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Abstract

Writing code without introducing vulnerabilities is a difficult task. To help software
developers catch issues, different approaches have been proposed, including manual
reviews, static analysis, dynamic analysis and deep learning techniques. Nonetheless,
the number of vulnerabilities reported yearly shows an upward trend. There could be
many reasons, like lack of awareness or the best practices and tools not being effective
enough. To help combat some issues with traditional vulnerability detection tools, we
propose using large language models (LLMs) to assist in finding vulnerabilities in source
code. LL.Ms have shown a remarkable ability to understand and generate code, underlining
their potential in code-related tasks. The aim is to test multiple state-of-the-art LLMs and
identify the best prompting strategies, allowing extraction of the best value from the LLMs.
We provide an overview of the strengths and weaknesses of the LLM-based approach and
compare the results to those of traditional static analysis tools. We find LLMs can pinpoint
many more issues than traditional static analysis tools, outperforming the traditional tools
in terms of recall and F1 scores. The results should benefit software developers and security

analysts who are responsible for making sure the code does not contain vulnerabilities.

The thesis is written in English and is 102 pages long, including 8 chapters, 1 figure and
16 tables.



Annotatsioon
Suurte keelemudelite kasutamine turvanorkuste tuvastamiseks

lihtekoodis: pohjalik vordlusuuring

Turvandrkusteta koodi kirjutamine on keeruline iilesanne. Vilja on todtatud mitmeid
tooriistu ning metoodikaid, et aidata tarkvaraarendajatel leida turvandrkused varajastes
arendustsiikli etappides. Nditeks manuaalsed koodi ldabivaatused, koodi staatiline analiiiis,
koodi diinaamiline analiiiis ja erinevad siivadppe meetodid. Sellegipoolest on iga-aastaselt
raporteeritud turvandrkuste arv kasvutrendis. POhjuseid voib selleks olla mitmeid, néiteks
teadmatus voi parimate tavade ja tooriistade ebaefektiivsus. Me teeme ettepaneku suurte
keelemudelite kasutamiseks turvandrkuste tuvastamise eesmérgil. Suured keelemudelid
on ndidanud mérkimisvéirset voimekust koodi mdistmise ja genereerimise iilesannetes,
rohutades nende potentsiaali kdiksugu koodiga seotud iilesannetes. Eesmirk on testida
mitmeid keelemudeleid ja tuvastada parimad péringustrateegiad, mis vdoimaldaksid keele-
mudeleid voimalikult thusalt kasutada. Me avaldame iilevaate keelemudelite tugevustest
ning norkustest vordluses traditsiooniliste staatiliste koodianaliisaatoritega. Keelemudelid
on vdimelised saavutama paremaid saagise ning F1 tulemusi kui traditsioonilised t&oriistad.
Me leiame, et keelemudelid suudavad tuvastada rohkem erinevaid probleeme kui tradit-
sioonilised staatilise koodi kontrollimise tooriistad. Tulemused peaksid olema kasulikud
tarkvaraarendajatele ja turvaanaliiiitikutele, kelle vastutada on see, et kood ei sisaldaks

haavatavusi.

Loputdo on kirjutatud inglise keeles ning sisaldab teksti 102 lehekiiljel, 8 peatiikki, 1
joonist, 16 tabelit.
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1. Introduction

As software gets integrated into many business processes, a lot of new software code is
written every day. The use of high-level languages and frameworks takes a lot of responsi-
bility off the developer’s shoulders. Microsoft estimates about 70% of the vulnerabilities
in their systems are due to memory safety [1]. Higher-level languages add abstraction
and take care of memory management behind the scenes, improving the security posture.
However, the added abstraction from high-level programming languages does not address

all vulnerabilities. These problems need to be discovered by some other means.

The records hosted in the Common Vulnerabilities and Exposures (CVE) database show
a trend of incline of reported vulnerabilities over the years [2]. In the past five years
alone, 109,864 CVEs have been reported [2]. This means, on average, around 21,973
vulnerabilities per year and around 60 vulnerabilities in a day. Even though it is positive
that the vulnerabilities are found, the problem is they are found too late — after being

released.

To avoid releasing vulnerable software, good processes and tools must be used in the
software development lifecycle. Many efforts have been made in this field, including
the automation of some software development and deployment processes. Automatic
vulnerability detection can be integrated into both the development tooling and code review
processes. Most tools work as black-boxes, meaning there is no need for the user to
understand how the tool works, the user just provides the code and receives the results.
However, the techniques used to detect vulnerabilities or bad coding practices can be
ineffective [3, 4].

The large language models (LLMs) have become capable at handling novel tasks based on
minimal prompts, without requiring extensive fine-tuning as was common before 2020 [5].
Prompts allow for manipulation of the LLMs in a way that can make the models return
expected output without additional task-specific training [6]. While multiple studies have
tested the vulnerability detection capabilities, they do not build on the results of previous
studies and do not tackle the benchmarking of prompting techniques systematically [7, 8,
9, 10]. The advantage of LLLMs over traditional analysis tools is their flexibility: LLMs
can be asked follow-up questions or asked to help fix the problematic code. The code
generation capabilities of LLMs have been already recognised and a commercial version

called Codex has been developed for code generation purposes [11].
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We evaluate the performance of state-of-the-art off-the-shelf large language models (LLMs)
as black-box static code analysers. The aim is to comprehensively benchmark different
prompting approaches across multiple LLMs and to provide practical suggestions on using

LLM:s for vulnerability detection. The research questions are:

s MRQ: How would the use of off-the-shelf LLMs be able to contribute to vulnerability
detection in source code?

s RQ1: What prompting approach is most successful with the LLMs to detect vulnera-
bilities?

m RQ2: What advantages and disadvantages do LLMs have over existing static analysis

tools?

We use a synthetic dataset called Juliet Java 1.3 to evaluate existing tools against LLMs
[12]. Due to the high costs of running LLLMs, we compile a subset for running the
experiments. The dataset is pre-processed by refactoring everything that could provide
textual clues about the vulnerability type and presence. Then a strategy for automatically
classifying the LLM outputs is established. Different prompting approaches are tried and
the results are reported. For comparison, we use two state-of-the-art static code analysis
tools, CodeQL [13] and SpotBugs [14]. SpotBugs has shown good results in comparison
to other traditional static analysis tools on the Juliet dataset [15, 16] and CodeQL has been
previously utilised as a comparison point for testing LLLM capabilities [7].

The main contribution includes testing state-of-the-art prompting techniques on our dataset.
The dataset is curated to be small enough to allow experimentation without very high costs
while still containing significantly more CWE categories than most previous studies. For
the initial experiments, the GPT-4 turbo model from OpenAl is utilised, as it has a relatively
large context window, is relatively cheap to use and is beloved by the community [17].
Then we run the best-performing strategies on two more models, GPT-4 and Claude 3 Opus,
which people have voted to be among the best ones available at the time of writing [17].
We include prompting strategies not previously considered for vulnerability detection tasks,
like the tree of thoughts (ToT) [18] and self-consistency [19]. We propose novel prompts
containing detailed instructions that outperform other previously proposed strategies in
most settings. The results are compared with those of two traditional static analysis tools
to better display the capabilities of LLMs. We discuss the strengths and weaknesses of
LLM-based vulnerability detection in comparison to traditional static analysis tools. To the
best of our knowledge, we are the first to include the Claude 3 Opus model from Anthropic
in a vulnerability detection benchmark study. What is more, we provide detailed costs
per prompting strategy and discuss the cost as a factor in choosing LL.Ms and prompting

strategies. Cost is a factor that has not been explored in detail by prior studies in the same
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domain [7, 8, 9, 10].

The first major part of the thesis covers the background and the related work. Then a
detailed description of the contribution is provided, containing a detailed description of
the dataset, CWE matching strategy and the results. Lastly, the results, key findings and

limitations are discussed.
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2. Background

Most of us interact with software every day, as many important services, both private and
public, rely on software solutions. Software vulnerabilities can pose significant risks if left
undetected. Any vulnerable code which gets deployed has the potential to be exploited
by a threat actor. Therefore, the vulnerabilities should be found in the early stages of
the software development lifecycle and most importantly before the vulnerable code gets
deployed into a production environment. This way the impact of the code flaws is minimal,
and the fixes are easy and quick to implement. The difficulty of writing code without
any flaws, which could introduce vulnerabilities, has been recognised and many different
approaches to help developers find issues in their code have been developed. Not only that,

but many of these tools have also been successfully used in the industry for years.

2.1 Manual approaches to improving code security

Manual code review and testing are a part of everyday activities for most software develop-
ers. This helps to find issues in the code before the code gets released to the production
environment. Finding issues in the early stages of the software development lifecycle
means the cost of fixing the issues is low. The earlier issues are found, the faster they can

be fixed and the less the users of the product are affected.

2.1.1 Manual security code review

Manual security code review is a form of static code analysis, where humans check code
for security vulnerabilities. This is very time-consuming and expects the reviewer to know
what vulnerabilities to look for [20]. The code reviewers are usually expected to pay
attention to not only security issues but also business logic flaws and alignment with the
agreed-upon standards. This makes it very likely even the most competent reviewers would

miss some vulnerabilities at some point.

The effectiveness of manual code reviews has been studied by hiring 30 developers to
do security-focused code reviews for code with known security vulnerabilities [21]. This
research had two interesting outcomes. Firstly, none of the hired developers managed
to find all the security issues, showing most developers cannot discover all relevant
vulnerabilities during manual reviews [21]. Secondly, some developers managed to find

security issues, which were at the time unknown even to the conductors of the research
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[21]. This highlights that even though relying only on manual reviews is not reasonable,

manual reviews do have their benefits and should not be completely replaced.

The effort should therefore be directed towards making the manual code reviews as little
taxing for the manual reviewers as possible. This means using tools to point out issues.
However, having a large set of different tools, which are configured to report every potential
issue they find, can backfire. This could cause a large number of false positive results
and validating all the reported issues is a taxing task for the developers [22]. Thus, it is
important to find compromises between true positives and false positives [22]. This means
the tooling should be configured in such a manner in which most of the reported issues are

actual problems [22]. That way the developers will not feel like their time is being wasted.

2.1.2 Manual penetration testing

Manual penetration testing consists of manually testing the application during runtime
to find or confirm security issues. Usually, the application is viewed as a black-box and
the testers provide different inputs and perform actions which are likely to cause issues if
something has been misconfigured. Manual penetration often uses some tools to automate
some of the steps in the testing process. This approach should be applied in the later
stages of the software development lifecycle. While manual penetration has the potential
to uncover issues missed in the earlier stages, it comes with multiple issues of its own. This
approach is very time-consuming, relies on the tester to be familiar with all the application

flows and is likely to miss some vulnerabilities [23].

2.2 Automated approaches to improving code security

Automated approaches allow to discover and flag potential vulnerabilities without manual
effort. There are different approaches, each with its upsides and downsides. The idea
of helping developers identify issues beyond the ones flagged by the compiler has been
around for a long time. The first such tool for static analysis was released in the year 2000
[20].

2.2.1 Static code analysis

Automated static code analysis applies pre-defined rules or algorithms on the source code,
deriving a list of potential vulnerabilities [24]. This type of scan is known as the inference
method and different tools can use slightly different techniques [24]. In theory, most

vulnerabilities could be detected with static analysis techniques [24]. In practice, static
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code analysis tools are limited by the vulnerability types they can detect [3].

The more common vulnerabilities like different injection and overflow vulnerabilities
are detected by many tools, while others such as CSRF vulnerabilities will often stay
undetected [24]. These tools work by examining the source code, meaning most tools are
by design programming language specific [24]. Even though most existing tools support
multiple programming languages, adding and maintaining support for different languages
requires extra effort. Generally, most static analysis tools are prone to produce many false
positive results [24, 25]. What is more, the tools can miss the vulnerabilities related to the
misuse of third-party libraries. Adding the rules to support all kinds of frameworks and

programming languages is a time-consuming and tedious process.

The advantages of static analysis include not having to execute the code, meaning there are
no issues related to the reachability of vulnerabilities [24]. Reachability means all of the
code in the codebase can be analysed [24]. Static analysis allows for a quick turnaround
for fixes, as it can point to the exact location in the code where the vulnerability lies [26].
What is more, the tooling is often simple and relatively fast to use, which means the code

analysis can be done on local machines.

Drawing from Google’s expertise, the ability to analyse code locally can offer a significant
advantage over more complex approaches [22]. Google tested several strategies for running
static code analysis and reporting the results: displaying problems in the bug dashboard,
manually filing bug reports, incorporating the feedback into code review processes, and
reporting errors at the compiler level [22]. The findings indicated that ideally, code analysis
should occur at the compiler level, with the second best option being during the code
review process [22]. This approach improves the turnaround time for finding and fixing

the issues.

2.2.2 Dynamic code analysis

Dynamic code analysis is the analysis of code behaviour in runtime [25]. This approach
consists of running the program in specific circumstances, during which the behaviour of
the program is monitored [25]. Dynamic analysis approaches can struggle with reachability,
meaning not all of the code can be analysed [24]. For large programs, every if statement
will exponentially raise the number of branches in code that need to be reached. Reaching
all the branches can quickly get very costly and difficult. The best-known approach to

dynamic analysis is fuzz testing [27].

Fuzz testing itself can be divided into two subcategories. Black-box fuzzing consists
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of purposefully feeding the program invalid or random data [28]. This is a simple and
effective technique but is very likely to miss many specific code flows, which depend
on particular values [28]. White-box fuzzing consists of dynamically building inputs by
symbolically executing code and gathering input constraints based on conditional branches

in the source code [28].

Dynamic code analysis is expected to have fewer false positives than static analysis, but
more false negatives [3, 26]. This is related to the number of different possibilities for
each field to be tested in every API and the states the program can achieve during dynamic
testing [26]. A positive aspect is that many dynamic approaches allow the analysis of
applications without access to source code [26]. A known issue with this approach is that

it is hard to trace vulnerabilities back to specific parts of the code [26].

2.2.3 Hybrid code analysis

Hybrid code analysis is a mixture of static and dynamic approaches, allowing them to
combine their results for better outcomes. For example, a hybrid code analysis approach
could use the warnings from the static analysis tools as input and run dynamic analysis to
either verify or discard these warnings [24]. The weakness of the prior example would be,
that no more vulnerabilities would be found compared to just running static analysis, only
some false positive results would be discarded [24]. In general, this technique strives to

get the best of both worlds from the static and dynamic tools [24].

2.2.4 Code analysis with artificial intelligence

Machine learning (ML) and deep learning (DL) approaches have been utilised to help
detect vulnerabilities within source code. Most of these approaches could be categorised

under static analysis, as the source code does not need to be executed to run the analysis.

Surveys looking at vulnerability analysis via ML categorise the methods into three major
approaches: vulnerable code pattern-based, software metrics-based, and anomaly-based
[27, 29]. The vulnerable code pattern-based approach involves using ML algorithms to
learn vulnerable code patterns from samples [30]. These ML algorithms mostly use super-
vised learning and the extracted patterns can be used to detect and locate vulnerabilities
[29]. The main drawback of this approach is the need to include domain experts in the
feature extraction process, which is a time-consuming, error-prone and task-specific pro-
cess [30]. The software metrics-based approach employs an ML (most often supervised)

methodology to construct a predictive model, using established software metrics like the
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feature set or code complexity as features [27, 29]. Subsequently, these models are used to
evaluate the vulnerability status of software artefacts by analysing the software engineering
metrics [27]. These metrics are not direct indicators of vulnerabilities and have not shown
good results in vulnerability detection tasks [27]. Anomaly-based approaches employ an
unsupervised learning strategy to automatically either derive a model representing normal
behaviour or to extract rules from the source code [27]. Deviations from the established
norm or rules are classified as vulnerabilities [27]. The main drawback of the anomaly-
based approach is that it can only be used for detecting small sets of vulnerability types
[29].

To help combat the problems of ML-based vulnerability detection approaches, multiple DL
approaches have been tested. The layered structure of DL models is claimed to be better at
capturing complex patterns in source code [30]. What is more, the DL approaches allow
the feature extraction processes to be automated, requiring less manual labour-intensive
tasks [30]. The objectives for DL-based vulnerability analysis have been divided into
three main categories: binary, multi-class and fine-grained vulnerability detection [29].
Binary vulnerability detection is used to identify whether files contain vulnerabilities [29].
Multi-class detection is used to identify which vulnerability classes are present in files [29].
Fine-grained vulnerability detection is used to pinpoint the location of the vulnerability in
files [29]. The main issues with current deep learning vulnerability detection systems are
the focus on a single programming language and the use of API function calls to locate
vulnerabilities [29]. Having the training and testing datasets only in one programming
language raises the question of whether the approach can be extended to other programming
languages. Using API function calls to locate vulnerabilities makes it difficult to discover
the exact location of the vulnerable code within the source code. Furthermore, the datasets
used in DL vulnerability prediction studies are often too simple and do not translate to
real-world use cases, suffering from imbalanced data and failing to address code semantics
[31].

2.3 Large language models

Natural language processing (NLP) has been an area of interest for computer scientists
since the 1950s, with the latest large breakthrough happening in 2018 [5]. This is when the
self-supervised neural network was shown to produce good results just by getting exposed
to an extremely large amount of text [5]. The self-supervised approach means the model
can create its prediction challenges to train on [5]. For example by masking a word or a
phrase in a text and then trying to guess it [5]. These types of deep learning models are

called large language models (LLMs) [5].
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The dominant approach to tackle NLP tasks has been the use of a transformer neural
network [5]. This is a complex layered approach, not just a program utilising the statistics
behind word associations [5]. It is argued these models learn many facts about the world,
as it helps the model to solve the word prediction challenges better [5]. As a result, these
models are claimed to have a good factual knowledge of the world they are exposed to
[5]. Before 2020, the standard way of using language models for specific use cases was by
fine-tuning the model with the help of supervised learning [S]. However, the most recent
models have proven their ability to complete novel tasks with just a prompt [5]. This means
the most recent LLLMs only need a description of a task or a few examples to be able to

understand and tackle a task.

Some of these models have recently been trained on a dataset focusing on computer code
and shown good results. Most notably, OpenAl developed a Codex model with the ability
to understand both the human language and computer code [11]. This model powers a
commercial tool for helping developers write code called GitHub Copilot [11]. The use
of GitHub Copilot has already provoked a lot of discussions in the software engineering
community. There are arguments, that this tool should be used with caution, as the
generated code has been shown to contain vulnerabilities [32]. However, code written
by human software developers often also contains vulnerabilities. We are interested in

whether LLMs are also able to find vulnerabilities in code similar to humans.

The LLMs have different model sizes, with the model size typically referring to the
number of parameters or weights that the model contains. Increased model size has been
shown to improve the capabilities of the model [33, 34]. The commercial LLM APIs
allow users to influence the behaviour of the LLM through different API parameters. We
utilise a temperature parameter, which controls the randomness of the output. The lower
temperature values make the LLLM provide more deterministic responses and the higher

values more creative responses [35, 36].

2.4 Prompting LLMs

Instructions, context, and examples passed to a language model are called prompts. Prompts
allow to guide the LLMs in a way that can make the models return expected output without
additional task-specific training [6]. As the behaviour of the LLM depends on the specific
wording and type of the prompt, different approaches for creating the best prompts for the

given task have arisen.

Prompt engineering is a term used for describing the process of creating a prompt in a

manner which helps the consumer of the prompt to understand the task the best [6]. It
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is used to make the LLLMs behave in the most efficient way possible for the given task.
Prompts can be either manually or automatically created. Manual prompt creation is very
common and requires a human to come up with a task description. Automatic prompt
creation usually leverages sample data. Providing the LLLM samples of expected outputs for
specific inputs, the LLM can be asked to create a prompt that describes the task [37]. The
automatically generated prompts perform decently, however, they are often outperformed
by manually created prompts [37]. The automatic approaches have gotten better over time:

some show results comparable to manual prompt creation [38].

OpenAl, the company behind the GPT large language models, has published a simple
guide for prompt engineering [39]. They suggest writing clear and detailed instructions,
using delimiter symbols to indicate distinct parts of the prompt and specifying the output
format [39]. It is also suggested to ask the LLM to adopt a persona and divide the task into
smaller subtasks where possible [39]. Providing examples is also recognised to be helpful
in some cases [39]. When asking the LLM to evaluate something, it is also suggested
to instruct the model to come up with its own solution to a problem before doing the
evaluation [39]. Asking the LLLM to re-evaluate or improve its previous response is also
mentioned as a potential way to improve the final output of the LLM. There exist multiple
variations of the response re-evaluation tactic, like recursive criticism and improvement
[40] or self-reflection [7] or self-refinement [41].

2.4.1 Zero-shot and few-shot prompting

Zero-shot and few-shot prompting are terms often used in the context of prompt engineering
approaches for LLMs. Zero-shot stands for an approach where the machine learning model
might not be trained for such a task and the prompt does not include examples [42]. For
many use cases, this approach is easier to use but requires the model to generalise, leading
often to worse results than few-shot approaches [43]. Few-shot learning stands for an
approach where the pre-trained model is offered a few examples in the prompt, often
together with a task description [44]. This can help improve the task-fulfilling capabilities
of the language model [33]. In-context learning is a term describing an approach similar to
few-shot learning. In-context learning refers to first providing LLM examples of inputs

and outputs and then only providing input and asking it to provide an output [33].

2.4.2 Chain of thought prompting

Chain of thought (CoT) prompting has been proven to work well when asking LLMs to

solve complex problems which are reasonable to tackle in multiple steps [34]. The CoT
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approach can be used in conjunction with either zero-shot or few-shot approaches. A zero-
shot CoT requires the prompt to tell the LLM to solve the task step-by-step. A few-shot
CoT usually provides the sample output with step-by-step operations and explanations
of how the output was created. While the CoT is great for some complex problems, self-
reflection and recursive criticism and improvement strategies have been shown to perform
better in other cases [40, 7].

2.4.3 'Tree of thoughts prompting

Further development of the CoT prompting called the tree of thoughts (ToT) prompting
has been developed [18]. The tree of thoughts approach facilitates the exploration of
each step in the problem-solving chain [18]. It makes language models evaluate various
reasoning paths and makes them self-assess their choices [18]. This process enables them
to determine the subsequent steps, anticipate future actions, and backtrack when needed to
make informed decisions [18]. It has shown improvements over CoT approaches for some
tasks [18].

2.4.4 Self-consistency

Self-consistency involves sampling diverse outputs from a language model and then
selecting the most consistent answer from that set [19]. This approach can help improve
the consistency of LLM responses when less deterministic settings, like higher temperature
values, are used with LLMs [19]. To further advance the capabilities of the self-consistency
approach for the CoT prompts, the DiVeRSe approach is suggested [45]. DiVeRSe
approach uses various prompts to get diverse reasoning paths, then uses a verifier function
to get the most consistent result after each step [45]. In the case of vulnerability detection
tasks, another LLLM could be used as the verifier function, however, that would increase
the costs considerably. What is more, that approach would then start to get quite similar to

the ToT prompting.

2.4.5 ReAct prompting

Solving some problems can benefit from having the capability to run an action, like
querying an API. The idea is to allow the LLLM to first reason which steps should be taken
to solve a problem and then act on those steps. This approach is called ReAct prompting,
where the LLM is given access to tools, which allow the LLM to run actions like querying
external APIs [46]. Adding external memory, self-reflection and planning capabilities to

the ReAct approach has been shown to improve the capabilities of this approach even
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further [47, 48]. This can be very helpful for solving problems, where finding the solution

is hard, but verifying it is easy.

2.4.6 Utilising hints

There are also methods for automatically or manually improving existing prompts, no
matter how the prompt was originally created. For example, using hints to enrich the
prompts has been shown to improve the LLM performance and a framework has been
proposed to automate the hint generation [49]. Hints help to give context to the LLM and
are based on the failed predictions made by LLMs [49]. This approach shows a lot of
promise for specialised tasks, however, it might be less helpful for more general prompts
[49].

2.5 Datasets for benchmarking

To benchmark different tools and draw conclusions, a dataset is needed. The conducted
surveys show most available datasets focus on C/C++ vulnerabilities and are based on
real-world sources [50]. While both real-world datasets and synthetic datasets have their
advantages, synthetic datasets can offer advantages for such benchmarking studies. The
most important advantage of synthetic datasets for this study is that synthetic datasets
are usually structured as a compileable project. This is a strong requirement, as we are
interested in running static analysis tools, which need to compile the code base before

evaluating it.

The Juliet Java 1.3 dataset was chosen to conduct this particular study [12]. This synthetic
dataset has been created by the Software Assurance Metrics and Tool Evaluation (SA-
MATE) to evaluate software vulnerability analysis tools [51]. Juliet Java test suite has over
28,000 test cases for 112 different vulnerabilities (CWEs) [12]. This dataset has been used
for previous studies on static analyser effectiveness, which give a good overview of the

best-performing tools currently available [16, 15].
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3. Related work

As the LLMs have become much more powerful in recent years, the research in this domain
is still very new. Most of the papers being released in this domain are not yet peer-reviewed
and published in journals or conferences, as these processes take time. Based on titles and
abstracts, the most relevant papers found within this domain are included in the review.
The relevant papers are identified based on the abstracts and those papers are used for

forward and backward snowballing.

3.1 Prior studies review

A recent systematic literature review studies the papers published between 2018 and 2024
that focus on the use of LLMs for vulnerability detection and program repair tasks [52].
They find mostly open-source models like CodeBert are tested for vulnerability detection
tasks in the given timeframe. Around 82% of the papers cover fine-tuning approaches
and the remaining 18% test prompting approaches, with zero-shot prompting being the
most popular tested prompting strategy. This literature review only compares the usage of
zero-shot and few-shot prompting approaches and does not provide statistics about other
types of prompting like CoT. Only 18% of papers covering prompting approaches and the
only prompting keywords being zero-shot and few-shot highlights the gap in the literature

for studies utilising more advanced prompting strategies.

3.1.1 LLMs as good vulnerability detection tools

A comprehensive study evaluating the effectiveness of LLMs for detecting vulnerabilities
in source code has been conducted before [7]. Two synthetic datasets, OWASP and Juliet,
and one real-world dataset, CVEFixes, are used for benchmarking. The datasets span
two programming languages, Java and C++. GPT-4 and two CodeLlama models are used
with different prompting approaches. The scope is narrowed to focus on MITRE’s top 25
vulnerabilities. The best F1 scores on synthetic Java datasets are produced using the GPT-4
model utilising a "Dataflow analysis-based prompt with Self Reflection" [7], producing
F1 scores between 0.79 and 0.86. It must be noted the authors reduce the challenge to
binary classification, providing the expected CWE value in the prompt and asking if that
vulnerability is present. For the real-world Java dataset, however, CodelLlama models
performed better than GPT-4, producing an F1 score of 0.55 compared to the 0.48 of the
GPT-4 model. Across all datasets, GPT-4 shows the best performance on average. The
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performance of LLMs is slightly better on the C++ datasets, however, the differences
are negligible. For comparison with a static code analysis tool, CodeQL is used. The
results show CodeQL performing slightly better than GPT-4 on the Juliet Java dataset,
GPT-4 performing slightly better on the OWASP dataset and GPT-4 performing noticeably
better on the Juliet C/C++ dataset. For comparison with a deep-learning tool, the LineVul
vulnerability prediction tool is used on C/C++ datasets. On real-world datasets, LineVul
produces poor results, however, on a synthetic dataset, LineVul produces an impressive
1.0 F1 score. The authors hypothesise this to be related to the repeating code patterns in
synthetic datasets. What is more, the authors try fine-tuning smaller LLMs like GPT-3.5
and CodeLlama-7B, showing major performance improvements on synthetic datasets, but
very limited improvements on real-world datasets. The improvements of fine-tuned LLMs
on synthetic datasets are likely also related to the repeating code patterns. The binary
classification prompt used is somewhat unfair, as it is compared to existing tools like
CodeQL. CodeQL does fine-grained classification, which is a much more difficult task
than binary classification. What is more, while the Juliet Java dataset contains a large
number of samples, the chosen samples contain vulnerabilities only from four different
CWE categories. Only four prompting strategies are discussed in detail and the costs

associated with each approach are not discussed.

A handful of prompting strategies have been systematically tested for vulnerability detec-
tion purposes [8]. Java and C/C++ datasets are used and the results of GPT-4 are compared
with two existing deep learning tools. The GPT-4 outperforms both tools for a given
dataset even with the most basic prompting strategies. For the simple prompts, role-based
prompting is shown to yield better results than prompts without a role. What is more,
GPT-4 is shown to be biased towards the wording used in the prompt. That means asking
the LLM if the code is buggy is more likely to produce the answer "yes" than "no". For a
more elaborate strategy, API call sequence and dataflow descriptions are provided to the
LLM. The authors show the order of the items provided to the LLM plays an important role.
The best results are achieved by the prompt that provides first the description of the task,
then the API calls descriptions and lastly the code snippet. For the CoT approaches, the
LLM is first asked to explain the intent of the provided code and then to verify whether the
code is vulnerable. Interestingly, this did not yield better results than previous strategies.
The authors treat vulnerability detection as a binary classification challenge, asking only if
the code is buggy, not what bugs the code contains. The Java experiments are done on a
diverse dataset containing 50 different CWE categories. The temperature value used in the

study is not discussed, which means most likely the default value of one is used.

Different OpenAl GPT models with zero-shot prompting have been tested for vulnerability

detection tasks on six different real-world software projects [9]. A real-world dataset
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containing multiple public scientific repositories is used. The results are compared with
static analysis tools Snyk! and Fortify?. It is found that GPT-4 performs noticeably
better than any of its counterparts, including the static analysis tools. However, the study
provided no precision, recall and F1 scores for different approaches, with the main focus
on true positive results. Interestingly, the research identified that requesting a fix for the
vulnerability forces the model to explain its vulnerability identification and justify most
inaccuracies or hallucinated responses. The reported low false positive rate was also
notable, as most other works using zero-shot prompting have reported high false positive
rates. This might be related to both the wording of the prompt and the fact the LLM was
asked to also find a fix for the reported vulnerability. The temperature value used is not
discussed, however, the default value for ChatGPT is one, which is most likely what is
used. Other prompting strategies are not discussed in detail and the cost aspect is not

discussed.

The performance of CodeBert, GPT-3.5 and GPT-4 for real-world vulnerability datasets
spanning multiple programming languages has been compared [10]. The vulnerability
detection is considered a binary classification challenge, with GPT-4 showing F1 scores of
76.4%, outperforming CodeBert and GPT-3.5 by a significant margin. Different simple
few-shot prompts are tested, with the main difference between prompts being the provided
examples. The best prompting approach for GPT-4 is a few-shot solution, with the task
description containing examples from the MITRE top 25 vulnerabilities. The dataset itself
contains 78 different CWE categories. The temperature values are not provided and costs

associated with prompting strategies are not discussed in detail.

ChatGPT’s abilities for finding OWASPs top 10 vulnerabilities in PHP source code have
been tested [53]. The dataset containing 92 vulnerable files is compiled by the authors
specifically for this research. For comparison purposes, 11 different static analysis tools are
tasked with finding vulnerabilities from the same dataset. Zero-shot prompting is used to
query the ChatGPT, which results in ChatGPT correctly identifying between 62% and 68%
of vulnerabilities. The best of the tested static analysis tools are only able to detect around
32% of vulnerabilities. Even combining multiple static analysers would still only have a
rate of 53% in the best case. However, very high false positives for the ChatGPT approach
are reported, around 91%. Unfortunately, there is no discussion on whether different
prompting approaches are tried to help lower the false positives. The authors claim the high
true positive percentage shows ChatGPT has potential in vulnerability detection tasks. No
exact numbers for precision, recall and F1 scores are provided. The F1 score in particular

would have been interesting to see, as it also encompasses false positive and false negative

'https://snyk.io/
’https://www.opentext.com/products/fortify-static-code—analyzer
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results. The temperature value is not discussed, but as ChatGPT is used, most likely the
temperature is left on the default value of one. The non-deterministic nature of LLMs is
discussed and the experiments are run twice to show the variance in results. The task is set

as a multi-class classification and a simple role-based zero-shot prompt is used.

Vulnerability semantics guided prompting (VSP), which is a form of a few-shot CoT
prompting, has been proposed for vulnerability analysis tasks [54]. The idea behind this
prompting approach is to ask the LLM to only focus on relevant parts of the code and
analyse the data and control flows. Three types of tasks are tested: binary vulnerability
classification (vulnerability identification), multi-class vulnerability classification (vulnera-
bility discovery) and vulnerability repair. The evaluation involves utilising the GPT-3.5,
Llama2, and Falcon models with the temperature value set to zero. Two separate datasets
are employed for this analysis: one is synthetically generated, while the other is based on
real-world data. The study focuses on examining five distinct vulnerabilities: CWE-125,
CWE-190, CWE-416, CWE-476, and CWE-787. Overall, the results are better on the
synthetic dataset, with the main reason most likely related to insufficient context in the
real-world dataset. Overall, five prompts are tested, containing zero-shot, few-shot, CoT
and the proposed VSP strategies. The proposed VSP prompting shows good F1 scores
across all tasks and models. While the general outline of the VSP prompt is provided, the
exact wording with the examples is not provided for the tested prompts.

The security code reviews of infrastructure as code (IaC) repositories have been explored
as areas where LLLMs could assist [55]. The findings revealed this approach can detect
most issues the traditional static analyser can, with the added advantage of proposing fixes.
The mentioned drawbacks include the pricing model of commercial LLMs and the time
it takes to get an answer compared to static analysis tools. Another issue pointed out is
that the AI model makes assumptions, which might confuse users. The authors base the
results and evaluation on a very small set of limited examples. Even so, the LLM still
misses some vulnerabilities and reports some wrong or misleading ones. The prompt
engineering topic is not mentioned in the paper, which means the provided template could
most likely be improved, which in turn would also improve the results. The ability to give
out suggestions and explanations is a large upside, which not many previous papers focus

on. For experiments, the GPT-4 model is used with a temperature value of 0.5.

3.1.2 LLMs outperformed by other approaches

The authors of Codex, the LLLM that also powers Github Copilot, also consider applying
the Codex model for vulnerability discovery [56]. They find the model does not perform

well in comparison to static analysis tools for vulnerability detection. While no bench-
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marking results or techniques are discussed, it is claimed their testing does not reveal any
cases where Codex outperforms static analysis tools. However, more capable models are
recognised as potentially performing better in identifying vulnerabilities and the need for

further research in the area is emphasised.

GPT-3 and GPT-3.5 have been tested as black-box static analysers for finding vulnerabilities
in Java code [57]. The benchmarking is done on a rather small real-world dataset containing
120 samples, where half of the samples are vulnerable. The vulnerable samples contain
one of five different CWE categories. Both binary and multi-class classifications are
attempted. The results show the chosen LLM models performed no better than a dummy
classifier. However, the authors do not explore many different prompting approaches.
Different zero-shot prompts are tried with the temperature set to zero, but they are all
rather simplistic, which might be one reason behind the poor results. What is more, the
results are only compared to a dummy classifier, as opposed to a static analysis tool. It
would have been interesting to see how well a static analysis tool performs on their dataset
and if that would have performed better than a dummy classifier. The authors proposed
that GPT-4 should also be tried for such tasks as it could achieve better results. They also

acknowledge improvements to prompting approaches could improve the results.

The capabilities of eight open-source and three commercial LL.Ms have been studied for
detecting vulnerabilities in a real-world dataset [58]. The dataset is rather small, containing
100 files, half of which are vulnerable. Five binary classification prompts are tested, with
the basic and few-shot prompts showing the best results in most settings. Some CoT
strategies, like few-shot CoT are tested, but these do not show good results. They find
all tested prompts on all LLMs perform rather poorly for vulnerability detection tasks.
While GPT-4 and StarChat-3* show the best results, they only slightly outperform the
random-guess baseline. They find in most cases the description of the problem presented
by LLMs contains errors. The ability of the LLMs to pinpoint the line of code containing
vulnerabilities is tested and the abilities are compared to those of human developers using
the DbgBench* dataset. This contains 27 bugs and for this task, the GPT-3.5 model shows
the best performance, correctly locating four problems. On average, the human developers
performed significantly better than the tested LLMs, with the best human correctly locating
all 27 problems.

The LLMs are shown to struggle with providing correct, understandable, concise, consistent
and compliant responses when tasked with reviewing code for vulnerabilities [59]. This
conclusion is reached after conducting tests with Gemini Pro, GPT-3.5 and GPT-4 LLMs

Shttps://huggingface.co/HuggingFaceH4/starchat-beta
“https://dbgbench.github.io/
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on a real-world code review dataset. For vulnerability detection, five different prompts
are tested. A prompt tasking the LLM to find vulnerabilities and provide the category as
one of the ten high-level research view vulnerabilities (CWE-1000) is shown to perform
the best. This could be seen as a simplified multi-class classification, as the LLM only
needs to select between ten high-level categories. The temperature used with the LLMs
is not disclosed. In case the default temperature value of one is used, it could contribute
to the answers containing unrelated unnecessary information and being incompliant with
the instructions. What is more, the prompting strategy could be the reason behind the
vague answers from the LLM. The first level in the CWE research view by definition only

contains very vague definitions of vulnerabilities.

The ability of GPT models to automatically pinpoint vulnerable code sections, recognise
and explain the vulnerabilities, estimate the severity and suggest fixes has been studied
[60]. The testing is done on a real-world C/C++ dataset containing over 190,000 functions.
Both GPT-4 and GPT-3.5-turbo models perform significantly worse than other tested open-
source tools, which include CodeBERT, GraphCodeBERT, AIBugHunter and VulExplainer.
The AIBugHunter outperforms other tested approaches in both the binary and multi-class
classification tasks. However, it seems ChatGPT is not fine-tuned for given tasks, whereas
the other tools are. What is more, the temperature values are not discussed, and the

prompting strategies seem rather basic and not well-refined.

3.1.3 LLMs as a tool in vulnerability detection framework

LLMs and other machine learning approaches can be leveraged in conjunction with existing
static analysis tools. For example, LLMs have been shown to be able to enhance off-the-
shelf taint analysis products [61]. Taint analysis is an approach where the data flows are
observed to help discover vulnerabilities related to unsanitised data handling. The taint
analysis product using a rule-based approach is set up to overestimate the sources, leading
to many false positive results. After that, four different machine learning approaches,
one of which is a LLM, are used. The machine learning step leverages natural language
information, like method and variable names, to help verify whether the source is a
true source. The results of the machine learning approaches are compared to baseline
results leveraging frequency calculation and regular expressions. In many cases, all the
proposed machine-learning approaches scored higher than the baseline. The authors are
able to demonstrate the effectiveness of their approach by finding multiple previously
unknown vulnerabilities in real-world projects. The authors discussed two main limitations.
Firstly, the focus is on five high-severity vulnerability types. Secondly, the single-character
variable names are excluded from the training and testing data, as they do not contain

enough information for natural language processing. One of the four approaches uses an
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off-the-shelf LLM — Codex. While Codex is among the approaches requiring the least
effort to be set up and in some cases outperforms the baseline, overall, the Codex results
are among the poorer ones. This highlights the need to compare different approaches, as
more specific machine learning models can often perform better than general-purpose Al
models. However, the more specific models also often require more effort to be set up.
Another problem with the Codex model is the slow performance during the testing phase
when compared to other approaches. A potential way to enhance the results, which was
not explored by the authors, would be to rename the single-character variable names to

more meaningful ones. LLMs such as Codex could help perform that step.

LLMs have shown promising results in automating fuzz testing for TensorFlow® and
PyTorch® libraries [62]. Using a two-step approach, first LLMs generate seed programs
and then those are utilised for evolutionary fuzzing. The resulting programs are then
run on both CPU and GPU back-ends of deep learning systems and their outputs are
compared. The focus is on significant differences in the outputs or a crash during execution.
This shows success in identifying numerous previously unknown bugs in well-known
deep-learning libraries. While the focus of the study is to identify software bugs in
general, the methodology successfully uncovered several security vulnerabilities as well.
The study claims to be the first to employ state-of-the-art LLMs for end-to-end fuzzing
input generation, achieving full automation in the process. The findings demonstrate that
LLMs can help perform both generation-based and mutation-based fuzzing, highlighting
the potential of these models in software testing and vulnerability detection. The full
automation of a fuzzing tool shows the potential of the black-box LLMs for automating
complex code analysis processes. However, the given research only tests and reports on the
results of using this approach for two Python deep-learning libraries. Though the approach
can be extended to test systems in other domains, achieving similar results is improbable
in a system lacking the ability to compare calculation results. This means for the use cases
with a single back-end, only the system crashes could automatically be identified as bugs,

reducing the effectiveness.

CodeAgent is an LLM-driven framework proposed for the detection of code inconsis-
tencies, vulnerabilities and adherence to style standards [63]. CodeAgent divides tasks
between different roles, where in every step two roles collaborate to achieve the task. The
CodeAgent approach utilises multiple agents (LLMs), CoT prompting and a supervision
agent (another LLM) that validates all the responses. For the vulnerability detection
subtask, the CodeAgent is shown to outperform simple prompting strategies on well-
established LLMs like CodeBERT, GPT-3.5 and GPT-4. However, the temperature values

Shttps://www.tensorflow.org/
Shttps://pytorch.org/
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used for the LLMs are not provided. What is more, prompting strategies used with plain
LLM models are not discussed. The cost aspect is not discussed in detail either, but using
a large number of different LLMs with different roles is likely to be much more expensive

than using a simple prompt on an LLM.

A vulnerability detection framework LLLM4Vuln has been proposed, which is supposed
to decouple and enhance the reasoning capabilities of LLMs for code analysis [64].
LIL.M4Vuln is divided into four components: knowledge retrieval, tool invocation, prompt
schemes and instruction following. For knowledge retrieval, vector databases are used
to provide up-to-date vulnerability knowledge and two different querying approaches are
tested. Three external tools are provided: first for retrieving a function definition, second
for retrieving all parent classes and third for retrieving a variable definition. They set
the temperature for GPT-4 to one, which means different runs could produce different
results. It is shown that adding vulnerability knowledge (vector database) improves LLMs’
ability to reason about vulnerabilities, but necessitates careful design: short, summarised
knowledge enhancement seems to provide the most benefits. The tools provided to the
LLMs do not enhance the detection rate in most cases. The CoT prompting strategy is
shown to improve precision in most cases, however, the improvements are not consistent.
The authors do not discuss whether this could be related to the high-temperature values
used. Other open-source LLMs are tested, which show inferior results. The inferior
performance of those models is attributed to their lack of reasoning ability. The LLM4Vuln
framework is tested on smart contracts, leading to the authors identifying nine zero-day

vulnerabilities in two real-world projects.

Another approach called GPTScan is developed specifically for finding business logic
vulnerabilities in smart contracts by combining the GPT language model with program
analysis [65]. The idea is to use the LLM to understand the code and find potentially
vulnerable functions. Static analysis is then used for validation and for reducing false
positives. The GPT-3.5-turbo model with temperature set to zero is used over GPT-4 due to
its lower costs. A "mimic-in-the-background" prompt is proposed, which asks the LLM to
come up with multiple answers in the background and then respond with the most common
answer. The effectiveness of the "mimic-in-the-background" prompt is not evaluated.
The effectiveness of GPTScan is evaluated on three datasets comprising real-world smart
contract projects. GPTScan shows good results in all datasets, with a low rate of false
positives and a high F1 score, of up to 80%. The tool allowed the authors to uncover nine

previously unknown vulnerabilities.

A framework called LLB is proposed for identifying and rectifying vulnerabilities in

Android application source code [66]. The authors show GPT-4 model on the Ghera dataset
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can detect and remediate vulnerabilities using prompt engineering and retrieval augmented
generation (RAG) techniques. The sources for RAG are proposed to be additional code
from the codebase, code analysis results or documentation and additional information.
The Llama 2 model performance is stated to be significantly worse than that of GPT-4.
Leaking hints like variables named "secure" are shown to have a noticeable impact on
the results, highlighting the need for pre-processing of datasets used for experiments with
LLMs. The given implementation of RAG performs worse than the simpler approach
where only a summary of the flaws that are of interest are included. It is hypothesised the
negative impact of using RAG could be caused by hallucinations, as for the RAG approach,
file content summaries are generated by LLMs. The authors use the learnings from their
experiments to develop a Python package LLB, allowing simple Android vulnerability

scans with LLMs via the command line.

GPT language models have been used to detect improper isolation of compartmentalization
(CWE-653) vulnerabilities in Angular applications [67]. The LLM is used as a black-box
static analysis tool, with the temperature parameter set to zero for a deterministic approach.
The dataset contains a random selection of 12 large public Angular projects. The approach
consists of five steps: minifying the codebase, detecting sensitive elements, mapping
project files, protection level discovery and aggregating the results. LLLMs are used for
the sensitive element detection, project file mapping and protection level discovery steps.
Few-shot and CoT prompting approaches are used to achieve the best possible results. The
results show that GPT-4 performs noticeably better than GPT-3.5 and even though GPT-4
is slower, the time difference is not big. More than 88% vulnerability detection rate is
achieved, with no false positive results. The authors provide no exact numbers for precision,
recall and F1 scores. As a limitation, the authors recognise when the evaluated project
significantly diverges from the development conventions of the Angular framework, there
is an increased likelihood that GPT-4 might misinterpret or struggle to detect contextual

relationships.

3.1.4 LLMs with vulnerability detection as secondary focus

The effectiveness of ChatGPT as a code analysis tool has been explored [68]. The study
focuses on five code-related problems, which contain vulnerability analysis and dynamic
vulnerability discovery. The authors find ChatGPT shows promise as a tool for security-
oriented analysis of source code. The research discovers that the quality of the LLM
responses heavily relies on good naming of the variables and functions in the source code.
ChatGPT shows a very good ability to detect vulnerabilities for simple short code snippets
following adequate naming conventions. ChatGPT is also able to help explain how the

flaw could be exploited and offer fixes. However, not all suggestions made are correct. For
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example, ChatGPT can explain how canary value could be used to detect stack overflow,
however, the implementation offered is incorrect. Running the same experiments on
obfuscated code yielded much worse results, showing LLMs heavily rely on well-defined

names to produce good results.

The options for using ChatGPT in aiding developers to write secure software have been
investigated [69]. ChatGPT is used for human-machine interactions in the context of
code-writing and vulnerability-fixing tasks. Five different code-writing challenges are
selected to conduct the experiment. The results show ChatGPT has not only the potential
to be used as a teaching tool but also as a tool to help professional software developers.
The authors discuss the use of LLMs to explain the issues identified by static analysis
tools to help developers with any experience level. While they do not explicitly test
LLMs in conjunction with static analysis tools, they show LLMs are somewhat capable of
identifying and fixing vulnerabilities. The largest downside of their approach is only testing
LLMs on five different challenges. As three of them were successful, a 60% success rate
is reported, however, it could be argued the sample size is too small to draw meaningful

conclusions.

The use of LLLMs has been explored to assist with overall code reviews and to suggest
best practices of infrastructure code [70]. The focus is on helping novices fix the bigger
issues before involving the quality assurance department. While the paper does not
explicitly focus on security, it does find the LLMs to be a viable option to help conduct
infrastructure code reviews. However, this research is very limited: it only considers
Kubernetes deployment manifest file analysis, the task is reduced to binary classification
and the result validations are lacking. There is no comparison of the results with existing
tools, even though existing tools are mentioned. What is more, there is no explanation why
the few-shot learning approach is used and whether the zero-shot approach is considered

or tested.

LLMs have been integrated to automate the guided bug replay process for Android applica-
tions [71]. The bug reports containing steps to reproduce can be difficult to follow due to
ambiguity, and imprecision and can have steps missing. To simplify the job of developers
ChatGPT is used to translate user-provided bug reports into step-by-step bug replay guides.
Using few-shot learning in conjunction with CoT reasoning on bug reports, automated
bug replay capabilities are achieved with more than 81% success rate. It is discussed that
ChatGPT could be asked to also return the confidence it has in its solution to improve
human and Al communication. This could also translate to vulnerability detection: if the
GPT model can provide the confidence it has in its response, some false positives could

potentially be disregarded.
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Another area, for which LLMs have been proposed as a solution is the detection of
malicious code in open-source packages. As open-source packages get widely used in the
industry, a compromised or vulnerable open-source package can cause a lot of harm. A
four-step approach leveraging LLLMs to help detect vulnerable code has been proposed [72].
This approach consists of collecting code examples, turning the code examples into a vector
representation, detecting anomalies and ranking the anomalies. The transformer-based
language model is used in the second step: for transforming the code snippets to vector
representation. The approach shows promising results for some scenarios, however, does
not do well where the injected code is either quite long or has very abstract functionality.
One of the limitations mentioned by the authors is that it is necessary to convert functions
to abstract syntax tree (AST) representation. For future research, they suggest using more
comprehensive representations. The researchers use the Code2Seq model but encourage
future works to explore the use of different models, such as CodeBERT and Codex. The
results show high detection precision on the given dataset, which includes real-world
vulnerabilities. However, the setup and ease of use are not demonstrated and covered
in enough detail. Using the newest GPT-4 in conjunction with existing tooling to detect

malicious packages has shown good results [73].

3.2 Review summary

Studies have been conducted to evaluate the performance of LLMs as stand-alone vul-
nerability detectors and as tools in a multi-step approach. The datasets used to conduct
the experiments vary: some use real-world datasets [57, 59, 67], others synthetic datasets
[7, 54]. Some studies treat vulnerability detection as a binary classification challenge [7,
8, 10], and others as a multi-class classification challenge [53, 54, 57]. The used LLMs
vary, with the GPT and Codex models being the most popular commercial models used [7,
8,9, 10, 53, 54, 55, 56, 57, 59, 60, 61, 64, 65, 66, 67, 68, 71], with the Google Gemini
model being included in some cases as well [58, 59]. BERT and Llama are the open-source
models most often used for comparisons [7, 10, 54, 58, 66, 68]. Overall, the GPT-4 model
has been shown to outperform the open-source and commercial models. The prompting
approaches differ significantly, with simple zero-shot and CoT prompts being among the
most popular ones. Most proposed CoT prompts just contain a few steps, like asking the
LLM to first explain the code and then to find the vulnerabilities [8].

As the models, temperature values, datasets and prompts differ, the results vary significantly
as well. Some have found that LLMs perform much worse than static analysers [57]. Others
have shown LLMs can outperform static analysis tools [9]. Notably, in most cases, the
LLMs seem to have higher false positive rates than static analysis tools. The main issues
with the LLMs seem to be related to the costs of using the LLM models and the time it
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takes to get a reply from the model. What is more, the models have an input character limit
and the assumptions made by the language model can sometimes be more confusing than
helpful [55]. The strengths of using LLMs to detect vulnerabilities are related to the ease
of use and good true positive rate [9]. The LLMs can be used to detect vulnerabilities in

any programming language, although the performance may vary.

LLMs have been proven helpful in extending the capabilities of existing tools and helping
with the automation of static and dynamic analysis [61, 62]. The attempts to discard false
positive results using different deep learning techniques also showed some success [61].
The results of the Codex LLLM discarding false positive results were overshadowed, as
other proposed approaches worked better in the given scenario [61]. However, it must
be considered newer models might perform better in similar situations. The setup and
ease of use did seem to favour the LLLMs, as it did not require any data labelling efforts
beforehand.

3.3 Identified research gaps

Most research so far does not employ a systematic approach to evaluating the performance
of the LLMs for vulnerability detection. The challenge is often formulated as a binary
classification challenge and the prompting strategies are usually rather simplistic. The
exact LLM versions used are often not mentioned, making it very difficult to reproduce the
results. What is more, the temperature values are often not provided and even the studies
that do provide the values, often fail to address why that value is chosen. Most studies use
real-world datasets but provide the results of LLM without comparing the results to any
traditional tools. The lack of a good comparison point makes it hard to understand how
well the LLM performed.

Many studies focus only on the binary classification task without providing good justi-
fication for that decision. What is more, binary classification can be more difficult to
verify, as the code might contain some previously undetected or incidentally introduced
vulnerabilities. This problem is not addressed by some studies [8, 10], whereas others
do address this problem by including the expected CWE identifier in the prompt and
asking whether this vulnerability is present [7, 58]. The studies considering multi-class
classification do not discuss using any matching strategies to be able to consider multiple

CWE categories correct for some vulnerabilities [53].

There is some systematic testing of the effects the prompting strategy can have on the
results [8]. However, while they provide interesting insights into prompting strategies,

most of the tested prompts are still rather simple in nature. What is more, the existing
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studies do not use any prompting strategies proposed in previous studies for comparison

points. The costs related to different prompts are not discussed in detail.

There is a lot of focus on whether LLMs can effectively pinpoint vulnerabilities, often
overshadowing the importance of proper comparative analysis. The attention is dispropor-
tionately directed towards true positives, while there is limited focus on false positives and
false negatives [9, 53]. The precision, recall and F-scores are sometimes omitted, requiring
more effort from the reader to understand how good the proposed approach is. What is
more, the results are often not compared to existing tools. This is important because the
dataset might contain problems that are difficult to detect and even if the LLM performs

poorly, it might still outperform existing tools in some cases.
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4. Methods

4.1 LLMs and prompting strategies

To conduct static application security testing (SAST) with LLMs, we use three models:
GPT-4 and GPT-4 turbo models from OpenAl' and Claude 3 Opus model from Anthropic?.
The exact versions for the LLMs and other relevant tools are given in Appendix 4 —
Versions. For most experiments, the temperature parameter of the LLM is set to zero. The
temperature parameter is used to control the randomness of the output and using a zero
value makes the output as deterministic as possible [35]. This means anyone running the

same experiments with the same settings should get very similar results to us.

LLMs require a description of the task they are expected to perform and these descriptions
are called prompts. It has induced a separate field of study to find the best prompting
approaches for different types of tasks. We use different zero-shot and few-shot prompts
and test different strategies, where we request the LLMs to review their responses. We test
CoT, ToT and self-consistency strategies and report on the results. We conduct quantitative

analysis of the tested prompts’ results and provide qualitative analysis of the best results.

4.2 Dataset

The full Java Juliet 1.3 dataset contains vulnerabilities from 112 different CWEs. Among
others, the dataset covers categories like CWE-546, which refers to suspicious comments.
To focus on high-severity issues, only vulnerabilities from the MITRE top 25 [74] are
chosen, similarly to previous research [7]. It must be noted the CWE list is very detailed
and many weaknesses in that list are very similar or closely related. To help understand how
different CWEs are related, MITRE provides multiple views, which show the relationships
between CWEs. The CWE-1000 (Research Concepts) view provided by MITRE displays
the relationships in a hierarchy, where every CWE can have one parent and multiple
children [75]. An example of the relationships for CWE-36 (absolute path traversal
weakness) can be seen in Figure 1. The parent of CWE-36 is CWE-22 and the children
of CWE-36 are CWE-37, CWE-38, CWE-39 and CWE-40. As the Java Juliet 1.3 dataset
only contains four CWEs from the 2023 MITRE top 25 list [74], we also include the
subcategories (the children) of the MITRE top 25 vulnerabilities. For example, the CWE-

'https://openai.com/
’https://www.anthropic.com/
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Figure 1. An image of the CWE-36 hierarchy.

22 (path traversal weakness) is in the MITRE top 25 list but not in the Juliet dataset
[74]. However, the Juliet dataset contains the subcategories of CWE-22, namely CWE-23
(relative path traversal weakness) and CWE-36 (absolute path traversal weakness), which
we include. Table 1 displays all the CWEs present in the dataset in bold format. Using this

strategy allows us to extend our dataset from the four exact matches to 17 distinct CWEs.

Table 1. CWE’s overlap in MITRE top 25 and Juliet 1.3

Rank ID Present in Juliet 1.3 | Has subcategories in Juliet 1.3
1 CWE-787 No No
2 CWE-79 No CWE-80, CWE-81, CWE-83
3 CWE-89 Yes No
4 CWE-416 No No
5 CWE-78 Yes No
6 CWE-20 No CWE-129, CWE-606
7 CWE-125 No No
8 CWE-22 No CWE-23, CWE-36
9 CWE-352 No No
10 | CWE-434 No No
11 CWE-862 No No
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12 | CWE-476 Yes No

13 CWE-287 No CWE-259, CWE-321, CWE-256,
CWE-523, CWE-549

14 | CWE-190 Yes No

15 CWE-502 No No

16 CWE-77 No CWE-78

17 CWE-119 No No

18 CWE-798 No CWE-259, CWE-321

19 CWE-918 No No

20 CWE-306 No No

21 CWE-362 No No

22 CWE-269 No No

23 CWE-9%4 No No

24 CWE-863 No CWE-566

25 CWE-276 No No

4.2.1 Dataset pre-processing

The Java code does not need to be compiled to be analysed by LLMs. However, to run
the traditional static analysis tools, we need the code to be compiled. To simplify the
compiling of large projects, multiple build tools are available. The default distribution of
the Java Juliet 1.3 dataset is using Ant® as the build tool, which we upgrade to Gradle®.
As many traditional SAST tools offer Gradle plugins, this upgrade simplifies the building
process and the running of different tools. The code reformatting tools included in IntelliJ’

are used to reformat the files, which helps to ensure all files use a similar format.

Prior research has shown leaking some relevant keywords in the code, like variables named
"secure", could influence the output of the LLMs [66]. To avoid introducing this bias,
these types of hints are removed from the dataset. The original dataset contains comments
explaining the vulnerabilities, so all comments are removed. As the file and class name
both include the vulnerability identifier, all the files and classes are re-named. All the
function and variable names containing any hints (like "good" or "bad") are also changed.
The package name is not changed to simplify the analysis of SAST tool results. However,
the package name is always overwritten when working with LLMs, before the file is sent
to the LLM for analysis.

Shttps://ant.apache.org/
“https://gradle.org/
Shttps://www.jetbrains.com/idea/
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To give as much context to the LLLMs for vulnerability detection as possible, we test the
detection capabilities on the file level. By default, the Juliet dataset is meant for running the
vulnerability classification on either function or line level. Similarly to previous research,
the non-standard test cases spanning multiple files or only containing vulnerable examples
are removed [7]. The remaining samples are split into two: a good and a bad file. This

way, all the context needed to detect a vulnerability is contained inside a single file.

After removing the test cases spanning multiple files and splitting the remaining files into
two, we are left with 15,174 files, half of them secure and the other half vulnerable. Due
to the high cost of running LLLMs, we are unable to do the experiments with all of the
files. Thus, as the last step, a random subset of the files is selected. As the CWE-523 and
CWE-549 categories are the smallest containing just 34 files each, random 34 files are
selected for all 17 CWE categories represented in the dataset. This way we end up having
the same number of samples for every CWE in our dataset. The random selection is done in
the following manner. Firstly, we pick a random file from our dataset. Secondly, if the file
is vulnerable, we find the non-vulnerable version, and if the file is not vulnerable, we find
the vulnerable version. We repeat this process 17 times for each CWE, adding both files to
the subset. As there are 17 unique CWE:s in the dataset, together (17 + 17) x 17 = 578

files are chosen. Half of the 578 files are vulnerable and the other half are not.

The full pre-processed dataset is available in version control software [76]. The custom
scripts used for the pre-processing are available in version control software in the "dataset-

normalization" package [77].

4.3 Evaluation methods

The authors of the Juliet dataset publicly acknowledge the code provided in the dataset
might include other unrelated vulnerabilities [78]. Thus, for vulnerable files, the result
is considered true positive only when the targeted vulnerability is found in the file. If
no vulnerabilities are found or if the found vulnerabilities do not include the targeted
vulnerability, the result is classified as a false negative. For non-vulnerable files, the result
is considered true negative if the targeted vulnerability is not discovered in the file. If the

targeted vulnerability is found, the result is classified as a false positive.

We look at vulnerability detection as a multi-class classification challenge. The analysis
is expected to report not only whether the file is vulnerable, but also to correctly detect
the CWE identifier of the vulnerability. The Juliet dataset is labelled, which allows us to
classify the results as true positive, false positive, true negative or false negative, as shown

in Table 2. If the expected vulnerability is detected, then the classification is positive.
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Table 2. Classification logic

Expected vulnerability | Expected vulnerability

detected not detected
Vulnerability present | True Positive (TP) False Negative (FN)
Vulnerability not . )

False Positive (FP) True Negative (TN)
present

Using those measures, we can compare the performance of different tools by calculating
accuracy, precision, recall and F1 scores. The F1 score is also called the harmonic mean of

recall and precision. The formulas to calculate these values are as follows [79]:

A B TP+TN
Y = TP Y FP+ TN + FN
Precision — TP
recision = PP
TP
Recall = m—m
) 2xTP
Fle9w precision X recall X

precision +recall  (2x TP)+ FP+ FN’

As shown in Figure 1, many CWEs point to very similar flaws. The "Research Concepts"
view provided by MITRE gives a good overview of the relationships between vulnerabili-
ties [75]. For example, the CWE-36 (Absolute Path Traversal) is present in our dataset.
The parent and the children of CWE-36 all point to different variations of absolute path
traversal weakness. To fairly assess the results, we employ a strategy similar to what has
been used for evaluating SAST tools previously [4, 80]. This strategy allows the parent
CWE and the child CWEs to also be considered to be a correct classification based on the
MITRE "Research Concepts" view. The only exception we make is related to the highest
level CWE:s in the "Research Concepts" view, which are called pillars. If the parent of
the CWE is of type pillar, we do not count that as the correct classification, as the pillar
descriptions can be very broad. For example, the parent of CWE-476 (NULL Pointer
Dereference) is CWE-710 (Improper Adherence to Coding Standards), which contains
many different vulnerabilities. The mapping we use is shown in Table 3. Interestingly,
even though this strategy has been employed in static code analyser benchmarks [4, 80],
it has not been previously utilised in LLM benchmarking studies [7, 8, 9, 10]. This is
most likely related to either a lack of awareness or the complexity it adds to the evaluation

process.
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Table 3. Mapping strategy

Original CWE

Acceptable CWEs

CWE-23

CWE-22, CWE-23, CWE-24, CWE-25, CWE-26,
CWE-27, CWE-28, CWE-29, CWE-30,
CWE-31, CWE-32, CWE-33, CWE-34

CWE-36 CWE-22, CWE-36, CWE-37, CWE-38,
CWE-39, CWE-40
CWE-78 CWE-77, CWE-78
CWE-80 CWE-79, CWE-80
CWE-81 CWE-79, CWE-81
CWE-83 CWE-79, CWE-82, CWE-83
CWE-89 CWE-89, CWE-564, CWE-943
CWE-129 CWE-129, CWE-1285
CWE-190 CWE-190, CWE-680
CWE-256 CWE-256, CWE-522
CWE-259 CWE-259, CWE-798
CWE-321 CWE-321, CWE-798
CWE-476 CWE-476
CWE-523 CWE-522, CWE-523
CWE-549 CWE-522, CWE-549
CWE-566 CWE-566, CWE-639
CWE-606 CWE-606, CWE-1284
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5. Results

5.1 Static code analysis tools

Previous benchmarks of static code analysis tools have shown YASCA'! and FindBug? to
perform well on the Juliet dataset [16]. While both tools are no longer supported and have
been deprecated, FindBug has a community-developed successor project called SpotBugs?.
SpotBugs can be used with plugins originally meant for FindBug. SpotBugs is actively
maintained and improved by the community. Other previous studies have used CodeQL as
the comparison point when evaluating LLMs [7]. Both CodeQL and SpotBugs have shown
strong results on synthetic datasets, making them a good comparison point for this study
[81]. Like most static code analysis tools, both CodeQL and SpotBugs need the dataset to

be compileable to run the scan.

5.1.1 CodeQL

CodeQL is a tool that treats code like data and allows anyone to write queries against the
code [82]. The software is written and maintained by GitHub and the community, with the
queries being open-source [82]. CodeQL supports ten different programming languages
[83]. Out of the box, CodeQL provides three different configurations for Java code analysis:
the default configuration, the extended security configuration, and the extended security
and quality configuration. CodeQL provides mappings for CWE-IDs, which significantly
simplifies analysing the results [84]. All three different configurations are tested, with
the results displayed in Table 4. The default configuration is denoted as CodeQL-d, the
extended security configuration is denoted as CodeQL-es and the extended security and

quality configuration is denoted as CodeQL-esq.

Table 4. CodeQL results

TP | FP | TN | FN || Accuracy | Precision | Recall | F1
CodeQL-d || 76 | 5 | 284|213 0.623 0.938 0.263 | 0.411
CodeQL-es || 127 | 20 | 269 | 162 0.685 0.864 0.439 | 0.583

CodeQL-esq || 137 | 23 | 266 | 152 0.697 0.856 0.474 | 0.61

'https://github.com/scovetta/yasca
’https://findbugs.sourceforge.net/
Shttps://github.com/spotbugs/spotbugs
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The default configuration seems to be configured to produce as good precision as possible.
This makes sense, as many false positive results could get taxing to deal with for the
developers. However, the other configurations perform better in terms of accuracy, recall
and F1 values. The extended security and quality configuration produces the best results,
achieving an F1 score of 0.61. Unfortunately, the previous study benchmarking LLM
vulnerability detection capabilities against CodeQL does not disclose the exact tested or

used configurations [7].

We also provide the results per CWE for the most successful approach, the CodeQL-esq
run, in Table 5. From the 17 CWEs in our dataset, CodeQL is unable to detect any
vulnerabilities for six CWEs. From these six, two CWEs, namely CWE-566 and CWE-606,
are not supported by the CodeQL mapping strategy [84]. This means CodeQL had no
mapping strategy to detect the CWE itself nor any of the parent or child CWEs.

Table 5. CodeQL-esq results per CWE

CWE TP | FP | TN | FN | Accuracy | Precision | Recall | F1
CWE-23 | 11 | O | 17 | 6 0.824 1 0.647 | 0.786
CWE-36 8 | 0| 171 9 0.735 1 0471 | 0.64
CWE-78 |17 | 5 | 12 | O 0.853 0.773 1 0.872
CWE-80 | 14 | O | 17 | 3 0.912 1 0.824 | 0.903
CWE-81 0| 0|17 ]| 17 0.5 0 0 0
CWE-83 | 14 | O | 17 | 3 0.912 1 0.824 | 0.903
CWE-89 | 17 | 2 | 15| O 0.941 0.895 1 0.944

CWE-129 0| 17 | 12 0.647 1 0.294 | 0.455
CWE-190 0 [ 17 | 10 0.706 1 0.412 | 0.583
CWE-256 0 |17 | 17 0.5 0 0 0
CWE-259 | 17 | 13 | 4 0 0.618 0.567 1 0.723
CWE-321 | 17 | 0 | 17 | O 1 1 1 1
CWE476 | 10 | 3 | 14 | 7 0.706 0.769 0.588 | 0.667
CWE-523 | 0 | O | 17 | 17 0.5 0 0 0
CWE-549 | 0 | O | 17 | 17 0.5 0 0 0
CWE-566 | O | O | 17 | 17 0.5 0 0 0
CWE-606 | O | O | 17 | 17 0.5 0 0 0
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5.1.2 SpotBugs

SpotBugs is a tool for finding bugs in Java code [85]. SpotBugs supports plugins, from
which the Find Security Bugs* plugin is used, similarly to prior benchmarks [81]. The
results of running the analysis are summarised in Table 6. The default configuration
is denoted as SpotBugs-d and the configuration with the Find Security Bugs plugin is
denoted as SpotBugs-fsb. The documentation only provides some CWE mappings for
the vulnerabilities detected by the Find Security Bugs plugin, the rest required manually
mapping the results to CWE identifiers.

Table 6. SpotBugs results

TP | FP | TN | FN || Accuracy | Precision | Recall | F1
SpotBugs-d || 39 | 20 | 269 | 250 0.533 0.661 0.135 | 0.224
SpotBugs-fsb || 152 | 23 | 266 | 137 0.723 0.869 0.526 | 0.655

The use of Find Security Bugs significantly improves the vulnerability detection capabilities
of the SpotBugs tool. The SpotBugs-fsb configuration performs better than the default
configuration for accuracy, precision, recall and F1 scores. It also performs better than the
best CodeQL approach, showing higher scores in most measurements. The only measure
where CodeQL outperforms SpotBugs is precision when the CodeQL default configuration

is used.

We also provide the results per CWE for the most successful approach, the SpotBugs-fsb
run, in Table 7. From the 17 CWEs in our dataset, SpotBugs is unable to detect any
vulnerabilities for six CWEs. Five of these are the same CWE categories that CodeQL is
unable to detect. Interestingly, where CodeQL was unable to detect any vulnerabilities
for the CWE-81, SpotBugs achieved perfect results with that CWE category. However,
CodeQL was able to correctly identify seven out of the 17 CWE-190 vulnerabilities,
whereas SpotBugs found none.

Table 7. SpotBugs-fsb results per CWE

CWE TP | FP | TN | FN || Accuracy | Precision | Recall | F1
CWE-23 | 13 | 0 | 17 | 4 0.882 1 0.765 | 0.867
CWE-36 (| 15| 0 | 17 | 2 0.941 1 0.882 | 0.938
CWE-78 |16 | 2 | 15 | 1 0.912 0.889 0.941 | 0914
CWE-80 | 17 | 0 | 17 | O 1 1 1 1

“https://find-sec-bugs.github.io/
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CWE-81 |17 | 0 | 17 | O 1 1 1 1
CWE-83 (17| 1 |16 | O 0.971 0.944 1 0.971
CWE-89 || 17 | 17 | O 0.5 0.5 1 0.667
CWE-129 | 4 | 3 | 14 | 13 0.529 0.571 0.235 | 0.333
CWE-190 | 0 | O | 17 | 17 0.5 0 0 0
CWE-256 | O | O | 17 | 17 0.5 0 0 0
CWE-259 | 14 | O | 17 | 3 0.912 1 0.824 | 0.903
CWE-321 |12 | 0 | 17 | 5 0.853 1 0.706 | 0.828
CWE-476 | 10 | O | 17 | 7 0.794 1 0.588 | 0.741
CWE-523 | 0 | 0 | 17 | 17 0.5 0 0 0
CWE-549 | 0 | O | 17 | 17 0.5 0 0 0
CWE-566 | O | O | 17 | 17 0.5 0 0 0
CWE-606 | O | O | 17 | 17 0.5 0 0 0

5.2 Vulnerability detection with LLMs

For the experiments, we use the GPT-4 turbo model with the temperature set to 0 unless
explicitly stated otherwise. There are two reasons for opting to use the GPT-4 turbo model
for the majority of the tests. Firstly, the GPT-4 turbo model costs per token are significantly
cheaper than those of the GPT-4 or Claude 3 Opus. Secondly, the GPT-4 turbo has a larger
context window. Similarly to prior studies, the temperature parameter of the LLM is set to
zero where not stated otherwise [7, 57, 67]. The temperature parameter is used to control
the randomness of the output and using a zero value makes the output as deterministic as
possible [35]. This means anyone running the same experiments with the same settings

should get very similar results to us.

It is important to note the LLMs are accessed through an API and used as a black box.
OpenAl and Anthropic APIs are used in conjunction with the LangChain Python library
[86] to conduct the experiments. Both OpenAl and Anthropic use a token-based pricing
structure, which means they request money for every input and output token. For the
models used, output tokens cost between two to five times more than input tokens. This
provides an incentive to give as much context as possible to the model as input. It also
allows to cut costs by explicitly stating the format and length of the expected output. The
result tables contain cost and time columns, which are aggregated values over the whole
dataset (578 files). The cost is in dollars and excludes VAT. To save on the costs, we
remove the indentation from the Java files before sending them to the LLM. The time is

marked in hours and it must be noted the time it takes to run the same prompt through the
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same LLM seems to vary notably. What is more, both OpenAl and Anthropic assign tiers
based on the amount of money paid to them and the length of time one has been a user of
the API [87, 88]. On lower tiers, one can run into rate-limiting issues, which can cause
variance in the running time [87, 88]. Another cause could be related to the amount of
simultaneous requests received by the service provider. Thus the time noted here is not a
reliable measure but more of an indication to show how much time the analysis took in our

settings.

All the full prompts are available in Appendix 2 — Prompts. To better display the tables
with results, all prompts are given shortened names which are referenced in the text, tables
and appendix. All the scripts used for testing and analysing the results are available in

version control software under the "llm-analyze", "scat-analyze" and "statistics" packages
[77].

5.2.1 Establishing baseline prompting strategy

To first establish a baseline, a basic prompt, which we denote as py, is compiled using the
best practices suggested by OpenAl for prompt engineering [39]. The LLM is asked to
adopt the persona of a security researcher, the instructions are clear on what is expected
and what the output should be. First, the same basic prompt is used three times to see
how big the variances are with LLM set to its most deterministic mode (temperature set to
0). As can be seen in Table 8, the results for using the same prompt produce very similar

outcomes.

There have been suggestions to ask LLMs to re-evaluate their responses to achieve better
results and different approaches for this have been proposed [7, 39, 40, 41]. Four different
approaches are tested, where the output of the basic prompt is given back to the LLM and
the LLM is asked to re-evaluate and improve its previous response. All the approaches
are quite similar but they focus on slightly different aspects. The first approach is called
recursive criticism and improvement (RCI), which we denote as p;_,..; [40]. RCI builds on
the initial prompt and answer from the LLM, asking the LLM to find problems with its
initial answer and then improve it based on the problems. The second improvement tactic
is called self-refinement, denoted as p,_,, [41]. Self-refinement asks to provide overall
feedback (instead of just focusing on problems) on the previous answer and to improve
the initial response. For the third approach, we asked the LL.M to provide feedback and
response in one go and called it short self-refinement (p,_ss,). The short self-refinement
has the advantage of being faster and cheaper, as the LLM is invoked only twice and fewer
tokens are used. This approach is the most similar to what has been utilised by previous

research on the topic [7]. As can be seen in Table 8, the RCI strategy performed the best.
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To test if we could achieve similar results with cheaper costs, lastly, a strategy we called
short RCI (pp_sci), 1S tried. The idea behind short RCI is to try and find out how the

criticism and improvements in one step perform in comparison to the original.

Table 8. Baseline prompting results

Strategy | TP | FP | TN | FN | Accuracy | Precision | Recall F1 Cost | Time
Db 134 | 131 | 158 | 155 0.505 0.506 0.464 | 0.484 || 4.38% | 0.5h
Db 133 | 130 | 159 | 156 0.505 0.506 046 | 0.482 || 4.39% 1h
Db 130 | 133 | 156 | 159 0.495 0.494 045 | 0471 | 439% | 0.5h

DPb—rei 140 | 49 | 240 | 149 0.657 0.741 0.484 | 0.586 || 17.47$ | 4.2h
Db—sr 135 | 91 | 198 | 154 0.576 0.597 0.467 | 0.524 22% 6.8h
Db—ssr 119 | 70 | 219 | 170 0.585 0.63 0412 | 0498 || 9.72% | 1.5h
DPb—srei 133 | 80 | 209 | 156 0.592 0.624 0.46 0.53 || 11.07$ | 2.6h
DPb—sc 133 | 133 | 156 | 156 0.5 0.5 046 | 0479 || 13.16$ | 2.7h

As seen in Table 8, the short RCI tactic (p,_.;) shows second-best results. While the short
RCI tactic does provide significant time and cost savings in comparison to the full RCI,
it performs more poorly in accuracy, precision, recall and F1 scores. We hypothesise the
difference in results is related to the RCI prompt allowing the LLM to generate relevant
clues, and build the correction on those clues. Asking the LLM to do both in the same
step will give the LLM less input for the final verdict, which seems to affect the results

negatively.

Lastly, a prompting strategy called self-consistency is tested, which we denote as py_s.
[19]. For this, the basic prompt is run three times and only the files that are classified
positive two or three times are counted as positive. This performs worse than the RCI,
self-refinement and self-reflection strategies, most likely due to using a temperature value
of zero. With higher temperature values, self-consistency could provide more benefits,
as the higher temperature would cause the output to have more randomness, which the

self-consistency strategy could help control.

5.2.2 Comparing prompting approaches from prior studies

While different prompting strategies have been proposed by prior studies, they have not
been compared amongst each other on the same dataset. We try different approaches that
have shown good results in previous studies and report on the results to show which one
performs the best on our dataset. The results are displayed in Table 9, where we have the

basic prompt and the basic prompt utilising RCI as the comparison point.
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Table 9. Prompts from prior studies results

Strategy | TP | FP | TN | FN || Accuracy | Precision | Recall F1 Cost | Time
Db 134 | 131 | 158 | 155 0.505 0.506 0.464 | 0.484 || 4.38% | 0.9h
DPb—rei 140 | 49 | 240 | 149 0.657 0.741 0.484 | 0.586 || 17.47% | 4.2h
Das 146 | 123 | 166 | 143 0.54 0.543 0.505 | 0.523 || 5.11$ | 0.7h
Das—rci 131 | 59 | 230 | 158 0.625 0.689 0.453 | 0.547 || 18.48% | 2.4h
Drf 161 | 168 | 121 | 128 0.488 0.489 0.557 | 0.521 || 11.86% | 6.2h
Drf—rci 153 | 112 | 177 | 136 0.571 0.577 0.529 | 0.552 || 41.15% | 18h
Dfs20 147 | 150 | 139 | 142 0.495 0.495 0.509 | 0.502 || 17.39% | 0.4h
Dfs6 157 | 132 | 157 | 132 0.543 0.543 0.543 | 0543 || 6.07% | 0.5h
Dfs6—rci || 168 | 146 | 143 | 121 0.538 0.535 0.581 | 0.557 || 34.95% | 6.4h
Ddfa 150 | 102 | 187 | 139 0.583 0.595 0.519 | 0.555 || 9.33% | 4.8h
Ddfa—rci || 171 | 57 | 232 | 118 0.697 0.75 0.592 | 0.662 || 34.58% | 20.5h

LLMs can have difficulties extracting the API call sequences from code [8]. Adding the
API call sequence to the prompt along with the code has been shown to improve the
LLM vulnerability detection capabilities [8]. To test that, API call sequence extraction
capabilities are created® and the API sequence is provided to the LLM along with the code.
This prompt is denoted as p,s and it does outperform the basic prompting strategy. We
also test the RCI approach on the results (p,s_.;) and while it does significantly lower the
amount of false positive results, it also lowers the amount of true positive results. The RCI
strategy does have a positive effect on the results, raising the accuracy, precision and F1
scores. Nonetheless, the basic prompting strategy benefits more from the RCI strategy
and thus this approach does not outperform the baseline basic prompt utilising the RCI

strategy.

It has been hypothesised, that LLMs might be able to perform better if they are not only
asked to find vulnerabilities, but to also provide a fix for them [9]. To test that, we use a
prompt that requires the LLLM to detect vulnerabilities and to provide a fix for the found
issue, denoted as p, s for require fix prompting. The same prompt is tested utilising the RCI
strategy as well, which we denote as p, s_,.;. Similarly to the API call sequence prompt, the
requiring fix approach outperforms the basic prompt but sees very little improvement with
the RCI strategy. Overall, this approach does not outperform the baseline basic prompt
utilising the RCI strategy. What is more, the require fix prompting strategy ends up being
among the most costly strategies we test. This is due to the fact that the output tokens are

expensive and the output is expected to contain the fixed code.

GPT-4 has shown good results in vulnerability detection tasks in few-shot settings. There

Shttps://github.com/katamb/thesis-scripts/blob/main/llm-analyze/tools/
ast/ApiCallExtractor.py

47


https://github.com/katamb/thesis-scripts/blob/main/llm-analyze/tools/ast/ApiCallExtractor.py
https://github.com/katamb/thesis-scripts/blob/main/llm-analyze/tools/ast/ApiCallExtractor.py

are many potential ways to do few-shot prompting: using different examples, having
different amounts of examples and changing the proportion of vulnerable or non-vulnerable
samples. We follow the previous study, utilising examples provided by MITRE and
including examples from the top 25 vulnerabilities [10]. We have an even amount of
vulnerable and non-vulnerable samples and we try with different sample sizes. First, we
include all CWEs from the MITRE top 25 where they have a Java code example available.
Overall, there are ten such CWESs and as we also include a fixed version of all the samples,
we end up with 20 examples overall, thus we name this prompt pso0. Of the ten included
CWEs, only two exactly match the CWEs in our dataset. To see how providing less
examples affects the results, we also try a prompt containing six simple samples overall,
three vulnerable and three non-vulnerable, which we call pss. There we use one CWE,
which is also present in our dataset and two that are not. This approach yields better results,
most likely due to having less distracting code samples in the context. We are able to
slightly improve the F1 score with RCI strategy (pfs6—rci), however, this not only raises

the number of true positive but also the false positive results.

Asking LLMs to analyse the dataflow has been shown to improve the vulnerability detection
results [7]. This is similar to CoT prompting, as the LLM is asked to analyse the dataflows
and sanitisers, but without explicitly stating to think step-by-step. To test that approach, we
run a dataflow analysis prompt, denoted as pgy,, similarly to [7]. While the given paper uses
a self-refinement strategy to improve the results [7], we use the RCI approach (pgrq—rci), as
we saw it perform better on the baseline results. The main difference between our approach
and that of the original paper [7] is that they used LLMs for binary classification, whereas
we use them for multi-class classification. The dataflow analysis prompt with RCI stands
out as the best-performing approach. It outperforms the previous best approaches for the
accuracy, precision, recall and F1 scores. What is more, this approach also outperforms the
best CodeQL and SpotBugs results. While it is not the costliest strategy we test, it must be

noted the main downside of this strategy is that it is rather costly to run.

5.2.3 Custom prompting strategies

Testing the approaches proposed in previous studies allowed us to get good results. To
see if these results could be further improved, multiple additional approaches are tested.
To provide a better overview, the best results from the baseline testing and the previous

studies approaches have been provided in Table 10 among the new results.

Table 10. Custom prompting results

Strategy TP | FP | TN | FN || Accuracy | Precision | Recall | F1 Cost | Time

Db 134 | 131 | 158 | 155 0.505 0.506 0.464 | 0.484 || 4.38% | 0.5h
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Db—rci 140 | 49 | 240 | 149 0.657 0.741 0.484 | 0.586 || 17.47$ | 4.2h
Ddfa 150 | 102 | 187 | 139 0.583 0.595 0.519 | 0.555 || 9.33% | 4.8h
Ddfa—rci 171 | 57 | 232 | 118 0.697 0.75 0.592 | 0.662 || 34.58% | 20.5h
Ddfa—h 163 | 110 | 179 | 126 0.592 0.597 0.564 | 0.58 8.64% | 4.7h
Ddfa—h—rci 165 | 61 | 228 | 124 0.68 0.73 0.571 | 0.641 || 35.47$ | 39.5h
Pcot—dfa 142 | 72 | 217 | 147 0.621 0.664 0.491 | 0.565 || 12.76% | 4.5h
Deot—dfa—rci || 146 | 65 | 224 | 143 0.64 0.692 0.505 | 0.584 || 43.61$ | 11.2h
Deot—dfa—srei || 140 | 63 | 226 | 149 0.633 0.69 0.484 | 0.569 || 34.12$ | 7.6h
Deot—8s 160 | 88 | 201 | 129 0.625 0.645 0.554 | 0.596 || 13.4$ | 4.9h
Deot—8s—rci 161 | 85 | 204 | 128 0.631 0.654 0.557 | 0.602 || 45.94$ | 11.7h
Der 144 | 116 | 173 | 145 0.548 0.554 0.498 | 0.525 || 12.49% | 5.3h
Der—rei 142 | 110 | 179 | 147 0.555 0.563 0.491 | 0.525 || 43.835 | 12h

As the dataflow analysis prompt with RCI (p4s.—rc;) showed the best results, modifications
of the prompt are tested to try and improve the results. First, some more hints are added
to the prompt, which we denote as p4s,—p,. This is a small change, where the name of the
programming language (Java) is added and the wording is slightly changed. The wording is
changed to explicitly mention the file might not contain any vulnerabilities at all. This did
show slight improvements over the original prompt (pgs,). However, testing this approach
with RCI strategy (pgq—n—rci) did not bring as big improvements as the original. While we
managed to achieve an F1 score similar to the one of the original dataflow analysis with

RCI, we are unable to improve the results.

To see if asking to think step-by-step offers any improvements, the dataflow analysis
prompt is modified into a CoT prompt, denoted as p.ot—qrq. Just as with adding the hints,
we can get some improvements before the RCI strategy is applied. However, the RCI
strategy (Deot—dfa—rci) does not offer as many improvements as it did for the original
dataflow analysis prompt. As this ended up being the most expensive approach, we tried to
see if we could lower costs without impacting the performance. To test this, experiments
are conducted using the dataflow analysis CoT prompt with RCI methodology. However,
the LLM is asked to summarise the problems in five sentences or less to save on the output
tokens. This prompt is denoted peoi—grqa—srei- While this approach is indeed somewhat

cheaper and faster, it performed worse than the same approach without limitations.

A separate CoT strategy is developed to more closely mimic what software engineers
would manually check during the code review process. This consists of eight steps, thus
the prompt is named CoT eight-step, denoted as p.,;_ss. For previous CoT approaches, we
have seen very small improvements with the RCI strategy. In this case, the RCI once again

has very small impact on the F1 score. This is likely due to the CoT approach already
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enriching the context enough for the LLM, which means the RCI strategy does not add
anything more meaningful. However, the CoT eight-step is able to produce fourth-best

results overall with far smaller costs than those of the better-performing strategies.

Treating the exercise as code review seemed to perform rather well. Motivated by that
observation, another prompt for a similar approach is developed. This time the LLM is
given a checklist of questions and asked to treat this as a code review exercise, denoted
as p., for the code review prompt. These questions contain quite generic questions that
software engineers should think about when reviewing the code. The checklist is taken
from the internet and slightly supplemented [89]. This approach performs much poorer
than the CoT 8-step approach in accuracy, precision, recall and F1 scores. Interestingly, this
is the only approach which did not benefit from using the RCI strategy (pe,—r¢;), showing
the same F1 score both before and after using the RCI strategy.

5.2.4 Strategies requiring higher temperature values

Some prompting strategies benefit from using higher temperature values. We see that with
the temperature value set to zero, the self-consistency approach does not provide many
benefits. That makes sense, as the idea of self-consistency is to be able to get consistent
responses with higher temperatures [19]. Another strategy that should benefit from higher
temperature values is the tree of thoughts (ToT) [18]. ToT strategy is somewhat similar
to the CoT, however, for every step multiple potential responses are generated. These
responses are then evaluated and the best one is chosen. As both the self-consistency and
ToT have shown good results with temperature values of 0.7, that is the temperature we
use [18, 19].

To test these methods, we use the CoT 8-step prompt, as it provides the best results before
applying any further steps (like the RCI strategy). As running these strategies is expensive,
we start with testing a few select CWEs to better understand if they could outperform the
previous attempts. Firstly, the CWE-23 is chosen, which has a very good detection rate
with a plain CoT 8-step prompt. Secondly, CWE-129 is chosen, which has an average
detection rate when using a plain CoT 8-step prompt. Thirdly, CWE-549 is chosen, which
is not detected at all by the basic CoT 8-step strategy.

Table 11. Results from initial testing of higher-temperature strategies

Strategy CWE TP | FP | TN | FN || Accuracy | Precision | Recall F1 Cost | Time
CWE-23 17 | 2 15 0 0.941 0.895 1 0.944
Peot—8s CWE-129 || 14 | 15 | 2 3 0.471 0.483 0.824 | 0.609 || 2.38% | 0.8h
t=20 CWE-549 || 0 0 17 | 17 0.5 0 0 0




Pcot—8s—sc

t=0.7

CWE-23

17

16

0.971

0.944

0.971

CWE-129

14

14

0.5

0.5

0.824

0.622

CWE-549

17

17

0.5

7.31%

2.5h

DPtot—8s
t=0.7

CWE-23

17

11

0.676

0.607

0.756

CWE-129

11

12

0.676

0.688

0.647

0.667

CWE-549

17

17

0.5

49.08%

5.5h

For the ToT strategy, we generate three potential candidates for each step and then have
three different evaluators evaluate the responses for each step. The response that gets
chosen by the most evaluators is picked. This is similar to the approach the authors of
the ToT paper utilised in the creative writing task [18]. For the testing, we forked the
repository created by the authors of the ToT paper [90] and added a task for code analysis
[91]. For the strategy to work properly, we need to make slight modifications to the prompt
and we need to have another prompt for the evaluation step. We call the main prompt
Drot—ss and the evaluation prompt ps:—ss—evqi- In OUr case, as the strategy had eight steps,
we generated three candidates for each step and had three evaluators. This means we made
8 X (34 3) = 48 calls to the LLM just for analysing a single file. As displayed in Table 11,
for the evaluation of CWE-129, the strategy does provide slight improvements. However,
for CWE-23, the results are significantly worse. Based on these results and the high costs,
we do not dive deeper into testing the ToT strategy. It must be noted this strategy does
have potential for future research, as there are many things to configure, like the evaluation

strategy, the number of responses generated etc.

The self-consistency approach for the CoT 8-step prompt is denoted as peor—gs—sc. We
run the same prompt three times and only count the classifications positive when the file
is classified as positive two or three times. In Table 11, we can see the self-consistency
approach with higher temperatures provides slight improvements for two of the three CWEs.
As the self-consistency shows improved results, we try the self-consistency strategy for
the whole dataset. This resulted in a noticeable improvement in the results, especially

regarding lowering the false positives. The results are displayed in Table 12.

Table 12. Self-consistency results

Strategy

TP

FP

TN

FN

Accuracy

Precision

Recall

F1

Cost

Time

Dcot—8s» t=20

160

88

201

129

0.625

0.645

0.554

0.596

13.4%

4.9h

Pcot—8s—rcis t=0

161

85

204

128

0.631

0.654

0.557

0.602

45.94%

11.7h

Pcot—8s—sc» t=0.7

164

60

229

125

0.68

0.732

0.567

0.639

40.81%

15.4h
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5.2.5 Different models

As all the testing so far has been conducted on the GPT-4 turbo model, we also wanted to
see how it compares to other commercial LLMs, that are beloved by the users [17]. At
the time of writing, the GPT-4 non-turbo model and Claude 3 Opus models are among the
highest-ranking ones, so we also test these. The Google Gemini model is also considered.
However, as it is not officially available in Europe at the time of running the experiments,

it is not included [92]. For testing with other models, the temperature value of zero is used.

Both these models are more expensive to run, so we only run a few strategies that show
good results with the GPT-4 turbo model. We choose the dataflow analysis prompt, the
dataflow analysis prompt with RCI and the CoT 8-step prompt. The dataflow prompt
with the RCI post-processing is the best-performing one and the CoT 8-step prompt is the
best-performing strategy without any post-processing steps.

The results are displayed in Table 13. Interestingly, both of the other models show better
results with the CoT 8-step prompt. The GPT-4 model with the CoT 8-step prompt
outperforms all the other approaches, showing F1 scores of 0.672. The results of the
Claude 3 Opus model are also intriguing. The CoT 8-step strategy shows the lowest false
positive rate we have seen among the LL.Ms whilst maintaining a respectable true positive
rate. What is more, the RCI strategy improves the scores in all tests conducted on the
GPT-4 turbo model. On the Claude 3 Opus model, the RCI strategy seems to reduce the

performance.

Table 13. Other models results

Strategy | TP | FP | TN | FN || Accuracy | Precision | Recall | F1 Cost | Time
£ Ddfa 150 | 102 | 187 | 139 0.583 0.595 0.519 | 0.555 || 9.33% | 4.8h
;H.S Ddfa—rei || 171 | 57 | 232 | 118 0.697 0.75 0.592 | 0.662 || 34.58% | 20.5h
E Deot—ss || 160 | 88 | 201 | 129 0.625 0.645 0.554 | 0.596 || 13.4$ | 4.9h

Ddfa 154 | 98 | 191 | 135 0.597 0.611 0.533 | 0.569 || 19.35% | 1.5h
% Ddfa—rei || 148 | 37 | 252 | 141 0.692 0.8 0.512 | 0.624 || 66.79% | 3.6h

Deot—ss || 174 | 55 | 234 | 115 0.706 0.76 0.602 | 0.672 || 23.32$ | 2h
éi Ddfa 141 | 71 | 218 | 148 0.621 0.665 0.488 | 0.563 || 19.32% | 3.1h
S | Pafa—rei || 112 | 50 | 239 | 177 0.607 0.691 0.388 | 0.497 || 65.29% | 10.8h
é Deot—ss || 137 | 18 | 271 | 152 0.706 0.884 0.474 | 0.617 || 26.87$% | 3.8h

5.2.6 Results per CWE category

The best results in terms of recall and F1 scores are achieved with the GPT-4 model using

the CoT 8-step prompt. We provide an overview of the performance per CWE class in

52



Table 14. Notably, four of the CWEs are undetected, whereas both static analysers are
unable to detect six CWEs. What is more, for all other CWESs, the number of true positives

is larger than the number of false positives.

Table 14. GPT-4 poi—ss prompt results per CWE

CWE TP | FP | TN | FN || Accuracy | Precision | Recall | F1
CWE-23 | 17 | 3 | 14| O 0.912 0.85 1 0.919
CWE-36 | 15| 2 | 15| 2 0.882 0.882 0.882 | 0.882
CWE-78 | 17 | 3 | 14 | O 0.912 0.85 1 0.919
CWE-80 | 12 | O | 17 | 5 0.853 1 0.706 | 0.828
CWE-81 6 | 0| 17 | 11 0.676 1 0.353 | 0.522
CWE-83 | 17 | 1 |16 | O 0.971 0.944 1 0.971
CWE-89 | 17 | 11 | 6 0 0.676 0.607 1 0.756

CWE-129 | 16 | 15 | 2 1 0.529 0.516 0.941 | 0.667
CWE-190 | 12 | 4 | 13 | 5 0.735 0.75 0.706 | 0.727
CWE-256 | 2 | 0 | 17 | 15 0.559 1 0.118 | 0.211
CWE-259 | 13 | 5 | 12 | 4 0.735 0.722 0.765 | 0.743
CWE-321 | 16 | O | 17 | 1 0.971 1 0.941 | 0.97
CWE-476 | 14 | 11 | 6 3 0.588 0.56 0.824 | 0.667
CWE-523 | 0 | O | 17 | 17 0.5 0 0 0
CWE-549 | O | O | 17 | 17 0.5 0 0 0
CWE-566 | O | O | 17 | 17 0.5 0 0 0
CWE-606 | O | O | 17 | 17 0.5 0 0 0

The best results in terms of precision are achieved with the Claude 3 Opus model using
the CoT 8-step prompt. While this Claude 3 Opus model does not achieve as high recall
values for most CWEs as GPT-4, it produces far fewer false positive results. What is more,
it is able to correctly classify CWE-549 in one case, leaving just three CWEs that are not
correctly classified.

Table 15. Claude 3 Opus p..;_ss prompt results per CWE

CWE TP | FP | TN | FN | Accuracy | Precision | Recall | F1
CWE-23 | 13 | 0 | 17 | 4 0.882 1 0.765 | 0.867
CWE-36 | 11 | O | 17 | 6 0.824 1 0.647 | 0.786
CWE-78 | 13 | 0 | 17 | 4 0.882 1 0.765 | 0.867
CWE-80 | 11 | O | 17 | 6 0.824 1 0.647 | 0.786
CWE-81 8 | 3 14| 9 0.647 0.727 0.471 | 0.571
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CWE-83 | 14 | 1 | 16 | 3 0.882 0.933 0.824 | 0.875
CWE-89 (|15 | 1 | 16 | 2 0.912 0.938 0.882 | 0.909
CWE-129 | 7 | 3 | 14 | 10 0.618 0.7 0.412 | 0.519
CWE-190 | 4 | 0 | 17 | 13 0.618 1 0.235 | 0.381
CWE-256 | 6 | 0 | 17 | 11 0.676 1 0.353 | 0.522
CWE-259 | 13 | 3 | 14 | 4 0.794 0.813 0.765 | 0.788
CWE-321 || 16 | 5 | 12 0.824 0.762 0.941 | 0.842
CWE476 | 5 | 2 | 15| 12 0.588 0.714 0.294 | 0.417
CWE-523 | 0 | O | 17 | 17 0.5 0 0 0

CWE-549 | 1 0|17 | 16 0.529 1 0.059 | 0.111
CWE-566 | O | O | 17 | 17 0.5 0 0 0

CWE-606 | O | O | 17 | 17 0.5 0 0 0

5.3 Quantitative analysis summary

The most important results are given in Table 16. The best overall precision is achieved

by CodeQL with its default configuration, achieving a precision score of 0.938. The

best overall results from traditional static analysis tools are shown by SpotBugs with the

Find Security Bugs plugin. This shows the best overall accuracy score of 0.723 while

maintaining respectable precision, recall and F1 scores. We provide the best prompting
strategy for each of the tested LLMs as well. The GPT-4 turbo performs best with the
Pdfa—rci prompt, outperforming the static analysis tools in terms of F1 score. The GPT-4

performs best with the p.,;_ss prompt, showing the best recall and F1 scores overall. The

Claude 3 Opus model performs best with the p.,;—ss prompt, showing the lowest false

positive rate out of the tested LLM approaches. In terms of price and time, the traditional

tools provide a much better value.

Table 16. Results overview

TP | FP | TN | FN || Accuracy | Precision | Recall F1 Cost | Time
CodeQL-d 76 5 | 284 | 213 0.623 0.938 0.263 | 0.411 03 <lm
CodeQL-esq 137 | 23 | 266 | 152 0.697 0.856 0474 | 0.61 03 <lm
SpotBugs-fsb || 152 | 23 | 266 | 137 0.723 0.869 0.526 | 0.655 03 <lm
GPT-4 turbo
171 | 57 | 232 | 118 0.697 0.75 0.592 | 0.662 || 34.58% | 20.5h
Pdfa—rci
GPT-4
174 | 55 | 234 | 115 0.706 0.76 0.602 | 0.672 || 23.32% 2h
Pcot—8s
Claude 3 Opus
137 | 18 | 271 | 152 0.706 0.884 0.474 | 0.617 || 26.87$ | 3.8h
Pcot—8s
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5.4 Qualitative analysis

For static analysis tools to provide value, they must not only point at a vulnerability but
also explain their findings. We compare the outputs from CodeQL, SpotBugs and two LLM
model outputs. The best-performing approach for each tool is used for the comparison.
For CodeQL, the output of CodeQL-esq configuration is used, for SpotBugs, the output of
SpotBugs-fsb configuration is used. For LLM, the GPT-4 and Claude 3 Opus models with
CoT 8-step prompting results are used. The choices of LLMs are based on the best overall
recall, precision and F1 scores. All the relevant code samples are available in Appendix 3

— Code Samples.

As the outputs from the tools can be quite long, we focus on two files. We look at one
vulnerable file that all the approaches correctly classified as vulnerable and one non-
vulnerable file that all approaches incorrectly classified as vulnerable. For the file selection,
we found only one such file, which was not vulnerable but incorrectly classified to be
vulnerable by all four approaches. For the correctly classified file, we randomly selected

one file that was correctly identified to be vulnerable by all four approaches.

5.4.1 True positive classifications

The file named "J20736" in the dataset is vulnerable to CWE-78: OS command injection.
All approaches we cover correctly identify the file to be vulnerable. The vulnerable
function assigns the variable "data" a user-provided value, which is then used to execute

the system command.

The CodeQL-esq scan reports the issue correctly. The problem is reported as an "Uncon-
trolled command line", with a good human-readable description and the line numbers. The
result is in CSV format, with the values in order: name, description, severity, message,
path, start line, start column, end line, end column [93].

"Uncontrolled command line", "Using externally controlled strings in a command line is

vulnerable to malicious changes in the strings.","error","This command line depends
on a [[""user-provided value""|""relative:///src/testcases/
CWE78_0S_Command_Injection/J20736.java:13:65:13:88""]1].","/src/testcases/

CWE78_0S_Command_Injection/J20736.java","31","53","31","68"

The SpotBugs-fsb scan correctly identifies the issue and the line number. The first letter in
the result refers to the severity of the issue, where "H" denotes high severity. The second
letter denotes the type of the problem, where "S" stands for security issue. Then there is a

description of the problem and lastly, the file name and line number are given.
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H S SECCI: This usage of java/lang/Runtime.exec(Ljava/lang/String;)Ljava/lang/Process;

can be vulnerable to Command Injection At J20736.java:[line 31]

The GPT-4 LLM (using p..:—ss) correctly identifies the relevant issue. The verdict contains
the correct CWE identifier and the correct description. The description is concise and easy
to follow, in a nice human-readable format.

1. Identify Weaknesses: The code appears to have a command injection vulnerability.

2. Review User Input Handling: The code takes user input from the HTTP request query

string without any validation or sanitization and uses it in a system command.

3. Analyze Data Flow: The untrusted data from the HTTP request query string is tokenized
and if a token starts with "id=", the rest of the token is used as data. This data

is then appended to a system command and executed.

4. Check for Mitigations: There are no mitigations in place to prevent command injection.

The user input is not validated or sanitized before being used in a system command.

5. Evaluate Conditional Branching: There is no dead code in the program. All branches

can be reached.

6. Assess Error Handling: The code does not handle any errors that may occur during the

execution of the system command.
7. Identify Code Leaking Secrets: The code does not contain any secrets.

8. Provide verdict:
— vulnerability: YES | vulnerability type: CWE-78 (OS Command Injection) | The code
executes a system command with unsanitized user input, leading to a command

injection vulnerability.

The Claude 3 Opus LLM (using p..:—ss) also finds the issue and provides just as nice
human-readable description as the GPT-4 model.

Here is my analysis of the provided Java code:

1. Identify Weaknesses: The code may be vulnerable to OS command injection (CWE-78) if

the ’data’ variable is influenced by user input.

2. Review User Input Handling: The ’data’ variable is populated from the query string
parameter "id" without any validation or sanitization. This allows user input to

directly influence the ’data’ variable.

3. Analyze Data Flow: The untrusted ’'data’ variable is appended to the ’osCommand’
string which is then passed to Runtime.exec () to execute a system command. There is

no sanitization of ’data’ before using it in the command.

4. Check for Mitigations: There are no input validation or sanitization steps to
mitigate command injection. The ’'data’ parameter is used unsafely in the execution

of a system command.
5. Evaluate Conditional Branching: The code has a conditional branch based on

PRIVATE_STATIC_FINAL_TRUE which is always true. The else block setting data to null

is unreachable dead code and not relevant.
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6. Assess Error Handling: The code does not contain any explicit error handling for the

command execution.
7. Identify Code Leaking Secrets: The code does not appear to leak any secrets.

8. Verdict:
vulnerability: YES | vulnerability type: CWE-78

In summary, the code is vulnerable to OS command injection (CWE-78) because the ’data’
variable from the "id" query string parameter is used without sanitization to
construct a system command that is executed. An attacker could inject arbitrary OS

commands via the "id" parameter.

Overall, the file was correctly identified to be vulnerable to OS command injection by
all four approaches. All four outputs are clear on the vulnerability type, with the LLM
response being the most verbose.

5.4.2 False positive classifications

The file named "J23877" in the dataset is not vulnerable to CWE-89: SQL injection.
However, all the approaches incorrectly identify the file to be vulnerable. The file contains
two non-vulnerable functions, one with a good source and a bad sink, and the other with a
bad source and a good sink. While these functions do not follow the best practices, neither

function can be exploited.

The CodeQL-esq scan reports two issues related to SQL injection. The problem we are
interested in is reported as a "Query built by concatenation with a possibly-untrusted
string". The description states that the value used in the query "may be untrusted". It
is indeed correct that using string concatenation is not the best practice for SQL queries
and prepared statements should be used instead. However, in this case, the code is not
vulnerable, as the variable can not be set by the user. The result is still counted as a false
positive, as the problem is reported as SQL injection instead of not following the best
practices.

"Query built by concatenation with a possibly-untrusted string", "Building a SQL or Java
Persistence query by concatenating a possibly-untrusted string is vulnerable to
insertion of malicious code.","error", "Query built by concatenation with [[""this
expression""|""relative:///src/testcases/CWE89_SQL_Injection/s02/J23877.java
:24:101:24:108""]], which may be untrusted.","/src/testcases/CWE89_SQL_Injection/s02
/3J23877.java", "24","47","24","114"

"Query built by concatenation with a possibly-untrusted string", "Building a SQL or Java
Persistence query by concatenating a possibly-untrusted string is vulnerable to
insertion of malicious code.","error", "Query built by concatenation with [[""this
expression""|""relative:///src/testcases/CWE89_SQL_Injection/s02/J23877.java
:62:101:62:108""]11, which may be untrusted.","/src/testcases/CWE89_SQL_Injection/s02

/J23877.java","62","47","62","114"
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The SpotBugs-fsb reports one SQL injection-related issue. The issue is reported as a
medium level security issue. The wording hints at a possible SQL injection, which in the
given case can not happen and thus is counted as a false positive.

M S SQL: testcases.CWE89_SQL_Injection.s02.J23877.processG2B (HttpServletRequest,
HttpServletResponse) passes a nonconstant String to an execute or addBatch method on
an SQL statement At J23877.7java:[line 62]

The GPT-4 LLM (using p..:—ss) marks the function with the bad source to be vulnerable, as
the code does not use a prepared statement for the SQL query. The analysis fails to notice
the value concatenated to the SQL statement is hard coded and thus is not considered a
vulnerability.

1. Identify Weaknesses: The code has potential SQL Injection vulnerabilities.

2. Review User Input Handling: The user input is taken directly from the HTTP request

parameters and used in SQL queries without proper validation or sanitization in the '
processB2G' method.

3. Analyze Data Flow: The untrusted data from the HTTP request parameters is directly
used in the SQL query in the ‘processB2G' method.

4. Check for Mitigations: The code uses ‘PreparedStatement' in the ‘processB2G‘ method
which mitigates the SQL Injection vulnerability. However, in the ‘processG2B‘' method,

the code uses ‘Statement' which is vulnerable to SQL Injection.
5. Evaluate Conditional Branching: There is no dead code in the given code.

6. Assess Error Handling: Errors are logged with a warning level, but the execution

continues. This could potentially lead to further errors or unexpected behavior.
7. Identify Code Leaking Secrets: The code does not seem to contain any secrets.

8. Provide verdict:
— vulnerability: YES | vulnerability type: CWE-89 (SQL Injection) | The ‘processG2B‘
method is vulnerable to SQL Injection as it uses ‘Statement' to execute SQL queries.
— vulnerability: NO | vulnerability type: CWE-89 (SQL Injection) | The ‘processB2G‘
method is not vulnerable to SQL Injection as it uses ‘PreparedStatement‘ to execute

SQL queries.

The Claude 3 Opus LLLM (using p..¢—ss) also marks the function with the bad source to be
vulnerable, as the code does not use a prepared statement for the SQL query. However, in
this case, the LLM correctly identifies the code is not currently exploitable.

Here is my analysis of the provided Java code:

1. Identify Weaknesses: The code may be vulnerable to SQL injection in the processG2B

method. It directly concatenates user input into SQL queries without proper

sanitization.
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2. Review User Input Handling: In processG2B, the ’'data’ variable is hardcoded to "foo"
regardless of the conditional branching. It does not come from user input. In
processB2G, the ’'data’ variable comes from the ’'name’ request parameter, which is
user input. However, it is properly parameterized in the SQL query using a

PreparedStatement.

3. Analyze Data Flow: In processG2B, the hardcoded ’data’ value flows unsanitized into
the SQL query. In processB2G, the user input ’'data’ is safely passed to the SQL

query via a parameterized PreparedStatement.

4. Check for Mitigations: The processB2G method mitigates SQL injection by using a
parameterized PreparedStatement. The processG2B method has no mitigations and

concatenates the ’'data’ value directly into the query.

5. Evaluate Conditional Branching: The conditional branching in both methods does not
affect the data flow or vulnerability. The same code is executed regardless of the

branch taken.

6. Assess Error Handling: Database and SQL errors are caught and logged at the WARNING

level. The application continues execution after logging.

7. Identify Code Leaking Secrets: No sensitive information like passwords, keys or

secrets are leaked in the provided code.

8. Verdict:

vulnerability: YES | vulnerability type: CWE-89 | details: Potential SQL injection in
processG2B due to direct concatenation of hardcoded data into SQL query.

vulnerability: NO | vulnerability type: CWE-89 | details: SQL injection mitigated in

processB2G by using parameterized PreparedStatement.

In summary, there is a potential SQL injection vulnerability in the processG2B method,
but it is not currently exploitable since the concatenated data is hardcoded and not
influenced by user input. The processB2G method is not vulnerable to SQL injection

due to proper use of parameterized queries.

Overall, all approaches incorrectly identify an SQL injection vulnerability in the code. The
wording of the problem in the case of CodeQL and SpotBugs hints that string concatenation
should not be used in SQL statements. Similarly, Claude 3 Opus model correctly mentions
that string concatenation should not be used. GPT-4 incorrectly states the function to be
vulnerable to SQL injection. We classify all results as false positives, as the code is not
exploitable, but all approaches report SQL injection vulnerabilities. The Claude 3 Opus
model provides the best verdict, correctly noticing that the code is currently not exploitable.
However, it still reports: "vulnerability: YES | vulnerability type: CWE-89", which we

count as a positive classification.
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6. Discussion

6.1 Findings

6.1.1 RQ1: What prompting approach is most successful with the

LLMs to detect vulnerabilities?

Many different prompting strategies have been proposed by previous studies for vulner-
ability detection with LLMs [7, 8, 9, 10]. The studies use different datasets, they try to
detect different CWEs and some frame the problem as binary classification, others as
multi-class classification task [7, 8, 9, 10]. Compiling a dataset of 578 Java files covering
17 different CWEs allows us to compare different prompting strategies and models to see
which performs the best for multi-class classification tasks. The reason for testing the
multi-class classification capabilities is that this most closely mimics what is required for
vulnerability detection in the real-world setting. The traditional static analysis tools are
even more user-friendly, providing the exact line numbers for the vulnerability, which is
called fine-grained classification. We believe LLMs come close to that ability, as they
explain the problem in a human-readable format. However, we do not ask for exact line

numbers to simplify the evaluation of the correctness of the responses.

Most prior studies utilise GPT-3.5 and GPT-4 models, with the latter outperforming the
former in vulnerability detection tasks [55, 60, 67]. Unfortunately, in most cases, the
exact versions of the LLMs are not provided, which makes it difficult to compare the
results. We run all our initial testing on the GPT-4 turbo model with zero temperature
values. After establishing the best-performing prompt from previous studies, we suggest
other prompting strategies based on the research in the prompt engineering field. We
try prompting approaches that have shown promise on different types of tasks and adapt
them for vulnerability detection tasks. We test the CoT [34] and different self-refinement
strategies [41]. What is more, we do some testing with prompting approaches requiring
higher temperature values like self-consistency [19] and ToT [18]. Finally, we test the
most promising approaches on more expensive models, where the best overall results
are shown with a CoT 8-step prompt devised by us. To the best of our knowledge, ToT
and self-consistency have not been tested for vulnerability detection tasks before. Some
self-refinement strategies have been tested before [7] but we try different approaches for
self-refinement [40, 7, 41] and find RCI strategy works best for our use case. While CoT

prompting has been suggested before for vulnerability detection tasks [8], these efforts
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are very different from ours. The CoT prompt proposed previously considers a two-step
approach: the first step is to explain the code and the second is to find issues with the code
[8]. Another previously suggested CoT strategy tests few-shot CoT approaches [58]. The
CoT 8-step prompt we propose lists eight steps that should be taken to find potential issues

in source code.

For compiling the CoT 8-step prompt, we first ask the GPT-4 turbo model, which steps
should be taken to find vulnerabilities in the source code. Based on the responses, a prompt
is compiled that asks the LLM to take steps similar to what a human would do when
reviewing source code. This prompt is then tested on a few files and improved based on
the results. While this approach does not outperform the dataflow analysis prompt on the
GPT-4 turbo model, it shows the best results on other models we test. This shows that
different prompting techniques can have advantages on different models and the prompt
should be adapted to the used LLM.

The best results achieved with LLMs slightly outperform CodeQL and SpotBugs analysis
results. Depending on the LLM used, different prompting approaches can be more suc-
cessful. We suggest using the CoT 8-step prompt proposed by us with either GPT-4 or
Claude 3 Opus model. It must be noted that in our case half the files in the dataset are
vulnerable. In the real world, there will likely be multiple non-vulnerable files for every
vulnerable one. This is also likely one of the reasons why for example the CodeQL default
configuration had a low recall, but high precision value. High precision means fewer false
alarms and better user experience. Industry experts seem to place a high value on having
as few false positives as possible, with Google noting false positives should make up less
than 10% of all reported issues [22].

If the expectation is to find as many vulnerabilities as possible and the amount of false
positive results is not as important, then we suggest using the GPT-4 model. This approach
has the best recall and F1 scores, which means on paper, this is the best approach. If the
expectation is to get as few false positive results as possible, we suggest using the Claude
3 Opus model. Claude 3 Opus model produces impressively few false positive results
and could thus be the most pleasant to use in real-world scenarios. This is also the only
approach that gets close to the 10% figure (% = 11.6%) of false positives that Google
expects [22]. The GPT-4 turbo model using the dataflow analysis prompt with the RCI
strategy also performs well. Although the cost per token for the GPT-4 turbo model is
significantly cheaper, the RCI strategy adds extra complexity, requiring more tokens. This
makes the best-performing strategy on the GPT-4 turbo model more expensive than the
better-performing GPT-4 or Claude 3 Opus models. Thus we recommend using the GPT-4

and Claude 3 Opus models for vulnerability detection tasks.
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6.1.2 RQ2: What advantages and disadvantages do LL.Ms have over

existing static analysis tools?

The most important disadvantage of LLMs over existing static analysis tools is the cost,
both monetary and time-wise. While the high cost of LLMs is mentioned often when
discussing LLMs for vulnerability detection, to the best of our knowledge, the cost of
different prompting approaches has not been discussed in detail. We provide details on the
costs for every prompting strategy, allowing for comparison by not only the performance
but also cost. The cost factor is considered when making recommendations and should
be considered when opting to use commercial LLMs in vulnerability detection tasks.
Depending on the dataset, different approaches could make sense. If the dataset is large,
some prompting strategies, like ToT, become impractical due to their high costs. We also
find that even though the RCI strategy usually helps to improve the results of OpenAl
models, it significantly increases the costs, usually by a factor of three or more.

The CodeQL and SpotBugs are both easy to set up and run in their default configurations.
The CodeQL is easy to run with the extended configuration but setting SpotBugs up to
use the FindSecBugs plugin requires some more effort. Both tools are free to use and
complete the analysis in under a minute for our dataset. This means they are orders of
magnitude faster than the fastest LLM-based approaches. Even though the LLM-based
approach slightly outperforms the traditional tools based on the F1 score, the difference is
rather small. The main problem with the LLM-based approach is the time it takes to run
and the monetary cost associated. The biggest strength of the LLLM-based analysis is the

ability to detect most vulnerabilities.

Both the static analysis tools completely missed six vulnerability classes from the 17 in
our dataset. For LLMs, most analyses missed four CWE classes, with the Claude 3 Opus
not having any correct positive classifications on only three of the CWE classes. Analysing
the LLM responses manually, we see that the descriptions often point out the correct issue
in the code but fail to associate the correct CWE to it. The first CWE missed by all LLM
analyses is the CWE-523, which in the case of our dataset means that HTTP protocol
1s used where HTTPS protocol should be used. Both suggested approaches describe the
issue correctly on multiple occasions, but provide a CWE identifier, which is considered
incorrect by us. For example, the LLMs often classify the problem as CWE-319, which
points to cleartext transmission of sensitive data. While the issues are similar, the matching
strategy we use allows us to only count the parents and children of the expected CWE as
correct. Based on the CWE research view (CWE-1000), CWE-319 is neither a child nor a

parent of CWE-523, meaning we do not count it as a positive classification. The second
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CWE missed by most LLLMs is the CWE-549. In our dataset, this problem exists due to
Java code generating an HTML form with a password field, where the field is marked
of type “text” instead of the expected “password” type. While this problem is correctly
classified once, in most cases the description matches the problem, but the CWE identifier
provided by LLM is not considered correct. Similarly to CWE-523, the CWE-319 is often
offered as a CWE identifier when we expect CWE-522 or CWE-523. The third CWE
missed by all LLM analyses is the CWE-566. The CWE-566 means the code uses the
user-provided value as the primary key in querying the database without checking the
user access rights. While this is a valid vulnerability, correctly identifying the issue often
requires business context knowledge. The LLMs at times do mention the user-provided
value is used in the SQL query, but the issue is classified as CWE-89: SQL injection.
Classifying the issue as SQL injection can be confusing, as prepared statements are used
and whether the code is vulnerable depends on the context. The fourth CWE missed by all
LLM analyses is the CWE-606, which is caused by using user inputs in loop conditions
without proper validation. The LLMs are also able to point at the problem correctly in
many instances but identify the issue as CWE-400, which points to uncontrolled resource
consumption. Overall, we find the LLMs can correctly describe the problems for 16 CWE
categories out of the 17 in our dataset. For comparison, CodeQL and SpotBugs can detect
11 CWE categories out of the 17. This shows the LLMs have an advantage in finding
vulnerabilities not supported by traditional tools.

6.1.3 MRQ: How would the use of off-the-shelf LLMs be able to

contribute to vulnerability detection in source code?

While the LLMs show good ability in detecting many different types of vulnerabilities,
they are significantly more expensive and time-consuming to run than traditional static
analysis tools. Thus we believe that static code analysers like CodeQL and SpotBugs
are currently still better for everyday use for developers. They run quickly, are easy to
set up and are free to use. They are configured to produce rather few false positives and
provide quite good descriptions of problems together with line numbers. However, using
LLMs for security analysis could be justified in some cases, like during security audits.
The LLMs show the ability to find a larger variety of issues and explain them rather well.
Another advantage of using an LLM-based approach includes not needing the code to be
compileable. This allows for an easy analysis of some parts of the code without providing

access to the full codebase.
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6.1.4 Differences and similarities of L1.Ms

Previous studies mostly utilise different OpenAl models, like GPT-3.5 and GPT-4 [7, 8, 54,
55, 57, 60, 67]. Some other studies also incorporate open-source models from the Llama
[7, 54], BERT [10, 68] and Falcon series [54], with Google’s Gemini model being also
included in some cases [59, 58]. To the best of our knowledge, we are the first to include

Claude 3 model from Anthropic in the comparisons.

The cost structure of commercial LLM API usage is similar between models, requiring
users to pay for input and output tokens. Output tokens are significantly more expensive.
So from the cost perspective, it is reasonable to add as much context into the input and
ask to provide short answers. To save costs and to be able to automatically evaluate
the analysis results, we specify the format in which to provide the final verdict. The
format we use is: "vulnerability: <YES or NO> | vulnerability type: <CWE_ID> [".
Usually, the LLMs follow the provided format, but not always. Interestingly, different
models have different deviations from the provided format but are consistent with the
deviations. The GPT-4 turbo model often adds decorators like: "vulnerability: **YES** |
vulnerability type: **CWE-89**" or provides a vulnerability description instead of the
keyword "vulnerability". The GPT-4 model sometimes provides the CWE identifier with
an underscore: "CWE_89". The Claude 3 Opus model often uses line changes instead
of the "I" sign. Overall, for the better performing strategies, we manually inspect the
responses that contain the word "YES" and make sure the format of the response would
not affect the results. There are some rare cases where the model provided "vulnerability:
MAYBE" or "vulnerability: POSSIBLE" instead of "YES" or "NO". As we know that the
context needed for discovering the vulnerability should be given in the file, we count these
as "NO". There are very few such classifications and in most cases, they refer to irrelevant
CWEs. The testing we conduct with higher temperature values utilising self-consistency
and ToT strategies has a lot more responses that do not adhere to the format. This is likely
related to the temperature increase making the responses more random, affecting the output
format. This means the testing with higher temperature values would require either a better

automatic mapping strategy or more manual effort to benchmark.

6.2 Limitations and threats to validity

The dataset is synthetic and the vulnerability detection is tested on file level, not line or
function level. This was done on purpose, as for some vulnerabilities, it can be hard to
assign a specific line to the vulnerability. Similarly, most previous studies on the topic test

binary or multi-class classification capabilities, not fine-grained ones.
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We use a dataset, where the vulnerabilities can be detected based on a single file. Due
to the context length limitations, this is the best-case scenario for LLM vulnerability
detection, as the code samples are rather short. This allows us to avoid adding a lot
of relevant code to the prompt or adding capabilities for the LLM to fetch the relevant
code. The detection capabilities of any of the tested tools might not directly translate to
more complex real-world projects. In our case, half the files are vulnerable and the other
half are not. In real-world projects, most files do not contain vulnerabilities. Even the
well-established SAST tools, which scan the whole codebase at once, have been shown to
perform significantly worse on real-world datasets when compared to synthetic ones [81].
However, there have been studies using LLMs for vulnerability detection using real-world
datasets, which have shown good results [10, 64]. What is more, it is likely the capabilities
of the LLMs will improve for large more complex codebases, where multiple files need to
be analysed at once. The token limits have been increasing rapidly in the past years, with
Google announcing having successfully tested context windows of up to ten million tokens
[94]. The larger context window can help translate the results seen on synthetic datasets to

real-world projects.

17 unique CWE categories are covered, which map to 11 CWEs from MITRE’s top 25.
While this might not cover all important vulnerability categories, it does cover a large
portion of what has been classified as the most dangerous by MITRE [95]. We only focus
on Java programming language, however, based on prior research, the approaches likely
translate reasonably well to other programming languages [7]. Our contribution includes
benchmarking on a unique dataset containing more CWEs than most previous studies.
Most prior studies have focused on five or fewer CWEs to evaluate the results [7, 54, 57,
67].

The Juliet dataset might be present in the training data of the LLM, which could affect the
results. To mitigate that issue as much as possible, we conduct extensive pre-processing of
the dataset. During the pre-processing, file structure, file naming, the names of variables
and the names of functions are changed. Furthermore, the package names are also hidden
from the LLM and the indentation and format of the files are altered. These modifications
should make it more difficult for the model to base the predictions on what has been present

in the training data, as the files differ noticeably.

We employ a strategy for mapping CWEs which does not expect the CWE identifier to
be identified exactly, similar to studies of static code analysers [4, 80]. By using the
CWE-1000 research view, we can in most cases match the provided CWE to the expected
one, if the issue is identified correctly. However, we notice that for four of the CWEs in our

dataset, this strategy does not work well. Manually reviewing the LLLM responses, we see
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correctly identified issues, which we can not automatically consider correct. Future work
could evaluate options for more accurately matching CWEs. One option for that could
be using another LLM to provide all CWEs that match the output description. Similar
strategies have been tried previously [64]. Another option would be to employ manual
steps for evaluating the results, although this would be very time-consuming and could
introduce biases. While both proposed approaches would increase true positive results,
they would also increase the false positive count. That is because more files would be
classified as containing the expected vulnerability and among those files would also be

non-vulnerable ones.

Due to their high costs, we do not further evaluate the capabilities of GPT-4 and Claude
3 Opus models. The performance of these models could likely be further improved with
higher temperatures utilising a self-consistency strategy, just like we saw improvements
for the GPT-4 turbo model. We are able to show LLMs can indeed compete with classical
static analysis tools and actually outperform them in some settings. Most notably, the

LLMs seem to be able to detect a much wider array of different types of issues in code.

To limit the scope, we focus on static code analysis. Incorporating other methods like
dynamic analysis or other DL. methods is out of the scope. Fine-tuning LLMs is out of
scope, as the focus is on the prompting techniques. We recognise that the LLMs and the
rulesets of the static code analysis tools can change over time. The exact versions of the

tools and datasets used are denoted in the Appendix 4 — Versions.

Data leakage to the LLM owners and/or hosting services should be considered before
using commercial LLM APIs. Before sending any confidential data to any of the LLM
providers, policies should be in place to ensure the safety of the confidential data. The
OpenAl privacy policy states that by default, the data provided by the users of ChatGPT
can be used to train the models, however, there is an opt-out option [96]. To mitigate the
privacy and cost concerns, local LLMs could be used. There are frameworks like Ollama'
that allow running open-source models locally. However, the performance of these models
should be tested, as currently the commercial models are voted to be more powerful than

the open-source ones [17].

'https://ollama.com/
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7. Summary

We consider the use of state-of-the-art LLMs for vulnerability detection tasks and compare
the results with two traditional static code analysers. The purpose is to discover if LLMs
could help in detecting vulnerabilities in source code. We are interested in whether
LLMs have advantages or disadvantages over existing static code analysis tools. We
run experiments and use comparative analysis techniques to evaluate the performance of
different approaches. We consider different prompt engineering techniques previously
not tested for vulnerability detection tasks. We find off-the-shelf LLMs show remarkable
abilities in file-level vulnerability detection tasks. The success of a particular prompting
strategy is dependent on the underlying LLM. The GPT-4 turbo model shows the best
performance with dataflow analysis prompt utilising the RCI strategy. Meanwhile, GPT-4
and Claude 3 Opus models show better performance with a CoT 8-step prompt. The best
prompting approaches outperform the static code analysis tools based on recall and F1
scores. The advantages of LLMs over static analysis tools include the ability to detect a
larger variety of different vulnerabilities and a higher amount of true positive classifications.
The disadvantages of LLMs include slower running time, higher costs, non-deterministic
results and a higher amount of false positives. Thus we can show LLMs show a remarkable
ability in vulnerability detection and multi-class classification tasks when all required

information is provided in the context.
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8. Future work

The LLMs are getting a lot of attention and have improved a lot over the past few years.
As long as they continue to improve and more capable models are released, the capabilities
of these new models should be tested. A comparison of the performance and cost between
commercial models and open-source models would be an interesting area to explore.
Overall, more combinations of prompting strategies and LLLMs should be tested to discover
the best approaches. The ToT prompting strategy allows for many variations of different
prompts and parameters, remaining a compelling area for future research. Fine-tuning
the LLMs has been tried on some smaller models [7], but could be an interesting area for
further exploration.

Using other datasets for testing the proposed prompting approaches could provide valuable
information on how well different prompts perform on average. Ideally, the testing would
be done on a proprietary dataset, which we know not to be present in the training data.
That would help in keeping the results unbiased. Including more programming languages
and testing the LLM capabilities for fine-grained vulnerability detection could be another
vertical to explore. Future studies could improve upon the CWE matching strategy, to
make sure the correctly described problems are counted as positive classifications, without

relying solely on the LLM to provide an acceptable CWE identifier.

The potential synergies between traditional tools and LLMs could be further researched.
The LLMs can generate fixes for code but the quality of these fixes has not been evaluated
in detail [9]. What is more, it would be intriguing to test the capabilities of LLMs for
generating tests to prove the vulnerability is present. This could be done to reduce the

amount of false positive classifications.

68



References

[1]

[10]

[11]

We need a safer systems programming language. 2019. URL: https://msrc.
microsoft .com/blog/2019/07/we-need—a-safer-systems -

programming-language/.

CWE. Metrics. [Accessed: 30-09-2023]. URL: https: //www . cve .org/
About /Metrics.

Nurul Haszeli Ahmad, SA Aljunid, and J-1 Ab Manan. “Preventing Exploitation on
Software Vulnerabilities: Why Most Static Analysis Is Ineffective”. In: Conferences

on Engineering and Technology Education. 2010.

Katerina Goseva-Popstojanova and Andrei Perhinschi. “On the capability of static
code analysis to detect security vulnerabilities”. In: Information and Software
Technology 68 (2015), pp. 18-33.

Christopher D. Manning. “Human Language Understanding & Reasoning”. In:
Daedalus 151.2 (May 2022), pp. 127-138. 1SSN: 0011-5266. pO1: 10 .1162/
daed_a_01905. eprint: https://direct .mit.edu/daed/article-
pdf/151/2/127/2060607/daed_a_01905.pdf. URL: https://doi.
org/10.1162/daed_a_01905.

Pengfei Liu et al. “Pre-Train, Prompt, and Predict: A Systematic Survey of Prompt-
ing Methods in Natural Language Processing”. In: 55.9 (Jan. 2023). 1SSN: 0360-
0300. DOI: 10.1145/3560815. URL: https://doi.org/10.1145/
3560815.

Avishree Khare et al. Understanding the Effectiveness of Large Language Models
in Detecting Security Vulnerabilities. 2023. arXiv: 2311.16169 [cs.CR].

Chenyuan Zhang et al. Prompt-Enhanced Software Vulnerability Detection Using
ChatGPT. 2023. arXiv: 2308.12697 [cs.SE].

David Noever. Can Large Language Models Find And Fix Vulnerable Software?
2023. arXiv: 2308.10345 [cs.SE].

Xin Zhou, Ting Zhang, and David Lo. Large Language Model for Vulnerability
Detection: Emerging Results and Future Directions. 2024. arXiv: 2401 .15468
[cs.SE].

Wojciech Zaremba and Greg Brockman. OpenAl Codex. [Accessed: 30-09-2023].
URL: https://openai.com/blog/openai-codex.

69


https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language/
https://www.cve.org/About/Metrics
https://www.cve.org/About/Metrics
https://doi.org/10.1162/daed_a_01905
https://doi.org/10.1162/daed_a_01905
https://direct.mit.edu/daed/article-pdf/151/2/127/2060607/daed_a_01905.pdf
https://direct.mit.edu/daed/article-pdf/151/2/127/2060607/daed_a_01905.pdf
https://doi.org/10.1162/daed_a_01905
https://doi.org/10.1162/daed_a_01905
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2311.16169
https://arxiv.org/abs/2308.12697
https://arxiv.org/abs/2308.10345
https://arxiv.org/abs/2401.15468
https://arxiv.org/abs/2401.15468
https://openai.com/blog/openai-codex

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Juliet Java 1.3. [Accessed: 12-12-2023]. 2017. URL: https://samate.nist.
gov/SARD/test—-suites/111.

CodeQL. CodeQL. [Accessed: 07-04-2024]. URL: https://codegl.github.

com/.

SpotBugs. SpotBugs. [Accessed: 07-04-2024]. URL: https : / / spotbugs .
github.io/.

Arvinder Kaur and Ruchikaa Nayyar. “A Comparative Study of Static Code Anal-
ysis tools for Vulnerability Detection in C/C++ and JAVA Source Code”. In: Pro-
cedia Computer Science 171 (2020). Third International Conference on Comput-
ing and Network Communications (CoCoNet’19), pp. 2023-2029. 1SSN: 1877-
0509. DOI: https://doi.org/10.1016/j.procs.2020.04.217.
URL: https://www.sciencedirect.com/science/article/pii/
S1877050920312023.

Richard Amankwah et al. “Bug detection in Java code: An extensive evaluation of
static analysis tools using Juliet Test Suites”. In: Software: Practice and Experience
53.5(2023), pp. 1125-1143. DOI: https://doi.org/10.1002/spe.3181.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
spe.3181.URL: https://onlinelibrary.wiley.com/doi/abs/10.
1002/spe.3181.

HuggingFace. LMSYS Chatbot Arena Leaderboard. [ Accessed: 02-04-2024]. URL:
https : / /huggingface . co/ spaces / lmsys / chatbot — arena -

leaderboard.

Shunyu Yao et al. Tree of Thoughts: Deliberate Problem Solving with Large Lan-
guage Models. 2023. arXiv: 2305.10601 [cs.CL].

Xuezhi Wang et al. “Self-consistency improves chain of thought reasoning in lan-
guage models”. In: arXiv preprint arXiv:2203.11171 (2022).

Gary McGraw. “Automated Code Review Tools for Security”. In: Computer 41.12
(2008), pp. 108-111. DO1: 10.1109/MC.2008.514.

Anne Edmundson et al. “An Empirical Study on the Effectiveness of Security
Code Review”. In: Engineering Secure Software and Systems. Ed. by Jan Jiirjens,
Benjamin Livshits, and Riccardo Scandariato. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 197-212. 1SBN: 978-3-642-36563-8.

Caitlin Sadowski et al. “Lessons from Building Static Analysis Tools at Google”.
In: Communications of the ACM (CACM) 61 Issue 4 (2018), pp. 58—66. URL:
https://dl.acm.org/citation.cfm?id=3188720.

70


https://samate.nist.gov/SARD/test-suites/111
https://samate.nist.gov/SARD/test-suites/111
https://codeql.github.com/
https://codeql.github.com/
https://spotbugs.github.io/
https://spotbugs.github.io/
https://doi.org/https://doi.org/10.1016/j.procs.2020.04.217
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://www.sciencedirect.com/science/article/pii/S1877050920312023
https://doi.org/https://doi.org/10.1002/spe.3181
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3181
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3181
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3181
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3181
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
https://arxiv.org/abs/2305.10601
https://doi.org/10.1109/MC.2008.514
https://dl.acm.org/citation.cfm?id=3188720

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

Norah Ahmed Almubairik and Gary Wills. “Automated penetration testing based
on a threat model”. In: 2016 11th International Conference for Internet Technology
and Secured Transactions (ICITST). 2016, pp. 413-414.D01: 10.1109/ICITST.
2016.7856742.

Hossain Shahriar and Mohammad Zulkernine. “Mitigating Program Security Vul-
nerabilities: Approaches and Challenges”. In: ACM Computing Surveys - CSUR 44
(June 2012), pp. 1-46. DOI: 10.1145/2187671.2187673.

Jernej Novak, Andrej Krajnc, and Rok Zontar. “Taxonomy of static code analysis
tools”. In: The 33rd International Convention MIPRO. 2010, pp. 418-422.

Korhan Akcura et al. “Static Versus Dynamic Source Code Analysis”. In: ().

Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. “Software Vulnerability
Analysis and Discovery Using Machine-Learning and Data-Mining Techniques: A
Survey”. In: 50.4 (Aug. 2017). 1sSN: 0360-0300. DOI: 10.1145/3092566. URL:
https://doi.org/10.1145/3092566.

Ella Bounimova, Patrice Godefroid, and David Molnar. “Billions and billions of
constraints: Whitebox fuzz testing in production”. In: 2013 35th International
Conference on Software Engineering (ICSE). 2013, pp. 122-131. DOI: 10.1109/
ICSE.2013.6606558.

Abubakar Omari Abdallah Semasaba et al. “Literature survey of deep learning-
based vulnerability analysis on source code”. In: IET Software 14.6 (2020), pp. 654—
664. DOI: https ://doi.org/10.1049/iet -sen.2020.0084.
eprint: https://ietresearch.onlinelibrary.wiley.com/doi/
pdf/10.1049/1iet-sen.2020.0084. URL: https://ietresearch.
onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2020.
0084.

Guanjun Lin et al. “Software Vulnerability Detection Using Deep Neural Networks:
A Survey”. In: Proceedings of the IEEE 108.10 (2020), pp. 1825-1848. DOI: 10.
1109/JPROC.2020.2993293.

Saikat Chakraborty et al. “Deep Learning Based Vulnerability Detection: Are We
There Yet?” In: IEEE Transactions on Software Engineering 48.9 (2022), pp. 3280—
3296.DOI1: 10.1109/TSE.2021.3087402.

Hammond Pearce et al. “Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions”. In: 2022 IEEE Symposium on Security and Privacy
(SP). 2022, pp. 754-768. DOI1: 10.1109/SP46214.2022.9833571.

Tom Brown et al. “Language models are few-shot learners”. In: Advances in neural

information processing systems 33 (2020), pp. 1877-1901.

71


https://doi.org/10.1109/ICITST.2016.7856742
https://doi.org/10.1109/ICITST.2016.7856742
https://doi.org/10.1145/2187671.2187673
https://doi.org/10.1145/3092566
https://doi.org/10.1145/3092566
https://doi.org/10.1109/ICSE.2013.6606558
https://doi.org/10.1109/ICSE.2013.6606558
https://doi.org/https://doi.org/10.1049/iet-sen.2020.0084
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-sen.2020.0084
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-sen.2020.0084
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2020.0084
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2020.0084
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2020.0084
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/JPROC.2020.2993293
https://doi.org/10.1109/TSE.2021.3087402
https://doi.org/10.1109/SP46214.2022.9833571

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Jason Wei et al. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. 2023. arXiv: 2201.11903 [cs.CL].

OpenAl. API reference: Chat. [Accessed: 25-02-2024]. URL: https : / /

platform.openai.com/docs/api-reference/chat.

Anthropic. Create a Message. [Accessed: 30-03-2024]. URL: https://docs.

anthropic.com/claude/reference/messages_post.

Or Honovich et al. Instruction Induction: From Few Examples to Natural Language
Task Descriptions. 2022. arXiv: 2205.10782 [cs.CL].

Yongchao Zhou et al. “Large Language Models Are Human-Level Prompt Engi-
neers”. In: (2022). arXiv: 2211.01910 [cs.LG].

OpenAl. OpenAl Codex. [Accessed: 09-01-2024]. URL: https://platform.
openai . com/ docs / guides / prompt — engineering / strategy -

test-changes-systematically.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language Models can Solve
Computer Tasks. 2023. arXiv: 2303.17491 [cs.CL].

Aman Madaan et al. Self-Refine: Iterative Refinement with Self-Feedback. 2023.
arXiv: 2303.17651 [cs.CL].

Yongqin Xian et al. “Zero-Shot Learning—A Comprehensive Evaluation of the
Good, the Bad and the Ugly”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 41.9 (2019), pp. 2251-2265. DOI: 10.1109/TPAMI.2018.
2857768.

Jason Wei et al. Finetuned Language Models Are Zero-Shot Learners. 2022. arXiv:
2109.01652 [cs.CL].

Robert L. Logan IV et al. Cutting Down on Prompts and Parameters: Simple
Few-Shot Learning with Language Models. 2021. arXiv: 2106.13353 [cs.CL].

Yifei Li et al. “Making Language Models Better Reasoners with Step-Aware Ver-
ifier”. In: Proceedings of the 61st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers). Ed. by Anna Rogers, Jordan
Boyd-Graber, and Naoaki Okazaki. Toronto, Canada: Association for Computa-
tional Linguistics, July 2023, pp. 5315-5333. DOI1: 10.18653/v1/2023.acl-
long.291.URL: https://aclanthology.org/2023.acl-1long.291.

Shunyu Yao et al. ReAct: Synergizing Reasoning and Acting in Language Models.
2023. arXiv: 2210.03629 [cs.CL].

Noah Shinn et al. Reflexion: Language Agents with Verbal Reinforcement Learning.
2023. arXiv: 2303.11366 [cs.AI].

72


https://arxiv.org/abs/2201.11903
https://platform.openai.com/docs/api-reference/chat
https://platform.openai.com/docs/api-reference/chat
https://docs.anthropic.com/claude/reference/messages_post
https://docs.anthropic.com/claude/reference/messages_post
https://arxiv.org/abs/2205.10782
https://arxiv.org/abs/2211.01910
https://platform.openai.com/docs/guides/prompt-engineering/strategy-test-changes-systematically
https://platform.openai.com/docs/guides/prompt-engineering/strategy-test-changes-systematically
https://platform.openai.com/docs/guides/prompt-engineering/strategy-test-changes-systematically
https://arxiv.org/abs/2303.17491
https://arxiv.org/abs/2303.17651
https://doi.org/10.1109/TPAMI.2018.2857768
https://doi.org/10.1109/TPAMI.2018.2857768
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2106.13353
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://aclanthology.org/2023.acl-long.291
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2303.11366

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Andy Zhou et al. Language Agent Tree Search Unifies Reasoning Acting and
Planning in Language Models. 2023. arXiv: 2310.04406 [cs.AI].

Hong Sun et al. AutoHint: Automatic Prompt Optimization with Hint Generation.
2023. arXiv: 2307.07415 [cs.CL].

Yuhao Lin et al. “Vulnerability Dataset Construction Methods Applied To Vul-
nerability Detection: A Survey”. In: 2022 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops (DSN-W). 2022,
pp. 141-146. DO1: 10.1109/DSN-W54100.2022.00032.

Tim Boland and Paul E Black. “Juliet 1. 1 C/C++ and java test suite”. In: Computer
45.10 (2012), pp. 88-90.

Xin Zhou et al. Large Language Model for Vulnerability Detection and Repair:
Literature Review and the Road Ahead. 2024. arXiv: 2404 .02525 [cs.SE].

Omer Said Ozturk et al. “New Tricks to Old Codes: Can Al Chatbots Replace Static
Code Analysis Tools?” In: Proceedings of the 2023 European Interdisciplinary Cy-
bersecurity Conference. EICC *23. Stavanger, Norway: Association for Computing
Machinery, 2023, pp. 13—18. 1ISBN: 9781450398299. DO1: 10.1145/3590777 .
3590780. URL: https://doi.org/10.1145/3590777.3590780.

Yu Nong et al. Chain-of-Thought Prompting of Large Language Models for Discov-
ering and Fixing Software Vulnerabilities. 2024. arXiv: 2402 .17230 [cs.CR].

Nenad Petrovié. “Chat GPT-Based Design-Time DevSecOps”. In: 2023 58th Inter-
national Scientific Conference on Information, Communication and Energy Systems
and Technologies (ICEST). 2023, pp. 143-146. DO1: 10.1109/ICEST58410.
2023.10187247.

Mark Chen et al. Evaluating Large Language Models Trained on Code. 2021. arXiv:
2107.03374 [cs.LG].

Anton Cheshkov, Pavel Zadorozhny, and Rodion Levichev. Evaluation of ChatGPT
Model for Vulnerability Detection. 2023. arXiv: 2304.07232 [cs.CR].

Benjamin Steenhoek et al. A Comprehensive Study of the Capabilities of Large Lan-
guage Models for Vulnerability Detection. 2024. arXiv: 2403.17218 [cs.SE].

Jiaxin Yu et al. Security Code Review by LLMs: A Deep Dive into Responses. 2024.
arXiv: 2401.16310 [cs.SE].

Michael Fu et al. ChatGPT for Vulnerability Detection, Classification, and Repair:
How Far Are We? 2023. arXiv: 2310.09810 [cs.SE].

Yiu Wai Chow, Max Schifer, and Michael Pradel. Beware of the Unexpected:
Bimodal Taint Analysis. 2023. arXiv: 2301.10545 [cs.SE].

73


https://arxiv.org/abs/2310.04406
https://arxiv.org/abs/2307.07415
https://doi.org/10.1109/DSN-W54100.2022.00032
https://arxiv.org/abs/2404.02525
https://doi.org/10.1145/3590777.3590780
https://doi.org/10.1145/3590777.3590780
https://doi.org/10.1145/3590777.3590780
https://arxiv.org/abs/2402.17230
https://doi.org/10.1109/ICEST58410.2023.10187247
https://doi.org/10.1109/ICEST58410.2023.10187247
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2304.07232
https://arxiv.org/abs/2403.17218
https://arxiv.org/abs/2401.16310
https://arxiv.org/abs/2310.09810
https://arxiv.org/abs/2301.10545

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

Yinlin Deng et al. Large Language Models are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. 2023. arXiv: 2212 . 14834
[cs.SE].

Daniel Tang et al. CodeAgent: Collaborative Agents for Software Engineering. 2024.
arXiv: 2402.02172 [cs.SE].

Yuqiang Sun et al. LLM4Vuln: A Unified Evaluation Framework for Decoupling and
Enhancing LLMs’ Vulnerability Reasoning. 2024. arXiv: 2401 .16185 [cs.CR].

Yugiang Sun et al. GPTScan: Detecting Logic Vulnerabilities in Smart Contracts by
Combining GPT with Program Analysis. 2023. arXiv: 2308.03314 [cs.CR].

Noble Saji Mathews et al. LLbezpeky: Leveraging Large Language Models for
Vulnerability Detection. 2024. arXiv: 2401 .01269 [cs.CR].

Zoltan Szabd and Vilmos Bilicki. “A New Approach to Web Application Security:
Utilizing GPT Language Models for Source Code Inspection”. In: Future Internet
15.10 (2023). 1SSN: 1999-5903. DOI: 10.3390/£115100326. URL: https:
//www.mdpi.com/1999-5903/15/10/326.

Zhilong Wang et al. “The Effectiveness of Large Language Models (Chatgpt and
Codebert) for Security-Oriented Code Analysis”. In: Available at SSRN 4567887 ().

Tiago Espinha Gasiba et al. “I’'m Sorry Dave, I'm Afraid I Can’t Fix Your Code:
On ChatGPT, CyberSecurity, and Secure Coding”. In: 4th International Computer
Programming Education Conference (ICPEC 2023). Ed. by Ricardo Alexandre
Peixoto de Queirés and Mario Paulo Teixeira Pinto. Vol. 112. Open Access Se-
ries in Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl — Leibniz-
Zentrum fiir Informatik, 2023, 2:1-2:12. ISBN: 978-3-95977-290-7. DOI: 10 .
4230 /0ASIcs . ICPEC.2023.2. URL: https://drops .dagstuhl.
de/opus/volltexte/2023/18498.

Giacomo Lanciano et al. “Analyzing Declarative Deployment Code with Large
Language Models”. In: CLOSER 2023 (2023), pp. 289-296.

Sidong Feng and Chunyang Chen. Prompting Is All You Need: Automated Android
Bug Replay with Large Language Models. 2023. arXiv: 2306.01987 [cs.SE].

Chen Tsfaty and Michael Fire. Malicious Source Code Detection Using Transformer.
2022. arXiv: 2209.07957 [cs.CR].

Thomas Claburn. So you want to integrate OpenAl’s bot. Here’s how that worked
for software security scanner Socket. [Accessed: 10-12-2023]. 2023. URL: https:
//www .theregister.com/AMP/2023/03/30/socket_chatgpt_

malware/.

74


https://arxiv.org/abs/2212.14834
https://arxiv.org/abs/2212.14834
https://arxiv.org/abs/2402.02172
https://arxiv.org/abs/2401.16185
https://arxiv.org/abs/2308.03314
https://arxiv.org/abs/2401.01269
https://doi.org/10.3390/fi15100326
https://www.mdpi.com/1999-5903/15/10/326
https://www.mdpi.com/1999-5903/15/10/326
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://doi.org/10.4230/OASIcs.ICPEC.2023.2
https://drops.dagstuhl.de/opus/volltexte/2023/18498
https://drops.dagstuhl.de/opus/volltexte/2023/18498
https://arxiv.org/abs/2306.01987
https://arxiv.org/abs/2209.07957
https://www.theregister.com/AMP/2023/03/30/socket_chatgpt_malware/
https://www.theregister.com/AMP/2023/03/30/socket_chatgpt_malware/
https://www.theregister.com/AMP/2023/03/30/socket_chatgpt_malware/

[74] MITRE. 2023 CWE Top 25 Most Dangerous Software Weaknesses. [ Accessed:
02-02-2024]. URL: https://cwe.mitre.org/top25/archive/2023/
2023_top25_1list.html.

[75] MITRE. CWE VIEW: Research Concepts. [Accessed: 26-02-2024]. URL: https:
//cwe.mitre.org/data/definitions/1000.html.

[76] Karl Tamberg. Processed Juliet Java Dataset. https://gitlab.cs.ttu.
ee/katamb/ juliet—-top-25 (TalTech GitLab URL). 2024. URL: https:
//github.com/katamb/juliet-top-25.

[77] Karl Tamberg. Scripts for LLM Experiments. https://gitlab.cs.ttu.
ee/katamb/thesis—-scripts (TalTech GitLab URL). 2023. URL: https:
//github.com/katamb/thesis—-scripts.

[78] NSA. Juliet Test Suite v1.2 for Java User Guide. [Accessed: 07-02-2024]. URL:
https : / / samate . nist . gov / SARD / downloads / documents /
Juliet_Test_Suite_vl1.2_for_Java_-_User_Guide.pdf.

[79] Pasi Frinti and Radu Mariescu-Istodor. “Soft precision and recall”. In: Pattern
Recognition Letters 167 (2023), pp. 115-121. 1SSN: 0167-8655. DOI: https :
//doi.org/10.1016/j.patrec.2023.02.005. URL: https://www.
sciencedirect.com/science/article/pii/S0167865523000296.

[80] Stephan Lipp, Sebastian Banescu, and Alexander Pretschner. “An empirical study
on the effectiveness of static C code analyzers for vulnerability detection”. In:
Proceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. 2022, pp. 544-555.

[81] Kaixuan Li et al. “Comparison and Evaluation on Static Application Security
Testing (SAST) Tools for Java”. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. ESEC/FSE 2023. New York, NY, USA: Association for Computing
Machinery, 2023, pp. 921-933. DOI: 10.1145/3611643.3616262. URL:
https://doi.org/10.1145/3611643.3616262.

[82] GitHub. About code scanning with CodeQL. [Accessed: 20-02-2024]. URL: https:
/ / docs . github . com/ en/ code - security / code — scanning /
introduction - to - code — scanning / about — code - scanning -

with-codeql.

[83] CodeQL. Supported languages and frameworks. [Accessed: 24-02-2024]. URL:
https://codeqgl.github.com/docs/codegl-overview/supported—-

languages—and-frameworks/.

[84] CodeQL. CWE coverage for Java and Kotlin. [Accessed: 24-02-2024]. URL:
https://codeqgl.github.com/codeql-query-help/java-cwe/.

75


https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/data/definitions/1000.html
https://cwe.mitre.org/data/definitions/1000.html
https://gitlab.cs.ttu.ee/katamb/juliet-top-25
https://gitlab.cs.ttu.ee/katamb/juliet-top-25
https://github.com/katamb/juliet-top-25
https://github.com/katamb/juliet-top-25
https://gitlab.cs.ttu.ee/katamb/thesis-scripts
https://gitlab.cs.ttu.ee/katamb/thesis-scripts
https://github.com/katamb/thesis-scripts
https://github.com/katamb/thesis-scripts
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://samate.nist.gov/SARD/downloads/documents/Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf
https://doi.org/https://doi.org/10.1016/j.patrec.2023.02.005
https://doi.org/https://doi.org/10.1016/j.patrec.2023.02.005
https://www.sciencedirect.com/science/article/pii/S0167865523000296
https://www.sciencedirect.com/science/article/pii/S0167865523000296
https://doi.org/10.1145/3611643.3616262
https://doi.org/10.1145/3611643.3616262
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning-with-codeql
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://codeql.github.com/codeql-query-help/java-cwe/

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

SpotBugs. Introduction. [ Accessed: 24-02-2024]. URL: https://spotbugs.

readthedocs.io/en/latest/introduction.html#.

Harrison Chase. LangChain. Oct. 2022. URL: https : / / github . com /

langchain-ai/langchain.

OpenAl. Rate limits. [Accessed: 03-05-2024]. URL: https : / /platform.

openai.com/docs/guides/rate-limits/usage-tiers.

Anthropic. Rate limits. [Accessed: 03-05-2024]. URL: https : / / docs .

anthropic.com/claude/reference/rate-limits.

Michaela Greiler. Security code review checklist. [ Accessed: 18-02-2024]. URL:
https://www.awesomecodereviews .com/checklists/secure-

code—-review—checklist/.

Shunyu Yao et al. Tree of Thoughts: Deliberate Problem Solving with Large Lan-
guage Models. 2023. URL: https://github.com/princeton-nlp/
tree-of-thought-11m.

Karl Tamberg. Tree of Thoughts: Deliberate Problem Solving with Large Lan-
guage Models. https ://gitlab.cs.ttu.ee/katamb/tree—-of -
thought —11m-ca (TalTech GitLab URL). 2024. URL: https://github.
com/katamb/tree-of-thought-1lm-ca.

Google. Available languages and regions for Google Al Studio and Gemini API.
[Accessed: 09-05-2024]. URL: https://ai.google.dev/gemini—api/

docs/available-regions.

CodeQL. CodeQL CLI CSV output. [Accessed: 25-02-2024]. URL: https://
docs.github.com/en/code-security/codeqgl—-cli/using-the-

advanced-functionality-of-the-codegl-cli/csv-output.

Sundaran Pichai and Demis Hassabis. Our next-generation model: Gemini 1.5.
[Accessed: 01-03-2024]. URL: https ://blog. google/technology/
al/google—gemini—-next-generation-model-february-2024/

#sundar—-note.

MITRE. 2023 CWE Top 25 Methodology. [Accessed: 01-03-2024]. URL: https:
//cwe .mitre.org/top25/archive/2023/2023_methodology.
html.

OpenAl. Privacy policy. [Accessed: 01-03-2024]. URL: https : / / openai .

com/policies/privacy-policy.

76


https://spotbugs.readthedocs.io/en/latest/introduction.html#
https://spotbugs.readthedocs.io/en/latest/introduction.html#
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://platform.openai.com/docs/guides/rate-limits/usage-tiers
https://platform.openai.com/docs/guides/rate-limits/usage-tiers
https://docs.anthropic.com/claude/reference/rate-limits
https://docs.anthropic.com/claude/reference/rate-limits
https://www.awesomecodereviews.com/checklists/secure-code-review-checklist/
https://www.awesomecodereviews.com/checklists/secure-code-review-checklist/
https://github.com/princeton-nlp/tree-of-thought-llm
https://github.com/princeton-nlp/tree-of-thought-llm
https://gitlab.cs.ttu.ee/katamb/tree-of-thought-llm-ca
https://gitlab.cs.ttu.ee/katamb/tree-of-thought-llm-ca
https://github.com/katamb/tree-of-thought-llm-ca
https://github.com/katamb/tree-of-thought-llm-ca
https://ai.google.dev/gemini-api/docs/available-regions
https://ai.google.dev/gemini-api/docs/available-regions
https://docs.github.com/en/code-security/codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/csv-output
https://docs.github.com/en/code-security/codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/csv-output
https://docs.github.com/en/code-security/codeql-cli/using-the-advanced-functionality-of-the-codeql-cli/csv-output
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://cwe.mitre.org/top25/archive/2023/2023_methodology.html
https://cwe.mitre.org/top25/archive/2023/2023_methodology.html
https://cwe.mitre.org/top25/archive/2023/2023_methodology.html
https://openai.com/policies/privacy-policy
https://openai.com/policies/privacy-policy

Appendix 1 — Non-Exclusive License for Reproduction and

Publication of a Graduation Thesis!
I Karl Tamberg

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my
thesis “Harnessing Large Language Models for Software Vulnerability Detection: A
Comprehensive Benchmarking Study”, supervised by Hayretdin Bahsi

1.1. to be reproduced for the purposes of preservation and electronic publication of
the graduation thesis, incl. to be entered in the digital collection of the library
of Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to
be entered in the digital collection of the library of Tallinn University of
Technology until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-
exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons’
intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

10.05.2024

The non-exclusive licence is not valid during the validity of access restriction indicated in the student’s
application for restriction on access to the graduation thesis that has been signed by the school’s dean,
except in case of the university’s right to reproduce the thesis for preservation purposes only. If a graduation
thesis is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted,
by the set deadline, the student defending his/her graduation thesis consent to reproduce and publish the
graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive
license shall not be valid for the period.

71



Appendix 2 — Prompts

Basic prompt (py):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <short explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
Is the following code snippet prone to any security vulnerability?
*““{code} "

ATIl: <response>

Basic prompt with recursive criticism and improvement (pp—;.;):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <short explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
Is the following code snippet prone to any security vulnerability?
*YY{code} ‘'
ATl: <response>
Human: Review your previous answer and find problems with that answer. Feel free to
answer in any format you prefer.
ATl: <response>
Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

AIl: <response>

Basic prompt with short recursive criticism and improvement (p,_g.;):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <short explanation for prediction>.

Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
Is the following code snippet prone to any security vulnerability?
*“‘{code} "

ATIl: <response>

Human: Review your previous answer and find problems with that answer. Based on the
problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <reason for the initial analysis being correct or wrong>.
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Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

Basic prompt with self-refinement (p,_s,.):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <short explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
Is the following code snippet prone to any security vulnerability?
‘“‘{code} ‘'
ATl: <response>
Human: Act like an expert in cybersecurity. Please provide detailed feedback about the
previous response and try to analyze if the response is correct. Feel free to
respond in any format you prefer, but try to keep the response concise.
ATl: <response>
Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

AIl: <response>

Basic prompt with short self-refinement (py_ s, ):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <short explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
Is the following code snippet prone to any security vulnerability?
‘Y ‘{code} '
AI: <response>
Human: Is this analysis correct?
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

AT: <response>

API sequence prompt (pgs):

Human: I want you to act as a vulnerability detection system. I will provide you with
the original program and the API call sequence, and you will act upon them.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <short explanation for prediction>
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API call sequence: {api-flow-seq}
Is the following program buggy?
‘YYjava
{code}

AURTRY

ATIl: <response>

API sequence prompt with RCI (pgs_rci):

Human: I want you to act as a vulnerability detection system. I will provide you with
the original program and the API call sequence, and you will act upon them.
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <short explanation for prediction>

API call sequence: {api-flow-seq}
Is the following program buggy?
‘YYjava
{code}

AI: <response>

Human: Review your previous answer and find problems with that answer. Feel free to
answer in any format you prefer.

ATl: <response>

Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

Require fix prompt (p,f):

Human: Act as the world’s greatest static code analyzer for java programming language. I
will give you a code snippet, and you will analyze it for vulnerabilities.
Give the output in a format: vulnerabilities detected with cwe id’s as a numbered
list, and proposed fixes as a separate numbered list. If no vulnerabilities are
found, output: "Code is not vulnerable".

{code}

AI: <response>

Require fix prompt with RCI (p, f—c;):

Human: Act as the world’s greatest static code analyzer for java programming language. I
will give you a code snippet, and you will analyze it for vulnerabilities.
Give the output in a format: vulnerabilities detected with cwe id’s as a numbered
list, and proposed fixes as a separate numbered list. If no vulnerabilities are

found, output: "Code is not vulnerable".

{code}
ATIl: <response>

Human: Review your previous answer and find problems with that answer. Feel free to

answer in any format you prefer.
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AT:

<response>

Human: Based on the problems found, improve your initial answer:

AT:

Provide response only in following format:

vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.

Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

<response>

Few-shot approach with 20 examples (pf520):

Human: You are a security researcher, expert in detecting security vulnerabilities.

You are given some Java code. You must analyse it for vulnerabilities and provide a
response only in following format:

vulnerability: <YES or NO> | vulnerability type: <CWE ID> | explanation: <short
explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
You are first given a few examples with correct responses and at the end the code
that you must analyse.
Input: ‘‘‘String script = System.getProperty ("SCRIPTNAME") ;
if (script != null)
System.exec (script); ‘*'"
Response: vulnerability: YES | vulnerability type: CWE-78 | explanation: If an
attacker has control over the "SCRIPTNAME" property, then they could modify the
property to point to a dangerous program.

Input: ‘'‘String script = "ls -la";
System.exec (script); ‘"

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘‘‘public static final double price = 20.00;

int quantity = currentUser.getAttribute ("quantity");

double total = price * quantity;

chargeUser (total); ‘'

Response: vulnerability: YES | vulnerability type: CWE-20 | explanation: The user
has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative

value, then the user would have their account credited instead of debited.

Input: ‘‘public static final double price = 20.00;

int quantity = 7;

double total = price * quantity;

chargeUser (total); ‘'

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘'‘String filename = System.getProperty ("com.domain.application.
dictionaryFile");

File dictionaryFile = new File(filename); ‘"

Response: vulnerability: YES | vulnerability type: CWE-22 | explanation: The path is
not validated or modified to prevent it from containing relative or absolute path
sequences before creating the File object. This allows anyone who can control the
system property to determine what file is used. Ideally, the path should be resolved
relative to some kind of application or user home directory.

Input: ‘‘‘String filename = "/home/zeros.txt";

File dictionaryFile = new File(filename); *‘‘
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Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A
Input: ‘‘‘IntentFilter filter = new IntentFilter ("com.example.URLHandler.openURL") ;
MyReceiver receiver = new MyReceiver();

registerReceiver (receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {{

@Override
public void onReceive (Context context, Intent intent) ({{
if ("com.example.URLHandler.openURL".equals (intent.getAction())) {{

String URL = intent.getStringExtra ("URLToOpen") ;

int length = URL.length();

PRRRRRYY

Response: vulnerability: YES | vulnerability type: CWE-476 | explanation: The
application assumes the URL will always be included in the intent. When the URL is
not present, the call to getStringExtra() will return null, thus causing a null
pointer exception when length() is called.

Input: ‘‘‘IntentFilter filter = new IntentFilter ("com.example.URLHandler.openURL") ;
MyReceiver receiver = new MyReceiver();

registerReceiver (receiver, filter);

public class UrlHandlerReceiver extends BroadcastReceiver {{

@Override
public void onReceive (Context context, Intent intent) ({{
if ("com.example.URLHandler.openURL".equals (intent.getAction())) {{

String URL = intent.getStringExtra ("URLToOpen") ;

if (URL != null) {{

int length = URL.length();

}}

FRRRREYYY

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘‘‘DriverManager.getConnection (url, "scott", "tiger"); ‘'

Response: vulnerability: YES | vulnerability type: CWE-798 | explanation: This is an
example of an external hard-coded password on the client-side of a connection. This
code will run successfully, but anyone who has access to it will have access to the
password.

Input: ‘‘‘GuardedString pwd = fetchPwdFromSecretStorage () ;

DriverManager.getConnection (url, "scott", pwd); ‘'

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘'‘String home = System.getProperty ("APPHOME") ;

String cmd = home + INITCMD;

java.lang.Runtime.getRuntime () .exec (cmd); * '

Response: vulnerability: YES | vulnerability type: CWE-77 | explanation: The code

above allows an attacker to execute arbitrary commands with the elevated privilege

of the application by modifying the system property APPHOME to point to a different
path containing a malicious version of INITCMD. Because the program does not
validate the value read from the environment, if an attacker can control the value
of the system property APPHOME, then they can fool the application into running
malicious code and take control of the system.

Input: ‘‘‘String cmd = "/home/app/" + INITCMD;

java.lang.Runtime.getRuntime () .exec (cmd); * '

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: “‘‘try {{
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File file = new File("object.obj");

ObjectInputStream in = new ObjectInputStream(new FileInputStream(file));
javax.swing.JButton button = (javax.swing.JButton) in.readObject ();

in.close();

ppove

Response: vulnerability: YES | vulnerability type: CWE-502 | explanation: This code
does not attempt to verify the source or contents of the file before deserializing
it. An attacker may be able to replace the intended file with a file that contains

arbitrary malicious code which will be executed when the button is pressed.

Input: “‘‘try {{

File file = new File("object.obj");

ObjectInputStream in = new ObjectInputStream(new FileInputStream(file));
javax.swing.JButton button = (javax.swing.JButton) validateAndRead (in) ;
in.close () ;

ppove

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

AURTRY

Input: public BankAccount createBankAccount (String accountNumber, String

accountType, String accountName, String accountSSN, double balance) ({{

BankAccount account = new BankAccount () ;

account .setAccountNumber (accountNumber) ;

account.setAccountType (accountType) ;

account.setAccountOwnerName (accountName) ;

account.setAccountOwnerSSN (accountSSN) ;

account.setBalance (balance) ;

return account;

PRy

Response: vulnerability: YES | vulnerability type: CWE-306 | explanation: There is

no authentication mechanism to ensure that the user creating this bank account

object has the authority to create new bank accounts. Some authentication mechanisms
should be used to verify that the user has the authority to create bank account

objects.

AURYRY

Input: private boolean isUserAuthentic = false;

// authenticate user,

// if user is authenticated then set variable to true

// otherwise set variable to false

public boolean authenticateUser (String username, String password) {({

}}

public BankAccount createNewBankAccount (String accountNumber, String accountType,
String accountName, String accountSSN, double balance) {{

BankAccount account = null;

if (isUserAuthentic) {{

account = new BankAccount () ;

account .setAccountNumber (accountNumber) ;

account.setAccountType (accountType) ;

account.setAccountOwnerName (accountName) ;

account.setAccountOwnerSSN (accountSSN) ;

account.setBalance (balance) ;

}}

return account;

ppove

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘‘‘public enum Roles {{
ADMIN, USER, GUEST
}}
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public void printDebugInfo (User requestingUser) {{

if (isAuthenticated (requestingUser)) {{

switch (requestingUser.role) {{

case GUEST:

System.out.println("You are not authorized to perform this command");

break;

default:

System.out.println (currentDebugState());

break;

}}

}}

else{{

System.out.println ("You must be logged in to perform this command");

PRV

Response: vulnerability: YES | vulnerability type: CWE-269 | explanation: While the
intention was to only allow Administrators to print the debug information, the code
as written only excludes those with the role of "GUEST". Someone with the role of "
ADMIN" or "USER" will be allowed access, which goes against the original intent. An

attacker may be able to use this debug information to craft an attack on the system.

RURTRY

Input:
ADMIN, USER, GUEST
H}

public void printDebugInfo (User requestingUser) {{

public enum Roles {{

if (isAuthenticated (requestingUser) ) {{

switch (requestingUser.role) {{

case ADMIN:

System.out.println("You are not authorized to perform this command");

break;

default:

System.out.println (currentDebugState());

break;

}}

}}

else{{

System.out.println ("You must be logged in to perform this command");

PRREYY

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘‘‘protected void doPost (HttpServletRequest request, HttpServletResponse
response) throws Exception {{

response.setContentType ("text/html") ;

PrintWriter out = response.getWriter();

String contentType = request.getContentType () ;

// the starting position of the boundary header

int ind = contentType.indexOf ("boundary=");

String boundary = contentType.substring (ind+9);

String pLine = new String();

String uploadLocation = new String (UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data

if (contentType != null && contentType.indexOf ("multipart/form-data") != -1) {{
// extract the filename from the Http header

BufferedReader br = new BufferedReader (new InputStreamReader (request.getInputStream()
)) i

pline = br.readLine();

String filename = pLine.substring(pLine.lastIndexOf ("\\"), pLine.lastIndexOf ("\""));

// output the file to the local upload directory
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try {{

BufferedWriter bw = new BufferedWriter (new FileWriter (uploadLocation+filename, true))
2

for (String line; (line=br.readLine()) !=null; ) {{

if (line.indexOf (boundary) == -1) {{

bw.write (line);

bw.newLine () ;

bw.flush () ;

}}}} //end of for loop
bw.close () ;

}} catch (IOException ex) {{...}}

// output successful upload response HTML page
H}
// output unsuccessful upload response HTML page
ppoeve
Response: vulnerability: YES | vulnerability type: CWE-434 | explanation: This code
does not perform a check on the type of the file being uploaded (CWE-434). This
could allow an attacker to upload any executable file or other file with malicious
code.
vulnerability: YES | vulnerability type: CWE-23 | explanation: Since the
code does not check the filename that is provided in the header, an attacker can use
"../" sequences to write to files outside of the intended directory.
Input: ‘‘‘protected void doPost (HttpServletRequest request,HttpServletResponse
response) throws Exception{ {
response.setContentType ("text/html") ;
PrintWriter out=response.getWriter();
String contentType=request.getContentType () ;
// the starting position of the boundary header
int ind=contentType.indexOf ("boundary=") ;
String boundary=contentType.substring (ind+9) ;
String pLine=new String();
String uploadLocation=new String (UPLOAD_DIRECTORY_STRING); //Constant value
// verify that content type is multipart form data
if (contentType!=null&&contentType.indexOf ("multipart/form-data"™) !=-1) {{
// extract the filename from the Http header
BufferedReader br=new BufferedReader (new InputStreamReader (request.getInputStream()))

’

pline=br.readLine () ;

String filename=pLine.substring(pLine.lastIndexOf ("\\"),pLine.lastIndexOf ("\""));
// Check file type by extension

String fileExtension = getFileExtension(filename);

if (!isValidFileType (fileExtension)) {{

// Output unsuccessful upload response HTML page

return;

+}

// Sanitize filename to prevent path traversal

filename = sanitizeFilename (filename);

// output the file to the local upload directory

try{{

BufferedWriter bw=new BufferedWriter (new FileWriter (uploadLocation+filename, true));
for (String line; (line=br.readLine()) !=null;) {{

if (line.indexOf (boundary)==-1) {{

bw.write (line);
bw.newLine () ;
bw.flush();

b}
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}} //end of for loop
bw.close () ;
} }catch (IOException ex) {{...}}
// output successful upload response HTML page
}}
// output unsuccessful upload response HTML page
ppove
Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A
Input: ‘‘‘{code} ‘'
Response:

ATl: <response>

Few-shot approach with six examples (pys):

Human: You are a security researcher, expert in detecting security vulnerabilities.
You are given some Java code. You must analyse it for vulnerabilities and provide a
response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | explanation: <short
explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
You are first given a few examples with correct responses and at the end the code
that you must analyse.
Input: ‘'‘String script = System.getProperty ("SCRIPTNAME") ;
if (script != null)
System.exec (script); ‘"
Response: vulnerability: YES | vulnerability type: CWE-78 | explanation: If an
attacker has control over the "SCRIPTNAME" property, then they could modify the
property to point to a dangerous program.

Input: ‘'‘String script = "ls -la";

System.exec (script);

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

RURTRY

Input: public static final double price = 20.00;

int quantity = currentUser.getAttribute ("quantity");

double total = price * quantity;

chargeUser (total); ‘"

Response: vulnerability: YES | vulnerability type: CWE-20 | explanation: The user
has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative

value, then the user would have their account credited instead of debited.

RURTRY

Input: public static final double price = 20.00;

int quantity = 7;

double total = price * quantity;

chargeUser (total); ‘"

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

Input: ‘'‘String filename = System.getProperty ("com.domain.application.

dictionaryFile");

File dictionaryFile = new File(filename); ‘"

Response: vulnerability: YES | vulnerability type: CWE-22 | explanation: The path is
not validated or modified to prevent it from containing relative or absolute path
sequences before creating the File object. This allows anyone who can control the

system property to determine what file is used. Ideally, the path should be resolved
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relative to some kind of application or user home directory.

Input: ‘'‘String filename = "/home/zeros.txt";
File dictionaryFile = new File(filename); ‘"

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A
Input: ‘‘‘{code} ‘!

Response:

AIl: <response>

Few-shot approach with six examples utilising RCI (pfs6—rci):

Human: You are a security researcher, expert in detecting security vulnerabilities.
You are given some Java code. You must analyse it for vulnerabilities and provide a
response only in following format:

vulnerability: <YES or NO> | vulnerability type: <CWE ID> | explanation: <short
explanation for prediction>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.
You are first given a few examples with correct responses and at the end the code
that you must analyse.
Input: ‘‘‘String script = System.getProperty ("SCRIPTNAME") ;
if (script != null)
System.exec (script); ‘*'"
Response: vulnerability: YES | vulnerability type: CWE-78 | explanation: If an
attacker has control over the "SCRIPTNAME" property, then they could modify the
property to point to a dangerous program.

Input: ‘'‘String script = "ls -la";
Vo

System.exec (script);

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A

AURTRY

Input: public static final double price = 20.00;
int quantity = currentUser.getAttribute ("quantity");

double total = price * quantity;

chargeUser (total); ‘"

Response: vulnerability: YES | vulnerability type: CWE-20 | explanation: The user
has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative

value, then the user would have their account credited instead of debited.

ARRTRY

Input: public static final double price = 20.00;

int quantity = 7;

double total = price * quantity;

chargeUser (total); ‘'

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A
Input: ‘'‘String filename = System.getProperty ("com.domain.application.
dictionaryFile");

File dictionaryFile = new File (filename); ‘"

Response: vulnerability: YES | vulnerability type: CWE-22 | explanation: The path is
not validated or modified to prevent it from containing relative or absolute path
sequences before creating the File object. This allows anyone who can control the
system property to determine what file is used. Ideally, the path should be resolved
relative to some kind of application or user home directory.

Input: ‘‘‘String filename = "/home/zeros.txt";
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AT:

File dictionaryFile = new File(filename); ‘"

Response: vulnerability: NO | vulnerability type: N/A | explanation: N/A
Input: ‘‘‘{code} !

Response:

<response>

Human: Review your previous answer and find problems with that answer. Feel free to

AT:

answer in any format you prefer.

<response>

Human: Based on the problems found, improve your initial answer:

AT:

Provide response only in following format:

vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

<response>

Dataflow analysis prompt (pgs,):

Human: You are a security researcher, expert in detecting security vulnerabilities.

AT:

Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
Please provide a response only in the following format:

Here is a data flow analysis of the given code snippet:

A. Sources: <numbered list of input sources>

B. Sinks: <numbered list of output sinks>

C. Sanitizers: <numbered list of sanitizers, if any>

D. Unsanitized Data Flows: <numbered list of data flows that are not sanitized in
the format (source, sink, why this flow could be vulnerable)>

E. Vulnerability analysis verdict: vulnerability: <YES or NO> | wvulnerability type:
CWE_ID> | vulnerability name: <NAME_OF_CWE> | explanation: <explanation for
prediction>

Is the following code snippet prone to any security vulnerability?

‘Y‘Y{code} ‘"

<response>

Dataflow analysis prompt with RCI (pgrq—rei):

Human: You are a security researcher, expert in detecting security vulnerabilities.

AT:

Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
Please provide a response only in the following format:

Here is a data flow analysis of the given code snippet:

A. Sources: <numbered list of input sources>

B. Sinks: <numbered list of output sinks>

C. Sanitizers: <numbered list of sanitizers, if any>

D. Unsanitized Data Flows: <numbered list of data flows that are not sanitized in
the format (source, sink, why this flow could be vulnerable)>

E. Vulnerability analysis verdict: vulnerability: <YES or NO> | vulnerability type:
CWE_ID> | vulnerability name: <NAME_OF_CWE> | explanation: <explanation for
prediction>

Is the following code snippet prone to any security vulnerability?

‘Y‘{code} ‘'

<response>

Human: Review your previous answer and find problems with that answer. Feel free to

AT:

answer in any format you prefer.

<response>
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Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

Dataflow analysis prompt with short RCI (pgrq—srei):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
Please provide a response only in the following format:

Here is a data flow analysis of the given code snippet:

A. Sources: <numbered list of input sources>

B. Sinks: <numbered list of output sinks>

C. Sanitizers: <numbered list of sanitizers, if any>

D. Unsanitized Data Flows: <numbered list of data flows that are not sanitized in
the format (source, sink, why this flow could be vulnerable)>

E. Vulnerability analysis verdict: vulnerability: <YES or NO> | vulnerability type: <
CWE_ID> | vulnerability name: <NAME_OF_CWE> | explanation: <explanation for
prediction>

Is the following code snippet prone to any security vulnerability?

‘YY{code} ‘'

AI: <response>

Human: Review your previous answer and find problems with that answer. Provide feedback
in any format you prefer, but respond in 5 sentences or less.

ATl: <response>

Human: Based on the problems found, improve your initial answer:

Provide response only in following format:

vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.

Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

Dataflow analysis prompt with extra hints (pgrq—p):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
Please provide a response only in the following format:

W

Sources: <numbered list of input sources>

Sinks: <numbered list of output sinks>

Sanitizers: <numbered list of sanitizers, if any>

Unsanitized Data Flows: <numbered list of data flows that are not sanitized in the
format (source, sink, why this flow could be vulnerable)>

Vulnerability analysis verdict: <numbered list of vulnerabilities, if any, in the
format "vulnerability: <YES or NO> | vulnerability type: <CWE_ID> | vulnerability
name: <NAME_OF_CWE> | explanation: <explanation for prediction>">

Is the following code snippet prone to any security vulnerability?
‘YYjava
{code}

AURTRY
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AI: <response>

Dataflow analysis prompt with extra hints with RCI (pgra—n—rei):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
Please provide a response only in the following format:
wnn
Sources: <numbered list of input sources>
Sinks: <numbered list of output sinks>
Sanitizers: <numbered list of sanitizers, if any>
Unsanitized Data Flows: <numbered list of data flows that are not sanitized in the
format (source, sink, why this flow could be vulnerable)>
Vulnerability analysis verdict: <numbered list of wvulnerabilities, if any, in the
format "vulnerability: <YES or NO> | wvulnerability type: <CWE_ID> | vulnerability
name: <NAME_OF_CWE> | explanation: <explanation for prediction>">

Is the following code snippet prone to any security vulnerability?
‘YYjava
{code}
Va
ATl: <response>
Human: Review your previous answer and find problems with that answer. Feel free to
answer in any format you prefer.
AI: <response>
Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE
NAME> | explanation: <reason for the initial analysis being correct or wrong>.
Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

AI: <response>

Dataflow analysis prompt utilising CoT (pcot—dfa):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
The threat model dictates, that the threat actor can only provide malicious wvalues
in public function parameters, system properties, environment variables and
potentially from external websites. The threat actor might also be able to decompile

the code, which could give them access to hardcoded values.
Lets think step-by-step and give the response in the following format:
1. List potential malicious sources: <numbered list of input sources>
2. List the sinks for those malicious sources: <numbered list of output sinks>
3. List the sanitizers for those malicious sources: <numbered list of sanitizers, if
any>
4. List other potential issues with the given code: <numbered list of potential
issues>
5. Provide verdict (one line for every potential discovered weakness) :
vulnerability: <YES or NO> | vulnerability type: <CWE_ID> | vulnerability name: <

NAME_OF_CWE> | explanation: <explanation for prediction>

Is the following code snippet prone to any security vulnerability?
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\\\java
{code}

AURTRY

ATl: <response>

Dataflow analysis prompt utilising CoT with RCI (peot—dfa—rei):

Human: You are a security researcher, expert in detecting security vulnerabilities.
Carefully analyze the given code snippet and track the data flows from various
sources to sinks. Assume that any call to an unknown external API is unsanitized.
The threat model dictates, that the threat actor can only provide malicious values
in public function parameters, system properties, environment variables and
potentially from external websites. The threat actor might also be able to decompile

the code, which could give them access to hardcoded values.
Lets think step-by-step and give the response in the following format:
1. List potential malicious sources: <numbered list of input sources>
2. List the sinks for those malicious sources: <numbered list of output sinks>
3. List the sanitizers for those malicious sources: <numbered list of sanitizers, if
any>
4. List other potential issues with the given code: <numbered list of potential
issues>
5. Provide verdict (one line for every potential discovered weakness):
vulnerability: <YES or NO> | vulnerability type: <CWE_ID> | vulnerability name: <

NAME_OF_CWE> explanation: <explanation for prediction>

Is the following code snippet prone to any security vulnerability?
‘YYjava
{code}

ATl: <response>

Human: Review your previous answer and find problems with that answer. Feel free to
answer in any format you prefer.

AT: <response>

Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <reason for the initial analysis being correct or wrong>.

Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

CoT approach evaluating potential problems in eight steps (peor—ss):

Human: As a security researcher, you are tasked with reporting security vulnerabilities.
You are currently looking at the following code:
‘YYjava
{code}
Va
You are expected to work step-by-step:
1. Identify Weaknesses: Identify which vulnerabilities could be present in the
following code.
2. Review User Input Handling: Look for any input sources that are not properly
validated or sanitized before being used in unsafe manner. If variable that is
passed into unsafe function is not directly influenced by external user input, the

vulnerability is not currently present and must not be reported.
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AT:

3. Analyze Data Flow: Trace the flow of untrusted data to the system command. Ensure
that there are no points where user-controlled input can directly influence the
command execution.

4. Check for Mitigations: Examine if there are any mitigations in place to prevent
command injection, such as input validation, sanitization, or using safer
alternatives to executing system commands.

5. Evaluate Conditional Branching: If there’s dead code (that can never be reached),
then this part must not be evaluated.

6. Assess Error Handling: Evaluate how errors, if any, are handled.

7. Identify Code Leaking Secrets: Check whether the code contains secrets that
should not be public knowledge.

8. Provide verdict (one line for every potential discovered weakness). Keep in mind
you must not report vulnerabilities that cannot be currently abused by malicious
actors. False positive results must be kept to minimum. The verdict must be in the
format:

vulnerability: <YES or NO> | vulnerability type: <CWE_ID> |

<response>

CoT approach evaluating potential problems in eight steps utilising RCI (peot—g8s—rei):

Human: As a security researcher, you are tasked with reporting security wvulnerabilities.

AT:

You are currently looking at the following code:
‘YYjava
{code}
Va
You are expected to work step-by-step:
1. Identify Weaknesses: Identify which vulnerabilities could be present in the
following code.
2. Review User Input Handling: Look for any input sources that are not properly
validated or sanitized before being used in unsafe manner. If variable that is
passed into unsafe function is not directly influenced by external user input, the
vulnerability is not currently present and must not be reported.
3. Analyze Data Flow: Trace the flow of untrusted data to the system command. Ensure
that there are no points where user-controlled input can directly influence the
command execution.
4. Check for Mitigations: Examine if there are any mitigations in place to prevent
command injection, such as input validation, sanitization, or using safer
alternatives to executing system commands.
5. Evaluate Conditional Branching: If there’s dead code (that can never be reached),
then this part must not be evaluated.
6. Assess Error Handling: Evaluate how errors, if any, are handled.
7. Identify Code Leaking Secrets: Check whether the code contains secrets that
should not be public knowledge.
8. Provide verdict (one line for every potential discovered weakness). Keep in mind
you must not report vulnerabilities that cannot be currently abused by malicious
actors. False positive results must be kept to minimum. The verdict must be in the
format:
vulnerability: <YES or NO> | vulnerability type: <CWE_ID> |

<response>

Human: Review your previous answer and find problems with that answer. Feel free to

AT:

answer in any format you prefer.

<response>

Human: Based on the problems found, improve your initial answer:

Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <reason for the initial analysis being correct or wrong>.
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Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

Code review prompt (p..) with checklist, which was taken from [89]:

Human: You are responsible for the security of a codebase. You are given a checklist
containing questions and a Java code file.
Based on the contents of the Java file, you must answer all the questions. The

answers to the questions can be in any format, but must be short (1-2 sentences).

Code:
‘Y Yjava
{code}

ARRTRY

Checklist:
* What security vulnerabilities is this code susceptible to?

* Are authorization and authentication handled in the right way?

* Is (user) input validated, sanitized, and escaped to prevent cross-site scripting

or SQL injection?

* Is sensitive data like user data, or credit card information securely handled and

stored?

* Does this code NOT reveal some secret information like keys, passwords, or
usernames?

* Is data retrieved from external APIs or libraries checked accordingly?

* Does error handling or logging NOT expose the system to vulnerabilities?

* Is the right encryption used?

* Is sensitive data encrypted in storage and in transit?

* Would having access to the codebase affect the security of the application (does

code contain hard-coded secrets)?

Based on the answers given, you must provide a final verdict (one line for every
potential discovered weakness). The final verdict must be in the format:
vulnerability: <YES or NO> | vulnerability type: <CWE_ID> | <short one sentence
explanation>

If no vulnerabilities are present, respond with: "Not vulnerable"

ATl: <response>

Code review prompt utilising RCI (p.,_.;) with checklist, which was taken from [89]:

Human: You are responsible for the security of a codebase. You are given a checklist
containing questions and a Java code file.
Based on the contents of the Java file, you must answer all the questions. The

answers to the questions can be in any format, but must be short (1-2 sentences).

Code:
“‘java
{code}

AURTRY

Checklist:
* What security vulnerabilities is this code susceptible to?

* Are authorization and authentication handled in the right way?

* Is (user) input validated, sanitized, and escaped to prevent cross-site scripting

or SQL injection?
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* Is sensitive data like user data, or credit card information securely handled and
stored?

* Does this code NOT reveal some secret information like keys, passwords, or
usernames?

* Is data retrieved from external APIs or libraries checked accordingly?

* Does error handling or logging NOT expose the system to vulnerabilities?

* Is the right encryption used?

* Is sensitive data encrypted in storage and in transit?

* Would having access to the codebase affect the security of the application (does

code contain hard-coded secrets)?

Based on the answers given, you must provide a final verdict (one line for every
potential discovered weakness). The final verdict must be in the format:
vulnerability: <YES or NO> | vulnerability type: <CWE_ID> | <short one sentence
explanation>
If no vulnerabilities are present, respond with: "Not vulnerable"

AI: <response>

Human: Review your previous answer and find problems with that answer. Feel free to
answer in any format you prefer.

ATl: <response>

Human: Based on the problems found, improve your initial answer:
Provide response only in following format:
vulnerability: <YES or NO> | vulnerability type: <CWE ID> | vulnerability name: <CWE

NAME> | explanation: <reason for the initial analysis being correct or wrong>.

Use N/A in other fields if there are no vulnerabilities. Do not include anything
else in response.

ATl: <response>

Tree of thoughts 8-step prompt (pyo¢_ss):

Human: As a security researcher, you must analyse the given code and respond to the step
number {step_nr}. If there are previous steps, the answers to them have already
been provided and must be considered accurate. Keep your responses short and concise.
You are currently looking at the following code:
‘YYjava
{input}
Va
Steps:
1. Identify All Weaknesses: Identify which vulnerabilities could be present in the
following code.
2. Review User Input Handling: Look for any input sources that are not properly
validated or sanitized before being used in unsafe manner. If variable that is
passed into unsafe function is not directly influenced by external user input, the
vulnerability is not currently present and must not be reported.
3. Analyze Data Flow: Trace the flow of untrusted data to the system command. Ensure
that there are no points where user-controlled input can directly influence the
command execution.
4. Check for Mitigations: Examine if there are any mitigations in place to prevent
command injection, such as input validation, sanitization, or using safer
alternatives to executing system commands.
5. Evaluate Conditional Branching: If there’s dead code (that can never be reached),
then this part must not be evaluated.
6. Assess Error Handling: Evaluate how errors, if any, are handled.
7. Identify Code Leaking Secrets: Check whether the code contains secrets that
should not be public knowledge.
8. Provide verdict (one line for every potential discovered weakness). Keep in mind
you must not report vulnerabilities that cannot be currently abused by malicious

actors. False positive results must be kept to minimum. The response for the last
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AT:

step (verdict) must be in the format:
vulnerability: <YES or NO> | vulnerability type: <CWE_ID> |

<response>

Tree of thoughts 8-step evaluation prompt (Pror—ss—eval):

AT:

Human: Given a code snippet and several choices for the analysis of this code,
decide which choice is best and most accurate. Code:

‘YYjava

{input}

Vo

Analyze each choice in detail, then conclude in the last line "The best choice is
s}}", where s the integer id of the choice.

Choice 1:

<choice-1>

Choice 2:

<choice-2>

Choice 3:

<choice-3>

<response>
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Appendix 3 — Code Samples

Excerpt of J20736.java file, vulnerable to CWE-78:

public void handle (HttpServletRequest request, HttpServletResponse response) throws
Throwable {
String data;
if (PRIVATE_STATIC_FINAL_TRUE) {
data = "";
{
StringTokenizer tokenizer = new StringTokenizer (request.getQueryString(),
&) ;
while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
if (token.startsWith ("id=")) {
data = token.substring(3);

break;

}
} else {

data = null;
}

String osCommand;

if (System.getProperty ("os.name") .toLowerCase ().indexOf ("win") >= 0) {
osCommand = "c:\\WINDOWS\\SYSTEM32\\cmd.exe /c dir ";

} else {
osCommand = "/bin/ls ";

}
Process process = Runtime.getRuntime () .exec (osCommand + data);

process.waitFor () ;

Excerpt of J23877.java file, not vulnerable to CWE-89:

private void processG2B (HttpServletRequest request, HttpServletResponse response) throws
Throwable {
String data;
if (IO.staticReturnsTrueOrFalse()) {
data = "foo";
} else {
data = "foo";
}
if (IO.staticReturnsTrueOrFalse()) {
if (data !'= null) {
String names[] = data.split("-");
int successCount = 0;
Connection dbConnection = null;

Statement sglStatement = null;

try {
dbConnection = IO.getDBConnection();
sglStatement = dbConnection.createStatement ();
for (int i = 0; i < names.length; i++) {
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76

sglStatement .addBatch ("update users set hitcount=hitcount+l where

name='" + names[i] + "' ");
}
int resultsArray[] = sglStatement.executeBatch();
for (int i = 0; i < names.length; i++) {

if

}

I0.writelLine ("Succeeded in " + successCount +

" queries.");

(resultsArray[i] > 0) {

successCount++;

} catch (SQLException exceptSqgl) {

I0.logger.log(Level .WARNING,

exceptSql);
} finally {
try f
if

}
} catch

IO0.logger.log(Level .WARNING,

)
try {
if

}
} catch

I0.logger.log (Level .WARNING,

}
} else {
if (data != nul

String name

(sglStatement != null)

sglStatement.close () ;

(SQLException exceptSql)

(dbConnection != null)

dbConnection.close();

(SQLException exceptSqgl)

1) {
s[] = data.split("-");

int successCount = 0;

Connection dbConnection = null;

Statement sglStatement = null;

try {
dbConnection = IO.getDBConnection();
sglStatement = dbConnection.createStatement () ;
for (int i = 0; i < names.length; i++) {

{

{

{

" out of " + names.length +

"Error getting database connection",

"Error closing Statament", exceptSql);

{

"Error closing Connection", exceptSql);

sglStatement .addBatch ("update users set hitcount=hitcount+l where

name='" + names[i] + "'");
}
int resultsArray[] = sglStatement
for (int i = 0; i < names.length;

if

}

IO.writeLine ("Succeeded in " + successCount +

" queries.");

(resultsArray[i] > 0) {

successCount++;

} catch (SQLException exceptSqgl) {

I0.logger.log (Level .WARNING,

exceptSqgl) ;
} finally {
try {
if

(sglStatement != null)

sglStatement.close();
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77 }

78 } catch (SQLException exceptSgl) {

79 I0.logger.log(Level .WARNING, "Error closing Statament", exceptSql);
80 }

81 try f

82 if (dbConnection != null) {

83 dbConnection.close () ;

84 }

85 } catch (SQLException exceptSqgl) {

86 I0.logger.log (Level .WARNING, "Error closing Connection", exceptSqgl);
87 }

88 }

89 }

90 }

91 }
92 private void processB2G (HttpServletRequest request, HttpServletResponse response) throws
Throwable {

93 String data;

94 if (IO.staticReturnsTrueOrFalse()) {

95 data = request.getParameter ("name") ;

96 } else {

97 data = request.getParameter ("name");

98 }

99 if (IO.staticReturnsTrueOrFalse()) {

100 if (data !'= null) {

101 String names[] = data.split("-");

102 int successCount = 0;

103 Connection dbConnection = null;

104 PreparedStatement sglStatement = null;
105 try {

106 dbConnection = IO.getDBConnection () ;
107 sglStatement = dbConnection.prepareStatement ("update users set hitcount=

hitcount+l where name=?");

108 for (int i = 0; 1 < names.length; i++) {

109 sglStatement.setString(l, names[i]);

110 sglStatement.addBatch () ;

111 }

112 int resultsArray[] = sglStatement.executeBatch();

113 for (int i = 0; i < names.length; i++) {

114 if (resultsArray[i] > 0) {

115 successCount++;

116 }

117 }

118 I0.writeLine ("Succeeded in " + successCount + " out of " + names.length +

" queries.");

119 } catch (SQLException exceptSgl) {

120 I0.logger.log(Level .WARNING, "Error getting database connection",
exceptSqgl) ;

121 } finally {

122 try {

123 if (sglStatement != null) {

124 sglStatement.close();

125 }

126 } catch (SQLException exceptSqgl) {

127 I0.logger.log (Level .WARNING, "Error closing PreparedStatement",
exceptSqgl) ;

128 }

129 try {

130 if (dbConnection != null) {
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131 dbConnection.close () ;

132 }

133 } catch (SQLException exceptSgl) {

134 I0.logger.log(Level .WARNING, "Error closing Connection", exceptSql);
135 }

136 }

137 }

138 } else {

139 if (data !'= null) {

140 String names[] = data.split("-");

141 int successCount = 0;

142 Connection dbConnection = null;

143 PreparedStatement sglStatement = null;

144 try {

145 dbConnection = IO.getDBConnection () ;

146 sglStatement = dbConnection.prepareStatement ("update users set hitcount=

hitcount+l where name=?");

147 for (int i = 0; i < names.length; i++) {

148 sglStatement.setString (1, names[i]);

149 sglStatement.addBatch () ;

150 }

151 int resultsArray[] = sglStatement.executeBatch();

152 for (int i = 0; i < names.length; i++) {

153 if (resultsArray[i] > 0) {

154 successCount++;

155 }

156 }

157 I0.writeLine ("Succeeded in " + successCount + " out of " + names.length +

" queries.");

158 } catch (SQLException exceptSqgl) {

159 I0.logger.log(Level .WARNING, "Error getting database connection",
exceptSqgl) ;

160 } finally {

161 try {

162 if (sglStatement != null) {

163 sglStatement.close();

164 }

165 } catch (SQLException exceptSqgl) {

166 I0.logger.log (Level .WARNING, "Error closing PreparedStatement",
exceptSqgl) ;

167 }

168 try {

169 if (dbConnection != null) {

170 dbConnection.close () ;

171 }

172 } catch (SQLException exceptSqgl) {

173 I0.logger.log(Level .WARNING, "Error closing Connection", exceptSqgl);

174 }

175 }

176 }

177 }

178}

179 public void process (HttpServletRequest request, HttpServletResponse response) throws
Throwable {

180 processG2B (request, response);
181 processB2G (request, response);
182}
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Appendix 4 — Versions

The following versions of different software are used in the study:

N R LD =

CodeQL: The CLI toolchain release 2.16.0 is used.

SpotBugs: The Gradle plugin version 6.0.7 is used.
FindSecurityBugs: The Find Sec Bugs plugin version 1.12.0 is used.
GPT-4 turbo: The model gpt-4-0125-preview is used.

GPT-4: The model gpt-4-0613 is used.

Claude 3 Opus: The model claude-3-opus-20240229 is used.

Juliet dataset: The Java Juliet 1.3 dataset is used.
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