
Department of Electrical Power
Engineering and Mechatronics

Development of tiredness assessing system based on
webcam image processing and behavioral

biometrics

Pilditöötlusel ja biomeetrilistel andmetel põhinev väsimuse
hindamise süsteem

MASTER THESIS

Student: Sourabh Aryabhatta
Student ID: 165547MAHM

Supervisor: Dmitry Shvarts, PhD

Tallinn, 2019

Author’s Declaration

Hereby I declare, that I have written this thesis independently.

No academic degree has been applied for based on this material. All works, major view-
points and data of the other authors used in this thesis have been referenced.

“......” 2019

Author:
/signature/

Thesis is in accordance with terms and requirements

“......” 2019

Supervisor:
/signature/

Accepted for defense

“......” 2019

Chairman of theses defense commission: ..
/name and signature/

Department of Electrical Power Engineering and Mechatronics
THESIS TASK

Student: Sourabh Aryabhatta, 165547MAHM
Study programme, main specialty: MAHM02/13 - Mechatronics
Supervisor: Dmitry Shvarts, PhD

Thesis Topic:
(in English) Development of tiredness assessing system based on webcam image pro-

cessing and behavioral biometrics.
(in Estonian) Pilditöötlusel ja biomeetrilistel andmetel põhinev väsimuse hindamise

süsteem.

Thesis main objectives:
• Design a vision system to identify small variation of face components using image sensor.
• Develop an algorithm to assess tiredness level based on designed vision system.
• Train a ML model to utilize keystroke dynamics when tiredness is identified.

Thesis tasks and time schedule:

Nr. Description of task Completion
date

1. Literature study of related works on tiredness assessment 15.08.2019
2. Formulation of first concept with required parameters, algorithm

design; selection of camera sensor
30.08.2019

3. Target platform, programming language and library selection;
Interface design of prototype application

15.09.2019

4. Development of prototype application to detect facial components
and monitor keystroke dynamics for ML model training

30.09.2019

5. Continuous development of prototype application to measure
small variation of facial components and determine tiredness level

15.10.2019

6. Test and optimization of prototype application 30.10.2019
7. Conclusion and area of improvement for future work 08.11.2019
8. Submission of first draft (soft copy) 15.11.2019
9. Submission of final draft based on technical feedback 22.11.2019
10. Compilation of thesis for final submission 29.11.2019

Engineering & economic problems to be solved: Employee drowsiness or sleepiness is a
major contributor of low productivity and poor work-performance. Thus it affects the quality
of deliverable products. This paper aims to design a cost-effective vision-based sleepiness
detection system that can help to improve the situation effectively.
Language of thesis: English
Deadline for submission of application in OIS for defense: 16.12.2019
Deadline for submission of thesis (hard copy): 03.01.2020
Student: Sourabh Aryabhatta
Supervisor: Dmitry Shvarts, PhD

List of symbols

αt Amount of say
b Bounding box
B Total number of bounding boxes in a grid
C Class probability
d(p1, p2) Euclidean distance between two points p1 and p2
D Distribution
Dt Distribution at time t
ϵ Error
ϵt Error at time t
f Percentage eye openness tracking (PERCLOS)
FN N-th Haar-like feature
F (x, y) Two-dimensional function representing digital image
bh Height of the bounding box b
h(x) Weak classifier of object x ∈ X
H(x) Strong classifier of object x ∈ X
i(x, y) Intensity of pixel (x, y)
IOU Intersection over union
Pr Probability
s(x, y) Integral image at pixel (x, y)
t Time
Tc Aggregated duration of eye closure
Tt Total time of experiment
(bx, by) Center of bounding box b
bw Width of the bounding box b
X Set of training objects
Zt Normalization constant

i

List of abbreviations

2D 2-dimensional
3D 3-dimensional
AAM Active appearance model
AdaBoost Adaptive boosting
ADC Analog to digital converter
AI Artificial intelligence
ANN Artificial neural network
API Application programming interface
BGR Blue green red
CCD Charge-coupled device
CMOS Complementary metal-oxide-semiconductor
CNN Convolutional neural network
CUDA Compute unified device architecture
DIP Digital image processing
DL Deep-learning
DOF Degrees of freedom
EAR Eye aspect ratio
EEG Electroencephalography
EMG Electromyogram
EmguCV Cross platform .NET wrapper of OpenCV library
EOG Electro-oculography
fEMG Facial electromyography
FER Face expression recognition
FL Focal length
FNR False negative rate
FOQA Flight operational quality assurance
FOV Field of view
FN False negative
FP False positive
FPR False positive rate
FPS Frame per second
FSS Fatigue severity scale
GB Gigabyte
GHz Giga-Hertz
GPU Graphics processing unit
HD High definition
ICA Independent component analysis
IDE Integrated development environment

ii

List of abbreviations iii

IR Infrared
IT Information technology
KD Keystroke dynamics
KSS Karolinska sleepiness scale
LBF Local binary features
LBP Local binary patterns
LDA Linear discriminant analysis
MAR Mouth aspect ratio
MD Mouse dynamics
ML Machine-learning
MMG Mechanomyogram
NASA TLX NASA task load index
OOP Object-oriented programming
OpenCV Open source computer vision library for C and C++
OS Operating system
PCA Principal component analysis
PERCLOS Percentage eye openness tracking
PIXEL Picture element
PVT Psychomotor vigilance task
RAM Random-access memory
R&D Research and development
ROI Region of interest
SD Sensor dimension
SVM Support-vector machine
TLX Task load index
TN True negative
TP True positive
USB Universal serial bus
VAS Visual analogue scale
WD Working distance
WFA Windows form application
YOLO You only look once

Foreword

In English

This thesis paper proposes a non-invasive and non-intrusive system that evaluates an office
employee's tiredness level. This research work is dedicated to the field of Machine Vision and
Artificial Intelligence.
First of all, I would like to thank my supervisor Dmitry Shvarts for his constant supervision
and helpful directions. I express my heart-felt gratitude to my parents and my wife for
their continuous support. Big thanks goes to Ingel-Marie Hiiekivi, who kindly translated the
foreword and conclusion for me.
This research paper is done as a part of Graduation Thesis, under the Department of Electrical
Power Engineering and Mechatronics, Taltech University. If this paper or its LATEX source
code is needed for some reference, please request permission from the Department of Electrical
Power Engineering and Mechatronics, Taltech University.

In Estonian

Käesolev diplomitöö pakub välja mitteinvasiivse ja -intrusiivse süsteemi, mis hindab kon-
toritöötaja väsimustaset. See lõputöö on pühendatud masinnägemise ja tehisintellekti vald-
kondadele.
Esiteks soovin tänada oma juhendajat Dmitry Shvarts pideva juhendamise ja abistavate
juhiste eest. Avaldan südamest tänu pideva toetuse eest oma vanematele ja oma abikaasale.
Suur tänu Ingel-Marie Hiiekivile, kes oli abiks eessõna ja kokkuvõtte tõlkimisel.
Antud uurimustöö on tehtud lõputöö osana Taltechi ülikooli Elektroenergeetika ja mehha-
troonika instituudi osakonnas. Kui antud tööle või tema LATEX-i lähtekoodile on vaja viidata,
palun pöörduge Taltechi ülikooli Elektroenergeetika ja mehhatroonika instituudi poole.

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Task Objective . 2
1.3 Literature Review and Background . 2
1.4 Explanation for Developing Current Application 4

1.4.1 Facial Expression Recognition . 4
1.4.2 Behavioral Biometrics Acquisition . 5
1.4.3 Justification . 5

1.5 Thesis Structure . 5

2 Tiredness 6
2.1 Contact-based Measurements . 7
2.2 Time-based Measurements . 8
2.3 Behavioral Measurements . 9
2.4 Summary . 9

3 Computer Vision 10
3.1 Image Sensors . 10

3.1.1 Charge-coupled Device (CCD) . 10
3.1.2 Complementary metal-oxide-semiconductor (CMOS) Sensor 11
3.1.3 Comparison between CCD and CMOS Sensor 11

3.2 Digital Image Processing . 12
3.2.1 What is a Digital Image? . 12
3.2.2 Digital Image as a Matrix . 12
3.2.3 Image Processing . 12

3.3 Machine-Learning based Approach . 13
3.3.1 AdaBoost Algorithm . 13
3.3.2 Haar-like Features . 15

v

Contents vi

3.3.3 Cascade of Classifiers . 16
3.3.4 Integral Image . 17
3.3.5 Workflow of Face Detection . 19
3.3.6 Convolutional Neural Network . 22
3.3.7 Discussion . 24

3.4 Deep-Learning based Approach . 24
3.4.1 YOLO Object Detection Framework 24
3.4.2 Darknet Framework . 26
3.4.3 Workflow of Face Detection . 26
3.4.4 Discussion . 27

3.5 Comparison between Face Detection Approaches 28
3.6 Summary . 28

4 Behavioral Biometrics 29
4.1 Keystroke Dynamics . 29
4.2 Mouse Dynamics . 30
4.3 Behavioral Data for Tiredness Detection . 31
4.4 Workflow of Capturing Behavioral Biometrics 31
4.5 Summary . 32

5 Proposed Methodology 33
5.1 Eye-status based Tiredness Detection Algorithm 33

5.1.1 Facial Landmark Detection . 34
5.1.2 Eye Landmark Detection . 35
5.1.3 Eye Aspect Ratio . 35
5.1.4 Tiredness Detection . 37

5.2 Mouth-status based Tiredness Detection Algorithm 39
5.2.1 Mouth Landmark Detection . 39
5.2.2 Mouth Aspect Ratio . 40
5.2.3 Tiredness Detection . 41

5.3 ML Model Training for Keystroke Dynamics Analysis 44
5.4 Summary . 45

6 Implementation 46
6.1 Hardware Setup . 46

6.1.1 Webcam Configuration . 46
6.1.2 System Configuration . 47
6.1.3 Setup Activities . 48

Contents vii

6.2 Software Development . 48
6.2.1 Vision System Architecture . 49
6.2.2 Prototype Application Architecture 50
6.2.3 User Interface . 51

6.3 Summary . 53

7 Results 54
7.1 Eye-status based Tiredness Detection . 54
7.2 Mouth-status based Tiredness Detection . 58
7.3 Summary . 62

8 Discussion 63
8.1 System Performance Analysis . 63

8.1.1 Performance Analysis for Eye-status based Tiredness Detection 64
8.1.2 Performance Analysis for Mouth-status based Tiredness Detection . . 64
8.1.3 Summary . 64

8.2 Comparative Study with Other Existing Methods 65
8.3 Limitations of the System . 66
8.4 Future Recommendations . 66

9 Conclusion 68
9.1 Conclusion (English) . 68
9.2 Conclusion (Estonian) . 69

Bibliography 69

List of Figures 76

List of Tables 77

Appendix A Concepts and Theories 78
A.1 Theory of Tiredness . 78

A.1.1 Subjective Assessment of Tiredness . 78
A.1.2 Objective Assessment of Tiredness . 79

A.2 Theory of Computer Vision . 79
A.2.1 What is Computer Vision? . 79
A.2.2 Theory of Image Sensor . 79
A.2.3 Comparison between CCD and CMOS Sensor 80

Contents 0

A.2.4 Types of an image . 81
A.2.5 Preparation of Custom Haar Cascade 82
A.2.6 Theory of Deep-Learning based approach 88

Appendix B Hardware Setup Requirements 90
B.1 Implementation of Designed System . 90

B.1.1 Specifications of Webcams . 90
B.2 Camera Parameter Calculation . 91

Appendix C Software Development Activities 93
C.1 Computer Vision Programming . 93

C.1.1 Facial Components Detection . 93
C.1.2 Object Detection using YOLO Framework 94

C.2 Behavioral Biometrics Programming . 94
C.2.1 Behavioral Biometrics Monitoring Method 94

C.3 Proposed Methodology Programming . 96
C.3.1 Facial Landmark Detection Method 96
C.3.2 Eye Landmark Detection Method . 97
C.3.3 Eye Aspect Ratio Calculation Method 98
C.3.4 Mouth Landmark Detection Method 99
C.3.5 Mouth Aspect Ratio Calculation Method 99
C.3.6 Inner Lip Distance Measurement Method 100
C.3.7 ML Model (for Keystroke Dynamics Analysis) Training Method 101

Chapter 1

Introduction

According to a public survey (2015-2016) in Estonia among office workers, it is found that
sitting at desk in front of computer for long hours is the primary contributor of occupational
tiredness. The survey was conducted among more than 150 creative R&D employees (includ-
ing applied researchers, engineers, IT and product developers) and it was carried out by a
group of medical researchers and economists from Department of Economics and Finance of
Taltech University [1].
Occupational tiredness often leads to sleepiness; thus it impacts worker's performance and
productivity very badly. As a result, the quality of products degrades significantly and it ends
up with heavy loss of profit, time and reputation. In addition, sleepiness hampers workplace
safety and might drive to industrial accidents. To prevent this situation, it is important to
monitor the tiredness level of a desk employee consistently. This paper intends to design a
vision-based alert system that can assess employee tiredness (sleepiness) in real time.
A number of works related to tiredness detection (using contact-based sensors) have been
done in controlled laboratory environment. But unfortunately their application in real life
environment is still very limited, because users don't feel comfortable to have invasive mea-
surements. Again, scientists found that fatigue level experienced in laboratory environment
varies significantly with the actual fatigue in daily life [2]. Hence, this paper makes an effort
to design a cost-effective vision-based tiredness detection system that can be implemented in
real workplace.

1.1 Motivation

The primary motivation of this research work is to bring more intelligence to machine vision
system and analyze the observed small variation of physiological change (e.g, sleepy eye, yawn
etc.) in order to evaluate occupational tiredness of an individual. Although similar topics
(in other fields) have been discussed by experts in recent years, but unfortunately there is no
such implementation in the official work environment.
The current beneficiary of the system will be desk-employees who spend a lot of time sitting
consistently in front of their computers. But other kinds of computer users, for example,
students can use this system. Again, the system can be implemented in various cases includ-
ing computer control through individual's motion and facial expression. So, applicability,
reliability and robustness are the key factors that need to be considered.

1

Introduction 2

1.2 Task Objective

This paper aims to develop a unique methodology and respective system that measures
small variation of physiological activity of a computer user in real time through webcam
image processing. With the help of designed algorithms, it will assess the level of tiredness
(sleepiness) of that individual. It is expected that necessary features (e.g, charts, graphs etc.)
will be implemented in the system for further analysis of the obtained results. In addition, if
the individual is identified as tired, it will store keystroke dynamics data of the person into
a database in order to train a ML model for future usage. Please note that, the system will
be fully non-invasive and cost-effective too.
Hence a series of verification tests will be done in order to inspect the system's applicability
and reliability. A confusion matrix will be used in order to study the system's performance
(accuracy and precision). Finally, a comparative study with other existing methods will be
done in order to evaluate whether the system can be implementable in real life environment
or not.

1.3 Literature Review and Background

There exist many internal and external factors that can modulate the onset and presence
of tiredness. These factors include sleep deprivation, naps, noise, heat, mood, motivation,
time of day, workload and most essentially the individual's profile (age, gender, professional
occupation, consumption of alcohol and drugs etc.) [3]. As a result, several visual analogue
scales (VAS) were introduced to assess these factors in order to determine the level of fatigue
of employees (e.g, pilots, flight-crew members etc.). Table A.1 presents a short description
of these analogue tools. Again, fatigue can be defined objectively by measuring degraded
performance using another set of different tools. Short description of these tools is presented
in Table A.2.
Since there exist strong possibilities to cheat the subjective assessment tools, because one can
manipulate the result easily by providing incorrect answers; so it was obvious to introduce
technology to detect the level of tiredness. Most of these technologies use contact-based
sensors such as force gauge, mechanomyogram (MMG) and electromyogram (EMG). Among
these systems, force gauge is considered to be minimal invasive; but it requires a hand grip
dynamometer. On the other hand, MMG uses an accelerometer or goniometer that needs
direct skin contact and it is sensitive to noise as well. Again, EMG requires electrodes that
need to wear adhesive gel patches [4]. However, real-life application of these systems is still
very limited, because people do not prefer to interact with such invasive and intrusive systems.
With the growth of modern image-processing technology, many algorithms have been es-
tablished to detect real-time fatigue in drivers and pilots in recent years. In 2007, Volvo
introduced the world's first driver tiredness detection system (Driver Alert Control) based
on car's movement. Other popular car manufacturing companies invested a lot of money to
develop vision system that can identify driver drowsiness as well. In 2015, an algorithm for
detecting visual fatigue by analyzing the blink rate using computer vision was introduced by
Clavijo and others [5]. In the same year, Abdulin and Komogortsev established another novel
technique to detect user eye fatigue via eye movement behavior [6]. Few real-time sleepiness
detection algorithms based on driver's eye-state (open or closed) were proposed by Ghimire
and others in 2016 [7, 8]. On the other hand, Zhang and Hua showed that facial expression
analysis using local binary patterns can be used to recognize tiredness as well [9].

Introduction 3

Figure 1.1: Flowchart of visual fatigue detection by analyzing blink rate [5]

Figure 1.2: Flowchart of the driver's drowsiness detection system [7]

Introduction 4

1.4 Explanation for Developing Current Application

We already know that smart cars (installed with smart vision system) are able to trigger
alarm while the driver gets sleepy. However, the facility is still limited to those cars and the
system is quite costly as well, because it uses very expensive infrared camera for vision system
so that it can operate in extremely low light condition. Most importantly, the technology is
a business-secret as well.
Although there exist a few standalone vision-based fatigue detection systems, but they can
deliver acceptable results only in laboratory environment. Because it is evident to have various
potential challenges in their application level such as installation in real life environment, cost
of installation, necessity of external dependencies (e.g, lighting), maintenance support etc. So
there exist tons of opportunities to research in this field and introduce vision-based monitoring
system to detect occupational tiredness.
In order to develop such system, our idea is to identify very small variation of physiological
change using vision system, apply efficient algorithm to analyze the change and detect tired-
ness in real time. At the same time, the system should be able to collect the individual's
biometric data (keystroke dynamics) too, so that it could be used for training a ML model
and later the model can predict tiredness of that person with some confidence level as well.
In principle, we require to handle two processes, which are as follows:

1. Facial expression recognition

2. Behavioral biometrics acquisition

1.4.1 Facial Expression Recognition

Automatic facial expression recognition (FER) has become a challenging area in the field of
computer vision and one of its popular applications is operator tiredness detection. Figure
1.3 shows a standard FER block diagram [10].

Figure 1.3: Facial expression classification block diagram [10]

In pre-processing phase, noise-removal is done by considering a time series of images (from
neutral to an expression) as input and gives the face region as output. Then region of interest
(ROI) for eyes, nose, cheeks, mouth are detected during the facial component detection
phase. Feature extraction phase is responsible for extracting features from the selected ROIs.
Popular feature extraction techniques include Gabor filters [11], Local Binary Patterns (LBP)
[12], Principal Component Analysis (PCA) [13], Independent Component Analysis (ICA)
[14], Linear Discriminant Analysis (LDA) [15] etc. Figure 1.4 shows example of some of these
feature extraction techniques applied on an input image.

Introduction 5

Figure 1.4: Example of popular feature extraction techniques – (a) Input image (yawning
person), (b) Gabor filter, (c) Sobel edge detector, (d) LBP, (e) Threshold binarization

1.4.2 Behavioral Biometrics Acquisition

In 2018, Ulinskas and others found that keystroke dynamics is one of the significant biometric
characteristics that can define the tiredness level of office workers up to some extent [16]. In
the context of our application we are interested to analyze some of the keystroke attributes,
because, for example, a tired person's keystroke data will be different from normal condition
over the period of interest. If we can collect & analyze these data over a period of time, we
can extract a probability-driven result with less margin of error.

1.4.3 Justification

Although many researchers have been trying to develop a system in order to assess fatigue
level of desk employees; but our approach is unique from all of them. Since, we do not use any
contact-based sensor, so our developed system will be fully non-invasive and non-intrusive.
Again, our development cost will be cheapest among all the other existing systems, because
only one image sensor will be mounted. From development perspective, we want to use
OpenCV and EmguCV library functions for facial component recognition; both are open
source libraries, along with Microsoft Visual Studio 2019 as IDE and Microsoft Access
2016 as database to store keystroke dynamics data for future testing. Most importantly,
migration to mobile & other platforms and feature extension should not be difficult as well.

1.5 Thesis Structure

The rest of this paper is organized as follows. Chapter 2 discusses about different mea-
surement techniques to detect Tiredness. Chapter 3 describes about the application of
Computer Vision. Chapter 4 describes about the application of Behavioral Biometrics.
Chapter 5 explains the Proposed Methodology to identify individual tiredness and re-
spective algorithms. Chapter 6 discusses about the Implementation of the system in terms
of hardware and software. Chapter 7 presents the Results obtained from the developed
prototype application. Chapter 8 provides a detailed Discussion on system's performance
analysis and comparative study with other similar systems. Finally, Chapter 9 wraps up with
Conclusion with future directions.

Chapter 2

Tiredness

In this chapter we explain the term “Tiredness” and describe possible ways of tiredness
measurements in details. In general, tiredness refers to a state of human body with lack
of energy and motivation compared to regular time. It is divided into two types − physical
and mental. Physical tiredness is known as a temporary physical inability of our muscles to
perform optimally due to lack of strength, or muscle weakness. For example, daily activities
like doing physical exercise, climbing stairs or carrying shopping bag etc. might seem much
harder than before. On the other hand, mental tiredness is a temporary inability to keep up
optimal cognitive performance. Less concentration in work, unwilling to get up in the morning
etc. are common examples of mental tiredness. It frequently appears together with physical
tiredness, but not always. Both physical and mental tiredness are dangerous, especially when
the person is a health-care professional or driver or pilot or military personnel, because a
little mistake can lead to loss of many lives. Figure 2.1 shows an example of visual tiredness
in our everyday life.

Figure 2.1: Visual tiredness [17]

Now-a-days it is highly important to monitor tiredness of office workers as far as the pro-
ductivity and quality is concerned. Employees working long time with computer have quite
often problems with eyes, neck and spine muscles. The reason is watching screen and sitting
in one position for long time. As a result, personal health problems (like vision related prob-
lem, back-pain, or even coronary diseases) initiate and productivity decreases significantly.
Periodic rest during the work improves the situation considerably, and in some cases, it helps
to avoid severe health problems completely.

6

Tiredness 7

In order to identify individual's tiredness level, we have tried to classify the possible mea-
surements into following categories:

1. Contact-based measurements

2. Time-based measurements

3. Behavioral measurements

In the following sections, we will discuss about these measurements in details.

2.1 Contact-based Measurements

With the growth of modern technology, it is even possible to track very small change on
facial muscles with the help of contact-based sensors and thus it helps to identify tiredness as
well. Facial electromyography (fEMG), electrooculography (EOG), electroencephalography
(EEG) are good examples of such measurement techniques.
Generally, fEMG uses surface EMG electrodes to detect activity at the zygomaticus (cheek),
orbicularis oculi (under eye), and/or corrugator supercilii (brow) muscle regions. Once the
setup is ready, the candidate is exposed to a stimulus signal, e.g, sound, picture, or smell for
psychophysiology or neuromarketing studies [18]. Figure 2.2 shows a typical fEMG carried
out for target muscle regions.

Figure 2.2: Facial electromyography (fEMG) [19]

Again, EOG measures eye movement using pairs of electrodes that need to be placed either
above and below the eye or to the left and right of the eye. On the other hand, EEG measures
an individual's ability to resist sleep by tracking his/her brain’s electrical activity using small,
metal discs (electrodes) attached to scalp. Again, it is important to note that, all of the above
mentioned techniques involve contact-based electrodes.

Tiredness 8

2.2 Time-based Measurements

The most common visual symptoms of tiredness of desk-workers are as follows:

1. Eye flickering (closing of the eyelid due to sleepiness)

2. Yawn (reflex that consists of the simultaneous inhalation of air)

3. Nod (quick downward motion of the head)

While we speak about eye-flickering, it is found that percentage eye openness tracking
(PERCLOS) is one of the best quantitative measures for fatigue detection. It can be es-
timated from continuous video stream of the eye images. It is defined as the proportion of
time the eyelids are at least 80% closed over the pupil. So it is described as a temporal ratio
over a given time frame and measured in percentage [20]. Mathematically we can describe
PERCLOS by the following equation:

f =
Tc

Tt
∗ 100% (2.1)

In equation 2.1, f is the PERCLOS value, Tc is the aggregated duration of eye closure and
Tt is the total time of experiment. Figure 2.3 illustrates the measurement of PERCLOS in
details, followed by necessary mathematical expressions.

Figure 2.3: Percentage eye openness tracking (PERCLOS)

According to figure 2.3, total time of experiment is the time in between t1 and t4. Again, the
time in between t2 and t3 is the time when the eyes are closed at least 80% or even more. So
we can measure PERCLOS value by rewriting equation 2.1 as follows:

f =
t3 − t2
t4 − t1

∗ 100% (2.2)

Again, the frequency of yawn, downward motion of head etc. are considered as time-based
measurements for tiredness detection.

Tiredness 9

2.3 Behavioral Measurements

Behavioral biometric data is widely used for personality validation, because it makes each
person unique in terms of his/her behavioral characteristics. Generally, behavioral charac-
teristics include keystroke dynamics, gait, voice, personal signature. Keystroke dynamics is
also known as keystroke biometrics or typing biometrics. It refers to the detailed timing data
which tells exactly when each key was pressed and released by a computer user. In recent
years, keystroke features have been successfully used for automated stress detection [16].
Undoubtedly the most useful advantages of utilizing keystroke dynamics are its universality
and collectability, because almost everyone has access to keyboard of a computer. And at the
same time, no special hardware is required to capture this biometric data. As a result,
we do not need any additional driver to be installed. Only system libraries are sufficient to
capture the timing information.
On the other hand, a major drawback of keystroke dynamics is that, this method uses con-
fidence measurement, instead of the classical pass-fail measurement. Thus it makes false
positive rate (FPR) and false negative rates (FNR) to be high - which unexpectedly makes
the result less reliable than physiological biometrics. But one of the primary contributors of
this high FPR and FNR is individual's tiredness level. So, eventually it helps to determine an
individual's tiredness level with some approximation. Similarly, we can try to utilize mouse
dynamics information for tiredness detection if we can get sufficient time.

2.4 Summary

In this chapter, we have discussed about different measurement techniques to detect individ-
ual's tiredness. Since we are interested to develop a non-invasive and non-intrusive system,
so we decline the possibility of using contact-based sensors. Now we would like to focus on
the following time-based measurements:

• Status of eyes (e.g, duration and frequency of eye-closeness)

• Status of mouth (e.g, duration and frequency of yawns)

• Nodding (e.g, motion of visible facial components, head etc.)

So, we need an image sensor (built-in or externally-mounted HD webcam) for our vision
system. The system is expected to monitor facial components of a desk employee as it's region
of interest (ROI) in real-time. Next, image processing algorithm will help us to measure,
calculate and analyze the information in order to detect tiredness level of that person. In
parallel threads, necessary keystroke dynamics will be monitored as a part of behavioral
measurements. So, these are our necessary parameters for formulating first concept of our
project. With the help of all these parameters, we should be able to determine tiredness level
(possible symptoms of sleepiness) of an individual in real time.

Chapter 3

Computer Vision

In this chapter, we discuss some basic topics of computer vision that will be used throughout
the rest of the thesis. In brief, the study of computer vision is concerned to extract information
from images and utilize them for intended application. More detailed definition of computer
vision is discussed in section A.2.1. In section 3.1, we explore different image sensors and
their functionality so that we can choose the proper sensor for our designed system.

3.1 Image Sensors

3.1.1 Charge-coupled Device (CCD)

CCD consists of millions of pixels. When these pixels are exposed to incoming light, they
convert the light into charge and the charge gets accumulated in these pixels. Once the charge
is collected by these pixels, this charge is transferred using the horizontal shift registers. This
charge is transferred to the last column’s vertical shift registers. Then each charge is converted
into voltage. After voltage conversion, each voltage is amplified using the amplifier. Once the
vertical shift register is emptied, the same procedure is followed by the remaining charges.
Once all the voltage amplification is completed, the output signal is converted into digital
signal using ADC (Analog to Digital Converter). Figure 3.1 illustrates a simple overview of
how CCD sensor works [21].

Figure 3.1: CCD sensor

10

Computer Vision 11

3.1.2 Complementary metal-oxide-semiconductor (CMOS) Sensor

In CMOS sensor, the fabrication technology is very similar to the fabrication technology of
the integrated circuits. Because of that, many peripheral circuits can be integrated to the
single chip. So in case of the CMOS sensor, the charge to voltage conversion, as well as the
voltage-amplification is carried out in the pixel itself. As the charge-to-voltage conversion &
voltage-amplification carried out in the pixel itself, so the processing speed is much higher
than the processing speed of CCD sensors. So, in case of CMOS sensors, the voltage generated
by each pixel is being read in a line-by-line fashion. First of all, the first row of the pixels is
activated using the pixel select switch. This pixel select switch connects this output voltage
of this pixel to the column line. By activating the column select switch one-by-one, we can
read the data of each pixel. And the same procedure is repeated for the remaining lines.
In this way, in CMOS sensor, data is read in a line-by-line fashion. Figure 3.2 illustrates a
simple overview of how CMOS sensor works [21].

Figure 3.2: CMOS sensor [21]

3.1.3 Comparison between CCD and CMOS Sensor

Feature CCD CMOS Sensor
System Integration Not possible Possible
Power Consumption High Low
Processing Speed Less High
Image distortion Blooming effect Rolling shutter effect
Noise Low High
Sensitivity High Low

Table 3.1: Comparison between CCD and CMOS Sensor

A detailed comparison between CCD and CMOS sensor is described in section A.2.3.
In a summary, when we emphasize on high dynamic range and low noise, we consider CCD
sensor. On the other hand, when we put more importance on fast-processing-speed and as
well as low-power-consumption, CMOS sensor is preferred over the CCD sensor. Since we are
concerned about the processing speed, so we would prefer to select CMOS sensor for our
designed system. In section 3.2, we will discuss about digital image processing in details.

Computer Vision 12

3.2 Digital Image Processing

3.2.1 What is a Digital Image?

A digital image is a numeric representation of a two-dimensional image. These images have
a finite set of digital values, called pixels. The digital image contains a fixed number of
rows and columns of pixels. Pixels are the smallest individual element in an image, holding
quantized values that represent the brightness of a given color at any specific point [22].
Mathematically, a digital image can be defined as a two-dimensional function, F (x, y), where
x and y are spatial coordinates, and the amplitude of F at any pair of coordinates (x, y) is
called the intensity of that image at that point [23].

3.2.2 Digital Image as a Matrix

Digital images can be represented as a matrix, like the following [23]:

f(x, y) =


f(0, 0) f(0, 1) f(0, 2) . . . f(0, N − 1)
f(1, 0) f(1, 1) f(1, 2) . . . f(1, N − 1)

...
...

...
f(M − 1, 0) f(M − 1, 1) f(M − 1, 2) . . . f(M − 1, N − 1)


Classification of digital images are discussed in section A.2.4.

3.2.3 Image Processing

According to computer science, digital image processing (DIP) means the use of computer
algorithms to perform image processing on digital images [24]. Basically it deals with ma-
nipulation of digital images using digital computer. It focuses on developing a computer
system that can perform processing on an image. In simple words, the input is digital image
and the output is some useful information (or it can be in a form of another digital image)
[25]. Adobe Photoshop is a common example of widely used application for digital image
processing. On the other hand, Matlab, LabView etc. are also frequently used by researchers
and professionals. Figure 3.3 illustrates how a digital image is processed using a computer
system.

Figure 3.3: Digital image processing [25]

Now the next phase will be to recognize a face. In principle, in order to identify a face using
machine vision system, we can utilize any one of the following two methods:

Computer Vision 13

1. Machine-Learning based approach

2. Deep-Learning based approach

Initially, we will try to explore both approaches in details, then compare the detection meth-
ods and finally choose the appropriate method that suits for our prototype application.

3.3 Machine-Learning based Approach

It is the most classical approach for object detection that uses machine learning model with
specific features. In simple words, ML algorithm develops a model that can categorize an
input (image) based on specific features and this model is trained using a defined dataset
(thousands of positive and negative images). For instance, the Viola-Jones object detec-
tion framework uses Adaptive Boosting (AdaBoost algorithm) that selects images among
thousands and it is based on Haar-like features [26].

3.3.1 AdaBoost Algorithm

AdaBoost is a ML meta-algorithm introduced by Yoav Freund and Robert Schapire. It is
the first really successful boosting algorithm developed for binary classification. Please note
that, boosting is a general ensemble method that creates a strong classifier from a number of
weak classifiers [27]. There exist two kinds of classifiers in ML which are as follows:

• Weak classifier

• Strong classifier

A weak classifier (or weak learner) is a classifier that is slightly correlated with the true
classification (performs better than random guessing). On the other hand, a strong classifier
(or strong learner) is a classifier that is arbitrarily well-correlated with the true classification.
AdaBoost is based on the following three ideas [28].

1. It combines a lot of weak classifiers to make classifications. The weak classifiers are
almost always stumps1.

2. Some stumps get more say2 in the classification than others.

3. Each stump is made by taking the previous stump's mistakes into account.

Pseudocode

Now we are interested to know how AdaBoost algorithm works on a given dataset. So, the
pseudocode of the algorithm is described below [29].
Given training data (x1, y1), . . . , (xm, ym)

yi ∈ {−1,+1}, xi ∈ X is the object or instance, yi is the classification.
1A stump is known as a tree with just one node and two leaves
2Amount of say of a stump is determined by the following formula, Amount of Say = 1

2
log 1−Total Error

Total Error ,
where Total Error refers to the sum of the weights associated with the incorrectly classified samples.

Computer Vision 14

for t = 1, . . . , T

create distribution Dt on {1, . . . ,m}
select weak classifier with smallest error ϵt on Dt

ϵt = PrDt [ht(xi) ̸= yi]

ht : X → {−1,+1}
output single classifier Hfinal(x)

Mathematical Derivation

It is important to understand how AdaBoost generates the result classifier in a step-by-step
approach. So figure 3.4 illustrates how it obtains the output classifier.

Figure 3.4: AdaBoost classifier

Now we are interested to see how the distributions are constructed.

D1(i) =
1

m

and given Dt and ht

Dt+1 =
Dt(i)

Zt
c(x)

c(x) =

{
e−αt : yi = ht(xi)

eαt : yi ̸= ht(xi)

Dt+1 =
Dt(i)

Zt
e−αtyiht(xi)

where Zt = normalization constant

Computer Vision 15

αt =
1

2
ln

1− ϵt
ϵt

> 0

Finally, we get a single classifier using the following formula: Hfinal(x) = sign
∑

t αtht(x)

Since we want to obtain the classifier in quickest possible time, so Haar-like features will be
the most suitable choice over the other features, as far as the calculation speed and accuracy
is concerned.

3.3.2 Haar-like Features

In simple words, haar-like features are digital image features which are used in object recog-
nition. Object Detection using Haar feature-based cascade classifiers is a machine learning
based approach where a cascade function is trained from a lot of positive and negative images.
It is then used to detect objects in other images [30].
Here our primary objective is to work with face detection. Later, we will extend the same
idea for eye and mouth detection. Initially, the algorithm requires a significant amount of
positive images (images of faces) and negative images (images without faces) to train the
classifier. Then necessary features need to be extracted from it. So, Haar-like features are
used. Figure 3.5 illustrates the Haar-like features in details. Each feature represents a single
value obtained by subtracting sum of pixels inside the white rectangle from sum of pixels
inside the black rectangle.

Figure 3.5: Haar-like features

After extracting features from an image, every feature should be associated with an identifier,
which is known as the feature descriptor. From figure 3.5, we can see that there exists three
kind of feature descriptors.

1. Bi-rectangle feature descriptor: Obtained by subtracting the sum of pixels of two
rectangular regions (either horizontally or vertically adjacent) of same size and shape.

2. Tri-rectangle feature descriptor: Obtained by subtracting the sum of pixels of
two outer rectangles from the sum of pixels of central rectangle (either horizontally or
vertically adjacent).

3. Tetra-rectangle feature descriptor: Obtained by subtracting the sum of pixels of
two diagonally-paired rectangles from the remaining pair.

Computer Vision 16

Figure 3.6: Haar-like features used for face detection [31]

Figure 3.6 shows different kind of Haar-like features used for face detection while executing
Viola-Jones algorithm. Since most of the regions in an image is non-face region, so it is
easier to check if a window is not a face region. If it is a non-face region, it is immediately
discarded and never processed again. On the other hand, if a window passes, the second stage
of features is applied and the process is continued. The window which passes all the stages
is identified as a face region. Basically this approach introduced the concept of cascade of
classifiers which we will discuss in the following section.

3.3.3 Cascade of Classifiers

While we train a classifier to identify positive and negative images, it is always important
to choose the features with minimum error rate. In the context of face recognition, this
number of features can be extremely high. For instance, a 24× 24 size window might consist
of 160000+ features. With the help of AdaBoost algorithm, it is possible to reduce the
number of features around 6000. But still it is very much inefficient and time-consuming to
apply this number of features.
In order to solve this problem, Paul Viola and Michael Jones introduced the concept of
cascading classifiers. Instead of trying all 6000 features on a defined window, these are
grouped into different stages of classifiers and applied one-by-one. If a window fails in first
stage, it is automatically discarded - which means the remaining features are not applied on
it. If it passes, the second stage of features are applied and thus the process continues. The

Computer Vision 17

window which passes all stages is a face region.
Figure 3.7 illustrates a simple cascade of classifiers. Here F1, F2, F3, . . . , FN denotes Haar-like
features that we have already discussed in section 3.3.2.

Figure 3.7: Cascade of classifiers

Please note that, Haar-like feature of any size can be calculated in constant time by using
the concept of “summed-area table” (approximately 60 microprocessor instructions for a bi-
rectangle feature descriptor). In the image processing domain, summed-area table is also
known as integral image.

3.3.4 Integral Image

Integral image is used for calculating the sum of pixel values in a given image or a rectangular
subset of a grid (the given image). It can be used for calculating the average intensity within
a given image. Before using the integral image, input image should be in grayscale first [32].
In computer science domain, the concept of integral image is well-known as summed-area
table. In this table, any point (x, y) is represented by a value, which is basically the sum of
all the pixel values above, to the left and of course including the original pixel value of (x, y)
itself. Figure 3.8 shows how to obtain integral image at any point s(x, y).

Computer Vision 18

Figure 3.8: Integral image

Ideally, integral image is calculated using the following equation:

s(x, y) = i(x, y) + s(x− 1, y) + s(x, y − 1)− s(x− 1, y − 1) (3.1)

Figure 3.9 illustrates how an integral image is calculated at each point s(x, y).

Figure 3.9: Calculation of integral image

Now we are interested to calculate integral image for each point A,B,C and D in figure 3.9 in
a step-by-step approach. Please note that, the order of calculation is important here, which
means, we have to calculate for point A first, then for point B, then for point C and finally
for point D.

Calculation for Point A

• i(x, y) = 1, pixel value obtained from input image

• s(x− 1, y) = 0, because x− 1 is outside of image boundary; so value is 0

• s(x, y − 1) = 0, because y − 1 is outside of image boundary; so value is 0

• s(x− 1, y − 1) = 0, because both x− 1 and y − 1 are outside; so value is 0

Now, if we apply equation 3.1 for point A, we get, s(A) = 1 + 0 + 0− 0 = 1

Computer Vision 19

Calculation for Point B

• i(x, y) = 5, pixel value obtained from input image

• s(x− 1, y) = 1, because we already calculated s(A) = 1

• s(x, y − 1) = 0, because y − 1 is outside of image boundary; so value is 0

• s(x− 1, y − 1) = 0, because both x− 1 and y − 1 are outside; so value is 0

Now, if we apply equation 3.1 for point B, we get, s(B) = 5 + 1 + 0− 0 = 6

Calculation for Point C

• i(x, y) = 2, pixel value obtained from input image

• s(x− 1, y) = 0, because x− 1 is outside of image boundary; so value is 0

• s(x, y − 1) = 1, because we already calculated s(A) = 1

• s(x− 1, y − 1) = 0, because both x− 1 and y − 1 are outside; so value is 0

Now, if we apply equation 3.1 for point C, we get, s(C) = 2 + 0 + 1− 0 = 3

Calculation for Point D

• i(x, y) = 4, pixel value obtained from input image

• s(x− 1, y) = 3, because we already calculated s(C) = 3

• s(x, y − 1) = 6, because we already calculated s(B) = 6

• s(x− 1, y − 1) = 1, because we already calculated s(A) = 1

Now, if we apply equation 3.1 for point C, we get, s(D) = 4 + 3 + 6− 1 = 12

In a summary, it does not matter however large is our input image, the calculation involves
only four pixels for a given pixel - which makes the process super-fast. Next, we are interested
to see the workflow of face detection in order to identify necessary facial components.

3.3.5 Workflow of Face Detection

In chapter 1, we already acknowledged about some of the popular detection algorithms for
facial components recognition. For example, a standard facial expression recognition is ex-
plained in figure 1.3. The classical idea is a step-by-step approach, like below:

1. We pre-process the input image in our desired colorspace (e.g, grayscale)

2. We identify the non-facial and facial regions. Non-facial region is immediately discarded.

3. If it is a facial region, we try to identify different facial components like eye, mouth etc.

Computer Vision 20

Figure 3.10 illustrates the workflow of facial components detection algorithm in details.

Figure 3.10: Workflow of facial components detection

At each of its detection block, we will use the CascadeClassifier.DetectMultiScale method,
which is described in section C.1.1. In the following sections, we will describe face, eye and
mouth detection in details.

Face Detection

For face detection, haarcascade_frontalface_default.xml [33] is a popular stump-based
24× 24 discrete Adaboost frontal face classifier. It contains 25 stages and 24× 24 Haar-like
features. Figure 3.11 shows how our application detects face in different lighting conditions.

Figure 3.11: Face detection in different lighting conditions (a) 10:00 morning (no extra
light), (b) 14:00 afternoon (no extra light), (c) 18:00 evening (no extra light), (d) 20:00

night (with 5 Watt yellow bulb)

Computer Vision 21

Eye Detection

In the context of eye detection, haarcascade_eye.xml [34] is a stump-based 20× 20 discrete
Adaboost eye classifier. It is a well-known eye detector that can work inside detected face
region. It contains 24 stages and 20 × 20 Haar-like features. Figure 3.12 shows how our
application detects eyes in different lighting conditions.

Figure 3.12: Eye detection in different lighting conditions (a) 10:00 morning (no extra
light), (b) 14:00 afternoon (no extra light), (c) 18:00 evening (no extra light), (d) 20:00

night (with 5 Watt yellow bulb)

Pupil Detection

Since there exists no discrete Adaboost pupil classifier, so we need to use the detected eye
regions and apply customized algorithm to detect pupil. Firstly, we need to transfer the
detected eye regions from BGR to GRAYSCALE colorspace. Then we have to apply down-
sampling and upsampling steps of Gaussian pyramid decomposition sequentially. So it will
make the eye regions smoother than before. Now we have to do binary threshold operation
on the regions in a way that if a pixel value is greater than the threshold value then it will
become WHITE; otherwise it will become BLACK. So, it will clean up everything except the
pupil area. Finally, we have to apply circle-finding algorithm in order to detect the pupil. In
section C.1.1, the sequence of activities is written in C# language. Figure 3.13 shows how
our application detects eyes in different lighting conditions.

Figure 3.13: Pupil detection in different lighting conditions (a) 10:00 morning (no extra
light), (b) 14:00 afternoon (no extra light), (c) 18:00 evening (no extra light), (d) 20:00

night (with 5 Watt yellow bulb)

Computer Vision 22

Mouth Detection

A stump-based 25 × 15 discrete Adaboost mouth detector named haarcascade_mouth.xml
[35] is a good classifier that can be used for mouth detection inside detected lower-face region.
It contains 17 stages and 25× 15 Haar-like features. Figure 3.14 shows how our application
detects mouth in different lighting conditions.

Figure 3.14: Mouth detection in different lighting conditions (a) 10:00 morning (no extra
light), (b) 14:00 afternoon (no extra light), (c) 18:00 evening (no extra light), (d) 20:00

night (with 5 Watt yellow bulb)

Now it is clear that we use different classifiers for different facial component detection. When
we speak about training our classifiers, in order to use them for detection algorithms, it is
important to understand the concept of convolutional neural network.

3.3.6 Convolutional Neural Network

D. H. Hubel and T. N. Wiesel proposed a cascading model that explains how mammals
visually perceive the world around them using a layered architecture of neurons within the
visual cortex, that consists of two types of basic visual cells - simple cell and complex cell.
According to their hypothesis, complex functional responses created by “complex cells” are
constructed from more simplistic responses from “simple cells”. For example, simple cells
might respond to oriented edges and lines, while complex cells will not only respond to
oriented edges and lines, but also with a degree of spatial invariances. This concept inspired
researchers to develop similar pattern recognition mechanisms in computer vision [36].
A simple Convolutional Neural Network (CNN) is a sequence of layers where every layer
transforms one volume of activations to another through a differential function. It means,
each layer is responsible to convert the information from the values, available in the previous
layers, into some more complex information and propagate to the next layers for further
generalization [36].
The CNN consists of two basic building blocks:

• Convolution Block: It contains the Convolution Layer and the Pooling Layer. This
layer is responsible for Feature-Extraction.

• Fully Connected Block: It contains a fully connected simple neural network ar-
chitecture. This layer is responsible for Classification, based on the input from the
convolutional block.

Computer Vision 23

Figure 3.15 illustrates the basic structure of a CNN.

Figure 3.15: Convolutional neural network [36]

Here the convolutional layer is responsible for feature extraction. So we want to extract Haar-
like features (described in section 3.3.2) in this layer. For example, we are given an input
image as shown in figure 3.16a. We are interested to extract the edge feature (like figure
3.16b) from it. So, we prepare the filter matrix as figure 3.16c and then apply convolution
operation on the given image. Figure 3.17 illustrates how the filter matrix sweeps over the
input image and performs convolution operation at each step.

(a) (b) (c)

Figure 3.16: (a) input image (b) edge feature (c) filter matrix

Figure 3.17: An example about how convolution works

Computer Vision 24

3.3.7 Discussion

Machine-learning approach (using Haar-cascade classifier and OpenCV library methods) is
a classical object-detection framework as far as the applicability, robustness, speed and
resource-availability are concerned. Both in laboratory and real-life environment, the overall
system performance is satisfactory. From technical perspective, it is easy to implement, in-
stall and maintain the system. Since the file-size of the cascading classifiers (.xml) is quite
low, so it does not affect the system performance, even if the application requires to do LIVE-
streaming. On the other hand, training mechanism is comparatively easier than other known
methods, because OpenCV provides necessary library function support for cascade-training.
However, the accuracy of the system needs further improvement, because we could notice a
good percentage (in between 10%− 15%) of false-positive detection in the frame.

3.4 Deep-Learning based Approach

It is the latest approach for object detection that uses deep learning networks, in a similar way
how our human brain works to solve problems. In simple words, a deep learning algorithm
develops an ANN model that sends the input (data of image) through different layers of the
network and classifies the input based on decision being made after processing outputs at
each layer using specific features respectively.
For instance, the YOLO object detection framework uses a single Deep Learning Network
that divides the input (data of image) into regions (predicts spatially separated bounding
boxes) to apply probabilities on them and classifies the input based on the probability results
obtained from each layer [37]. So, we are interested to explore this detection method.

3.4.1 YOLO Object Detection Framework

YOLO stands for You Only Look Once - which justifies the statement of this object detec-
tion framework, because it looks at the whole image only once during test time. It redefines
the concept of object detection from pixel level calculation to bounding box coordinates and
class probabilities. YOLO divides input image into S × S grid and each grid predicts only
one object. In the following sections, we will discuss shortly about YOLO model, YOLO
network architecture and classification of different YOLO frameworks.

YOLO Model

YOLO strongly maintains a unified detection model, which means it unifies the separate
components of object detection into a single neural network. It uses features from the entire
image to predict each bounding box. At the same time, it predicts all bounding boxes across
all classes for an image. It divides the input image into an S × S grid. If the center of an
object falls into a grid, that grid is responsible to detect that object [37].
Each grid predicts B bounding boxes and confidence scores for those boxes. Each bounding
box consists of 5 predictions: x, y, w, h and confidence. The (x, y) coordinate is the center,
w is the width and h is the height of the bounding box. Confidence can be defined as
Pr(Object) ∗ IOUtruth

pred . If no object exists in a grid, then the confidence score should be zero.
Otherwise, it will be intersection over union (IOU) between the predicted box and the ground
truth [37].

Computer Vision 25

Each grid also predicts conditional class probability, C = Pr(Classi|Object). During test
time, class-specific confidence scores for each box is calculated by multiplying the conditional
class probabilities and the individual box confidence predictions, like below [37]:

Pr(Classi|Object) ∗ Pr(Object) ∗ IOUtruth
pred = Pr(Classi) ∗ IOUtruth

pred (3.2)

YOLO Network Architecture

YOLO network architecture is inspired by GoogLeNet model for image classification. It con-
sists of 24 convolutional layers followed by 2 fully connected layers. Instead of the inception
modules used by GoogLeNet, it simply uses 1 × 1 reduction layers followed by 3 × 3 convo-
lutional layers [37]. The final output of this network is the 7 × 7 × 30 tensor of predictions.
Figure 3.18 shows the full architecture of the YOLO detection network.

Figure 3.18: YOLO network architecture [37]

Classification

Currently there exists 3 variants of YOLO detection system which are as follows:

• YOLO or YOLOv1

• YOLO9000 or YOLOv2

• YOLOv3

YOLOv1 is the first implementation of YOLO. It uses DarkNet framework and ImageNet-
1000 dataset. It cannot identify small objects if they appear in cluster. YOLOv2 is the
improved version of YOLO. It uses DarkNet-19 framework and ImageNet. When it uses
COCO dataset, it struggles to find clothing or equipment, because COCO does not have
bounding box label for any type of clothing or equipment. Finally, YOLOv3 is the im-
provement of YOLO9000. It uses DarkNet-53 and OpenImages dataset. Like YOLO9000,
bounding box prediction (using anchor box) is the backbone of YOLOv3 detection system.
Figure 3.19 illustrates how the 4 coordinates are predicted in YOLOv3 detection system.

Computer Vision 26

Figure 3.19: Bounding box prediction in YOLOv3 detection system [38]

As figure 3.19 shows, the YOLOv3 network tries to predict the coordinates of each bounding
box, tx, ty, tw, th. If it finds that the cell has offset from the top left corner of the image
by (cx, cy) and the bounding box prior has width pw and height ph, then the predictions
correspond to the following formula [38]:

bx = σ(tx) + cx (3.3)

by = σ(ty) + cy (3.4)

bw = pwe
tw (3.5)

bh = phe
th (3.6)

Now we will discuss shortly about Darknet framework in the following section.

3.4.2 Darknet Framework

Darknet is an open source neural network framework written in C programming language
and CUDA. CUDA stands for Compute Unified Device Architecture - which is an
API model created by Nvidia in order to support CUDA-enabled GPU for general purpose
processing. Darknet is fast, easy to install, and supports CPU and GPU computation [39]. It
features YOLO (already discussed in section 3.4.1), ImageNet Classification (classify images
for the 1000-class ImageNet challenge with ResNet and ResNeXt). Additionally, Darknet can
be used to run neural networks backward which is known as Nightmare feature.
Now we are interested to know whether Darknet and YOLO can be applicable for our pro-
totype application or not. In order to do this feasibility analysis, we will learn about the
workflow of face detection in YOLO and then try to develop a dummy application for
face detection.

3.4.3 Workflow of Face Detection

Figure 3.20 shows the workflow of face detection in YOLO. Section A.2.6 provides details
information of implementation in a step-by-step approach.

Computer Vision 27

Figure 3.20: Workflow of face detection in YOLO

The minimal implementation of face detection using Alturos.Yolo wrapper class is described
in section C.1.2. Figure 3.21 shows how it detects face in an average daylight condition.

Figure 3.21: Face detection using Darknet and YOLO

3.4.4 Discussion

Deep-learning approach (using Darknet with YOLO object detection system) is the latest
object-detection framework introduced by Joseph Redmon and others [37]. Though there
exists tradeoff between speed and accuracy of the detection framework, but the overall system
performance is quite good; even it can be excellent when multiple GPU-RAM is available.
In principle, the system proposes a robust network that can make class-predictability while
looking at the input image only once during test-time. However, the technical implementation
still has a lot of limitations. For example, it might take several days, or even weeks to train
a single-class model if there is no GPU-RAM available. Again, the Darknet framework can
be compiled in Windows OS, if and only if x64 build configuration (64-bit platform) is set in
Visual Studio. Finally, it might take some time to load the pre-trained model (configuration
and weight file) in the code and thus the application can take some time to detect objects
as well. So, significant amount of RAM and high GPU-RAM should be pre-requisite before
executing training or testing operations.

Computer Vision 28

3.5 Comparison between Face Detection Approaches

Since face detection is the main pre-requisite of our system, so we inspect both machine-
learning approach and deep-learning approach in terms of delivering acceptable results. How-
ever, both approaches have some merits and demerits too - which we have already discussed
in section 3.3.7 and 3.4.4. For our application, a comparison between these two approaches
would be essential in terms of detection time and confidence.

System Configuration (Machine-learning
algorithm)

(Deep-learning
algorithm)

Detection Time Detection Time
AMD x64-based processor (1.80 GHz)
6.00 GB RAM, Radeon R6 Graphics 60 ms 4655 ms
64-bit OS (Windows 10)
Intel core i3 x64-based processor (2.40 GHz)
4.00 GB RAM, Intel HD Graphics 620 50 ms 3385 ms
64-bit OS (Windows 10)
Intel core i7 x64-based processor (1.90 GHz)
32.00 GB RAM, Intel UHD Graphics 620 30 ms 825 ms
64-bit OS (Windows 10)

Table 3.2: Detection time comparison between ML-based and DL-based algorithm

System Configuration (Machine-learning
algorithm)

(Deep-learning
algorithm)

Confidence Confidence
AMD x64-based processor (1.80 GHz)
6.00 GB RAM, Radeon R6 Graphics 97.92% 99.98%
64-bit OS (Windows 10)
Intel core i3 x64-based processor (2.40 GHz)
4.00 GB RAM, Intel HD Graphics 620 96.29% 99.42%
64-bit OS (Windows 10)
Intel core i7 x64-based processor (1.90 GHz)
32.00 GB RAM, Intel UHD Graphics 620 95.04% 98.54%
64-bit OS (Windows 10)

Table 3.3: Confidence comparison between ML-based and DL-based algorithm

3.6 Summary

Based on the study of this chapter, we choose classical machine-learning based approach
(OpenCV with Haar-like feature-based algorithm) for our prototype application. Be-
cause we understand that low detection time is more important than accuracy, as far as the
real-time video streaming and feature extraction processes are concerned. From technical
perspective, we get familiarized with the step-by-step approach of face and facial component
detection using OpenCV library functions. We also learn about how Darknet and YOLO
framework works. In addition, we develop a few C# form applications for some experimental
tests and our plan is to integrate those modules in our main application later.

Chapter 4

Behavioral Biometrics

In this chapter, we describe, in brief, some basic topics of behavioral biometrics with neces-
sary explanations. In simple words, biometrics refers to measurement, calculation, analysis
or even prediction of human activity over time. It is divided into two categories - physiolog-
ical biometrics and behavioral biometrics. Physiological biometrics include face recognition,
iris recognition, palm print, hand geometry etc. On the other hand, behavioral biometrics
include gait analysis, keystroke dynamics, voice recognition etc. [40]. When we narrow down
the behavioral biometrics to the context of computer usage, then we can refer to keystroke
dynamics and mouse dynamics. In section 4.1 and 4.2, we discuss about keystroke dynamics
and mouse dynamics respectively.

4.1 Keystroke Dynamics

It is possible to describe an individual's keystroke dynamics (KD) template by five attributes
which are as follows:

• Hold time: The time difference between pressing and releasing a key.

• Release - Press delay: The time difference between the release key and the subsequent
key press times.

• Press - Press delay: The time difference between the subsequent keys press times.

• Release - Release delay: The time difference between the subsequent keys release times.

• Press - Release delay: The time difference between the key press and the subsequent
key release times.

Figure 4.1 illustrates a simple KD template with above-mentioned five attributes.

29

Behavioral Biometrics 30

Figure 4.1: Attributes of keystroke dynamics [41]

4.2 Mouse Dynamics

Mouse dynamics is represented as a unique set of values (computed by utilizing statistical
data of mouse actions) that can characterize a person's behavior measured over a period of
time [42]. In order to describe an individual's mouse dynamics (MD) template, the following
actions are considered:

• Mouse movement: Trace of every location change of mouse pointer in terms of distance,
time and angle.

• Drag-n-drop: Action of dragging one or more items from one location to another loca-
tion.

• Point and click: Trace of the mouse pointer's current location and number of clicks
(single or double clicks).

• Silence: No activity in a particular session.

Figure 4.2 shows an example MD template with mouse move, point click and drag-n-drop.

Figure 4.2: Example of mouse dynamics [43]

Behavioral Biometrics 31

4.3 Behavioral Data for Tiredness Detection

According to a statistical study, workplace-fatigue can impact the drop in productivity up
to 6% [44]. So it is always important to assess the tiredness level of an employee, when that
person will be working in front of a computer for a long time. In a smart office, advanced
software can be used to detect tiredness of a desk-employee in a silent mode by capturing
the mouse and keyboard activities, and then processing the information with the help of
intelligent algorithm.
A popular approach is to execute certain benchmark tasks to determine tiredness level of
an employee. For example, typing the same string of characters in different day-time and
measuring the keystroke dynamics - is a classical approach of determining tiredness level. In
the following section, we will discuss the workflow of capturing behavioral biometrics data.

4.4 Workflow of Capturing Behavioral Biometrics

Basically, our idea is to develop a ML model with keystroke and mouse dynamics data when
the user is already identified as tired. Our initial target is to detect keyboard and mouse
activity when our application runs in background. In order to do that, we need global event
handlers that always keep listening to the keyboard and mouse activity events. Figure 4.3
illustrates the workflow of capturing behavioral biometrics.

Figure 4.3: Workflow of capturing behavioral biometrics

Behavioral Biometrics 32

Therefore, we have integrated a HookManager class [45] to process global mouse and key-
board hooks in our application. Here, we have written our own HookManager_MouseDown,
HookManager_MouseDoubleClick, HookManager_MouseMove and HookManager_MouseWheel
etc. event-handlers. The idea is that HookManager class always keeps listening to global
mouse and keyboard actions, and depending on the type of action it triggers its correspond-
ing event handler. Now due to the integration, it will also execute our defined event-handler
as well. For example, when there is a movement of mouse, the HookManager.MouseMove event-
handler is activated and at the same time, it will also trigger our own HookManager_MouseMove
event-handler to do necessary measurements. Please note that, in the context of our ap-
plication, BehavioralBiometricsMonitorStart and BehavioralBiometricsMonitorStop
method are responsible to enable and disable necessary Hook Services respectively. Details
implementation (in C# language) is written in section C.2.1.

4.5 Summary

Based on the study of this chapter, we have discussed about the following things:

• Fundamentals of behavioral biometrics (keystroke and mouse dynamics) and necessary
measurements

• Relationship between employee tiredness and behavioral biometrics

• Workflow of keystroke and mouse dynamics measurement

• Integration and execution of individual event-handlers for various keyboard and mouse
actions

Since we expect the state-of-the-art tiredness assessment result to be obtained by our
designed vision-system (which is our primary objective), so our secondary objective is to
analyze and correlate our result with captured keystroke dynamics (more specifically, hold-
time and release-press delay) once a user is already identified as tired. In the context of our
problem, regression might be the best algorithm to train our machine learning model with
keystroke dynamics attributes (hold-time, release-press delay) as a set of selected features
and the model can be used in future tests to deliver prediction-driven results.

Chapter 5

Proposed Methodology

5.1 Eye-status based Tiredness Detection Algorithm

This section proposes eye-status based tiredness detection algorithm and includes subsections
with details information. Figure 5.1 illustrates the algorithm with necessary functional blocks.

Figure 5.1: Eye-status based tiredness detection algorithm

33

Proposed Methodology 34

Since we already acknowledged about the face detection algorithm (explained in chapter 3),
so we are interested to understand about the facial landmark detection.

5.1.1 Facial Landmark Detection

OpenCV's facial landmark is known as Facemark, which has three different implementations
of landmark detection, given below:

1. FacemarkKazemi [46]

2. FacemarkAAM [47]

3. FacemarkLBF [48]

Though all three implementations follow similar patterns, but we will use FacemarkLBF
for our prototype application, because a trained model is available for this particular imple-
mentation only. So we download the facemark trained model lbfmodel.yaml [49] and use it
in our application. Figure 5.2 illustrates the facial landmark detection algorithm in details.

Figure 5.2: Facial landmark detection algorithm

InitializeLandmarkIdentificationParameters and FacialLandmarkIdentification are
responsible to initialize and identify facial landmark points respectively. Details implementa-
tion (in C# language) is written in section C.3.1. Figure 5.3 shows facial landmark detection
with necessary point indexes.

Figure 5.3: Facial landmark detection (a) face detection, (b) facial landmark points, (c)
facial landmark points with respective indexes

Proposed Methodology 35

Now our next objective is to filter out the eye landmark points. In the next section, we will
discuss about the eye landmark detection.

5.1.2 Eye Landmark Detection

From figure 5.3, we have already identified the landmark points for both eyes, which are listed
in the table below:

Facial Component Landmark Point Index
Left Eye 36, 37, 38, 39, 40, 41

Right Eye 42, 43, 44, 45, 46, 47

Table 5.1: List of eye landmark points

In order to filter out the eye landmark points, we implement necessary changes in our C#
application. Details implementation (in C# language) is written in section C.3.2. Figure 5.4
shows eye landmark detection with necessary point indexes.

Figure 5.4: Eye landmark detection (a) input image, (b) eye landmark points, (c) eye
landmark points with respective indexes

Now our next objective is to measure eye aspect ratio (EAR). In the next section, we will
discuss about the eye aspect ratio.

5.1.3 Eye Aspect Ratio

Aspect ratio is an image projection attribute that can describe the proportional relationship
between the width and height of that image [50]. In this case, we are interested to measure
the aspect ratio of an eye. Eye aspect ratio is a single scalar quantity that can characterize
the eye-opening in a frame. In principle, EAR measurement is fully invariant to a uniform
scaling of image and in-plane rotation of face as well. It is partially person and head pose
insensitive. As we see from figure 5.4, each eye is represented by 6(x, y) coordinates - starting
from the left corner of the eye and then traversing clock-wise towards the remaining points.
Figure 5.5 illustrates the measurements associated with calculation of eye aspect ratio.

Proposed Methodology 36

Figure 5.5: Eye aspect ratio (a) eye region with reference coordinate points, (b) left eye, (c)
right eye

Based on the paper titled Real-Time Eye Blink Detection using Facial Landmarks
[51], eye aspect ratio can be written as a mathematical equation, like below:

EAR =
|p2 − p6|+ |p3 − p5|

2 ∗ |p1 − p4|
(5.1)

where EAR is known as the eye aspect ratio and p1, p2, p3, . . . , p6 are 6 landmark points
associated with eye. Euclidean distance1 is calculated to measure the distance between
two landmark points. The expressions used in equation 5.1 can be explained as follows:
|p2 − p6| = Absolute value of Euclidean distance between points p2 and p6

|p3 − p5| = Absolute value of Euclidean distance between points p3 and p5

|p1 − p4| = Absolute value of Euclidean distance between points p1 and p4

In the next sub-sections, we are interested to see the calculation of EAR of both eyes and
necessary equations in details.

Eye Aspect Ratio (EAR) of Left Eye

In terms of 2D coordinates, the 6 landmark points associated with left eye can be defined
as: p1(x36, y36), p2(x37, y37), p3(x38, y38), p4(x39, y39), p5(x40, y40) and p6(x41, y41). From
equation 5.1, we can calculate the eye aspect ratio (EAR) of left eye, like below:

EARleft =

√
(x37 − x41)2 + (y37 − y41)2 +

√
(x38 − x40)2 + (y38 − y40)2

2 ∗
√
(x36 − x39)2 + (y36 − y39)2

(5.2)

Eye Aspect Ratio (EAR) of Right Eye

In terms of 2D coordinates, the 6 landmark points associated with right eye can be defined
as: p1(x42, y42), p2(x43, y43), p3(x44, y44), p4(x45, y45), p5(x46, y46) and p6(x47, y47). From
equation 5.1, we can calculate the eye aspect ratio (EAR) of right eye, like below:

EARright =

√
(x43 − x47)2 + (y43 − y47)2 +

√
(x44 − x46)2 + (y44 − y46)2

2 ∗
√

(x42 − x45)2 + (y42 − y45)2
(5.3)

1Euclidean distance refers to straight line distance between any two points in a Cartesian or Euclidean
space. For example, Euclidean distance d between two points p1(x1, y1) and p2(x2, y2) is calculated using the
following formula: d(p1, p2) =

√
(x1 − x2)2 + (y1 − y2)2

Proposed Methodology 37

Section C.3.3 explains the method of eye aspect ratio (EAR) calculation in C# program-
ming language. In the next section, we will explain how our application will do tiredness
detection by evaluating eye aspect ratio (EAR) in a continuous monitoring approach.

5.1.4 Tiredness Detection

Generally, an eye can have two possible states - 1) open, 2) closed. When an eye is open, EAR
remains mostly constant. On the other hand, while an eye is getting closed, the EAR starts
decreasing and becomes close to zero. So we introduce a threshold value of EAR (which we
indicate by EARthreshold) that will help us to identify the current eye state. If the EAR of a
frame falls below EARthreshold, the eye is considered to be closed.

Eye State =

{
Open, EAR > EARthreshold

Closed, EAR ≤ EARthreshold

(5.4)

EARthreshold is determined by trial and error method, monitoring EAR value of 10 different
persons with different eye states, because we want our system to be able to classify an instance
of open and closed eyes correctly. Table 5.2 shows the list of EAR values of 10 different persons
that we measured for consecutive 30 frames.

Eye Aspect Ratio (EAR)
Candidate Frame 1 Frame 2 Frame 3 Frame … Frame 30
Person 1open−eye 0.2324 0.2258 0.2227 … 0.2505

Person 2open−eye 0.2615 0.2459 0.2417 … 0.2568

Person 3open−eye 0.2728 0.2723 0.2751 … 0.2637

Person 4open−eye 0.2495 0.2338 0.2435 … 0.2486

Person 5open−eye 0.2514 0.2505 0.2541 … 0.2601

Person 6closed−eye 0.1929 0.1916 0.1903 … 0.1367

Person 7closed−eye 0.1898 0.1827 0.1768 … 0.1362

Person 8closed−eye 0.1938 0.1640 0.1527 … 0.1219

Person 9closed−eye 0.1956 0.1932 0.1558 … 0.1402

Person 10closed−eye 0.1983 0.1972 0.1842 … 0.1586

Table 5.2: List of EAR values of 10 different persons

From table 5.2, we determine the optimal value of EARthreshold is 0.20. Now the main
challenge is to distinguish between normal eye-blink activity and eye-close activity due to
micro-sleep (tiredness). The frame-rate of our webcam is quite standard (30 FPS) - which
means it takes 33.33 milliseconds to retrieve a frame. Scientists found that average duration
of a single eye blink is in between 100-400 milliseconds [52]. So, if we notice that eye is closed
in consecutive 3-12 frames in a long-time window of frames, we can easily make decision that
an individual performs a single eye blink. Now we can utilize this concept to identify micro-
sleep as well. In order to avoid conflict between normal eye-blink activity and micro-sleep,
we take 12 as the threshold frame-number. We keep monitoring the sequence of frames
in a real-time window and assign necessary tag based on the observed EAR value. If EAR
value is equal or less than EARthreshold (0.20, determined in table 5.2), we mark this frame
as a tired frame and increase the tired-frame counter by 1. If this counter becomes equal
or greater than the threshold frame-number, we declare the individual as tired and trigger
an alarm. With the help of trained SVM classifier, we can analyze the measured data (eye
aspect ratio values and corresponding tiredness flag information) and plot necessary graph

Proposed Methodology 38

to study the duration and frequency of micro-sleep effectively. In the following section, we
discuss the process of verification of open-eye and closed-eye detection that helps us
to validate our proposed algorithm.

Verification of Open-Eye and Closed-Eye Detection

When we notice EAR value greater than EARthreshold then we consider that eye state is open.
On the other hand, when we find EAR value less than EARthreshold then we agree that eye
state is closed. But it is important for us to verify this theory before applying the algorithm
in our prototype application.
In order to verify the current state of eye, we utilize the pupil detection algorithm (already
discussed in section 3.3.5), develop a small application using C# programming language and
test random frames with different EAR values. Figure 5.6 shows the result of eye state
verification for both open-eye and closed-eye.

Figure 5.6: Eye state verification (a) open-eye verification, (b) closed-eye verification

In a short summary, the verification process is done in a step-by-step approach. Firstly, the
image is transferred from BGR to GRAYSCALE colorspace. Then the eye region is made
smoother by applying downsampling and upsampling steps of Gaussian pyramid decomposi-
tion sequentially. Finally, binary threshold operation takes place so that that if a pixel value
is greater than the threshold value then it will become WHITE; otherwise it will become
BLACK. So, it makes everything cleaned up except the pupil area. Finally, the circle-finding
algorithm helps to detect the pupil. In case of open-eye, we can easily find a circle and do
necessary measurements. On the other hand, for closed-eye, there will be no circle at all.
After analyzing the result, it is clear that our proposed algorithm's theory (related to EAR)
is justified by the pupil detection algorithm.

Proposed Methodology 39

5.2 Mouth-status based Tiredness Detection Algorithm

This section proposes mouth-status based tiredness detection algorithm and includes subsec-
tions with details information. Figure 5.7 illustrates the algorithm with necessary functional
blocks.

Figure 5.7: Mouth-status based tiredness detection algorithm

Since we already acknowledged about the face detection algorithm (explained in chapter 3)
and facial landmark detection (explained in figure 5.2), so we are interested to understand
about the mouth landmark detection.

5.2.1 Mouth Landmark Detection

From figure 5.3, we have already identified the landmark points for mouth. We divide these
landmark points into two following groups: 1) outer edge of lips, 2) inner edge of lips - which
are listed in table 5.3.
Based on the study of our algorithm, we would like to trace the outer edge of lips. In order
to filter out the landmark points of outer edge of lips, we implement necessary changes in our
C# application. Details implementation (in C# language) is written in section C.3.4. Figure
5.8 shows landmark detection of inner edge of lips with necessary point indexes.

Proposed Methodology 40

Facial Component Landmark Point Index
Outer edge of lips 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59

Inner edge of lips 60, 61, 62, 63, 64, 65, 66, 67

Table 5.3: List of mouth landmark points

Figure 5.8: Landmark detection of outer edge of lips (a) input image, (b) landmark points
of outer edge of lips, (c) landmark points of outer edge of lips with respective indexes

Now our next objective is to do measure mouth aspect ratio MAR in real time.

5.2.2 Mouth Aspect Ratio

Mouth aspect ratio is a single scalar quantity that can characterize the yawning state of an
individual in a frame. As we see from figure 5.8, outer edge of lip is represented by 12(x, y)
coordinates - starting from the left corner of the outer edge of lip and then traversing clock-
wise towards the remaining points. Figure 5.9 illustrates the measurements associated with
calculation of mouth aspect ratio.

Figure 5.9: Mouth aspect ratio (a) mouth region with reference coordinate points, (b) outer
edge of lip (closed state), (c) outer edge of lip (yawn state)

Based on the paper titled Driver Fatigue Detection and Alert System using Non-
Intrusive Eye and Yawn Detection [53], mouth aspect ratio can be written as a mathe-
matical equation, like below:

Proposed Methodology 41

MAR =
|p3 − p11|+ |p5 − p9|

2 ∗ |p1 − p7|
(5.5)

where MAR is known as the mouth aspect ratio and p1, p2, p3, . . . , p12 are 12 landmark points
associated with outer edge of lip. So, the expressions used in equation 5.5 can be explained
as follows:
|p3 − p11| = Absolute value of Euclidean distance between points p3 and p11

|p5 − p9| = Absolute value of Euclidean distance between points p5 and p9

|p1 − p7| = Absolute value of Euclidean distance between points p1 and p7

In terms of 2D coordinates, the 12 landmark points associated with outer edge of lip can
be defined as: p1(x48, y48), p2(x49, y49), p3(x50, y50), p4(x51, y51), p5(x52, y52), p6(x53, y53),
p7(x54, y54), p8(x55, y55), p9(x56, y56), p10(x57, y57), p11(x58, y58) and p12(x59, y59). So we can
rewrite the equation 5.5 like below:

MAR =

√
(x50 − x58)2 + (y50 − y58)2 +

√
(x52 − x56)2 + (y52 − y56)2

2 ∗
√

(x48 − x54)2 + (y48 − y54)2
(5.6)

Section C.3.5 explains the method of mouth aspect ratio (MAR) calculation in C# program-
ming language. In the next section, we will explain how our application will do tiredness
detection by evaluating mouth aspect ratio (MAR) in a continuous monitoring approach.

5.2.3 Tiredness Detection

Before doing tiredness detection, we need to classify the possible states of mouth in our daily
life. In general, when a person is working in front of a computer, mouth remains mostly closed
and MAR maintains nearly a constant low value. When a person is speaking to another person
(e.g, voice calling due to some business purpose), mouth becomes slightly opened and MAR
increases slightly. But when a person yawns, mouth becomes widely opened with maximum
possible area and MAR increases significantly. So we introduce a threshold value of MAR
(which we indicate by MARthreshold) that will help us to identify the current mouth state. If
the MAR of a frame exceeds over MARthreshold, the person is considered to be yawning.

Mouth State =

{
Closed/Speaking, MAR < MARthreshold

Yawn, MAR ≥ MARthreshold

(5.7)

MARthreshold is determined by trial and error method, monitoring MAR value of 10 different
persons with different mouth states, because we want our system to be able to classify an
instance of regular mouth (closed/speaking) and yawn correctly. Table 5.4 shows the list of
MAR values of 10 different persons that we measured for consecutive 30 frames.
From table 5.4, we determine the optimal value of MARthreshold is 0.80. Now the main
challenge is to distinguish between normal mouth activity (closed/speaking) and yawn (due
to tiredness). Scientists found that the average duration of the yawn is 5 seconds [54]. But
the actual duration can vary in between 3.33 to 6.67 seconds as far as the upper and lower
margin are concerned. Therefore, in ideal case (30 FPS frame-rate, zero frame-loss and zero
noise), we should monitor 100 − 200 consecutive frames to make a decision of tiredness. In
real life environment, it should be sufficient to inspect 100 consecutive frames, because we
have possibilities to have frame-loss and noise. So we do prefer to take lower margin as the

Proposed Methodology 42

Mouth Aspect Ratio (MAR)
Candidate Frame 1 Frame 2 Frame 3 Frame … Frame 30
Person 1closedmouth 0.2869 0.2993 0.2853 … 0.3281

Person 2closedmouth 0.3103 0.2885 0.3217 … 0.3400

Person 3closedmouth 0.3537 0.3731 0.3925 … 0.3601

Person 4speaking 0.4719 0.4963 0.5271 … 0.5695

Person 5speaking 0.5468 0.5471 0.5265 … 0.5528

Person 6speaking 0.5832 0.5884 0.5716 … 0.5796

Person 7yawn 0.8190 0.8326 0.8405 … 0.9167

Person 8yawn 0.9381 0.9750 0.9696 … 0.9481

Person 9yawn 0.9573 0.9890 0.9909 … 0.9559

Person 10yawn 0.9892 0.9947 1.0207 … 0.9954

Table 5.4: List of MAR values of 10 different persons

limit. Now, we keep an eye on MAR value being measured for all the captured frames. If
measured MAR value is equal or greater than the threshold MAR value (0.80, determined in
table 5.4) in a frame, then we mark this frame as a tired frame and increase the tired-frame
counter by 1. If this counter becomes equal or greater than the threshold frame-number,
we declare the individual as tired and trigger an alarm. With the help of trained SVM
classifier, we can analyze the measured data (mouth aspect ratio values and corresponding
tiredness flag information) and plot necessary graph to study the duration and frequency of
yawn effectively. In the following section, we discuss the process of verification of yawn
detection that helps us to validate our proposed algorithm.

Verification of Yawn Detection

Yawning is a common human behavior which consists of an involuntary wide opening of
mouth with maximal widening of jaw, then a long & deep inhalation take place through
mouth & nose, followed by a slow expiration and a feeling of comfort [54]. From vision system
perspective, we can verify a detected yawn in two main steps: in first step, we measure the
distance between two center points of inner lip. If this distance is equal or greater than pre-
defined threshold distance, then in final step we do skin segmentation in the detected mouth
region and expect a circular hole with maximal area [55] - which represents yawning state.
Now figure 5.10 shows how to measure the distance between two center points of inner lip.

Figure 5.10: Measurement of distance between two center points of inner lip (a) input
image, (b) mouth detection, (c) distance measurement between two center points of inner lip

Proposed Methodology 43

From figure 5.10, we understand that |p62−p66| is the Euclidean distance between two center
points of inner lip, where |p62 − p66| =

√
(x62 − x66)2 + (y62 − y66)2

Section C.3.6 explains the method of measuring the distance between two center points of
inner lip in C# programming language. Now figure 5.11 shows comparison between obtained
outputs after applying skin segmentation algorithm in detected mouth region.

Figure 5.11: Comparison between obtained outputs after applying skin segmentation
algorithm in detected mouth region (a) closed mouth, (b) obtained output after applying

skin segmentation algorithm on closed mouth, (c) yawning mouth, (d) obtained output after
applying skin segmentation algorithm on yawning mouth

Thus we can verify any frame for yawn detection, especially those frames which are already
marked as tired-frame (due to high MAR value).
Based on the proposed algorithms in section 5.1.4 and 5.2.3, we expect tiredness detection
result based on eye-status and mouse-status respectively. As we recall our secondary task
objective, we need to capture behavioral biometrics (keystroke dynamics) when a person is
already identified as tired. So we can do ML model training for keystroke dynamics
analysis for future use.

5.3 ML Model Training for Keystroke Dynamics Analysis

This section proposes an approach of ML model training with keystroke dynamics data when
a person is already identified as tired. Figure 5.12 shows the workflow with a block diagram.

Figure 5.12: Workflow of ML model training with keystroke dynamics

Proposed Methodology 44

According to our proposed outline in section 4.5, we consider hold-time and release-press-delay
as the set of selected features, because there exists a mathematical relationship between this
two attributes of keystroke dynamics. So a linear regression ML model should be able to pre-
dict release-press-delay using hold-time and release-press-delay data. Figure 5.13 represents
the block diagram of the iterative process of ML model development.

Figure 5.13: Block diagram of iterative process of ML model development [56]

In order to train a ML model, the first step is to prepare dataset of chosen features. Since
hold-time and release-press-delay are the set of selected features, we are interested to collect
the data when a person is already identified as tired. We have already defined database.mdb
as our local database where we created a table named ActivityTable in which we have
two columns named AverageHoldTime and AverageReleasePressDelay. We use a timer in
our code which controls the insertion into the database. Section C.3.7 explains ML model
training procedure in step-by-step approach in C# programming language.

5.4 Summary

Based on the study of this chapter, we have discussed about the following things:

• Eye-status based tiredness detection algorithm (using eye aspect ratio)

• Mouth-status based tiredness detection algorithm (using mouth aspect ratio)

• ML model training for keystroke dynamics analysis

Since our primary objective is to design and develop a vision-based system that delivers the
state-of-the-art tiredness assessment result, so we would like to implement the proposed
algorithms (eye-status and mouth-status based) with necessary hardware and software.

Chapter 6

Implementation

This chapter describes the necessary experimental activities in a step-by-step approach in
order to achieve the state-of-the-art tiredness detection result. Since our target prototype
application is a vision system, we divide the implementation activities into two groups:

1. Hardware Setup

2. Software Development

In the following section, we would like to discuss about the necessary hardware setup for
our application.

6.1 Hardware Setup

6.1.1 Webcam Configuration

In principle, image sensor is the backbone of our vision system. At the initial phase of the
development, we tried to use the built-in camera of the laptop, but unfortunately the result
was extremely poor. So it was important for us to install a professional HD quality webcam
that could deliver our expected result effectively. Therefore, before we bought the webcam
for our prototype application, we considered the following aspects:

• High optical resolution

• High frame rate (e.g, 30 FPS should be standard)

• Ability of auto-focus

• Ability of low-light correction

• Low power consumption

• Affordable price

• Plug-n-play support (USB 3.0 ready support will be preferable)

• Universal clip mount support

45

Implementation 46

So we tried to use Logitech C170 webcam (details specification is available in section B.1)
for our system and the outcome was far better than the built-in camera. The result was
satisfactory, however in low-light condition the camera failed to identify facial components.
So, we bought Logitech C920 webcam (details specification is available in section B.2), did
necessary camera parameter calculation (described in section B.2) and installed in our system.
Now the result was very good compared to the other webcams that we tried. In addition,
the universal clip mount support was useful to mount the webcam to the screen with proper
angle and alignment with individual's face. Since this webcam is already recognized as a
business-purpose camera (often used for video-calling in workplace), so we understand that
our solution is cost-effective, because we can utilize the same webcam for both business-
purpose and our application. Figure 6.1 shows the hardware setup for our designed vision
system.

Figure 6.1: Hardware setup (Logitech C920 webcam mounted to two different laptops using
universal clip mount support)

6.1.2 System Configuration

Meanwhile, we are highly concerned about the system configuration of our computer (desktop
or laptop) as well, because of the following reasons:

• The system is expected to do real-time video streaming for a long session.

• To extract necessary features, real-time image processing ability MUST be supported.

• Multi-threading support is required.

• Installation, improvement and maintenance should not be difficult.

• Migration to other platforms and feature extension should be possible.

• Power consumption and memory consumption should be reasonable.

We could manage to test our prototype application in three different systems (having different
configuration). Based on the comparative study of table 3.2, we understand that highly-
configured systems (more specifically, RAM should be as maximum as possible) are the good
candidates for our prototype application. At the same time, it is important to mention that
we executed the necessary testing activities in both day-light and artificial light in a bright
room (please see section 3.11, 3.12 and 3.14 for details). So, it is expected that the prototype
application should be tested in a sufficient lighting condition.

Implementation 47

6.1.3 Setup Activities

In principle, hardware setup activities can be summarized in a step-by-step approach by the
following points:

1. The webcam must be mounted on top of the laptop screen with the help of universal clip
mount support. USB 3.0 port should be used in order to ensure better connectivity
and speed.

2. The subject (individual) should be located in front of the laptop, maintaining a standard
sitting posture and the distance between the webcam & the subject's eyes should be in
between 40 − 60 cm. The subject's face and facial components must be visible to the
mounted webcam.

3. The prototype application should be started once step 1 and 2 are accomplished.

Figure 6.2: USB 3.0 port in laptop where webcam should be connected

Now we will discuss about the necessary software development activities in details.

6.2 Software Development

The entire software is developed in C# programming language by using .NET framework
(version 4.7.2). This development platform is chosen because of the following reasons:

1. The initial target operating system (OS) is Windows. So necessary drivers should be
available over internet.

2. A cross platform .NET wrapper of OpenCV library (known as EmguCV) has necessary
implementations of most of the OpenCV functions.

3. Built-in C# namespaces (libraries) are already rich in various useful features (e.g, forms,
graphs, charts etc.) to analyze the measurements and easy to develop & debug. In case,
if built-in libraries are not sufficient, it is possible to install additional NuGet packages
at any time in order to develop application with required features.

4. Migration process to other object-oriented-programming (OOP) platforms (for example,
Java) will be hassle-free for developers.

5. For future improvement and maintenance, engineers will find it easy to understand the
syntax and logic behind the code.

Implementation 48

6.2.1 Vision System Architecture

In the context of our prototype application, first of all, it is important to define the vision
system architecture with necessary elements. So we make an attempt to draw a logical
diagram in order to understand how the vision system will interact with the user, how the
collaboration between each process will work, how the tiredness detection algorithm will
execute and how the status reports will be generated and so on. Let's start to design the
vision system architecture for our application.

Figure 6.3: Overview of vision system architecture

Figure 6.3 is the overview of vision system architecture designed for this thesis. The dashed
rounded rectangle is the User Interface and its interior rectangular boxes represent different
interface modules that interact with the user. The dashed elliptical shape is the Vision
System Control Logic which consists of different control modules that collaborate with
different interface modules. Thick blue lines represent different interactions associated with
the user. On the other hand, thick red lines represent different interactions between different
system modules. Image sensor is represented by a 3D rectangular box.
When the application is executed, the image sensor starts to capture the raw image data of the
user. Image Acquisition module is responsible to retrieve the frame from the image sensor
and collaborates with Image Processing module for each frame. Image processing module

Implementation 49

is a part of vision system control, which applies necessary algorithms for facial component and
landmark detection. Then it propagates the obtained information to the respective interface
modules. At the same time, it provides necessary measurement information to the Tiredness
Detection Algorithm module for further processing. Tiredness detection algorithm module
is responsible for assessing the tiredness level and delivering the result in real-time. If the user
is identified as tired, it activates the alert system immediately. The status reports (plotted
graphs) are available only if the application is not running. Support Vector Machine
module is responsible to analyze the measurements and predict the user status as well. Table
6.1 provides the list of necessary libraries and packages that are used.

Library and Package Field of Application
Accord To implement support vector machine (SVM) features
DirectShowLib To fetch hardware (image sensor) information
EmguCV To call OpenCV functions from .NET compatible platform
Microsoft.ML To support ML model training, prediction and evaluation
System.Data.OleDb To perform database related activities
System.Diagnostics To use stopwatch (timer)
System.Drawing To access different drawing objects (point, rectangle, circle etc.)
System.IO To execute file related operations
System.Media To play the alarm
System.Threading To facilitate multi-threading support
System.Windows.Forms To create the windows forms

Table 6.1: Libraries and packages used

6.2.2 Prototype Application Architecture

Before creating the project in our selected IDE, we study our vision system architecture
(already described in section 6.2.1) very carefully and design the prototype application archi-
tecture with necessary functional blocks. Figure 6.4 is the overview of prototype application
architecture used for our research work.
The rectangular boxes represent the necessary functional blocks to be implemented in our
project. Each black arrow represents the hierarchical-calling relationship between two con-
nected blocks. In case, if a single block calls multiple blocks then the execution takes place
from left to right. The constructor of TirednessAssessment class initiates the test environ-
ment with required parameters (e.g, available camera-list, camera-capture property, cascade
classifiers, landmark model etc.) and ProcessFrame method is invoked every time a single
frame is captured. This method is responsible to call two important methods, which are -
FaceIdentification and LandmarkIdentification. In principle, LandmarkIdentifica-
tion method drives the tiredness evaluation procedure by calling EyeTirednessMeasure-
ment and MouthTirednessMeasurement methods through the respective aspect ratio
measurement methods. The final two blocks (EyeStatusReport and MouthStatusRe-
port) represent the feature of necessary status reports. In reality, we have divided them
into multiple functions in order to analyze the measured data and show graphs with proper
legends. It is expected that, all these functional blocks should execute continuously as long
as the application is running (not stopped by the user) and the system MUST deliver the
state-of-the-art result in real time.

Implementation 50

Figure 6.4: Overview of prototype application architecture

6.2.3 User Interface

As we study the prototype application architecture (already discussed in section 6.2.2), it is
clear that our application will be a Windows Forms Application (.NET Framework)
where the main() function will instantiate the user interface. So we create a WFA project
named TirednessAssessment which automatically generates a form with the same name. In
the context of our application, we need few more forms that will help to analyze the result as
well. Table 6.2 provides the list of necessary windows forms used in our prototype application.

Windows Form Name Functionality
TirednessAssessment To display the main user interface
EARHistoryGraph To display current session's history of eye aspect ratio (EAR) vs

frame-number of subject in a plotted graph
EyeStatusGraph To display current session's eye status (eye-state vs frame-

number) of subject using trained SVM classifier
MARHistoryGraph To display current session's history of mouth aspect ratio (MAR)

vs frame-number of subject in a plotted graph
MouthStatusGraph To display current session's mouth status (mouth-state vs frame-

number) of subject using trained SVM classifier

Table 6.2: Windows forms used

Implementation 51

Figure 6.5 shows the user interface in development environment with necessary annotations.
Figure 6.6, 6.7 and 6.8 show the user interface for different cases in real-time.

Figure 6.5: User interface in development environment

Figure 6.6: User interface in real-time when subject is not tired

Implementation 52

Figure 6.7: User interface in real-time when subject is tired due to sleepy-eye

Figure 6.8: User interface in real-time when subject is tired due to yawn

6.3 Summary

The proposed implementation is cost-effective, because only one webcam is used and no ad-
ditional hardware are required. Libraries & packages are selected based on the flexibility
and possibility of future development. Standard C# programming rules are strictly main-
tained throughout the source code and proper documentation is done. In a summary, the
implementation is done in an iterative approach and sufficient testing & optimization are
performed.

Chapter 7

Results

The results are presented by both eye-status based and mouth-status based tiredness detection
algorithm. Necessary measurements are done in real-time and trained SVM classifiers are used
to deliver the state-of-the-art results. Please note that, before testing any of the tiredness
detection algorithm, it must be made sure that all the necessary pre-requisite activities are
done as mentioned in section 6.1.3.

7.1 Eye-status based Tiredness Detection

In order to test the eye-status based tiredness detection algorithm, we consider 2 subjects (1
with and 1 without glasses) in a bright room with constant light. For 1st subject, we capture
about 330+ frames in real-time and apply our algorithm. Table 7.1 shows the measured EAR
data (important frames only) of subject 1.

Eye Aspect Ratio (EAR) Data (Subject 1)
Frame Nr. Left EAR Right EAR Frame Nr. Left EAR Right EAR

1 0.1930 0.2011 271 0.2457 0.2337

2 0.2170 0.2205 272 0.1920 0.1871

3 0.2115 0.2064 273 0.1750 0.1669

4 0.1823 0.1829 274 0.1807 0.1712

5 0.2011 0.1926 275 0.1600 0.1511

6 0.2088 0.2067 276 0.1942 0.1897

7 0.2873 0.2854 277 0.1929 0.1812

8 0.3257 0.3148 278 0.1806 0.1665

9 0.2974 0.3097 279 0.1822 0.1706

10 0.3367 0.3258 280 0.1846 0.1705

11 0.3325 0.3422 281 0.1990 0.1831

12 0.3306 0.3233 282 0.1745 0.1648

13 0.3059 0.3040 283 0.1777 0.1651

14 0.1697 0.1750 284 0.1697 0.1553

… … … … … …

Table 7.1: Eye aspect ratio (EAR) data (Subject 1)

53

Results 54

From frame 272 to frame 283, we can see that both left EAR and right EAR values are
below the threshold EAR value - which matches with our proposed algorithm's condition of
micro-sleep. Figure 7.1 shows the mentioned frames along with their respective EAR values.

Figure 7.1: Tiredness detection based on eye-status (Subject 1)

In the plotted graph of EAR vs frame-number at figure 7.2, we notice that EAR started to
fall below threshold EAR value from frame 272 and remained low up to next 30 frames. So
all these frames are marked as tired-frame by the application.

Figure 7.2: Eye aspect ratio history graph (Subject 1)

Results 55

Now we applied a trained SVM classifier to analyze this data to know if there was any micro-
sleep or not. Figure 7.3 shows the plotted graph for details. Please note that, 0 refers to
“closed eye” and 1 refers to “open eye” in the eye status graph.

Figure 7.3: Eye status graph (Subject 1)

From figure 7.3, we notice all possible eye states including open-eye, closed-eye and eye-
blink. Our algorithm ignored the eye-blink activity, but it could identify the clear presence
of micro-sleep successfully in real time. And the aftermath was really interesting, because
an immediate eye-opening activity from the subject was witnessed. The automated alarm
(triggered by the application itself) might be responsible for this sudden change.
Similarly, for 2nd subject, we capture about 340+ frames in real-time and apply our algorithm.
Table 7.2 shows the measured EAR data (important frames only) of subject 2.

Eye Aspect Ratio (EAR) Data (Subject 2)
Frame Nr. Left EAR Right EAR Frame Nr. Left EAR Right EAR

1 0.2949 0.2857 280 0.1771 0.1744

2 0.2536 0.2746 281 0.1699 0.1727

3 0.2584 0.2835 282 0.1686 0.1689

4 0.2717 0.3013 283 0.1874 0.1748

5 0.2888 0.3044 284 0.1745 0.1735

6 0.2924 0.3013 285 0.1681 0.1713

7 0.2975 0.3159 286 0.1756 0.1741

8 0.3073 0.3121 287 0.1631 0.1653

9 0.3015 0.3040 288 0.1869 0.1763

10 0.2958 0.3101 289 0.1605 0.1676

11 0.2900 0.3096 290 0.1664 0.1689

12 0.2785 0.2946 291 0.1579 0.1528

13 0.2862 0.3000 292 0.1753 0.1829

14 0.2822 0.3040 293 0.1847 0.1811

… … … … … …

Table 7.2: Eye aspect ratio (EAR) data (Subject 2)

From frame 280 to frame 291, we can see that both left EAR and right EAR values are
below the threshold EAR value - which matches with our proposed algorithm's condition of
micro-sleep. Figure 7.4 shows the mentioned frames along with their respective EAR values.

Results 56

Figure 7.4: Tiredness detection based on eye-status (Subject 2)

In the plotted graph of EAR vs frame-number at figure 7.5, we notice that EAR started to
fall below threshold EAR value from frame 280 and remained low up to next 20 frames. So
all these frames are marked as tired-frame by the application.

Figure 7.5: Eye aspect ratio history graph (Subject 2)

Like previous inspection, we applied a trained SVM classifier to analyze this data to know if
there was any micro-sleep or not. Figure 7.6 shows the plotted graph for details. Please note
that, 0 refers to “closed eye” and 1 refers to “open eye” in the eye status graph.

Results 57

Figure 7.6: Eye status graph (Subject 2)

From figure 7.6, we notice all possible eye states including open-eye, closed-eye & eye-blink.
Our system ignored the eye-blink activity, but it could identify the clear presence of micro-
sleep successfully in real time and it triggered the automated alarm immediately.

7.2 Mouth-status based Tiredness Detection

In order to test the mouth-status based tiredness detection algorithm, we consider the same
subjects in the same lighting condition (as described in section 7.1). For 1st subject, we cap-
ture about 670+ frames in real-time and apply our algorithm. Table 7.3 shows the measured
MAR data (important frames only) of subject 1.

Mouth Aspect Ratio (MAR) Data (Subject 1)
Frame Nr. MAR Frame Nr. MAR Frame Nr. MAR

445 0.8624 485 0.7720 525 0.7986

446 0.8715 486 0.8220 526 0.8559

447 0.9093 487 0.8350 527 0.8519

448 0.8448 488 0.8690 528 0.8813

449 0.8209 489 0.7844 529 0.8474

… … … … … …
465 0.9001 505 0.7961 545 0.8261

466 0.8952 506 0.7356 546 0.8225

467 0.8363 507 0.8578 547 0.7835

468 0.8905 508 0.8343 548 0.8472

469 0.7047 509 0.8731 549 0.7853

… … … … … …

Table 7.3: Mouth aspect ratio (MAR) data (Subject 1)

From frame 445 to frame 560, we can see that most of the MAR values (except few noises)
are above the threshold MAR value - which matches with our proposed algorithm's condition
of yawn. Figure 7.7 shows the mentioned frames along with their respective MAR values.
In the plotted graph of MAR vs frame-number at figure 7.8, we notice that MAR started to
rise above threshold MAR value from frame 445 and remained high up to next 100+ frames
(except few noises). So all these frames are marked as tired-frame by the application. Then
we applied a trained SVM classifier to predict if there was any yawn or not. In the plotted
graph of figure 7.9 0 refers to “closed-mouth/speaking” and 1 refers to “yawn”.

Results 58

Figure 7.7: Tiredness detection based on mouth-status (Subject 1)

Results 59

Figure 7.8: Mouth aspect ratio history graph (Subject 1)

Figure 7.9: Mouth status graph (Subject 1)

Similarly, for 2nd subject, we capture about 490+ frames in real-time and apply our algorithm.
Table 7.4 shows the measured MAR data (important frames only) of subject 2.

Mouth Aspect Ratio (MAR) Data (Subject 2)
Frame Nr. MAR Frame Nr. MAR Frame Nr. MAR

320 0.9515 360 0.9590 400 0.9372

321 0.9676 361 0.8723 401 0.9549

322 0.9650 362 0.9245 402 0.9191

323 0.8906 363 0.9183 403 0.9311

324 0.9370 364 0.9475 404 0.8552

… … … … … …
340 0.9310 380 0.9433 420 0.8780

341 0.9411 381 0.8883 421 1.0067

342 0.9260 382 0.9354 422 0.8927

343 0.9233 383 0.9185 423 0.9225

344 1.0499 384 0.9304 424 0.8714

… … … … … …

Table 7.4: Mouth aspect ratio (MAR) data (Subject 2)

From frame 320 to frame 428, we can see that all of the MAR values are above the threshold
MAR value - which matches with our proposed algorithm's condition of yawn. Figure 7.10
shows the mentioned frames along with their respective EAR values.

Results 60

Figure 7.10: Tiredness detection based on mouth-status (Subject 2)

Results 61

In the plotted graph of MAR vs frame-number at figure 7.11, we notice that MAR started to
rise above threshold MAR value from frame 320 and remained high up to next 100+ frames.
So all these frames are marked as tired-frame by the application.

Figure 7.11: Mouth aspect ratio history graph (Subject 2)

Now we applied a trained SVM classifier to predict if there was any yawn or not. In the
plotted graph of figure 7.12 0 refers to “closed-mouth/speaking” and 1 refers to “yawn”.

Figure 7.12: Mouth status graph (Subject 2)

7.3 Summary

Based on the obtained test results, it is clear that the system delivers the state-of-the-art
tiredness assessment result under the considered condition. It is important to mention
that, low light will not cause any adverse effect, because it is possible to install IR camera to
the system and the application allows to select the camera using ComboBox control. Use of
glasses by one subject also does not hinder the performance of the system, because the eye
region is constantly visible to the camera. The classification error was in between 0− 0.2% -
which justifies that the SVM classifiers were well-trained to predict the results. In a summary,
the test results of the system were satisfactory, even though there were very few random noises
and false-positives observed during the test time.

Chapter 8

Discussion

In this chapter, we define, in brief, concept of confusion matrix to evaluate our system's
performance. In section 8.2, a comparative study with other existing methods is done. Finally,
we discuss about the limitation of the system and future improvements.

8.1 System Performance Analysis

Necessary tests with both subjects were done in the same room in the presence of day-light
and artificial light. Now, it is important to analyze the observed results and compare with the
expected results. Hence, a confusion matrix can help to evaluate our system's performance.
Basically, it presents a matrix-formatted table that displays the frequency distribution of the
variables where each column represents the predicted class and each row represents the actual
class. In the context of our system, there exist four possibilities which are as follows:

• True positive: Predicted class is “tired” and actual class is also “tired”

• False positive: Predicted class is “tired” but actual class is “not tired”

• True negative: Predicted class is “not tired” and actual class is also “not tired”

• False negative: Predicted class is “not tired” but actual class is “tired”

Positive (“tired”) Negative (“not tired”)
True True positive (TP) True negative (TN)
False False positive (FP) False negative (FN)

Table 8.1: Table of the confusion matrix

Since we are interested to study the system's performance, so it is important to calculate the
accuracy and precision of the system using the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN (8.1)

Precision =
TP

TP + FP (8.2)

62

Discussion 63

8.1.1 Performance Analysis for Eye-status based Tiredness Detection

Confusion matrix for sleepiness detection (Subject 1)
Session Nr. TP FP TN FN Accuracy Precision

1. 5 1 22 1 93.10% 83.33%

2. 7 2 37 2 91.67% 77.78%

3. 17 6 79 4 90.57% 73.91%

Table 8.2: Performance analysis for eye-status based tiredness detection (Subject 1)

Confusion matrix for sleepiness detection (Subject 2)
Session Nr. TP FP TN FN Accuracy Precision

1. 3 1 26 1 93.55% 75%

2. 9 4 59 3 90.67% 69.23%

3. 15 7 97 5 90.32% 68.18%

Table 8.3: Performance analysis for eye-status based tiredness detection (Subject 2)

8.1.2 Performance Analysis for Mouth-status based Tiredness Detection

Confusion matrix for yawn detection (Subject 1)
Session Nr. TP FP TN FN Accuracy Precision

1. 7 0 13 6 76.92% 100%

2. 11 0 17 13 68.29% 100%

3. 19 0 29 26 64.87% 100%

Table 8.4: Performance analysis for mouth-status based tiredness detection (Subject 1)

Confusion matrix for yawn detection (Subject 2)
Session Nr. TP FP TN FN Accuracy Precision

1. 9 0 15 7 77.42% 100%

2. 13 0 19 15 68.09% 100%

3. 23 1 31 29 64.29% 95.83%

Table 8.5: Performance analysis for mouth-status based tiredness detection (Subject 2)

8.1.3 Summary

Some observations that can be made from the analysis in section 8.1.1 and 8.1.2:

1. Eye-status based tiredness detection works fine without fail in all of the sessions, but
struggles with the problem of detecting good number of false positives; thus it reduces
system's precision. Figure 8.1(a) illustrates an example of precision loss of the sys-
tem. This might be happening due to the limitations of Haar-cascade classifier used to
identify face region in a frame.

Discussion 64

2. On the other hand, mouth-status based tiredness detection suffers to detect actual yawn
properly in many cases. The reason might be that the user opens his/her mouth too wide
while yawning - which disturbs the basic expected structure of a face and not identified
by the facial landmark detector; thus it reduces system's accuracy significantly. Figure
8.1(b) illustrates an example of accuracy loss of the system.

Figure 8.1: Observed performance Issues (a) precision loss, (b) accuracy loss

8.2 Comparative Study with Other Existing Methods

It is evident that still now there exists no vision-based employee tiredness assessment system.
But several vision-based driver fatigue monitoring systems have been proposed in recent
years. So a brief comparative study with these existing methods has been done in table 8.6
considering several important factors.

Factors Method 1[5] Method 2[7] Method 3[8] Our method
Hardware Night-vision

camera & LED
IR camera Raspberry Pi

camera
Any webcam

Library OpenCV OpenCV OpenCV OpenCV
Classifier LBP & Haar

cascade
LBP & Haar

cascade
Haar cascade

only
Haar cascade

only
Detection ap-
proach

Open-eye
detection

Eye-state
classification

Eye-template
matching

Landmark
detection

Target ROI Eye region only Eye region only Eye region only Eye and mouth
region

Calculation Blink rate Eye-state (open
or closed)

Blink rate &
duration of
micro-sleep

Duration of
micro-sleep &

yawn
Computation High High Medium Medium
Speed Average Average Good Good
Performance Average Good Good Average
Cost Average Average Average Low

Table 8.6: Comparison with other existing methods

Discussion 65

Based on the comparative study of table 8.6, it is clear that our proposed method offers a
cost-effective setup and delivers more reliable result than other existing methods in real time.
In section 8.3, the limitations of the system will be described. And finally, in section 8.4, we
will discuss about possible future recommendations for our system.

8.3 Limitations of the System

Our proposed system was experimented in a bright room with constant light and initially we
were using Logitech C170 webcam (specification is available in section B.1). So, the result
was satisfactory in a stable good lighting condition. Although, when we tried to test in a low-
light condition, it could not even identify individual's face. In order to solve this problem,
we replaced our previous webcam with Logitech C920 PRO HD (specification is available
in section B.2). Since this webcam has auto low-light correction feature, so it improved the
result better than before, especially in low-light condition. But sometimes we used to notice a
significant percentage of false-positive detection in extreme low-light condition. The possible
solution would be to install a high-quality infrared webcam; however, in that case the system
will no longer remain as a cost-effective system.
Since the system handles real-time video streaming and delivers result in run-time, so it
requires to have sufficient amount of RAM to be installed before running the application.
External GPU is not mandatory, but strongly suggested.
While the application is running in background, other applications are not allowed to access
webcam. This can be a big drawback in such a condition when an employee needs to do
frequent video-calling for business purpose.
Again, the prototype application expects the user's face to be always visible by the webcam,
which means the head pose can have certain DOF. As a result, the system puts some con-
straints to individual, whereas in real-life a person can have many different posture while
working in front of computer.
Finally, we expected to obtain result from the trained ML model (trained with keystroke
dynamics dataset) for all users. But we understood that the trained ML model works with
the individual only (for whom the dataset was prepared and the ML model was trained). So,
we had to build individually-trained ML models for individual users respectively which would
take significant amount of time to prepare the required big dataset. Since we did not have
sufficient time to get the big dataset ready, so keystroke tiredness prediction module was not
included in this current version of the application.

8.4 Future Recommendations

In spite of a few minor limitations, the proposed algorithms are proven working effectively
in different lighting conditions of both laboratory and official environments. Still there exist
plenty of opportunities to improve the system's applicability and performance. Since we have
developed the prototype application using .NET framework (maintaining standard object-
oriented design and architecture with proper documentation), so it is very much possible to
develop a mobile application for smartphones (Android OS, iOS or Windows Phone) repli-
cating the same concept with advanced features. As a result, drivers will find the application
very useful. All they will have to do is to turn on the application in their mobile phone and
place it in a position where facial components are fully visible. Most importantly, the system
will be cost-effective too.

Discussion 66

As we mentioned in the motivation, this research work intends to bring more intelligence
to vision system, for example, computer control through individual's facial expression (e.g,
eye blink, motion of pupil etc.) and possible motion(s). Thus handicapped people will be
highly beneficiary. From technical perspective, a significant portion of existing software's
source-code can be reused to implement required features.
In the context of regular computer users, we can utilize the trained ML model (having
keystroke dynamics data) in order to analyze day-time fatigue with less margin of error.
Even the existing software's source-code can be used to implement the necessary changes.
In addition, we can try to integrate the measurements of wearable sensors (e.g, Fitbit) in
our existing application. Hence it will add more variables to the system (e.g, blood pressure,
heart rate etc.) and the internal logic will become more complicated. But it will not only
improve the result, but also increase the reliability of the system. In a word, it is possible to
evaluate tiredness in real-time with more robust features by extending our existing system.

Chapter 9

Conclusion

9.1 Conclusion (English)

In this paper, a unique method for employee tiredness detection was proposed by monitoring
eye status and frequency of yawning in real-time. Eye aspect ratio (EAR) and mouth aspect
ratio (MAR) were used to monitor eye status and mouth status respectively in sequences of
frames. It is obligatory to mention that OpenCV library functions have been used significantly
(via EmguCV wrapper class) throughout the program and the prototype application was
developed using C# programming language to ensure possibility of future improvement,
maintenance and migration to other platforms (if necessary).
The concept of AdaBoost algorithm, Haar-like features, Integral image and CNN were studied
extensively in order to detect face and necessary facial components. Once face was identi-
fied by the machine-learning based algorithm, it was set as ROI while trace corresponding
landmark points. High quality webcam was used throughout the experiment, so that each
individual frame can be utilized to detect employee tiredness which would trigger the alarm
to alert him/her effectively. Other necessary biometric data (e.g, keystroke dynamics data)
were stored in database to train a ML model for future utilization.
The proposed method was tested in lab environment as well as in official environment too.
The system delivers satisfactory results in official environment with minimal computational
complexity. The future work will focus on utilizing small variations not only from eye and
mouth regions, but also from motion activities (e.g, employee head motion) with minimal
computation overhead.

67

Conclusion 68

9.2 Conclusion (Estonian)

Käesolevas diplomitöös esitati unikaalne meetod mõõtmaks töötajate väsimustaset kasutades
silmade seisundit ja haigutamise sagedust reaalajas. Silmade kuvasuhe (EAR) ja suude kuva-
suhe (MAR) kasutati silmade ja suu seisund jälgimiseks vastavalt kaadritele. On vajalik ka
ära mainida, et OpenCV teegikogu funktsioone on kasutatud suures osas (EmguCV wrapper
klassi kaudu) läbi terve programmi ja rakenduse prototüüp oli arendatud kasutates C# pro-
grameerimiskeelt, et tagada lihtsam valmidus lisaarenduseks tulevikus, tehniliseks hoolduseks
ja vajaduse korral migratsiooniks teistele platformidele.
AdaBoosti algortimi kontseptsiooni, Haari sarnaste omaduste, tervikliku kuvandi ja CNN
uurimine olid vajalikud,et kinnistada teadmised näo erinevate aspektide jälgimiseks. Peale
seda kui näo aspektid olid jälgitavad masinõppe algoritmi abil, kasutati ROI (Region of Inter-
est, kitsendatud otsinguala) süsteemi erivevate punktide määramiseks. Kogu eksperimendi
vältel kasutati kõrge kaadrisagedusega veebikaamerat, et iga üksikut kaadrit saaks võima-
likult efektiivselt ära kasutada töötajate kurnatuse taseme jälgimiseks ning saaks seadistada
alarmi vastavalt detekteeritud tasemele. Ülejäänud vajalikud biomeetrilised andmed salves-
tati andmebaasi, et treenida ML mudelit tulevaseks kasutuseks.
Välja pakutud meetodit testiti laborikeskonnas ja ka kontoris -päriselus. Süsteemi kasutamise
tulemusena saavutati rahuldavad tulemused kontori keskkonnas vähese süsteemikeerukusega.
Tulevased arendused keskenduvad mitte ainult variatsioonide kasutamisele suu ja silmade
alal, vaid lahendusele lisanduvad ka väikseked liikumistegevuse nagu näiteks pea liigutamine
ning säilib ka programmi lihtsus.

Bibliography

[1] V. Pille, V. Tuulik, and A. Hazak, “Sitting at a desk at work makes creative employees
tired,” TTU Economic Research Series, 2017.

[2] Y. S. Can, B. Arnrich, and C. Ersoy, “Stress detection in daily life scenarios using smart
phones and wearable sensors: A survey,” Journal of biomedical informatics, p. 103139,
2019.

[3] A. Pimenta, D. Carneiro, J. Neves, and P. Novais, “Analysis of mental fatigue and mood
states in workplaces,” in Intelligent Distributed Computing IX. Springer, 2016, pp.
111–119.

[4] M. A. Haque, R. Irani, K. Nasrollahi, and T. B. Moeslund, “Facial video-based detection
of physical fatigue for maximal muscle activity,” IET Computer Vision, vol. 10, no. 4,
pp. 323–330, 2016.

[5] G. L. R. Clavijo, J. O. Patino, and D. M. Leon, “Detection of visual fatigue by analyzing
the blink rate,” in 2015 20th Symposium on Signal Processing, Images and Computer
Vision (STSIVA). IEEE, 2015, pp. 1–5.

[6] E. Abdulin and O. Komogortsev, “User eye fatigue detection via eye movement behav-
ior,” in Proceedings of the 33rd annual ACM conference extended abstracts on human
factors in computing systems. ACM, 2015, pp. 1265–1270.

[7] D. Ghimire, S. Jeong, S. Yoon, S. Park, and J. Choi, “Real-time sleepiness detection for
driver state monitoring system,” Adv. Sci. Technol. Lett, vol. 120, pp. 1–8, 2015.

[8] O. Khunpisuth, T. Chotchinasri, V. Koschakosai, and N. Hnoohom, “Driver drowsi-
ness detection using eye-closeness detection,” in 2016 12th International Conference on
Signal-Image Technology & Internet-Based Systems (SITIS). IEEE, 2016, pp. 661–668.

[9] Y. Zhang and C. Hua, “Driver fatigue recognition based on facial expression analysis
using local binary patterns,” Optik, vol. 126, no. 23, pp. 4501–4505, 2015.

[10] J. Kumari, R. Rajesh, and K. M. Pooja, “Facial expression recognition: A survey,”
Procedia Computer Science, vol. 58, pp. 486–491, 2015.

[11] T. M. Abhishree, J. Latha, K. Manikantan, and S. Ramachandran, “Face recognition
using gabor filter based feature extraction with anisotropic diffusion as a pre-processing
technique,” Procedia Computer Science, vol. 45, pp. 312–321, 2015.

[12] L. Liu, P. Fieguth, G. Zhao, M. Pietikäinen, and D. Hu, “Extended local binary patterns
for face recognition,” Information Sciences, vol. 358, pp. 56–72, 2016.

69

Conclusion 70

[13] S. Agrawal and P. Khatri, “Facial expression detection techniques: based on viola and
jones algorithm and principal component analysis,” in 2015 Fifth International Con-
ference on Advanced Computing & Communication Technologies. IEEE, 2015, pp.
108–112.

[14] A. Painsky, S. Rosset, and M. Feder, “Linear independent component analysis over finite
fields: Algorithms and bounds,” IEEE Transactions on Signal Processing, vol. 66, no. 22,
pp. 5875–5886, 2018.

[15] A. Tharwat, T. Gaber, A. Ibrahim, and A. E. Hassanien, “Linear discriminant analysis:
A detailed tutorial,” AI communications, vol. 30, no. 2, pp. 169–190, 2017.

[16] M. Ulinskas, R. Damaševičius, R. Maskeliūnas, and M. Woźniak, “Recognition of human
daytime fatigue using keystroke data,” Procedia computer science, vol. 130, pp. 947–952,
2018.

[17] E. V. E. Centers, “Lazy eye,” https://epicvisioneyecenters.com/lazy-eye, accessed: 2019-
10-12.

[18] B. Systems, “Facial emg & startle response,” https://www.biopac.com/, accessed: 2019-
07-24.

[19] M. Pro, “How to digitize human emotions for virtual reality applications,” https://
maker.pro/, accessed: 2019-10-03.

[20] A. Dasgupta, A. George, S. Happy, and A. Routray, “A vision-based system for mon-
itoring the loss of attention in automotive drivers,” IEEE Transactions on Intelligent
Transportation Systems, vol. 14, no. 4, pp. 1825–1838, 2013.

[21] R. Shah, “Image sensors explained: How CCD and CMOS sensors works? CCD vs
CMOS,” 2017. [Online]. Available: https://www.youtube.com/watch?v=FKJFIzDfUNE

[22] D. Bode, “Fundamentals of photography: What is a digital image?” 2013. [Online].
Available: https://www.youtube.com/watch?v=TVTn7mYKegY

[23] GeeksforGeeks, “Digital image processing basics,” https://www.geeksforgeeks.org/, ac-
cessed: 2019-08-14.

[24] P. Chakravorty, “What is a signal? [lecture notes],” IEEE Signal Processing Magazine,
vol. 35, no. 5, pp. 175–177, 2018.

[25] TutorialPoint, “Digital image processing,” http://www.tutorialspoint.com/dip/, ac-
cessed: 2019-08-14.

[26] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple fea-
tures,” CVPR (1), vol. 1, no. 511-518, p. 3, 2001.

[27] J.Brownlee, “A gentle introduction to computer vision,” https://
machinelearningmastery.com/, accessed: 2019-03-19.

[28] J. Starmer, “Adaboost, clearly explained,” 2019. [Online]. Available: https:
//www.youtube.com/watch?v=LsK-xG1cLYA

[29] E. Emer, “Boosting, adaboost algorithm,” http://math.mit.edu/, accessed: 2019-08-14.

[30] OpenCV, “Face detection using haar cascades,” https://docs.opencv.org/, accessed:
2019-08-27.

https://epicvisioneyecenters.com/lazy-eye
https://www.biopac.com/
https://maker.pro/
https://maker.pro/
https://www.youtube.com/watch?v=FKJFIzDfUNE
https://www.youtube.com/watch?v=TVTn7mYKegY
https://www.geeksforgeeks.org/
http://www.tutorialspoint.com/dip/
https://machinelearningmastery.com/
https://machinelearningmastery.com/
https://www.youtube.com/watch?v=LsK-xG1cLYA
https://www.youtube.com/watch?v=LsK-xG1cLYA
http://math.mit.edu/
https://docs.opencv.org/

Conclusion 71

[31] A. Harvey, “Opencv face detection: Visualized,” 2010. [Online]. Available:
https://vimeo.com/12774628

[32] Badgerati, “Computer vision – the integral image,” https://computersciencesource.
wordpress.com/, accessed: 2019-08-28.

[33] R. Lienhart and J. Maydt, “An extended set of haar-like features for rapid object de-
tection,” in Proceedings. international conference on image processing, vol. 1. IEEE,
2002, pp. I–I.

[34] S. Hameed, “Haarcascade for eyes,” http://umich.edu/~shameem/, accessed: 2019-09-
26.

[35] M. Castrillón-Santana, O. Déniz-Suárez, M. Hernández-Tejera, and C. Guerra-Artal,
“Face and facial feature detection evaluation,” in Third International Conference on
Computer Vision Theory and Applications, VISAPP08, January 2008.

[36] H. S. Chatterjee, “A basic introduction to convolutional neural network,” https://
medium.com/@himadrisankarchatterjee/, accessed: 2019-07-16.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 779–788.

[38] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

[39] J.Redmon, “Darknet: Open source neural networks in c,” http://pjreddie.com/darknet/,
2013–2016.

[40] A. Poddar, M. Sahidullah, and G. Saha, “Speaker verification with short utterances:
a review of challenges, trends and opportunities,” IET Biometrics, vol. 7, no. 2, pp.
91–101, 2018.

[41] A. Harilal, F. Toffalini, I. Homoliak, J. Castellanos, J. Guarnizo, S. Mondal, and
M. Ochoa, “The wolf of sutd (twos): A dataset of malicious insider threat behavior
based on a gamified competition.” JoWUA, vol. 9, no. 1, pp. 54–85, 2018.

[42] A. A. E. Ahmed and I. Traore, “Mouse dynamics biometric technology,” in Behavioral
Biometrics for Human Identification: Intelligent Applications. IGI Global, 2010, pp.
207–223.

[43] M. Antal and E. Egyed-Zsigmond, “Intrusion detection using mouse dynamics,” IET
Biometrics, 2019.

[44] M. R. Rosekind, K. B. Gregory, M. M. Mallis, S. L. Brandt, B. Seal, and D. Lerner,
“The cost of poor sleep: workplace productivity loss and associated costs,” Journal of
Occupational and Environmental Medicine, vol. 52, no. 1, pp. 91–98, 2010.

[45] G. Mamaladze, “Processing global mouse and keyboard hooks in c#,” https://www.
codeproject.com/Articles/7294/Processing-Global-Mouse-and-Keyboard-Hooks-in-C,
accessed: 2019-10-13.

[46] V. Kazemi and J. Sullivan, “One millisecond face alignment with an ensemble of re-
gression trees,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 1867–1874.

https://vimeo.com/12774628
https://computersciencesource.wordpress.com/
https://computersciencesource.wordpress.com/
http://umich.edu/~shameem/
https://medium.com/@himadrisankarchatterjee/
https://medium.com/@himadrisankarchatterjee/
http://pjreddie.com/darknet/
https://www.codeproject.com/Articles/7294/Processing-Global-Mouse-and-Keyboard-Hooks-in-C
https://www.codeproject.com/Articles/7294/Processing-Global-Mouse-and-Keyboard-Hooks-in-C

Bibliography 72

[47] G. Tzimiropoulos and M. Pantic, “Optimization problems for fast aam fitting in-the-
wild,” in Proceedings of the IEEE international conference on computer vision, 2013, pp.
593–600.

[48] S. Ren, X. Cao, Y. Wei, and J. Sun, “Face alignment at 3000 fps via regressing local
binary features,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1685–1692.

[49] L. Kurnianggoro, “Facemark api for opencv,” https://github.com/kurnianggoro/
GSOC2017, accessed: 2019-10-13.

[50] A. Singh, C. Chandewar, and P. Pattarkine, “Driver drowsiness alert system with ef-
fective feature extraction,” International Journal for Research in Emerging Science and
Technology, vol. 5, no. 4, pp. 26–31, 2018.

[51] T. Soukupova and J. Cech, “Eye blink detection using facial landmarks,” in 21st Com-
puter Vision Winter Workshop, Rimske Toplice, Slovenia, 2016.

[52] H. R. Schiffman, Sensation and perception: An integrated approach. John Wiley &
Sons, 1990.

[53] P. Awasekar, M. Ravi, S. Doke, and Z. Shaikh, “Driver fatigue detection and alert
system using non-intrusive eye and yawn detection,” International Journal of Computer
Applications, vol. 975, p. 8887.

[54] S. Gupta and S. Mittal, “Yawning and its physiological significance,” International Jour-
nal of Applied and Basic Medical Research, vol. 3, no. 1, p. 11, 2013.

[55] S. Abtahi, B. Hariri, and S. Shirmohammadi, “Driver drowsiness monitoring based on
yawning detection,” in 2011 IEEE International Instrumentation and Measurement Tech-
nology Conference. IEEE, 2011, pp. 1–4.

[56] Microsoft, “What is ml.net and how does it work?” https://docs.microsoft.com/en-us/
dotnet/machine-learning/how-does-mldotnet-work#machine-learning-model, accessed:
2019-11-07.

[57] C. Reis, C. Mestre, H. Canhão, D. Gradwell, and T. Paiva, “Sleep complaints and fatigue
of airline pilots,” Sleep Science, vol. 9, no. 2, pp. 73–77, 2016.

[58] L. Reinke, Y. Özbay, W. Dieperink, and J. E. Tulleken, “The effect of chronotype on
sleepiness, fatigue, and psychomotor vigilance of icu nurses during the night shift,” In-
tensive care medicine, vol. 41, no. 4, pp. 657–666, 2015.

[59] C. Nikulin, G. Lopez, E. Piñonez, L. Gonzalez, and P. Zapata, “Nasa-tlx for predictabil-
ity and measurability of instructional design models: case study in design methods,”
Educational Technology Research and Development, vol. 67, no. 2, pp. 467–493, 2019.

[60] C. M. Davis, P. G. Roma, and R. D. Hienz, “A rodent model of the human psychomotor
vigilance test: Performance comparisons,” Journal of neuroscience methods, vol. 259,
pp. 57–71, 2016.

[61] A. Nanduri and L. Sherry, “Anomaly detection in aircraft data using recurrent neu-
ral networks (rnn),” in 2016 Integrated Communications Navigation and Surveillance
(ICNS). IEEE, 2016, pp. 5C2–1.

[62] E. Corporation, “Cascadeclassifier.detectmultiscale method,” http://www.emgu.com,
accessed: 2019-09-01.

https://github.com/kurnianggoro/GSOC2017
https://github.com/kurnianggoro/GSOC2017
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work#machine-learning-model
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work#machine-learning-model
http://www.emgu.com

List of Figures

1.1 Flowchart of visual fatigue detection by analyzing blink rate 3
1.2 Flowchart of the driver's drowsiness detection system 3
1.3 Facial expression classification block diagram 4
1.4 Example of popular feature extraction techniques 5

2.1 Visual tiredness . 6
2.2 Facial electromyography . 7
2.3 PERCLOS . 8

3.1 CCD sensor . 10
3.2 CMOS sensor . 11
3.3 Digital image processing . 12
3.4 AdaBoost classifier . 14
3.5 Haar-like features . 15
3.6 Haar-like features used for face detection . 16
3.7 Cascade of classifiers . 17
3.8 Integral image . 18
3.9 Calculation of integral image . 18
3.10 Workflow of facial components detection . 20
3.11 Face detection in different lighting conditions 20
3.12 Eye detection in different lighting conditions 21
3.13 Pupil detection in different lighting conditions 21
3.14 Mouth detection in different lighting conditions 22
3.15 Convolutional neural network . 23
3.16 Preparation of filter matrix . 23
3.17 An example about how convolution works . 23
3.18 YOLO network architecture . 25
3.19 Bounding box prediction in YOLOv3 detection system 26
3.20 Workflow of face detection in YOLO . 27
3.21 Face detection using Darknet and YOLO . 27

73

Bibliography 74

4.1 Attributes of keystroke dynamics . 30
4.2 Example of mouse dynamics . 30
4.3 Workflow of capturing behavioral biometrics 31

5.1 Eye-status based tiredness detection algorithm 33
5.2 Facial landmark detection algorithm . 34
5.3 Facial landmark detection . 34
5.4 Eye landmark detection . 35
5.5 Eye aspect ratio . 36
5.6 Eye state verification . 38
5.7 Mouth-status based tiredness detection algorithm 39
5.8 Landmark detection of outer edge of lips . 40
5.9 Mouth aspect ratio . 40
5.10 Distance between two center points of inner lip 43
5.11 Verification of yawn detection . 43
5.12 Workflow of ML model training with keystroke dynamics 44
5.13 Block diagram of ML model development . 44

6.1 Hardware setup . 47
6.2 USB 3.0 port . 48
6.3 Overview of vision system architecture . 49
6.4 Overview of prototype application architecture 51
6.5 User interface in development environment 52
6.6 User interface in real-time when subject is not tired 52
6.7 User interface in real-time when subject is tired due to sleepy-eye 53
6.8 User interface in real-time when subject is tired due to yawn 53

7.1 Tiredness detection based on eye-status (Subject 1) 55
7.2 Eye aspect ratio history graph (Subject 1) . 55
7.3 Eye status graph (Subject 1) . 56
7.4 Tiredness detection based on eye-status (Subject 2) 57
7.5 Eye aspect ratio history graph (Subject 2) . 57
7.6 Eye status graph (Subject 2) . 58
7.7 Tiredness detection based on mouth-status (Subject 1) 59
7.8 Mouth aspect ratio history graph (Subject 1) 60
7.9 Mouth status graph (Subject 1) . 60
7.10 Tiredness detection based on mouth-status (Subject 2) 61
7.11 Mouth aspect ratio history graph (Subject 2) 62
7.12 Mouth status graph (Subject 2) . 62

List of Figures 75

8.1 Observed performance issues . 65

A.1 Relationship of AI and CV . 79
A.2 Common steps of image sensors . 80

B.1 Logitech C170 . 90
B.2 Logitech C920 PRO HD . 91

List of Tables

3.1 Comparison between CCD and CMOS Sensor 11
3.2 Detection time comparison between ML-based and DL-based algorithm . . . 28
3.3 Confidence comparison between ML-based and DL-based algorithm 28

5.1 List of eye landmark points . 35
5.2 List of EAR values of 10 different persons . 37
5.3 List of mouth landmark points . 40
5.4 List of MAR values of 10 different persons . 42

6.1 Libraries and packages used . 50
6.2 Windows forms used . 51

7.1 Eye aspect ratio (EAR) data (Subject 1) . 54
7.2 Eye aspect ratio (EAR) data (Subject 2) . 56
7.3 Mouth aspect ratio (MAR) data (Subject 1) 58
7.4 Mouth aspect ratio (MAR) data (Subject 2) 60

8.1 Table of the confusion matrix . 63
8.2 Performance analysis for eye-status based tiredness detection (Subject 1) . . . 64
8.3 Performance analysis for eye-status based tiredness detection (Subject 2) . . . 64
8.4 Performance analysis for mouth-status based tiredness detection (Subject 1) . 64
8.5 Performance analysis for mouth-status based tiredness detection (Subject 2) . 64
8.6 Comparison with other existing methods . 65

A.1 Description of subjective assessment of tiredness 78
A.2 Description of objective assessment of tiredness 79

B.1 Specification of Logitech C170 . 90
B.2 Specification of Logitech C920 . 91

76

Appendix A

Concepts and Theories

A.1 Theory of Tiredness

A.1.1 Subjective Assessment of Tiredness

Tool Acronym Description
Fatigue
Severity
Scale

FSS It is a self-response questionnaire consists of 9 items, refer-
ring to the previous week, rated on a 7-point Likert scale,
ranging between “1: strongly disagree” and “7: strongly
agree”. The total score is calculated by adding all items and
then dividing the sum by 9. The scale assesses the level of
perceived fatigue in daily situations. Results at or above
4 indicate a clinically significant level of fatigue [57]. This
fatigue scale is inspired from Samn Perelli's 7 point checklist.

Karolinska
Sleepiness
Scale

KSS It is a subjective scale used to measure sleepiness on a scale
ranging from 1 to 9, with “1: very alert”, “3: alert”, “5:
neither alert nor sleepy”, “7: sleepy, but no effort to keep
awake” and “9: very sleepy great effort to keep awake” [58].

NASA Task
Load Index

NASA TLX It is a multi-dimensional rating procedure that assigns a
total workload score based on a weighted average of six
sub-scales: mental demand (mental and perceptive activ-
ity); physical demand (degree of physical effort); temporal
demand (temporal perception); performance (degree of goal
accomplishment); effort (amount of physical and mental ef-
fort); and frustration level (feeling of pressure, discourage-
ment, and insecurity during execution) [59].

Table A.1: Description of subjective assessment of tiredness

77

Appendix A 78

A.1.2 Objective Assessment of Tiredness

Tool Acronym Description
Psychomotor
Vigilance
Task

PVT It is a computer-based risk assessment tool to quantify fa-
tigue and sustained attention in laboratory, clinical, and
operational settings – where individuals are instructed to
respond to a digital signal by pressing a key. Then errors of
omission and commission are recorded [60].

Flight Op-
erational
Quality
Assurance

FOQA It collects time-series data from flight that identifies events
and trends that helps to reduce safety margins [61].

Table A.2: Description of objective assessment of tiredness

A.2 Theory of Computer Vision

A.2.1 What is Computer Vision?

Computer vision (CV) is a field of study that concerns with development of techniques that
help computers in order to extract information from digital images (e.g, photographs, videos)
and solve practical problems. It is a multidisciplinary field that can be defined as a subfield
of artificial intelligence and machine learning that involves usage of specialized methods and
general learning algorithms [27].

Figure A.1: Overview of the relationship of AI and CV [27]

In our study, we use computer vision in order to detect faces, particularly tired faces.

A.2.2 Theory of Image Sensor

An image sensor converts light energy (focused beam of photons) into an electrical output
modulated by graphic information. It is used in electronic imaging devices including digital
cameras, medical imaging equipment, thermal imaging devices, radar, sonar etc.

Appendix A 79

Currently two types of image sensors are used.

• CCD (Charged Coupled Device)

• CMOS (Complementary Metal Oxide Semiconductor)

Figure A.2: Common steps of image
sensors [21]

Both CCD and CMOS image sensor consist of millions
of photosites (pixels). These photosites convert the
incoming light into charge. In terms of mechanism,
some common steps are done by both type of image
sensors. But depending on the type of sensors, these
steps might vary in terms of sequence [21].

• Light to Charge Conversion: Photosites (pixels)
are exposed to the light for a certain amount of
time.

• Charge Accumulation: Charge will be collected
in the photosites (pixels).

• Transfer: These pixels are transferred for the
further processing.

• Charge to Voltage Conversion: After transfer,
this charge is converted into voltage.

• Amplification: This voltage is amplified by the
amplifiers.

A.2.3 Comparison between CCD and
CMOS Sensor

• System Integration: CCD is very old technology. In this technology, it is not possible
to integrate the peripheral components like Timers, ADC to the main sensor. So for
integrating the peripheral components, you need additional chip. So the overall size of
CCD sensor will get large. In case of CMOS sensors, since the fabrication procedure
is same as the fabrication procedure of integrated circuits, so it is possible to integrate
these peripheral components (Timers, ADC) into the single chip. So in case of CMOS
sensor, it is possible to have a camera-on-chip or system-on-chip. Because of that, the
CMOS sensor is quite compact [21].

• Power Consumption: In case of CCD sensors, we require different power supplies
for different timing clocks. Typical voltage required is 7V to 10V. So overall power
consumption in CCD sensors will be high. In case of CMOS sensors, we require single
power supply. Typical voltage required is 3.3V to 5V, which is relatively low. So overall
power consumption in CMOS sensors will be lesser compared to CCD sensors. So the
applications where power consumption is the main criteria, CMOS sensors are preferred
over CCD sensors [21].

• Processing Speed: In case of CCD sensors, the charge that is generated in each pixel
is converted into the voltage one-by-one. So overall processing speed of CCD sensors is
lesser compared to CMOS sensors. Now the processing speed can be improved by using

Appendix A 80

multiple vertical shift registers. In that case, we will require additional hardware. In
case of CMOS sensors, the charge to voltage conversion takes place in the same pixel.
So the processing speed is higher compared to the CCD sensors. Now the processing
speed can be improved by using multiple column select lines. So in this way, by doing
parallel processing we can increase the processing speed of this CMOS sensor [21].

• Noise and Sensitivity: In the case of CMOS sensors, charge-to-voltage converter
circuit as well as the amplification circuit is integrated in the same pixel. So overall
fill-factor of the CMOS sensor is less compared to the CCD sensor. And because of
that, the sensitivity of the CMOS sensor will be less compared to the CCD sensor.
And because of that, the Dynamic range of CCD sensor is quite high compared to
the CMOS sensor. Not only that, in case of the CMOS sensor, the amplifier which
has been used in each pixel is not identical. So because of that, you will see the
non-uniform amplification. This will act as an additional noise. But nowadays using
different techniques like microlens on each pixel of CMOS sensor, the sensitivity can be
increased [21].

• Image distortion: In case of CCD sensor, if you expose this sensor for longer time,
then you will notice the effect which is called “blooming”. Now-a-days, using the anti-
blooming technology, we can reduce this blooming. While in case of CMOS sensor,
the most common type of distortion is known to be “rolling shutter”. Since the pixels
are read in line-by-line fashion, so whenever any fast-moving-object is captured by the
CMOS sensor, then this rolling-shutter effect is quite noticeable. For example, if you try
to capture the wing of helicopter, you will notice it as curvature. In case of CCD sensors,
all pixels are getting exposed in the same time, so we do not notice this effect in CCD
sensors. So, to remove this rolling-shutter effect in CMOS sensor, all the pixels need
to be exposed in the same time, which is known as the “global-shutter”. Now-a-days,
many of the CMOS sensors are also coming with this global shutter [21].

A.2.4 Types of an image

Digital image can be categorized into following types [23].

• Binary Image: It contains only two pixel elements i.e 0 & 1, where 0 refers to black
and 1 refers to white. This image is also known as Monochrome.

• Black and White Image: It consists of only black and white color is called Black
and White Image.

• 8 bit Color Format: It has 256 different shades of colors in it and commonly known
as Grayscale Image. In this format, 0 stands for Black, and 255 stands for white, and
127 stands for gray.

• 16 bit Color Format: It is a color image format. It has 65,536 different colors in it.
It is also known as High Color Format. In this format the distribution of color is not
as same as Grayscale image.

Appendix A 81

A.2.5 Preparation of Custom Haar Cascade

Step 1 - NEGATIVE IMAGES

We need to make a lot of negative images (let's say 200 images) in .jpg format. Please note
that, the images must be grayscale images.

Step 2 - NEGATIVE INFO FILE

After putting all the negative images, now we need to prepare the list of negative images. By
clicking create_list.bat, we create the list of negative images.

Step 3 - POSITIVE IMAGES

We need to make some positive images (let's say 20 images) in .bmp format and put them
inside positive\rawdata directory.

Step 4 - POSITIVE INFO FILE

We need to open the objectmarker.exe and crop the positive images. After every crop
activity, we need to press the spacebar to confirm the crop. Then we need to press Enter key
to go to the next image.

Step 5 - CREATING SAMPLES

We need to create samples by clicking samples_creation.bat. This will generate a positive
vector file (.vec) in vectors directory.

Step 6 - HAAR TRAINING

We need to open cascades directory and delete all the existing folders. Then we need to edit
the 02 haarTraining.bat file using Notepad++. We need to change the numbers of positive
and negative images that are passed as parameter. Then we need to save it and run it. After
some time, the Haar Cascade training will be completed. Please note that, the training time
might vary in between several minutes to few hours, depending on the training parameters.
The following figures illustrate the training process in a step-by-step approach.

Appendix A 82

Appendix A 83

Appendix A 84

Appendix A 85

Appendix A 86

Appendix A 87

Step 7 - CONVERT TO XML

Once the training is completed, we need to run the convert.bat file in order to convert our
data to a XML file.

A.2.6 Theory of Deep-Learning based approach

Workflow of Face Detection

Before we try to do face detection using YOLO framework, first we should make sure that
we have installed OpenCV and Darknet successfully.

1. Pre-trained model configuration update: We take a pre-trained model configura-
tion file (e.g, yolov3.cfg) and rename it to yolo-obj.cfg. Then we have to modify
batch, subdivisions and classes (batch=64, subdivisions=8 and classes=1) in several
places. This yolo-obj.cfg file should be placed inside \build\darknet\x64 directory.

2. Class name preparation: We have to create a new file obj.names which contains
the class-name face and it should be put inside \build\darknet\x64\data directory.

Appendix A 88

3. Class information preparation: In this step, we need to create a new file obj.data
inside \build\darknet\x64\data directory - which will contain the necessary class
information for face like below:

classes= 1
train = data/train.txt
valid = data/test.txt
names = data/obj.names
backup = backup/

4. Training image files preparation: We have to put all the training image files (at
least 2000 image files with face) inside \build\darknet\x64\data\obj directory. Then
we need to generate annotation files by labeling each face on the training image files.
Yolo_mark tool can be used for labeling purpose.

5. Training information preparation: In this step, we have to create a file train.txt
inside \build\darknet\x64\data directory. Pre-trained weights (darknet53.conv.74)
for the convolutional layers should be placed inside \build\darknet\x64 directory.

6. Training NN Model: We initiate the training process by the entering the following
command using Command Prompt window.

darknet.exe detector train data/obj.data yolo-obj.cfg
darknet53.conv.74

Usually 2000 iterations will be sufficient. The result (yolo-obj_ final.weights) will
be obtained inside \build\darknet\x64\backup directory.

7. Face Detection: In order to detect face in an image (lets support input.jpg), we
execute the following command in Command Prompt window.

darknet.exe detect yolo-obj.cfg backup/yolo-obj_final.weights
input.jpg

Appendix B

Hardware Setup Requirements

B.1 Implementation of Designed System

B.1.1 Specifications of Webcams

Logitech C170

Figure B.1: Logitech C170

Camera parameter Value
Optical resolution True 640×480
Sensor type CMOS
Sensor size 1.02 mm×0.76 mm
Diagonal field of view (FOV) 58◦
Focal length 2.3 mm
Frame rate (max) 640×480 @ 30 FPS
Camera dimension 70.3 mm × 71 mm × 60.5 mm
Camera mass 75 g
Price 24.99 e

Table B.1: Specification of Logitech C170

89

Appendix B 90

Logitech C920 PRO HD

Figure B.2: Logitech C920 PRO HD

Camera parameter Value
Optical resolution True 1920×1080
Sensor type CMOS
Sensor size 4.80 mm×3.60 mm
Diagonal field of view (FOV) 78◦
Focal length 3.67 mm
Frame rate (max) 1080P @ 30 FPS
Camera dimension 126 mm × 45 mm × 73 mm
Camera mass 170 g
Price 83.90 e

Table B.2: Specification of Logitech C920

B.2 Camera Parameter Calculation

Haar-like feature dimension: 20×20 px (5.29×5.29 mm);

We consider Logitech C920 PRO HD webcam for necessary parameter calculation.

Focal length (FL): 3.67 mm;

Sensor dimension (SD): 4.80 mm × 3.60 mm;

Working distance (WD): 600 mm

Appendix B 91

We know,

Field of view =
Sensor dimension × Working distance

Focal length (B.1)

Surface coverage per pixel = Field of view
Number of pixels (B.2)

Minimum required resolution =
Feature dimension

Surface coverage per pixel (B.3)

So we calculate,

FOV (horizontal) = 4.80×600
3.67 = 784.74 mm

Surface coverage per pixel (horizontal) = 784.74
1920 = 0.4087 mm

Minimum required resolution (horizontal) = 5.29
0.4087 = 12.9435 ≈ 48.92 px

Again, we calculate,

FOV (vertical) = 3.60×600
3.67 = 588.56 mm

Surface coverage per pixel (vertical) = 588.56
1080 = 0.5449 mm

Minimum required resolution (vertical) = 5.29
0.5449 = 9.7082 ≈ 36.69 px

So, the required minimum resolution is 49 × 37 px approximately.

Appendix C

Software Development Activities

C.1 Computer Vision Programming

C.1.1 Facial Components Detection

Object Detection Method

Basically, CascadeClassifier.DetectMultiScale method finds rectangular regions in input
image that possibly contains objects the cascade has been trained for and returns those
regions as an array of rectangles. The method scans the input image several times at different
scales. In each iteration, it considers overlapping regions in the image. It may also apply
some heuristics to reduce the number of analyzed regions, such as Canny prunning. After it
finishes and collects the passed rectangles, it groups them and returns an array of average
rectangles for each large enough group [62]. The method's prototype syntax is written below:

public Rectangle[] DetectMultiScale(

IInputArray image,

double scaleFactor = 1.1,

int minNeighbors = 3,

Size minSize = null,

Size maxSize = null

)

Pupil Detection Method

gray.ROI = eyeRect;

gray.PyrDown().PyrUp();

gray._ThresholdBinaryInv(new Gray(40), new Gray(255));

92

Appendix C 93

CircleF[] pupilCircles = gray.HoughCircles(new Gray(12), new

Gray(26), 1.90, 10.0, 0, 0)[0];

C.1.2 Object Detection using YOLO Framework

Face Detection Method

The minimal implementation of face detection using Alturos.Yolo wrapper class can be
written like below:

YoloWrapper yoloWrapper = new

YoloWrapper("yolov3_face_config.cfg",

"yolov3_face_weights.weights", "face.names");

MemoryStream memoryStream = new MemoryStream();

imagePictureBox.Image.Save(memoryStream , ImageFormat.Png);

yoloWrapper.Detect(memoryStream.ToArray());

Please note that yolov3_face_config.cfg, yolov3_face_weights.weights and face.names
must be present in the same directory of the application.
The Detect method's prototype is written below:

public IEnumerable <YoloItem > Detect(byte[] imageData);

C.2 Behavioral Biometrics Programming

C.2.1 Behavioral Biometrics Monitoring Method

#region Behavioral Biometrics Monitor

/// <summary>

/// Method that enables necessary Hook Services for Mouse and

Keystroke events.

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void BehavioralBiometricsMonitorStart(object sender,

EventArgs e)

{

// Enable the hook services for mouse activities

HookManager.MouseDown += HookManager_MouseDown;

Appendix C 94

HookManager.MouseDoubleClick +=

HookManager_MouseDoubleClick;

HookManager.MouseMove += HookManager_MouseMove;

HookManager.MouseWheel += HookManager_MouseWheel;

// Enable the hook services for keyboard activities

HookManager.KeyDown += HookManager_KeyDown;

HookManager.KeyUp += HookManager_KeyUp;

HookManager.KeyPress += HookManager_KeyPress;

}

/// <summary>

/// Method that disables necessary Hook Services for Mouse and

Keystroke events.

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void BehavioralBiometricsMonitorStop(object sender,

EventArgs e)

{

// Disable the hook services for mouse activities

HookManager.MouseDown -= HookManager_MouseDown;

HookManager.MouseDoubleClick -=

HookManager_MouseDoubleClick;

HookManager.MouseMove -= HookManager_MouseMove;

HookManager.MouseWheel -= HookManager_MouseWheel;

// Disable the hook services for keyboard activities

HookManager.KeyDown -= HookManager_KeyDown;

HookManager.KeyUp -= HookManager_KeyUp;

HookManager.KeyPress -= HookManager_KeyPress;

}

#endregion

Appendix C 95

C.3 Proposed Methodology Programming

C.3.1 Facial Landmark Detection Method

/// <summary>

/// Initialization of FacemarkLBF parameters.

/// </summary>

public void InitializeLandmarkIdentificationParameters()

{

_faceDetector = new

CascadeClassifier(@"haarcascade_frontalface_default.xml");

_fParams = new FacemarkLBFParams();

_fParams.ModelFile = @"lbfmodel.yaml";

_fParams.NLandmarks = 68;

_fParams.InitShapeN = 10;

_fParams.StagesN = 5;

_fParams.TreeN = 6;

_fParams.TreeDepth = 5;

_facemark = new FacemarkLBF(_fParams);

_facemark.LoadModel(_fParams.ModelFile);

}

/// <summary>

/// Identification of facial landmarks.

/// </summary>

private void FacialLandmarkIdentification()

{

Image<Bgr, Byte> image = _frame.ToImage<Bgr, Byte>();

Image<Gray, byte> grayImage = image.Convert<Gray, byte>();

grayImage._EqualizeHist();

VectorOfRect faces = new

VectorOfRect(_faceDetector.DetectMultiScale(grayImage));

VectorOfVectorOfPointF landmarks = new

VectorOfVectorOfPointF();

bool success = _facemark.Fit(grayImage , faces, landmarks);

/*** Remaining code for this method ***/

Appendix C 96

}

C.3.2 Eye Landmark Detection Method

/// <summary>

/// Class containing all necessary constants for the application.

/// </summary>

static class Constants

{

public const int LEFT_EYE_LANDMARK_POINT_RANGE_MIN = 36;

public const int LEFT_EYE_LANDMARK_POINT_RANGE_MAX = 41;

public const int RIGHT_EYE_LANDMARK_POINT_RANGE_MIN = 42;

public const int RIGHT_EYE_LANDMARK_POINT_RANGE_MAX = 47;

/*** Remaining constants of this class ***/

}

/*** Inside eye landmark identification method ***/

for (int index = 0; index < landmarks[i].Size; index++)

{

if (index >= Constants.LEFT_EYE_LANDMARK_POINT_RANGE_MIN

&& index <= Constants.LEFT_EYE_LANDMARK_POINT_RANGE_MAX)

{

leftEyePointLandmark.Add(new

PointF(landmarks[i][index].X,

landmarks[i][index].Y));

}

if (index >= Constants.RIGHT_EYE_LANDMARK_POINT_RANGE_MIN

&& index <=

Constants.RIGHT_EYE_LANDMARK_POINT_RANGE_MAX)

{

rightEyePointLandmark.Add(new

PointF(landmarks[i][index].X,

landmarks[i][index].Y));

}

}

Appendix C 97

C.3.3 Eye Aspect Ratio Calculation Method

/// <summary>

/// Method that returns EAR (Eye Aspect Ratio) of a given eye

landmark points.

/// </summary>

/// <param name="eyeLandmarkPoints">Eye Landmark Points.</param>

/// <returns>Eye Aspect Ratio.</returns>

public static double GetEyeAspectRatio(PointF[] eyeLandmarkPoints)

{

PointF p1 = new PointF(eyeLandmarkPoints[0].X,

eyeLandmarkPoints[0].Y);

PointF p2 = new PointF(eyeLandmarkPoints[1].X,

eyeLandmarkPoints[1].Y);

PointF p3 = new PointF(eyeLandmarkPoints[2].X,

eyeLandmarkPoints[2].Y);

PointF p4 = new PointF(eyeLandmarkPoints[3].X,

eyeLandmarkPoints[3].Y);

PointF p5 = new PointF(eyeLandmarkPoints[4].X,

eyeLandmarkPoints[4].Y);

PointF p6 = new PointF(eyeLandmarkPoints[5].X,

eyeLandmarkPoints[5].Y);

double eyeAspectRatio = (GetDistance(p2.X, p2.Y, p6.X,

p6.Y) + GetDistance(p3.X, p3.Y, p5.X, p5.Y))/(2 *

GetDistance(p1.X, p1.Y, p4.X, p4.Y));

return eyeAspectRatio;

}

C.3.4 Mouth Landmark Detection Method

/// <summary>

/// Class containing all necessary constants for the application.

/// </summary>

static class Constants

{

Appendix C 98

public const int OUTER_EDGE_LIP_RANGE_MIN = 48;

public const int OUTER_EDGE_LIP_RANGE_MAX = 59;

/*** Remaining constants of this class ***/

}

/*** Inside mouth landmark identification method ***/

for (int index = 0; index < landmarks[i].Size; index++)

{

if (index >= Constants.OUTER_EDGE_LIP_RANGE_MIN && index

<= Constants.OUTER_EDGE_LIP_RANGE_MAX)

{

outerEdgeLipIntegerPointLandmark.Add(new

Point(Convert.ToInt32(landmarks[i][index].X),

Convert.ToInt32(landmarks[i][index].Y)));

outerEdgeLipFloatingPointLandmark.Add(new

PointF(landmarks[i][index].X,

landmarks[i][index].Y));

}

}

C.3.5 Mouth Aspect Ratio Calculation Method

/// <summary>

/// Method that returns Mouth (Mouth Aspect Ratio) of a given eye

landmark points.

/// </summary>

/// <param name="outerLipLandmarkPoints">Outer lip landmark

points.</param>

/// <returns>Mouth Aspect Ratio.</returns>

public static double GetMouthAspectRatio(PointF[]

outerLipLandmarkPoints)

{

PointF p1 = new PointF(outerLipLandmarkPoints[0].X,

outerLipLandmarkPoints[0].Y);

PointF p3 = new PointF(outerLipLandmarkPoints[2].X,

outerLipLandmarkPoints[2].Y);

Appendix C 99

PointF p5 = new PointF(outerLipLandmarkPoints[4].X,

outerLipLandmarkPoints[4].Y);

PointF p7 = new PointF(outerLipLandmarkPoints[6].X,

outerLipLandmarkPoints[6].Y);

PointF p9 = new PointF(outerLipLandmarkPoints[8].X,

outerLipLandmarkPoints[8].Y);

PointF p11 = new PointF(outerLipLandmarkPoints[10].X,

outerLipLandmarkPoints[10].Y);

double mouthAspectRatio = (GetDistance(p3.X, p3.Y, p11.X,

p11.Y) + GetDistance(p5.X, p5.Y, p9.X, p9.Y)) / (2 *

GetDistance(p1.X, p1.Y, p7.X, p7.Y));

return mouthAspectRatio;

}

C.3.6 Inner Lip Distance Measurement Method

/// <summary>

/// Method that returns Inner Lip Distance.

/// </summary>

/// <param name="innerLipLandmarkPoints">Inner lip landmark

points.</param>

/// <returns>Inner lip distance.</returns>

public static double GetInnerLipDistance(PointF[]

innerLipLandmarkPoints)

{

PointF p62 = new PointF(innerLipLandmarkPoints[2].X,

innerLipLandmarkPoints[2].Y);

PointF p66 = new PointF(innerLipLandmarkPoints[6].X,

innerLipLandmarkPoints[6].Y);

double innerLipDistance = GetDistance(p62.X, p62.Y, p66.X,

p66.Y);

return innerLipDistance;

}

C.3.7 ML Model (for Keystroke Dynamics Analysis) Training Method

Appendix C 100

/// <summary>

/// Action-listener for Button ("Train"). It starts ML model

training for keystroke dynamics analysis.

/// </summary>

/// <param name="sender"></param>

/// <param name="e"></param>

private void BtnTrain_Click(object sender, EventArgs e)

{

MLContext mlContext = new MLContext();

// Step 1: Collect and load data

List<BiometricData > biometricDataList =

BiometricDataActivity.Fetch();

for(int index = 0; index < biometricDataList.Count;

index++)

{

if (biometricDataList[index].averageHoldTime == 0

||

biometricDataList[index].averageReleasePressDelay

== 0)

{

biometricDataList.RemoveAt(index);

}

}

KeystrokeDynamicsData[] keystrokeDynamicsData = new

KeystrokeDynamicsData[biometricDataList.Count];

for (int index = 0; index < biometricDataList.Count;

index++)

{

keystrokeDynamicsData[index] = new

KeystrokeDynamicsData()

{

AverageHoldTime = Convert.ToSingle

(biometricDataList[index].averageHoldTime),

AverageReleasePressDelay = Convert.ToSingle

Appendix C 101

(biometricDataList[index].averageReleasePressDelay)

};

}

IDataView trainingData =

mlContext.Data.LoadFromEnumerable(keystrokeDynamicsData);

// Step 2: Create pipeline

var pipeline =

mlContext.Transforms.Concatenate("Features", new[] {

"AverageHoldTime" })

.Append(mlContext.Regression.Trainers.Sdca(labelColumnName:

"AverageReleasePressDelay",

maximumNumberOfIterations: 100));

// Step 3: Train model

var model = pipeline.Fit(trainingData);

// Step 4: Save model

if(File.Exists(@"model.zip"))

{

File.Delete(@"model.zip");

}

mlContext.Model.Save(model, trainingData.Schema,

"model.zip");

lblTrainingStatus.Text = "Training is successful!";

}

	Introduction
	Motivation
	Task Objective
	Literature Review and Background
	Explanation for Developing Current Application
	Facial Expression Recognition
	Behavioral Biometrics Acquisition
	Justification

	Thesis Structure

	Tiredness
	Contact-based Measurements
	Time-based Measurements
	Behavioral Measurements
	Summary

	Computer Vision
	Image Sensors
	Charge-coupled Device (CCD)
	Complementary metal-oxide-semiconductor (CMOS) Sensor
	Comparison between CCD and CMOS Sensor

	Digital Image Processing
	What is a Digital Image?
	Digital Image as a Matrix
	Image Processing

	Machine-Learning based Approach
	AdaBoost Algorithm
	Haar-like Features
	Cascade of Classifiers
	Integral Image
	Workflow of Face Detection
	Convolutional Neural Network
	Discussion

	Deep-Learning based Approach
	YOLO Object Detection Framework
	Darknet Framework
	Workflow of Face Detection
	Discussion

	Comparison between Face Detection Approaches
	Summary

	Behavioral Biometrics
	Keystroke Dynamics
	Mouse Dynamics
	Behavioral Data for Tiredness Detection
	Workflow of Capturing Behavioral Biometrics
	Summary

	Proposed Methodology
	Eye-status based Tiredness Detection Algorithm
	Facial Landmark Detection
	Eye Landmark Detection
	Eye Aspect Ratio
	Tiredness Detection

	Mouth-status based Tiredness Detection Algorithm
	Mouth Landmark Detection
	Mouth Aspect Ratio
	Tiredness Detection

	ML Model Training for Keystroke Dynamics Analysis
	Summary

	Implementation
	Hardware Setup
	Webcam Configuration
	System Configuration
	Setup Activities

	Software Development
	Vision System Architecture
	Prototype Application Architecture
	User Interface

	Summary

	Results
	Eye-status based Tiredness Detection
	Mouth-status based Tiredness Detection
	Summary

	Discussion
	System Performance Analysis
	Performance Analysis for Eye-status based Tiredness Detection
	Performance Analysis for Mouth-status based Tiredness Detection
	Summary

	Comparative Study with Other Existing Methods
	Limitations of the System
	Future Recommendations

	Conclusion
	Conclusion (English)
	Conclusion (Estonian)

	Bibliography
	List of Figures
	List of Tables
	Appendix Concepts and Theories
	Theory of Tiredness
	Subjective Assessment of Tiredness
	Objective Assessment of Tiredness

	Theory of Computer Vision
	What is Computer Vision?
	Theory of Image Sensor
	Comparison between CCD and CMOS Sensor
	Types of an image
	Preparation of Custom Haar Cascade
	Theory of Deep-Learning based approach

	Appendix Hardware Setup Requirements
	Implementation of Designed System
	Specifications of Webcams

	Camera Parameter Calculation

	Appendix Software Development Activities
	Computer Vision Programming
	Facial Components Detection
	Object Detection using YOLO Framework

	Behavioral Biometrics Programming
	Behavioral Biometrics Monitoring Method

	Proposed Methodology Programming
	Facial Landmark Detection Method
	Eye Landmark Detection Method
	Eye Aspect Ratio Calculation Method
	Mouth Landmark Detection Method
	Mouth Aspect Ratio Calculation Method
	Inner Lip Distance Measurement Method
	ML Model (for Keystroke Dynamics Analysis) Training Method

