
Tallinn 2022

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Pilleriin Kõiva 193413IAIB

Implementation and Performance Assessment

of Swarm Intelligence Based Numerical

Association Rule Mining Algorithms

Bachelor's thesis

Supervisor: Minakshi Kaushik

 M.Tech,

Early Stage Researcher

Tallinn 2022

TALLINNA TEHNIKAÜLIKOOL

Infotehnoloogia teaduskond

Pilleriin Kõiva 193413IAIB

Kollektiivsel intelligentsusel põhinevate

numbriliste assotsiatsioonireeglite

kaevandamise algoritmide realiseerimine ja

soorituse hindamine

Bakalaureusetöö

Juhendaja: Minakshi Kaushik

 M.Tech,

doktorant-nooremteadur

3

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Pilleriin Kõiva

30.05.2022

4

Abstract

Association rule mining (ARM) is an important technique for discovering relationships

among different data items in data mining. The classical ARM has limitations with

numerical data as these algorithms can only deal with binary data. Numerical association

rule mining (NARM) is an extended version of ARM that identifies association rules

(ARs) in numerical data items. Many evolutionary and swarm intelligence-based (SI)

algorithms are proposed for extracting significant rules from a numeric dataset without

discretizing numeric attributes under the umbrella of optimization algorithms.

Several of these algorithms claim to be more efficient than others. Therefore, it is hard to

determine the most efficient algorithm to mine numerical association rules among various

NARM algorithms. This thesis examines the performance assessment of four swarm

intelligence-based numerical association rule mining algorithms (MOPAR, MOCANAR,

ACOR and MOB-ARM). These NARM algorithms are proposed by researchers in papers,

while their performance assessment in the real world is missing. However, these

algorithms are compared with other generic optimization algorithms in different

categories. In this thesis, author implements algorithms, and the implementations are

validated. To the best of our knowledge, this is the first time the performance of multi-

objective NARM optimization algorithms within the SI category has been assessed and

compared. To find out which algorithm is the best, the algorithms are tested with four

datasets, and parameters are determined for fair comparison under equal conditions.

Additionally, the algorithms are validated with two datasets, which expose some

differences in the results of the implementations and original algorithms. The

performance assessment of the implementations shows that different multi-objective

NARM optimization algorithms are suitable for different needs. The performance

assessment shows that the main problems are the need for parameter modification in some

datasets and that the algorithms are time-consuming.

This thesis is written in English and is 35 pages long, including 7 chapters, 15 figures and

13 tables.

5

Annotatsioon

Kollektiivsel intelligentsusel põhinevate numbriliste

assotsiatsioonireeglite kaevandamise algoritmide

realiseerimine ja soorituse hindamine

Assotsiatsioonireeglite kaevandamine on oluline andmekaeve meetod erinevate

andmeüksuste vaheliste seoste avastamiseks. Klassikalisel assotsiatsioonireeglite

kaevandamisel on arvandmetega seotud piirangud, kuna need algoritmid saavad käsitleda

ainult binaaseid arvandmeid. Numbriliste assotsiatsioonireeglite kaevandamine on

assotsiatsioonireeglite kaevandamise laiendatud versioon, mis tuvastab numbrilistes

andmeüksustes assotsiatsioonireegleid. Mitmeid evolutsioonil ja kollektiivsel

intelligentsusel põhinevaid algoritme on välja pakutud selleks, et arvulistest

andmekogumitest eraldada olulisi reegleid ilma, et peaks numbrilisi atribuute

diskretiseerima.

Mitmed neist algoritmidest väidavad end olevat teistest tõhusamad. Seetõttu on erinevate

numbriliste assotsiatsioonireeglite kaevandamise algoritmide hulgast raske määrata kõige

tõhusamat algoritmi numbriliste assotsiatsioonireeglite kaevandamiseks. Käesolevas

lõputöös hinnatakse nelja kollektiivsel intelligentsusel põhineva numbriliste

assotsiatsioonireeglite kaevandamise algoritmi sooritust (MOPAR, MOCANAR, ACOR

ja MOB-ARM). Need algoritmid on välja pakutud teadlaste poolt dokumentides, samas

kui nende soorituse hindamine tegelikus maailmas puudub. Neid algoritme võrreldakse

aga teiste üldiste optimeerimisalgoritmidega erinevates kategooriates. Selles lõputöös

realiseerib autor algoritme ja algoritmid on valideeritud. Meie teadmiste kohaselt on see

esimene kord kui kollektiivsel intelligentsusel põhinevaid mitme eesmärgiga numbriliste

assotsiatsioonireeglite kaevandamise optimeerimisalgoritmide sooritusi hinnatakse ja

võrreldakse. Parima algoritmi väljaselgitamiseks testitakse algoritme nelja

andmekogumiga ja määratakse parameetrid õiglaseks võrdlemiseks võrdsetel

tingimustel. Lisaks valideeritakse algoritme kahe andmekogumiga, mis paljastavad

mõningad erinevused realiseerimiste ja algsete algoritmide tulemustes. Rakenduste

soorituse hindamine näitab, et erinevatele vajadustele sobivad erinevad algoritmid.

6

Soorituse hindamine näitab, et peamised probleemid on parameetrite muutmise vajadus

mõnes andmekogumis ja see, et algoritmid on aeganõudvad.

Lõputöö on kirjutatud inglise keeles ning sisaldab teksti 35 leheküljel, 7 peatükki, 15

joonist, 13 tabelit.

7

List of abbreviations and terms

ARM Association Rule Mining

NARM Numerical Association Rule Mining

PSO Particle Swarm Optimization

CS Cuckoo Search

ACO Ant Colony Optimization

BA Bat Algorithm

MOPAR Multi-objective particle swarm optimization algorithm for

numerical association rule mining

MOCANAR Multi-objective cuckoo search algorithm for numerical

association rule mining

ACOR Multi-objective ant colony optimization algorithm for

continuous domains

MOB-ARM Multi-objective bat algorithm for numerical association rule

mining

SI Swarm Intelligence

8

Table of contents

1 Introduction ... 12

2 Related work .. 14

3 Background .. 16

3.1 Data mining .. 16

3.2 Association Rule Mining .. 16

3.3 Numerical Association Rule Mining .. 17

3.3.1 Swarm Intelligence Optimization .. 17

3.4 Multi-objective NARM .. 20

4 Swarm Intelligence Optimization Algorithms ... 21

4.1 Particle Swarm Optimization.. 21

4.1.1 PSO background .. 21

4.1.2 MOPAR ... 21

4.1.3 MOPAR algorithm .. 22

4.2 Cuckoo Search .. 24

4.2.1 CS background .. 25

4.2.2 MOCANAR ... 25

4.2.3 MOCANAR algorithm .. 26

4.3 Ant Colony Optimization ... 28

4.3.1 ACO background ... 28

4.3.2 ACOR ... 28

4.3.3 ACOR algorithm .. 30

4.4 Bat Algorithm ... 32

4.4.1 BA background .. 32

4.4.2 MOB-ARM .. 32

4.4.3 MOB-ARM algorithm ... 34

5 Implementation and experimental setup .. 37

5.1 Helpers .. 37

5.2 Dataset description ... 38

5.3 Hardware description .. 38

9

5.4 Parameter description ... 39

6 Analysis ... 41

6.1 Validation ... 41

6.2 Comparison ... 43

6.3 Proposed future improvements ... 46

7 Summary .. 47

References .. 48

Appendix 1 – Non-exclusive licence for reproduction and publication of a graduation

thesis ... 50

10

List of figures

Figure 1. Pseudocode of nature-inspired metaheuristic algorithm. 17

Figure 2. Pseudocode of MOPAR. ... 22

Figure 3. MOPAR algorithm steps. .. 23

Figure 4. Pseudocode of MOCANAR. ... 25

Figure 5. MOCANAR algorithm steps. .. 26

Figure 6. Pseudocode of ACOR. ... 29

Figure 7. ACOR algorithm steps. .. 30

Figure 8. Pseudocode of MOB-ARM. .. 33

Figure 9. MOB-ARM algorithm steps. ... 34

Figure 10. Average time spent by the algorithms. .. 44

Figure 11. Average number of rules mined by the algorithms. 44

Figure 12. Average support values of the rules mined by the algorithms. 45

Figure 13. Average confidence values of the rules mined by the algorithms. 45

Figure 14. Average comprehensibility values of the rules mined by the algorithms. 45

Figure 15. Average interestingness values of the rules mined by the algorithms. 46

11

List of tables

Table 1. Datasets... 38

Table 2. MOPAR algorithm parameters for validation. ... 39

Table 3. MOPAR algorithm parameters for comparison. .. 39

Table 4. MOCANAR algorithm parameters for validation. ... 39

Table 5. MOCANAR algorithm parameters for comparison. .. 40

Table 6. ACOR algorithm parameters. ... 40

Table 7. MOB-ARM algortihm parameters for validation. .. 40

Table 8. MOB-ARM algorithm parameters for comparison. ... 40

Table 9. MOPAR algorithm validation. ... 41

Table 10. MOCANAR algorithm validation. ... 42

Table 11. ACOR algorithm validation. ... 42

Table 12. MOB-ARM algorithm validation. .. 42

Table 13. Comparative results for the implementations. .. 43

12

1 Introduction

Nowadays, a lot of data is stored in transactional databases, where each column represents

an attribute, and each row represents an instance. In data mining, Association Rule

Mining (ARM) is a well-known technique to find interesting relations among various data

items [1].

The ARM was introduced by Agrawal in 1993 [2] to discover the associations between

data items in market basket analysis. Later, some essential algorithms, such as Apriori

[3], and FP-Growth [4], were proposed. These algorithms were suitable for binary data

but could not deal with numerical data. In 1994, Srikant introduced the concept of

quantitative association rule mining (QARM) [5] to deal with numerical data. Further,

this technique is also known as numerical association rule mining (NARM) [6].

Several methods such as optimization, discretization, and distribution are available in the

literature to solve the problem of NARM [6], [7]. The optimization method seems to be

a potential solution to deal with such complex problems. Evolutionary-based and swarm

intelligence-based algorithms come under the optimization method [7].

Recent NARM optimization algorithms cover swarm intelligence-based algorithms,

which are based on animal, and insect movements and the biological behaviour of natural

objects [8].

Several SI-based NARM algorithms claim to be more efficient than other algorithms in

the literature. However, these algorithms are compared with evolutionary algorithms, not

SI-based ones. Primarily, these algorithms are proposed by researchers in papers

theoretically, while their implementations and performance assessment in the real world

are missing [8].

The problem of finding the best-performing SI-based NARM algorithm on real-world

data motivates the implementation and performance analysis of these algorithms.

13

The goal of this work is to implement and analyse the performance of four SI-based

algorithms, which are MOPAR [9], ACOR [10], MOB-ARM [11], and MOCANAR [12].

This goal is divided into the following tasks: 1) implement the chosen algorithms in

Python, 2) validate the implementations of the algorithms, and 3) assess the performance

of these algorithms using the number of rules, time consumed, support, confidence,

comprehensibility, and interestingness measures. As a result of this work, the chosen

variants are implemented, and the performance of the implementations is compared and

analysed. Based on the analysis, it can be concluded which algorithm is the best.

This thesis is organized as follows: In section 2, related work is discussed. In section 3,

the theoretical background of data mining, association rule mining, numerical association

rule mining, and swarm intelligence optimization is given. In section 4, swarm

intelligence optimization algorithms, their detailed information of the chosen algorithm

variants is given, and their implementations are explained. In section 5, the additional

implementation necessary to run the algorithms and experimental setup are given. The

validation and performance evaluation of algorithms are shown in section 6. Finally, a

summary is presented in section 7.

14

2 Related work

Works related to the performance assessment of NARM algorithms are discussed in this

section. These works differ from our work in the assessed algorithms and the measures

that are used to assess their performances.

Performance analysis of evolutionary algorithms for NARM was done in [6]. This work

analysed the performance of seven evolutionary and fuzzy evolutionary NARM

algorithms. The chosen algorithms were also compared against the Apriori algorithm. A

comparative analysis was done in terms of support, confidence, the number of rules

mined, number of records covered, and time spent using eleven real-world datasets. This

research found that the evolutionary algorithms have better results in terms of support,

confidence, and time metrics. According to the authors, this was the first time

performance analysis of evolutionary and fuzzy evolutionary algorithms for NARM was

done with real-world datasets.

Altay performed a performance analysis of multi-objective NARM algorithms in [13]. In

this research, six multi-objective and four single-objective optimization algorithms were

chosen to be compared. The number of rules, coverage percentage, support, confidence,

conviction, lift, netconf, ylesQ and certain factor measures were used for comparative

analysis. Ten real-world datasets were used. This research found that multi-objective

algorithms outperformed single-objective algorithms in terms of support, lift, certain

factor, netconf, and yulesQ metrics. According to the authors, this was the first time

performance analysis of multi-objective NARM optimization algorithms was done with

real-world datasets.

An example of using NARM for real-world problems was presented in [14], which did

an association analysis of multi-objective NARM algorithms using data about

Parkinson’s disease. This research used numerical data consisting of speech samples

related to Parkinson’s disease. This data was used on three multi-objective NARM

algorithms to find association rules related to healthy individuals and patients with

Parkinson’s disease. The number of rules, coverage percentage, support, confidence,

15

conviction, lift, netconfylesQ and certain factor measures were used for comparative

analysis. According to the authors, this was the first time an association analysis of

Parkinson’s disease for early diagnoses was performed.

Another example of using NARM for real-world problems was presented in [15], which

presented an association analysis of multi-objective NARM algorithms using data about

liver fibrosis. This data was used on two multi-objective NARM algorithms to find

association rules related to liver fibrosis. The number of rules, coverage percentage,

support, confidence, conviction, lift, netconf, ylesQ and certain factor measures were used

for comparative analysis. After that, a sensitivity analysis was done to find the best

parameters for this problem. According to the authors, this was the first time an

association analysis of liver fibrosis for early diagnosis was performed.

16

3 Background

In this section, the theoretical background of numerical association rule mining is

explained to aid comprehension of the implementation and performance analysis of the

algorithms. First, an overview of data mining and association rule mining is given. After

that, numerical association rule mining and swarm intelligence optimization are

explained. Finally, multi-objective NARM is discussed.

3.1 Data mining

Data mining is the process of extracting previously unknown and potentially useful

information from data in databases. There are many different challenges that data mining

techniques deal with, such as handling different types of data, and the efficiency and

scalability of data mining techniques [16].

Data mining is application-dependent, and different applications require different mining

techniques. Examples of different applications include association rule mining, data

generalization, data classification, and data clustering [16].

3.2 Association Rule Mining

Association rule mining is a data mining technique that aims to extract interesting

correlations, frequent patterns, or associations among sets of items in mainly transactional

databases [1]. Association rule mining was first introduced by [2]. In ARM, association

rules are if-then relationships, that have an antecedent, and a consequent [1].

One application of association rule mining is to find out what products are bought together

from a store. The mined association rules can help determine how to boost the sales of a

product, what products may be impacted by discontinuing another product, and the best

locations for the products [2].

A commonly used algorithm for ARM is Apriori [3]. The Apriori algorithm works by

constructing a candidate set of frequent itemsets, counting occurrences of each candidate

17

itemset and determining frequent itemsets based on pre-determined support and

confidence [16]. Other known ARM algorithms are AIS [2] and FP-growth [4].

3.3 Numerical Association Rule Mining

Numerical association rule mining is used to extract association rules from numerical

data. An example of a numerical association rule Age ∈ [25, 40] ⇒ Salary ∈

[1300, 2000] would be “If the age of an employee is between 25 and 40, then their salary

is between 1300 and 2000.” Here, age is the antecedent and salary is the consequent part

of the rule. Numerical association rule mining can be divided into distribution,

discretization, and optimization methods [7].

3.3.1 Swarm Intelligence Optimization

Optimization methods provide a robust and effective approach for massive search spaces.

This method is divided into biology-inspired and physics-based methods. Biology-based

algorithms are further divided into swarm intelligence- and evolution-based algorithms

[7].

Swarm intelligence optimization techniques are inspired by the collective behaviour of

social insects, birds, or animals, that follow a set of rules [17]. According to [8], the most

popular swarm intelligence-based algorithms for NARM are Particle Swarm

Optimization and Ant Colony Optimization. The Bat Algorithm and the Cuckoo Search

Algorithm are also part of the family.

The pseudocode of a nature-inspired metaheuristic algorithm is shown in Figure 1. First,

a population of agents is initialized with random solutions. The solutions are evaluated in

terms of the used objectives. After that, each agent modifies its solution until a stopping

criterion is met, and the best generated solutions are returned [8].

Initialize population

Evaluate solutions

For iteration in max iterations:

 Modify solutions

 Evaluate modified solutions

 Select best solutions

Return best solutions

Figure 1. Pseudocode of nature-inspired metaheuristic algorithm.

18

A solution needs to be encoded in the search space to mine numerical association rules.

When using the Michigan approach for representing individuals, each individual encodes

a single association rule [8].

The first representation of association rules used in NARM, shown in equation (1),

encodes the rule as a vector of attributes consisting of n number of triplets, where n is the

number of attributes in the transactional database. Each triplet consists of three elements.

𝐴𝐶𝑁𝑛 determines whether the attribute is present in the rule. ACN stands for antecedent,

consequent, not present. 𝐿𝐵𝑛 determines the lower bound of the attribute and 𝑈𝐵𝑛

determines the upper bound of the attribute [8].

((𝐴𝐶𝑁1, 𝐿𝐵1, 𝑈𝐵1), … , (𝐴𝐶𝑁𝑛, 𝐿𝐵𝑛, 𝑈𝐵𝑛)) (1)

Another way to represent a rule as a vector is shown in equation (2). Here, 𝑠𝑛 shows the

value and 𝛿𝑛 shows the standard deviation of the attribute [10].

((𝐴𝐶𝑁1, 𝑠1, 𝛿1), … , (𝐴𝐶𝑁𝑛, 𝑠𝑛, 𝛿𝑛)) (2)

The 𝐴𝐶𝑁𝑛 element can be encoded in two different ways. In the first way, shown in

equation (3), if 𝐴𝐶𝑁𝑛 value is less than or equal to 1/3, then the attribute is in the

antecedent part of the rule. If the value is bigger than 1/3 and smaller than or equal to 2/3,

then the attribute is in the consequent part. If the value is bigger than 2/3, then the attribute

is not present in the rule [8].

𝑗 =

{

 𝐴𝐶𝑁𝑗 ≤

1

3
, 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡

1

3
< 𝐴𝐶𝑁𝑗 ≤

2

3
, 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡

𝐴𝐶𝑁𝑗 >
2

3
, 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

(3)

The second way to encode 𝐴𝐶𝑁𝑛 is shown in equation (4). Here, if 𝐴𝐶𝑁𝑛 is 1, then the

attribute is in the antecedent part, if it is 2, then it is in the consequent part, and if it is 0,

then the attribute is not present in the rule [12].

𝑗 = {

𝐴𝐶𝑁𝑗 = 1, 𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡
𝐴𝐶𝑁𝑗 = 2, 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡
𝐴𝐶𝑁𝑗 = 0, 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡

(4)

Another way to represent an association rule is shown in equation (5), where n is the

number of attributes in the database. Here, 𝑐𝑝𝑖 defines the cutting point between the

antecedent and consequent attributes. If the 𝑜𝑖,𝑛 value is zero, then the attribute is omitted

19

from the rule, otherwise it represents the id of the interval of the attribute [8]. In this case,

the database is discretized into intervals.

(𝑐𝑝𝑖, 𝑜𝑖,1, … , 𝑜𝑖,𝑛) (5)

Fitness functions are an important part of evaluating mined association rules to estimate

the quality of solutions [8]. The measures used in this thesis are support, confidence,

comprehensibility, and interestingness.

The support of an association rule 𝑋 ⇒ 𝑌 determines how frequently the itemset appears

in a transactional database. The equation is shown in equation (6), where |𝑋 ∪ 𝑌|

designates the number of transactions containing the antecedent X and consequent Y part

of the rule, and |𝐷| designates the number of transactions in the database [8].

𝑠𝑢𝑝𝑝(𝑋 ⇒ 𝑌) =
|𝑋∪𝑌|

|𝐷|
 (6)

The confidence of an association rule 𝑋 ⇒ 𝑌, shown in equation (7), shows how many

transactions that contain X, also contain Y [8].

𝑐𝑜𝑛𝑓(𝑋 ⇒ 𝑌) =
𝑠𝑢𝑝𝑝(𝑋∪𝑌)

𝑠𝑢𝑝𝑝(𝑋)
 (7)

According to [18], if the number of conditions involved in the antecedent part is less than

the consequent part, the rule is more comprehensible. To calculate the comprehensibility

of an association rule 𝑋 ⇒ 𝑌, equation (8) is used. Here |𝑌| represents the number of

attributes in the consequent part of the rule and |𝑋 ∪ 𝑌| shows the number of attributes in

both the antecedent and consequent parts of the rule [18].

𝑐𝑜𝑚𝑝(𝑋 ⇒ 𝑌) =
log (1+|𝑌|)

log (1+|𝑋∪𝑌|)
 (8)

The interestingness measure is focused on discovering hidden information by extracting

interesting rules. The equation (9) consists of three parts. The first part shows the

probability of generating the rule based on the antecedent part. The second part shows the

probability based on the consequent part. The third part shows the probability of not

generating the rule based on the whole dataset [18].

𝑖𝑛𝑡𝑒𝑟(𝑋 ⇒ 𝑌) =
𝑠𝑢𝑝𝑝(𝑋⇒𝑌)

𝑠𝑢𝑝𝑝(𝑌)
⋅
𝑠𝑢𝑝𝑝(𝑋⇒𝑌)

𝑠𝑢𝑝𝑝(𝑋)
⋅ (1 −

𝑠𝑢𝑝𝑝(𝑋⇒𝑌)

|𝐷|
) (9)

20

3.4 Multi-objective NARM

When an optimization problem involves only one objective function, it is called single-

objective. It is called multi-objective when it involves more than one objective functions

[19].

The weighted sum method is a classical multi-objective method. This method summarizes

multiple objectives into a single objective by multiplying each objective with a pre-

defined weight. It is the simplest multi-objective method, but finding the right multipliers

can be challenging [19].

Another method is Pareto dominance, in which all the objectives are evaluated

simultaneously. One solution dominates another if it improves one objective without

causing a worse outcome for all the other objectives. Using this dominance criterion, non-

dominated solutions can be defined [19].

21

4 Swarm Intelligence Optimization Algorithms

This section explains the chosen swarm intelligence optimization methods and

algorithms. The chosen methods are Particle Swarm Optimization, Cuckoo Search, Bat

Algorithm, and Ant Colony Optimization.

4.1 Particle Swarm Optimization

In this section, Particle Swarm Optimization (PSO) is explained. First, the theoretical

background of PSO is given in 4.1.1. After that, the theory of the chosen variant, MOPAR,

is described in 4.1.2. Finally, the implementation of MOPAR algorithm is given in 4.1.3.

4.1.1 PSO background

Particle Swarm Optimization (PSO) is inspired by the behaviour of social animals, such

as flocks of birds. A flock of birds follow a set of rules, which are used in PSO algorithms.

For example, birds try to avoid collisions, move closely together, and share information

with each other. The agents in PSO are particles, that have been assigned a set of positions

and velocities, based on which the particles move during each iteration [20].

According to [8], many different PSO algorithms have been proposed for NARM. Some

examples are PARCD [21], which uses Cauchy distribution, MOPAR [9], which uses

rough values for NARM, and MOPSO [22], which uses discretization to deal with

numerical attributes.

4.1.2 MOPAR

A multi-objective PSO algorithm for NARM was proposed in [9]. MOPAR uses

confidence, comprehensibility, and interestingness objectives to evaluate association

rules. For rule encoding, equations (1) and (3) are used. Pareto optimality is used for

extracting non-dominated rules [9].

The pseudocode for MOPAR, which is based on [9], is shown in Figure 2. First, the

population, which consists of particles, the external repository, which consists of the

22

mined rules, and the global best, which is the best particle, are initialized. In each

iteration, the particle population is updated. After that, the best solutions from the

population are added to the external repository, and the global best solution is updated.

Finally, after the iterations, the external repository is returned [9].

Initialize population, external repository, global best

For iteration in maximum iterations:

 Update particles in population

 Update external repository, global best

Return external repository

Figure 2. Pseudocode of MOPAR.

To update particles, equations (10) and (11) are used, which update the velocities and

positions of a particle. After that, the particle’s objectives are evaluated. Finally, the local

best solution of each particle is updated using Pareto dominance [9].

𝑣𝑖,𝑘(𝑡 + 1) = 𝑤(𝑡)𝑣𝑖,𝑘(𝑡) + 𝑐1𝑅1 (𝑙𝑏𝑒𝑠𝑡𝑖,𝑘(𝑡) − 𝑥𝑖,𝑘(𝑡))

+ 𝑐2𝑅2 (𝑔𝑏𝑒𝑠𝑡𝑖,𝑘(𝑡) − 𝑥𝑖,𝑘(𝑡))

(10)

𝑥𝑖,𝑘(𝑡 + 1) = 𝑥𝑖,𝑘(𝑡) + 𝑣𝑖,𝑘(𝑡 + 1) (11)

To find a global best solution, roulette wheel selection is used. The roulette wheel first

assigns a rank to each particle using equation (12), in which xRank is a user-specified

parameter and local dominated count is the number of a particle’s local best solutions that

the current solution dominates. After that, each particle is assigned a probability based on

equation (13). Based on these probabilities, a particle is chosen [9].

𝑟𝑎𝑛𝑘𝑖(𝑡) =
𝑥𝑅𝑎𝑛𝑘

𝑙𝑜𝑐𝑎𝑙 𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑐𝑜𝑢𝑛𝑡

(12)

𝑃𝑟𝑜𝑏𝑖(𝑡) =
𝑟𝑎𝑛𝑘𝑖(𝑡)

∑ 𝑟𝑎𝑛𝑘𝑘(𝑡)
𝑛
𝑘=1

(13)

4.1.3 MOPAR algorithm

For the implementation of MOPAR, two classes are necessary. These classes are

ParticleSearchOptimization and Particle. ParticleSearchOptimization has the methods

necessary to run the algorithm, and that are unique to the algorithm. The Particle class is

the representation of the agent that MOPAR uses, and holds the methods used for

modifying the particles. In the ParticleSearchOptimization class, the main method is the

23

multi_objective_particle_search_optimization_algorithm, which generates rules based on

the MOPAR algorithm. Figure 3 shows the steps of the algorithm and is based on [9].

Input Data, population size, maximum iterations, external repository size, c1, c2, inertia

weight, xRank

Output External repository

Step 1 Initialize population. Evaluate the objectives of the generated rules. Initialize

external repository. Initialize global best.

Step 2 Update the velocities of particles. Update the positions of particles and evaluate the

objectives of the new rules. Update the non-dominated local set of each particle.

Update local best.

Step 3 Update external repository. If the size of the external repository is bigger than

external repository size, then particles that dominate more rules are removed.

Step 4 Update global best by using the roulette wheel selection.

Step 5 If maximum number of iterations is not reached, go to step 2

Step 6 Return the external repository

To run the MOPAR algorithm, the class ParticleSearchOptimization is initialized with

the parameters shown in the input row of Figure 3. Data is the data frame used to mine

rules. Population size is the number of particles that are generated and modified with each

iteration. Maximum iterations parameter is the number of times the particle population is

modified. External repository size is the maximum number of rules that are mined.

Parameters c1, c2 and inertia weight are used as multipliers to calculate new velocities

for the particles. Velocity limit is the maximum value for the particle velocity. Parameter

xRank is used for calculating the particle rank in the population.

First, step 1 of the algorithm is executed, in which the population is initialized with

population size random particles. For the external repository, non-dominated rules from

the population are found, and the global best solution is initialized using the roulette wheel

selection.

In each iteration, steps 2-4 are executed. In step 2, the particle population is updated, by

calculating new velocities and positions of each particle. If the new rule dominates the

local best solution, then the new rule is added to the non-dominated local set and the rule

is set as the local best solution. In step 3, the external repository is updated by merging

the current external repository with the population and finding the non-dominated rules

Figure 3. MOPAR algorithm steps.

24

from this merged set. If the external repository exceeds its maximum size, particles that

dominate more rules are removed. In step 4, the global best is updated using the roulette

wheel selection if the external repository is not empty; otherwise, a particle with the

highest fitness is used. In step 6, after the iterations are done, the external repository is

returned, which consists of all the best rules that were generated.

The additional methods in ParticleSearchOptimization are used to initialize the

population and generate rules and velocities. The implementation includes methods for

updating particles, external repository, and global best, as well as the implementation of

roulette wheel selection. Additionally, methods that check and fix a rule and evaluate

objectives are implemented.

Each rule generated by the MOPAR algorithm is kept in a class called Particle. This class

is used to store data about the generated rule. This class has multiple parameters. Rule is

the mined association rule. A list of velocities defines the movement of the particle

positions. Support, confidence, comprehensibility, and interestingness parameters hold

the fitness values of the rule. Local best is the best rule that has been generated by the

particle. Local non-dominated consists of all the local best solutions this rule has

generated. Rank is used for calculating the probability of a particle. Probability is used in

the roulette wheel selection. The dominating counter is the number of particles the current

rule dominates.

The methods in the Particle class are used to update the particle in each iteration of the

algorithm. These methods calculate the velocities and positions of the rule, determine

whether a new rule is the local best rule, and calculate how many rules the current rule

dominates in the local non-dominated list.

4.2 Cuckoo Search

Cuckoo Search (CS) is explained in this section. First, the theoretical background of CS

is given in 4.2.1. After that, the theory of the chosen variant, MOCANAR, is explained

in 4.2.2. Finally, the implementation of MOCANAR algorithm is given in 4.2.3.

25

4.2.1 CS background

Cuckoo Search (CS) is based on the lives of cuckoos. The cuckoo is a famous brood

parasite bird. Brood parasites lay eggs in the nests of other birds, so the nest owner takes

care of the brood parasite’s eggs. This phenomenon is adapted into CS algorithms. The

agents in CS are cuckoos [12].

There are not many applications of CS for NARM. One example is MOCANAR [12],

which claims to be the first multi-objective and the first ARM application of CS.

4.2.2 MOCANAR

A multi-objective cuckoo search algorithm, MOCANAR, that extracts rules from numeric

datasets was proposed in [12]. The objectives considered for MOCANAR are support,

confidence, interestingness, and comprehensibility. For rule encoding, equations (1) and

(4) are used. Pareto optimality is used for extracting non-dominated rules [12].

The pseudocode of MOCANAR, which is based on [12], is shown in Figure 4. In each

increment, the population, which consists of cuckoos, and current non-dominated rules

are initialized. In each generation, random cuckoos are generated and directed towards

the best solution, using levy flight. After that, each cuckoo is directed towards the best

solution, using levy flight. At the end of each generation current non-dominated rules are

updated. At the end of each increment, final non-dominated rules are updated. Finally,

the final non-dominated rules are returned [12].

Initialize final non-dominated rules

For increment in number of increments:

Initialize population

Initialize current non-dominated rules

For generation in maximum generations:

 Generate and direct random cuckoos

 Generate eggs by directing cuckoos

 Generate new population

 Update current non-dominated rules

Update final non-dominated rules

Return final non-dominated rules

Figure 4. Pseudocode of MOCANAR.

A tournament is used to choose the best solution when generating eggs. For this, a number

of tournament cuckoos are selected randomly from the population, and a random non-

dominated solution from this selection is returned [12].

26

A levy flight policy is used to direct cuckoos towards the best cuckoo. For each attribute

of a source cuckoo’s rule, three-step sizes are calculated using levy distribution and a

target cuckoo. Based on these step sizes, the rule of a source cuckoo is modified [12].

To generate a new population, first, a percentage of eggs that have the worst support

measure is eliminated. After that, the eggs and cuckoo population are merged into a

temporary population. The temporary population is sorted in terms of support measure,

and ¼ of the highest-ranking solutions are added to the new population. The same is done

for the rest of the measures, after which a new population has been formed [12].

4.2.3 MOCANAR algorithm

For the implementation of MOCANAR, two classes are necessary. These classes are

CuckooSearchOptimization and Cuckoo. CuckooSearchOptimization has the methods

necessary to run the algorithm. The Cuckoo class is the representation of the agent that

MOCANAR uses. The multi_objective_cuckoo_search_algorithm is the main method in

the CuckooSearchOptimization class. Figure 5 shows the steps of the algorithm and is

based on [12].

Input Data, population size, number of increments, maximum generations, pa, pmut,

number of tournament, number of random cuckoos, w1, w2, w3

Output Final non-dominated rules

Step 1 Initialize population and cuckoo eggs. Evaluate the objectives of generated rules.

Step 2 Generate random cuckoos and direct them towards the best cuckoo in the

population. Replace the worst cuckoo in the population with the directed cuckoo.

Step 3 Generate cuckoo eggs by directing all cuckoos in the population towards the best

cuckoo. The best cuckoo is chosen with tournament.

Step 4 A percentage of worst eggs in terms of the support measure are eliminated. A new

population is formed by choosing the cuckoos with the best objective measures.

Step 5 Population and non-dominated list are merged, and duplicated rules are deleted.

Non-dominated rules from the merged list are assigned to the non-dominated list.

Step 6 If maximum number of generations is not reached, go to step 2

Step 7 Rules from non-dominated list are added to final non-dominated list.

Step 8 If maximum number of increments is not reached, go to step 1

Step 9 Duplicated and dominated rules are removed from final non-dominated.

Step 10 Return final non-dominated list

Figure 5. MOCANAR algorithm steps.

27

To run the MOCANAR algorithm, the class CuckooSearchOptimization is initialized

with the parameters shown in the input row of Figure 5. Data is the data frame that is used

for mining rules. Population size is the number of cuckoos that are randomly generated

and modified each generation. The number of increments parameter is the number of

times the population is initialized, and the generations are run. The maximum generation

parameter is the number of times the random cuckoos and cuckoo eggs are generated and

modified. Pa is the percentage of cuckoo eggs that are eliminated each generation. Pmut

is the probability of mutation after the eggs are generated. The number of tournament is

the number of cuckoos that are randomly selected in the tournament section. The number

of random cuckoos is the number of cuckoos that are generated each generation.

Parameters w1, w2, w3 are used in to specify the length of steps used for directing a

cuckoo towards the best cuckoo.

Steps 1-7 of the algorithm are repeated number of increments times. First step 1 is

executed, in which the population is initialized with population size number of random

cuckoos. The cuckoo eggs parameter is initialized with an empty list.

Steps 2-5 are repeated maximum generations times. In step 2, random cuckoos are

generated and directed towards the best cuckoo in the population. This is done by using

the levy flight method. The directed cuckoo replaces the worst cuckoo in the population.

In step 3, every cuckoo generates a cuckoo egg. For this, the best cuckoo is found by the

tournament. After that, the current cuckoo is directed towards the chosen best cuckoo

using the levy flight method. The new directed cuckoo is the generated cuckoo egg. Step

4 generates a new population. First, a percentage of cuckoo eggs is eliminated. Then, a

new population is formed by choosing the best cuckoos in terms of the objectives. In step

5, the population and non-dominated lists are merged, and duplicated rules are removed.

The non-dominated rules from this merged list are assigned to the current non-dominated

list.

In step 7, the current non-dominated and final non-dominated rules lists are merged. A

new distribution is generated for generating cuckoos. In step 9, the duplicated and

dominated rules from the final non-dominated list are removed and the list is returned.

The additional methods in CuckooSearchOptimization are used to initialize the

population and generate a random cuckoo. The implementation includes methods for

28

getting a new cuckoo by levy flights, mutating a cuckoo, getting best cuckoo with

tournament, and choosing a new population. Additionally, methods that check and fix a

rule and evaluate objectives are implemented.

Each rule generated by the MOCANAR implementation is kept in a class called Cuckoo.

This class is used to store data about the generated rules. This class has multiple

parameters. Rule is the mined association rule. Support, confidence, comprehensibility,

and interestingness parameters hold the fitness values of the rule.

4.3 Ant Colony Optimization

In this section, Ant Colony Optimization (ACO) is explained. First, the theoretical

background of ACO is given in 4.3.1. After that, the theory of the chosen variant, ACOR,

is explained in 4.3.2. Finally, the implementation of the ACOR algorithm is given in 4.3.3.

4.3.1 ACO background

Ant Colony Optimization (ACO) is based on the behaviour of ant colonies. In many ant

species, ants deposit a substance called pheromone on the ground, while walking to and

from food. Other ants make decisions based on how strong the pheromone is on a given

path. ACO uses this behaviour of ants to optimize solutions. The agents in the ACO are

ants [23].

According to [8], ACO is one of the first members of the swarm intelligence-based

family, besides PSO. An example is ACOR [10], which was proposed as a multi-objective

variant for NARM.

4.3.2 ACOR

ACOR is a multi-objective ACO algorithm for continuous domains, which was proposed

in [10]. The objectives considered for ACOR are support, confidence, interestingness, and

interval. For rule encoding, equations (2) and (4) are used. A weighted sum is used to

determine the best solutions [10].

The pseudocode of ACOR, which is based on [10], is shown in Figure 6. First the archive,

which consists of solutions, is initialized, and solutions are ranked. In each iteration, the

weights and probabilities of solutions are calculated. Each ant chooses a solution based

29

on the assigned probabilities and generates a new solution by sampling a gaussian

function. At the end of each iteration, the solutions in the archive are ranked and the worst

solutions are removed. After the iterations, the archive is returned [10].

Initialize archive, rank solutions

For iteration in maximum iterations:

 Calculate weights of solutions

Calculate probabilities of solutions

Each ant chooses a solution,

Each ant generates a new solution

 Rank solutions, trim archive

Return archive

Figure 6. Pseudocode of ACOR.

The interval objective, shown in equation (14), favours rules that have smaller intervals.

Here, n is the number of attributes, max bound and min bound are the maximum and

minimum values for the attribute in the database. 𝑈𝐵𝑖 and 𝐿𝐵𝑖 are the upper and lower

bounds of an attribute in the rule [10].

𝑖𝑛𝑡 =∑
(𝑈𝐵𝑖−𝐿𝐵𝑖)

max𝑏𝑜𝑢𝑛𝑑𝑖−min𝑏𝑜𝑢𝑛𝑑𝑖

𝑛

𝑖=0

(14)

All the mentioned objectives are put together into a single objective function, shown in

equation (15). Here ⍺1, ⍺2, ⍺3, and ⍺4 are input parameters of the algorithm [10].

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ⍺1 ⋅ 𝑠𝑢𝑝𝑝 + ⍺2 ⋅ 𝑐𝑜𝑛𝑓 − ⍺3 ⋅ 𝑖𝑛𝑡𝑒𝑟 − ⍺4 ⋅ 𝑖𝑛𝑡 (15)

To calculate the weights of solutions, equation (16) is used, where k is the number of

solutions in the archive, j is the rank of the solution, and q is a user-specified parameter

[10]. If q is small, best-ranked solutions are more preferred, and if it is large, the

probability is more uniform [23].

𝜔𝑗 =
1

𝑞𝑘√2𝛱
𝑒
−(𝑗−1)2

2𝑞2𝑘2
(16)

To calculate the probabilities of solutions, equation (17) is used, where the weight of a

solution is divided by the sum of all the weights of the solutions [10].

𝑝𝑗 =
𝜔𝑗

∑ 𝜔𝑟
𝑘
𝑟=1

 (17)

30

After an ant chooses a solution based on the probabilities, a new solution is sampled using

equation (18). Here, δ is calculated using equation (19) and μ is the value of the chosen

solution [10].

𝑃(𝑥) = 𝑔(𝑥, 𝜇, 𝛿) =
1

𝛿√2𝛱
𝑒
−(𝑥−𝜇)2

2𝛿2
(18)

In equation (19), Ɛ is a user-specified parameter, the higher it is, the lower the

convergence speed of the algorithm [23]. Parameter k is the number of solutions in the

archive, 𝑠𝑗
𝑖 is the value of the chosen solution [10].

𝛿 = 𝜉∑
|𝑠𝑟
𝑖−𝑠𝑗

𝑖|

𝑘−1

𝑘

𝑟=1

(19)

4.3.3 ACOR algorithm

For the implementation of ACOR, two classes are necessary. These classes are

AntColonyOptimization and Solution. AntColonyOptimization has the methods

necessary to run the algorithm. The Solution class holds the data of a generated rule. In

the AntColonyOptimization class, ant_colony_optimization_for_continuous_domains is

the main method. Figure 7 shows the steps of the algorithm and is based on [10].

Input Data, archive size, ant colony size, maximum iterations, alpha1, alpha2, alpha3,

alpha4, alpha5, q, e

Output Archive

Step 1 Initialize and sort the archive.

Step 2 Initialize weights, probabilities, and ants.

Step 3 Ant chooses a solution, and generates a new solution by sampling a gaussian

function. The objectives of the new solution are evaluated.

Step 4 If number of ants that have generated a new rule is not reached, go to step 3.

Step 5 Add ant generated solutions to archive, sort and cut off

Step 6 If number of iterations is not reached, go to step 2.

Step 7 Delete duplicated rules from archive

Step 8 Return non-dominated rules from archive

Figure 7. ACOR algorithm steps.

31

To run the ACOR algorithm, the class AntColonyOptimization is initialized with the

parameters shown in the input row of Figure 7. Data is the data frame that is used for

mining rules. The maximum iterations parameter is the number of times that each ant

generates a new rule. Archive size is the number of solutions that are generated randomly

at the beginning, and the number of best rules that are kept for each iteration. Ant colony

size is the number of ants that generate a new rule each iteration. Alpha1, alpha2, alpha3

and alpha4 are multipliers for different objective functions, which are used for calculating

the objective measure of a rule. Alpha5 is the multiplier used for calculating the interval

of the attribute value of a rule. Q is used to calculate the weight of a solution. E is used to

calculate the standard deviation of an attribute in a rule.

In step 1 of the algorithm, the archive is initialized with the archive size number of random

solutions. Then the archive is sorted by the objective measures of the solutions.

Steps 2-5 are repeated maximum iterations times. Step 2 initializes the weights and

probabilities of the solutions. After that, the ants are initialized with an empty list.

In steps 3-4, each ant chooses a solution from the archive, using the probabilities

calculated in the last step. New solutions are generated based on the chosen solutions, by

sampling gaussian functions. Finally, the objectives of the new rules are evaluated.

In step 5, the solutions generated by the ants are added to the archive. The archive is

sorted based on the objective measure, and the ant colony size number of worst solutions

are removed. In step 7, duplicated rules is removed by the algorithm, and non-dominated

rules are returned.

The additional methods in AntColonyOptimization are used to initialize the archive,

generate a solution, initialize weights, and calculate probabilities. The implementation

includes methods for sampling a gaussian function and calculating a new standard

deviation. Additionally, methods that evaluate objectives and calculate the bounds of an

attribute value are implemented.

Each rule generated by the ACOR implementation is kept in a class called Solution. This

class is used to store data about the generated rule. This class has multiple parameters.

Rule is the mined association rule. Support, confidence, comprehensibility, and

interestingness parameters hold the fitness values of the rule. Int objective parameter

32

holds the interval objective measure value. Objective holds the weighted sum objective

measure value.

4.4 Bat Algorithm

In this section, the Bat Algorithm (BA) is explained. First, the theoretical background of

BA is given in 4.4.1. After that, the theory of the chosen variant, MOB-ARM, is explained

in 4.4.2. Finally, the implementation of the MOB-ARM algorithm is given in 4.4.3.

4.4.1 BA background

The Bat Algorithm (BA) is based on the echolocation behaviour of bats. Bats use

echolocation to sense distance and know the difference between food and prey. Bats fly

randomly with a set velocity at a position with a frequency, wavelength, and loudness.

This behaviour is used in BA for the movement of bats, which are the agents [24].

According to [8], BA has rarely been applied to ARM problems. One application of BA

for NARM is MOB-ARM [11], which uses discretization to deal with numerical

attributes.

4.4.2 MOB-ARM

MOB-ARM is a multi-objective BA for ARM, which was proposed in [11]. The

objectives considered for MOB-ARM are support, confidence, comprehensibility, and

interestingness. For rule encoding, equation (5) is used. Prior to using the algorithm, data

is discretized into intervals. The weighted sum is used to determine the best solutions

[11].

The pseudocode of MOB-ARM, which is based on [11], is shown in Figure 8. First the

population, which consists of bats, is initialized. In each iteration, objective weights are

generated, and each bat’s frequency, velocity and rules are updated. At the end of each

iteration, the bats are ranked, and a new global best solution is chosen. After each

iteration, each bat’s best solution is recorded as a non-dominated solution. Finally, the

non-dominated solutions are returned [11].

33

Initialize population

For point in pareto points:

 For iteration in maximum iterations:

 Generate weights

 Update bat frequency, velocity, rule

 Rank bats, update global best solution

 Record best solutions as non-dominated solutions

Return non-dominated solutions

Figure 8. Pseudocode of MOB-ARM.

To generate weights, equation (20) is used. Here, k is the number of objectives used,

which in MOB-ARM is two. The weights are used for calculating an objective measure

shown in equation (21), which uses two objectives [11].

∑ 𝑤𝑘
𝑘
𝑘=1 = 1 (20)

𝑂𝑏𝑗(𝑅) = 𝑤1𝑂𝑏𝑗1(𝑅) + 𝑤2𝑂𝑏𝑗2(𝑅) (21)

The objective measure uses two separate objectives, which are calculated using equations

(22) and (23). The equations use user-specified parameters ⍺, β, γ and δ as weights for

the support, confidence, comprehensibility, and interestingness measures [11].

𝑂𝑏𝑗1(𝑅) = ⍺𝑐𝑜𝑛𝑓(𝑅) +
𝛽𝑠𝑢𝑝𝑝(𝑅)

⍺
+ 𝛽 (22)

𝑂𝑏𝑗2(𝑅) = 𝛾𝑐𝑜𝑚𝑝(𝑅) +
𝛿𝑖𝑛𝑡𝑒𝑟(𝑅)

𝛾
+ 𝛿 (23)

To update a bat’s frequency and velocity, equations (24) and (25) are used. First, the new

frequency is calculated using a maximum velocity, which is the number of attributes in

the dataset. After that, a new velocity is calculated using the maximum velocity, new

frequency, and the previous velocity [11].

𝑓𝑖
𝑡 = 1 + (𝑓𝑚𝑎𝑥)𝛽 (24)

𝑣𝑖
𝑡 = 𝑓𝑚𝑎𝑥 − 𝑓𝑖

𝑡 − 𝑣𝑖
𝑡−1 (25)

A new rule is generated using an algorithm proposed in [25]. The rules are generated

based on the velocity, frequency and loudness of the bat. Velocity determines the starting

position of the change in the rule, and frequency determines how many attributes are

changed. If the loudness of the bat is less than a random number, the attribute value at

index velocity is increased; otherwise it is decreased. If the value goes out of bounds, it

is set to zero [25]. After the rule is generated, one item in the rule is changed if a random

number is bigger than the rate [11].

34

If the new rule’s objective is better than the old objective, the rule is accepted, and the

loudness and rate of the bat are updated. Loudness is decreased by using equation (26).

The rate is increased using equation (27), where 𝑟𝑖
0 is the initial rate of the bat and t is the

current iteration [11].

𝐴𝑖
𝑡+1 = ⍺𝐴𝑖

𝑡 (26)

𝑟𝑖
𝑡+1 = 𝑟𝑖

0[1 − 𝑒𝑥𝑝(−𝛾𝑡)] (27)

4.4.3 MOB-ARM algorithm

For the implementation of MOB-ARM, two classes are necessary. These classes are

BatAlgorithm and Bat. BatAlgorithm has the methods necessary to run the algorithm. The

Bat class is the representation of the agent that MOB-ARM uses. In the BatAlgorithm

class, multi_objective_bat_algorithm is the main method. Figure 9 shows the steps of the

algorithm and is based on [11].

Input Data, population size, iterations, pareto points, alpha, beta, gamma, delta,

minimum support, minimum confidence

Output Non-dominated solutions

Step 1 Initialize population. Sort population. Initialize global best. Initialize non-

dominated solutions list.

Step 2 Initialize weights.

Step 3 Update every bat’s frequency, velocity, and generate a new rule.

Step 4 If random number is bigger than bat’s rate, change one attribute in the new rule.

Step 5 Check and fix rule. Evaluate fitness.

Step 6 If new objective is bigger than old objective, then accept new rule, increase rate,

and decrease loudness of bat.

Step 7 Sort population. Update global best.

Step 8 If number of iterations is not reached, go to step 3.

Step 9 Add best solutions to non-dominated solutions

Step 10 If number of pareto points is not reached, go to step 2.

Step 11 Return non-duplicated rules from non-dominated solutions list

To run the MOB-ARM algorithm, the class BatAlgorithm is initialized with the

parameters shown in the input row of Figure 9. Data is the data frame that is used for

mining rules. Population size is the number of random bats that are generated and

Figure 9. MOB-ARM algorithm steps.

35

modified. Iterations are the number of times the bats are modified. Pareto points are the

number of times the iterations are repeated, and new weights are calculated. Alpha is used

to calculate the first objective and loudness of a bat. Beta is used to calculate the first

objective and frequency of a bat. Gamma and delta are used to calculate the second

objective of a bat. Minimum support and minimum confidence are used to set the

minimum acceptable support and confidence values for the mined rules.

In step 1, the bat population is initialized with the population size number of bats, and

their objectives are evaluated. The population is sorted based on the objective measure

of bats, and the best bat is assigned to the global best variable. The non-dominated

solutions list is initialized with an empty list.

Steps 2-9 are repeated pareto points number of times. In step 2, a list of weights used for

calculating the objective measure is initialized. Steps 3-7 are repeated iterations number

of times.

In step 3, each bat’s frequency, velocity, and rule is updated. In step 4, it is checked if a

random number is greater than the bat’s rate, then one attribute value of the rule is

changed according to the global best solution. In step 5, the rule is checked and fixed, and

the objectives of the rule are calculated. Step 6 checks if the new rule is better than the

old rule, and if it is, the new rule is accepted, and the loudness and rate of the bat are

updated.

In step 7, the population is sorted by the objective measure, and the best bat is assigned

to the global best variable. In step 9, each bat’s best rule is added to the non-dominated

rules list. In step 11, the non-duplicated rules from the non-dominated list are returned.

The additional methods in BatAlgorithm are used to initialize the population and generate

a bat with a random rule. The implementation includes a method for generating a new

solution based on the frequency, velocity, and loudness of a bat. Additionally, methods

that check and fix a rule, evaluate objectives, and find the lower and upper bounds are

implemented.

Each rule generated by the MOB-ARM implementation is kept in a class called Bat. This

class is used to store data about the generated rule. This class has multiple parameters.

Frequency and velocity are used to update the velocity of the bat and generate a new

36

solution with each iteration. Rate is used to determine whether an attribute of the rule

should be changed towards the best rule in the population and is increased if a solution is

accepted. The initial rate is the first randomly generated rate and is used to update the

bat’s rate. Loudness is used for generating new solutions. Rule is the generated

association rule. Support, confidence, comprehensibility, and interestingness parameters

hold the fitness values of the rule. Objective holds the objective measure of the rule.

37

5 Implementation and experimental setup

The implementation part of this work consists of five parts, which are the helpers used

for multiple algorithms, and the implementations of MOPAR, MOCANAR, ACOR, and

MOB-ARM algorithms. The implementations of MOPAR, MOCANAR, ACOR and

MOB-ARM were explained in 4.1.3, 4.2.3, 4.3.3, and 4.4.3, respectively. In this section

the additional implementation necessary to run the algorithms is discussed. After that, the

dataset, hardware, and parameter descriptions are given.

5.1 Helpers

Several helper functions are necessary to aid the implementation of the chosen algorithms,

which are used across multiple algorithms. These functions consist of checking,

discretizing, initializing, and querying data. Additionally, calculating fitness functions,

and checking for dominance are implemented.

Data checkers are functions that check and fix the locations and attribute values of the

generated rules. These methods are important so that after the rules are randomly

generated or improved, they can be checked to see if they are valid. For an example, the

antecedent and consequent parts of the rule cannot be empty, and these methods check

and fix that.

Data discretization functions are used to discretize data into intervals before it can be used

in the MOB-ARM algorithm. Other algorithms do not require prior discretization.

Data initialization functions initialize data before it is passed to the algorithms. First, the

CSV data is turned into a data frame. After that the lower and upper bounds of each

attribute are defined, which is used to ensure that each attribute value of a rule is valid.

Data query functions are the first step to calculating the objective measures for each rule.

First the rules are split into antecedent and consequent parts. Then the data frame is

queried to find out how many records include the antecedent or consequent part of the

38

rule, how many records contain both parts of the rule and how many records are in the

data frame.

The objective functions are used to calculate the objective measures for the rules, using

the numbers returned by the data query functions. Here the support, confidence,

comprehensibility, and interestingness measures are calculated and returned.

Other helpers are used to delete the duplicated rules. Rules that have the same antecedent

and consequent parts, or the same fitness values, are removed. Additionally, finding non-

dominated rules from a population is implemented. A Pareto policy is used for finding

non-dominated rules.

5.2 Dataset description

To mine association rules, a dataset is necessary to mine rules from. For the datasets, four

datasets from [26] were used. Basketball, Quake, and Bodyfat datasets are the most used

for comparison in the papers that proposed the algorithms. An additional dataset, Longley,

was chosen. The characteristics of these datasets are shown in Table 1. All the datasets

have a different number of records and attributes, which allows for a better comparison

of how well the implementations work with different characteristics.

Table 1. Datasets.

Dataset Number of records Number of attributes

Basketball 96 5

Quake 2178 4

Fat 225 18

Longley 16 7

5.3 Hardware description

All tests were executed on an Intel Core i7-10510U machine with 16 GB of memory

running under Windows 10.

39

5.4 Parameter description

This section describes the parameters used for the validation and comparison of the

implemented algorithms. The parameters are taken from the papers that proposed them

and modified where necessary.

Parameters for the MOPAR algorithm validation are shown in Table 2. These parameters

were proposed by [9] as the best-performing parameters for the MOPAR algorithm.

Table 2. MOPAR algorithm parameters for validation.

Population

size

Iterations External

repository size

Inertia

weight

Velocity

limit

xRank C1 C2

40 2000 100 0.63 3.83 13.33 2 2

The MOPAR algorithm comparison parameters are shown in Table 3. The population

size, number of iterations and external repository size were set as 50, 200, and 50 for fair

comparison, and the other parameters were taken from [9].

Table 3. MOPAR algorithm parameters for comparison.

Population

size

Iterations External

repository size

Inertia

weight

Velocity

limit

xRank C1 C2

50 200 50 0.63 3.83 13.33 2 2

The MOCANAR algorithm validation parameters are shown in Table 4. These parameters

were proposed by [12] as the best-performing parameters for this algorithm. However,

population size, number of generations and number of increments were decreased because

of the time it would have taken to run it with the proposed parameters.

Table 4. MOCANAR algorithm parameters for validation.

Dataset Popu-

lation

size

Gene-

rations

Incre-

ments

Random

cuckoo

Tourna-

ment

Pa Pmut W1 W2 W3

Basketball 150 150 4 1 30 0.3 0.05 0.2 0.5 0.3

Quake 150 150 4 2 50 0.2 0.2 0.2 0.5 0.3

40

The MOCANAR parameters for comparison are shown in Table 5. The population size

and number of generations were set as 50 and 200 for fair comparison, and other

parameters were taken from [12].

Table 5. MOCANAR algorithm parameters for comparison.

Population

size

Gene-

rations

Incre-

ments

Random

cuckoo

Tourna-

ment

Pa Pmut W1 W2 W3

50 200 1 1 30 0.3 0.05 0.2 0.5 0.3

Parameters used for ACOR algorithm validation and comparison are shown in Table 6. In

both cases, the parameters are the same. These parameters were chosen through testing,

because [10] did not specify the best parameters for this algorithm. The ant colony size,

number of iterations and archive size were set as 50, 200, and 50 for fair comparison.

Table 6. ACOR algorithm parameters.

Ant

colony

size

Iter-

ations

Archive

size

Alpha1,

alpha2

Alpha3,

alpha 5

Alpha4 Q E

50 200 50 4 1 0.001 0.1 0.85

The MOB-ARM algorithm validation parameters are shown in Table 7. These parameters

were proposed by [11] as the best-performing parameters for the MOB-ARM algorithm.

Table 7. MOB-ARM algortihm parameters for validation.

Population

size

Iter-

ations

Pareto

points

Alpha Beta Gamma Delta Min

supp

Min

conf

50 100 10 0.4 0.3 0.2 0.1 0.2 0.5

The parameters used for comparison are shown in Table 8. The population size parameter

was set as 50. Number of iterations and pareto points were set as 40 and 5 for fair

comparison. Other parameters were taken from [11].

Table 8. MOB-ARM algorithm parameters for comparison.

Population

size

Iter-

ations

Pareto

points

Alpha Beta Gamma Delta Min

supp

Min

conf

50 40 5 0.4 0.3 0.2 0.1 0.2 0.5

41

6 Analysis

This section tests the implemented algorithms, and the test results are analysed. The

implementations are first validated against the papers that proposed the algorithms. After

that, the implemented algorithms are compared against each other and analysed.

6.1 Validation

The algorithms were tested and compared against the papers that proposed the algorithms

to validate the implementations. The validation was done with one run of tests for all the

implementations and datasets.

The MOPAR algorithm validation is shown in Table 9. The number of rules generated

using Basketball dataset and the support and confidence using both datasets are similar.

The biggest difference is in the number of rules generated using the Quake dataset, which

is two times smaller for the implementation.

Table 9. MOPAR algorithm validation.

Dataset Source Rules Support Confidence

Basketball MOPAR Implementation 67 0.33 0.86

MOPAR [9] 69.75 0.31 0.95

Quake MOPAR Implementation 26 0.33 0.80

MOPAR [9] 54.1 0.32 0.89

The MOCANAR algorithm validation results are shown in Table 10. The implementation

was run with a smaller number of increments because of the time it would have taken to

run it with the proposed number of increments. This might have affected the results of the

implementation and caused the smaller values in the objective measures. However, the

results are overall similar. The comprehensibility measure is smaller for the

implementation in both datasets, and support is smaller in the Basketball dataset. The

number of rules in Quake is bigger for the implementation.

42

Table 10. MOCANAR algorithm validation.

Dataset Source Rules Support Confidence Compre-

hensibility

Interest-

ingness

Basketball MOCANAR

Implementation

55 0.48 0.82 0.71 0.24

MOCANAR [12] 55.4 0.66 0.82 0.92 0.38

Quake MOCANAR

Implementation

49 0.53 0.86 0.69 0.28

MOCANAR [12] 28.2 0.51 0.84 0.95 0.34

The ACOR algorithm validation is shown in Table 11. The number of rules generated

differs a little bit. However, the support and confidence measures are similar.

Table 11. ACOR algorithm validation.

Dataset Source Rules Support Confidence

Basketball ACOR Implementation 41 0.46 0.79

ACOR [10] 37 0.45 0.78

Quake ACOR Implementation 46 0.57 0.88

ACOR [10] 58 0.60 0.84

The MOB-ARM algorithm validation results are shown in Table 12. The discretization

of data was not specified exactly by [11], which might affect the number of rules

generated by the implementation, which is several times smaller. The support and

confidence, however, are similar.

Table 12. MOB-ARM algorithm validation.

Dataset Source Rules Support Confidence

Basketball MOB-ARM Implementation 7 0.31 0.69

MOB-ARM [11] 63 0.38 0.79

Quake MOB-ARM Implementation 6 0.50 0.74

MOB-ARM [11] 50 0.41 0.88

43

The differences in the validation results are mainly in the number of rules generated and

can be attributed to multiple factors. First, the implementations were tested with a smaller

number of tests. Additionally, for some of the algorithms, the exact parameters that were

tested in the papers that proposed them are unknown or had to be modified. Finally, some

steps in the algorithms might not be specified in the proposed papers; thus, the

implementations might not work in the same way. However, the values of objective

measures are overall similar in all the comparisons.

6.2 Comparison

To find out which algorithm implementation performs the best, the implementations were

tested and compared against each other. Five tests were done for each algorithm, using

each dataset. The results of the tests were averaged and are shown in Table 13.

Table 13. Comparative results for the implementations.

Dataset Algorithm Time

(sec)

Rules Support Confidence Compre-

hensibility

Interest-

ingness

Basket-

ball

MOPAR 455.4 11.2 0.13 0.78 0.82 0.43

MOCANAR 404.9 32.8 0.49 0.80 0.67 0.24

ACOR 442 40.4 0.41 0.80 0.62 0.25

MOB-ARM 1181.92 8.4 0.28 0.63 0.62 0.24

Quake MOPAR 361 18.6 0.22 0.71 0.71 0.16

MOCANAR 424.04 22.2 0.51 0.84 0.66 0.24

ACOR 402.16 47 0.57 0.87 0.63 0.24

MOB-ARM 1253.42 8.4 0.45 0.72 0.64 0.22

Bodyfat MOPAR 1259.28 10.4 0.08 0.48 0.83 0.15

MOCANAR 1469.22 54.6 0.63 0.87 0.69 0.21

ACOR 1173.26 13.8 0.01 0.86 0.75 0.54

MOB-ARM 3345.4 7.8 0.34 0.72 0.62 0.27

Longley MOPAR 500.28 16.2 0.10 0.94 0.90 0.84

MOCANAR 545.08 8.8 0.29 0.93 0.75 0.65

ACOR 604.52 8.4 0.35 0.99 0.55 0.56

MOB-ARM 1539.3 20.6 0.28 0.92 0.70 0.59

44

Figure 10 shows the average time spent by the algorithms. MOPAR, MOCANAR and

ACOR had similar results in all datasets. MOB-ARM was multiple times slower than the

other algorithms.

Figure 10. Average time spent by the algorithms.

Figure 11 shows the average number of rules mined by the algorithms. MOCANAR and

ACOR mined the most rules across all datasets. MOPAR and MOB-ARM mined the least

rules across all datasets.

Figure 12 shows the average support values of the rules mined by the algorithms.

MOCANAR had the overall highest results. ACOR also produced rules with high support

in the Basketball, Quake, and Longley datasets but underperformed in the Bodyfat

dataset. MOB-ARM had average support measures in all datasets. MOPAR had the

overall lowest support values.

0

1000

2000

3000

4000

Basketball Quake Bodyfat Longley

Ti
m

e
(s

ec
)

MOPAR MOCANAR ACOR MOB-ARM

Figure 11. Average number of rules mined by the algorithms.

0

10

20

30

40

50

60

Basketball Quake Bodyfat Longley

N
u

m
b

er
 o

f
ru

le
s

MOPAR MOCANAR ACOR MOB-ARM

45

Figure 12. Average support values of the rules mined by the algorithms.

Figure 13 shows the average confidence values of the rules mined by the algorithms.

MOCANAR and ACOR had the highest results across all datasets. MOPAR and MOB-

ARM had average results, but MOPAR produced the lowest confidence in the Bodyfat

dataset, and MOB-ARM produced the lowest result in the Basketball dataset.

Figure 13. Average confidence values of the rules mined by the algorithms.

Figure 14 shows the average comprehensibility values of the rules mined by the

algorithms. MOPAR produced the highest comprehensibility measures in all datasets.

MOCANAR, ACOR and MOB-ARM had similarly average results across all datasets.

Figure 14. Average comprehensibility values of the rules mined by the algorithms.

0

0.2

0.4

0.6

0.8

1

Basketball Quake Bodyfat Longley

MOPAR MOCANAR ACOR MOB-ARM

0

0.2

0.4

0.6

0.8

1

Basketball Quake Bodyfat Longley

MOPAR MOCANAR ACOR MOB-ARM

0

0.2

0.4

0.6

0.8

1

Basketball Quake Bodyfat Longley

MOPAR MOCANAR ACOR MOB-ARM

46

Figure 15 shows the average interestingness values of the rules mined by the algorithms.

MOPAR produced the highest results in the Basketball and Longley datasets, but the

lowest results in the Quake and Bodyfat datasets. ACOR had the highest interestingness

measure in the Bodyfat dataset. MOCANAR and MOB-ARM produced average

interestingness results in all datasets.

Figure 15. Average interestingness values of the rules mined by the algorithms.

In conclusion, MOCANAR produced the highest and most stable results overall. ACOR

also had high results but underperformed in terms of support in Bodyfat dataset. MOPAR

is the best for comprehensibility, but the worst in support measure. MOB-ARM produced

the lowest number of rules with average results in all datasets but was the slowest in all

datasets.

6.3 Proposed future improvements

The implemented algorithms can be improved in many ways. MOB-ARM algorithm can

be improved by modifying, or eliminating the discretization step, to produce more rules.

All the algorithms can be improved by making them more efficient, so that they can be

better tested with more iterations and bigger datasets.

The validation of the implementations can be improved by using a bigger number of tests

to validate the results. The comparison of the implementations can be improved by further

testing the algorithms with different parameters to find out which parameters produce the

best results for all algorithms and all datasets. It would also benefit the comparison to run

a bigger number of tests, because individual test results can vary a lot. Additionally, the

comparison can be improved by using a larger number of different datasets.

0

0.2

0.4

0.6

0.8

1

Basketball Quake Bodyfat Longley

MOPAR MOCANAR ACOR MOB-ARM

47

7 Summary

The main goals of this work were to implement the chosen swarm intelligence-based

NARM algorithms and conduct a comparison of the implementations. As a result, the

algorithms were implemented according to their descriptions in the papers that proposed

them. The implementations were validated against the proposed papers and compared

against each other; the results were analysed.

The validation of the implementations showed that the implementations produce

association rules that have a similar quality of fitness measures as the papers that proposed

them. However, MOB-ARM implementation produced multiple times fewer rules.

The comparison of the implementations showed that different algorithms are suitable for

different needs, and each algorithm has its own drawbacks. The MOPAR algorithm can

produce a low number of rules with high confidence, comprehensibility, and

interestingness measures, but needs parameter modifying when used for datasets with a

bigger number of attributes or instances. MOCANAR can be used to produce rules that

have stable results in all measures, across all datasets. ACOR produced high quality rules

but needs parameter modification when used for datasets with a bigger number of

attributes. MOB-ARM produced a small number of rules with reliable measures in all

datasets, because of its minimum support and confidence parameters, but was multiple

times slower than other implementations.

The proposed implementations can be improved by modifying or eliminating the

discretization step in MOB-ARM, to increase the number of rules generated. The

implementations can additionally be made more efficient to decrease the time needed for

the algorithms to produce rules. The validation and comparison parts of this work can be

improved by further testing the implementations with different parameters and a bigger

number of tests.

48

References

[1] Q. Zhao and S. Bhowmick, "Association Rule Mining: A Survey," Nanyang

Technological University, Singapore, 2003.

[2] R. Agrawal, T. Imieli'nski and A. Swami, "Mining association rules between sets

of items in large databases," in Proceedings of the 1993 ACM SIGMOD

international conference on Management of data, Washington, D.C, 1993.

[3] R. Srikant and R. Agrawal, "Fast algorithms for mining association rules," in

Proceedings of the 20th VLDB Conference, Santiago, Chile, 1994.

[4] J. Han, J. Pei, Y. Yin and R. Mao, "Mining Frequent Patterns without Candidate

Generation: A Frequent-Pattern Tree Approach," Data Mining and Knowledge

Discovery, vol. 8, no. 1, pp. 53-87, 2004.

[5] R. Srikant and R. Agrawal, "Mining quantitative association rules in large

relational tables," ACM SIGMOD Record, vol. 25, no. 2, pp. 1-12, 1996.

[6] E. V. Altay and B. Alatas, "Intelligent optimization algorithms for the problem of

mining numerical association rules," Physica A: Statistical Mechanics and its

Applications, vol. 540, no. 123142, pp. 1-11, 2019.

[7] M. Kaushik, R. Sharma, S. A. Peious, M. Shahin, S. B. Yahia and D. Draheim, "A

Systematic Assessment of Numerical Association Rule Mining," SN Computer

Science, p. 348, 2021.

[8] I. Fister Jr. and I. Fister, "A Brief Overview of Swarm Intelligence-Based

Algorithms for Numerical Association Rule Mining," University of Maribor,

Slovenia, 2020.

[9] V. Beiranvand, M. Mobasher-Kashani and A. A. Bakar, "Multi-Objective PSO

Algorithm for Mining Numerical Association Rules Without a Priori

Discretization," Expert Systems with Applications, vol. 41, no. 9, pp. 4259-4273,

2014.

[10] P. Moslehi, B. M. Bidgoli, M. Nasiri and A. Salajegheh, "Multi-Objective

Numeric Association Rules Mining via Ant Colony Optimization for Continuous

Domains without Specifying Minimum Support and Minimum Confidence,"

International Journal of Computer Science Issues, vol. 8, no. 5, pp. 34-41, 2011.

[11] K. E. Heraguemi, N. Kamel and H. Drias, "Multi-Objective Bat Algorithm for

Mining Numerical Association Rules," Int. J. Bio-Inspired Computation, vol. 11,

no. 4, pp. 239-248, 2018.

[12] I. Kahvazadeh and M. S. Abadeh, "MOCANAR: A Multi-Objective Cuckoo

Search Algorithm for Numeric Association Rule Discovery," in Fourth

International Conference on Advanced Information Technologies and

Applications, 2015.

[13] E. V. Altay and B. Alatas, "Performance Analysis of Multi-Objective Artificial

Intelligence Optimization Algorithms In Numerical Association Rule Mining,"

Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 3449-

3469, 2019.

49

[14] E. V. Altay and B. Alatas, "Association analysis of Parkinson disease with vocal

change characteristics using multi-objective metaheuristic optimization," Medical

Hypotheses, vol. 141, 2020.

[15] E. V. Altay and B. Alatas, "A novel clinical decision support system for liver

fibrosis using evolutionary multi-objective method based numerical association

analysis," Medical Hypotheses, vol. 144, 2020.

[16] M.-S. Chen, J. Han and P. Yu, "Data mining: An overview from a database

perspective," IEEE Transactions on Knowledge and Data Engineering, vol. 8, no.

6, pp. 866-883, 1997.

[17] C. Blum and X. Li, "Swarm Intelligence in Optimization," in Swarm Intelligence,

Berlin, Springer-Verlag, 2008, pp. 43-85.

[18] A. Ghosh and B. Nath, "Multi-Objective Rule Mining Using Genetic Algorithms,"

Information Sciences, vol. 163, no. 1-3, pp. 123-133, 2004.

[19] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, USA: John

Wiley & Sons, 2001.

[20] J. Kennedy and R. Eberhart, "Particle Swarm Optimization," IEEE, vol. 4, pp.

1942-1948, 1995.

[21] I. Tahyudin and H. Nambo, "The Combination of Evolutionary Algorithm Method

for Numerical Association Rule Mining Optimization," Tahyudin, I., & Nambo, H.

(2017). The Combination of Evolutionary Algorithm Method for Numerical

Association Rule Mining Optimization. Advances in intelligent systems and

computing, vol. 502, pp. 13-23, 2017.

[22] R. Kuo, M. Gosumolo and F. E. Zulvia, "Multi-objective particle swarm

optimization algorithm using adaptive archive grid for numerical association rule

mining," Neural Computing and Applications, pp. 1-14, 2017.

[23] K. Socha, "Ant Colony Optimization for Continuous and Mixed-Variable

Domains," 2009.

[24] X.-S. Yang, "A New Metaheuristic Bat-Inspired Algorithm," Nature Inspired

Cooperative Strategies for Optimization, vol. 284, pp. 65-74, 2010.

[25] K. Heraguemi, N. Kamel and H. Drias, "Association Rule Mining Based on Bat

Algorithm," Journal of Computational and Theoretical Nanoscience, vol. 12, no.

7, pp. 1195-1200, 2015.

[26] H. A. Guvenir and I. Uysal, "Function Approximation Repository," Bilkent

University, 2000.

50

Appendix 1 – Non-exclusive licence for reproduction and

publication of a graduation thesis1

I Pilleriin Kõiva

1. Grant Tallinn University of Technology free licence (non-exclusive licence) for my

thesis “Implementation and Performance Assessment of Swarm Intelligence Based

Numerical Association Rule Mining Algorithms” supervised by Minakshi Kaushik

1.1. to be reproduced for the purposes of preservation and electronic publication of

the graduation thesis, incl. to be entered in the digital collection of the library of

Tallinn University of Technology until expiry of the term of copyright;

1.2. to be published via the web of Tallinn University of Technology, incl. to be

entered in the digital collection of the library of Tallinn University of Technology

until expiry of the term of copyright.

2. I am aware that the author also retains the rights specified in clause 1 of the non-

exclusive licence.

3. I confirm that granting the non-exclusive licence does not infringe other persons'

intellectual property rights, the rights arising from the Personal Data Protection Act

or rights arising from other legislation.

30.05.2022

1 The non-exclusive licence is not valid during the validity of access restriction indicated in the student's application for restriction on access to the graduation

thesis that has been signed by the school's dean, except in case of the university's right to reproduce the thesis for preservation purposes only. If a graduation thesis

is based on the joint creative activity of two or more persons and the co-author(s) has/have not granted, by the set deadline, the student defending his/her

graduation thesis consent to reproduce and publish the graduation thesis in compliance with clauses 1.1 and 1.2 of the non-exclusive licence, the non-exclusive

license shall not be valid for the period.

