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Abstract 

Smart meters allow to collect comprehensive energy consumption data, which can be 

used to help energy providers in energy demand management area and to help 

consumers to understand and manage energy usage. Non-Intrusive Load Monitoring is 

an affordable alternative to smart meters and its essential part is energy load 

disaggregation. Purpose of energy load disaggregation consists in extraction of 

appliances’ separate loads from total energy load. One of popular approaches for 

implementation of mentioned process is Genetic Algorithm usage. 

The main goal of this thesis was to produce a program for reasonably precise energy 

load disaggregation based on Genetic Algorithm. For realization of the program were 

used Python, Tkinter library and Matplotlib library. Genetic algorithm part is 

represented by Simple Genetic Algorithm and Non-dominated Sorting Genetic 

Algorithm II. 

The result of this work is functioning energy load disaggregation program, which allows 

user to choose one of four energy load disaggregation techniques and set up parameters 

of Genetic Algorithm. Depending on selected program’s working mode it is possible to 

evaluate accuracy of every separate appliance’s estimated load or to identify appliances’ 

loads using total energy load’s disaggregation.  

This thesis is written in English and is 38 pages long, including 12 chapters, 7 figures 

and 0 tables. 
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Annotatsioon 

Energiatarbimise agregeeritud andmete komponentideks lahutamine 

heuristiliste optimeerimisalgoritmidega 

Nutikad elektriarvestid annavad võimalust saada detailseid energiatarbimise andmeid, 

mis võivad kasutada energia varustajad energianõudluse juhtimiseks ning võivad aidata 

tarbijaid aru saada ja juhtida energia kasutamist. Mitte-Pealetükkiv Energia Tarbimise 

Jälgimine on taskukohane asendus nutikatele elektriarvestitele ja energia tarbimise 

agregeeritud andmete komponentideks lahutamine on oluline osa sellest tehnoloogiast. 

Energia tarbimise agregeeritud andmete komponentideks lahutamise eesmärgiks on 

üksik seadmete energiatarbimise identifitseerimine agregeeritud andmetest. Üks 

populaarsetest lähenemistest on Geneetilise Algoritmi kasutamine. 

Käesoleva töö põhieesmärgiks on mõistlikult täpse programmi loomine energia 

tarbimise agregeeritud andmete komponentideks lahutamiseks ning see lahutamine peab 

olema baseerutud Geneetilisel Algoritmil. Selle programmi realiseerimiseks olid 

kasutatud Python, Tkinter raamistik ja Matplotlib raamistik. Geneetilise Algoritmi osa 

on esindatud Hariliku Geneetilise Algoritmi ja Mitte-domineeriva Sorteerimise 

Geneetilise Algoritmiga II. 

Töö tulemuseks on töötav energia tarbimise agregeeritud andmete komponentideks 

lahutamise programm, mis võimaldab valida üks neljast lahutamise meetoditest ning 

Geneetilise Algoritmi parameetreid. Sõltuvalt valitud programmi töötamise režiimist, on 

võimalik hinnata lahutamise resultaadis iga üksikseadme täpsust või leida iga seade 

energiatarbimist kasutades agregeeritud andmete lahutamist. 

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 38 leheküljel, 12 peatükki, 7 

joonist, 0 tabelit. 
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List of abbreviations and terms 
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GA Genetic Algorithm 
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1 Introduction 

Energy consumption of humankind is increasing with every passing year. New power 

stations are built, and bigger amount of energy resources is used as a solution for 

growing energy demand. Such tendency caused problems like global warming and 

energy resources depletion.  

For situation improvement, many different actions are taken. One of the perspective 

areas to work on, in the scope of this problem, is energy management. Planning of 

energy production and energy consumption helps energy providers to minimize energy 

losses and manage resources more efficiently. Precise planning requires to consider a lot 

of factors, like time of day, time of year, weather, etc. Among these factors, 

disaggregated energy consumption has an important position. 

Using information about energy consumption, parted by devices, which used this 

energy, it is possible to estimate more accurately future energy demand, and this 

information also can be used for energy demand management, the main purpose of 

which is a shift of energy usage from peak hours to off-peak times.  

For the purpose of achieving such detailed energy monitoring, energy meters should be 

installed separately for each appliance to observe its energy consumption. However, this 

energy monitoring approach demands extra hardware cost and installation complexity. 

Instead of the foregoing method energy load disaggregation could be used. It uses 

aggregated data received from a single point of measurement and disaggregates it to 

appliances’ loads [1]. 

This thesis deals with creation of an energy load disaggregation application based on the 

genetic algorithm. 

1.1 Problem overview 

Energy load disaggregation is tightly connected with non-intrusive load monitoring 

(NILM). NILM is dealing with the analysis of changes in the voltage and current, which 

are going into a house, and is determining a set of appliances, which are used in this 

house, as well as appliances power consumption.  
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Energy load disaggregation can be considered as a part of the NILM. Its task consists of 

division of one aggregated load into set of appliances’ loads. Load curve is a sum of 

active appliances’ loads and measurement errors [2]. Hence, if appliances and their 

loads are known, it is possible to define the task as a search of the appliance’s state at 

each point in time as a combinatorial optimization problem [2]. The problem is 

following – it is needed to choose the set of appliances’ loads at each moment in time 

and minimize the error [2]. This problem’s complexity is NP-complete, and it is similar 

to a knapsack problem [2], [3]. 

1.2 Objectives  

The main goal of the thesis is to produce a program for reasonably precise energy load 

disaggregation based on genetic algorithm. This aim involves analysis of existing 

programs [4], [5], determining appliances power consumption using dataset analysis [6], 

searching for the viable fitness function [2], [7], implementing a genetic algorithm for 

energy load disaggregation as a standalone Python program and the program's work 

results analysis.  

1.3 Outline 

The thesis is organized in the following way:  

1. Chapter 2 contains problem statement.  

2. Chapter 3 contains introduction to Genetic Algorithm concepts.  

3. Chapter 4 contains a brief overview of energy load disaggregation techniques 

and existing programs. 

4. Chapter 5 describes the choice of tools, the choice of energy load disaggregation 

techniques and the way of chosen techniques validation. 

5. Chapter 6 contains functional requirements for the program. 

6. Chapter 7 describes architecture of the program. 

7. Chapters 8-10 describe implementation of architecture layers. 
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8. Chapter 11 contains evaluation of used energy load disaggregation methods. 
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2 Problem statement 

Energy load disaggregation task can be treated as knapsack problem [2]. Initial input 

data for this problem is power measurements from single power meter, which monitors 

power consumption of whole house, and average values of appliances’ power 

consumption. Measurements’ data is structured as power value for each point of time 

(time between measurements may vary). In [Figure 1] graphical representation of total 

energy load and its parts can be seen. Total load (data) is indicated by a blue line and 4 

separate appliances are indicated by yellow (basement plugs and lights), green 

(dishwasher), red (clothes dryer), purple (heat pump) lines. 

It is possible to see that there is some measurements’ error in energy load data. 

Appliances does not have one or more exact power values. Instead powers of appliances 

are standing in some ranges. Because of this noise, it is more difficult to identify, which 

appliances states (current power usage) are hidden in aggregated energy load.  

Another problem is a low differentiation between some appliances’ power consumption. 

For example, if there are presented two appliances with power usage of 100 W and 110 

W accordingly, then it is the complicated task to distinguish one from another, due to 

the noise. 

  

 

Figure 1. Energy load example. 
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3 Theoretical background 

3.1 Evolutionary Algorithms 

Evolutionary Algorithms (EA) are using heuristic technique to achieve a solution for a 

problem, which cannot be solved with polynomial time [8]. For example, NP-hard 

problems and other time-consuming exhaustive search tasks like combinatorial problem 

solving [8].  

EA are based on Darwin's theory of evolution. To be more precise, these algorithms 

adopted idea of natural selection. On the one hand, fit individuals will survive and 

proliferate, and, on the other hand, unfit ones will die out and their set of genes will be 

not inherited by further generations.  

First, a population of individuals is generated. Every individual represents a possible 

solution for the problem and, basically, individual is a data structure. As the next step, 

fitness of every individual is evaluated using fitness function. Further, best individuals 

are selected for reproduction and less suitable individuals are killed off. Together, 

parents and offsprings create new generation and the process is repeated until sufficient 

solution is found, or number of maximum generations is achieved. 

3.2 Genetic Algorithm 

Genetic Algorithm (GA) is the most popular type of EA. It is the random based search 

algorithm, which is using mechanics of natural selection.  

As in EA, GA operates with population of individuals. Every individual is a possible 

solution of a problem and it is represented by chromosome, which consists of genes. 

Hence, gene is a smallest part of the solution. For example, if task is formulated as a 

search of characters combination to compose a specific word, the one gene is one 

character and chromosome is a word. 

In GA reproduction part of natural selection consists of selection, crossover and 

mutation operators. Due to crossover and mutation chromosomes are changing 

throughout generations and thanks to selection only fittest individuals will pass into 

next generation. 
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3.3 Simple Genetic Algorithm  

Simple Genetic Algorithm (SGA) is the most common and is widely used. This type of 

genetic algorithm follows basic steps of EA: population initialization, fitness evaluation, 

selection of parents and creation of offsprings using recombination of parents’ 

chromosomes [9].  

SGA is represented in [9] by the next workflow: 

1. Generate random population of n chromosomes. 

2. Calculate the fitness of each chromosome. 

3. Repeat until n offspring have been created: 

a. Select two parent chromosomes from the population.  

b. According to crossover probability: 

i. If crossover happens, then cross over the pair of parents at 

random point to form two offsprings; 

ii. Else form two offsprings, which are exact copies of parents 

c. Mutate each offspring with mutation probability at each gene. (If 

population size is odd, then one offspring can be discarded). 

4. Replace the current population with offsprings. 

5. Go to step 2. 
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3.4 Non-dominated Sorting Genetic Algorithm II 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) extends the genetic algorithm 

to be able to solve Multiple Objective Optimization (MOO) problems and is an instance 

of EA [10]. 

Processing of population in NSGA-II differs from SGA. During work of NSGA-II, 

population is organized into groups of non-dominated and dominated individuals. These 

groups are distributed using Pareto Front, which is constrained by objective functions, 

and Pareto optimal ideas [10], [11]. Pareto optimal is a solution, which objectives’ 

values cannot be improved without degrading the other objectives [11]. Pareto Front 

consist of Pareto optimal solutions, which can be also named as non-dominated [11]. 

Process of population distribution into groups is named non-dominated sorting [7]. 

During this sorting following steps are performed [7]:  

1. Individuals in the population are compared and non-dominated ones are 

detected.  

2. Non-dominated individuals are extracted into separate set. 

3. Repeat until all population is divided into sets of individuals or in other words 

divided into fronts. 

Another difference from SGA is usage of crowding distance sorting. This sorting is used 

within the process of parents’ collection for the reproduction. Population can be bigger 

than needed parents pool and because of that parents’ pool is formed from higher rank 

fronts (if front consists of non-dominated solution its rank is 0, which is highest one, 

and each next front’s rank is incremented by 1). If sum of chosen fronts cannot fit into 

parents’ pool, then lowest rank front from chosen ones is sorted using crowding distance 

sorting and required number of individuals are extracted from this front into parents’ 

pool [7]. This process helps to preserve diversity of individuals in the next generation 

[7]. 
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NSGA-II is represented in [10] by the next workflow: 

1. Generate random population. 

2. Evaluate every individual against objective functions. 

3. Perform non-dominated sorting. 

4. Select parents. 

5. Generate offsprings. 

6. Do until end condition is achieved: 

a. Evaluate every individual against objective functions. 

b. Form union by merging parents and offsprings. 

c. Perform non-dominated sorting on union and get fronts set as a result. 

d. For each front do: 

i. Calculate crowding distance for individuals in the front. 

ii. If sum of parents and front is less than population size, then add 

front members into parents’ pool. 

iii. Else sort current front by rank and crowding distance and add 

front members into parents’ pool one by one until population size 

threshold for parents’ pool is achieved. 

e. Select parents by rank and distance. 

f. Assign offsprings value to population. 

g. Generate offsprings. 
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3.5 Representation of chromosome 

The classical representation of chromosome is a string of ones and zeros or, with other 

words, bits [9]. Each chromosome is composed of genes, for example bits, and each 

gene represents one allele, for example 0 or 1 [9]. 

Depending on the problem, chromosome representation can differ from classical one. 

According to a solution encoding approach, genes of chromosome can be other data 

types than bits and it is possible to use more than two alleles. 

3.6 Genetic operators  

Work of GA is based on genetics−inspired operators like selection, crossover and 

mutation [9]. Genetic operators are used for selection between solutions (selection), 

combination of existing solutions (crossover) and maintenance of diversity (mutation) 

[12]. 

3.6.1 Selection 

Selection operator’s purpose is to select fit individuals and allow them to pass their 

genes to the next generation. 

Truncation Selection (TRS) is the simplest selection technique. Its usage is rare, except 

very large population cases [13]. TRS is represented in [13] by the next workflow: 

1. Order individuals in population according to their fitness. 

2. Set the portion p of individuals to select. 

3. Calculate selection pressure sp by multiplying population size by p. 

4. Select the first sp fittest individuals. 

Roulette Wheel Selection (RWS) is a selection technique, according to which every 

individual has a chance to be allowed for the reproduction [13]. Chance to be selected 

depends on the fitness of individual [13]. The greater the fitness, the higher the chance 

to be selected [13]. Thanks to this, it is possible to save diversity among the population. 

However, there is a big risk, that dominant individual with high fitness will always win 

and convergence of individuals in the population will occur too early [13]. 
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Linear Rank Selection (LRS) is a selection technique, which extend idea of RWS and 

tries to problem of premature convergence [13]. This technique is based on ranks. Every 

individual has probability to be selected based on its rank [13]. Unlike RWS, LRS is 

explorative technique and it prevents early convergence, because of uniform selection 

pressure [14]. 

Proposed Annealed Selection (PAS) is a selection technique, which unites properties of 

RWS and LRS. During GAs work selection criterion moves from exploration to 

exploitation [14]. To be more precise, this technique changes its behaviour according to 

current generation’s number [14]. Depending on generation’s number fitness 

contribution of every individual is calculated and selection pressure changes [14]. At the 

start fitness contribution influence on chance to be selected is bigger than at the ending 

of GA’s work [14]. 

Tournament Selection (TOS) is a selection technique, which is like LRS. This technic 

workflow starts with random selection of k individuals from population [13]. Further 

these individuals are ranked by their fitness and the fittest individual is selected for 

reproduction [13]. This process is repeated until mating pool is filled [13]. 

3.6.2 Crossover 

Crossover is simulating biological recombination between two organisms [9]. Hence, 

crossover operation is an exchange of chromosome parts between two individuals. As a 

result of this process two new chromosomes are obtained. If parents of these 

chromosomes have good fitness values, then it is likely that offsprings (new 

chromosomes) are even better than parents [12]. 

Single-point Crossover (SPC) is a crossover technique, according to which chromosome 

is sliced into two sets of genes at randomly chosen point and second slices of 

chromosomes are swapped between individuals [15]. For example, if there are two 

chromosomes 10001111 and 01110000, and as crossover point is chosen index 4, then 

two resulting chromosomes will look like 10000000 and 01111111 accordingly. 
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Multi-point Crossover (MPC) is a crossover technique, which has the same concept as 

the SPC, but following the name multiple crossover points are used. For example, if 

there are two chromosomes 111000101 and 000010010, and as crossover points are 

chosen indexes 3 and 6, then two resulting chromosomes will look like 111010101 and 

000000010 accordingly. 

Uniform Crossover (UNC) is a crossover technique, which is used for uniform 

distribution of genes between two individuals. In this technique crossover probability is 

used [15]. If randomly generated value is within crossover probability value, then first 

offspring gets first parent’s gene and second offspring gets second parent’s gene, 

otherwise first offspring gets second parent’s gene and second offspring gets first 

parent’s gene [15]. 

3.6.3 Mutation 

Role of mutation operator in GA consists in maintenance of diversity within population 

and prevention of early convergence [12]. This purpose is achieved by random change 

in a chromosome. The classical approach of mutation is usage of mutation probability. 

For each gene in chromosome is generated random value and if this value is within 

range from 0 to mutation probability value, then gene value is changed. Gene change 

depends on chromosome representation and number of alleles. 
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4 State of the art 

4.1 Energy load disaggregation methods 

Since Nonintrusive Appliance Load Monitoring was introduced in Hart’s original article 

[3], there was developed many different methods for the energy load disaggregation 

problem resolving. This section is aimed to provide quick overview of existing 

methods. 

 Hart’s initial approach is an optimization-based task, which consists in matching of 

received power measurements P(t) to a possible combination of appliances’ power 

values [1], [3]. Appliance has two states (on and off) and according to this state is 

decided which appliance’s power value should be presented in a combination [3]. This 

model is presented in [3] by the following equation: 𝑃(𝑡) = ∑ 𝑎𝑖(𝑡)𝑃𝑖 + 𝑒(𝑡)𝑛
𝑖=1 , where 

𝑛 is appliances number, 𝑡 is a time point, 𝑎𝑖(𝑡) is the appliance state (in or off) at time 𝑡 

and 𝑒(𝑡) is a noise (error) at time 𝑡. 

Hart’s method of energy load disaggregation is extended in [2] research. Base of the 

method remains the same, but concept of states’ changes frequency is introduced [2]. 

According to this idea, it is more probable that appliance keeps its state the same in the 

next point of time [2]. Hence, number of state changes between two neighbour time 

points tends to be minimal [2]. Also, this research promotes idea that there is no need to 

analyse measurements at every point of time, only such points where occurs appliances’ 

state changes should be used for energy load disaggregation [2]. 

Another extension of Hart’s method is presented in [7] research. Originally Hart’s 

method uses only active power measurements data. Idea from [7] consists in usage of 

active and reactive power measurements both. According to mentioned paper [7], work 

process includes parallel search for best combination of appliances for active and 

reactive power measurements at every point in time with usage of Multi-Objective 

Optimization. 

Furthermore, there is a lot of other approaches of energy load disaggregation. These 

includes usage of Hidden Markov Model [16], Bayes Model [17], Neural Network [18], 

Pattern based Genetic Algorithm [19] and others. 
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4.2 Existing programs for energy load disaggregation 

Themes of Non-Intrusive Load Monitoring (NILM) and energy load disaggregation are 

considered in many researches. There is a reasonably strong base for realisation of these 

technologies. 

One of NILM practical implementations is described in [4]. Mentioned computer 

program has two work modes: sampling and evaluation. In the sampling mode program 

operates with data, which includes full measurements of every appliance power 

consumption. This data is used for appliance load recognition algorithm and, also, some 

of pre-processors require appliances’ operating characteristics [4]. In the evaluation 

mode appliance load recognition algorithm analyses current, which is measured with 

single meter (for a whole house power consumption measurement) and uses previously 

identified statistics of each appliance [4]. Workflow of this program is divided into 4 

separate blocks:  

1. First block works only in sampling mode and calculates appliances 

characteristics.  

2. Second block filters data from house general power meter to achieve rectangular 

shapes in signal, which represents on/off events. 

3. Third block consists of appliance load recognition algorithm. 

4. Fourth block deals with calculation of power consumption of each appliance. 

Another implementation of energy load disaggregation algorithm is a NILMTK [5], 

which is an open source toolkit for NILM. This toolkit includes parsers for publicly 

available data sets (REDD, BLUED, Smart, Tracebase, Sample, HES, AMPds, iAWE, 

UK-DALE), some pre-processing algorithms (Downsample, Voltage normalisation, 

Top-k appliances) to remove noise from a signal and two reference benchmark 

disaggregation algorithms (based on Combinatorial Optimisation and Factorial Hidden 

Markov Model). This toolkit’s purpose is to give ability to compare energy 

disaggregation approaches on multiple publicly available data sets [5]. 
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5 Methodology 

There are many different approaches for the energy load disaggregation in NILM [1]. 

The ones used in this thesis are chosen considering efficiency and author’s skills. 

5.1 Tools 

As a programming language for this project Python was chosen. Python has a lot of 

scientific packages for data analysis and genetic algorithm libraries. Moreover, Python 

is a platform independent language and its interpreters are available for wide variety of 

operating system. In addition, there are presented some tool, which allow to package 

python code into standalone programs.  

For data visualization Matplotlib library was chosen. Matplotlib is an easy and friendly 

Python 2D plotting library. Also, it is the most widely used library for plotting in 

Python and has is decently documented. There are another good plotting libraries for 

Python like Pandas and Seaborn. However, due to author’s previous experience and 

familiarity with Matplotlib, it was preferred.  

For program’s Graphical User Interface (GUI) Tkinter library was used. This library is 

included in the standard Python distribution. Moreover, it is open source and is 

available under Python License. One of Tkinter advantages is that it is built-in library 

and because of that there is a lot of tutorials, books and its community is quite large, so 

it is possible to get a support for solving doubts. Another popular GUI libraries for 

Python are Kivy, PyQT and WxPython. Comparing to Tkinter these libraries have some 

disadvantages:  

1. Kivy is more focused of mobile GUIs and does not support native styles. 

2. PyQT has some usage limitations connected with its license. 

3. WxPython does not support native styles. 

4. All these libraries are not bundled with Python distribution and they are needed 

to be installed separately. 
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Many GA libraries for python can be found, but significant part of this libraries turned 

out to be not maintained. Some of most popular libraries are pyeasyga, Pyevolve and 

DEAP. 

Unfortunately, pyeasyga is supported only for Python 3.4 and older, and Pyevolve is 

supported only for second version of Python, which will be not supported since 2020. 

Single remaining option is DEAP. This is powerful library for rapid prototyping and 

testing of ideas [20]. It allows to use such evolutionary computation techniques as 

genetic algorithm, genetic programming, evolution strategies, particle swarm 

optimization and others [20]. After consideration of DEAP it was decided that it is too 

complex and time consuming for learning and has a lot of unnecessary components for 

this thesis’ topic. As a result, it was decided to create own implementation of SGA and 

NSGA-II. 

5.2 Method of energy load disaggregation 

Energy load disaggregation solution search occurs to be time consuming task, which 

can be solved with exhaustive search, but amount of time spent on this process appears 

to be not reasonable, especially in the case of continuous measurements of power 

consumption. Program of energy load disaggregation is decided to be based on 

combinatorial optimization techniques. Two types of GA are chosen for this purpose: 

SGA and NSGA-II. The first one can deal with simple fitness functions, which depends 

on neighbouring criteria, and the second one can deal with more complex and not 

adjacent criteria. Another way is to use neural networks; however, this option is rejected 

due to author’s lack of knowledge in this area. 

5.3 Results validation 

In the energy load disaggregation program is planned to use different fitness functions 

for solutions search. These solutions evaluation and search methods will be compared 

with each other basing on their accuracy of appliance’s states estimation. As a baseline 

for comparison Hart’s model [3] will be used. 
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6 Functional requirements 

For the energy load disaggregation program following functional requirements are 

established: 

1. User can set up list of appliances and their average power consumption. This list 

will be used for energy load disaggregation, so that obtained energy load will be 

divided into appliances’ loads. This input must adapt according to a chosen 

fitness function and allow to associate with appliance two or more power 

consumption values. 

2. User can set up GA parameters and chose fitness function. According to fitness 

function list of GA parameters can change.  

a. In case of SGA following parameters must be presented: generations 

limit, population size, mating pool size, gene mutation probability, 

elitism proportion, fitness function. 

b. In case of NSGA-II following parameters must be presented: generations 

limit, population size, gene mutation probability, fitness function. 

3. User can set up data source for energy load disaggregation. Next input 

parameters for data source must be presented: files with power consumption 

measurements over time (according to chosen fitness function number of input 

files can be 1 or 2), measurements file line index to start reading from, number 

of lines to read.  

4. During the process of energy load disaggregation user can see changes of best 

fitness value within population throughout all generations. 

5. User can stop process of energy load disaggregation at any time and best 

solution from last generation must be returned. 

6. At the start of the program user can choose one of two working modes: 

a. Fitness functions’ efficiency evaluation mode. In this mode user should 

choose data source files with full power consumption measurements 
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information about every appliance. After GA work is ended, user can go 

to GA result analysis page and see overall accuracy of disaggregated 

load and accuracy of every appliance’s estimated load. Also, user can see 

graphical representation of disaggregated load on the result analysis 

page. 

b. Appliances’ energy loads estimation mode. In this mode user should 

choose data source files aggregated power consumption measurements 

information. After GA work is ended, user can go to GA result analysis 

page and see graphical representation of disaggregated load (overall and 

each appliance separately). 

7. After the end of energy load disaggregation and result review, user can save 

disaggregated energy load to a file. 
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7 Architecture 

Program architecture is layer based and is divided into following layers: User Interface 

Layer, Business Logic Layer and Services Layer. Relationship between these layers can 

be seen in [Figure 2]. 

User Interface Layer represents the front-end of the program and contains the actual 

GUI elements that users view and click. Basic elements of GUI are pages, which 

consists of Tkinter widgets and frames. ProgramSettingsPage is a GA settings and data 

source files entry point. GeneticAlgorithmProcessPage is an output point for 

disaggregated energy load data. 

Business Logic Layer is represented by Disaggregator class, which processes settings 

and power measurements data. Disaggregator choses appropriate GA when data is 

processed and calls GA’s run method to start energy load disaggregation. 

Services Layer consists of two GA implementations: SGA and NSGA-II. Also, this 

layer includes all additional classes for GA’s functioning. Basic structure of GAs’ 

dependencies can be seen in [Figure 3]. Both SGA and NSGA-II use this structure. 

 

Figure 2. Program architecture layers. 
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Figure 3. Genetic algorithms dependencies structure. 
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8 Services Layer implementation 

Services Layer consists of SGA and NSGA-II. These GAs require some representation 

of chromosome (individual) and population. Also, some way of storing power 

measurements data and fitness functions is needed to be used. Realization of GAs and 

other essential components is presented in this section.  

8.1 Representation of chromosome 

Classical representation of chromosome is an array of bits. Such chromosome can be 

easily used for disaggregated energy load encoding. As described in [2], solution is a 

state of each appliance for every time point. Hence, if appliance has two states “on” and 

“off”, then “on” can be marked with 1 and “off” can be marked with 0. In addition, one 

gene is a set of appliances’ states for one time point. This gene has fixed length, because 

exact set of appliances must be specified for energy load disaggregation task. According 

to the mentioned details, chromosome suitable for “on / off” appliances’ load 

disaggregation can be implemented as a bit string, in which each gene stands for some 

time point and consists of appliances’ states. However, this chromosome representation 

method has limited possible states for an appliance (“on” and “off”). It is not difficult to 

add for each appliance more states and, in case of equal number of appliances’ states, to 

extend chromosome to use numbers instead of bits. For example, if appliances have 

three states, then state of an appliance can be encoded with numbers from zero to two. 

This approach works only if each appliance has the same number of states.  

In the real world, almost always appliances with different number of working modes 

(states) are used. This fact means that it is reasonable to allow different number of states 

for each appliance. Therefore, it causes difficulties with gene mutation. Such approach 

requires to hold information about every appliance’s number of states and during 

mutation operation this information must be obtainable. Another problem consists in 

number of different power type measurements used for energy load disaggregation. 

Some methods use not only active power, but also reactive power measurements [7], 

and number of reactive power states between appliances can vary. As a result, it is a 

complex task to encode all mentioned information into chromosome and use it in the 

crossover and mutation operations. One possible solution for chromosome encoding is 
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usage of custom object for appliance depiction. This object can hold information about 

current active and reactive power values, possible states for every power type, name of 

appliance and timestamp of measurements. In addition to appliance’s data storage this 

class has change_mode method, which is used for simplification of mutation operation. 

This implementation solves problem of additional appliance information storing and 

eliminates the need for appliance states information search in mutation operation. 

8.2 Power measurements storage and processing 

Depending on a chosen fitness function for GA, different measurements data is needed 

for fitness function work. There are presented three measurements data types: 

1. Basic active and reactive power measurements. This data is saved directly from 

data source files, which are specified in program settings page.  

a. In case of “fitness functions’ efficiency evaluation mode”, this data is 

used for total load calculation, appliances’ probable state changes 

detection and for further comparison of estimated appliances’ loads and 

actual appliances’ loads.  

b. In case of “appliances’ energy loads estimation mode”, this data is used 

for appliances’ probable state changes detection and is used as total load 

for further disaggregation. 

2. Extracted appliances’ state changes events from basic active and reactive power 

measurements. As described in the [2] research, it is reasonable to process only 

appliances’ state changes events instead of whole measurements data. Thanks to 

this approach load disaggregation process can be accelerated. Events active and 

reactive power measurements structure is the same as in the basic measurements 

data, but only events points are included. Events points search is realized using 

two neighbour time points comparison in total load measurements. Such points 

detection criterion is following: between two neighbour time points power 

difference must be bigger than 50 W. 
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a. In case of “fitness functions’ efficiency evaluation mode”, this data is 

each appliance’s power measurements in a certain time points (events 

points) and is a base for chosen appliances’ total load calculation.  

b. In case of “appliances’ energy loads estimation mode”, this data is total 

load power measurements in a certain time points (events points). 

3. Active and reactive total loads. These total loads are calculated according to 

chosen fitness function. Some fitness function demand whole power 

measurements (all time points) and others demand only events power 

measurements (events time points). 

a. In case of “fitness functions’ efficiency evaluation mode”, this data is 

calculated from data source files. This data is a sum of chosen appliances 

loads. 

b. In case of “appliances’ energy loads estimation mode”, this data saved 

directly from data source files or in case of events time point data from 

data source files is processed and saved. 

PowerData class deals with mentioned data storing and processing tasks. Structure of 

first two data sets is organised as dictionary, where key is a power measurements name 

(usually appliance name) and value is a list of power measurements. Structure of last 

data set for total loads is a list of power measurements. During creation of PowerData 

object, according to chosen fitness function, events or basic power measurements are 

used for total load calculation in “fitness functions’ efficiency evaluation mode”. 

Data processing and storing are based on AMPds dataset described in [6]. 

8.3 Fitness value calculation 

FitnessCalculator class is introduced for comfortable usage of fitness functions. 

According to this class data storing structure, FitnessCalculator object can hold power 

measurements data using PowerData as a container, set of appliances for energy load 

disaggregation, set of active and reactive power consumption values for each appliance, 

name of chosen fitness function. 
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Three main method of FitnessCalculator are calculate_fitness, calculate_objectives, 

calculate_decision_function, which chose appropriate functions to calculate according 

to chosen fitness function name (from program settings page). 

This class contains implementations of four fitness functions: 

1. Fitness function described by Hart in the research [3] and mentioned in the 

research [2]. This is a basic fitness function, which tries to find best combination 

of appliances’ loads and minimize error between actual total load and estimated 

total load using only basic active power measurements. 

2. Fitness function described in the research [2]. This fitness function extends idea 

of Hart from the research [3] and introduces idea of minimal appliances’ state 

changes. This function also tries to find best combination of appliances’ loads 

and minimize error between actual total load and estimated total load, but events 

active power measurements are used and error from each time point is multiplied 

by weight, which is a number of appliances’ state changes plus one. 

3. Fitness function describes in the research [7]. This fitness function is similar 

with second one, but instead of active power error and number of appliances’ 

state changes composition into one function, it calculates these two objectives 

separately using NSGA-II and further fitness is calculated using decision making 

function. This decision-making function implements second fitness function. 

4. Fitness function describes in the research [7]. This fitness function extends idea 

of Hart from the research [3] and, additionally to active power, it uses reactive 

power measurements. Two objectives of this fitness function are estimated 

active and reactive total loads’ errors minimization. These objectives are 

calculated using NSGA-II. Decision function for fitness value calculation is 

represented as sum of active and reactive total loads’ errors and division them by 

two as specified in [7]. 
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8.4 Individual 

Individual class is used for chromosome and its utility information storing. Moreover, 

Individual object can hold FitnessCalculator to get ability to calculate chromosome’s 

fitness. Individuals stores such information as fitness value, chromosome length, 

chromosome, objectives’ values, dominated individuals set, number of times this 

individual is dominated, rank and distance. First 3 variables are used in both SGA and 

NSGA-II, and last 5 variables are used only for NSGA-II operations. Dominated 

individuals set and number of times this individual is dominated are used for fast non-

dominated sorting. Rank and distance are used for crowding distance sorting. 

Furthermore, Individual class provides functionality for random chromosome 

generation, which is used in Individual object initialization, and fitness and objective 

values calculation using FitnessCalculator. 

8.5 Population 

With purpose for individuals storing and sorting Population class is introduced.  

Population class holds information about population size, best and worst fitness values 

among population. Also, it holds list of individuals for SGA and NSGA-II, and list of 

offsprings for NSGA-II. Moreover, Population class provides functionality for 

initialization of random population, search for the fittest and the least fit individuals, 

fitness update (calculation) for SGA and objectives update (calculation) for NSGA-II. 

Significant part of Population class functionality depends on Individual class methods 

and variables. As a result, Population class is used to store individuals and call 

individual’s methods for fitness and objectives update. 

8.6 Simple Genetic Algorithm 

SGA realization is based on materials from [9] and theory described in the “Theoretical 

background” section of this thesis. In addition, some changes were made to improve 

search characteristics of SGA. 
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8.6.1 Selection 

PAS was chosen as a selection operator for SGA. This selection operator gradually 

moves selection criterion from exploration to exploitation, what allow to obtain 

advantages of both techniques [14]. Exploration is more prior at the start of GA process 

and helps to investigate new areas in the search space [14]. Exploitation is more prior at 

the end of GA process and deals with solution improvement using best found solutions 

[14]. In other words, population diversity is preferred from the start of GA and selection 

pressure grows closer to the end of GA to check combinations of best solutions. PAS 

realization is based on [14]. 

8.6.2 Crossover 

MPC was chosen as a crossover operator for SGA. According to the crossover 

operator’s comparison in [21], MPC is an efficient technique for chromosome 

recombination. In MPC realization exact number of crossover points is not determined. 

It dynamically depends on number of time points encoded in the chromosome. 

Offspring will get evenly distributed genes from parents’ chromosomes. For example, if 

chromosome length is 7, then an offspring will get genes with indexes 0, 2, 4, 6 from 

parent A and genes with indexes 1, 3, 5 from parent B. Crossover rate is set to 90% and 

if random value is higher than crossover rate value, then offspring get genes only from 

one parent. 

8.6.3 Mutation 

Mutation operator described in [9]’s “A SIMPLE GENETIC ALGORITHM” section 

was used. According to this mutation operator work process, every gene in the 

chromosome has “mutation probability” to change. If random value is less than 

mutation probability, then random appliance from gene is chosen and appliances 

change_mode method is called. Purpose of this method is to change appliance current 

power values to a random chosen allowed power values. 

8.6.4 Elitism 

Despite the fact that SGA from [9] does not require to use elitism operator, it was 

decided to use such operator for a best solutions preservation throughout SGA work 

process. Using “elitism proportion” parameter, it is possible to specify what part of best 

individuals (solutions) will be transferred into next generation. This approach can 
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accelerate convergence of population depending on “elitism proportion” size, but, in 

case of bad mutations, it helps to avoid population’s fitness value decrease. 

8.6.5 Workflow 

Workflow of implemented and adapted SGA is following: 

1. Generate random population. 

2. Calculate fitness values of every individual in population. 

3. Do until generations limit is achieved: 

a. Add best individuals, according to elitism proportion size, into new 

generation using elitism operator. 

b. Select individuals for reproduction and add them into mating pool. 

c. Do until new generation is filled: 

i. Choose two random parents from mating pool. 

ii. Create an offspring using crossover operator. 

iii. Use mutation operator on the offspring. 

iv. Add offspring into new generation. 

d. Replace current population with new generation. 

e. Calculate fitness values of each individual in population. 

8.7 Non-dominated Sorting Genetic Algorithm II 

NSGA-II realization is based on materials from [10], [22] and theory described in the 

“Theoretical background” section of this thesis. Some slight adaptation was made to 

make it possible to use NSGA-II with described earlier chromosome representation. 
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8.7.1 Selection 

Selection in NSGA-II is realized in two phases. First one is a possible parents selection 

based on usage of fast non-dominated sorting for fronts forming and crowding distance 

sorting for maintenance of diversity [22]. It is possible read more detailed information 

in “Theoretical background” section of this thesis. Second phase is a mating pool 

selection, which is like TOS. This selection process is following: 

1. While mating pool is not filled do: 

a. Choose two random individuals from possible parents 

b. Decide which of them is better and add this individual to mating pool. 

8.7.2 Crossover 

UNC was chosen as a crossover operator for NSGA-II. According to [22] crossover rate 

was set to 90% and crossover distribution proportion was set to 50%. If random value is 

less than crossover rate value, then genes from both parents will be used for offspring’s 

chromosome creation. Otherwise, offspring will get only one parent’s genes. Crossover 

distribution proportion is used to decide which parent’s gene will get offspring. If 

random value is less than crossover distribution proportion, then offspring gets parent’s 

A gene and otherwise parent’s B gene. 

8.7.3 Mutation 

Mutation operator described in [10]’s “Genetic Algorithm” section was used. According 

to this mutation operator work process, every gene in the chromosome has “mutation 

probability” to change. If random value is less than mutation probability, then random 

appliance from gene is chosen and appliances change_mode method is called. Purpose 

of this method is to change appliance current power values to a random chosen allowed 

power values. 

It was decided to change only one appliance’s current power values in a gene, because 

according to [2] number of appliances’ state changes should be minimal. 
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8.7.4 Reproduction 

Reproduction operator is a crossover and mutation operators’ fusion. This operator uses 

mating pool generated with selection operator. Parents from mating pool are chosen by 

pairs. For example, first offspring’s parents are with indexes 0 and 1, then next 

offspring’s parents will be with indexes 1 and 2. Last offspring’s parents will be with 

indexes “last index” and 0. Crossover and mutation operators are used, after parents are 

chosen. And finally, offspring will be added to the population. 

8.7.5 Elitism 

There is no separate elitism operator in NSGA-II. Because of that some fitness value 

fluctuations can be noticed. However, because fast non-dominated sorting is used and 

only best fitness individuals are transferred to a next generation, fitness value of 

population tends to improve throughout NSGA-II work process. 

8.7.6 Workflow 

Workflow of implemented and adapted NSGA-II is following: 

1. Generate random population. 

2. Evaluate every individual against objective functions. 

3. Select possible parents from individuals (selection first phase). 

4. Select individuals for mating pool from possible parents set (selection second 

phase). 

5. Use reproduce operator to generate offsprings set. 

6. Evaluate each offspring against objective functions. 

7. Do until generations limit is achieved: 

a. Form union set by merging parents and offsprings. 

b. Select possible parents from union (selection first phase). 

c. Select individuals for mating pool (selection second phase). 
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d. Replace current individuals with offsprings. 

e. Create new offsprings set using reproduce operator. 

f. Evaluate each individual and offspring against objective functions. 
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9 Business Logic Layer implementation 

Business Logic Layer consists of Disaggregator class. This class is a connecting link 

between Services Layer and User Interface Layer. Disaggregator deals with input data 

processing and preparation of GA, which should be used with chosen fitness function. 

Fitness function name, which is selected by user, has following structure: criteria for 

evaluation, type of measurements data, name of genetic algorithm to use. 

SGA is used for “Minimum active power error (basic, SGA)” and “Minimum active 

power error and minimum state changes (events, SGA)” fitness function options. 

NSGA-II is used for “Minimum active power error and minimum state changes (events, 

NSGA-II)” and “Minimum active and reactive power errors (events, NSGA-II)” fitness 

function options. 

GA preparation process is following: 

1. Extraction of appliances set and appliances’ loads from appliances’ information 

received from GUI. 

2. Extraction of following information: data source files’ paths, position of start 

line and amount of lines to read from data source. 

3. Preparation of PowerData object for power measurements data storing. Also, 

PowerData internal methods are used for data conversion from basic format to 

events format if needed. 

4. Extraction of fitness function name and GA’s parameters from genetic algorithm 

setting information received from GUI. 

5. Preparation of FitnessCalculator object using already created PowerData object 

and extracted fitness function name. 

6. Preparation of appropriate GA according to extracted fitness function name and, 

also, extracted GA’s parameters are used. 

 



40 

In addition to GA’s data processing and preparation of GA, Disaggregator class has 

functionality for GA’s result analysis. This functionality includes counting of every 

appliance’s errors number and calculation of appliance estimated load accuracy. This 

methods of Disaggregator are used, if “fitness functions’ efficiency evaluation mode” is 

enabled, for actual and estimated loads comparison in GeneticAlgorithmResultPage of 

GUI. 
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10 User Interface Layer implementation 

Graphical User Interface consists of four views: StartPage, ProgramSettingsPage, 

GeneticAlgorithmProcessPage and GeneticAlgorithmResultPage. The first one is a 

StartPage, where user can choose which program mode to use. This choice is 

represented with two buttons and their descriptions. StartPage view can be seen on 

[Figure 4]. 

Regardless of selected button user will be redirected to a ProgramSettingsPage. This 

page includes entries for genetic algorithm parameters, entries for appliances’ names 

and average power values, entries for data source parameters, button for launch of GA’s 

work. Whole page can be divided into two parts: genetic algorithm settings and data 

source settings.  

 

Figure 4. StartPage view. 
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According to fitness function name parameter, ProgramSettingsPage view can change. 

This is caused by usage of different GA implementations and, also, by usage of different 

power types (active and reactive power) depending on chosen fitness function. SGA 

requires fitness function name, generations limit, population size, mutation probability, 

mating pool size, elitism proportion entries as parameters. On the other hand, NSGA-II 

requires only first four parameters mentioned above. Moreover, if “Minimum active and 

reactive power errors (events, NSGA-II)” fitness function is chosen, then in data source 

settings part, in addition to active power entries, reactive power entries appear. Such 

entries include average reactive power inputs for every added appliance and reactive 

power data source file selector. ProgramSettingsPage view can be seen on [Figure 5]. 

After all settings are entered and GA launch button is clicked, user is redirected to 

GeneticAlgorithmProcessPage. This page consists of a scrollable text area and a set of 

 

Figure 5. ProgramSettingsPage view. 
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buttons. Text area is designed for depiction of GA’s work process. Fitness of best 

individual from population and generation’s number is printed at the end of each 

generation processing. Furthermore, chromosome of best individual is printed when GA 

stops work, and time elapsed from start of GA work is printed. Set of buttons includes 

navigation buttons to ProgramSettingsPage and to GeneticAlgorithmResultPage. Also, 

there is a stop button for manual halt of GA process. “Stop” button is active and 

navigation buttons are disabled during work of GA. Otherwise, “Stop” button is 

disabled and other two buttons are active. GeneticAlgorithmProcessPage can be seen on 

[Figure 6]. 

The last view of program is GeneticAlgorithmResultPage. This page consists of a 

notebook widget and a set of buttons. Notebook widget contains estimated total load 

and appliances’ separate load plots. Also, if “fitness functions’ efficiency evaluation 

 

Figure 6. GeneticAlgorithmProcessPage view. 
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mode” is chosen, then accuracy value of estimated loads is shown above plots. Thanks 

to Matplotlib’s functionality mentioned plots are interactive. It is possible to zoom in / 

out, to pan axes and to save picture of the plot. The set of buttons contains two buttons 

for navigation to ProgramSettingsPage and GeneticAlgorithmProcessPage, and a button 

for result saving into json file. Saved result is represented as dictionary, where 

“UNIX_TS” key indicates list of timestamps and other keys are names of appliances for 

lists of their estimated power values. GeneticAlgorithmResultPage can be seen on 

[Figure 7]. 

 

Figure 7. GeneticAlgorithmResultPage view. 
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11 Evaluation of fitness functions 

It is possible to use four fitness functions for the energy load disaggregation. Names of 

these functions are following: “Minimum active power error (basic, SGA)”, “Minimum 

active power error and minimum state changes (events, SGA)”, “Minimum active 

power error and minimum state changes (events, NSGA-II)”, “Minimum active and 

reactive power errors (events, NSGA-II)”. First fitness function is based on Hart’s idea 

[3]. This function is considered as baseline for further comparison of fitness functions 

usage.  

First three hours from AMPds [6] were chosen for testing of fitness functions. This 

power measurements segment is reasonably diverse, besides the fact that few appliances 

are working only in one state during whole time segment. However, this fact does not 

make energy load disaggregation task easier. The more appliances are used for energy 

load disaggregation, the more possible combinations should be considered and the more 

time for the task processing is needed. GA parameters for testing are population size - 

100, generations limit - 1000, mating pool size - 50, gene mutation probability - 0.01 

and elitism proportion - 0.05. Set of appliances used for testing consists of BME 

(basement plugs and lights), DWE (dishwasher), CDE (clothes dryer), FRE (forced air 

furnace fan and thermostat), HPE (heat pump), FGE (fridge), WOE (convection wall 

oven). Each fitness function was tested 100 times. Average work time and average 

accuracy were calculated for further comparison of fitness functions.  

Following average results were achieved: 

1. Minimum active power error (basic, SGA) -  

accuracy 65%, 124.557 seconds 

2. Minimum active power error and minimum state changes (events, SGA) -  

accuracy 72%, 45.863 seconds 

3. Minimum active power error and minimum state changes (events, NSGA-II) -  

accuracy 74%, 175.356 seconds 
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4. Minimum active and reactive power errors (events, NSGA-II) -  

accuracy 66%, 127.414 seconds 

It is possible to notice that performance of first function in quite low. This function’s 

accuracy is lowest among four fitness functions and time consumption is on the second 

place along with fourth function. This result was expected, because Hart’s idea [3] is 

very similar to knapsack problem solving process. This approach focuses on 

minimization of error between estimated total load (sum of estimated appliances’ loads) 

and actual total load. It is impossible to distinguish two similar appliances using this 

disaggregation method.  

Fourth fitness function has a little bit better accuracy than first one, but its working time 

is longer. This function’s idea is the same as in first fitness function, but in addition to 

active power total load disaggregation, it deals with reactive power total load 

disaggregation. According to research [7] this approach should improve accuracy. 

However, in case of thesis program, performance improvement is minimal comparing to 

first fitness function. 

Second and third fitness function have similar accuracy results. Both these functions are 

based on active power total load disaggregation as in first fitness function, but 

additionally number of state changes between every time point of measurements is 

considered. These functions try to stimulate such solutions, where appliance’s position 

in one work state is continuous, and to exclude such solution, where appliance changes 

its work states frequently. This approach tries to simulate real behaviour of appliances. 

The main difference of these fitness functions is implementation of GA, which was 

used. For the NSGA-II appropriate work Third fitness function is divided into two parts: 

calculation of objectives and calculation of fitness using objectives’ values. This 

behaviour cause increase of processing time. However, disaggregated loads are more 

precise in case of third fitness function usage.  

Best fitness function choice depends on user’s priorities. If user needs to disaggregate 

energy load as soon as possible, then “Minimum active power error and minimum state 

changes (events, SGA)” is recommended. If user needs the most accurate result, the 

“Minimum active power error and minimum state changes (events, NSGA-II)” is 
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recommended. Additionally, it is reasonable to run energy load disaggregation several 

times, because GA does not guarantee to find best solution and accuracy may vary. 
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12 Summary 

The aim of this work was to develop genetic algorithm-based program for the energy 

load disaggregation. Firstly, analysis of existing solutions and their functionality was 

conducted. Secondly, functional requirements were established and subsequently 

realized. 

During this thesis different combinatorial optimization approaches of energy load 

disaggregation were researched. As a result, four methods were chosen and successfully 

implemented alongside with two different genetic algorithm realizations. Also, 

efficiency of these four methods was evaluated and analysed. Basing on analysis results 

two promising methods were highlighted – “estimated active power total load error 

minimization and reduction of appliances’ state changes” based on SGA and based on 

NSGA-II. 

For the comfortable usage of the program graphical user interface based on Tkinter 

library was realized. GUI makes settings input process easier, allows to monitor process 

of solution search and to review result of disaggregation using plots created with 

Matplotlib library. 

In conclusion, the main goal of this thesis has been successfully achieved. The result is 

the energy load disaggregation program, which can complete its task and present 

reasonably precise result. In addition, this program has good potential and ways for 

further development like addition of new and more effective fitness functions, and 

support for other data source formats.  
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