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1 Introduction 

1.1 Motivation 
The circumstances of current human existence are far different from remote past. 
Physical exertion is no longer a requirement for daily living and today’s conditions allow 
an unprecedentedly sedentary lifestyle. This discordance between our contemporary 
lives and our genetic makeup has important health implications on skeletal density, 
cardiovascular diseases, obesity, body composition and insulin resistance. It is important 
to propagate active lifestyle, since research studies confirm that routine physical activity 
(PA) has multiple benefits by lowering the risk of diabetes, cardiovascular disease and 
obesity, while increasing psychological well-being. 

Advancement of technology has brought a surge of popularity for devices that help 
their users keep track of their PA, training schedule, exercises and lost calories. Since this 
makes training more interactive and allows users to have better overview of their 
progress, it often motivates the users to have a more active lifestyle. This is achieved by 
using wearable systems to conveniently measure, collect and analyze the user’s 
physiological data. For convenient use wearables need to be small and unobtrusive, 
which in turn puts significant demand on optimizing different aspects of these system 
such as reducing power consumption. The general aim of the thesis is to advance novel 
physical fatigue assessment (PFA) and human activity monitoring methods that could be 
applied in real-time by using wearable sensors and systems. 

1.2 Problem Formulation 
Human activity recognition (HAR) allows automatic recognition of physical activities. 
Real-time activity recognition provides valuable information for improving online 
feedback of the activity trackers or for providing extra safety by monitoring the status of 
the users working in high-risk environments (Leier et al., 2018; Svertoka et al., 2021). 
Power consumption required for HAR is determined by multiple different components. 
Some of these components are based on the processing of the acceleration values, such 
as sampling rate of the signal and filtering (Yan et al., 2012; Straczkiewicz et al., 2021). 
Other elements are based on classification mechanics, such as classification window 
length, feature calculation, and the used machine learning algorithm. While studies have 
explored classification aspects such as training times of different HAR algorithms (Altun 
et al., 2010; Feng et al., 2015), they do not provide valuable information for real-time 
classification, since classifier training can be done previously on a desktop computer and 
later implemented into the wearable system. For classification systems working in real 
time, it is important to focus on the processing time of the calculations the system has 
to do online (Altun et al., 2010; Tapia, 2008). 

Several studies have evaluated how different window lengths affect HAR performance 
(Tapia, 2008; Bulling et al., 2014; Straczkiewicz et al., 2021), but the lack of gold standard 
in physical activity classification makes it difficult to compare these results (Awais et al., 
2015; Straczkiewicz et al., 2021). Researchers have used a wide range of various sampling 
frequencies, typically between 10 Hz to 100 Hz (Yan et al., 2012; Khusainov et al., 2013; Lee 
et al., 2016; Wang et al., 2019). Various filter methods, wrapper methods and embedded 
methods have been used for feature selection (Wang et al., 2019), such as the ReliefF 
algorithm (Moncada-Torres et al., 2014), principal component analysis (Altun et al., 2010), 
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or information gain (Tapia, 2008), but not in connection with window length and sampling 
frequency. 

Energy expenditure (EE) is an important parameter for the studies of PA and is often 
used as a correlate of its level (Wang et al., 2012). EE determination is an important tool 
for adjusting the individuals’ nutritional supply or to assess the health of a larger 
population. Modern technologies that are gradually integrated into everyday life are able 
to non-invasively monitor the PA level and health behavior of their users. Monitoring the 
PA has moved towards activity specific EE models that first recognize the activity and 
then apply a suitable EE algorithm for the specific activity (Altini et al., 2012; Farrahi  
et al., 2019), which relies on accurate assessment of basal metabolic rate (BMR).  

BMR is usually clinically measured using indirect calorimetry (IC), but it requires 
expensive equipment and trained personnel. Therefore for dietetics purposes BMR is 
commonly estimated using predictive equations, that use simple anthropometric 
variables such as the weight, height, age and gender of the person (Frankenfield et al., 
2005; Amaro-Gahete et al., 2018).  

Fatigue is a term used to describe an altered physiological state, which may result in 
decreased mental or physical performance. Fatigue may be caused by various effects 
such as sleep loss, circadian changes, or high workload (Mohanavelu et al., 2017; Shortz 
et al., 2017). The ability to effectively monitor fatigue is highly sought due to multiple 
reasons: the complaint of fatigue is high in general population (Dawson et al., 2011);  
it may adversely affect employees’ performance, safety, and health (Völker et al., 2015); 
and the high prevalence of fatigue has been reported in many operational settings as 
potential hazard (Shortz et al., 2017; Thompson, 2019). Manifestation of high prevalence 
of fatigue in the working population has spawned growing concern due to reduced 
performance, high sick leave and work disability (Thompson, 2019). The main topics in 
the study of fatigue are significance of fatigue tests in different (work) settings, 
evaluation of muscular fatigue, subjective symptoms of fatigue, indicators of nervous 
strain, and the practical application of fatigue tests (Yu et al., 2019).  

In sport, fatigue manifests as a reduction in the ability to perform the desired 
movement, exercise, or skill (Hughes et al., 2019). The capacity to effectively monitor 
fatigue provides coaches and scientists with the ability to optimize training and improve 
competition performance (Hughes et al., 2019). For a coach it is both useful to have an 
index of the level of fatigue induced as a prolonged increase in training load over a longer 
time period as well as to determine how well an athlete is tolerating an acute increase in 
exercise load in one day (Thomson et al., 2016).  

In operation settings, many respected professional organizations, such as healthcare 
organizations American Nurses Association (ANA), The National Association of Neonatal 
Nurses (NANN) and Washington State Nurses Association (WSNA), have put forwards 
position statements to draw awareness to worker fatigue and its consequences, with the 
aim to legitimize fatigue as a serious and pressing issue (Thompson, 2019). Worker fatigue 
can adversely impact personal health and safety as well efficiency and safety of the 
operation (Lerman et al., 2012). In healthcare, in addition to the greater injury risk to the 
fatigue-impaired worker, fatigue of the healthcare provider is a primary contributor to 
negative patient outcomes (Thompson, 2019). Adverse effects of physical fatigue on the 
health and safety of the construction workers has been well researched (Anwer et al., 
2021).  

There is no single instrument which is used as a gold standard for fatigue measurement, 
because of the definitional difficulties and multiple causes of fatigue. The multifactorial 
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nature of fatigue may suggest that a single universal test to measure fatigue may not 
exist (Hughes et al., 2019; Saito, 1999). Fatigue assessment studies have usually compiled 
different test batteries of various measures for this purpose (Hughes et al., 2019; 
Thompson, 2019). In high performance sports several performance markers are often 
used to assess fatigue such as questionnaires, jump tests, sprints, heart rate parameters, 
hormone levels and postural sway measurements (Hughes et al., 2019). Occupational 
specific fatigue research has almost exclusively implemented subjective assessments in 
the form of questionnaires, which is not representative of actual human performance-
based functionality and can easily be manipulated by the employee (Thompson, 2019).  

It is important to note that most of these require specific administered tests. This type 
of comprehensive testing of fatigue may not be feasible as time, space, financial 
resources, testing personnel and the willingness to be tested are all scarce (Völker et al., 
2016). For this reason, a new approach utilizing physiological signals (markers, measures) 
is needed, which would allow fatigue assessment to be conducted autonomously in  
real-time and unobtrusively for the user.  

1.3 Aims of the Thesis 
The thesis aims to provide novel methods for physical fatigue assessment and human 
activity monitoring, which could be applied in real-time and unobtrusively using 
wearable sensors and systems. To accomplish this, aim different aspects of fatigue and 
suitable parameters were analyzed in multiple studies. More specifically, the aims of the 
thesis are:  
 
1. Improve Human Activity Recognition by evaluating the window length, sampling 
frequency and feature selection in order to optimize the classifier for real-time wearable 
systems. (Publication I) 
2. Validate multiple Basal Metabolic Rate predictive equations in order to provide more 
precise input and validation for fatigue estimation system. (Publication II) 
3. Improve and develop towards autonomous real-time fatigue estimation system by 
validating various promising test battery measures which could be measured using 
wearable sensors and provide fatigue estimation models based on the results. 
(Publication III) 

1.4 Contribution 
This thesis contributes to advancing and providing novel knowledge about multiple 
promising methods for real-time fatigue assessment and human activity monitoring.  
All the analyzed measures may be implemented in real-time models, which may be used 
in a wearable system.  

In Publication I, it was evaluated how the effects of sampling frequency of the 
acceleration signal, window length and number of features (listed in Appendix 1) affect 
the performance of the HAR algorithm. The main findings were: (i) classification F1-scores 
with window lengths of 5 s and 3 s were similar, while results with 1 s were lower;  
(ii) all sampling frequencies performed similarly for most activity types, with an exception 
of outdoor cycling; (iii) Similar or better results were achieved with the feature sets with 
9 to 14 features, achieved with either feature reduction scheme, compared to the initial 
full feature set of 110 features. The results of the study have been used for developing 
more efficient real-time physical activity classifiers.  
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In Publication II, different basal metabolic rate predictive equations were compared 
and validated with the data measured using indirect calorimetry. From the eight different 
BMR predictive equations explored in this study, Mifflin-St Jeor formula had the best 
performance. Based on regression analysis most equations had similar results, with 
Owen and Kleiber formulas being the outliers, which respectively had the lowest and 
highest average BMR results. The average BMR values with Mifflin-St Jeor formula  
(1447 ±204 kcal/day) were the closest with IC results (1485 ±255 kcal/day) and also had 
the lowest RMSE of 175 kcal/day compared to IC. 

In Publication III, a novel method for real-time PFA was proposed, which uses a set of 
real-time and easily measurable cardiovascular (CV) parameters, that could be 
continuously and unobtrusively monitored. Evaluated CV parameters were heart  
rate (HR), measures of heart rate variability (HRV), and blood pressure normalized pulse 
arrival time (PAT). The main findings were: (i) from the assessed CV parameters,  
the statistically significant change between the rested-state and physically-fatigued-state 
was noted in the average HR and HRV measures SDNN and RMSSD; (ii) the strongest 
linear correlation was found between the reference parameter hand grip strength  
and PAT. (iii) the best performing CV parameters for separating the mildly fatigued  
and significantly fatigued groups were based on HRV parameter SDNN between the 
rested-state and the physically-fatigued state and PAT changes during the physically-
fatigued state. The results of the study provide a significant improvement among existing 
PFA methods. 
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2 Literature Review 

2.1 Human Physical Activity and Fatigue 
Physical inactivity is a growing problem in the world, which has been found to cause  
6–10% of the major non-communicable diseases of coronary heart disease, type 2 
diabetes, and breast and colon cancers. Furthermore, this unhealthy behaviour causes 
9% of premature mortality (Lee et al, 2012). The recent development in sensor 
technologies and decrease in the cost of sensor based devices have driven the 
implementation of health monitoring and human activity detection using mobile and 
wearable sensors (Nweke et al., 2019).  

Physical activity monitoring has been found to have a positive effect in increasing PA 
(Larsen et al., 2019). Wearable systems are used to conveniently measure, collect and 
analyze the user’s physiological data and provide their users extra information based on 
it (Kumari et al., 2017). In work environments wearables can be used to monitor 
employees’ psychological and physiological factors, enhance operational efficiency, 
promote work environment safety and security, and improve workers’ health through 
monitoring, supporting, training and tracking the personnel (Khakurel et al., 2018, 
Svertoka et al., 2021). Day by day, new trends can be seen in the field of wearable 
systems that require wearables to be small and unobtrusive, which in turn puts 
significant demand on reducing power consumption of the system (Senevirante et al., 
2017). With the proliferation of wearable technologies clinicians, researchers, patients 
and technology developers need to know the current state of what works and what 
limitations exist (Hilty et al., 2021).  

Human activity recognition (HAR) allows automatic recognition of physical activities 
and provides valuable information for improving online feedback of activity trackers 
(Publication I). HAR may also be used for fatigue estimation using various methods.  
First, HAR has been proposed for improving energy expenditure (EE) estimation using 
activity-specific models (Altini et al., 2012). This also requires accurate estimation of 
basal metabolic rate (BMR), which could be done with EE predictive equations 
(Publication II). HAR can also be used for classifying the work (or exercise) periods and 
the resting states, which could allow automatic analyzing of the informative post-exercise 
cardiac recovery phase (Peçanha et al., 2017). This could be a basis for continuous  
and unobtrusive physical fatigue assessment (PFA), where feedback could be given in  
real-time by measuring and analyzing multiple cardiovascular parameters (Publication 
III). These are the main topics of this thesis, with the aim to provide results for creating 
novel methods for physical fatigue assessment and human activity monitoring, which 
could be monitored in real-time and unobtrusively using wearable sensors and systems 
(Table 1). 
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2.1.1 Human Activity and Energy Expenditure 
The capacity of the body to exercise or do physical work depends on its ability to produce, 
use, and regulate energy. Energy expenditure (EE) determination is an important tool for 
adjusting the individuals’ nutritional supply or to assess the health of a larger population. 
The body’s 24-hour EE can be divided into three components (Hills et al., 2014):  
(i) the thermal effect of food, (ii) the resting metabolic rate (iii) the energy cost of PA.  

Thermal effect of food is the amount of energy required to digest, absorb, and to 
process the nutrients in food, such as fat, protein, carbohydrate and constitutes from  
5 to 10% of the total EE (Poehlman, 1989). Resting metabolic rate (RMR) is the amount 
of energy expended to sustain the basic body functions (Pinheiro Volp et al., 2011) and 
constitutes from 60 to 75% of the total EE (Poehlman, 1989).  

Modern technologies that are gradually integrated into everyday life are able to  
non-invasively monitor the PA level and health behavior of their users. Monitoring the 
PA is moving towards activity specific EE models that first recognize the activity and then 
apply a suitable EE algorithm for the specific activity (Farrahi et al., 2019), which relies 
on accurate assessment of basal metabolic rate (BMR).  

Doubly labelled water is considered the gold standard for the measurement EE; 
however, the considerable costs and analytical requirements limit its feasibility in large 
cohort studies (Racette et al., 2012). More common alternatives are indirect calorimetry 
(IC) methods which represent the criterion measure for assessment of the energy cost of 
an activity but are again limited to structured activities usually within a laboratory (Hills 
2014). Heat is released as a by-product in cellular metabolism. The rate of heat release 
is directly proportional to the rate of metabolism. Therefore, the metabolic rate can be 
determined by measuring heat release. Direct calorimetry is termed as the process of 
measuring metabolic heat release (Pinheiro Volp et al, 2011). Direct calorimeters are 
relatively expensive and used mostly in hospitals, clinics and university research labs 

Table 1. Literature review summary with current research gaps and the contributions of this work 
in human activity recognition (HAR), energy expenditure (EE) and physical fatigue assessment 
(PFA).  

Study type Related studies 
and reviews Research gap Contributions of this work 

HAR 
optimization 

(Wang et al., 
2019) 

(Khusainov  
et al., 2013) 

(Straczkiewicz 
et al., 2021) 

Optimization not 
focused on real-time 

HAR 

Analyzing the performance of a HAR 
model which would be suitable for use in 

real-time systems 

The combined effect of 
the parameters is not 

analyzed 

Three different HAR model aspects 
(sampling frequency, window length and 

feature selection) were analyzed 
concurrently  

EE with 
predictive 
equations 

(Frankenfield  
et al., 2005), 

(Amaro-Gahete 
et al., 2018) 

Not all predictive 
equations were included 

or validated on similar 
population 

Eight different predictive equations were 
compered and validated with indirect 

calorimetry results 

Methods and 
measures for 

PFA 

(Thompson, 
2019), 

(Mohanvelu  
et al., 2017), 

(Peçanha et al., 
2017) 

Assessed parameters are 
not suitable for use in 

real-time PFA 

Study focused on various cardiovascular 
parameters that could be used in 

real-time PFA 

Pulse arrival time not 
considered and analyzed 
as a potential measure 

Pulse arrival time based parameter was 
one of the best for separating the mildly 

fatigued and significantly fatigued 
groups 
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(Webster et al., 1986, Schutz, 1995). The respiratory calorimetry is used in clinics instead 
of expensive direct calorimetry method for EE estimation. This IC method involves direct 
measurement of oxygen consumption (VO2) in metabolism through the measurement of 
respiratory gases. Firstly, the VO2 is measured and then converted into an equivalent EE 
in kilocalories (kcal) (Pinheiro Volp et al., 2011). 

Direct and indirect calorimetry methods are relatively expensive, complex and time 
consuming. Therefore, a lot of effort has been put on developing a predictive equation 
for EE estimation (Cunningham, 1991), which are used to calculate an estimation of RMR 
using anthropometric parameters such as height, weight, gender and age. Harris and 
Benedict (Harris et al., 1918) and Kleiber (Kleiber, 1932) are most common equations for 
RMR prediction. However, it has been noted that both of these equations are less 
predictive for obese subjects (Daly et al., 1985). It is due to the fact that obese people 
were not included in the data sets of the equation development. The different body sizes 
and body compositions were taken into account in the development of the RMR 
prediction equations from Mifflin (Mifflin et al., 1990) and Livingston and Kohlstadt 
(Livingston et al., 2005). Both of them are best suited for obese subjects, but also valid 
for normal weight people. 

Humans use more energy when performing more rigorous and exhausting activities 
(Ainsworth et al., 2011) and thus EE is directly linked to the amount of fatigue induced in 
humans. Precise estimation of EE allows us to use it to validate PFA methods or use it as 
an input variable (Amor et al., 2015). 

2.1.2 Fatigue Physiology and Classification 
Muscle activation begins in the cortex, continues with excitation of lower motor neurons 
in the spinal cord, to the axon of the lower motor neuron and eventually to the 
neuromuscular junction of the muscle (Noakes, 2012). In this process, fatigue can 
potentially arise at any point of the pathway. 

When focusing on the processes inside the spinal cord and the brain, fatigue is defined 
as “central”, and when focusing on the peripheral nerve, neuromuscular junction, and 
the muscle, fatigue is defined as “peripheral” (Allen et al., 2008). 

Central fatigue is described as fatigue coming not from the muscle itself, but rather 
from the central nervous system (CNS) and the transmission of signals from the brain to 
the muscle. Therefore, central fatigue is related to the brain and the spinal cord. 

Peripheral fatigue is the failure to maintain an expected power output and can be 
caused by two different actions: (i) depletion of glycogen, phosphate compounds, or 
acetylcholine within the muscular unit; (ii) accumulation of lactate or other metabolites 
that are released during activity. Therefore, peripheral fatigue occurs within the muscle. 

Skeletal muscle fatigue has been generally defined as “the decrease in force or power 
production in response to contractile activity” (Kent-Braun, 2012). In vitro studies have 
shown that the impairment of muscle contraction, and thus the development of muscle 
fatigue at the cellular level, derives from either (i) alterations in excitability of the muscle 
fiber, (ii) accumulation of metabolic by-products, (iii) production of reactive oxygen 
species and (iv) Ca2+ movements in the fiber compartments (Allen et al., 2008). All of the 
above can be grouped in two major mechanisms that are responsible for the inhibition 
of muscle function witnessed during fatigue: (i) impairment at the level of activation, and 
(ii) impairment of the actin–myosin interaction. 

There is a need to monitor both short-term fatigue, which is typically metabolic in 
origin, and more prolonged, neuromuscular fatigue. Metabolic fatigue is described as a 
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decrement in muscle force generating capacity as a response to physical exercise that 
has outstripped the rate of ATP1 replacement. Its effects begin to diminish after a period 
of five minutes and is generally thought to have dissipated after 3 h (Layzer, 1990). 
Neuromuscular fatigue is defined as a prolonged decrease in the muscle’s ability to 
generate a force or power output after a period of recovery. Neuromuscular fatigue can 
be present for upwards of 48 h, and can be identified as a compound system with both 
central and peripheral origins (Overton, 2013). 

Based on the origin and the effect on the body, fatigue is often classified between 
cognitive, visual and physical fatigue. Cognitive or mental or central fatigue, henceforth 
referred to as cognitive fatigue, involves decrements in human information processing 
due to mental workload. It may be conceptualized as an executive failure to sustain 
attention in order to maintain or optimize performance (Ackerman et al., 2009). 

Visual fatigue is a consequence of prolonged visual activity rather than mental 
workload, which causes changes in arousal level. Visual fatigue might be confused with 
cognitive fatigue, as there are cases where a decrement in arousal may lead to changes 
in oculomotor behavior despite no visual discomfort (Megaw, 1995). 

Physical fatigue involves the inability to maintain physical performance, and can be 
attributed to metabolic disturbances, failure of neuromuscular transmission, changes 
affecting the myosin-actin complex, etc. Physical fatigue might also be attributed to 
changes in function of the central nervous system and impairments might occur in 
supraspinal areas, spinal areas, and in the muscle afferent system (Behm, 2004). 

Therefore, it might be misleading to term cognitive fatigue as central fatigue, as 
central mechanisms might contribute to physical fatigue without changes in cognitive 
workload. Thus, it is commonly accepted that cognitive fatigue impairs physical 
performance, probably by increasing the effort perception. 

2.1.3 Work Fatigue 
Work fatigue represents extreme tiredness and reduced functional capacity that is 
experienced during and at the end of the workday. Work fatigue involves both extreme 
tiredness (i.e., lack of energy) and reduced functional capacity. This can occur with 
respect to each of the three energetic resources: (i) physical (involving muscular 
movement), (ii) cognitive (involving cognitive processing) and (iii) emotional (involving 
expression and regulation of emotions) (Frone et al., 2015).  

The distinction between physical fatigue resulting from depletion of muscular energy 
and cognitive fatigue resulting from depletion of cognitive energy dates at least 90 years 
(Pillsbury, 2009). Growing attention has focused on emotional fatigue, resulting from 
depletion of emotional energy, in addition to physical and cognitive fatigue (Shirom et al., 
2006). Considering the three separate energy resources, the following resource-specific 
definitions of work fatigue are proposed: (i) physical work fatigue, which represents 
extreme physical tiredness and reduced capacity to engage in PA, (ii) cognitive work 
fatigue represents extreme mental tiredness and reduced capacity to engage in cognitive 
activity and (iii) emotional work fatigue represents extreme emotional tiredness and 
reduced capacity to engage in emotional activity. 

Work fatigue is also temporally tied to the workday (Demerouti et al., 2003). It has an 
onset when energy depletion becomes too great and an offset when energetic demands 
and energy is restored through rest. Work fatigue can be assessed as an acute/state 
condition (e.g., the experience of fatigue at the present moment) or a chronic/trait 
condition (e.g., the experience of work fatigue over the past 12 months). The acute/state 
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experience of work fatigue resolves shortly after the end of every workday, if it occurs 
frequently over an extended period of time, it may be viewed as a chronic/trait condition. 

Based on the above definitions, a measure of work fatigue should be multidimensional, 
separately assessing physical, mental, and emotional dimensions of work fatigue. 

2.2 Human Activity and Fatigue Monitoring 
The objective of activity monitoring is to analyse or interpret the ongoing events from 
data automatically (Kumari et al, 2017). With the development of new technology and 
wearable devices, such as wrist-wearable smartwatches, monitoring human activity has 
become more and more popular and accessible. Wearables are smart electronic devices 
available in various forms that are used to conveniently measure, collect and analyze the 
user’s physiological and behavioral data using a variety of methods, interventions and 
outcomes (Kumari et al., 2017, Khakurel et al., 2018; Hilty et al., 2021). In addition to 
specialized wearable systems, there has also been a lot of research effort in monitoring 
human activity with smartphones, using their numerous built-in sensors 
(Straczkiewicz et al., 2021). Other researchers have based activity monitoring on various 
visual data, such as videos from Closed-Circuit Television or even images from social 
media (Arshad et al., 2022). 

In healthcare, activity monitoring can provide objective and reproducible information 
regarding traditional and emerging risk factors of human populations. Additionally, 
behavioral risk factors, including sedentary behavior, sleep and physical activity can all 
be monitored using wearables or smartphones (Straczkiewicz et al., 2021). Activity 
monitoring can be also used for monitoring the daily activities of hospitalized patients, 
whose inactivity can lead to functional decline or increased activity could mean readiness 
for discharge (Fridriksdottir et al., 2020). Sensor-based activity monitoring and recognition 
is also one of the most promising assistive technologies to support older people’s daily 
life (Wang et al., 2019). 

Human activity monitoring includes two processes – first data acquisition, which is 
followed by classification of the acquired data. The acquisition of data includes acquiring 
the bio-signals and signal preprocessing. Signal preprocessing includes amplifying, 
filtering, averaging, extracting relevant features to be used as training data for classifier 
etc (Kumari et al., 2017). Various methods from the field of signal processing have been 
used to distill collected sensor data, including k-NN, random forest, decision tree, gaussian 
models and hidden Markov models or simpler threshold methods (Castro-Garcia et al., 
2022). 

Data acquisition process has two different approaches – one is the traditional approach 
which uses external sensors such as cameras or other monitoring devices (Lin, 2009) and 
the second one is the newly introduced approach which uses wearable wireless sensors. 
Both approaches use different types of sensors to acquire the physiological signals. 
However, in the second approach, sensors are attached to the human body (Kumari  
et al., 2017).  

Human Activity Recognition (HAR) systems based on wearable sensors can be 
categorized in two stages. First stage is learning stage, which may be supervized, 
unsupervized or semi-supervized. In the second stage, which may be either offline or 
online, performed actions are recognized and feedback is given accordingly. While offline 
schemes require more time to respond to the actions performed. Offline scheme 
demands high computation and is suitable for applications that do not demand 
immediate feedback in real-time. (Kumari et al, 2017) 
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Wearable sensors are typically wireless tiny sensors enclosed in bandages or some 
patches or something that can be worn. Calorimetric, potentiometric, amperometric, 
optical, piezo-electric biosensors and immunosensors are different types of wearable 
sensors. The data acquired from these wearable sensors are processed as per 
requirement for a particular application. Wearable sensors are completely unobtrusive 
devices that help physicians to overwhelm the restrictions of traditional technologies. 
Through wearable systems, biological signals can be continuously acquired wirelessly and 
thus patients can be monitored remotely. (Kumari et al, 2017) 

Before developing a wearable system, it is essential to have a clear idea about the 
basic requirements and designing challenges for any wearable device. There are always 
hardware and software constraints beginning from low-energy operations, lightweight 
and safety requirements. While person is placing the wearable sensor on his/her body, 
the chances of thermal injury must be considered and should be reduced by controlling 
the sensing and wireless frequency and radio duty cycle of wearable sensor. Some basic 
requirements to take into account are: (i) aesthetics, (ii) size, (iii) water tolerance,  
(iv) power consumption, (v) wireless communication, (vi) operating system. (Kumari  
et al, 2017). 

Day by day, new trends can be seen in the field of wearable systems which has 
enhanced features. For example, shirt or other clothes with all-fabric keyboard made by 
conductive thread can be washed in the machine same as ordinary clothes. So, it is water 
durable which is one of the basic requirements for a wearable device. Computerized 
clothes can be the next generation for computers and other devices which does not 
require strap of electronics into our body. This requires wearables to be small and 
unobtrusive, which in turn puts significant demand on reducing power consumption of 
the system (Senevirante et al., 2017). Although a huge amount of effort is being made in 
the wearable sensors, challenges like user-acceptance, low power consumption, 
interference in wireless systems are still to be resolved for better usability and 
functionality of these wearable devices. (Kumari et al., 2017). 

2.2.1 Human Activity Recognition 
Human activity recognition (HAR) allows to recognize the activity or activity type that the 
user is conducting based on the signals from a wearable sensor. Even though the precise 
methods for HAR vary, then it is usually done based on accelerometer sensor data and 
the main algorithm used in all HAR researchers can be divided into following stages (Qi 
et al., 2018; Straczkiewicz et al., 2021): 

 

 
 
 

 

Figure 1. Stages of the HAR algorithm: (i) pre-processing of the raw data, (ii) fragmentation of the 
filtered data into smaller time segments and labelling them according to the activity class,  
(iii) choosing the amount and type of features to use in activity classification and extracting them 
from the data, (iv) training the classifier based using the chosen features based on the training set 
(v) classification of new signals using the previously trained classifier. 
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Accelerometer signals are usually measured using triaxial inertial measurement unit 
(IMU) sensors, which are attached to the human body. Studies have explored and 
validated the results with one or more accelerometers in multiple different locations, 
commonly on wrists, ankles, thighs or chest. (Chowdhury et al., 2013; Loh et al., 2015, 
Castro-Garcia et al., 2022). While combining the data from multiple sensors has been 
shown to improve the classification performance, then it comes with a trade-off due to 
the increase of the system complexity and computational power requirements, which 
are important factors when optimizing the HAR for use in wearables systems working in 
real-time. This is also significant for real-time HAR, which can be used in wearables for 
online activity recognition by allowing automatic recognition of the activities that the 
user is performing (Lee et al., 2018; Wannenburg et al., 2017). Real-time activity 
recognition provides valuable information for improving online feedback of the activity 
trackers or for providing extra safety by monitoring the status of the users working in 
high-risk environments (Leier et al., 2018). 

Power consumption required for HAR is determined by multiple different 
components. Some of these components are based on processing of the acceleration 
values, such as sampling rate of the signal and filtering (Yan et al., 2012). Other elements 
are based on classification mechanics, such as classification window length, feature 
calculation and the used machine learning algorithm. While studies have explored 
classification mechanics such as training times of different HAR algorithms (Altun et al., 
2010; Feng et al., 2015), they do not provide valuable information for real-time 
classification, since classifier training can be done previously on a desktop computer and 
later implemented into the wearable system. For classification systems working in  
real-time, it is important to focus on the processing time of the calculations the system 
has to do online (Altun et al., 2010; Tapia 2008). 

Few previous studies have evaluated how different sampling frequencies affect HAR 
performance. Lowering the sampling frequency, fs, decreases the number of samples in 
the classification fragment, sf, which is calculated as follows:   

𝑠𝑠𝑓𝑓 = 𝑓𝑓𝑠𝑠 ∙ 𝑤𝑤𝑓𝑓 (1) 

where wf is the window length of a fragment given in seconds. Based on sampling 
theorem, for accurate representation of a signal, two conditions must be satisfied: the 
signal must be band-limited and sampling frequency must be at least twice the maximum 
frequency in the signal (Khusainov et al., 2013). It has been stated that frequencies above 
20 Hz cannot be expected to arise from voluntary movement (Bouten et al., 1997). While 
researchers have used various sampling frequencies, usually in the range of 10 Hz to  
100 Hz (Yan et al., 2012; Lee et al., 2016), for similar HAR measurement scenarios, then 
around 20 Hz has been found adequate by others (Bouten et al., 1997; Khusainov et al., 
2013). This section has been changed accordingly in the manuscript. 

Filtering is applied in HAR to separate the recorded acceleration signals into static and 
dynamic components. The static component in the acceleration signal is mostly affected 
by gravity and captures the posture information, while the dynamic component is based 
on motion and captures the human movement information. 

For HAR, measured acceleration signals are fragmented into shorter consecutive 
fragments based on which various features are calculated for classifier training and 
activity classification. Usually, these fragments are found as consecutive time-windows 
and some studies opt for an overlap between windows to increase the classification 
performance. Some previous studies have evaluated how different window lengths, 
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commonly chosen between 1.5 s and 5 s (Altun et al., 2010; Aktaruzzaman et al., 2015), 
affect HAR performance (Tapia 2008; Bulling et al., 2014), but the lack of gold standard 
in HAR makes it difficult to compare these results (Awais et al., 2015). In a system with a 
physical activity classifier working in real-time, the window length determines the delay 
of the system, since each classification is done after signals have been collected for a 
whole window. The number of samples in the fragment is determined by both the 
sampling frequency and the window length according to (1). 

When using machine learning methods for HAR, the classifier training is done based 
on features that are extracted from signal fragments. The feature set has to capture 
specific and diverse information of posture and human motion to allow precise activity 
classification. These features are usually found in time-domain, frequency-domain or as 
wavelets (Liu et al., 2012; Moncada-Torres et al., 2014, Tapia 2008), but for real-time 
wearable systems the possible performance gain from using frequency-domain and 
wavelets in addition to time-domain features may not be worth the trade-off in terms of 
computational power, since the system requires extra resources in order to find the 
transforms which are needed to calculate these features (Preece et al., 2009).  

Another possible optimization is in reducing the number of calculated features, which 
can be achieved using different feature selection methods. Various methods have been 
used for feature selection, such as ReliefF algorithm (Moncada-Torres et al., 2014), 
principal component analysis (Altun et al., 2010) or information gain (Tapia 2008).  
The study presented in Publication I is the first study to assess the HAR performance with 
different number of features in connection to the window length and sampling 
frequency. 

HAR may be used for fatigue estimation using multiple different methods. First, HAR 
has been proposed for improving energy expenditure (EE) estimation using activity-specific 
models (Altini et al., 2012). These models first classify the physical activities using IMU 
sensors and use that information for creating more accurate EE models. HAR and activity 
tracking has been also used for monitoring and detecting user’s behavioral health and 
stress levels (Hilty et al., 2021, Castro-Garcia et al., 2022) which are important for mental 
fatigue assessment. Another potential usage for physical fatigue assessment would be 
classifying the work (or exercise) periods and the resting states. Post-exercise cardiac 
autonomic recovery has been found to be a practical clinical tool for the assessment of 
cardiovascular health and has been used for fatigue assessment (Peçanha et al., 2017). 
Using HAR to automatically detect recovery periods would also allow to use the 
information from post-exercise cardiac autonomic recovery in real-time physical fatigue 
estimation with wearable sensors.  

2.2.2 Energy Expenditure Estimation and Monitoring 
Various methods have been employed with wearable systems for EE estimation. Heart 
rate has a good linearity with oxygen consumption in a large range of aerobic tasks 
(Livingstone et al., 1997). However, the poor relationship between HR and EE in resting 
and low intensity activities is an important limiting factor (Luke et al., 1997). In addition, 
HR is affected by several factors that are not directly related to metabolism e.g., mental 
stress, emotions, and medication (Hiiloskorpi et al., 1999). 

Accelerometry is also a widely used tool for estimating PA related EE in free-living 
conditions (Lu et al., 2018). With count-based methods, the activity count is calculated 
using acceleration, and then directly linked to EE, while the type of activity being 
performed is not considered. In activity related methods, first the activity recognition is 
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preformed, then the EE is estimated through a look-up table or by using the activity 
specified EE model (Altini et al., 2015), which requires an accurate assessment of basal 
metabolic rate. 

Predictive equations are commonly used for estimation of the resting energy 
expenditure (REE) (Table 2). These equations are generally developed for gender, age, 
body weight, statue and ethnicity, and some of them have been recently formulated for 
diseases (Marra et al., 2020). Some of the most widely used predictive equations for 
healthy adults are Harris & Benedict (Harris et al., 1918), Schofield (Schofield 1985), 
FAO/WHO/UNO (World Health Organ 1985) and Mifflin-St Jeor (Mifflin et al., 1990). 
These and additional predictive equations were compared and validated with the results 
of IC in Publication II to find the most suitable one for EE model. 

 

2.2.3 Physical Fatigue Estimation and Suitable Parameters 
The nature of muscle fatigue depends on the characteristics of exercise, i.e., its intensity 
and duration. Methods for quantifying fatigue include measurements of the drop in peak 
force, torque or power of muscle contraction, expressed as a “fatigue index”, i.e.,  
the percentage or rate of performance decrease over time (Finsterer et al., 2014). That 
fatigue index may be taken as a measure of resistance to fatigue and may be assessed 
using various ergometers. On an isokinetic dynamometer, fatigue resistance may be 
assessed: (a) by the number of maximum effort repetitions until exhaustion; (b) by the 
number of maximum effort repetitions until a 50% reduction in torque output is reached; 
(c) by the percent decline in torque from the beginning to the end of a predetermined 
time period (Kannus, 1994). 

Table 2. Different predictive equations that were assessed in Publication II. W – weight (kg), H – height 
(cm), A – Age (years). 

Authors Age (y) Gender Equation (kcal/day) 

Harris-Benedict 
(Harris et al., 1918) 15 – 74 F 655.0955 + 9.5634∙W + 1.8496∙H – 4.6756∙A 

M 66.4730 + 13.7516∙W + 5.0033∙H – 6.7550∙A 

Schofield 
(Schofield, 1985) 

18 – 29 F 14.818∙W + 486.6 
M 15.057∙W + 692.2 

30 – 59 F 8.126∙W + 845.6 
M 11.472∙W + 873.1 

FAO/WHO/UNU  
(World Health Organ, 1985) 

18 – 29 F 14.7∙W + 496 
M 15.3∙W + 679 

30 – 59 F 8.7∙W + 829 
M 11.6∙W + 879 

Henry-Rees 
(Henry et al., 1991) 

18 – 29 F 11.472∙W + 612.3 
M 13.384∙W + 669.2 

30 – 60 F 11.472∙W + 585.1 
M 10.994∙W + 755.2 

Mifflin-St Jeor 
(Mifflin et al., 1990) Any F 9.99∙W + 6.25∙H – 4.92∙A - 161 

M 9.99∙W + 6.25∙H – 4.92∙A + 5 
Owen 

(Owen et al., 1986; 1987) Any F 9.99∙W + 6.25∙H – 4.92∙A - 161 
M 9.99∙W + 6.25∙H – 4.92∙A + 5 

Livingston-Kohlstadt 
(Livingston et al., 2005) Any F 248∙W^0.4356 - (5.09∙A) 

M 293∙W^0.4330 - (5.92∙A) 
Kleiber 

(Kleiber, 1932) Any F 65.8∙W^0.75 
M 71.2∙W^0.75 
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Fatigue index may also be assessed using: (a) maximal sprint cycling tests, such as the 
Wingate test; (b) by calculating the difference between the highest and lowest power 
output, expressed as a percentage of the highest power (Vanderwalle et al., 1987). 

Other fatigue resistance assessment methods include: (a) measurement of the 
number of repetitions against a submaximal load during resistance exercise (Terzis et al., 
2008; Mayhew et al., 2011); (b) measurement of time to exhaustion during steady or 
varying pace submaximal or maximal intensity running or cycling (Slawinski et al, 2005). 

Several questionnaires have been developed for assessing exertion and fatigue. Borg 
Scale is a category scale which increases linearly with the exercise intensity for work on 
cycle ergometer (Borg, 1982). Another questionnaire-based tool has been developed for 
measuring stress tolerance in elite athletes (Rushall, 1990). The Profile of Mood States 
(McNair et al., 1971) has a subcomponent for assessing fatigue. The Multidimensional 
Fatigue Symptom Inventory (MFSI) and the short form (MFSI-SD) have demonstrated 
positive psychometric properties (Donovan et al., 2014). The Swedish Occupational 
Fatigue Inventory (SOFI) has been evaluated for physical fatigue by a study using cycle 
ergometer to induce fatigue with different workloads (Åhsberg et al., 1998). The scale 
items are scored based on a 7-point Likert scale to assess fatigue from 0 (not at all) to 6 
(to a very high degree) (Figure 2). 

 

In addition to questionnaires, multiple other methods and parameters have been used 
for fatigue assessment (Table 3). The effect of fatigue on reaction time (RT) has been 
invested in several studies. RT has been found to be negatively affected by exhaustion 
when the participants have been prompted to perform physical tasks (Sant’Ana et al., 
2017). The study with psychomotor vigilance tasks, using the developed PC-PVT platform 
(Khitrov et al., 2014; Reifman et al., 2018), also shows that RT has increases with the 
fatigue level (Thompson, 2019). It has been found that choice reaction time increases 
with exercise induced fatigue regardless of the type of the exercise (Sabzi, 2012).  

 

Figure 2. The Swedish Occupational Fatigue Inventory (SOFI) short-form questionnaire adopted from 
(Åhsberg et al., 1998), which was used in Publication III. 
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Study on work related fatigue has found hand grip strength to decrease after a 
rigorous work period (Thompson et al., 2017). While in a later study the same researcher 
has found hand grip to be the only studied variable not to have a significant decline 
following a multiple work shift (Thompson, 2019).  

Practitioners often use the Countermovement jump (CMJ) test to monitor athlete 
fatigue, or equivalently recovery status, in terms of neuromuscular and/or metabolic 
fatigue. In multiple studies, the CMJ is used to characterize fatigue in functional lower 
body dynamic performance following acute training interventions or as a longitudinal 
monitoring tool (Wu et al., 2019). CMJ is routinely used in many sporting settings to 
provide a functional measure of neuromuscular fatigue and suitable testing methods 
have been described (Petrigna et al., 2019). However, the variables that are most 
sensitive to fatigue remain somewhat unclear (Kennedy et al, 2017). 

Heart rate (HR) has been accepted by many researchers for the assessment of human 
fatigue (Mohanvelu et al., 2017). Heart rate is usually calculated based on measured ECG 
signals, where R-peaks are detected using Hamilton-Tompkins algorithm (Hamilton et al., 
1986). Exercise induced physical fatigue has been found to increase the average HR, 
while also decreasing the change in HR when comparing the HR during the exercise with 
the resting HR (Thomson et al., 2016).  

Heart rate variability (HRV) has been found to be inversely proportional to workload 
and has been used for assessment of human fatigue (Mohanvelu et al., 2017). Both time 
domain and frequency domain parameters have been used to assess HRV. Often used 
measures from time domain are SDNN (the standard deviation of all NN intervals) and 
RMSSD (the square root of the root mean square of the sum of all differences between 
successive NN intervals). From frequency domain the Low Frequency component (LF), 
High Frequency component (HF) and their ratio LF/HF have been used. Focusing on  
time-domain measures when developing for real-time wearable systems is more suitable 
in order to save on computational power. Work related fatigue study has found HRV 
parameter RMSSD to decrease with fatigue. In exercise induced fatigue studies HRV has 
been also found to decrease with exercise and the HRV analysis during the post-exercise 
period has been proposed to be a surrogate market of the cardiac autonomic recovery 
(Peçanha et al., 2017). 

Pulse wave analysis is a novel method for assessing the cardiovascular health and 
artery stiffness. Pulse wave analysis has mostly been explored for continuous cuff-less 
blood pressure monitoring (Mukkamala et al., 2015; Muehlsteff et al., 2008). Pulse arrival 

Table 3. Various methods and parameters that have been used for fatigue assessment. 

Method or parameter type Related studies 

Questionnaire (McNair et al., 1971), (Borg, 1982), (Rushall, 1990),  
(Åhsberg et al., 1998), (Donovan et al., 2014) 

Reaction time (Sabzi, 2012), (Khitrov et al., 2014), (Sant’Ana et al., 2017), 
(Reifman et al., 2018), (Thompson, 2019) 

Hand grip strength (Thompson et al., 2017), (Thompson, 2019) 

Countermovement jump (Kennedy et al, 2017), (Wu et al., 2019), (Petrigna et al., 2019) 

Heart rate (Mohanvelu et al., 2017), (Thomson et al., 2016) 

Heart rate variability (Mohanvelu et al., 2017), (Peçanha et al., 2017) 

Pulse arrival time (Liu et al., 2011) 
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time (PAT), which is a measure of pulse wave analysis, is defined as the time-delay 
between the R-peak of the QRS wave from the ECG and the arrival of the arterial pulse 
wave at the periphery (Muehlsteff et al., 2008). PAT is the sum of the pre-ejection period 
(that covers the iso-volumic ventricular contraction phase) and the pulse transit time 
(purely vascular component) which both represent different underlying cardiovascular 
mechanisms that could be affected by fatigue. To reduce the blood-pressure induced 
component in PAT values, it is important to normalize the values with respect to blood 
pressure (Mukkamala et al., 2015). Research literature shows the relation of every  
1 mmHg difference in blood pressure causing 1 ms discrepancy in PAT (Muehlsteff et al., 
2008). While prior studies have explored PAT in exercise settings (Liu et al., 2011), then 
to the best of the authors’ knowledge, the study composed in Publication III is the first 
study to evaluate PAT for physical fatigue assessment with promising results. 

2.2.4 Current State-of-the-Art Solutions and Possible Developments 
The optimal management of fatigue-related risks in different settings requires the 
capacity to effectively monitor fatigue. Nowadays, the main topics in the study of fatigue 
are related to fatigue tests in different (work) settings, evaluation of muscular fatigue, 
subjective symptoms of fatigue, indicators of nervous strain, and the practical application 
of fatigue tests (Yu et al., 2019). An examination of prior measures suggests that a 
practical need exists for a new multidimensional measure of fatigue. 

There is no single instrument which is used as a gold standard for fatigue measurement, 
because of the definitional difficulties, multiple causes of fatigue, considerable overlap 
between different categories of fatigue and their interaction between each other (Saito, 
1999; Aaronson et al., 1999). Additionally, fatigue has several confounding factors such 
as medication, psychological and cognitive conditions, and deconditioning (Finsterer et al., 
2014; Stadje et al., 2016). 

The multi-factorial nature of fatigue suggests that a single universal test to measure 
fatigue may not exist (Saito, 1999). Fatigue assessment studies have usually compiled 
different test batteries of various measures (Hughes et al., 2019; Thompson et al., 2019). 
These measures can be classified into six different categories: (1) questionnaires or 
subjective feelings of fatigue, (2) psychological tests, (3) neuropsychological tests,  
(4) biochemical indexes, (5) physiological tests and (6) autonomic nervous function tests 
(Saito, 1999) (Table 4). Measures are often collected as part of a test battery which can 
be administered during work breaks and control for factors that may affect 
interpretation (e.g., muscle length, movement velocity, magnitude of exerted force).  
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It is important to note that most of these require specific administered tests and thus 
are not suitable to implement in real-time and in real-life physical fatigue assessment. 
For this reason, a new approach to the utilization of physiological signals (markers, 
measures) is needed. Continuous measurement during work activity, which might be 
advantageous in providing information representative of work, may also be disruptive to 
the work process. Test batteries quantify cumulative fatigue whereas continuous 
measurement might provide information directly representative of workload. 

Previous studies have observed that fatigue development may be dependent on the 
task, more specifically the intensity, duration, muscle groups involved, and the type of 
contraction (Allen et al., 2008; Finsterer et al., 2014). Not all measures revealed 
increasing fatigue over the workday or over the workweek, which may be a result of 
fatigue measures reflecting different processes of fatigue. It appeared that measures 
reflecting central mechanisms were responsive within a workday, while measures 
reflecting both central and peripheral mechanisms were responsive over the workweek. 
Therefore, fatigue measures, reflecting changes to both central and peripheral 
processes, may be useful in measuring tasks and exercises of varying parameters. 

It has been suggested that appropriate fatigue monitoring should include both 
objective and subjective measures (Aaronson et al., 1999). Since the existing fatigue tests 
fail to give the same results, it is essential that for the evaluation of fatigue, data obtained 
from a single fatigue test or a combination of fatigue tests having no correlation with 
each other must be considered with extreme care because in some cases the results will 
be useless. 

For the above-mentioned reasons it would be a significant advancement if physical 
fatigue could be measured continuously and unobtrusively. This novel approach utilizing 
wearables could measure information continuously and give feedback in real-time. Thus, 
for this need, Publication III proposes a test-battery of cardiovascular parameters, which 
could be analyzed in real-time for continuous personalized feedback of physical fatigue. 

Table 4. Fatigue measurement test categories and some of the commonly used tests in each category 
(Saito, 1999). 

Fatigue measurement test 
category Commonly used tests 

Questionnaires on subjective 
feelings of fatigue Various tests and questionnaires for subjective symptoms of fatigue 

Psychological tests Blocking test, Kraepelin Test, measurement of perception of time 

Physiological tests Muscular strength, respiratory and circulatory functions, heart rate,  
near point distance 

Neurophysiological tests Electroencephalography, sensory evoked response, reaction time, 
galvanic skin response, visual tracing reaction test 

Autonomic nervous  
function tests Adrenaline test, atropine test, cold pressor test, Czermak test 

Biochemical blood and 
urinary indexes 

Urinary excretion of protein, sugar, urobilinogen, creatinine etc. 
Eosinophilic leucocytes, total gravity of blood, hemoglobin content 
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3 Methods 
In this chapter the study designs and experiments for achieving the aims of the thesis are 
introduced. Two different experimental setups are presented. The studies of human 
activity recognition (HAR) and energy expenditure (EE) shared one experimental setup 
where the data was jointly gathered for both studies. The experiments for the physical 
fatigue assessment study were conducted separately.  

3.1 Study Design 
This thesis aims to provide results for creating novel methods for physical fatigue 
assessment and human activity monitoring, which could be monitored in real-time and 
unobtrusively using wearable sensors and systems. Firstly, the thesis aimed to improve 
real-time HAR by optimizing the window length, sampling frequency and feature 
selection (Publication I). HAR is based on acceleration signals which are fragmented into 
shorter consecutive fragments based on the chosen window length. In a system where 
HAR is done in real-time higher window length also means the delay of the system is 
longer, since each classification is done after the signals have been collected for the 
whole window. The number of samples in the fragment is determined by both the 
window length and sampling frequency – lowering the sampling frequency also 
decreases the numbers of the samples in a classification fragment according to (1).  
In addition, multiple feature selection methods were used to decrease the initial 
classification feature set into smaller subsets in order to analyze how different number 
of features affect the HAR and what is the minimal number of features to use without 
compromising classification performance. These parameters also affect the power 
consumption and computational power that is required for HAR, which are both 
particularly limiting aspects when HAR is done using wearable systems and in real-time. 
While few previous studies have explored their effects separately, then this was the first 
study that thoroughly explored them in connection to each other. To fulfill the aim, a test 
study was conducted where subjects performed various physical activities while their 
body movement was measured and recorded using accelerometer.   

Secondly, the thesis aimed to assess different basal metabolic rate (BMR) predictive 
equations to improve EE estimation (Publication II). Monitoring EE, which is an essential 
tool for assessing individuals’ physical activity (PA) and adjusting nutritional supply,  
is moving towards activity specific models where first the activity is recognized using HAR 
and then suitable EE algorithm is applied for the specific activity. These algorithms rely 
on accurate assessment of basal metabolic rate (BMR), which is commonly estimated 
using predictive equations that use simple anthropometric variables such as the weight, 
height and gender of the person. For the purpose of this study the previous experiment 
also included calorimetry measurements in order to compare different predictive 
equations and validate their results with indirect calorimetry to choose the most suitable 
one for EE models.  

Thirdly, the thesis aimed to propose a method for real-time PFA suitable for wearable 
systems by utilizing a set of real-time and easily measurable cardiovascular (CV) 
parameters (Publication III). There is no single instrument that can be applied as gold 
standard for fatigue measurement and many of the popular methods require special 
conditions and testing environment which makes them unsuitable for real-time 
assessment of physical fatigue. In this study it was hypothesized that a multi-parametrical 
model based on an enhanced test-battery of various CV parameters could yield an 
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effective method for estimating physical fatigue possibly in real-time and with wearable 
systems. During the conducted experiment various CV parameters were measured in 
both rested-state and physically-fatigued-state of the test subjects to explore how they 
are affected by physical fatigue.  

3.2 Study Groups 
The HAR and EE study was conducted on one study group and the PFA study on a 
separate study group. In both experiments only healthy and active participants were 
included. The anthropometric parameters of the study groups are shown in Table 5. For 
HAR study a separate study group of 5 participants was used to measure the signals of 
outdoor cycling. 

 

The studies were conducted according to the guidelines of the Declaration of Helsinki 
and approved by the Tallinn Medical Research Ethics Committee (protocol no. 1954). 
Informed consent was obtained from each subject before participating in the study.  

3.3 Experimental Setups 

3.3.1 Activity Recognition and Energy Expenditure Estimation 
The aim of the first experiment was to gather information for the HAR and the EE studies 
(Publication I and Publication II). Test subjects performed various physical activities 
during which acceleration signals were measured and recorded from the left wrist using 
the Shimmer3 sensor platform (Shimmer Research, Dublin, Ireland) (Figure 3). Each test 
subject conducted activities based on a precise schedule, where each activity was carried 
out for a fixed amount of time. Outdoor cycling signals were recorded after indoor 
measurements with a separate study group. 

Table 5. Anthropometric parameters of the study groups in Experiment 1 (human activity recognition 
and energy expenditure studies) and Experiment 2 (physical fatigue assessment study). 

Experiment # Count 
Age (years) 
mean±SD; 

range 

Height (cm) 
mean±SD; 

range 

Weight (kg) 
mean±SD; 

range 

BMI (kg/m2) 
mean±SD; 

range 

Experiment 1 
HAR + EE 

All (25) 
32.0±8.8; 

21–57 
174.4±9.4; 
158–193 

73.5±10.5; 
54–96 

24.1±2.3; 
20.0–29.4 

Females (13) 
31.0±7.7; 

21–45 
167.4±5.8; 
158–176 

68.0±8.9; 
54–82 

24.0±2.5; 
20.0–29.4 

Males (12) 32.8±10.0; 
21–57 

180.8±7.3; 
167–193 

78.6±9.5; 
61–96 

24.2±2.2; 
21.6–27.6 

Experiment 2 
PFA 

All (16) 28.3±7.9; 
18–48 

173.9±8.1; 
163–190 

69.9±12.3; 
55–91 

23.0±2.9; 
18.3–30.1 

Females (8) 28.4±7.0; 
18–42 

169.1±5.9; 
163–180 

63.9±10.5; 
55–89 

22.4±3.5; 
18.3–30.1 

Males (8) 28.3±9.2; 
18–48 

178.6±7.3; 
166–190 

75.9±11.4; 
60–91 

23.7±2.2; 
20.4–26.4 
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The analysis was done based on the wide range accelerometer data with the dynamic 
range set to ±16 g. The wide range accelerometer uses LSM303AHTR sensor 
(STMicroelectronics, Geneva, Switzerland), which has a numeric resolution of 16-bit. 
Activities during which signals were measured are shown in Table 6. Acceleration was 
measured with a sampling rate of 512 Hz. During preprocessing these signals were 
resampled using MATLAB function resample, filtered with third order low-pass 
Butterworth IIR filter (passband and stopband edge frequencies and ripples were 
respectively 0.1 Hz and 0.5 Hz, and 1 dB and 20 dB) and fragmented into shorter 
consecutive fragments based on the window length. Following an initial set of 110 
features were extracted, which was decreased using various feature selection methods. 
Decision tree based classifier was trained using MATLAB’s function fitctree and the 
results were evaluated based on sensitivity and F1-score (Powers et al 2011). 

Indirect calorimetry (IC) measurements were done using open-circuit indirect 
spirometry device MasterScreen CPX (CareFusion, Hoechberg, Germany) (Figure 4), 
which calculates EE based on Weir equation (Weir 1949). System was calibrated before 
each test subject. Since the IC device was not portable, the energy expenditure was only 
measured during “indoor test 2” and “indoor test 3”, shown in Table 6. The predictive 
equations assessed in the study for BMR were Harris-Benedict (Harris et al., 1918), 
Schofield (Schofield 1985), FAO/WHO/UNU (World Health Organ 1985), Henry-Rees 
(Henry et al., 1991), and Kleiber (Kleiber 1932) and for RMR were Mifflin-St Jeor  
(Mifflin et al., 1990), Owen (Owen et al., 1986; Owen et al., 1987), Livingston-Kohlstadt 
(Livingston et al., 2005) (Table 2). The values achieved with RMR equations were divided 
by 1.1 to compare the results with BMR equations. 

 

Figure 3. Shimmer3 IMU, which was used for measuring and recording acceleration signals from 
the left wrist. Signals were recorded with a dynamic range of ±16 g and numeric resolution of  
16-bit with the built-in accelerometer STMicroelectronics LSM303AHTR (Shimmer Research). 
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3.3.1 Physical Fatigue Assessment 
The aim of the second experiment was to gather information about cardiovascular (CV) 
and reference parameters during different physical fatigue states for the physical  
fatigue assessment study (Publication III). The experiment consisted of three main 
activities: rested-state (RS) measurements in the morning, physically-fatigued-state (PFS) 
measurements in the afternoon and a workout session in-between (Figure 5). The workout 
session lasted for about an hour and consisted of multiple sets of various exercises such 
as squats, burpees, sit-ups, push-ups, planks and jumping jacks to induce physical fatigue. 
The analyzed parameters were divided into reference parameters, that usually need 
administered tests and cannot be obtained in real-time, and cardiovascular (CV) 
parameters, that could be continuously monitored and measured. The selected reference 
parameters were the score of a fatigue questionnaire, reaction time (RT), hand grip 

 

Figure 4. Carefusion Masterscreen CPX spirometry device. Alternative set-up with treadmill was used 
for indirect calorimetry measurements during “indoor test 2” and “indoor test 3”. MasterScreen CPX 
allows for breath-by-breath indirect calorimetry measurements using Weir equation by measuring 
oxygen consumption and carbon dioxide production (CareFusion). 

Table 6. Conducted activities and their duration in minutes during which acceleration (ACC) and 
energy expenditure (EE) was measured. 

Indoor test 1 – ACC Indoor test 2 – ACC + EE Indoor test 3 – ACC + EE 
(% shows angle) Outdoor test – ACC 

Walking (3) Sitting on chair (3) Walking (3 km/h) (3) Cycling (14) 
Running (3) Lying on bed (4) Walking (5 km/h) (3) Cycling uphill (4) 

Walking upstairs (3) Typing on computer (3) Walking (3 km/h, 10%) (3) Cycling downhill (1) 
Walking downstairs (3) Folding clothes (3) Walking (5 km/h, 10%) (3)  

 Cleaning surface (3) Running (6 km/h) (3)  
  Running (10 km/h) (3)  
  Running (12 km/h) (3)  

  Running (6 km/h, 10%) (3)  
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strength and countermovement jump (CMJ) height. Evaluated CV parameters were heart 
rate (HR), measures of heart rate variability (HRV), and blood pressure normalized pulse 
arrival time (PAT).  
 

During the test both reference parameters and CV parameters were measured with 
multiple different systems and methods. At the start of the experiment the subjects were 
asked to complete a questionnaire to evaluate their current subjective fatigue level.  
The questionnaire adopted for the experiment was the Swedish Occupational Fatigue 
Inventory (SOFI), developed for the measurement of after-work fatigue (Åhsberg et al., 
1998). The scale items were scored based on a 7-point Likert scale to assess fatigue from 
0 (not at all) to 6 (to a very high degree). The scale items were as follows: (i) Physical 
Exertion, (ii) Physical Discomfort, (iii) Lack of Motivation, (iv) Sleepiness and (v) Lack of 
Energy.  

Subject RT was measured using PC-PVT platform (Khitrov et al., 2014; Reifman et al., 
2018) on a desktop computer (CPU: Intel Core i5-7500, GPU: Intel HD Graphics 630  
(Intel, Santa Clara, California, USA), Mouse: Logitech G203 (Logitech, Lausanne, 
Switzerland)) with an external monitor (HP E233, Hewlett-Packard, Palo Alto, California, 
USA). The duration of the test was 5 minutes during which each participant performed 
about 75 simple RT measurements. The Inter-Stimulus Interval was selected between 
three to five seconds.  

The hand grip strength was measured using the Grip Force Transducer (MLT004/ST, 
ADInstruments, Sydney, Australia) with PowerLab 4/25T (ADInstruments, Sydney, 
Australia) data acquisition device and LabChart software (v. 8.1.13, ADInstruments).  
The participants performed five maximal voluntary contractions with the dominant arm 
while seated. Hand grip strength was analyzed as the average of the maximums of the 
five repetitions.  

Countermovement jump (CMJ) height was found based on the recording as the 
difference between standing position and highest point during the jump. The performance 
was filmed at 60 frames per second with a camera (OnePlus 6, OnePlus Technology, 
Shenzhen, China), which was statically mounted at a fixed distance. Each participant 
performed five maximal effort CMJ according to the recommended method (Petrigna  
et al., 2019) and the performance was assessed as the average jump height. 

During the CV parameter measurements subjects performed a veloergometer test 
with alternating work (3 minutes) and recovery (5 minutes) phases. There were three 
work phases during which the subjects were asked to cycle respectively at three different 
power levels (60 W, 90 W and 120 W) while keeping the pace at 60 rotations per minute. 
The ECG signals were recorded at sampling rate of 1 kHz using PowerLab 4/25T 
(ADInstruments, Sydney, Australia) data acquisition device and LabChart software  
(v. 8.1.13, ADInstruments). HR and HRV parameters were calculated based on the R-peaks 

 

Figure 5. Overview of one experiment day. Cardiovascular and reference parameters were measured 
similarly in both measurement sets. The workout session consisted of multiple full-body exercises. 
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of the ECG signal, which were detected using the Hamilton-Tompkins algorithm 
(Hamilton et al., 1986). The assessed HRV parameters were SDNN (the standard deviation 
of all NN intervals) and RMSSD (the square root of the root mean square of the sum of 
all differences between successive NN intervals). PAT was found as the time difference 
between ECG R-peak and pulse wave signal rising front, which was registered using the 
same sensing unit with an external piezoelectric transducer attached to the fingertip 
(MLT 1010 pulse transducer, ADInstruments). Calculated PAT values were normalized 
based on blood pressure measurements to 120 mmHg using the relation of every 1 mmHg 
difference causing 1 ms discrepancy in PAT (Muehlsteff et al., 2008). 

3.4 Chapter Summary 
In this chapter the study designs and experimental setups are introduced and presented. 
The HAR and EE study were based on one experimental setup, where 25 test subjects 
performed various physical activities during which the accelerometer signals and indirect 
calorimetry values were measured. The accelerometer signals were preprocessed and 
used to train a decision tree based classifier to assess the effect of the classification 
window length, acceleration sampling frequency and different feature sets on the HAR 
classifier performance. Indirect calorimetry values were compared with multiple BMR 
and RMR predictive equations to choose the most suitable one for the EE models.   

PFA was done based on a separate experimental setup, where multiple tests were 
conducted to measure the reference parameters (questionnaire score, reaction time, 
hand grip strength and countermovement jump) and cardiovascular parameters (heart 
rate, heart rate variability, blood pressure normalized pulse arrival time). Same 
measurements were conducted in the rested-state and physically-fatigued-state to 
propose a method for real-time PFA. 
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4 Results 
In this chapter the results of the human activity recognition (HAR), energy expenditure 
(EE) and physical fatigue assessment (PFA) are presented. In HAR study the results with 
different classification window lengths, acceleration sampling frequencies, different 
feature sets and their combined effect are shown. In EE study the results of the multiple 
BMR and RMR predictive equations are compared to each other and with the indirect 
calorimetry results. For the PFA study the values for the reference parameters and the 
cardiovascular parameters in both the rested-state and the physically-fatigued-state are 
presented. In addition, a model for classifying between mildly fatigued and significantly 
fatigued states is proposed based on the two best performing cardiovascular measures. 

4.1 Human Activity Recognition 
The aim of the HAR study (Publication I) was to create an optimized physical activity 
classifier that would be suitable for implementation on real-time wearable systems.  
The focus was on testing various sampling frequencies, window lengths and number of 
features in order to reduce the power consumption, and to decrease the required 
memory buffer without compromising classification performance.  

The classifier performance was evaluated using a leave-one-subject-out cross-validation 
scheme where each test subject’s signals were classified with a classifier that was trained 
using the signals from all the other test subjects, which has also been previously used by 
other researchers (Moncada-Torres et al., 2014; Altini et al., 2012). The confusion matrix 
attained for one of the subjects is shown in Table 7. 

 

Sensitivity was chosen as a statistical measure to evaluate classification performance 
during feature selection. Sensitivity shows the proportion of true positives classified in 
relation to correct or real ones, i.e., true positives that are correctly identified. 
Classification results were evaluated using F1-score (also called F-score or F-measure), 
which is calculated as a harmonic mean of precision and sensitivity. While evaluating the 
results with different window lengths, sampling frequencies and number of features,  
F1-scores were calculated separately for each activity type. Additionally, an average  
F1-score for different parameter combinations was found as a mean of the activity type 

Table 7. Confusion matrix of conducted activities vs classified activities based on all the segments 
from all the subjects (using all 110 features, 25 Hz sampling frequency and 3 s window length), 
where the results for each subject was found individually using a leave-one-subject-out cross-
validation scheme. The activity types are Static (1), Low Intensity (2), Moderate Intensity (3), 
Rhythmical Intensity (4), Walking (5), Running (6) and Outdoor Cycling (7). 

 Classified activity type 
(1) (2) (3) (4) (5) (6) (7) Total 

Co
nd

uc
te

d 
ac

tiv
ity

 
ty

pe
 

(1) 2897 68 4 1 21 6 3 3000 
(2) 43 835 9 11 1 0 1 900 
(3) 2 5 809 40 32 6 6 900 
(4) 3 2 47 797 29 10 12 900 
(5) 22 6 34 181 5943 111 3 6300 
(6) 1 0 21 16 171 4002 1 4212 
(7) 3 6 23 10 14 1 1083 1140 

Total 2971 922 947 1056 6211 4136 1109 17352 
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F1-scores. A paired t-test (p < 0.05) was used to find statistical differences between the 
classification F1-scores of different activity types and averages while using different 
window lengths and sampling frequencies. 

Overall average classification F1-score achieved was about 0.90 and depended on the 
used window length, sampling frequency, feature set and classified activity type. To best 
evaluate how each of these parameters affected the classifier, a method was employed 
where the parameter under focus was evaluated using different values while the classifier 
F1-scores were averaged over the other parameters. This allowed to individually evaluate 
the effect of the window length, sampling frequency and number of features on the 
classifier performance. Performance with different window lengths is shown in Figure 6, 
with different sampling frequencies in Figure 7 and with different feature numbers of 
Figure 8.  

In a system with a physical activity classifier working in real time, the window length 
determines the delay of the system, since each classification is done after signals have 
been collected for a whole window. Window lengths of 5 s, 3 s, and 1 s were chosen to 
evaluate how different window lengths affect the classifier performance. Window 
lengths of 5 s and 3 s had similar results with the average F1-scores of 0.92 ±0.02 and 
0.91 ±0.02, while the result with 1 s was 0.87 ±0.02 (Figure 6).  

To test different sampling frequencies, the signals that were initially recorded with a 
sampling frequency of 512 Hz were later resampled using a MATLAB function resample. 
The classifier had similar average F1-score with 50 Hz (0.92 ±0.02) and 25 Hz (0.91 ±0.02), 
while the average F1-score with 13 Hz was lower (0.87 ±0.02) (Figure 7).  

When using machine learning methods for HAR, the classifier training is done based 
on features that are extracted from signal fragments. The feature set has to capture 
specific and diverse information of posture and human motion to allow precise activity 
classification. Two different feature selection schemes were used to analyze how 
different number of features affects HAR and what is the minimal number of features to 
use without compromising classification performance. The feature sets of 110 features, 
43 features, 28 features and 13 features, achieved with the first feature selection 
scheme, had similar average F1-scores between 0.89 and 0.90. The sequential forward 
selection (SFS) feature set had a slightly higher average F1-score of 0.92 ±0.03 (Figure 8). 
 

 

Figure 6. F1-scores of different activity types (mean ± SD) averaged over sampling frequencies and 
feature sets using different window lengths. Asterisks show significant statistical difference 
between different values of the window length (p < 0.05). 
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Since both classification window length and sampling frequency of the acceleration 
signal affect the number of samples in classification fragment, it was also deemed 
important to evaluate their combined effect on the classification performance. Figure 9 
shows the average classification F1-scores with different feature sets using different 
combinations of sampling frequencies and window lengths. The classification 
performance was better with combinations that had more samples per classification 
fragment, with the highest average of 0.93 ±0.05 achieved with the combination of  
50 Hz and 5 s. The results with the combinations that had either 1 s window length or 
sampling frequency of 13 Hz were lower compared to other combinations with most 
feature sets. The SD values were large, since the results were averaged over different 
activity types with different F1-scores. 

 

Figure 7. F1-scores of different activity types (mean ± SD) averaged over window lengths and 
feature sets using different sampling frequencies. Asterisk shows significant statistical difference 
between different values of the sampling frequency (p < 0.05). 

 

Figure 8. F1-scores of different activity types (mean ± SD) averaged over window lengths and 
sampling frequencies using different feature sets, where the SFS is the feature combination 
obtained with sequential forward selection. 



36 

4.2 Physical Activity Intensity and Energy Expenditure Estimation 
The aim of the EE study (Publication II) was to assess the basal metabolic rate (BMR) and 
resting metabolic rate (RMR) predictive equations (Table 2) by comparing the results of 
the different equations and validating them with indirect calorimetry (IC) values in order 
to choose the most suitable one for energy expenditure (EE) models.  

The predictive equations explored in this study for BMR were Harris-Benedict, 
Schofield, FAO/WHO/UNU, Henry-Rees, and Kleiber; and for RMR were Mifflin-St Jeor, 
Owen and Livingston-Kohlstadt. The values achieved with RMR equations were divided 
by 1.1 to compare the results with BMR equations. Regression analysis was done in order 
to compare the different equations, assessed by the coefficient of determination (R2). 
Based on the anthropometric data, BMR was calculated for each test subject using all 
equations. Using these results, R2 was calculated for each pair of equations. 

From the eight different BMR predictive equations explored in this study Mifflin-St 
Jeor formula had the best performance when compared to the results of the IC 
(Figure 10). Based on regression analysis most equations had similar results, with Owen 
and Kleiber formulas being the outliers (Table 8), which respectively had the lowest and 
highest average BMR results. The average BMR values with Mifflin-St Jeor formula  
(1447 ±204 kcal/day) were the closest with IC results (1485 ±255 kcal/day) and also had 
the lowest RMSE of 175 kcal/day compared to IC. 

 

Figure 9. F1-scores (mean ± SD) averaged over all activities using different feature sets, window 
lengths and sampling frequencies, where the SFS is the feature combination obtained with 
sequential forward selection. 
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4.3 Physical Fatigue Assessment 
The aim of the physical fatigue assessment study (Publication III) was to propose a 
method for physical fatigue assessment employing a set of real-time measurable 
cardiovascular (CV) parameters. Measurements were conducted on 16 healthy 
participants (8 female) and consisted of a morning test set, physical exercise during the 
day and an afternoon test set. The analyzed cardiovascular parameters were heart rate 
(Mohanvelu et al., 2017; Thomson et al., 2016), heart rate variability measures SDNN 
(the standard deviation of all NN intervals) and RMSSD (the square root of the root mean 
square of the sum of all differences between successive NN intervals) (Mohanvelu et al., 
2017; Shortz et al., 2017; Pecanha et al., 2017), and blood-pressure normalized pulse 
arrival time (PAT) (Mukkamala et al., 2015; Muehlsteff et al., 2008). The parameters were 
selected with the aim to keep the complexity of the overall measurement process and 
computational power requirements as low as possible for suitable use in wearable 
systems, and thus, only time-domain measures were considered. 

 

Figure 10. Average BMR (mean ± SD) with indirect calorimetry (IC) and predictive equations; RMSE 
of BMR between predictive equations and IC. H-B – Harris-Benedict; L-K – Livingston-Kohlstadt; 
Scho. – Schofield; WHO – FAO/WHO/UNU; H-R – Henry-Rees. 

Table 8. Coefficient of determination R2 between different predictive equations. H-B – Harris-Benedict; 
L-K – Livingston-Kohlstadt; Scho. – Schofield; WHO – FAO/WHO/UNU; H-R – Henry-Rees. 

  Mifflin Owen Kleiber L-K Scho. WHO H-R 
H-B 0.98 0.88 0.92 0.98 0.93 0.94 0.95 

Mifflin  0.88 0.92 0.97 0.95 0.95 0.96 
Owen   0.85 0.92 0.91 0.92 0.90 

Kleiber    0.90 0.90 0.91 0.93 
L-K     0.97 0.97 0.97 

Scho.      1.00 0.98 
WHO       0.99 
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For every test battery parameter the percentual change between the rested-state (RS) 
and the physically-fatigued-state (PFS) was found individually for each participant.  
The average reference and CV parameter values are shown in Table 9. A paired t-test  
(p < 0.05) was used to find statistical differences between the parameters. Statistically 
significant changes were found in the CMJ height and questionnaire score for the 
reference parameters and in the HR, SDNN and RMSSD for the CV parameters.  

A linear correlation coefficient was calculated separately for each parameter pair to 
detect any linear relationship. Relatively strong linear correlation (0.5 < r < -0.5) was 
noted between several test battery measures. The correlation values are shown in 
Table 10.   

 

Table 9. Average (mean±SD) reference and CV parameter values in the rested-state (RS), physically-
fatigued-state (PFS) and their difference in percentage (DIF). Results are shown for all participants 
(A), female participants (F) and male participants (M). Reference parameters: Q – questionnaire, 
RT – reaction time, DYN – dynamometer hand grip force, CMJ – countermovement jump height; CV 
parameters: HR – average heart rate, SDNN – HRV parameter SDNN value, RMSSD – HRV parameter 
RMSSD, PAT – pulse arrival time. Values marked with asterisk (*) in bold showed statistical difference 
(paired t-test, P < 0.05). 

Reference 
parameters 

  Q (%) RT (ms) DYN (N) CMJ (cm) 

RS 
A 
F 
M 

14.0±7.6 
12.1±9.4 
15.8±5.3 

208.7±11.3 
206.8±13.4 
210.6±9.4 

360.3±99.1 
294.2±47.4 
426.4±93.8 

38.2±8.7 
33.1±3.3 
43.3±9.7 

PFS 
A 
F 
M 

29.2±13.0 
30.0±17.7 
28.3±6.9 

211.4±16.9 
211.7±17.2 
211.0±17.9 

349.7±105.7 
286.4±48.7 

413.0±111.3 

37.0±9.0 
31.6±3.3 
42.5±9.8 

DIF 
(%) 

A 
F 
M 

15.2%* 
17.9%* 
12.5%* 

1.3% 
2.4% 
0.2% 

-2.9% 
-2.7% 
-3.1% 

-3.1%* 
-4.5%* 
-1.9% 

CV 
parameters 

  HR (bpm) SDNN (ms) RMSSD (ms) PAT (ms) 

RS 
A 
F 
M 

98.5±10.9 
100.6±9.7 
96.4±12.3 

58.0±19.7 
52.8±13.3 
63.2±24.3 

35.4±18.9 
31.7±12.7 
39.0±24.0 

273.4±21.6 
267.5±15.7 
279.4±25.9 

PFS 
A 
F 
M 

107.9±12.2 
110.1±11.4 
105.6±13.4 

45.7±15.9 
40.5±16.0 
50.8±15.1 

25.0±13.8 
23.5±17.6 
26.5±9.5 

268.1±23.8 
254.8±11.8 
281.3±26.0 

DIF 
(%) 

A 
F 
M 

9.5%* 
9.4%* 
9.6%* 

-21.2%* 
-23.2%* 
-19.6% 

-29.3%* 
-25.9%* 
-32.0% 

-2.0% 
-4.7%   
0.7% 
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While all participants followed the same study protocol, they experienced different 
levels of physical fatigue based on their physiological and physical background.  
To distinguish between mildly fatigued and significantly fatigued, the participants were 
grouped into two groups based on their relative change in CMJ height between the  
rest-ed-state and the physically-fatigued-state. All CV parameters (and multiple  
sub-parameters) were analyzed one-by-one to test selectivity against the mildly  
fatigued and the significantly fatigued groups based on F-score and accuracy found  
using a leave-one-subject-out cross-validation scheme with a decision stump. The two 
best performing parameters were named (i) SDNN_DIF_N_AVG (relative change of the 
resting SDNN value normalized with the average recovery phase value between the RS 
and the PFS) and (ii) PAT_PFS_N_MIN (resting PAT value normalized with the lowest 
recovery phase value during the physically-fatigued-state). These two parameters were 
used to train a linear SVM (Figure 11), with a decision boundary formula: 

−0.0261𝑥𝑥10.3366𝑥𝑥2 − 1.6558 = 0, (2) 

where x1 is the parameter SDNN_DIF_N_AVG and x2 is the parameter PAT_PFS_N_MIN. 
 

Table 10. Linear correlation coefficient values between different parameters based on all participants 
(A), male participants (M) and female participants (F). Parameter values are taken as the difference 
in % between the rested-state and physically-fatigued-state. Q – questionnaire, RT – reaction time, 
DYN – dynamometer hand grip force, CMJ – countermovement jump height, SDNN – HRV parameter 
SDNN, RMSSD – HRV parameter RMSSD, PAT – pulse arrival time, HR – average heart rate (between 
resting heart rate and average veloergometer cycling heart rate). Values above 0.5 or below -0.5 are 
marked in bold. 

  RT DYN CMJ SDNN RMSSD PAT HR 

Q 
A 
F 
M 

0.36 
0.36 
0.36 

-0.18 
-0.55 
0.74 

-0.43 
-0.35 
-0.59 

0.13 
0.10 
0.36 

0.02 
-0.07 
0.26 

-0.05 
0.18 
-0.36 

-0.13 
0.02 
-0.49 

RT 
A 
F 
M 

 
-0.24 
-0.8 
0.40 

-0.25 
-0.04 
-0.38 

0.11 
0.56 
-0.13 

-0.03 
0.03 
0.01 

0.03 
0.41 
-0.22 

-0.33 
-0.63 
-0.04 

DYN 
A 
F 
M 

  
-0.10 
0.30 
-0.59 

-0.24 
-0.74 
0.23 

0.11 
0.19 
0.12 

-0.39 
-0.18 
-0.80 

-0.10 
0.22 
-0.53 

CMJ 
A 
F 
M 

   
-0.09 
-0.29 
-0.08 

0.03 
0.23 
-0.18 

0.35 
0.26 
0.25 

-0.09 
-0.35 
0.18 

SDNN 
A 
F 
M 

    
0.71 
0.10 
0.93 

0.30 
0.24 
0.23 

-0.61 
-0.33 
-0.88 

RMSSD 
A 
F 
M 

     
0.24 
-0.12 
0.42 

-0.57 
-0.31 
-0.80 

PAT 
A 
F 
M 

      
-0.35 
-0.79 
0.13 
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4.4 Chapter Summary 
In this chapter the results of the studies are presented. For the HAR study, the 
classification performance with the different classification window lengths, acceleration 
sampling frequencies, different feature sets and their combined effect are shown 
respectively on Figures 6–8. Classification F1-scores with window lengths of 5 s and 3 s 
were similar, while results with 1 s were lower. All tested sampling frequencies 
performed similarly for most activity types, but the results with 13 Hz were considerably 
worse for the cycling activity. Initial set of 110 features were successfully decreased to 
9–14 features without decreasing the classification performance.  

For the EE study, the Figure 10 shows the energy expenditure values for the eight 
predictive equations explored in this study and their difference with the indirect 
calorimetry results. Based on the findings the Mifflin-St Jeor formula had the best 
performance – the average BMR values with Mifflin-St Jeor formula (1447 ±204 kcal/day) 
were the closest with IC results (1485 ±255 kcal/day) and also had the lowest RMSE of 
175 kcal/day compared to IC. 

In PFA study, the average values for the reference parameters and the CV parameters 
in the rested-state and the physically-fatigued-state are shown in Table 9. From the 
assessed cardiovascular parameters, the statistically significant change between the two 
states was noted in the average heart rate and heart rate variability measures SDNN and 
RMSSD. The correlations between different measures are shown in Table 10, strongest 
linear correlation was found between the reference parameter hand grip strength and 
CV parameter pulse arrival time. The two best performing CV parameters, which were 
based on heart rate variability and pulse arrival time, were used to create a linear  
SVM model presented on Figure 11 for classifying between the mildly fatigued and  
the significantly fatigued groups. There is one noticeable outlier shown in the figure. 
While this was not more thoroughly analyzed as part of this study, one potential 
reasoning could be considerably higher BMI of that subject (30.1 kg/m2 vs an average of 
23.0 ±2.9 kg/m2). 

 

Figure 11. Linear SVM model for binary classification between the mildly fatigued and the significantly 
fatigued groups. 
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5 Discussion 
This thesis aims to provide results for creating or improving novel methods for physical 
fatigue assessment and human activity monitoring, which could be monitored in  
real-time and unobtrusively using wearable sensors and systems. This was done for  
three different topics: (i) optimization of the window length, sampling frequency and 
feature selection aimed to improve real-time human activity recognition (HAR) 
(Publication I), (ii) assessment of different basal metabolic rate (BMR) and resting 
metabolic rate (RMR) predictive equations to improve energy expenditure (EE) 
estimation (Publication II), (iii) assessing and proposing a method for teal-time physical 
fatigue assessment for wearable systems by utilizing a set of real-time and easily 
measurable cardiovascular parameters (Publication III). The main findings of these studies 
are shown in Table 11. 

 

In the HAR study (Publication I) it was analyzed for the first time how different window 
length, sampling frequency and feature set combinations affect the performance of 
physical recognition based on decision tree classifier in order to optimize the classifier 
for real-time wearable systems. The results of this study have been implemented into a 
smart work-wear prototype (Leier et al., 2018). The main findings were: 1) classification 
F1-scores with window lengths of 5 s and 3 s were similar, while results with 1 s were 
lower; 2) all sampling frequencies performed similarly for most activity types, with an 
exception of outdoor cycling; 3) Similar or better results were achieved with the feature 
sets with 9 to 14 features, achieved with either feature reduction scheme, compared to 
the initial full feature set of 110 features. 

Window lengths of 5 s, 3 s and 1 s were used to analyze how different window lengths 
affect the performance of physical activity classifier. F1-scores of walking, running and 
low intensity activity types were similar with all window lengths, while the differences 
with moderate intensity, rhythmical intensity and outdoor cycling were larger. Even 

Table 11. The main findings of the human activity recognition (HAR), energy expenditure (EE) and 
physical fatigue assessment (PFA) studies. 

Study Major findings of the study 

Optimization of 
parameters for real-

time HAR 
(Publication I)  

Classification performance with window lengths of 5 s and 3 s were similar, while 
results with 1 s were lower. 

Analyzed sampling frequencies performed similarly for most activity types, 
except for outdoor cycling, where 13 Hz was considerably worse. 

Similar or better results were achieved with the feature sets with 9 to 14 
features, compared to the initial full feature set of 110 features. 

EE with BMR ja RMR 
predictive equations 

(Publication II) 

From the eight different BMR predictive equations explored Mifflin-St Jeor 
formula had the best performance. 

Most equations had similar results, with Owen and Kleiber formulas being the 
outliers, which respectively had the lowest and highest average BMR results. 
The average BMR values with Mifflin-St Jeor formula were the closest with IC 

results and had the lowest RMSE of 175 kcal/day compared to IC. 

PFA with 
cardiovascular 

parameters 
(Publication III)  

Statistically significant change between the rested state and physically-fatigued 
state was noted in the average heart rate and heart rate variability measures. 
The strongest linear correlation was found between the reference parameter 

hand grip strength and CV parameter pulse arrival time. 
The finest CV parameters for separating the mildly fatigued and significantly 
fatigued groups were based on heart rate variability and pulse arrival time.  
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though window lengths between 3 s and 1 s have been found suitable for other studies 
(2.56 s in (Moncada-Torres et al., 2014), 2 s in (Loh et al., 2015), 1.5 s in (Aktaruzzaman 
et al., 2015), 1 s in (Bulling at al., 2014)), in this study the classifier performance had a 
larger drop when decreasing the classifier window down to 1 s while window lengths of 
5 s and 3 s had similar results, The window length of 1 s had statistically significant 
differences with both 3 s and 5 s window lengths while classifying static, moderate 
intensity rhythmical intensity and outdoor cycling activity types. This could be caused by 
1 s window length not being long enough to capture the movement of the body during 
activities where one period of movement exceeds the window length. 

Different sampling frequencies of 50 Hz, 25 Hz and 13 Hz were used to investigate how 
sampling frequency affects classification performance. For most classified activity types 
no statistical differences were found between tested sampling frequencies, but there 
were large differences while classifying outdoor cycling. Previously it has been found that 
frequencies above 20 Hz cannot be expected to arise from voluntary human movement, 
where the accelerometer is not in contact with vibrating external sources (Bouten et al., 
1997). It is likely that the 13 Hz sampling frequency was not high enough to capture the 
vibration during outdoor cycling. 

A total of 110 features were extracted from acceleration signals for HAR. To reduce 
and optimize the number of features, two different feature selection schemes were used 
in this study. While the first scheme used different consecutive methods to reduce the 
number of features, the second scheme used forward SFS where features were added 
one-by-one. The first feature selection scheme enabled to reduce the feature set from 
110 features to 13 features without decreasing the classifier performance. It is possible 
that the feature set with 13 features was overfit for the conditions used in this study and 
would perform worse in other conditions. 

Compared to the feature sets of the first feature selection scheme, the SFS method 
used in the second scheme had higher performance with most window length and 
sampling frequency combinations. This difference was very noticeable when using the 
sampling frequency of 13 Hz. The number of features used in SFS feature sets was 
between 9 and 14. The large differences in average F1-scores shown in Figure 9 between 
SFS feature set and other feature sets while using sampling rates of 25 Hz and 13 Hz were 
mostly affected by outdoor cycling. Unlike other feature sets, SFS feature set had high 
F1-score while classifying outdoor cycling with all sampling frequency and window length 
combinations. The highest average classification F1 score was achieved with a parameter 
combination with SFS feature set (3 s window length, 50 Hz sampling frequency, 12 
features), which also had the best performance while classifying static, low intensity, 
walking and outdoor cycling activity types. It was predictable that the SFS method would 
provide better results, since the SFS method chose the best features to maximize the 
classification sensitivity separately for each window length and sampling frequency 
combination, while with the first scheme features were selected based on one sampling 
frequency and window length combination. SFS method proved to be a simple comparison 
method for more comprehensive feature selection and showed that the effect of features 
depends on different classifier parameters, of which sampling frequency and window 
length were tested in this study. 

Despite the recent advances in deep learning based activity recognition, which reduces 
the dependency on hand-crafted feature sets and thus could outperform more traditional 
machine learning methods, it is still far from being used in online mobile systems due to 
excessive computational power it requires (Wang et al., 2018). Thus the methods and 
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results of this study provide useful information to other researchers for designing and 
implementing state-of-the-art physical activity recognition for real-time wearable 
systems. 

From the eight different BMR predictive equations explored in the EE study 
(Publication II) Mifflin-St Jeor formula had the best performance. Based on regression 
analysis most equations had similar results, with Owen and Kleiber formulas being the 
outliers, which respectively had the lowest and highest average BMR results. The average 
BMR values with Mifflin-St Jeor formula (1447 ±204 kcal/day) were the closest with IC 
results (1485 ±255 kcal/day) and also had the lowest RMSE of 175 kcal/day compared to 
IC. 

Mifflin-St Jeor equation has also been found as the most accurate and suitable for 
metabolic rate calculation in a comprehensive review study for both non-obese healthy 
adults and obese but otherwise healthy adults (Livingstone et al., 2005). In other 
experiments it has significantly overestimated RMR for underweight females 
(Aliasgharzadeh et al., 2015) or underestimated it for obese and overweight adults 
(Oliveira et al., 2011).  

While the results of this study can be used to compare different predictive equations 
and for developing different EE models, there are some limitations which can be 
improved on in future studies. First, the test group in this study was very homogeneous 
since only healthy adults of same race were included, of which none were either  
obese or professional athletes. The findings of the study are suitable for calculating EE  
of BMR for a similar group, but might not be expandable for other groups. Secondly,  
the IC calorimetry tests conducted in this study were part of a larger experiment, which 
is why each position was held for a minimal amount of time needed to reach an EE 
plateau. Although lying down should have a higher EE than sitting or standing (Ainsworth 
et al., 2011), all positions were found to have similar EE levels in this study. The difference 
in EE between these positions could be more noticeable with a longer experiment  
time.  

The physical fatigue assessment study (Publication III) study evaluated how exercise 
induced physical fatigue affects various test battery measures and whether real-time 
measurable cardiovascular (CV) parameters could provide sufficient information to 
classify between the mildly fatigued and significantly fatigued groups, aiming to provide 
information for real-time physical fatigue assessment. The main findings were: 1) from 
the assessed cardiovascular parameters, the statistically significant change between the 
rested-state and physically-fatigued-state was noted in the average heart rate and heart 
rate variability measures SDNN and RMSSD; 2) the strongest linear correlation was found 
between the reference parameter hand grip strength and CV parameter pulse arrival 
time (PAT); 3) the best CV parameters for separating the mildly fatigued and significantly 
fatigued groups were based on heart rate variability (HRV) parameter SDNN between the 
rested-state and the physically-fatigued-state and PAT changes during the physically-
fatigued-state. 

While most parameters were selected based on the findings of other studies, not all 
of them were found significant based on the results of this study. From the reference 
parameters, the score of fatigue questionnaire showed a statistically significant increase 
(of about 15.2%) between the rested-state and the physically-fatigue-state, which is 
consistent with previous findings (Dawson et al., 2011). Countermovement jump (CMJ) 
height decrease was statistically different for the whole group (average decrease of 3.1%) 
and the female subgroup, being in the same range as found in previous studies (Dawson 
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et al., 2011; Thompson, 2019; Thompson et al, 2011). In accordance with the previous 
studies, the average value of reaction time (RT) increased (1.3%) (Thompson, 2019; Sabzi, 
2012; Sant’Ana et al., 2017) and hand grip strength decreased (-2.9%) (Thompson, 2019; 
Thompson et al., 2017); however, the changes were not found statistically significant. 
The results of the hand grip strength test could be explained by the full-body workout 
regime that did not involve enough exercises for the specific arm muscles. It was 
expected that RT decreases due to physical fatigue (Allik et al, 2019); however,  
the present study did not reach such a result that can be explained by the different 
influence of the workout regime.  

From the evaluated CV parameters, average heart rate had a statistically significant 
increase of 9.5%, which is in accordance with the previous studies (Mohanvelu et al., 
2017; Thomson et al., 2016). The HRV parameters SDNN and RMSSD decreased 
respectively 21.2% and 29.3% between the rested-state and the physically-fatigued-state, 
which has also been noted by other researchers (Mohanvelu et al., 2017; Shortz et al., 
2017; Pecanha et al., 2017). It was interesting to note, that PAT, which is a novel 
parameter for physical fatigue assessment studies, had a decrease of 2.0% for the whole 
group and 4.7% for the female subgroup, but for the male subgroup the value increased 
by 0.7%.  

The linear correlation coefficient was found based on the relative individual  
changes between all measures. Strongest correlation between CV and reference 
parameter for the whole group was found between hand grip strength and PAT (linear 
correlation coefficient of -0.39). This finding was consistent with the male subgroup, 
where the linear correlation coefficient was -0.80. However, for the female subgroup the 
strongest correlation was found between HRV measure SDNN and hand grip strength  
(-0.79). 

In total, 74 different sub-parameters were evaluated based on how well they classify 
between the mildly fatigued and the significantly fatigued groups that were compiled 
using the relative change in CMJ height value. These parameters were found using SDNN, 
RMSSD, PAT, and HR values from different veloergometer test phases and participant 
fatigue states. The best parameters for separating these groups were the relative change 
of the resting SDNN value normalized with average recovery phase value be-tween 
rested-state and physically-fatigued-state “SDNN_DIF_N_AVG” (F-score 0.842, accuracy 
0.813) and the resting PAT value normalized with the lowest recovery phase value during 
the physically-fatigued-state “PAT_PFS_N_MIN” (F-score 0.875, accuracy 0.875). Simple 
linear support vector machine model was trained based on these two parameters to give 
an example of a possible use of these results. This model has a potential to reveal 
whether the user is “mildly fatigued” or “significantly fatigued” after a physically 
demanding day when implemented into a real-time monitoring system. 

Based on the findings of this study, it was concluded that the test battery has added 
value for the assessment of physical fatigue. The evaluated CV parameters showed 
promising results compared to the reference parameters and thus could be used for  
real-time physical fatigue monitoring in workplace settings and for the general 
population. Furthermore, the novel parameters based on PAT were found to provide 
additional information and thus have the ability improve the overall quality of physical 
fatigue assessment. 

Additional research is required to fully evaluate the utility of the test battery to 
determine the sensitivity of the variables with accumulation of fatigue. The authors also 
wish to point out several limitations that should be improved in the proceeding studies: 
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(i) the study was conducted on a relatively small number of participants, the results 
should be verified on a larger study group; (ii) induced physical fatigue could have been 
specific to the used workout and study protocol, it should be explored how different 
workout regimes affect the results; (iii) the experiments were conducted in lab settings 
and should be verified in real-life situations. 
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Conclusions 
This thesis provides novel methods and knowledge for physical fatigue assessment and 
human activity monitoring, which could be applied in real-time and unobtrusively using 
wearable sensors and systems. In accordance with the aims of the thesis, the main efforts 
and the conclusions made were: 

 
1. It was analyzed for the first time how different window length, sampling frequency 

and feature set combinations affect the performance of physical recognition based 
on decision tree classifier in order to optimize the classifier for real-time wearable 
systems (Publication I). 
Conclusion: Sampling frequency of 3 s and sampling frequency of 25 Hz were shown 
to be appropriate for activity recognition. Furthermore, using multiple feature 
selection methods, only 13 features from the initial 110 features were kept without 
decreasing the classifier performance. 
 

2. Different basal metabolic rate predictive equations were compared and validated 
with indirect calorimetry data (Publication II). 
Conclusion: The most accurate predictive equation from the eight assessed formulas 
was the Mifflin-St Jeor equation, which had the most similar average energy 
expenditure and lowest root-mean-square error compared to the indirect calorimetry 
results. 
 

3. It was evaluated how exercise induced physical fatigue affects various test battery 
measures and whether real-time measurable cardiovascular parameters could 
provide sufficient information to classify between different fatigue states 
(Publication III). 
Conclusion: Average heart rate and heart rate variability measures were best for 
classifying between fatigued and non-fatigued states. Additionally, the best 
parameters for separating the mildly fatigued and significantly fatigued groups were 
based on heart rate variability and pulse arrival time.  

 
These results improve the current methods and provide important knowledge for  

real-time physical fatigue estimation. Improvements in human activity recognition 
(Publication I) can be used indirectly by improving the energy expenditure estimation by 
employing activity-specific models and directly by automatically detecting active, resting 
and recovery states to be used in fatigue estimation methods. More precise energy 
expenditure (Publication II) can be used as an input variable or to validate physical 
fatigue assessment methods. This information in conjunction with the validated fatigue 
assessment test battery measures (Publication III) is a strong basis for a physical fatigue 
assessment and human monitoring system, which works unobtrusively and continuously 
in real-time by using wearable sensors and systems. 
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Abstract 

Advancing Novel Physical Fatigue Assessment and Human 
Activity Monitoring Methods towards Perzonalized Feedback 
with Wearable Sensors 
The circumstances of current human existence are far different from remote past. 
Physical exertion is no longer a requirement for daily living and today’s conditions allow 
an unprecedentedly sedentary lifestyle. This discordance between our contemporary 
lives and our genetic makeup has important health implications on skeletal density, 
cardiovascular diseases, obesity, body composition and insulin resistance. It is important 
to propagate active lifestyle, since research studies confirm that routine physical activity 
multiple benefits by lowering the risk of diabetes, cardiovascular disease and obesity, 
while increasing psychological well-being. 

Advancement of technology has brought a surge of popularity for devices that help 
their users keep track of their physical activity, training schedule, exercises and lost 
calories. Since this makes training more interactive and allows users to have better 
overview of their progress, it often motivates the users to have a more active lifestyle. 
This is achieved by using wearable systems to conveniently measure, collect and analyze 
the user’s physiological data. For convenient use wearables need to be small and 
unobtrusive, which in turn puts significant demand on optimizing different aspects of 
these system such as reducing power consumption. The general aim of the thesis is to 
advance novel physical fatigue assessment and human activity monitoring methods that 
could be applied in real-time by using wearable sensors and systems. 

Firstly, the thesis aimed to improve real-time physical activity recognition by 
optimizing the window length, sampling frequency and feature selection (Publication I). 
Physical activity recognition allows automatic recognition of physical activities. Real-time 
activity recognition provides valuable information for improving online feedback of the 
activity trackers or for providing extra safety by monitoring the status of the users 
working in high-risk environments. As a result of this thesis, both window length and 
sampling frequency were optimized and multiple feature selection methods were used 
to decrease the initial 110 features to 13 features without lowering classification 
performance. 

Secondly, the thesis aimed to assess different basal metabolic rate predictive 
equations to improve energy expenditure estimation (Publication II). Energy expenditure 
is an important parameter for the studies of physical activity and is often used as a 
correlate of its level. Energy expenditure is an important tool for adjusting the 
individuals’ nutritional supply or to assess the health of a larger population. Based on the 
results of this thesis the Mifflin-St Jeor model performed the best by having the lower 
root-mean-square-error of 175 kcal/day. 

Thirdly, the thesis aimed to propose a method for real-time physical fatigue 
assessment suitable for wearable systems by utilizing a set of real-time and easily 
measurable cardiovascular parameters (Publication III). Fatigue is a term used to 
describe an altered physiological state that results in decreased mental or physical 
performance. The ability to effectively monitor fatigue is most desired since high 
prevalence of fatigue has been reported in many operational settings to induce safety 
problems by directly influencing the mental and physical ability of people to perform 
even light activities. This thesis demonstrated that the compiled test battery can 
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selectively assess the rested vs. physically-fatigue states and the obtained linear  
support-vector machine based model showed promising ability to classify between 
different fatigue states.  

The current thesis shows multiple possibilities to further advance the current  
state-of-the-art physical fatigue assessment and human activity monitoring methods by 
improving their performance or optimizing them for suitable use in wearable system. 
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Lühikokkuvõte 

Kantavatel seadmetel põhinevate füüsilise väsimuse 
hindamise ning inimese aktiivsuse monitoorimise meetodite 
adrendamine personaalseks tagasisideks 
Tänapäeva inimeste eluviis erineb olulisel määral inimeste elust eelmisel sajandil või veel 
kaugemas minevikus. Füüsiline pingutus ei ole enam igapäevaelu eeldus ja tänapäeva 
tingimused võimaldavad inimesel hakkama saada enneolematult vähese füüsilise 
liikumisega. Selline lahknevus meie kaasaegse elu ja meie geneetilise ülesehituse vahel 
avaldab olulist mõju tervisele, näiteks luustiku tihedusele, südame-veresoonkonna 
haigustele, rasvumisele, keha koostisele ja insuliiniresistentsusele. Oluline on 
propageerida aktiivset elustiili, sest uuringud kinnitavad, et rutiinne füüsiline tegevus 
omab positiivset mõju, vähendades diabeedi-, südame-veresoonkonna haiguste ja 
rasvumise riski ning suurendades vaimset heaolu.   

Tehnoloogia arenedes on populaarsust kogunud erinevad seadmed, mis aitavad 
nende kasutajatel jälgida oma füüsilist aktiivsust, treeninggraafikut, -harjutusi ja 
põletatud kaloreid. Kuna selline monitooring muudab treenimise interaktiivsemaks ning 
võimaldab kasutajatel saada paremat ülevaadet oma edusammudest, motiveerib see 
sageli kasutajaid harrastama aktiivsemat elustiili. Füüsilise aktiivsuse ja treeningu 
jälgimine põhineb kantavatel seadmetel, mis mõõdavad, koguvad ja analüüsivad kasutaja 
füsioloogilisi andmeid. Mugavaks kasutamiseks peavad kantavad süsteemid olema 
väiksed ja märkamatud, mis omakorda seab märkimisväärse nõude nende süsteemide 
erinevate aspektide optimeerimisele, näiteks energiatarbimise vähendamisele. Antud 
doktoritöö üldeesmärk on edendada uudseid füüsilise väsimuse hindamise ja inimese 
aktiivsuse monitoorimise meetodeid, mida saaks reaalajas rakendada erinevate andurite 
abil kantavates süsteemides. 

Lõputöö esimeseks eesmärgiks oli täiustada füüsilise tegevuse reaalajas tuvastamist, 
optimeerides akna pikkust, diskreetimissagedust ja tunnusjoonte valikut 
(Publikatsioon I). Reaalajas töötav liikumisviiside tuvastus annab väärtuslikku teavet 
aktiivsusmonitoride tagasiside kvaliteedi tõstmiseks või lisaohutuse tagamiseks, jälgides 
kõrge riskiga keskkondades töötavate kasutajate olekut. Selle lõputöö tulemusena 
optimeeriti nii klassifitseerimise akna pikkust kui ka kiirendusanduri 
diskreetimissagedust ning erinvate tunnusjoonte valimismeetodite abil vähendati 
tunnusjoonte arvu 110-lt 13-le ilma klassifitseerimise tulemust langetamata. 

Teiseks lõputöö eesmärgiks oli hinnata erinevaid baasainekulu hindamise valemeid, et 
edendada energiakulu hinnangut (Publikatsioon II). Energiakulu on kehalise aktiivsuse 
uuringute seisukohast väga oluline parameeter, mida kasutatakse sageli ka sellega 
korreleeruva parameetrina. Energiakulu on ka oluline parameeter inimeste 
toitumisharjumuste kohandamiseks või suurema elanikkonna tervise hindamiseks. Selle 
lõputöö tulemuste põhjal toimis kõige paremini Mifflin-St Jeori mudel, millel 
ruutkeskmine hälve 175 kcal oli väikseim.  

Kolmandaks lõputöö eesmärgiks oli luua kantavatele seadmetele sobiv füüsilise 
väsimuse reaalajas hindamise meetod, kasutades reaalajas ja kergesti mõõdetavaid 
kardiovaskulaarseid parameetreid (Publikatsioon III). Väsimus tähendab muutunud 
füsioloogilist seisundit, mille tagajärjeks on vaimsete ja füüsiliste võimete langus. 
Väsimuse kvaliteetne hindamine on väga oluline, kuna väsimuse tekkimine on levinud 
mitmetes erinevates töökohtades, mis omakorda suurendab tööõnnetuste riski, 
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mõjutades otseselt inimeste vaimset ja füüsilist võimet sooritada isegi lihtsamaid 
tegevusi. Antud doktoritöö tulemused näitavad, et koostatud parameetrite kogum 
suudab selektiivselt eraldada puhkeolekut ja füüsiliselt väsinud olekut ning loodud 
tugivektormasina põhine mudel näitas võimet eristada erinevaid väsimusseisundeid. 

Käesolev lõputöö toob välja mitmeid võimalusi kaasaegse füüsilise väsimuse 
hindamise ja liikumisviiside tuvastamise meetodite edasiseks arendamiseks, parandades 
nende jõudlust või optimeerides neid kantavates süsteemides kasutamise eesmärgil. 
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Appendix 1 – Features of the Human Activity Recognition 
Study (Publication I) 
 
XD – Dynamic component of X axis; YD – Dynamic component of Y axis; ZD – Dynamic 
component of Z axis; XS – Static component of X axis; YS – Static component of Y axis; ZS 
– Static component of Z axis; 𝑠𝑠𝑖𝑖  – Measured signals in a fragment; N – number of signals 
in a fragment. 
 
* - Features used in feature subset with 43 features. 
** - Features used in feature subsets with 43 and 28 features. 
*** - Features used in feature subsets with 43, 28 and 19 features. 
**** - Features used in feature subsets 43, 28, 19 and 13 features. 
 

Features adopted from Liu et al., 2012 

Nr. Fragment 
used Explanation 

1 XD 

Accelerometer counts: Sum of the absolute values of the 
signals over a fragment 

|�̅�𝑠| 

2 YD 

3 ZD 

4 XS 

5 YS 

6 ZS 
7**** XD 

Mean of the absolute values 

8**** YD 
9**** ZD 
10*** XS 
11*** YS 
12*** ZS 
13 XD 

Standard deviation 

14 YD 
15 ZD 
16*** XS 
17*** YS 
18*** ZS 
19* XD 

Coefficients of variation 

20* YD 
21* ZD 
22** XS 
23* YS 
24* ZS 
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25 XD 

Peak-to-peak amplitude 

26 YD 
27 ZD 
28 XS 
29 YS 
30 ZS 
31 XD 

Percentile (10th) 

32 YD 
33 ZD 
34 XS 
35 YS 
36 ZS 
37 XD 

Percentile (25th) 

38 YD 
39 ZD 
40 XS 
41 YS 
42 ZS 
43* XD 

Percentile (50th) 

44* YD 
45* ZD 
46 XS 
47 YS 
48 ZS 
49 XD 

Percentile (75th) 

50 YD 
51 ZD 
52 XS 
53 YS 
54 ZS 
55 XD 

Percentile (90th) 

56 YD 
57 ZD 
58 XS 
59 YS 
60 ZS 

Body posture related features (adopted from Tapia 2008) 
61 XS 

Mean 
�̅�𝑠 62 Ys 

63 ZS 
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64** 
XS 

YS 

ZS 
Mean over all axes 

65 XS Area under signal  
(sum of the values) 66 YS 

67 ZS 

68** XS 

YS 
Mean distance between axes 

69* XS 

ZS 
Mean distance between axes 

70* YS 

ZS 
Mean distance between axes 

Motion shape related features (adopted from Tapia 2008) 

71* 
XD 

YD 

ZD 
Cumulative sum over absolute signal value 

72 
XD 

YD 

ZD 
Mean of total signal vector magnitude 

Motion periodicity related features (adopted from Tapia 2008) 
73**** XD 

Mean crossing rate 
(Number of times signal crosses its mean value over the 

fragment) 

74**** YD 
75**** ZD 
76*** XS 
77*** YS 
78*** ZS 

Features adopted from Moncada-Torres et al., 2014 
79 XD 

Percentile (3rd) 

80 YD 
81 ZD 
82**** XS 
83**** YS 
84**** ZS 
85 XD 

Percentile (20th) 

86 YD 
87 ZD 
88 XS 
89 YS 
90 ZS 
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91 XD 

Percentile (97th) 

92 YD 
93 ZD 
94 XS 
95 YS 
96 ZS 

97**** XD 

YD 

Correlation coefficient between axes 98**** XD 

ZD 

99**** YD 

ZD 
100 XS 

Root-mean-square 101 YS 
102 ZS 

Additionally added features 

103**** 
XS 

YS 

ZS 
Mean of total signal vector magnitude 

104* 
XD 

YD 

ZD 
Mean of velocity modules 

105* XD 
Kurtosis 106* YD 

107* ZD 
108* XD 

Skewness 109** YD 
110* ZD 
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Appendix 2 – Publication I 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Publication I 
Allik, A., Pilt, K., Karai, D., Fridolin, I., Leier, M., & Jervan, G. (2019). Optimization of 
Physical Activity Recognition for Real-Time Wearable Systems: Effect of Window Length, 
Sampling Frequency and Number of Features. Applied Sciences, 9(22), 4833. DOI: 
10.3390/app9224833 





����������	��
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Appendix 3 – Publication II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Publication II 
Allik, A.; Mägi, S.; Pilt, K.; Karai, D.; Fridolin I.; Leier, M.; Jervan, G. (2018). Comparison of 
Predictive Equations for Basal Metabolic Rate. Proceedings of the 7th International 
Conference on Wireless Mobile Communication and Healthcare (MobiHealth 2017), 
Vienna, Austria, 261−264. DOI: 10.1007/978-3-319-98551-0 
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Appendix 4 – Publication III 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Publication III 
Allik, A., Pilt, K., Viigimäe, M., Fridolin, I., & Jervan, G. (2022). A Novel Physical Fatigue 
Assessment Method Utilizing Heart Rate Variability and Pulse Arrival Time towards 
Personalized Feedback with Wearable Sensors. Sensors, 22(4), 1680. DOI: 
10.3390/s22041680 
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[bookmark: _Toc115629282]Motivation

The circumstances of current human existence are far different from remote past. Physical exertion is no longer a requirement for daily living and today’s conditions allow an unprecedentedly sedentary lifestyle. This discordance between our contemporary lives and our genetic makeup has important health implications on skeletal density, cardiovascular diseases, obesity, body composition and insulin resistance. It is important to propagate active lifestyle, since research studies confirm that routine physical activity (PA) has multiple benefits by lowering the risk of diabetes, cardiovascular disease and obesity, while increasing psychological well-being.

Advancement of technology has brought a surge of popularity for devices that help their users keep track of their PA, training schedule, exercises and lost calories. Since this makes training more interactive and allows users to have better overview of their progress, it often motivates the users to have a more active lifestyle. This is achieved by using wearable systems to conveniently measure, collect and analyze the user’s physiological data. For convenient use wearables need to be small and unobtrusive, which in turn puts significant demand on optimizing different aspects of these system such as reducing power consumption. The general aim of the thesis is to advance novel physical fatigue assessment (PFA) and human activity monitoring methods that could be applied in real-time by using wearable sensors and systems.

[bookmark: _Toc115629283]Problem Formulation

Human activity recognition (HAR) allows automatic recognition of physical activities. Real-time activity recognition provides valuable information for improving online feedback of the activity trackers or for providing extra safety by monitoring the status of the users working in high-risk environments (Leier et al., 2018; Svertoka et al., 2021). Power consumption required for HAR is determined by multiple different components. Some of these components are based on the processing of the acceleration values, such as sampling rate of the signal and filtering (Yan et al., 2012; Straczkiewicz et al., 2021). Other elements are based on classification mechanics, such as classification window length, feature calculation, and the used machine learning algorithm. While studies have explored classification aspects such as training times of different HAR algorithms (Altun et al., 2010; Feng et al., 2015), they do not provide valuable information for real-time classification, since classifier training can be done previously on a desktop computer and later implemented into the wearable system. For classification systems working in real time, it is important to focus on the processing time of the calculations the system has to do online (Altun et al., 2010; Tapia, 2008).

Several studies have evaluated how different window lengths affect HAR performance (Tapia, 2008; Bulling et al., 2014; Straczkiewicz et al., 2021), but the lack of gold standard in physical activity classification makes it difficult to compare these results (Awais et al., 2015; Straczkiewicz et al., 2021). Researchers have used a wide range of various sampling frequencies, typically between 10 Hz to 100 Hz (Yan et al., 2012; Khusainov et al., 2013; Lee et al., 2016; Wang et al., 2019). Various filter methods, wrapper methods and embedded methods have been used for feature selection (Wang et al., 2019), such as the ReliefF algorithm (Moncada-Torres et al., 2014), principal component analysis (Altun et al., 2010), or information gain (Tapia, 2008), but not in connection with window length and sampling frequency.

[bookmark: _Hlk115081805]Energy expenditure (EE) is an important parameter for the studies of PA and is often used as a correlate of its level (Wang et al., 2012). EE determination is an important tool for adjusting the individuals’ nutritional supply or to assess the health of a larger population. Modern technologies that are gradually integrated into everyday life are able to non-invasively monitor the PA level and health behavior of their users. Monitoring the PA has moved towards activity specific EE models that first recognize the activity and then apply a suitable EE algorithm for the specific activity (Altini et al., 2012; Farrahi 
et al., 2019), which relies on accurate assessment of basal metabolic rate (BMR). 

BMR is usually clinically measured using indirect calorimetry (IC), but it requires expensive equipment and trained personnel. Therefore for dietetics purposes BMR is commonly estimated using predictive equations, that use simple anthropometric variables such as the weight, height, age and gender of the person (Frankenfield et al., 2005; Amaro-Gahete et al., 2018). 

Fatigue is a term used to describe an altered physiological state, which may result in decreased mental or physical performance. Fatigue may be caused by various effects such as sleep loss, circadian changes, or high workload (Mohanavelu et al., 2017; Shortz et al., 2017). The ability to effectively monitor fatigue is highly sought due to multiple reasons: the complaint of fatigue is high in general population (Dawson et al., 2011); 
it may adversely affect employees’ performance, safety, and health (Völker et al., 2015); and the high prevalence of fatigue has been reported in many operational settings as potential hazard (Shortz et al., 2017; Thompson, 2019). Manifestation of high prevalence of fatigue in the working population has spawned growing concern due to reduced performance, high sick leave and work disability (Thompson, 2019). The main topics in the study of fatigue are significance of fatigue tests in different (work) settings, evaluation of muscular fatigue, subjective symptoms of fatigue, indicators of nervous strain, and the practical application of fatigue tests (Yu et al., 2019). 

In sport, fatigue manifests as a reduction in the ability to perform the desired movement, exercise, or skill (Hughes et al., 2019). The capacity to effectively monitor fatigue provides coaches and scientists with the ability to optimize training and improve competition performance (Hughes et al., 2019). For a coach it is both useful to have an index of the level of fatigue induced as a prolonged increase in training load over a longer time period as well as to determine how well an athlete is tolerating an acute increase in exercise load in one day (Thomson et al., 2016). 

In operation settings, many respected professional organizations, such as healthcare organizations American Nurses Association (ANA), The National Association of Neonatal Nurses (NANN) and Washington State Nurses Association (WSNA), have put forwards position statements to draw awareness to worker fatigue and its consequences, with the aim to legitimize fatigue as a serious and pressing issue (Thompson, 2019). Worker fatigue can adversely impact personal health and safety as well efficiency and safety of the operation (Lerman et al., 2012). In healthcare, in addition to the greater injury risk to the fatigue-impaired worker, fatigue of the healthcare provider is a primary contributor to negative patient outcomes (Thompson, 2019). Adverse effects of physical fatigue on the health and safety of the construction workers has been well researched (Anwer et al., 2021). 

There is no single instrument which is used as a gold standard for fatigue measurement, because of the definitional difficulties and multiple causes of fatigue. The multifactorial nature of fatigue may suggest that a single universal test to measure fatigue may not exist (Hughes et al., 2019; Saito, 1999). Fatigue assessment studies have usually compiled different test batteries of various measures for this purpose (Hughes et al., 2019; Thompson, 2019). In high performance sports several performance markers are often used to assess fatigue such as questionnaires, jump tests, sprints, heart rate parameters, hormone levels and postural sway measurements (Hughes et al., 2019). Occupational specific fatigue research has almost exclusively implemented subjective assessments in the form of questionnaires, which is not representative of actual human performance-based functionality and can easily be manipulated by the employee (Thompson, 2019). 

It is important to note that most of these require specific administered tests. This type of comprehensive testing of fatigue may not be feasible as time, space, financial resources, testing personnel and the willingness to be tested are all scarce (Völker et al., 2016). For this reason, a new approach utilizing physiological signals (markers, measures) is needed, which would allow fatigue assessment to be conducted autonomously in 
real-time and unobtrusively for the user. 

[bookmark: _Toc115629284]Aims of the Thesis

[bookmark: _Hlk98159796][bookmark: _Hlk98157686]The thesis aims to provide novel methods for physical fatigue assessment and human activity monitoring, which could be applied in real-time and unobtrusively using wearable sensors and systems. To accomplish this, aim different aspects of fatigue and suitable parameters were analyzed in multiple studies. More specifically, the aims of the thesis are: 



1. Improve Human Activity Recognition by evaluating the window length, sampling frequency and feature selection in order to optimize the classifier for real-time wearable systems. (Publication I)

2. Validate multiple Basal Metabolic Rate predictive equations in order to provide more precise input and validation for fatigue estimation system. (Publication II)

3. Improve and develop towards autonomous real-time fatigue estimation system by validating various promising test battery measures which could be measured using wearable sensors and provide fatigue estimation models based on the results. (Publication III)

[bookmark: _Toc115629285]Contribution

This thesis contributes to advancing and providing novel knowledge about multiple promising methods for real-time fatigue assessment and human activity monitoring. 
All the analyzed measures may be implemented in real-time models, which may be used in a wearable system. 

In Publication I, it was evaluated how the effects of sampling frequency of the acceleration signal, window length and number of features (listed in Appendix 1) affect the performance of the HAR algorithm. The main findings were: (i) classification F1-scores with window lengths of 5 s and 3 s were similar, while results with 1 s were lower; 
(ii) all sampling frequencies performed similarly for most activity types, with an exception of outdoor cycling; (iii) Similar or better results were achieved with the feature sets with 9 to 14 features, achieved with either feature reduction scheme, compared to the initial full feature set of 110 features. The results of the study have been used for developing more efficient real-time physical activity classifiers. 

In Publication II, different basal metabolic rate predictive equations were compared and validated with the data measured using indirect calorimetry. From the eight different BMR predictive equations explored in this study, Mifflin-St Jeor formula had the best performance. Based on regression analysis most equations had similar results, with Owen and Kleiber formulas being the outliers, which respectively had the lowest and highest average BMR results. The average BMR values with Mifflin-St Jeor formula 
(1447 ±204 kcal/day) were the closest with IC results (1485 ±255 kcal/day) and also had the lowest RMSE of 175 kcal/day compared to IC.

In Publication III, a novel method for real-time PFA was proposed, which uses a set of real-time and easily measurable cardiovascular (CV) parameters, that could be continuously and unobtrusively monitored. Evaluated CV parameters were heart 
rate (HR), measures of heart rate variability (HRV), and blood pressure normalized pulse arrival time (PAT). The main findings were: (i) from the assessed CV parameters, 
the statistically significant change between the rested-state and physically-fatigued-state was noted in the average HR and HRV measures SDNN and RMSSD; (ii) the strongest linear correlation was found between the reference parameter hand grip strength 
and PAT. (iii) the best performing CV parameters for separating the mildly fatigued 
and significantly fatigued groups were based on HRV parameter SDNN between the rested-state and the physically-fatigued state and PAT changes during the physically-fatigued state. The results of the study provide a significant improvement among existing PFA methods.

[bookmark: _Toc115629286]Literature Review

[bookmark: _Toc115629287]Human Physical Activity and Fatigue

Physical inactivity is a growing problem in the world, which has been found to cause 
6–10% of the major non-communicable diseases of coronary heart disease, type 2 diabetes, and breast and colon cancers. Furthermore, this unhealthy behaviour causes 9% of premature mortality (Lee et al, 2012). The recent development in sensor technologies and decrease in the cost of sensor based devices have driven the implementation of health monitoring and human activity detection using mobile and wearable sensors (Nweke et al., 2019). 

Physical activity monitoring has been found to have a positive effect in increasing PA (Larsen et al., 2019). Wearable systems are used to conveniently measure, collect and analyze the user’s physiological data and provide their users extra information based on it (Kumari et al., 2017). In work environments wearables can be used to monitor employees’ psychological and physiological factors, enhance operational efficiency, promote work environment safety and security, and improve workers’ health through monitoring, supporting, training and tracking the personnel (Khakurel et al., 2018, Svertoka et al., 2021). Day by day, new trends can be seen in the field of wearable systems that require wearables to be small and unobtrusive, which in turn puts significant demand on reducing power consumption of the system (Senevirante et al., 2017). With the proliferation of wearable technologies clinicians, researchers, patients and technology developers need to know the current state of what works and what limitations exist (Hilty et al., 2021). 

Human activity recognition (HAR) allows automatic recognition of physical activities and provides valuable information for improving online feedback of activity trackers (Publication I). HAR may also be used for fatigue estimation using various methods. 
First, HAR has been proposed for improving energy expenditure (EE) estimation using activity-specific models (Altini et al., 2012). This also requires accurate estimation of basal metabolic rate (BMR), which could be done with EE predictive equations (Publication II). HAR can also be used for classifying the work (or exercise) periods and the resting states, which could allow automatic analyzing of the informative post-exercise cardiac recovery phase (Peçanha et al., 2017). This could be a basis for continuous 
and unobtrusive physical fatigue assessment (PFA), where feedback could be given in 
real-time by measuring and analyzing multiple cardiovascular parameters (Publication III). These are the main topics of this thesis, with the aim to provide results for creating novel methods for physical fatigue assessment and human activity monitoring, which could be monitored in real-time and unobtrusively using wearable sensors and systems (Table 1).







[bookmark: _Hlk115616744]Table 1. Literature review summary with current research gaps and the contributions of this work in human activity recognition (HAR), energy expenditure (EE) and physical fatigue assessment (PFA). 

		Study type

		Related studies and reviews

		Research gap

		Contributions of this work



		HAR optimization

		(Wang et al., 2019)

(Khusainov 
et al., 2013)

(Straczkiewicz et al., 2021)

		Optimization not focused on real-time HAR

		Analyzing the performance of a HAR model which would be suitable for use in real-time systems



		

		

		The combined effect of the parameters is not analyzed

		Three different HAR model aspects (sampling frequency, window length and feature selection) were analyzed concurrently 



		EE with predictive equations

		(Frankenfield 
et al., 2005),

(Amaro-Gahete et al., 2018)

		Not all predictive equations were included or validated on similar population

		Eight different predictive equations were compered and validated with indirect calorimetry results



		Methods and measures for PFA

		(Thompson, 2019),

(Mohanvelu 
et al., 2017),

(Peçanha et al., 2017)

		Assessed parameters are not suitable for use in real-time PFA

		Study focused on various cardiovascular parameters that could be used in realtime PFA



		

		

		Pulse arrival time not considered and analyzed as a potential measure

		Pulse arrival time based parameter was one of the best for separating the mildly fatigued and significantly fatigued groups







[bookmark: _Toc115629288]Human Activity and Energy Expenditure

The capacity of the body to exercise or do physical work depends on its ability to produce, use, and regulate energy. Energy expenditure (EE) determination is an important tool for adjusting the individuals’ nutritional supply or to assess the health of a larger population. The body’s 24-hour EE can be divided into three components (Hills et al., 2014): 
(i) the thermal effect of food, (ii) the resting metabolic rate (iii) the energy cost of PA. 

Thermal effect of food is the amount of energy required to digest, absorb, and to process the nutrients in food, such as fat, protein, carbohydrate and constitutes from 
5 to 10% of the total EE (Poehlman, 1989). Resting metabolic rate (RMR) is the amount of energy expended to sustain the basic body functions (Pinheiro Volp et al., 2011) and constitutes from 60 to 75% of the total EE (Poehlman, 1989). 

Modern technologies that are gradually integrated into everyday life are able to 
non-invasively monitor the PA level and health behavior of their users. Monitoring the PA is moving towards activity specific EE models that first recognize the activity and then apply a suitable EE algorithm for the specific activity (Farrahi et al., 2019), which relies on accurate assessment of basal metabolic rate (BMR). 

Doubly labelled water is considered the gold standard for the measurement EE; however, the considerable costs and analytical requirements limit its feasibility in large cohort studies (Racette et al., 2012). More common alternatives are indirect calorimetry (IC) methods which represent the criterion measure for assessment of the energy cost of an activity but are again limited to structured activities usually within a laboratory (Hills 2014). Heat is released as a by-product in cellular metabolism. The rate of heat release is directly proportional to the rate of metabolism. Therefore, the metabolic rate can be determined by measuring heat release. Direct calorimetry is termed as the process of measuring metabolic heat release (Pinheiro Volp et al, 2011). Direct calorimeters are relatively expensive and used mostly in hospitals, clinics and university research labs (Webster et al., 1986, Schutz, 1995). The respiratory calorimetry is used in clinics instead of expensive direct calorimetry method for EE estimation. This IC method involves direct measurement of oxygen consumption (VO2) in metabolism through the measurement of respiratory gases. Firstly, the VO2 is measured and then converted into an equivalent EE in kilocalories (kcal) (Pinheiro Volp et al., 2011).

Direct and indirect calorimetry methods are relatively expensive, complex and time consuming. Therefore, a lot of effort has been put on developing a predictive equation for EE estimation (Cunningham, 1991), which are used to calculate an estimation of RMR using anthropometric parameters such as height, weight, gender and age. Harris and Benedict (Harris et al., 1918) and Kleiber (Kleiber, 1932) are most common equations for RMR prediction. However, it has been noted that both of these equations are less predictive for obese subjects (Daly et al., 1985). It is due to the fact that obese people were not included in the data sets of the equation development. The different body sizes and body compositions were taken into account in the development of the RMR prediction equations from Mifflin (Mifflin et al., 1990) and Livingston and Kohlstadt (Livingston et al., 2005). Both of them are best suited for obese subjects, but also valid for normal weight people.

Humans use more energy when performing more rigorous and exhausting activities (Ainsworth et al., 2011) and thus EE is directly linked to the amount of fatigue induced in humans. Precise estimation of EE allows us to use it to validate PFA methods or use it as an input variable (Amor et al., 2015).

[bookmark: _Toc115629289]Fatigue Physiology and Classification

Muscle activation begins in the cortex, continues with excitation of lower motor neurons in the spinal cord, to the axon of the lower motor neuron and eventually to the neuromuscular junction of the muscle (Noakes, 2012). In this process, fatigue can potentially arise at any point of the pathway.

When focusing on the processes inside the spinal cord and the brain, fatigue is defined as “central”, and when focusing on the peripheral nerve, neuromuscular junction, and the muscle, fatigue is defined as “peripheral” (Allen et al., 2008).

Central fatigue is described as fatigue coming not from the muscle itself, but rather from the central nervous system (CNS) and the transmission of signals from the brain to the muscle. Therefore, central fatigue is related to the brain and the spinal cord.

Peripheral fatigue is the failure to maintain an expected power output and can be caused by two different actions: (i) depletion of glycogen, phosphate compounds, or acetylcholine within the muscular unit; (ii) accumulation of lactate or other metabolites that are released during activity. Therefore, peripheral fatigue occurs within the muscle.

Skeletal muscle fatigue has been generally defined as “the decrease in force or power production in response to contractile activity” (Kent-Braun, 2012). In vitro studies have shown that the impairment of muscle contraction, and thus the development of muscle fatigue at the cellular level, derives from either (i) alterations in excitability of the muscle fiber, (ii) accumulation of metabolic by-products, (iii) production of reactive oxygen species and (iv) Ca2+ movements in the fiber compartments (Allen et al., 2008). All of the above can be grouped in two major mechanisms that are responsible for the inhibition of muscle function witnessed during fatigue: (i) impairment at the level of activation, and (ii) impairment of the actin–myosin interaction.

There is a need to monitor both short-term fatigue, which is typically metabolic in origin, and more prolonged, neuromuscular fatigue. Metabolic fatigue is described as a decrement in muscle force generating capacity as a response to physical exercise that has outstripped the rate of ATP1 replacement. Its effects begin to diminish after a period of five minutes and is generally thought to have dissipated after 3 h (Layzer, 1990). Neuromuscular fatigue is defined as a prolonged decrease in the muscle’s ability to generate a force or power output after a period of recovery. Neuromuscular fatigue can be present for upwards of 48 h, and can be identified as a compound system with both central and peripheral origins (Overton, 2013).

Based on the origin and the effect on the body, fatigue is often classified between cognitive, visual and physical fatigue. Cognitive or mental or central fatigue, henceforth referred to as cognitive fatigue, involves decrements in human information processing due to mental workload. It may be conceptualized as an executive failure to sustain attention in order to maintain or optimize performance (Ackerman et al., 2009).

Visual fatigue is a consequence of prolonged visual activity rather than mental workload, which causes changes in arousal level. Visual fatigue might be confused with cognitive fatigue, as there are cases where a decrement in arousal may lead to changes in oculomotor behavior despite no visual discomfort (Megaw, 1995).

Physical fatigue involves the inability to maintain physical performance, and can be attributed to metabolic disturbances, failure of neuromuscular transmission, changes affecting the myosin-actin complex, etc. Physical fatigue might also be attributed to changes in function of the central nervous system and impairments might occur in supraspinal areas, spinal areas, and in the muscle afferent system (Behm, 2004).

Therefore, it might be misleading to term cognitive fatigue as central fatigue, as central mechanisms might contribute to physical fatigue without changes in cognitive workload. Thus, it is commonly accepted that cognitive fatigue impairs physical performance, probably by increasing the effort perception.

[bookmark: _Toc115629290]Work Fatigue

Work fatigue represents extreme tiredness and reduced functional capacity that is experienced during and at the end of the workday. Work fatigue involves both extreme tiredness (i.e., lack of energy) and reduced functional capacity. This can occur with respect to each of the three energetic resources: (i) physical (involving muscular movement), (ii) cognitive (involving cognitive processing) and (iii) emotional (involving expression and regulation of emotions) (Frone et al., 2015). 

The distinction between physical fatigue resulting from depletion of muscular energy and cognitive fatigue resulting from depletion of cognitive energy dates at least 90 years (Pillsbury, 2009). Growing attention has focused on emotional fatigue, resulting from depletion of emotional energy, in addition to physical and cognitive fatigue (Shirom et al., 2006). Considering the three separate energy resources, the following resource-specific definitions of work fatigue are proposed: (i) physical work fatigue, which represents extreme physical tiredness and reduced capacity to engage in PA, (ii) cognitive work fatigue represents extreme mental tiredness and reduced capacity to engage in cognitive activity and (iii) emotional work fatigue represents extreme emotional tiredness and reduced capacity to engage in emotional activity.

Work fatigue is also temporally tied to the workday (Demerouti et al., 2003). It has an onset when energy depletion becomes too great and an offset when energetic demands and energy is restored through rest. Work fatigue can be assessed as an acute/state condition (e.g., the experience of fatigue at the present moment) or a chronic/trait condition (e.g., the experience of work fatigue over the past 12 months). The acute/state experience of work fatigue resolves shortly after the end of every workday, if it occurs frequently over an extended period of time, it may be viewed as a chronic/trait condition.

Based on the above definitions, a measure of work fatigue should be multidimensional, separately assessing physical, mental, and emotional dimensions of work fatigue.

[bookmark: _Toc115629291]Human Activity and Fatigue Monitoring

The objective of activity monitoring is to analyse or interpret the ongoing events from data automatically (Kumari et al, 2017). With the development of new technology and wearable devices, such as wrist-wearable smartwatches, monitoring human activity has become more and more popular and accessible. Wearables are smart electronic devices available in various forms that are used to conveniently measure, collect and analyze the user’s physiological and behavioral data using a variety of methods, interventions and outcomes (Kumari et al., 2017, Khakurel et al., 2018; Hilty et al., 2021). In addition to specialized wearable systems, there has also been a lot of research effort in monitoring human activity with smartphones, using their numerous built-in sensors (Straczkiewicz et al., 2021). Other researchers have based activity monitoring on various visual data, such as videos from Closed-Circuit Television or even images from social media (Arshad et al., 2022).

[bookmark: _Hlk115626081]In healthcare, activity monitoring can provide objective and reproducible information regarding traditional and emerging risk factors of human populations. Additionally, behavioral risk factors, including sedentary behavior, sleep and physical activity can all be monitored using wearables or smartphones (Straczkiewicz et al., 2021). Activity monitoring can be also used for monitoring the daily activities of hospitalized patients, whose inactivity can lead to functional decline or increased activity could mean readiness for discharge (Fridriksdottir et al., 2020). Sensor-based activity monitoring and recognition is also one of the most promising assistive technologies to support older people’s daily life (Wang et al., 2019).

Human activity monitoring includes two processes – first data acquisition, which is followed by classification of the acquired data. The acquisition of data includes acquiring the bio-signals and signal preprocessing. Signal preprocessing includes amplifying, filtering, averaging, extracting relevant features to be used as training data for classifier etc (Kumari et al., 2017). Various methods from the field of signal processing have been used to distill collected sensor data, including k-NN, random forest, decision tree, gaussian models and hidden Markov models or simpler threshold methods (Castro-Garcia et al., 2022).

Data acquisition process has two different approaches – one is the traditional approach which uses external sensors such as cameras or other monitoring devices (Lin, 2009) and the second one is the newly introduced approach which uses wearable wireless sensors. Both approaches use different types of sensors to acquire the physiological signals. However, in the second approach, sensors are attached to the human body (Kumari 
et al., 2017). 

Human Activity Recognition (HAR) systems based on wearable sensors can be categorized in two stages. First stage is learning stage, which may be supervized, unsupervized or semi-supervized. In the second stage, which may be either offline or online, performed actions are recognized and feedback is given accordingly. While offline schemes require more time to respond to the actions performed. Offline scheme demands high computation and is suitable for applications that do not demand immediate feedback in real-time. (Kumari et al, 2017)

Wearable sensors are typically wireless tiny sensors enclosed in bandages or some patches or something that can be worn. Calorimetric, potentiometric, amperometric, optical, piezo-electric biosensors and immunosensors are different types of wearable sensors. The data acquired from these wearable sensors are processed as per requirement for a particular application. Wearable sensors are completely unobtrusive devices that help physicians to overwhelm the restrictions of traditional technologies. Through wearable systems, biological signals can be continuously acquired wirelessly and thus patients can be monitored remotely. (Kumari et al, 2017)

Before developing a wearable system, it is essential to have a clear idea about the basic requirements and designing challenges for any wearable device. There are always hardware and software constraints beginning from low-energy operations, lightweight and safety requirements. While person is placing the wearable sensor on his/her body, the chances of thermal injury must be considered and should be reduced by controlling the sensing and wireless frequency and radio duty cycle of wearable sensor. Some basic requirements to take into account are: (i) aesthetics, (ii) size, (iii) water tolerance, 
(iv) power consumption, (v) wireless communication, (vi) operating system. (Kumari 
et al, 2017).

Day by day, new trends can be seen in the field of wearable systems which has enhanced features. For example, shirt or other clothes with all-fabric keyboard made by conductive thread can be washed in the machine same as ordinary clothes. So, it is water durable which is one of the basic requirements for a wearable device. Computerized clothes can be the next generation for computers and other devices which does not require strap of electronics into our body. This requires wearables to be small and unobtrusive, which in turn puts significant demand on reducing power consumption of the system (Senevirante et al., 2017). Although a huge amount of effort is being made in the wearable sensors, challenges like user-acceptance, low power consumption, interference in wireless systems are still to be resolved for better usability and functionality of these wearable devices. (Kumari et al., 2017).

[bookmark: _Toc115629292]Human Activity Recognition

Human activity recognition (HAR) allows to recognize the activity or activity type that the user is conducting based on the signals from a wearable sensor. Even though the precise methods for HAR vary, then it is usually done based on accelerometer sensor data and the main algorithm used in all HAR researchers can be divided into following stages (Qi et al., 2018; Straczkiewicz et al., 2021):



[image: ]

Figure 1. Stages of the HAR algorithm: (i) pre-processing of the raw data, (ii) fragmentation of the filtered data into smaller time segments and labelling them according to the activity class, 
(iii) choosing the amount and type of features to use in activity classification and extracting them from the data, (iv) training the classifier based using the chosen features based on the training set (v) classification of new signals using the previously trained classifier.







Accelerometer signals are usually measured using triaxial inertial measurement unit (IMU) sensors, which are attached to the human body. Studies have explored and validated the results with one or more accelerometers in multiple different locations, commonly on wrists, ankles, thighs or chest. (Chowdhury et al., 2013; Loh et al., 2015, Castro-Garcia et al., 2022). While combining the data from multiple sensors has been shown to improve the classification performance, then it comes with a trade-off due to the increase of the system complexity and computational power requirements, which are important factors when optimizing the HAR for use in wearables systems working in real-time. This is also significant for real-time HAR, which can be used in wearables for online activity recognition by allowing automatic recognition of the activities that the user is performing (Lee et al., 2018; Wannenburg et al., 2017). Real-time activity recognition provides valuable information for improving online feedback of the activity trackers or for providing extra safety by monitoring the status of the users working in high-risk environments (Leier et al., 2018).

Power consumption required for HAR is determined by multiple different components. Some of these components are based on processing of the acceleration values, such as sampling rate of the signal and filtering (Yan et al., 2012). Other elements are based on classification mechanics, such as classification window length, feature calculation and the used machine learning algorithm. While studies have explored classification mechanics such as training times of different HAR algorithms (Altun et al., 2010; Feng et al., 2015), they do not provide valuable information for real-time classification, since classifier training can be done previously on a desktop computer and later implemented into the wearable system. For classification systems working in 
real-time, it is important to focus on the processing time of the calculations the system has to do online (Altun et al., 2010; Tapia 2008).

Few previous studies have evaluated how different sampling frequencies affect HAR performance. Lowering the sampling frequency, fs, decreases the number of samples in the classification fragment, sf, which is calculated as follows:  

		

		(1)





where wf is the window length of a fragment given in seconds. Based on sampling theorem, for accurate representation of a signal, two conditions must be satisfied: the signal must be band-limited and sampling frequency must be at least twice the maximum frequency in the signal (Khusainov et al., 2013). It has been stated that frequencies above 20 Hz cannot be expected to arise from voluntary movement (Bouten et al., 1997). While researchers have used various sampling frequencies, usually in the range of 10 Hz to 
100 Hz (Yan et al., 2012; Lee et al., 2016), for similar HAR measurement scenarios, then around 20 Hz has been found adequate by others (Bouten et al., 1997; Khusainov et al., 2013). This section has been changed accordingly in the manuscript.

Filtering is applied in HAR to separate the recorded acceleration signals into static and dynamic components. The static component in the acceleration signal is mostly affected by gravity and captures the posture information, while the dynamic component is based on motion and captures the human movement information.

For HAR, measured acceleration signals are fragmented into shorter consecutive fragments based on which various features are calculated for classifier training and activity classification. Usually, these fragments are found as consecutive time-windows and some studies opt for an overlap between windows to increase the classification performance. Some previous studies have evaluated how different window lengths, commonly chosen between 1.5 s and 5 s (Altun et al., 2010; Aktaruzzaman et al., 2015), affect HAR performance (Tapia 2008; Bulling et al., 2014), but the lack of gold standard in HAR makes it difficult to compare these results (Awais et al., 2015). In a system with a physical activity classifier working in real-time, the window length determines the delay of the system, since each classification is done after signals have been collected for a whole window. The number of samples in the fragment is determined by both the sampling frequency and the window length according to (1).

When using machine learning methods for HAR, the classifier training is done based on features that are extracted from signal fragments. The feature set has to capture specific and diverse information of posture and human motion to allow precise activity classification. These features are usually found in time-domain, frequency-domain or as wavelets (Liu et al., 2012; Moncada-Torres et al., 2014, Tapia 2008), but for real-time wearable systems the possible performance gain from using frequency-domain and wavelets in addition to time-domain features may not be worth the trade-off in terms of computational power, since the system requires extra resources in order to find the transforms which are needed to calculate these features (Preece et al., 2009). 

Another possible optimization is in reducing the number of calculated features, which can be achieved using different feature selection methods. Various methods have been used for feature selection, such as ReliefF algorithm (Moncada-Torres et al., 2014), principal component analysis (Altun et al., 2010) or information gain (Tapia 2008). 
The study presented in Publication I is the first study to assess the HAR performance with different number of features in connection to the window length and sampling frequency.

HAR may be used for fatigue estimation using multiple different methods. First, HAR has been proposed for improving energy expenditure (EE) estimation using activity-specific models (Altini et al., 2012). These models first classify the physical activities using IMU sensors and use that information for creating more accurate EE models. HAR and activity tracking has been also used for monitoring and detecting user’s behavioral health and stress levels (Hilty et al., 2021, Castro-Garcia et al., 2022) which are important for mental fatigue assessment. Another potential usage for physical fatigue assessment would be classifying the work (or exercise) periods and the resting states. Post-exercise cardiac autonomic recovery has been found to be a practical clinical tool for the assessment of cardiovascular health and has been used for fatigue assessment (Peçanha et al., 2017). Using HAR to automatically detect recovery periods would also allow to use the information from post-exercise cardiac autonomic recovery in real-time physical fatigue estimation with wearable sensors. 

[bookmark: _Toc115629293]Energy Expenditure Estimation and Monitoring

Various methods have been employed with wearable systems for EE estimation. Heart rate has a good linearity with oxygen consumption in a large range of aerobic tasks (Livingstone et al., 1997). However, the poor relationship between HR and EE in resting and low intensity activities is an important limiting factor (Luke et al., 1997). In addition, HR is affected by several factors that are not directly related to metabolism e.g., mental stress, emotions, and medication (Hiiloskorpi et al., 1999).

Accelerometry is also a widely used tool for estimating PA related EE in free-living conditions (Lu et al., 2018). With count-based methods, the activity count is calculated using acceleration, and then directly linked to EE, while the type of activity being performed is not considered. In activity related methods, first the activity recognition is preformed, then the EE is estimated through a look-up table or by using the activity specified EE model (Altini et al., 2015), which requires an accurate assessment of basal metabolic rate.

Predictive equations are commonly used for estimation of the resting energy expenditure (REE) (Table 2). These equations are generally developed for gender, age, body weight, statue and ethnicity, and some of them have been recently formulated for diseases (Marra et al., 2020). Some of the most widely used predictive equations for healthy adults are Harris & Benedict (Harris et al., 1918), Schofield (Schofield 1985), FAO/WHO/UNO (World Health Organ 1985) and Mifflin-St Jeor (Mifflin et al., 1990). These and additional predictive equations were compared and validated with the results of IC in Publication II to find the most suitable one for EE model.

Table 2. Different predictive equations that were assessed in Publication II. W – weight (kg), H – height (cm), A – Age (years).

		
Authors

		Age (y)

		Gender

		Equation (kcal/day)



		Harris-Benedict

(Harris et al., 1918)

		15 – 74

		F

		655.0955 + 9.5634∙W + 1.8496∙H – 4.6756∙A



		

		

		M

		66.4730 + 13.7516∙W + 5.0033∙H – 6.7550∙A



		Schofield

(Schofield, 1985)

		18 – 29

		F

		14.818∙W + 486.6



		

		

		M

		15.057∙W + 692.2



		

		30 – 59

		F

		8.126∙W + 845.6



		

		

		M

		11.472∙W + 873.1



		FAO/WHO/UNU 

(World Health Organ, 1985)

		18 – 29

		F

		14.7∙W + 496



		

		

		M

		15.3∙W + 679



		

		30 – 59

		F

		8.7∙W + 829



		

		

		M

		11.6∙W + 879



		Henry-Rees

(Henry et al., 1991)

		18 – 29

		F

		11.472∙W + 612.3



		

		

		M

		13.384∙W + 669.2



		

		30 – 60

		F

		11.472∙W + 585.1



		

		

		M

		10.994∙W + 755.2



		Mifflin-St Jeor

(Mifflin et al., 1990)

		Any

		F

		9.99∙W + 6.25∙H – 4.92∙A - 161



		

		

		M

		9.99∙W + 6.25∙H – 4.92∙A + 5



		Owen

(Owen et al., 1986; 1987)

		Any

		F

		9.99∙W + 6.25∙H – 4.92∙A - 161



		

		

		M

		9.99∙W + 6.25∙H – 4.92∙A + 5



		Livingston-Kohlstadt

(Livingston et al., 2005)

		Any

		F

		248∙W^0.4356 - (5.09∙A)



		

		

		M

		293∙W^0.4330 - (5.92∙A)



		Kleiber

(Kleiber, 1932)

		Any

		F

		65.8∙W^0.75



		

		

		M

		71.2∙W^0.75







[bookmark: _Toc115629294]Physical Fatigue Estimation and Suitable Parameters

The nature of muscle fatigue depends on the characteristics of exercise, i.e., its intensity and duration. Methods for quantifying fatigue include measurements of the drop in peak force, torque or power of muscle contraction, expressed as a “fatigue index”, i.e., 
the percentage or rate of performance decrease over time (Finsterer et al., 2014). That fatigue index may be taken as a measure of resistance to fatigue and may be assessed using various ergometers. On an isokinetic dynamometer, fatigue resistance may be assessed: (a) by the number of maximum effort repetitions until exhaustion; (b) by the number of maximum effort repetitions until a 50% reduction in torque output is reached; (c) by the percent decline in torque from the beginning to the end of a predetermined time period (Kannus, 1994).

Fatigue index may also be assessed using: (a) maximal sprint cycling tests, such as the Wingate test; (b) by calculating the difference between the highest and lowest power output, expressed as a percentage of the highest power (Vanderwalle et al., 1987).

Other fatigue resistance assessment methods include: (a) measurement of the number of repetitions against a submaximal load during resistance exercise (Terzis et al., 2008; Mayhew et al., 2011); (b) measurement of time to exhaustion during steady or varying pace submaximal or maximal intensity running or cycling (Slawinski et al, 2005).

Several questionnaires have been developed for assessing exertion and fatigue. Borg Scale is a category scale which increases linearly with the exercise intensity for work on cycle ergometer (Borg, 1982). Another questionnaire-based tool has been developed for measuring stress tolerance in elite athletes (Rushall, 1990). The Profile of Mood States (McNair et al., 1971) has a subcomponent for assessing fatigue. The Multidimensional Fatigue Symptom Inventory (MFSI) and the short form (MFSI-SD) have demonstrated positive psychometric properties (Donovan et al., 2014). The Swedish Occupational Fatigue Inventory (SOFI) has been evaluated for physical fatigue by a study using cycle ergometer to induce fatigue with different workloads (Åhsberg et al., 1998). The scale items are scored based on a 7-point Likert scale to assess fatigue from 0 (not at all) to 6 (to a very high degree) (Figure 2).
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Figure 2. The Swedish Occupational Fatigue Inventory (SOFI) short-form questionnaire adopted from (Åhsberg et al., 1998), which was used in Publication III.

[bookmark: _GoBack]In addition to questionnaires, multiple other methods and parameters have been used for fatigue assessment (Table 3). The effect of fatigue on reaction time (RT) has been invested in several studies. RT has been found to be negatively affected by exhaustion when the participants have been prompted to perform physical tasks (Sant’Ana et al., 2017). The study with psychomotor vigilance tasks, using the developed PC-PVT platform (Khitrov et al., 2014; Reifman et al., 2018), also shows that RT has increases with the fatigue level (Thompson, 2019). It has been found that choice reaction time increases with exercise induced fatigue regardless of the type of the exercise (Sabzi, 2012). 

[bookmark: _Hlk115621594]Table 3. Various methods and parameters that have been used for fatigue assessment.

		Method or parameter type

		Related studies



		Questionnaire

		(McNair et al., 1971), (Borg, 1982), (Rushall, 1990), 

(Åhsberg et al., 1998), (Donovan et al., 2014)



		Reaction time

		(Sabzi, 2012), (Khitrov et al., 2014), (Sant’Ana et al., 2017),

(Reifman et al., 2018), (Thompson, 2019)



		Hand grip strength

		(Thompson et al., 2017), (Thompson, 2019)



		Countermovement jump

		(Kennedy et al, 2017), (Wu et al., 2019), (Petrigna et al., 2019)



		Heart rate

		(Mohanvelu et al., 2017), (Thomson et al., 2016)



		Heart rate variability

		(Mohanvelu et al., 2017), (Peçanha et al., 2017)



		Pulse arrival time

		(Liu et al., 2011)







Study on work related fatigue has found hand grip strength to decrease after a rigorous work period (Thompson et al., 2017). While in a later study the same researcher has found hand grip to be the only studied variable not to have a significant decline following a multiple work shift (Thompson, 2019). 

Practitioners often use the Countermovement jump (CMJ) test to monitor athlete fatigue, or equivalently recovery status, in terms of neuromuscular and/or metabolic fatigue. In multiple studies, the CMJ is used to characterize fatigue in functional lower body dynamic performance following acute training interventions or as a longitudinal monitoring tool (Wu et al., 2019). CMJ is routinely used in many sporting settings to provide a functional measure of neuromuscular fatigue and suitable testing methods have been described (Petrigna et al., 2019). However, the variables that are most sensitive to fatigue remain somewhat unclear (Kennedy et al, 2017).

[bookmark: _Hlk115449296][bookmark: _Hlk115449304]Heart rate (HR) has been accepted by many researchers for the assessment of human fatigue (Mohanvelu et al., 2017). Heart rate is usually calculated based on measured ECG signals, where R-peaks are detected using Hamilton-Tompkins algorithm (Hamilton et al., 1986). Exercise induced physical fatigue has been found to increase the average HR, while also decreasing the change in HR when comparing the HR during the exercise with the resting HR (Thomson et al., 2016). 

Heart rate variability (HRV) has been found to be inversely proportional to workload and has been used for assessment of human fatigue (Mohanvelu et al., 2017). Both time domain and frequency domain parameters have been used to assess HRV. Often used measures from time domain are SDNN (the standard deviation of all NN intervals) and RMSSD (the square root of the root mean square of the sum of all differences between successive NN intervals). From frequency domain the Low Frequency component (LF), High Frequency component (HF) and their ratio LF/HF have been used. Focusing on 
time-domain measures when developing for real-time wearable systems is more suitable in order to save on computational power. Work related fatigue study has found HRV parameter RMSSD to decrease with fatigue. In exercise induced fatigue studies HRV has been also found to decrease with exercise and the HRV analysis during the post-exercise period has been proposed to be a surrogate market of the cardiac autonomic recovery (Peçanha et al., 2017).

[bookmark: _Hlk115449373][bookmark: _Hlk115449671]Pulse wave analysis is a novel method for assessing the cardiovascular health and artery stiffness. Pulse wave analysis has mostly been explored for continuous cuff-less blood pressure monitoring (Mukkamala et al., 2015; Muehlsteff et al., 2008). Pulse arrival time (PAT), which is a measure of pulse wave analysis, is defined as the time-delay between the R-peak of the QRS wave from the ECG and the arrival of the arterial pulse wave at the periphery (Muehlsteff et al., 2008). PAT is the sum of the pre-ejection period (that covers the iso-volumic ventricular contraction phase) and the pulse transit time (purely vascular component) which both represent different underlying cardiovascular mechanisms that could be affected by fatigue. To reduce the blood-pressure induced component in PAT values, it is important to normalize the values with respect to blood pressure (Mukkamala et al., 2015). Research literature shows the relation of every 
1 mmHg difference in blood pressure causing 1 ms discrepancy in PAT (Muehlsteff et al., 2008). While prior studies have explored PAT in exercise settings (Liu et al., 2011), then to the best of the authors’ knowledge, the study composed in Publication III is the first study to evaluate PAT for physical fatigue assessment with promising results.

[bookmark: _Toc115629295]Current State-of-the-Art Solutions and Possible Developments

The optimal management of fatigue-related risks in different settings requires the capacity to effectively monitor fatigue. Nowadays, the main topics in the study of fatigue are related to fatigue tests in different (work) settings, evaluation of muscular fatigue, subjective symptoms of fatigue, indicators of nervous strain, and the practical application of fatigue tests (Yu et al., 2019). An examination of prior measures suggests that a practical need exists for a new multidimensional measure of fatigue.

There is no single instrument which is used as a gold standard for fatigue measurement, because of the definitional difficulties, multiple causes of fatigue, considerable overlap between different categories of fatigue and their interaction between each other (Saito, 1999; Aaronson et al., 1999). Additionally, fatigue has several confounding factors such as medication, psychological and cognitive conditions, and deconditioning (Finsterer et al., 2014; Stadje et al., 2016).

The multi-factorial nature of fatigue suggests that a single universal test to measure fatigue may not exist (Saito, 1999). Fatigue assessment studies have usually compiled different test batteries of various measures (Hughes et al., 2019; Thompson et al., 2019). These measures can be classified into six different categories: (1) questionnaires or subjective feelings of fatigue, (2) psychological tests, (3) neuropsychological tests, 
(4) biochemical indexes, (5) physiological tests and (6) autonomic nervous function tests (Saito, 1999) (Table 4). Measures are often collected as part of a test battery which can be administered during work breaks and control for factors that may affect interpretation (e.g., muscle length, movement velocity, magnitude of exerted force). 

[bookmark: _Hlk115621622]Table 4. Fatigue measurement test categories and some of the commonly used tests in each category (Saito, 1999).

		Fatigue measurement test category

		Commonly used tests



		Questionnaires on subjective feelings of fatigue

		Various tests and questionnaires for subjective symptoms of fatigue



		Psychological tests

		Blocking test, Kraepelin Test, measurement of perception of time



		Physiological tests

		Muscular strength, respiratory and circulatory functions, heart rate, 

near point distance



		Neurophysiological tests

		Electroencephalography, sensory evoked response, reaction time, galvanic skin response, visual tracing reaction test



		Autonomic nervous 

function tests

		Adrenaline test, atropine test, cold pressor test, Czermak test



		Biochemical blood and urinary indexes

		Urinary excretion of protein, sugar, urobilinogen, creatinine etc. Eosinophilic leucocytes, total gravity of blood, hemoglobin content







It is important to note that most of these require specific administered tests and thus are not suitable to implement in real-time and in real-life physical fatigue assessment. For this reason, a new approach to the utilization of physiological signals (markers, measures) is needed. Continuous measurement during work activity, which might be advantageous in providing information representative of work, may also be disruptive to the work process. Test batteries quantify cumulative fatigue whereas continuous measurement might provide information directly representative of workload.

Previous studies have observed that fatigue development may be dependent on the task, more specifically the intensity, duration, muscle groups involved, and the type of contraction (Allen et al., 2008; Finsterer et al., 2014). Not all measures revealed increasing fatigue over the workday or over the workweek, which may be a result of fatigue measures reflecting different processes of fatigue. It appeared that measures reflecting central mechanisms were responsive within a workday, while measures reflecting both central and peripheral mechanisms were responsive over the workweek. Therefore, fatigue measures, reflecting changes to both central and peripheral processes, may be useful in measuring tasks and exercises of varying parameters.

It has been suggested that appropriate fatigue monitoring should include both objective and subjective measures (Aaronson et al., 1999). Since the existing fatigue tests fail to give the same results, it is essential that for the evaluation of fatigue, data obtained from a single fatigue test or a combination of fatigue tests having no correlation with each other must be considered with extreme care because in some cases the results will be useless.

For the above-mentioned reasons it would be a significant advancement if physical fatigue could be measured continuously and unobtrusively. This novel approach utilizing wearables could measure information continuously and give feedback in real-time. Thus, for this need, Publication III proposes a test-battery of cardiovascular parameters, which could be analyzed in real-time for continuous personalized feedback of physical fatigue.

[bookmark: _Toc115629296]Methods

In this chapter the study designs and experiments for achieving the aims of the thesis are introduced. Two different experimental setups are presented. The studies of human activity recognition (HAR) and energy expenditure (EE) shared one experimental setup where the data was jointly gathered for both studies. The experiments for the physical fatigue assessment study were conducted separately. 

[bookmark: _Toc115629297]Study Design

This thesis aims to provide results for creating novel methods for physical fatigue assessment and human activity monitoring, which could be monitored in real-time and unobtrusively using wearable sensors and systems. Firstly, the thesis aimed to improve real-time HAR by optimizing the window length, sampling frequency and feature selection (Publication I). HAR is based on acceleration signals which are fragmented into shorter consecutive fragments based on the chosen window length. In a system where HAR is done in real-time higher window length also means the delay of the system is longer, since each classification is done after the signals have been collected for the whole window. The number of samples in the fragment is determined by both the window length and sampling frequency – lowering the sampling frequency also decreases the numbers of the samples in a classification fragment according to (1). 
In addition, multiple feature selection methods were used to decrease the initial classification feature set into smaller subsets in order to analyze how different number of features affect the HAR and what is the minimal number of features to use without compromising classification performance. These parameters also affect the power consumption and computational power that is required for HAR, which are both particularly limiting aspects when HAR is done using wearable systems and in real-time. While few previous studies have explored their effects separately, then this was the first study that thoroughly explored them in connection to each other. To fulfill the aim, a test study was conducted where subjects performed various physical activities while their body movement was measured and recorded using accelerometer.  

Secondly, the thesis aimed to assess different basal metabolic rate (BMR) predictive equations to improve EE estimation (Publication II). Monitoring EE, which is an essential tool for assessing individuals’ physical activity (PA) and adjusting nutritional supply, 
is moving towards activity specific models where first the activity is recognized using HAR and then suitable EE algorithm is applied for the specific activity. These algorithms rely on accurate assessment of basal metabolic rate (BMR), which is commonly estimated using predictive equations that use simple anthropometric variables such as the weight, height and gender of the person. For the purpose of this study the previous experiment also included calorimetry measurements in order to compare different predictive equations and validate their results with indirect calorimetry to choose the most suitable one for EE models. 

Thirdly, the thesis aimed to propose a method for real-time PFA suitable for wearable systems by utilizing a set of real-time and easily measurable cardiovascular (CV) parameters (Publication III). There is no single instrument that can be applied as gold standard for fatigue measurement and many of the popular methods require special conditions and testing environment which makes them unsuitable for real-time assessment of physical fatigue. In this study it was hypothesized that a multi-parametrical model based on an enhanced test-battery of various CV parameters could yield an effective method for estimating physical fatigue possibly in real-time and with wearable systems. During the conducted experiment various CV parameters were measured in both rested-state and physically-fatigued-state of the test subjects to explore how they are affected by physical fatigue. 

[bookmark: _Toc115629298]Study Groups

The HAR and EE study was conducted on one study group and the PFA study on a separate study group. In both experiments only healthy and active participants were included. The anthropometric parameters of the study groups are shown in Table 5. For HAR study a separate study group of 5 participants was used to measure the signals of outdoor cycling.

Table 5. Anthropometric parameters of the study groups in Experiment 1 (human activity recognition and energy expenditure studies) and Experiment 2 (physical fatigue assessment study).

		Experiment #

		Count

		Age (years)

mean±SD;

range

		Height (cm)

mean±SD; range

		Weight (kg)

mean±SD; range

		BMI (kg/m2)

mean±SD; range



		Experiment 1
HAR + EE

		All (25)

		32.0±8.8; 21–57

		174.4±9.4; 158–193

		73.5±10.5; 54–96

		24.1±2.3; 20.0–29.4



		

		Females (13)

		31.0±7.7; 21–45

		167.4±5.8; 158–176

		68.0±8.9; 54–82

		24.0±2.5; 20.0–29.4



		

		Males (12)

		32.8±10.0; 21–57

		180.8±7.3; 167–193

		78.6±9.5; 61–96

		24.2±2.2; 21.6–27.6



		Experiment 2
PFA

		All (16)

		28.3±7.9;

18–48

		173.9±8.1;

163–190

		69.9±12.3;

55–91

		23.0±2.9;

18.3–30.1



		

		Females (8)

		28.4±7.0;

18–42

		169.1±5.9;

163–180

		63.9±10.5;

55–89

		22.4±3.5;

18.3–30.1



		

		Males (8)

		28.3±9.2;

18–48

		178.6±7.3;

166–190

		75.9±11.4;

60–91

		23.7±2.2;

20.4–26.4







[bookmark: _Hlk115081314]The studies were conducted according to the guidelines of the Declaration of Helsinki and approved by the Tallinn Medical Research Ethics Committee (protocol no. 1954). Informed consent was obtained from each subject before participating in the study. 

[bookmark: _Toc115629299]Experimental Setups

[bookmark: _Toc115629300]Activity Recognition and Energy Expenditure Estimation

The aim of the first experiment was to gather information for the HAR and the EE studies (Publication I and Publication II). Test subjects performed various physical activities during which acceleration signals were measured and recorded from the left wrist using the Shimmer3 sensor platform (Shimmer Research, Dublin, Ireland) (Figure 3). Each test subject conducted activities based on a precise schedule, where each activity was carried out for a fixed amount of time. Outdoor cycling signals were recorded after indoor measurements with a separate study group.
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Figure 3. Shimmer3 IMU, which was used for measuring and recording acceleration signals from the left wrist. Signals were recorded with a dynamic range of ±16 g and numeric resolution of 
16-bit with the built-in accelerometer STMicroelectronics LSM303AHTR (Shimmer Research).

The analysis was done based on the wide range accelerometer data with the dynamic range set to ±16 g. The wide range accelerometer uses LSM303AHTR sensor (STMicroelectronics, Geneva, Switzerland), which has a numeric resolution of 16-bit. Activities during which signals were measured are shown in Table 6. Acceleration was measured with a sampling rate of 512 Hz. During preprocessing these signals were resampled using MATLAB function resample, filtered with third order low-pass Butterworth IIR filter (passband and stopband edge frequencies and ripples were respectively 0.1 Hz and 0.5 Hz, and 1 dB and 20 dB) and fragmented into shorter consecutive fragments based on the window length. Following an initial set of 110 features were extracted, which was decreased using various feature selection methods. Decision tree based classifier was trained using MATLAB’s function fitctree and the results were evaluated based on sensitivity and F1-score (Powers et al 2011).

Indirect calorimetry (IC) measurements were done using open-circuit indirect spirometry device MasterScreen CPX (CareFusion, Hoechberg, Germany) (Figure 4), which calculates EE based on Weir equation (Weir 1949). System was calibrated before each test subject. Since the IC device was not portable, the energy expenditure was only measured during “indoor test 2” and “indoor test 3”, shown in Table 6. The predictive equations assessed in the study for BMR were Harris-Benedict (Harris et al., 1918), Schofield (Schofield 1985), FAO/WHO/UNU (World Health Organ 1985), Henry-Rees (Henry et al., 1991), and Kleiber (Kleiber 1932) and for RMR were Mifflin-St Jeor 
(Mifflin et al., 1990), Owen (Owen et al., 1986; Owen et al., 1987), Livingston-Kohlstadt (Livingston et al., 2005) (Table 2). The values achieved with RMR equations were divided by 1.1 to compare the results with BMR equations.
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Figure 4. Carefusion Masterscreen CPX spirometry device. Alternative set-up with treadmill was used for indirect calorimetry measurements during “indoor test 2” and “indoor test 3”. MasterScreen CPX allows for breath-by-breath indirect calorimetry measurements using Weir equation by measuring oxygen consumption and carbon dioxide production (CareFusion).



Table 6. Conducted activities and their duration in minutes during which acceleration (ACC) and energy expenditure (EE) was measured.

		
Indoor test 1 – ACC

		Indoor test 2 – ACC + EE

		Indoor test 3 – ACC + EE

(% shows angle)

		Outdoor test – ACC



		Walking (3)

		Sitting on chair (3)

		Walking (3 km/h) (3)

		Cycling (14)



		Running (3)

		Lying on bed (4)

		Walking (5 km/h) (3)

		Cycling uphill (4)



		Walking upstairs (3)

		Typing on computer (3)

		Walking (3 km/h, 10%) (3)

		Cycling downhill (1)



		Walking downstairs (3)

		Folding clothes (3)

		Walking (5 km/h, 10%) (3)

		



		

		Cleaning surface (3)

		Running (6 km/h) (3)

		



		

		

		Running (10 km/h) (3)

		



		

		

		Running (12 km/h) (3)

		



		

		

		Running (6 km/h, 10%) (3)

		







0. [bookmark: _Toc115629301]Physical Fatigue Assessment

The aim of the second experiment was to gather information about cardiovascular (CV) and reference parameters during different physical fatigue states for the physical 
fatigue assessment study (Publication III). The experiment consisted of three main activities: rested-state (RS) measurements in the morning, physically-fatigued-state (PFS) measurements in the afternoon and a workout session in-between (Figure 5). The workout session lasted for about an hour and consisted of multiple sets of various exercises such as squats, burpees, sit-ups, push-ups, planks and jumping jacks to induce physical fatigue. The analyzed parameters were divided into reference parameters, that usually need administered tests and cannot be obtained in real-time, and cardiovascular (CV) parameters, that could be continuously monitored and measured. The selected reference parameters were the score of a fatigue questionnaire, reaction time (RT), hand grip strength and countermovement jump (CMJ) height. Evaluated CV parameters were heart rate (HR), measures of heart rate variability (HRV), and blood pressure normalized pulse arrival time (PAT). 
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Figure 5. Overview of one experiment day. Cardiovascular and reference parameters were measured similarly in both measurement sets. The workout session consisted of multiple full-body exercises.

During the test both reference parameters and CV parameters were measured with multiple different systems and methods. At the start of the experiment the subjects were asked to complete a questionnaire to evaluate their current subjective fatigue level. 
The questionnaire adopted for the experiment was the Swedish Occupational Fatigue Inventory (SOFI), developed for the measurement of after-work fatigue (Åhsberg et al., 1998). The scale items were scored based on a 7-point Likert scale to assess fatigue from 0 (not at all) to 6 (to a very high degree). The scale items were as follows: (i) Physical Exertion, (ii) Physical Discomfort, (iii) Lack of Motivation, (iv) Sleepiness and (v) Lack of Energy. 

Subject RT was measured using PC-PVT platform (Khitrov et al., 2014; Reifman et al., 2018) on a desktop computer (CPU: Intel Core i5-7500, GPU: Intel HD Graphics 630 
(Intel, Santa Clara, California, USA), Mouse: Logitech G203 (Logitech, Lausanne, Switzerland)) with an external monitor (HP E233, Hewlett-Packard, Palo Alto, California, USA). The duration of the test was 5 minutes during which each participant performed about 75 simple RT measurements. The Inter-Stimulus Interval was selected between three to five seconds. 

The hand grip strength was measured using the Grip Force Transducer (MLT004/ST, ADInstruments, Sydney, Australia) with PowerLab 4/25T (ADInstruments, Sydney, Australia) data acquisition device and LabChart software (v. 8.1.13, ADInstruments). 
The participants performed five maximal voluntary contractions with the dominant arm while seated. Hand grip strength was analyzed as the average of the maximums of the five repetitions. 

Countermovement jump (CMJ) height was found based on the recording as the difference between standing position and highest point during the jump. The performance was filmed at 60 frames per second with a camera (OnePlus 6, OnePlus Technology, Shenzhen, China), which was statically mounted at a fixed distance. Each participant performed five maximal effort CMJ according to the recommended method (Petrigna 
et al., 2019) and the performance was assessed as the average jump height.

During the CV parameter measurements subjects performed a veloergometer test with alternating work (3 minutes) and recovery (5 minutes) phases. There were three work phases during which the subjects were asked to cycle respectively at three different power levels (60 W, 90 W and 120 W) while keeping the pace at 60 rotations per minute. The ECG signals were recorded at sampling rate of 1 kHz using PowerLab 4/25T (ADInstruments, Sydney, Australia) data acquisition device and LabChart software 
(v. 8.1.13, ADInstruments). HR and HRV parameters were calculated based on the R-peaks of the ECG signal, which were detected using the Hamilton-Tompkins algorithm (Hamilton et al., 1986). The assessed HRV parameters were SDNN (the standard deviation of all NN intervals) and RMSSD (the square root of the root mean square of the sum of all differences between successive NN intervals). PAT was found as the time difference between ECG R-peak and pulse wave signal rising front, which was registered using the same sensing unit with an external piezoelectric transducer attached to the fingertip (MLT 1010 pulse transducer, ADInstruments). Calculated PAT values were normalized based on blood pressure measurements to 120 mmHg using the relation of every 1 mmHg difference causing 1 ms discrepancy in PAT (Muehlsteff et al., 2008).

[bookmark: _Toc115629302]Chapter Summary

In this chapter the study designs and experimental setups are introduced and presented. The HAR and EE study were based on one experimental setup, where 25 test subjects performed various physical activities during which the accelerometer signals and indirect calorimetry values were measured. The accelerometer signals were preprocessed and used to train a decision tree based classifier to assess the effect of the classification window length, acceleration sampling frequency and different feature sets on the HAR classifier performance. Indirect calorimetry values were compared with multiple BMR and RMR predictive equations to choose the most suitable one for the EE models.  

PFA was done based on a separate experimental setup, where multiple tests were conducted to measure the reference parameters (questionnaire score, reaction time, hand grip strength and countermovement jump) and cardiovascular parameters (heart rate, heart rate variability, blood pressure normalized pulse arrival time). Same measurements were conducted in the rested-state and physically-fatigued-state to propose a method for real-time PFA.



[bookmark: _Toc115629303]Results

In this chapter the results of the human activity recognition (HAR), energy expenditure (EE) and physical fatigue assessment (PFA) are presented. In HAR study the results with different classification window lengths, acceleration sampling frequencies, different feature sets and their combined effect are shown. In EE study the results of the multiple BMR and RMR predictive equations are compared to each other and with the indirect calorimetry results. For the PFA study the values for the reference parameters and the cardiovascular parameters in both the rested-state and the physically-fatigued-state are presented. In addition, a model for classifying between mildly fatigued and significantly fatigued states is proposed based on the two best performing cardiovascular measures.

[bookmark: _Toc115629304]Human Activity Recognition

The aim of the HAR study (Publication I) was to create an optimized physical activity classifier that would be suitable for implementation on real-time wearable systems. 
The focus was on testing various sampling frequencies, window lengths and number of features in order to reduce the power consumption, and to decrease the required memory buffer without compromising classification performance. 

[bookmark: _Hlk115081391]The classifier performance was evaluated using a leave-one-subject-out cross-validation scheme where each test subject’s signals were classified with a classifier that was trained using the signals from all the other test subjects, which has also been previously used by other researchers (Moncada-Torres et al., 2014; Altini et al., 2012). The confusion matrix attained for one of the subjects is shown in Table 7.

Table 7. Confusion matrix of conducted activities vs classified activities based on all the segments from all the subjects (using all 110 features, 25 Hz sampling frequency and 3 s window length), where the results for each subject was found individually using a leave-one-subject-out cross-validation scheme. The activity types are Static (1), Low Intensity (2), Moderate Intensity (3), Rhythmical Intensity (4), Walking (5), Running (6) and Outdoor Cycling (7).

		

		Classified activity type



		

		(1)

		(2)

		(3)

		(4)

		(5)

		(6)

		(7)

		Total



		Conducted activity type

		(1)

		2897

		68

		4

		1

		21

		6

		3

		3000



		

		(2)

		43

		835

		9

		11

		1

		0

		1

		900



		

		(3)

		2

		5

		809

		40

		32

		6

		6

		900



		

		(4)

		3

		2

		47

		797

		29

		10

		12

		900



		

		(5)

		22

		6

		34

		181

		5943

		111

		3

		6300



		

		(6)

		1

		0

		21

		16

		171

		4002

		1

		4212



		

		(7)

		3

		6

		23

		10

		14

		1

		1083

		1140



		

		Total

		2971

		922

		947

		1056

		6211

		4136

		1109

		17352







Sensitivity was chosen as a statistical measure to evaluate classification performance during feature selection. Sensitivity shows the proportion of true positives classified in relation to correct or real ones, i.e., true positives that are correctly identified. Classification results were evaluated using F1-score (also called F-score or F-measure), which is calculated as a harmonic mean of precision and sensitivity. While evaluating the results with different window lengths, sampling frequencies and number of features, 
F1-scores were calculated separately for each activity type. Additionally, an average 
F1-score for different parameter combinations was found as a mean of the activity type F1-scores. A paired t-test (p < 0.05) was used to find statistical differences between the classification F1-scores of different activity types and averages while using different window lengths and sampling frequencies.

Overall average classification F1-score achieved was about 0.90 and depended on the used window length, sampling frequency, feature set and classified activity type. To best evaluate how each of these parameters affected the classifier, a method was employed where the parameter under focus was evaluated using different values while the classifier F1-scores were averaged over the other parameters. This allowed to individually evaluate the effect of the window length, sampling frequency and number of features on the classifier performance. Performance with different window lengths is shown in Figure 6, with different sampling frequencies in Figure 7 and with different feature numbers of Figure 8. 

In a system with a physical activity classifier working in real time, the window length determines the delay of the system, since each classification is done after signals have been collected for a whole window. Window lengths of 5 s, 3 s, and 1 s were chosen to evaluate how different window lengths affect the classifier performance. Window lengths of 5 s and 3 s had similar results with the average F1-scores of 0.92 ±0.02 and 0.91 ±0.02, while the result with 1 s was 0.87 ±0.02 (Figure 6). 

To test different sampling frequencies, the signals that were initially recorded with a sampling frequency of 512 Hz were later resampled using a MATLAB function resample. The classifier had similar average F1-score with 50 Hz (0.92 ±0.02) and 25 Hz (0.91 ±0.02), while the average F1-score with 13 Hz was lower (0.87 ±0.02) (Figure 7). 

When using machine learning methods for HAR, the classifier training is done based on features that are extracted from signal fragments. The feature set has to capture specific and diverse information of posture and human motion to allow precise activity classification. Two different feature selection schemes were used to analyze how different number of features affects HAR and what is the minimal number of features to use without compromising classification performance. The feature sets of 110 features, 43 features, 28 features and 13 features, achieved with the first feature selection scheme, had similar average F1-scores between 0.89 and 0.90. The sequential forward selection (SFS) feature set had a slightly higher average F1-score of 0.92 ±0.03 (Figure 8).
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Figure 6. F1-scores of different activity types (mean ± SD) averaged over sampling frequencies and feature sets using different window lengths. Asterisks show significant statistical difference between different values of the window length (p < 0.05).
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Figure 7. F1-scores of different activity types (mean ± SD) averaged over window lengths and feature sets using different sampling frequencies. Asterisk shows significant statistical difference between different values of the sampling frequency (p < 0.05).
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Figure 8. F1-scores of different activity types (mean ± SD) averaged over window lengths and sampling frequencies using different feature sets, where the SFS is the feature combination obtained with sequential forward selection.



Since both classification window length and sampling frequency of the acceleration signal affect the number of samples in classification fragment, it was also deemed important to evaluate their combined effect on the classification performance. Figure 9 shows the average classification F1-scores with different feature sets using different combinations of sampling frequencies and window lengths. The classification performance was better with combinations that had more samples per classification fragment, with the highest average of 0.93 ±0.05 achieved with the combination of 
50 Hz and 5 s. The results with the combinations that had either 1 s window length or sampling frequency of 13 Hz were lower compared to other combinations with most feature sets. The SD values were large, since the results were averaged over different activity types with different F1-scores.
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Figure 9. F1-scores (mean ± SD) averaged over all activities using different feature sets, window lengths and sampling frequencies, where the SFS is the feature combination obtained with sequential forward selection.

[bookmark: _Toc115629305]Physical Activity Intensity and Energy Expenditure Estimation

The aim of the EE study (Publication II) was to assess the basal metabolic rate (BMR) and resting metabolic rate (RMR) predictive equations (Table 2) by comparing the results of the different equations and validating them with indirect calorimetry (IC) values in order to choose the most suitable one for energy expenditure (EE) models. 

The predictive equations explored in this study for BMR were Harris-Benedict, Schofield, FAO/WHO/UNU, Henry-Rees, and Kleiber; and for RMR were Mifflin-St Jeor, Owen and Livingston-Kohlstadt. The values achieved with RMR equations were divided by 1.1 to compare the results with BMR equations. Regression analysis was done in order to compare the different equations, assessed by the coefficient of determination (R2). Based on the anthropometric data, BMR was calculated for each test subject using all equations. Using these results, R2 was calculated for each pair of equations.

From the eight different BMR predictive equations explored in this study Mifflin-St Jeor formula had the best performance when compared to the results of the IC (Figure 10). Based on regression analysis most equations had similar results, with Owen and Kleiber formulas being the outliers (Table 8), which respectively had the lowest and highest average BMR results. The average BMR values with Mifflin-St Jeor formula 
(1447 ±204 kcal/day) were the closest with IC results (1485 ±255 kcal/day) and also had the lowest RMSE of 175 kcal/day compared to IC.
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Figure 10. Average BMR (mean ± SD) with indirect calorimetry (IC) and predictive equations; RMSE of BMR between predictive equations and IC. H-B – Harris-Benedict; L-K – Livingston-Kohlstadt; Scho. – Schofield; WHO – FAO/WHO/UNU; H-R – Henry-Rees.



Table 8. Coefficient of determination R2 between different predictive equations. HB – Harris-Benedict; L-K – Livingston-Kohlstadt; Scho. – Schofield; WHO – FAO/WHO/UNU; H-R – Henry-Rees.

		 

		Mifflin

		Owen

		Kleiber

		L-K

		Scho.

		WHO

		H-R



		H-B

		0.98

		0.88

		0.92

		0.98

		0.93

		0.94

		0.95



		Mifflin

		

		0.88

		0.92

		0.97

		0.95

		0.95

		0.96



		Owen

		

		

		0.85

		0.92

		0.91

		0.92

		0.90



		Kleiber

		

		

		

		0.90

		0.90

		0.91

		0.93



		L-K

		

		

		

		

		0.97

		0.97

		0.97



		Scho.

		

		

		

		

		

		1.00

		0.98



		WHO

		

		

		

		

		

		

		0.99







[bookmark: _Toc115629306]Physical Fatigue Assessment

The aim of the physical fatigue assessment study (Publication III) was to propose a method for physical fatigue assessment employing a set of real-time measurable cardiovascular (CV) parameters. Measurements were conducted on 16 healthy participants (8 female) and consisted of a morning test set, physical exercise during the day and an afternoon test set. The analyzed cardiovascular parameters were heart rate (Mohanvelu et al., 2017; Thomson et al., 2016), heart rate variability measures SDNN (the standard deviation of all NN intervals) and RMSSD (the square root of the root mean square of the sum of all differences between successive NN intervals) (Mohanvelu et al., 2017; Shortz et al., 2017; Pecanha et al., 2017), and blood-pressure normalized pulse arrival time (PAT) (Mukkamala et al., 2015; Muehlsteff et al., 2008). The parameters were selected with the aim to keep the complexity of the overall measurement process and computational power requirements as low as possible for suitable use in wearable systems, and thus, only time-domain measures were considered.

For every test battery parameter the percentual change between the rested-state (RS) and the physically-fatigued-state (PFS) was found individually for each participant. 
The average reference and CV parameter values are shown in Table 9. A paired t-test 
(p < 0.05) was used to find statistical differences between the parameters. Statistically significant changes were found in the CMJ height and questionnaire score for the reference parameters and in the HR, SDNN and RMSSD for the CV parameters. 

A linear correlation coefficient was calculated separately for each parameter pair to detect any linear relationship. Relatively strong linear correlation (0.5 < r < -0.5) was noted between several test battery measures. The correlation values are shown in Table 10.  

Table 9. Average (mean±SD) reference and CV parameter values in the rested-state (RS), physically-fatigued-state (PFS) and their difference in percentage (DIF). Results are shown for all participants (A), female participants (F) and male participants (M). Reference parameters: Q – questionnaire, RT – reaction time, DYN – dynamometer hand grip force, CMJ – countermovement jump height; CV parameters: HR – average heart rate, SDNN – HRV parameter SDNN value, RMSSD – HRV parameter RMSSD, PAT – pulse arrival time. Values marked with asterisk (*) in bold showed statistical difference (paired t-test, P < 0.05).

		Reference parameters

		

		

		Q (%)

		RT (ms)

		DYN (N)

		CMJ (cm)



		

		RS

		A

F

M

		14.0±7.6

12.1±9.4

15.8±5.3

		208.7±11.3

206.8±13.4

210.6±9.4

		360.3±99.1

294.2±47.4

426.4±93.8

		38.2±8.7

33.1±3.3

43.3±9.7



		

		PFS

		A

F

M

		29.2±13.0

30.0±17.7

28.3±6.9

		211.4±16.9

211.7±17.2

211.0±17.9

		349.7±105.7

286.4±48.7

413.0±111.3

		37.0±9.0

31.6±3.3

42.5±9.8



		

		DIF

(%)

		A

F

M

		15.2%*

17.9%*

12.5%*

		1.3%

2.4%

0.2%

		-2.9%

-2.7%

-3.1%

		-3.1%*

-4.5%*

-1.9%



		CV parameters

		

		

		HR (bpm)

		SDNN (ms)

		RMSSD (ms)

		PAT (ms)



		

		RS

		A

F

M

		98.5±10.9

100.6±9.7

96.4±12.3

		58.0±19.7

52.8±13.3

63.2±24.3

		35.4±18.9

31.7±12.7

39.0±24.0

		273.4±21.6

267.5±15.7

279.4±25.9



		

		PFS

		A

F

M

		107.9±12.2

110.1±11.4

105.6±13.4

		45.7±15.9

40.5±16.0

50.8±15.1

		25.0±13.8

23.5±17.6

26.5±9.5

		268.1±23.8

254.8±11.8

281.3±26.0



		

		DIF

(%)

		A

F

M

		9.5%*

9.4%*

9.6%*

		-21.2%*

-23.2%*

-19.6%

		-29.3%*

-25.9%*

-32.0%

		-2.0%

-4.7%  

0.7%







Table 10. Linear correlation coefficient values between different parameters based on all participants (A), male participants (M) and female participants (F). Parameter values are taken as the difference in % between the rested-state and physically-fatigued-state. Q – questionnaire, RT – reaction time, DYN – dynamometer hand grip force, CMJ – countermovement jump height, SDNN – HRV parameter SDNN, RMSSD – HRV parameter RMSSD, PAT – pulse arrival time, HR – average heart rate (between resting heart rate and average veloergometer cycling heart rate). Values above 0.5 or below -0.5 are marked in bold.

		

		

		RT

		DYN

		CMJ

		SDNN

		RMSSD

		PAT

		HR



		Q

		A

F

M

		0.36

0.36

0.36

		-0.18

-0.55

0.74

		-0.43

-0.35

-0.59

		0.13

0.10

0.36

		0.02

-0.07

0.26

		-0.05

0.18

-0.36

		-0.13

0.02

-0.49



		RT

		A

F

M

		

		-0.24

-0.8

0.40

		-0.25

-0.04

-0.38

		0.11

0.56

-0.13

		-0.03

0.03

0.01

		0.03

0.41

-0.22

		-0.33

-0.63

-0.04



		DYN

		A

F

M

		

		

		-0.10

0.30

-0.59

		-0.24

-0.74

0.23

		0.11

0.19

0.12

		-0.39

-0.18

-0.80

		-0.10

0.22

-0.53



		CMJ

		A

F

M

		

		

		

		-0.09

-0.29

-0.08

		0.03

0.23

-0.18

		0.35

0.26

0.25

		-0.09

-0.35

0.18



		SDNN

		A

F

M

		

		

		

		

		0.71

0.10

0.93

		0.30

0.24

0.23

		-0.61

-0.33

-0.88



		RMSSD

		A

F

M

		

		

		

		

		

		0.24

-0.12

0.42

		-0.57

-0.31

-0.80



		PAT

		A

F

M

		

		

		

		

		

		

		-0.35

-0.79

0.13







While all participants followed the same study protocol, they experienced different levels of physical fatigue based on their physiological and physical background. 
To distinguish between mildly fatigued and significantly fatigued, the participants were grouped into two groups based on their relative change in CMJ height between the 
rest-ed-state and the physically-fatigued-state. All CV parameters (and multiple 
sub-parameters) were analyzed one-by-one to test selectivity against the mildly 
fatigued and the significantly fatigued groups based on F-score and accuracy found 
using a leave-one-subject-out cross-validation scheme with a decision stump. The two best performing parameters were named (i) SDNN_DIF_N_AVG (relative change of the resting SDNN value normalized with the average recovery phase value between the RS and the PFS) and (ii) PAT_PFS_N_MIN (resting PAT value normalized with the lowest recovery phase value during the physically-fatigued-state). These two parameters were used to train a linear SVM (Figure 11), with a decision boundary formula:

		

		(2)





where x1 is the parameter SDNN_DIF_N_AVG and x2 is the parameter PAT_PFS_N_MIN.
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Figure 11. Linear SVM model for binary classification between the mildly fatigued and the significantly fatigued groups.

[bookmark: _Toc115629307]Chapter Summary

In this chapter the results of the studies are presented. For the HAR study, the classification performance with the different classification window lengths, acceleration sampling frequencies, different feature sets and their combined effect are shown respectively on Figures 6–8. Classification F1-scores with window lengths of 5 s and 3 s were similar, while results with 1 s were lower. All tested sampling frequencies performed similarly for most activity types, but the results with 13 Hz were considerably worse for the cycling activity. Initial set of 110 features were successfully decreased to 9–14 features without decreasing the classification performance. 

For the EE study, the Figure 10 shows the energy expenditure values for the eight predictive equations explored in this study and their difference with the indirect calorimetry results. Based on the findings the Mifflin-St Jeor formula had the best performance – the average BMR values with Mifflin-St Jeor formula (1447 ±204 kcal/day) were the closest with IC results (1485 ±255 kcal/day) and also had the lowest RMSE of 175 kcal/day compared to IC.

[bookmark: _Hlk115096077]In PFA study, the average values for the reference parameters and the CV parameters in the rested-state and the physically-fatigued-state are shown in Table 9. From the assessed cardiovascular parameters, the statistically significant change between the two states was noted in the average heart rate and heart rate variability measures SDNN and RMSSD. The correlations between different measures are shown in Table 10, strongest linear correlation was found between the reference parameter hand grip strength and CV parameter pulse arrival time. The two best performing CV parameters, which were based on heart rate variability and pulse arrival time, were used to create a linear 
SVM model presented on Figure 11 for classifying between the mildly fatigued and 
the significantly fatigued groups. There is one noticeable outlier shown in the figure. While this was not more thoroughly analyzed as part of this study, one potential reasoning could be considerably higher BMI of that subject (30.1 kg/m2 vs an average of 23.0 ±2.9 kg/m2).

[bookmark: _Toc115629308]Discussion

This thesis aims to provide results for creating or improving novel methods for physical fatigue assessment and human activity monitoring, which could be monitored in 
real-time and unobtrusively using wearable sensors and systems. This was done for 
three different topics: (i) optimization of the window length, sampling frequency and feature selection aimed to improve real-time human activity recognition (HAR) (Publication I), (ii) assessment of different basal metabolic rate (BMR) and resting metabolic rate (RMR) predictive equations to improve energy expenditure (EE) estimation (Publication II), (iii) assessing and proposing a method for teal-time physical fatigue assessment for wearable systems by utilizing a set of real-time and easily measurable cardiovascular parameters (Publication III). The main findings of these studies are shown in Table 11.

Table 11. The main findings of the human activity recognition (HAR), energy expenditure (EE) and physical fatigue assessment (PFA) studies.

		Study

		Major findings of the study



		Optimization of parameters for real-time HAR

(Publication I) 

		Classification performance with window lengths of 5 s and 3 s were similar, while results with 1 s were lower.



		

		Analyzed sampling frequencies performed similarly for most activity types, except for outdoor cycling, where 13 Hz was considerably worse.



		

		Similar or better results were achieved with the feature sets with 9 to 14 features, compared to the initial full feature set of 110 features.



		EE with BMR ja RMR predictive equations (Publication II)

		From the eight different BMR predictive equations explored Mifflin-St Jeor formula had the best performance.



		

		Most equations had similar results, with Owen and Kleiber formulas being the outliers, which respectively had the lowest and highest average BMR results.



		

		The average BMR values with Mifflin-St Jeor formula were the closest with IC results and had the lowest RMSE of 175 kcal/day compared to IC.



		PFA with cardiovascular parameters (Publication III) 

		Statistically significant change between the rested state and physically-fatigued state was noted in the average heart rate and heart rate variability measures.



		

		The strongest linear correlation was found between the reference parameter hand grip strength and CV parameter pulse arrival time.



		

		The finest CV parameters for separating the mildly fatigued and significantly fatigued groups were based on heart rate variability and pulse arrival time. 







In the HAR study (Publication I) it was analyzed for the first time how different window length, sampling frequency and feature set combinations affect the performance of physical recognition based on decision tree classifier in order to optimize the classifier for real-time wearable systems. The results of this study have been implemented into a smart work-wear prototype (Leier et al., 2018). The main findings were: 1) classification F1-scores with window lengths of 5 s and 3 s were similar, while results with 1 s were lower; 2) all sampling frequencies performed similarly for most activity types, with an exception of outdoor cycling; 3) Similar or better results were achieved with the feature sets with 9 to 14 features, achieved with either feature reduction scheme, compared to the initial full feature set of 110 features.

[bookmark: _Hlk115081692]Window lengths of 5 s, 3 s and 1 s were used to analyze how different window lengths affect the performance of physical activity classifier. F1-scores of walking, running and low intensity activity types were similar with all window lengths, while the differences with moderate intensity, rhythmical intensity and outdoor cycling were larger. Even though window lengths between 3 s and 1 s have been found suitable for other studies (2.56 s in (Moncada-Torres et al., 2014), 2 s in (Loh et al., 2015), 1.5 s in (Aktaruzzaman et al., 2015), 1 s in (Bulling at al., 2014)), in this study the classifier performance had a larger drop when decreasing the classifier window down to 1 s while window lengths of 5 s and 3 s had similar results, The window length of 1 s had statistically significant differences with both 3 s and 5 s window lengths while classifying static, moderate intensity rhythmical intensity and outdoor cycling activity types. This could be caused by 1 s window length not being long enough to capture the movement of the body during activities where one period of movement exceeds the window length.

Different sampling frequencies of 50 Hz, 25 Hz and 13 Hz were used to investigate how sampling frequency affects classification performance. For most classified activity types no statistical differences were found between tested sampling frequencies, but there were large differences while classifying outdoor cycling. Previously it has been found that frequencies above 20 Hz cannot be expected to arise from voluntary human movement, where the accelerometer is not in contact with vibrating external sources (Bouten et al., 1997). It is likely that the 13 Hz sampling frequency was not high enough to capture the vibration during outdoor cycling.

A total of 110 features were extracted from acceleration signals for HAR. To reduce and optimize the number of features, two different feature selection schemes were used in this study. While the first scheme used different consecutive methods to reduce the number of features, the second scheme used forward SFS where features were added one-by-one. The first feature selection scheme enabled to reduce the feature set from 110 features to 13 features without decreasing the classifier performance. It is possible that the feature set with 13 features was overfit for the conditions used in this study and would perform worse in other conditions.

Compared to the feature sets of the first feature selection scheme, the SFS method used in the second scheme had higher performance with most window length and sampling frequency combinations. This difference was very noticeable when using the sampling frequency of 13 Hz. The number of features used in SFS feature sets was between 9 and 14. The large differences in average F1-scores shown in Figure 9 between SFS feature set and other feature sets while using sampling rates of 25 Hz and 13 Hz were mostly affected by outdoor cycling. Unlike other feature sets, SFS feature set had high F1-score while classifying outdoor cycling with all sampling frequency and window length combinations. The highest average classification F1 score was achieved with a parameter combination with SFS feature set (3 s window length, 50 Hz sampling frequency, 12 features), which also had the best performance while classifying static, low intensity, walking and outdoor cycling activity types. It was predictable that the SFS method would provide better results, since the SFS method chose the best features to maximize the classification sensitivity separately for each window length and sampling frequency combination, while with the first scheme features were selected based on one sampling frequency and window length combination. SFS method proved to be a simple comparison method for more comprehensive feature selection and showed that the effect of features depends on different classifier parameters, of which sampling frequency and window length were tested in this study.

Despite the recent advances in deep learning based activity recognition, which reduces the dependency on hand-crafted feature sets and thus could outperform more traditional machine learning methods, it is still far from being used in online mobile systems due to excessive computational power it requires (Wang et al., 2018). Thus the methods and results of this study provide useful information to other researchers for designing and implementing state-of-the-art physical activity recognition for real-time wearable systems.

From the eight different BMR predictive equations explored in the EE study (Publication II) Mifflin-St Jeor formula had the best performance. Based on regression analysis most equations had similar results, with Owen and Kleiber formulas being the outliers, which respectively had the lowest and highest average BMR results. The average BMR values with Mifflin-St Jeor formula (1447 ±204 kcal/day) were the closest with IC results (1485 ±255 kcal/day) and also had the lowest RMSE of 175 kcal/day compared to IC.

Mifflin-St Jeor equation has also been found as the most accurate and suitable for metabolic rate calculation in a comprehensive review study for both non-obese healthy adults and obese but otherwise healthy adults (Livingstone et al., 2005). In other experiments it has significantly overestimated RMR for underweight females (Aliasgharzadeh et al., 2015) or underestimated it for obese and overweight adults (Oliveira et al., 2011). 

While the results of this study can be used to compare different predictive equations and for developing different EE models, there are some limitations which can be improved on in future studies. First, the test group in this study was very homogeneous since only healthy adults of same race were included, of which none were either 
obese or professional athletes. The findings of the study are suitable for calculating EE 
of BMR for a similar group, but might not be expandable for other groups. Secondly, 
the IC calorimetry tests conducted in this study were part of a larger experiment, which is why each position was held for a minimal amount of time needed to reach an EE plateau. Although lying down should have a higher EE than sitting or standing (Ainsworth et al., 2011), all positions were found to have similar EE levels in this study. The difference in EE between these positions could be more noticeable with a longer experiment 
time. 

The physical fatigue assessment study (Publication III) study evaluated how exercise induced physical fatigue affects various test battery measures and whether real-time measurable cardiovascular (CV) parameters could provide sufficient information to classify between the mildly fatigued and significantly fatigued groups, aiming to provide information for real-time physical fatigue assessment. The main findings were: 1) from the assessed cardiovascular parameters, the statistically significant change between the rested-state and physically-fatigued-state was noted in the average heart rate and heart rate variability measures SDNN and RMSSD; 2) the strongest linear correlation was found between the reference parameter hand grip strength and CV parameter pulse arrival time (PAT); 3) the best CV parameters for separating the mildly fatigued and significantly fatigued groups were based on heart rate variability (HRV) parameter SDNN between the rested-state and the physically-fatigued-state and PAT changes during the physically-fatigued-state.

While most parameters were selected based on the findings of other studies, not all of them were found significant based on the results of this study. From the reference parameters, the score of fatigue questionnaire showed a statistically significant increase (of about 15.2%) between the rested-state and the physically-fatigue-state, which is consistent with previous findings (Dawson et al., 2011). Countermovement jump (CMJ) height decrease was statistically different for the whole group (average decrease of 3.1%) and the female subgroup, being in the same range as found in previous studies (Dawson et al., 2011; Thompson, 2019; Thompson et al, 2011). In accordance with the previous studies, the average value of reaction time (RT) increased (1.3%) (Thompson, 2019; Sabzi, 2012; Sant’Ana et al., 2017) and hand grip strength decreased (-2.9%) (Thompson, 2019; Thompson et al., 2017); however, the changes were not found statistically significant. The results of the hand grip strength test could be explained by the full-body workout regime that did not involve enough exercises for the specific arm muscles. It was expected that RT decreases due to physical fatigue (Allik et al, 2019); however, 
the present study did not reach such a result that can be explained by the different influence of the workout regime. 

[bookmark: _Hlk115449339][bookmark: _Hlk115449349]From the evaluated CV parameters, average heart rate had a statistically significant increase of 9.5%, which is in accordance with the previous studies (Mohanvelu et al., 2017; Thomson et al., 2016). The HRV parameters SDNN and RMSSD decreased respectively 21.2% and 29.3% between the rested-state and the physically-fatigued-state, which has also been noted by other researchers (Mohanvelu et al., 2017; Shortz et al., 2017; Pecanha et al., 2017). It was interesting to note, that PAT, which is a novel parameter for physical fatigue assessment studies, had a decrease of 2.0% for the whole group and 4.7% for the female subgroup, but for the male subgroup the value increased by 0.7%. 

The linear correlation coefficient was found based on the relative individual 
changes between all measures. Strongest correlation between CV and reference parameter for the whole group was found between hand grip strength and PAT (linear correlation coefficient of -0.39). This finding was consistent with the male subgroup, where the linear correlation coefficient was -0.80. However, for the female subgroup the strongest correlation was found between HRV measure SDNN and hand grip strength 
(-0.79).

In total, 74 different sub-parameters were evaluated based on how well they classify between the mildly fatigued and the significantly fatigued groups that were compiled using the relative change in CMJ height value. These parameters were found using SDNN, RMSSD, PAT, and HR values from different veloergometer test phases and participant fatigue states. The best parameters for separating these groups were the relative change of the resting SDNN value normalized with average recovery phase value be-tween rested-state and physically-fatigued-state “SDNN_DIF_N_AVG” (F-score 0.842, accuracy 0.813) and the resting PAT value normalized with the lowest recovery phase value during the physically-fatigued-state “PAT_PFS_N_MIN” (F-score 0.875, accuracy 0.875). Simple linear support vector machine model was trained based on these two parameters to give an example of a possible use of these results. This model has a potential to reveal whether the user is “mildly fatigued” or “significantly fatigued” after a physically demanding day when implemented into a real-time monitoring system.

Based on the findings of this study, it was concluded that the test battery has added value for the assessment of physical fatigue. The evaluated CV parameters showed promising results compared to the reference parameters and thus could be used for 
real-time physical fatigue monitoring in workplace settings and for the general population. Furthermore, the novel parameters based on PAT were found to provide additional information and thus have the ability improve the overall quality of physical fatigue assessment.

Additional research is required to fully evaluate the utility of the test battery to determine the sensitivity of the variables with accumulation of fatigue. The authors also wish to point out several limitations that should be improved in the proceeding studies: (i) the study was conducted on a relatively small number of participants, the results should be verified on a larger study group; (ii) induced physical fatigue could have been specific to the used workout and study protocol, it should be explored how different workout regimes affect the results; (iii) the experiments were conducted in lab settings and should be verified in real-life situations.

[bookmark: _Toc115629309]Conclusions

This thesis provides novel methods and knowledge for physical fatigue assessment and human activity monitoring, which could be applied in real-time and unobtrusively using wearable sensors and systems. In accordance with the aims of the thesis, the main efforts and the conclusions made were:



1. It was analyzed for the first time how different window length, sampling frequency and feature set combinations affect the performance of physical recognition based on decision tree classifier in order to optimize the classifier for real-time wearable systems (Publication I).

Conclusion: Sampling frequency of 3 s and sampling frequency of 25 Hz were shown to be appropriate for activity recognition. Furthermore, using multiple feature selection methods, only 13 features from the initial 110 features were kept without decreasing the classifier performance.



2. Different basal metabolic rate predictive equations were compared and validated with indirect calorimetry data (Publication II).

Conclusion: The most accurate predictive equation from the eight assessed formulas was the Mifflin-St Jeor equation, which had the most similar average energy expenditure and lowest root-mean-square error compared to the indirect calorimetry results.



3. It was evaluated how exercise induced physical fatigue affects various test battery measures and whether real-time measurable cardiovascular parameters could provide sufficient information to classify between different fatigue states (Publication III).

Conclusion: Average heart rate and heart rate variability measures were best for classifying between fatigued and non-fatigued states. Additionally, the best parameters for separating the mildly fatigued and significantly fatigued groups were based on heart rate variability and pulse arrival time. 



These results improve the current methods and provide important knowledge for 
real-time physical fatigue estimation. Improvements in human activity recognition (Publication I) can be used indirectly by improving the energy expenditure estimation by employing activity-specific models and directly by automatically detecting active, resting and recovery states to be used in fatigue estimation methods. More precise energy expenditure (Publication II) can be used as an input variable or to validate physical fatigue assessment methods. This information in conjunction with the validated fatigue assessment test battery measures (Publication III) is a strong basis for a physical fatigue assessment and human monitoring system, which works unobtrusively and continuously in real-time by using wearable sensors and systems.
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Advancing Novel Physical Fatigue Assessment and Human Activity Monitoring Methods towards Perzonalized Feedback with Wearable Sensors

The circumstances of current human existence are far different from remote past. Physical exertion is no longer a requirement for daily living and today’s conditions allow an unprecedentedly sedentary lifestyle. This discordance between our contemporary lives and our genetic makeup has important health implications on skeletal density, cardiovascular diseases, obesity, body composition and insulin resistance. It is important to propagate active lifestyle, since research studies confirm that routine physical activity multiple benefits by lowering the risk of diabetes, cardiovascular disease and obesity, while increasing psychological well-being.

Advancement of technology has brought a surge of popularity for devices that help their users keep track of their physical activity, training schedule, exercises and lost calories. Since this makes training more interactive and allows users to have better overview of their progress, it often motivates the users to have a more active lifestyle. This is achieved by using wearable systems to conveniently measure, collect and analyze the user’s physiological data. For convenient use wearables need to be small and unobtrusive, which in turn puts significant demand on optimizing different aspects of these system such as reducing power consumption. The general aim of the thesis is to advance novel physical fatigue assessment and human activity monitoring methods that could be applied in real-time by using wearable sensors and systems.

Firstly, the thesis aimed to improve real-time physical activity recognition by optimizing the window length, sampling frequency and feature selection (Publication I). Physical activity recognition allows automatic recognition of physical activities. Real-time activity recognition provides valuable information for improving online feedback of the activity trackers or for providing extra safety by monitoring the status of the users working in high-risk environments. As a result of this thesis, both window length and sampling frequency were optimized and multiple feature selection methods were used to decrease the initial 110 features to 13 features without lowering classification performance.

Secondly, the thesis aimed to assess different basal metabolic rate predictive equations to improve energy expenditure estimation (Publication II). Energy expenditure is an important parameter for the studies of physical activity and is often used as a correlate of its level. Energy expenditure is an important tool for adjusting the individuals’ nutritional supply or to assess the health of a larger population. Based on the results of this thesis the Mifflin-St Jeor model performed the best by having the lower root-mean-square-error of 175 kcal/day.

Thirdly, the thesis aimed to propose a method for real-time physical fatigue assessment suitable for wearable systems by utilizing a set of real-time and easily measurable cardiovascular parameters (Publication III). Fatigue is a term used to describe an altered physiological state that results in decreased mental or physical performance. The ability to effectively monitor fatigue is most desired since high prevalence of fatigue has been reported in many operational settings to induce safety problems by directly influencing the mental and physical ability of people to perform even light activities. This thesis demonstrated that the compiled test battery can selectively assess the rested vs. physically-fatigue states and the obtained linear 
support-vector machine based model showed promising ability to classify between different fatigue states. 

The current thesis shows multiple possibilities to further advance the current 
state-of-the-art physical fatigue assessment and human activity monitoring methods by improving their performance or optimizing them for suitable use in wearable system.
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Kantavatel seadmetel põhinevate füüsilise väsimuse hindamise ning inimese aktiivsuse monitoorimise meetodite adrendamine personaalseks tagasisideks

Tänapäeva inimeste eluviis erineb olulisel määral inimeste elust eelmisel sajandil või veel kaugemas minevikus. Füüsiline pingutus ei ole enam igapäevaelu eeldus ja tänapäeva tingimused võimaldavad inimesel hakkama saada enneolematult vähese füüsilise liikumisega. Selline lahknevus meie kaasaegse elu ja meie geneetilise ülesehituse vahel avaldab olulist mõju tervisele, näiteks luustiku tihedusele, südame-veresoonkonna haigustele, rasvumisele, keha koostisele ja insuliiniresistentsusele. Oluline on propageerida aktiivset elustiili, sest uuringud kinnitavad, et rutiinne füüsiline tegevus omab positiivset mõju, vähendades diabeedi-, südame-veresoonkonna haiguste ja rasvumise riski ning suurendades vaimset heaolu.  

Tehnoloogia arenedes on populaarsust kogunud erinevad seadmed, mis aitavad nende kasutajatel jälgida oma füüsilist aktiivsust, treeninggraafikut, -harjutusi ja põletatud kaloreid. Kuna selline monitooring muudab treenimise interaktiivsemaks ning võimaldab kasutajatel saada paremat ülevaadet oma edusammudest, motiveerib see sageli kasutajaid harrastama aktiivsemat elustiili. Füüsilise aktiivsuse ja treeningu jälgimine põhineb kantavatel seadmetel, mis mõõdavad, koguvad ja analüüsivad kasutaja füsioloogilisi andmeid. Mugavaks kasutamiseks peavad kantavad süsteemid olema väiksed ja märkamatud, mis omakorda seab märkimisväärse nõude nende süsteemide erinevate aspektide optimeerimisele, näiteks energiatarbimise vähendamisele. Antud doktoritöö üldeesmärk on edendada uudseid füüsilise väsimuse hindamise ja inimese aktiivsuse monitoorimise meetodeid, mida saaks reaalajas rakendada erinevate andurite abil kantavates süsteemides.

Lõputöö esimeseks eesmärgiks oli täiustada füüsilise tegevuse reaalajas tuvastamist, optimeerides akna pikkust, diskreetimissagedust ja tunnusjoonte valikut (Publikatsioon I). Reaalajas töötav liikumisviiside tuvastus annab väärtuslikku teavet aktiivsusmonitoride tagasiside kvaliteedi tõstmiseks või lisaohutuse tagamiseks, jälgides kõrge riskiga keskkondades töötavate kasutajate olekut. Selle lõputöö tulemusena optimeeriti nii klassifitseerimise akna pikkust kui ka kiirendusanduri diskreetimissagedust ning erinvate tunnusjoonte valimismeetodite abil vähendati tunnusjoonte arvu 110-lt 13-le ilma klassifitseerimise tulemust langetamata.

Teiseks lõputöö eesmärgiks oli hinnata erinevaid baasainekulu hindamise valemeid, et edendada energiakulu hinnangut (Publikatsioon II). Energiakulu on kehalise aktiivsuse uuringute seisukohast väga oluline parameeter, mida kasutatakse sageli ka sellega korreleeruva parameetrina. Energiakulu on ka oluline parameeter inimeste toitumisharjumuste kohandamiseks või suurema elanikkonna tervise hindamiseks. Selle lõputöö tulemuste põhjal toimis kõige paremini Mifflin-St Jeori mudel, millel ruutkeskmine hälve 175 kcal oli väikseim. 

Kolmandaks lõputöö eesmärgiks oli luua kantavatele seadmetele sobiv füüsilise väsimuse reaalajas hindamise meetod, kasutades reaalajas ja kergesti mõõdetavaid kardiovaskulaarseid parameetreid (Publikatsioon III). Väsimus tähendab muutunud füsioloogilist seisundit, mille tagajärjeks on vaimsete ja füüsiliste võimete langus. Väsimuse kvaliteetne hindamine on väga oluline, kuna väsimuse tekkimine on levinud mitmetes erinevates töökohtades, mis omakorda suurendab tööõnnetuste riski, mõjutades otseselt inimeste vaimset ja füüsilist võimet sooritada isegi lihtsamaid tegevusi. Antud doktoritöö tulemused näitavad, et koostatud parameetrite kogum suudab selektiivselt eraldada puhkeolekut ja füüsiliselt väsinud olekut ning loodud tugivektormasina põhine mudel näitas võimet eristada erinevaid väsimusseisundeid.

Käesolev lõputöö toob välja mitmeid võimalusi kaasaegse füüsilise väsimuse hindamise ja liikumisviiside tuvastamise meetodite edasiseks arendamiseks, parandades nende jõudlust või optimeerides neid kantavates süsteemides kasutamise eesmärgil.
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XD – Dynamic component of X axis; YD – Dynamic component of Y axis; ZD – Dynamic component of Z axis; XS – Static component of X axis; YS – Static component of Y axis; ZS – Static component of Z axis;  – Measured signals in a fragment; N – number of signals in a fragment.



* - Features used in feature subset with 43 features.

** - Features used in feature subsets with 43 and 28 features.

*** - Features used in feature subsets with 43, 28 and 19 features.

**** - Features used in feature subsets 43, 28, 19 and 13 features.



		Features adopted from Liu et al., 2012



		Nr.

		Fragment used

		Explanation



		1

		XD

		Accelerometer counts: Sum of the absolute values of the signals over a fragment





		2

		YD

		



		3

		ZD

		



		4

		XS

		



		5

		YS

		



		6

		ZS

		



		7****

		XD

		Mean of the absolute values



		8****

		YD

		



		9****

		ZD

		



		10***

		XS

		



		11***

		YS

		



		12***

		ZS

		



		13

		XD

		Standard deviation



		14

		YD

		



		15

		ZD

		



		16***

		XS

		



		17***

		YS

		



		18***

		ZS

		



		19*

		XD

		Coefficients of variation



		20*

		YD

		



		21*

		ZD

		



		22**

		XS

		



		23*

		YS

		



		24*

		ZS

		








		25

		XD

		Peak-to-peak amplitude



		26

		YD

		



		27

		ZD

		



		28

		XS

		



		29

		YS

		



		30

		ZS

		



		31

		XD

		Percentile (10th)



		32

		YD

		



		33

		ZD

		



		34

		XS

		



		35

		YS

		



		36

		ZS

		



		37

		XD

		Percentile (25th)



		38

		YD

		



		39

		ZD

		



		40

		XS

		



		41

		YS

		



		42

		ZS

		



		43*

		XD

		Percentile (50th)



		44*

		YD

		



		45*

		ZD

		



		46

		XS

		



		47

		YS

		



		48

		ZS

		



		49

		XD

		Percentile (75th)



		50

		YD

		



		51

		ZD

		



		52

		XS

		



		53

		YS

		



		54

		ZS

		



		55

		XD

		Percentile (90th)



		56

		YD

		



		57

		ZD

		



		58

		XS

		



		59

		YS

		



		60

		ZS

		



		Body posture related features (adopted from Tapia 2008)



		61

		XS

		Mean





		62

		Ys

		



		63

		ZS

		








		64**

		XS

YS

ZS

		Mean over all axes



		65

		XS

		Area under signal 

(sum of the values)



		66

		YS

		



		67

		ZS

		



		68**

		XS

YS

		Mean distance between axes



		69*

		XS

ZS

		Mean distance between axes



		70*

		YS

ZS

		Mean distance between axes



		Motion shape related features (adopted from Tapia 2008)



		71*

		XD

YD

ZD

		Cumulative sum over absolute signal value



		72

		XD

YD

ZD

		Mean of total signal vector magnitude



		Motion periodicity related features (adopted from Tapia 2008)



		73****

		XD

		Mean crossing rate

(Number of times signal crosses its mean value over the fragment)



		74****

		YD

		



		75****

		ZD

		



		76***

		XS

		



		77***

		YS

		



		78***

		ZS

		



		Features adopted from Moncada-Torres et al., 2014



		79

		XD

		Percentile (3rd)



		80

		YD

		



		81

		ZD

		



		82****

		XS

		



		83****

		YS

		



		84****

		ZS

		



		85

		XD

		Percentile (20th)



		86

		YD

		



		87

		ZD

		



		88

		XS

		



		89

		YS

		



		90

		ZS

		








		91

		XD

		Percentile (97th)



		92

		YD

		



		93

		ZD

		



		94

		XS

		



		95

		YS

		



		96

		ZS

		



		97****

		XD

YD

		Correlation coefficient between axes



		98****

		XD

ZD

		



		99****

		YD

ZD

		



		100

		XS

		Root-mean-square



		101

		YS

		



		102

		ZS

		



		Additionally added features



		103****

		XS

YS

ZS

		Mean of total signal vector magnitude



		104*

		XD

YD

ZD

		Mean of velocity modules



		105*

		XD

		Kurtosis



		106*

		YD

		



		107*

		ZD

		



		108*

		XD

		Skewness



		109**

		YD

		



		110*

		ZD
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