TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Nils Tirs 1789471AIB

TERADATA TECHNICAL METADATA
AGGEGATION ON A COMMON
DASHBOARD

Bachelor’s thesis

Supervisor: Martin Rebane

MSc

Tallinn 2020

Author acknowledgement

| hereby certify that | am the sole author of this thesis. All the used materials, references to
the literature and the work of others have been referred to. This thesis has not been presented
for examination anywhere else.

Author: Nils Tirs

25.05.2020

Abstract

Teradata Technical Metadata Aggregation on a Common Dashboard

The purpose of this thesis is to create a Teradata technical metadata showing dashboard in a

data warehouse for a financial institution, to provide key technical metadata necessary.

The current solution in the financial institution was to create and use long and complicated
queries, which took-up a significant amount of time and resources for a database

administrator.

To solve this problem, necessary queries were created in association with the financial
institutions database administrators and a web-application was created. The common
dashboard was created as an ASP .NET MVC with a connection to the financial institutions

data warehouse.

The dashboard was able to show all necessary data from key databases and their child tables
significantly faster in comparison to executing each SQL statement on its own.

The thesis is written in English and contains 5 chapters, 27 pages and 11 figures.

Annotatsioon

Teradata tehnilise metadata agregeerimine tihtsele koondvaatele

Kéesoleva t66 eesmérgiks oli luua Teradata tehnilise metaandmeid tlevaade
finantsinstitutsiooni andmeaidast. Lahendus koosneb veebirakendusest, mis néitab pohilist
tehnilist metaandmeid andme lauda tdhtsamates andmebaasides olevatest tabelitest.

Rakenduse eesmaérk oli oluliselt lihtsustada finantsinstitutsioonis olevate andmebaasi
administraatorite t60d, luues veebirakendus, kus saab naha kdikide tdhtsamate andmebaaside
tabelite tehnilist metaandmeid. Selle hulka lisandub tabeli vaba ja tditunud maht, mis
kasutajatel on vastavale tabelile digused ja mis tabelid kasutavad v6i sdltuvad tabelist. Antud

metaandmetega saab leida korrelatsioone, et andmelauda t66d hélbustada.

T66 kaigus loodi vastavad SQL laused, rakenduse back-end ja kasutajavaade. SQL laused
loodi Teradata SQL’is kasutades Teradata’s olevat ,,sonastik* andmebaasi vastava
metaandmetega kattesaamiseks. VVeebirakendus loodi finantsinstitutsioonis arendusk&igus

oleva andmelauda testimis rakenduse laiendusena ASP .NET MVC’s.

Edasiarendusel on véimalik lisada t66le metaandmete ajaloo hoiustamise funktsioon, lisada
graafikuid ja filtreerimisvdimalus. Naiteks, et andmebaasi tabelid vaba ruumi jargi, voi mis
tabelil on kdige rohkem sdltuvusi. Lisaks voib lisada muud andmelauda metaandmeid, et

tekitada veel Uldisem (levaade hetkeseisust andmelauda tabelites.

LOputdo on Kirjutatud inglise keeles ning sisaldab teksti 27 lehekuljel, 5 peatukki ning 11

joonist.

AMP

Bl

CPU

Dashboard

Data warehouse

Metadata

MVC

PE

RDBMS

Teradata

Query

List of abbreviations and terms

Access Module Processors are Teradata data base system
processors to which tables are divided to.

Business Intelligence stands for strategies and technologies used

by organizations for data analysis.

Central Processing Unit is considered the brains of the
computer and is the part where all the calculations in a

computer are done in.

An information management tool used to analyse and track key
metrics in a program, organization or a specific process.

A database management system used mainly in data analysis

and Business Intelligence.

Metadata is the data about data and gives information about
other data.

Model-view-controller principle behind ASP .NET web

application development.
Parsing Engine handles all Teradata queries by orchestrating
the AMPs

Relational Database Management System is a specific database

management system used for relational databases

Teradata is a RDBMS used mainly in data warehouses and
organizations where data analysis over large amount of data is

required

A query is a request for data or information from a database

table or a combination of tables

Table of contents

L INEFOAUCTION. ...ttt b e sttt b bt bbbt et e e ae e st ebeebene e b e 8
1.1 CONIDULION c.titittcc ettt ettt 9
1.3 SErUCLUIe OF the thESIS.....c.eiuiiieiieieet et 9

2. TheoretiCal DACKGIOUNGc..oiiiiiriieiest ettt sttt ettt b e 11
2.1 TEIAUALA.eveeetetet ettt ettt b e bbbt ettt a st b e bbbt et et b bt b b nren 11
2.2 DAtA WAIBNOUSE.cuvveniteneeteeetee ettt ettt ettt b et b e bt e ettt b et nteneas 13
2.3 MEBLAGALA. ...ttt bbbttt sttt 14

S ANAIYSES vttt a et e be et e be e b e e beebe e e e beeat e teabeeatenteereenbeateeaaenrenreenes 16
3. L THE ISSUE @ NANG: ...ttt sttt sbe b e 16
3.3 POSSIDIE SOIULIONS: ...ttt sttt sbe b e 17
3.4 TE SOIULION ...ttt ettt e et sttt enenaeneas 18
3.4 TECNNICAl BCISIONS ... ettt bbbttt sttt e 18

4. DEVEIOPIMENT......cueiieiieieeiiet ettt ettt b et b e sttt et ea e bt b e s b e e et et et eseebeebe s e b e 20
4.1 Realization of QUEries FOr dAtADASEc.ccveeeriieeieerieeree ettt 20

4.1.1 DAtADASES QUETY ...veeeeeierieeeeeiieeetesteete e st e e steseeebestesstessesseessesseessestesseessessesssesesseensessennes 21
4.1.2 The Table SPACE VIBWecueiiieticeiieeeete sttt ettt ettt et e st aesteebe e besbeesaebesrsentesbeennas 22
4.1.3 Get table rights by table QUETYcoueeuieieeeeeeeeee ettt 24
4.1.4 Get table references DY table QUETYouiiveecerieeeee ettt 25
4.2 CommMON-VIEW BaCK-ENGc.civiiiiiiiiiicicc s 27
4.3 FIONT-BN....oeiiiiiieieeet ettt 30
4.3.2 HTML Structure deSCrPLiON.......cc.eiuiiieiieitieiecte ettt te et et et a e s et besbeeaa e besreensesbeennas 31
4.3.3 Data fetch and DOM element manipulation With JQUEIYccccveeveveeeececeeeceeeeceeeee, 31
B4 RESUIT ...t 33
4.5 P0sSible FUtUre dEVEIOPMENTS.eiviieeeiesieeeeeee ettt ettt st e et e s reebesteesaeaesreensessennnas 34

5 CONCIUSTON <.ttt b e bbb b et e e st b e e b e ne e 35

=T o] [ToT o =T o] 1 Y USRS 36

Appendix 1 DBC.TableKind ColUMN VaIUESccirieiieeereetee e 37

Appendix 2 Back-end of the appliCatioN..........cceecveiieieriiceeereeee et 39

List of figures

Figure 1 Order Table for parallel process explanation [3]........cccccovevieviiiiiiiesiece e 12
Figure 2 Example of a Parsing Engine With AMP'S [3].......cocoiieiiiieiiecee e 13
Figure 3: explanation of factors that impact end-user data warehouse use [1]..........cccccvenenne. 15
Figure 4 QUEIY MOGETcviiieie ettt e st et e et esneenreenrennes 20
Figure 5 Get all the databases QUETY.cueiiiiieie e 22
Figure 6 Get table space by table QUENY ..o 24
Figure 7 Get rights by database and table name qUEry ... 25
Figure 8 Get references by table QUEIYooiiiiicii e 27
Figure 9 ASP .NET Client returning 8 VIBWcccooviiiiiiiiiiesiceeeeee e 28
Figure 10 Data model of the appliCation.............cooiiiiiiiiiie e 32

Figure 11 Opened table showing T1804_DEFAULT_ACCOUNT data with changed database
and table NAMES DY AULNOT ..o 33

1. Introduction

Metadata. The data about data. Any organization should take the maximum out of its
metadata since it can create new understandings or highlight previous problems. This is no
truer in data warehouses where there is a massive abundance of data. Data warehouses being
built mainly for storage and analysis can be the best platforms of metadata use.

“Metadata helps data warehouse end users to understand various types of information

resources available from a data warehouse environment.” [1].

Efficient and proper use of Teradata technical metadata has been a lacking issue at the
financial institution the author works at. Currently in the department in the financial
institution that the author works at, the process of acquiring qualitative and necessary
metadata has been a long and cumbersome process, with each key metric check requiring

long and complicated queries.

The dashboard could be used to determine if any table has run out of its allocated space and
needs additional resources or if the table is not optimized for Teradata. It can give additional
discoveries too if any object in the data warehouse has access to the table when it should not.
Since the process of getting this metadata will be improved significantly, the likeliness of
discoveries with such cases should increase dramatically if this tool is used.

The author was approached by a financial institution to create a dashboard showing key
metadata metrics of tables in the data warehouse, hence the aim of this thesis is to develop an
efficient and simple metadata common-view allowing rapid access to key metadata at all

times.

The most challenging process in this thesis was aggregating the necessary data from the
financial institutions Data Warehouse as creating the queries in order to have the correct and

necessary metadata including all the requirements given to the author.

1.1 Contribution

During this thesis, the author created a technical metadata viewing tool called Teradata
Common-View for a financial institution where the author is an employee. The user can use
this tool to check between all high priority databases and their respective child tables to see
the key views of table space, table rights and table references.

For this the author designed appropriate Teradata SQL queries to get all the relevant
information, developed a back-end layer to manipulate the key data and created a front-end

dashboard that significantly improves metadata accessibility.

1.3 Structure of the thesis

The thesis is composed of six chapters: introduction, theoretical background, analysis,
development, result and improvements and conclusion. In theoretical background an
overview of Teradata, data warehouses and metadata are given, explaining some key

information and necessity of metadata.

In the analysis the requirements and possible solutions of the tool are discussed and chosen

upon, reaching a best possible outcome.

For the development chapter the queries, back end and front-end layers of this thesis are
discussed, with heavy focus on the queries and how the key metadata was gotten. The back-
end chapter describes how the data manipulation from the queries is shown and explains
additionally with authors decisions in how to forward it to the front end. In front end the
overall structure, fetching and query manipulation is shown in how the user view was created

and how it works.

Finally, before concluding the thesis the overall result and limitations of this tool are
discussed, with additional improvements suggested. In the first appendix Teradata object

types can be viewed, with the following appendix containing the back-end code of this thesis.

The code of this thesis is available publicly on GitHub [2], however as this application is a

part of an existing tool in a financial institution a working version is not available.

10

2.Theoretical background

In this chapter there is a brief theoretical overview of Teradata, Data Warehouses and
Metadata. This chapter gives a necessary understanding of how Teradata works, how Data
warehouses operate and how Teradata is incorporated into Data Warehouses. Additionally, a
detailed overview and discussion is presented between Metadata and data warehouses to give

all the necessary background information to comprehend the thesis.

2.1 Teradata

A basic single computer works in two parts. It has a hard drive disk with data, and it has a
CPU (Central Processing Unit) with memory. Data on a disk does not do anything, when data
IS requested, the computer moves one block of data to memory, when it is in memory it is
processed by the CPU at lightning speed. As said by Tom Coffing The “Achilles heel” of this

entire process is that slow process of moving data from disk to memory. [3]

The solution to this is known as parallel processing, which Tom Coffing [3] sums up itina
dry joke:

“Two guys were having fun on a Saturday night when one said, “I’ve got to go and do my
laundry.” The other said, “What?!” The man explained that if he went to the laundromat mat
the next morning, he would be lucky to get one machine and be there all day. But, if he went
on Saturday night, he could get all the machines. Then, he could do all his wash and dry in
two hours.”

Teradata systems use Access Module Processors (AMP) to which all the rows in a table are
spread out to.

Let us look at the table in figure 1. There we have an order Table with 16 orders with their
respective attributes. The current Teradata system 16 AMP’s, which means that one row is
assigned to one AMP. However, if there were 32 rows then each AMP would have 2 rows.

Teradata always divides the rows so each AMP can process their portion of the data. [3]

11

This 15 an Order Table with 16 Orders
Order Number Customer Number Order Date Order_Total
101 12345 01/012013 1234753
102 54321 01/012013 8005.91
103 87654 01/012013 511147
104 45678 01/0172013 15231.62
105 12345 01/01/2013 1334751
106 54321 01/012013 13005.91
107 87654 01/0172013 7611.57
108 45678 01/01/2013 11671.92
109 12345 01/012013 8347.53
110 54321 01/01/2013 17005.91
111 87654 01/0172013 345147
112 45678 01/012013 19871.62
113 12345 01/012013 1244753
114 34321 01/01/2013 8055.66
115 87654 01/012013 365147
116 45678 01/012013 231.62

Figure 1 Order Table for parallel process explanation [3]

The Parsing Engine (PE) is the brains behind every Teradata system. It guides the AMP’s like
a conductor to an orchestra. Every time a user logs into Teradata they are directed to a
Parsing Engine. The Parsing Engine also handles every query the user executes so if an user
wants to execute a query the PE will first check if the user has appropriate security access to
the table and once authenticated, the Parsing Engine will take the query and create a plan for
the AMP’s to follow. Next the Parsing Engine will pass the plan over a BYNET network and
each AMP will perform their appointed tasks. Once the task is completed the Parsing engine
will receive the data from every AMP and return it to the user. Simply put the PE is the boss
and AMP are the workers in a Teradata system. This process is shown in the Figure 2 with
the same OrderTable. [2]

Teradata is especially useful in Data Warehouses. This is because Teradata has mastered two

extremes:
1. Teradata can analyse massive amounts of data due to their parallel processing abilities
2. Teradata can find a single record in under a second, no matter the data quantity

The latter capability is possible since every table in Teradata has column designated as
the Primary Index hence when a user wants to look up a single row of data only one AMP
is read.[2]

12

EACH AMP HOLDS A PORTION OF EVERY TABLE

Every AMP has the exact same tables, but each AMP holds different rows of those tables.

Figure 2 Example of a Parsing Engine with AMP's [3]

2.2 Data warehouse.

“One of the most important assets of any organization is its information “

-Ralph Kimball author of the 3" edition of the
Data Warehouse toolkit [4]

What is a Data warehouse?

According to Oracle, one of the biggest companies on the data warehouse market: “A data
warehouse is a type of data management system that is designed to enable and support
business intelligence (BI) activities, especially analytics. [5]

The entire purpose of a data warehouse is to perform queries and analysis that contain large
amounts of historical data. According to Oracle [5] usually the data within a data warehouse

is from a wide range of sources for example log files and transaction applications. Due to

13

data warehouse’s analytical possibilities, they are an excellent tool in giving valuable
business insight from their data and improve the decision-making progress. Once it has a
historical record the data is invaluable and Oracle quotes that a Data Warehouse can be an

organization’s “single source of truth”.

A typical data warehouse generally includes the following elements:

o A relational database for data storage and management

e Asolution for extraction, loading and transformation for data analysis

o Statistical analysis, reporting and other data mining capabilities

e Client analysis tools for visualization and a capability to present data for business users

e Some other more powerful analytics tools. [5]

2.3 Metadata

Metadata describes data, it has its own logical structure and generally it is hierarchical.
Different information resources can be used as nodes of metadata with various links between
these nodes and could be described as relationships between metadata. The changes of a
node’s attribute may lead to changes in relationships between nodes. Metadata can be divided
into application or core metadata in accordance with the system. Core metadata is used to
describe the core resources and application metadata is the integrated metadata over the

various information resources. [6]

As said by Ordonez the use of metadata over systems such as data warehouses cannot be
undervalued. With the regular checking and historical analysis of metadata a database
administrator can easily discover new links between different databases, tables and even
schemas. These links could be used to determine which databases are more used, which are
more critical and take appropriate steps in order to resolve them. Proper use of metadata
could significantly improve the efficiency of a database administrator team as the amount of
time and effort wasted in locating potential data could be reduced and the odds of finding

valuable information is increased. [7]

14

An example of this is mentioned by C.Ordonez [7] where he says in a scientific federated
database(explanation) containing a centralized metadata repository the user can find all
documents referring to the same table representing some data set. The user knows the
equations used by other researchers and can investigate who used tables with similar content
across databases, enabling better interaction. The user is also able to understand which tasks
are and are not commonly performed in the database system and increase understanding in

how external programs process such data sets.

However, metadata presentation and quality are incredibly important as they have moderate
influence on user attitudes towards the data. The attitude towards the metadata can be
changed by the users perception of data quality, the effectiveness of the business intelligence
tool used, and the quality of the training received. Collectively these factors have a rather
strong influence on user attitudes towards this data. The attitude is important as the perceived

usefulness and overall satisfaction increases the use of metadata. [1]

DW
Metadata Perceived

Quality \ / Uefulness \
H1: User Attitudes H2: H3: DW Usa
Toward Data
Metadata DW
Ue Perceived

Ease of Use

ions of:
Other User Percept

Factors * Daaa Quality
' Business Intlligence
* Tool Effectiveness

* Data Training Quality

Figure 3: explanation of factors that impact end-user data warehouse use [1]

In the figure above we have a graph showing the factors that impact data warehouse use. It
shows that Metadata quality and use, which accordingly impacts user attitudes toward data
have a significant impact on DW use, showing the importance of metadata in data

warehouses.

15

3 Analysis

This chapter discusses the problem at hand, provides the criteria for the solution, provides

possible solutions and specific details about the solution.
3.1 The issue at hand:

Teradata SQL assistant is one of the main ways of executing and creating queries in the
financial institution where the author of this paper works. Majority of its functionalities are
divided into 3 windows. The query window, where the user creates and executes the query
written in Teradata SQL. If the query is successful, an answer set window is shown with the
results of the query (if the query does not encounter errors) and lastly there is also a history
window that records your query executions whether it was successful or not. These windows,
although providing good functionality, have very limited capability in showing technical
metadata inside the databases and between the tables, therefore lacking an overall picture of
the situation. The only way to gather good quality metadata is to create one’s own SQL
sentences that are usually long, can be quite complicated and can take up significant amount
of time. Even creating and using these queries can be a long and cumbersome process,

requiring significant time and other resources.

3.2 Criteria for the solution

In order to create a solution, there must be agreed criteria in what the solution must contain

and provide:

1. It should be easy to use. The user should be able to easily access the solution and retrieve

data with little to no effort.

2. It must show relevant metadata. The data shown must be useful to various parties in order

to give the best understanding possible.

3. It must be secure. Security guidelines need to be kept in mind when creating the solution,

even though we cannot see any critical or sensitive data. Only users with the allowed

16

access should be able to access the metadata and every measure should be taken to
prevent use from nefarious third parties.

4. 1t needs to be simple. The access use and understanding should be as simple as possible,
since the entire purpose of this problem is that currently finding metadata is a long and
tedious process, so as a priority this point must be remembered.

5. It needs to be creatable. Even if the solution fulfils the four first criteria, it should be

excluded, if there are significant legal, ethical or technological issues.
3.3 Possible Solutions:

As is the case with all technological problems, the amount of solutions and possibilities are

endless. In this section each potential solution will be assessed and analysed.
1. An extension to the current Teradata SQL assistant.

In theory an extension to the current Teradata program could be created for the purpose of
obtaining the best metadata. If permission would be received from the Teradata company,

this would be most optimal as everything would be contained to 1 program.

The main issue with this solution is that obtaining permission or developing a platform is
very unlikely, due to this case being specific to the financial institution the author is

developing this for. The most that could be done is a communication to Teradata that this
could be a feature in their program. Hence this does not fulfil the 5" criteria meaning that

it is not possible to create this solution due to non-technological issues.
2. An independent program

An independent program could achieve the requirements for the problem if all the criteria
would be observed. The main issue with the program is that since due to high security
requirements, installing a program in the financial institution is a long and tedious
progress that requires approvals and permissions from various parties. Additionally, the
security criteria would be difficult to implement into this as the implementation of full
cybersecurity requirements would probably exceed the requirements for what is only a

bachelor’s thesis.

17

3. A dashboard of a website

A dashboard using the financial institutions built-in web-authentication would probably
be the simplest for a user to access, use and understand. This is due to in-built web-
authentication to the financial institutions work PC’s, making access significantly
simpler. Additionally, once a security check for a user is added, this should fulfil the
security criteria. Providing that this solution uses and shows relevant metadata as a
dashboard on 1 page, all other criteria should be accounted for.

3.4 The Solution

This chapter contains the architecture and the components of the solution created. Different

components and requirements have been highlighted that are vital to the system.

After the analysis of the 3 possible solutions, the decision was made to create the Teradata
Common view as a dashboard. Additional incentive was given to the dashboard option when,
the author was approached for it to be created as an extension to a new testing tool that was

being developed for the financial institutions Data Warehouse.

3.4 Technical decisions

First as a disclaimer the author must mention that due to the dashboard being created as a part
of an extension of a testing tool that was already in development, the author had to accept a

few limitations to the back-end technologies used.

First since this thesis focuses heavily on Teradata the SQL language used was Teradata
SQL. It is the main communication tool when connecting with Data Warehouses that use
Teradata as its Relational Database Management System. [8]

18

The application uses ASP.NET MVC for its back end. It uses a Model-View-Controller
(MVC) principle and it provides the creation of clean model classes that are easily bindable
to a database. ASP.NET also provides support for many database engines. It must be
mentioned that the author suggested creating the application in ASP.NET Core which is a
new version of ASP.NET, but due to the testing tool development issues this was not

possible. [9]

For front-end the main structural languages used were HTML, CSS with Bootstrap 4 for
easily being able to create and design websites and web-applications.

Majority of the front-end was written with jQuery. jQuery is a fast, small and feature-rich
JavaScript library and it mainly used as the principal front-end programming language,

performing all the fetch requests and DOM manipulation necessary. [10]

19

4. Development

This chapter describes the development process of the Teradata Common view. It will cover
the topics of the appropriate queries to the Enterprise Data Warehouse (EDW), realizing the
back end of the web application and the front-end dashboard. The development process is
provided in the chronological sequence of development.

4.1 Realization of Queries for database

In total five queries were required to gather all the necessary data from the financial
institutions Enterprise Data Warehouse (EDW). This sub-chapter will go in detail for each
query to explain its logic and reasoning. The basic queries for these were created in
association with the financial institutions developers and database administrators that were
later modified and improved upon by the author. The chapter goes into detail for four out of

five of these queries as these are critical for the dashboard.

DBC.DatabasesV l I DBC.TablesV }7

Get Database List

l

———» Gettargettable *———

DBC TableSizeV

‘DEIC.AIIROIeRightsV‘ ‘ DBC.AlIRightsV ‘ J
Gettarget table Gettarget table Gettarget table
B S >
Rights References Space
A
‘DBC.AIIROIeRightSV‘ ‘ DBC.TVM ‘ ‘ DBC.dbase H DBC RI_Distinct_Childreny
‘ DBC.TextTbl ‘
Figure 4 Query model

20

4.1.1 Databases query

This is the backbone query for the entire development. It returns to us all database names and

the number of tables associated with each database.

The query consists of two following parts:

1. The first SELECT of the INNER JOIN goes into DBC which is the dictionary
database for Teradata containing all data about objects within the data warehouse.
Additionally, there are two where clauses present:

I. Firstis a WHERE clause which eliminates all databases with the name DBC
as DBC is the parent database from which we are querying the databases
initially. This query also includes a count function that is aggregated through
DataBaseName. This provides us with all the database names with their table
counts. Due to the nature of Teradata this query returns only databases which
have tables within them, since there is no necessity to show metadata info of
databases which do not have any tables in them.

ii. The second is to check that the TableKind or the type of the object is a table

not a view or some other type.

This sub-query returns all databases within DBC with their table counts.

2. The second SELECT of the INNER JOIN goes as well into DBC, but contains two
WHERE statements:

i. First one checks that the OwnerName or the creator of the table is the main
administrator account. As a disclaimer | would like to add that
systemdatabaseadmin is not the actual database administrators account name.
This has been changed by the author due to security requirements of the
financial institution. The importance of the WHERE clause is to not show any

redundant tables which have been created by other users.

21

ii. The second WHERE statements follows the case with the first part of the
database query this sub-query also includes the WHERE clause not returning

the databases with the DBC parent database.

This sub-query returns all the databases with systemdatabaseadmin owner name or creator

name.

The final part is INNER JOIN’ing the 2 parts of the queries together and showing the
database names with their table count.

SELECT ol.DataBaseNams, Tables

FROM {
SELECT DataBaseName, COUNT(*) AS Tables
FROM DBC.TablesV
WHEERE TableKind = 'T

AND
DataBaseNams <> 'DEC
GROUP BY DataBascHame) as ol
INNEER JOIN

(
SELECT CwnerMName, DatabaseName,
DEKind AS DBE1l, DBEind
FROM dbc.DatakbasesV
WHERE DataBaseName<> "DEC
AND OwnerName = "systemdatabaseadmin'y AS o2

on ol.DataBasceName = o2.DataBaseName !

Figure 5 Get all the databases query.
4.1.2 The Table Space view

The subsequent query uses the database name and its subsequent table. The query is required
to get three key principal parameters. CurrentPerm, PeakPerm and SkewFactor.
CurrentPerm gets the current amount of space the table occupies. PeakPerm gets the total
allocated space for the table or the maximum amount it can occupy. SkewFactor gets the
skew factor for the current table. In chaper 2.1 it is explained that Teradata divides tables into
Access Module Processors or AMP’s. Skew Factor shows the disparity of occupied space
within AMP’s. This means that when the skew factor is large, some AMP’s have a significant
amount of rows within them, while other AMP’s have very few. If the skew factor is small,

the opposite is true as the difference in row amounts between AMP’s is small.

22

The query does not have any sub-queries, however, it contains large amounts of various

statements.

First the DBC database containing table sizes is locked in order to calculate the required

parameters.

The SELECT statement uses TITLE to assign the table name from DBC.TableSizeV as the

table name.

Then we have a CASE statement with series of letters being overwritten when the case is
true. Essentially the TableKind or object type will be changed to optimize the query.

Each of the TableKind’s cases that are mentioned are replaced. Each value is referred to in
Appendix 1. This is done to optimize the query and simplify the results. The TableKind
value is then renamed as type.

Next the SUM method is used to show CurrentPerm and PeakPerm. Following this the

SkewFactor is calculated with the following formula:

100 — (Average value of (CurrentPerm)

Maximum value of (CurrentPerm) * 100

In the sql statement NULLIFZERO statement is added to prevent any errors caused by
dividing with 0.

Afterwards there are four WHERE statements that are fulfilled. These are:

1. Equalizing the tables from DBC.TableSizeV the table size database with DBC.TablesV
database which is the database containing all tables in the Data Warehouse.

2. Repeating the process of the first where statement, however with database names instead
of table names.

3. The database name parameter is added here

4. The table name parameter is added here

Finally, the table is grouped and ordered by various additional columns that are aggregated in

order to return the correct results.

23

Lock Dkc.TakleSizeV for Access

SELECT (Title },5.TableName AS Name,
CASE TakleKind
WHEH 'C' THEN 'T
WHEH 'E' THEN "F
WHEH 'L' THEN 'F
WHEH '5' THEN 'F
WHEH 'E' THEN 'F
WHEH 'Z' THEN 'F
ELSE TakleEind
END AS "Type",S5UM({CurrentPerm) AS CurrentPerm, SUM(PeakPerm) AS PeakPerm,
{ - (AVG(CurrentPerm) / NULLIFZERO (MAX (CurrentPerm)) #* })y AS SkewFactor,
(Title } ;CreatorName , CommentString
FROM Dbc.TakleSizeV 5, dbc.TaklesV T

WHEEE 5.TakleName = T.TakleName
AND 5.DataBaseMame = T.DataBascName
AND S5.DataBaseMame = 'database
AND 5.TableName = "takble

GROUP BY 2,7,7,
ORDER BY 2,2

Figure 6 Get table space by table query

4.1.3 Get table rights by table query

The query described in this paragraph returns rows of rights granted for the queried table.
Although it returns Username, ColumnName, AccessRight, GrantAuthority, GrantorName
and AllnessFlag. Only three of the results are important enough metadata that should be

presented. These are:

1. UserName the column for the user the access right is granted.
2. AccessRight the type of access right granted to the user.
3. GrantorName the user who granted the right to the user.

Initially the other columns were not added to the result as the values were entirely the same.
However, the author decided not to remove the other column results since these might be

necessary in a later development of the Teradata common view.

The query is built using the WITH and SELECT statements which include two parameters
DBName and Th1Name, which are the database name and table name respectively that is
being queried for. It is divided into two sub-queries connected with a UNION statement.

24

The first sub-query gets all the column names mentioned in the beginning of this query
description. Additionally, there are two WHERE statements which include the database name

and table name parameters.

The second sub-query queries from DBC.AlIRoleRightsV is the database containing all rights
to different views, tables and other objects. Likewise, for the first sub-query it contains the
two parameters for the database and table name. The sub-queries result is also ordered by the

first three columns of the result.

Finally, the two queries are UNION’ed and the result is returned.

|WITH Parms (DbName,ThlHame) AS |
: SELECT database', 'table')
SELECT UserName,ColumnMName ,AccessRight ,Grantfuthority,GrantorHame,
AllnessFlag
FROM dbc.A11RightsV, Parms
WHERE DatakaseName=Parms . DkNames
AND TakleMName=Parms.TklHame

UNIOH
SELECT ERoleName,ColumnMName ,AccessRight,''R',GrantorName,
FROM dbc.AllRoleRightsV, Parms

WHERE DatabaseName=Parms . DbName
AND TabkleName=Parms.ThlHame
ORDER BY _,Z2,

Figure 7 Get rights by database and table name query

4.1.4 Get table references by table query

In order to get all the references associated with the queried table, the query below was
created. This query returns 3 columns with multiple rows if they exist. The three parameters

returned are:

1. DatabaseName — The name of the database where the queried table is referenced at.
2. TVMName — The name of the object where the queried table is referenced at.

3. Type — the type of object which references the queried table.

25

The query uses again the WITH statement to pass in the necessary database and table

parameters.

The query is divided into 4 sub-queries.

1.

The first sub-query gets the database name, the table/view/object name and the type from
dbc.TVM which is where all tables, views or other objects reside and from dbc.dbase
which defines each database and user. The sub-query also contains a WHERE statement
which equals both database ID’s. It then creates CreateText field which creates from the
parameters in the form database.table to get the appropriate table.
The second sub-query gets as well gets the database name, the table/view/object name
and the type from three database tables:
i. dbc.TextThl - which is the system table containing overflow DDL (data definition
language) text,.
ii. dbc.dbase - which is the system table that defines each database and user
iii. dbc.TVM — which is where all the objects in the database

There are a few WHERE statements in this subquery, which are:

3.

4.

a. First, TextType from dbc.TextThl equaling C meaning text was created not requested

b. Second, a TextString from dbc.TextTbl is looked for containing the queried for
database and its table in the form DataBaseName.TableName.

c. Third, the database ID’s from dbc.dbase and dbc. TVM are compared to in order to get
the same result between them

d. Finally, the Text ID’st from both dbc.TextTbl and dbc. TVM are equaled.

The third sub-query queries the child database and tables from

DBC.RI_Distinct_Children which is a view that provides information about tables in

child-parent order without duplicates caused from multiple foreign keys. This query

contains two WHERE statements which equal to the queried for database name and its

respective table name.

The final sub-query queries into dbc. TVM and dbc.dbase to make sure that the database

ID’s, queried for database name and object name are the same.

26

The result is achieved by UNION’ing the first and the second sub-query with the result of the
third and fourth sub-query’s MINUS or every row that existed in the third sub-query, but not
in the fourth. It is then ordered by DatabaseName and TVMName alphabetically.

WITH P (DbMName,ThlName) AS
SELECT 'database', "table")
SELECT DatabaseName, TVMHName,TableKind AS "Type"
FROM dbec.TVHM T, dbc.dbase D, P
WHERE [L.Datakaseld = T.Datakbaseld
AND CreateText LIEE ':"' || P.DbMame || ""."" || P.TklName || '"%' (HOT C5)
OHIOH
SELECT DatabaseName, TVMHName,TableKind AS "Type"
FROM dbc.TextTkl X, dbc.dbase D, dbc.TVM T, P
WHERE X.TextType = "C°

AND X .TextString LIEE ':%"" || P.DbMName || '"."" || P.TkElHame || ""%' {(HNOT C5)
AND ¥.Datakaseld = D.Databaseld
AND X.TextId = T.TVMId

THION

SELECT ChildDB,ChildTakle,'T'

FROM dbc.RI_Distinct Children,P

WHERE ParentDB = P.DbName

AND ParentTakle = P.TkbklName

MINUS
SELECT DatabaseName , TVMName , TableKind
FROM dbc. TVM T, dbc.dbase D, P

WHERE [L.Datakaseld = T.Datakbaseld
AND DatabaselNams = P.Dblame

AND TVMName = P.TklName
ORDER BY 1,

Figure 8 Get references by table query

4.2 Common-view Back-end

This chapter details the details of the back-end development process of this thesis.

The back end is created in ASP .NET MVC which is an open-source software from
Microsoft used for web development. It combines features of MVVC(Model-View-Controller)

in order to promote agile development [7]

The back end is divided into four models, one view and two controllers.

27

The four models used are:

TDDatabase — The following model contains the database name, a list of tables the database

contains and an IsOpen boolean which is explained in chapter 4.3.

1. TDTable - This model has its parent database name, the table name, it is column count
and an IsOpen Boolean which is used in the front-end layer and explained more in detail

in chapter 4.3.

2. TDRights — the following model contains the Username, RightType and GrantorName

arguments that are gotten from the get rights query by table in chapter 4.2.4.

3. TDReference — the model here contains DataBaseName, TVMName and Type arguments
gotten from the get references query by table in chapter 4.2.5

The view will be described in the Front-End Chapter 4.3

This thesis contains two controllers. First is a basic ASP .NET controller in the client

returning a View() or the index page referenced to.

Client.Controllers
TDCommonViewController : Controller

ActionResult Index()

return View();

Figure 9 ASP .NET Client returning a View

The second controller, the TDCommonViewApiController is an API controller which

manages all the queries to the data warehouse and returns the result. The goal of this API

28

controller is to perform the necessary GET requests in order to provide all the data from the

queries.
It includes a method for each query hence there are five methods in total.

Throughout the TDCommonViewApiController the methods use one built-in classes called
DbUTtility and two classes provided by Teradata called DbCommand and DbConnection.
DbConnection creates the connection to the data warehouse which is saved by DbUTtility.
Then the query is prepared using DbCommand and the DButiltity.GenerateSQL method and
finally is its executed using the ExecuteReader method and saved in the variable reader.

GetDatabases() — this method executes the query in Chapter 4.2.1 and creates and returns an
TDdatabase list named databases. Initially the query is executed using the three database

connection classes and saved in the variable reader.

Then an empty list called databases is initialised and while loop is created that runs if reader
has rows to read. For each new row, a new TDDatabase object is created with only the Name
field being filled with the query result since arguments 1sOpen and Tables are used in the
front-end part of the development. IsOpen is used to check if the database needs to have its
tables rendered and Tables are the databases child tables.

GetTables() — The following method executes a query to get tables with the database
parameter using the DbUTtility class and returns a list containing TDTable objects. Then a list
called tables of TDTable objects is initialized. Then a while loop runs if there are available
tables and TDtable objects are added to tables with the table name and database added to the
class. Argument ColumnCount is also set, however this is not used in the scope of this thesis

but kept in case of need for future developments.

GetTableSpace() — Here with two parameters database and table the table space query in
Chapter 4.2.3 is executed. The method returns a list of three elements containing the
necessary results. However, the difference with the query being executed is that the author
uses ((char)34) to insert the double quote (“) symbol without creating errors. It again uses the
DbUTtility class to execute the query and the three datapoints are added to tableSpace list

which is then returned.

29

GetRights() — This method uses the database and table parameters to execute the table rights
query in Chapter 4.2.4. The method returns a list of TDRights objects. After being executed

using the DbUtility class the tableRights list is created to which each table right row is added
as an TDRights object containing the username, access right and the grantor name of the

target table.

GetReferences() — The get references method gets all the references of the necessary table
using the query in Chapter 4.2.5. It uses the database and table parameters to get a list of
TDReference objects. The query was required significant use of the ((char)34) method, which
was necessary for execution. Using DbUTtility the tableReferences list was initialized and a
while loop containing rows of references added TDReference objects if they exist. The

tableReferences list is then returned.

4.3 Front-end

This sub-chapter describes the development and creation of the front-end.

4.3.1 Technologies used

The main technologies used were Jquery, Html, CSS and Bootstrap 4. Jquery is a
Javascript library that follows the moto “Write less, do more”. It is a fast, small and a feature-
rich JavaScript library. It includes html document traversal, manipulation, event handling,
animation, Ajax and has an easy-to-use API that works across multiple browsers [10]

HTML (HyperText Markup Language) is the basic block in the Web. Defines meaning and

web content and is used in addition with CSS and JavaScript to create websites. [11]

CSS (Cascading Style Sheets) is a stylesheet language which describes the presentation a
document in HTML or XML. It describes how elements are rendered on screen, paper or in
other media [12]

30

Bootstrap is a CSS framework that allows to quickly design and customize responsive web
sites. It is the most popular front-end open source toolkit with powerful JavaScript plugins
[13]

4.3.2 HTML structure description

The dashboard of this thesis is divided into half vertically. The left part contains all the
databases and if clicked on its child tables. The Databases and their child tables have been

made scrollable with CSS in order to increase ease of use.

The right side of the page is reserved for the Tablespace, Table Rights and Table References
views. The three views are also created as tables with their respective column names and data

(when data is fetched with jQuery).

4.3.3 Data fetch and DOM element manipulation with jQuery

The page is first initialized with all its html elements including a pre-built structure for the
necessary views which are hidden. A fetch request is first sent out to get all the appropriate
databases from the data warehouse which are then rendered in an unordered list. The left side

of the page initially contains a message telling the user to click on a table to see the data.

The databases are rendered clickable so if clicked the child tables are fetched and then

rendered as a sub-unordered list underneath the parent database.

When the necessary table has been selected three fetch requests to get the Table Space, Table
Rights and Table References have been sent to each of these are rendered in a table form.
Since Table Rights and references contain multiple rows of data the data fields have been
made scrollable using CSS. If the table is clicked again the data will disappear with a

message showing that to get data click a table in a database.

31

The dashboard has been built in a way that refreshes the results every time its closed and

opened, to provide up-to-date metadata. The data model of the entire process can be found in

Figure 10
Database layer
Ri?;;anbclss Get Table Rights Get Table Space Get Tables Get Databases
query Query query query query
E
Back-end Layer ‘
Ri?;r-;anbu:l:s Get Table Rights Get Table Space Get Tables Get Databases
by database
A A A Y

Front-end layer Table
e under a e Database —

- - .

Vi ™ database ~, dick - Y
/ Gettable view ! A ! ‘

' '\ js clicked [
| containingall oo Gettablesof . il Database fetch)
\ metadata / | database |

-

Figure 10 Data model of the application

32

4.4 Result

The result shown is a redacted version of the final metadata common view. All the database
names and table names were changed as requested by the financial institution. The dashboard
can be summed up in three simple pictures. Initially when the page is opened the user is
greeted with the initial view asking for a table to be opened to see additional data as is shown
in Figure 11. In the following figure it can be noted that the T1804 DEFAULT_ACCOUNT
table still has some space but can run out soon if populated with too much data. In the rights
table access rights from the Teradata dictionary database DBC can be seen. With the few
references this table has it is not too in demand, but still any changes must be considered with

the referenced tables/views.

TD Common View

e QISLT
» EDWDBA Tab|espace

o TABLE_SECURITY_GROUP
Peak Perm
o DELIBERATE RULE
< U LAl 0.5 LS 308887552 310067200 10,3262937595129
o T1924_CAMPAIGN_TYPE - B 1006 e ‘

o Prep_TEMP_Records

o T1804_DEFAULT_ACCOUNT Table Rights
o T1869_PARTY_GROUP_METHOD

- Tonran RepOMIG il m e
o T05432_REPORTING_HIER

o T4200_CELL_PARTY_CHANGE
o T0543_CAMPAIGN_METRICAL
o T0202_PRODUCTION_SERVICES

© T2354_PARTY_LIM_ACC

o T1186_ASSETS_RELATION

© T1005_WEB_SITE_SELECTION

o T7891_PLACE ACTIVITY_FEATURE

o T4328 INSURANCE_ATTRIBUTES

© T9999_INVOICE_LINES_PART

© T2358 CREDIT_RATING_PLACEHOLDER

o T23543_ACCOUNT_ACCT_REL Tab|e References

o T2310_GEOGRAPH_RELATIONSHIP

Tt ACCOUNT TR Table/View name
o T7543 ACCOUNT TYPE_METR
= T LNEAITRATE [P (B CLANE CLANE_DEFAULT_ACC_DOM
© DOM_CRED_CONTACT_SIDE
o 2 C - - -

ENEHE [OIR ORI RTE T CLRANE CLRANE_DEFAULT_ACC_DOM
o T5437_ACC_INSURE_MEET
o T6949 GROUP_SUBGROUP_REFINE HBGAE CLANE DEFAULT ACC DOM v
o T697071_CURRENCY_RULES_TYPES

o T12345_PARTY_MODEL_RUN

Figure 11 Opened table showing T1804 DEFAULT_ACCOUNT data with changed database

and table names by author.

33

This chapter discusses the possible and necessary future developments together with a

conclusion.

4.5 Possible future developments

The primary future development on this dashboard is to add more metadata. Other necessary
metadata information could be shown, for example: total space in the database or ordered
tables according to data usage or skew factor. Additionally, a historical view could be created

to show the changes over a period.

Additional clarity could be added as currently the final view does not show which table data
is rendered and overall design could be improved.

Finally, an automatic refresh of the table data could be added to make the user experience

more optimal.

34

5 Conclusion

The goal of this thesis was to create a Teradata metadata visualisation tool that allows users
to access key table metadata with ease. This was done to improve metadata access in the
financial institution’s department where the author works at. This tool had to be easy to use

and show relevant information rapidly.

The possible solutions for this were a Teradata SQL program extension, an independent
program or a web-application. The author chose to create a web-application as the author was
offered to create this dashboard as an extension of a testing tool that was in development. The
tool ended up being called Teradata Common View, it was built as an ASP .NET MVC web-
application in association with Teradata SQL queries.

The main problems of this thesis were in designing the queries, particularly creating a query
for getting the initial key databases of the data warehouse. More precisely the part which
filters out the databases which have no tables in them. This required clever use of the
COUNT statement with additional appropriate thesis. Additionally, the entire get table

references query was rather challenging to design in order to get correct results.

Teradata Common View allows users to access used table space, allocated table space and the
skew factor with ease. It gives an overview of all the tables given rights to the target table and
shows all the views and tables in which a target table was referenced in. The tool is easy to
use and gets relevant information rapidly. Considering that beforehand this info had to be
queried by the long, challenging and cumbersome queries, the Teradata Common View offers

a much better solution to this issue.

Possible future improvements for Teradata Common View is first, to add more relevant
metadata. It is important that these additional metrics are carefully chosen in order not to
overpopulate the dashboard. Additionally, a historical view could be created to recognize

historical patterns and finally additional clarity to the dashboard could be added.

35

Bibliography

[1]

(2]

3]

[4]

(5]

6]

[7]

(8]

[9]

A. Taylor, N. Foshay and A. Mukherjee, “DOES DATA WAREHOUSE END-USER METADATA ADD
VALUE?,” in Communications of the ACM, 2007.

N. Tirs, “Teradata Common view code,” [Online]. Available:
https://github.com/nillu21/TeradataCommonView.

T. Coffing and Nolander.L, Teradata for executives, Coffing Publishing, 2013.

Kimball.R and M. Ross, The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modelling, 3rd edition, Wiley, 2013.

“What is a Data Warehouse?,” [Online]. Available: https://www.oracle.com/database/what-is-
a-data-warehouse/. [Accessed 11 May 2020].

W. Yanzhang, F. Tianwei, Y. Xin and W. Chunyou, “Metadata Management Model for
Emergency Information Resources,” in International Joint Conference on Web Intelligence and
Intelligent Agent Technology, 2009.

C. Ordonez, Z. Chen and J. Garcia, “Metadata Management for Federated Databases,” in
Proceeding of the ACM first workshop on Cyberinfrastructure: information management in
eScience, New York, 2007.

“TERADATA Database SQL documentation,” Teradata, [Online]. Available:
https://docs.teradata.com/reader/1DcoER_KpnGTfgPinRAFUwW/URMgPkXpBvFL~jOImMLmkQ.
[Accessed 9 May 2020].

“ASP .NET MVC Pattern: .NET,” Microsoft, [Online]. Available:
https://dotnet.microsoft.com/apps/aspnet/mvc. [Accessed 12 May 2020].

[10] “What is jQery?,” IS Foundation, [Online]. Available: https://jquery.com/. [Accessed 9 May

2020].

[11] “HTML: Hypertext Markup Language,” Mozilla, [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTML. [Accessed 13 May 2020].

[12] “What is CSS?,” Mozilla, [Online]. Available: https://developer.mozilla.org/en-

US/docs/Learn/CSS/First_steps/What_is_CSS. [Accessed 14 May 2020].

[13] “Getting started with Bootstrap,” Boostrap team, [Online]. Available:

https://getbootstrap.com/docs/4.5/getting-started/introduction/. [Accessed 14 May 2020].

36

Appendix 1 DBC.TableKind Column values

TableKind Column values?:

Value Description

A Aggregate function

B Combined aggregate and ordered analytical
function

C Table operator parser contract function

D JAR

E External stored procedure

F Standard function

G Trigger

H Instance or constructor method

I Join index

J Journal

K Foreign server object.
Note: K is supported on the Teradata-to-
Hadoop connector only

L User-defined table operator

1 https://docs.teradata.com/reader/0iS9ixs2yplQvjTUOJfgoA/MhLWBWDX7EKjxwM83TD5bA

Macro

Hash index

Table with no primary index and no
partitioning

Stored Procedure

Queue table

Table function

Ordered analytical function

Table with a primary index or primary AMP
index, partitioning, or both. Or a partitioned
table with NoPI

User-defined type

View

Authorization

GLOP set

UIF

38

Appendix 2 Back-end of the application

t GetDatabases()

LECT o

= DbUtility.Connect()

databases.Add(db);

Ok(databas

39

query

conn = DbUtility.Connect())
sql = DbUtility.GenerateSQL(conn, quer

reader = sql.ExecuteReader())

Name = reader.GetString(reader.GetOrdinal("Tab
ColumnCount =

tables.Add(table);

Ok(table

40

1t GetTableSpace(database,

conn = DbUtility.Connect())
gl = DbUtility.GenerateSQL(conn, qu
sql.ExecuteReader())

> tableSp *();
e (reader.Read())

tableSpace.Add(reader.GetString(reader.GetOrdinal(
tableSpace.Add(reader.GetString(reader.GetOrdinal(
tableSpace.Add(reader.GetString(reader.GetOrdina

Ok(tableSpace);

41

conn
o =ql = DbUtility.GenerateSQL(conn, que
reader = sql.E:(ecu'teREaﬂer()_]l

.GetString(reader.GetOrdinal("
ing{reader.GetOrdinal("T

42

