
Thesis on Informatics and System Engineering c54

E�cient Semantics of Parallel and

Serial Models of Attack Trees

Aivo Jürgenson

Tallinn University of Technology

Faculty of Information Technology

Department of Informatics

Dissertation was accepted for the defense of the degree of Doctor of Philosophy

in informatics and system engineering on 12th May, 2010.

Supervisors:

Prof. Dr. Ahto Buldas, Chair of Information Security, Department of In-

formatics, Faculty of Information Technology, Tallinn University of Tech-

nology

Dr. Jan Willemson, senior researcher, Cybernetica AS

Opponents:

Prof. Dr. Sjouke Mauw, Chair of Security and Trust of So�ware Systems,

Faculty of Science, Technology and Communication, University of Luxem-

bourg

Prof. Dr. Tanel Tammet, Chair of Network So�ware, Department of Com-

puter Science, Faculty of Information Technology, Tallinn University of

Technology

Defense of the thesis: 21st June, 2010

Declaration: Hereby I declare that this doctoral thesis, my original investigation

and achievement, submitted for the doctoral degree at Tallinn University of Tech-

nology, has not been submitted for any academic degree.

/Aivo Jürgenson/

Copyright: Aivo Jürgenson, 2010

�is thesis was typeset with LATEX using Robert Slimbach’s MinionPro typeface.

issn 1406-4731

isbn 978-9985-59-999-0

informaatika ja süsteemitehnika c54

Ründepuude paralleel- ja

jadamudelite efektiivsed

semantikad

Aivo Jürgenson

Contents

Introduction 9

Abbreviations and Symbols 15

1 Security Modeling 17
1.1 Building Models of Security . 17

1.2 Fault Tree Analysis . 19

1.2.1 Fault Tree Elements . 19

1.2.2 Fault Tree Construction . 20

1.3 Attack Tree Analysis . 22

1.3.1 Attack Tree Foundations 24

2 Quantitative Security Risk Assessment 27
2.1 Quantitative Fault Tree Analysis . 28

2.2 Combining Fault Tree Analysis and Attack Trees 29

2.3 Economic�reat Modeling . 30

2.4 Attack Graphs . 32

2.5 Quanti�ed Analysis Approach by Edge et al. 33

2.6 Survivability Analysis Approach by Fung et al. 35

2.7 Quanti�ed Analysis Approach by Buldas et al. 36

2.8 Shortcomings of the Current State of the Art 39

2.8.1 Global Gains Problem . 39

2.8.2 Local Optimum Problem 39

2.8.3 Tree Transformations . 41

5

3 Parallel Attack Tree Model 43
3.1 Formal De�nitions . 43

3.2 Attack Tree Parameters . 44

3.3 Outcome Computation . 45

3.4 Comparison with Attack Tree Model by Buldas et al. 47
3.5 Optimizations . 49

3.5.1 DPLL Algorithm . 49

3.5.2 Withdrawing Hopeless Branches 50

3.5.3 E�cient Assignments Finding 53

3.5.4 Computing the Attack Suite Success Probability 54

3.5.5 Strategies for Choosing the Branching Point 56

3.6 Complexity of Parallel Model . 57

3.7 Genetic Algorithm . 58

3.7.1 Representing the Solution 59

3.7.2 Generating initial population 59

3.7.3 Analysis . 59

4 Serial Attack Tree Model 65
4.1 Model Description . 65

4.2 Comparison with Parallel Attack Tree Model 67

4.3 Computation Algorithm . 70

4.4 Outcome Results Comparison . 73

4.5 Genetic Algorithm . 73

4.5.1 Generating Initial Population 75

4.5.2 Crossing and mutating individuals 75

4.5.3 Analysis . 78

Conclusions and Future Research 83

Index 85

References 87

Abstract 97

Resümee (Abstract in Estonian) 99

A Curriculum Vitæ 101

6

B Elulookirjeldus (CV in Estonian) 105

C List of Publications 109
Computing Exact Outcomes of Multi-Parameter Attack Trees 111

Serial Model for Attack Tree Computations 129

On Fast and Approximate Attack Tree Computations 143

7

8

Introduction

When using information systems for critical tasks, for example, controlling and

managing industrial processes or handling valuable information, such as e-votes,

bank transactions, transmitting state secrets or business sensitive information, in-

formation security becomes very important. In general, the owners and users of

information systemswould like to ensure certain levels of con�dentiality, integrity

and availability of both information and information systems, so that their own

targets could be met. �e trouble is that information system components some-

times have vulnerabilities. �reats, both natural and human-made, will some-

times take advantage of those vulnerabilities and will a�ect the information secu-

rity targets and users will then fail to achieve their own objectives.

To combat those threats, various security measures are usually deployed.

Starting fromphysical securitymeasures, continuingwith organizational andpro-

ceduralmeasures and also including IT securitymeasures, such as authentication,

access control, encryption, digital signatures, redundancy, sand-boxing, logging,

and various other technical measures.�ey all tend to decrease the risk of materi-

alizing threats, however, in the relatively young �eld of information security, the

e�ectiveness of those security measures is usually not certain. Sometimes mis-

takes are made in the deployment, sometimes the measures themselves contain

bugs and vulnerabilities and the resulting total security situation is not usually

known. It still might happen that a skillful attacker might be able to successfully

attack us.

It is currently di�cult to quantify how hard it is to attack the information

system.

Cryptography, a much more rigorous discipline, has concepts of those kinds

of guarantees mostly because encryption has been used for ages to protect the

military and government secrets during the transmission and huge resources have

been applied on one side to read those encrypted messages and on the other side,

9

to make this process harder. Nowadays, we even have mathematical proofs about

the strength of various cryptographic methods, e.g., the problem of breaking the
security of public key encryption can be reduced to the problem of factorization
of very large numbers. Because it seems that this factorization problem is very

complicated, we can therefore say that breaking the public key encryption is a

very hard problem as well.

However, most of the cryptographic methods simply transform one kind of

security problem into another, e.g., strength of public key encryption depends on

the secrecy of private keys and security of ssl/tsl technology depends on users

actually paying attention to and understanding browser ui and security alerts.

�ose assumptions can still be attacked outside the area of cryptography, but

within the scope of general information security. �erefore, we cannot just take

mathematical proofs from cryptography and rely on reductionist security to �nd
out if the information system is secure against practical, real world attackers.

Some other �elds use the science of risk assessment to �nd out which threats

are more likely to materialize and how much attention should be spent on man-

aging these. For example, the insurance industry is mostly successful in this busi-

ness. Usually, they canmeasure the risk bymultiplying the probability of an event

with the amount of losses associated with a single event and get an expected loss.

However, the insurance industry usually deals with natural threats and they

have a very large body of statistical information on their side. �ey can simply

look up from a database how frequently the �oods have occurred in that part of
the country where the client has built his or her house and thenmake an informed

decision about the premium of the insurance contract. In information security,

such kind of data is not (yet) available because the �eld itself is still very quickly

evolving and secondly, the victims of security incidents tend to usually hide this

fact and embarrassing details from the general public.

�erefore, it is not possible to simply use frequentist approach for quantifying

the probability of complex security incidents.

Engineers also have the same problem, because in their �eld the reliability

of the products is the main concern. Even though they could build a sample of

test products and then stress test them and then �nd out how likely they are to

fail in the operational conditions, this becomes rather expensive with larger ma-

chines. You cannot just build hundreds of space shuttles and then see if there is

a fault in the design or in the selection of components. To �nd out how likely

larger machines are to fail, or how reliable they are before actually building them,

10

engineers have created a methodology called fault tree analysis. Multiple ways of
how the machine or components could fail are put to the fault tree and then con-
nected together with a di�erent kind of logic gates. �e resulting tree describes

the dependancies between fault events and with the failure probabilities of the

individual components, the probability of the total system failure can be simply

computed.

�e same approach is applied to information security where complicated,

multi-stage attacks against information systems are usually composed from sim-

pler attacks. �e combined attack could be described by an attack tree that is

essentially the same thing as a fault tree. If corresponding security metrics could

be assigned to the attack tree leaves and there is a valid computation model, the

attacker’s success probability, or perhaps even attacker’s expected utility could be

computed from the attack tree. �is would allow the security people and so�-

ware designers and information system owners to speak with each other about

quanti�ed security and make informed decisions concerning the kind of security

measures to be applied and built into systems.

�e attack tree analysis has been studied for almost 20 years and applied to

the real life security analysis as well, however, most of the publications are not

based on solid theoretical foundations and economic models, which would al-

low the attack tree analysis to be used in a company along with other economic

considerations.

In this thesis, it is shown that some of the current attack tree models are not

usable and do not produce consistent results. Instead of them, two new models

are proposed, which allow the following behavior of attackers. In the �rst model,

the attacker can choose the list of elementary attacks to be performed and the

attacker’s expected utility is then computed based on the assumption that all el-

ementary attacks are performed in parallel. In the second, more realistic model,

the attacks are performed sequentially and the attacker can make decisions in be-

tween if it is worth trying the next attack, or not. Computing the attacker’s utility

uses multiple parameters of attack tree leaves, such as the success probability of

the attack, cost of the attack and excepted penalties, which are also used in the

model of economically motivated crimes.

Compared to previous models, this is a signi�cant advancement of attack tree

analysis.�e present thesis is based on the following three academic papers writ-

ten in the period from 2008 until 2010.

I A. Jürgenson and J. Willemson. Computing exact outcomes of multi-

11

parameter attack trees. In R. Meersman and Z. Tari, editors, On the Move
to Meaningful Internet Systems (OTM 2008), volume 5332 of lncs, pages
1036–1051. Springer-Verlag, 2008.

�e author contributed to this paper with the implementation of the com-

putation model in the programming language, running the performance

tests and collaborating on the parallel attack tree model development.

II A. Jürgenson and J. Willemson. Serial model for attack tree computations.

In D. Lee and S. Hong, editors, Revised Papers from 12th International Con-
ference on Information Security and Cryptology (ICISC 2009), volume 5984
of lncs, pages 118–128. Springer-Verlag, 2010.

�e author collaborated on the serial attack tree model development.

III A. Jürgenson and J. Willemson. On fast and approximate attack tree com-

putations. In J. Kwak, R. H. Deng, Y. Won, and G. Wang, editors, Informa-
tion Security Practice and Experience, 6th International Conference (ISPEC
2010), volume 6047 of lncs, pages 56–66. Springer-Verlag, 2010.

�e author’s contribution to this paper was the implementation of the par-

allel model optimizations, contributions to the genetic algorithm model,

implementing and running the performance and accuracy tests.

In Appendix C of the thesis, copies of papers I–III are included on pages 109–

155.

�e outline of the thesis is the following. Chapter 1 on page 17 and Chapter 2

on page 27 give the overview about the current state of the art in the �eld of secu-

ritymodeling and quantitative risk assessment with attack trees. Existing research

results allow us to perform security analysis and estimate roughly if the attack is

feasible or not, but they have several shortcomings. We list those problems and

give corresponding counter-examples in Section 2.8 on page 39.

�e main result of this thesis is the removal of those shortcomings and pre-

senting the real-life usable methodology to analyze the feasibility of the attack

from an attacker’s viewpoint. �e thesis studies two attack tree models, which

allow us to model attackers of di�erent behavior. �e �rst model is presented in

Chapter 3 on page 43 and it requires an attacker to decide on the list of attacks be-

fore the start of the campaign and then all attacks are tried in parallel.�e second

model is presented in Chapter 4 on page 65 and that allows an attacker to start

attacking and then adaptively decide during the campaign which attacks will be

12

tried next based on the success or failures of preceding attacks.

�ese models allow a security analyst to �nd out the expected utility of the

attacker. If the utility is positive, we can conclude that there is an e�ective attack

against the current system. If the utility is negative or zero, the system may be

secure against rational attackers. However, the exact computing algorithms all

have exponential complexity and they can handle in reasonable time only rather

small attack trees. To allow processingmuch larger attack trees constructed in the

real-life security analyses, approximate algorithms are presented for both models

in Section 3.7 and 4.5.

Acknowledgements

�e author has been partly �nancially supported by the Estonian Science Founda-

tion grants 7081 and SF0012708s06, the Estonian Doctoral School in ICT, Elion

Enterprises Ltd., and, last but not least, Cybernetica AS, one of the few private

research companies in Estonia.

I am grateful to my supervisors, Ahto Buldas and Jan Willemson. Without

Ahto I would not have started studies of the attack trees and without Jan I would

not have �nishedmy thesis. I would like to also thankMargusNiitsoo andAlexan-

der Andrusenko, who worked in the same �eld and shared many ideas and com-

ments.

13

14

Abbreviations and Symbols

Abbreviation De�nition

bgp Border Gateway routing Protocol

cnf Conjunctive Normal Form of the Boolean formulas

dnf Disjunctive Normal Form of the Boolean formulas

dpll Davis-Puntam-Logemann-Loveland algorithm to �nd out if the

Boolean formula is satis�able

rdag Rooted directed acyclic graph

rfid Radio Frequency Identi�cation systems

sat Satis�ability problem of Boolean formulas

#sat Problem of counting the number of solutions to the sat problem

scada Industrial process control systems

sql Structured Query Language

uml Uni�ed Modeling Language

wtls Wireless Transport Layer Security

wap Wireless Application Protocol

Symbol De�nition

T Attack tree T with and-nodes, or-nodes and set of leaves X =
{X1, . . . , Xn} and parameter Gains

F Boolean formula F de�ned by the syntax tree of the attack tree
T

Xi Leaf (elementary attack) Xi of the attack tree T with parameters
pi and Expensesi

continued on the next page. . .

15

Symbol De�nition

Expensesi Expected cost of launching the elementary attack Xi , which in-
cludes the preparation costs and expected penalties

pi Probability of succeeding with the elementary attack Xi
Gains Reward of an attacker, when the attack tree T is realized by the

attack suite S
S Attack suite S ⊆ X of the elementary attacks in the attack tree T
(S , σ) Ordered attack suite, where S ⊆ X and permutation σ de�nes the

order of elementary attacks ⟨Xσ(1), . . . , Xσ(m)⟩
σ Permutation σ is the bijective function α ∶ {1, . . . ,m} →

{1, . . . ,m}
OutcomeS Outcome value of the attack suite S
OutcomeS ,σ Outcome value of the ordered attack suite (S , σ)
pS Probability of F = true a�er executing the attack suite S
pσ Probability of F = true a�er executing the ordered attack suite

(S , σ)
pσ ,i Probability that during the execution of ordered attacks

⟨Xσ(1), . . . , Xσ(m)⟩ the elementary attack Xσ(i) will be tried

Sm �e symmetric group with a degree m

16

Chapter 1

SecurityModeling

1.1 BuildingModels of Security

In science, when studying some particular problem, it is a common to build ideal-

ized and somewhat simpler models and then try to understand the phenomenon

by applying and testing those models on real life situations. Frigg and Hartmann

write in [30]:

Scientists spend a great deal of time building, testing, comparing
and revising models, and much journal space is dedicated to introduc-
ing, applying and interpreting these valuable tools.

It would be natural that security researchers are also following the same lead

and are trying tomodel the organizations, information systems, attacks and faults

from the security aspect.

One of the earliest papers on general securitymodeling is [70] by Schumacher

and Roedig from 2001 and a book [69] by Schumacher from 2003.�ey build on

the success of the so�ware development patterns in the so�ware engineering �eld

and argue that the same kind of approach must be followed in security engineer-

ing as well.�ey identify several possible options for representing those security

patterns, such as human readable security policies, Common Criteria standards

and also attack trees.

More recently, Miede et al. are proposing a generic metamodel in [54] for IT
security, capturing both its major concepts and relations of those concepts to each

other. �eir model includes concepts, such as threat, attack, attacker, attack tool

17

and they also reach a conclusion that quantitative and qualitative attack metrics

are useful concepts.�ey are supported by Trivedi et al. who are linking together
the security models and dependability modeling concepts in [75]. Nicol et al.
also compare security models and dependability models in [56], but they come

into conclusion that security models should include additional properties which

cannot be directly mapped to dependability concepts.

Baadshaug et al. study the current approaches to graphical security modeling
in [5].�ey choose the Vulnerability Inspection Diagram (vid) methodology for

their usability and performance testing experiments. �e working hypothesis is

that specialized security modeling tools will outperform general modeling tools

when creating security models. �ey modify the existing SeaMonster security

modeling tool to support vids and assign modeling tasks to ten students who are

using SeaMonster and general Microso� Visio tools to solve them. �e experi-

ment results show that special security modeling so�ware indeed provides better

results and is therefore useful and required.

Tøndel et al. combine two security modeling techniques: misuse case dia-
grams and attack trees in [76]. A similar kind of a merged technique to specify

so�ware security requirements has been proposed in [32] by Gandotra, Singhal,

and Bedi.�e approachwas �rst suggested byDiallo et al. [22] in 2006, when they
compared the Common Criteria security speci�cation model, misuse cases and

attack trees. Misuse cases are analogues to use-cases from the Uni�ed Modeling

Language (uml). Where use-cases describe those useful and required activities,

which the legitimate users of the system need to able to perform, the misuse cases

list those actions which we would like to prevent from happening, e.g., the mali-

cious attacks. Creating attack trees to give more detailed descriptions of how the

complicated misuse cases might be achieved, the security models and so�ware

requirements become more easily understandable by developers.

�e usability of the misuse cases and attack trees as separate techniques were

studied by Opdahl and Sindre in [57]. In two experiments, 28 and 35 participants

solved threat identi�cations tasks, �rst with misuse cases and then with attack

trees.�e main �nding of the study was that attack trees were more e�ective for

�nding threats, in particular when there was no pre-drawn use-case diagram to

help with identifying the misuse cases.

�e research of how to model the security seems to be well underway and

studies and experiments show that the attack tree analysis in particular is quite a

promising method to apply.

18

1.2 Fault Tree Analysis

Already in the 1960s and 1970s, the system safety and reliability studies in the U.S.

Air Force, Boeing and the nuclear power industry used the ideas of component

dependancies and the fault trees. Various papers and courses were put together

to a single handbook [79] that was published in 1981 and updated [80] by nasa in

2002. It turns out that the fundamental concept of attack trees can be traced back

to the fault tree analysis.

Fault tree analysis is a simple analytical technique, where the undesired state

(from the safety viewpoint) of the system is chosen as a starting point and then the

system and the environment is analyzed to �nd all of the possible ways in which

the undesired state can happen. �e fault tree is the graphical representation of

this analysis.�e faults could be natural disasters, component failures, personnel

mistakes and also deliberate attacks. During the analysis, only those events and

system components are taken into accountwhich lead to the realization of the root

of the fault tree, the undesired state.�erefore, it is not the model of the complete

system itself, but only that of the currently relevant failures and components.

1.2.1 Fault Tree Elements

Fault tree analysis makes an important distinction between faults and failures.

Failure is speci�c malfunctioning of a component of the system. However, there

can also be situations where the component is functioning perfectly well, but the

system is still in an unsatisfactory state because of some other component failures

or some environment issues.�erefore, the fault tree analysis uses a more general

word fault to describe any kind of events.
Fault events are connected together with di�erent types of logic gates that

show the relationship between the lower events and between the higher, interme-
diate events. �e higher event is the output of the gate, the lower events are the
inputs to the gate. Di�erent gates can be used to describe this relationship in a

more formal way. A sample of the fault tree is presented in Figure 1.1 on page 21.

�e handbook [79] de�nes the following gates.

• and – output fault occurs if all of the input faults occur. and-gate implies

the causality connection between the input faults and the output fault.

• or – output fault occurs if at least one of the input faults occurs.�e causal-

ity between input faults and output faults are never passed through the OR

19

gate.

• xor – output fault occurs if exactly one of the input faults occurs.

• priority-and – output fault occurs if the input faults occur in a speci�c

sequence.

• inhibit – output fault occurs provided that some condition is satis�ed.�e

condition is not modeled as an event but something di�erent.

�e handbook writers conclude that the xor, priority-and, inhibit-gates

are rarely used in practice and usually the fault tree analysis can be completed us-

ing only and and or-gates. However, later, in the attack tree analysis, Khand ar-

gues in [43] that the conventionaland-nodes andor-nodes of attack trees can not

adequately capture all attacks towards those systems and rede�nes priority-and

and several new ones. Yager also argues in [88] that the usual attack tree building

blocks are insu�cient and proposes a probabilistic node that allows modeling of

uncertainty in the number of children that needs to be satis�ed.

So far, we have been able to do the attack tree analysis using only and-nodes

and or-nodes and in the following text we are assuming attack trees consisting

only of those nodes.

1.2.2 Fault Tree Construction

During the construction of the fault trees, the system analyst should consider im-
mediate, necessary and su�cient causes for the occurrence of the events.�e im-
mediate causes are usually not the root or basic causes for something, but instead,
the immediate causes or immediate mechanisms. Without following this rule,

the valid fault tree branches may be missed and the valid causes for system failure

might not be analyzed.

It can be illustrated by the circuit in Figure 1.2 on the facing page when we

analyze the top event “no input signal to D”. When we do not consider the passive
components (the wires between active components A, B, C, D), the temptation is
to list the “no input signal to C” as the cause for our top event. However, when
considering immediate causes, we should list “no output signal from C” as the
cause for our top event. Now we can analyze further the causes to “no output

20

System fails

Component
A or C fails

Component
A fails

Component
C fails

Component
B fails

G01

G02

B01 B02

B03

Figure 1.1: Sample fault tree for a system with active components A, B,C and with faults
B01, B02, B03 and the corresponding Boolean formula (B01 ∨ B02)&B03

A

B

C D

Figure 1.2: Sample circuit consisting of active components A, B, C, D

signal from C” as follows:

(1) “�ere is an input to C, but no output from C” and
(2) “�ere is no input to C”.

Without following this “Immediate causes” rule or “�ink Small” rule, we

would have missed the (1) event, essentially a “broken C” event.
Additional best practices, which are helpful to the fault tree construction, also

apply to the attack trees and therefore we list them here:

1. Verbosity Rule – Describe precisely, what the fault event is and when it oc-

21

curs.�is results in rather verbose event descriptions, so be it.

2. NoMiracles Rule – If the normal functioning of the component propagates

a fault sequence, then it is assumed that the component functions normally.

3. Complete the Gate Rule – All inputs to a particular gate should be com-

pletely de�ned before further analysis of any of them is undertaken.

Di�erently from the attack trees, where we do not explicitly analyze interme-

diate events, the fault trees require also the “No Gate-to-Gate Rule”, which says

that gate inputs should be proper events and gate output should be a proper event.

Fault Tree Analysis is now speci�ed as a standard [36] and is well-established

in engineering and in the next section we will show how similar concepts are

applied to the security �eld.

1.3 Attack Tree Analysis

Some researchers on cyber attacks have pointed out that cyber attacks in the

wild are combined from multi-stage attack methods [8, 17, 74] and according to

that view, the hierarchical attack modeling approach, which allows description of

larger more complicated attacks consisting of multiple smaller attacks, seems to

be very appropriate. �e idea of the hierarchical security analysis based on the

fault tree analysis was applied to the information security �rst in 1991.�e semi-

nal paper [87] was the response to the U.S. Department of Defense requirements

[77] for the security engineering process. �e solution was called �reat Logic
Trees and the tree root was the high-level potential threat, which was to be de-
composed to the tree nodes, either and or or-nodes. Finally, the tree leaves are

the external attacker actions which do not require further decomposition.

Unfortunately, the publication by Weiss went without much notice and the

subject was picked up much later, �rst in the year 1998 by Salter et al. in [65] and
a year later by Schneier in [67, 68]. �e methodology is now called attack tree
analysis and still follows the same idea. �e and-nodes are such tree elements,
which are only satis�ed if all the child nodes are satis�ed as well. �e or-nodes

are satis�ed when any on the child nodes are satis�ed as well. �e tree leaves

correspond to the simple attacks that are not divided further in the context of

that particular attack tree.

For example, consider the example of the attack tree in Figure 1.3 on the next

page.�e root node is labeled “Obtain administrator privileges”, which is the goal

22

Obtain ad-

ministrator

privileges

∨

Access

system

console

∨

Enter server

room

∨

Break into

server room

Unattended

guest

Corrupt

operator

Obtain ad-

ministrator

password

∨

Guess

password

&

Obtain

password

�le

Run

dictionary

attack

Look over

admin

shoulder

Corrupt

admin

Figure 1.3: Example attack tree for attacking the server in the server room (from [87]).

�e and-nodes are depicted with red background and with & label above the

node, theor-nodes are depictedwith blue background andwith∨ label above
the node and attack tree leaves are depicted with green background.

for the attacker. It is further divided into two possible cases and the root node

is denoted as or-node. To achieve the goal of having administrator access to the

server, either “Access system console” or “Obtain administrator password” could

be pursued. Both branches are further divided, until they represent understand-

able and simple elementary attacks. One possibleway to realize this example attack
tree is to mount the “Obtain password �le” and “Run dictionary attack” attacks. If

they are both successful, then the “Guess password” node is realized and in turn,

the “Obtain administrator password” node is realized and �nally, the “Obtain ad-

ministrator privileges” root node is realized.

Creating the attack tree structure with the corresponding elementary attack

descriptions allows an analyst to argue about the possible attacks and to describe

the security situation in a structured, hierarchical way. �e resulting attack tree

could be easily shared between the security team and studied together. In fact,

Ste�an and Schumacher even suggest a Web-based method for collaborative at-

23

tack modeling in [72]. When classifying the elementary attacks into “plausible”

and “impossible”, the team can informally also argue about the security of the

whole system. If there is a corresponding attack suite which consists of plausible

elementary attacks, then it would be clear that the attack tree is realizable by an

attacker and the system security is lacking.

Guidelines in the scienti�c literature of how a security analyst should actually

create a usable attack tree are scarce. Since fault trees and attack trees are quite

similar in the structure, some of the suggestions in Section 1.2.2 on page 20 also

apply to attack trees.

1. Verbosity Rule – Describe precisely, what the attack is and when it occurs.

If this results in a verbose descriptions, so be it.

2. Complete the Node Rule – All children of the particular node should be

de�ned before further analysis of any of them is undertaken.

Also, in [55] the following top-to-bottom process for creating attack trees for

the security protocol analysis is proposed.

1. �e root represents the generic ultimate goal of attacking the target security

protocol.

2. �e second level represents the security properties that the attacker at-

tempts to violate.

3. �e third level represents the mechanism exploited by the attacker, as for

example, key exchange, message truncation, and so on.

4. Subsequent levels represent attack stages to achieve level 3 sub-goals.

1.3.1 Attack Tree Foundations

To properly argue about the attack trees and the possibility to attack the system,

we need a more solid theory. In 2005, Mauw and Oostdijk published their paper

[53] which gave the theoretical foundations of the attack trees and the attribute

propagation rules. �e de�nitions of the attack tree components are somewhat

di�erent from our approach, therefore we do not repeat the original de�nitions

here, but we do cover the important �ndings of that paper.

24

Learn the

password

&

Prepare

victim

&

A =
“Approach

victim”

B = “Some
shorttalk”

C =
“Observe

keystrokes”

Learn the

password

&

A =
“Approach

victim”

Collect the

password

&

B = “Some
shorttalk”

C =
“Observe

keystrokes”

Figure 1.4: Example of equivalent attack trees (from [53]). �e tree on the le� can be

described by the Boolean formula (A&B)&C and the tree on the right by the
formula A&(B&C), having the same set of elementary attacks A, B,C

Mauw and Oostdijk considered the following aspects of attack trees and ar-

gued that attack tree models have to have formal de�nitions of:

• how the attack tree is composed from elementary attacks and attack tree

nodes,

• semantics of the attack tree itself, i.e. how to decide what that particular

attack tree represents or means,

• semantics of attack treesmust have the associativity and distributivity prop-

erties,

• how to compute the attack tree value by attribute values assigned to the

elementary attacks.

When those requirements are ful�lled by the particular attack tree model,

then it is a consistent and usable model. For example, when we consider an exam-

ple attack trees from Figure 1.4, we intuitively understand that they represent the

same attacks. In fact, they can be described by the equivalent Boolean formulas

(A&B)&C ≡ A&(B&C), because they are both composed of the same elementary
attacks and attack tree semantics should have the associativity property.

25

If the attack tree model includes some sort of parameter computation rules,

the equivalent attack trees should have the same value. Otherwise, the attack tree

values depend on the order of attacks and even though di�erent analysts could

come up with equivalent attack trees, their results will not be comparable. We

will later learn that not all current attack tree models follow that essential rule.

26

Chapter 2

Quantitative Security Risk Assess-

ment

�e Fault Tree Analysis and Attack Tree Analysis create the foundation for se-

curity modeling, which we will use in this thesis. �e next step in the scienti�c

modeling is to try to invent some metrics and measurements, so that the studied

�eld, information security, could be objectively quanti�ed.

We �rst refer to [78], where Verendel argues that even though the quantita-

tive risk assessment has been tried for almost 30 years, there is still no validation

that security even is measurable. Verendel critically surveys 90 papers of security

models, security metrics and security frameworks, from the time period of 1981

until 2008. Only 26 papers included some kind of empirical studies and even then

the experiments or observations were usually not repeated, they only included

data from the limited time period or focused on one particular case study, and

in some papers only applicability of the proposed method was studied. Verendel

therefore concludes that quanti�ed security is a weak hypothesis, meaning that
quanti�ed security models have not been corroborated by predicting outcomes

of experiments in repeated large-sample tests.

Even so, possibly without corroboration and perhaps without solid quanti-

�ed models, the attack tree analysis has already been used for numerous times

for studying the security of real-life situations. For example, the protocol security

analysis has been performed with attack trees for digital content protection pro-

tocols in [33, 34], bgp routing protocol in [15], Network on Wheels inter-vehicle

communication systems in [2], and wtls security protocol used in wap-enabled

mobile phones in [55].

27

Regarding information systems, the security of notional online banking sys-

tems has been analyzed in [25], the cross-site request forgery attacks in [51], con-

sumer information privacy protection taxonomy is developed in [62], and cre-

dential repository and certi�cate authority system for the Globus grid computing

toolkit is analyzed in [63].�e security of e-voting systems has been analyzed in

[10] and rfid networks in [18].

�e security of scada systems responsible for controlling power distribution

have been studied with attack trees in [60, 73, 13] and security of digital instru-

mentation and control systems for nuclear reactors in [44].

To help analysts with jobs like that, commercial so�ware packages, such as

AttackTree+ (company homepage at www.isograph-software.com), PTAProfes-
sional Edition (www.ptatechnologies.com) and SecurITree (www.amenaza.com),
have also been developed to help with security analysis, however, little is known

what their security models are based on.

What are the current options for quanti�ed security analysis then?

2.1 Quantitative Fault Tree Analysis

First, we will review the results of the fault tree analysis.�e main question there

is to �nd out if the system as a whole is likely to fail and what components are

the most probable source of the failure. A�er the dependency graph between the

events has been created and a�er the reliability data of the components have been

found out from the experimental results or from the manufacturers’ speci�ca-

tions, the following mathematical theory can be applied.

�e fault tree with the and and or-gates corresponds to the Boolean formula.

For that tree, theminimal cut sets are found, which are the smallest combinations
of component failures which, if they all occur, will cause the top event to occur.

In a sense, the Boolean formula is converted to the disjunctive normal form (dnf)
and the clauses in that form are theminimal cut sets.�e probability of the cut set

Ei happening can be computed by simply multiplying together the probabilities
of the individual faults A j in that cut set, i.e.

Pr [Ei] = ∏
A j∈E i

Pr [A j] .

We are interested in the probability of a total system failure, the Pr [E] =
Pr [⋃E Ei]. In general, when E = A+B, then Pr [E] = Pr [A]+Pr [B]−Pr [A ⋅ B].

28

www.isograph-software.com
www.ptatechnologies.com
www.amenaza.com

If events A and B are independent and the Pr [A] < 0.1 and Pr [B] < 0.1, then
Pr [A ⋅ B] = Pr [A] ⋅Pr [B] is small compared to Pr [A]+Pr [B] and we can use the
“Rare Event Approximation” [14]. Indeed, usually the component failure proba-

bilities are rather low (in the order of 10−5 or even smaller) and therefore, a sim-
pli�cation can be made that the probability of any cut set happening is

Pr [E] = Pr [⋃
E
Ei] ≈∑

E
Pr [Ei] .

�e relative importance of some minimal cut set can be found by computing

the ratio of Pr [Ei] /Pr [E], which allows the analyst to focus on those cut sets
which contribute most to the failure of the system and perhaps make some design

changes, which will improve the system reliability.

For the Boolean formula with the n number of variables, there can be up to 2n
possible satisfying combinations and also cut sets for the fault tree. Fault tree anal-

ysis avoids the exponential problems by only considering such kind of minimal

cut sets, which consists of up to k components (k being 2 or 3) and just ignoring
such sets, which consist of larger amount of components. Because the probability

of the single component failure is small, the probability of failure for cut sets with

many components is going to be very small and not relevant for the whole system.

2.2 Combining Fault Tree Analysis and Attack Trees

In [26] an attempt is made to combine threats and vulnerabilities, resulting the

so-called n-dimensional view of the attack tree. Later in [28] Fovino et al. com-
bine fault-tree analysis and attack trees and propose a quantitative security risk

assessment method. Formal de�nitions of a fault tree and an attack tree are pro-

vided and a mathematical model for the calculation of system fault probabilities

is presented.

�ey are using

PoutANDi =
n
∏
k=1

Pin(k, i) , (2.1)

the propagation rule for the and-nodes, where Pin(k, i) is the k-th input proba-
bility to the i-th and-node and

PoutORi = 1 −
n
∏
k=1

(1 − Pin(k, i)) , (2.2)

29

the propagation rule for the or-nodes, assuming that the inputs to the or-node

are mutually independent.

�e fault probabilities are propagated towards the root node and the fault

probability of the total system is �nally computed. Unfortunately, they are only

considering the success probability of attacks and faults and no other economic

parameters. Even though they discuss several parameters, such as attack severity
and attack plausibility in [27], the formal model to compute the attacker’s gain
from the attack tree is not yet developed.

An interesting paper [61] by Ray and Poolsapassit proposes a methodology to

monitor insider users and alert the possiblemalicious attacks.�ey �rst create the

attack tree with the insider ultimate goal as the root of the tree and then use the

known privileges and job descriptions of the inside users to strip the attack tree

to only include the relevant portion of the tree for that user, essentially creating

minimal cut set for that particular attacker.

�e probability of an insider attack is computed at any given time t by con-
sidering how far the attacker has progressed in the attack tree. If the attacker has

already succeeded with n elementary attacks, but the root node of the attack tree
would require the completion of m elementary attacks, the probability of the in-
sider attack is the n/m. To compute the number of elementary attacksms required
for the attack tree node s, the following formula is used:

ms =
⎧⎪⎪⎨⎪⎪⎩

∑k
i mi + k if s is and-node,
minki mi + 1 if s is or-node,

(2.3)

where s1, . . . , sk are the children of the node s.
Ray and Poolsapassit also do not extend their model to include economic pa-

rameters and currently their model will just give a crude approximation of the

e�ort attacker needs to spend to achieve the goal, however, the idea of monitor-

ing the attacker capabilities and its progress seems very promising.

2.3 Economic ThreatModeling

AlreadyWeiss thought about using attack trees tomeasure security, but themodel

proposed in [87] is not entirely formalized. He included three kinds of metrics

with each of the node in the threat logic trees:

1. SystemWeighted Penalty (SWP) – impact to the system if the node is suc-

30

Table 2.1: Attack tree metrics propagation rules from the children nodes to the parent

node in the Weiss model (in [87])

and-node or-node

System Weighted Penalty

(SWP)

Estimated by analyst SWPi of the child

with the maximum

risk

Level of Adversary E�ort

(LAE)

maxi LAE LAEi of the child with

the maximum risk

cessfully accomplished,

2. Level of Adversary E�ort (LAE) – amount of resources required by the ad-

versary to successfully accomplish the attack,

3. Risk – computed by the equation SWP2/LAE.

�e metrics were to be found out for each leaf node and then propagated to-

wards the tree root. Speci�c rules for the parent metric computation are given

in Table 2.1.�e rules however, are not complete. SWP parameter for the parent

and-node is actually estimated by the analyst itself, i.e. the attack tree computa-

tion result from the given input parameters depends on the particular computer

and objective results are not possible.

Amore solid approach was considered by Schechter and Smith in [66], which

introduced economic threat modeling on a macro-economic scale.�ey consid-

ered attackers who are targeting multiple victims in parallel, or sequentially and

argue that on a large scale, economically it makes sense for victims to share the

attack and vulnerability information. �ey rely on the idea that adversaries are

motivated by �nancial gain. �is assumption itself is not obvious, but builds on

the work of the Nobel Prize laureate Gary Becker, who gives the model for the ex-

pected utility of committing a crime in his seminal paper [6] in 1968. He takes into

account the probability of conviction and the utility of the punishment, which is

usually a negative number.�e expected utility of committing a crime is then the

direct income of the crime plus the probability of conviction times the utility of

the punishment.

31

Game theory has been also used tomodel the network security, by considering

the attacker and system owner players of non-cooperative games. However, when

multi-stage games are considered (e.g. in [37, 52, 64]), the exponential growth of

the corresponding decision tree prohibits the application of models on compli-

cated situations. When just a single-stage game is considered (e.g. in [7]), then

the approach is comparable to attack trees and the game theory is indeed an im-

portant component of the model there.

2.4 Attack Graphs

A alternative approach to network security analysis, attack graphs does not have

the and-or-tree structure like attack trees, but all vertexes are of the same type.

Usually the vertexes represent attack states and edges represent a possibility for

an attacker to move from one attack state to another, although di�erent interpre-

tations have also been proposed. Some of the attack states denote states where

the attacker has achieved his goal. Attack graphs are usually machine-generated

from network diagrams, which gives us the list of computers, �rewalls, servers

and other equipment and connectivity information of them and from the vulner-

ability databases, which give us information about the attacker possibilities. From

vulnerability information and server con�guration data, it then becomes possible

to generate attack graphs, where each path is a series of exploits that may or may

not �nally lead to attacker success state. To answer this questions, graph-theoretic

analysis is applied, such as the shortest path analysis.

Attack graphs were formally speci�ed by Sheyner et al. in [71] in 2002. �ey
relied on the model checking and built the attack graph backwards from the at-

tacker success states, which lead to space savings. However, concepts similar to

the attack graphs were already used as early as 1994 in [16] by Dacier and later by

Phillips and Swiler in [59].

Since then, the attack graphs theory has been advanced to include quanti-

tative analysis with probabilistic and other metrics, taking into account existing

security measures and vulnerability characteristics in [85, 46] and analysis to �nd

the weakest attacker, still capable of successfully attacking your network in [58].

Bayesian analysis is applied to attack graphs in [29, 19]. A�er the attack graph has

been analyzed, additional security measures can be applied in the most e�ective

places, as suggested in [83, 35].

�e algorithmic complexity of the attack graph analysis is O(V + E), where

32

V is the number of vertexes and E is the number of edges in the attack graph,
however, the complexity of attack graph generation is O(vnn!), where v is the
number of vulnerabilities and n is the number of hosts in the network.�ismeans
that in general, attack graphs su�er from the exponential complexity explosion

when analyzing practical size networks (see [46, section 5] and [71, section 3.4]).

By making themonotonicity assumption on the attack graph analysis, the ex-
ponential complexity could be reduced to polynomial complexity.�is approach

is studied by Ammann et al. in [3]. Monotonicity property is interpreted in the at-
tack graph theory to indicate that no action taken by the attacker interferes with

the attacker’s ability to take any other action, i.e. the attacker never reduces his

acquired capabilities. �e complexity is even further reduced by Wang et al. in
[84, 86], where relational views based on attack graphs and corresponding sql

query language is developed, to allow interactive analysis of the subset of a larger

network, which is relevant for the current problem in hand.

Even though security analysis based on attack graphs is promising, especially

because the analysis can be mostly performed automatically, using the gathered

information from networks, we suggest that attack trees can be applied more suc-

cessfully in a situations were the security of a new information system which is

still under development must be analyzed and the appropriate security measures

have to be chosen. A security analyst has more freedom to model attacker be-

havior and to identify new kinds of attacks and perform probabilistic economic

analysis, not only rely on the known and enumerated system vulnerabilities.

2.5 Quantified Analysis Approach by Edge et al.

Edge et al. developed a quanti�ed security analysis methodology based on the
attack trees in [23, 24] and later showed the application of the method in [25, 18].

Combining attack trees with protection trees, the approach allows the total cost of

the attack and the total cost of protectionmeasures to be computed.�ey propose

the probability of success, cost to attack, impact to system and risk as the metrics
for each attack tree leaf. Impact is a number from 1 – 10 and describes how much

of the attacker’s goal is achieved, when the attack realizes, or how much impact

is generated to the system.�e risk is computed from the other three parameters

using the formula

risk = (probability/cost) × impact .

33

Table 2.2: Metrics propagation rules from the children nodes to the parent node accord-

ing to the attack tree model by Edge et al. (in [23, 24])

and-node or-node

Probability ∏n
i probi 1 −∏n

i (1 − probi)
Cost ∑n

i costi (∑n
i probi × costi) /∑

n
i probi

Impact (10n −∏n
i (10 − impacti)) /10(n−1) maxni impacti

To compute the cost of the whole attack tree, they are giving the rule set in

Table 2.2. �e propagation rules make sense for the probability parameter and

they are equivalent with formula (3.3) of our parallel attack tree model and with

formulae (2.1–2.2) of the model by Fovino et al., however, the propagation rules
for the attack cost parameter does not make sense. Edge et al. give the following
rationalization in [24]:

For an OR node, it is unknown which way an attacker will ex-

ploit the system, so the cost is calculated as a weighted average of the

child node costs based on the probability of success. An alternate

method of calculation uses the lowest cost child node as this would

be the worst case for the defender of the system.�e weighted aver-

age cost calculation retains more information about the likely cost to

an attacker.

�is con�icts with our interpretation of the attack tree semantics. In ourmod-

els, the elementary attack parameter Expenses is associated with the preparation
costs of the attack and also expected penalties of the attack (the negative utility of

the crime in [6]).�ose expenses must be spent when the attacker launches some

attack suite, irrespective of whether the individual elementary attacks succeed or

not. Yes, the attacker can consider di�erent attack suites to satisfy the attack tree

and we do not ultimately know, which attack suite will be used, however, the in-

dividual Expenses of the elementary attacks must be summed to �nd out the total
cost of the attack suite.

Additionally, the model is not consistent in the sense of the requirements of

Mauw and Oostdijk. For example, if we take the two equivalent attack trees T1 =

34

Table 2.3: Total cost of attack in the attack trees T1 = (A∨ B) ∨ C and T2 = A∨ (B ∨ C)
according to the quanti�ed attack tree model by Edge et al.

A B C (A∨ B) (A∨ B) ∨ C (B ∨ C) A∨ (B ∨ C)
Probability 0.8 0.8 0.8 0.92 0.99 0.96 0.99

Cost 4 5 6 4.43 5.21 5.6 4.87

(A ∨ B) ∨ C and T2 = A ∨ (B ∨ C) and compute the total cost of the attack, we
get di�erent results, as depicted in Table 2.3.�e total cost of tree T1 is 5.21 units,
but the total cost of the T2 is 4.87 units.�e model does not have the associativity
property.

�is means that the attack tree model outcome depends on how the analyst

creates the tree in the �rst place and as we saw, it even depends on which order

the attacks are put to the tree. In our view, this greatly limits the reliability and

usability of the model.

2.6 Survivability Analysis Approach by Fung et al.

In 2005, Fung et al. presented an initial case study in [31] for adopting the attack
tree analysis methodology for a survivability study. �ey create an attack tree to

describe the attacker’s goal to compromise the con�dentiality, integrity or avail-

ability of the command and the control information system. From the attack tree,

they generate the intrusion scenarios (in our models these correspond to attack
suites) and then compute the attacker cost function to execute those scenarios.
�e cost function is de�ned as

Fm =
Im
∑
i=1

Dm i , (2.4)

where the Dm i is the level of attack di�culty of leaf nodes listed in the m-th in-
trusion scenario.�e quantitative measure of system survivability is represented

by

F = min
m∈[1,M]

Fm = min
m∈[1,M]

Im
∑
i=1

Dm i , (2.5)

35

where m ∈ [1,M] denotes all intrusion scenarios. �e underlying assumption
of Fung et al. is that the system survivability is determined by the weakest link
among all intrusion scenarios.

�e model is consistent in the sense of formal requirements by Mauw and

Oostdijk, however, the model only works on a single parameter, the attack di�-
culty. According to Becker, this alone does not describe the attacker’s motivation
adequately and multiple parameters should be taken into account.

2.7 Quantified Analysis Approach by Buldas et al.

In 2006, Buldas, Laud, Priisalu, Saarepera, and Willemson published their paper

[11], in which they build from the assumption of an attacker thinking in rational

and economical terms. Otherwise, the structure of the attack trees and the usage

of and-nodes and or-nodes to construct the tree was unchanged. We will refer

to this model in the following text as themulti-parameter attack tree model. Even
though the other, later proposedmodels also work withmultiple parameters, they

usually have more speci�c distinguishing names.

�e model proposed by Buldas et al. can be regarded as one the �rst to apply
the model of expected utility of committing a crime by Becker in [6]. Buldas et al.
started the analysis from the attacker viewpoint and assumed that the attacker and

the attacked system will behave according to the following game:

1. �e attacker prepares the attack and by doing so, some resources, such as

money or time are spent.�is is described by the parameter Cost.

2. �e attack is then launched. �e attacked system has some protective se-

curity measures deployed, such as physical locks, �rewalls, user authenti-

cation, etc. Depending on how strong the security measures are and how

much of the resources are used in the preparation phase, the attack will

succeed or fail and they consider this as a random event with success prob-

ability of p and failure probability of 1 − p.

3. Systems also usually have detective security measures installed, such as se-

curity cameras, access logs or periodic audits. �ose measures help to de-

tect if there has been a successful or failed attack and they might lead to the

capture of the attacker. �e capture means that the attacker needs to pay

some penalty. In case the attack itself was successful, we use the expected

36

Table 2.4: Di�erent outcomes of the attacker game in the attack tree model by Buldas

et al. (in [11])

Attack status Attacker status Outcome of the game

failed not caught −Cost
failed caught −Cost − Penalties−

succeeded not caught Gains − Cost
succeeded caught Gains − Cost − Penalties+

penalty π+i and in case the attack failed, we use the expected penalty π−i .
4. If the attacker is successful, he will get the price of the game, Gains and this
is the main reason why the attacker decides to attack us in the �rst place.

In this game there are four di�erent outcomes for the attacker, and de�ning

themnow is very intuitive.�e list of them is given inTable 2.4. It is presumed that

the Gains of the game are not con�scated a�er the attacker is caught and rather
that the expected penalty π+i is usually su�ciently large. By extending this game
to a larger attack tree, they presume that it is possible to compute the Outcome
value for each attack tree leaf, i.e. for each elementary attack and the attacker game

still holds for the whole tree as well. When the attacker goal is described by the

larger tree, the price of the game is received only a�er the achievement of the root

node.

A�er (Costi , pi , π+i , π−i) parameters for all the elementary attacks are esti-
mated, the following computation formulae are used to propagate the parameters

to the parent nodes in the attack tree. Additionally, there is the attack tree global

parameterGains, which describes the bene�t of the attacker, in case the root node
of the attack tree is achieved.

For an or-node with child nodes (i = 1, 2) with parameters (Costi , pi , π+i ,
π−i), the parameters (Cost, p, π+, π−) of the parent node are computed as

(Cost, p, π+, π−) =
⎧⎪⎪⎨⎪⎪⎩

(Cost1, p1, π+1 , π−1) if Outcome1 > Outcome2

(Cost2, p2, π+2 , π−2) if Outcome1 ≤ Outcome2
, (2.6)

Outcomei = pi ⋅Gains − Costi − pi ⋅ π+i − (1 − pi) ⋅ π−i . (2.7)

37

Table 2.5: Metrics propagation rules from the children nodes to the parent node accord-

ing to the attack tree model by Buldas et al. (in [11])

and-node or-node

Probability ∏n
i p i p i of the child node, which has

maximal Outcomei

Expenses ∑n
i Expensesi Expensesi of the child node, which

has maximal Outcomei

For an and-node with child nodes with parameters (Costi , pi , π+i , π−i) (i =
1, 2), the parameters (Cost, p, π+, π−) are computed as follows:

Cost = Cost1 + Cost2 , p = p1 ⋅ p2 , π+ = π+1 + π+2 ,

π− = p1(1 − p2)(π+1 + π−2) + (1 − p1)p2(π−1 + π+2)
1 − p1p2

+

+ (1 − p1)(1 − p2)(π−1 + π−2)
1 − p1p2

. (2.8)

�e formula (2.8) for π− represents the average penalty of an attacker, assum-
ing that at least one of the two child-attacks was not successful. It is possible to

denote all of the expected expenses associated with the elementary attack i as

Expensesi = Costi + pi ⋅ π+i + (1 − pi) ⋅ π−i . (2.9)

�en it is easy to see that in an and-node the equalityExpenses = Expenses1+
Expenses2 holds. We give the summary of propagation rules in Table 2.5.
A�er the parameters p and Expenses are propagated to the root node R of the

attack tree, the value of the total game to the attacker can be computed by

OutcomeR = pR ⋅Gains − ExpensesR . (2.10)

If theOutcomeR > 0, then it could be said that the system is insecure and the
attacker can probably make a pro�t by launching the attack. If theOutcomeR ≤ 0,
then it may be that the system is secure, or that we have missed some particular

38

attack tree branches or we have not estimated the elementary attack parameters

correctly. In any case, with this kind of multi-parameter attack tree model, the

analyst can start to answer questions about how secure their system is and can

give economically quanti�ed answers.

2.8 Shortcomings of the Current State of the Art

�e attack tree models outlined have several shortcomings. �ey all (except the

model by Fovino et al.) use the node parameter propagation from child nodes to
the parent nodes. �is propagation process in the OR nodes relies on the local

optimum decisions, to choose which child node parameters to carry to the parent

node. �erefore, the computed utility value is not always the global maximum

and in some cases the model might not �nd the best attack suite. Additionally,

some of the models are not consistent with the attack tree foundations by Mauw

and Oostdijk, referred to in Section 1.3.1 on page 24, i.e. when the attack tree is

transformed to the equivalent tree, the utility value changes.

2.8.1 Global Gains Problem

�e price of the attacker gamemust be speci�ed and in the model by Buldas et al.,
they are using a global parameter Gains for the whole attack tree. However, when
computing the utility of elementary attack, the same global Gains is used, even
though by successfully completing a single elementary attack, the attacker does

not receive the payo� of the game. Only a�er succeeding with the root node,

theOutcomeR computation formula (2.7) makes sense, but before that, using the
same information to make decisions in the or-nodes is not actually well-de�ned.

�e models by Weiss and by Edge et al. approach this problem by using the
System Weighted Penalty or impact elementary attack parameters. �ey are es-
sentially dividing the global Gains between the smaller attacks and de�ning how
much damage that particular attack does to the whole system. �is solution is

still not valid semantically, as the attack tree is only realized when the root node

is realized.

2.8.2 Local Optimum Problem

Attack tree models by Weiss, Edge et al., and Buldas et al. use parameter propa-
gation rules to compute the utility value of the attack tree root node. We argue

39

T = (A∨ B)&C
&

(A∨ B)
∨

A B

C

Figure 2.1: Attack tree T = (A∨ B)&C with attack suites {A,C}, {B,C}, and {A, B,C},
all satisfying the attack tree

that this kind of computation rules does not consider that the attacker has many

options to achieve the root goal, i.e., there are many attack suites consisting of el-

ementary attack combinations that will realize the attack tree. Propagation rules

try to account for that by using some clever formulae to compute parent or-node

parameters from children parameters, but by doing so, they will need to do local

optimization decisions. As we will see, this might not give globally best solutions.

For example, consider the attack tree T = (A ∨ B)&C in Figure 2.1, with the
following parameter values:

Gains = 100 ,
pA = pB = 0.8 ,

pC = 0.9 ,
ExpensesA = ExpensesC = 11 ,

ExpensesB = 10 .

In the node (A ∨ B) formula (2.6) is applied and using that limited local in-
formation, it makes sense to choose the attack A. �e computation routine is as
follows:

ExpensesT = ExpensesA + ExpensesC = 11 + 10 = 21 ,
pT = pA ⋅ pC = 0.8 ⋅ 0.9 = 0.72 ,

OutcomeT = 100 ⋅ 0.71 − 21 = 51 .

However, the attack tree semantics does not prohibit launchingmore than one

attack from the or-node children nodes. In some cases this might be bene�cial to

40

Table 2.6: Computation example in the attack tree T = (A ∨ B)&C with Gains = 100
according to the quanti�ed attack tree model by Buldas et al.

A B C (A∨ B) (A∨ B)&C {A,C} {B,C} {A, B,C}
p 0.8 0.8 0.9 0.8 0.72 0.72 0.72 0.864

Expenses 11 10 11 10 21 22 21 32

Outcome 69 70 79 70 51 50 51 54.4

the attacker if the attacks are relatively cheap to try and by tryingmultiple attacks,

the overall success probability will be higher. In the current case, when trying

both attacks A and B, the probability for success becomes pA ⋅ pB ⋅ pC + pA ⋅ pC(1−
pB)+ pB ⋅ pC(1− pA) and it equals 0.864, which is signi�cantly greater than 0.72.
When computing the outcome for the attack suite {A, B,C}, we get

OutcomeT = 100 ⋅ 0.864 − 32 = 54.4 .

By considering the satisfying attack suites, instead of the propagation rules,

and choosing the attack suite, which yields themaximal utility, we will sometimes

get better expected outcome values.�is error becomes especially bad when the

model computes the attacker expected outcome being negative and in case there

exists a global maximum, which provides the positive expected outcome. In this

case we might have a false impression of the security of our information system.

2.8.3 Tree Transformations

We gave examples of equivalent attack trees already in Section 1.3.1 on page 24 and

in Figure 1.4 on page 25. �e counter-example in Section 2.5 on page 33 showed

in Table 2.3 that Edge et al.model does not have the associativity property.
Mauw and Oostdijk also specify that attack tree models should have the dis-

tributivity property, e.g. the attack trees in Figure 2.2 on the following page should

be equivalent because we could take the attack tree T1 = A ∨ (B&C) and ap-
ply, for example, De Morgan laws to it and get the equivalent Boolean formula

(A ∨ B)&(A ∨ C), which describes a tree T2. �e utility values of those trees
should be equal.

41

T1 = A∨ (B&C)
∨

A (B&C)
&

B C

T2 = (A∨ B)&(A∨ C)
&

(A∨ B)
∨

A B

(A∨ C)
∨

A C

Figure 2.2: Attack tree T1 = A∨ (B&C) and the equivalent tree T2 = (A∨ B)&(A∨ C)

However, by applying such transformations to formulae, we will introduce

duplicated elementary attacks to them. Because such Boolean formulae cannot

be represented as trees, we cannot really apply the tree propagation rules there

and we cannot compute the tree utility values.�is alone should indicate that the

current attack tree models are not consistent and the utility value depends on the

particular structure of the attack tree.

As di�erent analysts may build di�erent attack trees for the same situation,

even though, they may be equivalent in the sense of corresponding Boolean for-

mulae, the outcome will be di�erent and the result of the attack tree analysis can-

not be trusted.

42

Chapter 3

Parallel Attack TreeModel

�e multi-parameter attack tree model by Buldas et al. is not consistent with
Mauw and Oostdijk’s work [53]. Equivalent attack trees should result in the same

outcome values and therefore we have introduced a newmodel [39], which is con-

sistent and provides greater outcome values than the original multi-parameter at-

tack tree model.

In this chapter we will describe the model and provide examples of cases with

greater outcome values.�e downside is that the outcome computation routine is

much more complex and therefore we discuss several optimizations and approx-

imations, which will still allow work with reasonable size attack trees.

3.1 Formal Definitions

We are using the propositional directed acyclic graph (pdag) de�nition from [81],

with the simpli�cation thatwe do not consider the¬ function. Even thoughwe are
strictly talking about directed acyclic graphs where elementary attacks can occur

in many branches, we are still calling them trees.

Definition 3.1: Elementary attack is the lowest level of abstraction of attacks,
which do not have any internal structure within the scope of the particular attack
tree. Elementary attacks are the leaves of the attack tree.

Definition 3.2: Attack tree T is a simpli�ed pdag structure (V = N ∪ X , n0, E),
of the following elements:

1. the set of leaves X = {X1, . . . , Xn} represents the elementary attacks, which

43

are considered as propositional variables having values of true or false, corre-
spondingly, if the elementary attack has been tried and was successful or has
been tried and failed,

2. the set of nodes N = {N1, . . . ,Nm} represents the logical functions of either&
and ∨. �e function & evaluates to true if all of its children evaluate to true
and function ∨ evaluates to true, if some of its children evaluate to true,

3. n0 ∈ N is the root node of the PDAG, which does not have any parents,

4. E = {(a, b) ∶ a ∈ V and b ∈ N} is the set of directed edges between leaves X
and nodes N or between nodes N themselves.

Definition 3.3: Attack suite S ⊆ X is the set of elementary attacks, which have
been chosen by the attacker to be launched and used to try to achieve the attacker
goal.

Definition 3.4: We say that the attack tree T is satis�ed by the attack suite S and
the goal of the attacker is achieved if the Boolean function corresponding to the root
node n0 evaluates to true when all elementary attacks from the attack suite S have
been tried and they have been evaluated to true and false values, correspondingly,
if the elementary attack was successful or failed.
Note that because we are considering only monotonic Boolean formulas, the

trivial assignment X1 ∶= true, . . . , Xn ∶= true always evaluates F to true.

3.2 Attack Tree Parameters

We still follow the same basic game-theoretic approach of the original multi-

parameter attack tree model and we presume that the attacker makes decisions

in each elementary node according to the following game.

1. �e attacker has to spend Costi resources to prepare and launch the ele-
mentary attack.

2. With the probability pi the attack will succeed and with probability 1 − pi
the attack will fail.

3. Depending on the detective security measures, the attacker sometimes has

to carry additional costs a�er failing or succeeding with the attack. Adding

44

them to the preparation costs, we get the general Expensesi parameter for
each elementary attack.

Additionally, we still have the global parameter Gains for the whole attack
tree, which describes the bene�t of the attacker, in case the root node is realized.

�e attack tree itself is composed of the same kind of and-nodes and or-nodes

and in case the attacker is able to successfully carry out the necessary attacks,

which satisfy the corresponding Boole formula, then we say that the attack tree is

realized and the attacker is successful.

For the whole attack tree, the attacker game can be described as follows:

1. �e attacker constructs the attack tree with and-nodes and or-nodes and

evaluates the parameters of the elementary attacks.

2. �e attacker considers all potential attack suites, i.e. subsets S ⊆ X, where
X = {X1, . . . , Xn}. Some of them satisfy the Boolean formula F and some
do not. For those attack suites which allow the root node to be realized, the

attacker computes the outcome value OutcomeS .

3. Finally, the attacker chooses that attack suite which provides the greatest

expected outcome and launches the corresponding elementary attacks.

�e exact outcome of the attacker can then be written formally as

Outcome = max{OutcomeS ∶ S ⊆ X , F(S ∶= true) = true} . (3.1)

Here, the notion F(S ∶= true) = true notes the evaluation of the formula F
to value true, when all variables in the attack suite S are assigned the value true
and all other the value false, i.e. the attack suite S satis�es the Boolean formula
F .

3.3 Outcome Computation

Because we are no longer propagating the node parameters towards the root of

the attack tree, but we are instead considering the individual attack suites, the

computation formulae are changed as well.�e Outcome value for attack suite S
can be computed as:

OutcomeS = pS ⋅Gains − ∑
X i∈S

Expensesi . (3.2)

45

When computing the success probability pS of the attack suite S wemust take
into account that the suitemay still contain redundancy and theremay be (proper)

subsets R ⊆ S su�cient for materializing the root attack. Because we are using
the full suite of S to mount an attack, those elementary attacks in the S ∖ R will
contribute to the success probability of pR with (1 − p j). �us, the total success
probability can be computed as

pS = ∑
R⊆S

F(R∶=true)=true

∏
X i∈R

pi ∏
X j∈S∖R

(1 − p j) . (3.3)

Using this kind of a computation model, we no longer depend on the actual

structure of the attack tree or the Boolean formula F . As long as the same at-
tack suite S satis�es both F and equivalent F ′, the OutcomeS is still the same.
�erefore this model corresponds to the requirements of Mauw and Oostdijk.

Theorem 3.1: Let T1 and T2 be two attack trees. If T1 ≡ T2, then OutcomeT1 =
OutcomeT2 . �e parallel attack tree computing model de�ned by formulae (3.1 –
3.3) is consistent.

Proof. �e equivalence T1 ≡ T2 means that the corresponding Boolean formulae
are equivalent as well and F1 ≡ F2. �e formulae (3.1 – 3.3) do not use the par-
ticular structure of the attack tree T , they only work on the satis�ability of the
corresponding Boolean formula F . Since the equivalent Boolean formulae are
satis�ed by the same set of assignments, we will have the same attack suites for

both trees and OutcomeT1 = OutcomeT2 . Because Boolean formulae have asso-
ciativity, commutativity and distributivity properties, the requirements of Mauw

and Oostdijk for the attack tree model consistency are also ful�lled.

An example attack tree computation given in Section 2.8.3 on page 41 also il-

lustrates the current model.�is time the attack suites {A}, {B,C} and {A, B,C}
satisfy both attack trees T1 = A∨(B&C) and the equivalent tree T2 = (A∨B)&(A∨
C) (see Figure 2.2 on page 42) and by applying formula (3.2) to the same param-
eters we get:

46

Outcome{A} = 0.8 ⋅ 10000 − 1100 = 4200 ,
Outcome{B,C} = 0.64 ⋅ 10000 − 2200 = 4200 ,

Outcome{A,B,C} = 0.77 ⋅ 10000 − 3300 = 4380 ,
OutcomeT1 = OutcomeT2 = 4380 .

3.4 Comparison with Attack Tree Model by Buldas

et al.

In Section 2.8.2 on page 39 we alreadymentioned that the attack tree computation

model by Buldas et al. does not always �nd the best attack suite and we presented
the counter-example. In this section, we can present more formal proof that the

outcome value computed by formula (3.2) is at least as great as the outcome value

computed by formulae (2.6–2.8).

Theorem 3.2: Let us have an attack tree T . Let the parallel model �nd the best
attack suite S and let the best attack suite found by themodel described in the current
chapter be S and by the model described in Section 2.7 on page 36 be S′. Let the
corresponding outcomes (computed using the respective routines) be OutcomeS and
OutcomeS′ .�e following two claims hold:

OutcomeS = OutcomeS′ if S = S′ , (3.4)

OutcomeS ≥ OutcomeS′ if S /= S′ . (3.5)

Proof. To prove formula (3.4) we need to show that

OutcomeS′ = pS ⋅Gains − ∑
X i∈S

Expensesi .

First note that the attack suite S′ is minimal in the sense that none of its proper
subsets materializes the root node, because only one child is chosen in every or-

node according to formula (2.6). Hence, pS = ∏X i∈S pi . Now consider how the
OutcomeS′ of the root node is computed by formula (2.7). Let the required pa-
rameters of the root node be p′,Gains′ andExpenses′. Obviously,Gains′ = Gains.

47

F1 = A∨ B
∨

A B

F2 = (A∨ B)&C
&

(A∨ B)
∨

A B

C

Figure 3.1: Attack trees with corresponding Boolean formulae F1 = A ∨ B and F2 =
(A∨ B)&C

By looking at how the values of the attack success probability and the expected ex-

penses are propagated throughout the tree, we can also conclude that

p′ = ∏
X i∈S

pi = pS and Expenses′ = ∑
X i∈S

Expensesi ,

which �nishes the �rst part of the proof.

To show formula (3.5) we consider that the attack suite S′ found by the previ-
ous model is a satisfying assignment to the attack tree T or the Boolean formula
F as well.�erefore, it will be considered among the other satisfying assignments
as well and therefore we are guaranteed to �nd at least the same assignment S as
well if the OutcomeS is indeed the greatest outcome.�erefore, the OutcomeS is
not less than the OutcomeS′ .

However, the question of why the outcome computed by the parallel attack

tree model is at least as great as the outcome value of the previous model needs to

be discussed further.

If we reach a di�erent attack suite S /= S′, then theOutcomeS has to be greater
or equal to the OutcomeS′ . In which cases could it be greater? Let us look at the
minimal case, at the attack tree with the formulae F1 = A ∨ B (see Figure 3.1)
and the situation where Outcome{A} ≤ Outcome{B} < Outcome{A,B}. When we
apply formula (3.2) and simplify, we get the following two inequalities:

ExpensesA < Gains ⋅ pA ⋅ (1 − pB) and

ExpensesB < Gains ⋅ pB ⋅ (1 − pA) ,

48

depending on which parts of the original inequality we take.�is condition could

be interpreted as the expenses of the additional elementary attack must be less

than the income from succeeding with the attack and failing with other attacks

and we can deduce that it is indeed possible for the parallel model to give greater

outcome values than the previous model.

If this could be extended to larger trees, then we would have a simple con-

dition to verify. However, analyzing the slightly larger tree with formula F =
(A∨ B)&C (see Figure 3.1 on the facing page) and the situation Outcome{A,C} ≤
Outcome{B,C} < Outcome{A,B,C}, it turns out that we get the following inequal-
ity:

ExpensesB < Gains ⋅ pB ⋅ pC ⋅ (1 − pA) .

However, because there is already pC involved in this inequality, the condi-
tion is not localized to the single or-node fragment and with larger trees, this

condition will be more complex.�erefore, it is not possible to develop a general

veri�cation procedure.

3.5 Optimizations

�e brute-force approach to actually generating all 2n possible subsets from the n
elementary attacks, then verifying if they satisfy the Boolean formulaF and then
blindly computing the outcome by formulae (3.2–3.3) is very slow. However, we

can use the existing results from the Boolean satis�ability theory and we can also

come up with simplifying optimizations by our own, as described in [42].

3.5.1 DPLL Algorithm

First, we will modify the well-known satis�ability deciding algorithm [21] by

Davis, Logemann, and Loveland. Even though the original dpll algorithm only

veri�ed if the given subset of Boolean variables satis�es the Boolean formula, the

idea of branching and backtracking can be applied to systematically generating

all possible satisfying subsets as well. We will shown that in Algorithm 3.1 on the

next page.

49

Algorithm 3.1: Finding the satisfying assignments with dpll algorithm

Input: Boolean cnf-formula F
Input: subset S of F variables
Input: set A ⊆ (X ∖ S)
1: Procedure ProcessSatisfyingAssignments(F , S ,A)
2: if F contains true in every clause then
3: Process the assignment A∪ T for every T ⊆ S
4: return

5: end if

6: if F contains an empty clause or S = ∅ then

7: return

8: end if

9: if F contains a unit clause {X}, where X ∈ S then
10: Let F ′ be the formula obtained by setting X = true in F
11: ProcessSatisfyingAssignments(F ′ , S ∖ {X},A∪ {X})
12: return

13: end if

14: Select a variable X ∈ S
15: Let F ′ be the formula obtained by setting X = true in F
16: ProcessSatisfyingAssignments(F ′ , S ∖ {X},A∪ {X})
17: Let F ′′ be the formula obtained by deleting X from F
18: ProcessSatisfyingAssignments(F ′′ , S ∖ {X},A)
19: return

3.5.2 WithdrawingHopeless Branches

When we are evaluating the attack suites which satisfy the Boolean formula F , it
would be very bene�cial if we could drop those suites which will probably not be

the global optimum suite and therefore cut of the unnecessary branching. It turns

out that we can stop the processing as soon as we �nd the situation in the attack

tree, where some of the and-node child is evaluated to true and the other child
to false.�e and-node itself will be evaluated to false and it turns out that there
has to exist another attack suite, which will still evaluate this and-node to false,
but will contain fewer elementary attacks i.e. is cheaper and has the same suc-

cess probability and which will therefore provide greater outcome and is therefore

more likely the global maximum attack suite. Formally, we can prove�eorem 3.3

about this.

Theorem 3.3: Let F be a Boolean formula corresponding to the attack tree T (i.e.

50

and-or-tree, where all variables occur only once) and let S be its satisfying assign-
ment (i.e. an attack suite). Set all the variables of S to true and all the other to
false and evaluate all the internal nodes of T. If some and-node has children eval-
uating to true as well as children evaluating to false, then there exists a satisfying
assignment S′ ⊂ S and S′ ≠ S such that OutcomeS′ ≥ OutcomeS .

Proof. Consider an and-node Y having some children evaluating to true and
some evaluating to false. �en the node Y itself also evaluates to false, but the
set of variables of the subformula corresponding to Y has a non-empty intersec-
tion with S; let this intersection be Q. We claim that we can take S′ = S ∖ Q.
First it is clear that S′ ⊂ S and S′ ≠ S. Note also that S′ is a satisfying assignment
and hence S′ ≠ ∅. To illustrate this situation an example attack tree is given in
Figure 3.2.

Now consider the corresponding outcomes:

OutcomeS = pS ⋅Gains − ∑
X i∈S

Expensesi ,

OutcomeS′ = pS′ ⋅Gains − ∑
X i∈S′

Expensesi .

Since S′ ⊂ S, we have

∑
X i∈S

Expensesi ≥ ∑
X i∈S′

Expensesi ,

as all the added terms are non-negative.

Now we claim that the equality pS = pS′ holds, which implies the claim of the
theorem. Let

RS = {R ⊆ S ∶ F(R ∶= true) = true} ,
RS′ = {R′ ⊆ S′ ∶ F(R′ ∶= true) = true} ,

then by formula (3.3) we have

pS = ∑
R∈RS

∏
X i∈R

pi ∏
X j∈S∖R

(1 − p j) ,

pS′ = ∑
R′∈RS′

∏
X i∈R′

pi ∏
X j∈S′∖R′

(1 − p j) .

51

T ≡ F = t
∨

t
∨ &

.
.

Y = f

&

f
∨

f f

t t
∨

t f f

Q

Figure 3.2: Illustrating attack tree for �eorem 3.3 on the facing page. �e nodes are

labelled with the true or false values. �e set Q contains the unnecessary
leaves from the S set, so that we could take S′ = S ∖ Q and the OutcomeS′ ≥
OutcomeS

We claim that

RS = {R′ ∪ Q′ ∶ R′ ∈ RS′ ,Q′ ⊆ Q} , (3.6)

holds, i.e. that all the satisfying subassignments of S can be found by adding all
the subsets of Q to all the satisfying subassignments of S′. Indeed, the node Y
evaluates to false even if all the variables of Q are true, hence the same holds for
every subset ofQ due tomonotonicity of and and or.�us, if a subassignment of
S satis�es the formula F , the variables of Q are of no help and can have arbitrary
values.�e evaluation true for the root node can only come from the variables of
S′, proving equation (3.6).

52

Now we can compute:

pS = ∑
R∈RS

∏
X i∈R

pi ∏
X j∈S∖R

(1 − p j) = ∑
R=R′∪Q′

R′∈RS′ ,Q′⊆Q

∏
X i∈R

pi ∏
X j∈S∖R

(1 − p j) =

= ∑
R′∈RS′

∑
Q′⊆Q

∏
X i∈R′∪Q′

pi ∏
X j∈S∖(R′∪Q′)

(1 − p j) =

= ∑
R′∈RS′

∑
Q′⊆Q

∏
X i∈R′

pi ∏
X i∈Q′

pi ∏
X j∈S′∖R′

(1 − p j) ∏
X j∈Q∖Q′

(1 − p j) =

= ∑
R′∈RS′

∏
X i∈R′

pi ∏
X j∈S′∖R′

(1 − p j) ∑
Q′⊆Q

∏
X i∈Q′

pi ∏
X j∈Q∖Q′

(1 − p j) =

= ∑
R′∈RS′

∏
X i∈R′

pi ∏
X j∈S′∖R′

(1 − p j) ∏
X i∈Q

[pi + (1 − pi)] =

= ∑
R′∈RS′

∏
X i∈R′

pi ∏
X j∈S′∖R′

(1 − p j) = pS′ ,

since S ∖ (R′ ∪Q′) = (S′ ∖ R′)∪̇(Q ∖Q′).�e claim of the theorem now follows
easily.

3.5.3 Efficient Assignments Finding

�e regular satis�ability algorithm presents an additional overhead, because we

�rst have to transform the formula F to the standard cnf notation and we need
to process it as a set of clauses, which in turn, are sets of literals. It turns out that

by processing F as a tree, we can apply a more e�cient algorithm. We will use
ternary logic, i.e. every leaf and node has three possible values, true, false and
undefined. �e and, and or operations on those values are de�ned in Table 3.1
on the next page.

�e new algorithm still follows the basic idea of dpll branching and back-

tracking. We start o� with the assignment {u, u, . . . , u}, meaning that we assign
undefined value to each leaf node and then recursively try to assign true and false
values to some leaves. When we can evaluate the whole formula F to false, using
the computation rules from Table 3.1 on the following page, we know that we have

reached dead end and we will backtrack. When the formula F evaluates to true,
we know that we have reached the group of satisfying assignments of true leaves
and undefined leaves can have arbitrary values, therefore we just generate all of
the combinations.�e rest of the details are given in Algorithm 3.2.

53

Table 3.1: Computation rules for ternary logic

& t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

Algorithm 3.2: Finding the satisfying assignments, optimized version

Input: Boolean formula F corresponding to the given AND-OR-tree
1: Procedure ProcessSatisfyingAssignments(S)
2: Evaluate F(S)
3: if F(S) = f then
4: return

5: end if

6: if F(S) = t then
7: Output all the assignments obtained from S by setting all its u-values to t and f in

all the possible ways

8: return

9: end if

10: // reaching here we know that F(S) = u
11: Choose X i such that S(X i) = u
12: ProcessSatisfyingAssignments(S/[X i ∶= f])
13: ProcessSatisfyingAssignments(S/[X i ∶= t])

3.5.4 Computing the Attack Suite Success Probability

Computing the success probability pS of the attack suite S by formula (3.3) is not
very e�cient. One basically needs to solve the sat# problem oncemore for the set

S, to �nd out if there are subsets R ⊂ S that still satisfy the formula F . However,
it turns out that even though formula (3.3) is good to represent conceptually how

the pS value can be computed, there is a more e�cient way.
Even though we cannot use parameter propagation for Outcome computa-

tion, we can still use parameter propagation for the success probability. We start

with taking pi = 0 for those Xi /∈ S and leaving all those Xi ∈ S with their original

54

Algorithm 3.3: Computing the success probability pS of the attack suite S

Input: and-or-tree with parameters p i
Input: the tree node m
Input: assignment S of the attacksuite
Output: p is the success probability of node m
1: Procedure ComputeNodeProbability(m, S)
2: if Xm is leaf node and Xm ∈ S then
3: return pm
4: end if

5: if Xm is leaf node and Xm /∈ S then
6: return 0

7: end if

8: if Xm is and-node then

9: p ∶= 1
10: for all i child of Xm do

11: p ∶= p ⋅ ComputeSuiteProbability(i , S)
12: end for

13: return p
14: end if

15: if Xm is or-node then

16: p ∶= 1
17: for all i child of Xm do

18: p ∶= p ⋅ (1 − ComputeSuiteProbability(i , σ))
19: end for

20: return 1 − p
21: end if

pi values.�en we can compute the success probability of the parent node Xm by

pm = { ∏
k
j=1 pi j if Xm is and-node,

1 −∏k
j=1(1 − pi j) if Xm is or-node.

(3.7)

Recursive Algorithm 3.3 computes the success probability of the attack suite if

called as ComputeNodeProbability(root, S). �e algorithm makes one pass
over the structure of the tree, computes the success probability of the root node,

which equals pS , as computed by formula (3.3).

55

3.5.5 Strategies for Choosing the Branching Point

In the implementation of Algorithm 3.2 on page 54 the programmer has to choose

in line 10 which particular yet unde�ned literal it initializes. One way is to choose

just randomly, or in some pre-de�ned order, but it turns out that by choosing the

literals according to some well-de�ned strategy, we can yet further speed up the

attack tree computations.

�e main goal is to minimize the number of assignments that will be pro-

cessed during the recursive branches. If we could �nd out that this particular

branch is not going to result in a satisfying assignment and possible attack suite

as early as possible, we could go through the branches more quickly. �is is also

the reason why we �rst assign the false value to the unde�ned literal in line 11, so
that we could probably get the false evaluation more quickly and then return to
the previous recursion level.

Getting the false evaluation out of the formulaF as quickly as possible seems
to depend on the number of and-nodes, which are on the path from the leaf node

up to the root node. �e higher the and-node count, the sooner we should get

the false evaluation, because all of the and-node children must have true values
for the and-node being evaluation to true as well. To verify this hypothesis, we
considered random, most-and and weighted-c-and strategies.
A random strategy chooses the next literal randomly, most-and strategy picks

the literal, which have the highest number of and-nodes on the path from leaf to

root.�eweighted-c-and strategy prefersand-nodes, which are closer to the root
node. �e intuition behind this approach is that when we can exclude a larger

subtree, we should be able to cut o� more hopeless recursion branches as well,

hence it makes more sense to prefer paths with and-nodes closer to the root.

�us we gave each node on the distance i from the root the weight 1/c i , where c
is a prede�ned constant. We experimented with values c = 2, c = 0.5 and c = 1.
Note that themost-and strategy is equivalent to theweighted-c-and strategywith
c = 1.
We generated about 6000 random attack trees and computed the outcome for

those trees using di�erent strategies and measured the running time for those.

�e results are given in Figure 3.3 on the facing page. We can see that there is

de�nitely a di�erence between a random strategy and any weighted-c-and strat-
egy. However, the di�erences between the variousweighted-c-and strategieswere
quite small and almost within the con�dence interval with 95% con�dence level.

We also used the least-squares method to �t the function a−1 ⋅ bn to the graphs.

56

0.01

0.1

1

10

100

1000

16 18 20 22 24 26 28 30

T
im
e
ti
n
se
c
o
n
d
s,
lo
g
a
ri
th
m
ic
sc
a
le

Number of leaves n in the tree

Choosing unde�ned literal randomly

Using weighted-2-and strategy

Using weighted-0.5-and strategy

Using weighted-1-and strategy

Figure 3.3: Performance test results of di�erent strategies for choosing unde�ned liter-

als.�e con�dence interval for time t is given with the con�dence level 95%.
Performance tests were done on 2.33 GHz Pentium Xeon machine.

From this information, we can deduce the approximate complexity of our algo-

rithm implementation in Table 3.2 on the next page.

3.6 Complexity of ParallelModel

Our task is similar to the well known problem of counting the number of solu-

tions to the sat problem, which is usually denoted by #sat. Currently the world’s

best #3sat problem solving algorithm by Kutzkov in [48] has the worst-case com-

57

Table 3.2: Complexity estimations for di�erent strategies

Strategy Complexity

Random O(1.90n)
Weighted-2-and O(1.78n)
Weighted-1-and O(1.71n)
Weighted-0.5-and O(1.75n)

plexity O(1.6423n). As #sat problems can be converted parsinomically and in
polynomial time to the #3sat problems (see [47], chapter 26), we can roughly

compare our algorithm complexity and the #3-sat problem solver complexity.

Direct comparison is, however, not possible for several reasons. First, our

estimate is heuristic and is based on experimental data. Second, we are not only

counting all of the possible sat solutions to the formula F , but we actually have
to generate many of them and perform the attacker outcome computations as

well. At the same time, we are using the optimization described in�eorem 3.3

on page 50.

Indirect comparison with the result of Kutzkov still shows that our approach

works roughly as well as one would expect based on the similarity of our problem

setting to #sat. It remains an open problem to develop more direct comparison

methods and to �nd out whether some of the techniques of #sat solvers could be

adapted to the attack trees directly.

3.7 Genetic Algorithm

Optimizations described in Section 3.5 on page 49 allow us to compute best out-

come for the attack tree with 30 elementary attacks in about 1–10 minutes. Attack

trees used in practical security analysis tend to be much larger, with hundreds of

elementary attacks. Because the proposed computation routines have exponen-

tial complexity, processing attack trees as large as hundreds of leaves is not yet

possible. �is motivates us to search for ways to get approximate results more

quickly. One possible option is to use genetic algorithms for �nding the optimum

attack suite. We refer to the handbook [20] by Davis for an overview of genetic

algorithms.

58

3.7.1 Representing the Solution

To apply genetic algorithms, we will need to decide, how to represent the solution

of the attack tree so that we could easily generate the initial random population,

then cross the individuals and possibly mutate them and how to sort out the best

solutions. Luckily, the current problem falls quite naturally into the required con-

cepts:

• individual – attack suite S represented as a bit array of all the attack tree
leaves,

• population – set of attack suites which are currently under consideration,

• �tness function – the outcome value of the attack suite which measures the

quality of the individual,

• crossover operation – crossing two attack suites by choosing randomly a

parent for each bit vector element

• mutation operation – randomly �ipping bits in the individual’s bit array.

3.7.2 Generating initial population

Even though the individual concept is rather simple and crossing two individuals

to produce descendant is also easy, we will need to decide how to create the initial

population of individuals. Simply creating random bit arrays does not guarantee

that the resulting individual is satisfying theF and therefore wemight be wasting
evolution cycles at the start, until our individuals change to proper solutions. It

would be better to start o� with all “live” individuals.

To create random satisfying attack suites, we will use Algorithm 3.4 on the

following page. We start o� from the root of the T and from and-node we will

choose all children, fromor-nodewewill choose randomly at least one child.�e

resulting attack suite will satisfy the F .

3.7.3 Analysis

A�er this, the implementation of the genetic algorithm is rather straightforward

and it is written in Algorithm 3.5 on page 61.

�e time complexity of Algorithm 3.5 on page 61 isO(gh2(n + log h)), since
we need to process g number of generations and it takes aboutO(nh2) to mutate

59

Algorithm 3.4: Creating randomly satisfying attack suite S for the attack tree T

Input: and-or-tree fragmentM ⊆ T ,
Output: S is the satisfying the formula F
1: Procedure GenerateAttackSuite(M)
2: if Xm is the leaf node then

3: Add Xm to S
4: end if

5: if Xm is the and-node then

6: for all i of theM children do
7: Add set returned by GenerateAttackSuite(i) to S
8: end for

9: end if

10: if Xm is the or-node then

11: while S /= ∅ do

12: for all i of theM children do
13: if random(0, 1) = 1 then
14: Add set returned by GenerateAttackSuite(i) to S
15: end if

16: end for

17: end while

18: end if

19: return S

and to verify the liveliness and aboutO(h2 log h) to sort out the best h individuals
from total of (h

2
)+h individuals. When using the algorithm in practice, one needs

to decide the speci�c value for the parameters h and g.
To decide on the reasonable values for those parameters and to verify if the ge-

netic algorithm really �nds the global maximum attack suite, we ran experiments

on the set of about 6000 randomly generated attack trees. We �rst computed the

exact global maximum attack suite for each tree and then ran the genetic algo-

rithmwith various parameters and veri�ed if the correct attack suite was returned.

Running genetic algorithm m times on the attack trees and then comparing
the resulting outcome value with the known correct outcome value are random

events with binomial distribution B(m, p) of totalm tests and with each individ-
ual test having success probability of p. �e p is essentially the probability that
the genetic algorithm returns the correct outcome value. We will need to esti-

mate the con�dence interval (p̃ − CI ≤ p ≤ p̃ + CI) for the success probability
of the genetic algorithm on the attack tree population. Instead of using the stan-

60

Algorithm 3.5: Finding approximate best attack suite S for the attack tree T using the
genetic algorithm

Input: and-or-tree T with estimated parameters,
Input: Size of the population as h and number of generations as g
Output: S is approximately best attack suite for attack tree T
1: Procedure ComputeApproximateAttackSuite()
2: Generate h individuals attack suites by Algorithm 3.4 on the facing page for the gen-
eration g1

3: for i = 2 to g do
4: Cross h attack suites from previous generation g i−1 with each other, producing

(h
2
) new attack suites

5: Mutate each new individual with probability 0.1 and for each of those, �ip every

leaf bit with probability 0.1

6: Add h attack suites from the generation g i−1 to the current generation g i
7: Filter out those individuals, who are live (i.e. F(S j ∶= t) = t))
8: Compute the OutcomeS j for all individuals and choose h best individuals for the

next generation g i+i
9: end for

10: return Best attack suite S having the largestOutcomeS from the last generation gg

dard binomial con�dence interval from [82], which is over-conservative, does not

work well with small m values and fails when the p is close to 0 or 1, we are using
Agresti-Coull con�dence interval from [1], as recommended in the article [50] by

Lawrence D. Brown and DasGupta.

We are using 95% con�dence level and the corresponding con�dence interval

CIAC = p̃ ± k
√

p̃(1 − p̃)
m̃

,

where p̃ = x̃/m̃, x̃ = x+k2/2, m̃ = m+k2 and k = z0.05/2 = Φ−1(1−0.05/2) = 1.96.
�e results are given in Figure 3.4 on the next page for trees up to 29 leaves.

It turned out that we were able to get reasonably high level of success probability

with parameter functions h = 2n and g = 2n, which gave us the overall complexity
asO(n4).�e performance analysis of the genetic algorithm is given in Figure 3.5
on page 63.

�is allows us to process attack trees with 70–100 elementary attacks within a

reasonable time of 1 to 10 minutes and still �nd the approximate outcome value.

Taking into account that the attack tree parameter estimation process is also not

61

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

P
ro
b
a
b
il
it
y
p
o
f
th
e
c
o
rr
e
c
t
re
su
lt

Number of leaves n in the tree

Algorithm accuracy with parameters h = 2n and g = 2n
Algorithm accuracy with parameters h = n and g = n

Figure 3.4: Accuracy estimation of Algorithm 3.5 on the preceding page for di�erent

population size and number of generations values. �e con�dence interval

for probability p is given with the con�dence level 95%.

an exact science, we can now use the computed outcome result within some mar-

gin of error and use the method in a practical security analysis.

62

0

120

240

360

480

600

20 40 60 80 100 120

C
o
m
p
u
ta
ti
o
n
ti
m
e
ti
n
se
c
o
n
d
s

Number of leaves n in the tree

Figure 3.5: Performance results of Algorithm 3.5 on page 61 in case of parameters h = 2n
and g = 2n.�e con�dence interval for the attack tree computation time t is
given with 95% con�dence level. Performance tests were done on 2.33 GHz

Pentium Xeon machine.

63

64

Chapter 4

Serial Attack TreeModel

Attack tree models so far presume that all attacks take place simultaneously and

the attacker chooses the best attack suite S before starting the campaign. Paral-
lel model does not allow the attackers to choose di�erent tactics once they have

already started. In reality, clever attackers usually try some attacks and if they

fail or succeed, then using this additional information, they will choose another

approach. By including more information to their decision model, attackers can

make smarter decisions and they could get greater expected outcome in the end.

Serial model will investigate this situation in more detail.

4.1 Model Description

We will continue to use the basic attacker game, as described in Section 3.2 on

page 44 with the regular elementary attack parameters. Elementary attack still

has the success probability p and the Expenses parameter for noting the expected
cost and penalties for trying the attack.�e goal of the attacker is still the root of

the and-or-tree T and there is reward ofGainswhen the corresponding Boolean
formula F is satis�ed.
However, in this model we allow the attacker to be adaptive during the exe-

cution of the attack suite. �e actions of the attacker could be described by the

following list:

1. �e attacker chooses the S ⊆ X, which satis�es the formulaF , with ∣S∣ = m
elementary attacks from the set X = {X1, . . . , Xn}.

2. �e attacker will �x the order of the attacks in S by specifying the permu-

65

tation σ ∈Sm.

3. Start launching attacks in the order of ⟨Xσ(1), . . . , Xσ(m)⟩.
4. A�er the attack Xα(i) has been launched, the attacker has an option to skip
the next attack Xα(i+1) if it does not help reaching the attacker goal.

5. �e attacker will stop attacking if the goal has already been reached, or if it

becomes impossible to ful�ll the goal.

�e permutation σ ∶ {1, . . . ,m} → {1, . . . ,m} speci�es the linear ordering
relation ≼ on the set S and we will use the term ordered attack suite and notions
⟨S , ≼⟩ and (S , σ) interchangeably in the following text.
So, for example, if we consider the attack tree from Figure 4.1 on the next page

with the ordered attack suite (X , id), the attacker corresponding to our serial
model will perform the following actions.

�e attacker starts launching attacks from the sequence of ⟨X1, X2, X3, X4⟩.
Independent of whether the �rst attack X1 succeeds or fails, there are still other
components needed to complete the goal, so attacker tries X2 as well. If it fails,
we see that the whole tree fails, so it does not make sense to try X3 and X4. If
both X1 and X2 have succeeded, we see that it is not necessary to try X3, since X1
and X3 have a common or-parent, so success or failure of X4 determines the �nal
outcome. If X1 fails and X2 succeeds, we need the success of both X3 and X4 to
complete the task; if one of them fails, we stop and accept the failure.

�e attacker model can be written in a more formal way in Algorithm 4.1 on

page 68.

�e outcome of the ordered attack suite (S , σ) will be de�ned as

OutcomeS ,σ = pσ ⋅Gains − ∑
X i∈S

pσ ,i ⋅ Expensesi , (4.1)

where pσ is the probability that F(S) = true, i.e., the attacker succeeds with the
attack tree goal and pσ ,i denotes the probability that the node Xi is used during
the execution of Algorithm 4.1 on page 68.

�e serial model does indeed allow the attacker to make some reasonable de-

cisions during the execution of the ordered attack suite and therefore, it should

model the real life more exactly. However, to actually decide which of the sub-

sets S and permutations σ would provide the greatest expected outcome, one has
to consider all possible combinations of them. �ere could be up to 2n number
of subsets and there are n! number of possible permutations for n elements and

66

Decrypt com-

pany secrets

&

Obtain en-

crypted �le

∨

X1 = “Bribe
the sysadmin”

X3 =
“Steal the

backup”

Obtain the

password

&

X2 =
“Break into

the system”

X4 = “Install
the keylogger”

Figure 4.1: An example ordered attack tree (X1 ∨ X3)& (X2&X4). �e le�-to-right or-
dering of the leaf nodes in the tree represents the permutation id = ⟨1, 2, 3, 4⟩
of the X = {X1 , X2 , X3 , X4}.

additionally, just computing the OutcomeS ,σ is also not a trivial task. We will
continue with more e�cient computation routines in Section 4.3 on page 70 and

Section 4.5 on page 73, but �rst we will compare this model to previous models.

4.2 Comparison with Parallel Attack TreeModel

To compare this model with the previous attack tree models, we �rst prove that

the expected outcome does not depend on the speci�c form of the attack tree T .

Theorem 4.1: Let F1 and F2 be two monotone Boolean formulae such that F1 ≡
F2, and let Outcome1σ and Outcome2σ be the expected outcomes obtained by run-
ning Algorithm 4.1 on the following page on the corresponding formulae. �e serial
attack tree computing model is consistent and

Outcome1σ = Outcome2σ .

Proof. Assume that we are processing Algorithm 4.1 on the next page andwe have
already tried the elementary attacks Xσ(1), . . . , Xσ(i−1). We see that the node Xσ(i)

67

Algorithm 4.1: Attacking algorithm in the serial model

Input: �e set of elementary attacks S = {X1 , . . . , Xm},
Input: permutation σ ∈Sm and

Input: a monotone Boolean formula F describing the attack scenarios.
1: for i ∶= 1 to m do

2: Consider Xσ(i)
3: if success or failure of Xσ(i) has no e�ect on the success or failure of the root node

then

4: Skip Xσ(i)
5: else

6: Try to perform Xσ(i)
7: if the root node succeeds or fails then

8: return

9: end if

10: end if

11: end for

may be skipped in line 3 if for all the values of Xσ(i+1), . . . , Xσ(n) we have

F (Xσ(1), . . . , Xσ(i−1), t, Xσ(i+1), . . . , Xσ(n)) =
= F (Xσ(1), . . . , Xσ(i−1), f , Xσ(i+1), . . . , Xσ(n)) .

�ere is no need to proceed a�er the node Xσ(i) in line 7, if for all the values
of Xσ(i+1), . . . , Xσ(n) we have

F (Xσ(1), . . . , Xσ(i−1), Xσ(i), Xσ(i+1), . . . , Xσ(n)) = t or

F (Xσ(1), . . . , Xσ(i−1), Xσ(i), Xσ(i+1), . . . , Xσ(n)) = f .

We can now see that Algorithm 4.1 really does not depend on the attack tree

T having a particular structure or even F having any tree structure at all. All the
decisions to skip some attack or stop the attacking can be taken just by evaluating

the Boolean function F .
By following the similar argument as in�eorem 3.1 on page 46, we can con-

clude that the serial model also has associativity, commutativity and distributivity

properties and the requirements of Mauw and Oostdijk for the attack tree model

consistency are also ful�lled.

�erefore, we can say that this serial attack tree model corresponds to the

requirements ofMauw andOostdijk. Next wewill show formally that introducing

68

order to the elementary attacks really increases the attacker’s expected outcome

compared to the parallel attack tree.

Theorem 4.2: Let F be a monotone Boolean function on variables X = {X1, . . . ,
Xn}, n ≥ 2 describing the attack scenarios. Let OutcomeS ,σ be de�ned by for-
mula (4.1) and let OutcomeS be de�ned by formula (3.2) for attack suite S = X.
�en we have

OutcomeS ,σ ≥ OutcomeS . (4.2)

If for all the elementary attacks Xi (i = 1, . . . , n) one also has Expensesi > 0, then
strict inequality holds in formula (4.2).

Proof. First we note that by formula (3.3) we can compute the success probability
of the attacker as follows:

pS = ∑
S ⊆ X

F(S ∶= true) = true

∏
X i∈S

pi ∏
X j∈X∖S

(1 − p j) ,

where F(S ∶= true) denotes the evaluation of the Boolean function F , when all
the variables of S are assigned the value true and all others the value false.�is is
exactly the total probability of all the successful branches of Algorithm 4.1 on the

facing page and thus pS = pσ (implying that pσ is actually independent of σ). We
also have that ∀i pσ ,i ≤ 1 and hence the inequality (4.2) follows.
Assume now that for all Xi we haveExpensesi > 0.�en in order to prove that

strict inequality holds in (4.2), we need to show that there exists such an index i
that pσ ,i < 1.
Consider the elementary attack Xσ(n) that the attacker is supposed to try last.

If there exists an evaluation of the Boolean variables Xσ(1), . . . , Xσ(n−1) such that

F (Xσ(1), . . . , Xσ(n−1), t) = F (Xσ(1), . . . , Xσ(n−1), f) ,

then Xσ(n) is super�uous in this scenario and hence pσ ,n < 1.
If on the other hand we have

F (Xσ(1), . . . , Xσ(n−1), t) /= F (Xσ(1), . . . , Xσ(n−1), f)

for all evaluations of Xσ(1), . . . , Xσ(n−1), then due to monotonicity of F we can
only have that

F (Xσ(1), . . . , Xσ(n−1), f) = f

69

and

F (Xσ(1), . . . , Xσ(n−1), t) = t ,

implying

F (a1, . . . , an) ≡ an .

But in this case all the elementary attacks before the last one get skipped, so pσ ,1 =
. . . = pσ ,n−1 = 0.

4.3 Computation Algorithm

�ere are n+ 1 parameters that need to be computed in order to �nd the expected
outcome using formula (4.1)) – the total success probability pσ and the proba-
bilities pσ ,i that the node Xi is encountered during Algorithm 4.1 on page 68. It
turns out that there is an e�cient algorithm for computing these quantities pro-

vided that the given monotone Boolean function can actually be described by a

tree. In what follows we will also assume that the tree is binary and that we have

the attack suite S = X, but this restriction is not a crucial one.
So let us have an attack tree with the set of leaf nodes X = {X1, . . . , Xn} and

the corresponding success probabilities pi , i = 1, . . . , n. We will assume that all
these probabilities are independent and consider the permutation σ of the set X
(i.e. σ ∈ Sn). In order to explain the algorithm, we �rst introduce three extra
parameters to each node Y , namely Y 1, Y0 and Yu, showing the probabilities that
the node has been proven to be respectively true, false or yet undefined in the
course of the analysis.

Initially, we will set Y 1 = Y0 = 0 and Yu = 1 for all the nodes and the algorithm
will work by incrementally adjusting these values, so that at the end of the process

we will have R1 = pσ for the root node R.�roughout the computations we will of
course retain the invariant Y 1+Y0+Yu = 1 for all the nodes Y , hence one of these
parameters is actually super�uous. In the presentation version of the algorithm

we will drop the parameter Yu, even though it actually plays the central role.

Going back to the high-level description of Algorithm 4.1 on page 68, we see

that the most di�cult decision is in line 3, where the attacker is supposed to �nd

out whether the next elementary attack in his list may have any e�ect on the suc-

cess or failure of the root node. An elementary attack does not have any e�ect i�

there is a node on the path from that particular leaf to the root that has already

been proven to be true or false. �us the next elementary attack should be tried

70

i� all of the nodes on this path are undefined – and this is precisely the event that
gives us the required probability pσ ,i .

Let the path from the root R to the leaf Xi then be (Y0 = R,Y1, . . . ,Ym = Xi).
�us, we need to compute the probability

pσ ,i = Pr [Y0 = u&Y1 = u& . . . &Ym = u] =
= Pr [Y0 = u ∣Y1 = u , . . . , Ym = u] ⋅
⋅ Pr [Y1 = u ∣Y2 = u , . . . , Ym = u] ⋅ ⋯
⋯ ⋅ Pr [Ym−1 = u ∣Ym = u] ⋅ Pr [Ym = u] =

= Pr [Y0 = u ∣Y1 = u] ⋅ Pr [Y1 = u ∣Y2 = u] ⋅ ⋯
⋯ ⋅ Pr [Ym−1 = u ∣Ym = u] ⋅ Pr [Ym = u] . (4.3)

�e equations

Pr [Yk = u ∣Yk+1 = u , . . . , Ym = u] = Pr [Yk = u ∣Yk+1 = u]

hold due to the tree structure of our underlying rdag and the independence as-

sumption of the elementary attacks.

In formula (4.3) we have Pr [Ym = u] = Pr [Xi = u] = 1 and all the other proba-
bilities are of the form Pr [Yk = u ∣Yk+1 = u]. Hence, we need to evaluate the prob-
ability that the parent nodeYk is unde�ned assuming that one of its children, Yk+1,
is unde�ned.�is probability now depends onwhether Yk is an and- or or-node.
IfYk is anand-node andYk+1 is unde�ned, then so isYk if its other child Z is either
true or unde�ned, which is the case with probability Z1+Zu = 1−Z0. Similarly, if
Yk is an or-node and Yk+1 is unde�ned, then so is Yk if its other child Z is either
false or unde�ned, which is the case with the probability Z0 + Zu = 1 − Z1.

�is way, formula (4.3) gives an e�cient way of computing pσ ,i assuming that
the current parameters of the internal nodes of the tree are known. Hence, we

need the routines to update these as well. �ese routines are straightforward. If

the elementary attack Xi is tried, only the parameters of the nodes on the path
(Ym = Xi , . . . ,Y1,Y0 = R) from that leaf to the root need to be changed. We do
it by �rst setting Y 1m = pi , Y0m = 1 − pi and Yu

m = 0 and then proceed towards the
root. If the node we encounter is and-node Awith children B and C, we set

A1 = B1 ⋅ C1 , (4.4)

A0 = B0 + C0 − B0 ⋅ C0 , (4.5)

71

Algorithm 4.2: Computing the probabilities pσ , i

Input: An attack tree with leaf set X = {X1 , . . . , Xn}
Input: Permutation σ ∈Sn
Output: �e probabilities pσ , i for i = 1, . . . , n
1: for all X i ∈ {X1 , . . . , Xn} do
2: X 1i ∶= 0 and X0i ∶= 0
3: end for

4: for i ∶= 1 to n do

5: Find the path (Y0 , . . . ,Ym) from the root Y0 = R to the leaf Ym = Xσ(i)
6: X 1σ(i) ∶= pσ(i)

7: X0σ(i) ∶= 1 − pσ(i)
8: Compute

pσ ,σ(i) ∶=
m
∏
j=1

(1 − Za
j),

where Z j is the sibling node of Yj and

a =
⎧⎪⎪⎨⎪⎪⎩

1 if Yj−1 is an or-node

0 if Yj−1 is an and-node

9: Update the parameters of the nodes Ym−1 ,Ym−2 , . . . ,Y0 according to formu-
lae (4.4–4.7)

10: end for

and if we encounter an or-node Awith children B and C, we set

A1 = B1 + C1 − B1 ⋅ C1 , (4.6)

A0 = B0 ⋅ C0 . (4.7)

As noted above, we see that the quantities Yu are actually never needed in the
computations.

In order to compute the n+1 necessary probabilities Algorithm 4.2makes one
run through all the leaves of the tree and at each run the path from the leaf to the

root is traversed twice. Since the number of vertices on such a path in a (binary)

tree can not be larger than the number of leaves n, we get that the worst-case
time complexity of Algorithm 4.2 is O(n2). If the tree is roughly balanced, this
estimate drops even toO(n log n).�is is a huge performance increase compared
to a naïve algorithm that one could design based on the complete attack scenario.

72

4.4 Outcome Results Comparison

�eorem 4.2 on page 69 states that the serial model yields greater outcome values

when all elementary attack expenses are greater than zero. In order to get an idea

of how much the serial model actually gains when compared to the parallel one,

we tested their outcomes on random trees. However, to meaningfully compare

the outcome values, there are some details to be discussed.

It may occur that the expected outcome computed by the parallel routinemay

be negative (or even exactly zero), but the outcome in the serial model may still

be positive. In such a situation, it is hard to quantify the percentage of actual

improvement of the result. It is possible to measure the absolute increase in the

outcome, but in this case, it is hard to relate improvements on the di�erent trees.

�erefore, we �rst picked trees with positive outcome values computed by

the parallel model and then normalized the tree input parameters, so that the

outcome value was exactly 1000. If the original outcome was k, then we simply
multiplied all monetary parameters by 1000/k. We then computed the outcome
value for the serial model.

Altogether, for every n ∈ {5, 6, . . . , 13} we generated 53 normalized trees with
n leaves and computed the average outcome with the serial model. �e results
are displayed in Figure 4.2 on the following page. However, it seems that there is

no clear trend in the data.�e increase varies greatly and the standard deviation

exceeds the mean value in many datapoints.

In many cases, when comparing the serial model outcome to the parallel

model outcome, there was actually no improvement at all. �is can be the case

when the optimal attack strategy for both the parallel and serial models consists

only of one elementary attack. For relatively small random trees, this happens

quite o�en, however, in practical attack scenarios, it is relatively unlikely that the

system can be attacked with just a single elementary attack without any depen-

dencies.�erefore, it could be the case that this kind of testing with the random

trees does not correspond well to reality.

4.5 Genetic Algorithm

It is clear from previous sections that exact algorithms do not work on the serial

attack model quickly, in fact, they are rather slow and only capable of processing

attack trees up to 13 leaves in the reasonable time. �erefore, we will once again

73

0

1000

2000

3000

4000

5000

6000

7000

5 6 7 8 9 10 11 12 13

M
e
a
n
v
a
lu
e
o
f
th
e
o
u
tc
o
m
e

Number of leaves n in the tree

Figure 4.2: Mean expected outcome of the serial model on normalized trees where the

parallel model gives the outcome value 1000.

turn to approximations and will use the similar genetic algorithm method from

Section 3.7 on page 58.

With the current model, however, we also need to evolve the order of the at-

tacks. We refer to the overview in [49] by Larrañaga et al., where solving the
Traveling Salesman Problem (tsp) with the genetic algorithm is being studied.

Altogether 25 ways are presented to encode the solution for the genetic algorithm

and to de�ne crossover andmutate operator, which gives us plenty of choices and

examples. �e problem is that in the classical tsp problem, the parent permuta-

tions are always de�ned on the same set, because the traveling salesman has to

visit all cities only once.

In our case, parent attack suites may have a di�erent number of attacks and

therefore, the permutations alsomight be of di�erent length. Additionally, it does

not make sense to evolve the subsets S and permutations σ separately, because
then we would need to run the genetic algorithm separately for each subset of X
and then choose the subset with the best �tness function. We need to evolve both

the elements of the subsets and the order of those elements at the same time for

74

Algorithm 4.3: Creating random permutation σ of the set S = {X1 , . . . , Xm} (from [45,
pp. 145–146])

Input: �e size of set S = m
Output: σ is the uniformly random permutation of sequence ⟨1, . . . ,m⟩
1: Procedure RandomPermutation(m)
2: σ(1) ∶= 1
3: for i ∶= 2 to m do

4: j ∶= random(1 . . . i)
5: σ(i) ∶= σ(j)
6: σ(j) ∶= j
7: end for

8: return σ

our genetic algorithm approach to be useful.

To encode the ordered attack suite (S , σ) for the genetic algorithmwewill use
the same bit array approach as with the parallel model.�e permutation σ will be
represented by the array of numbers.

4.5.1 Generating Initial Population

To start the genetic algorithm, we need an initial population of ordered attack

suites. In the parallel model, we created satisfying attack suites by recursively

traversing the tree T and in and-nodes chose all the children and in or-nodes
chose randomly at least one of the children. �e resulting attack suite was guar-

anteed to be a “live” individual.

For the serial model, we need to create the S and also the ≼S . We will use the
same Algorithm 3.4 on page 60 for creating the S, and then we will generate a
random permutation σ . We will use the Fisher-Yates shu�e algorithm from [45,
pp. 145–146] described in Algorithm 4.3 for ensuring that each combination has

the same probability to appear.

4.5.2 Crossing and mutating individuals

We have two ordered attack suites (S1, σ1) and (S2, σ2), which will have a descen-
dant (S , σ).
To create the set S, we will use the same technique as in Section 3.7 on page 58.

We will go over all the n elementary attacks in the set X and will decide randomly

75

from which parent we will take the status of the elementary attack Xi . For ex-
ample, if we decide to use parent S1 for the i and Xi ∈ S1, then Xi ∈ S as well.
�erefore those elementary attacks, which are included in both parents, will be

included in the descendant for sure. �ose attacks which are included in one of

the parents will have 0.5 chance of being included in the descendant and those

attacks which are in neither parents will have 0 chance of being included.

Because we are not able to use the natural crossover operation on the ordered

attack suites, we will simply randomly pick permutation elements from parent

permutations and look out for duplicate elements.�is is based on the alternating

position crossover operator de�ned in [49, pp. 23] and we modify it to work for

our case.

We present both procedures in Algorithm 4.4 on the next page. To illustrate

the workings of the algorithm, let us consider the following example.

Let us take X = {X1, . . . , X5} and for two parents

S1 = {X1, X2, X4, X5} σ1 = ⟨1, 2, 4, 5⟩ ,
S2 = {X3, X4} σ2 = ⟨4, 3⟩ .

Let us assume that when composing the descendant S from elementary at-
tacks, we randomly chose the corresponding parents and we got the following

resultant set:

S = {X1, X3, X4, X5} .

Let us also assume that we did not mutate the set anymore.�en the permu-

tation σ of the descendant will be randomly chosen from parent permutations:

1. We randomly chose σ2 and got element 4 from there. σ = ⟨4⟩ and σ2 = ⟨3⟩.
2. We randomly chose σ1 and got element 1 from there. σ = ⟨4, 1⟩ and σ1 =

⟨2, 4, 5⟩.
3. Next, we chose again σ1 and got element 2 from there, however X2 /∈ S and
therefore we just skip it. σ = ⟨4, 1⟩ and σ1 = ⟨4, 5⟩.

4. Again, we chose σ1 and the next element is 4, but σ already contains 4.
�erefore we just throw it away. σ = ⟨4, 1⟩ and σ1 = ⟨5⟩.

5. �en, σ1 is chosen again, and the last element 5 is added to σ . We now have
σ = ⟨4, 1, 5⟩ and σ1 = ⟨⟩.

6. Because σ1 is now empty, we will just get the remaining elements from σ2

76

Algorithm 4.4: Creating descendant attack suite from two parent attack suites

Input: �e set X of all elementary attacks
Input: Ordered attack suites (S1 , σ1) and (S2 , σ2)
Output: Descendant ordered attack suite (S , σ)
1: Procedure CrossSuites(X , S1 , σ1 , S2 , σ2)
2: for i ∶= 1 to n do

3: k ∶= random(1, 2)
4: if X i ∈ Sk then
5: add X i to S
6: end if

7: if we have decided to mutate the S and decide to mutate the bit i then
8: �ip the status of the X i ∈ S
9: end if

10: end for

11: make copies β1 and β2 from permutations σ1 and σ2
12: i ∶= 1
13: while β1 /= ∅ and β2 /= ∅ do

14: k ∶= random(1, 2)
15: if βk = ∅ then

16: choose another parent for k
17: end if

18: if βk(1) ∈ S and βk(1) /∈ σ then

19: σ(i) ∶= βk(1)
20: i ∶= i + 1
21: end if

22: remove βk(1) from βk
23: end while

24: return S and σ

and because they are not already in σ , we add them to σ .

7. Finally, σ = ⟨4, 1, 5, 3⟩.

To choose the best individuals a�er the crossover, we simply compute

OutcomeS ,σ for each ordered attack suite ⟨S , σ⟩ and sort out the h best attack
suites for the next generation.

77

4.5.3 Analysis

Wenowknowhow to produce the initial generationwithAlgorithm4.3 on page 75

and we know how to cross the ordered attack suites with each other with Algo-

rithm 4.4 on the previous page. For the �tness function, we will just compute

OutcomeS ,σ and then sort out the h best attack suites. �e procedure is listed as
Algorithm 4.5 on the facing page.

�e complexity of this genetic algorithm in theworst case isO(g(nh2+n2h2−
n2h
2
+ h2 log h)) because we will generate g generations, we will spendO(nh2) in

the crossover section, a�er that we need to compute OutcomeS ,σ for h2 − h
2
new

individuals, each of them takesO(n2) steps in the worst case and �nally we need
to sort out h best individuals, which takesO(h2 log h) steps.
To verify that the genetic algorithm works in practice and �nds the correct

attack suite, we used the same database of 6000 attack trees and computed the

exact result for the tree and then ran genetic algorithm with various parameters

on the same tree and compared the results. Because of the performance of the

serial attack tree algorithm, we were only able to test on the trees having up to 12

leaves.�e results for the parameter functions h = 2n and g = 2n and h = n and
g = n are given in Figure 4.4 on page 81.
It turns out that we are able to get almost the same level of accuracy from the

genetic algorithm aswe didwith the parallel attack treemodels.�e complexity of

the genetic algorithm in the case of h = 2n and g = 2n isO(n5).�e performance
results are given in Figure 4.3 on page 80.

78

Algorithm 4.5: Finding approximate best ordered attack suite S and permutation σ for
the attack tree T using the genetic algorithm

Input: and-or-tree T with estimated parameters,
Input: Size of the population as h and number of generations as g
Output: OutcomeS ,σ is approximately the best outcome for attack tree T
1: Procedure ComputeApproximateOrderedAttackSuite()
2: Generate h individual ordered attack suites by calling Algorithm 4.3 on page 75
3: for i = 2 to g do
4: Cross and mutate h attack suites with each other by calling Algorithm 4.4 on

page 77, producing (h
2
) new attack suites

5: Add h attack suites from the generation g i−1 to the current generation g i
6: Filter out those individuals, who are live (i.e. F(S j ∶= t) = t))
7: Compute the OutcomeS j ,σ j for all individuals and choose h best individuals for

the next generation g i+i
8: end for

9: return Best ordered attack suite ⟨S , σ⟩ having the largestOutcomeS ,σ from the last
generation gg

79

0

20

40

60

80

100

10 20 30 40 50

C
o
m
p
u
ta
ti
o
n
ti
m
e
ti
n
se
c
o
n
d
s

Number of leaves n in the tree

Figure 4.3: Performance results of Algorithm 4.5 on the previous page in case of param-

eters h = 2n and g = 2n.�e con�dence interval for the attack tree computa-
tion time t is given with 95% con�dence level. Performance tests were done
on 2.33 GHz Pentium Xeon machine.

80

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10 11 12

P
ro
b
a
b
il
it
y
p
o
f
th
e
c
o
rr
e
c
t
re
su
lt

Number of leaves n in the tree

Algorithm accuracy with parameters h = 2n and g = 2n
Algorithm accuracy with parameters h = n and g = n

Figure 4.4: Accuracy estimation of Algorithm 4.5 on page 79 for di�erent values of popu-

lation size andnumber of generations.�e con�dence interval for probability

p is given with the con�dence level 95%.

81

82

Conclusions and Future Research

�is thesis studied two multi-parameter attack tree models.�e �rst model con-

sidered all elementary attacks occurring at the same time, in parallel, and the sec-

ond allowed the attacker to choose the order of the attacks and then try them

sequentially.

Both models proved to be consistent by�eorem 3.1 on page 46 and�eo-

rem 4.1 on page 67, in terms of requirements of Mauw and Oostdijk.�is means

that the outcome values of two equivalent attack trees which describe the same

attack are equal and it also con�rms that the outcome value of the attack tree does

not depend on the particular structure or order of attacks in the tree. �e attack

tree can be represented by the corresponding Boolean formula and usual transfor-

mations can be applied to that Boolean formula and the resulting outcome value

will be unchanged.

It was also shown by�eorem 3.2 on page 47 and�eorem 4.2 on page 69

that both models result at least as great outcome values, as the previous multi-

parameter attack tree model by Buldas et al.. �is means that in our models the
attacker is able make as good and sometimes better decisions regarding which

attacks to choose as in the previous multi-parameter attack tree model. However,

because our computing model is not using the parameter propagation from the

attack tree leaves up to the root node, we are able to �nd a global maximum over

all possible solutions and do not have to do local optimum based decisions in or-

nodes. In certain cases, choosing more than one attack from or-node allows the

attacker to increase the success probability of the chosen attack suite and in this

way increase the expected outcome value.

With the serial model, we allow the attacker to use even more information

for making decisions. As shown in�eorem 4.2 on page 69, the serial model will

yield strictly greater expected outcome than the parallel model if all the elemen-

tary attacks have non-zero costs. Because we are only considering semi-adaptive

83

attackers in the serial model, the models with fully adaptive attackers could result

in even greater expected outcome values.

Unfortunately, considering all possible solutions and then choosing the global

maximum over those means that the complexity of the outcome computation by

Algorithm 3.2 on page 54 andAlgorithm 4.1 on page 68 is exponential to the num-

ber of elementary attacks in the attack tree and this limits the application of those

models in the real life situations, since it would take simply too long to compute

the exact outcome value. It would be useful if we could give at least the approxi-

mate outcome value of the attack tree in a fewminutes.�e genetic Algorithm 3.5

on page 61 and Algorithm 4.5 on page 79 were developed and they proved to be

very successful with our testing data-set, giving the same outcome result as ex-

act algorithms in about 90% of cases.�e running time for the genetic algorithm

is about 5 minutes for attack trees with 100 leaves, which allows the attack tree

analysis to be included in the real life security analysis.

Attack tree analysis and quantitative risk assessment is still a relatively young

�eld and much remains to be discovered. We agree with Verendel who argues in

[78] that quanti�ed security models have not yet been corroborated by predicting

outcomes of experiments in repeated large-sample tests. Real-life tests and the

evaluation of required attack tree parameters is still a weak point in our models as

well and there is certainly more research to be done. To �nd out how to success-

fully evaluate those parameters, collaboration with experts from di�erent �elds,

such as micro-economy, psychology, law enforcement, security analysis, and sys-

tem design and administration, etc., is essential.
Even a�er successfully estimating some of the attack tree parameters, those

estimations, and the computation results based on those estimations, should not

be considered exact point-values. When the estimation error and the con�dence

level of the human expert could be taken into account, the attack tree utility value

is also not the exact point-value. Naturally, decision makers would like to know

the con�dence limits of the results, but the sensitivity of the attack tree computa-

tions to the parameter errors has not yet been studied.�is remains an important

requirement for the application of the attack tree analysis in the real world.

Another interesting research problem is to combine the attack tree analysis

with choosing the cheapest set of security measures for systems.�is would allow

managers to make more vested investment decisions.

Even with those not yet answered questions we suggest that the attack tree

models presented in this thesis are useful additions to the attack tree analysis.

84

Index

attack

cost, 36

elementary attack, 23

expected penalty, 31, 37

success probability, 36

attack graph, 32

attack suite, 35, 45

ordered, 66

outcome, 66

success probability, 54

attack tree

formal de�nition, 43

multi-parameter model, 36

outcome, 45

parallel model, 43

parameters, 44

serial model, 65

transformations, 41

attack tree analysis, 22

disjunctive normal form, 28

DPLL algorithm, 49

fault, 19

immediate cause, 20

necessary cause, 20

su�cient cause, 20

fault tree, 11

fault tree analysis, 11, 19, 29

frequence (probability), 10

game theory, 32

genetic algorithm, 58, 73

crossing, 59, 75

initial population, 59, 75

intrusion scenario, see attack suite

minimal cut set, 28, 30

misuse cases, 18

monotonicity, 33, 52, 67, 69

propositional directed acyclic graph

(pdag), 43

protection tree, 33

reduction (complexity), 10

security analysis

hierarchical, 22

security modeling, 17

security modeling tool

AttackTree+, 28

PTA Professional Edition, 28

SeaMonster, 18

SecurITree, 28

threat logic tree, 22

Traveling Salesman Problem, 74

vulnerability inspection diagram, 18

85

86

References

[1] A. Agresti and B. Coull. Approximate is better than “exact” for interval es-

timation of binomial proportions. �e American Statistician, 52(2):119–126,
1998.

[2] A. Aijaz, B. Bochow, F. Dötzer, A. Festag, M. Gerlach, R. Kroh, and T. Lein-

müller. Attacks on inter vehicle communication systems – an analysis. In

Proceedings of the 3rd International Workshop on Intelligent Transportation,
pages 189–194, 2006.

[3] P. Ammann, D. Wijesekera, and S. Kaushik. Scalable, graph-based network

vulnerability analysis. In Proceedings of the 9th ACM Conference on Com-
puter and Communications Security, pages 217–224. ACM Press, 2002.

[4] A. Andrusenko, A. Jürgenson, and J.Willemson. Serial model for attack tree

computations. KSII Transactions on Internet and Information Systems, 2010.
(to appear).

[5] E. Baadshaug, G. Erdogan, and P. Meland. Security modeling and tool sup-

port advantages. In ARES ’10: International Conference on Availability, Reli-
ability, and Security, pages 537–542, 2010.

[6] G. S. Becker. Crime and punishment: An economic approach. Journal of
Political Economy, 76:169, 1968.

[7] S. Bistarelli, M. Dall’Aglio, and P. Peretti. Strategic games on defense trees. In

T. Dimitrakos, F. Martinelli, P. Y. A. Ryan, and S. A. Schneider, editors, For-
mal Aspects in Security and Trust (FAST 2006), volume 4691 of lncs, pages
1–15. Springer-Verlag, 2006.

87

[8] R. Browne. c4i defensive infrastructure for survivability againstmulti-mode

attacks. In Proceedings of 21st Century Military Communications Conference
(MILCOM 2000), volume 1, pages 417–424, 2000.

[9] A. Buldas and A. Jürgenson. Does secure time-stamping imply collision-

free hash functions? In W. Susilo, J. K. Liu, and Y. Mu, editors, Proceedings
of International Conference on Provable Security (ProvSec 2007), volume 4784
of lncs, pages 138–150. Springer-Verlag, 2007.

[10] A. Buldas and T. Mägi. Practical security analysis of e-voting systems. In

A. Miyaji, H. Kikuchi, and K. Rannenberg, editors, Advances in Information
and Computer Security: Second International Workshop on Security (IWSEC
2007), volume 4752 of lncs, pages 320–335. Springer-Verlag, 2007.

[11] A. Buldas, P. Laud, J. Priisalu, M. Saarepera, and J. Willemson. Rational

choice of security measures via multi-parameter attack trees. In First Inter-
national Workshop on Critical Information Infrastructures Security (CRITIS
2006), volume 4347 of lncs, pages 235–248. Springer-Verlag, 2006.

[12] A. Buldas, A. Jürgenson, and M. Niitsoo. E�ciency bounds for adversary

constructions in black-box reductions. In ACISP ’09: Proceedings of the 14th
Australasian Conference on Information Security and Privacy, pages 264–275.
Springer-Verlag, 2009.

[13] E. Byres, M. Franz, and D. Miller. �e use of attack trees in assessing vul-

nerabilities in scada systems. In International Infrastructure Survivability
Workshop (IISW’04), IEEE, 2004.

[14] J. Collet. Some remarks on rare-event approximation. IEEE Transactions on
Reliability, 45(1):106–108, 1996.

[15] S. Convery, D. Cook, and M. Franz. An attack tree for the Border Gateway

Protocol, 2004. Available at http://www.ietf.org/proceedings/04aug/
I-D/draft-ietf-rpsec-bgpattack-00.txt.

[16] M. Dacier. Towards Quantitative Evaluation of Computer Security. PhD
thesis, Institut National Polytechnique de Toulouse, 1994.

[17] K. Daley, R. Larson, and J. Dawkins. A structural framework for modeling

multi-stage network attacks. In Proceedings of International Conference on
Parallel Processing Workshops, pages 5–10, 2002.

88

http://www.ietf.org/proceedings/04aug/I-D/draft-ietf-rpsec-bgpattack-00.txt
http://www.ietf.org/proceedings/04aug/I-D/draft-ietf-rpsec-bgpattack-00.txt

[18] G. C. Dalton, K. S. Edge, R. F. Mills, and R. A. Raines. Analysing security

risks in computer andRadio Frequency Identi�cation (rfid) networks using

attack and protection trees. International Journal of Security and Networks,
5(2/3):87–95, 2010.

[19] R. Dantu, K. Loper, and P. Kolan. Risk management using behavior based

attack graphs. In ITCC ’04: Proceedings of the International Conference on
Information Technology: Coding and Computing (ITCC’04), volume 1, page
445. Ieee Computer Society, 2004.

[20] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold Com-
pany, �rst edition, 1991.

[21] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem

proving. Communications of the ACM, 5(7):394–397, 1962.

[22] M. H. Diallo, J. Romero-mariona, S. E. Sim, T. A. Alspaugh, and D. J.

Richardson. A comparative evaluation of three approaches to specifying

security requirements. In Proceedings of the Twel�h Working Conference on
Requirements Engineering: Foundation for So�ware Quality, 2006.

[23] K. Edge, G. Dalton, R. Raines, and R. Mills. Using attack and protection

trees to analyze threats and defenses to homeland security. InMilitary Com-
munications Conference (MILCOM 2006), pages 1–7. IeeeComputer Society,
2006.

[24] K. Edge, R. Raines, R. Baldwin, and M. Grimaila. Analyzing security mea-

sures for mobile ad hoc networks using attack and protection trees. In 2nd
International Conference on i-Warfare and Security, pages 47–56, 2007.

[25] K. Edge, R. Raines, M. Grimaila, R. Baldwin, R. Bennington, and C. Reuter.

�e use of attack and protection trees to analyze security for an online bank-

ing system. In Proceedings of the 40th Annual Hawaii International Confer-
ence on System Sciences (HICSS 2007), page 144b. Ieee Computer Society,
2007.

[26] I. N. Fovino and M. Masera.�rough the description of attacks: A multidi-

mensional view. In Computer Safety, Reliability, and Security, volume 4166
of lncs, pages 15–28. Springer-Verlag, 2006.

89

[27] I. N. Fovino and M. Masera. Parameters for quantitative security assess-

ment of complex systems. In Proceedings of the 37th Annual IEEE/IFIP In-
ternational Conference onDependable Systems andNetworks. IeeeComputer
Society, 2007.

[28] I. N. Fovino, M. Masera, and A. D. Cian. Integrating cyber attacks within

fault trees. Reliability Engineering and System Safety, 94(9):1394–1402, 2009.

[29] M. Frigault, L.Wang, A. Singhal, and S. Jajodia. Measuring network security

using Dynamic Bayesian Network. In QoP ’08: Proceedings of the 4th ACM
workshop on Quality of Protection, pages 23–30. acm, 2008.

[30] R. Frigg and S. Hartmann. Models in science. In E. N. Zalta, editor, �e
Stanford Encyclopedia of Philosophy. Summer 2009 edition, 2009.

[31] C. Fung, Y.-L. Chen, X. Wang, J. Lee, R. Tarquini, M. Anderson, and

R. Linger. Survivability analysis of distributed systems using attack tree

methodology. In Military Communications Conference (MILCOM 2005),
volume 1, pages 583–589. Ieee Computer Society, 2005.

[32] V. Gandotra, A. Singhal, and P. Bedi. Identifying security requirements hy-

brid technique. In ICSEA ’09: Proceedings of the Fourth International Con-
ference on So�ware Engineering Advances, pages 407–412. Ieee Computer
Society, 2009.

[33] M. Higuero, J. Unzilla, P. Saiz, E. Jacob, M. Aguado, and I. Goirizelaia. A

practical tool for analysis of security in systems for distribution of digital

contents based on ”attack trees”. In IEEE International Symposium on Broad-
band Multimedia Systems and Broadcasting (BMSB ’09), pages 1–6, 2009.

[34] M. V. Higuero, J. Unzilla, E. Jacob, P. Sáiz, and D. Luengo. Application of

”attack trees” technique to copyright protection protocols using watermark-

ing and de�nition of a new transactions protocol SecDP (Secure Distribu-

tion Protocol). In V. Roca and F. Rousseau, editors, Multimedia Interactive
Protocols and Systems, volume 3311 of lncs, pages 264–275. Springer-Verlag,
2004.

[35] K. Ingols,M. Chu, R. Lippmann, S.Webster, and S. Boyer. Modelingmodern

network attacks and countermeasures using attack graphs. In ACSAC ’09:

90

Proceedings of the 2009 Annual Computer Security Applications Conference,
pages 117–126. Ieee Computer Society, 2009.

[36] IEC-61025. Fault Tree Analysis, edition 2.0. International Electrotechnical
Commission, 2006.

[37] K.-W. L. Jeannette and J. Wing. Game strategies in network security. In

Proceedings of the Workshop on Foundations of Computer Security, pages 1–
2, 2002.

[38] A. Jürgenson and J.Willemson. Processingmulti-parameter attacktrees with

estimated parameter values. In A. Miyaji, H. Kikuchi, and K. Rannenberg,

editors, Advances in Information and Computer Security: Second Interna-
tionalWorkshop on Security (IWSEC 2007), volume 4752 of lncs, pages 308–
319. Springer-Verlag, 2007.

[39] A. Jürgenson and J. Willemson. Computing exact outcomes of multi-

parameter attack trees. In R. Meersman and Z. Tari, editors, On the Move to
Meaningful Internet Systems (OTM 2008), volume 5332 of lncs, pages 1036–
1051. Springer-Verlag, 2008.

[40] A. Jürgenson and J. Willemson. Ründepuud: pooladaptiivne mudel ja

ligikaudsed arvutused (in Estonian). Technical Report T-4-4, Cybernetica,

Institute of Information Security, 2009.

[41] A. Jürgenson and J. Willemson. Serial model for attack tree computations.

In D. Lee and S. Hong, editors, Revised Papers from 12th International Con-
ference on Information Security and Cryptology (ICISC 2009), volume 5984
of lncs, pages 118–128. Springer-Verlag, 2010.

[42] A. Jürgenson and J.Willemson. On fast and approximate attack tree compu-

tations. In J. Kwak, R. H. Deng, Y. Won, and G. Wang, editors, Information
Security Practice and Experience, 6th International Conference (ISPEC 2010),
volume 6047 of lncs, pages 56–66. Springer-Verlag, 2010.

[43] P. Khand. System level security modeling using attack trees. In 2nd Inter-
national Conference on Computer, Control and Communication (IC4 2009),
pages 1–6, 2009.

91

[44] P. A. Khand. Attack tree based cyber security analysis of nuclear digital

instrumentation and control systems. �e Nucleus, 46(4):415–428, 2009.

[45] D. E. Knuth. �e Art of Computer Programming, Vol. 2: Seminumerical Al-
gorithms. Addison-Wesley, third edition, 1997.

[46] I. Kotenko and M. Stepashkin. Attack graph based evaluation of network

security. InCommunications andMultimedia Security, volume 4237 of lncs,
pages 216–227. Springer-Verlag, 2006.

[47] D. Kozen. �e design and analysis of algorithms. Springer-Verlag, 1992.

[48] K. Kutzkov. New upper bound for the #3-sat problem. Information Process-
ing Letters, 105(1):1–5, 2007.

[49] P. Larrañaga, C.M.H.Kuijpers, R.Murga, I. Inza, and S.Dizdarevic. Genetic

algorithms for the travelling salesman problem: A review of representations

and operators. Arti�cial Intelligence Review, 13:129–170, 1999.

[50] T. T. C. Lawrence D. Brown and A. DasGupta. Interval estimation for a

binomial proportion. Statistical Science, 16(2):101–133, 2001.

[51] X. Lin, P. Zavarsky, R. Ruhl, and D. Lindskog. �reat modeling for csrf at-

tacks. In CSE ’09: Proceedings of the 2009 International Conference on Com-
putational Science and Engineering, pages 486–491. Ieee Computer Society,
2009.

[52] Y. Luo, F. Szidarovszky, Y. Al-Nashif, and S. Hariri. A game theory based

risk and impact analysismethod for intrusion defense systems. InACS/IEEE
International Conference on Computer Systems and Applications, pages 975–
982. Ieee Computer Society, 2009.

[53] S. Mauw and M. Oostdijk. Foundations of attack trees. In D. Won and

S. Kim, editors, International Conference on Information Security and Cryp-
tology (ICISC 2005), volume 3935 of lncs, pages 186–198. Springer-Verlag,
2005.

[54] A.Miede, N. Nedyalkov, C. Gottron, A. Konig, N. Repp, and R. Steinmetz. A

generic metamodel for it security attack modeling for distributed systems.

In ARES ’10: International Conference on Availability, Reliability, and Secu-
rity, pages 430–437, 2010.

92

[55] A. Morais, E. Martins, A. Cavalli, and W. Jimenez. Security protocol test-

ing using attack trees. In Proceedings of the 2009 International Conference
on Computational Science and Engineering, volume 2, pages 690–697. Ieee
Computer Society, 2009.

[56] D.Nicol,W. Sanders, andK. Trivedi. Model-based evaluation: fromdepend-

ability to security. IEEE Transactions on Dependable and Secure Computing,
1(1):48–65, 2004.

[57] A. L. Opdahl and G. Sindre. Experimental comparison of attack trees and

misuse cases for security threat identi�cation. Information and So�ware
Technology, 51(5):916–932, 2009.

[58] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup. Aweakest-adversary secu-

rity metric for network con�guration security analysis. InQoP ’06: Proceed-
ings of the 2nd ACM workshop on Quality of protection, pages 31–38. acm,
2006.

[59] C. Phillips and L. P. Swiler. A graph-based system for network-vulnerability

analysis. In NSPW ’98: Proceedings of the 1998 workshop on New security
paradigms, pages 71–79. acm, 1998.

[60] P. Ralston, J. Graham, and J. Hieb. Cyber security risk assessment for scada

and dcs networks. ISA Transactions, 46(4):583–594, 2007.

[61] I. Ray and N. Poolsapassit. Using attack trees to identify malicious attacks

fromauthorized insiders. In S.D.C. diVimercati, P. F. Syverson, andD.Goll-

mann, editors, 10th European Symposium on Research in Computer Security,
volume 3679 of lncs, pages 231–246. Springer-Verlag, 2005.

[62] K. Reddy, H. S. Venter,M.Olivier, and I. Currie. Towards privacy taxonomy-

based attack tree analysis for the protection of consumer information pri-

vacy. In Proceedings of the 2008 Sixth Annual Conference on Privacy, Security
and Trust, pages 56–64. Ieee Computer Society, 2008.

[63] V. Saini, Q. Duan, and V. Paruchuri. �reat modeling using attack trees.

Journal of Computing Sciences in Colleges, 23(4):124–131, 2008.

[64] K. Sallhammar. Stochastic models for combined security and dependability
evaluation. PhD thesis, Norwegian University of Science and Technology,
2007.

93

[65] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner. Toward a secure system

engineering methodology. In NSPW ’98: Proceedings of the 1998 Workshop
on New Security Paradigms, pages 2–10. acm, 1998.

[66] S. E. Schechter and M. D. Smith. How much security is enough to stop a

thief? the economics of outsider the� via computer systems and networks.

In in Financial Cryptography, pages 122–137. Springer-Verlag, 2003.

[67] B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 24
(12):21–29, 1999.

[68] B. Schneier. Secrets & Lies. Digital Security in a Networked World. John
Wiley & Sons, 2000.

[69] M. Schumacher. Security Engineering with Patterns: Origins, �eoretical
Models, and New Applications, volume 2754 of lncs. Springer-Verlag, 2003.

[70] M. Schumacher and U. Roedig. Security engineering with patterns. In PLoP
2001: 8th Conference on Pattern Languages of Programs, lncs. Springer-
Verlag, 2001.

[71] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated

generation and analysis of attack graphs. In SP ’02: Proceedings of the 2002
IEEE Symposium on Security and Privacy, page 273. Ieee Computer Society,
2002.

[72] J. Ste�an and M. Schumacher. Collaborative attack modeling. In SAC ’02:
Proceedings of the 2002 ACM symposium on Applied Computing, pages 253–
259. acm, 2002.

[73] C.-W. Ten, C.-C. Liu, and M. Govindarasu. Vulnerability assessment of cy-

bersecurity for scada systems using attack trees. In Power Engineering So-
ciety General Meeting, 2007. IEEE, pages 1–8, June 2007.

[74] T. Tidwell, R. Larson, K. Fitch, and J. Hale. Modeling internet attacks. In

Proceedings of the IEEE Workshop on Information Assurance and Security,
pages 54–59, 2001.

[75] K. Trivedi, D. S. Kim, A. Roy, and D. Medhi. Dependability and security

models. In 7th InternationalWorkshop on Design of Reliable Communication
Networks (DRCN 2009), pages 11–20, 2009.

94

[76] I. Tøndel, J. Jensen, and L. Rstad. Combining misuse cases with attack trees

and security activitymodels. InARES ’10: International Conference on Avail-
ability, Reliability, and Security, pages 438–445, 2010.

[77] MIL-STD-1785. System Security Engineering ProgramManagement Require-
ments. U.S. Department of Defense, 1989.

[78] V. Verendel. Quanti�ed security is a weak hypothesis: a critical survey of

results and assumptions. In NSPW ’09: Proceedings of the 2009 workshop on
New security paradigms workshop, pages 37–50. acm, 2009.

[79] W. Veseley, F. Goldberg, N. Roberts, and D. Haasl. Fault tree hand-

book. Technical Report NUREG-0492, U.S. Nuclear Regulatory Commis-

sion, 1981.

[80] W. Veseley, M. Stamatelatos, J. Dugan, J. Fragola, J. Minarick, and J. Rails-

back. Fault Tree Handbook with Aerospace Applications. NASA, O�ce of
Safety and Mission Assurance, 2002.

[81] M. Wachter and R. Haenni. Propositional DAGs: A new graph-based lan-

guage for representing Boolean functions. In P. Doherty, J. Mylopoulos, and

C. A.Welty, editors, Proceedings of Tenth International Conference on Princi-
ples of Knowledge Representation and Reasoning, pages 277–285. AAAI Press,
2006.

[82] A. Wald and J. Wolfowitz. Con�dence limits for continuous distribution

functions. �e Annals of Mathematical Statistics, 10(2):105–118, 1939.

[83] L. Wang, S. Noel, and S. Jajodia. Minimum-cost network hardening using

attack graphs. Computer Communications, 29(18):3812–3824, 2006.

[84] L. Wang, C. Yao, A. Singhal, and S. Jajodia. Interactive analysis of attack

graphs using relational queries. In E. Damiani and P. Liu, editors, 20th An-
nual IFIP WG 11.3 Working Conference on Data and Applications Security,
volume 4127 of lncs, pages 119–132. Springer-Verlag, 2006.

[85] L.Wang, T. Islam, T. Long, A. Singhal, and S. Jajodia. An attack graph-based

probabilistic security metric. In Proceeedings of the 22nd annual IFIP WG
11.3 working conference on Data and Applications Security, pages 283–296.
Springer-Verlag, 2008.

95

[86] L. Wang, C. Yao, A. Singhal, and S. Jajodia. Implementing interactive analy-

sis of attack graphs using relational databases. Journal of Computer Security,
16(4):419–437, 2008.

[87] J. D.Weiss. A system security engineering process. In Proceedings of the 14th
National Computer Security Conference, pages 572–581, 1991.

[88] R. R. Yager. Owa trees and their role in security modeling using attack trees.

Information Sciences, 176(20):2933–2959, 2006.

96

Abstract

Measuring information security is hard.�is is because it is hard to estimate how

likely it is for the complicated, multi-stage attacks to succeed and howmuch extra

security those deployedmeasures really give you. Because you do not have ages of

historical data and details about incidents are regularly not shared, you cannot use

frequentist approach to predict the annual expected loss. Engineers have solved

the similar problem of estimating the reliability of an individual system with fault

trees and the same principles have been applied to information security as well

under the name of attack trees. In the attack tree analysis you specify the attacker’s

goal as the root of the tree and then progressively try to split the attacks with

and-nodes and or-nodes until you reach a simple enough level called elementary

attacks.

Attack trees have been used to analyze real-life situations andmany attack tree

models have been proposed for that. However, only a few of the models allow us

to do a quanti�ed analysis of the security and compute the attacker’s utility and

most of them do not provide consistent results.

�is thesis presented twomulti-parameter attack tree models, that allow us to

compute the attacker’s expected utility of attack from the parameters associated

with attack tree leaves.�e parameters used to describe those leaves are the suc-

cess probability of the attack, expected cost of the attack and associated penalties

and also the gains of the whole attack tree. �e proposed models are consistent,

which means that when given two equivalent attack trees that describe the same

attack, the computed utility value of both trees is equal.�e �rst model, the par-

allel attack tree model, considers all the chosen attacks happening in parallel.�e

second model, the serial attack tree model, allows the attacker to choose the tem-

poral order of the attacks and then adaptively decide if it makes sense to try the

next attack or not.�e serial attack tree model follows the real life situation more

closely and also provides the greatest expected utility value.

97

�e outcome computation in both models works by considering all satisfy-

ing attack suites, which drives the computation complexity exponential and pro-

hibits the application of those models in the real life analysis with attack trees

having more than 20-30 leaves. To work around those limitations, the thesis ex-

perimented with genetic algorithms. �e performance and accuracy tests reveal

that genetic algorithms are very usable and gave the correct outcome value in

about 90% of the cases. �ey can process attack trees of up to 100 leaves, within

6 minutes.

98

Resümee (Abstract in Estonian)

Infoturbe mõõtmine on keeruline. Keeruline seetõttu, et mitme-astmeliste rün-

nete õnnestumise tõenäosust on raske hinnata ning tüüpiliselt ei ole teada, kui

hästi rakendatud turvameetmed tegelikult turvalisust tagavad. Enamasti ei jaga

rünnete ohvrid juba toimunud infoturbeintsidentide kohta andmeid ning seetõt-

tu ei saa kasutada ka ajaloolistele andmetele ning sündmuste sagedusele tuginevat

riskianalüüsi, et leida näiteks aasta kohta ootekahju.

Insenerid, kes peavad lahendama sarnast probleemi, kasutavad süsteemide

töökindluse hindamiseks tõrkepuude analüüsi ning selgub, et samu printsiipe

saab rakendada ka infoturbes. Vastavatmetoodikat nimetatakse ründepuude ana-

lüüsiks. Ründepuude koostamisel analüüsitakse ründaja eesmärki ning jagatakse

see eesmärk järk-järgult lihtsamateks rünneteks and- ja or-tippudega. and-tipu

õnnestumiseks peavad õnnestuma kõik selle tipu alamtipud ning or-tipu õnnes-

tumiseks peab õnnestuma vähemalt üks alamtipp. Viimasel tasemel olevaid puu

lehti, mis on edasiseks kvantitatiivseks analüüsiks juba piisavalt lihtsad, nimeta-

takse elementaarrünneteks ning sedaviisi koostatakse keerukama ründe hierar-

hiline kirjeldus.

Peale ründepuude analüüsi loomist 1991. aastal on seda kasutatud paljude

reaalsete situatsioonide analüüsimiseks ning selleks on pakutud mitmeid täpsus-

tatudmudeleid.Mõned nendest sisaldavad ka arvutusreegleid infoturbe kvantita-

tiivseks mõõtmiseks ning võimaldavad leida ründaja ootetulu, kuid enamik nen-

dest mudelitest ei ole kooskõlalised ning nende tulemused ei ole usaldusväärsed.

Doktoritöös esitatakse kahte uut autori poolt arendatud ründepuu arvutus-

mudelit, mis võimaldavad arvutada ründaja ootetulu, arvestades ründepuu leh-

tedega seotud sisendparameetreid. Parameetriteks kasutatakse elementaarründe

õnnestumise tõenäosust, elementaarründe läbiviimise ootekulu ning kogu ründe-

puu õnnestumisel saadavat ootetulu. Kirjeldatud mudelid on kooskõlalised, mis

tähendab, et ekvivalentsete ründepuude puhul,mis kirjeldavad semantiliselt sama

99

rünnet, arvutatakse puudele võrdne ründaja ootetulu.

Esimene mudel arvestab, et ründaja �kseerib enne ründama asumist kasuta-

tavate elementaarrünnete komplekti ning kõik ründed teostatakse paralleelselt.

Teine mudel käsitleb lisaks ka rünnete ajalist järjestust ning lubab ründajal teha

rünnaku käigus otsuseid, kas proovida järgmisena järjekorras olevat rünnet, või

kui selle õnnestumine ei mõjuta tema eesmärgi saavutamist, siis selle vahele jätta.

Jadamudel modelleerib reaalsete ründajate käitumist täpsemini kui paralleelmu-

del ning juhul, kui kõigi elementaarrünnete kulu on positiivne, siis on jadamudeli

abil arvutatud ründaja ootetulu suurem kui paralleelmudelis.

Mõlema mudeli arvutusreeglid kasutavad suurima ootetulu leidmiseks glo-

baalset otsingut üle kõigi ründaja eesmärki realiseerivate ründekomplektide, mis-

tõttu nende arvutuskeerukus on eksponentsiaalne ning ootetulu arvutamine on

väga aeganõudev. 30 lehega ründepuude töötlemine toimub paralleelmudelis

kümnekonna minutiga, kuid näiteks jadamudeli järgi ootetulu arvutamine on

praktiliselt võimalik vaid kuni 13 lehega puude korral.

Igapäevastes turvaanalüüsides koostatud ründepuude suurus ulatub sadade

lehtedeni ning selliste puude töötlemine ei ole täppisalgoritmidega enam võima-

lik. Doktoritöös katsetati ligilähedaste vastuste saamiseks geneetilisi algoritme.

Selgus, et ligikaudu 90% kuni 95% juhtudel leiti geneetilise algoritmiga sama oote-

tulu väärtus kui täppisalgoritmiga ning sedaviisi õnnestub ligikaudu 6 minutiga

töödelda ka ründepuid, milles on kuni 100 lehte.

Doktoritöös toodud ründepuude mudeleid saab seega rakendada praktilises

turvaanalüüsis. Juhul, kui leitud ründaja ootetulu on positiivne, siis saame näida-

ta, et ründajal on kasulik infosüsteemi rünnata ning seega on infosüsteemi tur-

valisus ebapiisav. Kui ründaja ootetulu on negatiivne, siis on võimalik, et süsteem

on turvaline majanduslikult kaalutlevate ründajate vastu.

Vajalike turvameetrikate väärtuste usaldusväärne hindamine on üks olulisi

valdkondi, milles tuleb uurimistööd jätkata. Vastavate lahenduste väljatöötamisel

tuleb kindlasti teha koostööd muude eluvaldkondadega, nagu näiteks majandus,

psühholoogia ja kriminalistika. Samuti on vajalik luua ootetulu veaarvutuse mu-

delid ning leida, millistes piirides võib parameetrite hindamisel eksida. Viimaks,

ründepuude katsetamine reaalses elus ning korduvate eksperimentide tulemuste

ennustamine võimaldaks kinnitada mudelite paikapidamist.

100

Appendix A

Curriculum Vitæ

1. Personal data

Name: Aivo Jürgenson

Date of Birth: 15.07.1978

Place of Birth: Viljandi, Estonia

Citizenship: Estonia

2. Contact information

Postal address: P. Kerese 26-2, Tallinn, Estonia

Phone: +372 50 77547

E-mail: aivo.jurgenson@eesti.ee

3. Education

Educational institution Graduation year Education

Tallinn University of Technology 2004 BSc of informatics

Tallinn University of Technology 2006 MSc of informatics

4. Language competence

Estonian language: high level (mother tongue)

English language: high level

101

aivo.jurgenson@eesti.ee

5. Special courses

Year Course

2000 Middle-level management course

2001, 2003 nato infosec o�cer courses

2006 itil base course

2007 Microso�, Defense in Depth: Securing Windows 2003 Server

2009 togaf 8 Enterprise Architect certi�cate

6. Professional employment

Period Institution Position

Jan 1996 – July 1996 C. R. Jakobson’s Gym-

nasium

computer class adminis-

trator

Nov 1996 – Feb 2000 AS Matti programmer

Sep 1997 – July 2000 Ministry of Foreign

A�airs of Estonia

IT Department, commu-

nication technician

July 2000 – July 2003 Ministry of Foreign

A�airs of Estonia

IT Department, data

communication and in-

formation security bureau

manager

July 2003 – Oct 2004 Ministry of Foreign

A�airs of Estonia

IT Department, advisor

Oct 2004 – Nov 2005 Ministry of Foreign

A�airs of Estonia

Diplomatic Security De-

partment, information se-

curity manager

Nov 2005 – Jan 2010 Elion Enterprises Ltd information security

manager

Jan 2010 – . . . Cybernetica AS security engineer

102

7. Scientific work

Journal articles:

1. A. Andrusenko, A. Jürgenson, and J. Willemson. Serial model for at-

tack tree computations. KSII Transactions on Internet and Information
Systems, 2010. (to appear).

Conference proceedings:

1. A. Jürgenson and J. Willemson. Processing multi-parameter attack-

trees with estimated parameter values. In A. Miyaji, H. Kikuchi, and

K. Rannenberg, editors, Advances in Information and Computer Se-
curity: Second International Workshop on Security (IWSEC 2007), vol-
ume 4752 of lncs, pages 308–319. Springer-Verlag, 2007.

2. A. Buldas and A. Jürgenson. Does secure time-stamping imply

collision-free hash functions? In W. Susilo, J. K. Liu, and Y. Mu,

editors, Proceedings of International Conference on Provable Security
(ProvSec 2007), volume 4784 of lncs, pages 138–150. Springer-Verlag,
2007.

3. A. Jürgenson and J. Willemson. Computing exact outcomes of multi-

parameter attack trees. In R. Meersman and Z. Tari, editors, On the
Move to Meaningful Internet Systems (OTM 2008), volume 5332 of
lncs, pages 1036–1051. Springer-Verlag, 2008.

4. A. Buldas, A. Jürgenson, andM. Niitsoo. E�ciency bounds for adver-

sary constructions in black-box reductions. InACISP ’09: Proceedings
of the 14th Australasian Conference on Information Security and Pri-
vacy, pages 264–275. Springer-Verlag, 2009.

5. A. Jürgenson and J. Willemson. Serial model for attack tree compu-

tations. In D. Lee and S. Hong, editors, Revised Papers from 12th In-
ternational Conference on Information Security and Cryptology (ICISC
2009), volume 5984 of lncs, pages 118–128. Springer-Verlag, 2010.

6. A. Jürgenson and J. Willemson. On fast and approximate attack tree

computations. In J. Kwak, R. H. Deng, Y. Won, and G. Wang, editors,

Information Security Practice and Experience, 6th International Con-
ference (ISPEC 2010), volume 6047 of lncs, pages 56–66. Springer-
Verlag, 2010.

103

Technical reports:

1. A. Jürgenson and J. Willemson. Ründepuud: pooladaptiivne mudel

ja ligikaudsed arvutused (in Estonian). Technical Report T-4-4, Cy-

bernetica, Institute of Information Security, 2009.

8. Defended theses

1. BSc thesis (2004): “Security policy of an organization: Case study of

the MFA of Estonia”

2. MSc thesis (2006): “Risk analysis method based on attack trees with

imprecise inputs”

9. Current research topics

Economic risk assessmentmodels, attack trees, and information security in

general.

104

Appendix B

Elulookirjeldus (CV in Estonian)

1. Isikuandmed

Nimi: Aivo Jürgenson

Sünniaeg: 15.07.1978

Sünnikoht: Viljandi, Eesti

Kodakondsus: Eesti

2. Sideandmed

Postiaadress: P. Kerese 26-2, Tallinn, Eesti

Telefon: +372 50 77547

E-post: aivo.jurgenson@eesti.ee

3. Hariduskäik

Õppeasutus Lõpetamise aeg Haridus

Tallinna Tehnikaülikool 2004 informaatika, BSc

Tallinna Tehnikaülikool 2006 informaatika, MSc

4. Keelteoskus

Eesti keel: kõrgtase (emakeel)

Inglise keel: kõrgtase

105

aivo.jurgenson@eesti.ee

5. Täiendusõpe

Aasta Kursus

2000 Keskastme juhi kursus

2001, 2003 nato infosec ametniku kursused

2006 itil baaskursus

2007 Microso�, Defense in Depth: Securing Windows 2003 Server

2009 togaf 8 Enterprise Architect serti�kaat

6. Teenistuskäik

Periood Asutus Ametikoht

jaan. 1996 – juuli 1996 C. R. Jakobsoni güm-

naasium

arvutiklassi haldur

nov. 1996 – veeb. 2000 AS Matti programmeerija

sept. 1997 – juuli 2000 Välisministeerium IT osakond, sidetehnik

juuli 2000 – juuli 2003 Välisministeerium IT osakond, andmeside-

ja infoturbebüroo juhataja

juuli 2003 – okt. 2004 Välisministeerium IT osakond, nõunik

okt. 2004 – nov. 2005 Välisministeerium Diplomaatilise julgeoleku

osakond, infoturbejuht

nov. 2005 – jaan. 2010 Elion Ettevõtted AS infoturbejuht

jaan. 2010 – . . . Cybernetica AS infoturbeinsener

7. Teadustegevus

Ajakirjaartiklid:

1. A. Andrusenko, A. Jürgenson, and J. Willemson. Serial model for at-

tack tree computations. KSII Transactions on Internet and Information
Systems, 2010. (to appear).

106

Konverentsid:

1. A. Jürgenson and J. Willemson. Processing multi-parameter attack-

trees with estimated parameter values. In A. Miyaji, H. Kikuchi, and

K. Rannenberg, editors, Advances in Information and Computer Se-
curity: Second International Workshop on Security (IWSEC 2007), vol-
ume 4752 of lncs, pages 308–319. Springer-Verlag, 2007.

2. A. Buldas and A. Jürgenson. Does secure time-stamping imply

collision-free hash functions? In W. Susilo, J. K. Liu, and Y. Mu,

editors, Proceedings of International Conference on Provable Security
(ProvSec 2007), volume 4784 of lncs, pages 138–150. Springer-Verlag,
2007.

3. A. Jürgenson and J. Willemson. Computing exact outcomes of multi-

parameter attack trees. In R. Meersman and Z. Tari, editors, On the
Move to Meaningful Internet Systems (OTM 2008), volume 5332 of
lncs, pages 1036–1051. Springer-Verlag, 2008.

4. A. Buldas, A. Jürgenson, andM. Niitsoo. E�ciency bounds for adver-

sary constructions in black-box reductions. InACISP ’09: Proceedings
of the 14th Australasian Conference on Information Security and Pri-
vacy, pages 264–275. Springer-Verlag, 2009.

5. A. Jürgenson and J. Willemson. Serial model for attack tree compu-

tations. In D. Lee and S. Hong, editors, Revised Papers from 12th In-
ternational Conference on Information Security and Cryptology (ICISC
2009), volume 5984 of lncs, pages 118–128. Springer-Verlag, 2010.

6. A. Jürgenson and J. Willemson. On fast and approximate attack tree

computations. In J. Kwak, R. H. Deng, Y. Won, and G. Wang, editors,

Information Security Practice and Experience, 6th International Con-
ference (ISPEC 2010), volume 6047 of lncs, pages 56–66. Springer-
Verlag, 2010.

107

Tehnilised aruanded:

1. A. Jürgenson and J. Willemson. Ründepuud: pooladaptiivne mudel

ja ligikaudsed arvutused (in Estonian). Technical Report T-4-4, Cy-

bernetica, Institute of Information Security, 2009.

8. Kaitstud lõputööd

1. Bakalaureusetöö (2004): “Asutuse turvapoliitika koostamine Välis-

ministeeriumi näitel”

2. Magistritöö (2006): “Ründepuudel põhinev riskianalüüsi meetod

ebatäpsete sisendandmetega”

9. Teadustöö põhisuunad

Majandusliku riskianalüüsi mudelid, ründepuud ning üldine infoturve.

108

Appendix C

List of Publications

�ree author’s publications, which this thesis is based on, are included in the fol-

lowing pages:

Publication Pages

A. Jürgenson and J. Willemson. Computing exact outcomes of

multi-parameter attack trees. InR.Meersman andZ. Tari, editors,

On theMove toMeaningful Internet Systems (OTM 2008), volume
5332 of lncs, pages 1036–1051. Springer-Verlag, 2008

111 – 129

A. Jürgenson and J. Willemson. Serial model for attack tree

computations. In D. Lee and S. Hong, editors, Revised Papers
from 12th International Conference on Information Security and
Cryptology (ICISC 2009), volume 5984 of lncs, pages 118–128.
Springer-Verlag, 2010

129 – 142

A. Jürgenson and J. Willemson. On fast and approximate attack

tree computations. In J. Kwak, R. H. Deng, Y.Won, and G.Wang,

editors, Information Security Practice and Experience, 6th Inter-
national Conference (ISPEC 2010), volume 6047 of lncs, pages
56–66. Springer-Verlag, 2010

143 – 155

109

110

Computing Exact Outcomes of Multi-Parameter
Attack Trees

Aivo Jürgenson1,2 and Jan Willemson3

1 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia.
aivo.jurgenson@eesti.ee

2 Elion Enterprises Ltd, Endla 16, 15033 Tallinn, Estonia.
3 Cybernetica, Aleksandri 8a, Tartu, Estonia. jan.willemson@gmail.com

Abstract In this paper we introduce a set of computation rules to de-
termine the attacker’s exact expected outcome based on a multi-parameter
attack tree. We compare these rules to a previously proposed computa-
tional semantics by Buldas et al. and prove that our new semantics always
provides at least the same outcome. A serious drawback of our proposed
computations is the exponential complexity. Hence, implementation be-
comes an important issue. We propose several possible optimisations and
evaluate the result experimentally. Finally, we also prove the consistency
of our computations in the framework of Mauw and Oostdijk and discuss
the need to extend the framework.

1 Introduction

Attack tree (also called threat tree) approach to security evaluation is
several decades old. It has been used for tasks like fault assessment of
critical systems [1] or software vulnerability analysis [2,3]. The approach
was first applied in the context of information systems (so-called threat
logic trees) by Weiss [4] and later more widely adapted to information
security by Bruce Schneier [5]. We refer to [6,7] for good overviews on the
development and applications of the methodology.

Even though already Weiss [4] realised that nodes of attack trees have
many parameters in practise, several subsequent works in this field con-
sidered attack trees using only one estimated parameter like the cost or
feasibility of the attack, skill level required, etc. [3,5,8]. Opel [9] considered
also multi-parameter attack trees, but the actual tree computations in
his model still used only one parameter at a time. Even though single-
parameter attack trees can capture some aspects of threats reasonably
well, they still lack the ability to describe the full complexity of the at-
tacker’s decision-making process.

A substantial step towards better understanding the motivation of the
attacker was made in 2006 by Buldas et al. [10]. Besides considering just

111

the cost of the attack, they also used success probability together with
probabilities and amount of penalties in the case of success or failure of
the attack in their analysis. As a result, a more accurate model of the
attack game was obtained and it was later used to analyse the security
of several e-voting schemes by Buldas and Mägi [11]. The model was de-
veloped further by Jürgenson and Willemson [12] extending the parameter
domain from point values to interval estimations.

However, it is known that the computational semantics given in [10] is
both imprecise and inconsistent with the general framework introduced by
Mauw and Oostdijk [8] (see Section 2). The motivation of the current pa-
per is to develop a better semantics in terms of precision and consistency.
For that we will first review the tree computations of [10] in Section 2 and
then propose an improved semantics in Section 3. However, it turns out
that the corresponding computational routines are inherently exponential,
so optimisation issues of the implementation become important; these are
discussed in Section 4. In Section 5 we prove that the new semantics al-
ways provides at least the same expected outcome for an attacker as the
tree computations of [10]. We also argue that the new semantics is con-
sistent with the framework of Mauw and Oostdijk. Finally, in Section 6
we draw some conclusions and set directions for further work.

2 Background

In order to better assess the security level of a complex and heterogen-
eous system, a gradual refinement method called threat tree or attack tree
method can be used. The basic idea of the approach is simple — the ana-
lysis begins by identifying one or more primary threats and continues by
splitting the threat into subattacks, either all or some of them being ne-
cessary to materialise the primary threat. The subattacks can be divided
further etc., until we reach the state where it does not make sense to split
the resulting attacks any more; these kinds of non-splittable attacks are
called elementary or atomic attacks and the security analyst will have to
evaluate them somehow. During the splitting process, a tree is formed
having the primary threat in its root and elementary attacks in its leaves.
Using the structure of the tree and the estimations of the leaves, it is then
(hopefully) possible to give some estimations of the root node as well. In
practise, it mostly turns out to be sufficient to consider only two kinds
of splits in the internal nodes of the tree, giving rise to AND- and OR-
nodes. As a result, an AND-OR-tree is obtained, forming the basis of the

112

subsequent analysis. An example attack tree originally given by Weiss [4]
and adopted from [6] is presented in Figure 1.

Figure 1. Example of an attack tree

Guess
Password

Obtain

File
Password

Sys.Admin
Shoulder

Look Over

SA Account

Trojan Horse Corrupt
Sys.Admin

Corrupt
Operator

Enter
Computer
Center

Unattended
Guest

Break Into
Computing

Center

Encounter
Guessable
Password

Administrator
Password

ObtainAccess
System
Console

Administrator
Privileges

Obtain

OR

OR

OR

OR AND

We will use the basic multi-parameter attack tree model introduced in
[10]. Let us have the AND-OR-tree describing the attacks and assume all
the elementary attacks being pairwise independent. Let each leaf Xi have
the following parameters:

– Costi – the cost of the elementary attack
– pi – success probability of the attack
– π−

i – the expected penalty in case the attack was unsuccessful
– π+

i – the expected penalty in case the attack was successful

Besides these parameters, the tree has a global parameter Gains showing
the benefit of the attacker in the case he is able to mount the root attack.
For practical examples on how to evaluate those parameters for real-life
attacks, please refer to [11] and [13].

The paper [10] gives a simple computational semantics to the attack
trees, which has further been extended to interval estimates in [12]. After
the above-mentioned parameters have been estimated for the leaf nodes, a
step-by-step propagation algorithm begins computing the same paramet-
ers for all the internal nodes as well, until the root node has been reached.
The computational routines defined in [10] are the following:

113

– For an OR-node with child nodes with parameters (Costi, pi, π
+
i , π

−
i)

(i = 1, 2) the parameters (Cost, p, π+, π−) are computed as:

(Cost, p, π+, π−) =
{
(Cost1, p1, π

+
1 , π

−
1), if Outcome1 > Outcome2

(Cost2, p2, π
+
2 , π

−
2), if Outcome1 ≤ Outcome2

,

Outcomei = pi · Gains− Costi − pi · π+
i − (1− pi) · π−

i .

– For an AND-node with child nodes with parameters (Costi, pi, π+
i , π

−
i)

(i = 1, 2) the parameters (Cost, p, π+, π−) are computed as follows:

Costs = Costs1 + Costs2, p = p1 · p2, π+ = π+
1 + π+

2 ,

π− =
p1(1− p2)(π

+
1 + π−

2) + (1− p1)p2(π
−
1 + π+

2)

1− p1p2
+

+
(1− p1)(1− p2)(π

−
1 + π−

2)

1− p1p2
.

The formula for π− represents the average penalty of an attacker, as-
suming that at least one of the two child-attacks was not successful. For
later computations, it will be convenient to denote expected expenses
associated with the node i as Expensesi = Costi+pi ·π+

i +(1−pi) ·π−
i .

Then it is easy to see that in an AND-node the equality Expenses =
Expenses1 +Expenses2 holds. Note that the formulae above have obvi-
ous generalisations for non-binary trees.

At the root node, its Outcome is taken to be the final outcome of the
attack and the whole tree is considered to be beneficial for a rational at-
tacker if Outcome > 0. Following the computation process it is possible to
collect the corresponding set of leaves which, when carried out, allow the
attacker to mount the root attack and get the predicted outcome. Such
leaf sets will subsequently be called attack suites.4

However, while being very fast to compute, this semantics has several
drawbacks:

1. In order to take a decision in an OR-node, the computational model of
[10] needs to compare outcomes of the child nodes and for that some
local estimate of the obtained benefit is required. Since it is very dif-
ficult to break the total root gain into smaller benefits, the model of
[10] gives the total amount of Gains to the attacker for each subattack.
This is clearly an overestimation of the attacker’s outcome.

4 Note that our terminology differs here from the one used by Mauw and Oostdijk [8].
Our attack suite would be just attack in their terms and their attack suite would be
the set of all possible attack suites for us.

114

2. In an OR-node, the model of [10] assumes that the attacker picks ex-
actly one descendant. However, it is clear that in practise, it may make
sense for an attacker to actually carry out several alternatives if the
associated risks and penalties are low and the success probability is
high.

3. There is a general result by Mauw and Oostdijk [8] stating which at-
tack tree computation semantics are inherently consistent. More pre-
cisely, they require that the semantics of the tree should remain un-
changed when the underlying Boolean formula is transformed to an
equivalent one (e.g. to a disjunctive normal form). Semantics given
in the [10] are not consistent in this sense. For example, lets take
two attack trees, T1 = A ∨ (B&C) and T2 = (A ∨ B)&(A ∨ C),
both having same parameters Gains = 10000, pA = 0.1, pB = 0.5,
pC = 0.4, ExpensesA = 1000, ExpensesB = 1500, ExpensesC = 1000.
Following the computation rules of [10], we get OutcomeT1 = 8000 and
OutcomeT2 = 6100, even though the underlying Boolean formulae are
equivalent.

The aim of this paper is to present an exact and consistent semantics for
attack trees. The improved semantics fixes all the three abovementioned
shortcomings. However, a major drawback of the new approach is the
increase of the computational complexity from linear to exponential (de-
pending on the number of elementary attacks). Thus finding efficient and
good approximations becomes a vital task. In this paper, we will evaluate
suitability of the model of [10] as an approximation; the question of better
efficient approximations remains an open problem for future research.

3 Exact Semantics for the Attack Trees

3.1 The model

In our model, the attacker behaves as follows.

– First, the attacker constructs an attack tree and evaluates the para-
meters of its leaves.

– Second, he considers all the potential attack suites, i.e. subsets σ ⊆
X = {Xi : i = 1, . . . , n}. Some of these materialise the root attack,
some of them do not. For the suites that do materialise the root attack,
the attacker evaluates their outcome for him.

– Last, the attacker decides to mount the attack suite with the highest
outcome (or he may decide not to attack at all if all the outcomes are
negative).

115

Note that in this model the attacker tries all the elementary attacks inde-
pendently. In practise, this is not always true. For example, if the attacker
has already failed some critical subset of the suite, it may make more
sense for him not to try the rest of the suite. However, the current model
is much more realistic compared to the one described in [10], since now we
allow the attacker to plan its actions with redundancy, i.e. try alternative
approaches to achieve some (sub)goal.

3.2 Formalisation

The attack tree can be viewed as a Boolean formula F composed of the
set of variables X = {Xi : i = 1, . . . , n} (corresponding to the elementary
attacks) and conjunctives ∨ and &. Satisfying assignments σ ⊆ X of this
formula correspond to the attack suites sufficient for materialising the root
attack.

The exact outcome of the attacker can be computed as

Outcome = max{Outcomeσ : σ ⊆ X , F(σ := true) = true} . (1)

Here Outcomeσ denotes the expected outcome of the attacker if he de-
cides to try the attack suite σ and F(σ := true) denotes evaluation of the
formula F , when all of the variables of σ are assigned the value true and
all others the value false. The expected outcome Outcomeσ of the suite σ
is computed as follows:

Outcomeσ = pσ · Gains−
∑

Xi∈σ
Expensesi , (2)

where pσ is the success probability of the attack suite σ.
When computing the success probability pσ of the attack suite σ we

must take into account that the suite may contain redundancy and there
may be (proper) subsets ρ ⊆ σ sufficient for materialising the root attack.
Because we are using the full suite of σ to mount an attack, those ele-
mentary attacks in the σ \ ρ will contribute to the success probability of
pρ with (1− pj). Thus, the total success probability can be computed as

pσ =
∑

ρ⊆σ

F(ρ:=true)=true

∏

Xi∈ρ
pi

∏

Xj∈σ\ρ
(1− pj) . (3)

Note that the formulae (1), (2) and (3) do not really depend on the
actual form of the underlying formula F , but use it only as a Boolean

116

function. As a consequence, our framework is not limited to just AND-
OR trees, but can in principle accommodate other connectives as well.
Independence of the concrete form will also be the key observation when
proving the consistency of our computation routines in the framework of
Mauw and Oostdijk (see Proposition 1 in Section 5).

3.3 Example

To explain the exact semantics model of the attack trees, we give the
following simple example. Lets consider the attacktree with the Boolean
formula T = (A ∨ B)&C with all elementary attacks (A,B,C) having
equal parameters p = 0.8, Cost = 100, π+ = 1000, π− = 1000 and
Gain = 10000. That makes Expenses = 1100 for all elementary attacks.
When we follow the approximate computation rules in the [10], we get the
OutcomeT = 4200.

By following the computation rules in this article, we have the attack
suites σ1 = {A,C}, σ2 = {B,C}, σ3 = {A,B,C}, which satisfy the ori-
ginal attack tree T . The outcome computation for attack suites σ1 and σ2
is straightforward and Outcomeσ1 = Outcomeσ2 = 4200. The Outcomeσ3

is a bit more complicated as there are three subsets ρ1 = {A,C}, ρ2 =
{B,C}, ρ3 = {A,B,C} for the suite σ3, which also satisfy the attack tree
T . Therefore we get the pσ3 = pApBpC + pApC(1− pB)+ pBpC(1− pA) =
0.768 and Outcomeσ3 = 4380. By taking the maximum of the three out-
comes, we get OutcomeT = 4380.

As the Cost parameters in this example for elementary attacks A and
B were chosen quite low and the success probability pA and pB of these
attacks were quite high, it made sense for an attacker to mount both of
these subattacks and get bigger expected outcome, even though the attack
tree would have been satisfied as well by only one of them.

4 Implementation

The most time-consuming computational routine among the computa-
tions given in Section 3.2 is the generation of all the satisfiable assign-
ments of a Boolean formula F in order to find the maximal outcome by
(1). Even though the computation routine (3) for finding pσ formally also
goes through (potentially all) subsets of σ, it can be evaluated in linear
time in the number of variables n. To do so we can set pi = 0 for all
Xi 6∈ σ and leave all the pi for Xi ∈ σ untouched. Then for each internal
node of the tree with probabilities of the child nodes being pi1 , pi2 , . . . , pik

117

we can compute the probability of the parent node to be

k∏

j=1

pij or 1−
k∏

j=1

(1− pij)

depending on whether it is an AND or an OR node. Propagating through-
out the tree, this computation gives exactly the success probability pσ of
the suite σ at the root node.

The routine (1) can be optimised as well by cutting off hopeless cases
(see Theorem 1), but it still remains worst-case exponential-time. Thus
for performance reasons it is crucial to have an efficient implementation
of this routine. We are using a modified version of DPLL algorithm [14]
to achieve this goal. The original form of the DPLL algorithm is only
concerned about satisfiability, but it can easily be upgraded to produce
all the satisfying assignments as well. Note that all the assignments are
not needed at the same time to compute (1), but rather one at a time.
Hence we can prevent the exponential memory consumption by building
a serialised version, obtaining Algorithm 1.

Algorithm 1 works recursively and besides the current Boolean formula
F it has two additional parameters. The set S contains the variables of
which the satisfying assignments should be composed from. The set A on
the other hand contains the variables already chosen to the assignments
on previous rounds of recursion. As a technical detail note that the sat-
isfying assignments are identified by the subset of variables they set to
true.

The computation starts by calling process satisfying assignments(F , X ,
∅). Note that Algorithm 1 does not really produce any output, a processing
subroutine is called on step 1 instead. This subroutine computes Outcomeσ
for the given assignment σ and compares it with the previous maximal
outcome.

4.1 Optimisations

Even with the help of a DPLL-based algorithm, the computations of (1)
remain worst-case exponential time. In order to cut off hopeless branches,
we can make some useful observations.

When we consider a potential attack suite σ and want to know, whether
it is sufficient to materialise the root attack, we will set all the elements of
σ to true, all the others to false and evaluate the formula F corresponding
to the attack tree. In the process, all the internal nodes of the tree get
evaluated as well (including the root node, showing whether the suite is

118

Algorithm 1 Processing all the satisfying assignments of a formula
Procedure process satisfying assignments(F , S,A)
Input: Boolean CNF-formula F , a subsets S of its variables and a subset A ⊆ X \ S

1. If F contains true in every clause then
– Process the assignment A ∪ T for every T ⊆ S; return

2. If F contains an empty clause or S = ∅ then return #no output in this branch
3. If F contains a unit clause {X}, where X ∈ S then

– Let F ′ be the formula obtained by setting X = true in F
– process satisfying assignments(F ′, S \ {X}, A ∪ {X})
– Return

4. Select a variable X ∈ S
5. Let F ′ be the formula obtained by setting X = true in F
6. process satisfying assignments(F ′, S \ {X}, A ∪ {X})
7. Let F ′′ be the formula obtained by deleting X from F
8. process satisfying assignments(F ′′, S \ {X}, A)
9. Return

sufficient). In Section 3, we allowed the suites σ to have more elements
than absolutely necessary for materialising the root node, because in OR-
nodes it often makes a lot of sense to try different alternatives. In AND
nodes, at the same time, no choice is actually needed and achieving some
children of an AND node without achieving some others is just a waste of
resources.

Thus, intuitively we can say that it makes no sense to have AND-nodes
with some children evaluating to true and some children to false. Formally,
we can state and prove the following theorem.

Theorem 1. Let F be a Boolean formula corresponding to the attack tree
T (i.e. AND-OR-tree, where all variables occur only once) and let σ be
its satisfying assignment (i.e. an attack suite). Set all the variables of σ
to true and all others to false and evaluate all the internal nodes of T . If
some AND-node has children evaluating to true as well as children eval-
uating to false, then there exists a satisfying assignment σ′ ⊂ σ (σ′ 6= σ)
such that Outcomeσ′ ≥ Outcomeσ.

Proof. Consider an AND-node Y having some children evaluating to true
and some evaluating to false. Then the node Y itself also evaluates to
false, but the set of variables of the subformula corresponding to Y has a
non-empty intersection with σ; let this intersection be τ . We claim that
we can take σ′ = σ \ τ . First it is clear that σ′ ⊂ σ and σ′ 6= σ. Note
also that σ′ is a satisfying assignment and hence σ′ 6= ∅. Now consider the

119

corresponding outcomes:

Outcomeσ = pσ · Gains−
∑

Xi∈σ
Expensesi ,

Outcomeσ′ = pσ′ · Gains−
∑

Xi∈σ′
Expensesi .

Since σ′ ⊂ σ, we have
∑

Xi∈σ
Expensesi ≥

∑

Xi∈σ′
Expensesi ,

as all the added terms are non-negative.
Now we claim that the equality pσ = pσ′ holds, which implies the

claim of the theorem. Let

Rσ = {ρ ⊆ σ : F(ρ := true) = true}

and define Rσ′ in a similar way. Then by (3) we have

pσ =
∑

ρ∈Rσ

∏

Xi∈ρ
pi

∏

Xj∈σ\ρ
(1− pj) ,

pσ′ =
∑

ρ′∈Rσ′

∏

Xi∈ρ′
pi

∏

Xj∈σ′\ρ′
(1− pj) .

We claim that Rσ = {ρ′∪ τ ′ : ρ′ ∈ Rσ′ , τ ′ ⊆ τ}, i.e. that all the satisfying
subassignments of σ can be found by adding all the subsets of τ to all
the satisfying subassignments of σ′. Indeed, the node Y evaluates to false
even if all the variables of τ are true, hence the same holds for every subset
of τ due to monotonicity of AND and OR. Thus, if a subassignment of
σ satisfies the formula F , the variables of τ are of no help and can have
arbitrary values. The evaluation true for the root node can only come from
the variables of σ′, proving the claim.

Now we can compute:

pσ =
∑

ρ∈Rσ

∏

Xi∈ρ
pi

∏

Xj∈σ\ρ
(1− pj) =

∑

ρ=ρ′∪τ ′

ρ′∈Rσ′ ,τ ′⊆τ

∏

Xi∈ρ
pi

∏

Xj∈σ\ρ
(1− pj) =

=
∑

ρ′∈Rσ′

∑

τ ′⊆τ

∏

Xi∈ρ′∪τ ′
pi

∏

Xj∈σ\(ρ′∪τ ′)
(1− pj) =

120

=
∑

ρ′∈Rσ′

∑

τ ′⊆τ

∏

Xi∈ρ′
pi

∏

Xi∈τ ′
pi

∏

Xj∈σ′\ρ′
(1− pj)

∏

Xj∈τ\τ ′
(1− pj) =

=
∑

ρ′∈Rσ′

∏

Xi∈ρ′
pi

∏

Xj∈σ′\ρ′
(1− pj)

∑

τ ′⊆τ

∏

Xi∈τ ′
pi

∏

Xj∈τ\τ ′
(1− pj) =

=
∑

ρ′∈Rσ′

∏

Xi∈ρ′
pi

∏

Xj∈σ′\ρ′
(1− pj)

∏

Xi∈τ
[pi + (1− pi)] =

=
∑

ρ′∈Rσ′

∏

Xi∈ρ′
pi

∏

Xj∈σ′\ρ′
(1− pj) = pσ′ ,

since σ \(ρ′∪τ ′) = (σ′ \ρ′)∪̇(τ \τ ′). The claim of the theorem now follows
easily. �

Note that Theorem 1 really depends on the assumption that F is an
AND-OR-tree and that all variables occur only once. Formulae (1) and
(3) together with Algorithm 1 can still be applied if the structure of the
formula F is more complicated (say, a general DAG with other connectives
in internal nodes), but the optimisation of Theorem 1 does not necessarily
work.

This theorem allows us to leave many potential attack suites out of
consideration by simply verifying if they evaluate children of some AND-
node in a different way.

4.2 Performance

We implemented Algorithm 1 in Perl programming language and ran it on
500 randomly generated trees. The tests were ran on a computer having
3GHz dual-core Intel processor, 1GB of RAM and Arch Linux operating
system.

The tree generation procedure was the following:

1. Generate the root node.
2. With probability 50% let this node have 2 children and with probab-

ility 50% let it have 3 children.
3. For every child, let it be an AND-node, an OR-node or a leaf with

probability 40%, 40% and 20%, respectively.
4. Repeat the steps number 2 and 3 for every non-leaf node until the tree

of depth up to 3 has been generated and let all the nodes on the third
level be leaves.

5. To all the leaf nodes, generate the values of Cost, π+ and π− as in-
tegers chosen uniformly from from the interval [0, 1000), and the value
of p chosen uniformly from the interval [0, 1).

121

Figure 2. Performance test results

0.01

0.1

1

10

100

1000

0 5 10 15 20

A
ve

ra
ge

ru
nn

in
g

ti
m

e
in

se
co

nd
s,

lo
ga

ri
th

m
ic

sc
al

e

Number of leaves in a tree

6. Generate the value of Gains as an integer chosen uniformly from the
interval [0, 1000000).

Thus, the generated trees may in theory have up to 27 leaves. That par-
ticular size limit for the trees was chosen because the running time for
larger trees was already too long for significant amount of tests.

Performance test results showing the average running times and the
standard deviation of the running times of the algorithm depending on
the number of leaves are displayed in Figure 2. Note that the time scale is
logarithmic. The times are measured together with the conversion of the
attack tree formula to the conjunctive normal form. In Figure 2 we have
included the trees with only up to 19 leaves, since the number of larger
trees generated was not sufficient to produce statistically meaningful res-
ults. The number of the generated trees by the number of leaves is given
later in Figure 3.

122

5 Analysis

In this Section we provide some evaluation of our tree computations com-
pared to the ones given by Buldas et al. [10] and within the framework of
Mauw and Oostdijk [8].

5.1 Comparison with the semantics of Buldas et al.

Our main result can be shortly formulated as the following theorem.

Theorem 2. Let us have an attack tree T . Let the best attack suites found
by the routines of the current paper and the paper [10] be σ and σ′ re-
spectively. Let the corresponding outcomes (computed using the respective
routines) be Outcomeσ and Outcomeσ′ . The following claims hold:

1. If σ = σ′ then Outcomeσ = Outcomeσ′ .
2. Outcomeσ ≥ Outcomeσ′ .

Proof.

1. We need to prove that if σ = σ′ then

Outcomeσ′ = pσ · Gains−
∑

Xi∈σ
Expensesi .

First note that the attack suite output by the routine of [10] is min-
imal in the sense that none of its proper subsets materialises the
root node, because only one child is chosen in every OR-node. Hence,
pσ =

∏
Xi∈σ pi. Now consider how Outcomeσ′ of the root node is com-

puted in [10]. Let the required parameters of the root node be p′,
Gains′ and Expenses′. Obviously, Gains′ = Gains. By looking at how
the values of the attack success probability and the expected expenses
are propagated throughout the tree, we can also conclude that

p′ =
∏

Xi∈σ
pi = pσ and Expenses′ =

∑

Xi∈σ
Expensesi ,

finishing the first part of the proof.
2. Since σ′ is a satisfying assignment of the Boolean formula underlying

the tree T , we can conclude that σ′ is considered as one of the attack
suite candidates in (1). The conclusion now follows directly from the
first part of the proof. �

123

Figure 3. Precision of the computational routine of Buldas et al. [10]

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20

N
um

be
r

of
tr

ee
s

Number of leaves in a tree

Number of trees
Found the same attack suite

Theorem 2 implies that the exact attack tree computations introduced in
the current paper always yield at least the same outcome compared to
[10]. Thus, the potential use of the routine of [10] is rather limited, be-
cause it only allows us to get a lower estimate of the attacker’s expected
outcome, whereas the upper limit would be of much higher interest. We
can still say that if the tree computations of [10] show that the system is
insufficiently protected (i.e. Outcomeσ′ > 0) then the exact computations
would yield a similar result (Outcomeσ > 0).

Following the proof of Theorem 2, we can also see that the semantics
of [10] is actually not too special. Any routine that selects just one child
of every OR-node when analysing the tree would essentially give a similar
under-estimation of the attacker’s expected outcome.

Together with the performance experiments described in Section 4.2
we also compared the outcome attack suites produced by the routines of
the current paper and [10] (the implementation of the computations of
[10] was kindly provided by Alexander Andrusenko [15]). The results are
depicted in Figure 3.

124

The graphs in Figure 3 show the number of the generated trees by the
number of leaves and the number of such trees among them, for which
the routine of [10] was able to find the same attack suite that the exact
computations introduced in the current paper. Over all the tests we can
say that this was the case with 17.4% of the trees.

5.2 Consistency with the framework of Mauw and Oostdijk

Working in a single parameter model, Mauw and Oostdijk [8] first define
a set V of attribute values and then consider an attribute function α :
C → V , where C is the set of elementary attacks (called attack compon-
ents in [8]). In order to extend this attribution to the whole tree, they
essentially consider the tree corresponding to the disjunctive normal form
of the underlying Boolean formula. To obtain the attribute values of the
conjunctive clauses (corresponding to our attack suites), they require a
conjunctive combinator △ : V × V → V , and in order to get the value
for the whole DNF-tree based on clause values they require a disjunctive
combinator ▽ : V × V → V . Mauw and Oostdijk prove that if these
combinators are commutative, associative and distributive, all the nodes
of the tree in the original form can also be given attribute values and
that the value of the (root node of the) tree does not change if the tree
is transformed into an equivalent form. This equivalence is denoted as
≡ and it is defined by the set of legal transformations retaining logical
equivalence of the underlying Boolean formulae (see [8]). The structure
(α,▽,△) satisfying all the given conditions is called distributive attribute
domain.

Even though the semantics used in [10,12] formally require four differ-
ent parameters, they still fit into a single parameter ideology, since based
on the quadruples of the child nodes, similar quadruples are computed for
parents when processing the trees. However, it is easy to construct simple
counterexamples showing that the computation rules of [10,12] are not
distributive, one is given in the Section 2.

The computation rules presented in the current paper follow the frame-
work of Mauw and Oostdijk quite well at the first sight. Formula (1) es-
sentially goes through all the clauses in the complete disjunctive normal
form of the underlying formula F and finds the one with the maximal
outcome. So we can take V = R and ▽ = max in the Mauw and Oostdijk
framework. However, there is no reasonable way to define a conjunctive
combinator △ : V × V → V , since the outcome of an attack suite can
not be computed from the outcomes of the elementary attacks; the phrase
“outcome of an elementary attack” does not even have a meaning.

125

Another possible approach is to take V = [0, 1] × R+ and to inter-
pret the first element of α(X) as the success probability p and the second
element as Expenses for an attack X. Then the disjunctive combinator
can be defined as outputting the pair which maximises the expression
p · Gains − Expenses. This combinator has a meaning in the binary case
and as such, it is both associative and commutative, giving rise to an
obvious n-ary generalisation. For the conjunctive combinator to work as
expected in the n-ary case, we would need to achieve

△Xi∈σα(Xi) = (pσ, ΣXi∈σExpensesi) .

However, it is easy to construct a formula and a satisfying assignment
σ such that constructing pσ from success probabilities of the descendant
instances using a conjunctive combinator is not possible. For example, we
can take the formula F = X1 ∨X2&X3, where X1,X2,X3 are elementary
attacks with success probabilities p1, p2, p3, respectively. Let α1 denote
the first element of the output of α and let △1 denote the combinator △
restricted to the first element of the pair (so △1(Xi) = pi, i = 1, 2, 3).
Then for σ = {X1,X2,X3} we would need to obtain

(p1△1p2)△1p3 = (α1(X1)△1α1(X2))△1α1(X3) = pσ = p1+p2p3−p1p2p3

for any p1, p2, p3 ∈ [0, 1], which is not possible. Indeed, taking p3 = 0 we
have (p1△1p2)△10 = p1. In the same way we can show that (p2△1p1)△10 =
p2, which is impossible due to commutativity of △1 when p1 6= p2.

All of the above is not a formal proof that our computations do not
form a distributive attribute domain, but we can argue that there is no ob-
vious way to interpret them as such. Additionally, if we had a distributive
attribute domain then Theorem 3 with Corollary 2 of [8] would allow us
to build a linear-time value-propagating tree computation algorithm, but
this is rather unlikely.

However, we can still state and prove the following proposition.

Proposition 1. Let T1 and T2 be two attack trees. If T1 ≡ T2, we have
Outcome(T1) = Outcome(T2).

Proof. It is easy to see that the formulae (1), (2) and (3) do not depend on
the particular form of the formula, but use it only as a Boolean function.
Since the tree transformations defined in [8] keep the underlying Boolean
formula logically equivalent, the result follows directly. �

In the context of [8], this is a somewhat surprising result. Even though
the attribute domain defined in the current paper is not distributive (and

126

it can not be easily turned into such), the main goal of Mauw and Oostdijk
is still achieved. This means that the requirement for the attribute domain
to be distributive in the sense of Mauw and Oostdijk is sufficient to have
semantically consistent tree computations, but it is not really necessary.
It would be interesting to study, whether the framework of Mauw and
Oostdijk can be generalised to cover non-propagating tree computations
(like the one presented in the current paper) as well.

6 Conclusions and Further Work

In this paper we introduced a computational routine capable of finding
the maximal possible expected outcome of an attacker based on a given
attack tree. We showed that when compared to rough computations given
in [10], the new routine always gives at least the same outcome and mostly
it is also strictly larger. This means that the tree computations of [10] are
not very useful in practise, since they strongly tend to under-estimate at-
tacker’s capabilities. We also proved that unlike [10], our new semantics of
the attack tree is consistent with the general ideology of the framework of
Mauw and Oostdijk, even though our attribute domain is not distributive.
This is a good motivation to start looking for further generalisations of
the framework.

On the other hand, the routines of the current paper are computation-
ally very expensive and do not allow practical analysis of trees with the
number of leaves substantially larger than 20. Thus, future research needs
to address at least two issues. First, there are some optimisations possible
in the implementation (e.g. precomputation of frequently needed values),
they need to be programmed and compared to the existing implement-
ations. Still, any optimisation will very probably not decrease the time
complexity of the algorithm to a subexponential class. Thus the second
direction of further research is finding computationally cheap approxima-
tions, which would over-estimate the attacker’s exact outcome.

As a further development of the attack tree approach, more general
and realistic models can be introduced. For example, the model presented
in the current paper does not take into account the possibility that the
attacker may drop attempting an attack suite after a critical subset of
it has already failed. Studying such models will remain the subject for
future research as well.

127

Acknowledgments

This research has been supported by the Estonian Science Foundation
grant no. 7081. Also, we would like to thank Ahto Buldas, Peeter Laud
and Sven Laur for helpful discussions.

References
1. W.E. Vesely, F.F. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree Handbook.

US Government Printing Office, January 1981. Systems and Reliability Research,
Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.

2. John Viega and Gary McGraw. Building Secure Software: How to Avoid Security
Problems the Right Way. Addison Wesley Professional, 2001.

3. Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack modeling for
information security and survivability. Technical Report CMU/SEI-2001-TN-001,
Software Engineering Institute, 2001.

4. J. D. Weiss. A system security engineering process. In Proceedings of the 14th
National Computer Security Conference, pages 572–581, 1991.

5. Bruce Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal,
24(12):21–29, December 1999.

6. Kenneth S. Edge. A Framework for Analyzing and Mitigating the Vulnerabilities of
Complex Systems via Attack and Protection Trees. PhD thesis, Air Force Institute
of Technology, Ohio, 2007.

7. Jeanne H. Espedahlen. Attack trees describing security in distributed internet-
enabled metrology. Master’s thesis, Department of Computer Science and Media
Technology, Gjøvik University College, 2007.

8. Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees. In Dongho Won
and Seungjoo Kim, editors, International Conference on Information Security and
Cryptology – ICISC 2005, volume 3935 of LNCS, pages 186–198. Springer, 2005.

9. Alexander Opel. Design and implementation of a support tool for attack trees.
Technical report, Otto-von-Guericke University, March 2005. Internship Thesis.

10. Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan Willemson.
Rational Choice of Security Measures via Multi-Parameter Attack Trees. In Crit-
ical Information Infrastructures Security. First International Workshop, CRITIS
2006, volume 4347 of LNCS, pages 235–248. Springer, 2006.

11. Ahto Buldas and Triinu Mägi. Practical security analysis of e-voting systems. In
A. Miyaji, H. Kikuchi, and K. Rannenberg, editors, Advances in Information and
Computer Security, Second International Workshop on Security, IWSEC, volume
4752 of LNCS, pages 320–335. Springer, 2007.

12. Aivo Jürgenson and Jan Willemson. Processing multi-parameter attacktrees with
estimated parameter values. In A. Miyaji, H. Kikuchi, and K. Rannenberg, editors,
Advances in Information and Computer Security, Second International Workshop
on Security, IWSEC, volume 4752 of LNCS, pages 308–319. Springer, 2007.

13. Lauri Rätsep. The influence and measurability of the parameters of the security
analysis of the Estonian e-voting system. MSc thesis, Tartu University, 2008. In
Estonian.

14. Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, 1962.

15. Alexander Andrusenko. Multiparameter attack tree analysis software. BSc thesis,
Tartu University, 2008. In Estonian.

128

Serial Model for Attack Tree Computations

Aivo Jürgenson1,2, Jan Willemson3

1 Tallinn University of Technology, Raja 15, 12618 Tallinn, Estonia
aivo.jurgenson@eesti.ee

2 Elion Enterprises Ltd, Endla 16, 15033 Tallinn, Estonia
3 Cybernetica, Aleksandri 8a, Tartu 51004, Estonia

jan.willemson@gmail.com

Abstract. In this paper we extend the standard attack tree model by
introducing temporal order to the attacker’s decision making process.
This will allow us to model the attacker’s behaviour more accurately,
since this way it is possible to study his actions related to dropping some
of the elementary attacks due to them becoming obsolete based on the
previous success/failure results. We propose an efficient algorithm for
computing the attacker’s expected outcome based on the given order
of the elementary attacks and discuss the pros and cons of consider-
ing general rooted directed acyclic graphs instead of plain trees as the
foundations for attack modelling.

1 Introduction

Attack tree (also called threat tree) approach to security evaluation is
several decades old. It has been used for tasks like fault assessment of
critical systems [1] or software vulnerability analysis [2, 3]. The approach
was first applied in the context of information systems (so-called threat
logic trees) by Weiss [4] and later more widely adapted to information
security by Bruce Schneier [5]. We refer to [6, 7] for good overviews on
the development and applications of the methodology.

Since their first introduction, attack trees have been used to describe
attacks against various real-world applications like Border Gateway Pro-
tocol [8], SCADA protocols [9] and e-voting infrastructures [10]. Attack
trees have found their place in computer science education [11] and several
support tools like AttackTree+4 and SecurITree5 have been developed.

Early approaches to attack tree modelling were mostly concerned with
just categorising the attacks [8] or modelling the attacker’s behaviour by
one specific parameter of the attacks like the cost, difficulty or severity [5,

4 http://www.isograph-software.com/atpover.htm
5 http://www.amenaza.com/

129

9, 12]. A substantial step forward was taken by Buldas et al. [13] who in-
troduced the idea of game-theoretic modelling of the attacker’s decision
making process based on several interconnected parameters like the cost,
risks and penalties associated with different elementary attacks. This ap-
proach was later refined by Jürgenson and Willemson [14, 15] and applied
to the analysis of the security of several e-voting solutions by Buldas and
Mägi [10].

So far, practically all the research in the field of attack trees has con-
centrated on what one could call a parallel model [4, 5, 3, 8, 9, 16, 12–14,
10, 15]. Essentially, the model assumes that all the elementary attacks take
place simultaneously and hence the attacker’s possible decisions based on
success or failure of some of the elementary attacks are ignored. How-
ever, as noted already in [15], this model is unrealistic. In practice, the
attacker is able to order his actions and try different alternative scenarios
if some others fail or to stop trying altogether if some critical subset of
elementary attacks has already failed or succeeded. Not risking with the
hopeless or unnecessary attempts clearly reduces the amount of potential
penalties and hence increases the attacker’s expected outcome.

The main contribution of this paper is to surpass this shortcoming
by introducing what one could call a serial model for attack trees. We
extend the basic parallel model with temporal order of the elementary
attacks and give the attacker some flexibility in skipping some of them or
stopping the attack before all of the elementary attacks have been tried.
The other contribution is a generalisation of the attack tree approach to
accommodate arbitrary rooted directed acyclic graphs, which will enable
us to conveniently ensure consistency of our computations in the general
framework proposed by Mauw and Oostdijk [12].

The paper is organised as follows. In Section 2 we first briefly review
the basic multi-parameter attack tree model. Sections 3 and 4 extend it by
introducing attack descriptions based on general Boolean functions and
temporal order of elementary attacks, respectively. Section 5 presents an
efficient algorithm for computing the attacker’s expected outcome of the
attack tree with the predefined order of leaves. Finally, Section 6 draws
some conclusions and sets directions for further work.

2 The Attack Tree Model

Basic idea of the attack tree approach is simple – the analysis begins by
identifying one primary threat and continues by dividing the threat into
subattacks, either all or some of them being necessary to materialise the

130

primary threat. The subattacks can be divided further etc., until we reach
the state where it does not make sense to divide the resulting attacks any
more; these kinds of non-splittable attacks are called elementary attacks
and the security analyst will have to evaluate them somehow. During the
splitting process, a tree is formed having the primary threat in its root
and elementary attacks in its leaves. Using the structure of the tree and
the estimations of the leaves, it is then (hopefully) possible to give some
estimations of the root node as well. In practice, it mostly turns out to be
sufficient to consider only two kinds of splits in the internal nodes of the
tree, giving rise to AND- and OR-nodes. As a result, an AND-OR-tree is
obtained, forming the basis of the subsequent analysis.

The crucial contribution of Buldas et al. [13] was the introduction
of four game-theoretically motivated parameters for each leaf node of
the tree. This approach was later optimised in [15], where the authors
concluded that only two parameters suffice. Following their approach, we
consider the set of elementary attacks X = {X1,X2, . . . ,Xn} and give
each one of them two parameters:

– pi – success probability of the attack Xi,

– Expensesi – expected expenses (i.e. costs plus expected penalties) of
the attack Xi.

Besides these parameters, there is a global value Gains expressing the
benefit of the attacker if he is able to materialise the primary threat.

In the parallel model of [15], the expected outcome of the attacker is
computed by maximising the expression

OutcomeS = pS · Gains−
∑

Xi∈S
Expensesi (1)

over all the assignments S ⊆ X that make the Boolean formula F , repre-
sented by the attack tree, true. (Here pS denotes the success probability
of the primary threat.) Like in the original model of Buldas et al. [13],
we assume that the attacker behaves rationally, i.e. he attacks only if
there is an attack scenario with a positive outcome. The defender’s task
is thus achieving a situation where all the attack scenarios would be non-
beneficial for the attacker.

Our aim is to develop this model in two directions. In Section 3 we
will generalise the attack tree model a bit to allow greater flexibility and
expressive power of our model, and in Section 4 we will study the effects
of introducing linear (temporal) order to the set of elementary attacks.

131

3 Attack Descriptions as Monotone Boolean Functions

Before proceeding, we briefly discuss a somewhat different perspective
on attack tree construction. Contrary to the standard top-down ideology
popularised by Schneier [5], a bottom-up approach is also possible. Say,
our attacker has identified the set of elementary attacks X available to
him and he needs to figure out, which subsets of X are sufficient to mount
the root attack. In this paper we assume that the set of such subsets is
monotone, i.e. if some set of elementary attacks suffices, then so does any
of its supersets. This way it is very convenient to describe all the successful
attacks by a monotone Boolean function F on the set of variables X .

Of course, if we have constructed an attack tree then it naturally
corresponds to a Boolean function. Unfortunately, considering only the
formulae that have a tree structure is not always enough. Most notably,
trees can not handle the situation, where the same lower-level attack is
useful in several, otherwise independent higher-level attacks, and this is
clearly a situation we can not ignore in practical security analysis.

Another shortcoming of the plain attack tree model follows from the
general framework by Mauw and Oostdijk [12]. They argue that the se-
mantics of an attack tree is inherently consistent if and only if the tree
can be transformed into an equivalent form without changing the value
of the expected outcome. When stating and proving their result, they
essentially transform the underlying Boolean formula into a disjunctive
normal form, but when doing so, they need to introduce several copies
of some attacks, therefore breaking the tree structure in favour of a gen-
eral rooted directed acyclic graph (RDAG). Since AND-OR-RDAGs are
equivalent to monotone Boolean functions, there is no immediate need to
take the generalisation any further.

Thus it would be more consistent and fruitful not to talk about attack
trees, but rather attack RDAGs. On the other hand, as the structure of
a tree is so much more convenient to analyse than a general RDAG, we
should still try to stick to the trees whenever possible. We will see one
specific example of a very efficient tree analysis algorithm in Section 5.

4 Ordering Elementary Attacks

After the attacker has selected the set of possible elementary attacks X
and described the possible successful scenarios by means of a monotone
Boolean function F , he can start planning the attacks. Unlike the näıve
parallel model of Schneier [5], the attacker has a lot of flexibility and

132

choice. He may try some elementary attack first and based on its suc-
cess or failure select the next elementary attack arbitrarily or even decide
to stop attacking altogether (e.g. due to certain success or failure of the
primary threat). Such a fully adaptive model is still too complicated to
analyse with the current methods, thus we will limit the model to be
semi-adaptive. I.e., we let the attacker to fix linear order of some ele-
mentary attacks in advance and assume that he tries them in succession,
possibly skipping superfluous elementary attacks and stopping only if he
knows that the Boolean value of F has been completely determined by
the previous successes and failures of elementary attacks.

The full strategy of the attacker will be the following.

1. Create an attack RDAG with the set of leaf nodesX = {X1,X2, . . . ,Xn}.
2. Select a subset S ⊆ X materialising the primary threat and consider

the corresponding subtree.

3. Select a permutation α of S.

4. Based on the subtree and permutation α, compute the expected out-
come.

5. Maximise the expected outcome over all the choices of S and α.

This paper is mostly concerned with item 4 in the above list, but doing
so we must remember that when building a complete attack analysis tool,
other items can not be disregarded either. Optimisations are possible, e.g.
due to monotonicity there is no need to consider any subsets of attack
suites that do not materialise the primary threat. Even more can be done
along the lines of [15], Section 4.1, but these aspects remain outside of
the scope of the current paper.

Since only one subset S and the corresponding subtree are relevant
in the above step 4, we can w.l.o.g. assume that S = X . The attacker’s
behaviour for permutation α will be modelled as shown in Algorithm 1.

Consider the example attack tree depicted in Figure 1, where we as-
sume α = id for better readability.

The attacker starts off by trying the elementary attack X1. Inde-
pendent of whether it succeeds or fails, there are still other components
needed to complete the root attack, so he tries X2 as well. If it fails, we
see that the whole tree fails, so it does not make sense to try X3 and X4.
If both X1 and X2 have succeeded, we see that it is not necessary to try
X3, since X1 and X3 have a common OR-parent, so success or failure of
X4 determines the final outcome. If X1 fails and X2 succeeds, we need
the success of both X3 and X4 to complete the task; if one of them fails,
we stop and accept the failure.

133

Algorithm 1 Perform the attack
Require: The set of elementary attacks X = {X1, X2, . . . ,Xn}, permutation α ∈ Sn

and a monotone Boolean formula F describing the attack scenarios
1: for i := 1 to n do
2: Consider Xα(i)

3: if success or failure of Xα(i) has no effect on the success or failure of the root
node then

4: Skip Xα(i)

5: else
6: Try to perform Xα(i)

7: if the root node succeeds or fails then
8: Stop
9: end if
10: end if
11: end for

The expected outcome of the attack based on permutation α will be
defined as

Outcomeα = pα · Gains−
∑

Xi∈X
pα,i · Expensesi , (2)

where pα is the success probability of the primary threat and pα,i denotes
the probability that the node Xi is encountered during Algorithm 1. Be-
fore proceeding, we will prove that the expected outcome of Algorithm 1
does not depend on the specific form of the formula F . This essentially
gives us the compliance of our attack tree model in the framework of
Mauw and Oostdijk [12]. Formally, we will state and prove the following
theorem, similar to Proposition 1 in [15].

Theorem 1. Let F1 and F2 be two monotone Boolean formulae such
that F1 ≡ F2, and let Outcome1α and Outcome2α be the expected outcomes
obtained running Algorithm 1 on the corresponding formulae. Then

Outcome1α = Outcome2α .

Proof. We can observe that Algorithm 1 really does not depend on the
attack description having a tree structure, all the decisions to skip or stop
can be taken based on the Boolean function F . Assume we have already
fixed the results of the elementary attacks Xα(1), . . . ,Xα(i−1). Then we
see that

– the nodeXα(i) may be skipped if for all the values ofXα(i+1), . . . ,Xα(n)

we have

F
(
Xα(1), . . . ,Xα(i−1), t,Xα(i+1), . . . ,Xα(n)

)
=

134

Bribe the
sysadmin

Obtain
encrypted

file

Break into
the system

Steal the
backup

Install the
keylogger

the password
Obtain

company
secrets

Decrypt

&

&

∨

X1 X2 X3 X4

Fig. 1. An example attack tree. The left-to-right ordering of the leaf nodes in the tree
represents the permutation α = id of the set X = {X1,X2, X3,X4}.

= F
(
Xα(1), . . . ,Xα(i−1), f,Xα(i+1), . . . ,Xα(n)

)
,

– there is no need to proceed with Algorithm 1 after the node Xα(i) if
for all the values of Xα(i+1), . . . ,Xα(n) we have

F
(
Xα(1), . . . ,Xα(i−1),Xα(i),Xα(i+1), . . . ,Xα(n)

)
= t

or
F

(
Xα(1), . . . ,Xα(i−1),Xα(i),Xα(i+1), . . . ,Xα(n)

)
= f .

⊓⊔
Thus, our serial model for attack trees follows the guidelines given in
Section 3 and it really is safe to talk about Boolean functions describing
the attack scenarios.

Next we will show formally that introducing order to the elementary
attacks really increases the attacker’s expected outcome. Comparing (2)
to (1) we get the following theorem.

Theorem 2. Let F be a monotone Boolean function on n ≥ 2 variables
describing the attack scenarios. Let Outcomeα be defined by (2) and let
OutcomeX be defined by (1) for S = X . Then we have

Outcomeα ≥ OutcomeX . (3)

If for all the elementary attacks Xi (i = 1, . . . , n) one also has Expensesi >
0, then strict inequality holds in (3).

135

Proof. First we note that by [15] we can compute the success probability
of the attacker as follows:

pX =
∑

S ⊆ X
F(S := true) = true

∏

Xi∈S
pi

∏

Xj∈X\S
(1− pj) ,

where F(S := true) denotes evaluation of the Boolean function F , when
all the variables of S are assigned the value true and all others the value
false. This is exactly the total probability of all the successful branches of
Algorithm 1 and thus pX = pα (implying that pα is actually independent
of α). We also have that ∀i pα,i ≤ 1 and hence the inequality (3) follows.

Assume now that for all Xi we have Expensesi > 0. Then in order to
prove that strict inequality holds in (3), we need to show that there exists
such an index i that pα,i < 1. Consider the elementary attack Xα(n) that
the attacker is supposed to try last. If there exists an evaluation of the
Boolean variables Xα(1), . . . ,Xα(n−1) such that

F
(
Xα(1), . . . ,Xα(n−1), t

)
= F

(
Xα(1), . . . ,Xα(n−1), f

)
,

then Xα(n) is superfluous in this scenario and hence pα,n < 1.

If on the other hand we have

F
(
Xα(1), . . . ,Xα(n−1), t

)
6= F

(
Xα(1), . . . ,Xα(n−1), f

)

for all evaluations of Xα(1), . . . ,Xα(n−1), then due to monotonicity of F
we can only have that

F
(
Xα(1), . . . ,Xα(n−1), f

)
= f

and

F
(
Xα(1), . . . ,Xα(n−1), t

)
= t ,

implying F(Y1, . . . , Yn) ≡ Yn. But in this case all the elementary attacks
before the last one get skipped, so pα,1 = . . . = pα,n−1 = 0. ⊓⊔

Thus, introducing ordering of the elementary attacks is guaranteed
to give at least as good a result to the attacker as the routine described
in [15]. In the interesting case, when all attack components have positive
expenses, the attacker’s expected outcome is strictly larger.

136

5 Computing the Expected Outcome

There are n+1 parameters that need to be computed in order to find the
expected outcome using the formula (2) – the total success probability
pα and the probabilities pα,i that the node Xi is encountered during Al-
gorithm 1. It turns out that there is an efficient algorithm for computing
these quantities provided that the given monotone Boolean function can
actually be described by a tree. In what follows we will also assume that
the tree is binary, but this restriction is not a crucial one.

So let us have an attack tree with the leaf nodes X1, . . . ,Xn and
the corresponding success probabilities pi, i = 1, . . . , n. We will assume
that all these probabilities are independent and consider the permutation
α ∈ Sn. In order to explain the algorithm, we first introduce three extra
parameters to each node Y , namely Y.t, Y.f and Y.u showing the proba-
bilities that the node has been proven to be respectively true, false or yet
undefined in the course of the analysis. Initially, we may set Y.t = Y.f = 0
and Y.u = 1 for all the nodes and the algorithm will work by incremen-
tally adjusting these values, so that in the end of the process we will
have R.t = pα for the root node R. Throughout the computations we will
of course retain the invariant Y.t + Y.f + Y.u = 1 for all the nodes Y ,
hence one of these parameters is actually superfluous. In the presentation
version of the algorithm we will drop the parameter Y.u, even though it
actually plays the central role.

Going back to the high-level description of Algorithm 1, we see that
the most difficult step is step 3, where the attacker is supposed to find out
whether the next elementary attack in his list may have any effect on the
success or failure of the root node. Elementary attack does not have any
effect iff there is a node on the path from that particular leaf to the root
that has already been proven to be true or false. Thus the next elementary
attack should be tried iff all the nodes on this path are undefined – and
this is precisely the event that gives us the required probability pα,i.

Let the path from root R to the leaf Xi then be (Y0 = R,Y1, . . . , Ym =
Xi). Thus, we need to compute the probability

pα,i = Pr[Y0 = u&Y1 = u& . . . &Ym = u] =

= Pr[Y0 = u |Y1 = u , . . . , Ym = u] ·
·Pr[Y1 = u |Y2 = u , . . . , Ym = u] · . . .
. . . · Pr[Ym−1 = u |Ym = u] · Pr[Ym = u] =

= Pr[Y0 = u |Y1 = u] · Pr[Y1 = u |Y2 = u] · . . .
. . . · Pr[Ym−1 = u |Ym = u] · Pr[Ym = u] (4)

137

The equations

Pr[Yk = u |Yk+1 = u , . . . , Ym = u] = Pr[Yk = u |Yk+1 = u]

hold due to the tree structure of our underlying RDAG and the inde-
pendence assumption of the elementary attacks. In (4) we have Pr[Ym =
u] = Pr[Xi = u] = 1 and all the other probabilities are of the form
Pr[Yk = u |Yk+1 = u]. Hence, we need to evaluate the probability that
the parent node Yk is undefined assuming that one of its children, Yk+1,
is undefined. This probability now depends on whether Yk is an AND-
or OR-node. If Yk is an AND-node and Yk+1 is undefined, then so is Yk,
if its other child Z is either true or undefined, which is the case with
probability Z.t+ Z.u = 1−Z.f . Similarly, if Yk is an OR-node and Yk+1

is undefined, then so is Yk, if its other child Z is either false or undefined,
which is the case with probability Z.f + Z.u = 1− Z.t.

This way, (4) gives an efficient way of computing pα,i assuming that
the current parameters of the internal nodes of the tree are known. Hence,
we need the routines to update these as well. These routines are straight-
forward. If the elementary attack Xi is tried, only the parameters of the
nodes on the path (Ym = Xi, . . . , Y1, Y0 = R) from that leaf to the root
need to be changed. We do it by first setting Ym.t = pi, Ym.f = 1−pi and
Ym.u = 0 and then proceed towards the root. If the node we encounter is
AND-node A with children B and C, we set

A.t = B.t · C.t , (5)

A.f = B.f +C.f −B.f · C.f , (6)

and if we encounter an OR-node A with children B and C, we set

A.t = B.t+ C.t−B.t · C.t , (7)

A.f = B.f · C.f . (8)

As noted above, we see that the quantities Y.u are actually never needed
in the computations.

This way we get the full routine described as Algorithm 2.

Algorithm 2 is very efficient. In order to compute the n+1 necessary
probabilities, it makes one run through all the leaves of the tree and at
each run the path from the leaf to the root is traversed twice. Since the
number of vertices on such a path in a (binary) tree can not be larger
than the number of leaves n, we get that the worst-case time complexity
of Algorithm 2 is O(n2). If the tree is roughly balanced, this estimate

138

Algorithm 2 Computing the probabilities pα,i
Require: An attack tree with leaf set X = {X1, X2, . . . ,Xn} and a permutation

α ∈ Sn

Ensure: The probabilities pα,i for i = 1, 2, . . . , n
1: for all Z ∈ {X1, . . . ,Xn} do
2: Z.t := 0, Z.f := 0
3: end for
4: for i := 1 to n do
5: Find the path (Y0, Y1, . . . , Ym) from the root Y0 = R to the leaf Ym = Xα(i)

6: pα,α(i) :=
∏m

j=1
(1− Zj .a), where Zj is the sibling node of Yj and

a =

{
t, if Yj−1 is an OR-node,
f, if Yj−1 is an AND-node

7: Xα(i).t = pα(i)

8: Xα(i).f = 1− pα(i)

9: Update the parameters of the nodes Ym−1, Ym−2, . . . , Y0 according to formulae
(5)–(8)

10: end for

drops even to O(n log n). This is a huge performance increase compared
to a näıve algorithm that one could design based on the complete attack
scenario analysis described after Figure 1 in Section 4. We studied the
näıve algorithm and it turns out that it is not only worst-case exponential,
but also average-case exponential [17].

Of course, as noted in Section 4, Algorithm 2 is only one building
block in the whole attack tree analysis. In order to find out the best attack
strategy of the attacker, we should currently consider all the subsets of X
and all their permutations. Optimisation results presented in [14] give a
strong indication that a vast majority of the possible cases can actually be
pruned out, but these methods remain outside of the scope of the current
paper.

6 Conclusions and Further Work

In this paper we studied the effect of introducing a temporal order of
elementary attacks into the attacker’s decision making process together
with some flexibility in retreating of some of them. It turns out that taking
temporal dependencies into account allows the attacker to achieve better
expected outcomes and as such, it brings the attack tree model one step
closer to the reality. This reality comes for a price of immense increase
in computational complexity, if we want to compute the attacker’s exact
outcome by considering all the possible scenarios in a näıve way.

139

Thus there are two main challenges for the future research. First, one
may try to come up with optimisations to the computational process
and in this paper we showed one possible optimisation which works well
for attack trees. The second approach is approximation. In attack tree
analysis we are usually not that much interested in the exact maximal
outcome of the attacker, but we rather want to know whether it is positive
or negative. This observation gives us huge potential for rough estimates,
which still need to be studied, implemented and tried out in practice.

In this paper we limited ourselves to a semi-adaptive model, where
the attacker is bound to the predefined order of elementary attacks and
may only choose to drop some of them. Fully adaptive case where the
attacker may choose the next elementary attack freely is of course even
more realistic, but it is currently too complicated to analyse. Our model
is also non-blocking in the sense that there are no elementary attacks,
failure of which would block execution of the whole tree. However, in
practice it happens that when failing some attack, the attacker might
get jailed and is unable to carry on. Hence, future studies in the area of
adaptive and possibly-blocking case are necessary.

As a little technical contribution we also discussed the somewhat in-
evitable generalisation of attack trees to RDAGs, but our results also
show that whenever possible, we should still stick to the tree structure.
Possible optimisations of RDAG-based algorithms remain the subject for
future research as well.

7 Acknowledgments

This research was supported by Estonian Science Foundation grant no
7081. The authors are grateful to Margus Niitsoo for his discussions and
helpful comments.

References

1. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. US Gov-
ernment Printing Office (January 1981) Systems and Reliability Research, Office
of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.

2. Viega, J., McGraw, G.: Building Secure Software: How to Avoid Security Problems
the Right Way. Addison Wesley Professional (2001)

3. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack modeling for information security
and survivability. Technical Report CMU/SEI-2001-TN-001, Software Engineering
Institute (2001)

4. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th
National Computer Security Conference. (1991) 572–581

140

5. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s Journal 24(12)
(December 1999) 21–29

6. Edge, K.S.: A Framework for Analyzing and Mitigating the Vulnerabilities of
Complex Systems via Attack and Protection Trees. PhD thesis, Air Force Institute
of Technology, Ohio (2007)

7. Espedahlen, J.H.: Attack trees describing security in distributed internet-enabled
metrology. Master’s thesis, Department of Computer Science and Media Technol-
ogy, Gjøvik University College (2007)

8. Convery, S., Cook, D., Franz, M.: An attack tree for the border gateway protocol.
IETF Internet draft (Feb 2004) Available at http://www.ietf.org/proceedings/
04aug/I-D/draft-ietf-rpsec-bgpattack-00.txt.

9. Byres, E., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabil-
ities in SCADA systems. In: International Infrastructure Survivability Workshop
(IISW’04), IEEE, Lisbon, Portugal. (2004)

10. Buldas, A., Mägi, T.: Practical security analysis of e-voting systems. In Miyaji,
A., Kikuchi, H., Rannenberg, K., eds.: Advances in Information and Computer
Security, Second International Workshop on Security, IWSEC. Volume 4752 of
LNCS., Springer (2007) 320–335

11. Saini, V., Duan, Q., Paruchuri, V.: Threat modeling using attack trees. J. Comput.
Small Coll. 23(4) (2008) 124–131

12. Mauw, S., Oostdijk, M.: Foundations of attack trees. In Won, D., Kim, S., eds.:
International Conference on Information Security and Cryptology – ICISC 2005.
Volume 3935 of LNCS., Springer (2005) 186–198

13. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice
of Security Measures via Multi-Parameter Attack Trees. In: Critical Information
Infrastructures Security. First International Workshop, CRITIS 2006. Volume 4347
of LNCS., Springer (2006) 235–248

14. Jürgenson, A., Willemson, J.: Processing multi-parameter attacktrees with esti-
mated parameter values. In Miyaji, A., Kikuchi, H., Rannenberg, K., eds.: Ad-
vances in Information and Computer Security, Second International Workshop on
Security, IWSEC. Volume 4752 of LNCS., Springer (2007) 308–319

15. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter at-
tack trees. In: On the Move to Meaningful Internet Systems: OTM 2008. Volume
5332 of LNCS., Springer (2008) 1036–1051

16. Opel, A.: Design and implementation of a support tool for attack trees. Technical
report, Otto-von-Guericke University (March 2005) Internship Thesis.

17. Jürgenson, A., Willemson, J.: Ründepuud: pooladaptiivne mudel ja ligikaudsed
arvutused (in Estonian). Technical Report T-4-4, Cybernetica, Institute of Infor-
mation Security (2009) http://research.cyber.ee/.

141

142

On Fast and Approximate Attack Tree

Computations

Aivo Jürgenson1,2, Jan Willemson3

1 Tallinn University of Technology, Raja 15,Tallinn 12618, Estonia
aivo.jurgenson@eesti.ee

2 Cybernetica, Akadeemia 21, Tallinn 12618, Estonia
3 Cybernetica, Aleksandri 8a, Tartu 51004, Estonia

jan.willemson@gmail.com

Abstract. In this paper we address the problem of inefficiency of ex-
act attack tree computations. We propose several implementation-level
optimizations and introduce a genetic algorithm for fast approximate
computations. Our experiments show that for attack trees having less
than 30 leaves, the confidence level of 89% can be achieved within 2 sec-
onds using this algorithm. The approximation scales very well and attack
trees of practical size (up to 100 leaves) can be analyzed within a few
minutes.

1 Introduction

Structural methods for security assessment have been used for several
decades already. Called fault trees and applied to analyse general security-
critical systems in early 1980-s [1], they were adjusted for information
systems and called threat logic trees by Weiss in 1991 [2]. In the late
1990-s, the method was popularized by Schneier under the name attack
trees [3]. Since then, it has evolved in different directions and has been
used to analyze the security of several practical applications, including
PGP [4], Border Gateway Protocol [5], SCADA systems [6], e-voting sys-
tems [7], etc. We refer to [8, 9] for good overviews on the development
and applications of the methodology.

Even though already Weiss [2] realized that the attack components
may have several parameters in practice, early studies mostly focused
on attack trees as a mere attack dependence description tool and were
limited to considering at most one parameter at a time [3, 10, 11]. A sub-
stantial step forward was taken by Buldas et al. [12] who introduced the
idea of game-theoretic modeling of the attacker’s decision making process
based on several interconnected parameters like the cost, risks and penal-
ties associated with different elementary attacks. This approach was later

143

refined by Jürgenson and Willemson by first extending the parameter do-
main from point values to interval estimates [13] and then by creating
the first semantics for multi-parameter attack trees, consistent with the
general framework of Mauw and Oostdijk [11, 14].

Even though being theoretically sound, the results of Jürgenson and
Willemson are rather discouraging from an engineering point of view.
Even with all the optimizations proposed in [14], they are still able to
analyze the trees of at most 20 leaves in reasonable time and this may
not suffice for many practical applications. Hence, the aim of this paper is
to improve their results in two directions. First, we implement several ad-
ditional optimizations and second, we create and test a genetic algorithm
for fast approximations.

The paper is organized as follows. First, in Section 2 we will briefly de-
fine attack trees and the required parameters. Then Section 3 will explain
our new set of optimizations, which in turn will be tested for performance
in Section 4. Section 5 will cover our genetic algorithm and finally Sec-
tion 6 will draw some conclusions.

2 Attack Trees

Basic idea of the attack tree approach is simple – the analysis begins by
identifying one primary threat and continues by dividing the threat into
subattacks, either all or some of them being necessary to materialize the
primary threat. The subattacks can be divided further etc., until we reach
the state where it does not make sense to divide the resulting attacks any
more; these kinds of non-splittable attacks are called elementary attacks
and the security analyst will have to evaluate them somehow.

During the splitting process, a tree is formed having the primary
threat in its root and elementary attacks in its leaves. Using the struc-
ture of the tree and the estimations of the leaves, it is then (hopefully)
possible to give some estimations of the root node as well. In practice, it
mostly turns out to be sufficient to consider only two kinds of splits in
the internal nodes of the tree, giving rise to AND- and OR-nodes. As a
result, an AND-OR-tree is obtained, forming the basis of the subsequent
analysis. We will later identify the tree as a (monotone) Boolean formula
built on the set of elementary attacks as literals.

The crucial contribution of Buldas et al. [12] was the introduction
of four game-theoretically motivated parameters for each leaf node of
the tree. This approach was later optimized in [14], where the authors
concluded that only two parameters suffice. Following their approach, we

144

consider the set of elementary attacks X = {X1,X2, . . . ,Xn} and give
each one of them two parameters:

– pi – success probability of the attack Xi,

– Expensesi – expected expenses (i.e. costs plus expected penalties) of
the attack Xi.

Besides these parameters, there is a global value Gains expressing the
benefit of the attacker if he is able to materialize the primary threat.

3 Efficient Attack Tree Computations

Let us have the attack tree expressed by the monotone Boolean formula F
built on the set of elementary attacks X = {X1,X2, . . . ,Xn}. In the model
of [14], the expected outcome of the attacker is computed by maximizing
the expression

Outcomeσ = pσ · Gains−
∑

Xi∈σ
Expensesi (1)

over all the assignments σ ⊆ X that make the Boolean formula F true.
Here pσ denotes the success probability of the primary threat and as
shown in [14], this quantity can be computed in time linear in the number
n of elementary attacks. The real complexity of maximizing (1) comes
from the need to go through potentially all the 2n subsets σ ⊆ X . Of
course, there are some useful observations to make.

– The Boolean function F is monotone and we are only interested in
the satisfying assignments σ. Hence, it is not necessary to consider
subsets of non-satisfying assignments.

– In [14], Theorem 1, it was proven that if for some AND-node in the
attack tree the assignment σ evaluates some of its children as true and
others as false, this σ can be disregarded without affecting the correct
outcome.

We start the contributions of the current paper by additionally noting
that the DPLL algorithm [15], used in [14] to generate all the satisfying
assignments, introduces a lot of unnecessary overhead. The formula F first
needs to be transformed to CNF and later maintained as a set of clauses,
which, in turn, are sets of literals. Since set is a very inconvenient data
structure to handle in the computer, we can hope for some performance
increase by dropping it in favor of something more efficient.

145

In our new implementation, we keep the formula F as it is – in the
form of a tree. The assignments σ are stored as sequences of ternary bits,
i.e. strings of three possible values t, f and u (standing for true, false
and undefined, respectively). The computation rules of the corresponding
ternary logic are natural, see Table 1.

& t f u
t t f u
f f f f
u u f u

∨ t f u
t t t t
f t f u
u t u u

Table 1. Computation rules for ternary logic

In its core, our new algorithm still follows the approach of DPLL –
we start off with the assignment [u, u, . . . , u] and proceed by successively
trying to evaluate the literals as f and t. Whenever we reach the value t for
the formula F , we know that all the remaining u-values may be arbitrary
and it is not necessary to take the recursion any deeper. Similarly, when
we obtain the value f for the formula F , we know that no assignment of
u-values can make F valid. Thus the only case where we need to continue
recursively, is when we have F = u. This way we obtain Algorithm 1,
triggered by process satisfying assignments([u, u, . . . , u]).

Algorithm 1 Finding the satisfying assignments
Require: Boolean formula F corresponding to the given AND-OR-tree
1: Procedure process satisfying assignments(σ)
2: Evaluate F(σ)
3: if F(σ) = f then
4: Return;
5: end if
6: if F(σ) = t then
7: Output all the assignments obtained from σ by setting all its u-values to t and

f in all the possible ways;
Return;

8: end if
9: //reaching here we know that F(σ) = u
10: Choose Xi such that σ(Xi) = u
11: process satisfying assignments(σ/[Xi := f]);
12: process satisfying assignments(σ/[Xi := t]);

146

Even though being conceptually simple, Algorithm 1 contains several
hidden options for optimization. The first step to pay attention to lies
already in line 2, the evaluation of F(σ). The evaluation process naturally
follows the tree structure of F , moving from the leaves to the root using
the computation rules given by Table 1. However, taking into account
Theorem 1 of [14] (see the second observation above), we can conclude
that whenever we encounter a node requiring evaluation of t&f or f&t,
we can abort this branch of the recursion immediately, since there is a
global optimum outcome in some other branch.

In the implementation, this kind of exception to evaluation is modelled
as additional data type shortcut-false to the already existing true, false
and undefined Boolean types. If the situation is encountered during the
recursive evaluation of F , shortcut-false is returned immediately to the
highest level and the entire branch of processing is dropped.

Another, somewhat more obvious optimization lies within the line 10
of Algorithm 1. Of course it would be the simplest to pick the next un-
defined literal randomly (or in some predefined order, which gives the
same result for randomly-generated test trees). However, intuitively this
approach is one of the worst possible, since the working time of the al-
gorithm depends on the number of the generated satisfying assignments.
Hence, the algorithm will be faster if we can systematically disregard
larger recursive branches. This is the reason why we first assign unde-
fined literals as f on line 11 and check first, if the whole formula has
become non-satisfied.

Still, a clever choice of the order of the undefined literals to specify can
speed up this process even further. We implemented and tested several
possible strategies.

1. Random – the next undefined literal is picked randomly.

2. Most-AND – for each undefined literal we compute the number of
AND-nodes on the path from the corresponding leaf to the root and
pick the onest with the highest score first.

3. Weighted-AND – the ordering routine is similar to Most-AND, but all
the AND-nodes on the path do not have an equal weight. The intuition
behind this approach is that when we can exclude a larger subtree,
we should be able to cut off more hopeless recursion branches as well,
hence it makes more sense to prefer paths with AND-nodes closer to
the root. Thus we gave each node on the distance i from the root the
weight 1/ci, where c is a predefined constant. In our experiments we
used the values c = 2. For comparison, we also ran tests with c = 0.5

147

Fig. 1. Performance test results of different strategies for choosing undefined literals

0.01

0.1

1

10

100

1000

10 15 20 25 30

A
v
er
a
g
e
ru
n
n
in
g
ti
m
e
in

se
co
n
d
s,

lo
g
a
ri
th
m
ic

sc
a
le

Number of leaves in the tree

random strategy
weighted-2-AND strategy

weighted-0.5-AND strategy
weighted-1-AND strategy

O(1.71n)

and c = 1. (Not that the Most-AND strategy is equivalent to the
Weighted-AND strategy with c = 1.)

4 Performance analysis

Somewhat surprisingly it turned out that giving more weight to the AND
nodes which are closer to the root node does not necessarily help. The
weighting constant c = 0.5 gave also very good results and in some cases
better than the Weighted-2-AND strategy.

We generated random sample attack trees with 5 leaves up to 29
leaves, at least 100 trees in each group, and measured the solving time
with our optimized realization and with different strategies. The results
are depicted in Fig. 1.

To estimate the complexity of our algorithms, we used the least-
squares method to fit a function a−1 · bn to the running times of our best
strategy method. Since there is no reasonable analytical way to establish
the time complexity of our algorithm, this approach provided a quick and

148

easy way to estimate it. The found parameters to fit the data points of
the best solution (the (1)-AND method) optimally were a = 109828 and
b = 1.71018. Hence we can conclude that the average complexity of our
algorithm with our generated sample data is in the range of ∼ O(1.71n).

The average complexity estimations for all strategies were the follow-
ing:

– Random strategy – O(1.90n)
– Weighted-2-AND strategy – O(1.78n)

– Weighted-1-AND strategy – O(1.71n)

– Weighted-0.5-AND strategy – O(1.75n)

However, it should be noted that differences between the Weighted-c-
AND strategies were quite small and within the margin of error. There-
fore, no conclusive results can be given regarding the different weighting
constants. It is clear though that all the tested strategies are better than
just choosing the leafs in random.

Currently the world’s best #3-SAT problem solving algorithm by
Konstantin Kutzkov ([16]) has the worst-case complexity O(1.6423n). As
#SAT problems can be parsinomically and in polynomial time converted
to the #3-SAT problems (see [17], chapter 26), we can roughly compare
our algorithm complexity and the #3-SAT problem solver complexity.

Direct comparison is however not possible for several reasons. First,
our estimate is heuristic and is based on experimental data. Second, we
are not only counting all the possible SAT solutions to the formula F ,
but we actually have to generate many of them. At the same time, we are
using optimizations described in Section 3.

Comparison with the result of Kutzkov still shows that our approach
works roughly as well as one would expect based on the similarity of
our problem setting to #SAT. It remains an open problem to develop
more direct comparison methods and to find out whether some of the
techniques of #SAT solvers could be adapted to the attack trees directly.

5 Approximation

Even though reimplementation in C++ and various optimization tech-
niques described in Section 3 helped us to increase the performance of
attack tree analysis significantly compared to [14], we are still practically
limited to the trees having at most 30 leaves. Given the exponential na-
ture of the problem, it is hard to expect substantial progress in the exact
computations.

149

In order to find out, how well the exact outcome of the attack tree
can be approximated, we implemented a genetic algorithm (GA) for the
computations. (See [18] for an introduction into GAs.) Let us have an
attack tree described by the Boolean formula F and the set of leaves
X = {X1,X2, . . . ,Xn} having the parameters as described in 3. We will
specify the following concepts for our GA.

Individual: any subset σ ⊆ X . The individuals are internally repre-
sented by bitstrings of length n, where 1 in position i means that
Xi ∈ σ and 0 in position i means that Xi 6∈ σ.

Live individual: σ ⊆ X such that F(σ := t) = t, i.e. such that the
value of F is t when all the literals of σ are set to t and all the others
to f.

Dead individual: σ ⊆ X such that F(σ := t) = f.
Generation: a set of p live individuals (where p is a system-wide pa-

rameter to be determined later).

Fitness function: Outcomeσ. Note that σ must be alive in order for
the fitness function to be well-defined.

Crossover: in order to cross two individuals σ1 and σ2, we iterate
throughout all the elementary attacks Xi (i = 1, . . . , n) and decide
by a fair coin toss, whether we should take the descendant’s ith bit
from σ1 or σ2.

Mutation: when an individual σ needs to be mutated, a biased coin is
flipped for every leafXi (i = 1, . . . , n) and its status (included/excluded)
in σ will be changed if the coin shows heads. Since σ is internally kept
as a bit sequence, mutation is accomplished by simple bit flipping.

In order to start the GA, the first generation of p live individuals must
be created. We generate them randomly, using the following recursive
routine.

1. Consider the root node.

2. If the node we consider is a leaf, then include it to σ and stop.

3. If the node we consider is an AND-node, consider all its descendants
recursively going back to Step 2.

4. If the node we consider is an OR-node, flip a fair coin for all of them
to decide whether they should be considered or not. If none of the
descendants was chosen, flip the coin again for all of them. Repeat
until at least one descendant gets chosen. Continue with Step 2.

It is easy to see that the resulting σ is guaranteed to be live and that the
routine stops with probability 1.

150

Having produced our first generation of individuals σ1, . . . , σp (not all
of them being necessarily distinct), we start the reproduction process.

1. All the individuals σi are crossed with everybody else, producing
(
p
2

)

new individuals.
2. Each individual is mutated with probability 0.1 and for each one of

them, the bias 0.1 is used.
3. The original individuals σ1, . . . , σp are added to the candidate (multi)set.

(Note that this guarantees the existence of p live individuals.)
4. All the candidates are checked for liveness (by evaluating F(σ = t))

and only the live ones are left.
5. Finally, p fittest individuals are selected for the next generation.

The reproduction takes place for g rounds, where g is also a system-
wide parameter yet to be determined.

Next we estimate the time complexity of our GA.

– Generating p live individuals takes O(np) steps.
– Creating a new candidate generation by crossing takes O(np2) steps.
– Mutating the candidate generation takes O(np2) steps.
– Verifying liveliness takes O(np2) steps.
– Computing the outcomes of live individuals takes O(np2) steps.
– Sorting out the p best individuals out of the

(p
2

)
+ p individuals takes

O(p2 log p)) steps.

Since these steps are repeated for g generations, we can find the overall
time complexity to be O(gp2(log p+ n)).

Of course, a GA does not guarantee that the final outcome is the best
one globally. To find out, how large populations and how many iterations
one has to use to hit the global maximum outcome with some degree of
certainty, we performed series of tests.

First we generated a sample random set of about 6000 trees (having
n = 5 . . . 29 leaves) and computed the exact outcome for each one of them
as described in Sections 3 and 4. Next we ran our GA for population
sizes p = 5, 10, 15, . . . , 60 and the number of iterations 1, 2, . . . , 200. We
recorded the average running times and attacker’s estimated outcomes,
comparing the latter ones to the exact outcomes computed before.

As a result of our tests we can say that GA allows us to reach high
level of confidence (say, with 90% accuracy) very fast. There are many
possible reasonable choices for p = p(n) and g = g(n). For example,
taking p = 2n and g = 2n allowed us to reach 89% level of confidence
for all the tree sizes of up to 29 leaves (see Fig. 2). By accuracy we here

151

Fig. 2. Accuracy of genetics algorithm with p = 2n and g = 2n

0

20

40

60

80

100

5 10 15 20 25 30

P
er
ce
n
ta
g
e
o
f
a
cc
u
ra
te

re
su
lt
s

Number of leaves in the tree

mean the ratio of the trees actually computed correctly by our GA when
compared to the exact outcome.

The theoretical time complexity of our GA is in this case O(n4), which
in reality required up to roughly 2 seconds for trees with less than 30
leaves on 2.33 GHz Intel Xeon processor. The same approach also enables
us to process moderate size attack trees (70-80 leaves) in reasonable time
(1-2 minutes). Attack trees of this size are helpful in analyzing real-life
information systems and the multi-parameter attack trees can be now
used in practical security analysis. The performance results for larger trees
are given in Fig. 3. For each data point we generated 10 random trees and
the average running times were measured for the genetic algorithm with
parameters p = 2n and g = 2n. The error bars represent the standard
deviation of the average running time.

6 Conclusions and Further Work

In this paper we reviewed the method proposed by Jürgenson and Willem-
son for computing the exact outcome of a multi-parameter attack tree [14].
We proposed and implemented several optimizations and this allowed us
to move the horizon of computability from the trees having 20 leaves (as
in [14]) to the trees with roughly 30 leaves.

However, computing the exact outcome of an attack tree is an inher-
ently exponential problem, hence mere optimizations on the implementa-

152

Fig. 3. Performance results of the genetic algorithm

0

100

200

300

400

500

600

700

20 40 60 80 100 120

A
v
er
a
g
e
ru
n
n
in
g
ti
m
e
in

se
co
n
d
s

Number of leaves in the tree

Genetic algorithm with complexity of O(n4)

tion level are rather limited. Thus we also considered an approximation
technique based on genetic programming. This approach turned out to be
very successful, allowing us to reach 89% of confidence within 2 seconds of
computation for the trees having up to 29 leaves. The genetic algorithm
is also very well scalable, making it practical to analyze even the trees
having more than 100 leaves.

When running a genetic approximation algorithm, we are essentially
computing a lower bound to the attacker’s expected outcome. Still, an
upper bound (showing that the attacker can not achieve more than some
amount) would be much more interesting in practice. Hence, the prob-
lem of finding efficient upper bounds remains an interesting challenge for
future research.

Another interesting direction is extending the model of attack tree
computations. For example, Jürgenson and Willemson have also consid-
ered the serial model, where the attacker can make his decisions based on
previous success or failure of elementary attacks [19]. It turns out that
finding the best permutation of the elementary attacks may turn com-

153

puting the optimal expected outcome into a super-exponential problem,
hence the use of good approximation methods becomes inevitable in that
setting.

7 Acknowledgments

This research was supported by the European Regional Development
Fund through the Estonian Center of Excellence in Computer Science,
EXCS, and Estonian Science Foundation grant no 8124.

References

1. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. US Gov-
ernment Printing Office (January 1981) Systems and Reliability Research, Office
of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission.

2. Weiss, J.D.: A system security engineering process. In: Proceedings of the 14th
National Computer Security Conference. (1991) 572–581

3. Schneier, B.: Attack trees: Modeling security threats. Dr. Dobb’s Journal 24(12)
(December 1999) 21–29

4. Schneier, B.: Secrets & Lies. Digital Security in a Networked World. John Wiley
& Sons (2000)

5. Convery, S., Cook, D., Franz, M.: An attack tree for the bor-
der gateway protocol. IETF Internet draft (Feb 2004) Available at
http://www.ietf.org/proceedings/04aug/I-D/draft-ietf-rpsec-bgpattack-00.txt.

6. Byres, E., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabil-
ities in SCADA systems. In: International Infrastructure Survivability Workshop
(IISW’04), IEEE, Lisbon, Portugal. (2004)

7. Buldas, A., Mägi, T.: Practical security analysis of e-voting systems. In Miyaji,
A., Kikuchi, H., Rannenberg, K., eds.: Advances in Information and Computer
Security, Second International Workshop on Security, IWSEC. Volume 4752 of
LNCS., Springer (2007) 320–335

8. Edge, K.S.: A Framework for Analyzing and Mitigating the Vulnerabilities of
Complex Systems via Attack and Protection Trees. PhD thesis, Air Force Institute
of Technology, Ohio (2007)

9. Espedahlen, J.H.: Attack trees describing security in distributed internet-enabled
metrology. Master’s thesis, Department of Computer Science and Media Technol-
ogy, Gjøvik University College (2007)

10. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack modeling for information security
and survivability. Technical Report CMU/SEI-2001-TN-001, Software Engineering
Institute (2001)

11. Mauw, S., Oostdijk, M.: Foundations of attack trees. In Won, D., Kim, S., eds.:
International Conference on Information Security and Cryptology – ICISC 2005.
Volume 3935 of LNCS., Springer (2005) 186–198

12. Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J.: Rational Choice
of Security Measures via Multi-Parameter Attack Trees. In: Critical Information
Infrastructures Security. First International Workshop, CRITIS 2006. Volume 4347
of LNCS., Springer (2006) 235–248

154

13. Jürgenson, A., Willemson, J.: Processing multi-parameter attacktrees with esti-
mated parameter values. In Miyaji, A., Kikuchi, H., Rannenberg, K., eds.: Ad-
vances in Information and Computer Security, Second International Workshop on
Security, IWSEC. Volume 4752 of LNCS., Springer (2007) 308–319

14. Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter at-
tack trees. In: On the Move to Meaningful Internet Systems: OTM 2008. Volume
5332 of LNCS., Springer (2008) 1036–1051

15. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7) (1962) 394–397

16. Kutzkov, K.: New upper bound for the #3-sat problem. Inf. Process. Lett. 105(1)
(2007) 1–5

17. Kozen, D.: The design and analysis of algorithms. Springer (1992)
18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-

ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1989)
19. Jürgenson, A., Willemson, J.: Serial model for attack tree computations. In:

Proceedings of ICISC 2009. (2009)

155

	Introduction
	Abbreviations and Symbols
	Security Modeling
	Building Models of Security
	Fault Tree Analysis
	Fault Tree Elements
	Fault Tree Construction

	Attack Tree Analysis
	Attack Tree Foundations

	Quantitative Security Risk Assessment
	Quantitative Fault Tree Analysis
	Combining Fault Tree Analysis and Attack Trees
	Economic Threat Modeling
	Attack Graphs
	Quantified Analysis Approach by 4086696
	Survivability Analysis Approach by 1605745
	Quantified Analysis Approach by BLPSW
	Shortcomings of the Current State of the Art
	Global Gains Problem
	Local Optimum Problem
	Tree Transformations

	Parallel Attack Tree Model
	Formal Definitions
	Attack Tree Parameters
	Outcome Computation
	Comparison with Attack Tree Model by BLPSW
	Optimizations
	DPLL Algorithm
	Withdrawing Hopeless Branches
	Efficient Assignments Finding
	Computing the Attack Suite Success Probability
	Strategies for Choosing the Branching Point

	Complexity of Parallel Model
	Genetic Algorithm
	Representing the Solution
	Generating initial population
	Analysis

	Serial Attack Tree Model
	Model Description
	Comparison with Parallel Attack Tree Model
	Computation Algorithm
	Outcome Results Comparison
	Genetic Algorithm
	Generating Initial Population
	Crossing and mutating individuals
	Analysis

	Conclusions and Future Research
	Index
	References
	Abstract
	Resümee (Abstract in Estonian)
	Curriculum Vitæ
	Elulookirjeldus (CV in Estonian)
	List of Publications
	Computing Exact Outcomes of Multi-Parameter Attack Trees
	Serial Model for Attack Tree Computations
	On Fast and Approximate Attack Tree Computations

