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Introduction

Development of non-destructive methods for the measurement of 3D stress
fields is one of the ambitions of experimental mechanics. From all of the
materials available to a man, control and measurement of internal stresses is
most important in glass. This is because glass is so sharp when fractured, so
dependent on internal stresses for strength, yet, so widely used one has to
literally close his or her eyes to not see glass. The task is made infinitely simpler
by a property of glass, photoelasticity, which in effect is artificial birefringence,
proportional to the difference of principal stresses on the path of a light ray. This
magnificient property permits quick and effective visualization of stresses in
glass or in any other photoelastic material by observing the object in the simplest
polariscope - a pair of crossed polaroids. However, the problem of complete
determination of internal stress fields from the visual observations, either by eye
or by camera, is in essence an ill-posed inverse problem, because the
relationship between the stresses and the visualized interference fringes is a
nonlinear one, and, therefore a difficult one to be solved.

The aim of this thesis is to further develop the established techniques of
photoelastic tomography. The technology for analysis of residual stresses in the
general 3D specimens is proposed. It is shown that the Abel inversion can be
applied for the determination of axial and shear stress components of
axisymmetric stress fields. The equations for determining radial and
circumferential stress components in axisymmetric specimens are analysed for
stability and new numerical algorithms for stress calculation are proposed. There
are specimens for which linear approximation of integrated photoelasticity
cannot be used; for stress analysis in those specimens the inverse problem of
photoelasticity is solved with a differential evolution algorithm (a genetic
algorithm).

Some of the results of this thesis have been implemented in the glass stress
measurement technology marketed by GlasStress Ltd.

The thesis is organized as follows.

Chapter 1 covers the linear approximation in photoelastic tomography.
Overview of the reconstruction methods is given, both for the general case of 3D
stress fields and for the case of axisymmetric stress field; the latter including
Abel inversion. Determination of radial and circumferential stress components in
the case of axisymmetric stress field is covered in detail. Examples are given for
all the cases - general 3D stress distribution, axisymmetric stress distribution in
the case of residual stresses and in the case of external loads.

Chapter 2 extends the working range of photoelastic tomography of
axisymmetric stress fields into the non-linear region by using an evolutionary
algorithm. A practical example is shown.

The present thesis is based on the following papers:
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1 Photoelastic tomography in linear approximation
1.1 Classical tomography

Tomography is a powerful method for the analysis of the internal structure of
different objects, from human bodies to parts of atomic reactors [18,20]. In
tomography, some radiation (x rays, protons, acoustic waves, light, etc.) is
passed through a section of the object in many directions, and properties of the
radiation after it has passed the object (intensity, phase, deflection, etc.) are
measured on many rays (Fig. 1). Experimental data g(l, ) for different values
of the angle [ are called projections.

Fig. 1: Tomographic measurements.

If f(r, ) is the function, which determines distribution of certain parameter
of the field, experimental data for a real pair [, 8 can be expressed by the Radon
transform of the field

gLp) = f frp)dy'. (1)

When projections for many values of § have been recorded, the function f(r, ¢)
is determined from the Radon inversion

1™ Fag(p) dl
f(r,(p)—ﬁ 0 dﬂf_E ol rcos(B—¢) -1l @

Many numerical algorithms for solving Eq. (2) have been elaborated[18,20].




The question arises, is it possible to determine tomographically also stress
fields in 3D objects. This problem is not trivial due to the following reason.
Classical tomography considers only determination of scalar fields, i.e., every
point of the field is characterized by a single number (the coefficient of
attenuation of the X-rays, acoustical or optical index of refraction, etc.). Since
stress is a tensor, in stress field tomography every point of the field is
characterized by six numbers. Thus the problem is much more complicated in
principle. Let us mention that while a huge number of publications is devoted to
scalar field tomography, there is only a single book, written by
Sharafutdinov[24], devoted to mathematical problems of the tensor field
tomography.

1.2 Photoelastic tomography in linear approximation

It has been shown[6] that in linear approximation an inhomogeneous
birefringent medium can be considered optically equivalent to a birefringent
plate. It is possible to measure the parameter of the isoclinic ¢ and optical
retardation A on every light ray that passes the specimen with conventional
polariscopes. In practice, in order to avoid refraction of the light, the test object
is placed in an immersion tank with matching immersion liquid (Fig. 2).

Specimen Immersion

/tank

Polarised
light

[
Ol
Q
y
Measurement
apparatus

Fig. 2: Experimental set-up in photoelastic tomography.

Let us assume that in two parallel sections, the main section (z = z;) and the
auxiliary section (z = zg + Az) of an arbitrary 3D specimen tomographic
photoelastic measurements, rotating the specimen around the z axis, have been
carried out and the integrals V; and V, have been measured for many azimuths
(Fig. 3) for light rays, parallel to y':

Vi =Acos2¢ =CJ (o, —a,)dy’, 3)
V, = Asin2¢ = 2C[ 1,1,/dy’, “4)

where A is optical retardation, ¢ is the parameter of the isoclinic and C is
photoelastic constant. In the auxiliary section, these integrals are denoted as V;'
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and V,'. Location of the light ray y’ is determined by the value of its x'
coordinate [ and the angle .

Az

Fig. 3: Tomographic measurement scheme.

Equations (3) and (4) are valid if birefringence is weak (optical retardation is
less than about 1/3 of the wavelength) or the rotation of the principal stress axes
is small (less than about m/6)[6]. If no rotation of the principal stress axes is
present, Egs. (3) and (4) are valid for arbitrary birefringence.

Sharafutdinov suggested the following method for the measurement of the
distribution of the axial stress o, [24,25]. Besides the measurement of the
functions V; and V,, the value of the axial stress o, is to be measured on the
boundary of the cross section. Applying to the functions V; and V, the transverse
ray transform [24], the g, field is determined from the boundary value problem
for a Poisson equation. Sharafutdinov has shown that the solution of this
tomographic problem is unique and that only the distribution of o, can be
determined in this way [24,25].

The drawback of this method is that, in addition to tomographic photoelastic
measurements, the boundary values of g, must be measured. That is possible
only in the case when the boundary of the cross section is described by a convex
curve. Besides, the transverse ray transform is rather complicated. The
tomographic algorithm of Sharafutdinov has not been applied in practice,
although it is important from the point of view of the theory of photoelastic
tomography.

Another algorithm of the photoelastic tomography in linear approximation is
the following. Let us assume that photoelastic tomographic measurements have
been carried out in two parallel sections, a distance Az apart from each other,

11



rotating the specimen around the z axis (Fig. 3). The values of the functions V;
and V, in the auxiliary section we denote by V; and V,. Considering the
equilibrium of the three-dimensional segment ABC in the direction of the x’ axis
(Fig. 3), we may write

B
Azf opdy' =T, — T, (5)
A

where T,, and T; are the shear forces on the upper and lower surfaces of the
segment, respectively:

Cc Cc

Vodx', T, =—] V,dx" (6)

T
u 2C ),

Taking into consideration relationships (5) and (6), Eq. (3) reveals

B 2 Cc Cc V.
f 0,dy' = —/— f Vydx' — f Vydx' | — —. (7)
PR 2CAz\J, l C

Since tomographic photoelastic measurement data can be obtained for all the
light rays y' (for many values of [ and ), Eq. (7) expresses the Radon transform
of the field of the stress o,. Thus we have reduced a problem of tensor field
tomography to a problem of scalar field tomography for a single stress
component ag,. The field of o, can be determined using any of the well-known
Radon inversion techniques[18,20]. Rotating the specimen by tomographic
measurements around the axes x and y, the fields of o, and o, can also been
determined.

In the case of an axisymmetric stress field, the problem is reduced to a
problem of one-dimensional tomography [12]. In this case the distribution of o,
is determined from the Eq. (7) with Abel inversion [13]. In linear approximation,
photoelastic tomography has been used for residual stress measurement in
axisymmetric glass articles [2,5,15].

Let us mention that we consider photoelastic tomography, which is based on
the measurement on every light ray of the parameter of the isoclinic ¢ and
relative optical retardation A. Photoelastic tomography with interferometric
measurement of absolute optical retardations has not lead to positive results
[23]. By formulating the problem of photoelastic tomography it is important to
distinguish between these two formulations. Otherwise one may reach erroneous
results[3].
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1.3 Reconstruction of the axial component in the general 3D
case

Since the Radon transform of the axial stress o, is determined through the
measurement data according to Eq. (7), any method of Radon inversion can be
used to determine the field of o,. In this chapter, a method proposed by
Cormack[11], in which the stress field is approximated with two-dimensional
polynomials, is described.

The cross-section of a specimen is assumed to be located inside the circle of
radius R (Fig. 4) and the stress field is expressed in polar coordinates as a
Fourier series

M
0(0.0) = fo(0) + ) Ufn(p) cOST + G(p) sin ), ®)
m=1 r
p=p )

where M is the number of terms. Higher value of M gives better approximation

along the angular coordinate.
y

y'n

Fig. 4: Investigation of a section of an object.

The values of line integrals (&, B) are defined as
B

165 = oy (10)
A
£ =%, (11)

and can be experimentally determined from the right hand side of Eq. (7). When
these line integrals are expressed as Fourier series,

13



M
1(5};,3) = R+ ) (Fn(§) cosmp + G (©) sinmp), (12)
m=1

the Cormack transform reveals a relationship between f;,, (p) and E,, (£),

L fn(P)Tr (E/p)pdp
Fn(§) = ZL e (13)

where Ty, (¢/p) are the Chebyshev polynomials of the first kind[19]. Similar
relationship applies for g,,(p) and G, (§).

When the functions F,(§) and f;,(p) (G,(¢) and g,,(p)) are orthogonal
polynomials in the interval (0,1), Eq. (13) can be solved analytically. Cormack
has used the following related orthogonal polynomials

L

fm() = ) alam+ 20+ DZ(p) (14)
=0
L
Fn(§) =2 ) dhlmiara(©) (1s)
=0

where Z% (p) are first order Zernicke polynomials [9], U,, () are Chebyshev
polynomials of the second kind, al, are coefficients and L is the number of
terms. Higher value of L gives better approximation along the radial coordinate.
The same can be written for the polynomials G,,(§) and g,,(p) (b}, are
coefficients)

L
m(p) = ) Bla(m + 2L+ DZ(p), (16)
=0 L
6n(®) =2 BhUmszisa (©). a7
=0

Determination of g, is divided into three steps:

1. Calculation of values of functions F,(§) and G,,(§) from Eq. (12) at
every point of measurement { (i = 1... N) by using the discrete Fourier
transform; here N denotes the number of measurements on the radius.

2. Approximation of F,(¢), G,,(§) with polynomials (15), (17) and
determination of the coefficients al,, b., using the least squares
method.

3. Calculation of g, using Eq (8).

14



The Zernicke polynomial can be calculated using the formula

!
(—1)3(m + 21 — s)! ym2l=2s

Zh(p) = 18
m(P) < stm+1—-D'{-s)! (18)
The Chebyshev functions of the second kind are defined as
U, (&) = sin(marccos §). (19)

1.4 Reconstruction of axial and shear components of an
axisymmetric stress field

1.4.1 Abelinversion

The Abel transform of an axisymmetric function f(r), assumed to be located
inside the circle of radius R (Fig. 5), is a line integral along AB [44]

Flx) = ZfR f(r)rdr

BN (0)

The corresponding Abel inversion is

1 (RdF  dx
f @1)
T

f0==2), e

T
Y4 S

@
¥y X

7

Fig. 5: Line integral of an axisymmetric function f(r).

Value of the line integral of the axial stress component g, along AB can be
obtained from Eq. (7),

I(x) = 2 fCV’d’ fCVd’ 4 22

15



From the values of I(x) obtained from Eq. (22), distribution of the axial stress
can be determined using the Abel inversion as

1 RdI(x)  dx
=) e

I
The value V, in Eq. (4) can be written as a function of x, and, in terms of shear
stress 7,-, as follows

(23)

B

V,(x) = Asin2¢ = ZCJ T4 COS 6 dy. (24)
A
or
V,(x B
AC 2cf 7,,dy. (25)
A

From Eq. (25), distribution of the shear stress can be determined using the Abel
inversion

Trz (r) = (26)

T fR d(Vy(x)/x)  dx

- 2nC dx X2 — 12

Numerical algorithms for the Abel inversion and comparision with the onion
peeling method can be found in [12].

1.4.2 Onion peeling

In the onion peeling method [14], the stress field in an axisymmetric specimen is
modelled with N concentric layers, each of thickness Ar and in each of which
the stress state is considered to be constant (Fig. 6). The stress components of
this discrete model are denoted oy ;, 0, ;, 0g; and 7,.,;, where i is the number of
the layer, with innermost layer numbered 1 and the outermost N. Distributions
of the axial and shear stress components are determined in a manner similar to
peeling of an onion - starting from the outermost layer and finishing with the
innermost layer. Details can be found in [8].

16
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Fig. 6: Layered model of an axisymmetric specimen.

1.5 Determination of radial and circumferential stress
components of the axisymmetric stress field

In the case of axisymmetric stress field, equations from the theory of elasticity
and the theory of thermoelasticity can be used to determine the remaining stress
components, the radial and axisymmetric stress. The employed equations are
different for the case of residual stresses and for the case of stresses due to
external loading, therefore, these cases are handled separately.

1.5.1 The case of external loads

In the case of external loads, the remaining stress components, o, and gy, are
determined using the equilibrium equation

do, o0,—o0g N 0T,y

_ = 27
or r 0z 0 7
and the compatibility equation
0 0y — O
—[og —v(o, +0,)] — (1 +v) ——2=0. (28)

or
Multiplying the equilibrium Eq. (27) by 1 + v and adding to the compatibility
equation (28) gives
do, dayg 0T,y do,

do, 00y _,9% _ 29
o Ty tA+vIGEovEE=0 29)
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Multiplying the equilibrium equation (27) by v—1 and adding to the
compatibility equation (28) gives

do, Jday oy — Trz do,
- —__ - — 30
ar " ar R A P 30)
Rewriting equations (29) and (30) in new terms o, gy,
04 = 0, + 0y, 31)
0p = 0, — 0Oy, 32)
gives
do, 0T,y da,
aar;’(”)aza”ara' (33)
Op Trz Oy
__b_Z — =0. 34
o rab+(v 1) 5> Vo 0 (34)
Integration of Eq. (33) reveals
"ot
o, =va, —(1+ v)f Zdr+ ¢, (35)
r 0z

0

where C; is an integration constant.

Numerical integration of Eq. (34) should be done in the direction in which
the differential equation is stable or asymptotically stable. Solutions of an
ordinary differential equation in the form

dx
— =a(t)x + b(t) (36)
dt
are asymptotically stable when a < 0 for all values of t, stable when a < 0 for
all t and for positive values of a stability cannot be established[17].

Rewriting Eq. (34) in a form similar to Eq. (36), we obtain

doy, 2 0T,y da,
__Zz _ _y_Z 37
dr rab-l_(v D 0z Var' 37)
from which it follows that a = —% < 0 for all values of r and therefore

solutions of Eq. (34) are asymptotically stable. Thus, numerical integration of
Eq. (34) should start at the axis and proceed along the positive direction of the
radial axis. A graphical example of integration in the positive direction of the
radial axis (Fig. 7) demonstrates quick convergence, thus confirming the
analysis. Solutions to the system of Egs. (27), (28) are linear functions of g, g},

o, = 0.5(a, + 7p), (38)
g = 0.5(0, — ap), (39)
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therefore, the preferred direction of integration is along the positive direction of
the radial axis for them, too.

1000 g
600 i
400 i

200 iEfiff///n\\““ﬁui_________
0

-200

Gd - MPa

-400
-600 §
-800 §

-1000 i i . .
0.00 0.04 0.08 0.12 0.16 0.20
r, mm

Fig. 7: Three distributions of a4 corresponding to three
initial values differing by steps of 1000 when integrating
along the positive direction of the radial axis.

In the case of a hollow specimen, the initial values of the radial stress at the
internal surface, o,., can be determined directly from the value of the stress at the
internal surface, g,(0) as follows:

0,(0) = 05(r) sin 23, (40)

where £ is the angle of the normal to the internal surface.

In the case of solid specimens the initial values of the radial and
circumferential stresses have to be determined so that experimentally determined
boundary conditions at the external surface are satisfied. This is done by first
performing trial integration of equations (33),(34) with the trial initial value of
0,(0) = g4(0) = 0. The difference of boundary conditions and the stresses at
the external surface, obtained by trial integration, is added to the initial value and
integration is repeated. Different values of the integration constant C; in Eq.
(35) correspond to different solutions.

The expressions for o, and gy, equations (31) and (32), both contain the
integration constant with the same factor of 0.5, thus, all solutions to equations
(27), (28) differ by a constant value only. Any correction to the initial values
changes the value of stress at the external surface by exactly the same amount.
Therefore, only one correction is sufficient for obtaining the initial value by
which the boundary conditions at the external surface are satisfied.

Let us use the discrete layered model introduced in chapter 1.4.2, i.e. denote
the stress components as d,;, 0,;, 0g; and T,,;, where i is the number of the
layer, with innermost layer numbered 1 and the outermost N. The numerical
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algorithm for determining o, and o, can be obtained by rewriting (34) as a
difference equation and (35) as follows

C; = 0,(0) + g5(0) — vo,(0), 41
Oqi =v0oz; — (1 +v)t; +Cy, (42)
0p1 = 0,(0) — 04(0), (43)

2 0Tryi do,
=0y AT (=g — (v — 1) 202, 44
Op,i = Op,i—1 T 7‘( - Ogi-1— (v—1) 5 Y ar> (44)

where
o
T .

£ = Z Ty, (45)

Circumferential and radial stress components can be obtained by using equations
(38) and (39).

1.5.2 Numerical experiment on the Hertzian contact stress field

The analytical solution to the Hertzian contact problem, a stress field in a
hemispace (given by Young’s modulus E, and Poisson’s constant v,) indented
by a sphere (given by radius R, Young’s modulus E; and Poisson’s constant v, )
with a force P, in cylindrical coordinates 7, z, is[16]

3[1 - 2v,a? z\3 z\3 ad*u
e () () e
2 3 r Vu Vu/ u?+a?z

Z 1_V2
-|'\/—a ua2+u (46)
a

+(1+ vz)gatan (—) - 2)],

3[1-2va? z\3
“6?5[ 3 ﬁ(“(ﬁ))
+i<2v2+uﬂ 47
Vu a’+u

—(1+vy) gatan (\%))]

- — _E(L)BCLZ_u 48)

Z Vu/ u?+a?z?

__3_r au (49)
2u?+a?z2a?+u

TTZ
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where the radius of the contact area a and the value u are

9 E
k=ggla-v+a-vw ] (50)
B 3’4kPR1
a= 3L, (51)
u= %[(rz +2z2—a?) 4+ +22-a?)? + 4a222]. (52)

The values of the parameters of the Hertzian contact problem used in this
example are listed in Table 1. The axial and shear stress distribution in the main
section, calculated from Eqgs. (48),(49), is shown in Fig. 8. The numerical
algorithm described by Eqs. (41)-(44) was used to determine radial and
circumferential stress components in the main section and the results were
compared with the components obtained from the analytical solution, Egs. (46)-
(47). The comparision in Fig. 9 exhibits a good match, thus confirming
correctness of the numerical algorithm.

Table 1: Parameters of the Hertzian contact problem.

Parameter | Value Description
R, 2 mm Radius of the indenter.
E; 75 GPa Young’s modulus of the indenter.
vy 0.3 Poisson’s constant of the indenter.
E, 71.7 GPa Young’s modulus of the hemisphere.
Vo 0.22 Poisson’s constant of the hemisphere.
P 27N Loading force.
Zy 0.0010 mm | Z-coordinate of the main section.
Z, 0.0011 mm | Z-coordinate of the auxiliary section.
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Fig. 8: Axial and shear stress components of the Hertzian
contact stress field in the main section.
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Fig. 9: Radial and circumferential components of the Hertzian
contact stress field in the main section. Dashed lines correspond to
the components from the analytical solution calculated from Eqgs.
(46)-(47). Solid lines correspond to the components determined
with the numerical algorithm described by Egs. (41)-(44).

1.5.3 The case of residual stresses in glass

In the case of residual stress in the glass, the compatibility equation cannot be
used, since the residual stresses are incompatible. The remaining stress
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components, o, and oy, are determined using equations of the theory of
elasticity. The stress components must satisfy the equation of equilibrium (27)
and the generalized sum rule[1]:

TTZ

T
0
O'T+O'9=O'Z—2f dr + C; (53)
ro 0Z

where C; is an integration constant determined from the boundary conditions at
the surfaces of the specimen. Substitution of gg from the sum rule into the
equilibrium Eq. (27) reveals a differential equation for the radial stress,

do, 1 "ot,, 0Ty,
—+—| 20, — 2| ——dr-=C = 0.
T + r( or — 0, + fro 5, =G + 57 (54)
Rewriting Eq. (54) in a form similar to Eq. (36) gives
do, 2 1 "0, 0T,
—_—=—= - -2 dr+¢; | — :
dr - (02 fro 9z T4 0z (55)

The negative sign of the factor for g, shows that the preferred direction of
integration of this equation is in the positive direction of the radial axis, the same
as for Eq. (34) in the case of stresses due to external loads. Integration in the
negative direction of the radial axis is sensitive to small changes in the initial
value. This is illustrated in Fig. 10a, where three calculated radial stress
distributions corresponding to three initial values, differing only by 0.01, are
shown. Stability of integration along the positive directionof the radial axis is
illustrated in Fig. 10b.

holor

Stress, MPa

Fig. 10: Three radial stress distributions corresponding to the three initial values
differing by 0.01 when integrating along the negative direction of the radial axis (a) and
three radial and circumferential stress distributions corresponding to the three initial
values differing by steps of 0.2 when integrating along the positive direction of the
radial axis (b).
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In the case of solid specimens, the boundary conditions at the external surfaces
can be satisfied in the same manner as in the case of the stresses due to external
loads. It can be shown that one correction is sufficient for obtaining the initial
value by which the boundary conditions at the external surface are satisfied. The
integration constant C; in Eq. (53) is determined from the boundary conditions at
the axis

€, = 20,(0) — 0,(0) (56)

where 0,(0) and o,.(0) are the values of axial and radial stress on the axis. Let
us define function f(7) as follows:

1 " 0T, 0T,y
=— -2 dr —a,(0) | —
f0=1(a-2] SR = o0 )-% (57
Substitution of f'(r) and integration constant C; into Eq. (54) gives
do, 2 2
d—rr+;0r—;0r(0) = f(r). (58)

Given that g, is a solution corresponding to the initial value a,-(0), we show that
adding a constant value C, to it also gives a solution by substituting o, = g, +
C, into Eq. (58),
d(e,+C,) 2
_— _|_ —_
dr r
Simplifying Eq. (59) leads back to Eq. (58). All possible solutions differ by a
constant value equal to the differences in the initial values o,(0); this is
illustrated in Fig. 10b. Any correction to the initial value changes the value of
stress at the external surface for exactly the same amount, thus, only one trial
integration is required for obtaining the correct initial value of a,.(0).
In a manner similar to the one in chapter 1.5.1, the numerical algorithm for
determining the radial stress distribution is obtained by rewriting Eq. (54) as a
difference equation as follows:

071 = 0,(0), (60)

1 0T, :
Oni = Onia = A (S (2040 = 0y + 26— ) + 722, (6D

04 C) @O+ C) = (). (59)

where f; is defined by (45). Algorithm for determining the circumferential

stress distribution is obtained by rewriting the generalized sum rule (53) as
follows

0-9,1' = O-Z,i - Zti + Cl - Gr,i' (62)
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1.6 Experimental equipment

1.6.1 Automated transmission polariscope AP-07

The automated polariscope AP-07 (Fig. 11) has been developed for photoelastic
measurements by GlasStress Ltd. in cooperation with the Institute of
Cybernetics, Tallinn University of Technology. The computer-controlled
polariscope permits application of different photoelastic measurement
techniques. Recording of the measurement data is made with a CMOS camera
and controlled by a laptop PC. Platform with digital indications enables one to
measure the geometry of the specimen as well as to select the region of
measurements. The polariscope can be configured to work both as a a light-field
circular polariscope or a dark-field circular polariscope. The software
“GlasStress”, elaborated by the author, incorporates the phase-stepping method
and algorithms for the determination of stresses in glass objects of various
geometries.

The rotary stage (chapter 1.6.2) was constructed in order to permit automatic
measurement of projections. The tomographic algorithms were realized in
software.

ool
Wheel V

Immersion tank

with the test object

Vertical scale

Indicator
Colour LED

S\niitch \

C,oupling rod

/
Analyser
Intensity - Lens
knob / ' ‘ -
Polarized
light source

Horizontal scale
Platform

Fig. 11: Automated polariscope AP-07.

Main components of the polariscope:

Polarized light source — collimated LED, peak wavelengths Ag = 627 nm (red)
and Ag=530 nm (green), 12 VDC at 1A. Polarization is controlled by the
program GLASSTRESS. Six possible states of polarization correspond to six
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phase steps in the phase-stepping method. Intensity of the light can be changed
by turning the knob; colour of the light can be changed by using the switch.

Analyser — dichroic polarizer between glass plates combined with an achromatic
quarter-wave plate.

Camera Lens — Computar MLH-10X zoom lens (Fig. 12).

Camera — Lumenera Lu-175M, ¥%” monochrome CMOS with a resolution of
1024x1280 pixels (Fig. 12).

s W

Fig. 12. CMOS camera module with lens. The
focus, magnification and diaphragm

of the lens system can be adjusted by turning
the rings 1, 2 and 3, respectively. A — analyser.

Coupling rod — connects optical components of the polariscope. Using the
wheel V it can be moved in vertical direction for reaching the measurement area.
Range of displacement is 210mm with a resolution of 0.01 mm.

Platform is for supporting and horizontal positioning of the immersion tank
with the specimen. Its digital scale can be used for measuring the resolution of
the camera and the radius of the specimen. Various regions for stress
measurement can be precisely selected by turning the wheel H on the right side
of the polariscope. Range of displacement is 200 mm with a resolution of 0.01
mm.

1.6.2 Rotary stage

The rotary stage R-01 (Fig. 13) was constructed for rotating a small specimen
while placed on the coordinate platform, above the immersion tank. The rotary
stage is controlled by the automated polariscope, thus, in turn, controlled by a
computer. The rotary stage can accomodate specimens up to 4.5cm in diameter;
the minimum rotation step is 0.1 deg.
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Fig. 13: Rotary stage R-01 with an
immersion tank for small objects.

1.7 Examples

1.7.1 The general 3D case, a high-pressure lamp

We describe measurement of the normal stress distribution in section AB of the
stem of a high-pressure electric lamp (Fig. 14) made of quartz glass with
refraction index of 1.47 and photoelastic constant of C = 3.40 TPa™. In the
axisymmetric middle part of the lamp stresses can be determined by
approximating stresses with axisymmetric polynomials[5].

180 projections were recorded, with a step A = 1 deg. In addition to the
photoelastic data, a photo of the specimen in a light-field circular polariscope
was also recorded for every projection angle. Contour of the cross-section AB
(Fig. 15) was obtained by using filtered backprojection method[18,20] in the
program CTSim[22] on these photos. Projections of photoelastic data for stress
field reconstruction were extracted in two sections, the main section being AB
and the auxiliary section at 1 mm apart from it. Since processing of projections
from theses sections were similar, only data for the main section will be shown.
Projections of optical retardation A are shown in Fig. 16a and projections of the
isoclinic angle ¢ (direction of gy) in section AB are shown in Fig. 16b. The
electrode appears deformed in projections in Fig. 16 because it did not coincide
with the rotation axis of the specimen.
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Electrode

Fig. 14: Image of the high-pressure lamp in a light-field circular polariscope and
the cross-section at the line AB.

Fig. 15: Geometry of the cross-section AB.

Projections of A cos 2¢ and A sin 2¢ in section AB are shown in Fig. 17, which
are directly used in Egs. (3) and (4). Image of the electrode is straightened by
shifting the projections for different angles . Similar data was obtained for the
auxiliary section of the stem.

On the basis of Fig. 17 and the contour from Fig. 15 the field of the normal
stress g, (Fig. 18) was determined from the Fourier series of projections as in
Eq. (12) with 16 terms along the radial coordinate and 16 terms along the
angular coordinate. Distribution of g, on the x and y axes is shown in Fig. 19.

Since g, is a residual stress, theoretically its average value should be zero.
The actual average value of g, in section AB is 0.2 MPa. That is about 5 percent
of the maximum value of o, near the electrode.

Another possibility to check the precision of the results is comparison of
measured experimental data with the data, calculated on the basis of the
calculated stress field. Such a comparison of the distribution of A cos 2¢ (a) for
the projection § = 120 deg is shown in Fig. 20.

Both checks permit to conclude that precision of tomographic measurement
of the normal stress field is satisfactory.
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Fig. 16: Projections of A (a) and ¢ (b) in section AB for p =0 - 180 deg.

(a) (b)
Fig. 17: Projections of Acos2¢ (a) and Asin 2¢ (b) in section AB.
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Fig. 18: Normal stress field in section AB.
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(a) (b)

Fig. 19: Normal stress o, distribution on the axes x (a) and y (b) in section AB.

20

15

Measured ——
Calculated ===

X, mm

Fig. 20: Measured and calculated distribution of Acos2¢ (a) for the
projection 5 = 120°.
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1.7.2 Axisymmetric case of external loads, a soda-lime optical fibre

As a practical example of the numerical algorithm for the case of stresses due to
external loads, stresses were determined in a soda-lime fibre indented by a
spherical indentor (Fig. 21). The fibre has a rectangular cross-section and it was
positioned horizontally for the time of measurements. Dimensions of the fibre
are much larger than the extent of the indentation, therefore stresses can be
determined as if it was an axisymmetric specimen. Image of the fibre in a white-
field circular polariscope is shown in Fig. 22. Distribution of stresses at the top
surface of the soda-lime fibre are shown in Fig. 23.

l?olarised " Measurement
light = equipment

Fibre -

Fig. 21: Measurement scheme of stresses in a soda-
lime optical fibre indented by a spherical indentor.

N W [

Fig. 22: Image of the soda-lime fibre under spherical
indentor in a white-field circular polariscope.
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Fig. 23: Distribution of stresses due to spherical indentor at

the top surface of the soda-lime fibre.

1.7.3 Axisymmetric case of residual stresses, a stem of a wine glass

As an experimental example for the case of residual stresses, stresses in the
stem of a wine glass were determined. Geometry of the wine glass is shown in
Fig. 24a and the fringe pattern in Fig. 24b. Results of stress determination in
section 1 are shown in Fig. 25. As a verification of the precision of the
algorithm, the birefringence, corresponding to the determined stress state, was
calculated using the Jones matrix formalism[26] and compared with the
measured birefringence (Fig. 26). The match is excellent.

(b)
Fig. 24: Geometry of a wine glass (a) and fringe pattern in
the bottom of the stem (b).
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Fig. 25: Distribution of stress components in section 1.
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Fig. 26: Measured birefringence (solid line) and calculated birefringence

corresponding to the determined stress state (dashed line).
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2 Non-linear photoelastic tomography
In many cases assumptions of the linear approximation are not valid and

the problem of photoelastic tomography is to be formulated in the general, non-
linear form.

2.1 Expressions for stresses

We present stress components g,., dg, 0, and 7,, in cylindrical coordinates 7, 9,
z, in the form of polynomials relative to the radial coordinate 7:

m m m
o 1.2k ' 1.2k 1 _ 1.2k
ar—ZaZkr , O-Q—Z:bzkr ,aZ—ZCZkr ,
k=0 k=0 k=0
m+1 (63)

r_ / 2k—-1
Trz = Z de—lr
k=1

where prime denotes the main section. In the auxiliary section, the stress
components are expressed in the same way, distinguishing the coefficients with
a double prime.

Our aim is to determine the coefficients ajy, bk, Co> Aak—1> Aak> D3k Coks
and d7_; on the basis of experimentally measured " and A7* (i =1, ..., n) in
both sections.

The number of unknown coefficients can be reduced using equations of the
theory of elasticity, boundary conditions and macrostatic equilibrium conditions.
The stress components must satisfy the equation of equilibrium (27). In the case
of residual stress in glass, the generalized sum rule, Eq. (53), is valid.

Using the equilibrum equation and the generalized sum rule, the stress
components g,- and gy can be expressed as[7]

_ ra‘[rz 1 (" 11
oy = — . P dr +T_2_f;0 ro,dr +ET—ZC2 + Cy, (64)
TaTTZ 1 (7 11
Og =0'Z—J;O 7 dT—r—Z.I;OT‘O'ZdT—Er—ZCZ+C4. (65)

Constants C, and Cy are determined from the boundary conditions.
Introducing expressions (63) into equations (64) and (65), stress components
o, and gy can be expressed as
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m
I 1
o = - Z 75 Qaie-1(p* = pg")
k=1 m (66)
2 ! 2k 2k 1
+chzk(P - 0§ )+ 257 5 (2 + Cy,
k=0
m
og = Z Cop?"
k=0
- 1 -
=D s (p% — p3¥) (67)
k=1
< 1
Z Cék(PZ —p5*) - _Cz + (s
= 2p?
Here
r To = dok—1 — dak—1 ,
p=p  Po=7p 2k-1 =" R, (68)

and R and R’ are the external radiuses of sections 1 and 2. Similar expressions
are valid for the stress components o;’ and o, in section 2. Thus all the stress
components in sections 1 and 2 can be expressed through the coefficients ¢y,
Cok» dop—1 and dgy ;.

The second equilibrium equation

do, Ot,, 1
_z Z = 69
5 T T 0 (69)

permits to eliminate coefficients c3),. Let us call the coefficients ¢y, d3j,_, and
d3)_q stress coefficients s; (i = 1, ... ). They permit calculation of all the stress
components. The set of the stress coefficients is named stress vector S, which
has [ components.

2.2 The differential evolution algorithm

Our aim is to find the stress vector, which corresponds best to the measurement
data. For that we use the differential evolution (DE) algorithm[21]. Differential
evolution is a parallel direct research method for finding optimum values of the
components of a vector. The initial population of the vectors is chosen randomly
if nothing is known about the system. In case a preliminary solution is available,
the initial population can be generated by adding normally distributed random
deviations to the nominal solution. The crucial idea behind DE is a scheme for
generating trial vectors. DE generates new vectors by adding a weighted
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difference vector between two population members to a third member. If the
resulting vector yields a lower objective function than a predetermined
population member, the newly generated vector will replace in the following
generation the vector, with which it was compared. The best vector is evaluated
for every generation to keep track of the progress that is made during the
minimization process. Extracting distance and direction information from the
population to generate random deviations results in an adaptive scheme with
excellent convergence properties.

For the determination of the stress vector S, which corresponds best to the
measurement data, the following method was used. First, the parameter of the
isoclinic @™ and optical retardation are measured in both main and auxiliary
sections on n light rays. For every stress vector § it is possible to calculate for
the same light rays i the parameters ¢f and A{. For example, by modelling the
test object on a light ray as a pile of birefringent plates, each of which is
described by a Jones’ vector[26]. The objective (penalty) function F'

<Af cos 2¢f — AT* cos 2<p{”>2
€

n

(70)

N (Af sin 2¢f — A" sin 2<p{”>2]
€

characterizes how well the stress vector describes the real stress field. Here € is
the measurement error. The penalty function F takes into account all the
measurement data on the n light rays.

General algorithm of the method is shown in Fig. 27 and the algorithm of DE
in Fig. 28.

In practical application of the algorithm we generated the initial population of
100 stress vectors by adding normally distributed random deviations to the
solution of linear photoelastic tomography.

According to Fig. 27, on the basis of the measurement data and of the
generated stress vectors, the penalty function F; for every generated stress vector
is calculated. Most important is the smallest penalty function of the population,
min F;. If F; is sufficiently small, one may have obtained a satisfactory solution,
i.e., a stress field that corresponds to the real measurement data well enough. If
not, using the differential evolution algorithm, a new population of stress vectors
is generated, penalty functions for this population are calculated, etc.
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Generate initial population
of stress vectors S;
(=1, ..., 100)

.

Calculate characteristic parameters

¢ c
p, and A; for every stress vector
for all the measured light rays

(i=1,..,n)

Measure characteristic parameters Eamhﬂtahte Dte”any fothﬁ()gE,
m m ; or all the stress vectors
g)lz 1and Ar':) for all the light rays i [ g of the population j
Y (=1,...,100)

!

Find the smallest penalty Differential evolution algorithm
function of the population Generate new population of

Fenin= min F; stress vectors

Time limit
exceeded or
target value of F
achieved

Fig. 27: General algorithm of non-linear photoelastic tomography.

For every target vector D generate a trial vector E as follows:

al
a,
a.‘
Random
crossing
A, B, C - vectors randomly selected Trial vector E replaces
from the population target vector D in the next

generation if F(E) < F(D)
Fig. 28: Basic algorithm of differential evolution.

Modification of stress vectors D(dy,d,, ...d;) of the initial population into
stress vectors E(eq, ey, ...e,) of the new generation, using other three stress

vectors A, B, and C of the initial population, is shown in Fig. 28.
Random crossing (Fig. 28) was carried out as follows:

_|ai+08(b;—c) if r<p,
€= di if TZP,
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where r is a random number between 0 and 1 and p is a parameter, which can be
chosen by the operator. We used p = 0.9, which has proved to be efficient in
practical applications[21].

The algorithm, shown in Fig. 27 and Fig. 28, was programmed in C++.
Implemented on the computer IBM R50E, 400 iterations take 20 min.

2.3 Experiment

As an example of a non-linear photoelastic tomography, residual stresses near
the rim in a rim-tempered drinking glass (Fig. 29) were investigated. In section 1
(z = 28.1 mm) optical retardation is less than 100 nm and therefore Egs. (3) and
(4) of the linear approximation are valid. Stresses in section 1 were determined
with a linear algorithm of photoelastic tomography[4]. By approximating
stresses, in Eqs. (63) we used m = 3. Thus the number of the coefficients of the
stress vector was | = 11. Fig. 30 shows the measurement data as well as data
that is calculated on the basis of obtained stress distribution, shown in Fig. 31.
We see that experimentally measured and calculated data are very close. That
indicates that in section 1 linear approximation of photoelastic tomography is
valid. In section 1 we obtained F(1) = 0.4.
|

————
_—-——

______ = -1-

() (0)
Fig. 29: Geometry of a rim-tempered glass (a) and
integrated fringe pattern near the rim (b).

In section 2 (z = 16.8 mm) optical retardation reached 300 nm. In case of
rotation of the principal stress axes that is somewhat more than allowed in linear
photoelastic tomography, as mentioned before. Fig. 32 shows measured data in
section 2.
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Fig. 30: Experimentally measured and calculated data in
section 1: measured, — — — calculated.
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Fig. 31: Stresses o, ( ) and g (———) in section 1,

determined with linear photoelastic tomography.

On the basis of the measurement data in section 2, stresses were calculated
using the algorithm of linear photoelastic tomography[4](Fig. 33). Using
measured stresses, theoretical measurement data were calculated (Fig. 32). Fig.
32 shows that the difference between measured and calculated data is much
bigger than in section 1, especially for Asin2¢. That is expressed also in the
value of the penalty function: F(2) = 59. It is an indication that in section 2 the
linear approximation is not valid.
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Fig. 32: Experimentally measured ( ) and calculated

(——-) data in section 2.
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Fig. 33: Stresses g, ( ) and 6 (——-) in section 2,
determined with the linear algorithm.

Using the DE method, final stress distribution in section 2 was obtained (Fig.
34). In comparison with Fig. 33 the change of oy is remarkable. The decrease of
the penalty function F during the DE procedure is shown in Fig. 35. After the
150th generation the penalty function remains about constant, F' = 3.

In Fig. 34 practically oy = o,. That was to be expected. In a cylindrical object
with weak stress gradient in z direction the classical sum rule

0, + 09 = 0y, (72)
is valid[5]. Since o, = 0, it follows from Eq. (72) that gy = 0.
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Fig. 34: Stresses g, ( ) and g (——-) in section 2,
determined with the non-linear algorithm.
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Fig. 35: Dependence of the penalty function on the
number of generation in the DE process.

Fig. 36 shows a comparison of the experimentally measured and calculated,
on the basis of the final stress distribution, data in section 2. Coincidence of the
measured and calculated data is considerably better than that shown in Fig. 32,
especially for the term A sin 2¢.
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Fig. 36: Experimentally measured (: ) and calculated (— —-),
on the basis of the final stress distribution, data in section 2.
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3 Conclusions

A measurement technology for photoelastic tomography in linear approximation
for the determination of normal components of 3D stress fields is described.

In the case of axisymmetric stress fields, it has been shown that the Abel
inversion, which is essentially a method for determining scalar fields, can also
be applied for the determination of the axial and shear stress components.

The radial and circumferential components of axisymmetric stress field can
be determined by using the equilibrium equation and the compatibility equation
(in the case of external loads) or the generalized sum rule from the theory of
thermoelasticity (in the case of residual stresses). The stability of solutions to
these equations has been studied both analytically and numerically, and, the
recommended direction of integration was determined to be along the positive
direction of the radial axis. Numerical algorithms for the determination of radial
and circumferential components have been elaborated. In the case of external
loads, the results of the numerical algorithm have been shown to match the
radial and circumferential components of the analytical solution to the Hertzian
contact problem when the algorithm was working on the axial and shear stress
components of the same field.

For the case when the linear approximation is no longer valid, an algorithm
employing differential evolution (a genetic algorithm) has been elaborated for
the determination of complete axisymmetric stress field. The algorithm seeks
stress polynomials such that the corresponding birefringence distribution fits
best with the measurement data. Due to the axial symmetry of the stress field the
measurement data is exactly the same as in the case of linear algorithm.

Practical examples have been provided for all the cases.
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Abstract

In this thesis, four new algorithms of photoelastic tomography, opening new
possibilites for the determination of 3D stress fields, are described. Use of linear
approximation assumes small values of the birefringence or small angles of
rotation of principal stress axis along the light rays; the non-linear approach is
free of these restrictions.

Practical realization of photoelastic tomography in linear approximation for
reconstruction of normal components of 3D stress fields is described.

In the case of axisymmetric stress fields, it is shown that the Abel inversion
can be used for the determination of axial and shear components of an
axisymmetric stress field.

In order to determine the radial and circumferential stress component, the
equilibrium equation and the compatibility equation from the theory of elasticity
(in the case of external loads) or the generalized sum rule from the theory of
thermoelasticity (in the case of residual stresses) are employed. The stability of
solutions to these equations has been analysed both analytically and numerically,
and, numerical algorithms for solving these equations have been elaborated. In
the case of external loads, the numerical algorithm has been validated by using
the analytical solution to the Hertzian contact problem.

A non-linear algorithm of photoelastic tomography for the measurement of
axisymmetric stress fields has been elaborated. Stress components are presented
in the form of power series along the radial coordinate. A differential evolution
algorithm has been used for finding the stress field parameters, which fit the
measurement data best.

Application of the described methods have been illustrated by practical
examples.
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Kokkuvote

Selles viitekirjas kirjeldatakse fotoelastsustomograafia nelja uut algoritmi, mis
avavad wuusi vOimalusi ruumiliste pingevéljade tdielikuks médramiseks.
Lineaarse ldhenduse kasutamine eeldab viikeseid kdiguvahesid voi viikeseid
peapingete podrdumisi valguskiirte teel; mittelineaarne ldhenemine on nendest
piirangutest vaba.

On kirjeldatud fotoelastsustomograafia lineaarse ldhenduse praktilist
realisatsiooni kolmemddtmeliste pingeviljade méaaramiseks.

On nédidatud, et Abeli inversiooni saab kasutada telgsiimmeetriliste
pingeviljade teljesihilise ja nihkepinge komponentide madramiseks.

Radiaal- ja rdongaspinge méiramiseks telgsiimmeetrilisel juhul kasutatakse
elastsusteooriast tasakaaluvorrandit ja kas pidevusvorrandit (véliskoormuse
juhul) voi termoelastsuse teooriast {ildistatud summareeglit (jadkpingete juhul).
Analiiiitiliselt ja numbriliselt on uuritud nende vorrandite lahendite stabiilsust ja
on vilja tootatud numbrilised algoritmid nende vdorrandite lahendamiseks.
Numbrilist  algoritmi  véliskoormuse  juhul on kontrollitud  Hertzi
kontaktprobleemi analiiiitilise lahendi abil.

On vilja tootatud mittelineaarne fotoelastsustomograafia algoritm telgsiim-
meetriliste pingevéljade médramiseks. Pingete komponendid on esitatud
radiaalkoordinaadi sihilise astmerea kujul. Modteandmetega koige paremini
sobivate pingevélja parameetrite leidmiseks on kasutatud diferentsiaalse
evolutsiooni algoritmi.

Kirjeldatud meetodite rakendust on illustreeritud praktiliste néidete varal.
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Abel’s integral equations arise in many areas of natural science and engineering,
particularly in plasma diagnostics. The axisymmetric physical field is determined
using the Abel inversion. Until now, the Abel inversion has been applied almost
exceptionally for the determination of scalar fields, i.e. fields, which at a point are
characterized by a scalar. In several areas of engineering, the need to determine
axisymmetric tensor fields arises, for example by measuring residual stress in
axisymmetric glass articles with photoelasticity. In this article, we show how the
Abel inversion can be used for the determination of an axisymmetric stress tensor
field. The peculiarity in determining the tensor field is that on every ray two
integrals of the field are measured and for complete determination of all the
components of the stress tensor, equations of the theory of elasticity are used. The
method is illustrated by an example.

Keywords: Abel inversion; tensor field; photoelasticity; stress analysis; residual
stress

1. Introduction
Abel inversion is a popular technique by which various axisymmetric physical fields are
investigated, particularly in plasma diagnostics [1-3]. This technology has been applied
almost without exception for the determination of scalar fields. At the same time, in
physics and engineering, the problem of measuring axisymmetric tensor fields often arises.
in particular cases of photoelastic stress analyss, some stress tensor compoaents can be
directly determined with the Abel inversion; for example, by stress measurement in a
cylindrical body with no stress gradient in axial direction [4,5]. This problem is important
by assessing the quality of optical fibres. The basic equation of photoelasticity can be
written as

A = Coloy — o2)t, (0]

where Cp is the photoelastic constant, 6, and o, are principal stresses in the plane
perpendicular to the polarized light beam, ¢ is the thickness of the specimen and A is
optical retardation between light vibrations along the directions of o, and o>.

Let us consider passing of polarized light through the cross-section of a cylindrical
body with no stress gradient in the direction of its =-axis (Figure 1). In cylindrical
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Figure 1. Passing light through the cylinder parallel to the y-axis.

coordinates, stress in the cylinder is determined by three stress components: o,, oy and o-.
Due to the photoelastic effect, the cylinder becomes birefringent. One principal
birefringence direction (and principal stress direction) is in the radial direction and the
other is parallel to the z-axis.

If the polarized light is passed through the cylinder parallel to the y-axis (Figure 1,
ray s), optical retardation A(x) can be expressed as

B
A(x) = Cp / (0: — 0, cos” @ — g sin? H)dy. 2)
y

Equation (2) follows from Equation (1) using notations

01 =0., 032=0y=0,c08 0+ 0psin> 6. 3)
From the condition of equilibrium of the three-dimensional segment ABC of the thickness
h, we have the following:

B
h/ (0, cos? 0 + agsin® B)dy = 0. 4)
4

Equation (4) was first derived by Poritsky [6]. Physically, Equation (4) means that since the
external boundary of the cylinder is free of loads, due to the equilibrium condition in the x
direction, integral of the stress o, along the line AB must be equal to zero.

Now from Equation (2) follows

B
A(x) = CO/ o-dy. (5)
A
Since dy can be expressed as
rdr
dy = ———, (6
- :

Equation (5) can be written in the form

o-(r)r

A(Y) = 2C0 \/—"2=)dl
Ay Al wrt

(7
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The solution of this integral equation is given by
1 R4 A(x
o) = —— [ 22
7TCO r Xz -
Thus, radial distribution of one component of the stress tensor, o-(r), can be determined
directly with Abel inversion.

The problem of measuring stress in cylindrical bodies arises by investigating residual
stress in glass cylinders, fibres and fibre preforms. In this case, the so-called sum rule [4,7]

dx. (8)

6. =0, +0p ©)
is valid.
On the basis of the sum rule and of the equation of equilibrium,
L (15— =0, (10)
dr
the other stress components can be determined [8], i.e.
o) =35 [ ot (an
F 0
ou(r) = 0:(r) — oy(r). (12)

Thus, all the stress tensor components have been determined. This method has been widely
used by measuring stress in optical fibres and fibre preforms [8-10].

If the specimen has general axisymmetric shape and the stresses vary along the z-axis,
Abel inversion cannot be applied directly. In this case, the stresses are usually
approximated by certain functions (e.g. polynomials), the unknown coefficients of
which are directly calculated from the experimental data [11,12]. The aim of this article
is to show that also in the general case of the measurement of axisymmetric stress with
integrated photoelasticity [13,14], the Abel inversion can be applied.

2. The general case of axisymmetric stress distribution

Let us consider determination of the stresses in an axisymmetric transparent object in the
case when stresses vary in the direction of the z-axis. The state of stress in a section ===
is determined by the stress tensor components o,, ds, O- and 7,-. Let us assume that
photoelastic measurements are carried out in two parallel cross-sections of the test object,
at z=z9 and z=7zo+h (Figure 2). The value of 4 depends on the stress gradient in the
direction of the z-axis and on the precision of the measurements. It is important to reveal
information about the stress gradient along the z-axis with sufficient precision.

In the case of the absence of stress gradient in the - direction, by photoelastic
measurements, only optical retardation A(x) is recorded since one of the principal
directions is parallel to the z-axis, and therefore the principal stress directions are constant
on the light ray. In the general case, when the shear stress t,- is present, the principal stress
directions on the ray s are not constant and actually a rotation of the principal stress
directions along the light ray takes place. Due to that optical phenomena are complicated
and they are considered in integrated photoelasticity [13,14].
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Figure 2. Investigating an axisymmetric test object in the general case.

Let us assume that the birefringence of the test object is weak. In this case, optical
phenomena can be treated in a simplified way [15,16]. By weak birefringence we mean the
case when optical retardation A(x) is less than about a third of the wavelength. In the case
of weak birefringence, the refraction indices n; and n, in the direction of the principal
stresses oy and o, are close to each other (1, —m < 1073). It has been shown [15] that in
this case by photoelastic measurements in section z=_zo on every light ray, the parameter
of the isoclinic ¢(x) and optical retardation A(x) can be measured and they are related to
the integrals of the components of the stress tensor as

B
Vi(x) =Acos2¢p = CO/ (0. — oy)dy, (13)
4
B
V1(x) = Asin2¢ = 2Cy / 7. dy. (14)
4

Let us mention that the main area of the application of integrated photoelasticity is the
measurement of residual stress in glass [16]. Due to low photoelastic constant Cy of glass,
in glass articles often the birefringence is weak.

Measurements are also carried out in the auxiliary section z=zy+h. We denote by
V1(x) and V5(x) the measurement data in the auxiliary section.

Let us consider equilibrium of the three-dimensional segment ABC (Figure 2) in the
direction of the x-axis. We may write

B
hf ody=T"—T, (15)
4

where T’ and T are shear forces on the upper and lower surfaces of the segment,
respectively,

R Y s
T :_L Vidx, = Vadx. (16)
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Taking into consideration the relationships (15) and (16), Equation (13) reveals that

B 1 R R
CO/ o.dy = V1+7—h(/ V;dx—/ ngx> = I(x). (17
A = x X

From Equation (17), the distribution of the axial stress can be determined using the Abel
inversion as

()__L R4 1(x)
st JTCO VXt —r?

Equation (14) can be written in the form

dx. (18)

B

Va(x) = Asin2¢ = 2Cy / 7,-cosfdy. (19)
A
or
Vs By,
LECIPIN / = dy. (20)
x PYRY

From Equation (20), the distribution of the shear stress can be determined using the Abel
inversion '

d (V(x)
r Rd.\'( x )

Tpe = — er————
- 2”C0 r V.’Cz -

If 6. and t,, are known, the stress components o, and o, can be determined from the
equation of equilibrium

dx. 21

do, + 0, —0g 0T

ad o L= 22
or r 0z : (22)
and from the generalized sum rule [17,18]
"o,
U,+Ug=0’:—2/a—d)‘+D, (23)
0 1z

where D is an integration constant. Equation (23) is to be used when measuring residual
stress in glass. If stresses are caused by a mechanical load, instead of Equation (23) the
compatibility equation

o, — 0Op
r

=0 (4)

a
5;[09 —ulo-+a)] = (1+p)

is to be used. Here u is the Poisson coefficient.

Thus in the general case of the axisymmetric stress tensor field, the axial stress 0. and
shear stress 7.. distributions are determined from the measurement data with Abel
inversion. The other stress components o, and o, are determined from the equations of the
theory of elasticity. However, in order to use the Abel inversion for the calculation of the
stress tensor components, the direct measurement data are to be modified and data from
two parallel sections are to be used.
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Let us mention that the onion-peeling method [19], a numerical algorithm equivalent to
the Abel inversion, can also be used by measuring axisymmetric stress tensor fields [20,21].

3. Example
Let us consider measurement of the residual stress in the lower part of the stem of a wine
glass (Figure 3). Figure 4 shows distribution of the optical retardation A(x) and azimuth of
the first principal stress ¢(x) in the section B-B, which is located at == 16.61 mm from the
lower end of the wine glass. Auxiliary section of photoelastic measurements was located at
z+h=17.61 mm.

Figure 5 shows distribution of the axial stress o, obtained with Abel inversion from
Equation (18), using the onion-peeling method. For comparison, distribution of o,

(a) ; 60 mm

_2omm

Figure 3. (a) Geometry of the wine glass and (b) and fringe pattern in the area 4.

250

200 e

-
(9]
(]

-
[o]
o

= ———

Ret (nm) Asim (deg)

S -

iy

[¢]
o
/!
[}
i

~_§_\¥

r(mm)

Figure 4. Radial distribution of optical retardation A(x) (——) and azimuth of the first principal
stress ¢(x) (— — —) in section = 16.61 mm.
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obtained with standard technology of integrated photoelasticity [13,16], is also shown
(0. has been approximated as a polynomial with three terms). Distribution of stress
components o, and o, was determined using the equilibrium equation (22) and the
generalized sum rule (23) (Figure 6). All stress components are approximated as
polynomials with three terms.
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Figure 5. Axial stress o. distribution, obtained with the onion-peeling method (—) and with
polynomial approximation (—).
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Figure 6. Normal stress components in section B-B.



08:05 10 March 2010

[Tallinn University of Technology] At:

Downloaded By:

248 H. Aben et al.

In the case of residual stresses, the average stress in any section should be zero. The
average value of the axial stress o, shown in Figure 6, is 0.27 MPa. That makes less than
4% of the maximum value of o.. That is an indication of precision of determining the axial
stress.

4. Conclusions

It has been shown that the Abel inversion, which is essentially the method for determining
scalar fields, can also be applied by investigating tensor fields. The particular case of
residual stress measurement in an axisymmetric glass article with integrated photoelasticity
has been considered. In this case, on every light ray, two integrals of the stress tensor
components can be measured and measurements are to be carried out in two parallel
sections. From these measurement data, the Abel integral equations (18) and (21) for the
axial stress and shear stress can be constructed. A ‘peculiarity of the tensor field
measurement, in this particular case, is the possibility to use equations of the theory of
elasticity as a priori information. Due to that, the stress tensor field can be completely
determined. The developed algorithm is illustrated by measuring residual stresses in the
stem of a wine glass. An area of application of the generalized Abel inversion is residual
stress measurement in axisymmetric glass articles with integrated photoelasticity.
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TECHNIQUES Py

ON THE TECHNOLOGY OF PHOTOELASTIC

TOMOGRAPHY

ne of the ambitions of experimental mechanics has

been the development of nondestructive methods

for the measurement of three-dimensional (3D)

stress fields. Certain possibilities for that opens
the photoelastic scattered light method.® However, due to
complicated apparatus and difficulties with interpreting the
measurement results, this method has had rather limited
application. Integrated photoelasticity® has been applied
almost exceptionally for the measurement of axisymmetric
stress fields*> because in the general case solution of the
inverse problem is mathematically complicated. Application
of traditional tomographic techniques®” in stress analysis is
not possible (at least not directly) since stress is a tensor
and tensor field tomography is not sufficiently developed.
Sharafutdinov®® has shown that using a linearized solution
of the equations of integrated photoelasticity, it is possible to
construct a tomographic algorithm for the measurement of the
normal stress distribution in a 3D stress field. This method
was further developed and practically implemented by Aben
et al.’%13 In this article, practical realization of photoelastic
tomography is described. Application of this technology is illus-
trated by stress measurement in a high-pressure electric lamp.

LINEAR APPROXIMATION IN PHOTOELASTIC
TOMOGRAPHY

Let us consider passing of polarized light through a 3D pho-
toelastic specimen parallel to the y’-axis (Fig. 1). We assume
that in two parallel sections, main section at z = z; and aux-
iliary section at z = zy + Az, the parameter of the isoclinic ¢
and the integrated optical retardation A have been measured
for many azimuths g (Fig. 1). Let us define integrals of stress
components on the optical path, V; and V5, as functions of A, ¢
as follows:

V1= Acos2¢ = CJ (op —0y)dy’, (1)

Vy = Asin2¢ = ZCJ Ty dy'. (2)

The values of V; and V in the auxiliary section z = z, + Az, we
denote V; and V';.

It is assumed that for tomographic measurements, the speci-
men is rotated around the z-axis.

Equations 1 and 2 express the solution of the equations of
integrated photoelasticity in linear approximation.*®* Lin-
ear approximation is valid if birefringence is weak (optical
retardation is less than about one third of the wavelength)
or the rotation of the principal stress axes is small. If no rota-
tion of the principal stresses is present, Eqs. 1 and 2 are valid
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for arbitrary birefringence. These formulas have been widely
used by measuring stress in axisymmetric glass articles.*?

The problem of tensor field tomography can be reduced to
a problem of scalar field tomography for a single stress com-
ponent o, as follows. %! Considering the equilibrium of the
3D segment ABC in the direction of the x'-axis (Fig. 1), we
may write

C
Aszrxrdy’ =T, -T, 3)
A

where T, and T} are the shear forces on the upper and lower
surfaces of the segment, respectively:

B B
1 r ’ — 1 r
Tu—%JVz dx,Tl—%Jngx. (4)
1 l

Taking into consideration relationships Eqs. 3 and 4, Eq. 1
reveals that

C 1 B B v
ja’zdy’=— JV’zdx’—JVzdx’ _El' (5)

A l l

Since tomographic photoelastic measurement data can be
obtained for all the light rays y’, Eq. 5 expresses the Radon
transform®” of the field of the stress o,. The field of o, can be
determined using any of the well-known Radon inversion
techniques.®” Rotating the specimen by tomographic meas-
urements around the axes x and y, fields of o, and o, can also
been determined.

Let us sum up essential features of the photoelastic tomogra-
phy in linear approximation:

(1) Determination of the stress field is decomposed to the
measurement of a single stress component at a time.

(2) For the measurement of the field of a single stress com-
ponent, the specimen is rotated around only one axis.

(3) Distribution of the normal stress in a section of the
specimen is determined with the method of scalar field
tomography using Radon inversion.

(4) By tomographic photoelastic measurements, the
parameter of the average isoclinic ¢ and the integral
optical retardation A are to be measured in two parallel
sections. Thus, the photoelastic measurements are
similar to those used by investigating 2D problems.

(5) The main difference of the tomography of a single com-
ponent of the stress tensor from the scalar field tomo-
graphy is in the following. In classical tomography, the
Radon transform of the field is directly measured. In case
of the stress field tomography, the Radon transform of
the normal stress o, in Eq. 5 is calculated using photoe-
lastic measurement data in two parallel sections.
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Fig. I: lllustration, explaining the derivation of Eq. 5

RECONSTRUCTION OF THE STRESS FIELD

Since the Radon transform of the axial stress, o, is deter-
mined through the measurement data according to Eq. 5,
any method of Radon inversion can be used to determine
the field of o,. It is necessary to measure the projection data
for many values of the angle 8 over 180° (Fig. 1). Let us write
Eq. 5 in the form:

c

[azdy' - W(£B), (6)

A

where W(¢, B) is determined from Eq. 5.

It is assumed that the cross-section of the specimen is located
inside a unit circle. Following the method proposed by
Cormack,'® W(¢, B) is expressed in the form of the Fourier
series as follows:

WEB)=Foe)+ 3 (Fi(ekosmp+ Fasinme). (1)

m=1

The distribution of the axial stress, o, is also expressed as
a Fourier series as follows:

M
o =hip)+ Y (]‘fn(p)cosm0+f;(p)sinm0>, (8)

m=1

where M is the number of terms. Higher value of M gives
better approximation along the angular coordinate.

Now the Cormack transform reveals that
1

Fos(e) =2 f&s(p)Tm(f/p)pdpy
V€

where T',(¢/p) are the Chebyshev polynomials'® of the first
kind.

©)

If the functions F;* and f{* are orthogonal polynomials in the
interval (0, 1), it is possible to avoid integration in Eq. 9.
Cormack'® has used the following related pair of orthogonal
polynomials as follows:

fulp) = i d (m+2+1)ZL (p), (10)
1=0

Fn(é) =2 i d sin[(m + 21 + 1)arccos ¢], (11)
1=0

where Z. (p) is a modification of the Zernicke polynomials'” in
the following form:

(7 1)S(m+2l—s)!rm+21725
o slm+i—=s)(-s)

(12)

1
Znlp)= ¥

s

Fig. 22 Computer-controlled polariscope AP-04 SM. In the middle is the rotary stage with an optical fiber preform
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and L is the number of terms. Higher value of L gives better
approximation along the radial coordinate.

Determination of o, is divided into three steps:

(1) Determination of functions F¢’ from Eq. 7 for every
point of measurement i (i = 1 ... N) by using the dis-
crete Fourier transform; here, N denotes the number of
measurements on the radius.

(2) Approximation of F,,(¢) with a polynomial (Eq. 11) and
determination of the coefficients a/ using the least
squares method.

(3) Calculation of o, using Eqgs. 8 and 10.

EXPERIMENTAL TECHNIQUE

Photoelastic measurements were carried out with an auto-
matic polariscope AP-04 SM (Fig. 2) manufactured at the
Laboratory of Photoelasticity of the Institute of Cybernetics
of the Tallinn University of Technology (Tallinn, Estonia). As
light source, light-emitting diodes of A = 640 nm have been
used. Polariscope contains two polaroids and two quarter-
wave plates that all are controlled by stepper motors. Optical
information is recorded by a charge coupled device (CCD)
camera. The polariscope can be used as a dark-field or light-
field circular polariscope, and it permits measurements of
optical retardation and parameter of the isoclinic with
the phase-stepping method.'®® Polariscope AP-04 SM is con-
trolled by an IBM Thinkpad (Armonk, NY).

For automatic rotation of specimens of small size, a rotary stage
has been constructed (Fig. 3). Rotation is accomplished with
a stepper motor, which permits rotation of the specimen with
a precision of 0.1°. The specimen is fixed to the rotary stage so
that the part of the specimen, which is investigated, is placed in
an immersion tank. Immersion liquid provided by Cargille-
Sacher Laboratories Inc. (Cedar Grove, NJ) is recommended
because of its relative safety when compared to alpha-bromo-
naphtalene and fast mixing when compared to silicon oils.

Specimen
fixing clamp

Stepper
motor

Immersion
tank [

Fig. 3: Rotary stage for automatic rotation of small test objects

|

s

Fig. 4 Geometry of the high-pressure electric lamp

Photoelastic measurements with the phase-stepping method
for one projection take about 15 s. For every projection, from
40 to 100 measurement points per millimeter are obtained.

A menu-driven program SIGMAZ has been elaborated that
implements the following:

control of the polariscope AP-04 SM, including the CCD
camera and the rotary stage,

determination of the direction of the first principal stress
oy and the optical retardation with the phase-stepping
method'®!® for many values of the angle B over 180° with
optional recording of photos of the specimen in the light-
field circular polariscope,

extraction of projection data in selected main and auxil-
iary section,

extraction of projection data from the photos of the spec-
imen in the format suitable for program CTSim,*
removal of the wobbling of the specimen axis,

stress field reconstruction algorithm described previ-
ously, and

plotting of color-coded stress field with the optional
application of contour masks.

EXAMPLE

As an example, we describe measurement of the normal stress
distribution in section AB of the stem of a high-pressure elec-
tric lamp made of quartz glass with refraction index of 1.47
and C = 3.40 TPa™ " (Fig. 4). In the axisymmetric middle part
of the lamp stresses can be determined with conventional
integrated photoelasticity.?

Fig. 5: Geometry of the cross-section AB
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Fig. 6: Projections of (a) A and (b) ¢ in section AB for
p =0-180°

Refraction index of the immersion liquid was also 1.47 to
avoid refraction. One hundred eighty projections were
recorded, with a step AB = 1°. In addition to the photoelastic
data, a photo of the specimen in a light-field circular polari-
scope was also recorded for every projection angle. Contour of
the cross-section AB (Fig. 5) was obtained by using filtered
backprojection method®” in the program CTSim?® on these
photos. Projections of photoelastic data for stress field recon-
struction were extracted in two sections, the main section
being AB and the auxiliary section at 1 mm apart from it.
Since processing of projections from theses sections were sim-
ilar, only data for the main section will be shown. Figure 6a

(a)
B, deg
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o

o 05 1.0 15 20 25 30 35 40 45 50 55 60X, mm
||
-50 -375 -25 -125 0 125 25nm
(b)
B, deg
180
150
120
20
60
30
o
0 05 10 15 20 25 30 35 40 45 50 55 60X mm

-90 -75 -60 -45 -30 -15 0 15 30nm

Fig. 7: Projections of (a) Acos 2¢ and (b) Asin 2¢ in section AB
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Fig. 8: Normal stress field in section AB

shows projections of optical retardation A, and Fig. 6b projec-
tions of the isoclinic angle ¢ (direction of o7) in section AB.
The electrode looks deformed in Fig. 6a and b because it did
not coincide with the rotation axis of the specimen.

Figure 7 shows projections of Acos 2¢ and Asin 2¢ in section
AB, which are directly used in Eqs. 1 and 2. Image of the
electrode is straightened by shifting the projections for differ-
ent angles B. Similar data were obtained for the auxiliary
section of the stem.

@7 ; ; ; ; ;

X, mm

Fig. 9: Normal stress o, distribution on the (a) x-axis and
(b) y-axis in section AB
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Fig. 10: Measured and calculated distribution of Acos 2¢ for
the projection 8 = 120°

On the basis of Figs. 6 and 7 and the contour from Fig. 5, the
field of the normal stress o, (Fig. 8) was determined using the
function W(¢, B) with 16 terms along the radial coordinate and
16 terms along the angular coordinate. Distribution of o, on
the x- and y-axes is shown in Fig. 9.

Since o, is residual stress, theoretically its average value
should be zero. Actually, the average value of o, in section
AB is 0.2 MPa. That is about 5% of the maximum value of
o, near the electrode.

Another possibility to check the precision of the results is
comparison of actually measured experimental data with
the data, calculated on the basis of the calculated stress field.
Such a comparison of the distribution of Acos 2¢ (a) for the
projection B = 120° is shown in Fig. 10.

Both checks permit to conclude that precision of tomographic
measurement of the normal stress field is satisfactory.

CONCLUSION

A measurement technology for photoelastic tomography in
linear approximation is described, and its application is dem-
onstrated by measuring stress distribution in a stem of a high-
pressure electric lamp. An estimation of the precision of the
measurements has been given.
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Abstract. In this paper we describe the application of photoelastic tomography for determining
stresses in glass. The basic equations of linear approximation in photoelastic tomography are
presented. Since these equations permit direct determination only of the axial and shear stress, a
method for calculating the other stress components is described. In the case of the residual stresses,
it uses the equilibrium equation and the generalized sum rule. In the case of stresses due to external
loads, it uses the equilibrium and compatibility equations. It is shown, both graphically and
analytically, that integration of these equations must start at the axis and proceed along the positive
direction of the radial axis. As an example, residual stresses in the stem of a wine glass are
determined. Results are verified by comparing the birefringence, calculated from the determined
stress state, with measured birefringence. The numerical algorithm for the case of stresses due to
external loads is verified by using the theoretical solution for a Hertzian contact stress problem.

Introduction

The strength of glass and its resistance to scratches can be increased by introducing compressive
residual stresses onto its surface by tempering. In order to establish optimal an level of tempering, it
is important to measure the value of the residual stresses. Photoelastic tomography permits
quantitative measurements of residual stresses in glass articles of complicated shape.

In photoelastic tomography of axisymmetric objects the axial and shear stress distributions are
directly determined from the measurement data [1,2]. The remaining stress components, the radial
and circumferential stress, are determined using the equilibrium and compatibility equations when
stresses are due to the external loads. In case of residual stresses, instead of the compatibility
equation, the generalized sum rule is used [3].

By using the equilibrium equation and the compatibility equation and the generalized sum rule,
discrete algorithms for calculating radial and circumferential stresses are described. Residual stres-
ses in the stem of a wine glass have been determined. On the basis of the obtained stress field the
corresponding birefringence is calculated using the Jones matrix formalism [4] and compared to the
measured birefringence. Radial and circumferential stress components of the Hertzian contact stress
field have been determined using the described algorithm and compared to the theoretical solution.

Photoelastic tomography in linear approximation

In photoelastic tomography [1,2] the test object is placed in an immersion tank with matching
immersion liquid. A beam of polarized light is passed through the wall of the specimen (Fig. 1).

Specimen Immersion
tank

Polarised
light

T |
7\

)
Q
Measurement

apparatus

Fig. 1: Experimental set-up in photoelastic tomography.
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In the case of an axisymmetric test object the transformation of the polarization of light in the
specimen can be characterized by the parameter of the isoclinic ¢ and the optical retardation o.
These parameters can be measured on every light ray with conventional polariscopes. It has been
shown that when optical retardation is less than a quarter of the wavelength or rotation of the
principal stress directions is less than 7/6, the components of the stress tensor are related to the
birefringence with simple integral relationships [1,2,5]

60052¢:CI(JZ—ax)dy, (D)
dsin2¢ = CI 7, dy, (2)

where C is the photoelastic constant, and o, g, and 7., are components of the stress tensor in the
plane perpendicular to the light ray y.

It has been shown that if the parameter of the isoclinic ¢ and optical retardation ¢ have been
measured on many light rays in two parallel sections, perpendicular to the axis z of the
axisymmetric specimen, then radial distribution of the axial stress o. and shear stress 7,. can be
determined either by approximating with the polynomials [2] or by using the generalized onion
peeling method [6].

Determination of radial and circumferential stresses in the case of residual stresses in glass

The remaining stress components, o, and oy, are determined using equations of the theory of
elasticity. The stress components must satisfy the equation of equilibrium

0o, o,—-0, 0T,
it T il S WY
> & 3)

and, in the case of residual stress in the glass, also the generalized sum rule [3]

% ges.C, 4)

,
o, +0, :O'Z—ZJ-'“ B

where C; is an integration constant determined from the boundary conditions at the surfaces of the
specimen. Substitution of ¢y from the sume rule into Eq. (3) reveals the differential equation for the
radial stress

r 0T,
- 9 qr -
do‘,.+20—” o’z+2_[“ o r C|+al_r: o (5)
dr r oz

Numerical integration of Eq. (5) is required to be done in the direction in which the differential
equation is stable or asymptotically stable. Solutions of an ordinary differential equation in the form

Y= a(t)x+b(7) (6)

are asymptotically stable when a < 0 for all values of ¢, stable when a <0 for all ¢ and for positive
values of a stability cannot be established [7]. Rewriting Eq. (5) in the form similar to Eq. (6) gives

r 0T,
o, -2 Zdr-C, 4
T S I ™)
r li Oz

from which it follows thata =—0.5/r < 0for all values of » and therefore solutions of the Eq. (5) are
asymptotically stable. Thus, numerical integration of Eq. (5) should start at the axis and proceed
along the positive direction of the radial axis. Integration in the negative direction of the radial axis
is sensitive to small changes in the initial value. This is illustrated in Fig. 2a, where three calculated
radial stress distributions corresponding to three initial values, differing only by 0.01, are shown.
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Fig. 2: Three radial stress distributions corresponding to the three initial values differing by 0.01 when
integrating along the negative direction of the radial axis (a) and three radial and circumferential stress
distributions corresponding to the three initial values differing by steps of 0.2 when integrating along the
positive direction of the radial axis (b).

In the case of a hollow specimen, the initial value of the radial stress at the internal surface,
o,(ry), can be determined directly from the value of the stress at the internal surface, oy(7y), as
follows:

O'r(ro):O's(ro)sinzﬂ, ®

where f is the angle of the normal to the internal surface.

In the case of solid specimens the initial value of the radial stress has to be determined so that
experimentally determined boundary conditions at the external surface are satisfied. This is done by
first performing trial integration of Eq. (5) with the trial initial value of ¢,(0)=0. The difference of
boundary conditions and the stresses at the external surface, obtained by trial integration, is added
to the initial value and integration is repeated. It has been that one correction is sufficient for
obtaining the initial value by which the boundary conditions at the external surface are satisfied.
The integration constant C; in Eq. (5) is determined from the boundary conditions at the axis

C, =20,(0)-0,(0), ©

where 0(0) and 6,(0) are the values of axial and radial stress on the axis. Let us define function f{r)
as follows

rOT
o, -2 —=dr-o.(0)
1) = ¥ L (10)
r 0z

Substitution f{r) and integration constant C; into Eq. (5) gives

90,25 25 0)=£(r)- (11)
dr r r

Given that g, is a solution corresponding to the initial value ¢,(0), we show that adding a constant
value C to it also gives a solution by substituting &, = o, + C, into Eq. (11)

d(o,+C,) 2 2

20t 26,4 0)-20,00-C= /). (12)
Simplifying Eq. (12) leads to Eq. (11). All possible solutions differ by a constant value equal to the
differences in the initial values o,(0); this is illustrated in Fig. 2b. Any correction to the initial value
changes the value of stress at the external surface for exactly the same amount, thus, only one trial
integration is required for obtaining the correct initial value of ,(0).
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Let us model the stress field in an axisymmetric specimen with N concentric layers, each of
thickness 4r and in each of which the stress state may be considered constant. Let us denote stress
components of this discrete model as a;;, 0., 0y, and 7,.;, where i is the number of the layer, with
innermost layer numbered 1 and the outermost N. The numerical algorithm for determining the
radial stress is obtained by rewriting Eq. (10) as a difference equation as follows

o,,=0,(r) (13)
20,,—-0,,+2t,-C, 0t
0, =0, —Ar| —————+—= (14)
r, 0z
where
i 0T,
t = ~Ar -
=3, (15)

Algorithm for determining the circumferential stress distribution is obtained by rewriting Eq. (4) as
0y, =0.,-2t,+C, —0,;. (16)

Determination of radial and circumferential stresses in the case of external loads

In case of external loads, the remaining stress components, o, and oy, are determined using the
equilibrium equation (Eq. 8) and the compatibility equation

oy~ vo, +o)]-141 T "% <. (17)
or r
Substituting 99, from the equation of equilibrium into Eq. (17) gives
or
00y 4, 9% _,00. 0,205 4,
or T 0z v or r =0 (18)

Numerical integration of the system of equations (3), (18) should be done in the direction in
which the system is stable or asymptotically stable. Solutions of a system of ordinary differential
equations in the form

= A + b(0) (19)

are stable if A(¢) is diagonalizable and R(A,) <0 for all i, where A,,iel...N are the eigenvalues
of the N x N matrix A(f) [7]. Rewriting Egs. (3), (18) in the form similar to Eq. (19) gives

or,

; , o-r - = 2
G 20)
oy 0 -V +v—=
0z or
where

1
an=| 7ol @1)
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Eigenvalues of A(r) are 4, =0, A, =-2/r. The diagonalized form of 4 can be found by using the
matrix P composed of eigenvectors of A

_(Yo5 o5 ),

P‘[m mj (22)
0 0

diagA:PlAP:[O _2]- (23)

Thus, the system of Egs. (8), (23) is stable and numerical integration should start at the axis and
proceed along the positive direction of the radial axis.

The boundary conditions can be applied in a manner similar to the case of residual stresses.
Given that o,, o is a solution, substituting ¢ =0, +C,, 0, =0, +C, into Egs. (3),(18), where C; is a
constant, will lead back to the Egs. (3),(18) after simplifying.

Using the discrete model introduced in the previous chapter, the numerical algorithm for
determining the radial and circumferential stress is obtained by rewriting Eq. (20) as a system of
difference equation as follows

0,0=0,00), (24)
G0 =04(0)> (25)
1 1 or,
i = Ar|——o. . +— ——=L
O, i1 =0,,;% ’{ ’} ot ’} Oy, Py j (26)
1 1 o,
Opin = Og; + A To'm‘ _7“79." -v 32‘ V(0.1 —0.,)" (27)
Examples

As an experimental example, residual stresses in the stem of a wine glass were determined.
Geometry of the wine glass is shown in Fig. 3a and the fringe pattern in Fig. 3b.

__F -
ZT A
@@ (b)

Fig. 3: Geometry of the wine glass (a) and fringe pattern in the area A (b).

Results of stress determination in section 1 are shown in Fig. 4a. As a verification of the
precision of the algorithm, the birefringence, corresponding to the determined stress state, was
calculated using the Jones matrix formalism [4] and compared with the measured birefringence
(Fig. 4b). The match is excellent.

As a numerical example of the applicability of the numerical algorithm Eqgs. (24)-(27), radial and
circumferential stresses of the Hertzian contact stress field were determined and compared with the
theoretical stress field (Fig. 5). The match confirms the correctness of the numerical algorithm.
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Fig. 4: Distribution of stress components in section 1 (a) and Measured birefringence (solid line) and
calculated birefringence corresponding to the determined stress state (dashed line) in section 1 (b).
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e
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-400
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z

-500
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Fig. 5: Hertzian contact stress field at the depth 0.001 mm, corresponding to load P = 2.7N. Radial and
circumferential stresses have been determined with the numerical algorithm Eqgs. (24)-(27) (solid line).
Theoretical stress field is given with dashed lines.

Conclusions

A linear algorithm of photoelastic tomography for complete determination of axisymmetric stresses
in axisymmetric glass products has been elaborated. As a practical example, residual stresses in a
section of the stem of a wine glass have been determined. Calculated birefringence, corresponding
to the determined stress field, shows good agreement with measured birefringence, thus verifying
the algorithm. In the case of the stresses due to external loads, results of the numerical algorithm
have been shown to match the theoretical stress field in the case of the Hertzian contact problem.
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Abstract A non-linear algorithm of photoelastic tomography
for the measurement of axisymmetric stress fields has been
elaborated. It is free of any assumptions concerning the value
of the birefringence or rotation of the principal stress axes
along the light rays. The algorithm is based on the
measurement of characteristic directions and phase retardation
in two parallel sections of the test object. Stress components
are presented in the form of power series along the radial
coordinate. A differential evolution algorithm has been used
for finding the stress field parameters, which fit the measure-
ment data best. Application of the method is illustrated by
residual stress measurement in a drinking glass.

Keywords Photoelastic tomography - Residual stress -
Glass - Differential evolution algorithm

Introduction

Non-destructive measurement of 3D stress fields has been
an ambition of experimental mechanics for a long time. In
photoelasticity, the idea of a universal 3D stress measure-
ment technology, the scattered light method, was published
by Weller already more than half a century ago [1]. The
classical version of the method [2, 3] as well as its
modifications [4-7] have found certain applications in
engineering practice by investigating 3D stress fields in
general and contact stress problems in particular. However,
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21 Akadeemia tee, 12618 Tallinn, Estonia
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comparatively complicated apparatus and measurement
technology are evidently the reasons why this method has
not obtained wider popularity.

One of the most powerful contemporary methods for the
analysis of the internal structure of different objects, from
human bodies to parts of atomic reactors, is tomography
[8—10]. The question arises whether it is also possible to
determine tomographically stress fields in 3D objects. This
problem is not trivial for the following reason. Classical
tomography considers only determination of scalar fields, i.e.,
every point of the field is characterized by a single number
(the coefficient of attenuation of X-rays, the acoustical or
optical scalar index of refraction, etc.). Since stress is a tensor,
in stress field tomography every point of the field is
characterized by six numbers. Thus the problem is much
more complicated in principle. Let us mention that while a
huge number of papers and about a hundred of books are
devoted to scalar field tomography, there is only a single book,
written by Sharafutdinov [11], devoted to mathematical
problems of tensor field tomography.

Certain information about stresses in 3D transparent
objects can be obtained with integrated photoelasticity [12].
In integrated photoelasticity, the transparent 3D specimen is
placed in an immersion tank, and a beam of polarized light
is passed through the specimen. The transformation of the
polarization of light is measured on many light rays and for
many azimuths of the light beam. This measurement data
are related in a complicated way to the stress field.

It is natural to base photoelastic tomography on
integrated photoelasticity. Unfortunately, the relationships
of integrated photoelasticity, which relate measurement data
to the stress field, are non-linear. This non-linearity is due
to the fact that in a 3D stress field on a light ray both the
values of the principal stresses as well as their directions are
not constant. Principal stress directions in the plane x', z’

&P
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perpendicular to the light ray, are determined by the stress
components o, — o and 7,/s. If both of these vary along
the light ray in an arbitrary manner, the principal stress axes
are not constant. Actually a rotation of the principal stress
axes on light rays takes place in inhomogeneous 3D stress
fields. However, in case of weak birefringence or weak
rotation of the principal stress axes, the theory of integrated
photoelasticity can be linearized. Using this linear approx-
imation, Sharafutdinov elaborated an algorithm of photo-
elastic tomography [11, 13]. A somewhat different linear
algorithm is described in [14—16]. Linear approximation of
photoelastic tomography has been mainly used for residual
stress measurement in glass [16, 17].

In many cases of stress measurement neither the
birefringence nor the rotation of the principal stress axes
is weak, i.e., the assumptions of the linear approximation of
photoelastic tomography are not valid. Such a situation
often occurs, for example, by measuring residual stress in
glass articles of complicated shape. The aim of the present
paper is to develop an algorithm of photoelastic tomogra-
phy for axisymmetric problems, which is free of any
assumptions about the value of the birefringence or rotation
of the principal stress axes.

To tackle the problem under investigation systematically,
we first describe briefly the classical tomography and the
linear approximation of photoelastic tomography. Then we
give a review of the basic non-linear relationships of
integrated photoelasticity. After that we describe in detail the
non-linear algorithm of photoelastic tomography and the basic
part of this algorithm, the method of differential evolution. We
conclude the paper with an example of residual stress
measurement in a rim-tempered drinking glass.

Classical Tomography

In tomography, some radiation (X-rays, protons, acoustic
waves, light, etc.) is passed through a section of the object
in many directions, and properties of the radiation after it
has passed the object (intensity, phase, deflection, etc.) are
measured on many rays (Fig. 1). Experimental data g(/, 6*)
for different values of the angle 6* are called projections.

If f(r, ) is in the radial coordinates 7, ¢ the function that
determines the distribution of a certain parameter of the
field, experimental data for a real pair /, * can be
expressed by the Radon transform of the field,

When projections for many values of 6* have been
recorded, the function f(r, ) is determined from the Radon
inversion

L T.F og(1.0) di
10r9) =5 b[‘” £ o reos(0"—) 1
)

Many numerical algorithms for solving equation (2)
have been elaborated [8, 9]. In classical tomography it is
assumed that f(r, ¢) is a scalar function.

Photoelastic Tomography in Linear Approximation

It has been shown [18] that in linear approximation an
inhomogeneous birefringent medium can be considered
optically equivalent to a birefringent plate. It is possible to
measure the parameter of the isoclinic ¢ and optical
retardation A on every light ray that passes the specimen.

Let us assume that in two parallel sections z=z, and
z=1z)+ Az of an arbitrary 3D specimen tomographic
photoelastic measurements, rotating the specimen around
the z axis, have been carried out and the integrals V; and V,
have been measured for many azimuths 3 (Fig. 2) for light
rays, parallel to y’:

4] :ACOSZW:C/ (crxr —Uzr)dy’, (3)

V, = Asin2p = 2c/ Tody, (4)

Fig. 1 Scheme of tomographic measurements
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Az

Fig. 2 Illustration explaining tomographic measurement scheme

where C is the photoelastic constant. Section z=z is named
“the main section” and the section z =zy+ Az “the
auxiliary section”. Location of the light ray y’ is determined
by the value of its x’ coordinate / and the angle /3.

Equations (3) and (4) are valid if birefringence is weak
(optical retardation is less than about one third of the
wavelength) or the rotation of the principal stress axes is
small (less than about 7/6). If no rotation of the principal
stress axes is present, equations (3) and (4) are valid for
arbitrary birefringence.

Sharafutdinov suggested the following method for the
measurement of the distribution of the axial stress o, [11,
13]. Besides the measurement of the functions V| and V>,
the value of the axial stress o. is to be measured on the
boundary of the cross section. Applying to the functions V;
and ¥, the transverse ray transform [11], the o, field is
determined from the boundary value problem for a Poisson
equation. Sharafutdinov has shown that the solution of this
tomographic problem is unique and that only the distribu-
tion of o, can be determined in this way [11, 13].

The drawback of this method is that, in addition to
tomographic photoelastic measurements, the boundary
values of o, must be measured. That is possible only in
the case when the boundary of the cross section is described
by a convex curve. Besides, the transverse ray transform is
rather complicated. The tomographic algorithm of
Sharafutdinov has not been applied in practice, although it
is important from the point of view of the theory of
photoelastic tomography.

Another algorithm of the photoelastic tomography in
linear approximation is the following. Let us assume that
photoelastic tomographic measurements have been carried
out in two parallel sections, a distance Az apart from each

other, rotating the specimen around the z axis (Fig. 2). The
values of the ,function/s V1 and ¥, in the auxiliary section we
denote by ¥, and V,. Considering the equilibrium of the
three-dimensional segment ABC in the direction of the x'
axis (Fig. 2), we may write

C
Az j oudy =T, 1T, (5)
A

where 7, and 7 are the shear forces on the upper and lower
surfaces of the segment, respectively:

B
;]
N Ye]
1

Taking into consideration relationships (5) and (6),
equation (3) reveals

Vodx . (6)

1 B
L=3 J V,dx,
1

C B B

/ 1
J A T
A 1 1

Since tomographic photoelastic measurement data can be
obtained for all the light rays y’ (for many values of / and
(), equation (7) expresses the Radon transform of the field
of the stress .. Thus we have reduced a problem of tensor
field tomography to a problem of scalar field tomography
for a single stress component o,. The field of 0. can be
determined using any of the well-known Radon inversion
techniques [8, 9]. Rotating the specimen by tomographic
measurements around the axes x and y, the fields of o, and
o, can also been determined.

In case of an axisymmetric stress field, the problem is
reduced to a problem of one-dimensional tomography [19]. In
this case the distribution of o, is determined from equation
(7) with Abel inversion [20]. In linear approximation,
photoelastic tomography has been mainly used for residual
stress measurement in axisymmetric glass articles [16, 17].

Let us mention that we consider photoelastic tomogra-
phy, which is based on the measurement on every light ray
of the parameter of the isoclinic ¢ and relative optical
retardation A. Photoelastic tomography with interferomet-
ric measurement of absolute optical retardations has not
lead to positive results [21]. By formulating the problem of
photoelastic tomography it is important to distinguish
between these two formulations. Otherwise one may reach
erroneous results [22].

&P
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In many cases assumptions of the linear approximation
are not valid and the problem of photoelastic tomography is
to be formulated in the general, non-linear form.

Basic Non-linear Relationships of Integrated
Photoelasticity

If polarized light passes a 3D specimen, the transformation
of polarization can be described as [12]

E « E )

Sl=ul o), 8
(52) (& ®
where E,E, are the components of the incident light
vector and Ex*,Ey* describe polarization of the light that

emerges from the specimen. The matrix U is a two-by-two
unitary unimodular matrix, which in the general case can be

written as
i /] i o /]
e cos €' sin
U= gy . , 9
( —e sinf e % cos 9) ’ ©)

where &, ¢, and 0 are functions of the stress distribution
between the points of entrance and emergence of light.

Analysis of the transformation matrix (9) has shown that
there always exist two perpendicular directions of the
polarizer at which the light emerging from the medium is
linearly polarized. These directions of polarization of the
incident and emerging light are called the primary and
secondary characteristic directions. They are determined
through the angles « and o as follows [12]:

sin ( + &) sin26

, 10
sin 2& cos? @ — sin 2¢ sin” 6 (10)

tan 209 =

(- E)sin2
tan 2ok = — sin (¢~ §) .sm 0_ 5 (11)
sin 2& cos? 6 + sin 2¢ sin® 0

Due to their exceptional physical properties, the charac-
teristic directions can be measured experimentally. It is also
possible to measure the characteristic optical retardation A«
between the secondary characteristic vibrations:

c0s A% = cos 2£ cos® 0 + cos 2( sin’ 6. (12)

A number of manual or semiautomated methods for the
measurement of the characteristic parameters are described
in [12]. Most efficient for that are modifications of the
classical phase-stepping method [23, 24].

If the characteristic parameters v, s, and As« are
determined experimentally on a light ray, it is possible to
calculate the parameters &, ¢, and 6 of the transformation
matrix U:

cos (ao + a*) Ax

= — 1
tan & cos (a0 — aun) tan 3 (13)
. C_sin(oao—i-oz*)t Ax (14)
ane = sin (ao—a*) s
cosé sin§
tan@zﬁtan (o — o) =mtan (o +ax).  (15)

The algorithm of non-linear photoelastic tomography
should be based on equations (10)—(15). Evidently such an
algorithm would be most complicated. Non-linear formula-
tion of the problem of photoelastic tomography has been
considered by several authors [26-30]. In these papers the
tomographic method is mostly described verbally. Neither
convincing numerical nor physical experiments have been
carried out to test the validity of the suggested algorithms.

In the following a non-linear algorithm of photoelastc
tomography will be based on the differential evolution
technique.

Fig. 3 The specimen is placed Specimen Immersion
in an immersion tank and tank
investigated by tangential z
incidence
- J—
c
£ o
Polarised |J = = _[] e
light — Z e
- — 23 2 Az
- — — |4 9 o 1
H|l— — = ®
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Fig. 4 Computer-controlled polariscope AP-06C with the specimen
in the immersion bath

Non-linear Photoelastic Tomography
Technology of the Experiment

We assume that the stress field is axisymmetric. To avoid
refraction of light, the specimen is placed in an immersion

Fig. 5 General algorithm of non-
linear photoelastic tomography

Measure characteristic parameters
m

¢ and A:“ for all the light rays i
(i=1,..,n)

—

tank and investigated in a transmission polariscope with
tangential incidence (Fig. 3). Figure 4 shows a photo of a
computer-controlled polariscope AP-06C used in experi-
ments. The light source is a light diode. The polariscope has
a set of polaroids and quarter-wave plates to perform the
phase-stepping method [25]. As an example, we consider
residual stress measurement in hollow glassware.

Scanning the wall of the specimen in two parallel sections 1
and 2, the parameter of the isoclinic ¢! and optical
retardation A" are measured on n light rays (i=1, ..., n) in
both sections (index “m” denotes experimentally measured
values). In the axisymmetric case p=an=a*, where oy and
o+ are the primary and secondary characteristic angles [12].
Measurement of ¢ and A" in both sections at many points
is the information on the basis of which we shall determine
the stress field.

Since we assume that the stress field is axisymmetric, it
is sufficient to pass polarized light through the wall of the
test object parallel to only one direction as shown in Fig. 3.
The number of light rays, for which ¢! and A" are
recorded, depends on the resolution of the CCD camera of
the polariscope. In the polariscope, shown in Fig. 4, the
resolution can be varied from 30 to 100 pixels per mm. We
usually use measurement data from 30-50 light rays evenly
distributed through the wall of the test object.

Generate initial population
of stress vectors S,
(=1, ..., 100)

.

Calculate characteristic parameters

Cc c
¢, and A, for every stress vector
for all the measured light rays

(i=1,...n)

Calculate penalty function F,
for all the stress vectors S, °
of the population
G=1,..,100)

|

Find the smallest penalty
function of the population

Frnin=min F;

Differential evolution algorithm
Generate new population of
stress vectors

4

Time limit
exceeded or
target value of F
achieved

NO

END
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For every target vector D generate a trial vector E as follows:

Random

crossing

A, B, C - vectors randomly selected
from the population

Trial vector E replaces
target vector D in the next
generation if F(E) < F(D)

Fig. 6 Basic algorithm of differential evolution
For the measurement of ¢! and A" we have used a
modification of the classical phase-stepping method [25].

Expressions for Stresses

We present stress components o,, oy, 0. and T, in
cylindrical coordinates 7 6, z in the form of polynomials
relative to the radial coordinate 7:

m m
r2k r2k
o, = E ayr=, og= E by, (16)
k=0 =0

m m+1
! 2k
o, = E Corr™
k=0

A k—1
Tz = E d2k71"2 )
k=1

where prime denotes section 1. In section 2 stress components
are expressed in the same way, distinguishing the coefficients
with a double prime.

1 1

1 1

| 1

1 1 4
] T

1 1

\ 1

1 i

1 1

1 i

1 1 -2-
1 |

1 I

1 [

1 1

1 1

1 I

\______I -, =

(a) (b)

Fig. 7 Geometry of a rim-tempered glass (a) and integrated fringe
pattern near the rim (b)
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100 | | Acos2¢ |
50 | 1

Asin2¢
Internal External
surface surface

-50 1
-100 1

150 I I I L

325 33.0 33.5 34.0 345 35.0

X, mm
Fig. 8 Experimentally measured and calculated data in section 1:
continuous lines, measured; dashed lines, calculated

_ Ouraim is to determine the coefficients a;k, b;k, c;k, d;k_l ,
@y, byy, Co and dy, | on the basis of experimentally mea-
sured ¢ and AY" (i=1, ..., n) in both sections.

The number of unknown coefficients can be reduced
using equations of the theory of elasticity, boundary
conditions and macrostatic equilibrium conditions. The
stress components must satisfy the equation of equilibrium

do, o,—0g OT.
— 4+ ——=0. 17
or r 0z (17)
In the case of residual stress in glass, the generalized
sum rule [31, 32] is valid:

o +op=0,—2 J ey, 4y, (18)
0z

To
where C; is an integration constant. Here 79=0 in the case
of a solid axisymmetric specimen. In the case of hollow
glassware, 7y is the radius of the internal surface.

Stress, MPa
o

4+ 1
Internal
External
. surface | . . \ surface
325 33.0 33.5 34.0 34.5 35.0

r, mm
Fig. 9 Stresses 0. (continuous lines) and oy (dashed lines) in section
1, determined with linear photoelastic tomography
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Fig. 10 Experimentally measured (continuous lines) and calculated
(dashed lines) data in section 2

Using equations (17) and (18), the stress components o,
and o can be expressed as [33]

r

or. 1 11
o= — J dr+r7JrUzdr+§ r—2C2—|-C47 (19)

0z

11
——=C + Cq. 20
;202 +C4 (20)
ro ro

Constants C, and C,4 are determined from the boundary
conditions.

Introducing expressions (16) into equations (19) and
(20), stress components o, and og can be expressed as

/ L
g, = —; ﬁdzk—l (PZk - Pék)

LIS A
+;m62k(p —p0)+2—p2C2+C4, (21)
15 T T T T
10 g|
51 4
0

Stress, MPa
=]

-30 - ! - ‘
325 33.0 335 34,0 345 35.0

r, mm
Fig. 11 Stresses o, (continuous lines) and oy (dashed lines) in section
2, determined with the linear algorithm

r, mm
Fig. 12 Stresses o. (continuous lines) and oy (dashed lines) in section
2, determined with the non-linear algorithm

m m
’ / 1—
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m 1 / 1 /
_ chz (0 — ) — 27202 +C,. (22)
k=0

Here

_ d —dy
dyj_y = %R , (23)

r ro

pO:E1

and R and R’ are the external radiuses of sections 1 and 2.
Similar expressions are valid for the stress components o’
and 0"y in section 2. Thus all the stress components in
se,:ctiq'ns 1 and 2 can be expressed through the coefficients
Cofes Copy oy and dy_ .

Normalized penalty function

150 200 250 300 350 400
Number of the generation

Fig. 13 Dependence of the penalty function on the number of
generation in the DE process
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Fig. 14 Experimentally measured (continuous lines) and calculated

(dashed lines), on the basis of the final stress distribution, data in

section 2

The second equilibrium equation

Oo. Ot 1 _
oz "o T (24)

permits to eliminate coefficients o Let us call the
coefficients cy;,cy;, do;_, and dy,_, stress coefficients s,
(i=1, ..., ). They permit calculation of all the stress com-
ponents. The set of the stress coefficients is named stress
vector S, which has / components.

The Differential Evolution Algorithm

Our aim is to find the stress vector, which corresponds best
to the measurement data. For that we use the differential
evolution (DE) algorithm [34]. Differential evolution is a
parallel direct research method for finding optimum values
of the components of a vector. The initial population of the
vectors is chosen randomly if nothing is known about the
system. In case a preliminary solution is available, the ini-
tial population can be generated by adding normally
distributed random deviations to the nominal solution. The
crucial idea behind DE is a scheme for generating trial
vectors. DE generates new vectors by adding a weighted
difference vector between two population members to a
third member. If the resulting vector yields a lower
objective function than a predetermined population mem-
ber, the newly generated vector will replace in the
following generation the vector, with which it was
compared. The best vector is evaluated for every generation
to keep track of the progress that is made during the
minimization process. Extracting distance and direction
information from the population to generate random
deviations results in an adaptive scheme with excellent
convergence properties.

Sy

For the determination of the stress vector S, which
corresponds best to the measurement data, the following
method was used. First, the parameter of the isoclinic ¢}
and optical retardation are measured in both sections 1 and
2 on n light rays. For every stress vector § it is possible to
calculate for the same light rays i the parameters ¢f and A;.
For example, by modelling the test object on a light ray as a
pile of birefringent plates, each of which is described by a
Jones’ vector [35]. The objective (penalty) function F'

1SN | (A cos 205 — A cos 2™\ 2
F=— i i i i
by (e

i=1

25

. <Af sin2¢§ — A” sin 2@?’)2}
e

characterizes how well the stress vector describes the real
stress field. Here € is the measurement error. The penalty
function F takes into account all the measurement data on
the n light rays.

General algorithm of the method is shown in Fig. 5 and
the algorithm of DE in Fig. 6.

In practical application of the algorithm we generated the
initial population of 100 stress vectors by adding normally
distributed random deviations to the solution of linear
photoelastic tomography.

According to Fig. 5, on the basis of the measurement
data and of the generated stress vectors, the penalty
function F; for every generated stress vector is calculated.
Most important is the smallest penalty function of the
population, min F;. If F; is sufficiently small, one may have
obtained a satisfactory solution, i.e., a stress field that
corresponds to the real measurement data well enough. If
not, using the differential evolution algorithm, a new
population of stress vectors is generated, penalty functions
for this population are calculated, etc.

Figure 6 shows how stress vectors D(d;, dy, ..., d) of the
initial population are modified into stress vectors E(ey, ey, ...,
e.) of the new generation, using other three stress vectors A4,
B, and C of the initial population.

Random crossing (Fig. 6) was carried out as follows:

_|ait+ 08(bi—c) if r<p,
“Tla if r>p, (26)

where 7 is a random number between 0 and 1 and p is a
parameter, which can be chosen by the operator. We used p=
0.9, which has proved to be efficient in practical applications
[34].

The algorithm, shown in Figs. 5 and 6, was programmed
in C™". Implemented on the computer IBM RS0E, 400
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iterations takes 20 min. With a cluster of computers this
time can be shortened to several seconds.

Experiment

As an example, residual stresses near the rim in a rim-
tempered drinking glass (Fig. 7) were investigated. In
section 1 (z=28.1 mm) optical retardation is less than
100 nm and therefore equations (3) and (4) of the linear
approximation are valid. Stresses in section 1 were
determined with a linear algorithm of photoelastic tomog-
raphy [16]. By approximating stresses, in equation (16) we
used m=3. Thus the number of the coefficients of the
stress vector was /=11. Figure 8 shows the measurement
data as well as data that is calculated on the basis of
obtained stress distribution, shown in Fig. 9. We see that
experimentally measured and calculated data are very
close. That indicates that in section 1 linear approximation
of photoelastic tomography is valid. In section 1 we
obtained F(1)=0.4.

In section 2 (z=16.8 mm) optical retardation reached
300 nm. In case of rotation of the principal stress axes that
is somewhat more than allowed in linear photoelastic
tomography, as mentioned before. Figure 10 shows mea-
sured data in section 2.

On the basis of the measurement data in section 2,
stresses were calculated using the algorithm of linear
photoelastic tomography [16] (Fig. 11). Using measured
stresses, theoretical measurement data were calculated
(Fig. 10). Figure 10 shows that the difference between
measured and calculated data is much bigger than in
section 1, especially for Asin 2 ¢. That is expressed also
in the value of the penalty function: F(2)=59. It is an
indication that in section 2 the linear approximation is not
valid.

Using the DE method, final stress distribution in section
2 was obtained (Fig. 12). In comparison with Fig. 11 the
change of oy is remarkable. The decrease of the penalty
function F during the DE procedure is shown in Fig. 13.
After the 150th generation the penalty function remains
about constant, F'=3.

In Fig. 12 practically og=0.. That was to be expected. In
a cylindrical object with weak stress gradient in z direction
the classical sum rule

o, +0g=o0: (27)

is valid [17]. Since 0,0, it follows from equation (27) that
Opg=0,.

Figure 14 shows a comparison of the experimentally
measured and calculated, on the basis of the final stress
distribution, data in section 2. Coincidence of the measured

and calculated data is considerably better than that shown in
Fig. 10, especially for the term Asin 2¢.

Conclusions

An algorithm of photoelastic tomography, which is free of
limiting assumptions about the value of the birefringence or
rotation of the principal stress axes, has been elaborated.
Coefficients of the stress polynomials, which fit best the
measurement data, are determined with the differential
evolution method. Practical application of the method is
illustrated by measuring residual stress near the rim of a
rim-tempered drinking glass. It is important to underline
that photoelastic measurements in the case of the non-linear
algorithm of photoelastic tomography are exactly the same
as in case of the linear algorithm. No additional measure-
ments are needed.
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