method aims to
provide stress analysis with improved accuracy in complex ship structures with varying
topology while maintaining low computational costs. This formulation introduces definitions for
vertical and horizontal 4-node membrane elements with constant nodal degree-of-freedom
mapping. The approach was tested on a simply supported beam model and a stepped box
model with a shear-weakened superstructure. The results showed excellent agreement with the
fine linear mesh analysis, particularly in stress distributions at the topological and parametrical
transition layers. The HSD element outperformed identically dimensioned linear elements by
capturing the discontinuities and maximum values in the stress distributions. This method
provides an efficient solution for the 3D analysis in conceptual ship design, offering good
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accuracy at a low computational cost.

1. Introduction

Over the past decades, the size and structural complex-
ity of passenger ships have substantially increased, lead-
ing to an overall increase in the size of scantlings, global
dimensions, and structural mass. Harsh competition for
customers drives ship owners to opt for more complex
architectural solutions while striving for lightweight
ships necessitating more accurate structural analysis in
the conceptual design phase. Traditional rules of
classification societies lack coverage for niche structural
elements as evidenced by numerous specialised
research. Shear-weak superstructures that introduce a
more complex transfer of stresses are described by
Naar et al (2004), Shi and Gao (2019, 2021), Romanoff
et al. (2013), Morshensholuk (2016) and Bergstrom
(2010). The feasibility of a new 425.5 m long mega-
ship has been analysed by Tsitsilonis et al. (2018).
Non-load-carrying passenger accommodation decks
for modular cabin area design were analysed by Par-
masto et al. (2013). The effects of utilising a super-
thin superstructure deck with smaller stiffener profiles
on hull girder response were investigated by Lillemée
et al. (2014).

The challenges of complex structures have driven sig-
nificant developments in theoretical approaches to
structural analysis. Beam theories were first utilised by
Crawford et al. (1950) to describe the hull and super-
structure interaction by introducing additional stress
resultants for vertical and shear coupling in a two-
beam system. A similar coupled stress approach for a
two-beam system was introduced by Bleich et al
(1953), For multi-deck passenger ships, Naar et al.
(2004) presented a linear Coupled Beam method using
shear and vertical coupling modeled as force-carrying
springs between layers. The Coupled Beam method
was implemented by Toming et al. (2016) to analyse
the interaction of the hull and superstructure on simple
2D models. Yang et al. (2022) proposed a multibeam
method to simplify stress distribution description in
passenger ship superstructures. Romanoff et al. (2020)
proposed a micropolar approach to evaluate global
hull girder response for better local stress evaluation
accuracy.

Numerous advancements for more accurate through-
thickness shear stress descriptions have been developed
in thick beam applications and composite laminate
analysis. Parabolic shear deformation theories applied
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to thick beams were developed by Bickford (1982),
Krishna Murty et al. (1984), and Bhimaraddi et al.
(1993). Ghugal and Sharma (2009, 2011) proposed a
variationally consistent hyperbolic shear deformation
theory for thick beams and introduced further refine-
ments. Higher-order shear deformation theories for
composite laminates were developed by Reddy (1984)
and Toledano (1987) by utilising a third-order poly-
nomial description for in-plane displacement. A non-
continuous approximation of variables in the thickness
direction between plates was used in the layer-wise dis-
placement theory presented by Reddy (1987) and later
utilised on piezo-electrically actuated layered beams
(1991).

Despite advances in beam theories and analytical
models, 3D finite element analysis (FEA) is still the
most preferred and suggested method for evaluating
the structural response of passenger ships according to
ISSC (1997) and DNV-GL (2016). As detailed mesh
FEA is extremely costly, it is only used in small-scale
ranges and during later design phases. In the conceptual
design phase, classification society rules and modelling
optimisation research have set best practices for element
dimensions as utilising deck, web frame and pillar spa-
cings minimises the number of unique orthotropic
element definitions. Hughes (1989) utilised a modelling
approach for the concept design phase, where shell
structures comprised of two-layer elements, where the
first layer represented the plating and the second layer
represented the orthotropic stiffener layer, which were
summed to create an element stiffness matrix. In mod-
elling optimisation research, Ringsberg et al. (2012) and
Raikunen et al. (2019) presented an optimisation
method for passenger ships in the conceptual design
phase by utilising an evolutionary optimisation algor-
ithm and indirect constraint relaxation. Zanic et al
(2007) and Zanic et al. (2013) modeled stiffened panels
with equivalent orthotropic elements in passenger ships.
Romanoft and Varsta (2007) developed an equivalent
element for a web-core sandwich panel based on the
equivalent single-layer theory proposed by Reddy
(2004). Avi et al. (2015) used the equivalent single-
layer technique to describe a three-layer laminate
element, where the characteristics of stiffeners and spa-
cing can be implemented into the orthotropic material
description. Teguh et al. (2021) performed stiffened
panel ultimate strength analyses using an equivalent
single-layer approach. A layer-wise displacement theory
for passenger ships that introduced a higher-order shear
deformation element formulation was presented by
Imala et al. (2022). The formulation used midside
nodes in the element description to describe the

discontinuous shear stress in element boundaries in
topologically changing layers.

This paper aims to further add to modelling optimis-
ation techniques in the ship concept design phase by
introducing a formulation to increase the accuracy of
the finite element (FE) formulation of the shell elements
that have already been optimised to describe stiffening
structures within the shell element definition by utilis-
ing orthogonal definitions. This paper presents a
higher-order shear deformation method, improving
on the formulation presented by Imala et al. (2022)
for applications in the conceptual design phase of multi-
deck passenger ships. The shear stress response is often
discontinuous and exhibits a rapidly changing gradient
owing to orthotropic varying material properties
influenced by the varying plate thicknesses, secondary
stiffening and openings, and structural discontinuities
in the superstructure. Standard linear meshing falls
short in analysing these areas due to the nodal averaging
of stresses and the lack of accuracy within the element
boundaries when using linear approximations. Higher
accuracy can only be achieved by increasing nodal den-
sity thus making the analysis computationally more
costly and significantly increasing the model prep-
aration time as decreasing element size introduces
new unique orthotropic element definitions. The
method presented in this paper employs a dual-element
formulation within a global six DOF nodal mapping
system. The vertical element formulation utilises topo-
logic and geometric data to define a shear flow DOF
that ensures shear flow equilibrium in the shared edge
between adjacent elements. The formulation for hori-
zontal elements deploys a more simplified formulation
as they are used to disperse stress between the vertical
elements and are not of great interest in analysing
inter-elemental stress distribution. An asymmetric
approach to approximations is used for both element
definitions to lower computational costs and the num-
ber of necessary nodal DOFs, while prioritising
higher-order approximations for the equilibrium shear
flow definition.

2. Higher-order shear deformation
formulation

2.1. Motivation for the modified formulation

The layer-wise displacement theory presented by Imala
et al. (2022) introduced an element definition that
incorporated a six-node definition for a single element,
where shear deformation variables at corner node
locations were described in mid-side nodes on vertical



X

mid-side
nodes
u
Corner node DOF: {v}

Mid-side node DOF: {]]2}

Figure 1. Layerwise displacement theory element variables pre-
sented by Imala et al. (2022).

edges, see Figure 1. This approach enabled discontinu-
ous shear stress description between elements, however,
the formulation lacks applicability, as asymmetric nodal
positioning as well as inconsistent nodal DOF vectors
are not easily implemented into a finite element analy-
sis. In addition, the layerwise displacement theory for-
mulation kept the simplified definition for shear
deformation component dv/dx in Eq. (1) as constant
inter-elemental value as vertical displacement is linearly
approximated in the x-axis direction between nodes.

_0u(x, y) | ovix, y)
Ty ox

Exz (1)
where u(x, y) is the planar longitudinal displacement
field and v(x, y) is the planar vertical displacement field.

The methodology in this paper presents a higher-
order shear deformation formulation that operates in
a constant nodal mapping system with six consistent
DOFs per node, integrating a dual-element definition
to distinguish between the vertical and horizontal
element characteristics. A novel DOF describing nodal
shear flow rate utilising geometric and material proper-
ties of neighboring elements enables a direction-specific
solution that can evaluate discontinuous shear defor-
mation and stress between elements. This variable
definition ensures shear flow rate equilibrium along ver-
tical element longitudinal edges by defining an equili-
brium equation for elemental components in Eq. (6)
and assigning the equilibrium shear flow rate value as
the DOF value. In addition, the formulation further
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improves the shear deformation evaluation by incorpor-
ating an increased order of magnitude to approximate
the vertical displacement field.

The finite element equilibrium equations distinguish
between horizontal and vertical elements, optimising
computational efficiency. Horizontal elements employ
a simplified formulation sufficient for their primary
role in stress distribution, while vertical elements utilise
the full stress-specific formulation with the equilibrium
shear flow rate degree of freedom defined in Eq. (2).

2.2. Definition of equilibrium shear flow rate
variable

Element definitions are presented in a ship coordinate
system with longitudinal x-axis, transversal y-axis, and
vertical z-axis. Although the longitudinal vertical
elements and horizontal elements have unique sets of
DOF approximations, every node is defined with similar
6 degrees of freedom in the global coordinate system:

u, v, w - translations respectively in x, y, z axis
directions,

q - equilibrium shear flow rate

v, v _ deformations in the direction of the shared
edge between the elements.
The equilibrium shear flow rate degree of freedom g

is expressed as:
_(u, w\,(C
7=\ " )'\G,
ou\* o\ (G
H(G) @) e

8 *
Where t is element thickness and (a—u) , t*, G* are
y

parameters of a neighboring horizontal element and
Gy is a reference shear modulus value to account for
the change in material properties in adjacent elements.
The numerical value is taken such that the components
G/Gy ; G*/Gp do not have a significant effect on skew-
ing the global stiffness matrix towards the larger stiff-
ness components. The reference shear modulus value
is calculated as:

— Z?:l Gi

n

Go (3)
where G; denote the shear moduli used in the analysis.
In an orthogonal element definition where Gy, # G,
the shear moduli used in the Eq. (2) are defined along
the relevant edge. Planar shear moduli are not separated
further in this article. Change in longitudinal displace-
ment in parameter (du/dy)* is always considered in
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Figure 2. Pairing elements for du/dy degree of freedom
definition.

the direction of the positive y-axis, i.e. in Figure 2:

u Uy — Us
) = , 4
(By)4 heiy @

u ug — u;
—) = R 5
(8}/)1 hers ®

Element principal dimensions are defined as length I,
and height h,; for the primary and the secondary edge

3,4

712‘1

lengths. Vertical elements are positioned on the global
xz-plane making the x-axis the primary edge direction
and the z-axis the secondary edge direction, while the
horizontal elements on the xy-plane have primary
edge along the x-axis and secondary edge along the y-
axis direction.

The shear flow rate equilibrium in the shared edge in
Figure 3 is described as:

Gel1Sell,z + Jel2Sel2,z + qd35el3,y + Qel4scl4,y =0 (6)

where sg1z, ..., S,y obtain the polar values (1; - 1)
according to the edge normal direction respective to a
collinear principal axis. The equilibrium equation can
be re-written considering the edge normal scalars
based on Figure 3 as:

Gei2 + qeiz = Gent + Geia » (7)

where
Gei2 + Geis = G pos> (®)
et + Geis = Gneg- %)

The equilibrium shear flow rate degree of freedom is the
representation of the summation of shear flow rate

N3

Figure 3. Shear flow equilibrium in coincident element edge (This figure is available in colour online).



components on positive or negative edges
dpos = Gneg = q> Where the indexes pos, neg represent
the direction of the edge normal.

After replacing Egs. (4) and (5) and further opening
Eq. (2), g can be defined in nodes on the positive and
negative edge respectively as:

@2 =4q3
()
0z  Ox Gy
+ (u*_u-i-@)t*(g), (10)
h* 0x Gy
91 =44
)
0z  Ox Gy
+<”_“*+@>t*<G—*), (11)
h* 0x Gy

where indexes 1-4 denote the node in counterclockwise
numeration, see Figure 5.

2.3. Definition of the horizontal element

A simplified nodal description for non-zero degrees of
freedom is used for horizontal element description.
The horizontal element DOF values play a key role in
the solvability of Eq. (10) and (11). The non-zero
degrees of freedom for the deck plating elements are
shown in Figure 4.

Approximations for deck plating:

u(xo, y) = Auy + B, (12)

v(xo, y) = Au,y + By, (13)

u(x, yo) =Aux+ B, , (14)

v(x, yo) = Ay, X’ + B, X + C,x +, (15)

where A, B, C, D are the polynomial multipliers with
the index denoting the relevant displacement field
between u-longitudinal displacement and v-vertical dis-
placement and the changing variable between x, y coor-
dinates. Values x, and y, represent the constant
variable, as independent polynomial equations are
defined for each displacement field variable.
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Constant values for vertical plating approximations:

u(0, 0) = uy
u(0, h) = uy ,
(0, 0) = v,
v(0, h) = vy,
u(0, 0) = uy
u(0, I) = uy,
(0, 0) = »,
1% o,
v(0,]) = v,
av vy
—(0, ) =—=.
ax( ) 0x

(16)

17)

(18)

(19)

After inserting the values of the constants into Eq.
(12) to (15), regrouping for the DOFs shown in Figure 4,
the displacement fields are described as a linear

Figure 4. Degrees of freedom for deck plating element.

Uz
V2
Sv,
—— %

Uy U3
Wa w3
qs q3
2} |Wa dws
dx ox
‘ i
Uy U,
wq Wy
q1 q2
an sz
dx ax

l

Figure 5. Degrees of freedom for vertical plating elements.
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combination of shape functions and DOFs:

u(x, y) = e1(y) by ()ur + &1(y) hy(x)u,
+ £2(0) 1 () uy + £2() by ()uz (20)

v(x, y) = e1() o1 (X)v1 + £2(y) w1 (x)v4
e ()wa) (%) Feaont (%)

+e1(Y)ws(x)v, + e2(y)ws(x)vs

0
1)) (%) Fea(y)wa(x) (g{)
2 3

4

21

Transversal and longitudinal shape function approxi-
mations for the axial and transversal displacement are
first-order polynomials:

ey) =1-2,
, (22)
82(}’)=ﬁ s
¢>1<x):1—§,
o) (23)
zx)fj-

The longitudinal shape function approximations for the
transverse displacement are third-order polynomials:

B —3Ix* 4+ 2x°
B
Px —2Ix* +x°
3% — 21;3 ) (24)
B
2 — I

w(x) =
wy(x) =

w3(x) =

wy(x) =

>

2
Displacement fields can alternatively be expressed in
vector form as

u(x, y) = (U} {u}, (25)

v(x, y) = {V} v, (26)

where {U}, {V} are vectors of shape functions and
{u}, {v} are vectors of nodal degrees of freedom values.

2.4. Definition of the longitudinal vertical
element

The longitudinal vertical element utilises the shear flow
rate DOF description in Eq. (2) in an asymmetric
approximation definition to improve the accuracy of

the shear stress evaluation. The non-zero degrees of
freedom for the vertical plating elements are shown in
Figure 5.

The approximations for the vertical plating formu-
lation:

u(xg, z) = A,Azw3 + Buzw2 +C,w+D,_, (27)
w(xo, z) = Ay, w+ By, (28)

u(x, zg) =A,x+ By, , (29)

w(x, z9) = wax3 + waxz + Cy,x+ Dy, . (30)

Similar logic is applied to the definitions of poly-
nomial constants A, B, C, D as it was explained for
Egs. (12) to (15).

The constant values for the vertical plating approxi-
mations, where deformation du/dz is derived from Eq.
(10) and (11) as:

u(O, 0) = U
ou _ ou _ q1Go ow
20 0= (82)1_ tG <3x>1

_ uy —uy n & t*G*
h x),) tG 31)
u(0, h) = uy
u (o _ q4Go
2O M= (az>4_ tG
_8_w _u4—uj+ % t*G*
ox ), h* x),) tG ’
w(0, 0) = wy
{ w0, ) = wi, (32)
u(0, 0) = uy
{ u(0, 1) =t G
w(0, 0) = wy
Mo, 0=
0x 0x (34)
w(0, [) = w,
ow 0wy
w =g

After inserting the values of the constants into
Eq. (27) to (30), regrouping for DOFs, as shown in
Figure 5, the displacement fields are described as a linear



combination of shape functions and DOFs:
u(x, z) = P (2) b (N1 + ¢ (2) Py (x)
7:1Go ow uy — v *G*
tG  \ox), h**’ﬁl tG
+ ¢1(Z)¢z(x)u2 + l/fz(z)(bz(x)
(%Go (3W) <M;< — Uy n (31/ ) f*G*>
tG  \ox), \ h* 5)2 tG
+ P5(2) y(x)us + ty(2) by (%)
(q3G() _ 3_W _ us — u§ + %) t*G*
o (@), - (5 (5) %)

+ P3(2) by () ug + Py (2)

94Go  (Ow\  (us—uy (Ov) G
d>1(x)< 1G <8x)4 ( o \ax),) 6 )

(35)

w(x, 2) = & (2) w1 (X)w) + &(2) o (x)wy
+ & @) (2—‘”) +& @) (a—w)
X/, ox /),
+& (2 ws(x)wy + &(2) w3 (x)ws

+ &(@au) (aa—:) +E@w) (2—1”) :
2 3

(36)
where
h? — 3hz? 4+ 223
hie) =2
0(2) = Wz — 2hz* + 22
2 - h2
(2) = 3hz? — 223 (37)
s
(@) = ,
z
L) =1—-—
1 =2 ' ey
&(2) = n

The shape functions w; and ¢; are identical to those
used for the horizontal element definitions. The displa-
cement fields can alternatively be presented in vector
form as:

u(x, z) = {U} {u}, (39)

w(x, 2) = (W} {w}, (40)

where {U} and {W} are vectors of the shape functions
and {u} and {w} are vectors of the nodal degrees of
freedom.
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2.5. Finite element formulation

Finite element formulation has been exemplified for a
planar element on the x - and z-axes, which follows
the definition of the vertical plating element. A similar
finite element formulation has been used for horizontal
plating elements, where the elements are defined on the
xy-plane. Unique {W} matrices are defined in Eq. (63)
and (70) to describe the relevant degrees of freedom
with the shape functions presented in Egs. (20), (21),
(35). and (36). Non-zero degrees of freedom were
included in {W} matrices to simplify the creation of
the global stiffness matrix by using a homogeneous
nodal definition.

An orthotropic approach has been used to define the
finite element formulation, as in real-life applications,
where the elements would represent stiffened panels
that make up the structure of ships. Thus, depending
on the stiffening elements of the stiffened panel, the
material properties must be orthogonal while satisfying
the following conditions:

ou(x, z)
0x
SXX
S Bw;x, z)
z
2852 du(x, z)  owlx, z)
0z ox
au)”
aw)"
- {_} (w) @
0z
au) " aw)?t
{ETZ} {u} + {E} {w}
Oxx _Cll C12 0 Exx
0z (=|Ca Cyn 0 &z (> (42)
Oz | 0 0 GCes 2&y;
where Cj; are the elastic stiffnesses:
E,
Ch=— "' (43)
T =)
E,
Cp=— 2 (44)
270 =)
Ci2 = v12Cp;s (45)
Ces = G12 = Go1. (46)

Here, E; and E, are the Young’s moduli, G, and Gy,
are the in-plane shear moduli and v,; and v, are the
orthogonal planar Poisson ratios are defined as:

E,

=vp—. 47
V21 V12 El ( )
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The finite element formulation starts from defining
simplified differential equations for stress equilibrium
in in-plane directions for planar elements with unit
thickness and planar unit dimensions dx, dz, shown
in Figure 6.

Force equilibrium for planar axis:

D Fe = —0ldzxl) — oz (dxsl)

+ |:a',0C + 30 dx](dz*l)
0x

+ |:o'zx + 00z dz](dx*l) +f

a"""dd 42 Zxdxdz+fx—0 (48)

— 0, (dxx1) — 0y, (dz*1)

Sr=

+ |:0'ZZ + 302 dz](dx*l)
0z

8 Xz
+ [sz+ ;Tx dx](dz*l)—i—fz

- "‘Tzzd dz + ;dedz +f=0. (49)

In this formulation, it is ultimately assumed that the
planar shear stress is constant, however, the formulation
can be optimised to include such orthogonal materials.
By assuming that the area dxdz is one unit, the differen-
tial equations can be simplified:

a ad 8 a

aaxx + = 9z Ozx +fx = U'xx +872sz +f;c =0, (50)
a a
&UZZ—F&UXZ +fZ:O (51)

do,
0,y + ;z dz

a
do,,
Oz + Bz dz

do,
Oz + %dx

z a
O-X'X
—_— dz
x 00,
Oxx + W dx
G-XZ dx

Figure 6. Equilibrium of planar unit element.

Strong form differential equations are multiplied
with weight functions and integrated over the volume
which is then simplified to a surface integral as the plat-
ing is considered as thin-walled structures:

a ad
~‘[<SI (a Oxx + &sz +f;¢))dv

9 3
= j t<51 <& Tut o0 +fx)>dxdz =0. (52)

Q

R ad
J<52<&O'ZZ+&0}Z +fz>>dV
%
:jt sy ao' +80'X +f. | Jdxdz=0. (53)
S aZ zz 6 v4 z

Weak form equations are created by using Gauss the-
orem for partial integration of surface integral that
states:

v c)G(x, Y ey = énx[wG(x, 7)\ds

Q T

ow
- (jz 5, Glo y)dxdy. (54)

Weak formulation is expressed using Egs. (52) to (54)
as:

as as
J 8_1 Oydxdy + Jl ta—Z1 Oy dxdy

CJstSl(ﬂxex + n,0y,)ds — J ts) fodxdy
T Q
=0 (55)
352 352
J tg O dxdy + I ta—z 0 dxdy
Q Q
- # t$5(My Oy + 1,0,,)ds — I tsyfdxdy
T Q
=0 (56)

Weak-form equations are further simplified to omit the
boundary integral components as external forces are
directly applied as nodal forces. Therefore, the final



weak form equations are:

0s 0s
i ta—; Oxcdxdy + ([ ta—z1 Oy dxdy — I ts, fedxdy

Q
=0 (57)
J t% Oy dxdy + j tE 0. dxdy — j tsyf-dxdy
2 ox 0 0z A
=0 (58)

The weak formulation is transferred into vector form:

o T
0x Oux
t ? Oy, {dxdz
z
Q 851 + 852 Oxz
0z  ox
T
—jt{ Sl} ﬁ‘}dxdz
( %2 f

(59)

The components in the above equation can be alter-
natively written as:

351 T

o 8 4,38

aaizz :[31 52] ox 0z
O O %
dz  ox

T
= {jl } (i), (60)
2

{u}_[‘l’1¢1+¢2¢1D 0 0
- 0 0 wé& O 0
¢4¢2S _¢4¢2F2 _‘114({[’2

w

‘//3‘1’2 - ‘1’4¢2D2 0 0

0 0 wé, 0 0 w3,
_¢2¢1D _¢2¢2D ‘//4‘1’2D2 l//4‘1’1D2 |:
1| up v wy
0 0 0 0

{Sl}:[\lfl]*[al @ .. a4y ] =[V]{a)

$2

hd S —hdF =i,
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ou ow
Cn o +Co—
o X 0z
xx ou ow
Oy ¢ = Clza-i- sz&
Oxz C ou n ow
o\oz " ax
)
- — 0
Ch Cn O dx 5
=|Cp Cp 0 0 %
L 0 0 Ces 9 5
| 0z ox

1

= [anl]{f;} (61)
N T u
jt{;} [DI]T[CMDI]{W}dxdz
QO
T
— It{sl } {fx }dxdz
Q 52 fz
=0, (62)

where vectors {u}, {w}, {s;} and {s,} for vertical plating
elements are defined as the linear combination of the
shape function vectors and the nodal degree of freedom
value vectors:

Uy +Ynd,D 0 0 Yhd,S —hdF —io,

€ 0 0w 0 0 oSy
sy —ud D2 0 0 Yy S — Py F2 —iy oy
0 0 wé& 0 0 &
(63)
81/1 an 3W4 *

T
mmfuwwwﬂﬂwm}
ox

(64)
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where
S= t%‘)l (65)
0
= i (@)
D2= ;f&,l (68)
P2 = ttgl (69)

Indexes m, o represent parameters of positive edge
and negative edge pairing elements m, o respectively.
If a pairing element does not  exist
D=F=D2=F2=0.

Similarly to Eq. (63) and (64), vectors {u}, {v}, {s1}
and {s;} for the horizontal plating elements are
defined as the linear combination of the shape function
vectors and the nodal degree of freedom value vectors:

u g1, 0 0 0 0 0 10, 0
v 0 ggw; 0 0 gw O 0 g1ws

&0, 0 0 0 0 0 e, 0 0
0 ErW3 0 0 Ex Wy 0 0 Erw 0
u vy w % % Vv, W
- 1 1 1 q1 o e 2 2
(70)
S T
{s; } = [\I’z][ a a dz3 A4 ]
= [W,]{a} (71)

By grouping the vectors of weight constants {a} the
finite element equation for the vertical plating element
becomes:

{a}"‘( [ 0% (D TCND W a2t Ay}~ | t[\lflf{jf;‘ ]dxdz) =0
Q Q 7

(72)

As the vector of weight constants cannot equal zero, the
components in the brackets must do so. The matrix
multiplication can be expressed as [D;][V;]=[B],

where

jt[Bl]T[CJ [B,)dxdz{A,} — jt[‘l’l]T{f" }dxdz

[9) 9 fz

=0, (73)
| t[B.)"[CI[B ) dxdz = (K], (74)
(9
Jt[‘I’I]T{jfg‘ }dxdz:{Fl}. (75)

Q

For horizontal plating elements Egs. (73) to (75)
would be alternatively presented as:

| ¢[B2]"(CIBoldxdy{As} — | f[‘l’z]T{ j; }dxdy
Q Q
=0, (76)
| (BT [Cl[B, ) dxdy = [Kal, (77)
Q
0 0 0 ©
0 0 gwy O
0 0 0]
*
0 Er» 0
T
a e B ] =i
| t[%]"‘{ s }dxdy = (R}, (78)
Q fy
where
0 0
o
&l
D)= 0 ay (80)
a 0
By ax



3. Analysis models
3.1. Simple beam model

The initial validation of the HSD formulation is per-
formed on a simple hollow beam model with a total
length of 10 m, total height of 4 m, and total depth of
1 m. Two configurations are created to independently
analyse the accuracy of the proposed methodology
with changing thicknesses and material properties in
planar directions. In the first configuration in Figure 7,
Young’s modulus is defined throughout the sections as
E, =E,=E=200 GPa and Poisson’s ratio as
v = 0.3, whereas the thickness changes in the range
from 5 mm to 20 mm with a 1:2 thickness ratio between
every adjacent quadrant. The second configuration in
Figure 8, has uniformly defined thickness as t = 10
mm, however, the Young’s moduli varies in the range
from 50 GPa to 200 GPa in a similar 2:1 ratio between
quadrants.

E=200 Gpa;
v=0.3;
t=10 mm

E=200 Gpa;
v=0.3;
t=5 mm

E=200 Gpa;
v=0.3;
t=20 mm
E=200 Gpa;
v=0.3;
t=10 mm

xJ

it

Figure 7. Beam model parameters with constant Young's
moduli (This figure is available in colour online).

E=200 Gpa;
v=0.3;
t=10 mm

E=100 Gpa;
v=0.3;
t=10 mm
E=100 Gpa;
v=0.3;
t=10 mm
E=50 Gpa;
v=0.3;
t=10 mm

d

3

Figure 8. Beam model parameters with constant plate thickness
(This figure is available in colour online).
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Three mesh sizes are applied to the models to analyse
the accuracy of the HSD element against the traditional
quadrilateral 4-node first-order element. The finest
mesh configuration is modeled with 2500 200 x 200
mm elements, see Figure 9(c). This mesh is considered
to be significantly denser than what is reasonable for
concept design analysis and thus is used as the reference
fine mesh against which coarser mesh sizes are com-
pared. A semi-coarse mesh with an element size of
500 x 500 mm, see Figure 9(b) and a fully coarse mesh
with an element size of 1000 x 1000 mm are used with
the HSD formulation and the first-order 4-node
elements.

The models apply simply supported beam constraints
in both ends and distributed load p = —1000 N/mm
along the longitudinal edges in the bottom of the beams.

3.2. Stepped box model

The accuracy of the HSD element formulations pre-
sented in this article is analysed on a box structure
that is dimensioned to the size of a small multideck
ship. The box structure consists of four vertical sections
representing the vertical shell structures, longitudinal
bulkheads, and superstructure shell, and six horizontal
sections representing the double bottom and deck plat-
ing and upper deck plating. The plate thicknesses for the
bottom and upper deck plating are increased in com-
parison to general deck plating. The global dimensions
of the box structure are the length Ly, = 60 m, breadth
Byt = 9 m, and height H;,y = 12, 4 m.

shows the geometry models, cross-sectional dimen-
sions, and deck numeration (Figure 10).

In addition to examining hull girder global response,
the HSD formulation aims to increase accuracy in pre-
dicting stress values in two critical areas. First of such is
the transition between different structural sections
throughout the hull girder, see Figure 11. These tran-
sitions are best noticed in two distinct areas. Firstly, in
the transition from main hull wall structures to passen-
ger deck wall structures introducing large windows for
better customer experience and thinner plating due to
the proximity of the global neutral bending plane and
lowered normal stress loads. Secondly, in the transition
from passenger decks to cabin decks, where cabins are
modularly inserted further diminishing load carrying
capabilities of outer wall structures in these areas. In
the concept design phase, these different structural
regions can be alternatively presented as equivalent plat-
ing, where plate thickness is usually derived from the
original plate thickness as this greatly dictates the
shear flow equilibrium in the transition surfaces and
the local peak shear stress values. Equivalent Young’s
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a)

Figure 9. Beam models mesh sizing: (a) coarse mesh — 1000 x 1000 mm, (b) semi-coarse mesh — 500 x 500 mm, (c) fine mesh — 200 x
200 mm (This figure is available in colour online).

Superstructure shell: t
E=50 Gpa; v=0.3

3000 mm i 3000 mm ' 3000 mm
1

a) nm—

t=10 mm ¢,

8 mm
8 mm

t
t:

t=6 mm 5 Deck 4

6 mm
6 mm

Hull and deck plating:
E=210 Gpa; v=0.3

t
t

| 3000mm | 3000mm

t=6 mm Deck 3

b) Superstructure walls E
E=210 Gpa; v=0.3 E g E
ol
i 7 S
= t=6mm* Deck 2
g 1
£
) £ ! £ E
; - £ | E o
- S i 8\ 8
kY £ m < ™
) E t=6 mm * | Deck 1
7 : 3
* t=12 mm !

Figure 10. 3D model geometric and material parameters (a) outer walls, (b) superstructure walls, and (c) cross-section (This figure is
available in colour online).
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Figure 11. Simplified representation of (a) ship structures with openings and stiffeners as (b) equivalent plating elements (This figure
is available in colour online).

Figure 12. Finite element 3D models of stepped box model: (a) coarse mesh model, (b) semi-coarse mesh model, and (c) fine mesh
model (This figure is available in colour online).

moduli are derived from stiffened panel calculations for doing so are the smeared stiffness-based method,
considering the size of openings and the dimensions  where the added stiffness from stiffening structures or
and orientation of stiffening elements. Typical methods  the decreased stiffness due to openings is divided
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equally over the equivalent plating. Another option
would be to use an equivalent single-layer method,
that describes the equivalent plating as a ply where
every layer has equivalent stiffness and thickness depen-
dent on the geometry and configuration of the stiffening
structures.

The second of such areas is the stepped superstruc-
ture decks. As passenger ships typically have balcony
areas or other open spaces in passenger and cabin
deck ends, the load-carrying structures naturally have
a stepped configuration creating shear stress concen-
trations that need a more local approach to stress evalu-
ation. Even though larger passenger ships have naturally
fuller side profiles mitigating the issue, this phenom-
enon is additionally present in longitudinal bulkhead
openings in open areas such as concert halls, open
atriums, conference halls, and open restaurants.

The coarse mesh model uses uniform element
dimensions in vertical structures, as well as horizontal
plating with an aspect ratio of 1:1 (3000 x 3000 mm),

which follows the common best practices in coarse
mesh modelling of ship structures, where deck spacing
in vertical structures is described with a single element.
The vertical shell elements between the bottom plate
and the first deck plate have a limited height dimension
of 400 mm. The total model consists of 524 nodes and
728 elements, see Figure 12(a). The semi-coarse mesh
model places three elements between the decks in verti-
cal structures and uses elements with 1/3 edge length of
those used in the coarse mesh model. Conversely, deck
elements were not divided. The semi-coarse mesh
models had 3084 nodes and 3720 elements, see Figure
12(b). The results from coarse and semi-coarse mesh
models are compared against a fine mesh linear element
model, where the element dimension is 300 x 300 mm,
placing 10 elements between decks resulting in 56854
nodes and 58400 elements, see Figure 12(c).

In concept design, computational cost comprises of
several factors. The easiest to measure component is
the actual solver time to calculate the finite element

a)

0 0 B
0 2

0 0 0

Figure 13. Equivalent plate element creation for (a) coarse mesh, (b) semi-coarse mesh (This figure is available in colour online).



equations. For this, a good overall indicator is the num-
ber of DOFs present in the model that dictates the size
of the global stiffness matrix which does not directly
convert over to solver time difference but does give a
good insight into the solving complexity. Even more
importantly, the time needed to create the model must
be considered under computational cost. The concept
design phase analyses aim to keep elements as big as
possible to limit the number of unique equivalent
element definitions used in the model. An example in
Figure 13 illustrates how the coarse mesh model needs
a singular element definition in shell and bulkhead
structures, whereas in the semi-coarse model, where
the element size is 1/3 of the coarse element size, the
number of unique element definitions needed increases
significantly. When expanded to include the whole glo-
bal model, this added preparation time far exceeds the
difference in actual solver time.

The calculation of specific equivalent element stiff-
ness properties is outside of the scope of the models cre-
ated and the analysis presented in this article. The
equivalent stiffness properties presented for the stepped
box model in Figure 10 are defined to extenuate the
non-linear stress behaviour within the structures. The
same principle is used for the fine mesh model, as the
analysis aims to evaluate the gained accuracy over the
similarly sized linear mesh and not replace the need
for detailed 3D FEM analysis in later design stages.
Therefore, modelling the stiffening elements is omitted
as that level of detail is deemed not necessary for the
comparison of different coarse mesh formulations.

Vertical distributed sinusoidal loading per unit
length has been applied to the bottom edges of all verti-
cal shell sections according to the equation:

p(x) = pox cos(zLﬂ), (81)
with amplitude po =200 N/mm and total length of
Lt = 60 m. The material properties are taken as typical
for  full-stifiness  orthotropic  steel  definition:
E, = E; = 210 GPa, v; = v, = 0, 3. For the superstruc-
ture shell, Young’s modulus has been lowered to
account for the weakened structures. For superstructure
shell E; = E, = 50 GPa, v; = v, = 0, 3 are used. The
box model is simulated on an elastic foundation applied
to the bottom nodes of the vertical shell sections.

4, Results

The global deflection, longitudinal, and vertical stress
distributions have been analysed for the simply sup-
ported beam and a stepped box structure. The accuracy
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of the obtained numerical results using the proposed
HSD element formulation has been compared with
the coarse, semi-coarse, and fine mesh linear FEM
numerical results in all models.

Numerical results have been collected from static
analysis on the FEMAP 2021.2 software using the Sim-
center Nastran solver. FEMAP’s Direct Matrix Input G-
set (DMIG) capabilities are deployed to import the glo-
bal stiffness matrix using the shear element definitions.

4.1. Numerical results for the simply supported
beam models

Comparative analysis for simply supported beam
models includes global deflection, vertical shear stress,
and normal stress distribution at 3/4 length of the
beam and longitudinal shear stress and normal stress
distribution at 3/4 height of the beam. The deflection
analysis in Figure 14 shows high correspondence
between all mesh sizes and element types. Differences
between peak deflections for thickness varying beam
model stay below 2% of the reference 200 x 200 mm
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Figure 14. Deflection comparison in simply supported beam
models with (a) changing thickness, and (b) changing material
properties (This figure is available in colour online).
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Figure 15. Vertical distributions for (a) normal stress and (b)
shear stress in beam model with varying plate thickness (This
figure is available in colour online).

linear mesh values and 3% for the varying material beam
model.

Vertical stress distribution for varying thickness
model in Figure 15, and varying material model in
Figure 16 reveal insights into stress behaviour at the
transition layer. Differences in normal stress distri-
butions can be explained using general Hooke’s:

o = Exe

where geometric constraints prohibit individual
elongation creating a continuous deformation & curve
over the height of the beam. Normal stress is thus
dependent on Young’s modulus E resulting in a non-
continuous distribution in the material variance model
and a continuous distribution in the thickness variance
model. Figure 15(a) shows how all meshing methods
provide accurate results, however, non-continuous nor-
mal stress is only captured with the HSD mesh types in
Figure 16(a) with no clear reduced accuracy between the
HSD mesh sizes in simple bending conditions.
Vertical shear stress distributions for thickness var-
iance in Figure 15(b) and material variance in Figure
16(b) similarly show different behaviour at the tran-
sition layer. Here, shear stress becomes non-continuous

Figure 16. Vertical distributions for (a) normal stress and (b)
shear stress in beam model with varying material properties
(This figure is available in colour online).

based on Hooke’s law for shear stress:
o = Gxe, (83)

where thickness is in direct correlation with stiffness
and consequently in inverse correlation with defor-
mation and stress: t ~ K ~ 1/e — t ~ 1/0. The HSD
formulation, regardless of the mesh size interpolates
stress values closer to the transition and provides
more accurate stress results than fine linear mesh. For
simple bending conditions, the 1000, 500, and 200
mm linear mesh peak stress values are 22%, 7,2%, and
1,6% underestimated respectively compared to the
1000 mm HSD formulation mesh.

Shear stress values for material variance in Figure
16(b) show indifference to material variance as shear
modulus is in direct correlation with shear stress
based on Eq. (76) as well as in inverse relation to defor-
mation: G~ K ~ 1/e. Although results show overall
coincidence, the HSD formulation is applicable with a
coarse 1000 mm mesh, whereas linear mesh in that
size shows a clear lack of nodal density with peak stress
being underestimated by 6% compared to each other.

Figures 17 and 18 reveal highly corresponding longi-
tudinal normal and shear stress distributions. However,
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Figure 17. Longitudinal distributions for (a) shear stress and (b)
normal stress in beam model with varying plate thickness (This
figure is available in colour online).

critical limitations emerge in the degrees of freedom
assumptions in elements adjacent to the transition
plane at the beams midlength. In longitudinally varying
models, deflection rate dw/dx cannot be considered
consistent in neighboring elements at the transition
layer, which leads to stress evaluation discrepancies.
Stress results between 1000 and 500 mm HSD mesh
models show that with decreased element sizing this
deficiency is mitigated. Additionally, normal stress dis-
tributions show highly corresponding results as this
limitation is not noticeable in linearly behaving midship
areas in Figure 17(a) and Figure 18(a).

4.2. Numerical results for the 3D box stepped box
model

A good indication of the general accuracy of global
response between all mesh types is evident in the deflec-
tion distribution graphs in Figure 19. Numeric results in
the bottom and top edges are highly accurate as the
graphs show differences of 2,0% and 5,3% respectively
in maximum deflection for both coarse mesh types com-
pared to fine mesh results.

The horizontal and vertical stress distribution graphs
are shown for a selection of planes and cross-sections.
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Figure 18. Longitudinal distributions for (a) shear stress and (b)
normal stress in beam model with varying material properties
(This figure is available in colour online).

Shear stress horizontal planes are defined in the stress-
critical transitional layers between changing plate thick-
nesses and material properties where stress distribution
is discontinuous. Cross-sections are chosen to describe a
more linearly behaving section in the midship and the
steep gradient behaviour close to structural
discontinuities.

Longitudinal stress distributions have been ana-
lysed in transitional layers at z = 6,4 m, where the
hull transitions into superstructure which includes
the lowering of Young’s modulus in the outer layer
as well as the transition from 10 mm thick plating
into 6 mm thick plating in both the outer and inner
longitudinal walls. The second layer has been
defined at z=9,4 m, where the superstructure
experiences an additional step and the transition
from 6 mm thick plating into 8 mm thick plating.
The third layer is defined at z=12,4 m which
marks the topmost layer of the vertical walls at the
intersection with the top deck plating.

In the fine linear mesh, the stress values are described
as elemental values in the first elements under the tran-
sition layer. For coarse and semi-coarse linear mesh
models, elemental stress values of vertical elements
have been averaged into nodal values and thus the stress
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Figure 19. Global deflection comparison in (a) bottom edge, (b) top edge (This figure is available in colour online).

values are described directly at the transition layer. In The normal and shear stress distributions in Figures
the HSD elements, the stress values are approximated ~ 20-22 show a generally good agreement between the
at the transition layer. different meshing with clear deficiencies in evaluation
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Figure 20. Longitudinal distribution at z = 6, 4 m for (a) inner Figure 21. Longitudinal distribution at z =9, 4 m for (a) inner
wall shear stress, (b) inner wall normal stress, (c) outer wall shear wall shear stress, (b) inner wall normal stress, (c) outer wall shear
stress, (d) outer wall normal stress (This figure is available in col- stress, (d) outer wall normal stress (This figure is available in col-
our online). our online).
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our online).
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accuracy of discontinuities in stress distributions and
peak stress values.

Due to big variation in material stiffness in the out-
side walls at plane z = 6, 4 m, the normal stress values
in the outer wall and shear stress values in the inner
walls show big inconsistencies between the linear course
and semi-coarse mesh, when analysed for the agreement
with linear fine mesh results. The HSD mesh shows
excellent consistency to fine mesh results in these areas.

As the load-carrying abilities in the superstructure
outside walls decrease due to the lowered material prop-
erties, the shear stress load path travels from the outside
wall to the inner longitudinal bulkhead, thus signifi-
cantly increasing shear stress values above deck 3, see
Figure 10(c). In coarse mesh linear element models,
this change is not accurately captured close to the tran-
sition layers, where significant peak values might occur
due to nodal averaging of stresses. HSD element values,
however, show particularly good accuracy compared to
the fine linear mesh model. Shear stress values are pre-
sented in Figure 23 for both approach directions
denoted as top and bottom elements referencing the
positioning regards the transition layer. At the coordi-
nate x = 11 m, where secondary peak stresses occur,
coarse HSD element mesh produces results within a
5% and 2% margin in the upper and lower element
respectively. Semi-coarse linear mesh produces results
within 34% and 70% margin respectively. At the fore-
ship secondary peak stress area at x = 43, 5 m the cor-
relating margin percentages are 16% and 3% for HSD
element mesh and 70% and 47% for semi-coarse linear
mesh respectively. Secondary peak stress areas are ana-
lysed as local peak stress effects are more limited.

140
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«====Llinear bottom el. fine
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HSD bottom el. fine
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L

Figure 23. Shear stress longitudinal distribution at z =6, 4 m in inner wall (This figure is available in colour online).
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Figure 24. Normal stress longitudinal distribution at z = 6, 4 m in outer wall (This figure is available in colour online).

When analysing the normal stress values in the tran-
sition layer in the outer wall in Figure 24, the nodal
stress description between the coarse and semi-coarse
linear mesh results shows higher inconsistencies than
the HSD element results about the fine linear mesh
results. At secondary peak stress areas at x = 13, 5 m,
normal stress margins in the upper and lower element
for HSD element are 15% and 4%, and for linear
semi-coarse mesh 85% and 47% respectively. In the
foreship secondary peak stress location at x = 43, 5 m
HSD element normal stress margins are 13% and 4%
in the upper and lower element and 127% and 40%
respectively for semi-coarse linear mesh.

Second, a general conclusion can be made that the
peak stress values in the areas of discontinuities are gen-
erally underestimated due to the bigger element size
when compared to the linear fine mesh model. Table 1
presents peak stress difference percentages between
coarse linear, semi-coarse linear, and coarse HSD
mesh models compared to fine linear mesh model in
both aft and foreship areas. A consistently lower differ-
ence percentage can be concluded for the HSD mesh
when compared to the coarse linear mesh. A clear con-
clusion cannot be made between semi-coarse linear
mesh results and coarse HSD mesh, however, the differ-
ence in mesh sizes suggests that the HSD element for-
mulation can be used for computational cost benefits
without losing accuracy in peak stresses.

The analysis of cross-sectional stress distributions
shows more in detail the deficiencies that coarse linear
meshes have and how these are mitigated with HSD
elements. Four cross-sections have been analysed, of
which one cross-section at x=22,5x=43,5m
(Figure 25) represents the behaviour in the midship

portion of the stepped box model, while cross-sections
at x = 34,5 m, x = 40, 5 m, and x = 43, 5 m (Figures
26-28) describe the stress distributions in the area of
structural discontinuities. While the HSD element can
describe the noncontinuity of stresses, averaged nodal
stress values for coarse and semi-coarse linear mesh
lose a significant amount of peak stress data in all verti-
cal stress distribution graphs. The results for HSD
element mesh and fine linear element mesh are highly
coincident making this approach the better solution
for an accurate description of stresses in structures
with varying material and geometric properties. In
cross-sections where the discontinuities in the model
do not play a significant role, the coarse HSD element
mesh provides highly accurate results.

Shear stress distributions in Figure 27(a) and Figure
27(c) show higher inconsistencies due to the proximity
to the discontinuous structural edge and the top cor-
ners of the structure being inefficient in carrying
shear loads.

The limiting effects of linear approximations and
coarse mesh modeling are evident in Figure 28, where
the shear stress value is highly inaccurate for the coarse
HSD element mesh at the top surface, however, when
analysed with the nodal stress values from the fine linear
mesh model at z = 9, 4 m it is clear, how the used linear
approximations in Egs. (31) to (34) average out the peak
stress values at approx. — 130 MPa and - 52 MPa, see
Figure 29 and plot shear stress value at approx. — 90
MPa in Figure 29.

The effect of mesh sizing for the HSD element analy-
sis around the discontinuities in cross-sections at
x=40,5 m and x = 43,5 m has been presented in
Figures 30 and 31. The HSD mesh size has been
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Table 1. Peak stress differences between coarse mesh models and fine linear mesh models in (a) outer wall and (b) inner wall.

increased to the semi-coarse mesh size shown in Figure
12(b). The analysis shows that by increasing mesh size,
the previously shown discrepancies in Figures 27 and 28
are solved the semi-coarse HSD mesh produces highly
coincident stress distributions to the fine linear mesh.

5. Concluding remarks

Structural analysis in the concept design phase seeks
to describe ship structures as accurately as possible
with minimal time. This is achieved by applying

Aft Foreship
a) Outer wall Lin. EL. | Lin. E. semi- | HSD El. | Lin. EL. ;”mIE' HSD El.
coarse |coarse coarse |coarse coarse
coarse
Normal stress
37,1% 18,8% 45,8% 30,4% 20,3%
(x=7,5 / 46,5 m, Fig 20d) . . ’
Shear stress
31,8% 45,0% 36,0% 26,7%
z=9,4 |(x=10,5/43,5m, Fig 21c)
m Normal stress
45,1% 22,4% 29,5% 46,8% 24,3% 44,3%
(=135 /435 m, Fig 21d) - ° ° °
Shear stress
z=12,4 |(x=16,5/36,5 m, Fig 22¢)
m Normal stress n/a
(x=28,5 m, Fig 22d)
Aft Foreship
b) Inner wall Lin. El. | Lin. EL. semi- | HSD EL | Lin. EL. ;"mIE' HSD El.
coarse |coarse coarse |coarse coarse
coarse
Shear stress
42,7% 31,4% 50,4%
2264 | (x=4,5 /49,5 m, Fig 20a) ° :
m Normal stress
44,6% 18,5% 37,9% 43,3%
(x=7,5/49,5 m, Fig 20b)
Shear stress
z=9,4 |(x=10,5/43,5m, Fig 21a)
m Normal stress
(x=13,5/43,5m, Fig 21b)
Shear stress
z=12,4 |(x=16,5/ 37,5 m, Fig 22a)
m Normal stress
(x=28,5 m, Fig 22b)

industry-standard meshing guidelines to element
dimensioning such as implemented in Zanic et al.
(2007) and various methods for defining orthogonal
element descriptions such as Hughes (1989) and
Avi et al. (2015). The research presented in this
article further develops the finite element formu-
lation created by Imala et al. (2022) to improve the
accuracy of concept design analyses by utilising
higher-order formulations in the finite element
descriptions that are specifically created for marine
industry applications.
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Figure 25. Stress vertical distributions at x = 22, 5 m for (a)
shear stress in inner bulkhead, (b) normal stress in inner bulk-
head, (c) shear stress in outer shell, (d) normal stress in outer
shell (This figure is available in colour online).

In complex structures, stress concentrations at
geometrical discontinuities and in layers with chan-
ging topological characteristics have a significant
impact on the feasibility of structural design. The
higher-order shear deformation formulation pre-
sented in this article evaluates the global static
response of a hull girder with special emphasis on
evaluating stress distributions in structural transition
layers.  The formulation introduces  separate
definitions for a 4-node shear element positioned ver-
tically and horizontally due to different sets of
approximations between homogeneous six-degree-of-
freedom nodes. The vertical element proposes a
finite element description that allows normal and

Linear el, coarse
= = =Linear el, semi-coarse
----- Linear el, fine

——— HSD el, coarse

b)

Figure 26. Stress vertical distributions at x = 34, 5 m for (a)
shear stress in inner bulkhead, (b) normal stress in inner bulk-
head, (c) shear stress in outer shell, (d) normal stress in outer
shell (This figure is available in colour online).

shear stress to be calculated in a node independently
for all elements containing that node by including
element-specific material and thickness information.

The proposed methodology is initially validated on a
simple beam model and then tested in marine structure
applications, where the material and topological par-
ameters for structures are highly varying. In all analyses,
the numeric results from a fine mesh linear element
model are defined as the comparison standard. The
numerical results of the similarly sized linear mesh
model and the HSD element mesh model are evaluated
against the standard.

The initial validation analysis defines a simple beam
model with varying plate thicknesses and material
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Figure 27. Stress vertical distributions at x = 40, 5 m for (a) shear
stress in inner bulkhead, (b) normal stress in inner bulkhead, (c)
shear stress in outer shell, (d) normal stress in outer shell (This
figure is available in colour online).

properties in vertical and longitudinal directions to
evaluate mesh sizing effects on a beam bending
response. The marine analysis focuses on a 3D stepped
box model use case that introduces a shear-weakened
superstructure outer shell using lowered stiffness par-
ameters and reduced plate thickness resembling real-
world marine applications which allows for more realis-
tic stress distributions to be investigated.

In the simply supported beam analyses, the HSD
coarse mesh models showed excellent ability to evaluate
stresses at transition layers, whereas linear mesh models
underestimated peak stress values by 22% in the coarse
mesh model and 1.6% in the fine mesh model, showing
the potential of evaluating non-linear and non-continu-
ous stress distributions with a limited number of

Figure 28. Stress vertical distributions at x = 43, 5 m for (a)
shear stress in inner bulkhead, (b) normal stress in inner bulk-
head, (c) shear stress in outer shell, (d) normal stress in outer
shell (This figure is available in colour online).

elements over the height of the beam. Additionally,
the HSD formulation proved to be highly accurate for
the typical static response analysis for passenger ships.
In topological or parametrical transition layers, the
coarse HSD mesh models showed excellent agreement
in normal and shear stress comparisons with linear
fine mesh results outperforming coarse and semi-coarse
linear mesh models. The HSD element further validated
the ability to describe the discontinuities in shear and
normal stress vertical distributions as well as more accu-
rately assess peak stress values for longitudinal stress
distributions.

In practice, this higher-order finite element formu-
lation allows for an accurate estimation of ship struc-
tures in the conceptual design phase outperforming
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Figure 29. Local elemental shear stress values in the inner wall at cross-section x = 43, 5 m (This figure is available in colour online).
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Figure 30. Effects of HSD mesh sizing on stress distributions at x = 40, 5 m (This figure is available in colour online).
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Figure 31. Effects of HSD mesh sizing on stress distributions at x = 43, 5 m (This figure is available in colour online).



identically sized linear finite element mesh. The
method serves as an alternative for detailed 3D finite
element analysis providing good accuracy at low com-
putational cost. Complimentary to introducing the
method, future developments are needed to introduce
an isoparametric methodology that allows the use of
oblique elements in the model. This would unlock
the use of 4-node and 3-node elements and release
the precondition to only use main planes to orientate
elements. Furthermore, a unified formulation could
be developed to introduce out-of-plane degrees of free-
dom as well as allow user-defined order for shape func-
tion approximations to better align with the specific
use case.
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Passenger ship global static response analysis implementing a modified
higher-order shear element description

M.M. Imala, H. Naar & K. Tabri
Tallinn University of Technology, School of Engineering

ABSTRACT: This paper analyses the structural response of a passenger ships using a higher-order shear
deformation (HSD) method. The methodology utilises third-order polynomial displacement fields to analyse stress
distributions in complex ship structures, incorporating discontinuous multi-deck configuration and partial-length
superstructures. The study applies the method to a conceptual cruise ship model, evaluating longitudinal and verti-
cal shear stress distributions across different topological and geometrical transitions. Results demonstrate the
method’s effectiveness in capturing accurate stress distributions and peak stress values while maintaining compu-
tational efficiency comparable to traditional finite element methods.

1 INTRODUCTION

The structural analysis of modern passenger ships
faces increasing complexity due to architectural innov-
ations and growing vessel sizes. While 3D finite elem-
ent analysis (FEA) remains the industry standard,
linear coarse mesh models lack accuracy in stress-
critical areas. In contrast, the computational demands
and the level of design progression needed to make
fine mesh applications impractical for conceptual
design. Previous research has approached this chal-
lenge at two distinct levels. At the macro level, original
beam theory applications by Crawford (1950) and
Bleich (1953) and layer-wise methods like the Coupled
Beam theory by Naar et al. (2004) and (2006) have
been developed to analyse hull-superstructure inter-
actions of complete ship sections. At the panel level,
equivalent single-layer techniques have been created
by Zanic et al. (2013), Romanoff & Varsta (2007), Avi
et al. (2015), and Teguh et al. (2021) to represent com-
plex stiffened structures as simplified orthotropic elem-
ents extending the work of Reddy (2004). These
approaches, while efficient, often struggle to accurately
capture discontinuous shear effects that are crucial in
modern passenger ship structures with varying top-
ology and material definitions.

Our approach bridges this gap by adapting the
higher-order shear deformation theory developed by
Reddy (1984) for composite laminates to ship struc-
tural analysis. The marine applications are introduced
by Imala et al. (2022) and Imala et al. (2025) by util-
ising a third-order polynomial description for in-
plane displacement. This theory provides a superior
representation of vertical and horizontal distributions
of shear stresses compared to first-order theories. We
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extend this formulation by incorporating vertical
transversal element definitions, enabling a more
accurate representation of structural interactions in
passenger ships. The proposed methodology is valid-
ated using a 3D conceptual cruise ship model.

2  MODIFIED HIGHER-ORDER SHEAR
DEFORMATION METHOD

The methodology used in this article closely follows
the higher-order shear deformation method presented
by Imala et al. (2025). Few modifications have been
introduced to describe a multideck passenger ship
more accurately, where the transversal bulkheads play
a significant role in the ship’s global stress response.
Therefore, displacement field definitions have been
added for vertical transverse elements and updated
for vertical longitudinal elements in addition to updat-
ing the definition of shear deformation variable to
reflect the addition of transverse vertical elements.

2.1 Shear deformation variable definition

The HSD theory utilises a homogeneous nodal
degree of freedom mapping in the global Cartesian
coordinate system, aligning the x-axis with the longi-
tudinal direction, the y-axis with the transversal dir-
ection, and the z-axis with the vertical direction:

u, v, w — translations respectively in x, y, z axis
directions, d — equilibrium force per unit length, jv/jx,
jw/jx — deformations in the direction of the shared
edge between the deck and longitudinal vertical
elements.

The degree of freedom d is expressed as:
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where degree of freedom value d comprises of
neighbouring element specific d;;, d., des values.
Additionally, (u/jy)’, ¢, G* are parameters of
a neighbouring horizontal element, (jwjy)™, " G
are parameters of a neighbouring transversal vertical
element, and G is a reference shear modulus value to
account for the change in material properties in adja-
cent elements. The reference shear modulus value is
calculated as follows: .

Gy = 21 G @)
where G; denote the shear; moduli used in the
analysis.

Deformation parameters (ju/jy)* and (jw/jy)** are
always considered in the direction of the positive axis.

Equation for describing the degree of freedom is
explained in a local system presented in Figure 1 a),
where EIll and EI2 share an edge and force per
length equilibrium is investigated at global coordin-
ates coinciding with nodes n; , and n; 3.
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Figure 1. Example element intersection for a) non-exploded
view b) for exploded view with edge normal directions.
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Grouping method for neighbouring elements
based on the polarity of the coincident edge normal
has been defined to describe the equilibrium force
per unit length degree of freedom d present in the
definition of the vertical longitudinal elements.

In general form, the equilibrium equation between
any coincident vertical longitudinal element node is

described as:
> aiSiSi =0, (3)

where s; and s; show the direction of edge normal
and obtain polarity values (1;-1) referring to the
positive and negative direction related to the global
coordinate system. Additionally, J.;; denotes the
element specific force value.

An exploded view of the element group is shown
in Figure 1 b), for which force equilibrium equation
after inserting polarity values is described as:

Oerz — Ocll — O3 + Oets + Oets — Oeis — Oerr
+0e18 — Oet9 + Oer10 + Oertt — derr2 = 0.

4)
The equilibrium can be presented alternatively by
separating the positively and negatively signed com-
ponents as:
e + Oera + eis + etg + enno + e

= Oeit + Oet3 + Oets + Oet7 + Oetg + Jena. (5)

Eq. (5) can be further grouped by introducing
matching components to the definition of the degree
of freedom in Eq. (1):

Oer2 + Oets + Oeis = 0, (6)
Oei8 + et10 + deri1 = 010, (7)
Oell + Oe3 + Oeis = 01, (8)
Oet7 + Oet9 + Oe12 = 0o, )

where
01 = 0r =9 = 019 = 0. (10)

In Equations (6) to (9) the elemental components
with coincident edges are grouped with vertical lon-
gitudinal element component resulting in two neces-
sary conditions when pairing elements for Eq. (1):

» Elements share an edge,

Coincident edge normal directions simultan-
eously in positive or negative global coordinate
system axis direction.

.

Eq. (1) is further expanded according to examples
shown in a) and b). The former shows the contribut-
ing elements to describing d; ; as:

023 = Oern3 + Oeta3 + Jeis 3- (11)
while the latter shows the contributing elements to
describing d; , as:

012 = Oei1 2 + Oei3 2 + Jeis2- (12)

After replacing Eq. (6) and (8) to Eq. (1) and
expanding to include nodal displacements, the shear
deformation degree of freedom in nodes n; , and n, 3
is respectively described as:
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2.2 Displacement field definitions for vertical elements
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placements shown in Figure 3.
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Vertical transversal element has been defined using
) a simple linear element description, where the non-

Figure 3. Degrees of freedom for vertical plating elements.

Displacement field definitions for in-plane dis-
placements for such elements incorporate first-order
polynomials introduced by Imala et al. (2025):

v(y,2) = e1(2)p1 (¥)v1 + e1(2) o2 (¥)v2+

&2(2)01(y)va + €2(2) 2 (y)vs (17)
w(y,z) = e1(2)p1(y)w1 + e1(2)pa(y)wa+
e2(2)1 (V)wa + &2(2) P2 (¥) w3 (18)

Finite element formulation for transversal vertical
elements follows previously presented methodology
by Imala et al. (2025).

Displacement field definitions for longitudinal
vertical elements in Imala et al. (2025) are modified
to include the updated definition for the shear
deformation variable in Eq. (1):

u(x,z) =y (w)r ()ur + o (W) (x) (%)1
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Figure 2. Contributing elements to a) d,; and b) d;

Equations (13) and (14) can be alternatively pre- 3

sented after replacing shared nodal displacement and ou
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Shape functions used in the displacement field

definitions in Eq. (19) and (20) have been introduced
in Imala et al. (2025).

2.3 Finite element equations

An orthotropic approach to describing material prop-
erties is used in the cruise ship concept design phase,
where plate elements represent structures that span
over multiple plate stiffening structures. Finite elem-
ent formulations incorporate material properties in the
form of [C]-matrix:

E,

Ci=—", 25

R ) (25)

Cy = 72, 26

2 (1 —vipv) (26)

Ci2 = vi2Cna, 27

Ces = G2, 28
where FE; and E, represent the orthogonal

Young’s moduli, G;, is the in-plane shear modu-
lus, and v,; and v;, are the orthogonal Poisson
ratios.

Finite element equations are described for vertical
longitudinal elements in Equations (29) to (31) and
horizontal elements in Equations (32) to (34) and for
vertical transversal elements in Equations (35)
to (37).
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Shape function linear combinations in matrix
form for in-plane displacements are described in
matrixes [Y;], [Y>] and [Y3]. In-plane derivations
are included in matrices [B;], [B>] and [B3] where:

Chi Cn 0
[Cl=|Cin Cn 0 |,

0 0 Ces

(36)

(37)

(38)

20
[Bl]—wluw_[g g] il (39)
20
[B2] = [Da][y,] = {0 & | lwal, (40)
2 0
dy  Ox
% 0
B = Dallws = | 0 & |bwsl.  (41)

3 CRUISE SHIP GEOMETRY AND FINITE
ELEMENT MODEL

The analysis presented in this article has been con-
ducted on a conceptual cruise ship model with
global dimensions length L,, = 300m, breadth
By = 42m, height H,,, = 51m, see Figure 4. The



model consists of 16 decks, including double bottom
and cofferdam; deck spacing is uniformly defined as
3.4 m. Longitudinally, the cross-section has been
divided with longitudinal bulkheads and pillars.
Weakened structures such as the superstructure deck
and pillars have been modelled with plate elements
using lowered material stiffness properties for realis-
tic global structural behaviour to simplify the model-
ling process in the conceptual design phase.
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Figure 4. Conceptual cruise ship cross-section dimensions.

Transversal bulkheads have been placed with
40 m step in the aft and foreship. Two midship
watertight section lengths have been set to 30 m, see
Figure 5.

Bulkhead spacing 30 m

NS

‘—;’\:\\ & ‘ ' s
' " | Bulkhead spacing40m ="

Figure 5. Transversal bulkhead spacing.

In concept design phase, stiffened panel sections
that include plating stiffening elements have been
represented as equivalent simple plate segments,
where orthogonal material properties have been
adjusted. Similar approach can be applied in areas
with significant openings, such as deck and bulkhead
openings as well as areas between pillars and super-
structure outside shells, where most of the stiffness
is provided by beam structures. This equivalent plat-
ing application for beam structures is suitable for
global response contribution but is not capable of
inter-elemental response analysis. Figure 6 shows
example structures for deck, deck openings,

53

bulkheads and pillars that have been converted into
equivalent plate regions.

Weakened material properties have been used in
significant horizontal and vertical openings to represent
stair openings and main corridor openings in longitu-
dinal and horizontal bulkheads. Material properties and
application cases are consolidated in Table 1. Struc-
tural breakdown with structure thicknesses and colour-
separated material designations are shown in Figure 7.

a)

Figure 6. Structural segments for a) plating with stiffening
structures, b) equivalent plating structures.

Table 1. Material property definitions and applications.
Young’s
modulus, Poisson
Name E;;E, [GPa] ratio,v  Application
M1 210 0.3 Hull, bulkheads, decks,
Superstructure shell,
M2 50 0.3 pillars, superstructure
bulkhead openings
M3 100 0.3 Hull bulkhead openings
M4 10 0.3 Deck openings

Longitudinal vertical elements have been uniformly
dimensioned as 3.4x5 m, where 3.4 m is the uniform
vertical deck spacing. A uniform length of 5 m is
defined for vertical and horizontal elements along the
x-axis. Element dimensions in the transversal direction
depend on the distance between adjacent longitudinal
pillars and bulkhead structures. 5x9 m elements are
used between the central pillar line and longitudinal
bulkheads, while 5x6 m elements are used between
the outer shell and the longitudinal bulkheads. Trans-
versal bulkheads use, respectively, 3.4x9 m and
3.4x6 m elements. The coarse mesh model in total has
5716 nodes and 10228 elements; see Figure 8.
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Figure 7. Structural breakdown of cruise ship conceptual
model: a) outer shell, b) longitudinal bulkhead, c)
pillars, d) deck plating, e) deck openings, f) transversal
bulkheads.

In the finer mesh model, the element dimensions
have been decreased to offer more data points for the
analysis. Vertically, the deck spacing has been divided
between 3 elements, longitudinally and transversally;
the element dimensions have been divided such that
the length along the x-axis and y-axis for all elements
is 1 m. Thus, vertical longitudinal and transversal
elements are dimensioned as 1x1.13 m, and horizon-
tal elements are dimensioned as 1x1 m, see Figure 8.
Loading has been applied to outer shell structures,

longitudinal bulkheads and pillars along the high-
lighted curves on the double bottom in Figure 9.

ship.

Figure 9. Load carrying edges for vertical longitudinal
structures.

Load per length unit has been defines as:

(x) = po*cos <2L£) , (42)
where load amplitude p,=200 N/mm and total length
of L,,;=300 m.

Boundary conditions are applied on the model in
the form of an elastic foundation, where a single row
of elements is added to the outer shell and bulkhead
bottom edges, see Figure 10. Free nodes for elastic
foundation elements are fixed to the ground, and
stiffness properties E.,=1 GPa and v,,=0.3 are used.

The HSD formulation has been implemented using
Matlab 2023 software to create a global stiffness
matrix utilising nodal point cloud and mesh properties
data as input parameters. FEMAP 2021.2 software
Direct Matrix Input G-set (DMIG) procedure has been
used to import the generated global stiffness matrix.
FEMAP 2021.2 software with Simcenter Nastran
solver has been used to collect static response data for
all finite element models.

Figure 10. Elastic foundation elements.
4 RESULTS

The analysis presented in this article focuses on
comparing shear stress distributions in various
planes and cross-sections between the coarse, linear
mesh model, fine linear mesh model and coarse
HSD mesh model. Longitudinal distributions of
stresses are presented in transitionary layers at the
main deck at z=23.8 m, see Figure 11, Figure 12, in
the transition between recess and first cabin deck at
7z=30.6 m, see Figure 13, and at the cofferdam tran-
sition at z=37.4 m, see Figure 14. Longitudinal
stress distribution graphs include a low and a high
approach to the transition layer, representing the
direction of movement. This is achieved in fine
mesh models due to the smaller distance to the
layer from which the results are averaged to
describe nodal values at the exact layer. For the
HSD element mesh, this is achieved with the para-
metric description of the shear deformation vari-
able, which allows a discontinuous expression of
stresses at the transition. For coarse mesh models,
this is not achieved as coarse, linear elements aver-
age nodal values over a large area, and thus, accur-
acy closer to the transition is lost.



Cross-sections for shear stress vertical distribution
analysis are chosen at coordinate x=52.5 m to ana-
lyse stress response in an area where structural
discontinuities are not prominent; see Figure 15.
Cross-sections at x=172.5 m, see Figure 16, at
x=182.5 m, see Figure 17, give an overview of the
stress distributions in nearby cross-sections to struc-
tural discontinuities.

The longitudinal distributions of shear stresses
demonstrate the necessity for a direction-specific
parametric approach in describing shear stress values
at topological transition layers. Figure 11 illustrates
that the coarse mesh produces identical values for
both approaches due to nodal stress averaging in the
main deck and longitudinal bulkhead cross-section.
These averaged values deviate from the fine mesh
results by up to 40%, while the HSD mesh demon-
strates a significantly higher correlation with the fine
mesh results. Local stress fluctuations induced by
topological variations in the bulkhead and deck open-
ings are accurately captured by the HSD and fine
linear mesh with comparable precision. In contrast,
the coarse, linear mesh fails to resolve these subtle
variations due to an insufficient degree of freedom
coupling conditions, highlighting its limitations in
capturing approach-specific stress phenomena.
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[b) High approacn |

a)

recess

{b) High approach
-40 I Y

|[Main deck | |
a) Low approacl

3

HSD mesh
Fine mesh

outer shell |

Coarse mesh

Figure 12. Longitudinal shear stress distribution in the hull
outer shell and recess shell at main deck level.

Figure 13 presents stress distributions at the cabin
deck and outer shell transitions. The phenomena
observed parallel those at the main deck transitions.
Here, the high approach, unaffected by nodal stress
averaging, demonstrates excellent correlation across
all mesh types, with minor discrepancies in local
peak stress values for the coarse linear mesh. The
HSD mesh captures local stress peaks with high
accuracy. In contrast, the coarse, linear mesh fails to
capture these peak values due to its inherent limita-
tions in element size and lower-order interpolation
methodology. The low approach shows up to 30%
deviation in expressed stress values from the fine
mesh results, while the HSD mesh maintains high
precision.

Main decki

a) Low approach

bulkhead

Figure 11. Longitudinal shear stress distribution in the

bulkhead at main deck level.

Figure 12 illustrates the shear stress distribu-
tions in the outer shell at the main deck interface.
All meshing variations exhibit highly consistent
results at the low approach of the main deck
intersection. This accuracy is attributed to the
stress values evaluated in the topmost layer of the
hull’s outer shell, where nodal stress averaging is
not required. In areas experiencing more intense
stress fluctuations, the coarse mesh model demon-
strates reduced accuracy in capturing peak stress
values. In contrast, the HSD mesh maintains pre-
cision comparable to the fine mesh results. For
the high approach, the coarse mesh shows signifi-
cant limitations as stress values are averaged
between the recess shell elements and adjacent
pillar elements, resulting in deviations of approxi-
mately 40% from the fine mesh baseline.
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Figure 13. Longitudinal shear stress distribution in the super-
structure outer shell and recess shell at cabin deck level.

Figure 14 illustrates the longitudinal shear stress
distributions at the cofferdam and outer shell transi-
tions. The coarse mesh model shows substantial
inconsistencies in the low approach, particularly
significant due to the high non-linearity of shear
stresses in proximity to discontinuous structures.
The HSD mesh model demonstrates a high capabil-
ity of capturing these stress fluctuations with preci-
sion comparable to the fine linear mesh results. The
high approach further fortifies the notion that the
fine linear mesh and HSD mesh characterise discon-
tinuous stress distributions with high correlation,
while the coarse mesh underestimates peak stress
values.



@ ) o e o |

b) High approach
Cofferdam | T

a) Low approach

[outer shelt

x[m]

100 150 200

Figure 14. Longitudinal shear stress distribution in the
outer shell and cofferdam level.

Analysis of the vertical shear stress distributions in
critical cross-sections shows the necessity for inter-
elemental stress characterisation. While nodal stress
values from coarse mesh models may occasionally
align with fine mesh distributions at nodal coordinates,
peak stresses frequently occur within element boundar-
ies. These internal stress concentrations require either
higher-order approximation functions or mesh refine-
ment for accurate description, highlighting the limita-
tions of simple nodal interpolation methods.
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Figure 15. Vertical shear stress distribution at x=52.5 m.

Figure 15 illustrates a cross-section in a ship area,
where structural discontinuities do not cause high
shear stress fluctuations and thus serve as a baseline
analysis. In topologically varying transitions, shear
stress distributions go through a discontinuous
description of shear stress. In Figure 15 a) this can be
observed at z = 23.8 m, where longitudinal bulkhead
thickness transitions from 10 mm to 6 mm. In sur-
rounding elements, all meshing variations show good
correlation; however, in the transition layer, coarse
mesh analysis shows nodal averaging and thus, preci-
sion is lost. The HSD mesh and fine linear mesh
maintain their correlation. Similar phenomena can be
seen in Figure 15 b) where the outer shell thickness
changes from 10 mm to 8 mm at z = 13.6 m. Coarse
mesh values in the recess structures in Figure 15 b)
show the effects of nodal averaging between recess
outer shell elements and adjacent pillar elements,
which result in significant deviations from the HSD
mesh and acceptable linear mesh results.
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Significant inter-elemental shear stress variation
can be observed in Figure 16 and Figure 17. Proxim-
ity to structural discontinuity above the cofferdam
deck at z =37.4 m increases the stress variation to
where coarse mesh produces results that severely
underestimate the peak stress values above the
cofferdam in Figure 16 a) and Figure 16 b). While
other areas of the stress distribution graphs behave
parallel to Figure 15, peak stress values for coarse
mesh are underestimated in bulkhead structures by
approximately 60%, while the overestimation of
peak values by the HSD mesh stays between 6-13%.
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Figure 16. Vertical shear stress distribution at x=172.5 m.

In Figure 17 a) the residual effects of two discon-
tinuous structure levels can be observed as the stress
distribution shows double flat peaks above the
cofferdam deck. The coarse mesh does not produce
significant deviations from these peak values. How-
ever, an apparent lack of data density is experienced
with coarse linear approximations, as the distribution
does not capture local deviations.
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Figure 17. Vertical shear stress distribution at x=182.5 m.
5 CONCLUDING REMARKS

This article presents a modified higher-order shear
deformation (HSD) method for global static response
analysis of multideck hull girders. The analysis focuses
on a marine industry case study using a conceptual
cruise ship model, where plating and stiffening struc-
tures are simplified into equivalent plating structures
with varying material and topological parameters.
Complex structural discontinuities are incorporated as



partial-length superstructure, stepped cabin deck con-
figuration and discontinuous top decks above the
cofferdam, as these features significantly influence
global stress distribution and overall design feasibility.

The modifications to the HSD method include
transversal vertical elements, enhancing the shear
deformation variable definition in longitudinal verti-
cal elements. The updated displacement field defin-
itions and the finite element formulation overview
are presented. The method uses a formulation where
the shear deformation variable is parametrically
described to allow for direction-specific stress
description in topological or geometrical transition
layers, generating more realistic stress distributions
than identically dimensioned coarse, linear mesh.

Analysis results show that the coarse HSD mesh
consistently outperforms coarse, linear mesh, confirm-
ing the necessity of parametric formulation. Nodal
stress averaging in linear mesh applications leads to sig-
nificant stress distribution misrepresentation. The HSD
mesh and fine linear mesh show a good correlation in
all chosen planes. Cross-sectional shear stress distribu-
tions further confirm the limitations of nodal averaging
in transition layers and emphasise the necessity of
inter-elemental stress description. The HSD mesh suc-
cessfully finds peak stress values within the element’s
boundaries, while fine linear mesh captures the peak
stress values through increased nodal density. Although
coarse linear mesh produces nodal stress results that
often coincide with the finer linear mesh distributions,
it does not detect critical peak stresses within element
boundaries, particularly near structural discontinuities.

In practical applications, the HSD formulation
accurately estimates the structural response of multi-
deck ship structures in the conceptual design phase,
outperforming commonly used and identically
dimensioned linear mesh finite element models. The
method presents a practical alternative to conven-
tional 3D finite element methods in models where
a complex stress behaviour is of interest in transi-
tional structure layers, and accurate peak stress
detection requires higher-order approximations. This
method maintains computational efficiency compar-
able to traditional linear mesh while delivering
superior accuracy in results.
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