

TALLINN UNIVERSITY OF TECHNOLOGY
Faculty of Information Technology
Department of Computer Science

TUT Centre for Digital Forensics and Cyber Security

An Automated Framework for securing
iOS Applications

Master’s Thesis

ITC70LT

 Student: Olga Dalton

Student code: 132204IVCMM

Supervisors:

Rain Ottis
Roger Kerse

Tallinn
2015

Declaration

I hereby declare that I am the sole author of this thesis. The work is original and has not been

submitted for any degree or diploma at any other University. I further declare that the material

obtained from other sources has been duly acknowledged in the thesis.

(date) (signature)

Abstract

The main purpose of this thesis is to write a proof-of-concept framework for securing iOS

applications. The framework must focus on solving the common vulnerabilities of iOS

applications and its integration should be easy enough even for iOS developers who are less

aware of security issues. Moreover, it must not require any changes to the architecture or class

inheritance of the existing application.

The methodology behind the devised framework is based on the theoretical research on iOS

applications security and an analysis of existing solutions. It includes multiple security

controls, such as countermeasures for insecure data storage, unintended data leakage and

insufficient transport layer protection vulnerabilities. Most of the security controls are injected

automatically into the application and do not require much, if any, additional manual setup.

Automatic injection is achieved by utilising advanced runtime manipulation techniques of

Objective-C, the primary programming language for writing iOS applications.

The analysis of the framework in terms of performance and binary size overhead has

indicated minimal impacts on the application. Moreover, a case study of the framework

integration into a real world project has clearly proven the viability of the idea. Consequently,

the goals of this thesis were successfully fulfilled.

The resulting framework offers multiple possibilities for improvements. There are at least two

evident directions for future framework developments. First, more complex security controls

must be implemented. In conjunction with these controls, additional performance and binary

size optimisations might be required. Second, going beyond the ordinary framework and

providing a plugin for the iOS development environment to randomly generate the framework

variations is also an important route to consider.

The thesis has been written in English and includes 68 pages of text, 7 chapters, 12 figures

and 4 tables.

Annotatsioon

Käesoleva lõputöö põhieesmärgiks on luua iOS rakenduste turvamiseks mõeldud

tarkvararaamistiku kontseptsiooni tõestamise versioon. Raamistik peab lahendama

rakendustes sageli esinevaid turvavigu, kusjuures raamistikuga sidumine peab olema piisavalt

lihtne ka nendele arendajatele, kes teavad turvalisusest vähe. Lisaks ei tohi raamistiku

kasutuselevõtt nõuda olemasoleva rakenduse arhitektuuri või klasside hierarhia muutmist.

Töö käigus luuakse raamistik, mis põhineb nii iOS rakenduste turvalisust käsitleval

teoreetilisel uurimusel kui ka olemasolevate lahenduste analüüsil. Raamistik sisaldab mitmeid

turvalisuse komponente, sealhulgas abinõusid ebaturvalise andmete hoiustamise, soovimatu

informatsiooni lekke ning ebapiisavate võrgusuhtluse kaitsemehhanismide vastu. Enamik

turvakomponentidest lisatakse rakendusse kas täiesti automaatselt või minimaalse

seadistusega. See baseerub Objective-C, põhilise iOS arenduses kasutatava

programmeerimiskeele, dünaamilisusel ning programmi täitmise ajal funktsionaalsuse

lisamisel.

Raamistiku mõjud nii jõudlusele kui ka aplikatsiooni suurusele on vastavale analüüsile

toetudes minimaalsed ja vastuvõetavad. Idee rakendatavuse analüüsiks viiakse läbi

juhtumiuuring, mis räägib raamistiku integreerimisest olemasolevasse rakendusse ning selle

mõjudest. Juhtumiuuring näitab positiivseid tulemusi. Sellest kõigest järeldub, et lõputöö

eesmärgid on edukalt saavutatud.

Loodud raamistikul on mitmeid edasiarendamise võimalusi, sealhulgas vähemalt kaks selget

edasimineku suunda. Esiteks on vaja lisada täiendavaid ja keerukamaid turvalisuse

komponente. Uute komponentide lisamisega peaks kaasas käima ka jõudluse ja raamistiku

suuruse optimeerimine. Teiseks tuleb kaaluda raamistiku komponentide varieerimist läbi

dünaamilise koodi genereerimise. Seda oleks mõistlik teostada integreeritud

programmeerimiskeskkonna tarkvaramooduli näol.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 68 leheküljel, 7 peatükki, 12 joonist

ning 4 tabelit

List of Acronyms and Terms

iOS A mobile operating system developed by Apple Inc.

Jailbreaking Jailbreaking is a technique to obtain system-level rights on iOS

device by exploiting a flaw in the operating system.

Springboard A standard iOS application that manages the home screen.

SSL Secure Socket Layer, a transport layer protocol

XSS Cross-site scripting, a security vulnerability that is typical for web

applications.

API Application programming routines

PLIST Property list, an XML file that typically stores serialized objects.

SQL Structured Query Language, a standard language for accessing

databases.

OWASP Open Web Application Security Project, a security-oriented online

community.

HTTP Hypertext Transfer Protocol

HTTPS HTTP over SSL

Dsym A separate file that stores debug symbols of an iOS application.

URL Uniform resource locator

OpenPGP A communication standard for secure data exchange.

PKI Public key infrastructure

MITRE Massachusetts Institute Of Technology Research And Engineering

HFS Hierarchical File Structure, a file system common for Apple devices.

Xcode An integrated development environment for iOS and Mac OS apps

development.

App Store An electronic shop to buy and download iOS applications

OpenSSL An open source toolkit for SSL protocols implementation

Table of Contents

1.	
 Introduction ... 10	

1.1 Motivation .. 11	

1.2 Scope .. 11	

1.3 Outline .. 12	

2. Theoretical background .. 14	

2.1 Overview of iOS development ... 14	

2.1.1 Objective-C .. 14	

2.1.2 Cocoa Touch .. 15	

2.1.3 Common application architecture .. 15	

2.2 Threat model ... 22	

2.2.1 Attack goals ... 22	

2.2.2 Attack scenarios ... 23	

3. Related works ... 28	

3.1 Cryptanium code protection ... 28	

3.2 Security solutions from the EldoS Corporation .. 29	

3.3 IMAS – iOS Mobile Application Security ... 30	

3.4 Comparative analysis .. 32	

4. A methodology for securing iOS applications ... 35	

4.1 Fundamental security principles ... 35	

4.2 Automatic or manual security ... 36	

4.3 Patching and ease of integration ... 36	

4.4 Proposed security controls .. 37	

4.4.1 Binary patching .. 37	

4.4.2 Runtime analysis .. 37	

4.4.3 Insecure data storage ... 38	

4.4.4 SSL attacks .. 39	

4.4.5 Insecure data logging ... 40	

4.4.6 Text entry caching ... 40	

4.4.7 Application screenshot .. 40	

4.4.8 Web content ... 41	

4.4.9 URL schemes ... 42	

5. Implementation of the security framework .. 43	

5.1 Security framework architecture .. 43	

5.1.1 Controls injection .. 46	

5.1.2 Runtime protection .. 49	

5.2 Framework configuration ... 50	

6. Analysis of the framework ... 53	

6.1 Impact on performance and binary size .. 53	

6.2 Case study: using the framework in a real-world application .. 55	

6.3 Limitations and possible issues .. 57	

7. Conclusions and future works .. 59	

References .. 62	

Appendix 1: Runtime integrity protection .. 69	

Appendix 2: Framework implementation guide ... 73	

Appendix 3: Kosmos IMAX security review report .. 79	

List of Figures

Figure 1: iOS Data Storage ... 17	

Figure 2: Reading iOS crash reports ... 21	

Figure 3: Insecure API details logging ... 21	

Figure 4: Common attack scenarios [21, 32, 50] .. 23	

Figure 5: Eavesdropping SSL requests ... 25	

Figure 6: Effect of inline functions ... 26	

Figure 7: Adding an iOS framework in Xcode 6.3 ... 43	

Figure 8: Security framework architecture ... 44	

Figure 9: Simple method swizzling .. 47	

Figure 10: New method implementation .. 47	

Figure 11: Objective-C method structure ... 48	

Figure 12: Swizzling method with C functions .. 49	

List of Tables

Table 1: Comparison of iOS security solutions .. 33	

Table 2: Framework configuration options .. 51	

Table 3: Encryption performance tests results ... 54	

Table 4: Anti-piracy controls performance impact ... 55	

10

1. Introduction

Smartphones are currently among the most popular technologies and many people consider

them to be something of a necessity, not a privilege. Indeed, with more than 1 billion users

worldwide [1], the mobile industry has become a serious competitor to desktop computers.

Smartphone users can be roughly divided into two categories. Ordinary users comprise the

first category. Most of these users are not concerned about security when playing new games

or ordering a taxi. Some of them are even jailbreaking their devices without the understanding

that hacking in this way opens the device to more attacks and thus weakens the level of

security [2]. The common opinion is that as long as jailbreaking offers more free apps or new

springboard animations, security is not a significant concern [3].

The other types of users are in the minority. These users are hackers. Jailbreaking is essential

for them, not because of the free apps or a lack of knowledge, but rather because of curiosity,

money or revenge [4]. Hacking apps, stealing data or distributing malware is often their

primary source of living, and if not, it is at least a hobby.

Both user categories pose a great challenge to mobile software developers. They must design

apps in a way that ordinary users will be satisfied and so that hacking the program or stealing

sensitive data will be as difficult as possible. However, in the rush to conquer a larger market

share, developers often ignore security aspects. A study by Hewlett Packard Security found

that 90% of more than 2000 of the examined mobile apps had various simple vulnerabilities,

including improper handling of private data, inappropriate cryptography or a lack of

protection mechanisms against reverse engineering. [5]

The situation is similar for both iOS and Android. Yet, Android developers are considered to

be more security aware [6]. This is mainly due to the greater media coverage of Android

vulnerabilities, while iOS is usually described as a very secure platform. Furthermore,

according to Payscale statistics, iOS Developers generally have less work experience

(approximately 4.5 years) when compared to developers in other fields. In contrast, Java

developers have over 6 years of experience and the average for all software development is

6.4 years. [7, 8, 9] More experienced software developers typically pay more attention to

security. Moreover, the available statistics only take into account professional developers, but

11

there are plenty of independent iOS developers who have no previous mobile or even

programming experience.

1.1 Motivation

The iOS mobile market is a complex and desirable target. On one hand, application

developers and companies need to start thinking more about security issues. On the contrary,

staying competitive might mean cutting development costs, which in fact can reduce security.

For example, 50% of all iOS Developers make less than $500 per month from App Store sales

and only 27% of iOS Developers make more than $5000 per month [10]. This is considered

the minimum salary level for a developer in a US company [7]. Requiring security

competence on a limited budget such as this is almost impossible.

Therefore, there is a need for a security solution that:

• would be easy to integrate;

• would not require a great deal of security knowledge or awareness;

• would not have expensive commercial licenses;

• would help to avoid common vulnerabilities.

Such a solution will help to achieve better mobile app security without significant additional

time resources. Initially this would be beneficial for independent developers, small

development companies and startups. In addition, in the long run, it could also become a

useful toolkit for enterprise applications.

1.2 Scope

The main purpose of this thesis is to write an iOS Framework that will help to eliminate the

common vulnerabilities found in iOS applications. The scope of the framework

implementation will be limited to providing a proof-of-concept and will thus focus on

somewhat simple issues, such as insecure data storage, improper SSL certificate verification

or runtime protection. Additionally, it will serve as a core platform for future developments to

incorporate more complex protection mechanisms.

12

Prior to the actual implementation, a study that will examine the main concepts of iOS

applications security and related works will be conducted. There have only been a handful of

similar projects done, so these will be analysed in detail with regard to the simplicity and

benefits of increased iOS security.

1.3 Outline

The thesis can be divided into five important sections:

• Researching theoretical background and technological aspects;

• Analysing similar works;

• Building up the technical foundation of the framework;

• Implementing the framework;

• Validating results with a performance and benefits study.

Thus, this thesis consists of five parts.

Section I offers insights into the theoretical aspects of iOS application security. It gives an

overview of iOS programming languages, application architecture, frequent security mistakes

and the common threat model. It shows that most security problems are caused by insufficient

protection mechanisms provided by the operating system, so a parallel can be made between

the iOS development framework and attack vectors. Mitigation options for those security

issues are also briefly described.

Section II concentrates on researching and analysing related projects. The aim is to find

works with similar objectives and explore possible ways to achieve these objectives.

Section III provides the conceptual foundation that is needed to implement a security

framework. It describes the fundamental principles that form the basis of the framework and

discusses what the reasonable amount of automation should be and what must be done

manually. Additionally, it attempts to find a balance between ease of integration and making

the act of patching a binary more difficult.

Section IV introduces the security framework, which is the main practical result of this thesis.

It discusses the architecture and integration process of the framework.

13

Section V analyses the resulting framework in terms of performance and benefits. It also

examines potential limitations of its implementation and provides solutions for these

limitations. The issues discussed are both technical and conceptual in nature.

The conclusion summarises the significant results of the thesis, and also addresses unsolved

problems and possible future studies.

14

2. Theoretical background

Development of iOS applications is heavily based on tools and methods that are provided by

Apple, such as Xcode, which is the primary development environment for Apple devices.

Until very recently, the only programming language used to develop native iOS applications

was Objective-C. On October 22, 2014 Apple released another programming language called

Swift, which can be used as an alternative or together with Objective-C. Even though it has

officially been released, Swift is still under development and will most likely be adapted in

the future. Because most iOS APIs are written in Objective-C, Swift was built from the very

beginning to be compatible with Objective-C frameworks and classes. However, when it

comes to advanced features of the language, Objective-C provides more flexibility, while

Swift limits much of the dynamism to make the language simpler and safer [11].

Thus, this thesis will concentrate on and use Objective-C as a primary and more feature-rich

iOS programming language that can also be utilised in Swift-based applications.

2.1 Overview of iOS development

2.1.1 Objective-C

Objective-C is the primary programming language choice for writing iOS applications. It is a

superset of the C language, which adds object-oriented features and a dynamic runtime. Its

syntax, primitive types and flow control are inherited from C, while the classes and methods

have a specific syntax that is derived from Smalltalk. [12]

Objective-C implements all common object-oriented structures similarly to other popular

programming languages. However, it provides a different feature called a category, which is

unique. Categories allow extending functionality of classes without sub-classing them, even if

there is no direct access to the original source code. For example, it is possible to add new

methods to system classes or replace existing ones [12].

Another difference between Objective-C and other languages is that in Objective-C classes do

not call their methods directly. Instead, each method is resolved dynamically by using an

“objc_msgSend" runtime function. This function traverses the hierarchy of classes and

determines the proper class and method according to the parameters given. This provides

15

great flexibility to override method calls at runtime and add dynamic behaviour to classes.

[13]

2.1.2 Cocoa Touch

Cocoa Touch is a collection of frameworks that are used to build iOS mobile applications. It

is generally written in Objective-C and is derived from a similar Mac OS framework called

Cocoa. The framework helps to solve common iOS development tasks such as animation, UI

elements, data storage or networking. Cocoa Touch is based on the model-view-controller

architecture. Consequently, most iOS applications also follow this pattern. [14]

2.1.3 Common application architecture

Developing each iOS application requires solving a similar set of tasks. As an example, most

iOS applications implement some type of backend communication, thus incorporating

networking solutions. After querying the application or user specific data from the backend, it

must be saved to the local database and presented graphically. Certain user actions trigger

changes to this data, which need to be synchronised with the backend. Optionally,

applications can use local data from the phone, such as GPS location, contents of the address

book, Facebook friends etc. Each of these tasks has many possible solutions provided by the

iOS operating system and the developer needs to choose an appropriate solution according to

the needs of the application. This section will give an overview of commonly used elements

and comment on the security risks of each element.

2.1.3.1 Data storage

One of the easiest ways to save data in iOS is to use preferences storage, called

NSUserDefaults. Its usage is limited to small amounts of data, such as strings, booleans or

keys, but implementation is very easy. For example, only a single line of code is needed to

save a value. Hence, its wide usage comes as no surprise and sensitive data, such as user

credentials or game bonuses, is often saved using NSUserDefaults. [15] However,

NSUserDefaults are internally stored in the application’s documents folder as a plain-text file

and can be easily accessed or modified even on a non-jailbroken device.

Storing large amounts of data in NSUserDefaults is not wise from a performance standpoint.

For larger files or data that is more complex, developers tend to use the iOS file management

system. iOS frameworks provide simple methods to write almost all data types to file and

retrieve it, including strings, dictionaries and arrays. Those files, if saved without additional

16

encryption, can be retrieved as easily as with NSUserDefaults. Furthermore, all such data

becomes unencrypted, when the device is unlocked for the first time after a reboot. Therefore,

it is generally accessible on the device even without knowing user’s password. It is possible to

encrypt it with a single key using iOS Data Protection API, but this method is rarely used.

[16]

Managing non-trivial data models and classes using files is extremely troublesome. For that

purpose, a relational database is one of the best choices. Similar to Android, iOS provides the

ability to use SQLite databases. Nevertheless, SQLite is seldom used directly in iOS. Instead,

a technology called Core Data is utilised, as it is easier to use than SQLite. Core Data adds a

layer of abstraction on top of SQLite and allows the use of data classes directly without

writing SQL queries. [15] The simplicity of integrating Core Data creates a feeling of a

“magical” data storage solution, while in reality all data is maintained in a SQLite database.

Similar to other data storage solutions, this database is unencrypted and located in the

application’s documents folder. [17]

Current iOS data storage solutions allow access for three possible attack scenarios:

1. If a device is stolen, sensitive data can be accessed.

2. On jailbroken devices, malicious applications can access sensitive data stored in a

plain-text file and send it to the central server.

3. iOS games often store information about bonuses or purchased improvements in

NSUserDefaults. Modifying contents of the NSUserDefaults file can provide a user

with unlimited lives or virtual money and is fairly easy even for non-hackers to

execute.

Insecure data storage is the second highest vulnerability in the OWASP Mobile TOP 10 2014

and the highest among mobile vulnerabilities that are related directly to iOS applications. [18]

Figure 1 shows an internal structure of a typical iOS application, which includes both

NSUserDefaults and a Core Data database. Both of these are plaintext. The SEB Eesti iOS

application is used as an example.

17

Figure 1: iOS Data Storage

2.1.3.2 Transport layer

Cocoa Touch provides an easy networking encapsulator called NSURLConnection. It handles

all common scenarios and allows modifying headers, cookies and cache settings to be used.

NSURLConnection or its wrappers are enough for most applications. [19] One of the most

common attack vectors for iOS applications is eavesdropping communication between the

application and the server. This is possible due to the fact that many applications use plain

HTTP connections. There is not much that can be done to protect against eavesdropping while

using HTTP and inventing custom encryption mechanisms instead of using SSL is not

reasonable.

However, even the incorporation of SSL does not always ensure security. For example, test

backend environments usually use self-signed SSL certificates, which are not validated by any

certificate authority. For testing purposes, certificate trust chain validation should be disabled

on the client side as well, because by default, iOS does not accept self-signed certificates. It

often happens that it remains disabled even in production versions of the application because

of the negligence of developers. [17]

Another caveat is that any downloaded content that supports caching (by using Cache-Control

headers) is automatically saved to the local plaintext SQLite file. Therefore, it might be

necessary to disable caching for requests with highly sensitive data. [20]

2.1.3.3 Web content

UIWebView is used to embed web content in the application. [24] This might be as simple as

a single help page or an entire application that is implemented using web technologies.

Similar to all other web content, when it is embedded into iOS applications, it might become a

18

target for exploits. For example; a recent study, which focused on mobile banking apps

security, revealed that 50% of the applications analysed were vulnerable to Javascript

injections. [25] In addition to pure webpage Javascript injection, the application can be

attacked through unvalidated user input, which is used to compile a native javascript call. The

opposite scenario is possible in some cases as well, allowing an attacker to reach native

functionality, such as sending an SMS. [25] This is possible because of the communication

bridge between the native functionality and the web content.

2.1.3.4 Text entry

A common way to provide the text entry functionality is to use standard Cocoa Touch

elements UITextField and UITextView. UITextField is used for shorter texts, e.g. usernames

and passwords, while UITextView is designed for longer data. As a bonus, those keyboard

classes offer autocorrect without any additional work. However, there is a problem with

autocorrect because any data typed into a textfield with autocorrect turned on (which is a

default value) becomes cached in clear text by the system. The only exception is a secure

textfield meant for password entry, which visually hides entered data. Hence, it is not suitable

for other text data, such as usernames or phone numbers. [21]

The iOS cut-and-paste buffer, called UIPasteBoard, raises an additional security concern,

because all data copied to the pasteboard is also cached in plaintext. [21]

In order to stop caching entries for possibly sensitive data, autocorrect and pasteboard must be

turned off. For example, there is no actual use for autocorrecting usernames, but it poses an

unintended data leakage risk. The issue of unintended data leakage is also emphasised in the

OWASP Mobile TOP 10. [18]

2.1.3.5 URL schemes

URL schemes are a frequently used iOS feature, which allows communication between

different apps. By using URL schemes, applications and websites are allowed to launch other

applications that are registered to recognize the requested scheme and ask to perform

additional actions. For example, opening the URL "youtube://watch?token=VIDEO_ID”

launches the Youtube app and starts playing the video “VIDEO_ID”. [22]

URL schemes are often abused by malicious websites as could be seen with the Skype iOS

application. More specifically, a vulnerability in Skype allowed to start a phone call without

19

the user’s prompt by opening an URL Scheme. [23] URL scheme vulnerabilities can cause

considerable financial damages, if discovered in popular applications.

One of the possible ways to prevent URL scheme vulnerability is to always ask for permission

from the user before performing any action, as is done in the Apple Phone app before calling

the requested number. [22]

Another method of vulnerability prevention is to check the caller application and block

requests from suspicious origins. This would be suitable for applications that know in advance

all possible users of URL schemes. However, the validation is often omitted even in such

cases and the simpler delegate method without the source application information is generally

preferred over the more secure method.

Again, the URL schemes exploit is listed in the OWASP Mobile TOP 10. [18]

2.1.3.6 iOS keychain

IOS keychain is a device-wide secure data container, which is used to secure applications’

sensitive data. All data in the keychain is preserved across re-installations. It is usually

advised not to store any passwords or session tokens on the device, but if they must be stored

locally, iOS keychain is the most secure method for doing so. Nevertheless, communicating

with keychain incorrectly can put a user’s private data in danger.

In detail, keychain API allows different protection levels to be set for each value. The default

protection level is specified as kSecAttrAccessibleWhenUnlocked, which prevents the data

from being read without knowing the passcode. Many applications use another value

kSecAttrAccessibleAlways or kSecAttrAfterFirstUnlock and that makes data readable even

without knowing the passcode. The probable reason for setting an insecure protection class is

the necessity to use keychain data when device is locked, or insufficient knowledge of

security. [26]

2.1.3.7 Cryptography

IOS applications are protected with basic cryptography by default. However, the protection is

limited only to the binary, while all associated files and data remain mostly unencrypted.

Furthermore, a skilled attacker can easily wipe the default binary encryption using open

source tools, which means that reverse engineering of the binary cannot be prevented. Reverse

20

engineering gives an attacker a good overview of an application’s architecture and working

principles. [17, 18, 27]

Consequently, all static sensitive data must be hidden in code as well as possible. One of the

frequent mistakes in iOS applications is the use of a hardcoded encryption key, which is the

same for all application instances. Finding a hardcoded encryption key endangers all owners

of the application, because a key from one application instance can be used to decrypt data in

all instances globally. [17, 18, 27]

2.1.3.8 Data logging

In general, iOS applications utilise multiple logging mechanisms. One of these mechanisms is

automatic and concerns application crash logs; all application crashes are stored on the device

and can be easily accessed. To symbolicate a crash log, an iOS developer needs the “dsym

file”. It is a file created together with a binary that contains debug symbols and is stored

separately to protect crash information from attackers. However, dsym is only needed to

symbolicate calls to application specific methods, but calls to underlying iOS APIs are still

accessible. A stack trace of the crash in combination with deliberately malformed data can

provide insight into the internal logic of the application. As an example, Figure 2 shows a

typical crash log. It is not clear which methods are called by the application, but those method

calls result in the tableview reload, which crashes the application due to the logic error in the

tableview datasource. The tableview control is an iOS control, which presents data in rows

and columns.

21

Figure 2: Reading iOS crash reports

Another concerning area is manual data logging using an iOS standard output method, called

NSLog. This method might be useful during application development, but logging

authentication tokens, passwords or API details in the release version of the application is

considered a high-risk vulnerability. All NSLog data is cached on the device until it is

rebooted and can be retrieved anytime. Figure 3 shows a popular Estonian application that

logs API endpoints using NSLog.

Figure 3: Insecure API details logging

22

2.2 Threat model

As shown in the previous section, many of the default options provided by iOS APIs for app

developers are not sufficiently secure. Data storage is a plentiful example, because there is no

setting to encrypt user defaults or database contents without using additional third party

libraries (see 2.1.3.1). Moreover, there are multiple recurring vulnerabilities due to an

improper selection of options or hardcoded keys, which raises questions about trusting iOS

applications.

Furthermore, Apple’s development resources and popular tutorials lack information about

potential security dangers. A good example would be the text entry caching that was

discussed in section 2.1.3.4, which is not stated clearly anywhere in Apple documentation.

Another similar vulnerability arises during the application minimising, when the iOS system

takes a screenshot of the current view to present it during the application launch from the

background mode. At first glance, this harmless feature makes the transition from the

background mode smoother, however screenshots can capture sensitive data. [21]

Consequently, it appears that developers are presented with a broad range of challenges to

mitigate possible attack vectors. In order to better understand those challenges, this section

will first explain the motives behind attacks on iOS applications and then it will cover the

various attack methods by presenting some example scenarios.

2.2.1 Attack goals

The goals of mobile applications hackers are similar to those that occur in the world of

personal computers:

Private data A mobile device is an important storage tool for personal data, therefore private

information plays a crucial role in hackers’ behaviour. Attackers are mostly focused on the

confidentiality aspect of information, because it is the most profitable. They are aware that

people tend to reuse passwords on different sites and that it is highly possible that passwords

for a mobile game and an email account will be the same. Applications that store credentials

improperly or reuse cryptographic keys are the primary target here. [28]

Backend Another possible target is the backend of the application. Often, developers do not

pay enough attention to APIs for mobile applications and their security. Therefore, exploiting

mobile endpoints might be easier than compromising a web version of the application. The

23

main goal is to gain access to the server in order to use it in denial of service attacks or

distribute malware to its visitors. Applications are used only to investigate API behaviour and

obtain access tokens. [17]

Computing resources Hackers also look to utilise the computing resources of mobile devices

to use them in botnets or bitcoin mining systems. While modern mobile devices are still not as

powerful as personal computers, the large number of devices in combination with high speed

Internet makes them an attractive target. [28]

Piracy The last aspect that is worth mentioning is piracy. Several popular applications on the

iOS App Store take advantage of a “freemium” monetisation strategy, which means that the

application is free, but it sells multiple premium additions. Piracy of such programs is rather

popular among owners of jailbroken devices. Pirating an iOS application usually involves

patching the binary. [29]

2.2.2 Attack scenarios

Due to the fact that most iOS applications are closed source, a common attack involves a

blackbox analysis of the binary. Despite the widespread opinion that attacking iOS

applications always requires a jailbroken device, some attacks can be performed even on a

stock iPhone. Figure 4 provides a schematic overview of possible attacks. Attacks that require

a jailbroken device are presented in blue and all others in red.

Figure 4: Common attack scenarios [21, 32, 50]

24

2.2.2.1 Client-side attacks

Client-side attacks focus directly on the detection of mistakes made by developers: misuse of

iOS APIs, flaws in sensitive data storage and remotely exploitable vulnerabilities that can be

potentially profitable. Testing and detecting most of them does not require a jailbroken

device, because it essentially involves manual analysis using controls provided by the

application and inspecting produced databases or files. Nevertheless, depending on the level

of vulnerability that is found, actually making use of it might require a more sophisticated

approach that involves patching the binary or creating a malicious application to steal

valuable information.

2.2.2.2 Network attacks

Most network attacks target confidential communication between the client and the server. A

passive man-in-the-middle attack intercepts data in order to collect it for further analysis,

which includes retrieving passwords or credit card data. Active attacks alter data prior to

sending it to the legitimate recipient in order to disclose more sensitive information or force

the user to perform unwanted actions. [30] Both attacks are possible due to the plaintext

HTTP connection between the iOS application and the server, which is very widespread. To

intercept SSL traffic, it is possible to make use of an improper SSL certificate validation on

the client side and replace the target certificate. The application will still accept the malicious

certificate, because it is programmed to accept invalid certificates. The attacker will then be

able to decrypt the communication channel and access plaintext data. [32]

Another reason that attackers execute man-in-the-middle attacks is to study API behind the

application to discover possible weaknesses on both sides in order to gain a better overview of

the application logic or to steal API keys. A great share of iOS applications is unprotected

against such attacks, because even the properly implemented SSL does not prevent

eavesdropping. The reason for this is that default certificate validation does not ensure that the

provided certificate is legitimate; it only checks the technical validity by verifying the chain

of trust and checking the hostname. An additional level of security can be added by allowing

the connection to use only a specific certificate. This technique is called SSL pinning. [32] As

an example, Figure 5 shows intercepted https communication from multiple popular

applications. In contrast, there is also a request from the Cash application from Square Inc,

which implements SSL pinning, so that all illegal requests are dropped and no sensitive data

is revealed.

25

Figure 5: Eavesdropping SSL requests

2.2.2.3 Binary attacks

Once a skilled hacker gains access to the binary of the iOS application, which generally

occurs by downloading it from the official App Store, reverse engineering is a matter of time.

The problem with Objective-C is that it can be reversed back to the high-level source even

without losing method and variable names. Thus, it is inevitable that an experienced attacker

will gain access to the application’s internal logic and can modify it by patching the binary.

The purpose of security controls is to make it as difficult as possible, so most of ordinary

hackers will give up. [31]

Possible security controls include:

Usage of C or C++ functions for security-critical operations C and C++ functions are less

vulnerable to interface dumping, so it would be more difficult to find and change critical

places. [31]

Inline functions Inline functions are C and C++ functions that instruct the compiler to copy

the body of the function to the place where it was called instead of calling it directly. Its direct

purpose is to decrease the overhead of a function call. From a security perspective,

duplicating code increases the complexity of patching the binary, because instead of replacing

the return value of the function in one place, it is needed to replace that value multiple times,

wherever the function is called. When this occurs, an attacker will need more time to patch

26

the binary and it is more likely that a mistake will be made that will corrupt critical code

sections. [31]

Figure 6 shows a graphic depiction of the result of using inline functions by providing

decompiled code of the iOS binary. There is a method called viewDidLoad and a function

called _someInterestingFunction. The viewDidLoad uses the _someInterestingFunction.

Without inlining, _someInterestingFunction is called directly by the viewDidLoad method

and the attacker needs to modify only the body of this function. After the inlining,

_someInterestingFunction becomes a part of the viewDidLoad method. Hence, each place

where _someInterestingFunction is used must be patched.

Figure 6: Effect of inline functions

Application integrity checks Inserting the defensive code to detect whether the binary was

modified, or using injected payloads will make the patching more difficult because an attacker

will also need to understand and tamper with integrity checks logic.

Jailbreak detection Many security-sensitive apps implement the jailbreak detection logic in

order to prohibit application execution or limit its functionality in a less secure environment.

27

2.2.2.4 Runtime tampering

A runtime analysis of iOS applications is used to trace internal control flow and modify

application execution logic. In Objective-C, implementations of any method can be replaced

with a completely different method using a technique called “method swizzling”. For

example, the method that is used to check whether the user is authorised to access protected

assets, can easily be replaced with a method that always returns “true”, so protected areas will

be accessible without authenticating.

One of the main tools used to perform a runtime analysis of applications is the debugger

(GDB or LLDB). A debugger allows the attacker to set or call breakpoints for interesting

methods. Values of instance variables can also be changed and additional methods can be

written and injected into the application. To protect the application against runtime

manipulation, debugging should be prohibited in the release mode. [21]

28

3. Related works

The general idea of providing frameworks to secure iOS applications is not new. This section

will briefly describe 3 different projects that aim to secure iOS applications. Each selected

project has its own unique approach to iOS security. Finally, a table of comparison will

conclude the main principles of each framework.

3.1 Cryptanium code protection

Cryptanium Code Protection aims to mitigate both binary and runtime attacks by injecting

integrity, debugger and jailbreak checks into the application and obfuscate the binary. It

provides an easy-to-use GUI tool, which starts with the application analysis to find sensitive

code sections, proceeds with protective checkers injection and finally obfuscates the code and

the program’s control flow. Cryptanium is not a traditional framework, but rather a toolkit

that integrates security protection both on the code and assembly level. [33]

Because Cryptanium is a cross-platform tool that can protect applications for all major

desktop and mobile operating systems, its protection mechanisms differ across target

platforms.

The main protection mechanisms for iOS are:

• Integrity, anti-debug and jailbreak protection Security of the application is ensured

by inserting specific functions called checkers into the application code. Integrity

checkers calculate the checksums of different overlapping sections of the binary and

the application’s read-only data. In the case of a checksum mismatch, it is highly

possible that the application has been tampered with, and it terminates deliberately.

Anti-debug checkers periodically scan running processes to indicate the presence of a

platform specific debugger (GDB or LLDB for iOS). Jailbreak checkers try to detect

specialized applications that require root permissions or access system applications

and settings. Such operations are only possible on a jailbroken device. [33]

• Code obfuscation. In addition to various security and anti-piracy checks, Cryptanium

is also a sophisticated obfuscator. It incorporates multiple standard code obfuscation

29

techniques, such as methods renaming, functions inlining and strings hiding. Another

interesting obfuscation technique used by Cryptanium is the control flow flattening

algorithm, which makes analysis of the control flow more difficult by changing the

execution of the program to run in a loop of parallel code blocks. [33]

Consequently, Cryptanium is a toolkit that attempts to mitigate binary tampering and runtime

manipulation risks. It is introduced as a premium class product and is nearly unbreakable

according to the vendor. [34] The project is closed-source and has an expensive commercial

license. The price depends on the customer and project size, but in most cases, it is not

affordable for small or medium applications. Therefore, Cryptanium is an excellent solution

for banking and financial applications, which is also emphasized on the product’s webpage.

[35]

3.2 Security solutions from the EldoS Corporation

The EldoS Corporation has released a cross-platform commercial suite of software

components that provide implementations for popular security standards, Internet protocols

and data storage solutions. Frameworks are written in C++ to ensure cross-platform

compatibility, however several platform specific editions are offered. [36]

The main security components for iOS are:

• Secure data storage EldoS strives to mitigate insecure data storage risks by providing

a secure data container, called Solid File System. It is ensured that application files

will be inaccessible by other applications or attackers due to the built-in encryption

support. Solid File System uses a custom data storage format, which is similar to ZIP

but has more advanced features, such as the support of SQL-like data search retrieving

or file tagging. Both the encryption and custom format make attacking data storage

extremely difficult. [37]

• Secure bidirectional network communication Another framework from the EldoS

Corporation, SecureBlackbox offers the network communication component, which

can work both as a server and a client. While acting as a server is not needed for most

applications, it is important to secure network communication in both directions for all

applications, including those acting as a server. [36]

30

• Secure data transfer over unsecured channel Despite the fact that SSL is almost

always advised for network communications, there are situations when SSL is not

available or stronger mechanisms are required. SecureBlackbox provides methods to

encrypt the data before transferring it over to the unsecured channel by implementing

two industry encryption mechanisms: OpenPGP and PKI. SecureBlackbox handles the

entire communication process, including the key generation, signing, encryption and

decryption. [36]

Thus, Solid File System and SecureBlackbox prevent network and insecure data storage

attacks. Both components have commercial licenses that are quite affordable for medium-

sized projects (Solid File System license fee starts at 250 € and SecureBlackBox will cost

approximately 1000 € for a standard package). Additionally, all frameworks have free trials

available.

However, the integration of frameworks might be problematic, especially for Solid File

System, because it is not a drop-in replacement of the system framework, but rather a third-

party library, which needs to be integrated separately. [37]

3.3 IMAS – iOS Mobile Application Security

IOS Mobile Application Security Project (IMAS) is not a cross-platform solution, such as

Cryptanium or SecureBlackbox; its only target is iOS applications. It is an open source

collection of security frameworks, controls and tutorials, which can be freely used without

any fees. The project is sponsored by MITRE Corporation to produce open source iOS

security controls and increase security awareness among iOS developers. Due to its unique

characteristics and the fact that it can be freely used, it is not surprising that IMAS has

acquired much attention from its inception; it has been widely referenced in the open source

community and promoted by OWASP. [38, 39]

At the time this thesis was written, IMAS consisted of 10 subprojects with each project

targeting a specific aspect of iOS applications security. Some of the projects are presented in a

tutorial form, in which the accompanying text introduces base security concepts and the code

is added only for illustrative purposes (e.g. forced-inlining repository [40]). There are also

complete libraries that are meant to be integrated directly into the project (e.g. encrypted-

core-data repository [41]).

31

The most popular IMAS security controls are:

• Encrypted core data As indicated in section 2.1.3.1, one of the most widely used iOS

data storage solutions, Core Data, is internally managed in the plaintext SQLite

database and thus creates sensitive data leakage vulnerability. IMAS proposes the

solution to this problem, which is designed as a drop-in replacement framework for

iOS Core Data. Its implementation is very similar to the native Core Data, but instead

of accessing the SQLite database directly, all calls pass the SQLCipher interface,

which encrypts and decrypts data on the fly. [41] SQLCipher is a third-party open-

source extension to SQLite that provides a fully encrypted SQLite storage. [42]

However, building up an advanced data storage solution similar to Core Data is not an

easy task. The Encrypted Core Data project still has many issues and does not support

all features of Core Data, such as ordered relationships or subqueries. [43]

• Application-level file based keychain IOS Keychain is the most secure data storage

solution available for software developers, but it has one problem. Namely,

application data stored in the iOS Keychain is not removed during the application

uninstallation process. Given the fact that most iPhone owners only have four-digit

passcodes or no passcode at all [47], data stored in the iOS keychain is potentially at

risk. The IMAS Project mitigates that risk by providing an alternative implementation

to the iOS keychain, which resides inside the application’s documents folder. This

file-based keychain is encrypted with a key and optional security questions that are

provided by the application user. Accessing the keychain requires unlocking it by

entering the passcode similarly to the device keychain. [44]

• Debug and jailbreak checks IMAS incorporates debug and jailbreak checks, similar

to Cryptanium. However, it only provides methods to detect a jailbroken phone or an

attached debugger, and does not call nor inject them automatically. The application

author can decide, where and whether to call those methods. [45]

• Secure memory The IMAS Secure Memory framework offers a set of functions to

clear up and encrypt sensitive instance variables or memory regions to decrease the

possibility of revealing sensitive data through memory analysis. Additionally, it

contains functions that will prevent malicious method tampering by tracking the

32

method’s relative location in memory; if the location changes, it is probable that

memory was manipulated. [46]

Ultimately, IMAS is a noteworthy open source project, which plays an important role in iOS

application security. It has taken the approach of educating developers and giving them

needed security controls or code samples. The developer must choose the necessary

framework from the IMAS projects catalogue, analyse appropriateness, study its usage and

finally integrate it into the project. Hence, IMAS projects provide useful accompanying

materials that can ease the process of securing iOS applications and explain the importance of

security controls, but that do not eliminate the necessity for a high degree of security

awareness and motivation from its users.

3.4 Comparative analysis

All three of the projects mentioned above focus on securing iOS applications, but they all

have different approaches, target security areas and licensing models. Table 1 concludes the

main principles and security controls of those projects.

IMAS Cryptanium

EldoS projects:

SecureBlackbox and

Solid File System

Programming

language

Mostly Objective-C,

some C functions
C++ C++

License/cost

Apache License,

Version 2.0, free to

use

Commercial license,

price depends on the

project size

Commercial license

SecureBlackbox

standard license for 1

developer costs 934 €

Solid File System lite

package license for 1

developer costs 250 €

Open/closed source Open source Closed source Closed source

33

Protection against

client-side attacks

Yes (encrypted code

data)
No

Yes (secure file

system)

Protection against

network attacks
No No

Yes (secure network

communication using

SecureBlackbox)

Protection against

binary attacks

Yes (jailbreak and

integrity checkers)

Yes (jailbreak and

integrity checkers)
No

Protection against

runtime attacks

Yes (debugger

checks and memory

security)

Yes (debugger

checks)
No

Easy to integrate (1

– 10)
Intermediate (6) Quite easy (3) Rather difficult (8)

Updates
Constant through

github.com

No info about

updates

Lifetime updates if

purchased (+ 50% in

price)

Conclusion

Suitable for start-ups

and medium-sized

projects that require

specific security

solutions (e.g. secure

Core Data) and are

willing to invest

some time into

software security.

An advanced code

protection solution

for large-scale

banking/financial

projects, which incur

significant losses

when an application

is hacked. Not

suitable for smaller

projects due to an

expensive license.

Advanced solutions

for secure network

communications,

different Internet

protocols and secure

data storage. Suitable

for medium-sized

projects that have

strong security

requirements for data

confidentiality.

Table 1: Comparison of iOS security solutions

The conclusions section from the Table 1 shows clearly that the security library choice

depends solely on the project needs: networking solutions from the SecureBlackbox may be

34

enough for one project, but another might need to integrate both code protection from

Cryptanium and encrypted core data from IMAS. However, what is currently missing is an

all-in-one solution that would incorporate different types of security controls in one core

framework, offer ways to extend its functionality by writing new security controls and that

would be easy to integrate even for less security-aware novice developers. Given the relative

novelty of the entire iOS development sphere, there is still insufficient research and related

works available to address the different needs of application developers.

35

4. A methodology for securing iOS applications

By taking into account the theoretical background and related works in the field of iOS

application security, the author of this thesis proposes a new iOS framework as a solution to

raising security issues that arise from iOS applications. This section will provide insights into

the conceptual working principles of the resulting framework.

4.1 Fundamental security principles

The default iOS security model has taken a huge step forward in the field of user protection

by providing more advanced security mechanisms than those used in desktop computers.

However, the fact that mobile devices are much easier to lose or steal [47] might mean that

those precautions are not sufficient. Furthermore, there is almost no protection against

debugging and reverse-engineering the application, which puts the results of a developers’

hard work at risk for piracy and theft. The essence of Objective-C, especially its dynamic

message dispatching, makes reverse-engineering and patching iOS applications very simple.

At the moment, whether or not to implement additional security controls to prevent common

vulnerabilities is actually up to the application developer. iOS APIs implementation is focused

primarily on the end user experience and although security is very important, it has become a

secondary priority (e.g. security risks because of caching data for autocorrect, see section

2.1.3.4). The proposed solution follows a different approach; security should not be an opt-in

feature, but the default option. The developer should not have to write extra code to make the

application more secure, but code should be written to disable security controls. For example,

adding the security framework would inject multiple debugger and jailbreak checks into the

application’s control flow automatically and it would be up to the developer to turn them off

by changing the default configuration.

It is important to continue using default iOS APIs and frameworks as much as possible

instead of offering custom drop in solutions in order to extend existing functionality. This is

because writing custom solutions from the beginning is a very time consuming and error

prone process. In addition, iOS development APIs are continually tested by millions of

developers and have evolved over the years. New iOS versions and changes in system APIs

can possibly break custom solutions. As an example, it is more reasonable to extend default

36

Core Data mechanisms by adding cryptography routines than to create a new solution in most

cases. The security framework would thus take an existing iOS application model as a basis

and extend it with security features.

4.2 Automatic or manual security

Without a doubt, not all security controls can be injected automatically, similar to debugger

and jailbreak checks, due to multiple system and data restrictions. Indeed, no framework can

anticipate with certainty, which data fields are important and must be protected in the context

of a specific application. Protecting all fields would not be wise from a performance

standpoint. An even worse scenario could occur with an iOS data storage solution Core Data,

where automatic changes to the model data types might produce unwanted effects on the data

model integrity because runtime changes would not be reflected in the GUI modelling tools.

Another example would be URL schemes whitelisting (see 2.1.3.5) because the application

developer is the only person who knows which applications should be allowed to use URL

schemes and which should not. Making whitelisting an automatic process based on some

average parameters is not a solution due to differences between application architectures.

There are certainly more examples of situations in which automatically applying security

controls would cause undesired effects. Essentially, this is a typical problem of putting too

much trust into the software solution. The key to solving such problems is to use a more

general-purpose configuration by default and to allow further configuration. As for security

controls, which clearly require some manual setup, their integration must be done as

transparently and easily as possible.

4.3 Patching and ease of integration

Finding a balance between ease of integration and preventing binary patching is another

difficult task. To make patching more complex, security controls must be used in as many

places as possible and they should overlap each other. The more these places must be

modified to break the protection, the greater chance that a crucial mistake will be made and an

attacker will give up early. On the other hand, requiring the developer to incorporate

framework methods or use different framework classes throughout the application would

make the integration process too troublesome.

37

The solution is to automatically inject needed security checkers into the program’s control

flow by using the dynamic features of Objective-C. However, the default methods for the

checkers injection must be selected carefully. Obviously, performing the application integrity

verification on every view state change would cause considerable performance overhead.

Doing this on every new view appearance would be a more appropriate idea. The default

framework configuration must provide a reasonable improvement to security without any

noticeable or undesirable impact. Additionally, the framework user must have the opportunity

to change the configuration at any moment in the application lifecycle.

4.4 Proposed security controls

Considering the previously described security principles, the following implementation for

common security issues can be presented:

4.4.1 Binary patching

Protection mechanisms against binary patching would include:

• Validating that the binary is encrypted, as pirated binaries are usually distributed

unencrypted;

• Checking the presence of the code signature;

• Validating that the Info.plist file is unchanged, because this file is usually modified in

hacked applications.

All integrity checks will be injected automatically into various parts of the application code.

Those can be disabled manually if necessary. All protections will be enabled only in the

release mode so as not to disturb the application development process. Integrity checkers

would provide a callback to implement custom application behaviour, if integrity anomalies

are discovered. For example, the application might want to report the incident to developers

or silently wipe user’s data. The default behaviour would exit the program.

4.4.2 Runtime analysis

Similar to the defence solutions against binary patching, the framework will automatically

inject debugger and jailbreak checks into the release version of the program. The framework

will not rely on a single debugger or jailbreak detection method, but will attempt to use

38

multiple solutions to make deception of the checker more difficult for an attacker.

Additionally, most important framework sections, such as checkers injection, will be

protected against runtime tampering by validating the method’s image origin. Similar to

integrity protection, jailbreak checkers will integrate a custom callback system to report the

application regarding a jailbroken device. Debugger checkers will simply exit the application

if a debugger is attached, because there is almost no legitimate use of a debugger in a release

build.

4.4.3 Insecure data storage

Insecure data storage issues will be solved using encryption algorithms. The selected

encryption standard is AES256, which is also used by Apple for the device wide data

encryption. [59] The framework will generate a random encryption key for each application

installation and store it securely in the iOS Keychain. After the application removal, the

encryption key will remain in the Keychain, but it will be useless without the application data.

After the application reinstallation, the old encryption key will be removed and replaced with

a newly generated key.

The encryption key will be used to automatically encrypt and decrypt any data that is saved to

application preferences storage NSUserDefaults. The application developer can disable

NSUserDefaults encryption at any time and for all data globally, or for a single data entry.

When the NSUserDefaults encryption becomes globally disabled, data entries already stored

in an encrypted form will remain encrypted until the first modification of their value. This

would also apply to unencrypted values when the encryption becomes enabled somewhere in

the middle of the application execution. Encrypting and decrypting all NSUserDefaults values

during the global configuration change could cause performance problems. Moreover,

automatically decrypting all data due to a single method call would make stealing the data

easier, if the attacker manages to modify the global security framework configuration.

Otherwise, the attacker would additionally need to find a way to decrypt data that has already

been saved.

File encryption will use exactly the same principle, but there will be a threshold of the file

size, which can be encrypted. The default threshold will be determined at runtime depending

on the amount of the device's random-access memory, because encrypting files that are too

large would negatively influence performance. Thus, if the file size exceeds the threshold, it

39

will be ignored and saved unencrypted. However, the threshold can be changed manually at

any time. New settings will apply only to new files.

Core data encryption (see 2.1.3.1) will follow a different pattern. The application developer

would need to select values that he wishes to encrypt in the graphical Core Data modelling

tool and manually change their data types to the encrypted type that is provided by the

security framework. The encrypted type will internally use Core Data Transformable

attributes. Transformable is a special Core Data type, which allows transparent data encoding

and decoding of database values. The main idea behind transformable attributes is that the

developer can continue using ordinary types in code, but all values are internally transformed

to binary data. [48] There is also no need for a separate Core Data encryption configuration

mechanism, because it will be configured manually in the graphical modelling tool.

4.4.4 SSL attacks

SSL-related protection mechanisms would focus on solving improper SSL certificate

validation and providing additional security by implementing SSL pinning techniques

(described in section 2.2.2.2). SSL certificate validation problems are caused mainly by

turning off the default system certificate validation for test environments. Therefore,

prohibiting the ability to disable the certificate validation in the release mode could solve

problems, especially when a developer forgets to comment the vulnerable code out before

releasing the binary. However, a somewhat more sophisticated approach is required, because

developers might need to make release builds against the test environment, so the

aforementioned protection mechanism would break the application. Hence, the configuration

should allow the ability to specify which endpoints require a correct certificate and which do

not.

Proper implementation of the SSL pinning technique is a complex problem. The simplest way

is to pin and validate the exact server certificate, but this will cause problems if the certificate

expires. Another possibility is to pin to the root certificate, but this does not always ensure

authenticity of the communication channel, especially in case of possible breaches with

certificate authorities [51].

Pinning to the public key and to the related information (called SubjectPublicKeyInfo or

SPKI) of a server certificate is considered to be the most flexible way to do SSL pinning,

because the public key is usually fixed even after the certificate re-issuance. For example,

40

Google rotates server certificates every 30 days, but keeps public keys static. [54] Pinning

only the public key without the related information can leave the client vulnerable to

misinterpretation attacks. These types of attacks occur when an attacker uses the same public

key, but manipulates the related information and makes the client trust it. [49]

4.4.5 Insecure data logging

Preventing insecure data logging is rather simple: the library will use a very popular method

among iOS developers. The method includes defining a new function to use for data logging,

which only works in the debug mode and ignores messages in the release mode. However,

the framework will instead use the standard logging method NSLog, so changing logging

functions everywhere would not be required. There will also be a way to enable certain

message logging even in the release mode by using another logging function.

4.4.6 Text entry caching

Application developers generally use text fields in registration and login forms, so there is a

significant chance that text fields will capture sensitive data such as usernames, contact

information or personal codes. Preventing sensitive data caching by text entry methods

requires turning off both autocorrect and pasteboard for those fields. The security framework

will do this by default for all text fields in the application. However, it will be possible to

disable this feature globally for all fields, for each individual field or for a view, which

contains multiple fields. Disabling security restrictions for an individual field or a view will

be implemented using runtime attributes, which can be changed both programmatically or in

the graphical iOS interface builder to ease the integration.

4.4.7 Application screenshot

The iOS system takes a screenshot of the current view during the application transition to the

background mode. This is done to create a feeling of an immediate application start, when the

user returns to it. The latest screenshot is always saved to the application’s documents folder

and despite the fact that only one screenshot can be present at a time, deleted versions of

screenshots can often be found in the HFS journal. [32] This means that it is highly probably

that screenshots leak sensitive data, especially if registration or payment information is being

entered.

41

The most popular solution for application screenshot vulnerability is to hide the main

application window before suspending. As the main window is hidden, the only image that

will be captured is a black screen. However, such a solution impacts the user experience,

because the black screen, which is presented before the application launch, is not an expected

behaviour of the iOS system.

The security framework will implement a different approach. Namely, all text fields, which

may contain sensitive information, will be cleared during the application suspension. The data

from the text fields will be encrypted and saved in memory, so it will be decrypted and

inserted back into the appropriate text fields after the application relaunch. A security control

such as this will prevent information from being captured on the screenshot and will also

ensure information protection in memory. Sensitive fields will be determined based on the

text entry caching prevention control; all fields on screen that are not marked as insecure, will

be protected in the background mode.

4.4.8 Web content

Web content vulnerabilities, such as XSS and same origin policy issues, which are quite

common in mobile websites, should be evaluated individually in most cases. Nevertheless,

some typical mistakes can be eliminated. For example, many applications display local

HTML content. The same origin policy works differently for local files and local HTML files

are granted full access to all application data. This means that saving and presenting an

untrusted HTML document locally creates a universal XSS vulnerability, allowing the

attacker to access a corporate intranet, confidential application data or local cookies.

Preventing that vulnerability is rather simple and requires setting the baseURL parameter to

the request object. The security framework will check the parameter and set it to

“about:blank”, if it is left unset.

For external connections, OWASP recommends prohibiting users from accessing arbitrary

web content inside the application. [17] To achieve this, all requests must be whitelisted. The

security framework will provide an easy whitelisting solution, which is based on the W3C

Widget Access specification [52], and should be familiar to users of Apache Cordova, a

popular technology for developing mobile web apps with native functionalities. [53] By using

the wildcard identifier (*) it will be possible to combine request filters based on the protocol,

host, resource or port. Withal, the web request's whitelisting functionality will require explicit

42

configuration of the whitelist due to the different needs of applications and that is why the

default policy will allow all requests.

4.4.9 URL schemes

The security framework will check and whitelist the usage of URL schemes (see 2.1.3.5) and

block requests from all origins not in the whitelist. The whitelist will be provided by the

application developer as a filter for identifiers of source applications, which are allowed to use

the URL scheme. Similar to the web content whitelisting, the default policy will allow all

origins, because it is not possible to detect valid origins without additional configuration.

43

5. Implementation of the security framework

The technical output of this thesis is an iOS framework, which can be added to any other

Xcode-based iOS project as a subproject or as a compiled framework. An iOS framework is a

hierarchical directory, which may contain source code, headers, resources or shared libraries.

Framework instances are shared among different applications if possible, because they are

loaded into memory only when required by the application. The compiled framework binary

is therefore provided separately from the application, but both framework loading and method

invocations are incorporated into the application file. It is also possible to include multiple

versions of a framework to ensure backward compatibility. [55]

The installation of an iOS framework is a somewhat straightforward process that can be done

using Xcode GUI tools. Figure 7 shows a typical process of a framework addition to the

project using Xcode 6.3.

Figure 7: Adding an iOS framework in Xcode 6.3

5.1 Security framework architecture

The high-level model of the security framework architecture is depicted in Figure 8.

44

Figure 8: Security framework architecture

The lifecycle of an iOS application starts with the “main” function, which is the entry point

for every Objective-C program. It is similar to main functions in C, Java and many other

programming languages. The main function sets up an instance of the UIApplication class and

assigns a developer-defined delegate to it. UIApplication is the system class that is

responsible for managing application’s state changes. Both the UIApplication and its delegate

are hereafter responsible for application lifecycle management.

The security framework methods are incorporated into various stages of the application

lifecycle. All security controls can be broadly divided into three groups:

1. Application-independent controls, which can be set up without additional

configuration or application context. As an example, detecting an attached debugger

process or finding proofs of a device jailbreak relies entirely on system calls and does

not need application specific input.

2. Application-independent controls, which require application context to function

properly. These controls generally use system APIs, but address application specific

45

anomalies detection. This can be illustrated with an application encryption detection or

by checking the ability of the application to write outside the sandbox.

3. Application-specific controls, which are activated only when the appropriate

functionality exists. Those controls detect the initialisation of related classes and

enable themselves by injecting the additional validation logic. Some controls are

injected fully automatically and others require the proper configuration. Namely, if the

application does not store any data locally, then the data storage encryption module

will not be used. Similarly, a fully offline iOS application will not require networking

and related SSL pinning mechanisms. However, the activation of the SSL pinning

would require providing reference certificates or hashes.

Consequently, the organization of various security control types is done differently.

First, iOS frameworks are loaded into memory before the application is actually created,

because they are needed from the very beginning of the application lifecycle. The dynamic

loader, called dyld on iOS, processes the binary header to detect the needed frameworks to

load. Additionally, the dynamic loader searches for specific framework initialization functions

and calls them if found upon loading. That function must be named initialise (void) and

should have an __attribute__((constructor)) identifier. The initialise function is guaranteed to

be called before any other framework class loads or method calls. [56]

Therefore, the initialise function is the proper place to setup multiple application-independent

controls and perform any required preparations. The following actions are executed during the

framework loading and initialisation:

1. The framework creates and injects multiple integrity, jailbreak and debugger controls.

2. The framework sets up application-wide encryption keys, which are later used for the

data storage encryption. It communicates with iOS Keychain services throughout the

encryption key setup process.

3. The framework loads the URL scheme and web content requests whitelists from the

application settings file if configurations are present.

4. The framework modifies data writing and reading methods by adding encryption and

decryption routines.

46

5. A new logging function called SecLog is defined, which internally uses an extended

version of the system logging function NSLog. The standard version of the NSLog is

replaced throughout the application with SecLog with a couple of pre-processing

macros that configure logging based on the application running mode.

The next step in the Framework setup process follows the successful application launch and is

triggered by the application developer, who calls the framework setup function. The setup

function must be provided with an optional callback to the application session identifier. The

optional session identifier is used to protect application wide encryption keys in memory, so

they will not be stored unencrypted in a variable. The developer must ensure that the provided

key is not static or hard-coded, but rather dynamically changing based on user authentication

or session tokens. Implementing the callback is not crucial from the framework viewpoint,

because otherwise encryption keys will be not saved in memory variables at all, but rather

queried each time, when needed. However, memory storage greatly optimizes encryption

performance. In addition to the direct setup, the invocation of framework functionality from

the application context guarantees that the application launch is successfully finished and the

application now has an active UIApplication instance, delegate and at least one main window.

This allows not only the injection of remaining debugger, integrity and jailbreak checks, but it

also allows them to run for the first time.

Finally, the setup of all other controls is performed on a needs basis. More specifically, the

framework intercepts the creation of functionality related class instances and adds additional

validation logic to the delegating class. Those controls include:

1. SSL certificate validation and SSL pinning for the NSURLConnection based

networking (see 2.1.3.2);

2. Injection of web content and URL scheme whitelists;

3. Ensuring web content same origin policy;

4. Protection against text fields and application screenshots unintended data leakage;

5.1.1 Controls injection

Automatic controls and validation logic injection minimizes the amount of work needed to

integrate security controls into an existing application, because it abolishes the necessity to

47

use subclasses for extending the objects functionality. Injection of controls is achieved by

intercepting and modifying invocations of Cocoa Touch system methods or protocol

implementations. In order to do this, the framework utilizes the Objective-C runtime and more

specifically, a technique called method swizzling. This is the same method of runtime

manipulation that is commonly used by iOS application attackers to modify or replace critical

methods implementations in runtime. [57]

In the simplest case, the swizzling method can be achieved in three steps. Figure 9 illustrates

the replacement of the NSURLConnection initialization method initWithRequest:delegate:

with an another method initWithRequestSwizzled:delegate:. It first finds the original and the

new method implementations. Thereafter, the methods’ implementations are exchanged.

+ (void)load
{
 Method original, swizzled;

 //1. Find the original method
 original = class_getInstanceMethod(self,
 @selector(initWithRequest:delegate:));
 //2. Find the replacement method
 swizzled = class_getInstanceMethod(self,
 @selector(initWithRequestSwizzled:delegate:));
 //3. Exchange methods implementations
 method_exchangeImplementations(original, swizzled);
}

Figure 9: Simple method swizzling

The new method implementation is shown in the Figure 10. Essentially, the method performs

SSL logic setup and then proceeds with the original method.

- (instancetype)initWithRequestSwizzled:(NSURLRequest *)request
delegate:(id)delegate
{
 // Add validation logic to the NSURLConnection delegate
 [self setupDelegate:delegate];
 // Call the original method
 return [self initWithRequestSwizzled:request
delegate:delegate];
}

Figure 10: New method implementation

At first glance, it might appear that the new method calls itself, leading to an infinite loop.

However, as method implementations are exchanged, it becomes clear that the original

method implementation now has a new name.

48

Method swizzling is internally achieved by manipulating the Objective-C class structure and

its subsctructure method_list. Both Objective-C classes and methods are principally C

structures. A method structure states its name, arguments and implementation, as shown in the

Figure 11. During method swizzling, the methods’ implementation pointers are exchanged.

[58]

struct objc_method {
 // Method's identifying name
 SEL method_name;
 // Method's arguments' types
 char *method_types;
 // Method's actual implementation == C function
 IMP method_imp;
};

Figure 11: Objective-C method structure

The framework architecture follows a similar 3-step approach to all controls injection:

1. Exchange the methods’ implementations to direct method calls to the framework;

2. Add additional functionality (e.g. check application integrity) or modify the method’s

arguments (e.g. encrypt a string before writing);

3. Call the original method.

Consequently, the framework does not change any system API's behaviour, but only

intercepts the methods’ invocations, performs needed operations and proceeds with the

original implementation.

Withal, the simplistic methods’ exchange approach described above is not applicable

everywhere, because it assumes that the target method exists. This assumption is always

correct for system APIs, but is not valid for delegate classes, which might have optional

methods. In that case, it is required to first check the existence of the target method and if it is

present, exchange the implementations, and then add a new method with the original name.

The framework implements such behaviour, when injecting whitelisting, SSL validation and

text fields related controls.

Another problem might arise because of new Objective-C methods declaration. Objective-C

methods that are declared for exchange are added to the Objective-C symbol table like any

49

other method. This is not an issue in most instances, but it simplifies the process of tracking

down important framework parts. That is why a C-function based swizzling method is used

for the important sections of the framework. The core principle is similar to the traditional

method of swizzling, but instead of declaring a new Objective-C method, a C function is used.

The implementation of the method in the structure is replaced manually with the new

function, while the original implementation is cached in memory. Figure 12 illustrates that

solution that is used for jailbreak and debugger checkers injection.

static IMP __original_DidLoad_IMP;

+ (void)load
{
 Method original;

 // Find the original method
 original = class_getInstanceMethod(self,
@selector(viewDidLoad));

 // Replace method's implementation.
 // method_setImplementation returns the previous
implementation. Save it for later usage
 __original_DidLoad_IMP = method_setImplementation(original,
(IMP)swizzledViewDidLoad);
}

void swizzledViewDidLoad(id self, SEL _cmd)
{
 // Call the original implementation
 ((void(*)(id,SEL))__original_DidLoad_IMP)(self, _cmd);

 // Notify event observing classes
 [[UIViewController class]
notifyObservers:NSStringFromSelector(@selector(viewDidLoad))
 fromObservedObject:self];

 }

Figure 12: Swizzling method with C functions

5.1.2 Runtime protection

The framework implementation relies heavily on the Objective-C runtime features, which are

also often used by attackers. Without additional protection, a potential attacker will be able to

exchange the methods’ implementations back to original using similar techniques. Indeed, he

would need to conduct a detailed study of the framework structure and find all of the

intercepted methods, but it would simply be a matter of time before that is completed. In order

to make those attacks more difficult, the security framework implements basic application

runtime integrity protection.

50

Injecting malicious code into applications using Objective-C runtime techniques requires

loading that code into the address space. The safeguard mechanism against malicious code

loading should validate the address space of the critical application methods. In detail, the

dynamic linker library function dladdr allows the image origin of any function to be obtained.

In an iOS application, all legitimate code comes from Apple’s frameworks, custom

application frameworks or the application itself. If the function’s image originates from any

other location, the application’s runtime is most likely being investigated or tampered with.

Validation of the address space would force an attacker to inject malicious code into the

existing address space, which is highly complicated in comparison with ordinary runtime

attack methods. [21]

The framework incorporates automatic periodical checks of important framework sections

and base Cocoa Touch classes as a part of application integrity protection. Moreover, it allows

the application developer to check his own custom classes or methods to ensure that critical

code sections were not altered. Appendix 1 demonstrates the implementation of the runtime

protection solution.

5.2 Framework configuration

The central idea in the framework configuration is to provide default policies wherever

possible, and simultaneously integrate extensive customization capabilities, because each iOS

project has different security requirements. For instance, running on jailbroken devices might

be unacceptable for mobile banking programs, while a file manager application would not

only run on jailbroken devices, but also implement additional features for that target audience.

Therefore, each automatically activated control has a setting that will fully disable or enable it

at any time. The only exception is logging functions, because those are configured during

compile time using pre-processor macros. Additionally, some controls have custom settings,

such as jailbreak detection callbacks or file encryption threshold settings, and it is possible to

partially disable them. Table 2 summarises the available configurations for each framework

control.

51

Control Fully disable/enable
the control

Partially disable the
control

Additional
configurations

Debugger checks
YES, using

configuration
functions

NO -

Jailbreak checks
YES, using

configuration
functions

NO
Possible to set

custom behaviour on
jailbreak detection

Integrity checks
YES, using

configuration
functions

NO

Possible to set
custom behaviour for
missing encryption

detection

NSUserDefaults
encryption

YES, using
configuration

functions

YES, using custom
saving methods to
ignore encryption

-

File encryption
YES, using

configuration
functions

NO

Possible to set
maximum file size
that should support

encryption

Core Data
encryption

YES, using Xcode
modelling tools

YES, through Xcode
modelling tools -

Text fields cache
protection

YES, using
configuration

functions

Yes, by modifying
runtime attributes in
code or in Interface

builder

-

iOS Screenshot
protection

YES, using
configuration

functions

Yes, by modyfing
text fields cache

settings
-

SSL pinning and
SSL certificates
validation

Yes, by providing no
SSL settings

Yes, by changing
SSL settings -

Application logging

Yes, by importing or
not importing

framework logging
headers

Yes, by importing
framework logging

headers only to
selected files

-

Webview and URL
scheme whitelisting

Yes, by providing no
whitelist

Yes, by changing
whitelist settings -

Table 2: Framework configuration options

52

For most applications, default policies and the one line framework configuration will be

enough. Applications that are more complex might need to configure the framework further

during the application launch. It is rarely necessary to change framework configurations

multiple times, but doing so might serve the purpose of confusing attackers. Indeed, if every

developer configures the framework in his own way, understanding the security controls logic

would immediately become more difficult.

Global framework settings are managed by the configuration module, which passes settings

around other controls. All configuration methods are implemented as C functions, so they are

not added to the Objective-C symbol table. A typical integration process of the framework can

be concluded in 3 steps:

1. Include the framework into the project;

2. Add needed imports to the application classes;

3. Call the setup function with an optional session identifier callback.

In addition, the developer can optionally configure whitelists, setup database encryption and

add runtime integrity checks. The complete integration guide is presented in Appendix 2.

53

6. Analysis of the framework

The golden rule of security states that a security solution must cost less than a potential loss of

its breach. The most secure iOS application would be an empty application, which shows a

white screen and does literally nothing. Of course, it would be worthless from an attacker's

perspective as well. For that reason, it is important that any mobile security solution would

not have a negative impact on application performance. A perfectly secure, and thus slow and

unusable application would not be of interest to attackers anyway, because there would not be

many daily users. This chapter will begin with an analysis of framework performance and size

aspects and it will proceed with a case study of the framework benefits.

6.1 Impact on performance and binary size

The security solution of this thesis will add performance overhead in two ways; through data

encryption and various anti-piracy controls, such as runtime integrity protection.

Overhead from encryption is usually considered to be inevitable, as long as the encryption

algorithm is implemented using best practices. The security framework does not implement

any custom encryption algorithms, but instead uses encryption routines provided by iOS in

the encryption framework, called CommonCrypto. Apple’s cryptography routines are

implemented taking into account device hardware characteristics and thus ensure the best

possible performance on iOS devices. Moreover, every iOS device has a dedicated AES256

crypto engine, which makes encryption even more efficient. [59]

In order to measure the performance overhead from data encryption, multiple tests were

conducted. All tests were performed on two different devices: the latest iPhone 6 and a 3-year

old iPhone 4S. Those devices were chosen because they have very different performance and

hardware parameters. The iPhone 4S model is the oldest device, which is supported by the

latest iOS 8 software and will most likely be dropped from support in the upcoming iOS 9

release. [60]

Table 3 summarises the results of the tests.

54

Test description

Test time without

encryption (iPhone

6/iPhone 4S)

Test time with

encryption (iPhone

6/iPhone 4S)

Average

performance

overhead

1000

NSUserDefaults

operations (write

and read)

0.314524 s /

0.975283 s

0.956544 s /

2.819648 s
2.9 – 3.1 times

1000 File writing

operations (write

and read)

4.161051 s /

7.137668 s

8.711572 s /

10.363644 s
1.4 - 2.1 times

1000 Core Data

entities operations

(write and read)

with 6 attributes

5.642732 s /

7.461728 s

9.072054 s /

11.332890 s
1.5 – 1.6 times

Table 3: Encryption performance tests results

Table 3 shows that an average performance overhead per one thousand operations is 50-60%

for core data operations, 40-110% for file writing operations and 190-210% for

NSUserDefaults operations. The reason for the larger overhead for NSUserDefaults

operations is the comparatively shorter base operation time, while data encryption takes equal

time regardless of operation type. Considering the fact that is almost no application that writes

thousands of NSUserDefaults entries, such an overhead is acceptable.

It is more difficult to measure overhead with regard to piracy checkers. The actual impact

depends largely on the amount of user’s interaction, as checkers are injected based on

application state transitions, not time. With that said, in addition to an average control

invocation time, it is also important to find an average control usage to gain a better overview

of possible overhead. Table 4 shows that the overhead is rather unnoticeable in the context of

a modern application.

55

Control type

Average time for control

invocation (iPhone 6/iPhone

4S)

Average number of control

invocations during the 10

minute usage*

Jailbreak controls 0.003149 s / 0.0068465 s 12

Debugger controls 0.000037 s / 0.000056 s 16

Binary integrity controls 0.0003055 s / 0.00253 s 11

Runtime integrity controls 0.0013635 s / 0.007963865 s 28

* Calculated by testing different applications. May vary largely for a different application
usage style.

Table 4: Anti-piracy controls performance impact

Finally, the size of the framework is of great importance, because it directly influences

application sales, especially in the case of a free app. Many people will ignore an interesting

application if it is larger than the App Store over-the-air download limit and cannot be

downloaded through mobile network. [61]

The main dilemma regarding the framework size is related to inline functions. The use of

inline functions is a technique that is used throughout the framework to avoid having a single

method to patch. Inline functions are good in terms of security, but aggressive copying of

code pieces definitely makes the resulting binary bigger. However, as for the current state, the

framework size of 475 KB should not be of great concern for an average iOS application size

of 23 MB. [61] However, it may be an important point of optimization for future

developments.

6.2 Case study: using the framework in a real-world application

In order to better analyse the security framework concept in a real-world context, a short case

study of the framework integration will be conducted. The project that will be studied is an

iPhone application in beta stage for the Kosmos IMAX Cinema in Tallinn. The main purpose

of the study is to execute an application security review to ensure the appliance to best

practice security requirements before the first official application release.

56

The Kosmos IMAX iOS application has a wide range of features, including login,

registration, user ticket listing, movie programmes and tickets purchase. Most of the

application functionality is based on the client-server model, where content is queried using

multiple different APIs and displayed locally. However, the application also has a local layer

of data storage to minimise the number of API queries.

The initial security audit for Kosmos IMAX focused mainly on the client application and is

based on the OWASP mobile top 10 vulnerabilities list. [18] It was executed using 2 devices:

a non-jailbroken iPhone 6 with iOS 8.2 and a jailbroken iPad Air with iOS 8.1.2. Jailbroken

devices give more freedom in terms of security analysis, but many application vulnerabilities

can be discovered and exploited on non-jailbroken devices as well.

The full security report is provided in Appendix 3. The security review revealed 14 issues in

total, most of which were client side vulnerabilities, because that was the primary focus of the

audit. However, the review also found an important API related flaw, which allowed

bypassing authorisation mechanisms. All issues were reported to developers and subsequently

fixed.

Among the issues mentioned above, there were many mistakes that were typical for iOS

developers, such as saving sensitive data to plaintext data storage, hardcoding authentication

tokens and logging too much information to the iOS console. Moreover, there were literally

no binary protections, which allowed the manipulation of variables in runtime or debugging

of the application. However, runtime manipulation is not considered the highest risk for this

application, because of multiple strong API-side controls. For example, the security review

report indicates the vulnerability about changing the contents of a tickets variable, which

would potentially allow the generation of free tickets. Nevertheless, such an attack would

probably fail the physical validation in the cinema using the QR reader with an order's

database validation. A similar runtime manipulation attack could be used to change ticket’

prices before proceeding to the payment screen. This would allow the user to buy cheaper

tickets, but fortunately, such an attack fails the API-side validation upon the ticket purchase

completion.

For the sake of analysing the benefits of the security framework, it was integrated into the

Kosmos IMAX application. In conjunction with default configurations, some custom options

were utilized, such as checking the integrity of order and a ticket's managing classes runtime,

57

disabling jailbreak checkers and encrypting user data related database fields. Furthermore,

SSL pinning for the testing environment was added. The total integration process took less

than two hours.

Integration of the framework resulted in a considerable improvement in the Kosmos IMAX

application’s security. Out of 14 issues, which were revealed during the security audit,

integrating the framework fixed 10 of them. Issues that were not fixed were mostly related to

API or application internal logic flaws (e.g. saving credentials locally) and could not

conceptually be fixed with automated measures. Nevertheless, there was also a vulnerability

that allowed the capture of sensitive bank account data on a screenshot, which could possibly

be mitigated by a framework if an appropriate control existed.

It is clear that the integration of a single framework cannot solve all possible vulnerabilities,

especially API related flaws. However, eliminating common client-side exploits already

improves the overall system security notably. Moreover, each real-world framework

integration example would provide valuable information about needed improvements and

missing controls. By further analysing each integration sample and finding similarities

between them, it would be possible to build a solid security framework, which would fix an

even larger percentage of security flaws automatically.

It is worth noting that the importance of having such a framework increases when there are no

financial, timing or knowledge opportunities for conducting security reviews, which is rather

common for mobile projects. Integration of the security framework does not require a deep

understanding of security principles and should therefore be possible even for novice

developers. On the other hand, a developer who is more interested in security can use the

framework as an educational reference for multiple security solutions.

6.3 Limitations and possible issues

The major purpose of this thesis was to provide a proof-of-concept security framework

implementation and analyse its technical and conceptual viability. While this goal was

successfully achieved, the project still has many limitations to overcome.

First, with the framework scaling and the addition of new controls, performance and

optimisation aspects would become crucial. Possibly, the selection of control injection points

58

must be redesigned, because it would need to accommodate new controls, whereas existing

logic would require further optimisation.

Another area of improvement is with controls, which currently require manual setup.

Certainly, most of them cannot be automated due to conceptual limitations, such as requests

whitelisting. However, there are also some controls, for which problems are mostly technical

and can possibly be overcome by using novel solutions. As an example, Core Data currently

requires manual encryption setup using Xcode modelling tools, but it might be possible to

omit this step. Withal, it would require an immense additional research focused directly on the

concrete technical problem.

One more potential improvement is related to randomizing the framework controls and

injection points. Indeed, regardless of the solution merits, having similar framework

invocation points for multiple projects would make overcoming security guards easier. There

is a widespread problem of putting too much trust into a single solution; the more users there

are, the greater the impact of its vulnerabilities. OpenSSL is a good example of a popular

library, whose exploits have influenced millions of websites worldwide. [62] The proposed

solution would be to randomise the implementation of controls and their invocation logic for

each project. The general idea is to provide an Xcode plugin, which would take the current

implementation as a basis, but generate each time a slightly different controls package and

injections architecture. This can be easily achieved by having a large database of controls and

by choosing a random combination whether automatically or manually.

Finally, no security framework can eliminate the necessity of a code obfuscation solution for

Objective-C projects. Advanced features and the syntactic simplicity of Objective-C expose it

to technically uncomplicated reverse-engineering attacks. While most of Objective-C

obfuscators are premium class products, there are also advanced open-source alternatives that

can be utilized by any security-concerned developer. [63]

59

7. Conclusions and future works

This thesis focuses on the issue of iOS applications security. More specifically, it researches

the possibility of creating an all-in-one iOS security framework for solving common

vulnerabilities in iOS applications. The selected methodology combines both a theoretical

analysis of iOS applications security and a practical approach, which consists of creating a

proof-of-concept iOS security framework and validating results from its usage.

The theoretical section describes common iOS applications security vulnerabilities and typical

development patterns. It is shown that there are basically two primary reasons for weak iOS

applications security: insufficient security mechanisms from the vendor (Apple) and poor

security awareness of developers.

After completing the theoretical research, the author analyses different ways of mitigating

security issues of iOS applications by investigating existing solutions in that field. Due to the

fact that iOS development is a relatively new area for security concerns, there are still very

few security-oriented projects that focus only on iOS. That is why two of the researched

projects are actually cross-platform toolkits and only one project concentrates only on iOS

applications.

The comparison of benefits and drawbacks of existing solutions provides a basis for defining

core principles for the resulting security framework. The main idea concentrates on

automating the integration of security controls into the existing project, so its implementation

would require a low degree of security awareness or changes to the application architecture.

Moreover, an initial combination of security controls that can be implemented has been

defined. This includes countermeasures for insecure data storage, unintended data leakage and

insufficient transport layer protection vulnerabilities. In addition, runtime and integrity

protection mechanisms have been introduced.

The architecture of the resulting framework relies on advanced Objective-C runtime

manipulation techniques, such as intercepting method invocation to modify its

implementation. This allows the integration of most security controls to be automated and

does not require class inheritance patterns to be changed. Similar runtime-based techniques

are used for a different type of framework functionalities, which require additional manual

60

setup due to conceptual differences between applications. This makes manual setup of such

controls easier. The framework provides extensive configuration capabilities to accommodate

different requirements. As runtime manipulation is also quite widespread among attackers, the

framework incorporates runtime integrity protection controls.

To indicate possible negative and positive effects of the framework integration, an analysis of

performance, size and security impacts was conducted. Performance implications of the

analysis were considered to be acceptable, but if new controls are added, further optimization

would possibly be required. The current framework size of 475 KB is also small enough for

modern iOS applications. For the sake of judging the direct benefits of the security

framework, this thesis included a case study of the Kosmos IMAX iOS application. The case

study conducted a black-box security review, which indicated 14 vulnerabilities, 13 of which

were client-side issues. The framework integration mitigated 10 out of those 13

vulnerabilities, which clearly improved the overall security of the application, proving the

viability of the framework and positive expectations for future development.

The results of this thesis are significant, because it demonstrates that current security solutions

provided by the vendor are not sufficient, but it is possible to mitigate most of vulnerabilities

using a standardized approach. The sample implementation of the security framework would

be an important basis for future development and would provide a solid reference for security

controls implementation.

As for future research, there are two directions that must be developed in parallel. First, new

controls must be added and should be accompanied by performance and binary size

optimisations. Moreover, there are currently multiple technical limitations, which increase

amount of the necessary manual integration, such as enabling Core Data encryption. Solving

those issues might require finding new techniques and slightly changing the overall

framework architecture. The focus of the second direction is randomisation of the framework

implementation. This would take the current implementation and architecture of the

framework, and generate a different set of security controls and injection points for each

project. Such a generator can be integrated into the iOS development environment as a third-

party plugin to ensure seamless integration and take into account the specifics of each project.

Finally, it is important to understand that there is no protection mechanism that can ensure a

bulletproof security. The goal of any security control is to slow the attacker down, so he will

61

eventually give up. Each additional safeguard would also stop less educated attackers who are

not talented enough to break through the security. However, if there is enough financial

motivation and educated human resources to attack the application, there is essentially no way

to stop it. Nevertheless, making use of strong protection mechanisms and improving them

over the time is the only way to resist attacks.

62

References

[1] Ambika Choudhary Mahajan, Worldwide Active Smartphone Users Forecast 2014 – 2018:

More Than 2 Billion By 2016 [REPORT]. DazeInfo, 18.12.2014 [WWW]

http://dazeinfo.com/2014/12/18/worldwide-smartphone-users-2014-2018-forecast-india-

china-usa-report/ (14.02.2015)

[2] Janus R. Nielsen, Which smartphone user are you? MYSecurityCenter Blog, 11.07.2013

[WWW] http://blog.mysecuritycenter.com/2013/07/11/which-smartphone-user-are-you/

(14.02.2015)

[3] Yuvraj Agarwal, Malcolm Hall, ProtectMyPrivacy: Detecting and Mitigating Privacy

Leaks on iOS Devices Using Crowdsourcing, 2013 [Online] ACM Digital Library

[4] Calum Macleod, Is that a hacker next to you?, IET Communications Engineer, 2007

[Online] IEEE Explore Digital Library

[5] Christian D’Orazio, Kim-Kwang Raymond Choo, A generic process to identify

vulnerabilities and design weaknesses in iOS healthcare apps, 48th Hawaii International

Conference on System Sciences, 2015 [Online] IEEE Explore Digital Library

[6] Jin Han, Qiang Yan, Debin Gao, Jianying Zhou, Robert Deng, Comparing Mobile Privacy

Protection through Cross-Platform Applications, 20th Annual Network & Distributed System

Security Symposium, 2012 [Online]

[7] iOS Developer Salary (United States). Years of Experience. Payscale. [WWW]

http://www.payscale.com/research/US/Job=iOS_Developer/Salary (17.02.2015)

[8] Java Developer Salary (United States). Years of Experience. Payscale. [WWW]

http://www.payscale.com/research/US/Job=Java_Developer/Salary (17.02.2015)

[9] Software Developer Salary (United States). Years of Experience. Payscale. [WWW]

http://www.payscale.com/research/US/Job=Software_Developer/Salary (17.02.2015)

63

[10] Dan Rowinski, Among Mobile App Developers, The Middle Class Has Disappeared,

22.07.2014 [WWW] http://readwrite.com/2014/07/22/app-developers-middle-class-

opportunities (17.02.2015)

[11] Introducing Swift. Apple Inc [WWW] https://developer.apple.com/swift/ (24.02.2015)

[12] About Objective-C. Apple Inc [WWW]

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ProgrammingWith

ObjectiveC/Introduction/Introduction.html (21.02.2015)

[13] Manuel Egele, Christopher Kruegel†, Engin Kirda, Giovanni Vigna, PiOS: Detecting

Privacy Leaks in iOS Applications, 2011 [Online] https://iseclab.org/papers/egele-ndss11.pdf

(21.02.2015)

[14] Cocoa Touch Frameworks. Apple Inc [WWW]

https://developer.apple.com/technologies/ios/cocoa-touch.html (22.02.2015)

[15] Hans-Eric Grönlund, Colin Francis, Shawn Grimes, Data Storage Recipes, 2012 [Online]

SpringerLink Digital Library

[16] NSFileManager Class Reference. Apple Inc [WWW]

https://developer.apple.com/library/prerelease/ios/documentation/Cocoa/Reference/Foundatio

n/Classes/NSFileManager_Class/index.html (22.02.2015)

[17] iOS Developer Cheat Sheet. OWASP. [WWW]

https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet (23.02.2015)

[18] Projects/OWASP Mobile Security Project - Top Ten Mobile Risks. OWASP. [WWW]

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-

_Top_Ten_Mobile_Risks (23.02.2015)

[19] Jeff Kelley, Learn Cocoa Touch for iOS, 2012 [Online] SpringerLink Digital Library

[20] NSURLRequest Class Reference. Apple Inc [WWW]

https://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/

NSURLRequest_Class/index.html#//apple_ref/occ/instp/NSURLRequest/cachePolicy

(23.02.2015)

64

[21] Jonathan Zdziarski, Hacking and Securing iOS Applications, 2012 [Online] Safari Books

Online

[22] Rui Wang, Luyi Xing, XiaoFeng Wang, Shuo Chen, Unauthorized Origin Crossing on

Mobile Platforms: Threats and Mitigation, 2013 [Online] ACM Digital Library

[23] SANS Software Security Institute, iOS Handling of URL Schemes May Lead to Identity

Theft. Softpedia, 09.11.2010 [WWW] http://archive.news.softpedia.com/news/iOS-Handling-

of-URL-Schemes-May-Lead-to-Identity-Theft-165484.shtml (24.02.2015)

[24] UIWebView Class Reference. Apple Inc [WWW]

https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIWebView_Class/

(24.02.2015)

[25] Ariel Sanchez, Personal banking apps leak info through phone. IOActive Labs Research,

08.01.2014 [WWW] http://blog.ioactive.com/2014/01/personal-banking-apps-leak-info-

through.html (24.02.2015)

[26] Jens Heider, Rachid El Khayari, iOS Keychain Weakness FAQ, Further Information on

iOS Password Protection, Fraunhofer Institute for Secure Information Technology, 2012

[Online]

https://www.sit.fraunhofer.de/fileadmin/dokumente/sonstiges/iPhone_keychain_faq.pdf

(24.02.2015)

[27] Encrypting and Hashing Data. Apple Inc [WWW]

https://developer.apple.com/library/ios/documentation/Security/Conceptual/cryptoservices/Ge

neralPurposeCrypto/GeneralPurposeCrypto.html (25.02.2015)

[28] Goran Delac, Security Threats for Mobile Platforms, University of Zagreb, 2011 [Online]

ACM Digital Library

[29] Cracked iOS (iPhone, iPad) and Mac App Store (OS X) Apps and Books for Free -

AppAddict. An example site offering cracked applications. [WWW]

https://www.appaddict.org (25.02.2015)

65

[30] Roi Saltzman, Adi Sharabani, Active Man in the Middle Attacks. A SECURITY

ADVISORY. IBM Rational Application Security Group, 2009 [Online]

http://blog.watchfire.com/amitm.pdf (01.03.2015)

[31] Mobile Application Integrity Protection Handbook. DEFEND AGAINST APP

INTEGRITY RISKS & ATTACKS. Arxan Technologies, 2013 [Online]

http://www.arxan.com/assets/1/7/Mobile_App_Integrity_Protection_Handbook.pdf

(04.03.2015)

[32] Dominic Chell, Tyrone Erasmus, Jon Lindsay, Shaun Colley, Ollie Whitehouse, The

Mobile Application Hacker's Handbook, 2015 [Online] Google Books

[33] Cryptanium Overview. White Paper. WhiteCryption, 2015 [Online]

http://static1.squarespace.com/static/53ffba10e4b034368de43c27/t/54e535dae4b0b74ca98ff4

17/1424307674026/Overview.pdf (12.03.2015)

[34] CRYPTANIUM CODE PROTECTION Brochure. WhiteCryption, 2015 [WWW]

http://static1.squarespace.com/static/53ffba10e4b034368de43c27/t/54234761e4b0b3ca2a2325

1c/1411598177686/Code-Protection-Datasheet.pdf (11.03.2015)

[35] Financial Institutions are Prime Targets for Cybercriminals. The Nine Application

Vulnerabilities that Need Your Attention. WhiteCryption, 2015 [Online]

http://static1.squarespace.com/static/53ffba10e4b034368de43c27/t/54932b69e4b05dca90b49

b33/1418931049615/banking-f%5B1%5D.pdf (12.03.2015)

[36] Solutions for software developers. EldoS Corporation. [WWW]

https://www.eldos.com/solutions/solutions-for-developers.php (13.03.2015)

[37] Solid File System. Virtual file system engine that can be embedded into your software.

EldoS Corporation. [WWW] https://www.eldos.com/solfs/std-benefits.php#product

(13.03.2015)

[38] OWASP iMAS iOS Mobile Application Security Project. Owasp.org [WWW]

https://www.owasp.org/index.php/OWASP_iMAS_iOS_Mobile_Application_Security_Proje

ct (13.03.2015)

66

[39] iOS Mobile Application Security. Defense for your iOS App. IMAS Project’s official

webpage [WWW] http://project-imas.github.io/ (14.03.2015)

[40] iMAS forced-inlining. IMAS Project [WWW] https://github.com/project-imas/forced-

inlining (14.03.2015)

[41] iOS Core Data encrypted SQLite store using SQLCipher. IMAS Project [WWW]

https://github.com/project-imas/encrypted-core-data (14.03.2015)

[42] SQLCipher. Full Database Encryption for SQLite [WWW]

https://www.zetetic.net/sqlcipher/ (14.03.2015)

[43] Encrypted Core Data issues. IMAS Project [WWW] https://github.com/project-

imas/encrypted-core-data/issues (14.03.2015)

[44] Secure Foundation. IMAS Project [WWW] https://github.com/project-

imas/securefoundation/ (14.03.2015)

[45] Application level, attached debug detect and jailbreak checking [WWW]

https://github.com/project-imas/security-check (14.03.2015)

[46] Tools for securely clearing and validating iOS application memory [WWW]

https://github.com/project-imas/memory-security (14.03.2015)

[47] Smart phone thefts rose to 3.1 million last year. ConsumerReports, 28.05.2014 [WWW]

http://www.consumerreports.org/cro/news/2014/04/smart-phone-thefts-rose-to-3-1-million-

last-year/index.htm (14.03.2015)

[48] Core Data Programming Guide. Non-Standard Persistent Attributes. Apple Inc [WWW]

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/CoreData/Articles/

cdNSAttributes.html (16.03.2015)

[49] Public Key Pinning, Adam Langley, Google, 2011 [WWW]

https://www.imperialviolet.org/2011/05/04/pinning.html (17.03.2015)

[50] IOS Application Security Testing Cheat Sheet. Owasp.org [WWW]

https://www.owasp.org/index.php/IOS_Application_Security_Testing_Cheat_Sheet

(04.04.2015)

67

[51] Internet Security under Attack: The Undermining of Digital Certificates. Neal Leavitt,

2011 [Online] IEEE Explore Digital Library

[52] Widget Access Request Policy. W3C Recommendation 7 February 2012. W3.org

[WWW] http://www.w3.org/TR/widgets-access/ (06.04.2015)

[53] Apache Cordova Documentation. Whitelisting Guide. [WWW]

https://cordova.apache.org/docs/en/4.0.0/guide_appdev_whitelist_index.md.html

[54] Certification Practices Statement. Google Inc. [WWW]

https://static.googleusercontent.com/media/pki.google.com/et//GIAG2-CPS-1.0.pdf

(11.04.2015)

[55] Framework Programming Guide. Apple Inc [WWW]

https://developer.apple.com/library/ios/documentation/MacOSX/Conceptual/BPFrameworks/

Concepts/WhatAreFrameworks.html#//apple_ref/doc/uid/20002303-BBCEIJFI (14.04.2015)

[56] Mach-O Programming Topics. Apple Inc [WWW]

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachOT

opics/Mach-O_Programming.pdf (16.04.2015)

[57] Hacking iOS on the Run: Using Cycript. Sebastián Guerrero, RSA Conference 2014

[WWW] http://www.rsaconference.com/writable/presentations/file_upload/hta-r04a-hacking-

ios-on-the-run-using-cycript.pdf (18.04.2015)

[58] Objective-C Runtime Programming Guide. Apple Inc [WWW]

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/ObjCRuntimeGuide

/Introduction/Introduction.html (19.04.2015)

[59] iOS Security Guide, iOS 8.1 or later. Apple Inc [WWW]

https://www.apple.com/business/docs/iOS_Security_Guide.pdf (19.04.2015)

[60] iOS 8 Overview. Apple Inc [WWW] https://www.apple.com/ios/whats-new/

(20.04.2015)

68

[61] Dave Wooldridge,Taylor Pierce, The Business of iOS App Development: For iPhone,

iPad and iPod touch, 2014 [Online] Springer Books

[62] Thomas Wadlow, Who Must You Trust?, 2014 [Online] ACM Digital Library

[63] Protecting iOS Applications. Polidea Sp, author of the iOS class guard, open-source

Objective-C obfuscation tool [WWW]

http://www.polidea.com/#!heartbeat/blog/Protecting_iOS_Applications (23.04.2015)

69

Appendix 1: Runtime integrity protection

//
// MemoryCheck.h
// SmartSec
//
// Created by Olga Dalton on 12/04/15.
// Copyright (c) 2015 Olga Dalton. All rights reserved.
//

#import <Foundation/Foundation.h>

extern BOOL checkClassHooked(char * class_name);
extern BOOL checkClassHookedWithAllMethods(char * class_name);

extern BOOL checkClassMethodHooked(char * class_name, SEL methodSelector);

//
// MemoryCheck.m
// SmartSec
//
// Created by Olga Dalton on 12/04/15.
// Copyright (c) 2015 Olga Dalton. All rights reserved.
//
// Based on:
//
// The Mobile Application Hacker's Handbook
// By Dominic Chell,Tyrone Erasmus,Jon Lindsay,Shaun Colley,Ollie
Whitehouse
//
https://books.google.ee/books?id=5gVhBgAAQBAJ&pg=PA149&hl=et&source=gbs_toc
_r&cad=3#v=onepage&q&f=false

#import "MemoryCheck.h"
#import "Defines.h"
#import "LOOCryptString.h"

#import <dlfcn.h>
#import <objc/runtime.h>

// Declarations

FORCE_INLINE int endsWith(const char *str, const char *suffix);
FORCE_INLINE BOOL checkMethodImplementationHooked(IMP methodimp);
FORCE_INLINE BOOL checkClassHookedWithConfig(char * class_name, BOOL
checkAllMethods);

// Implementations

extern FORCE_INLINE BOOL checkClassMethodHooked(char * class_name, SEL
methodSelector)
{
 IMP methodImp =
class_getMethodImplementation(objc_getClass(class_name), methodSelector);
 return checkMethodImplementationHooked(methodImp);
}

https://books.google.ee/books?id=5gVhBgAAQBAJ&pg=PA149&hl=et&source=gbs_toc_r&cad=3#v=onepage&q&f=false
https://books.google.ee/books?id=5gVhBgAAQBAJ&pg=PA149&hl=et&source=gbs_toc_r&cad=3#v=onepage&q&f=false

70

extern FORCE_INLINE BOOL checkClassHooked(char * class_name)
{
 return checkClassHookedWithConfig(class_name, NO);
}

extern FORCE_INLINE BOOL checkClassHookedWithAllMethods(char * class_name)
{
 return checkClassHookedWithConfig(class_name, YES);
}

BOOL checkClassHookedWithConfig(char * class_name, BOOL checkAllMethods)
{
 Class aClass = objc_getClass(class_name);
 Method *methods;
 unsigned int nMethods;

 IMP methodimp;
 Method m;
 if (!aClass) return NO;

 methods = class_copyMethodList(aClass, &nMethods);

 int max = (int)(nMethods / 20);

 // Pass through all class methods
 // If checkAllMethods == NO, select methods to check randomly
 for (int i = 0; i < nMethods; i+= (checkAllMethods ? 1 :
(MAX((int)ceilf(arc4random()%(max ? max : 1)), 1))))
 {
 m = methods[i];

 methodimp = (void *) method_getImplementation(m);

 if (checkMethodImplementationHooked(methodimp))
 {
 free(methods);
 return YES;
 }
 }

 free(methods);
 return NO;
}

BOOL checkMethodImplementationHooked(IMP methodimp)
{
 if (!methodimp)
 {
 return NO;
 }

 Dl_info info;

 // Query DL_info from method implementation using dladdr
 int d = dladdr((const void *) methodimp, &info);

 if (!d)
 {
 // Something terribly wrong
 return YES;

71

 }

 // Check image origin against legit origins
 if (strstr(info.dli_fname, [LOO_CRYPT_STR_N("/usr/lib/", 9)
UTF8String]))
 {
 return NO;
 }

 if (strstr(info.dli_fname,
[LOO_CRYPT_STR_N("/System/Library/Frameworks/", 27) UTF8String]))
 {
 return NO;
 }

 if (strstr(info.dli_fname,
[LOO_CRYPT_STR_N("/System/Library/PrivateFrameworks/", 34) UTF8String]))
 {
 return NO;
 }

 if (strstr(info.dli_fname,
[LOO_CRYPT_STR_N("/System/Library/Accessibility", 29) UTF8String]))
 {
 return NO;
 }

 if (strstr(info.dli_fname,
[LOO_CRYPT_STR_N("/System/Library/TextInput", 25) UTF8String]))
 {
 return NO;
 }

 // Compose application path
 char appPath[512];
 snprintf(appPath, sizeof(appPath), "%s/%s/",
 [[[NSBundle mainBundle] resourcePath] UTF8String],
 [[[NSBundle mainBundle]
objectForInfoDictionaryKey:@"CFBundleName"] UTF8String]);

 if (endsWith(info.dli_fname, appPath) == 1)
 {
 return NO;
 }

 char appPathShort[512];

 snprintf(appPathShort, sizeof(appPathShort), "%s/%s",
 [[[NSBundle mainBundle] resourcePath] UTF8String],
 [[[NSBundle mainBundle]
objectForInfoDictionaryKey:@"CFBundleName"] UTF8String]);

 if (endsWith(info.dli_fname, appPathShort) == 1)
 {
 return NO;
 }

 // Check that a swizzled method origins from the security framework
 if (endsWith(info.dli_fname,
[LOO_CRYPT_STR_N("/SmartSec.framework/SmartSec", 28) UTF8String])
 || endsWith(info.dli_fname,

72

[LOO_CRYPT_STR_N("/SmartSec.framework/SmartSec/", 29) UTF8String]))
 {
 return NO;
 }

 if (info.dli_fname)
 {
 // At this point we should have mached at least something!
 // If nobody is swizzling methods of course
 return YES;
 }

 return NO;
}

int endsWith(const char *str, const char *suffix)
{
 if (!str || !suffix)
 return 0;
 size_t lenstr = strlen(str);
 size_t lensuffix = strlen(suffix);
 if (lensuffix > lenstr)
 return 0;
 return strncmp(str + lenstr - lensuffix, suffix, lensuffix) == 0;
}

73

Appendix 2: Framework implementation guide

Basic configuration

1. Add the framework to your project

- Copy this repository

- Drag the SmartSec.xcodeproj somewhere into your project

- Navigate to Build phases -> Link binary With libraries and add the SmartSec.framework

from the WorkSpace group

2. Add needed imports

- Open your prefix file (YourProjectName.pch) and add following lines

#import <SmartSec/SecImports.h>
#import <SmartSec/Crypto.h>

- Open your AppDelegate file and add the framework import:

#import <SmartSec/SmartSec.h>

3. Setup the framework

- Add framework setup into the application:didFinishLaunchingWithOptions: method (or any

other suitable place):

74

 startSecurityFramework(^NSData *{
 return [User currentUser].sessionId;

 });

That is it for the basic configuration.

Advanced configuration

1. Choose the needed controls

Each control has a way to fully or partially disable/enable it. Additionally, some controls have

custom settings, such jailbreak detection callbacks or file encryption threshold settings, and

the possibility to partially disable it.

All global settings are described in the SmartSecConfig header comments:

@interface SmartSecConfig : NSObject

/******* Callbacks *******/

// Set jailbreak callback
// It will be called upon discovering the device jailbreak
// If the jailbreak callback is not provided,
// the jailbreak detection will exit the application
extern void onJailbreakDetected(OnJailbreakDetected jailbreakDetected);

// Integrity encryption check callback
// It will be called, if the application binary is not encrypted
// It is usually the case for debug builds or cracked applications
// Encryption will not be checked in Debug mode thought
extern void onMissingEncryption(OnEncryptionMissingDetected
missingEncryptionDetected);

/******* Settings *******/

// Debugger - enable/disable all possible debugger checks
extern void enableDebuggerChecks();
extern void disableDebuggerChecks();

// Jailbreak - enable/disable all possible jailbreak checks
extern void enableJailbreakChecks();
extern void disableJailbreakChecks();

// Integrity - enable/disable all possible integrity checks,
// including encryption detection check
extern void enableIntegrityChecks();
extern void disableIntegrityChecks();

// Disable controls partially for a specific subclass
extern void disableOnLoadControls(UIViewController *obj);

// NSUserDefaults encryption - enable/disable NSUserDefaults encryption

75

globally
// If disabled, already encrypted values will stay encrypted until value
rewriting
// Encrypted values will be retrieved normally, even if encryption is
disabled
extern void enableNSUserDefaultsEncryption();
extern void disableNSUserDefaultsEncryption();

// File encryption - enable/disable encryption for data/string/object
writing methods
// Already encrypted values will stay encrypted, if disabled
// Encrypts only data, which does not exceed threshold size
extern void enableFileEncryption();
extern void disableFileEncryption();

// File encryption settings
// Update file encryption threshold size
extern unsigned long long getThresholdFileSize();
extern void setThresholdFileSize(unsigned long long newFileSize);

// Textfields settings
// Enable/disable text fields securing globally for all fields
extern void disableSecureTextfields();
extern void enableSecureTextfields();

// Screenshots settings
// Enable/disable screenshots text fields protection globally
extern void disableAppScreenshotsProtection();
extern void enableAppScreenshotsProtection();

// SSL certificates validation config
// Set SSL certificates, which are allowed to fail validation
// It is useful for test environments,
// but it is highly recommended to setup SSL pinning for such certificates
even in test mode
extern void allowInvalidCertificatesInTestMode(NSArray *domains);
extern void allowInvalidCertificatesInReleaseMode(NSArray *domains);

// SSL pinning config
// Setup SSL certificates to pin
// The input dictionary should have target hosts as keys
// and embedded certificate path or certificate public key + related
information hash as values
// The hash way is recommended, but hide the hash string!
// You can set multiple certificates for one host

/*

 Example configuration with embedded certificate path and hash combined:

 NSDictionary *sslPinDictionary = @{@"twitter.com" :
 @[[[NSBundle mainBundle] pathForResource:@"random-org"
ofType:@"der"],

@"cfb6fe515a13f0f84e058865c62087e890d8f0ea9d6723f8fc6a2193d29ced51"]};

 pinSSLCertificatesWithDictionary(sslPinDictionary);

 */

extern void pinSSLCertificatesWithDictionary(NSDictionary

76

*sslPinningDictionary);

/******* Setuping the framework *******/

// sessionPasswordCallback is an optional callback,
// which should return some dynamically changing password, associated with
a current user
// It is used for encryption keys memory protection

/*

Example configuration:

 startSecurityFramework(^NSData *{
 return [User currentUser].sessionId;
 });

 */

extern void startSecurityFramework(OnSessionPasswordRequired
sessionPasswordCallback);

@end

2. Setup Core Data encryption

- Open your data model and select attributes that you'd like to encrypt. Change their data

types Transformable:

- Open the data model inspector and set transformer for the selected attribute to

BaseCoreDataTransformer:

Important! Make sure that you're not using scalar datatypes in NSManagedObject

subclasses. Scalar types cannot be used as Transformable attributes.

3. Setup whitelists

77

OWASP recommends to prohibit users to access arbitrary web content inside the application.

To achieve this, all requests must be whitelisted. The security framework implements a

whitelisting solution, which is based on the W3C Widget Access specification and should be

familiar to users of Apache Cordova. By using wildcard identifier you can define complex

request filters. Same whitelisting will also work for URL schemes source applications.

To setup whitelists add WebAccessWhiteList and URLSchemesAccessWhiteList arrays to the

Info.plist file.

Example whitelist:

4. Setup logging

The framework will automatically disable NSLog logging in the release mode. If you still

need to log something in the release mode, use ReleaseLog(...) function instead. Both are

defined using pre-processing macros - to skip this control, skip the <SmartSec/SecImports.h>

import.

5. Setup textfields

Text fields, which are not used for sensitive information entry, should be marked as insecure.

To do this, set the insecureEntry property of the text field, its superview or view controller to

YES. Insecure text fields will not be masked on the background screenshot.

6. Configure SSL validation && pinning

SSL pinning works for NSURLConnection based requests. In order to configure it, you must

provide whether embedded certificate path or the hash of the public certificate SPKI. The

hash is the recommended way, but make sure you hide the hash string. You can provide

multiple certificates for one host.

Example configuration:

78

NSString *certPath = [[NSBundle mainBundle] pathForResource:@"random-org"
ofType:@"der"];

NSString *certHash =
@"cfb6fe515a13f0f84e058865c62087e890d8f0ea9d6723f8fc6a2193d29ced51";

NSDictionary *sslPinDictionary = @{@"twitter.com" :
 @[certPath, certHash]};

To use self-signed certificates, use following functions:

extern void allowInvalidCertificatesInTestMode(NSArray *domains);
extern void allowInvalidCertificatesInReleaseMode(NSArray *domains);

The purpose of having different certificates for test and release mode is to avoid forgetting to

remove self-signed certificate configuration code, when doing application release.

7. Add runtime integrity checks

You can optionally add runtime integrity checks for your custom classes to protect against

method swizzling in runtime.

To do it, use following functions:

// Select randomly class methods and validate each method origin
// Returns YES, if method's image origin is unexpected
extern BOOL checkClassHooked(char * class_name);

// Same as previous, but validate each and every method
// Returns YES, if method's image origin is unexpected
extern BOOL checkClassHookedWithAllMethods(char * class_name);

// Validate a specific method for a specific class
// Returns YES, if method's image origin is unexpected
extern BOOL checkClassMethodHooked(char * class_name, SEL methodSelector);

For further configuration please refer to the example project.

79

Appendix 3: Kosmos IMAX security review report

This short security review focuses mainly on client side issues of the iOS application Kosmos

IMAX, but also reveals some API flaws. It was carried out using 2 devices: a non-jailbroken

iPhone 6 with iOS 8.2 and a jailbroken iPad Air with iOS 8.1.2. The security review uses the

black-box analysis method of the beta version of the iOS application. It is an attempt to

reproduce a scenario, where an attacker gets the application from the official App Store and

does its black-box assessment. The review procedure follows the OWASP Mobile TOP 10

checklist. [18]

The analysis found 14 issues in total, which altogether expose the application to serious

attacks.

M1: Weak Server Side Controls

Vulnerability 1: Facebook login API allows to login as an arbitrary person

Likelihood: High

Impact: High

A separate API component that allows logging in through Facebook requires the client to

provide user’s Facebook identifier and does not check, whether the client really has rights to

access that account. API should switch to Facebook authentication token and validate user’s

identity using Facebook Graph API.

If an existing user hasn’t yet connected his account with Facebook, API allows doing it by

asking user’s member identifier and Facebook identifier. The API does not validate, whether

the authenticated Facebook user has rights to connect with a requested user account. The API

should ask an active session identifier instead or together with member identifier to validate

this.

M2: Insecure Data Storage

Vulnerability 2: User’s Facebook access token stored as plaintext in Core Data

80

Likelihood: Medium

Impact: High

If a user logs in through Facebook, his authentication token will be stored along user account

details in the Core Data as plaintext entry. A stolen Facebook authentication token would give

a temporary access to user’s Facebook account, allowing malicious programs to authenticate

with third party services as that user.

Vulnerability 3: User’s account details, such as e-mail and member identifier, stored as

plaintext in Core Data

Likelihood: Medium

Impact: Low

Account details for a logged in user are stored in Core Data as a plaintext entry, similarly to

the Facebook authentication token. However, this is considered to be a low-importance issue,

as user’s member identifier does not give access to user’s account or any highly sensitive data

(given number 1 gets fixed). It can only be used to query user’s movie ratings or purchases

history.

81

Vulnerability 4: Username and password are stored in the iOS keychain and remain there

even after the application uninstall

Likelihood: Very low

Impact: High

The application stores login credentials in the iOS keychain to automatically extend the

expired session identifier. IOS keychain is the most secure way to store data, but it is still

better to not store any credentials on device, if it is not an absolute must. Furthermore,

retaining this data even after the application removal poses a security risk (e.g. in case of a

device sale or theft).

M3: Insufficient Transport Layer Protection

Vulnerability 5: Application accepts invalid and self-signed certificates

82

Likelihood: High

Impact: High

Application accepts a self-signed and expired certificate for every domain, even thought the

recognition of self-signed certificates is needed only for the test environment of the payment

API.

M4: Unintended Data Leakage

Vulnerability 6: Sensitive data leakage through keyboard cache

Likelihood: Low

Impact: Medium

Text fields from the login and register screens have both autocorrect and copy-paste

functionalities enabled. Both login and register screens may occasionally leak sensitive data,

like usernames and personal codes.

Here are contents of the binary keyboard cache file (cleared before testing), which reveals the

username entered into the login screen:

And contents of the pasteboard, which has the copied username entry:

Vulnerability 7: Login and registration data leakage through automatic iOS screenshot

capture

Likelihood: Low

Impact: Medium

83

If the home button is pressed during the login or registration data entry, then iOS captures

sensitive data on a screenshot. The screenshot can be later retrieved from the application’s

documents folder. Even deleted versions of screenshots can be sometimes found in the HFS

journal.

Vulnerability 8: Payment details leakage through automatic iOS screenshot capture

Likelihood: Low

Impact: Low

If the home button is pressed during the payment procedure with bank links, then sensitive

bank details can be captured on the iOS screenshot. More specifically, it can take a screenshot

from the payment confirmation page, which may contain account number and balance.

Vulnerability 9: Insecure data logging

Likelihood: Medium

Impact: Medium

Application logs details of each API request to the iOS console (using NSLog). This reveals

both API communication and user details, like Facebook authentication token. Every

application user, who connects his device to the computer, can view all the log entries. Those

84

log entries can be used to explore API communication mechanisms or steal sensitive user

data.

M6: Broken Cryptography

Vulnerability 10: Application binary stores hardcoded API authorization tokens

During the application analysis with a “strings” tool, multiple token-like strings were found.

Afterwards it turned out that those are used as API secret tokens. While secret tokens are not

very efficient as API authorization scheme, if used, they must be better hidden in the binary.

85

M8: Security Decisions Via Untrusted Inputs

Vulnerability 11: Getting free tickets using runtime manipulation

Likelihood: Low

Impact: High

All information about existing user tickets is queried from API and stored locally in an array.

It is possible to replace implementation of the method, which populates that array, and add an

additional free ticket to the account. This will work, as long as a ticket controller does not

recheck order identifier on entry. As a solution, both runtime controls and ensuring strong

physical entry checks can be proposed.

M9: Improper Session Handling

Vulnerability 12: Logged in user session identifier stored as plaintext in NSUserDefaults

Likelihood: Low

Impact: High

86

A session identifier, which is used as an access token after the successful login, is stored as

plaintext in NSUserDefaults. It gives a temporary access to all user related functionality,

including list of tickets and account details change.

Vulnerability 13: Application does not always destroy session identifiers for logged out users

Likelihood: Very low

Impact: Medium

If the application is offline, when sign out is requested, the user’s session identifier remains

active. When the user signs out, the client hast to send a sign out request. However, if the

request fails, the client does not try to repeat it and the session identifier remains active. Thus,

the backend does not know about sign out.

M10: Lack of Binary Protections

Vulnerability 14: Application allows attaching a debugger to it

Likelihood: Medium

Impact: Low

The release version of the application can be debugged, which might give important clues

about its internals logic. The application can be also used on jailbroken devices, but it is an

expected behavior.

