
TALLINN UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

Department of computer science

Center of digital forensics and cyber security

Tallinn 2016

ITC70LT

Morteza Fakoorrad (132133 IVCMM)

Application Layer of Software Defined
Networking: pros and cons in terms of

security
(Master Thesis)

Supervisor: Pr. Dr Olaf M. Maennel

Ph.D.

Professor at Tallinn University of Technology

Declaration

I hereby certify that I am the sole author of this thesis. All the used materials,

references to the literature and the work of others have been referred to. This

thesis has not been presented for examination anywhere else.

..................................

(Author's signature) (Date)

Abstract
 As time goes on “Software Defined Networking” as a new buzz phrase is

becoming more popular; but this paradigm is still at an early stage of development

and carries with itself new security concerns and capabilities which do not exist in

traditional networking. For this reason, a security analysis of the application layer

of software defined networking including north bound interface has been done.

Known vulnerabilities have been addressed and a security flaw in the design of one

of the northbound interfaces has been discussed. Finally, a method has been

proposed to provide an effective network security defence by coupling the SIEM

and northbound interfaces of software defined networking. This thesis is written

in English and is 46 pages long, including 5 chapters, 7 figures and 7 tables.

Keywords:

Software Defined Networking, Application Layer, Northbound Interface, Security

Information and Event Management, Security Requirements

Annotatsioon

Tarkvaraliselt määratletud võrgu rakenduskihi turvalisuse tugevused ja
nõrkused

Aja jooksul on muutunud käibefraas "programmeeritav võrgustus" aina

populaarsemaks, kuid sellegi poolest on see paradigma varajases arengujärgus ja

võrreldes traditsioonilse arvutivõrguga kannab endas uusi seni tundmatuid

turvaohte. Sel põhjusel tegin turvaanalüüsi programmeeritava võrgustuse

rakenduskihile koos ülesliidesega. Käsitletud on teadaolevadid turvaauke ja

ülesliidese disainist lähtuvaid turvariske. Lõpptulemusena pakun välja effektiivse

võrgu turvakaitse sidudes turvamooduli programmeeritava võrgustuse

ülesliidesega. Lõputöö on kirjutatud Inglise keeles ning sisaldab teksti 46

leheküljel, 5 peatükki, 7 joonist, 7 tabelit.

Märksõnad:

Programmeeritav võrgustus, Rakenduskiht, Ülesliides, Turvateabe ja

turvasündmuste haldus, Turvanõuded

Acknowledgment

In the name of God, the Most Compassionate, the Most Merciful

 I would like to express my deep appreciation to my supervisor Pr. Dr Olaf M.

Maennel for his guidance and persistent help. I am fortune to have him as my

thesis’s supervisor. I would not be able to finish this research without his advice

and supports.

 I would like to thank my friend, Nabil Haqjoo, for his encouragement and advices

for editing this thesis. I would never forget the help I got from him. I would also

like to thank my friend Seifollah Akbari for providing and helping me regarding

the testbed machine in the chapter four of this study. Finally, I would like to thank

my parents and my wife who support me and trust me all the time.

List of Abbreviations

SIEM Security Information and Event Management

SDN Software Defined Networking

IDS Intrusion Detection System

OF OpenFlow

USM Unified Security Management

OSSIM Open Source Security Information Management

NBI Advanced Persistence Technique

STRIDE Spoofing, Tampering, Reputation, Information Disclosure, Denial of

service, Elevation of privilege

DDOS Distributed denial of services

DOS Denial of service

TCP Transmission Control Protocol

UDP User Datagram Protocol

RBAC Role Based Access Control

CLRF Carriage Return Line Feed

IP Internet Protocol

HTTP Hypertext Transfer Protocol

ARP Address Resolution Protocol

VLAN Virtual Local Area Networks

MPLS Multiprotocol Label Switching

ToS Type of service

OPCODE Operational Code

ONF Open Networking Foundation

ICMP Internet Control Message Protocol

TLS Transport Layer Security

IPv4 Internet Protocol Version 4

SAL Service Abstraction Layer

REST Representational State Transfer

API Application program interface

IPS Intrusion Prevention System

OSGI Open Service Gateway Initiative

CLI Command Line Interface

OPEX operating expenditure

CAPEX capital expenditure

GUI Graphical user interface

Table of Contents
1- Introduction .. 10

1.1 Motivation and problem statement ... 10

1.2 Research questions ... 12

1.3 Scope .. 12

1.4 Related work ... 13

2- Background ... 15

2.1 Software-Defined Networking.. 15

2-2 Architecture ... 15

2-2-1 OpenFlow .. 16

2-2-2 Data-Plane .. 17

2-2-3 Control Layer ... 19

2-2-4 Infrastructure layer .. 21

2-2-5 Application Layer ... 21

2-2-6 Management plane: ... 23

3- SDN Application Layer and NBI Security Evaluation and Threat Modeling
 ... 24

3-1 STRIDE Threat Modeling ... 24

3-2 SDN controller’s NBI and application layer’s threat model....................... 25

3-3 Eliciting Security Requirements ... 25

3-4 Case study ... 27

3.4.1 Parties (stakeholders and their goals) in the case study 27

3.4.2. Business assets: ... 28

3.4.3. IS (Information System) assets: ... 29

3.4.5. Security requirements ... 34

3.5 Application layer DOS attack.. 36

3.6 Solutions for mitigating the SlowLoris DDOS-attack................................... 37

3.6.1 Connection request validation .. 37

What is [CRLF] in the Get request? ... 37

3.6-2 limiting the number of connections to the controller from NBI....... 38

4- Automate packet dropping/blocking at SDN controller 39

4-1 SIEM ... 40

4-1-1 OSSIM ... 41

4-2 Methodology .. 41

4-3 Implementation .. 43

5- Conclusion and Future Work ... 45

References .. 57

List of Figures
Figure 1: The SDN schema [1] ... 16
Figure 2: Scope of OF switch [14] ... 17
Figure 3: Communication in OF [16].. 18
Figure 4: a basic controller .. 20
Figure 5: service abstraction layer [24] .. 22
Figure 6: Coupling SDN & SIEM .. 42
Figure 7: Testbed of Integrating SDN controller with SIEM ... 44

List of Tables
Table 1: The fields which are compared against flow table [17] ... 18
Table 2: SDN Controllers.. 21
Table 3: Parties... 27
Table 4: Business assets .. 28
Table 5: Information system assets .. 29
Table 6: Identified risks ... 33
Table 7: Security requirements ... 35

10

1- Introduction

 This study is presented in five chapters. The first chapter describes the motivation

and scope of the thesis. It also covers a summary of related work.

 In the second chapter, the architecture and elements of software defined networking

are presented. In the third chapter, a methodology has been described for eliciting

security requirements which are then applied to the application layer of SDN. As a

result of applying this methodology, a defensive system is proposed in the fourth

chapter. The final chapter analyzes the results of the described and simulated

network attacks, draws conclusions and identifies additional future work to be

carried out for this research topic.

1.1 Motivation and problem statement

 During the past few decades computer networks’ technology has developed rapidly;

this rapid development has led to a new buzz phrase called ’software defined

networking’ henceforth known as ‘SDN’. This paradigm is based on the idea of

decoupling the network’s control plane from the data plane [1]. It converts the typical

network’s complicated routing devices into simple switches whose function is to

extract and then execute the policy of the programmable logically centralized

controller. The dynamic ability of SDN distinguishes it from traditional networks in

which routing devices are performing both forwarding and control functions in a

distributed fashion using static protocols.

 Security concerns associated with SDN vary in some aspects from those of a

classical network due to the specific network implementation, the software based

controller and its programmable attributes. Within the scope of SDN the network

architecture shifts to software defined networking. As a consequence there is a need

for software defined security to be utilized in most cases. Hard-wired security

approaches are seldom used.

 SDN controllers are the heart of the networks and can be an easy target for

attackers; they are logically organized between network infrastructures and the SDN

applications. The controller provides an interface between the two. Its centralized

nature enables it to prepare other SDN elements with a global vision of what is going

on in the network [2].

11

 SDN controllers manage the control plane and provide the possibility for SDN

applications to enhance the functionality of SDN based networks. SDN applications

include virtualized network functions and business applications that retrieve data

from external appliances, such as a book keeping system in an internet service

providing company, to enforce business policies on a network level. These

applications interact with the controller and have capability to program the

underlying infrastructure via the so called SDN northbound interfaces (NBI).

However, the current NBIs have several security weaknesses.

 Despite the importance of these critical interfaces, by default, they do not have

enough security capabilities to monitor SDN applications and apply countermeasures

in case of any possible threat. Without these security attributes, all SDN applications

and anyone from a trusted boundary of SDN controller, have a full access to the

underlying network enabling the possibility for potential intruders. As a result of

this study, a penetration test has been done to show how SDN controller’s security is

affected by SDN application layer and northbound interface.

 Additionally, the lack of NBIs’ standards for developing SDN applications escalates

the security concerns in the scope of SDN. Hence, the flexibility required by

developers to design SDN applications connected to controller platforms is not

provided well enough.

 In this thesis, for the mentioned reasons, vulnerabilities of the SDN application

layer and northbound interface of SDN controller are addressed and investigated.

The most critical security weaknesses of the SDN application layer have been

addressed.

 Moreover, since there are no unique and specific standards for developing SDN

controllers, the identification of attack methods, eliciting security requirements and

security controls have been discussed in this study.

 Finally, In order to illustrate the capabilities in terms of security provided via a SDN

controller and the security requirements described in this study, a platform is

introduced to simulate intelligent network security with the integration of SDN and

SIEM.

12

1.2 Research questions

 For this thesis, the main question is: How do the SDN application layer and NBI

affect security of SDN?

The following detailed questions are also provided to answer to the main question.

1-What are the main vulnerabilities of the SDN controller and application layer?

2-What are the security requirements for the SDN controller northbound interface

and application layer?

3-How can security requirements be ascertained for the SDN application layer and

SDN northbound interface?

4-How can manual intervention be reduced with SDN controllers’ northbound

interface in order to countermeasure detected threats and attacks?

1.3 Scope

 This thesis concentrates on the security of the SDN controller’s northbound

interface and the SDN controller application layer. The rest of SDN network elements

such as the data plane and the open flow protocol are not within the scope of this

paper. The security status of current SDN controllers’ northbound interface and their

application layers, their possible vulnerabilities and the corresponding mitigation

techniques for these vulnerabilities are also addressed. Finally, as a result of eliciting

security requirements, a method is proposed to provide an automated defensive

system by integrating SIEM with SDN.

13

1.4 Related work

 SDN carries remarkable potential to be an interesting research topic. Experts of

the Open Networking Foundation (ONF) [3] published an article to prove that the

SDN approach is a cost-effective way to implement automated malware quarantine

(AMQ). This solution monitors network devices and in case of any threat and

malicious activity the AMQ detects and isolates those that have become

compromised before they are able to have a negative impact on the network. The

AMQ is designed so that is integrated with the SDN controller. However, with the

more centralized SDN management, although it can be a defense method, it can also

bring with it new vulnerabilities. A very powerful SDN controller of the network

could still be vulnerable to attacks from hackers because of single points of failure.

Hackers will still be able to access all kind of important information. To fix this issue,

in this study a defensive system by means of northbound interface APIs is proposed

which is not depended on controller.

 Sandra et al [4] proposed a system that provides the restriction of SDN applications

by means of the API of the open source controller Floodlight. However, this method

relays on controller and also does not have a mechanism to verify the authenticity of

external applications.

 Kevin et al [5] provided a brief overview of the vulnerabilities present in the OF

protocol as it is currently deployed by hardware and software vendors. They

identified a widespread failure to adopt Transport Layer Security (TLS) for the OF

control channel by both controller and switch vendors, thus leaving the OF protocol

vulnerable to “man-in-the-middle” attacks. However, the rest of vulnerabilities and

security requirements regarding SDN application layer and northbound interface are

not investigated well enough. Hence, in this study, those issues are deeply addressed.

 In [6], the authors addressed the problem of DDoS attacks and provided the

theoretical schema, the concept, and solutions of FireCol. The kernel of FireCol uses

intrusion prevention systems (IPSs) placed at the Internet service providers (ISPs)

level. The IPSs form virtual protection supports the hosts to protect and

communicate by exchanging defined traffic information. However, this solution is

not a lightweight method and the flexibility and dynamism is limited in this system

and the deployment and management is also complicated.

14

 In [7], challenges and threats of SDN were investigated. Authors mainly

emphasized the importance of several security objectives such as confidentiality,

integrity and availability of various entities within the SDN architecture. However,

they do not propose any concrete security mechanisms required to achieve these

goals.

 Rowan et al [8] performed a security analysis of OF using STRIDE and attack tree

modeling methods. They evaluated an approach on an emulated network testbed.

The evaluation assumed an attacker model with access to the network data plane.

Finally, they propose appropriate counter-measures that are able to potentially

mitigate the security issues associated with software defined networks. Their analysis

and evaluation methods are not exhaustive, but are aimed to be adaptable and

extensible to new versions and deployment contexts of OF.

15

2- Background

 In this chapter the theoretical background for understanding the research and its

motivation is explained. The structure of a software defined network, the ideas

behind it together with more details about the northbound interface are described.

Lastly, the current SDN controllers is briefly introduced.

 2.1 Software-Defined Networking

 Software-Defined Networking (SDN) idea was first time announced in 2010 [9] as a

networking paradigm which intends to simplify the control and the management of a

computer network environment.

 SDN is an architecture in which the network control and the management are

centralized and decoupled from data plane to grant the network programmable

features. In the current networking paradigm, the data and the control are placed

together. This means that the prevailing operating system and its attributes with the

hardware are deployed in a single device. Hence, network devices, such as switches,

routers and security appliances are designed with the intelligence of handling traffic

relative to the adjacent devices. This causes the intelligence to be distributed in the

network [10]. Furthermore, most of the network devices are Command Line

Interface (CLI) based and configuration is handled separately per device, leading to

time-consuming manual configuration that is prone to errors. Hence the networking

industry is prevented to react quickly to feature requests or innovate new

management capabilities.

2-2 Architecture

 SDN architecture decouples controller from data plane and provides it a new

layering model [11] . The Open Networking Foundation (ONF) [12] is a non-profit

industry consortium that is leading the standardization of OpenFlow protocol which

is described in the next section. The ONF defined the following layering scheme for

SDN structure.

 As illustrated in the Figure 1, SDN paradigm is split into three layers: application

layer, control layer, and infrastructure layer. This paradigm and arrangement brings

the possibility to centralize the state of the network and the intelligence into one part.

16

This improves the programmability feature of a network which is carried out via

APIs, enabling the networking industry to innovate different solutions in the

development process.

 Figure 1: The SDN schema [1]

 Additionally, programmability facilitates creativity and extraction of new network

features and services. By means of centralization, SDN eases the process of preparing

and equipping the network to allow it to provide (new) services to its users while

optimizing performance and granularity of policy management. Therefore, SDN gives

networks the ability to become more scalable, flexible and proactive. The control

layer communicates with the infrastructure layer through the so called OpenFlow

protocol and southbound interface.

2-2-1 OpenFlow

 OpenFlow (OF) [13] is a communication protocol that interconnects the forwarding

instructions with the data plane. The foundation is based on the SDN paradigm. It

checks flow tables are updated on switches and also checks that the controller has a

secure protocol for effective communication with its switches (encrypted using TLS).

Figure 2 shows the basic concept of an OF enabled switch.

17

 Figure 2: Scope of OF switch [14]

The goal of the OF enabled switch is to manage the switch flow tables by receiving

controller rules to perform the required updates via the OpenFlow protocol. This

protocol gives the ability to the controller to update, delete and insert rules in flow

tables. In the following section each of these components are described separately

namely the data plane, the control plan and their interaction.

2-2-2 Data-Plane

 The flow table of each switch includes a set of match fields, counters and

instructions. The Ingress port along with the header of each packet that the switch

receives is checked against the flow table. If the packet header’s important

parameters such as the Ethernet port number, the source IP port, VLAN tag,

destination Ethernet or IP port are found inside the flow table then there is an

occurrence of a match.

 If there is a match, the switch then runs the specified actions (e.g. drop the packet,

block the packet or forward the packet) [15]. If there is no match the controller

makes a decision and inserts a new flow table entry [15]. The switch sends a “flow

request” message to the controller that includes the new packet header. The

controller must verify the received flow request and decide what action should be

performed on the packet. After a decision is made it must send the appropriate

instructions back to the switch. This new rule indicates the actions that need to be

chosen for the packet [15]. The entire process is illustrated in Figure 3.

18

Figure 3: Communication in OF [16]

When the values in the header of the new packet are equal to those defined in the

flow table then a match event occurs [17]. If a field equals the value of “ANY” it is

treated like a wildcard and will match with any header value. Table 1 shows the fields

of the new packet which are compared against the flow tables. In case of multiple

matches, the entry with the exact match has higher priority over the wildcard entries.

In case of multiple entries [17] with the same priority, the preferred flow entry is

explicitly undefined. In such cases the switch is allowed to choose only one of them

[17].

Type

Transport source port/ICMP type

IPv4 protocol/ARP opcode

MPLS traffic class

Ethernet destination address

Ethernet type

IPv4 source address

VLAN priority

ToS bits
Ethernet source address

VLAN id
IPv4 destination address
Metadata
MPLS label

Ingress Port
Transport destination port/ICMP code

Table 1: The fields which are compared against flow table [17]

19

 During the last few years the research community concentrated their efforts on SDN

and the OpenFlow protocol. A non-profit and user-driven organization dedicated to

the promotion and adoption of SDN through open standards development was

founded in 2011 as the Open Networking Foundation (ONF). Its main goal is

maintaining the SDN ecosystem by introducing standards and solutions. By the

March of 2015 it had already published the OF specification version 1.5.1 [17],

describing the requirements for an OF switch.

 Multiple vendors (like HP, IBM and CISCO) have introduced OF enabled switches

to the commercial market. There are also some options for developing an OF switch

for research purposes. Linux Ethernet Switches can easily work with the OF protocol,

but not with outstanding performance. Furthermore, OF is not limited to hardware

only, there are multiple projects for software switches. The one that is most

comfortable and compatible with most of the other projects is the OpenVSwitch [18] ,

an open source software switch that can be installed on virtual server environments.

2-2-3 Control Layer

 The Control layer is the most important part of the SDN paradigm. A controller is

connected to all the network devices in the infrastructure layer and keeps track of the

topology. While exchanging information of the network state with upper layer

applications via northbound APIs, the controller converts their commands to low

level language to the network devices in order to perform the desired network

actions. The key task for the controller is adding and removing entries from the flow-

tables which are in the switch data plane. Figure 4 illustrates a basic controller.

20

 Figure 4: a basic controller

 The controller communicates with switches by means of OF protocol using the so

called southbound interface. Due to security reasons, OF is provided with an optional

security attribute that grants the use of TLS on an OF control channel.

 This method provides authentication for the switch and the controller (if certificates

are appropriately checked on both sides) to stop intruders from impersonating a

switch or a controller. Additionally, an encryption of the control channel to hinder

eavesdropping is provided. This differs with every implementation because it is not

defined.

 The controller takes over of all the essential functions like topology management

and service [15]. It is able to be improved with additional features; moreover it

provides information to other external applications. Currently there is no unique

standard for northbound communication. Some efforts have been put to enhance the

abstraction level by means of designing network programming languages on

application layer of the SDN. Examples of such languages are Nettle [19] and

PonderFlow [20]. Finally, through the east and westbound interfaces the controller

can connect to other controllers [15].

 Some of the current open source controllers which are highly used released not

only for commercial goals but also for academic and testing objectives are shown in

the table 2.

21

Controller Name Programming
language

Developer

NOX C++ & Python Nicira
Floodlight Java Big Switch

Networks
POX Python Nicira
Beacon Java Stanford University
Ryu Python NTT

Communications
OpenDaylight Java OpenDaylight

Project
Onos Java Open Networking

Lab

Table 2: SDN Controllers

2-2-4 Infrastructure layer

 The infrastructure layer is the layer in which all the network devices are placed and

connected physically. On these network devices such as routers and switches,

software is deployed which provides a control data plane interface (Southbound API)

in order to communicate with the upper level (Control layer). It includes all

equipment that enables [21] traffic forwarding.

2-2-5 Application Layer

 The application layer [21]is the layer in which all the attributes, services and rules

are defined. Applications demand the information of network appliances and the

topology in order to react upon it. These applications are able to create end-to-end

features and make decisions based on changes in the network. When the network

topology, feature or policy requirements are modified, applications are able to

change the network behavior dynamically. The essential communication tools

between the mentioned layers are provided by means of the Application

Programming Interfaces (APIs).

SDN applications [21] scope include the following areas:

• Enforcement of security and access policies

• Load balancing

22

• Traffic engineering

• Enforcement of QoS policy

• Network monitoring and management

 The northbound APIs is provided to enable communication between the controller

and its applications. Currently, there is no standard for designing this interface, yet

many SDN controllers have been developed [22] with REST API. REST as an

architectural approach is the most used [23] leverage for the modern services.

 Other popular APIs are C++, JAVA and Python. The communication between the

controller and the network data planes are done via the Southbound API.

As shown in the figure 5, the primary architectural foundation of the OpenDaylight

controller consists of application and service modularity, controlled by the

implementation of a service abstraction layer (SAL) [24]. The controller exposes

open northbound APIs, which are used by applications. OpenDaylight, supports both

the OSGi framework and the bidirectional REST APIs in the northbound layer. The

OSGi framework is mainly used by applications that will run in the same address

space as the controller, whereas the REST (Web-based) API is used by applications

that can run on same machine as the controller or on a different machine. These

applications typically realize business logic and may include all the necessary

methods. In other controllers, the northbound applications use the controller to

collect network intelligence, run algorithms to execute analytics, and then use the

controller to orchestrate the new rules, if any, throughout the network [24].

Figure 5: service abstraction layer [24]

23

2-2-6 Management plane:

 The Management plane carries out static tasks that are better [25] to be performed

outside the application, the controller and data planes. This plane should be isolated

and hidden from users. The Management plane handles tasks such as setting up the

network or configuration of network parameters. It should not be programmable

from outside, in order to prevent any kind of network attacks and to protect the

entire network.

24

3- SDN Application Layer and NBI Security Evaluation
and Threat Modeling

 In this chapter STIRDE threat modeling method is described to categorize threats

regarding the SDN controller’s NBI and application layer. Moreover, the most

important threats are listed along with security requirements to countermeasure the

threats. Additionally, a methodology is described to elicit security requirements for

the SDN controller’s northbound interface and SDN application layer.

3-1 STRIDE Threat Modeling

 STRIDE [26] is a classification scheme for specifying known threats according to

the types of exploit that are used. The STRIDE acronym is formed from the first

letter of each of the following categories.

• Spoofing is an attempt to gain access to a system using a forged identity. A

compromised system would give an unauthorized user access to sensitive data.

• Tampering is data corruption during network communication, where the data’s

integrity is threatened.

• Repudiation is a user’s refusal to acknowledge participation in a transaction.

• Information disclosure is the unwanted exposure and loss of private data’s

confidentiality.

• Denial of service is an attack on system availability.

• Elevation of privilege is an attempt to raise the privilege level by exploiting

some vulnerability, where a resource’s confidentiality, integrity, and availability

are threatened.

25

3-2 SDN controller’s NBI and application layer’s threat model

 For identifying threats affecting the SDN controller’s NBI and application layer,

three elements are defined:

 ·Threat source [27] – a source triggering the vulnerability which can be

intentional or unintentional.

 · Threat target [28] – a SDN component in which the vulnerability exists

 · Threat action – a malicious action by means of the threat that carries negative

impact on the SDN controller and the entire network.

 By considering the elements and applications connected to SDN controller, different

threats from various reports and a test performed during this study are categorized

in this study.

3-3 Eliciting Security Requirements

 Naved et al [29] presented a method used in this study for eliciting security

requirements from the business process models. The first stage is dedicated to

business asset identification and security objective determination. This part begins

with the analysis of the value chain that provides obtaining an understanding of

organizational processes which helps to determine the assets that must be protected

against security risks. In terms of the security objective: confidentiality, integrity,

availability should not be intercepted or negated.

 In the second step, the elicitation of security requirements is done from the system's

contextual areas as below:

1- Access Control indicates how the business assets could be changed by

individuals, applications or their groups. The major goal is to protect the

confidentiality of identified business asset. A method to mitigate the security

risk is the introduction of access control mechanism (SR04 – defined in the

section 3.4.5), for example the Role-Based Access Control (RBAC) model [29].

2- Communication Channel is used to exchange data between business

partners. The communication channel could be intercepted by the threat

agent and the captured data could be misused. This could lead to the loss of

the channel reliability, and could negate the confidentiality and integrity of

information. A security requirements implementation could be fulfilled by the

26

standard transport layer security (SR06 – Latest TLS version defined in the

section 3.4.5) (TLS) protocol [29].

3- Input interfaces should be used to input data submitted by business

partners. The threat agent can exploit the vulnerability of the input interfaces

by submitting the data with a malicious script. If it happens then the

availability and integrity of any activity may be negated. To avoid this risk the

following security requirements must be implemented for the input interface:

The input interface should canonicalize the input data to verify against its

canonical representation [29].

Input-filtration validates (SR01 in section 3.4.5) the input data against the

secure and correct syntax. The string input should potentially be checked for

length and character set validity (e.g., allowed and blacklisted characters). The

numerical input should be validated against their upper and lower value

boundaries. Input sanitization should check for common encoding methods

used (e.g., HTML entity encoding, URL encoding, etc) [29].

4- Business Service is an activity executed within an enterprise on behalf of

the business partner. The goal is to guarantee availability of the business

services. I.e. when receiving simultaneously multiple requests, the server will

not be able to handle them; hence, the services will be unavailable [29]. To

mitigate this risk, one could use packet filtering/dropping (SR07 – Automate

packet dropping/blocking in controller) mechanism via security appliances

which is also performed in the chapter four of this study.

5- Data Store is used to define how data are stored and retrieved to/from the

associated databases. If the threat agent is capable of accessing and retrieving

the data, their confidentiality and integrity would potentially be negated, thus,

resulting in the harm of the business asset. One mitigation can be auditing

[30] which is the process of monitoring and recording selected events and

activities. It determines who committed what operations on what data and

when; this is useful to detect and trace security violations performed.

Potentially, the data store auditing could be supported by the access control

policy. Moreover, important data can be encrypted. The encryption offers two-

fold benefits: (i) the data would not be seen by the unauthorized users (e.g.

database administrator) where the circumstances do not permit one to revoke

their permissions; (ii) due to any reasons if someone gets physical access to

the database (s)he would not be able to see the confidential data stored [29].

27

3-4 Case study

 In this study, to illustrate security threats compromising northbound interface and

application layer, an internet service provider with minimum required applications

for specific tasks is assumed as a case study. Using the information received from the

controller, possibly combined with information from other sources, it can make

decision about changing the network. This is a data traffic application in an ISP

shown in the diagram 1. An accounting system holds the data traffic limit of a certain

user and users’ financial statements. The application extracts the data usage of this

user by means of the northbound interface. Once it reaches the limit defined in the

accounting system, the application is able to create a rule blocking or limiting data

transfer from / to that user.

 Diagram 1 Internet service provider

3.4.1 Parties (stakeholders and their goals) in the case study

Table 3: Parties

Stakeholder Goal
Network User wants to have access to Internet

Network Owner Wants the network and all processes run smoothly without any problem and

grants limited traffic to users.

Accounti
ng

system

Bandwidth
application

Northbound
interface

SDN Controller

Data traffic
limit

Limit reached
feed back

Data traffic
information

Block data transfer
for the user in case
the limit is reached

Third party
Application

Internal
Networ
k user

28

3.4.2. Business assets:

 Immaterial assets such as information, process essential for running the business

of the organization that has value in terms of its business model and is vital for

obtaining its goals [31].

Business asset What value does each business asset
bring?

What are
security
criterions of
each asset?

BA1 – Network

traffic

Updating network traffic usage automatically based on

network users’ information will save much time as no-one

will have to do it manually. If network usage statistic is not

available there will be incorrect information in book

keeping system. Therefore, it has negative impact on

business.

Availability. Network

usage data must be

available any time to

update information

about user accounts’

availability

BA2 – Network

usage data in

Bandwidth

application

Having up-to-date data in bandwidth application has direct

impact on business. Also it is possible to generate reports

on this data.

Integrity. Statistic also

has to be correct and

not modified.

BA3 – Network

Users’ information

User information is very important for checking the

correctness of the network usage statics. If data (for

example the limit of each user) is changed it is possible that

user will pay the amount of money marked on order but get

actually less traffic.

Availability. User data

must be available any

time when accounting

system needs it.

Confidentiality:

unauthorized user/

application must not

have access to network

users’ information

BA4 – Data in the

accounting system

Data such as payment status in accounting system is very

important for running the business and has direct impact

on business

Integrity. Data in

accounting system

should be correct and

not modified

Table 4: Business assets

29

3.4.3. IS (Information System) assets:

 Material assets with exception of software which are part of IS that have value to

the organization and support business assets to obtain the goals [31].

IS asset How this IS asset support business asset(s)
IS1 – SDN controller IS1 Is the key of the network. It is the strategic control point in the SDN based

business, relaying information to/from the switches/routers via southbound APIs

and the applications and business logic via northbound APIs. All BAs rely on IS1

IS2 – Northbound

Interface and its APIs

Communication between IS1 and SDN applications is done via IS2 ; So network

statistic (BA2) in Bandwidth application is supported by IS2

IS3 – Bandwidth

Application

Gathers network traffic statistic (BA2) and deliver it to IS4;

IS4 – Accounting

system

IS4 holds the data traffic limit of a certain user (BA4) and allows making reports

regarding network usage and statistics for each user.

IS5 – Controller web

interface

Has a complete view of network traffic (BA1) and direct access to IS1. And is able to

change or block network traffic to/ from a user.

IS6 – flow table Network traffic (BA1) information such as destination IP address are included in

header fields of a flow table and routing decisions are based on these information

Table 5: Information system assets

30

3.4.4. Identified Risks:

Risks

Threat source ,
target and their
expertise

Attack methods IS asset
vulnerabilities

Impacts

Threa
t Event

R01 – Multi

partial requests

to NBI of the

SDN controller

An attacker can perform

application layer DDOS

against northbound

interface which works

as a service.

Attacker can try to establish multi connections to

the target NBI, but sending only a partial request.

Then gradually sends more HTTP headers, but

never completes a request. The targeted NBI

keeps each of these wrong connections open.

Afterwards, it will be unavailable. This attack is

discribed and shown in the section 3.5 and

appendix 1.

IS2 Accepts

unlimited

connections and does

not have input

validation against

incoming packets and

headers of the

packets.

Impact to
business asset:
BA4 and BA2
Impact to security
criterion: The
availability of data
will be intercepted;

Denial
of
servic
e

The controller

will be

unavailable to

all applications

R02 –
Applications
with chained
execution [32]:

Malign applications

may cause serious

interference and

security issues in

control messages .

Malign applications [33] that participate in a

service chain can drop control messages before

the target applications, thus leading to extra

interference. Additionally, interference may occur

when a malicious application faces with an

infinite loop to stop applications with chained

execution.

Lack of control to

authorizing to what

resources an

application is

permitted to see and

manipulate (IS1 and

IS2). Lack of isolation

of resources between

applications.

Impact to
business asset:
BA4 and BA2
Impact to security
criterion: The
availability of data
will be intercepted;
The integrity will be
negated

Denial
of
servic
e
/
Elevat
ion of
privile
ge

Comminucatio
n between
SDN controller
and target
application
will be messed
up.

R03 – Gateway
to
unauthorized
access [32]:

A malevolent nested

application create an

instance of another

class application.

A malevolent [33] application can bypass the

access control via creating an instance of another

class application and can be a gateway to

unauthorized access.

Lack of authorization

for each instance of

nested applications

and weak RBAC (IS1,

IS3, IS4)

Impact to
business asset:
BA2 and BA4
Impact to security
criterion:The
confidentiality of
data will be egated

Spoofi
ng
/
Elevat
ion of
privile
ge

SDN
application
will be
misused due to
lack of RBAC

31

Risks

Threat source , target
and their expertise Attack methods IS asset vulnerabilities

Impacts Threat Event

R04 –

unauthorize

d access

SDN

internal

database

[34]:

A SDN application get

access to controller internal

database.

An application can receives certain

privileges to access the underlying

resources; thus, the SDN controller

shares internal storage [33] among

various SDN applications. Hence,

applications can access and manipulate

the internal database of a SDN

controller, which might be used for

many subsequent attacks, such as

manipulating network behavior.

Privilege abuse problem

(IS1, IS3, IS4)

Impact to

business

asset: BA2 and

BA3

Impact to

security

criterion: The

integrity,

availability and

confidentiality

will be negated

Elevatio
n of
privileg
e

An unauthorized

access to SDN

controller database via

SDN application

R05 –

Application

s abusing

SDN control

messages

[35]:

A control message is

responsible for the two-way

communication between the

data plane and application

plane. An arbitrarily issued

control message of SDN via

an application may have

negetive impact in flow

table.

A malicious [33] application which

overwrites an existing flow rule in the

controller switch flow table may cause

unexpected network behavior; this

event is known as flow rule

modification.

A malicious application may block all

communication by sending a control

message that clears the flow table

records of a SDN switch [33].

Lack of constraint and

functional requirement

(IS7)

Impact to

business

asset: BA1

Impact to

security

criterion: The

availability of

network traffic

will be negated

Denial
of
service

Network traffic will

not be available if flow

table is cleared or

modified wrongly.

32

Risks

Threat source , target
and their expertise Attack methods IS asset vulnerabilities

Impacts Threat Event

R06 –

Exhaustion

of resources

[34]:

Malicious applications can

contribute to exhaust the

available system resources

and affect the performance

of other applications,

including the SDN

controller.

 Memory consumption [33]: A

malicious application might be

involved in continuous consumption of

system memory or in memory

allocation to exhaust all the available

system memory.

 A malicious application [33] can

execute a system exit command to

cancel the controller instance.

Issues in system

architecture and protocol

design may make systems

more subject to resource-

exhaustion attacks. IS1,IS3,

IS4

Impact to

business

asset: BA1

Impact to

security

criterion: The

availability of

network traffic

and

applicarions

will be negated

Denial
of
service

A simple denial of

service condition

happens when the

resources necessary to

perform an action are

entirely consumed,

therefore preventing

that action from

taking place.

R07-

Authenticati

on

Attacker will

Access the management

Console(Web GUI) by

misusing Authentication

weaknesses.

Conduct brute force login

attempts/password guessing attacks

against the management

Console(Web interface): or Attacker

will guess weak password and steal data

through social engineering.

Managment consol accepts

simple password and ’https’

is not supported or not

enabled by default in some

controllers like Ryu and

Open Mul. Additionally,

NBI does not generate

syslog for its authentication

 IS6, IS1

Impact to

business

asset: BA1

Impact to

security

criterion:

Confidentiality

/ Integrity

Informa
tion
disclosu
re
/
Spoofin
g

controller web UI will

be accessed by

unauthorized person.

33

Risks

Threat source ,
target and their
expertise

Attack methods IS asset
vulnerabilities

Impacts Threat Event

R08 - Poorly

designed

northbound

APIs/interface

[36]:

An unsecure designed

northbound interface can

be misused easily by SDN

applications to manipulate

the behavior of other

applications.

Attacker via SDN application may intercept an

unsecure designed northbound API to

eliminate an ongoing application session.

Furthermore, a SDN application may use a

northbound interface to unsubscribe a target

application arbitrary, as a result of that,

rendering it unable of reaching important

subscribed control messages that can be easily

done via the unsubscription of an event

listener.

Weak RBAC policy

(IS2)

and lack of standards

in designing

northbound interface.

Impact to
business asset:
BA2
Impact to

security

criterion: The

Availabilty of

data will be

intercepted.

Tamperi
ng/
Repudiat
ion

Data will be

unavailble or

tampered by a

malicouse SDN

application

because of

weak RBAC

policy.

 Table 6: Identified risks

34

3.4.5. Security requirements
Security requirements Which risks do the

security
requirements
mitigate?

What are the controls that implement the defined
security requirements?

SR01 – Connection header validation R01 The NBI needs to validate connection requests. It should not

accept incomplete requests or it should provide higher priority

to those requests which are complete in their headers.

SR02 – Strong authorizing system R01,R02 The interface to the SDN controller needs to support authorizing

specific network resources to applications and manipulating the

authorizations of applications.

SR03 – Resource isolation policy R04,R02 Nested applications need to be able to define privacy policy

regarding the resources are visible to the external application.

SR04 – Secure RBAC policy R08, R03,R04 The system must have role-based access control – every

application must have right to access only sources needed for its

work process. i.e. A set of access control tokens that might be

either granted or denied for an application.

SR05 – Separate authorizations R03 The controller needs to separate authorizations held by different

instances of a nested application. This secures them against

bugs and operational mistakes than maintaining isolation of

authorizations even if the nested application tries to bypass the

authorizations.

SR06 – Latest TLS version R05 TLS authentication between controller communications and all

parts of network such as switches, applications and

management console can be enabled or implemented. It does

not permit unauthenticated connections bump authenticated

ones.

35

Security requirements Which risks do the
security
requirements
mitigate?

What are the controls that implement the defined
security requirements?

SR07 – Automate packet dropping/blocking R06,R01 Automate packet dropping/blocking at the controller plane to

avoid denial of service attacks or any suspicious traffic in near

real time. Specific rules need to be installed on the network

elements.

SR08 – Secure password policy R07 Demanding secure and complex passwords from administrator;

storing passwords as encrypted data; not plain text.

SR09 – limit the number of connections to

NBI

R01 The number of connections can be limited as described in the

section 3.6.

Table 7: Security requirements

36

3.5 Application layer DOS attack

 The goal of this test that was performed on Ryu [37] (which is a SDN framework), is

to make the controller unavailable to all network users and applications; thus, they

will be unable to change the network or receive any information regarding network’

status from the controller. An antagonistic user will be able to send huge amount of

traffic to the northbound interface, or could send multi partial requests to the

controller, resulting denial of service on the controller. Since most of controllers’ NBI

are designed based on apache, in this test, SlowLoris [38] DDOS attack (which send

partial requests) has been performed against SDN northbound interface; thus, the

controller has been unavailable to the network. Ryu doesn’t have authentication in

NBI at all. As a result, the controller is vulnerable to DOS attack. Despite the fact that

some of other controllers like Open-Daylight have authentication in NBI, they don’t

generate syslog for it or it is not enabled. Hence, brute-force attack might not be

detected alongside with DOS attack.

 Because SlowLoris exploits a vulnerability in a web server / service which waits for a

complete header to be received. Apache and the web servers like dhttpd and Goahead

have a feature of timeout [39]. These web servers wait for the specified timeout

duration for the completion of a request. By default, the timeout value is 300

seconds, but it can be modified.

 Additionally, the timeout counter is reset each time the client sends more data. But

we should consider a situation if someone intentionally send partial http requests

and reset the timeout counter of each request by sending some fake data

continuously.

 This is exactly what Slowloris performs. It is carried out by establishing connections

to the target server, but sending only a partial request. Then gradually sends more

HTTP headers, but never completes a request. The targeted server keeps each of

these wrong connections open. This finally overflows the maximum connection pool,

and leads to denial of additional connections.

 SlowLoris is written in Perl as an open-source tool to show how a single computer

can bring down a web server by consuming all of the resources of the server. It is

aimed to show Apache how its servers/services could be vulnerable to this attack due

to a design principle.

37

 SlowLoris or low-bandwidth DOS attacks occur in the application layer against web

servers or web services and does not matter whether it is a web service or it is a full

blown web server; it still has the same weaknesses, and can be affected by the same

attacks. Since the NBI works as a web service, this attack brings down the APIs and

keeps anyone away from making changes to the network.

Details of the test have been documented in the appendix 1.

3.6 Solutions for mitigating the SlowLoris DDOS-attack

 Since SlowLoris attack does not send a malformed request to NBI, usually it

cannot be detected by traditional intrusion detection systems, as a result, it evades of

them.

 3.6.1 Connection request validation

 The NBI needs to validate connection requests. It should not accept incomplete

requests or it should provide higher priority to those requests which are complete in

their headers.

As described above, SlowLoris sends incomplete http request with fake headers. A

complete GET request should be like below:

1- GET / HTTP/1.0[CRLF]

2- User-Agent: Wget/1.10.2 (Red Hat modified)[CRLF]
3- Accept: */*[CRLF]
4- Host: 192.168.56.103[CRLF]
5- Connection: Keep-Alive [CRLF][CRLF]

What is [CRLF] in the Get request?

 CRLF is acronym of CR (Carriage Return) and LF (Line Feed) [40]. CRLF is non

printable, used to define end of the line. Even a text editor sets a CRLF at the end of a

line when we want to put a new line after current line. And two CRLF characters

define a blank line.

In the above example, there are two CRLF characters at the end of the "Connection"

header (which defines an empty line). In http protocol, an empty line after the

header, represent the completion of the header.

38

 Slowloris Dos attack misuses the described CRLF. It does not send a complete empty

line, which shows the end of the http header. A partial request sent by the SlowLoris,

is described below.

 "GET /$rand HTTP/1.1\r\n"
 ."Host: $sendhost\r\n"
 ."User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; .NET CLR
1.1.4322; .NET CLR 2.0.503l3; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; MSOffice 12)\r\n"
. "Content-Length: 42\r\n";

 In the above code, \r\n is used to define carriage return and newline in Perl

language. Two sequential "\r\n\r\n", must be used to define a blank line. Hence, this

is a partial header in HTTP.

 In order to fix this issue, HTTP request validation engine/approach can be

implemented. Jeff [41] described and implemented a comprehensive HTTP

validation engine that can be implemented on NBI to mitigate the attack.

 3.6-2 limiting the number of connections to the controller from NBI

 It is possible to limit the number of connections by means of iptables on port

8080 (which the NBI uses it) of the controller. As an example:

 # iptables -A INPUT -p tcp --syn --dport 8080 -m connlimit --connlimit-above 50 -j DROP

 In the next chapter of this study due to programmable feature of SDN, a

methodology is proposed enable us to provide the security requirement SR07

(Automate packet dropping/blocking at controller which can also be considered as

mitigation method for the most of the attacks) as well as an intelligent network

security in the SDN world.

39

4- Automate packet dropping/blocking at SDN
controller

 Programmability and flexibility of SDN facilitates providing intelligent network

security via integration of security appliances into SDN based networks, which can be

implemented on the application layer of the SDN using northbound interface, rather

than being implemented as split element. SDN’s centralized administration provides

events through the network to be gathered and normalized, thus, more precise image

of the network’s status provides security strategies easier to enforce and to monitor

[2].

 The ability to implement security approaches on top of the controller gives us

possibility to dynamically place appliances and sensors at different places in the

network that provides more useful network monitoring. Via a precise vision of its

status, the network is able to easily detect attacks, and the number of errors in

reporting and alerting can be decreased. In operation, if a security appliance shows

to the SDN controller that a device is giving signs of being attacked by a botnet or any

activity detected via security appliances, the SDN controller is able to reroute the

potentially offending traffic to a security appliances for further analysis [2]. In case

the traffic is considered malicious via the IDS or security appliances, the SDN

controller can filter or drop it.

 In this chapter, the following contributions are described:

1- A methodology to achieve rich concept of coupling between SDN and SIEM

segment, and the relation between these segments and protocols.

2- Implementation of the idea in a virtual environment with related components

with sample attack scenario. Security alert is created in SIEM and sent to SDN

controller to deploy rule in the SDN network for mitigations of attacks.

3- Results of our experiences and benefits of coupling SDN and SIEM.

But before, SIEM and the type of SIEM used in this study is shortly described.

40

4-1 SIEM

 Security information and event management (SIEM) is an approach [42]

regarding security management that provides a complete picture of an

organization’s information technology security. The principle of a SIEM system

is that relevant data about an enterprise’s security is generated in different

locations and being able to look at all the data from a single point of view makes

it easier to spot trends and see patterns that are out of the ordinary. In fact,

SIEM technology provides near real-time analysis of security alerts, which have

been produced via network appliances. SIEM can be considered as software,

appliance or managed service, and is also applied to log security data to generate

reports for compliance goals. The aim of SIEM is to aid to companies’ reaction to

attacks faster in a fashion prompt.

 SIEM not only can process log data but also is able to quarry other types of

data. Event data includes contextual information about users, data and assets.

The data is normalized, hence, events from various sources can be correlated and

analyzed for different goals, such as network security event monitoring, user

activity monitoring or compliance reporting. The technology enables historical

analysis, real-time security monitoring, and other support for incident

management and analysis and compliance reporting [43]. According to Detken

et al [44], a complete SIEM approach includes various modules that support the

following functionalities:

a- Event correlation: save, archive, normalize, and correlate log files to a

data-base for analyzing additionally.

b- Situation detection: monitoring network condition and detection of

unwanted situations. It might include anomaly detection techniques;

signature based matching and configuration management.

c- Application programming interface (API): provides a generic

interface for the integration of various devices and systems.

d- Identity mapping: allocating network specific information such as

IP/MAC address to real entities like actual user.

e- Key performance indication: measurement of the IT security by central

analysis of asset details regarding security information.

41

f- Role based access control: holistic view of all events under consideration

of different responsibilities.

g- Compliance reporting: regular monitoring on the IT compliance such as

integrity and risk of an enterprise.

 4-1-1 OSSIM

 AlienVault developed two different SIEMs, one open source and the other one is a

closed source commercial version. The commercial Unified Security Management

platform (USM) provides additional supports [45] for log management and scaling

enhancements for the open source version.

 AlienVault uses its own correlation engine to provide real time analysis of sensor

data from AlienVaults agent software. OSSIM is one of the easiest SIEM products to

configure and deploy along with a lower cost of deployment than other SIEM

vendors’ products. Both products provide a SIEM solution with file monitoring,

NetFlow support, host and network intrusion detection capabilities and vulnerability

assessment capabilities. Providing OSSIM as ‘all in one’ solution that is able to

provide various methods of collecting and processing data from different sources,

gives it a deep insight into the network activities and ability to react to threat as they

emerge. Despite the fact that main function of a SIEM is correlation not detection,

OSSIM has detector plugins [46] that make it useful in this study.

4-2 Methodology

 In this method, network activity data are gathered with sensors and sent to the

SIEM server in order to detect malicious activities. SIEM processes data and

generates network activity information. This information provides a clear view of

network activity and the critical event will result in creation of a ticket within the

SIEM. At this time, the ticket can be converted to a flow that can be carried out

on SDN controller automatically by system or manually by the network

administrator.

 These rules on SDN network may change topology and create another ticket to

change network topology again. Therefore, these changes can have a feedback.

Each new flow will have an assigned expiry time, to be able to effectively be

checked against other existing flows as a means of preventing network conflicts,

42

prior to activation of that flow. The event’s severity can cause action on one or

more network layers. For instance, flood ping may be used to check the network

or device performance. But its duration and packet size can have a drastic

negative impact on network performance.

 As shown in the figure 6, this activity will be detected by SIEM and create an

event with high severity. The resulting ticket will make a flow rule to SDN

controller and drop packets of source IP or MAC or Port (layer 3, 2 or 1).

 Figure 6: Coupling SDN & SIEM

 An OF switch consists of two components: the switch-agent and the data

plane. The switch-agent speaks [47] OF protocol to one or more controllers.

Additionally, it communicates with the data plane using the requisite internal

protocol [48]. The switch-agent will translate the controller issued commands

into the necessary low-level instructions to send to the data plane, as well as

translate internal data plane notifications into appropriate OF messages and

forward to the controller. The data plane performs all packet forwarding and

manipulation; however, based on its configuration, sometimes it sends packets

to the switch-agent for further handling [48].

 Current OF releases span versions from 1.0 to 1.5.1 OF 1.0 can perform actions

against port IDs, queue IDs, and up to 4 protocols. It is important to note that

support for actions against Ethernet, IPv4, TCP, and UDP, are optional. An SDN

43

controller will check and know if a switch supports theses optional actions. In

the testbed of this study OF 1.3 is used. In OF 1.3 each flow entry of a flow table

has a set of instructions to apply to all matching packets. According to [49] these

instructions can be used to modify the packets state, forward the packet to a

particular port, forward the packet to another table or group for further

processing and generate metadata in the process. Each packet maintains an

action set, which contains a set of actions to apply to the packet when no further

table processing can be accomplished. The write and clear instructions provide

ways of manipulating the action set. The apply instruction bypasses the action

set and performs actions immediately. The Goto instruction provides a

mechanism to choose the next flow table for processing. The meter instruction

allows the application of a rate limiter to the flow. The experimenter instructions

provide a structure for custom extensions to instructions. Apply and write are

the only instructions that apply actions in some way, as input they both contain

action lists.

4-3 Implementation

 To integrate SIEM with SDN, many different methods can be used. One such

method is to use simple API. When SIEM creates an alert, API sends source IP of

the attacker to SDN controller to create a new flow to block the attacker’s IP or to

drop the packets which are sent from specific sources. If manual control is

preferred, another API may be used to send alert details to the SDN controller’s

GUI, to be resolved by the system’s administrator. The integration is implemented

using both the automatic method and manual method. As shown in the figure 7, the

testbed was hosted on a laptop with a 12 GB RAM and a Core i5 CPU in a virtual

environment; packet flooding was performed from a trusted boundary and denial of

service was considered as the threat model. The details of the implementation are

described in the appendix two.

44

 Figure 7: Testbed of Integrating SDN controller with SIEM

1. One SDN Controller based on Open-Daylight Service Provider

2. One OF enabled switch with 4 virtual ports based on OpenVswitch with OF

version 1.3

3. One ‘All in one’ OSSIM Server for gathering data

4. Two network clients connected to switch for a simple packet flooding

45

5- Conclusion and Future Work

 The security vulnerabilities, attacks and threats discussed in chapter three are

critical and can compromise all the corresponding SDN layers and interfaces.

 In order to answer the main question of the thesis, it has been illustrated that due to

the lack of security standards in the design of the SDN NBI and application layer,

with a low-bandwidth DOS attack against NBI from the application layer, the

controller became unavailable and it was not possible to receive or send any

information from the controller. Hence, the dependency between the application

layer of SDN and the controller of the network is a security concern that should not

be ignored in the future study. Despite the fact that the described attacks in the

chapter three occur against different applications and web servers/services in our

daily life and have a negative impact, they rarely could happen in traditional

networking, having a negative impact on the controller in which the controller is

integrated to data plane on a router.

 The security of the SDN controller not only depends on NBI, but also is highly

affected by other permissive applications that communicate with NBI. As described

in chapter three, a malicious user by means of a permissive application can reach the

controller. Therefore, if SDN is deployed in real life the business owners who deploy

SDN in their organization should also consider that their network might be affected

by the application that communicates with the NBI of SDN. Thus, security

requirements for the applications which communicate with SDN controller via NBI

should not be ignored and should be elicited with a proper method according to the

application types and the business process model of the organization which its

network is based on SDN architecture.

 Protection against different applications will remain a challenge for the SDN

paradigm. No secure architecture for various users or network service applications

exists, and the access control of nested applications has not been illustrated.

 On the other hand, due to programmable feature of SDN, it has successfully been

demonstrated that the emerging SDN technology has provided new and effective

methods to tackle network security challenges. This opens new horizons in network

security disciplines and resolves problems of conflicts in the configuration of the

46

numerous network security devices and other active network elements. The

integration of SIEM and SDN technologies as demonstrated represents a unique

network-wide intelligent security solution with integrated advanced detection and

reaction capabilities.

 Major vendors are offering OF functionality in their products. These are becoming

more available on the growing SDN market. It seems very likely that the adoption of

OF will continue at an increasing rate in the coming years. In the SDN network

infrastructure, SIEM is able to provide an automated reaction to security threats in

an effective manner due to its single point configuration of the numerous network

security devices and other active network elements.

 The study showed that when attack traffic was detected it could be automatically

dropped or routed to a honeypot for further monitoring where it would be possible

to gather data log files about the attack activity and its metrics. This data can be

further analyzed by SIEM. SIEM can then deploy pro-active security rules to the

entire network based on this acquired data.

 Although an integrated SIEM / SDN implementation can successfully release many

hardware resources from networks and greatly simplify security management,

eliminating ‘human-in-the-loop’ intervention is often impractical; human

intervention by a trained incident handler is often required. Most of the times for

forensic reasons or business needs a compromised system may be kept online.

 The integrated use of SIEM for security monitoring with intelligent creation and

deployment of security rules in SDN based networks can effect finer grained security

policies whereby each individual network port can act as a single firewall. The

savings in CAPEX and OPEX can be very considerable.

47

Appendix 1: SlowLoris DOS attack from application layer against SDN

northbound interface

At the first step, we need to install Ryu framework with the following steps:

1- git clone git://github.com/osrg/ryu.git

2- cd ryu; python ./setup.py install

For running the controller, the following file should be executed

3- ./ryu/app/sdnhub_apps/run_sdnhub_apps.sh

Then we can add a switch if we do have openVswitch available or installed by

the following command:

4- sudo apt-get install openvswitch-switch

5- ovs-vsctl add-br s1

6- sudo ovs-vsctl set-controller s1 tcp:192.168.56.103:6633

 The web GUI of the Ryu controller is available on the ip:8080 as shown in the

figure below:

Now as an application, we want to make an inquiry about the switch information:

7- curl -X GET http://192.168.56.103:8080/stats/desc/1

The result is shown in the following figure:

48

In this step, we want to launch Slowloris Dos attack from a trusted boundary against

NBI:

 SlowLoris-type DDOS tool are available in both Perl and Python scripts as open-

source tool:

Requirements:

 8- sudo apt-get update

 9- sudo apt-get install perl

10- sudo apt-get install libwww-mechanize-shell-perl

 11- wget - c https://github.com/llaera/slowloris.pl/archive/master.zip

 CPU usage before doing the attack is shown in the picture below:

https://github.com/llaera/slowloris.pl/archive/master.zip

49

12 - After unzipping the file, we need to run the attack with the following command:

 Sudo perl Slowloris.pl - dns 192.168.56.103 - port 8080 - timeout 500 - tcpto 5 -

num 1000

Then we need to wait for some minutes; afterwards, we will be unable to get any

information from the controller or make any change on it.

 The CPU usage some minutes after launching the attack is shown below:

50

So, now it is the time to check the switch’s status again as an application:

51

Also web interface of the controller:

It is failed to connect to the localhost port 8080 which NBI was running on it; the

connection was refused.

The test video has been uploaded in the following link:

https://www.youtube.com/watch?v=dDsGNUTiqVA

https://www.youtube.com/watch?v=dDsGNUTiqVA

52

Appendix 2: integration SDN with SIEM (OSSIM)

 SDN controller installation and configuration

1- At the first step we need to install OpenDayLight SDN controller. So, we need to

download it from the link below and setup on the Ubuntu server 14 – 64 bit.

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylig

ht/integration/distributions-serviceprovider/0.1.1/distributions-serviceprovider-0.1.1-

osgipackage.zip

Or we can directly install it from linux command line with the following steps:

1- sudo apt-get update

2- sudo apt-get install maven git openjdk-7-jre openjdk-7-jdk

3- git clone http://git.opendaylight.org/gerrit/controller.git

4- cd controller/opendaylight/distribution/opendaylight

5- mvn clean install

6- export JAVA_HOME=/usr/lib/jvm/java-1.7.0-openjdk-amd64

7- echo JAVA_HOME=/usr/lib/jvm/ java-1.7.0-openjdk-amd64 >> ~/.bashrc

8- cd target/distribution.opendaylight-0.1.0-SNAPSHOT-

osgipackage/opendaylight

9- ./run.sh

After the installing, we can access to web UI via http://ip:8080

2- OpenVswitch installation

This virtual switch needs to be installed on the OSUbuntu server 14 – 64 bit with

the following steps:

1- sudo apt-get install openvswitch-switch openvswitch-controller

For defining a switch, the command below needs to be executed:

2- ovs-vsctl port-br ovs-br1

For defining OpenFlow version, the following command needs to be
executed:

3- ovs-vsctl set bridge br1 protocols=OpenFlow13

 For adding a port to the switch:

4- ovs-vsctl add-port ovs-br1 vnet0 # OSSIM : Network based detection

https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/integration/distributions-serviceprovider/0.1.1/distributions-serviceprovider-0.1.1-osgipackage.zip
https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/integration/distributions-serviceprovider/0.1.1/distributions-serviceprovider-0.1.1-osgipackage.zip
https://nexus.opendaylight.org/content/repositories/opendaylight.release/org/opendaylight/integration/distributions-serviceprovider/0.1.1/distributions-serviceprovider-0.1.1-osgipackage.zip

53

5- ovs-vsctl add-port ovs-br1 vnet1 # Victim

6- ovs-vsctl add-port ovs-br1 vnet2 # Attacker

 For establishing connection between controller and switch just simply, the

command below should be executed in the command line:

7- ovs-vsctl set-controller ovs-br1 tcp:ip:port

OSSIM installation and configuration

First OSSIM should be downloaded from the link below:

https://www.alienvault.com/products/ossim/download

Then we need to import it into the virtual machine, afterward MySQL service for

OSSIM should be started. For integrating SDN controller and OSSIM we need a

script to check the OSSIM’s database and in case of any incident we can access to the

SDN controller and deploy the rule. In order to perform this policy, just we need to

put the script below and schedule the OSSIM’s crontab to execute the script in an

optional interval time.

1- sudo service mysql start

2- Sudo nano SDN.sh

#!/bin/bash

mysql -uroot -prCra6pNEfR alienvault -e "SELECT * FROM incident_alarm" |awk

'{print $3,$4}'|awk 'NR>1'|awk 'END{print}' |awk '{print $1}'

mysql -uroot -prCra6pNEfR alienvault -e "SELECT * FROM incident_alarm" |awk

'{print $3,$4}'|awk 'NR>1'|awk 'END{print}' |awk '{print $2}'

/usr/bin/curl -u admin:admin -H 'Content-type: application/json' -X PUT -d

"{\"installInHw\":\"true\", \"name\":\"flows1$w\", \"node\":

{\"id\":\"00:00:00:10:f3:29:b1:81\", \"type\":\"OF\"}, \"etherType\": \"0x800\",

\"nwSrc\": \"${SRC[$i]}\", \"nwDst\": \"${DST[$i]}\",

\"priority\":\"65535\",\"actions\":[\"DROP\"]}"

"http://192.168.10.10:8080/controller/nb/v2/flowprogrammer/default/node/OF/0

0:00:00:10:f3:29:b1:81/staticFlow/flows1$w"

https://www.alienvault.com/products/ossim/download
http://192.168.10.10:8080/controller/nb/v2/flowprogrammer/default/node/OF/00:00:00:10:f3:29:b1:81/staticFlow/flows1$w
http://192.168.10.10:8080/controller/nb/v2/flowprogrammer/default/node/OF/00:00:00:10:f3:29:b1:81/staticFlow/flows1$w

54

In order to create manual rule ticket from OSSIM web UI the following code has been

written in the php programming language and Linux bash script:

<?php

$db_ip=trim(shell_exec("/bin/cat /etc/ossim/ossim_setup.conf | grep db_ip| awk -

F= '{print $2}'"));

$db_user=trim(shell_exec("/bin/cat /etc/ossim/ossim_setup.conf | grep '^user='|

awk -F= '{print $2}'"));

$db_pass=trim(shell_exec("/bin/cat /etc/ossim/ossim_setup.conf | grep '^pass='|

awk -F= '{print $2}'"));

$db_id=trim(shell_exec("/bin/cat /usr/share/ossim/www/forensics/net.sh | grep

'^#LAST_ID='| awk -F= '{print $2}'"));

$last_id=$db_id;

if (!$con = mysql_connect($db_ip,$db_user,$db_pass)) {

 echo 'Could not connect to mysql';

 exit;

}

if (!mysql_select_db('alienvault', $con)) {

 echo 'Could not select database';

 exit;

}

$qry = "SELECT i.id,ia.src_ips,ia.dst_ips,ie.src_ips as src_ipse,ie.dst_ips as

dst_ipse FROM incident i LEFT JOIN incident_alarm ia ON i.id=ia.incident_id

LEFT JOIN incident_event ie ON i.id=ie.incident_id WHERE i.id > $db_id";

$result = mysql_query($qry,$con);

if (!$result) {

 echo "DB Error, could not query the database\n";

 echo 'MySQL Error: ' . mysql_error();

 exit;

}

55

$id= array();

$src=array();

$dst=array();

while ($row = mysql_fetch_array($result)) {

 if (($row['id'] && $row['src_ips'] && $row['dst_ips']) || ($row['id'] &&

$row['src_ipse'] && $row['dst_ipse'])){

 $id[]=$row['id'];

 if ($row['src_ips'])

 $src[]=$row['src_ips'];

 else

 $src[]=$row['src_ipse'];

 if ($row['dst_ips'])

 $dst[]=$row['dst_ips'];

 else

 $dst[]=$row['dst_ipse'];

 $last_id=$row['id'];

 }

}

$id=implode(',',$id);

$src=implode(',',$src);

$dst=implode(',',$dst);

if (!empty($id))

 shell_exec("sudo /usr/share/ossim/www/forensics/net.sh Sdn $id $src

$dst");

shell_exec("/bin/sed -i 's/^#LAST_ID=.*/#LAST_ID=$last_id/g'

/usr/share/ossim/www/forensics/net.sh");

mysql_free_result($result);

?>

56

When the source and destination’s IP address are specified from the web UI of SIEM

then they are set into variables and parsed to the script below; thus, according the IP

address a flow is added to the SDN controller and the defined action is executed.

Net.sh

#!/bin/bash

SET VARIABLES ##

 ###################

 ID="$1"

 SRC_IP="$2"

 DST_IP="$3"

 IFS=',' read -ra SRC «< "$SRC_IP"

 IFS=',' read -ra DST «< "$DST_IP"

ADD FLOW ##

 ##############

 i=0

 for w in $(echo "$ID" | tr ',' ' ') ; do

 /usr/bin/curl -u admin:admin -H 'Content-type: application/json' -X PUT -d

"{\"installInHw\":\"true\", \"name\":\"flows1$w\", \"node\":

{\"id\":\"00:00:2c:60:0c:94:84:99\", \"type\":\"OF\"}, \"etherType\": \"0x800\",

\"nwSrc\": \"${SRC[$i]}\", \"nwDst\": \"${DST[$i]}\",

\"priority\":\"65535\",\"actions\":[\"DROP\"]}"

"http://localhost:8080/controller/nb/v2/flowprogrammer/default/node/OF/00:00

:2c:60:0c:94:84:99/staticFlow/flows1$w"

 i=$i+1

 done

#################

The programming code is accessible from the following links:

https://drive.google.com/file/d/0B_aE3moMH9wwcnBBZGZUdVVFbTg/view?usp=sharing

https://drive.google.com/open?id=0B_aE3moMH9wwMXYwZmRHTkdYcTA

The test for integrating SDN with SIEM result video has been uploaded in this link:

https://www.youtube.com/watch?v=eqaUkvFQJ48&feature=youtu.be

https://drive.google.com/file/d/0B_aE3moMH9wwcnBBZGZUdVVFbTg/view?usp=sharing
https://drive.google.com/open?id=0B_aE3moMH9wwMXYwZmRHTkdYcTA
https://www.youtube.com/watch?v=eqaUkvFQJ48&feature=youtu.be

57

References

[1] "Open Networking Foundation :Dedicated to SDN," Open Networking Foundation, 2015.
[Online]. Available: https://www.opennetworking.org/sdn-resources/sdn-definition. [Accessed
25 11 2015].

[2] Kristian Slavov, Daniel Migault, Makan Pourzandi, "IDENTIFYING AND ADDRESSING THE
VULNERABILITIES AND SECURITY ISSUES OF SDN," Ericsson, 2015.

[3] Mike McBride, Marc Cohn , Smita Deshpande, "https://www.opennetworking.org," 8 10 2013.
[Online]. Available: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/solution-briefs/sb-security-data-center.pdf. [Accessed 20 11 2015].

[4] Sandra Scott-Hayward, Christopher Kane and Sakir Sezer, "OperationCheckpoint:SDN
Application Control," in IEEE 22nd International Conference on Network Protocols, Washington,
DC, USA, 2014 .

[5] Kevin Benton, L. Jean Camp ,Chris Small, "OpenFlow Vulnerability Assessment," in Proceedings
of the second ACM SIGCOMM workshop on Hot topics in software defined networking, New
York, 2013.

[6] Jérôme François, Issam Aib, "A Collaborative Protection Network for the Detection of Flooding
DDoS Attacks," IEEE/ACM TRANSACTIONS ON NETWORKING, vol. 20, no. 6, pp. 1828 - 1841,
December 2012.

[7] Lisa Schehlmann, Sebastian Abt and Harald Baier, "Blessing or Curse? Revisiting Security Aspects
of Software-Defined Networking," in 10th International Conference on Network and Service
Management (CNSM) and Workshop, Rio de Janeiro, 2014.

[8] Rowan Kl¨oti, Vasileios Kotronis, Paul Smith, "OpenFlow: A Security Analysis," in International
Conference on Network Protocols (ICNP), 2013.

[9] Teemu, Martin, Natasha, Jeremy, Leon, Min,Rajiv,Yuichiro,Hiroaki,Takayuki, "Onix: A Distributed
Control Platform for Large-scale Production Networks," in in Proceedings of, Berkeley, CA, 2010.

[10] R. Chua, "www.sdxcentral.com," 2013. [Online]. Available:
https://www.sdxcentral.com/articles/news/juniper-new-sdn-strategy-contrail-role/2013/01/.
[Accessed 10 12 2015].

[11] OpenDaylight, "OpenDaylight SDN Controller Platform," OpenDaylight, 19 03 2015. [Online].
Available:
https://wiki.opendaylight.org/view/OpenDaylight_SDN_Controller_Platform_(OSCP):Main.
[Accessed 12 12 2015].

[12] ONF, "“Open Networking Foundation.”," 2015. [Online]. Available:
https://www.opennetworking.org/. [Accessed 13 12 2015].

58

[13] S. LLC, "what-is-openflow," Juniper networks, 2012. [Online]. Available:
https://www.sdxcentral.com/resources/sdn/what-is-openflow/. [Accessed 15 12 2015].

[14] M. Kassner, "TechRepublic," 2015. [Online]. Available: http://www.techrepublic.com/blog/it-
security/software-defined-networking-how-it-affects-network-security/. [Accessed 20 12 2015].

[15] G. V. Nikolaev, Network Monitoring with Software Defined networking Towards: OpenFlow
network monitoring, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft
university of Techonolgy, 2013.

[16] S. Zaghloul, "SDN 101: Software Defined Networking - IBM Academic Initiatives," IBM, 2014.

[17] ONF, "OpenFlow Switch Specification (version 1.5.1)," 2015.

[18] Ben Pfaff,Justin Pettit,Teemu Koponen, "Extending Networking into the Virtualization Layer," in
HotNets, New York , 2009.

[19] Andreas Voellmy, Ashish Agarwal, Paul Hudak, "Nettle: Functional Reactive Programming of
OpenFlow Networks," Yale University, 2010.

[20] Bruno Batista, Marcial Fernandez, "A New Policy Specification Language to SDN OpenFlow-
based Networks," International Journal On Advances in Networks and Services, vol. 7, p. 163 to
172, 2014.

[21] PLVision, "Software-Defined Networking," PLVision, 2015. [Online]. Available:
http://plvision.eu/expertise/networking/software-defined-networking/. [Accessed 10 12 2015].

[22] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Verı´ssimo,Christian Esteve
Rothenberg,Siamak Azodolmolky, "Software-Defined Networking:A Comprehensive Survey,"
Proceedings of the IEEE, vol. 103, no. 1, p. 31, January 2015.

[23] Xinyang Feng, Jianjing Shen , Ying Fan, "REST: An alternative to RPC for Web services
architecture," in Future Information Networks, Beijing, 2009.

[24] S. RAO, "OpenDaylight, the Most Documented Controller," 2015. [Online]. Available:
http://thenewstack.io/sdn-series-part-vi-opendaylight/. [Accessed 10 05 2016].

[25] ONF, "SDN Architecture Overview," Open Networking Foundation, 2013.

[26] A. Shostack, "STRIDE : Chapter 3," in Threat Modeling: Designing for Security, John Wiley & Sons,
2014, p. 624.

[27] "Computer Security Threat Sources (Attacks)," comptechdoc, [Online]. Available:
http://www.comptechdoc.org/man/Business_guide/risk-assessment/securitythreats.html.
[Accessed 10 02 2016].

[28] OWASP, "Category:Threat Agent," [Online]. Available:
https://www.owasp.org/index.php/Category:Threat_Agent. [Accessed 02 02 2016].

[29] Naved Ahmed , Raimundas Matulevicius, "A Method for Eliciting Security Requirements from
the Business Process Models," Joint Proceedings of the CAiSE 2014 Forum and CAiSE 2014

59

Doctoral Consortium, vol. 1164, 18 06 2014.

[30] R. B. Natan, Implementing Database Security and Auditing: Includes Examples for Oracle, SQL
Server, DB2 UDB, Sybase, MA, USA: Digital Press Newton, 2005.

[31] N. MAYER, "Model‐Based Management of Information System Security Risk," Doctoral Thesis in
Computer Science, Belgium, 2009.

[32] Christopher Monsanto, Joshua Reich, Nate Foster,Jennifer Rexford, David Walker, "Composing
Software-Defined Networks," in In: NSDI, 2013.

[33] Adnan Akhunzada, Abdullah Gani, Nor Badrul Anuar, Ahmed Abdelaziz, Muhammad Khurram
Khan, Amir Hayat, Samee U.Khan, "Secure and dependable software defined networks," Journal
of Network and Computer Applications, 2015.

[34] Xitao Wen, Yan Chen, Chengchen Hu,Chao Shi, Yi Wang, "Towards A Secure Controller Platform
for OpenFlow Applications," in second ACM SIGCOMM workshop on hot topics in SDN, Hong
Kong, 2013.

[35] J. M. Dover, "A denial of service attack against the Open Floodlight SDN controller," Dover
Networks LLC.

[36] Diego Kreutz, Fernando M. V. Ramos, Paulo Verissimo, "Towards Secure and Dependable
Software-Defined Networks," in second ACM SIGCOMM workshop on hot topics in SDN, Hong
Kong, 2013.

[37] R. S. F. Community, "COMPONENT-BASED SOFTWARE DEFINED NETWORKING FRAMEWORK,"
Ryu, 2014. [Online]. Available: https://osrg.github.io/ryu/.

[38] Incapsula, "Slowloris : DDoS Attack Glossary," Incapsula, [Online]. Available:
https://www.incapsula.com/ddos/attack-glossary/slowloris.html. [Accessed 07 05 2016].

[39] indiandragon, "How to perform a HTTP flooding using a low bandwidth attack," [Online].
Available: http://blog.indiandragon.in/2012/04/how-to-perform-a-http-flooding-using-a-low-
bandwidth-attack.html. [Accessed 38 04 2016].

[40] D. Miessler, "The Carriage Return and Line Feed Characters," [Online]. Available:
https://danielmiessler.com/study/crlf/. [Accessed 18 05 2016].

[41] OWASP, "How to Build an HTTP Request Validation Engine for Your J2EE Application," OWASP,
[Online]. Available:
https://www.owasp.org/index.php/How_to_Build_an_HTTP_Request_Validation_Engine_for_Y
our_J2EE_Application#Simple_and_Obvious_API. [Accessed 13 05 2016].

[42] A. Kibirkstis, "What is The Role of a SIEM in Detecting Events of Interest?," November 2009.
[Online]. Available: https://www.sans.org/security-resources/idfaq/what-is-the-role-of-a-siem-
in-detecting-events-of-interest/5/10. [Accessed 15 03 2016].

[43] Sunil Gupta, Dr. Kees Leune, "Logging and Monitoring to Detect Network Intrusions and
Compliance Violations in the Environment," SANS Institute InfoSec Reading Room, 2012.

60

[44] Prof. Dr. K.-O. Detken, T. Rix,Prof. Dr. C. Kleiner,B. Hellmann,L. Renners, "SIEM approach for a
higher level of IT security in enterprise networks," in The 8th IEEE International Conference on
Intelligent Data Acquisition and Advanced Computing Systems, Warsaw, Poland, 2015.

[45] A. :. W. PAPER, "OSSIM vs. USM: A Comparison of Open Source vs. Commercial," AlienVault,
2016.

[46] alienvault, "About the USM Plugin Types," [Online]. Available:
https://www.alienvault.com/documentation/usm-v5/plugin-management/plugin-comp-
types.htm#Detector. [Accessed 05 04 2016].

[47] Maciej Ku´zniary, Peter Perešíniy, Dejan Kosti´cz, "What you need to know about SDN control
and data planes," EPFL Technical Report EPFL-REPORT-199497, 2014.

[48] Flowgrammable, "OpenFlow: Switch Anatomy," Flowgrammable, [Online]. Available:
http://flowgrammable.org/sdn/openflow/#tab_switch. [Accessed 15 03 2016].

[49] ONF, "OpenFlow Switch Specification: Version 1.3.1," 2012.

	1- Introduction
	1.1 Motivation and problem statement
	1.2 Research questions
	1.3 Scope
	1.4 Related work

	2- Background
	2.1 Software-Defined Networking
	2-2 Architecture
	2-2-1 OpenFlow
	2-2-2 Data-Plane
	2-2-3 Control Layer
	2-2-4 Infrastructure layer
	2-2-5 Application Layer
	2-2-6 Management plane:

	3- SDN Application Layer and NBI Security Evaluation and Threat Modeling
	3-1 STRIDE Threat Modeling
	3-2 SDN controller’s NBI and application layer’s threat model
	3-3 Eliciting Security Requirements
	3-4 Case study
	3.4.1 Parties (stakeholders and their goals) in the case study
	3.4.2. Business assets:
	3.4.3. IS (Information System) assets:
	3.4.5. Security requirements

	3.5 Application layer DOS attack
	3.6 Solutions for mitigating the SlowLoris DDOS-attack
	3.6.1 Connection request validation
	What is [CRLF] in the Get request?
	3.6-2 limiting the number of connections to the controller from NBI

	4- Automate packet dropping/blocking at SDN controller
	4-1 SIEM
	4-1-1 OSSIM

	4-2 Methodology
	4-3 Implementation

	5- Conclusion and Future Work
	References

